Micro Focus
RM/COBOL

RM/COBOL
User’'s Guide

Micro Focus

The Lawn

22-30 Old Bath Road

Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are trademarks or registered trademarks of
Micro Focus Development Limited or its subsidiaries or affiliated companies in the United States, United Kingdom,
and other countries. All other marks are the property of their respective owners.

Revised 2018-05-21 for version 12.15

Contents

P EIACE ... 1
Welcome to RM/COBOL for Windows and UNEXcccooiiiiiiieee e 1
WhO Should USE ThiS BOOKc..oouiiiiiiiiiiiaiieieeie ettt 1
Organization of INFOrMALIONcooiiiiii e e 2
Related PUBIICALIONS.......cuiiiiiiiice et bbb 3
Conventions and SYMDOIS.oiiiii e 4
BT g TTors SN o] oo AP SRP 6

Y00 0L AT o [=] 11T 6
LI O KT TP TP PO PP PP PRSPPI 6

Chapter 1: INtrodUCTIONoooiiieeiee e 9
RM/COBOL SOFIWATE ..ottt be bbbttt be bbb enes 9
RM/COBOL COMPIIEL......iiuiitiiieieeeie ettt b bbbttt ae bbb ens 9
RM/COBOL RUNIIME SYSTEIM ...ttt sttt bbbttt sb b 9
COUBWALCN. ...t bbb ettt bbbt nnes 10
(@000 [=1 2] ¢ o [0TSR 10
Internal Libraries and ULility Programsccccoovviieiesiesieeie s se e 10
Integrated and Add-On PaCKagES.......cccviveierieriereseie et eneens 10
File Naming CONVENTIONSc.cveiiiiiieiesiesese ettt sne e e seseesnennesneeneas 11

Chapter 2: Installation and System Considerations for UNIX........... 13
System Requirements FOr UNDX ... 13

REQUITE HAITWAIEoveieiiiieieeie ettt bbbt 13
REGUITEA SOTIWATEcveiiiieiiie ettt sb et e 13
System Installation FOr UNDXcoiviiiioiie et 14
Electronic Product Delivery Installation...........cc.ccooviiveierine i 14
CD-ROM INSEAHALIONeoviiiieiice e 15
Loading the LICENSE FIle ..ot e 16
Mounting the Diskette as an MS-DOS File SyStemcccccoovviieienienenenenn 16

Transferring the RM/COBOL License File via FTP from a Windows Client....17

Loading the Distribution Media............ccooereiiiinieieee s 18
Performing the INStallation ..o 19
Unloading the Distribution Media..........ccocoiiiiiiiiiiicieeeee e 20

System RemMOVal FOr UNDX......ccoiiiiiicieice ettt nneneas 20
Locating RM/COBOL Files 0N UNIX......cccvoiiiiiiieiisnseeieeee st e e 21
File Locations within Operating System Pathnames on UNIX..........ccccocvivviviinninnivcnennn, 21
Directory Search Sequences 0N UNDXcooviiiieiiiiieieiene s e 21

File Access Names 0N UNEXc.ooiiiiiiine e 22
UNIX RESOUICE FlB ..ottt 25
RESOUICE File FOIMAL.......ccuiiiiiiiiiceie et 25
CommAaNd-LinNg OPLIONSccueiuiiiiieriieiieieie ettt ettt bttt see bbb b sne s 26
SPECITYING SYNONYIMS ..ttt ettt b et e e bbb b sneeneas 26
Example of .rmcobolrc File ... 27

RM/COBOL User's Guide

Example of .runcobOlrC Filec.ooiiiiiiiiii e 27

Example of .reCOVErLrc File ... 28
Terminal Input and OULPUL 0N UNDX.......ccviiiiiiiii e 28
Terminal INTEITACESoviiiiiec et ee s 28
Termeap Databaseccovvviieeeiee e eneas 29
Terminfo DatahASEccoveieiieic e 29

LGN 1o I8/ o 1= USSR 30
Terminal AtITDULES........oviiiee e 30
TErMINAL NAIME ...t bbbttt e e bbb be b 30
Terminfo and Termcap Capabilities Used by the Runtime System...........ccccocevviiiniennn 31
Keyboard Input CharaCter SEQUENCEScoeiireiieieieie ettt 32
Additional Termcap Capabilities Used by the Runtime System............cccccoovvveniiininnnn 36
Terminfo CONSIABIALIONSc.oiuiiiiiieie et e 37
LN DraW CharaClerSoouiiiiieieeieie ettt sttt bbb 38
Other System Considerations For UNDXccoviiiiiiieiieerise s 39
Memory Available for a COBOL Run Unit on UNIX........ccoovvviiiiiieeese e 39
NUMDBDEE OF FIIES ..o et 39
NUMbBEr 0f REGION LOCKS.......ccviiiieieice s e 39
NELWOTK FIIE ACCESS ..ottt ettt sb e bbb ere e 39
Redirection of INput and OULPULooviieii i 40
SEANAAIT TNPUL ... bbb b sb e eneas 40
SEANAAIT OULPUL ...t ettt be bbb eneas 41
SEANAAIT EITOF ..eieiiiie et bbbttt e bbb b e eneas 42
Using Large Files 0N UNIDX ..o e s 42
Environment Variables for UNDX 43

Chapter 3: Installation and System Considerations for Microsoft

WINAOWS ..t e e e e e e e e aeaa s 45
System Requirements fOr WINAOWS.........ccooeiiiiiieirieseeesese s snn s 45
o U T=To I T 0 AT - S 45
o U T =0 IS0 1 Y (S 45
Local Area Network (LAN) SOFtWArecocvvvieeieiene e 46

BEIEVE SOFIWAIE ... 46

System Installation fOr WINAOWSccveiiiiiiniieie st 46
INSEAITAtION LOCALIONS. ... c..iiuiieiieiie sttt et bbb 47
Electronic Product Delivery Installation............c.ccoviieiiiiiiiiieeee e 47
CD-ROM INSEAHALION ...ttt 49
Installation NOtes fOr WINQOWSoiiiiiiiiicie e 52
Installation of RM/COBOL 0N WINAOWS..........cciiiiiiiiiiiiieniisieseeie e 52
Installation of RM/COBOL on Network Client Machinescccccooviiieniiienenn. 54

Default Native CharaCter Set........coviiiiiiiiieies e 54
Registering the RM/COBOL Compiler and Runtime Executables.............ccccocvvevivrrnnene. 54
Compiler REGISLIAION......c..civeiiiierese et sre e e eneas 54
RUNEIME REGISIIAtION ...t nre e 56

System Removal fOr WINAOWScccviieiiieiccc ettt eneas 59
System Configuration fOr WINAOWSc.cooiiiiiiiiiiceieee e 59
Creating @ WiNAOWS SNOMCULoiiiiiiiie it 59
Using Associations with Filename EXIENSIONScccooiiiiiiieiiniinice e 61
Prompting for a FIlENaME ... e 61
Locating RM/COBOL Files 0N WINUOWS........cc.oiiiiiiniiiiaiieieeie s e 62
File Locations within Operating System Pathnames on Windowsccccoeveienieeiennne 62
Directory Search Sequences 0N WINAOWScccoveveriereieneseseseeseeseseesesessessesseeeesnens 62
NoVell NetWare Search Paths...........cciiiiiiiiiii e 64
File Access Names 0N WINAOWSccoiiiiiiiieieneieenie ettt snesesse s 64
Windows SysStem Print JODScccviiiiiiiice s 66

RM/COBOL User's Guide

WINAOWS REGISIIY ...ttt bttt b e bbbt et e e e et esee b e besbe b e ene e 67

Windows Registry CONSIAEIAtIONS.uiiiiriiirieieie e 67
Renaming the RM/COBOL for Windows RUNEIME..........cccvevvveiieieeneiene e, 67

L L T L 0] 01T TSRS 68
Selecting a File t0 CONFIQUIEviviicicce et 69
Setting Control PrOPEItIES.......cicviiiieieeieeee sttt sresre e eneas 72
F AT Ol Y (e o 0] 01T o TS SS PSR 73
YA (oo 1[I (o] o T=T o P 73
Command Line OPtionNS PrOPEItYccooiieieiiiiiieieiesie et 74
CUISOr OVEItYPE PrOPEITY ... eiiieiiieiitee sttt ettt bttt st sb e bbb nae e 74
CUISOT INSEIt PrOPEITYveeiieiiiee sttt e 75
CUrsor FUIl FIeld PrOPertYooiiiiieieee et s 75
ENable ClOSE PIOPEITYc..oiiieiiiiiiieiieieie ettt et 75
Enable Properties Dialog PrOPErtY ...t 76
0 1B 0] 0T o SR 76
Font CharSet OEM PrOPEITYvcveieiiie e sie sttt sttt sre e 76
Full OEM To ANSI CoNnVersions PrOPEItY......c..ccciuerverereresesesieneesieseesseseesssssessens 76
1CON FIlE PrOPEITY .ottt sttt renre e eneas 77
Load Registry On CALL PrOPEItYcccocviieieeieiieiereesie e sieseseeseeseesie e sresse e sneens 77
Load Registry On RETURN PrOPEItYcccceivevieerierieniesiesieseseeseeseesieseessessesssssennes 77
LOQO BitMap PrOPEILYocviiieieieiiiieie ettt sttt s 78
L0ogo Bitmap File PrOPertYco.oceiiiie et 78
Main WindoW TYPE PrOPEILYc.eiiiieieieie sttt 78
Mark AlPhanumeric PrOPEITYccuciieiiriieiieieeeeie e 78
OFFSEE X PIOPEITY ...ttt bbb bbb eneas 79

L@ 1 i1 A o (0] 11 o YOS 79
Panels Controls 3D PrOPEITYcvcvcveriee ettt et 79
Panels Static Controls BOrder PrOPEILYccccvevevereeriereseseseseseeie e see e sreenens 79
Paste Termination PrOPEITYcccviveieriiie st e 79

e G S (T o 0] 1< SR 79
Pop-Up Window Positioning Propertyccceivevererinesieseseseee e e s seseenee s 80
Printer Dialog AIWaYS PrOPEITY......ccooiiiiiiiiiesit e 80
Printer Dialog NeVEr PrOPEITYcvoiiieieiiie sttt s 80
Printer Enable Escape SeqUENCES PrOPEItY.........cccviirrieiireieniesieseee e 81
Printer Enable NUIl ESC. S€Q. PrOPEeIYcociiiiiiiiicie e 81
Printer Enable Raw MOde PrOPEeItYcccooiiiiiiiiiiice e 81
Printer Font CharSet OEM PrOPErtY........cccooiieiieiiiieie et 81
Remove Trailing Blanks Propertyccccovviiiieeieieee e 82
Screen Read Line Draw PrOPEILYccevveieieierieiieeieseese e seesiesneseeseesseseesressesneenens 82
SCroll BUFfEr Size PrOPEItY.......ccvvvieeieiee e se s se et sne e enees 82
Show Return Code Dialog PrOPEIYvcveveieieiese e se e e 83
Show Through BOrders PrOPEILYccveiveeeiererieiieeieseesesiestesieseeseeseesseseessessesseasens 83
SIZING PriOFity PrOPEITY ...c.eoiiieiieiieseee et e 83
StAtUS Bar PrOPEITY ..ottt 83
Status Bar TeXt PrOPEITY.......oovi ittt 83
SYSTEM WiNdOW TYPE PrOPEITYccuviiiiiiiiiiieieiietie et s 84
THHIE TEXE PrOPEITY ...ttt et st 84
TOOIDAN PIOPEILY ...ttt ettt se e sb e bbb eneas 84
ToOIbar PrOMPL PrOPEILYecvvcieeeieieesiesesteste e eee et s e e e e e e snesneaneeneas 84
Update TimEOUL PrOPEITYvccvvieieeerieeeie e sie e ste ettt enee e s sre e e 85

Use WINAOWS COlOrS PrOPEILYc.vcveieieiesiesesteeieeeeie e sie st see et snesre e 85
Setting SYNONYM PrOPEITIES.civieieeieiee e ste ettt e e sresreaneeneas 86
L 1] T [O] (o] gl o 0] 0= TSRS 88
Setting TOOIDAr PrOPEITIESccuviveeiecieee sttt enees 89
Setting MenU Bar PrOPEITIES.couiiiiiieie ettt et s 93
Setting POP-UP MENU PIOPEITIEScoueeiieieiieite ittt b 95

RM/COBOL User's Guide

B o T0] Lo Y- gl o) (o] RO 97

RUNNING the TOOIDAr EAITOrciiiiiiie e 98
Editing @ BIitMaAD ...vecvveieieie sttt st naene e na e aesneeneene e 99
Testing the BItMap......ccoviieecce e ns 99
Transferring the IMage Up.......covieiiieiicc e 100
Importing and EXPOrting BitMapscccverereieieseie e sie e seesie e s sre e enees 100
Character Set Considerations for WINAOWSccovvieieinieneneeneee e 100
Codepages 0N WINAOWS..........coeiirieireierieesesieste e ereeeeee e sseseessessesseesseseessessessessessenns 100
RM/COBOL for ANSI Codepage 0n WINAOWScoceieiireniiiniienie e e 102
Installation Character Set Considerations on WindOWS............cccccverieierieneieneneneenens 103
RMSETNCS UL .cveiveieecie st 103

Related Character Set Configuration on WIiNdOWSccocuviiieieiinn e 105
Terminal Input and OULPUL ON WINAOWSoceiiiiiiiiieieieie et 106
TermMiNal INTEITACESeiveieeeie ettt sb et 106

(OT 10 I8/ o 1= 106
BIHNKING ALIDULE ... ere s 106
Portable Line Draw CharaClers.........coueieeierieieneiee sttt 106
Keyboard Input CharaCter SEQUENCESeivierereeiereisieseesiesie e eraeeeee e e seesresresneenens 107
Other System Considerations for WinAOWSccocvevriereiineie e 111
Memory Available for a COBOL Run Unit on Windowsccccceeevevivvivnnsnsieeieseennn, 111
RUNtIME SYStEM WINGOWccuoiiiiiiiiiiie e 111
CONEFOl IMIBNU TCON.....uiiiiiciieece et bbb 113

Return Code MESSAZE BOXcoueiieiiiiiieiie sttt ettt bbb 114
CALL “SYSTEM ...ttt ettt ettt b et te st e te bt besae e eteanes 114
PEITOIMANCE ...ttt bbbt bbbttt e b bbb b ens 114
Using Large Files 0N WINAOWS.........c.coueieiiiiieirseseeeeseesiese e ste e seesee e seessesnesneens 114
Windows File Systems Considerations...........ccccvevverereresiesesiesieeseseseseseesesneeneas 115

Large File LOCKING ISSUES......eiveieieieiesie e ste s ettt sne s enees 115

Test Programs AVaIlablec.oveviiiiiie e 116
Environment Variables for WINAOWS ..o 116
Chapter 4: System Considerations for Btrievecccccooeeeviiiieeeennns 119
BtrieVe Adapter CONCEPLScueiieieieeite ittt sttt sttt se et st sbe st e et e e sbe st sbesbeene e 119
INAEXEA FHIES ...ttt bbb 119
Required SOftware COMPONENTSccuvieieeeeieie e e srese e ee e te e re e e e e saesresresreeneens 121
NOVEIT NEIWEIE ...ttt bbbttt e se e 122
Btrieve MicroKernel Database Enging (MKDE).........ccccooevivieienieiieeeicne e e 122
Btrieve Requester for 32-Bit WINAOWS..........ccccviviieiriereiise s 122
Pervasive PSQL V8 (0r higher) fOr LiNUX.......ccccooveiiiriereiene e 122
RM/COBOL Compiler (for Windows and LINUX)........cccoerereneneneniniene e 123
RM/COBOL Runtime System (for Windows and LinUX)cccccoevennieniniencneneee e 123
BIIIEVE AGBPLEI ... et bbbttt bbb ere s 123
Configuration fOr BEFBVE..........coiiiiiiieiieee et bbb 124
System Considerations for Btrieve Files.........ccociiiiiiiiiiiiiee e 124
RM/COBOL versus Btrieve Indexed File Performancec.cocovrviieinienieieieneienens 125
Btrieve Adapter OPLIONSccveieie et a e nre e re e 126
EXTERNAL-ACCESS-METHOD Configuration Record Optionsc.ccocvvevievernnne. 126

