&S SERENA

SERENA’
PVCS' VERSION MANAGER™ 8.6

PCLI User's Guide and Reference

Serena Proprietary and Confidential Information

Copyright © 2000-2017 Serena Software, Inc. All rights reserved.

This document, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. Except as permitted
by such license, no part of this publication may be reproduced, photocopied, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
recording, or otherwise, without the prior written permission of Serena. Any reproduction
of such software product user documentation, regardless of whether the documentation
is reproduced in whole or in part, must be accompanied by this copyright statement in its
entirety, without modification.

This document contains proprietary and confidential information, and no reproduction or
dissemination of any information contained herein is allowed without the express
permission of Serena Software.

The content of this document is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Serena. Serena
assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document.

Trademarks

Serena, TeamTrack, StarTool, PVCS, Comparex, Dimensions, Prototype Composer,
Mariner and ChangeMan are registered trademarks of Serena Software, Inc. The Serena
logo, Version Manager and Mover are trademarks of Serena Software, Inc. All other
products or company names are used for identification purposes only, and may be
trademarks of their respective owners.

U.S. Government Rights

Any Software product acquired by Licensee under this Agreement for or on behalf of the
U.S. Government, its agencies and instrumentalities is "commercial software" as defined
by the FAR. Use, duplication, and disclosure by the U.S. Government is subject to the
restrictions set forth in the license under which the Software was acquired. The
manufacturer is Serena Software, Inc., 2345 NW Amberbrook Drive, Suite 200, Hillsboro,

OR 97006.

Publication date: February 2017

Table of Contents

Chapter 1

Chapter 2

Welcome toVersionManager v 7
Typographical Conventions i 7
Usingthe Manuals e e 8
Contacting Technical Support e 9
License and Copyright Information for Third-Party Software 9
Using the Project Command-Line Interface 11
Introduction e e e e 12
The Command Interpreter i 12
Direct Command Execution. e e 12
Batch Command Execution. it 13
PCLI Commands ittt e e e e e e e e e 13
Version Manager Entities e 16
Specifying Entities. e 17
Command Options it e 20
Common Project Command Options 20
Values for Options. i 21
Variables e e 22
Authenticating PCLI Users with EventPassword 26
Word Splitting o e 26
Using Quotation Marks. i i i e 27
Quoting Rules 27
QUOLING TIPS . « . v e e e 28
Quotation Marksin Paths i i e e 28
Special PCLI CharactersinPaths. 28
Special Shell Charactersin Commands. 28
Command Shells and Quotation Marks., 28
Passing Quotation Marks through a Shell or Command 29
Match Quotation Marks Carefully. 30
Quoting Examples e e e 31
Debugging Scripts with PCLI_SCRIPT_TRACE 32
Mode Examples. o i e 32
Mid Script On and Off Example i . 34
Dateand Time Formats i e e e 34
PCLI FUNCLIONS. . . . o o e e e e s e e e e e 35
Using FUNCLIONS. e e e e e e 35
Scripting e e e e e e e 37
Introduction e e e 38
Executing Scripts. i e e e 38

PCLI User's Guide and Reference 3

Table of Contents

Chapter 3

Syntax of PCLI Scripts o i i e e e e 39
User IDS . . o o i e e e e e e e 39
Using the PCLI with the Existing Command-Line Interface in Scripts 40
UNC Paths e e e e e e e e e 40
Example Scripts. i e e 41
PCLI Command Reference 47
Introduction e 49
@ CcomMmMANd . . .o e e 49
AddFiles command. e 50
AddUser command. oo e e 54
ArraySize command e e e 56
AssignGroup command.o e e e e e 57
OptioNS . . . o e e e e e e e e 58
Break command e 58
Calccommand.ot e e 59
ChangeGroup command o v vt ittt e e e e e 61
OptioNS . . . o e e e e e e e e 61
Continue command e 62
CreateProjectcommand e 62
CreateProjectDB command i i e e 65
CreateWorkspace command i ittt 67
Delete command e 69
DeleteGroup command. i it e e e 71
OpPtiONS . . . o e e e e e e e e e 72
DeleteLabel command e 72
DeleteUser commandot i e 74
Echocommand e 75
Exitcommand e 77
ExportPDB command i e e e 78
Forcommand e 81
Getcommand e 83
GetArchivelLocation command 88
GetConfigFile command e 90
GetWorkLocation command. e 92
Ifcommand e e 95
ImportArchives command. i i e e 96
ImportPDB command i e e e e 100
IsDifferent command e 101

4 Serena® PVCS® Version Manager™

Table of Contents

Label command. e 104
Listcommand e 106
ListFloatingLabels command 118
ListProjectDB command i ittt e e e 120
ListPromotionModel command 122
ListRevision command 124
ListVersionedFiles command e 126
Lock command e 130
Move command e e 132
PromoteGroup commandttt e e e 134

OptioNSo e e e e e e e e 135
Put command 135
Readline command. e 139
RenameLabel command 140
Return command. e 142
Run command. e 143
Setcommand e 146
SetArchivelnfo command 151
SetArchivelLocation command 153
SetConfigFile command e 155
SetDefaultWorkspaceo i i i e e e e 157
SetWorkLocation command. 159
SetWorkspaceAttributes e 162
Test command. e 164
Unlock command e 166
UpdateProjectFolder command 168
Vdel command e 170
Viog command e e e 172
VMCopY command. o i e e e e e e 176
While command. e 179
WhoAmI command e 180
Appendix A: Naming Conventions and Restrictions 183
General Naming Conventions and Restrictions. 184

Prohibited Characters for Files and Directories 184

Naming Considerations for Cross-Platform Environments. 184
Specific Naming Conventions and Restrictions. 185

PCLI User's Guide and Reference 5

Table of Contents

6 Serena® PVCS® Version Manager™

Welcome to Version Manager

Purpose of this
manual

For more
information

Thank you for choosing Serena PVCS Version Manager, a powerful and versatile version
control system that will revolutionize the way you develop software. Version Manager
helps you organize, manage, and protect your software development projects on every
level—from storing and tracking changes to individual files, to managing and monitoring
an entire development cycle.

This manual is intended to help you use the project command-line interface (PCLI) to
perform command-line operations on Version Manager projects. It includes information
about using the PCLI as well as an alphabetical reference to each PCLI command.

Refer to the Serena PVCS Version Manager Getting Started Guide for a description of the
Version Manager documentation set, a summary of the ways to work with Version
Manager, and instructions for accessing the Online Help.

Typographical Conventions

The following typographical conventions are used in the online manuals and online help.
These typographical conventions are used to assist you when you use the documentation;
they are not meant to contradict or change any standard use of typographical conventions
in the various product components or the host operating system.

Convention Explanation

italics Introduces new terms that you may not be familiar
with and occasionally indicates emphasis.

bold Indicates the names of controls and fields on dialog
boxes and emphasizes important information.

UPPERCASE Indicates keys or key combinations that you can use.
For example, press the ENTER key.

monospace Indicates syntax examples, values that you specify,
or results that you receive.

monospaced Indicates names that are placeholders for values you

italics specify; for example, 77lename.

monospace Indicates the names of commands and command

bold options in syntax examples. Also indicates the results

of an executed command.

vertical rule | Separates menus and their associated commands.
For example, select File | Copy means to select Copy
from the File menu.

Also, separates mutually exclusive syntax choices.

braces {} Encloses a list of mutually exclusive syntax choices,
which are themselves set apart by vertical rules. For
example, {version | from ver*to ver}.

brackets [] Indicates optional items. For example, in the
following statement: SELECT [DISTINCT],
DISTINCT is an optional keyword.

PCLI User's Guide and Reference 7

Welcome to Version Manager

Convention Explanation

Indicates command arguments that you can use
multiple times in a single instance of a command.

@.; Shows you which shortcut button to click. Shortcut

buttons are placed in the margin.

Using the Manuals

The Serena® PVCS® Version Manager™ manuals use the Adobe Portable Document
Format (PDF). To view PDF files, use Adobe® Reader®, which is freely available from
www.adobe.com.

E NOTE Be sure to download the full version of Reader. The basic version does not include
¥ the search feature.

This section highlights some of the main Reader features. For more detailed information,
see the Adobe Reader online help system.

The PDF manuals include the following features:

Bookmarks: All of the manuals contain predefined bookmarks that make it easy for
you to quickly jump to a specific topic. By default, the bookmarks appear to the left of
each online manual.

Links: Cross-reference links within an manual enable you to jump to other sections
within the manual and to other manuals with a single mouse click. These links appear
in blue.

Printing: While viewing a manual, you can print the current page, a range of pages,
or the entire manual.

Advanced Search: Starting with version 6, Adobe Reader includes an advanced
search feature that enables you to search across multiple PDF files in a specified
directory. See the following procedure.

To search within multiple PDF documents at once, perform the following steps
(requires Adobe Reader version 6 or higher):

1
2
3

In Adobe Reader, select Edit | Search (or press CTRL+F).
In the text box, enter the word or phrase for which you want to search.

Select the All PDF Documents in option, and browse to select the folder in which
you want to search.

Optionally, select one or more of the additional search options, such as Whole words
only and Case-Sensitive.

8 Serena® PVCS® Version Manager™

http://www.adobe.com

Contacting Technical Support

5 Click the Search button.

E NOTE To enable more powerful search options, click the Use Advanced Search
¥ Options link in the lower right corner of the Reader window.

(If the link says Use Basic Search Options, the advanced options are already enabled.)
For details, see Adobe Reader's online help.

Contacting Technical Support

Registered customers can log in to http://support.serena.com.

License and Copyright Information for Third-Party
Software

License and copyright information for third-party software included in this release can be
found as part of the software download available at:

http://support.serena.com/Download/Default.aspx

PCLI User's Guide and Reference 9

http://support.serena.com
http://support.serena.com/Download/Default.aspx

Welcome to Version Manager

10 Serena® PVCS® Version Manager™

Chapter 1Wednesday, January 26, 2005

Using the Project Command-Line
Interface

Introduction 12
The Command Interpreter 12
PCLI Commands 13
Version Manager Entities 16
Command Options 20
Word Splitting 26
Debugging Scripts with PCLI_SCRIPT_TRACE 32
Date and Time Formats 34
PCLI Functions 35

PCLI User's Guide and Reference 11

Chapter 1: Using the Project Command-Line Interface

Introduction

The Serena PVCS Version Manager project command-line interface (PCLI) lets you work
with project databases and projects using a command-line interface in addition to using
the Version Manager desktop client. For example, using the PCLI, you can:

Create project databases, projects, and workspaces
Set workfile locations, archive locations, and configuration files

Get the current workfile locations, archive locations, and configuration file names and
locations

List project databases, versioned files, and the attributes of different entities
Add workfiles to projects

Import archives to projects

You can use the commands provided in the PCLI in combination with the commands
provided in the existing command-line interface. The PCLI uses a project path to identify
files. The existing command-line interface uses both the workfile location and archive
location to identify files. The existing command-line interface is documented in the Serena
PVCS Version Manager Command-Line Reference Guide.

PCLI provides you with the ability to perform multiple actions on projects interactively or
using scripts.

This chapter explains the methods you can use to execute PCLI commands, provides a
listing and definition of the PCLI commands, and discusses the Version Manager entities
(such as projects and versioned files) and command options appropriate for PCLI
commands.

The Command Interpreter

The Version Manager PCLI commands are executed by a command interpreter. When
using the PCLI commands, you must precede them with pcli. For example:
pcli getconfigfile -h

Two methods of executing the PCLI commands are provided:

Direct
Batch

Direct Command Execution

Using direct command execution, you can invoke one PCLI command at a time on the
command line. In this case, the specified command is executed and then the command
interpreter is exited.

The command syntax for direct execution is:

pcli command name [options]

12

Serena® PVCS® Version Manager™

PCLI Commands

where:

command_name is any PCLI command, as listed in Figure 1-1, "PCLI Commands," on page
14,

options are any valid options for the specified command. The option -h is valid for all
commands. This option displays the online help for the specified command. For example,
the following command displays the online help for the GetConfigFile command.

pcli getconfigfile -h

The valid options for each PCLI command are documented in Chapter 3, "PCLI Command
Reference" on page 47, which is an alphabetical reference of commands. A set of common
options are available for some of the PCLI commands; see "Common Project Command
Options" on page 20.

Batch Command Execution

The batch method of executing commands allows you to execute a PCLI script through the
PCLI. The PCLI Run command is provided for this purpose—to read and process a series of
commands from a file. A PCLI script is a file that contains a series of PCLI commands.

The syntax to execute a script using the run command is:
pcli run command options -sPCLI Script [script_arguments]

When you use the Run command to execute a PCLI script, the PCLI commands in the
script must not be preceded by pcli, as they are when you execute them using the direct
method of execution. A simple PCLI script might look like this:

Create a project database named productb

createprojectdb -prD:\productb -nproductb -wD:\productb\work
Create a project named class within productb
createproject -prD:\productb -wD:\productb\work\class class

You would execute the script by entering the following:
pcli run -sPCLIscript

See Chapter 2, "Scripting" on page 37 for detailed information about scripting using the
PCLI.

PCLI Commands

PCLI commands are divided into the following functional areas:
m Project
m Scripting

The following table defines each PCLI command and lists its alias, if one is available.
Chapter 3, "PCLI Command Reference" on page 47 provides the syntax, valid options, and
examples of the use of each of these commands.

PCLI User's Guide and Reference 13

Chapter 1: Using the Project Command-Line Interface

Table 1-1. PCLI Commands

Command
Command's Alias

Definition

Project Commands

AddFiles Adds workfiles to projects given the workfile locations.
AF

AddUser Adds a user to a project or project database.

AU

AssignGroup Assigns a specified promotion group to versioned files.
AG

ChangeGroup Specifies a different promotion group for versioned files
CG that already have a promotion group.

CreateProject Creates a project within the specified project database.
CP

CreateProjectDB Creates a project database at the location specified.
CPDB

CreateWorkspace Creates a new private or public workspace.

Cw

Delete Deletes workspaces, projects, folders, and versioned

files

DeleteGroup

Removes a specified promotion group from versioned

DG files.

DeleteLabel Removes a version label from projects or versioned files.
DL

DeleteUser Deletes a user from the access control database.

DU

ExportPDB Exports project database and project information into an
EPDB INI file format.

Get Checks out files.

GetArchivelocation
GAL

Lists the archive location for the specified project or
versioned file.

GetConfigFile

Lists the configuration files used by the specified project.

GCF

GetWorkLocation Lists the workfile location for the specified project, 5.3/
GWL 6.0 folder, or versioned file.

ImportArchives Adds versioned files to projects given the archive

IA locations.

ImportPdb Creates a project database and projects from the project
IPDB database information in an INI file.

IsDifferent Tests for differences between workfiles, a workfile and a
ID versioned file, of between revisions of a versioned file.
Label Assigns a version label to a revision of versioned files.
List Lists Version Manager entities (such as projects and

versioned files) and their attributes.

Serena® PVCS® Version Manager™

PCLI Commands

Command
Command's Alias

Definition

ListFloatingLabels Lists the floating labels and their associated revision
LFL numbers for Version Manager entities.

ListProjectDB Lists the current project database location or lists all of
LPDB the active project database locations used by the

desktop client.

ListPromotionModel
LPM

LIsts the promotion model associated with a Version
Manager entity.

LIstRevision
LR

Lists the revision associated with the default version or
with a specified version label or promotion group.

ListVersionedFiles
LVF

Lists all versioned files of a project.

Lock Locks a revision of the specified versioned files.

Move Moves versioned items into a destination project
database, project, or folder.

PromoteGroup Promotes versioned files to the next promotion group.

PG

Put Checks in a revision of a versioned file.

Renamelabel Renames a version label in projects or versioned files.

RL

SetArchivelnfo Sets archive information for versioned files.

SAI

SetArchivelLocation
SAL

Sets the archive location for the specified project or
versioned file.

SetConfigFile

Associates the specified configuration file with a project.

SCF

SetWorkLocation Sets the workfile location for the specified project, 5.3/

SWL 6.0 folder, or versioned file.

Unlock Unlocks a revision of a versioned file.

UpdateProjectFolder Updates the list of project files to reflect changes in the

UPF archive directories specified in the VCSDir directive.
Applies only to 5.3/6.0 projects.

Vdel Deletes a revision of a versioned file.

Vlog Reports archive and revision information of versioned
files.

VmCopy Copies a group of items to a project.

VC

WhoAmI Reports the active user ID used to access specified

WAI Version Manager entities.

Scripting Commands

Run Executes PCLI scripts, functions, and external programs.
@ Inserts the contents of a file into a script.
Echo Outputs literal text or the contents of PCLI variables.

PCLI User's Guide and Reference 15

Chapter 1: Using the Project Command-Line Interface

Command Definition
Command's Alias

Elif Used with the If command to specify a boolean condition
and the action to be taken if it is met.

Else Used with the If command to specify the action to be
taken if the boolean conditions stated in the If command
are not met.

For Executes a set of commands once for each element in a
variable array.

If Executes one set of commands or another depending on
the result of a boolean command.

While Executes a set of commands as long as the results of a
boolean command is true.

Test Evaluates a boolean expression for the If and While
commands.

Calc Evaluates a numeric expression.

Set Sets the value of a PCLI variable or variable array.

ArraySize Displays the combined size of the specified variable

AS arrays.

Exit Stops processing and returns the specified status to the
calling program.

Return Causes the current function or script to return with the
specified status.

Break Exits the current For or While loop.

Continue Branches to the top of the current For or While loop.

Readline Enables a PCLI script to prompt the user from the

command line. Places a line of user input into a variable.

Version Manager Entities

Version Manager entities are the different items that the PCLI can operate on. The
common entities are project database, project, folder, versioned file, and workspace. The
description of each PCLI project command in Chapter 3, "PCLI Command Reference" on
page 47 defines the valid entities for each of the commands.