B (Btrieve Adapter Btrieve MKDE Page Size) Optioncccccvvvivvivivsinnecieinenn, 126

(@R =T 1 (O] o1 o] o 127

D (DUplicates) OPLiON ...cc.cceierieiieieieesie e se e e e et e e e sre e sneereenes 128

I (Initial DiSplay) OPLioNcoiieieiiiiiieie e 128

L (LOCK) OPLION ...ttt 128

M (IMOAE) OPLION. ...ttt bbb bbb eneas 129

O (OWNET) OPLION. ...ttt ettt sttt sttt se e b e b bbb reenes 130

P (Btrieve Adapter Page Size) OPtioNcccovvviriieiinerieieeee e 130

Vi RM/COBOL User's Guide

T (Diagnostic Trace Filename) Optioncccoeeiiiiiiie i 131

RUN-INDEX-FILES Configuration Record Options...........ccccovreriiinnenene e 131
Starting Btrieve Adapter fOr LINUXc.ccoviieiiiisieir e 132
Starting Btrieve Adapter for WINAOWSccocoiiiiieiieieee e 133
RM/COBOL Indexed Files and Btrieve MicroKernel Database Engine (MKDE)

LIMIEALIONS ...ttt b s bbbt b ettt 134
Current Record Position LIMItationscoeiiiiiiininninieseeeeseeeseseeese s 134
File Position Indicator LIMItationscccveriiieniinieneise e 135
Permission Error Detection LIMitationsccociiiiiiinieni i 135
Using Existing Btrieve Files with RM/COBOLcccccoviiiiiiiiiiice e 136
Btrieve MicroKernel Database Engine (MKDE) Limitations Affecting RM/COBOL
APPIICALIONS ...ttt bbbttt e bbb r e neeneas 136
Variable-Length RECOIUSc.ooi it 137
KEY PIACEMENT ...ttt bbbttt ettt sb e b b besneeneas 137
Automatic Creation of Variable-Length Record Files...........ccoovvvveiiieieiininic i 137
Verification of Maximum Record and Block Lengthccccooovvveieieninin e, 137
Support for RM/COBOL Internal Data FOrmatscccovvrvivsienieeresesese e seseeeeseens 137
Support for Btrieve Internal Data FOrmatsccooveieveriienese e 138
INPUL/OULPUL ErrOrs iN BEHEVEcii et s eneas 138

Chapter 5: System Verificationcccooooeiiiiiiiiiiiii e 139

System Verification for UNIDXccviiiioie s 139
Y[FoR =] g T £ 139
IMIUIEISUSEE TESE. vttt bbbttt ne s 140

System Verification for WINQOWS..........coiiieiiiiie e 141
Y[FoR =] g T £ 141
IMIUIEI=USEE TESE. vttt bbbttt 141

Chapter 6: CoOMPIlING ... 143

(000 0 o1 =L To] g o o o= SR 143

SYSIEBM FIES ..ttt e st bt e e r e et ne e renre e reereene e 143
SOUICE FIES ...ttt ettt b ettt sb et sb e bbb e 144
(@] o1 B T LSS 144
LISEING FIIS 1. vtieieeeeie ettt sttt e et esae b et srenresneeneas 144

I o] U= OO OSSR PR TR 144

COMPIlE COMMEANG ...ttt ettt b et b et e bbbt beebe e e 145
Batch Compilation 0n WINAOWSccuoiiiiiiiiiiiieeee e 146
Multiple File Compilation 0n WINAOWSccoiiiiiiinineiineeee e 147

Multiple File Selection with File Open Dialog.........ccocoviieiineiiiieienene e, 147
Multiple File Selection with Wildcard Characters in Filename.............c.ccoccooenene. 147
Compile ComMMANT OPLIONSoiuiiiiiiieiiiiiie ettt e 148
Configuration Compile Command OPLioNS.......cccccvveriereieeieseee e 151
Data Item Compile Command OPLtioNSccccvvveieriereiesesese e 152
File Type Compile Command OPtioNS.........ccocviveierienereseseseeeeseee s see e 153
Listing Compile Command OPLtiONS.........ccccviveveriererese e 154
Object Program Compile Command OPtioNS.........ccccevvrvreeiesieriesese e e e 157
Source Program Compile Command OPLioNS..........cocovererenininie e 160

Sample Compile COMMEANUS........c.oiiiiiiiiiie e e bbb 162
Valid Compile COMMENS........c.oiiiiiiiiiie e b 162
Invalid Compile COMMANG.........cociiiiiiieieiee et eneas 162

(TS oo TSSO TP 163
Program LISTINGcoeeieieieie ettt bbbttt b et b bbb 163
A 1ot [T a0 T o TSRS 167

Alphabet-Names, Symbolic-Characters, Mnemonic-Names, and Class-Names167

RM/COBOL User's Guide

Vii

SPIit KEY NBIMES ...ttt bbb bbb 168

Data-Names, Index-Names, Condition-Names, File-Names and Cd-Names 169
CONSTANT-NAMES ...ttt b e ar e ne s 171

Called Program SUMMAIYccccuiiuiieiereeiesesiesresseereeseesee e ssessessessessesssessessessessessessenns 171
CrosS RETErENCE LIStING.......civiieiiiiiieieeee e te et e e r e sneereene e 172
SUMMAPY LISTING ©evviveiieciecicse ettt e e e nnesaenneereeneens 173
Error Marker and DIiagnOStiCS........veveuereiisiie e et eneens 175
(0] gl (=T o0 YT YR 176
g o] g I T =T To 170 o USSR 176
Compile COMMANT IMIESSAQES.c.verterueeteeeeie ettt e eeeseesbesbe st sbe e esee e ebesbesbesbesbeseeaneans 177
COMPIlEr STALUS IMESSATESveveeirteaieetee ittt st se et e bbb e bt s e et et e b sbesbesbeseeene e 178
Compiler CoNfIQUIALION EFTOISiuiiiiieiiie ettt ettt st 185
Compiler INItIaliZation EITOrS..... ..o e 186
SUpPOrt Module VerSion EFTOIS.......cocciiiirieiinie ettt 186
COMPIIEr EXIT COUBS....cuvevieiiieiie sttt sttt st st neera e e e e snesrestesneereeneens 187
Chapter 7: RUNNINGuuii e 189
RUNEIME COMMANG ...t e bbbttt e b e b b be e 189
Runtime Command OPLIONSccieiiiiiiiiiesie ettt 190
Configuration Runtime Command OPtioNS.........ccccoieiiieiininieie e 192

Debug and Test Runtime Command OPLtioNSccccoeririeiine e 193
Environment Runtime Command OPtioNSc.ccevvererereninsinseeeereee e 194
Program Runtime Command OPLiONS........ccccuvviveierieneresesese e 195

Sample RUNtIME COMMANUS.......ccviiireieiiie et e e ne e e eseesresresresreeneens 198
Valid RUNtIME COMMANS......c.civiiiiriiiiiriese et 198
Invalid RUNEIME COMMANGScueviiiiiiieiiie e 198
RUNEIME IMESSAGESveuvevieiteeteeseeste st steste st ste s e esee e ste e saesteaseeseeseestesbesaesreeseenaeneestestearenreaneens 198
DiagNOSLIC IMESSAGES ...vuveuveeertirteriiateeeete e st sbe bttt e e et et esbesbesbesbe bt ese e e ebesbesbesbesbesbeans 198
EXECULION IMBSSAQES. ... ettt sttt etee ettt sttt sttt b e bbb e st ne e e e et b sbe b sbeens 199
Program EXIit COUEScoiiiiiiiic 199
Chapter 8: RM/COBOL Features........cccceviiiiiiiiiiiieeeee 201
ACCEPT and DISPLAY StatemMeNTSccoiviiiirieiiirieesienieese st 201
Maximum Size 0f @ SCreen FIeld........ooviiriiiiiie e 201
Initial Contents 0f & SCreen FIeld..........cooviiiiiiiiiii e 201
DEFINEU KEBYS ...ttt bbbttt b e bbb 202
FIEld Edit KEYSeeiiiciiieeie ettt e bbb 202

Field Termination KEYS ..ot 205
ACCEPT and DISPLAY PRIASEScoiviitiiiiiieiiinieeieie ettt e bbb eneas 209
CONTROL PRIASE....cviveieiteieiisiesieristesiereste e sesteseesasse st s sassessesassessesessessessssenes 209

ERASE PRISE ...ttt bbbt e bbb 215

HIGH PRIESE ...ocveiiciiie ettt ettt 216

LOW PRIBSE ...ttt sttt bbbttt sttt e ne s 216

OFF PRIBSE ...ttt ettt ettt bbbttt 216
REVERSE PRIBSE..... .ottt ettt sttt sne et 216

SIZE PRISE ...ttt ettt ettt 216

THME PREGSE. ...ttt ettt bbbttt bbb sae st 217
ACCEPT EXCeption Status VAlUEScoiiiiiieiieieee et 217
POP-UP WINAOWS......eetiie ettt sttt se e bbbttt e st b e b b beene e 218
Creating POP-UP WINAOWSooiiiiiiiiiee e s 218
BEEP PRIASE.eiitiitietieieie ettt bbbttt b bbb 219

BLINK PRIESE ...ttt et st 219
CONTROL PRIBSE....cviieieite ittt ettt se s 219

ERASE PRIESEoviiietiiieieiesie ettt ettt sttt bbbt e 220

viii RM/COBOL User's Guide

HIGH aNd LOW PRIASESvviie ettt st e svan e s sabn e e s snran e ens 220

LINE and POSITION PRIASES......ccoviieiiriisieitisieeeeie ettt sttt e eneas 220
REVERSE PRIESE.......ociviiiiiiciiiniitee et 221

UNIT PRFGSE ...ttt 221
Removing a POP-UP WINOW........cccoveriiieiisire ettt 221
CONTROL PRFESE.....vevieeriieniareireaieie s 221

UNIT PRFGSE ...ttt 222

Pop-Up WiIndow Control BIOCKccccviviiiiiieie st 222
Identifying the POP-UpP WINAOWcccooiiiiiiiiiiiec e 222
Defining the Size of the POp-Up WINAOWcccooiiiiiiiiiiiiie e 223
Defining the Location of the Pop-Up WiNdOW...........ccccooiiiiiniiiniic e 223
Defining the Border of the Pop-Up WindOW ..o 223
Initializing the POp-Up WINAOW Ar€a.........cooviiaiiiiiie e 223
Defining the Location of the Title of the Pop-Up Windowccccovniiiiicnenn. 224
Defining the Title of the POp-Up WINAOWccccveveviiiiiise e 224

Pop-Up Window Operation StatUs...........cccvivrerireriereineseseseseeeeseesie e sreseessssesseeseeses 224
COPY SEAEMENT.......eciiiveieiiiiereee ettt 225
STOP RUN Statement and RETURN-CODE Special RegiSter.........ccoveveririeienivreseeeennnn, 226
CALL and CANCEL StatEMENTSvoviiriireiresrrierisreenesree s 226
Y0 ool oo =1 0 T I Vo [1o o SRS 227
Argument CONSIABIALIONScueiuieiieiiie ettt bbb seesbe bbb eneas 229
EXEErNAI ODJECES.....eiieiieeee bt 230
CompOosSite Date and TIMEc.ooiiiiiiieieiee ettt bttt b e bbb b ee e e 231
DELETE FILE OPEIAtIONccueiiiiiieiieiie ittt ettt et st nne bbb e 232
FIIE SNATINGt et bttt bbb b ee e 232
L= ST =T P 233
Very Large File SUPPOIT ...ttt eneens 234
File TYPES @Nd SITUCLUIEecvveeiceie ettt e nenre e e 234
SEAUENTIAT FIIES....eviiiiieceieee ettt e e nreereeneens 234
RECORD Clause (Sequential File Description ENtry)ccccccecvvevivvivnivsivnecriereennn, 235
BLOCK CONTAINS Clause (Sequential File Description ENntry)...........ccccvvvevenne. 235
LINAGE Clause (Sequential File Description ENtry)........cccccooeeieieninenenennenn, 236
RESERVE Clause (Sequential File Control ENtry) ..., 236
CODE-SET Clause (Sequential File Control Entry or File Description Entry)....... 236
REVERSED Phrase (OPEN Statement)ccoveieiiieienenesesee e 237

WITH NO LOCK Phrase (READ Statement)cccoererereeinniene e 237
ADVANCING ZERO LINES Phrase (WRITE Statement)..........ccoceeeevrierirniiennns 237
ADVANCING mnemonic-name Phrase (WRITE Statement).........ccccccvvevvvrvinennn, 237

REEL and UNIT Phrases (CLOSE Statement)..........ccccovevvivviesveeereenesesesesneeeeenes 237

WITH NO REWIND Phrase (CLOSE Statement)ccccevveverennresnsnseeeeneennns 238

[CY ot U o] o Lo o AP 238

REIAEIVE FIIES ... s 240
RECORD Clause (Relative File Description ENtry).........ccccooerieinieneiencnenceene 240
BLOCK CONTAINS Clause (Relative File Description Entry)c.ccocveveienenn. 240
RESERVE Clause (Relative File Control ENtry)........cccocvveiiiinicie e 241
CODE-SET Clause (Relative File Control Entry or File Description Entry) 241

WITH NO LOCK Phrase (READ Statement)ccccoererereeiniienie e sesieseeee e 241

INAEXEA FIES.......oeiee ettt bbbttt bbb b neeneas 242

D 17 N 001441 0] €151 o] P 242

Data RECOVEIADIIITYcviieiiceseceee e et 242
RECORD Clause (Indexed File DesCription ENtry)cccccevvevererivsinsnsieseerieseennns 243
BLOCK CONTAINS Clause (Indexed File Description ENtry).......cccccovevvvivernnne. 244
RESERVE Clause (Indexed File Control ENtry)ccccoovvivvivieeinienne e sese s 245
CODE-SET Clause (Indexed File Control Entry or File Description Entry)........... 245
COLLATING SEQUENCE Clause (Indexed File Control Entry)cc.cccoeveennnne. 246

WITH NO LOCK Phrase (READ Statement)ccccoererereeiniiene e seesieseeeeneenas 246

RM/COBOL User's Guide

File ANIOCALION ...t e et e e s e e e e s saba e e s asbaneeans 246

File Size EStIMAatioN........ccoo i b 247
TEMPOTATY FHIESeiieieiceieice sttt et e et e s beete e e en e see st e resnesreaneaneas 249
Indexed File PErfOrMANCEccoi ittt sb et 250

IN-MEMOTrY BUFFEIING ...vviveceieicc s re e eneas 250
Altering the Size of Indexed File BIOCKS.........ccoviieieiineii e 251
Controlling the Length of RECOrd KEYS........ccviviiiieieiee s 252
Correct Data RECOVEIY SEratBQYvvieiiiirreriieiieesie e e se e sreesee e snee e 252
Using Key and Data COMPIESSIONcccuiuirtirieriisieseeie ettt sae e see s sneens 253
Using RM/COBOL FACIHIILIEScouieiiiiiieiiesie ittt 253
Indexed File VErsion LEVEIS ..ottt s 253

File Version LEVEl 0ccoiiiiiiiieee e 254

File VErsion LEVEl 2 ... e 254

File Version LeVEl 3 ... s 254

File VErsion LEVEI 4 ..ottt 254

Changing the File Version LEVELcccvviiveieiiie s 254

Chapter 9: DebugQing ...cooee i 255
INVOKINgG & Program fOr DEDUPcoiiiiiiieii et s 255
GeNeral DEDUQY CONCEPLSoveieitiitieieetie ettt b e b ettt sbe bbb be e 257

L] 14101 T TP P TP PRSP 258
T =T g o101 258
LI SOOI 258
RS (5] 0] o113 o S 258
EXECULION COUNTS....c.eiiiiiiieiiiieieie sttt st et sttt ettt ne s 258
Line and INtraling NUMDETSoviiiiiiiiiee e 258
[=T o TU T IR £ 1L 259
DALA TYPES ..ttt ettt bbbttt h bt e b et n e ae e sae e nae e 259
DEDUG RETEIEINCES ...ttt ettt bbbt be e 260
Program Area RETEIENCESocuiiiiieiiee et bbb 260
Data 1tem REFEIENCES. ..o 260
SCIEEN POSITIONS ...ttt bbbttt e bbb bt bt b et et e b sbenbesbeebeene e 261
Data AAdress DeVEIOPMENTcuiiiiiieiieieeee et 261
LAENEIFIEr FOPMAL......eiviieiiieecee et sne s 261
AAAreSS-SiZE FOIMALccuiiiiiiiiriiiiiiee bbb se 263
ATTAS FOIMAL ...ttt bbbttt nb s 265
RegaiNiNg CONMIOL.......ccv it se e e e srenreeneens 265
Debug Command PrOMPLccveieiiieieiisese ettt snesre e ens 265
DEDUG ErTOr IMESSAGES ... veveeteereerieriestestestesteeseeseesaeste e saesteaseeseeseestessesaessesseenseseesseseesressesnens 266
A (Address Stop) COMMANTociiiiiiiieee et sbe bbb enes 271
B (Breakpoint) COMMANG........ccuiiiiiiiiiieiieiieeee ettt bttt e bbb sbe e 272
C (ClAr) COMMANG.......eiiieeiieite ittt sttt se bt bbbt b e e et e b sbesbesbesbeene e 273
D (Display) COMMANGcoiiiiieiiite ittt se e bbbt se et e e sbesbesbeeeeane e 274
E (ENd) COMIMANG ..ottt bbb bbbttt sb e bbb ens 277
L (Line Display) COMMANGcccoiieiiieiieeies ettt eneens 277
M (MOdify) COMMANG.......eoieieiieie et re e e e sresresneereenes 278
(@ I (@ 10T T @11 7= o PR 281
R (RESUME) COMMANG.......ccueiiiieiieiiesie ettt sa et besresraeseenae e e naesresrenreeneens 282
S (55T o) I 0 1114 T o SR 282
T (Trap) COMMANGecveeeieie ettt e et et e besreete e e en e e seeneeseennesreaneaneas 283
U (UNtrap) COMMAENGcveiuiiiiiieiie ettt se et bbbt st e e b et sbeebeene e 286

Chapter 10: Configuration.........ccovvviiiiiiiiiee e 289

Configuration File STIUCTUIEcoeieiiece e e e 289

X RM/COBOL User's Guide

Automatic Configuration FIlES...........cooiiiiiiiiee e s 290

Command-Line Configuration FIlEScccooiiiiiiiiiiiee e 291
Configuration ProCessing OFUEN.........cvcueiereresire e seee ettt see s snesre e ens 291
(000 Y 110 VT LT AT = 1 (] ¢SSP 292
(000 Y 1o UL LT (T =TT 0] (o TSP 292
COMPILER-OPTIONS Configuration RECOIdccccveveieriineiie e 294
ACCEPT-BEEP-DEFAULTocoiiitieiitirest ettt 295
ACCEPT-SUPPRESS-CONVERSION........coiiriiiiiriiisirieniscsee e 295
ALLOW-DATE-TIME-OVERRIDEccootitiiiiiiiiseseies e 295
BINARY -ALLOCATION ...ttt sttt sttt sttt sttt sne et 296
BINARY-ALLOCATION-SIGNEDcccesiiiiiiieinesieit e 298
COBOLAT4 .ottt ettt et b et b et et e et et e tesb e e e te st et tenbe e erennas 298
COMPUTATIONAL-AS-BINARY ...oeiiitiierieisieieee et seste st sese s sasse e sesse s sassesnes 299
COMPUTATIONAL-TYPE ...ttt sttt sve st sneseene e 299
COMPUTATIONAL-VERSION ..ottt 299
DEBUG ..ottt e bt bbb bbbt et 300
DEBUG-TABLE-OUTPUT ...c.ootiiiiitieee ettt sttt e 300
DERESERVE ..ottt et bbbt bbbttt 301
DISPLAY-UPDATE-MESSAGESceot ittt 301
EXTERNAL-INDEX-NAMES ..ottt 301
FLAGGING ..ottt sttt sttt ettt e et sttt st et st ne st 301
INITIAL-MARGIN-R ..ottt 302
KEEP-TEMP-XML-SYMBOL-TABLE-FILEcccoiviitiieiienetseee e 302
LINKAGE-ENTRY-SETTINGS......ccceiitriiiiirieisiseis sttt 303
LISTING-ATTRIBUTESoiiiietieiee ettt sttt 305
LISTING-CONDITIONAL-EXCLUSION-INDICATORccceiviiieieienieirie e 307
LISTING-CONDITIONAL-INCLUSION-INDICATORcccceiiiirieieienieisie e 307
LISTING-DATE-FORMAT ..ottt 307
LISTING-DATE-SEPARATORctitiiiiriiiiiniesit ettt 308
LISTING-DIAGNOSTIC-PREFIX ..ottt e 308
LISTING-ID-AREA-SEPARATOR......ccctiiiitirieiai ettt 308
LISTING-LINE-LENGTHootiiiiiieisieise et 308
LISTING-PATHNAME ..ottt bbbt nn s 308
LISTING-TIME-SEPARATORccoiiiiiriiiiiseise ettt 308
NO-DIAGNOSTIC ...ttt sttt sttt st sttt sttt ettt ne st b re st 309
OBJIECT-PATHNADMEciiiiie ettt sttt sbe et sne e eneanes 309
OBJIECT-VERSIONcoiiitiiietite ettt sttt ettt st et sae e etesneseeneanes 310
POSTPONE-COPY-IN-PSEUDO-TEXT ...ccceitiirieinierieinie ettt 310
RESEQUENCE-LINE-NUMBERSccocotiiiiiniene s 310
RIMCOBOL-2 ...ttt sttt bbbttt st nb et st ne st 310
SEPARATE-SIGN ittt ettt sttt s ettt b ene e 310
SEQUENTIAL-FILE-TYPE ...ttt 311
SOURCE-ON-INPUT-DEVICE.......ccccesiitiirieiieiieeie e sve st sne e 311
SOURCE-PATTERN-EXCLUDEccocotiiiieie et 311
SOURCE-PATTERN-INCLUDE........ccccitiiietie ettt sesre e 312
SOURCE-RECORD-MAX-LENGTHcccciiiiiiiiiiniiiiiee e 312
STRICT-REFERENCE-MODIFICATIONccociiiiiiiiiieeieieee e 312
SUBSCRIPT-CHECKING ..ottt sttt sttt sve st sneseene e 313
SUPPRESS-FILLER-IN-SYMBOL-TABLEcccctitiiiiteeie e 313
SUPPRESS-LITERAL-BY-CONTENTccctittiiirieirinieesiereeesieseee st 313
SUPPRESS-NUMERIC-OPTIMIZATION ..ottt 314
SUPPRESS-XML-SYMBOL-TABLEcceoitiiiriri e 314
SYMBOL-TABLE-OUTPUT ...ociiiiiitieiiie ettt 314
WHEN-COMPILED-FORMATctiiiiiriiiiirieistsiees sttt 314
WORKSPACE-SIZEcoiiiiitiieist sttt bt 318
DEFINE-DEVICE Configuration RECOI.........cc.oiiiiiiiiniiiieie e 319

RM/COBOL User's Guide

Xi

DEVICE. ... oottt 319

ERROR-ON-CANCEL.......cccoiutiiiiiitiiiieieisiee sttt 320
ESCAPE-SEQUENCES ...ttt 320
NONBLOCKING-FIFO ..ottt 320
P AT H s 321
PP E s 321
REMOTE-PRINTERoitiiriiriiie st 321
RAW . 322
TAPE . bbb e bbb bbbt bbb enas 322
WINAOWS PIINEEIS. ...ttt sb e bbb 322
EXTENSION-NAMES Configuration RECOITccoiiiriiiiie et 323
COPY et b £ bbb bbb bt bbb bt e b 324
LISTING ...ttt bbb bbbt bbb bbbttt 324
OBUJECT ..tttk bbb bt £ bbb £ bbb bt bbbkt e et 324
SOURRCE ...t 324
EXTERNAL-ACCESS-METHOD Configuration ReCord...........cccoovvvrivnrvereiennsesesneneans 324
CREATE-FILES ..ottt 325
NAME ..o 325
OPTIONS .ttt r et n e 325
INTERNATIONALIZATION Configuration RECOIdcccevevvriviviieieeie e 326
EURO-CODEPOINT-ANSI ..ottt 326
EURO-CODEPOINT=OEMccoiiiiiiiiiieinieie ittt 326
EURO-SUPPORT-ENABLE.........ccciii ittt 327
Euro Support Considerations Under Windowsccocereiiienenenecinese e 327
PRINT-ATTR Configuration RECOIcceiiiiiiiiiie e 328
AUTO-LINE-FEEDooiiiriiiiei s 328
COLUMNS . ..ottt 328
FORM-FEED-AVAILABLE.........cci it 328
LINAGE-INITIAL-FORM-POSITION......ccoeitiimiiineinsreensreees s 329
LINAGE-PAGES-PER-PHYSICAL-PAGEcccooiiiririinirceree s 329
LINES oo 330
TOP-OF-FORM-AT-CLOSE ..ottt 330
WRAP-COLUMN ...ttt bbb bbbt 330
WRAP-IMODE........ci ittt bbbt bttt sttt 330
RUN-ATTR Configuration RECONccoiiiiiiiiiiiii e 330
ACCEPT-FIELD-FROM-SCREENccoiiiiiiiiiiinsee i 331
ACCEPT-INTENSITY ..ottt bbb bbb 331
ACCEPT-PROMPT-CHAR ..ottt 331
BEEP .t 332
BLINK s 332
DISPLAY -INTENSITY Lot 332
EDIT-COMMA ...ttt 332
EDIT-CURRENCY-SYMBOLcocctiiiiiiiiniiitirieeisise st 332
EDIT-DECIMAL ...ttt ettt 333
EDIT-DOLLAR. ..ottt bbbttt sttt 333
ERROR-MESSAGE-DESTINATIONccoiiiiiiiriiiiisieneieie st 333
EXCEPTION-HANDLING ..ottt 333
REVERSE ...ttt bbbkttt 334
SCROLL-SCREEN-AT-TERMINATIONcoiiiiiririiineere e 334
STRIP-LIKE-PATTERN-TRAILING-SPACES.........ccociiiiirreineenreeesreee s 334
TAB s 334
UNDERLINE ...ttt 335
RUN-FILES-ATTR Configuration RECOId..........cocevviiiieeieeie e ste st 335
ALLOW-EXTENDED-CHARS-IN-FILENAMES.........cccoiiiiniiineensnee s 336
BLOGCK-SIZE ...ttt bbbttt 336
BUFFER-POOL-SIZE........cccoiiiiiit ittt 336

Xii RM/COBOL User's Guide

DEFAULT-USE-PROCEDUREc.cociiiiiitiiieci s 336

DISABLE-LOCAL-ACCESS-METHODcccccoiiiiiiinieisiesieie sttt 337
ENABLE-OLD-DOS-FILENAME-HANDLINGccccootiitniinineiseneesie e 337
EXPANDED-PATH-SEARCHcoiiiiiiieiie et 337
FATAL-RECORD-LOCK-TIMEOUTcccciiiiiriiiniinieinie ettt 338
FILE-LOCK-LIMIT ©ootiiiiictieee et ettt e 338
FILE-PROCESS-COUNT ..ottt sttt st sttt st et 338
FORCE-USER-MODE........ccceititiiiiie ettt sttt s 338
KEEP-FLOPPY=OPENocotitiiiiiriiiiiseise ettt st sn s 339
LARGE-FILE-LOCK-LIMIT ..ottt 339
RESOLVE-LEADING-NAMEcccotiiiieitieiieie ettt sttt 339
RESOLVE-SUBSEQUENT-NAMES........cccoitiitiiieienieit ettt 340
SKIP-INITIAL-CWD-SEARCHccocotiiiiiiiietie ettt anes 340
USE-PROCEDURE-RECORD-LOCK-TIMEOUTcccoveitiieieienieisesiere e 341
RUN-INDEX-FILES Configuration RECOIM...........cccvriviirivieeieienese e 341
ALLOCATION-INCREMENT ...ttt 342
BLOCK-SIZE ..ottt et ettt bbbt e na e 342
DATA-COMPRESSION ..ottt sttt sttt st s 342
DEFAULT-FILE-VERSION-NUMBERcccctiiiiiineine e 342
ENABLE-ATOMIC-IO ...ttt et sttt s 342
FORGCE-CLOSED.......cectiiiiteiiet sttt sttt sttt sttt sttt sttt ne et 342
FORGCE-DATA .ottt st bbbttt et st e st st ne et 343
FORGCE-DISK ...ttt sttt sttt bbb ne et 343
FORGCE-INDEX......cicititiieeiteitee st e sttt st sttt sttt bbbttt ne st stane st 343
IGNORE-BLOCK-CONTAINSocctiiiiiirisisieese e 343
KEY-COMPRESSION ..ottt ettt 343
MINIMUM-BLOCK-SIZEccoiiiiiiiiiiieictne ettt 344
ROUND-TO-NICE-BLOCK-SIZEcecteitriiirieneine ettt 344
USE-LARGE-FILE-LOCK-LIMIT ..ottt e 344
RUN-OPTION Configuration RECOIccceveieriiriiiiinseseeie ettt 344
2 OSSOSO TR VSO UR PSP 345
DISPLAY-UPDATE-MESSAGESceot ottt 345
ENABLE-LOGGINGcociiitiiietiteiee sttt sttt sttt sna et 345
FILL-CHARAGCTER ..ottt sttt sttt st sttt st sne st 346
K ettt e et b b bRt R AR R R AR R AR bR Rt R bt n et b re et 346
OSSPSR 347
LIBRARY -PATH ..ottt sttt 347
LOG-PATH .ottt ettt bbbt 347
OSSPSR 347
MAIN-PROGRADM.ottt bbbttt bbbt 348
[OSSOSO PRI 348
RUN-REL-FILES Configuration RECOIcceivrvieiisiieeie et 348
BLOCK-SIZE ..ottt sttt sttt sttt bt st ne et 348
USE-LARGE-FILE-LOCK-LIMIT ..ottt 349
RUN-SEQ-FILES Configuration RECOIccooiiiiiiiiiiiiie e 349
BLOCK-SIZE ..ottt sttt sttt sttt bt st ne et 349
DEFAULT-TYPE. ...ttt sttt sttt sttt sttt bt nene et 349
DEVICE-SLEWING-RESERVEcccooiiiitiiieie ettt 349
TAB-STOPS ..ottt bbb bbb b bbbt b et 350
USE-LARGE-FILE-LOCK-LIMIT ...ttt 350
RUN-SORT Configuration RECOIT........ccccviirieierierese et s 350
INTERMEDIATE-FILES.... .ottt e 350
MEMORY =SIZE ..ottt bbbttt ne s 350
TERM-ATTR Configuration RECOIU........ccueiuiieiiiisesieeeieee e se e se e e e sneeneas 351
ALWAYS-USE-CURSOR-POSITIONING.......coetiiiiiriieiseiee e 351
21010 10 7 OSSPSR 351