Each PCLI project command, except CreateProjectDB, requires that you specify the
project database that you want to work with. The two most common ways to specify a
project database are to:

m Set the PCLI_PR variable. See "Variables" on page 22.

m Specify the -pr option on the command line. See "Common Project Command
Options" on page 20.

Also, most PCLI project commands require that you specify a project. The most common
ways to specify a project are to:

m Set the PCLI_PP variable. See "Variables" on page 22.

16

Serena® PVCS® Version Manager™

Version Manager Entities

m Specify the -pp option on the command line. See "Common Project Command
Options" on page 20.

m Specify the entity argument on the command line.

Specifying Entities

To specify a project database for the -pr option or the PCLI_PR variable, you use the
location of the project database, for example, D:\producta.

To specify an entity in a PCLI project command, you use the entity's path. There are two
types of entity paths used by the PCLI:

m Project paths, which specify the projects and, optionally, the versioned files of the
current project database.

m Workspace paths, which are either private or public.

Project Paths

The top-level of a project path is a forward slash (/), which specifies the current project
database. Then, the hierarchy is as follows: /project/subproject/versionedfile. For
example,

/bridge/server/readme. txt specifies the versioned file readme.txt in the server
subproject of the bridge project.

NOTE For some commands, you may also specify revisions and revisions on a branch.
For example, /bridge/server/readme.txt/1.2 specifies revision 1.2, while /bridge/server/
readme.txt/1.2/1.2.1/1.2.1.0 specifies revision 1.2.1.0 on the 1.2.1 branch. See the
instructions specific to each command.

When specifying a project for the entity argument in a command line, you can either
specify the entire path or make the path relative to the current project. You specify the
current project by either setting the PCLI_PP variable or specifying the -pp option on the
command line. The entity argument for PCLI project commands is optional. You do not
have to specify it if you have set a current project database and want the command to
operate on the project database, or if you have set a current project and want the
command to operate on that project. If you want the command to work on a project other
than the current project or you want the command to work on a versioned file, you must
specify a value for the entity argument.

For example, the syntax for the GetArchivelLocation is:
GetArchivelocation [options] [entity]

You can use the following command line and not specify a value for the entity argument
because you want the command to get the archive location for the current project, which
is defined using the -pp option and a period (.) in this example.

GetArchivelocation -prD:\producta -pp/bridge/server .

PCLI User's Guide and Reference 17

Chapter 1: Using the Project Command-Line Interface

However, if you want to get the archive location for a versioned file, you would have to
specify a value for the entity argument.

GetArchivelocation -prD:\producta -pp/bridge/server readme.txt

NOTE To access versioned files at the 5.3/6.0 project level, you must use the syntax
/ProjectFolder/project _name/[ver filename] .

/ProjectFolder is a keyword and must be typed exactly as it appears. It is not a place
holder or part of an actual path on your system.

For example, /ProjectFolder/projl/readme. txt, tells the PCLI to access the
versioned file readme.txt in the 5.3/6.0 projl project (this versioned file is not in a 5.3/
6.0 folder of the projl project). This syntax is typically used with the ListVersionedFiles
command. For example:

pcli 1vf -prD:\60prjdb -1 -z /ProjectFolder/projl/*.

You must specify the * to list the versioned files of a 5.3/6.0 project because versioned
files are not typically directly beneath 5.3/6.0 projects but instead inside folders of 5.3/
6.0 projects. Therefore, the -z option won't list versioned files of 5.3/6.0 projects as it
would versioned files of 5.3/6.0 folders and projects.

Rules for specifying project paths

The following rules apply when you specify project paths for the entity argument:

m To specify the entire path of a project, the path must start with a forward slash (/).
For example, /bridge/server specifies the server subproject of the bridge project.

m To specify a subproject of the current project, you need only use the subproject's
name. For example, server specifies
/bridge/server, assuming the current project is bridge.

m To specify the current project, you use one period (.). For example, . specifies /
bridge, assuming the current project is bridge.

m To specify the parent of the current project, you use two periods (..). For example, ..
specifies the project database in which the bridge project resides, assuming the
current project is bridge.

The following rules apply when you specify an entity for the entity argument, the -pp
option, or the PCLI_PP variable:

m Entity paths that contain spaces must be surrounded by single or double quotation
marks. For example, "/projectl/new subproject".

NOTE Simple quoting does not stop PCLI command-line splitting on spaces for most
UNIX shells. This is only an issue when a file nhame or project name, for example, has
embedded spaces. Quotation marks must be preceded by a backslash character (\).
For example:

-pp\"/My project/\"

18

Serena® PVCS® Version Manager™

Version Manager Entities

m Entity paths can contain wildcard characters, as follows:

Use this wildcard character... To specify...

* Any string. For example, *.c will match any
entity path that ends with .c.

? Any one character. For example, test??.java will
match any entity path that starts with test, has
any two characters after test, and ends with
.java, such as test01.java, test02.java, etc.

[-] A range of characters. For example, test.[a-d]*
will match any entity path that has an extension
that starts with the letters a, b, ¢, or d.

[characters | Any characters within the square brackets. For
example, test.[ch] will match either test.c,
test.h, or both.

A Any character but the one specified. For
example, test.[”j]* will match all entity paths
named test that have extensions that do not
start with j.

\ The escape character. Place this character
before any of the characters in this table to
specify one of these special characters.

m If you surround an entity path with either single or double quotation marks, the
wildcard characters are ignored; the entity path is not expanded.

Workspace Paths

In some PCLI project commands, you can optionally specify a workspace from which to
take a value. For example, the workfile location for a project can vary depending on which
workspace is set. Therefore, when you get a workfile location, you may want to specify
from which workspace you want to get the value of the workfile location. The default is
the user's default workspace.

You specify a workspace by either:
m Setting the PCLI_SP variable. See "Variables" on page 22.

m Specifying the -sp option on the command line. See "Common Project Command
Options" on page 20.

You can specify either the Root Workspace, a private workspace, or a public workspace. To
specify the Root Workspace, enter:

/@/RootWorkspace
To specify a private workspace, you use the following syntax:
/@/userID/ parent_workspace/[child workspacel

where userIDis your user ID and is case sensitive. For example,
/@/AdamJ/myprivateworkspaces/mylocaldrive.

To specify a public workspace, you use the following syntax:

/@/Public/parent_workspace/[child workspacel

PCLI User's Guide and Reference 19

Chapter 1: Using the Project Command-Line Interface

For example, /@/Public/networkdrive. In this example, there is no child workspace
specified.

Command Options

Command options are values that you provide to a PCLI command to tell the command
the action to take. For example, through the use of options, you can tell the ListProjectDB
command to list only the current project database or to list all active project databases.

Command options have one of two forms:

m A flag, which starts with a hyphen (-), often followed by a value. Flags are case
insensitive.

m A positional value (argument) in the command line.

For example:
pcli addfiles -prD:\producta F:\dev\work
/
A flag A positional value

The -h flag is available for all commands. This flag displays the online help for a specific
command (pcli command _name -h) or displays a list of available PCLI commands (pcli
-h).

You can suppress the banner output of PCLI via the option -nb (No Banner). This option
should be specified in-between pcli and the command PCLI should execute. For example,
to run the AddFiles command without banner output, you would execute:

pcli -nb addfiles ...
Additionally, both PCLI and CLI can suppress their banner output if the environment
variable PVCS_NO_BANNER exists with a value of true. When PCLI is called with the -nb
option, it automatically sets the PVCS_NO_BANNER variable to true for all child processes,

so any external PCLI or CLI command getting launched from a PCLI script using run -e or
via an Event Trigger will automatically get its banner suppressed too.

Common Project Command Options

The following project command options are available for most of the PCLI project

commands.
Project Command Option Definition
-prprojectdatabase Specifies the project database to use
-iduserID|[: password] Specifies a user ID and password (if one is
defined) to use
-ppproject Specifies the current project
-spworkspace Specifies the workspace to use

Let's take a closer look at these common project command options.

20 Serena® PVCS® Version Manager™

Command Options

-id This option specifies a user ID and/or password for project databases and
projects that have an access control database enabled. It overrides the
value of the PCLI_ID variable for a single command. If VLOGIN, SSO/CAC
(without CAC implemented), or LDAP is the login source, use -1id to
specify your user ID—and password too if a password is assigned to your
user ID. For example, -idUserlID: Password
If VLOGIN, SSO/CAC, or LDAP is not the login source, your user ID is
predetermined by your login source, but you must still use -1id to enter
your password, if you have one. For example, -id: Passiiord.

-idCAC_LOGIN If SSO/CAC is the login source and CAC is implemented, you can include
the CAC PIN and Aliasname when you type the command.
For example,-idCAC_LOGIN: PIN: Aliasname. Or you can type just the
CAC_LOGIN keyword and then answer the prompts for CAC PIN and
Aliasname. For example, -idCAC_LOGIN.Or you can type the PIN and
answer the prompt for the aliasname. For example, -idCAC_LOGIN: PIN.

-pp This option can be specified on the command line to define the current
project (the project to operate on). If the PCLI_PP variable (see Figure 1-
2, "Reserved Variables Used to Supply Values," on page 24) is set, -pp
overrides the value of the PCLI_PP variable for a single command
execution. This option is optional for all project commands. If a current
project is not defined, then project database entities must be specified
using their fully qualified entity paths, for example:

/bridge/server

A project A subproject

The entity path is relative to the root of the project database. For more
information on entity paths, see "Specifying Entities" on page 17.

-pr This option can be specified on the command line to define which project
database to work with. If the PCLI_PR variable (see Figure 1-2, "Reserved
Variables Used to Supply Values," on page 24) is set, -pr overrides the
value of the PCLI_PR variable for a single command execution. Most
project commands require that a project database be specified.

-sp This option can be specified on the command line to define the workspace
to use. If the PCLI_SP variable (see Figure 1-2, "Reserved Variables Used
to Supply Values," on page 24) is set, -sp overrides the value of the
PCLI_SP variable for a single command execution. If a workspace is not
specified, then the user's default workspace is used.

Values for Options

Besides an actual value for an option (as previously shown), a value specified in a
command line can take the form of:

m A variable
s Command output

m The name of a list file

The PCLI command interpreter translates these forms of input into actual values that the
command can use.

PCLI User's Guide and Reference 21

Chapter 1: Using the Project Command-Line Interface

Variables

Using the PCLI, you can define variables within a script to provide values throughout the
execution of the script. Three types of user-defined variables are supported:

m Typical string variables

m Sequential array variables

m Associative array variables
See the "Set command" on page 146 for more information about variables.

In addition, the PCLI has a set of reserved variables. These variables have four different
functions:

m Variables that you can set to supply a command with values. See the table on Figure
1-2, "Reserved Variables Used to Supply Values," on page 24.

m Variables that are set by PCLI for your reference. See Figure 1-3, "Reserved Variables
Set by PCLI for Reference," on page 24.

m A variable that you set to define the delimiter characters the PCLI uses to divide the
command line into separate words. This variable is PCLI_IFS. See "Word Splitting" on
page 26.

m A debugging variable that you set to define the script trace mode that is in effect, if
any. This variable is PCLI_SCRIPT_TRACE. See "Debugging Scripts with
PCLI_SCRIPT_TRACE" on page 32.

Setting Variables

You can set the value of PCLI variables in PCLI scripts by using the PCLI Set command.
For example, in a PCLI script:

Set -vPCLI PR D:\producta
getconfigfile /bridge

or

Set PCLI PR=D:\producta
getconfigfile /bridge

In either case, the variable is global within the script. See the "Set command" on page
146 for more information.

In addition, you may find it useful to make a PCLI reserved variable an operating system
environment variable by using the appropriate operating system command. Platform
specific examples include:

. Windows:
Set PCLI_PR=D:\producta

m UNIX Bourne Shell (sh):
PCLI_PR=/usr/serena/products; export PCLI_PR

m UNIX Korn Shell (ksh) or Bourne Again Shell (bash):
export PCLI_PR=/usr/serena/producta

m UNIX C Shell (csh):
setenv PCLI_PR /usr/serena/producta

22

Serena® PVCS® Version Manager™

Command Options

In this case, the variable is global to all PCLI scripts, commands executed directly, and
commands executed interactively during the current operating session. All environment
variables are converted to PCLI variables and are available to scripts.

Naming Variables

Variable names can contain letters, numbers, and the underscore character (_). All
variables, except for variables used for positional parameters to PCLI functions and
scripts, must start with a letter or the underscore character. Variables that consist of only
numbers are positional parameters to PCLI functions and scripts, and are set by PCLI
when a script or function is executed.

IMPORTANT! Variables are case sensitive, so $VAR is different from $Var which is
different from $var.

Referencing Variables

You reference a typical string variable by placing either ${variable name} or
$variable_name in the appropriate position in the command line. For example, from a
script, the second line references the variable that is set in the first line:

set -vconfig $(getconfigfile /bridge)

setconfigfile -c${config} /newprj

You reference an array variable by placing either ${variable _namel index]} or
$variable_namel index] in the appropriate position in the command line. If you do not
specify a value for 7ndex, all of the values of the array are returned. The value for 7ndex
is an integer for a sequential array or a string for an associative array. For example, to
return all of the values of an array variable:

run -e get -1 $FilelList[]

Or, to return only a single value from an array, you must specify an element of the array:
echo $FileList[1]

NOTE When referencing an element of an array, you must not have leading or trailing
spaces around the name of the element. For example, you cannot have:

echo $Filelist[1]

Reserved Variables

Table 1-2 defines the PCLI reserved variables that are used to supply a command with
values.

PCLI User's Guide and Reference 23

Chapter 1: Using the Project Command-Line Interface

Table 1-2. Reserved Variables Used to Supply Values

This reserved variable. . . Contains the value of the. . .

PCLI_ID Current user ID and password (optional)

NOTE For information on using EventPassword for
PCLI authentication, see "Authenticating PCLI Users
with EventPassword" on page 26.

PCLI_IFS Delimiter characters. The default values are a space,
tab, carriage return, and new line. For more
information, see "Word Splitting" on page 26.

PCLI_PP Current project
PCLI_PR Current project database
PCLI_SP Current workspace

Once you have set these variables, you do not need to reference them in a command line
because the PCLI automatically substitutes the values in the command line. For example,
the GetConfigFile command requires a value for a project database such as:

pcli getconfigfile -prD:\producta /bridge

If you set a value for the PCLI_PR variable, you need not specify the -pr option for the
GetConfigFile command because the PCLI will use the value of the PCLI_PR variable. You
need only enter:

pcli getconfigfile /bridge

In addition, there is a set of PCLI reserved variables that are set by PCLI (see Table 1-3).
These variables are not to be set by you; they are provided for reference.

Table 1-3. Reserved Variables Set by PCLI for Reference

This reserved variable. . . Contains the value of the. ..

Number of positional parameters (arguments).

0 Executed script file name.

number Positional parameter (argument).

* Positional parameters, $1 $2 $3 . ..

? Status of the last command executed (return code).
PCLI_LINENO Line number of the current command in the script file.

If the current command was not read from a script,
then this variable is not defined.

PCLI_SCRIPT_FILE File name of the script the current command was
found in. If the current command was not read from a
script, then this variable is not defined.

PCLI_VERSION Version number, including the build number, of the
Version Manager PCLI install you are running.

You can use the PCLI_VERSION variable from the command-line and from scripts.

24 Serena® PVCS® Version Manager™

Command Options

Examples

Example 1: The following example shows how to access PCLI_VERSION from the
command-line:

pcli echo "PCLI_VERSION=$PCLI_VERSION"
PCLI_VERSION=6.8.00 (Build 055)

Example 2: The following example shows how to use PCLI_VERSION in a script that
verifies the version number before proceeding:

if ["$PCLI_VERSION" < "6.8.00"]
{
NOTE: Avoid testing "$PCLI VERSION" = "6.8.00"
since the $PCLI_VERSION string also includes the
build number, and "6.8.00 (Build 055)" != "6.8.00".
As such, use operators like <, <=, > and >= to take
this into account (use alphabetic string comparison).
echo "This script requires Version Manager 6.8.00 or newer."
exit 1
}
Version Manager 6.8-specific commands to follow
DeletelUser -idAdmin:admin Joe
Etc...

Command Output

Command output can be inserted as a value for a command option in a command line.
The syntax for the use of command output is:

$ (command)
or
$ [command]

where command is a complete command including options. The command is executed and
its output is inserted in the command line.

For example, you could get the name of the configuration of one project and associate it
with another project:

pcli setconfigfile -c$(getconfigfile /bridge) /newprj

This example tells the PCLI command interpreter to get the value of the configuration file
associated with the bridge project and associate that configuration file with the newprj. In
this example, the two projects have the same project database because no project
databases are specified on the command line.

The result of command substitution is split into words unless you use the $ [commana]
syntax. In this case, the command substitution is split on each new line. The $ [command]
syntax makes it easier to use commands that output one path per line where the path
may contain spaces.

List Files

A list file contains command-line input for PCLI commands. When used in a command
line, the contents of the file are substituted for the value of the option in which the file
was specified. The syntax for the use of a list file is:

@l7st _file

PCLI User's Guide and Reference 25

Chapter 1: Using the Project Command-Line Interface

You can use a list file to perform an operation on multiple files in a project. For example,
you could simplify the task of importing versioned files into a new project by creating a list
file containing the locations of the versioned files in the old project. You could first direct
the output of the ListVersionedFiles command to a list file, and then use this list file when
executing the ImportArchives command:

pcli ListVersionedFiles -prD:\producta -z -aw /bridge > list.tmp
pcli ImportArchives -prD:\productb -pp/newprj @list.tmp

Authenticating PCLI Users with EventPassword

You can use the __EventPassword__ command-line macro or the EVENTPASSWORD
environment variable to authenticate PCLI users. However, by default, this feature is
disabled and any such attempt will fail.
Enabling EventPassword for PCLI
To enable EventPassword for use with PCLI:
1 Open the following file in a text editor:
Install Dir\vm\common\pvcsprop\pvcs\vm\security.properties
2 Add the following line:
vm.allowEventPassword=enabled
3 Save the file and repeat the above steps on every system on which you want to
enable authentication with EventPassword.