RM/COBOL User's Guide

Xiii

Xiv

COLUMNS . ..ottt b e et b et e b et e et et e beab e e e tesbe st ebesreeerennas 352
DATA-CHARACTERS.......titiit ettt st sttt et 352
DBCS-CHARACTERS ...ttt et sttt et et 353
FCOLOR .ttt e bbbttt bbbttt et bbb n et 354
PASS-THRU-ESCAPEooiiitiiiee ettt sttt e 354
REDRAW-ON-CALL-SYSTEMocctiiiiiiiieiiesietee ettt et 355
ROWVS ... e et b et btk bbbttt ettt ben et 355
SCREEN-CONTENT-OPTIMIZEceovitieietie ettt 355
SUPPRESS-NULLS ..ottt sttt sttt sbe et sneeenennes 355
USE-COLOR ...ttt sttt sttt sttt bbbttt be st s et st ne et 356
TERM-INPUT Configuration RECOIccooiiiiiiiiiiiice e 356
ACTION ...ttt ettt b et et eebe b bt st beseabe b ene st 357
CODE ...ttt et bbb et b e et b e et b et tenre e erenrs 357
DAT A et bR bR bbb b et b r e 358
EXCEPTION ...ttt et et ettt bbbt 358
PRECEDENCE........c.ocotiiiitie ettt et sttt ettt 358
Character Sequence SPeCIfiCatiON...........ccvieiiririie e 358
Translation of TERM-INPUT Sequences on WiNdOWS..........cecvereererenernsesiennenn, 359
Translation of TERM-INPUT Sequences on UNIX........cccooviveievenevennnn e senenean, 359
Character Sequence Specification for Input Data Character Keysc.cccoeveneene. 359
Character Sequence Specification for Field Editing Keys........cccccoeiiiiiiincinne. 360
Character Sequence Specification for Field Termination Keys..........cc.ccocvinvennne. 363
TERM-INTERFACE Configuration RECOIccooeiiiiiiiiieii et 365
GUI ettt et b et b e et e b et e b e be et e te et tenre e erears 365
TERMUCARP ..ottt b bbb bbbt ne e 365
TERMINFO ..ottt bbbttt ane e 365
WINDOWS ..ottt bbbttt bbbt bt 365
TERM-UNIT Configuration RECOIM.........ccueiuiiiiiiiiiiieeeieee st 366
2] 2 SO PP SRRSO 366
CHARACTER-WIDTH. ..ottt sttt 366
DEFINE-CONTROL-CHARACTERSccoiiiietieieese et 366
MOWVE-ATTR ..ottt bbbttt e bbbt bene st b ene it 367
PARITY Lottt sttt s b et b etk b et bt et s b et et et et st e st et st ne et st ne et 367

o A N o P SO SOUS PSR URSPR 367
STOP-BITS ..ttt ettt sttt sb et b e et sb e et e ab et e te st e e e tesbe e etesaeseetennes 367

LI 2 5 RSOSSN 367
UN T e e bbbt b etk bbb sttt e et b et et nen et 367
Default Configuration FIlEScvoiiiiiiiicceec s 368
TermCap EXAMPIEccviiiece e ena s 368
Terminfo EXAMPIEocviieeieee et nrenre e ene s 370
WiINAOWS EXAMPIEc.eiieieieieeie ettt sresne e eneas 372
Chapter 11: InStrumentationcoeeeieeiiiiiiii e 377
INVOKING INSEIUMENTALIONoiiiiiiiciiiiecesie ettt sb e e 377
DAt COIBCLION ...ttt sttt 377
DALA ANGIYSIS ...ttt bbbttt bbbt r et 379
Appendix A: RUNIME MESSAQES ...coeiviiiiiiiiiieee et 383
EITOr IMESSAJE TYPES ...ttt ettt bttt bttt st a e be e e bt et e st e bt e sbeesbeenbeenbe e e s 383
Data REEIENCE EFTOIS.....ui ittt e b et bttt nb e b e bbb e e 384
PrOCEAUIE EITOFS ...ttt bbbttt e bbbt ettt et e e b et sbeeeeane e 387
LT oIV VL@ 01110 = o] - S SSSRSR 393
INEEINAI EFTOFS ..ottt bttt sb e ekt b ettt sb e et sb et b et enes 413

RM/COBOL User's Guide

SOME-IMEBIGE EITOIS ...ttt sttt bt e e ie e e sbe e 414

MESSAGE CONLIOT EITOFS ..ttt e bbb 414
(000 Y 110 VT LT AT = 1 (] ¢SSP 415
Runtime System Initialization IMESSAQEScvevervirereieeeieeie e e sae e sre e 416
INIEIAHZALION EITOTSiviitiitiieiicte ettt 416
Support Module INitialization EFTOrS.........cocvviviiiiieieece e s 416
SupPort Module VErSion EFTOIS......cuccveveieieresieseseeeeseeie e sie e e sreseesee e see e snessasneens 416
OpPtion ProCeSSING EITOISccvviiiiieieeieiee et e et sresresnesrenneens 417
Main Program LOading EITOrS........cc.coiiiiiieiieeie ettt 417
RUNCODOI BANNET IMIESSAJE ... veveeieiieiieie ittt sttt sttt st sttt bbb 418
RUNCODOI USAJE MESSAGEceviieiietieieie ettt sttt bttt sb e bbb 418
RegIStration ErrOr IMESSATEScoverueaueeeeie e st sie sttt eeee sttt st e et et sbesbesbe b ens 419
COBOL Normal Termination IMESSAJES.couerueruerueriereeiereesiesiestestesieeseeeeseeseesaeseesseseesnenns 419
Appendix B: Limits and RANQEScccvvvvvviiiiie e ee e 421
RM/COBOL Limits @nd RANGES......cveuvitiiiriiiirieieiesieisie sttt 421
FIIE LOCKING ...ttt bbbt e bt bbbt et e e e b et s beebe s e 423
Appendix C: Internal Data FOrmats.........ccccooeeieeeiiiieiiiiiiie e 425
INternal Data FOIMALSc.ooeieiiiiiciie e ettt bbbt e 425
NONNUMETIC DLA ...ttt ettt bbb bbbt 426
AIPhANUMETIC (ANS) ...ttt e e bt sresresneeneas 427
Alphanumeric EAited (ANSE)ccooiieiiiiieieeeereee st seeees 428
AIPNEDETIC (ABS) ...ttt bbb bbb 428
Alphabetic EAIted (ABSE).......cciciiiieiesie ettt 428
NUMEFIC EAItEA (NSE)... .ottt s 428
NUMEFIC DALA. ... eeve ettt bbb bbbt et e bt ne e e e sbe b sbeeeeene e 428
Unsigned NUmMeric DISPLAY (NSU)....ccooiiiiiiiiiiiiie e 429
Signed Numeric DISPLAY, TRAILING SEPARATE (NTS).....cccocvviireieieieeierieeennns 429
Signed Numeric DISPLAY, LEADING SEPARATE (NLS)......ccccoviiriieiiriicreenes 430
Signed Numeric DISPLAY, TRAILING (NTC) ..ccocvviiiiiinieine e 431
Signed Numeric DISPLAY, LEADING (NLC) ..covcoveiieiie e 432
Unsigned Numeric COMPUTATIONAL (NCU).....cocoeiineieirseseeesese e 433
Signed Numeric COMPUTATIONAL (NCS)....ocoviveieieieiesese e eeseeie s 434
Signed Numeric COMPUTATIONAL-L (NBS) ...ocoveiiiiiireseeeeeeie e 435
Unsigned Numeric COMPUTATIONAL-3 (NPP).....ccooiiiiiiiiieieeeeee s 436
Signed Numeric COMPUTATIONAL-3 (NPS)......coviiiiiierieeieiee e sesn e 437
Unsigned Numeric COMPUTATIONAL-4 (NBU).....ccccoiiiiiiiiinieece e 438
Signed Numeric COMPUTATIONAL-4 (NBS)covoviiiiiiiiinneeseseese s 440
Unsigned Numeric COMPUTATIONAL-5 (NBUN)......ccccciiiiiiiiieieee e 443
Signed Numeric COMPUTATIONAL-5 (NBSN).......ccoviiiierieiiierieise e 444
Unsigned Numeric COMPUTATIONAL-6 (NPU)cccoiiveriiisrieeeree e 445
POINTEE DALA ...ttt bbbttt bbbt n e bbb 445
Appendix D: Support Modules (Non-COBOL Add-Ons).................. 447
T goTo [1Ted 1] o FOR SRR UR USSR URTURURURIS 447
Overview of Optional SUPPOIt MOAUIES...........coiiiiiiiieee e 447
Locating Optional SUPPOIt MOAUIES..........ceiiiiiiiie s 449
IN ProduCtion MOGEooiiiiiiiieise e 449

[N TESEIMIOUE ...ttt ettt b ane s 450
Using a Different EXeCUtion DiIr€CONYcccviviveverirerese e eeeseee s 450

Using a Different SUDIrECIOrY........c.covvivii i 450

L0 L Lo R (=N o] o] oS 451

Support Modules Available for RM/COBOLcccvvviieieicnc e 452

RM/COBOL User's Guide

XVi

Terminal Interface Support Modules 0n UNEX ..o 452

Automatic Configuration File Support Module............cccooiiiiiiiiiiii s 453
RM/InfoExpress Client Support Module on UNIDXcccoviviiviiiieicc e 453
FlexGen Support Module 0n UNDX.......cccoiiiiirirscece e 453
Cobol-RPC Server Support Module on UNDXcocvoieiiiiicnccececeeeee e 454
Cobol-CGIX Server Support Module on UNIXcoooviiiiieiieicee e 454
Building Your Own SUupport MOUIE...........cceveieiiicce e 455
User-Written SUPPOrt MOAUIEcveiviiiiicecec e 455
User-Written Support Module from Old sub.c Or SUD.O........cccoiiiiiiiiiii 456
Building a Message Control SyStem (MCS)coiiiiiiiiiiiiie e 456
Message Control System (MCS) Support Module ..., 456
INIIAlIZING The IMICS ... et bbb 457
Message Control System Data SEUCTUIES.........coeiieieiire et 457
RM/COBOL Communications Descriptor (CCD).......cceiiiiieiiniieeieeee e 458
Appendix E: WINdOWS Printing.......cccoevvviiiiiiiieeeeeeeeeiiiieee e eeeeeeiinnns 461
PS SUDPrOGramM LiDIAIY.....c.covoviiiiiiriieieieieecie ettt 461
OVBIVIBW. ...ttt ettt b et b ettt h e bbb e Rt e R e e e b e e b e e bt e b e Rt e b e e seembenbesbesbesbeebeene e 464
Using Windows Printing FUNCHIONScoiiiiiiiiiiiee e 466
Returning to @ "NOrmMal™ FONL........ccooviiiiiiie s 466
Common P$ Subprogram ArQUIMENTScocoueeeririeririseesieie et saesenens 466
Omitting P$ Subprogram ArGUMENTScceveiieririnie ettt 468
Windows Print Dialog BoOX SUDPrOgramS........c..ccvieverieiieeieriesiesiesieseseseeseesee e ssesee e sseens 469
Printing MUItIPIE COPIES.....cciiiiiieeece e ereens 471
Printing Partial REPOIS.........cciviiiieieecie st se sttt eneens 472
PBCIEAIDIAIOY. ... ettt et bbbt e 473
PEDISADIEDIAIOY vt e 473
PEDISPIAYDIAIOG ... v everereeerisieit ettt 473
PSENADIEDIAIOG ... vveveveeiiiirie et 474
PEGEIDIAIOT -..e.veveereneerieisis ettt bbbttt ettt 474
PESEEDIAIOY ... vveieteieerie ettt bbbttt 475
Drawing SUDPIOGIAMSueviiieiieeiie ittt see sttt sbe st e e e b e be bt st e beeneeseesbesbesbeebeene e 476
PEDIAWBITMAD ...evevereiiiiiiririeiee ettt bbbttt ettt 476
PEDIAWBOX ..cvvvvirreienisreiere sttt 477
PEDIAWLINE ... vttt 477
PBGEIPOSITION ... s 478
POLINETO 1. 478
POIMOVETO ..t 478
PESEIBOXSNAUE. ...t 479
PBSEEPEN ...ttt bbbt ettt bbb e e 479
PBSEIPOSILION......cuiiictiicteti ettt bbb 480
Text Manipulation SUDPrOGIAMScciieiiiiiiiie e sbe e 480
PBCIBAIFONveviieciesiet ettt et b ettt b b e e 480
PBGEIFONLvevivetii ettt et b bbbttt bt 481
POGEITEXIEXIENT.vceieereiicer s 482
PBGEITEXIMELIICS ...t 482
POGEITEXIPOSITIONcivireiiciree s 484
PESEtDEfaUItATIGNMENT ..o e 484
PBSEIFONL. ...t 485
PSSEtLINEEXIENAMOUEoovviiicicc s 487

P SEtLINESPACING ... cveveriiiireeit ettt bbbttt 487
PBSEIPILCN ...ttt bbbttt 488
T 1101] oSOV 488
PESEETEXECOION. ...ttt bbbttt b e 488
PESEETEXIPOSITION. ... cviiiveeiictctcistee et b e 489

RM/COBOL User's Guide

PETEXEOULeeviieee ettt ettt et e s e st e e st e et st e st e sreesae e st e et e s et e saeesteesreeseesaesaeeseessanenras 489

Common Drawing and Text Manipulation SUbProgramsc.cceceeerieieiene e 490
PESEtDEAUIIMIOUE.cviieieiie e e et 491
PESEDEAUITUNITSocveiiicieie e 491
PBSEELETIIMAIGIN. ...t e 491
PESEETOPMAITIN.....ciciiiieiciecie ettt bttt e ne st 492

Printer Control SUDPrOGIAMSc.veivirieieieeeee ettt sne e enae e saesresnesreeneens 492
PECHhaNGEDEVICEMOUES.......coveieieiiiieie et ettt 492
POENADIEESCAPESEQUENCESvivivtiieerieiste ettt ettt 493
PSENUMPTINIEIINTO ...viviicei e 493
PSGEtDEfiNEDEVICEINTO.cviviviicicie e 494
PSGEtDEVICECAPADIIITIESvveeeeeeieiec i 495
PEGEIHANMIE........cooiveiiiciei et 496
PEGEtPIINEIINTOvcviicicit e 497
PENEWPAGE ...ttt bbb bbbttt bbb e n e 498
PBRESELPIINTELveveeieite ettt bbbttt e e 499
PESEtDOCUMENINGIMIEeitiiieieieite ettt et st b ettt e see s 499
PESEEHANAIE ... 499
PESEIRAWIMOUE ..ot bbbttt e ne e 500

(000)V | =TSSR 500

DEFDEV.CPY ...ttt bbbttt e bt se bt ne st 501

DEVCAPS.CPY .ottt ittt sttt ettt ettt b et be bbb et et e ne st b e ne et 501

LOGRFONT.CPY ..ttt ittt sttt s ettt s b e sttt s et et n et e s ens b e 503

PRINTDLG.CPY ..ttt bbbttt bbbt ne st 506

PRINTINF.CPY oottt ettt bttt ne e ne st 514

TXTMTRIC.CPY ottt bbbttt b ettt sb et sbe bbb nnes 516

WINDEFS.CPY ...ttt ettt bbb 519

EXample COdE FragmentS......c.ccvciueiiieieieseeeee e sie e ste e e esae et stesne e s e esseseesaesnesnessesneens 521
Printing @ WaterMark..........cooviviiiieieiece sttt e e e sresneeneens 522
Drawing Shaded Boxes With COIOIScccvvieiiiiiiece s 522
Drawing @ BoOX aroUNG TEXL.......cviveiereeieriesiisiestesreeeeeeseesseseessessesneeseeseesseseesssssessessenses 523
Drawing @ RUIBTooiiiie ettt bbb 523
Presetting the Print Dialog BOXccoiiiiiiiiiiiiice e 524
Checking the Exit Code after Displaying the Print Dialog BOXccccoooiviiiiiiiinieinne 525
PrINtiNG @ BItMAD ...ccueeeieeeie ettt bbb bbb 526
Changing a Font WHhile Printingc.cocooiiiiiiiiiiiee e 526
Using the COBOL WRITE Statement to Print Multiple Text Outputs on the Same
OSSPSR 526
Changing Orientation, Pitch, and Line SPacing.......c..ccevevererierienieeiesieeesese e see e, 527
Opening and Writing to Separate PriNterScccevvererererie s sieseee e e e e e eae s 527
Printing Text at the TOP 0f @ PAJEvcvviveiiiicice e 528
Printing Text at the Corners 0f @ Page........cccvvviviieieee e 528
Setting the Point Size for @ FONT........c.coi it 529
Setting TeXE POSTHION.......c.eiiiiiii ittt e 529

RM/COBOL-SPECIfiC ESCAPE SEQUEINCEScouveueeiiierienieeieeeeiie ettt e e b e ee e 530

Appendix F: Subprogram Library.......ccccccoeeeiiiiiiiiiiecieeee e 533

SUBPrOGIAM LIDFAIYccvoieiiiiecesie e ettt 533

(O8O SO TR 536

(O8I o A OSSOSOV PRTSPR 536

(O8O Y = L TSSOSO USSR 538

CBCRNIUNY ..ttt ettt bbbt £ e bbb bbbttt £ £ bbb bbbt b e s et s e e 540

C3ClearDevelOpMENTMOTEcueiiieiiririee sttt bbbttt 540

CBCOMPIIEBPAIIEIN ...ttt ettt et 541

CBCONVEIANSITOORIMviiictiieictee ettt sttt sttt e bt se bt e st b ese et be s nsens 542

RM/COBOL User's Guide xvii

CPCONVEITORMT OANSI ..ttt et eeee ettt et e et st e st e et e et e e et e et ss e seeesteesteesteeseeseeseessreesreenrs 542

CEBDARG ..ottt b et b et b b et b ettt bbbt et ens 543
CBDEIAY ..ottt et bbb bbbt 545
(O8] 0= OSSOSO TR 545
LO8 C1=] 1 =1 1 OO SORTSO TSP 546
CHGELLASIFIIENGIME ... ettt 546
CHGENALIVECNAISEE ...ttt 547
CBGELLASIFIIEOPD ... e bbbt 547
CBGEIRIMINTO ..ttt bbbt b e bbb e b b s b ens 548
L0011 3] TSSOSO 550
CBGRESYSINTO. ...ttt 551
CBGUICFGottt ettt b bbb s et b et et e b s e e bt et et e s e et be e bens 552
CHBLOGICAIANG. ..ottt ettt en e 553
CHBLOGICAICOMPIBMENT ...ttt 554
(O oo 1o 1 [| SOOI R P SOPR T SPR 554
CBLOGICAISHITILETL ..o e 555
CELOGICAISHITIRIGNT ... 555
CBLOGICAIXOT ...ttt bbbt b et b et nr et 556
L0812 OSSOSO R PSPPSR 557
CEMEMOIYAIIOCALE ... e ettt see 557
COMEMOIYDEAIIOCALE ...ttt 558
CONARG ..ottt ettt e bt b b et b st b et et et R ettt e bt ne e bt s b ens 559
CBOSLOCKINTD ...ttt ettt ettt sttt et be et e e ebe st eneebesbene et 559
CEBPARGcooitiietete ettt sttt bbb s e bbb b h et b bbbt bttt e bt rerens 560
CHBPIAYSOUN ...ttt bbbttt ettt et as e 560
CORBIMENU ...ttt st b ettt bbbt bbbt et b ettt e et b ne et 561
O L TSRS 562
C OB ...ttt ettt ettt E e e R et b e bbb b et 564
L0810 = I LTSRS 564
L0814 TSRS 565
L LT Vo T N o] (S 568
L r= LI 1 (0] £SO 568
EXCEPLION COUBScuviieieeeie ittt ettt et bbbttt e et e b bbb st ens 569
CBSECUIBHASN. ..ottt ettt ettt et sttt e et e e e be et e e ebe st eneebesbeneerans 570
CPSetDEVEIOPMENIIMOTEcveeieiiiieiee ittt ettt 571
CBSBEENV ..ottt ettt et ettt ettt e et et be et e e ebe et e st e be et eteebe et eneebeebeneetins 572
CBSBESYN .ttt ettt bbb £ bbb bRt £ £ bbbt b bR et n e 572
CBSNOW. ...ttt ettt ettt et bRt R bt a e e Rttt ne e e r e nrens 573
LOR51 40 11N SO SOUR PSPPI 574
(O8I 2 | OSSOSO PRSPPI 575
C T BAIEN ..t bbb e bt 576
COTBAISEQ vttt sttt b etk bbbt s bbb n et b ettt n et ben et 576
(00 111 PR TUTPPTSRPRPRRRR 577
COWRU .ottt ettt ettt b s e sttt e st e b s et bt et bene e b te e b ens 577
DELETE oottt sttt s ettt b et bbb bbbttt et et et e b b e e r e 578
RENAME ..ottt sttt b et ettt b bttt b et e b e et be s e b be e s e bene s 579
SY STEM .ttt ettt ettt et s bbb e b s et bt e bbb e bttt n e bt r et ens 579
UNIX CONSIAEIALIONSc.vveviciicic ettt te ettt ae e sae e sre e 580
WiINAOWS CONSIAEIALIONScvviviieiiiiiiieiisiciee ettt 580
ApPeNndixX G: ULITIES ... 583
(@] 0T Lo T2 A (0] o IO TS U SO UTUPTURURURPROO 583
Utilities Delivered 0N Medi@.........c.coviiiiiiiiiicc et e e sre e 584
General CoNSIAEIALIONS........ccvieieiie ettt e be e beeste e re s e e sreesreesreenas 584
Installing the ULility Programs.........ccoeoeoieieiiie et 585

xviii RM/COBOL User's Guide

Combine Program (rmpgmcom) ULHLY ...t 585

USING The ULHTILY ..ot bbb 585
Execution of Programs wWithin LiDrariesc..ccoeveverinieiie s 586
Map Program File (rmmappgm) ULIHItYcocoeiiiiiiirces s 588
USING the ULHHLY ..t 588
Map Indexed File (rmmapinX) ULtyccoveviiiiiiiisesececee e 590
USING the ULHHLY ..veeeceicce st eneens 590
Basic File INformation DiSPlayccccuereiiiiieir s 590
Detailed INfOrmation REPOIT........ccoiiiiiiiiieit e e 592
Key Descriptor INformation DiSPIaYccoceiireiiiiiiiie it 592
Define Indexed File (rmdefinX) UtHLYccoooiiiiiiiiiiiice e 594
USING The ULHTILY ... bbb 595
File Pre-Creation ... bbb 596

File MOITICALION ... e 597

Indexed File Recovery (reCoVerl) ULIItY ... 599
Yoo)= YA @ 1 1T oo [600
Recovery Command OPLiONS........c.cuervirereririeseeieseese e sie e seseeseee e sre e e esennes 600
Recovery Process DESCHIPLIONccvcveeererisiese e seeeeie et e st ste s e e sresresneereens 603
Recovery Support Module Version EITOrS........ccccvuiveeereieneseseseseeeeseesesee e seessesseens 605

L To0)= YA eV 1o 605
Recovery Program Error IMESSAGESc.eeiuerueruereeiieesiiesieeiessiesieesieestessaesneseesaeesneennas 609
Standalone Use of the RECOVEI2 Programccccuoeiieiininie i 610
Recover2 Program Error IMESSAGESc..eeierueruereeiieesiienieeiessiesieesieesbesseesneseesieesneennas 612
Initialization File to Windows Registry Conversion (ini2reg) Utility...........ccocooiinininnnn. 613
USING The ULHTILY ... bbb 614
RM/COBOL Configuration (rmconfig) Utility.........cccovvvviiiiie e 614
USING the ULHHLY ..veeeceicce st eneens 615
Appendix H: ODJeCt VEISIONS ...oiiiiiiiiiiiiiiiieee e 619
LEVEI INUIMDELS...... ettt bbbt b e bbbt e e e bbb sbesreenes 619
(@] o] T=To Y= 6] o] o I OSSOSO RURPROIO 621
(O] o T=To Y= 6] o] o PSSO URUR PR 621
(O] o TTo Y= 6] o] o OO SOU U UTT USSP 622
(@] o101 ANV =T 6] o] o SR 623
(@] o101 ANV =T 6] o] o PR 623
(@] o101 ANV =T 6] o] o N SR 624
(@] o101 ANV =T 6] o o PR 625
(@] o T=To1 ANV =T 6] o] N P 625
(@] o T=To1 ANV =T 6] o] X LSS 627
(0] o T=To Y= 6] o] o OO USSP URURPROO 627
(0] o T=To AV =T 6] o] o I OSSO USSP 628
ODBJECE WVEISION 12 ...ttt ettt e b et bt bbbt e e et e b sbesbesbeeeeene e 628
(O] o T=To Y= 6] o] o 1 OSSOSO URURPRO 629
(O] o T=To Y= 6] o] o 1 SO SOUUOUPUPTURURTUR PR 629
(@] o101 ANV =T 6] o] 0 S 630

Appendix I: Extension, Obsolete, and Subset Language Elements631

EXEENSION EIBMENES.eveiiiiceiiie ettt ettt s e e e s eb e e e s et b e s s st e e e e s b be e e sbraeessanns 631
(O] 001 L= (T = 1T 41T 0 TR 637
SUDSEE EIBIMEBNTS ...ttt ettt e ettt e e s s be e e s s bt e e s sbb e e e s sabesessabbeessbeasessbbenesssbeneens 637
Appendix J: Code-Set Translation Tables.........ccccccvviiiiiieeeieeeeennnn, 643

RM/COBOL User's Guide Xix

Appendix K: Troubleshooting RM/COBOLccccvvviiiiieeeeeeeeeiinns 657
RM/COBOL for Windows Running in a Microsoft Windows or Novell Network

ENVITONIMIENL. .ottt bbbt s bbb n et b n et 657
Ol VIedir. VXA FlB.....ciiiieeie e e 658
Network Redirector File Cachingcocooiiiiiiiiii e 658
OPPOrtUNISEIC LOCKING ..ottt et 659
Virus ProteCtion SOFIWAIE.........c.oiiiiiiiiie e 659
Novell NetWare ClEnt32 VEersioN ...t 659
Printing to a Novell Print Queue Using Novell NetWare Client32ccccooviveiennne 660
File and Printer Sharing for NetWare Networks SErvice........ccoovvvivvererenienesnseseaneenes 660

RM/COBOL fOr UNDX ..ottt 661
Number of Available SEMUNDO StrUCLUIES........covverieirienieisie e 661

Appendix L: Summary of Enhancements..........cccccviiiiiiniiiiiiiiiiinnns 663

VErsion 12 ENNANCEIMENTS.oiiiiiiiiiieie ettt sttt se bbbt neeneas 663
Version 12 RuNtime SYStEM FEAIUIEScouiiiiiiiriiiieie et s 663
Version 12 COmMPIlEr FEALUIESoii it 664
Features Added to Support XML EXIENSIONScvcveierieriesieseseerieseenie e sre e e ereeeenee s 667

VeErsion 11 ENNANCEMENTS.......cciiiiiirieiiti sttt sttt b et 668
Version 11 Runtime SYStemM FEATUIES........ccvivrviieieiise st eneas 668
Version 11 COmMPIlEr FEAUIEScoiivieiire ettt se s 669

Version 10 ENNANCEMENTS.........cviiiiiirieirieieeiste ettt ettt 671
Version 10 Runtime SYStEM FEAIUIEScouiiiriiiiiiieie e 671
Version 10 COmMPIlEr FEALUIEScii it 672

VErsion 9 ENNANCEMENTS.ciuiiiiiiieiie ettt bbbt se bbbt neeneas 673
Version 9 RUNtiMe SYStEM FEALUMES........cuiiiiiiie it 673
Version 9 COMPIlEr FEATUIESooi it 674

VErsion 8 ENNANCEMENTS.ciuiiiiiiieiiie ettt bbbttt seesb e bbb eneas 676
Version 8 RUNtIME SYStEM FEAIUIES........ccviviieeieeie et 676
Version 8 COMPIIEr FEALUIEScveivirieieii ettt 677

Version 7.5 ENNANCEMENTS. ..ottt 678
CodeWatch Application Development Environment Introducedcccoovvvvviiveriennns 678
CodeBridge ENhanCEMENTS.........cccviiviieieiee e sie e ee ettt snesreeneens 678
Console-Mode Compiler 0N WINAOWScccoivieiieierice e s 679
Multiple and Batch Compiles Easier and FaStercocovviiiineninicie e 679
More Reliable INdEXed FIlS........coiiiiiiiiiie e 679
Better Indexed File Performance ..ot s 680
Automatic Configuration File Available for Windows.............ccooeeiiiiiiiencieiineneens 680
Tail Comments for Configuration RECOIUS..........cocuiiiiiiiiiiie e 680
Enhancements for Non-COBOL Subprograms on Windowsccccoereienenencannnes 680
Additions to the RM/COBOL Subprogram Librarycccccocveveveveiininninieseseeieneenns 681
Message Files EMINALEAc.ccvcviiieieiirire e 681
Compiler Overlay File EIIMINAted..........cccooviiiiiniicieiece e 681
Version 7.5 RUNtIME SYStEM FEAIUIES........ccvivreieeieiese et 682
Version 7.5 COMPIIEr FEALUIEScviieiisieie sttt re e enes 684
Version 7.5 ULty FEATUIES........coiiiiiiiee et 687
More FIEXiDIE LICENSINGccviiiiiiiiiiiee ettt 687
AUtoMAtic UPdate ChECK.coiiiiieie e e 687

Version 7.1 for UNEX ENNANCEMENTSc..oiiiiiiiiiieceieeee e 688
Runtime Linking ENMINALEccooviiiiiiii e 688
UNIX RESOUICE FIE ...ttt bbb 688
Automatic Configuration File..........cccviiiiiiiiiesece e 688
Support for UNIX Added to COAEBIIAGEovvivviieeieieieenie e resa e 689
Enhancements to Configuration RECOIMS.cccviveiereiise e 689