Using EventPassword with PCLI

Once you have enabled EventPassword for use with PCLI, you can use it to authenticate
PCLI users by setting the PCLI_ID variable or by passing arguments to the PCLI script. For
example:

set PCLI_ID="$EVENTUSERID:$EVENTPASSWORD"
or
-id"_EventUserID : EventPassword "

For more information on EventUserID and EventPassword, see the Version Manager
Command-Line Reference Guide.

Word Splitting

The first step in command line processing is called word splitting, which is the process of
dividing the command line into separate words based on delimiter characters. The default
delimiter characters for PCLI direct command execution are a space, tab, carriage return,
and new line.

26

Serena® PVCS® Version Manager™

Word Splitting

Using Quotation Marks

The effect of the delimiter characters can be modified by the use of quotation marks.
Single and double quotation marks suspend word splitting. For example, to use spaces in
a path you can use quotation marks in the command:

pcli getarchivelocation -pr"D:\My Projects\producta"”

Without quoting, the path would be broken at the space and the command would not
behave as desired.

Word splitting is also performed on the result of:
m List file input processing
m Variable expansion

s Command output substitution

In these cases, you can define the PCLI_IFS reserved variable to define the characters
you want to use as delimiter characters. The default values for this variable are a space,
tab, carriage return, and new line. See the -r option of the "Set command" on page 146
for how to set the PCLI_IFS variable.

Quoting Rules

The following list provides rules for quoting in the PCLI:

m Single quotation marks can be used to escape double quotation marks.

m Double quotation marks can be used to escape single quotation marks.

m A backslash can be used to escape either single or double quotation marks only.

m A backslash preceding any character other than a quotation mark has no special
meaning.

m A backslash has no special effect inside a quoted area, it is just a character.
m Variable expansion does not happen inside of single quotation marks.

m Double quotation marks around a variable or a command output definition prevent
word splitting of the results of variable expansions and command output
substitutions.

s Command output substitution does not happen inside of single quotation marks.

m @file expansion by the PCLI interpreter does not happen within either single or double
quotation marks.

m Entity path expansion does not happen within single or double quotation marks.

m All commands including the Run and Set commands will remove all unquoted
quotation marks from arguments after variable expansion and command output
substitution and before execution.

= A command output substitution has an implied Run command as part of its definition.

m When a quoted area starts with single or double quotation mark, the only character
that can end the quoted area is another quotation mark of the same kind.

m Quoted areas can extend into the next line. The newline characters become part of
the quoted string.

PCLI User's Guide and Reference 27

Chapter 1: Using the Project Command-Line Interface

Examples

Quoting Tips

This section outlines a few of the situations where quoting is useful and notes some of the
pitfalls to watch out for when using quotation marks.

Quotation Marks in Paths

Quotation marks that are contained inside of a file specification should be avoided. For
example:

C:\"Program Files"\somedir\anotherdir\somefile

The first backslash will be removed when this is an argument to a command because the
backslash escapes the quotation mark.

If the above example is part of a script, enclosing it in single quotation marks will
preserve the backslash. (Proper syntax for use at a command prompt depends upon the
shell you are using. See "Passing Quotation Marks Through a Shell" on page 30.)

Special PCLI Characters in Paths

If any of your paths, files, or other data to be processed by a PCLI script contain special
PCLI characters, like $, -, @, etc., you must quote them so that they will not be
interpreted by a PCLI command. Place single quotation marks around the word that
contains these characters.

Special Shell Characters in Commands

When issuing PCLI commands from the command-line, you must quote any PCLI
command arguments that have special meaning to your shell. For example:

pcli run -">"dir.txt -e dir
pcli run "->dir.txt" -e dir

Without the quotation marks, your shell would interpret the angle bracket as a redirection
flag instead of leaving that to the Run command.

Command Shells and Quotation Marks

Before using quotation-mark bearing PCLI commands from a command prompt, you must
consider how your operating system interprets quotation marks. Windows, for example,
interprets double quotation marks (") differently than single quotation marks ('), as the
following examples illustrate.

Example 1: The following example shows how double quotation marks are interpreted
from the Windows command prompt. The command:

pcli echo -ns "Three spaces and quotes."

Passes three arguments to PCLI:

m echo

28

Serena® PVCS® Version Manager™

Word Splitting

m -ns
m Three spaces and quotes.
Which results in the output:

Three spaces and quotes.

The double quotation marks served to bundle the space separated words into a single
argument, preserving the spaces. The quote pair was removed by the Windows shell
before PCLI interpretation.

Note if you run the same Echo command inside a script, the quotation marks will be
included in the output:

"Three spaces and quotes.”

Example 2: The following example shows how single quotation marks are interpreted
from the Windows command prompt. The command:

pcli echo -ns 'Three spaces and quotes.'

Passes six arguments to PCLI:

m echo

] -Nns

m 'Three
m spaces
= and

m quotes.'

Which results in the output:
'Three spaces and quotes.'

In Windows, single quotation marks are just another character, so the spaces break the

single-quoted string into four separate arguments. The three spaces between the words

Three and spaces are discarded. The Echo command then concatenates the arguments
and reforms the sentence with a single space between each word. The -ns option allows
the quotation marks to pass through the PCLI interpreter.

Note if you run the command inside a script, the output will retain the three spaces
between the words Three and spaces:

'Three spaces and quotes.'

Passing Quotation Marks through a Shell or Command

You must quote, or escape, quotation marks when you want to prevent an operating
system shell or PCLI command from interpreting quotation marks and instead pass them
along unaltered to be displayed or used by another command. PCLI is compatible with the

PCLI User's Guide and Reference 29

Chapter 1: Using the Project Command-Line Interface

Example

following methods of escaping quotation marks (though your command-line shell may not
be):

To escape... Use... For example...
Double quotation Single quotation marks She said, ""'You can quote me.""
marks (") (") or backslashes (\). or

She said, \"You can quote me.\"

Single quotation marks Double quotation marks She said, "'"You can quote me.""
() (") or backslashes (\). or

She said, \'You can quote me.\'
Thus, a command of the form:
pcli echo -ns She said, \"You can quote me.\"
Produces this result:
She said, "You can quote me."

NOTE A backslash that is itself inside of unescaped quotation marks is treated as a
normal character and cannot serve to escape quotation marks.

Passing Quotation Marks Through a Shell

When executing PCLI commands from a command shell that interprets quotation marks
as special characters, you must quote or escape any quotation marks that you want to
pass through to the PCLI interpreter. In doing this, you must consider how your shell
interprets double quotation marks ("), single quotation marks ('), and backslashes (\).
Windows, for example, does not interpret single quotation marks as special characters, so
you cannot use them to quote double quotation marks.

The following example shows how to use backslashes from the Windows command
prompt to escape double quotation marks. The command:

pcli echo -ns \"Three spaces and quotes.\"
Results in:

"Three spaces and quotes.”

Passing Quotation Marks through a PCLI Command

You can prevent a PCLI command from interpreting quotation marks and instead pass
them along unaltered to be displayed or used by another command. This is done by
quoting or escaping the quotation marks you wish to pass through.

If you wish to accomplish this from the command-line rather than from within a script,
you must also consider how your system shell interprets quotation marks.

Match Quotation Marks Carefully

Be careful to correctly match quotation marks. Unmatched quotation marks will cause the
parsing code to continue a quoted string into the next line. Commands will not parse
properly from that point forward.

30

Serena® PVCS® Version Manager™

Word Splitting

Quoting Examples

Example 1

#Suppose you want to execute the external command vdel and
#pass to it the contents of a file. The @file should not be
#interpreted by the PCLI script, because the expanded 1list
#of arguments might be too long to fit in the operating
#system's command buffer (where the external command will
#be executed).

run -ns -e vdel -r1.0 "@file"

or
run -ns -e vdel -rl1.0 '@file’

Example 2

#Suppose you want to use filenames or paths in a script that
#have characters in them that are special characters to the
#PCLI interpreter, like §$.

get 'foo$3.class’

#Suppose you want to use filenames or paths that have
#characters in them that are special characters to a shell,
#like $.

run -ns -e vdel -r1.0 'foo$3.class'

Example 3

Suppose you want to add double quotation marks around a
variable's contents.

set -vFOO '"'"$FOO"'"'

or
set -vFOO \""$FOO"\"

or
set -ns -vF0OO "$FOO"

Example 4
#Promote the versioned files in the 'bridge' project using
#the same list of configuration files that the desktop client reads.
set -a -vConfiglList \
$[gcf -pr"D:\Program Files\Serena\vm\pcli_ sample" -a /bridge]
set -vi 0O
While Test $i < $(arraysize ConfiglList)
{
set -i%$i -vCmdArgs '-c"'"$ConfiglList[$il"\"
calc -vi $i + 1
}
run ->listfile.txt \
1vf -pr"D:\Program Files\Serena\vm\pcli_sample" -aw /bridge
run -ns -e vpromote $CmdArgs[] -g"QA" "@listfile.txt"

In the first Set command, the file path of the sample database is quoted to prevent word
splitting at the space character in program files, thus maintaining the entire file path
as one unit.

The While loop double quotes each element of the ConfigList array and places a -c in
front of each element. The objective is to place quotation marks around each element that

PCLI User's Guide and Reference 31

Chapter 1: Using the Project Command-Line Interface

is used by the external vpromote command, which is executed in the last line of the
script:

m The double quotation marks ensure that the vpromote command will handle the space
in the configuration file paths correctly.

m The single quotation marks around the -c are removed by the Set command and
prevent the -c option, which is to be used by the vpromote command, from being
interpreted by the Set command.

m The pair of double quotation marks surrounding $ConfigLIst[$i] is required
because the value of this variable may contain spaces and we want to retain these
spaces in the variable that is being assigned by Set.

The -ns option used by the Run command prevents the quotation marks surrounding the
configuration file paths from being stripped by the Run command, thus leaving the quoted
file paths intact for the vpromote command.

Debugging Scripts with PCLI_SCRIPT_TRACE

The PCLI_SCRIPT_TRACE variable allows you to enable three different script trace
debugging modes:

Mode Syntax Shows

0 set PCLI_SCRIPT_TRACE=0 Normal command output. (This turns off
the script trace feature.)

1 set PCLI_SCRIPT_TRACE=1 | Each line before variables are expanded.

2 set PCLI_SCRIPT_TRACE=2 | Each line after variables are expanded.

3 set PCLI_SCRIPT_TRACE=3 Each line before and after variables are
expanded.

Debug information will be shown under STDERR (standard error) for each line that occurs
after the PCLI_SCRIPT_TRACE variable is set to 1, 2, or 3. Each line is prefaced with a 1
or 2 to indicate if it represents the pre or post variable expansion state. Output will return
to normal for all lines that occur after the variable is set to 0.

Mode Examples

The examples below use the following script, which is shown here with its normal (mode
0) output:

C:\>type Example.pcli
set extra=blue
set colors=red green $extra
for color in $colors
{
echo "color=%color"

}

C:\>pcli run -sExample.pcli
Serena PVCS Version Manager (PCLI) v8.1.2 (Build 061) for Windows NT/
80x86

32

Serena® PVCS® Version Manager™

Debugging Scripts with PCLI_SCRIPT_TRACE

Copyright 1985-2004 Merant. All rights reserved.

color=red
color=green
color=blue

Mode 1 Example

C:\>set PCLI SCRIPT TRACE=1
C:\>pcli run -sExample.pcli

Serena PVCS Version Manager (PCLI) v8.1.2 (Build 061) for Windows NT/

80x86

Copyright 1985-2004 Merant. All rights reserved.

+1 Example.pcli[l]:
+1 Example.pcli[2]:
+1 Example.pcli[3]:
+1 Example.pcli[5]:

color=red

+1 Example.pcli[5]:

color=green

+1 Example.pcli[5]:

color=blue

Mode 2 Example

set extra=blue

set colors=red green $extra
for color in $colors

echo "color=%color"

echo "color=%color"

echo "color=%color"

C:\>set PCLI_ SCRIPT TRACE=2
C:\>pcli run -sExample.pcli

Serena PVCS Version Manager (PCLI) v8.1.2 (Build 061) for Windows NT/

80x86

Copyright 1985-2004 Merant. All rights reserved.

+2 Example.pcli[l]:
+2 Example.pcli[2]:
+2 Example.pcli[3]:
+2 Example.pcli[5]:

color=red

+2 Example.pcli[5]:

color=green

+2 Example.pcli[5]:

color=blue

Mode 3 Example

set extra=blue

set colors=red green blue
for color in red green blue
echo "color=red"

echo "color=green"

echo "color=blue"

C:\>set PCLI_SCRIPT_TRACE=3
C:\>pcli run -sExample.pcli

Serena PVCS Version Manager (PCLI) v8.1.2 (Build 061) for Windows NT/

80x86

Copyright 1985-2004 Merant. All rights reserved.

+1 Example.pcli[1l]:
+2 Example.pcli[1l]:
+1 Example.pcli[2]:
+2 Example.pcli[2]:
+1 Example.pcli[3]:
+2 Example.pcli[3]:

set extra=blue

set extra=blue

set colors=red green $%extra
set colors=red green blue
for color in $colors

for color 1in red green blue

+1
+2

Example.
Example.

color=red

+1

Example.

pcli[5]:
pcli[5]:

pcli[5]:

echo "color=%color"
echo "color=red"
echo "color=%color"

PCLI User's Guide and Reference

33

Chapter 1: Using the Project Command-Line Interface

+2 Example.pcli[5]: echo "color=green"
color=green

+1 Example.pcli[5]: echo "color=%color"
+2 Example.pcli[5]: echo "color=blue"
color=blue

Mid Script On and Off Example

The following script shows how script tracing can be turned on and off at various points
within a script.

C:\>type Example2.pcli
set color=Blue

echo Red

set PCLI_ SCRIPT TRACE=3
echo $color

set PCLI SCRIPT TRACE=0
echo Green

C:\>pcli run -sExample2.pcli

Serena PVCS Version Manager (PCLI) v8.1.2 (Build 061) for Windows NT/
80x86

Copyright 1985-2004 Merant. All rights reserved.

Red

+1 Example2.pcli[4]: echo $color

+2 Example2.pcli[4]: echo Blue

Blue

+1 Example2.pcli[5]: set PCLI SCRIPT_TRACE=0

+2 Example2.pcli[5]: set PCLI SCRIPT_TRACE=0

Green

Date and Time Formats

US formats

Dutch formats

Many PCLI commands accept a date and time attribute. The expected format of this
attribute is determined by the regional settings of the system you are using. Here are
examples for several regions.

Valid examples for the United States include:

12/30/01

12/30/2001 1:05:20 PM
Dec 30, 2001 1:05PM
Dec 30, 2001 13:05
December 30, 2001

Valid examples for the Netherlands inlude:

30-12-01
30-12-2001 1:05 PM
30-Dec-2001 1:05PM
30-Dec-2001 13:05
30 December 2001

34 Serena® PVCS® Version Manager™

PCLI Functions

UK formats Valid examples for the United Kingdom include:

30/12/01

30/12/2001 1:05:20 PM
30-Dec-2001 1:05PM
30-Dec-2001 13:05

30 December 2001

If you enter an invalid date and time value (such as TEST), PCLI will display examples
compatible with the regional settings in effect on your system.

0 IMPORTANT! If the date and time attribute contains spaces, you must enclose the
attribute in quotation marks. For example,
"Dec 30, 2001".

PCLI Functions

A function is a piece of PCLI code that is defined once in a script and can be invoked many
times. PCLI functions can be passed arguments that specify the value or values that the
function is to operate on. PCLI functions are defined as follows:

= The name of the function

m The PCLI commands that comprise the body of the function, contained within curly
braces

m Arguments to the commands are represented by positional parameters, $1, $2, etc.
function_name()

{
PCLI command
PCLI command
PCLI command.
}
For example:
checkout ()
{
run ->files.tmp listversionedfiles -pr$l -z -aw /%2
run -ns -e get -1 '@files.tmp’
}

PCLI functions can be nested, which means that you can define functions inside of
functions. In this case, the nested functions can only be called inside the function in which
they are defined.

Using Functions

Functions are an efficient way to reuse code for actions that you frequently perform, such
as checking in and out files.

PCLI User's Guide and Reference 35

Chapter 1: Using the Project Command-Line Interface

Once you define a function in a script, you invoke it within the script in one of the
following ways:

m By following the function's name with a list of arguments. For example:
checkout D:\producta bridge

m By using the Run command. See the description of the Run command on 143. For
example:
run -fcheckout D:\producta bridge

One way to reuse PCLI functions among scripts is to create a file that contains only a
library of PCLI functions, and then include this file within any script by placing
@function_fileon a line by itself within the script. For more information see the "@
command" on page 49.

36 Serena® PVCS® Version Manager™

Chapter 2

Scripting

Introduction 38
Executing Scripts 38
Syntax of PCLI Scripts 39
User IDs 39
Using the PCLI with the Existing Command-Line Interface in Scripts 40
Example Scripts 41

PCLI User's Guide and Reference 37

Chapter 2: Scripting

Introduction

The primary reason for the release of the PCLI is to provide you with the ability to write
scripts to perform multiple actions on projects by simply invoking scripts.

Scripts can be used to perform a variety of tasks for you, such as:

m List all of the versioned files in a project and then check them out.

m Add a project to a project database and then add workfiles to the new project.
m Create a new project database

m Get the current project database location

m Get a project's configuration file

m Set a configuration file for a project

m Get a project's workfile location

m Set a workfile location for a project

You can use the PCLI commands in combination with any scripting language supported by
your platform. For example, UNIX shell scripts, Windows batch scripts (.BAT), and Serena
Configuration Builder scripts.