XX RM/COBOL User's Guide

Version 7.0 for Windows ENNANCEMENTS..........ccovuiiii ittt 689

CodeWatch Debugger INtrOdUCEA.ooviiiiiiiiiiiieieeee e 689
CodeBridge Cross-Language Call System INtroducedcccovoevevererenivnesnseseeie s 689
Enhanced WiIndOWS PrINtINGcviveieee et 690
Additions to the RM/COBOL Subprogram Librarycccccecveveveveieninin e 690
Ability to Use BLrieve INErfaCe........cccovvvvieiiiiecece e 691
Version 7.0 RUNtIME SYStEM FEAIUIES........cccvivreieeiereese e ste e enees 691
Version 7.0 COMPIIEr FEALUIEScveviiirierieseseeeeie ettt sre e eneas 692
Enhanced File Recovery Performance...........coooeiiiirieieiene e 695
New rmpgmcom ULility Optioncoooiiiiiieee s 695
VErsion 6.6 ENNANCEMENTS. ..ottt et st 696
Override Date/Time Feature for Year 2000 TeStINGccccvververererininieie e 696
Increased Compiler CapaCityccoiiiiiiieiiie e 696
Improved Compiler Performance for Large Programsccccceoeveneiencnenesiesiesieeneens 696
New Statistics in Compilation Listing Fileccoevveieiinisieiesece e 696
Double-Byte Character Set (DBCS) SUPPOIt.....cccveieriireriesieseseerieseesie e see e e ereeeenee s 697
Enhanced Indexed File RECOVErY PrOgram.......cc.ccoivevevieienesiesesieseeieseesieseeseeseessssseenas 697
Masked INpuUt aNd OULPULccuvircieece et eneas 697
SUPPOIT FOr LArge FilBSc.viiiiieiie ettt snn e 697
Version 6.5 ENNANCEMENTS........ccoiiiiriiiiiieiie e 698
Full 32-Bit IMpIEMENLAtIONc.oiiiiiiiie e e 698
WiINAOWS REGISLIY SUPPOIT......eiuiiiiiiiie ettt e 698
Extensions for 32-Dit WINAOWScoiiiiiiiiiiiee e e 698
Automated System Installation and Removal ... 698
Right Mouse Button POP-UpP IMENUcoiiiiiiiiiice e e 698
New Subprograms for WINAOWS.........cc.eieiiiiieirsesece s 699
Window Style and the SYSTEM Non-COBOL Subprogram...........ccccecevevvvevsnereereennns 699
Btrieve Adapter ENNANCEMENLS.coveivirieiisiie ittt eneens 699
Attached Configuration Files 0n WiNAOWS.........c.coveverinieiiiisiese e 699
Built-In Configuration File under UNIXcccooviiiieieiene e 700
Year 2000 SUDPIOGIAMccveieieieirse e ettt e et e st sre st neene e e e e eesresresneeneas 700
C$RERR Eleven-Character EXtended Status............ccoceveieierieieienieiese e seee e seenennes 700
Improved recoverl Utility PrOgramcocooeiiiiieneneeie et 700
Enhanced rmmapinX ULility Programcocoooeiioiiiniie e e 700
Dynamically Configurable Prompt CharaCter............cccoeieiiiiiininiceee e 701
Building Custom Products Using the customiz Shell SCript.........ccccccooeviiiiiiiiiniinne. 701
Indexed File Block Sizes After OPEN OUTPUTcoiiiiiiiiiieiineeeie e 701
DELETE FILE UNAEr UNDXoiiiiiiiieeerese e 701
Resolution of Program-NaMES..........ccccereiiririeirsiesieese e see e sre s sreens 701
Compiler Support for External Access Methodsccccevereviirienieeieeieee e 701
L0 [PP UURPPPPPPPRRN 703

List of Figures

Figure 1: Compiler SEarch SEQUENCEcccviveieiireie s eie ettt sre e eneas 22
Figure 2: Runtime System Search SEQUENCEcccvveiereieeieieese et se e sie e 22
Figure 3: RM/COBOL Start Menu Programs FOIAEr ..ot 51
Figure 4: Shortcut Properties Tabh ... 60
Figure 5: Select an RM/COBOL Object File Dialog BOX.........cccooiiiiirenieieienie e 61
Figure 6: Compiler SEarch SEQUENCEcuiiiiriiiiiie sttt 63
Figure 7: Runtime System Search SEQUENCEcccooeiiiiiiiieiese e 63
Figure 8: Synonyms Tab of the Properties Dialog BOXccccoeriiiiinenieieicne e 65
Figure 9: SeleCt File Tah....vcivoeeiecece e eneas 70
Figure 10: Control Properties Tabcccvciviieieiisn et 72

RM/COBOL User's Guide

XXi

XXii

Figure 11: Synonyms Properties Tab ..o 87
Figure 12: Colors Properties Tab ..ottt 88
Figure 13: Toolbar Properties Tabhccccvciviiiereiirnie st eneas 90
Figure 14: Menu Bar Properties Tah........cccciveieiinniieir et eneas 94
Figure 15: Pop-up Menu Properties Tab......c.ccociiirieiisiesiececeese s 96
Figure 16: Color Palette Showing Right and Left Mouse COIOrScccoeevivvvviesiesicreceinns 99
Figure 17: Sample Window of an RM/COBOL Program Running Under Windows............ 112
Figure 18: RM/COBOL for Windows Control MENUcccoeiirvivinsieseere e 113
Figure 19: Return Code MEeSSage BOXccuriiiriiiniiiiiiisiese ettt e 114
Figure 20: Indexed File Requests on a Single-User SYStemccccooviiinieienene e, 120
Figure 21: Indexed File Requests on a Local Area Networkccocceviieieiencieicsennne, 120
Figure 22: Indexed File Requests on a Local Area Network by the Btrieve MicroKernel

Database ENQINe (MIKDE)cooiiiiiiieieeiieiee ettt 121
Figure 23: Btrieve Adapter Acting as an External File Access Method (On Windows)....... 124
Figure 24: Program Listing HEAETccccveveieiere e 163
Figure 25: Program Listing Subheader with Identification Area.........cc.ccoevevevevivrivsnsnennn, 163
Figure 26: Program Listing Subheader without Identification Area..........cccccovcvvivrivivrnenenn, 164
Figure 27: Sample Program LiStINGccccveieeriereiisesie s ee s srs s e sse e s seesneens 166
Figure 28: Allocation Map (Part 1 0F 4)......cccveeiireie et 167
Figure 29: Allocation Map (Part 2 0F 4)......ccccvee i 168
Figure 30: Allocation Map (Part 3 0F 4)......coiiiiiiieieee e 170
Figure 31: Allocation Map (Part 4 0f 4).......cooiiiiiiice e 171
Figure 32: Called Program SUMIMAIYcccocoueiuireneneeeneeie et seesae e sveseesneens 171
Figure 33: Cross REfErence LIStINGccocuieriiieiiiiiie e 172
Figure 34: SUMMArY LISTING ...ceeviiiiiiieiieiieee et e 173
Figure 35: Error Marker and DIiagnOStICSvcveiuireieiesiesieesiese e see e 175
Figure 36: Error RECOVErY DiSPIayccviviieieieiisie et 176
Figure 37: Data AllOCAtIoN MaPccviviiiiieice et 264
Figure 38: Developed Data AUIESSccveveieieieereseseseeeeie s e e e e seesre e eneens 265
Figure 39: Sample Data Structures DeSCHPLiON..........ccvvviviiverieresese e 378
Figure 40: Excerpt of @ Merged LiStiNg......c.ccceieiirieiiinsiesieee e 380
Figure 41: Communications Descriptor Map (CCD)......cccoueirieniiiiinineeie e 459
Figure 42: Standard Windows Print Dialog BOXccccceieiiiiiiineiiiceeeee e 465
FIGUIE 43: TEXE IMIBLIICS ..ottt et bttt bbb 482
Figure 44: Indexed File Recovery Utility: File Recovery Verification.............c.ccoccoovnennene. 606
Figure 45: Indexed File Recovery Utility: recoverl SUMMArYccocooiiieieiencnenesennnn 607
Figure 46: Indexed File Recovery Utility: recoverl StatiStiCS.........ccoovrviiiiiniencnieicnennne 607
Figure 47: Indexed File Recovery Utility: recoverl Finished Successfully...........c.c.......... 608
Figure 48: Indexed File Recovery Utility: Entering Key Information.............ccccoevvvennene. 608
Figure 49: Indexed File Recovery Utility: Entering KIB Information.............ccccoevvvevnnene. 609
Figure 50: Indexed File Recovery Utility: recover2 Main SCreenccocevvevervresensnenenn, 611
Figure 51: Indexed File Recovery Utility: Secondary RECOVEIYcccovvvvererervrninneannan, 612
Figure 52: Select File Tab. ..o e 616

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

RM/COBOL User's Guide

SAMPIE FIIBNAMESvieveeee et et renreeneens 12
Terminfo and Termcap Names for the Runtime System, Booleans..........c..ccccccuveen. 31
Input Sequences for Terminfo and TErMCaP........ccceverererrsiese e 32
Additional Boolean CapabilitieS..........ccccviviiviieiericie s 36
Additional Numeric Capability..........cccoiiiiiiiii e 36
Additional Output String Capabilities..........ccoiririiiiiie s 36
Standard Terminfo StrNGS........cooi i 38
V100 Line GraphiC CharaCtersoooooiiiiiiieieieie e 38
Environment Variables for UNDX ... 43

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:

RM/COBOL Program ICONSccccueiiiirieiineseeie st 51
Special Characters for the Button Character-String...........ccocvcvviieiiieninenccene 91
Default rmtbar.vrf File BUttON [CONS.........cccoiiiiiiiicesee e 97
Additional Character Equivalents Under RM/COBOL for Windows................... 108
Environment Variables for WiNAOWS ... 116
RM/COBOL Compile Command OPtioNnS........c.cceverererienesieseenesesesiesee e, 150
Source Indicators in Compilation LiStiNgcccovvviiieivsiesiecierene e, 165
Abnormal Termination IMESSAQESvvcveeerierierieriesesreseseeieseese e sresreseeseeseenses 179
Compiler Configuration EFTOrScccooiiieiriieie sttt 186
ComPiler EXit COUES.........oiieieieieie sttt 187
RM/COBOL Runtime Command OPtioNS..........ccccoeiirerenesenieeie e 191
Program EXit COOBS.........uiirieiiie ettt ettt bbb b 199
BTt KBYS <ottt b bbb 202
Default Editing Semantic ACHIONScccoeiiiiiiie et 204
Keys that Terminate Field INPUL..........ccccoiiiiiice e 205
Valid COBOL CoOlOr NAMES.......ccviuiiriiiierieiisiesieesie et 211
System-Specific Line Draw Characters.........cccocevvvivieivniesieeie e sesesee s 211
Characters Used with the MASK Keyword of a CONTROL Phrase.................... 212
Effect of Certain Keywords and Phrases on Masked Input Processing 214
Pop-Up WiINdOW Error COUES.......ccviiriiieieeeiesesiesieste e e e saesie e sresee e sneeneens 225
Sharing PerMISSIONS.......c.ciiiieiiiie ittt 232
RM/COBOL Debug Command OPtiONS.cceieeiriiininieieseseeie e 256
Valid Data TYPe INAICALOIS......c..oiviiiiiiiieiiereeieeee et 259
Types of Configuration RECOIAS..........oiiiiriiiiieiee s 292
MF-RM Binary AIIOCALIONcooiiiiiiii s 297
Date and Time FOrmat COUEScuruiiiiriiiiirieise et 315
ASCIH EQUIVAIENES ...ttt ens 359
RM/COBOL Generic Exception Status ValUeSccccvvvvveeereereienesese e, 363
Btrieve Status Codes and MEeSSAgES Lcceveverreeeeeeeieieie e e e e 410
C Library Error COUBS L......coiiieieeeeeeeeeeeetetceeectee ettt s s et 412
File Manager Detected Error COUescooviveiveriereiisnse e seseenieseesie e e ssesnens 413
NONNUMEFIC DAccueeeeieiiie ittt b b 427
Combined Digit and SIQNoooiiiiiiieiieeeee e 431
Bytes Allocated for an Unsigned Binary Numeric Data Item..............cccccoceeeneee. 439
Bytes Allocated for a Signed Binary Numeric Data Item..........cccccooeiiiiiiiennee 441
Optional Support Modules Used by RM/COBOL Components on UNIX........... 448
Optional Support Modules Used by RM/COBOL Components on Windows......448
MCS COMPIELION COUBSevveveereerieiieie ettt ere s 458
RM/COBOL Windows Printing Subprogram Library.........ccccoecevvvvninivnininnnnnn, 461
Default Colors Used With RM/COBOLcccooiiiiniinieiecseeesie e 468
Printer Dialog/Device Mode Parameterscccoevvreieseseeriereeneseeseeseessessennenns 469
TeXt MELTIC Parameters......vcvieiieiiieieeeste et 483
FONE PArAMETEIS ...ttt ettt ne s 486
Device Capability Parameters....... ..ot 495
Printer Information Parameters..........ccoviieiiiie e 497
Task REFEIENCE LIStcc.iiiiieiiiiee e e 521
RM/COBOL-Specific ESCAPE SEQUENCESccvvrieereeeeieeriesiestesieeeeie e see e see e 530
RM/COBOL Subprogram LiDrary ... 533
RM/COBOL Data Types as NUMDEISccccveiieiiiiicrn e 539
TWO-Digit OS COUES ...c.vvveiereieerieie e e e ettt sre e e ereens 563
CESCWR EXCEPLION COUESvevereeiesieieie sttt sttt et 569
Object Version Numbers by Productccocveeeiiniiisnsesece e 619
ASCII t0 EBCDIC CONVEISIONviviiiiiitiiieiesiesieieste et ssesesneseesesne s 643
EBCDIC t0 ASCI CONVEISIONcviviiiiiiriiniiiinieieie ettt 647
Character ABDIreVIatioNscoooiiiiiiiiie e 654

RM/COBOL User's Guide

XXiii

Preface

Preface

Welcome to RM/COBOL for Windows and UNIX

RM/COBOL for Windows and UNIX is a significantly enhanced version of Micro Focus’
widely used RM/COBOL compilers, designed for new program development and execution
of programs created with earlier versions of RM/COBOL. Although modeled on the
American National Standard COBOL X3.23-1985, there are areas where RM/COBOL varies
from the standard. A complete list of these variances is included in Appendix I: Extension,
Obsolete, and Subset Language Elements (on page 631).

The RM/COBOL operating procedures described in this manual are for use on Microsoft
32-bit Windows and UNIX-based systems that may have remote file access using Novell
NetWare (version 3.11 and later), Client for Microsoft Networks, Btrieve software, or NFS
(Network File System).

The new features for the most recent release of RM/COBOL are described in Appendix L:
Summary of Enhancements (on page 663). If you develop on one version of RM/COBOL and
deploy on other versions, you may also find it helpful to review Appendix H: Object Versions
(on page 619) as it relates new compiler and language features to the version when the
changes were introduced.

Notes

e Beginning with version 6.5, the -85 suffix is no longer a part of the RM/COBOL product
name. The -85 suffix was used to reflect current technology and to avoid confusion with
an earlier product named RM/COBOL, which referred to the 1974 ANSI standard
version. Support for RM/COBOL (74) ceased on December 31, 1994,

e The term “Windows” in this document refers to Microsoft 32-bit Windows operating
systems, including Microsoft Windows 2000, Windows XP, Windows Server 2003,
Windows Vista, or Windows Server 2008, unless specifically stated otherwise.

Who Should Use This Book

This book is intended for commercial application developers who are familiar with
programming concepts and with the COBOL language in general, and by persons running
COBOL programs developed with RM/COBOL.

RM/COBOL User's Guide 1

2

Preface

Organization of Information

This user’s guide is divided into the following parts:

Chapter 1—Introduction describes the general concepts of the RM/COBOL compiler and
runtime system and how they are used, lists other integrated and add-on development tools
that are available to support RM/COBOL programs, and explains file naming conventions.

Chapter 2—Installation and System Considerations for UNIX explains the installation
procedures for RM/COBOL and presents information about the RM/COBOL implementation
on UNIX-based operating systems.