You can also create PCLI scripts, scripts that contain only PCLI commands and functions.
The PCLI commands that are provided specifically for scripting purposes are:

n @ s Run

s Echo m While

s If s Calc

m Elif = ArraySize
m Else m Test

= For m Break

m Set = Continue
= Return = Readline
s Exit

Refer to Chapter 3, "PCLI Command Reference" on page 47 for complete information
about these commands.

Executing Scripts

The method that you use to run scripts depends on the type of script you have written. To
run PCLI scripts, scripts that contain only PCLI commands, you use the PCLI Run
command. To run external scripts, you can execute the script from the command prompt.

To run a PCLI script, you enter:

pcli run -sscriptfile [arguments]

38 Serena® PVCS® Version Manager™

Syntax of PCLI Scripts

PCLI scripts can be passed arguments that specify the value or values that the script is to
operate on. For example:

pcli run -sscript.pcli D:\producta /projl
And, the script looks like this:

Set the first argument passed to the variable PDB

The variable is quoted in case the value passed

contains spaces

set -vPDB "$1"

Set the second argument passed to the variable PROJECT
set -vPROJECT "$2"

Use the values of the variables in the command line
getconfigfile -pr"$PDB" -pp"$PROJECT"

If the values you pass to the script have spaces in them, you must quote them on the
command line. For example:

pcli run -sscript.pcli "D:\new product" /projl

Syntax of PCLI Scripts

User IDs

When writing PCLI scripts—scripts that contain only PCLI commands—you can:

m Enter comments in the script by using the pound character (#) as the first character
in the line or the # on the same line as the script code as long as the # is separated
from the rest of the line by at least one space or tab and is the first character of a
word.

m Continue a line by entering a backward slash (\) at the end of the line. The \ must be
separated from the rest of the line by a space or tab and be the last character on the
line. Otherwise, PCLI interprets the \ as part of the text in the line.

m Use any PCLI command in the script but do not precede the command with the word
pcli.

m Execute commands other than PCLI commands (such as operating system
commands) in the script by using the PCLI Run command. For example:

run -e cp files myfiles

executes the UNIX Copy command.

NOTE On Windows systems when you Run a batch file, you must specify the .bat file
extension.

m Define PCLI functions in the script. See "PCLI Functions" on page 35.

When you run a PCLI script, there is one root login for each user ID logged in to a project
database. Each root login has a current workspace associated with it. The default user ID

PCLI User's Guide and Reference 39

Chapter 2: Scripting

is the first user ID logged in to the project database. If the PCLI script is being run from
the desktop client, the default user ID may have been set via the desktop client. A PCLI
command that is not associated with a user ID is assigned to the default user ID.

For example, a PCLI script may open a project database (PDB-A) using a user ID (U1),
assigning a workspace (W1). A subsequent PCLI command in the script may reference
PDB-A using a different user ID (U2), assigning a second workspace (W2). A subsequent
PCLI command that references PDB-A without specifying a user ID (using either the -1id
parameter or a local PCLI_ID variable) will be assigned the root login of the first user with
the first workspace (U1 and W1). If the script is multi-threaded and several threads are
sharing a root login, then one thread changing the workspace will result in the workspace
being changed for all threads using that root login.

Using the PCLI with the Existing Command-Line
Interface in Scripts

This sections discusses information that is important for you to know when you use PCLI
commands along with existing command-line interface commands in PCLI scripts.

NOTE Many CLI commands, such as Get and Put shown in the example below, how have
¥ PCLI counterparts. Unless your script also needs to run on PCLI releases older than
6.7.00, we recommended that you use the PCLI version of the Get and Put commands,
as they are project and workspace aware.

UNC Paths

Often you will find it useful to output a list of versioned files using the PCLI
ListVersionedFiles command that can be used with the existing command-line interface
Get, Put, and Vcs commands. The -aw option of the ListVersionedFiles command lists the
output in a format that can be used by the Get, Put, and Vcs commands. That format is
archive path(work path), for example:

"D:\productalarchives\bridge\resrc.h-arc(D:\producta\work\bridge\resrc.h)"

The output of the ListVersionedFiles command using the -aw option surrounds the output
with double quotation marks so that if a space exists in any of the path names, the
existing command-line interface commands will operate correctly on the path names. See
"ListVersionedFiles command" on page 126.

If you are using UNC paths, the output of the ListVersionedFiles command using the -aw
option does not work with the existing command-line interface commands because the
existing command-line interface requires an extra backslash character (\) in front of the
two backslash characters that begin a UNC path when the path is inside quotation marks.

The following script adds the required extra backslash character to the archive and work
paths so that the UNC paths can be used with the existing command-line interface
commands.

Defined the project database location to use.
set -vPCLI_PR "\\server\pdbs\SampleDb"

Define the top level project to use (/ = ALL).

40 Serena® PVCS® Version Manager™

Example Scripts

set -vPCLI_PP "/bridge"

Loop through all versioned files at and below the top level project.

set -vi O
for file in $[1vf -1 -z]
{

Obtain the archive location for the versioned file and
add an extra backslash if it is defined as a UNC path.
set -1 -ns -vArchive $[-ns GetArchivelLocation -pp/ \

"$file"]
if test "$Archive" = "*"
{

set -vArchive "\$Archive"
}

Obtain the workfile location for the versioned file and
add an extra backslash if it is defined as a UNC path.
set -1 -ns -vWorkfile $[-ns GetWorkLocation -pp/ \

"$file"]
if test "$Workfile" = "*"
{

set -vWorkfile "\$Workfile"
}

Place this versioned file in the array GetList, while
adding quotation marks around the entire string and

parentheses around the workfile location.

set -a -i%$i -vGetList '"'"$Archive($Workfile)"'"'

calc -vi $i+l

Pass the GetlList array to the external command "get".

We do this by first writing the array out to a temporary
file. Although we could pass the array straight to the
command "get" using "run -e get $GetList[]", this could
overflow the 0S command line buffer if the project is
large enough.

set -vTempFile "filelist.txt"

run -ns ->$TempFile echo -ns $GetList[]

H o HHHEHH

Now run the external command "get" and pass it the name of
the file that contains the list of archive and workfile

locations.

run -ns -e get -1 "@$TempFile"

Example Scripts

Example 1: Uses the output of the List command to get any files with names matching *.cpp, *.h,
or *.java from the projects /bridge and /chess/client.

Project Database
set -vPCLI_PR "C:\Users\All Users\Serena\VM\SampleDB"

PCLI User's Guide and Reference 41

Chapter 2: Scripting

UserID + Password
set -vPCLI_ID "admin"

Unset PCLI_PP to avoid conflicts with quoted fully

qualified entity paths.

NOTE: This issue is resolved as of Version Manager 6.8.00 # Service
Pack 3 (Build d128.03)

set -vPCLI_PP

Last argument(s) in the "list" command below are the
top-level projects from which the files should be fetched
recursively down. Projects are specified as PCLI entity
paths, following the format /<project>/<subproject>/...

Example entity paths:

"/ Entire PDB

"/bridge" Project "bridge" (under PDB root)
"/chess/client" Project "client", located under
project "chess"

#
#
#
#
#
#
#
#
#
#
#
#
#
Run the "list" command and capture its output one line
at a time using "$[1"
Use this to feed a "for" loop, such that the varijable
"file" will be assigned one line of output from the list
command for every itteration of the loop, assigning it a
fully qualified entity path to versioned files from the
projects /bridge and /chess/client with names matching
*.cpp, *.h or *.java
#
for file in $[-ns list -tVersionedFile -1 -z -m"*.cpp" \
-m"*.h" -m"*. java" "/bridge" "/chess/client"]

{
Get files into workfile location specified in
the active workspace get "$file"
Get files into directory "D:\build". -bp/ states that
the target directory is at the hierarchical level of
the PDB root, so a subdirectory is created for every
subproject under the PDB root.

get -0 -a"D:\build" -bp/ "$file"
}

You would execute this script by using the Run command. For example:
pcli run -scheckout.pcli

Example 2: List all of the versioned files in a project and then check in only the files that
have changed. You may find it useful to have a script like this to execute at the end of
each day so that you can quickly check in your work before you leave for the day.

As in Example 1, the ListVersionedFiles command uses the -aw and -z options. Notice in
this example the Put command uses the -n option, which tells Version Manager to answer
no to queries issued by Put. Version Manager will answer no to the question, "The workfile
unchanged. Check in anyway?". Therefore, files that are unchanged will not be checked

in. Also, the Put command uses the -m@777e_name option to read the change description

42 Serena® PVCS® Version Manager™

Example Scripts

for the workfiles from a file. This way you can enter a change description for the workfiles
into one file that is used by Version Manager. For example, you could enter "Updates
made in response to issue #4508."

This example uses positional arguments.

Command usage: pcli run -scheckin.pcli <PDB> <PROJECT>

Assign the first positional argument to the PCLI variable

PDB and set the second positional argument to PROJECT

set -vPDB "$1"

set -vPROJECT "$2"

Echo Listing the versioned files.

run ->files.tmp listversionedfiles -z -aw -pr"$PDB" \
-pp" $PROJECT"

Echo Checking in the files.

Must use the PCLI Run command to execute Put

Because Put is not a PCLI command

run -ns -e put -n '-m@descript' '@files.tmp’

Echo Deleting the listfile.

Same goes for the DOS command, del

run -e cmd /c del files.tmp

You would execute this script by using the Run command. For example:
pcli run -scheckin.pcli "D:\demo product" /bridge

In some cases, you may have projects that have configuration files associated with them.
In these cases, you may want to specify the configuration file(s) associated with the
project on the command so that the PCLI operates according to the definitions in the
configuration file(s). See the For command example on 81 for an explanation of how to
get the configuration files associated with a project and specify the values on the
command line.

NOTE You can use this technique of listing all versioned files in a project and performing
an action on the listed files for several different reasons, such as applying a versioned
label to the files, locking the files, unlocking the files, etc.

For example, to apply a version label to the listed files, you would replace the Put
command with the VCS command in the script as follows:

run -ns -e vcs -v"Release" '@files.tmp'

Example 3: Add a project to a project database and then add workfiles to the new
project.

This example uses the Set command to set the PCLI_PR variable. Therefore, the project
database does not have to be specified in the CreateProject and AddFiles commands.

Command usage: pcli run -saddproj.pcli <PDB>

Assign the PDB argument to the PCLI_PR variable

set -vPCLI PR "$1"

createproject -w"$PCLI_PR"\work\newprj newprj
addfiles -pp/newprj -c -t"new files" C:\work\prjl*.*

You would execute this script by using the Run command. For example:

pcli run -saddproj.pcli "D:\new product"

PCLI User's Guide and Reference 43

Chapter 2: Scripting

Example 4: Create a project database, create a project in the database, import archives
into the project, assign version labels to some versioned files, set the workfile locations
for some projects, check out some files, and list the entities of the project database.

Note that this example uses aliases for the PCLI commands.

Command Usage: pcli run -sscenario.pcli PDB VLABEL

Assign the first argument to the PCLI variable PDB

Assign the second argument to the PCLI variable VLABEL

set -vPDB "$1"

set -vVLABEL "$2"

$[1 implies a run command, so valid run command options

such as -e can be included.

set -VCURRENT _DIRECTORY $[-e pwd]

echo Creating the project database

cpdb -pr"$CURRENT _DIRECTORY"/Scenario \
-w"$CURRENT_DIRECTORY"/Scenario/work -nScenario

echo Creating the project

cp -pr"$CURRENT DIRECTORY"/Scenario \
-W"$CURRENT_DIRECTORY"/Scenario/work/Projectl Projectl

echo Importing archives into Projectl

ia -pr"$CURRENT _DIRECTORY"/Scenario -pp/Projectl -c -gw -z \
"$PDB"/archives/bridge

echo Add version labels to the imported archives from the echo Bridge
project

run ->foo.tmp LVF -pr"$CURRENT_DIRECTORY"/Scenario \
-pp/Projectl -aw -z

run -ns -e vcs -v"$VLABEL" '@foo.tmp'

echo Set the work directories for the projects Bridge, res, echo and
hip.

swl -pr"$CURRENT_DIRECTORY"/Scenario -pp/Projectl/bridge \
-w"$CURRENT_DIRECTORY"/Scenario/work/

swl -pr"$CURRENT_DIRECTORY"/Scenario -pp/Projectl/bridge/hlp \
-w"$CURRENT_DIRECTORY"/Scenario/work/

swl -pr"$CURRENT _DIRECTORY"/Scenario -pp/Projectl/bridge/res \
-w"$CURRENT_DIRECTORY"/Scenario/work/

echo Check out the files imported to CURRENT_DIRECTORY

run ->bar.tmp LVF -pr"$CURRENT_DIRECTORY"/Scenario \
-pp/Projectl -aw -z

run -e "get -y -1 @bar.tmp"

echo List the entities in the project database

list -pr"$CURRENT _DIRECTORY"/Scenario -aw -1 -z /*

echo Cleaning up...

run -e "rm -f foo.tmp"

run -e "rm -f bar.tmp"

echo ****xx*done

Example 5: Pass an array to a function.
This example demonstrates how to pass an array variable to a function.

array_function()
{
#Create a local array variable.
set -1 -a -vMYARRAY ""
#Use Run to evaluate the $1 into the array name and then
#use Set to copy the array to the local array.

44 Serena® PVCS® Version Manager™

Example Scripts

}

Run Set -a$l -vMYARRAY

#Set some array variable.

set

-a -VTEST testl test2 test3

#Call the function with the name of the array variable as
#the argument.
array_function TEST

Example 6: Create a simple interactive shell with PCLI.

This example demonstrates how to create an interactive session with the PCLI.

Create an interactive PCLI shell
Quit shell by typing "exit"

Read a line of user 1input

Execute command. Use Run to
evaluate and expand variables

While Test 1=1

{
Display prompt
echo -n "PCLI"

readline -vCMD

run -ns $CMD
}

Example 7: Test to see which operating system you are running.

This example demonstrates how to test to determine which operating system you are

running. This script uses the UNIX command uname.

Set0SDep ()

{

if test "$ComSpec" != ""

{
Windows

set -vCMD "$ComSpec /c"

if test "$TEMP" 1= ""

{
set -vTMPDIR "$TEMP\"
}
else
{
set -vTMPDIR
}
set -vWHICHOS Win32
set -vPS "\"
}
else
{
UNIX :-)
set -vCMD ""
if test "$TMP" != "
{
set -vTMPDIR "$TMP/"
}
else

"C:\TEMP\"

PCLI User's Guide and Reference

45

Chapter 2: Scripting

{

set -vTMPDIR "/tmp/"
}

set -vPS "/"

set -vWHICHOS $[-e uname]

if Test "$WHICHOS" = AIX

{

AIX specific initialization

}

elif Test "$WHICHOS" = SunOS

{

Sun0S specific initialization
}

elif Test "$WHICHOS" = HP-UX

{

HP-UX specific initialization
}

elif Test "$WHICHOS" = Linux

{

Linux specific initialization
}

else

{

echo "UNRECOGNIZED UNIX PLATFORM: $WHICHOS"

}

}
}

The above example could be used in conjunction with a script such as the following:

#H#E main ###

Set0SDep

if Test $WHICHOS = Win32

{

set -vDirCMD "dir /b"

}

else

{

set -vDirCMD "1s"

}
Put directory listing in the temporary directory
set -vDirFile "${TMPDIR}dirlist.txt"
run -ns -xo"$DirFile" -e $CMD $DirCMD
Etc...

46 Serena® PVCS® Version Manager™

Chapter 3

PCLI Command Reference

Introduction 49
@ command 49
AddFiles command 50
AddUser command 54
ArraySize command 56
AssignGroup command 57
Break command 58
Calc command 59
ChangeGroup command 61
Continue command 62
CreateProject command 62
CreateProjectDB command 65
CreateWorkspace command 67
Delete command 69
DeleteGroup command 71
DeleteLabel command 72
DeleteUser command 74
Echo command 75
Exit command 77
ExportPDB command 78
For command 81
Get command 83
GetArchiveLocation command 88
GetConfigFile command 90
GetWorkLocation command 92
If command 95
ImportArchives command 96
ImportPDB command 100
IsDifferent command 101
Label command 104
List command 106
ListFloatingLabels command 118
ListProjectDB command 120
ListPromotionModel command 122

PCLI User's Guide and Reference 47

Chapter 3: PCLI Command Reference

ListRevision command 124
ListVersionedFiles command 126
Lock command 130
Move command 132
PromoteGroup command 134
Put command 135
Readline command 139
Renamelabel command 140
Return command 142
Run command 143
Set command 146
SetArchivelnfo command 151
SetArchivelLocation command 153
SetConfigFile command 155
SetDefaultWorkspace 157
SetWorkLocation command 159
SetWorkspaceAttributes 162
Test command 164
Unlock command 166
UpdateProjectFolder command 168
Vdel command 170
Vlog command 172
VmCopy command 176
While command 179
WhoAmI command 180

48

Serena® PVCS® Version Manager™

Introduction

Introduction

This chapter provides a detailed explanation of each PCLI command, and shows how to
use the Serena PVCS Version Manager entities and command options appropriate for
each.

Each command contains the following sections:
m Description—a description of the command and what action it performs.

m Privileges required—the Version Manager privileges required to execute the
command.

m Alias—lists the shortcut alias to the command.

m Exit codes

= Syntax

m Options—the options available for use with the command.

m Examples—ways to use the command with a brief explanation.

m Related Topics—identifies other topics that provide contextual detail for the current
topic. This section also provides links between the current topic and other topics to
help you navigate through the information in the manual.

If you're using PCLI commands with standard Version Manager commands, see Chapter 1,
"Using the Project Command-Line Interface" and the Serena PVCS Version Manager
Command-Line Reference Guide for more information.

@ command

Privileges required
Alias

Syntax

Use the @ (include) command to insert the contents of a file into a script. This is an easy
way to include frequently used functions in scripts, similar to the #include command of
the C programming language. For information about using functions see "PCLI Functions"
on page 35.