Chapter 3—Installation and System Considerations for Microsoft Windows explains the
installation procedures for RM/COBOL and presents information about the RM/COBOL
implementation on Microsoft 32-bit Windows operating systems.

Chapter 4—System Considerations for Btrieve presents information about the
implementation of RM/COBOL for systems using Btrieve. This chapter also describes the
limitations of RM/COBOL indexed files and the Btrieve MicroKernel Database Engine
(MKDE).

Chapter 5—System Verification describes the suite of verification programs provided with
RM/COBOL.

Chapter 6—Compiling describes RM/COBOL files, details the RM/COBOL Compile
Command, rmcobol, and its options, defines the types of errors that can be encountered
during program compilation and the messages generated as a result, illustrates and defines
each section of the program listing, and presents information on RM/COBOL error recovery.

Chapter 7—Running details the RM/COBOL Runtime Command, runcobol, and its
options, and defines the types of errors that can be encountered during program execution. It
also lists the messages generated as a result.

Chapter 8—RM/COBOL Features presents information about the implementation of
RM/COBOL with respect to specific COBOL statements.

Chapter 9—Debugging presents general debug concepts and a detailed discussion of the
Debug commands.

Chapter 10—Configuration details the methods available for modifying the RM/COBOL
default configuration.

Chapter 11—Instrumentation details the data-gathering Instrumentation facility.
It also describes a sample data analysis program—provided with Instrumentation—called
analysis.

Appendix A—Runtime Messages lists and defines the messages that may be generated
during program execution.

Appendix B—Limits and Ranges describes RM/COBOL limits and ranges.

Appendix C—Internal Data Formats describes and illustrates the internal representation of
the data types.

Appendix D—Support Modules (Non-COBOL Add-Ons) provides information on using
optional support modules to add functionality to the runtime system, compiler, and Indexed
File Recovery components of RM/COBOL.

Appendix E—Windows Printing describes the subprograms supplied with the RM/COBOL
Windows runtime system that allow access to Windows printing features.

RM/COBOL User's Guide

Preface

Appendix F—Subprogram Library describes a set of supplied subprograms that can be
called by any RM/COBOL program.

Appendix G—Utilities describes the full range of file conversion, management, and
manipulation facilities.

Appendix H—Object Versions lists the new object features that are incompatible with
earlier releases of RM/COBOL.

Appendix I—Extension, Obsolete, and Subset Language Elements lists the RM/COBOL
extensions to and variances from ANSI COBOL 1985. It also lists obsolete and subset
language elements.

Appendix J—Code-Set Translation Tables lists each ASCII and EBCDIC hexadecimal
value and its corresponding numeric, alphabetic or control character.

Appendix K—Troubleshooting RM/COBOL presents troubleshooting tips for some
common problems that might occur when running RM/COBOL on different systems.

Appendix L—Summary of Enhancements provides an overview of the new features in the
current release, and reviews the changes and enhancements that were added to earlier releases
of RM/COBOL.

The RM/COBOL User’s Guide also includes an index.

Related Publications

For additional information, refer to the following publications that are available from Micro
Focus:

CodeBridge User's Guide

CodeWatch User's Guide

Relativity Client/Server Installation Guides (Windows and UNIX)

Relativity Data Manager Installation Guide

Relativity DBA Installation Guide and Help File

Relativity Designer Installation Guide and Help File

Relativity UNIX Data Client Installation Guide

RM/COBOL Open File Manager User’s Guide

RM/COBOL Language Reference Manual

RM/COBOL Syntax Summary Help File

RM/InfoExpress User's Guide

Theory of Relativity, A Primer

WOW Extensions Designer Help File and WOW Extensions Functions and
Messages Help File

Xcentrisity Business Information Server (BIS) User's Guide
XML Extensions User’s Guide

RM/COBOL User's Guide 3

4

Preface

Contact the appropriate vendor for other publications:

Btrieve products are available from Pervasive Software, Inc. (formerly
Btrieve Technologies, Inc.).

NetWare products are available from Novell, Incorporated.

Microsoft products are available from Microsoft Corporation.

Conventions and Symbols

The following conventions and symbols are used or followed throughout this guide.

1.

RM/COBOL User's Guide

Words in all capital letters indicate COBOL reserved words, such as statements, phrases,
and clauses; acronyms; configuration keywords; environment variables; and RM/COBOL
Compiler, Runtime, and Recovery Command-line options.

Bold lowercase letters represent names of files, directories, programs, commands, and
utilities. RM/COBOL accepts uppercase and lowercase filenames. Within this
document, the lowercase version is used. Remember, however, that under UNIX
filenames are case-sensitive (for example, TEST4 and test4 represent different files).

Bold type style is also used for emphasis on some types of lists.

Text that is displayed in a monospaced font indicates user input or system output
(according to context as it appears on the screen). This type style is also used for sample
command lines, program code and file listing examples, and sample sessions.

Italic type identifies the titles of other books and the names of chapters in this guide, and
it occasionally is used for emphasis.

In syntax, italic type denotes a placeholder or variable for information you supply, as
described in the following item.

The symbols found in the syntax charts are used as follows:

italicized words Indicate items for which you substitute a specific value.

UPPERCASE WORDS Indicate items that you enter exactly as shown (although
not necessarily in uppercase).

Indicate indefinite repetition of the last item.

| Separate alternatives.
[1 Surround optional items.
{7} Surround a set of alternatives, one of which is required.
{l 1> Surround a set of unique alternatives, one or more of

which is required, but each alternative may be specified
only once; when multiple alternatives are specified,
they may be specified in any order.

All punctuation must appear exactly as shown.
The term “NetWare” refers to the Novell NetWare operating system.

The term “Micro Focus Visual COBOL” refers to Micro Focus COBOL systems other
than RM/COBOL. Implicitly included by this term are older versions of Micro Focus
such as MF COBOL, Net Express COBOL and Server Express COBOL.

10.

11.

12.

13.
14,

15.

Preface

Note the distinction of the following terminology:

e The term “window” refers to a delineated area of the screen, normally smaller than
the full screen.

e The term “Windows” refers to Microsoft 32-bit Windows operating systems,
including Microsoft Windows 2000, Windows XP, Windows Server 2003, Windows
Vista, or Windows Server 2008, unless specifically stated otherwise.

Note

RM/COBOL no longer supports earlier Microsoft Windows operating systems, including
Microsoft Windows 98, Windows 98 SE, Windows Me, and Windows NT 4.0.

Furthermore, in this document, any references to these versions, or to the shorthand
notation “Windows 9x-class” or “Windows NT-class” referring to these operating
systems, are included for historical purposes only.

Examples for UNIX-based systems in this document assume the use of the Bourne Shell
(sh) command interpreter.

Throughout this document, references to a printer refer to the device assigned to
PRINTER, in accordance with operating system conventions.

RM/COBOL Compile and Runtime Command-line options may be specified either with
or without a leading hyphen. Examples in this guide do not show a leading hyphen. If
any option on a command line is preceded by a hyphen, then a leading hyphen is required
for all options. When assigning a value to an option, the equal sign is optional if leading
hyphens are used.

Command-line options may be specified in either uppercase or lowercase characters.
Examples in this guide are shown in uppercase.

These capabilities are provided to support the command-line syntax of previous versions
of RM/COBOL.

Any text that applies only to a specific operating system is specified in a Note format.

Key combinations with a plus sign between key names indicate to press and hold down
the first key while pressing the second key. For example, “Press Alt + Esc” means to
press and hold down the Alt key and press the Escape key. Then release both keys. A
comma between key names means to press and release the keys one after the other.

If present in the electronic PDF file, this symbol represents a “note” that allows you to
view last-minute comments about a specific topic on the page in which it occurs. This
same information is also contained in the README text file under the section,
Documentation Changes. In Adobe Reader, you can open comments and review their
contents, although you cannot edit the comments. Notes do not print directly from the
comment that they annotate. You may, however, copy and paste the comment text into
another application, such as Microsoft Word, if you wish.

To review notes, do one of the following:

e Toview a note, position the mouse over the note icon until the note description
pops up.
e To open a note, double-click the note icon.

e To close a note, click the Close box in the upper-left corner of the note window.

RM/COBOL User's Guide

6

Preface

Technical Support

Micro Focus is dedicated to helping you achieve the highest possible performance from the
Micro Focus family of products, including RM/COBOL. The Micro Focus Customer Care
team is committed to providing you prompt and professional service when you have problems
or questions about your Micro Focus products.

Support is subject to Micro Focus’ prices, terms, and conditions in place at the time the
service is requested.

While it is not possible to maintain and support specific releases of all software indefinitely,
we offer priority support for the most current release of each product. For customers who
elect not to upgrade to the most current release of the products, support is provided on a
limited basis, as time and resources allow.

Support Guidelines

When you need assistance, you can expedite your call by having the following information
available for the Customer Care representative:

1. Company name and contact information.

2. Micro Focus RM/COBOL product serial number (found in the Electronic Product
Delivery email, on the media label, or in the product banner message).

Micro Focus RM/COBOL product version number.
Operating system and version number.
Hardware, related equipment, and terminal type.

Exact message appearing on screen.

N o g &~ w

Concise explanation of the problem and process involved when the problem occurred.

Test Cases

You may be asked for an example (test case) that demonstrates the problem. Please
remember the following guidelines when submitting a test case:

e The smaller the test case is, the faster we will be able to isolate the cause of the problem.
e Do not send full applications.

e Reduce the test case to the smallest possible combination of components required to
reproduce the problem.

e If you have very large data files, write a small program to read in your current data files
and to create new data files with as few records as necessary to reproduce the problem.

e Test the test case before sending it to us to ensure that you have included all the
necessary components to recompile and run the test case. You may need to include an
RM/COBOL configuration file.

When submitting your test case, please include the following items:

1. README text file that explains the problems. This file must include information
regarding the hardware, operating system, and versions of all relevant software (including

RM/COBOL User's Guide

Preface

the operating system and all Micro Focus products). It must also include step-by-step
instructions to reproduce the behavior.

Program source files. We require source for any program that is called during the
course of the test case. Be sure to include any copy files necessary for recompilation.

Data files required by the programs. These files should be as small as possible to
reproduce the problem described in the test case.

RM/COBOL User's Guide 7

Chapter 1: Introduction

Chapter 1. Introduction

This introductory chapter of the RM/COBOL User’s Guide provides an overview of the
RM/COBOL product. It explains the general concepts of the RM/COBOL compiler and
runtime system and how they are used, lists other integrated and add-on development tools
that are available to support RM/COBOL programs, and explains file naming conventions.

Note For a description of the latest features available in this release, see Appendix L.:
Summary of Enhancements (on page 663). If you develop on one version of RM/COBOL and
deploy on other versions, you may also find it helpful to review Appendix H: Object Versions
(on page 619), as it relates new compiler and language features to the version when the
changes were introduced.

RM/COBOL Software

RM/COBOL, delivered on appropriate media, contains a large number of individual files and
programs. The actual number of files and programs depends on the specific version of the
product you purchased and whether you purchased a development or a runtime-only system.
The delivered media contains one or more README files, which list the actual files and
programs delivered. Please check these README files after you have installed the product to
make sure that you have received all of the appropriate files and programs.

RM/COBOL Compiler

The RM/COBOL compiler reads COBOL source code and produces object files that can be
executed using the runtime system. These object files are portable, and they can be executed
by an RM/COBOL runtime system on many computer configurations—even computer
configurations that are different from the one used to compile the object files. For more
information on compiling COBOL programs, see Chapter 6: Compiling (on page 143).

RM/COBOL Runtime System

The RM/COBOL runtime system is used to execute compiled COBOL programs. Micro
Focus RM/COBOL provides a different runtime system for each supported computer, and
they help to insulate the COBOL programmer from the differences among computers. The

RM/COBOL User's Guide 9

Chapter 1: Introduction

runtime system also includes a debugger to assist in developing COBOL programs. For more
information on running COBOL programs, see Chapter 7: Running (on page 189).

CodeWatch

CodeWatch is a fully integrated development system for Windows that is included with the
RM/COBOL development system. CodeWatch supports the entire development cycle,
including editing, compiling, and debugging RM/COBOL applications. CodeWatch can be
used to debug and change programs that are independently compiled, without requiring you to
build projects. Instead, all the knowledge about the structure of your application is built up
during debugging sessions. For more information, see the CodeWatch User’s Guide. If you
are debugging remote service programs running under Business Information Server (BIS) on
Microsoft Windows with Internet Information Server (11S), see also the CodeWatch for
Xcentrisity Business Information Server User’s Guide Supplement.

CodeBridge

CodeBridge is a cross-language call system included with the RM/COBOL development
system. This facility simplifies communication between COBOL programs and non-COBOL
subprograms (such as those written in C or C++). CodeBridge allows COBOL programmers
to call external APIs or custom-developed subprograms without introducing “foreign”
language and data dependencies into their programs. For more information, see the
CodeBridge User's Guide.

Internal Libraries and Utility Programs

The RM/COBOL runtime system also includes several built-in library routines to perform
functions not described in the COBOL standard. Among other things, these routines can be
used to determine information about program arguments, control the display screen, and
execute other (non-COBOL) programs. For more information, see Appendix F: Subprogram
Library (on page 533).

In addition, a library of P$ subprograms, supplied with the RM/COBOL for Windows runtime
system, allows access to Windows printing features. This library is described in Appendix E:
Windows Printing (see page 461).

There are several utility programs delivered with RM/COBOL. These utility programs are
used to manage and manipulate both data files and RM/COBOL object files. For more
information on the utility programs, see Appendix G: Ultilities (on page 583).

Integrated and Add-On Packages

Several other integrated and add-on packages are available from Micro Focus to support
RM/COBOL programs. They include the following:

e XML Extensions. If appropriately licensed, XML Extensions is included with the
RM/COBOL development system. XML Extensions is a facility that allows

10 RM/COBOL User's Guide

Chapter 1: Introduction

RM/COBOL applications to interoperate freely with other applications that use XML
(eXtensible Markup Language, the universal standard format for structured documents
and data on the Web). This capability to import and export XML documents easily to
and from COBOL data structures turns RM/COBOL into an “XML engine.” For more
information, see Features Added to Support XML Extensions (on page 667) in this
manual and the XML Extensions User’s Guide.

e Xcentrisity Business Information Server (BIS). Building on the power of XML as
the foundation of connectivity, Business Information Server (BIS) is a COBOL-specific
Web Application Server. Together with industry standard Web servers such as Microsoft
I1S and Apache, BIS offers application developers a unique opportunity to build state-of-
the-art, browser-based Web Applications or SOAP-based Web Services comprising
RM/COBOL programs and COBOL data files and databases. With BIS, business
application users can access data, access application functions and execute COBOL
service programs on one or many Web Information Servers located anywhere in
the world.

e WOW (Windows Object Workshop) Extensions. A visual tool for developing
full-featured Windows applications completely in RM/COBOL.

e Relativity. An integrated tool set that provides relational database functionality for
COBOL data without any application modifications or data conversions. It also provides
a full-featured, Microsoft Windows Open Database Connectivity (ODBC)-compliant
relational database engine that allows SQL-based access to COBOL application data.

e RM/InfoExpress. A file management system designed to optimize RM/COBOL data
file access on various local area networks (LANSs) and wide area networks (WANS).
Implementation is available for TCP/IP (Transmission Control Protocol/Internet
Protocol).

e Cobol-RPC (Remote Procedure Calls). A tool for building distributed RM/COBOL
applications for LANs, WANSs, and the Internet.

e Cobol-CGIX (Common Gateway Interface). A tool for integrating RM/COBOL
applications with the Internet’s World Wide Web.

e InstantSQL. A package for embedding SQL statements in COBOL source programs so
that the programs can access ODBC-enabled relational databases using SQL statements.