Note, since @ commands are replaced with the contents of the files they point to before
the rest of the PCLI commands are run, @ commands:

m Cannot be made to load conditionally. All @ commands are expanded to reflect the
contents of the files they point to, even if the @ commands are located in If command
statements that are not run.

m Cannot be used with a variable in place of an actual path and file name. The @
command must specify the actual path and file name of the file it points to.

None.

None.

@rile_name

Or

@/ path/ file_name

PCLI User's Guide and Reference 49

Chapter 3: PCLI Command Reference

Special
Considerations

Examples

Where f7le _nameis a file that contains PCLI scripting.

m All paths and file names specified using the @ command must be valid for the system
on which the script is run or the script will terminate. Thus UNIX and Windows
systems require separate scripts if paths are specified.

= You can specify a path relative to the location from which you run the script.

Example 1: Incorporated into a script, the following line would be replaced by the
contents of the specified file, which is on a UNIX system.

@/usr/serena/include/MyStuff.pcli

Example 2: Incorporated into a script, the following line would be replaced by the
contents of the specified file, which is on a Windows system.

@F :\Serena\vm\include\MyStuff.pcli

Example 3: Incorporated into a script, the following line would be replaced by the
contents of the specified file, which must be located in the directory from which you
invoke the script. That is, if the file MyStuff.pcli isin the /usr/serena/include
directory, you must be at that same directory when you start the script from the
command prompt.

@MyStuff.pcli

AddFiles command

Add individual files

or entire

directories of files

Use the AddFiles command to add versioned files to a project or folder. You can add a
directory tree, a single directory, or individual files to a project database or project.
Version Manager creates an archive for each file you add and creates a versioned file that
references the new archive.

NOTE On some UNIX systems, the default open file descriptor limit may be set too low.
We recommend that you set your file descriptor limit to 128 or higher. For very large
databases, we recommend setting the limit as high as allowed by the operating system.

By default, when you add files, the versioned files use the location from which you added
the files as the workfile location, unless you specify the -c or -co options. These options
set the workfile location of the files to the workfile location defined for the project or
project database to which they are added.

CAUTION! You must specify -c or -co or the current location of the workfile will be
associated with the versioned file. Future check out operations will use this location
regardless of the workfile location of the project that contains the file, unless specifically
overridden with the -o option of the Get command.

When you add versioned files to a project, you must specify a directory or a list of
workfiles. You can also use the command to recursively add projects based on the file
structure of the directories using the -z option. The PCLI creates a project with the same
name as each directory, and versioned files are added to the projects. When you
recursively add subprojects, the workfile location of the new projects is appended to the
workfile location of the parent project.

50

Serena® PVCS® Version Manager™

AddFiles command

Privileges required

Alias

Exit codes

Syntax

-CO

If you do not enter a revision description using the -m option, Version Manager uses a
revision description of "Initial Revision" when the workfiles are checked in. If you do not
use the -t option, you will be prompted for a description of the versioned file (as opposed
to a description of that particular revision of the file). To end the file description, place a
period (.) on a line by itself.

NOTE When you add workfiles to a 5.3/6.0 project or folder using the PCLI, you do not
have the option of specifying which archive location associated with the project or folder
to use as the archive location for the added workfiles. In the Version Manager desktop
client, you can select the archive location. The PCLI uses the first archive location
specified for the 5.3/6.0 project.

Create Archive and Workfile. For more information on privileges, see the Serena
ChangeMan Version Manager Administrator's Guide.

AF

0 Successful command completion

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
AddFiles [options] directory | workfile ...
Where:

directory specifies the directory of files that you want to add. When you add a
directory, a project is created and versioned files are added to the project.

workfile specifies the names of the workfiles to add. You can use wildcard characters in
file specifications. See the table beginning on page 19 for information about using
wildcard characters.

NOTE You can specify more than one directory or workfile, or a combination of the two,
in the command line. Separate multiple values with a blank space.

Options

To substitute variables and use list files for additional options, see "Command Options" on
page 20 for more information.

Copies the workfile to the project workfile location, but does not copy the file if it already
exists.

Copies the workfile to the project workfile location and overwrites the file if it already
exists.

PCLI User's Guide and Reference 51

Chapter 3: PCLI Command Reference

-d

-g

-idCAC_LOGIN

_ph

PP

_pr

Deletes the workfile after check in.
-g | -gpromotion_group

Assigns no promotion group (-g) or the specified promotion group (-gpromotion_group)
to the versioned files as they are added. If a promotion group is specified, it must already
exist. If this option is omitted and there is a default promotion group workspace setting
defined, then that promotion group is assigned to the versioned files as they are added.
See the Serena PVCS Version Manager User's Guide for information about default
promotion group workspace setting.

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

-iduser 7d[:user_password]

This option specifies a user ID and/or password for project databases and projects that
have an access control database enabled. It overrides the value of the PCLI_ID variable
for a single command. If VLOGIN, SSO/CAC (without CAC implemented), or LDAP is the
login source, use -1id to specify your user ID—and password too if a password is assigned
to your user ID. For example, -idUserID: Password

If VLOGIN, SSO/CAC, or LDAP is not the login source, your user ID is predetermined by
your login source, but you must still use -1id to enter your password, if you have one. For
example, -id: PasswWorad.

-idCAC_LOGIN[: : PIN:Al7asname]

If SSO/CAC is the login source and CAC is implemented, you can include the CAC PIN and
Aliasname when you type the command.

For example,-idCAC_LOGIN: PIN: Al 7asname. Or you can type just the CAC_LOGIN
keyword and then answer the prompts for CAC PIN and Aliasname. For example, -
idCAC_LOGIN.Or you can type the PIN and answer the prompt for the aliasname. For
example, -idCAC_LOGIN: PIN.

Keeps the versioned file locked after it is added to the project and checked in.

-mdescription
-m@F7le_name

Enters a description for the initial revision. If no description is provided, the text "Initial
Revision" is used. The @f7le_name option retrieves the description from a file.

New archive. If an archive file already exists for the workfile being added, generate one
with a unique name.

If an added file is in a subdirectory underneath the project workpath, add the file to a
matching subproject. Subprojects are created as necessary.

-ppproject _path

Specifies the project or folder to which the files will be added. This option overrides the
value of the PCLI_PP variable for a single command execution. If no project is specified,
the PCLI_PP variable is used. For more information, see -pp on page 21.

-prproject _database

Specifies the project database to which the files will be added. This option overrides the
value of the PCLI_PR variable for a single command execution. You must specify a project
database for this command. If no project database is specified, the PLCI_PR variable is

52

Serena® PVCS® Version Manager™

AddFiles command

_pW

_qe

_qz

_sp

-Z

used. If the variable is not defined, then an error message is displayed and the command
is aborted.

-pwworkpath
Specifies the project workpath to use instead of the configured project workpath.

Quietly ignores nonexistent entities. If you specify an entity that does not exist, the
command will act as if you had not specified the entity, and then proceed to any
subsequent entities you may have entered.

Ignore valid entities. If you do not specify an entity, or if you use the option -ge and all
the specified entities are invalid, the command exits without throwing an error.

Does not add the workfile if a versioned file with the same name already exists and does
not display a message indicating that the versioned file already exists.

-rrevision
Specify the initial revision number.
-sp/@/userID | Public/parent workspace/child workspace

This option is valid only if you specify either the -c or -co option. It specifies a public or
private workspace. The workfile location of the workspace is used as the workfile location
for the files you are adding. Note that user IDs are case-sensitive. To specify the Root
Workspace, enter /@/RootWorkspace for the workspace value. The specified workspace
must already exist. Use the CreateWorkspace command to create a new workspace.

If a workspace is not specified and you have specified -c or -co, the user's default
workspace is used.

-tdescription
-t@l7strfile

Enters a description of the versioned files (as opposed to a description of that particular
revision of the files). The @I 7stf7le option retrieves the description from a file.

NOTE If you do not use the -t option, you will be prompted to enter a description. When
prompted, enter the description, using the ENTER key to create new lines as desired. To
end the description, place a period (.) on a line by itself.

-vversion_label

Assigns no version label (-v) or the specified version label (-vversion 1abel) to the
versioned files as they are added. If this option is omitted and there is a default version
defined for the workspace, then that version label is assigned to the versioned files as
they are added. See the Serena PVCS Version Manager User's Guide for information about
default version settings.

Version labels have a limit of 254 characters. You can use alpha, numeric, and special
characters except for colons (:), plus signs (+), minus signs (-), and back slashes (\).

-vversion label:*

Assigns a floating version label to the versioned files. Floating version labels move with
the tip of the trunk or branch to which they are assigned.

Includes workfiles in subdirectories and creates projects for all subdirectories. Applies
only when you have specified a directory.

PCLI User's Guide and Reference 53

Chapter 3: PCLI Command Reference

Examples

Related Topics

Example 1: The following example specifies a directory from which to add workfiles;
therefore, it creates a project in the project database located in H:\samples and adds all
of the workfiles in the directory to the newly created project. The command also uses the
-z option to create projects for all of the subdirectories located in the \Dev\Work directory
and add all of the workfiles in the subdirectories to the newly created projects. A revision
description is also provided (-m option), and a promotion group is assigned (-g option).
The PCLI will prompt for an archive description because an archive description was not
specified using the -t option.

pcli addfiles -prH:\samples -m"first revision" -gDevelopment -z
F:\dev\work

Example 2: The following example adds the workfile Design.java to the Parcheesi project
and sets the workfile location for that file to the location set for the annab_ws workspace
and copies the workfile from its existing location to the project workfile location (-c
option). The project database was set using the PCLI_PR variable:

pcli addfiles -pp/Parcheesi -sp/@/AnnaB/annab_ws -c¢ Design.java

For information about... See...

Creating projects "CreateProject command" on page 62
Creating project databases "CreateProjectDB command" on page 65
Importing Archives "ImportArchives command" on page 96

AddUser command

Add a user to a

project or project

database

Privileges required

Alias

Exit codes

Syntax

Use the AddUser command to add a user to a project or project database. The new user
will be assigned the Unlimited privilege set.

Unlimited. For more information on privileges, see the Serena ChangeMan Version
Manager Administrator's Guide.

AU

0 Successful command completion

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.

AddUser [options] namel:password]

54

Serena® PVCS® Version Manager™

AddUser command

-idCAC_LOGIN

PP

-pr

_pS

_qe

Where:
name specifies the ID of the user that you want to add.

password is the password assigned to the user ID, if one is needed.

Options
Specifies the expiration date of the user ID.

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

-iduser 7d[:user_password]

This option specifies a user ID and/or password for project databases and projects that
have an access control database enabled. It overrides the value of the PCLI_ID variable
for a single command. If VLOGIN, SSO/CAC (without CAC implemented), or LDAP is the
login source, use -1id to specify your user ID—and password too if a password is assigned
to your user ID. For example, -idUserID: Password

If VLOGIN, SSO/CAC, or LDAP is not the login source, your user ID is predetermined by
your login source, but you must still use -1id to enter your password, if you have one. For
example, -id: PasswWorad.

-idCAC_LOGIN[: : PIN:Al7asname]

If SSO/CAC is the login source and CAC is implemented, you can include the CAC PIN and
Aliasname when you type the command.

For example,-idCAC_LOGIN: PIN: Al 7asname. Or you can type just the CAC_LOGIN
keyword and then answer the prompts for CAC PIN and Aliasname. For example, -
idCAC_LOGIN.Or you can type the PIN and answer the prompt for the aliasname. For
example, -idCAC_LOGIN: PIN.

-ppproject_path

Specifies the project or folder to which the user will be granted access. This option
overrides the value of the PCLI_PP variable for a single command execution. If no project
is specified, the PCLI_PP variable is used. If neither is specified, the database root is
assumed. For more information, see -pp on page 21.

-prproject_database

Specifies the project database to which the user will be granted access. This option
overrides the value of the PCLI_PR variable for a single command execution. You must
specify a project database for this command. If no project database is specified, the
PLCI_PR variable is used. If the variable is not defined, then an error message is displayed
and the command is aborted.

-psprivilege

Specifies one or more privileges to assign to the user. Separate multiple privileges with
commas. If the argument contains spaces, enclose it within double quotation marks.

If you do not specify this option, the new user will have the Unlimited privilege set.

Quietly ignores nonexistent entities. If you specify an entity that does not exist, the
command will act as if you had not specified the entity, and then proceed to any
subsequent entities you may have entered.

PCLI User's Guide and Reference 55

Chapter 3: PCLI Command Reference

_qz

Examples

Related Topics

Ignore valid entities. If you do not specify an entity, or if you use the option -ge and all
the specified entities are invalid, the command exits without throwing an error.

Example 1: The following example creates the user Joe in the access control database
associated with the project database root assigns him the password Secret. The user
executing this command gains permission to do so by submitting his own password with
the -id option.

pcli AddUser -prC:\Users\All Users\Serena\VM\SampleDB -idAdmin:PassWord
Joe:Secret

Example 2: The following example creates the user Mary. Her user account will expire on
October 31 of 2002.

pcli AddUser -pr/export/pdbs/skunkware -e10/31/2002 Mary

For information about... See...
Deleting users "DeleteUser command" on page 74

Who is accessing specific entities "WhoAmI command" on page 180

ArraySize command

Privileges required

Alias

Exit codes

Syntax

Use the ArraySize command to return the combined number of elements in the array of
one or more variables.

None.

AS

0 Successful command completion

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
ArraySize [options] variable name.

Where variable_name specifies the names of the variables for which to return the
number of elements in the array. Separate multiple values with a blank space.

56

Serena® PVCS® Version Manager™

AssignGroup command

-h

Example

Related Topics

Options

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

The following script example returns the number of elements in the array of the variable
files.

set -a -vfiles test.txt test2.txt test3.txt
ArraySize files
3

For information about... See...

Other commands used in scripts ~ Break on page 58, Calc on page 59, Continue on
page 62, Echo on page 67, Exit on page 77, For on
page 81, If on page 95, Readline on page 139,
Return on page 142, Run on page 143, Set on page
146, Test on page 164, and While on page 179.

AssignGroup command

Privileges required
Alias

Exit codes

Syntax

Use the AssignGroup command to assign a specified promotion group to versioned files.

The command may issue a callback asking whether it is okay to replace another revision.
One may use the Run command with its parameters -y (yes to all), -n (no to all), and -np
(do not prompt) to control this callback. The -q(quiet) option of the Run command can be
used to suppress the printing of filenames as they are being processed.

Promotion Group

AG

Returns no exit code if successful.

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
AssignGroup -ggroup [-rrevNum| label|groupl [-z] entity

Where group specifies the name of the promotion group.

PCLI User's Guide and Reference 57

Chapter 3: PCLI Command Reference

Options
g -ggroup
Specifies the name of the promotion group to be assigned.

-gr Ignores revisions, labels, and groups that are not located in the archives. Does not print
warning messages or set a non-zero exit code.

-t -rrevNum | label | group
Specifies a revision number, label, or group.
-z Recursively assign promotion groups for versioned items in subprojects.

Related Topics

For information about... See...

Changing to a different promotion group "ChangeGroup command" on page 61
Deleting promotion groups "DeleteGroup command" on page 71
Promoting to the next promotion group "PromoteGroup command" on page 134

Break command

Use the Break command to exit a PCLI For or While loop. Optionally, you can specify a
level that instructs the command to break processing at an enclosing loop.

Privileges required None.
Alias None.

Exit codes Returns no exit code if successful.

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
Syntax Break [options] [levell

Where Ievelis an integer that specifies the number of enclosing loops to exit.

Options

-h Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

58 Serena® PVCS® Version Manager™

Calc command

Example

Related Topics

Example: The following example breaks from the current and first enclosing loops.

break 2

For information about... See...

Other commands used in scripts

Calc command

Use Calc evaluate
numeric
expressions

Privileges required
Alias

Exit codes

Syntax

ArraySize on page 56, Calc on page 59, Continue

on page 62, Echo on page 67, Exit on page 77, For
on page 81, If on page 95, Readline on page 139,
Return on page 142, Run on page 143, Set on page
146, Test on page 164, and While on page 179.

Calc is a numeric expression evaluator. By default, the results of numeric expressions are
printed to standard out. Optionally, you can specify that the results be placed in a
variable.

Note that this command supports arbitrary expressions using the operators listed below.
It also allows parentheses and nested parentheses to supersede the normal rules of
precedence. The normal order of precedence (in decreasing order) is as follows asterisk
(*), forward slash (/), percent sign (%), plus sign (+), and minus sign (-).

The following table defines the supported operators.

Command option Description

A+B
A-B
A*B
A/B
A%B

None.

A plus B

A minus B

A times B

A divided by B (integer division)

A modulo B (integer division remainder)

Successful command completion

PCLI command not found

A non-PCLI related error or a command-specific error
An invalid argument was specified

An argument for a flag that is not needed

A missing argument for a flag

Wrong type was specified for an option's argument
The specified file name cannot be read

A required argument is missing

A security exception occurred

An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.

Calc [

optionsl numeric_expression

PCLI User's Guide and Reference 59

Chapter 3: PCLI Command Reference

-X

Example

Special
Considerations

Related Topics

Where numeric_expression specifies the expression you want to calculate.

Options

To substitute variables and use list files for additional options, see "Command Options" on
page 20 for more information.

Specifies that the result of the calculation be expressed as binary.

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

Indicates that the variable is a local variable.

Specifies that the result of the calculation be expressed as octal.

-vvariable name

Specifies the variable into which the calculation will be placed instead of standard out.
Specifies that the result of the calculation be expressed as hexadecimal.

The following script example uses the Calc command in a While loop to increment the
variable i, which is part of the While loop definition. The example goes through a list of
directories and adds the files of all of the directories to one Version Manager project. The
example first sets a variable array to the directories that contain the files that are to be
added and then defines the While loop.

set -a -vdirfiles serena/uguide serena/admin serena/readme
set -vi 0
while test $i < $(arraysize dirfiles)

{
run ->listfiles -e dir $dirfiles[$i]
addfiles -pr/usrs/docs/vm -pp/release @listfiles
calc -vi $i+l

}

The Calc command reports syntax errors only; such as when illegal characters are used in
an expression or if extra operator sequences are included that do not make arithmetic
sense. Starting an expression with a minus sign will also result in an error, as the PCLI will
think the expression is an option. In this case, use parentheses to surround the
expression.

For information about... See...

Other commands used in scripts ArraySize on page 56, Break on page 58, Continue
on page 62, Echo on page 67, Exit on page 77, For
on page 81, If on page 95, Readline on page 139,
Return on page 142, Run on page 143, Set on page
146, Test on page 164, and While on page 179.

60

Serena® PVCS® Version Manager™

ChangeGroup command

ChangeGroup command

Privileges required
Alias

Exit codes

Syntax

_qr

-Z

Related Topics

Use the ChangeGroup command to specify a different promotion group for versioned files
that already have a promotion group.

The command may issue a callback asking whether it is okay to replace another revision.
One may use the Run command with its parameters -y (yes to all), -n (no to all), and -np
(do not prompt) to control this callback. The -q(quiet) option of the Run command can be
used to suppress the printing of filenames as they are being processed.

Promotion Group

CG

Returns no exit code if successful.

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
ChangeGroup -gfgroupFrom -gtrgroupTo [-z] entity

Where:

groupFrom specifies the name of the promotion group to change from.

groupTo specifies the name of the promotion group to change to.

Options

Ignores revisions, labels, and groups that are not located in the archives. Does not print
warning messages or set a non-zero exit code.

Recursively change promotion groups for versioned items in subprojects.

For information about... See...

Assigning promotion groups "AssignGroup command" on page 57
Deleting promotion groups "DeleteGroup command" on page 71
Promoting to the next promotion group "PromoteGroup command" on page 134

PCLI User's Guide and Reference 61

Chapter 3: PCLI Command Reference

Continue command

Privileges required
Alias

Exit codes

Syntax

-h

Example

Related Topics

Use the Continue command to branch to the top of a For or While loop. Optionally, you can
specify a level, which instructs the command to begin processing at the top of an
enclosing loop.

None.
None.

Returns no exit code if successful.

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
Continue [options] [levell

Where level specifies the number of enclosing loops to continue. If you specify a level
that does not exist, an error is generated and processing continues.

Options

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

The following example skips commands in the current and first enclosing loops and begins
processing in the second enclosing loop.

continue 2

For information about... See...

Other commands used in scripts ArraySize on page 56, Break on page 58, Calc on
page 59, Echo on page 67, Exit on page 77, For on
page 81, If on page 95, Readline on page 139,
Return on page 142, Run on page 143, Set on page
146, Test on page 164, and While on page 179.

CreateProject command

Create projects
and 5.3/6.0
folders

Use the CreateProject command to create Version Manager
projects or 5.3/6.0 folders.

62 Serena® PVCS® Version Manager™

CreateProject command

Privileges required

Alias

Exit codes

Syntax

You can create a new project directly under the project database location or within
another project. The parent project in which you are creating the new project must exist.

By default, the workfile location of the new project is set to the workfile location specified
in the user's default workspace. Optionally, you can use the -sp option to set a different
workspace from which to take the workfile location. Or, you can use the -w option to set
the workfile location manually.

For Version Manager 5.3/6.0 project roots, this command creates both projects and
folders. These project roots contain one level of projects and a level of folders. Depending
on the location specified when you use the command, either a project or folder is created.

NOTE To make the new project visible in the desktop client, select the project database
and then select View | Refresh.

Create Project. For more information on privileges, see the Serena ChangeMan Version
Manager Administrator's Guide.

CP

0 Successful command completion

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
CreateProject [options] project name

Where project name specifies the name of the new project, and, optionally, its parent
path. You need only specify the parent path if you do not set the current project with the
-pp option or the PCLI_PP variable. Note that the project name cannot begin or end with
a tab or blank space. Any character can be used in the name except an asterisk (*), a
colon (:), a vertical bar (|), forward and backward slashes (/ \), a question mark (?), and
angle brackets (< >). No project name can be the two character name of .. or the one
character name of . or @.

Options

To substitute variables and use list files for additional options, see "Command Options" on
page 20 for more information.

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

-iduser 7d[:user_password]

This option specifies a user ID and/or password for project databases and projects that
have an access control database enabled. It overrides the value of the PCLI_ID variable
for a single command. If VLOGIN, SSO/CAC (without CAC implemented), or LDAP is the
login source, use -1id to specify your user ID—and password too if a password is assigned

PCLI User's Guide and Reference 63

Chapter 3: PCLI Command Reference

-idCAC_LOGIN

PP

_pr

_qe

_qz

Examples

to your user ID. For example, -idUserID: Password

If VLOGIN, SSO/CAC, or LDAP is not the login source, your user ID is predetermined by
your login source, but you must still use -1id to enter your password, if you have one. For
example, -id: Passwora.

-1dCAC_LOGIN[: PIN:Al7asnamel

If SSO/CAC is the login source and CAC is implemented, you can include the CAC PIN and
Aliasname when you type the command.

For example,-i1dCAC_LOGIN: PIN: Al7asname. Or you can type just the CAC_LOGIN
keyword and then answer the prompts for CAC PIN and Aliasname. For example, -
idCAC_LOGIN.Or you can type the PIN and answer the prompt for the aliasname. For
example, -1dCAC_LOGIN: PIN.

-ppproject _path

Specifies the project in which to create the project or folder. You do not need to specify
this option, which sets the current project, if you are creating a project directly beneath
the project database or if you specify the parent project of the new project in the
project _name argument. This option overrides the value of the PCLI_PP variable for a
single command execution. If no project is specified, the PCLI_PP variable is used. For
more information, see -pp on page 21.

-prproject _database

Specifies the location of the project database in which you are creating the project. This
option overrides the value of the PCLI_PR variable for a single command execution. You
must specify a project database for this command. If no project database is specified, the
PLCI_PR variable is used. If it is not defined, then an error message is displayed and the
command is aborted.

Quietly ignores nonexistent entities. If you specify an entity that does not exist, the
command will act as if you had not specified the entity, and then proceed to any
subsequent entities you may have entered.

Ignore valid entities. If you do not specify an entity, or if you use the option -ge and all
the specified entities are invalid, the command exits without throwing an error.

-sp/@/ userID | Public/parent workspace/ child workspace

Specifies a public or private workspace. The workfile location of the workspace is used as
the workfile location for the project you are creating. Note that user IDs are case-
sensitive. To specify the Root Workspace, enter /@/RootWorkspace for the workspace
value.

The specified workspace must already exist. Use the CreateWorkspace command to
create a new workspace.

-wWwworkfile location

Defines the workfile location of the project if you want a location other than the location in
the workspace specified with the -sp option or the location in the user's default
workspace if the -sp option is not specified.

Example 1: The following examples create a project and subproject. The first line creates
the VolleyBall project in a 5.3/6.0 project root. The second command creates a subproject
of Setters in the VolleyBall project. The workfile location for both of these projects is set to

64

Serena® PVCS® Version Manager™

CreateProjectDB command

the workfile location specified in the user's default workspace because no other workfile
location or workspace is specified.

pcli CreateProject -prH:\VM6O@Games VolleyBall
pcli CreateProject -prH:\VM6OGames -pp/VolleyBall Setters

Example 2: The following example creates a project named Parcheesi in the
H:\BoardGames project database and specifies a workfile location on a common server to
which all users have access:

pcli CreateProject -prH:\BoardGames -wS:\BoardGames\parcheesi\work -pp/ Parcheesi

Related Topics

For information about... See...

Creating project databases "CreateProjectDB command" on page 65
Adding workfiles "AddFiles command" on page 50
Importing Archives "ImportArchives command" on page 96

CreateProjectDB command

Create project
databases or
project roots

Use the CreateProjectDB command to create Version Manager project databases and
Version Manager 5.3/6.0 project roots.

Note that you cannot create a project database under another project database, nor
should you create a project database in the same location as a 5.3/6.0 project root.

The directories and files that are created, by default, when you create a project database
are as follows:

m Archives directory, which is set as the default archive directory for the project
database. To change the archive location associated with a project database, use the
SetArchiveLocation command.

m A configuration file is placed in the archives directory. For security purposes, Version
Manager masks the name of this configuration file. For example, this file may be
assigned a name such as "cébonpjl.cfg." To change the configuration file associated
with a project database, use the SetConfigFile command.

NOTE For non-file-server project databases, the login source is set to HOST. For file-
server project databases, the login source is set to VLOGIN.

m An access control database is placed in the archives directory. For non-file-server
project databases, this file is not enabled in the configuration file. For file-server
project databases, the access control database is enabled. For security purposes,
Version Manager masks the name of this access control database. For example, this
file may be assigned a name such as "c6bonpjl.db." For more information on access
control databases, see the Serena ChangeMan Version Manager Administrator's
Guide.

m Pvcsuser directory, which contains user information such as private workspace
settings.

PCLI User's Guide and Reference 65

Chapter 3: PCLI Command Reference

Privileges required
Alias

Exit codes

Syntax

m A Lib directory, which contains information about the Version Manager release you
used to create the project database.

m A tools configuration file.

m A system identification file and a metadata file.

None.

CPDB

0 Successful command completion

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.

CreateProjectDB -prdatabase location [-nprojectdb_name]
-wworkfile location [options]

Where:

database location specifies the location of the new project database. The -pr option
is required.

projectdb_name specifies the name of the new project database. This applies only to
project databases. The -n option is required when you are creating a project database.

workfile location specifies the workfile location for the new project database. The -w
option is required.

Options

To substitute variables and use list files for options, see "Command Options" on page 20
for more information.

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

-iduser_id:user_password

Specifies a user ID and password, if necessary. This option is used only for creating
project databases that have a VLOGIN (Login Dialog) login source specified and an access
control database enabled. This is the default state for a project database created on a
Version Manager file server.

-nprojectdb_name

Specifies the name of the new project database. This applies only to project databases.
This is required for creating a project database.

66 Serena® PVCS® Version Manager™

CreateWorkspace command

_pa

-pr

Examples

-papassword

Specifies the password required to create a project database if your Administrator has
restricted the creation of project databases.

-prdatabase_location
Specifies the location of the new project database. This is required.
-t{[file]|[file53]}

Specifies the type of project database to create. The default project database type is
file, which means to create a project database. Specifying file53 creates a Version
Manager 5.3/6.0 project root.

-wworkfile location
Specifies the workfile location for the new project database. This is required.

Example 1: The following example creates a project database named BoardGames and
specifies a workfile location on a local drive.

pcli createprojectdb -prH:\BoardGames -nBoardGames -wC:\BoardGames\work

Example 2: The following example creates a 5.3/6.0 project root in a directory named
ServerPrijs:

pcli createprojectdb -prH:\ServerPrjs -wH:\ServerPrjs\Work -tfile53

Related Topics

For information about... See...

Creating projects "CreateProject command" on page 62
Adding workfiles "AddFiles command" on page 50
Importing Archives "ImportArchives command" on page 96

CreateWorkspace command

Privileges required

Alias

Use the CreateWorkspace command to create a new private or public workspace. A
workspace is a collection of work settings defined for a project database, which includes
the work settings for all of the projects and versioned files contained within the project
database. These settings are workfile location, default version, base version, and branch
version.

When you create a workspace, you must specify the workspace from which the new
workspace will inherit its settings; the workspace you specify is the parent workspace.
The parent of a public workspace must be a public workspace. The parent of a private
workspace can be either a public or private workspace.

See the Serena PVCS Version Manager User's Guide for complete information about
workspaces.

None.

CwW

PCLI User's Guide and Reference 67

Chapter 3: PCLI Command Reference

Exit codes

Syntax

_pr

_pW

_qe

_qz

Examples

0 Successful command completion

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
CreateWorkspace [options]l workspace

Where workspace specifies the workspace path of the workspace to create. To specify a
private workspace, you use the following syntax:
/@/userID/parent workspace/[child workspacel

where userIDis your user ID and is case sensitive. For example,
/@/AdamJ/myprivateworkspaces/mylocaldrive. In this case, myprivateworkspaces is
the parent workspace for mylocaldrive.

To specify a public workspace, you use the following syntax:
/@/Public/parent workspace/[child workspacel

For example, /@/Public/networkdrive. In this example, there is no child workspace
specified. In this case, the parent workspace for networkdrive is the Root Workspace.

Options

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

Specifies the project database for which to create a workspace. This option overrides the
value of the PCLI_PR variable for a single command execution. You must specify a project
database for this command. If no project database is specified, the value of the PLCI_PR
variable is used. If it is not defined, then an error message is displayed and the command
is aborted.

Specifies the public parent of a private workspace. The full workspace path of the public
workspace must be specified. See the information above in the Syntax section for how to
specify workspace paths. You need only use this option when you are creating a private
workspace that will have a public workspace as its parent. Otherwise, the parent
workspace is specified in the workspace path.

Quietly ignores nonexistent entities. If you specify an entity that does not exist, the
command will act as if you had not specified the entity, and then proceed to any
subsequent entities you may have entered.

Ignore valid entities. If you do not specify an entity, or if you use the option -ge and all
the specified entities are invalid, the command exits without throwing an error.

Example 1: The following example creates a public workspace named localserver. Its
parent is the Root Workspace.

pcli createworkspace -prD:\sample /@/Public/localserver

68 Serena® PVCS® Version Manager™

Delete command

Example 2: The following example creates a public workspace named voll. Its parent is
localserver.

pcli createworkspace -prD:\sample /@/Public/localserver/voll

Example 3: The following example creates a private workspace named projl. Its parent
is a private workspace named mywork. Then, the example sets the workfile location of
this new private workspace for the Projl project of the project database located in
D:\sample.

pcli createworkspace -prD:\sample /@/mikaylap/mywork/projl
pcli setworklocation -prD:\sample -pp/Projl -sp/@/mikaylap/mywork/projl -wD:\mywork\projl

Example 4: The following example creates a private workspace that has a public
workspace as its parent. The -pw option specifies the public workspace as the parent.

pcli createworkspace -prD:\sample -pw/@/Public/localserver /@/adamj/adamj projl

Related Topics

For information about... See...

Setting workfile locations "SetWorkLocation command" on page 159

Delete command

Privileges required

Alias

Exit codes

Use the Delete command to delete folders, projects, versioned items, and workspaces.

Depending on the type of entity you are operating on, you must have one of the following

privileges.
Entity Type Privilege Required
Versioned files and folders Add or Remove Versioned Files
Projects Delete Project
Workspaces Unlimited

For more information on privileges, see the Serena ChangeMan Version Manager
Administrator's Guide.

None.

Successful command completion

PCLI command not found

A non-PCLI related error or a command-specific error
An invalid argument was specified

An argument for a flag that is not needed

A missing argument for a flag

Wrong type was specified for an option's argument
The specified file name cannot be read

A required argument is missing

A security exception occurred

An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.

PCLI User's Guide and Reference 69

Chapter 3: PCLI Command Reference

Syntax

-idCAC_LOGIN

-pPp

-pr

_qe

_qz

Examples

Delete [options] entity ...

Where ent 7ty specifies the item that you want to delete.

Options

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

-iduser 7d[:user_password]

This option specifies a user ID and/or password for project databases and projects that
have an access control database enabled. It overrides the value of the PCLI_ID variable
for a single command. If VLOGIN, SSO/CAC (without CAC implemented), or LDAP is the
login source, use -1id to specify your user ID—and password too if a password is assigned
to your user ID. For example, -idUserID: Password

If VLOGIN, SSO/CAC, or LDAP is not the login source, your user ID is predetermined by
your login source, but you must still use -1id to enter your password, if you have one. For
example, -id: PasswWorad.

-idCAC_LOGIN[: PIN:Al7asname]

If SSO/CAC is the login source and CAC is implemented, you can include the CAC PIN and
Aliasname when you type the command.

For example,-idCAC_LOGIN: PIN: Al 7asname. Or you can type just the CAC_LOGIN
keyword and then answer the prompts for CAC PIN and Aliasname. For example, -
idCAC_LOGIN.Or you can type the PIN and answer the prompt for the aliasname. For
example, -idCAC_LOGIN: PIN.

-ppproject_path

Sets the current project or folder for this command execution. This option overrides the
value of the PCLI_PP variable for a single command execution. If no project is specified,
the PCLI_PP variable is used. For more information, see -pp on page 21.

-prproject_database

Sets the current project database for this command execution. This option overrides the
value of the PCLI_PR variable for a single command execution. You must specify a project
database for this command. If no project database is specified, the PLCI_PR variable is
used. If the variable is not defined, then an error message is displayed and the command
is aborted.

Quietly ignores nonexistent entities. If you specify an entity that does not exist, the
command will act as if you had not specified the entity, and then proceed to any
subsequent entities you may have entered.

Ignore valid entities. If you do not specify an entity, or if you use the option -ge and all
the specified entities are invalid, the command exits without throwing an error.

Example 1: The following example shows two ways to delete the versioned files
bridge.h and Readme. txt from the project /bridge. As with the desktop client, deleting
versioned files does not remove the corresponding archives.

pcli Delete -prC:\Users\All Users\Serena\VM -idAdmin /bridge/bridge.h /
bridge/Readme. txt

pcli Delete -prC:\Users\All Users\Serena\VM\SampleDb -idAdmin -pp/
bridge bridge.h Readme.txt

70

Serena® PVCS® Version Manager™

DeleteGroup command

Related Topics

Example 2: The following example deletes the project /chess and all of its subprojects.
Note that recursive behavior is implied when you are operating on a project.

pcli Delete -prC:\Users\All Users\Serena\VM\SampleDb -idAdmin /chess
Example 3: The following example deletes the public workspace QA.

pcli Delete -prC:\Users\All Users\Serena\VM\SampleDb -idAdmin /@/
Public/QA

Example 4: The following example deletes the private workspace MySpace for the user
Joe.

pcli Delete -prC:\Users\All Users\Serena\VM\SampleDb -idJoe /@/Joe/

MySpace
For information about... See...
Deleting users "DeleteUser command" on page 74
Where archives are located "GetArchiveLocation command" on page 88
Listing entity information "List command" on page 106
Listing the versioned files in a project "ListVersionedFiles command" on page 126

DeleteGroup command

Privileges required
Alias

Exit codes

Syntax

Use the DeleteGroup command to remove a specified promotion group from versioned
files.

Promotion Group

DG

Returns no exit code if successful.

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
DeleteGroup -ggroup [-z] entity

Where group specifies the name of the promotion group.

PCLI User's Guide and Reference 71

Chapter 3: PCLI Command Reference

_qr

-Z

Related Topics

Options

Ignores revisions, labels, and groups that are not located in the archives. Does not print
warning messages or set a non-zero exit code.

Recursively remove promotion groups for versioned items in subprojects.

For information about... See...

Assigning promotion groups "AssignGroup command" on page 57
Changing to a different promotion group "ChangeGroup command" on page 61
Promoting to the next promotion group "PromoteGroup command" on page 134

DeleteLabel command

Privileges required

Alias

Exit codes

Syntax

Use the DeleteLabel command to remove a specified version label from specified
versioned files or projects.

Delete Version Label. For more information on privileges, see the Serena ChangeMan
Version Manager Administrator's Guide.

DL

0 Successful command completion

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
DeletelLabel [options] -vversion entity ...

Where ent ity specifies the versioned file, project, or project database from which you
want to remove a version label and version specifies the version label.

Options

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

-iduser 7d[:user_password]

This option specifies a user ID and/or password for project databases and projects that
have an access control database enabled. It overrides the value of the PCLI_ID variable

72

Serena® PVCS® Version Manager™

DeleteLabel command

-idCAC_LOGIN

PP

_pr

_qe

-qr

_qz

_sp

-Z

Examples

for a single command. If VLOGIN, SSO/CAC (without CAC implemented), or LDAP is the
login source, use -1id to specify your user ID—and password too if a password is assigned
to your user ID. For example, -idUserID: Password

If VLOGIN, SSO/CAC, or LDAP is not the login source, your user ID is predetermined by
your login source, but you must still use -1id to enter your password, if you have one. For
example, -id: Passwora.

-1dCAC_LOGIN[: PIN:Al7asnamel

If SSO/CAC is the login source and CAC is implemented, you can include the CAC PIN and
Aliasname when you type the command.

For example,-i1dCAC_LOGIN: PIN: Al7asname. Or you can type just the CAC_LOGIN
keyword and then answer the prompts for CAC PIN and Aliasname. For example, -
idCAC_LOGIN.Or you can type the PIN and answer the prompt for the aliasname. For
example, -1dCAC_LOGIN: PIN.

-ppproject _path

Sets the current project or folder for this command execution. This option overrides the
value of the PCLI_PP variable for a single command execution. If no project is specified,
the PCLI_PP variable is used. For more information, see -pp on page 21.

-prproject _database

Sets the current project database for this command execution. This option overrides the
value of the PCLI_PR variable for a single command execution. You must specify a project
database for this command. If no project database is specified, the PLCI_PR variable is
used. If the variable is not defined, then an error message is displayed and the command
is aborted.

Quietly ignores nonexistent entities. If you specify an entity that does not exist, the
command will act as if you had not specified the entity, and then proceed to any
subsequent entities you may have entered.

Ignores revisions, labels, and groups that are not located in the archives. Does not print
warning messages or set a non-zero exit code.

Ignore valid entities. If you do not specify an entity, or if you use the option -ge and all
the specified entities are invalid, the command exits without throwing an error.

-sp{[/@/userID] | [Public/parent _workspace/child workspacel}

Specifies a public or private workspace. Note that user IDs are case-sensitive. To specify
the Root Workspace, enter /@/RootWorkspace for the workspace value. If a workspace is
not specified, the user's default workspace is used.

-vversion
Specifies the version label to be removed. This is required.
Removes a label from all versioned files in the specified project and its subprojects.

Example 1: The following example shows two ways to remove the label Test Label from
the versioned files /bridge/bridge.h and /bridge/ReadMe. txt.

pcli DeleteLabel -prC:\Users\All Users\Serena\VM\SampleDb -idAdmin
-v"Test Label" /bridge/bridge.h /bridge/ReadMe.txt

pcli DeleteLabel -prC:\Users\All Users\Serena\VM\SampleDb -idAdmin
-v"Test Label" -pp/bridge bridge.h ReadMe.txt

PCLI User's Guide and Reference 73

Chapter 3: PCLI Command Reference

Example 2: The following example removes the label Release1.23 from all versioned files
in project /bridge, but not from its subprojects.

pcli DeletelLabel -prC:\Users\All Users\Serena\VM\SampleDb -idAdmin
-vReleasel.23 /bridge

Example 3: The following example removes the label Releasel.23 from all versioned files
in project /bridge, including its subprojects.

pcli DeletelLabel -prC:\Users\All Users\Serena\VM\SampleDb -idAdmin
-vReleasel.23 -z /bridge

Related Topics

For information about... See...
Adding version labels "Label command" on page 104
Listing floating labels “ListFloatingLabels command" on page 118

DeleteUser command

Use the DeleteUser command to delete users from the access control database. This also
deletes the user and his workspaces from the pvcsuser directory of the project database.

Privileges required Unlimited. For more information on privileges, see the Serena ChangeMan Version
Manager Administrator's Guide.

Alias DU

Exit codes 0 Successful command completion
-2 PCLI command not found
-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified
-7 An argument for a flag that is not needed
-8 A missing argument for a flag
-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
Syntax Delete [options] user ID ...

Where user_ID specifies the user that you want to delete.

Options

-h Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

-id -iduser 7dl:user_password]

74 Serena® PVCS® Version Manager™

Echo command

This option specifies a user ID and/or password for project databases and projects that
have an access control database enabled. It overrides the value of the PCLI_ID variable
for a single command. If VLOGIN, SSO/CAC (without CAC implemented), or LDAP is the
login source, use -1id to specify your user ID—and password too if a password is assigned
to your user ID. For example, -idUserID: Password

If VLOGIN, SSO/CAC, or LDAP is not the login source, your user ID is predetermined by
your login source, but you must still use -1id to enter your password, if you have one. For
example, -id: Passwora.

-idCAC_LOGIN -idCAC_LOGIN[:PIN:Aliasname]

If SSO/CAC is the login source and CAC is implemented, you can include the CAC PIN and
Aliasname when you type the command.

For example,-i1dCAC_LOGIN: PIN: Al7asname. Or you can type just the CAC_LOGIN
keyword and then answer the prompts for CAC PIN and Aliasname. For example, -
idCAC_LOGIN.Or you can type the PIN and answer the prompt for the aliasname. For
example, -1dCAC_LOGIN: PIN.

-pp -ppproject _path

Sets the current project or folder for this command execution. This option overrides the
value of the PCLI_PP variable for a single command execution. If no project is specified,
the PCLI_PP variable is used. For more information, see -pp on page 21.

-pr -prproject _database

Sets the current project database for this command execution. This option overrides the
value of the PCLI_PR variable for a single command execution. You must specify a project
database for this command. If no project database is specified, the PLCI_PR variable is
used. If the variable is not defined, then an error message is displayed and the command
is aborted.

-ge Quietly ignores nonexistent entities. If you specify an entity that does not exist, the
command will act as if you had not specified the entity, and then proceed to any
subsequent entities you may have entered.

-gz Ignore valid entities. If you do not specify an entity, or if you use the option -qe and all
the specified entities are invalid, the command exits without throwing an error.

Examples Example 1: In the following example the user Admin deletes the user Joe from the
project database.

pcli DeleteUser -prC:\Users\All Users\Serena\VM\SampleDb -idAdmin Joe
Related Topics
For information about... See...

Adding users "AddUser command" on page 54

Who is accessing specific entities "WhoAmI command" on page 180

Echo command

List contents of Use the Echo command to output literal text or the contents of PCLI variables.
variables

PCLI User's Guide and Reference 75

Chapter 3: PCLI Command Reference

Privileges required
Alias

Exit codes

Syntax

-Ns

None.

None.

0 Successful command completion

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
echo [options] ${variable name} | text

Where:

variable_name specifies a PCLI variable. The PCLI displays the contents of the variable.

text specifies the text to display.

Options

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

Omits any newlines that are contained within the text to be displayed. This option enables
you to control the format of the output.

Prevents quotation marks from being stripped from all arguments except those that are
listed as options of the Echo command itself.

Converts the following backslash escape combinations within the text to be displayed into
their unprintable counterparts:

\n = newline
\r = return
\t = tab

\f = form feed
\b = backspace

When this option is used, outputting a backslash requires double backslashes.

Trims the quotes from the start and end of an argument. Use this option to expand
variables from double quoted strings and preserve any double quotes in the string’s value.
For example:

set VAR='This variable has "double quotes" in its value'
set -tgq VAR_COPY="${VAR}"
echo -tg "VAR_COPY is set to: ${VAR COPY}."

76 Serena® PVCS® Version Manager™

Exit command

This example prints:

VAR_COPY is set to: This variable has "double quotes" in its value.

Examples Example 1: The following example returns the value of the PCLI_PR variable set using
the Set command:

echo ${PCLI PR}
H:\BoardGames

Example 2: The following script uses the List command and places the output in a
temporary file, and then sets the variable to the value of the file's contents. The script
then uses the Echo command to return the contents of the variable:

Using the List command and placing the output in a file.
run ->list.tmp list -prD:\producta -caWorkPath /Proj5

Setting variable to the value of the contents of 1list.tmp.
Set -vfiles @list.tmp

Echo The following was generated from the 1list command.

Echoing the contents of the variable.

Echo ${files}

Related Topics

For information about... See...
Setting variables "Set command" on page 146

Other commands used in scripts ArraySize on page 56, Break on page 58, Calc on
page 59, Continue on page 62, Exit on page 77,
For on page 81, If on page 95, Readline on page
139, Return on page 142, Run on page 143, Test
on page 164, and While on page 179.

Exit command

Use the Exit command to stop PCLI processing and return the specified status to the
calling program.

Privileges required None.
Alias None.

Exit codes Returns no exit code if successful.

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.

PCLI User's Guide and Reference 77

Chapter 3: PCLI Command Reference

Syntax

-h

Example

Related Topics

Exit [options] [status]

Where status specifies the status to return. If you do not specify status, a 0 (zero)
status is returned.

Options

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

The following examples demonstrates the use of the Exit command in an If statement.

set -vConfigfile $(getconfigfile -prD:\producta)
If Test $Configfile=H:\productalarchives\cbh09zjk.cfg

{
exit
}
else
{
setconfigfile -prD:\producta -cH:\productalarchives\cb09zjk.cfg
}
For information about... See...

Other commands used in scripts ArraySize on page 56, Break on page 58, Calc on
page 59, Continue on page 62, Echo on page 67,
For on page 81, If on page 95, Readline on page
139, Return on page 142, Run on page 143, Set on
page 146, Test on page 164, and While on page
179.

ExportPDB command

Send output of

project database

to an file

Use the ExportPDB command to export project database and project information into an
INI file format. Workfiles, configuration files, access control database files, and archives
are not copied, but the command exports the references to these files that are stored in
the project database.

If an output file is not specified, then output is printed to standard out. If projects are not
specified, the entire project database is exported, meaning all of the projects within the
project database. Otherwise, only the specified projects of a project database are
exported.

The exported project database information can then be used by the ImportPDB command
to create a new project database. If you specify to export a subproject of a project and
not to export the parent project of the subproject, the subproject cannot be imported

78

Serena® PVCS® Version Manager™

ExportPDB command

Privileges required

Alias

Exit codes

Syntax

using the ImportPDB command because the PCLI does not have the information about the
parent project.

NOTE You can use this command to export project database information of Version
Manager 5.3/6.0 project roots only if the project roots have been operated on using the
current edition of the Version Manager desktop client. In this case, only the project
database type (5.3/6.0), workspaces, and users are exported.

The following is an example of the INI file format of a project database.

[PDB]

Version=1.0
RootPath=D:\pdb2
RootName=Producta
RootType=file

[/]

Type=ProjectRoot
WorkPath=D:\pdb2\work
Archivelocation=D:\pdb2\arachives
WorkPathNamespace=0
VersionSelection=0
ConfigFlags=3
ConfigPath=D:\pdb2\archivesct4fvOdl.cfg
Name=Producta
[/Projl]

Type=Project
WorkPath=Projl
Archivelocation=Projl
WorkPathNamespace=0
VersionSelection=0
ConfigFlags=0
Name=Projl

SuperUser. For more information on privileges, see the Serena ChangeMan Version
Manager Administrator's Guide.

EPDB

0 Successful command completion

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
ExportPDB [options] [entity...]

Where entityis a project. You need specify a project only if it is different from the
current project. Specify a project only if you want to export a specific project from the
project database and not all of the projects contained in the project database. You can

PCLI User's Guide and Reference 79

Chapter 3: PCLI Command Reference

-PP

-pr

-z

Examples

Related Topics

specify more than one project on the command line. Separate multiple values with a blank
space.

NOTE The current project is set using either the -pp option (as described below) or the
PCLI_PP variable.

Options

To substitute variables and use list files for additional options, see "Command Options" on
page 20 for more information.

-foutput file

Names the file that will contain the exported information. Otherwise, the output is printed
to standard out.

Display help for the command. The action terminates after it processes the -h option even
if you specify other options.

-ppproject _path

Specifies the project for which to export information. This option overrides the value of
the PCLI_PP variable for a single command execution. If no project is specified, the
PCLI_PP variable is used. For more information, see -pp on page 21.

-prproject _database

Specifies which project database to export. This option overrides the value of the PCLI_PR
variable for a single command execution. You must specify a project database for this
command. If no project database is specified, the value of the PLCI_PR variable is used. If
it is not defined, then an error message is displayed and the command is aborted.

Recursively exports all subprojects.

Example 1: The following example exports all of the projects and subprojects in the
project database located in H:\Samples.

pcli exportpdb -prH:\Samples -z -fsampleout.txt

Example 2: The following example exports only the Prjl project in the project database
located in H:\Samples. Note that the PCLI_PR variable was set to the location of the
project database, and therefore did not need to be specified:

pcli exportpdb -fprojlout.txt /prjl

For information about... See...
Importing project databases "ImportPDB command" on page 100
Listing project databases "ListProjectDB command" on page 120

80

Serena® PVCS® Version Manager™

For command

For command

Privileges required
Alias

Exit codes

Syntax

-h

Example

Use the For command to loop through all of the items in a variable's array or loop through
the value of each variable specified.

This command implements a typical scripting For. . .In loop. For each iteration of the loop,
the specified local variable is set to each option value one after the other.

None.
None.

Returns the value of the last command executed in the For loop when successful.
-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.

For [options] local variable in variable name. . .

{

action

}
Where:

local variable specifies the local variable to set in each iteration of the For loop.

variable_name specifies the variable from which to take the value and set it to the local
variable. You can specify multiple variables. Separate each value with a blank space.

actionis the action to take in the loop. This action can be a PCLI command or any
external program.

Options

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

Example 1: The following example uses two For loops. The first For loop creates the -c
option for the Get and Put commands. The -c option specifies the configuration files that
the Get and Put commands use when you check in and out files. The second For loop goes
through a list of versioned files. The action taken on the files is to check out the files, add
a copyright to the beginning of each file, and then check the files back in. The external
commands cp, cat, and rm, are UNIX commands.

#Get the configuration files used by projl.
#The output contains only the paths to the config files.
run -vaconfigfiles getconfigfile -pr/users/producta -a /projl

PCLI User's Guide and Reference 81

Chapter 3: PCLI Command Reference

#Create the -c option for the Get and Put commands by
#prepending a -c to each configuration file path and storing
#it in the configargs variable.
for i in $configfiles|]
{

set -ns -vconfigargs ${configargs} "-c$i"
}
#Create a list of versioned files with the format
#workfile(archive) to be used by the Get command.
run ->listfiles listversionedfiles -pr/users/producta -aw /projl
run -ns -e get -1 $configargs '@listfiles'
#Create a For loop to loop through each workfile file
#location and add the copyright info to the beginning of the file.
for i in $[listversionedfiles -w -pr/users/producta /projll]
{

run -ns -e cp "${i}" tmpfile

run -ns -e cat copyright tmpfile > "${i}"

run -e rm tmpfile
}
#Check in the updated files.
run -ns -e put $configargs '@listfiles’
run -e rm listfiles

Example 2: The following example shows you how to use:
m For loops when arguments are passed with trailing and/or leading spaces

m The variable PCLI_TRIM AUTOVAR to control the behavior of For loops.

Sometimes trailing and/or leading spaces are required to access data and to pass
arguments correctly.

Let’s say we have TestAutoVar.pcli PCLI script file:

GetData()

{
echo " LeadingSpace"
echo "Middle Space"
echo "TrailingSpace

}
RunTest ()
{
for arg in $[GetData]
{
echo -ns arg="$arg"
}
}
RunTest

echo Enabling PCLI_TRIM_AUTOVAR
set PCLI_TRIM_AUTOVAR=true

RunTest
And then script file TestAutoVar.pcli is executed with command:

pcli run -sTestAutoVar.pcli

82

Serena® PVCS® Version Manager™

Get command

arg=" LeadingSpace"
arg="Middle Space"
arg="TrailingSpace "
Enabling PCLI_TRIM AUTOVAR
arg="LeadingSpace"
arg="Middle Space"
arg="TrailingSpace"

Related Topics

For information about...
Setting variables

Other commands used in scripts

Get command

See...
"Set command" on page 146

ArraySize on page 56, Break on page 58, Calc on
page 59, Continue on page 62, Echo on page 67,
Exit on page 77, If on page 95, Readline on page
139, Return on page 142, Run on page 143, Test
on page 164, and While on page 179.

Use the Get command to check out the specified versioned files or the versioned files

contained within specified projects.

Privileges required Depending on the type of revision you are operating on and whether you are locking it,
you must have the following privileges.

Operation Type Privileges Required
Get tip Check Out Tip
Get and lock tip Check Qut Tip
Lock Tip
Get non-tip Check Out Non-Tip
Get and lock non-tip Check Out Non-Tip
Lock Non-Tip

For more information on privileges, see the Serena ChangeMan Version Manager

Administrator's Guide.

Alias None.

Exit codes 0 Successful command completion
-2 PCLI command not found
-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified
-7 An argument for a flag that is not needed
-8 A missing argument for a flag
-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing
-12 A security exception occurred

-13 An unknown problem

PCLI User's Guide and Reference

83

Chapter 3: PCLI Command Reference

Syntax

_bp

-fr

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
Get [options] entity ...

Where entity specifies a versioned file, folder, project, or project database from which you
want to check out a revision

Options
-apath

Specifies an alternate location to place workfiles, rather than the location defined in the
workspace. See also the -o and -bp options.

For single file checkouts, the alternate location can be either a directory or an alternate
name for the file itself. If the specified leafname of the destination path:

m Does not exist and the -bp option was not used, the leafname is assumed to be an
alternate filename.

m Already exists as a directory, the file will be placed into that directory using its original
name.

If the -bp option is used, the leafname is always assumed to be a directory; additional
subdirectories may be created depending on how the -bp option was used.

-bppath

Specifies the base project path to use in calculating workfile locations when the -a option
has been specified. When you operate on multiple files, Path must be the entity path to a
common parent of each of the items being checked out. If this option is not specified, the
command uses the first parent that is common to all the entities you are operating on.

-ddate/time

Specifies a revision by the date and time it was checked in. The command will operate on
the last revision that was checked in before the specified date and time. If you specify
only a date, the time defaults to midnight. For more information on specifying dates and
times, see "Date and Time Formats" on page 34.

_fg

Looks up revisions associated with the promotion group defined by the -g parameter. The
-g parameter is required; an error occurs if it is not.

-fr

Looks up a specific revision based on the revision specified by the -r parameter. If -r is not
specified, then the tip or default revision is retrieved.

-ggroup

Specifies a promotion group. This option is required if the -fg parameter is set. This option
functions in two different ways, depending on whether or not the revision is being locked
with the -1 option:

m If the revision is not being locked, -g specifies the lowest level promotion group in
which to look for a revision. The search continues up the hierarchy of promotion
groups until the revision is found. If the revision is not found, the get operation fails.

84

Serena® PVCS® Version Manager™

Get command

-idCAC_LOGIN

-nb

-nm

-PP

_pr

m If the revision is being locked (-1), -g specifies the lowest level promotion group to
which to assign the locked revision. If this option is omitted, the default promotion
group is assigned to the checked out revision, if one exists.

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

-iduser 7d[:user_password]

This option specifies a user ID and/or password for project databases and projects that
have an access control database enabled. It overrides the value of the PCLI_ID variable
for a single command. If VLOGIN, SSO/CAC (without CAC implemented), or LDAP is the
login source, use -1id to specify your user ID—and password too if a password is assigned
to your user ID. For example, -idUserID: Password

If VLOGIN, SSO/CAC, or LDAP is not the login source, your user ID is predetermined by
your login source, but you must still use -1id to enter your password, if you have one. For
example, -id: PasswWorad.

-idCAC_LOGIN[: PIN:Al7asname]

If SSO/CAC is the login source and CAC is implemented, you can include the CAC PIN and
Aliasname when you type the command.

For example,-idCAC_LOGIN: PIN: Al 7asname. Or you can type just the CAC_LOGIN
keyword and then answer the prompts for CAC PIN and Aliasname. For example, -
idCAC_LOGIN.Or you can type the PIN and answer the prompt for the aliasname. For
example, -idCAC_LOGIN: PIN.

-1l revision]

Locks the revision of the file you are getting. Optionally, allows you to specify the revision
to lock. By default, the default revision defined for the workspace is acted on. Note you
can also specify the revision with the -r option.

No branching. This option prevents you from locking a revision if a lock would result in a
branch upon check in. This option is ignored if the BranchWarn directive is not in effect.

No multilock. This option overrides the MultiLock directive and prevents you from applying
another lock to a revision that is already locked.

Overrides the workfile locations defined in the project and versioned files, and instead
uses a hierarchy of directories that mirror the structure and names of the project and
subprojects.

Note if you do not use this option, any versioned file or project that has an absolute
workfile location associated with it will be copied to that workfile location, even if you
specify a workspace or use the -a option.

Pipes the revision to stdout.
-ppproject _path

Sets the current project for this command execution. This option overrides the value of
the PCLI_PP variable for a single command execution. If no project is specified, the
PCLI_PP variable is used. For more information, see -pp on page 21.

-prproject _database

Sets the current project database for this command execution. This option overrides the
value of the PCLI_PR variable for a single command execution. You must specify a project

PCLI User's Guide and Reference 85

Chapter 3: PCLI Command Reference

_qe

-qr

_qz

-W

-Z

database for this command. If it is not defined, then an error message is displayed and
the command is aborted.

Quietly ignores nonexistent entities. If you specify an entity that does not exist, the
command will act as if you had not specified the entity, and then proceed to any
subsequent entities you may have entered.

Ignores revisions, labels, and groups that are not located in the archives. Does not print
warning messages or set a non-zero exit code.

Ignore valid entities. If you do not specify an entity, or if you use the option -ge and all
the specified entities are invalid, the command exits without throwing an error.

-rrevision
Specifies the revision, promotion group, or version to act upon.

Note the operation will fail if the exact promotion group does not exist in the versioned
file. Use the -g option to continue searching for a match higher in the promotion model
hierarchy.

-sp{[/@/userID] | [Public/parent workspace/child workspacel

Specifies a public or private workspace. Note that user IDs are case-sensitive. To specify
the Root Workspace, enter /@/RootWorkspace for the workspace value. If a workspace is
not specified, the user's default workspace is used.

-t[revision]

Touch. Sets the workfile to the current date and time after getting the revision. Optionally,
allows you to specify the revision to obtain. By default, the default revision associated
with the workspace is acted on. Note you can also specify the revision with the -r option.

-uldate/time]

Gets the revision only if it is newer than the current workfile or the date/time specified.
For more information on specifying dates and times, see "Date and Time Formats" on
page 34.

-vversion
Gets the revision associated with the specified version label.
-wlrevision]

Makes the workfile writable without locking the revision. Optionally, allows you to specify
the revision to obtain. By default, the default revision associated with the workspace is
acted on. Note you can also specify the revision with the -r option.

Yes to branching. Overrides the BranchWarn directive to allow you to lock a revision even
if that will result in a branch upon check in. This option works in conjunction with the -1
option.

Yes to multilock. If the MultiLock directive is in effect, this option will apply another lock
without first prompting for confirmation.

Includes versioned files in subprojects.

86

Serena® PVCS® Version Manager™

Get command

Examples Example 1: The following example recursively gets all revisions in the Projectl project
database that are associated with the version label Beta2 and copies the workfiles to the
C:\John\Project1 directory based on the project structure.

pcli Get -prD:\PDBs\Projectl -aC:\John\Projectl -o -vBeta2 -z /

Example 2: The following example gets the revisions in the Projectl project database
that are located in or below the

/bugfixes and /windows/dialogs projects and are associated with the QA promotion group
or higher. These workfiles are then copied to the default workfile location as defined in the
default workspace for the active user.

pcli Get -prD:\PDBs\Projectl -gQA /bugfixes /windows/dialogs

Example 3: The following example shows two ways to get the revisions in the Projectl
project database that are located in or below the /src/binaries and /src/classes projects
and copy the workfiles to the C:\builds directory based on the project structure. Since
the -bp option is not specified, the first common parent (/src) is assumed. As a result, the
target directory, C:\builds, will contain the subdirectories binaries and classes.

pcli Get -prD:\PDBs\Projectl -aC:\builds -0 /src/binaries /src/classes
pcli Get -prD:\PDBs\Projectl -aC:\builds -o -pp/src binaries classes

Example 4: This is like the previous example, but uses the -bp option to specify that the
base path is / (the project database root). As a result, the target directory, C:\builds,
will contain the subdirectory src, which will contain the subdirectories binaries and
classes.

pcli Get -prD:\PDBs\Projectl -aC:\builds -0 -bp/ /src/binaries /src/classes
pcli Get -prD:\PDBs\Projectl -aC:\builds -o -bp/ -pp/src binaries classes

Example 5: The following example shows how to use the Run command in conjunction
with get to pass a Yes or No answer to all prompts. Note, if any of your arguments are
quoted, use the -ns option to prevent stripping of the quotation marks. This example
assumes that the project database is defined in PCLI_PR variable.

pcli Run -y -ns Get "/My Files/foobar.txt"
pcli Run -n -ns Get "/My Files/foobar.txt"

Example 6: The following examples illustrate how the behavior of the -a option differs
depending on how it is used and what it is used on.

6a (-a without -bp):

pcli get -pr"C:\Users\All Users\Serena\VM\SampleDB" =idAdmin
-aC:\Alternate\Path /chess/server/server.bat

If the path C:\Alternate\Path does not exist, then the target becomes a file named
Path:
C:\Alternate\Path <- /chess/server/server.bat Checked out revision 1.0.

If the path C:\Alternate\Path exists as a directory, then the file is checked out into this

directory using the files original name:

C:\Alternate\Path\server.bat <- /chess/server/server.bat Checked out
revision 1.0.

6b (-a with -bp):

pcli get -pr"C:\Users\All Users\Serena\VM\SampleDB" -idAdmin
-aC:\Alternate\Path -bp/chess/server /chess/server/server.bat

PCLI User's Guide and Reference 87

Chapter 3: PCLI Command Reference

Related Topics

In this case, the path C:\Alternate\Path did not exist, but the -bp option specified that

it should be a directory at the hierarchical level of /chess/server. The path was thus

created as a directory and the file was checked out into this directory using the file's

original name:

C:\Alternate\Path\server.bat <- /chess/server/server.bat Checked out
revision 1.0.

For information about... See...

Listing the workfile location of "GetWorkLocation command" on page 92
projects and versioned files

Locking revisions "Lock command" on page 130

Checking in revisions "Put command" on page 135

Using the Run command "Run command" on page 143

GetArchivelocation command

List archive

locations for the

specified entity

Privileges required

Alias

Exit codes

Use the GetArchiveLocation command to list the archive location for the specified project
database, project, or versioned file.

When you specify a project database or versioned file, the command always returns the
full path of the archive location.

For projects, you can choose to return either the full path to the archive location (this is
the default if the -a flag is not specified) or only the portion of the path that is stored in
the project. This partial path is relative to the project's parent archive location. For more
information on how Version Manager stores relative paths, see the Serena PVCS Version
Manager User's Guide.

NOTE This command is not functional for Version Manager 5.3/6.0 project roots.

None.

GAL

0 Successful command completion

1 Improper usage of command

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.

88

Serena® PVCS® Version Manager™

GetArchivelLocation command

Syntax

-idCAC_LOGIN

PP

_pr

GetArchivelLocation [options] [entity]

Where ent ity specifies a project or versioned file. Versioned file names are case-
sensitive. You need not specify an entity if you want to get the archive location for the
current project or project database.

NOTE The current project is set using either the -pp option (as described below) or the
PCLI_PP variable. A project database is set by using either the -pr option (as described
below) or the PCLI_PR variable.

Options

To substitute variables and use list files for additional options, see "Command Options" on
page 20 for more information.

Lists only the portion of the archive location stored within the selected project. This option
allows the user to see the string that was set using the SetArchivelLocation command and
to determine if the archive location is relative to the parent or is absolute.

This option only affects projects, because the archive location for versioned files is always
a full path.

Display help for the command. The action terminates after it processes the -h option even
if you specify other options.

-iduser 7d|:user_password]

This option specifies a user ID and/or password for project databases and projects that
have an access control database enabled. It overrides the value of the PCLI_ID variable
for a single command. If VLOGIN, SSO/CAC (without CAC implemented), or LDAP is the
login source, use -1id to specify your user ID—and password too if a password is assigned
to your user ID. For example, -idUserID: Password

If VLOGIN, SSO/CAC, or LDAP is not the login source, your user ID is predetermined by
your login source, but you must still use -1id to enter your password, if you have one. For
example, -id: Passworad.

-i1dCAC_LOGIN[: PIN: Aliasname]

If SSO/CAC is the login source and CAC is implemented, you can include the CAC PIN and
Aliasname when you type the command.

For example,-idCAC_LOGIN: PIN: Aliasname. Or you can type just the CAC_LOGIN
keyword and then answer the prompts for CAC PIN and Aliasname. For example, -
idCAC_LOGIN.Or you can type the PIN and answer the prompt for the aliasname. For
example, -idCAC_LOGIN: PIN.

-ppproject_path

Sets the current project for this command execution. This option overrides the value of
the PCLI_PP variable for a single command execution. If no project is specified, the
PCLI_PP variable is used. For more information, see -pp on page 21.

-prproject _database

Sets the current project database for this command execution. This option overrides the
value of the PCLI_PR variable for a single command execution. You must specify a project
database for this command. If it is not defined, then an error message is displayed and
the command is aborted.

PCLI User's Guide and Reference 89

Chapter 3: PCLI Command Reference

-ge Quietly ignores nonexistent entities. If you specify an entity that does not exist, the
command will act as if you had not specified the entity, and then proceed to any
subsequent entities you may have entered.

-gz Ignore valid entities. If you do not specify an entity, or if you use the option -qe and all
the specified entities are invalid, the command exits without throwing an error.

Examples Example 1: The following example returns the archive location for the Dialogs project in
the Online Help project database. Note that the path to the project database is quoted
because the directory names contain spaces. Also, an entity (project, in this case) is
specified because no current project is set.

pcli getarchivelocation -pr"Y:\doc\prjs\Online help" /content/dialogs
Y:\doc\prjs\Online help\archives\Content\Dialogs

You can return the same result by substituting the -pp option for the /content/dialogs
entity in the previous example:

pcli getarchivelocation -pr"Y:\doc\prjs\Online help" -pp/content/dialogs

Example 2: The following example returns the archive location for a versioned file. The
project database location was set using the PCLI_PR environment variable. Note that the
name of the versioned file is case-sensitive.

pcli getarchivelocation /content/dialogs/ACCESSLIST.HTML
Y:\dpc\prjs\Online help\arachives\Content\Dialogs\ACCESSLIST.HTML-arc

Example 3: The following two commands return first the full path of the archive location
(this is the default). The second command returns only the portion of the archive location
that is different from the project's parent archive location. Note that the command line
uses the alias for the command, gal.

pcli gal -prH:\Games -pp/VolleyBall/Setters
H:\Games\archives\VolleyBall\Setters

pcli gal -prH:\Games -pp/VolleyBall/Setters -a
Setters

Example 4: The following example returns the archive location for a project within a
project database that requires a user id and password.

pcli gal -prD:\productb -pp/projl -idKen:$%ken Y:\productb\archives\projl
Related Topics

For information about... See...

Setting the archive location "SetArchiveLocation command" on page 153

GetConfigFile command

List the name and Use the GetConfigFile command to list the path and name of the configuration file for a
location of project database, project, or folder. You can use the -a option to list all the configuration
configuration files files in use by the project database or project, not just the one directly associated with the
current project.

Privileges required None.

Alias GCF

90 Serena® PVCS® Version Manager™

GetConfigFile command

Exit codes

Syntax

-idCAC_LOGIN

0 Successful command completion

-2 PCLI command not found

-3 A non-PCLI related error or a command-specific error
-6 An invalid argument was specified

-7 An argument for a flag that is not needed

-8 A missing argument for a flag

-9 Wrong type was specified for an option's argument

-10 The specified file name cannot be read
-11 A required argument is missing

-12 A security exception occurred

-13 An unknown problem

See "Appendix B: Exit Codes" on page 187 for more-detailed definitions of the exit codes.
GetConfigFile [options] [entity]

Where ent 7ty specifies a project/folder from which to get the value of the configuration
file. Note that you only need to specify an entity if want to get the configuration file for an
entity other than the current project database or project/folder.

NOTE The current project/folder is set using either the -pp option (as described below)
or the PCLI_PP variable. A project database is set by using either the -pr option (as
described below) or the PCLI_PR variable.

Options

To substitute variables and use list files for additional options, see "Command Options" on
page 20 for more information.

Lists all the configuration file paths that are used by the project, not just the one directly
associated with the project you specify. For example, if you specify a project that has a
project configuration file associated with it, the PCLI will return the project configuration
file and the configuration file associated with the project database in which the project
resides.

Displays help for the command. The action terminates after it processes the -h option
even if you specify other options.

-iduser 7d[:user_password]

This option specifies a user ID and/or password for project databases and projects that
have an access control database enabled. It overrides the value of the PCLI_ID variable
for a single command. If VLOGIN, SSO/CAC (without CAC implemented), or LDAP is the
login source, use -1id to specify your user ID—and password too if a password is assigned
to your user ID. For example, -idUserID: Password

If VLOGIN, SSO/CAC, or LDAP is not the login source, your user ID is predetermined by
your login source, but you must still use -1id to enter your password, if you have one. For
example, -id: Passworad.

-idCAC_LOGIN[: PIN:Al7asname]

If SSO/CAC is the login source and CAC is implemented, you can include the CAC PIN and
Aliasname when you type the command.

For example,-i1dCAC_LOGIN: PIN: Al7asname. Or you can type just the CAC_LOGIN
keyword and then answer the prompts for CAC PIN and Aliasname. For example, -

PCLI User's Guide and Reference 91

Chapter 3: PCLI Command Reference

PP

-pr

_qe

_qz

E