File Naming Conventions

On those operating systems that support case-sensitive filenames, RM/COBOL filenames can
contain any combination of uppercase and lowercase letters, and numerals.

The Windows version of RM/COBOL, like Microsoft 32-bit Windows, supports long
filenames and filenames containing embedded spaces. RM/COBOL filenames can be
enclosed in quotation marks (ASCII code 22 hex). RM/COBOL filenames containing
embedding spaces must be enclosed in quotation marks to avoid having the embedded
spaces interpreted as separators.

For example:
"C:\My Source Directory\My COBOL Program.cbl"
Note Although 32-bit Windows stores long filenames with case preserved, filenames are

always compared and searched for in a case-insensitive manner (that is, filenames that differ
only in whether letters are uppercase or lowercase refer to the same physical file).

RM/COBOL User's Guide

11

Chapter 1: Introduction

RM/COBOL uses the extensions .cbl, .cob, and .Ist to designate the source, object and listing
files of a program. This allows all three files to reside in the same directory. These extension
names may be changed with the EXTENSION-NAMES configuration record (see page 323).

Source files do not need to have an extension of .cbl; in fact, they do not need an extension at
all. If the compiler cannot locate the source file with the name given and the name does not
have an extension, it will try to locate the file again, using first .cbl as an extension to the
filename and then .CBL.

The RM/COBOL compiler always creates object and listing files with extensions. It will
either replace the current extension of the source file, or append an extension if the source
filename does not have one. The case of the extension will match the case of the first
character of the source file’s extension, or the first character in the source file’s name if there
is no extension. If there is no extension and the first character of the source filename is not a
letter, the extension will be lowercase.

The RM/COBOL runtime system does not require object files to have an extension of .cob.
However, since the compiler generates objects with the .cob extension, the runtime system
will try to locate object files by adding first .cob and then .COB, but only if the original
filename does not already have an extension. Table 1 contains sample filenames.

Table 1: Sample Filenames

Source Filename Resulting Object Filename

TESTFILE TESTFILE.COB
Testfile Testfile.COB
Test Test.COB
Test.Cbl Test.COB
Test.cbl Test.cob
test.xyz test.cob

test. XYZ test.COB
tESTFILE tESTFILE.cob
test test.cob
test.CBL test.COB
test.cbl test.cob
2TESTFIL 2TESTFIL.cob

12 RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

Chapter 2: Installation and
System Considerations for UNIX

This chapter lists the hardware and software required to install the RM/COBOL product,
describes how to install RM/COBOL, and provides information specific to using RM/COBOL
with UNIX-based or Linux operating systems.

Your computer configuration is the assembled set of hardware and software that makes up
your system. Before you can develop or run RM/COBOL programs, your configuration must
meet or exceed the requirements set forth in this chapter.

System Requirements for UNIX

The version of RM/COBOL that you have purchased is for a particular combination of
hardware and operating systems. Several items listed below vary depending on the actual
version of the product that you have purchased.

Required Hardware

A machine capable of running a supported UNIX or Linux operating system.

Note Most Micro Focus RM/COBOL products and licenses are distributed electronically. If
you elect to receive physical media, an optical drive capable of reading a CD-ROM (for the
product) and a 3.5” floppy drive (for the license certificate file) are required at installation
time.

Required Software

A supported Unix or Linux operating system is required. See Support Resources | Product
Availability and Support Schedule at https://supportline.microfocus.com for supported Unix
and Linux operating systems. There are 32-bit and 64-bit versions of the RM/COBOL
product. The 32-bit versions of RM/COBOL will run on 32-bit or 64-bit operating systems.
The 64-bit versions of RM/COBOL require an operating system that supports 64-bit
applications. You can determine whether your operating system supports 64-bit applications
by running the indicated commands in this table:

RM/COBOL User's Guide 13

https://supportline.microfocus.com/

Chapter 2: Installation and System Considerations for UNIX

14

Operating System Command

AIX getconf KERNEL_BITMOD
HP-UX getconf KERNEL_BITS
Linux uname -i

SOLARIS isainfo -b

For all but Linux, the indicated command will display 64 if 64-bit applications are supported,;
otherwise, it will display 32.

For Linux, the indicated command will display x86_64 if 64-bit applications are supported,;
otherwise, it will display i386.

Note AIX 5.2 getconf KERNEL_BITMODE reports 32 even though it supports 64-bit
applications.

System Installation for UNIX

This section describes how to install RM/COBOL on UNIX or Linux systems using the
following methods:

e Electronic Product Delivery Installation (as described below)

e CD-ROM Installation (see page 15)

To verify that the installation is successful, see Chapter 5: System Verification (on page 139).

Electronic Product Delivery Installation

Note You must have an Internet connection and an Internet browser installed to proceed with
this method of installation.

The email containing notification of your Electronic Product Delivery contains an attachment,
a file named liant.lic. This file is a license certificate authorizing you to install the purchased
software. We recommend that you create a directory on your machine to store the license
certificates for your Micro Focus RM/COBOL products and save the liant.lic attachment to
this directory with a name that is meaningful to you.

RM/COBOL is available as a download from the Micro Focus Electronic Product Delivery
web site in two formats: UNIX GUNZIP TAR and ISO CD Image. The link to the web site
is provided in the notification email. From the web site, simply follow the file download and
decompress instructions for the format selected, and then perform the installation instructions
for that format, as outlined below.

e UNIX GUNZIP TAR. After downloading and decompressing the deliverables, and
creating the installation components directory from the UNIX GUNZIP TAR format,
follow these steps to install the RM/COBOL software:

1. Place a copy of your RM/COBOL license certificate, liant.lic, in the directory
containing the installation components.

2. Change to the directory containing the installation components. For example, enter:

RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

cd /RMStage
3. Execute the installation script using the following command:
sh _/install._sh
4. Follow the prompts and instructions on the screen to complete the installation.

Messages are displayed periodically indicating the status of the installation.

During the execution of this command, you are prompted about which optional features
you wish to install. For example:

e You are asked whether you want to use the terminfo or termcap terminal interface.
For more information, see Terminal Interfaces (on page 28). Because RM/COBOL
uses separate support modules to support the two terminal interfaces, only a single
runtime and recovery utility are present on the distribution media. If you later decide
to switch from terminfo to termcap or vice versa, you will need to run the installation
command again and respond appropriately to the prompts.

e You are also asked whether you want to install the FlexGen support module, the
RM/InfoExpress Client support module, or the Automatic Configuration File support
module. For additional information, see Appendix D: Support Modules (Non-
COBOL Add-Ons) on page 447.

Note If you elect to install the Automatic Configuration File support module (on
page 453), you will be able to add a configuration file for the runtime system, the
compiler, and/or the recovery utility, which will be used automatically without the
need to specify it on the command line.

o If the installation process detects the presence of any other support modules in the
install directory, you will be asked whether you want to install those support
modules.

RM/COBOL is distributed with a default configuration that will satisfy your system
requirements. Configuration options for your system are discussed in Chapter 10:

Configuration (on page 289).

ISO CD Image. The download format for ISO CD Image contains the full RM/COBOL
product CD. Use CD-ROM Burning software, such as Nero (http://www.nero.com) or
Roxio’s Easy CD Creator (http://www.roxio.com), to create the physical CD-ROM
media. Follow the instructions described in CD-ROM Installation (see the next topic) to
install your product.

CD-ROM Installation

There are four main steps to installing RM/COBOL for UNIX from the downloaded format of
the 1ISO CD Image:

1.

2
3.
4

Load the license file (see the following topic).

Load the distribution media (see page 18).

Perform the installation (see page 19).

Unload the distribution media (see page 20).

RM/COBOL User's Guide

15

http://www.nero.com/
http://www.roxio.com/

Chapter 2: Installation and System Considerations for UNIX

16

Loading the License File

The RM/COBOL license file, liant.lic, is a normal text file distributed on an MS-DOS-
formatted diskette. This file is a license certificate authorizing you to install the purchased
software. Not all UNIX operating systems, however, can read an MS-DOS-formatted
diskette, and not all UNIX server machines have diskette drives. To make the license file
available to the RM/COBOL for UNIX installation script, two techniques are provided:

1. Mounting the diskette as an MS-DOS file system (see the next topic).
2. Transferring the RM/COBOL license file via FTP from a Windows client (see page 17).

Mounting the Diskette as an MS-DOS File System

Use this option to load the license file if the UNIX operating system supports MS-DOS file
systems and your hardware has a diskette drive installed. Instructions for specific platforms
and versions of UNIX are provided. In the examples below, the license certificate file,
liant.lic, is placed in the directory /tmp. We recommend, however, that you create a
directory on your machine to store the license certificates for your Micro Focus RM/COBOL
products and save the liant.lic file to this directory with a name that is meaningful to you.

e HP-UX 11, IBM AIX 5.2, and Intel UNIX System V Release 4

These platforms do not support mounting MS-DOS diskettes. To transfer the license file
to the UNIX server, use the FTP instructions (on page 17).

e Linux (2.6 kernel or later)
a. Insert the diskette into the diskette drive.

b. Loginas root and enter:

mount —t msdos /dev/fdOH1440 /mnt/floppy
c. Copy the license file to the /tmp directory:

cp /mnt/floppy/liant._lic /tmp/liant._lic

d. Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

umount /mnt/floppy

e SCO OpenServer 5
a. Insert the diskette into the diskette drive.

b. Loginas root and enter:
mount —F DOS, lower /dev/fd0 /floppy

Note It may be necessary to create the mount directory, /Floppy, before executing
this command.

c. Copy the license file to the /tmp directory:

cp /floppy/liant_lic /tmp/liant_lic

RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

d. Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

umount /floppy

e SCO SVR5 (UnixWare 7.1.7 or later and SCO OpenServer 6)
a. Insert the diskette into the diskette drive.

b. Loginas root and enter:

mount —F dosfs /dev/dsk/f0ql8dt /Disk A
c. Copy the license file to the /tmp directory:

cp /Disk_A/liant._lic /tmp/liant.lic

d. Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

umount /Disk A

e Sun Solaris SPARC (2.9) and Intel x86 (2.9)
a. Insert the diskette into the diskette drive.

b. Loginas root and enter:
volcheck
c. Copy the license file to the /tmp directory:
cp /floppy/floppyO/LIANT.LIC /tmp/liant_lic

d. Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

eject floppy

Transferring the RM/COBOL License File via FTP from a Windows Client

To transfer the RM/COBOL license file, liant.lic, from a Windows client to the UNIX server,
use one of the many graphical FTP utilities available on Windows and transfer liant.lic as a
text file. You can also follow the procedure described below. We recommend that you create
a directory on your machine to store the license certificates for your Micro Focus products
and save the liant.lic file to this directory with a name that is meaningful to you.

1. Onthe Windows client, insert the diskette into the diskette drive.

These instructions assume that this is drive A. If it is another drive, change the drive
letter to the appropriate letter in the remaining instructions.

2. Opena Command Prompt window by clicking Start on the task bar, point to Programs,
point to Accessories, and then click Command Prompt.

3. Connect to the UNIX server by entering:

RM/COBOL User's Guide

17

Chapter 2: Installation and System Considerations for UNIX

ftp UnixServerName

where, UnixServerName is the network name of your UNIX server.

4. Change the directory to the /tmp directory:
cd /tmp

5. Specify a text file transfer:
ascii

6. Send the license file to the UNIX server:
send A:\LIANT.LIC liant.lic

7. Disconnect from the UNIX server:
bye

8. Close the Command Prompt window with the following command and then remove the
diskette form the diskette drive:

Exit

Loading the Distribution Media

To load the distribution media on the UNIX machine:
1. Insert the RM/COBOL for UNIX CD-ROM in the appropriate CD-ROM drive.
2. Loginas root.

3. Enter the appropriate mount command for your system. See the following examples.

Notes

e Inthe list that follows, /cdrom is used as the mount directory name for all the UNIX
operating systems. Some UNIX systems, however, already have an established mount
directory for the CD-ROM. In this case, substitute the standard mount directory name for
/cdrom in the following list and in the subsequent instructions.

e The device names below are examples. The actual device name is dependent on the
hardware configuration of your UNIX server. It may be necessary to substitute the
proper value for your system. If needed, consult your UNIX System Administrator for

more details.
System Mount Command
HP-UX 11 mount —F cdfs —o ro,cdcase /dev/dsk/cOt4d0 /cdrom
IBM AIX 5.2 mount —o ro —v cdrfs /dev/cdO /cdrom
Intel UNIX System V mount —o ro —F cdfs /dev/cdrom/cOt410 /cdrom
Release 4

18 RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

Linux (2.6 kernel or later) mount —0 ro —t is09660 /dev/cdrom /mnt/cdrom

SCO OpenServer 5 mount —o ro —F 1509660, lower /dev/cd0 /cdrom

SCO SVR5 mount —F cdfs -0 ro /dev/cdrom/c1bOt0l10 /CD-ROM_1
(UnixWare 7.1.1 or later

and SCO OpenServer 6)

Sun Solaris SPARC 2.9 If Solaris does not automatically load the CD-ROM, log in as root
and Intel x86 (2.9) and enter: volcheck

Performing the Installation

After the CD-ROM has been successfully mounted, you will need to do the following:
1. Change the directory to the mount point for the CD-ROM. For example, enter:

cd /cdrom

2. From the mount point, execute the installation script using the following command:
sh _/install.sh

3. Follow the prompts and instructions on the screen to complete the installation.

Messages are displayed periodically indicating the status of the installation.

During the execution of this command, you are prompted about which optional features you
wish to install. For example:

e You are asked whether you want to use the terminfo or termcap terminal interface. For
more information, see Terminal Interfaces (on page 28). Because RM/COBOL uses
separate support modules to support the two terminal interfaces, only a single runtime
and recovery utility are present on the distribution media. If you later decide to switch
from terminfo to termcap or vice versa, you will need to run the installation command
again and respond appropriately to the prompts.

e You are also asked whether you want to install the FlexGen support module, the
RM/InfoExpress Client support module, or the Automatic Configuration File support
module. For additional information, see Appendix D: Support Modules (Non-COBOL

Add-Ons) on page 447.

Note If you elect to install the Automatic Configuration File support module (see

page 453), you will be able to add a configuration file for the runtime system, the
compiler, and/or the recovery utility, which will be used automatically without the need
to specify it on the command line.

o If the installation process detects the presence of any other support modules in the install
directory, you will be asked whether you want to install those support modules.

RM/COBOL is distributed with a default configuration that will satisfy your system

requirements. Configuration options for your system are discussed in Chapter 10:
Configuration (on page 289).

RM/COBOL User's Guide

19

Chapter 2: Installation and System Considerations for UNIX

Unloading the Distribution Media

To unload (remove) the distribution media from the hardware:

1. Change your directory to a location other than the CD-ROM mount point directory, as
described in Loading the Distribution Media (on page 18).

2. Enter the appropriate command for your system. See the examples listed below.

3. Remove the distribution media from the CD-ROM drive.

System Mount Command
HP-UX 11 umount /cdrom
IBM AIX 5.2

Intel UNIX System V Release 4
SCO OpenServer 5

Linux (2.6 kernel or later) umount /mnt/cdrom

SCO SVR5 (UnixWare 7.1.1 or later umount /CD-ROM_1
and SCO OpenServer 6)

Sun Solaris SPARC (2.9) eject cdrom
and Intel x86 (2.9)

System Removal for UNIX

The RM/COBOL system now comes with a command to remove the files installed in the
system command directory (or other execution directory of your choice). Issue the following
command to remove the RM/COBOL installed files, including any support modules:

./rmuninstall

During the execution of this command, you are asked to provide the location of the
RM/COBOL installed files (that is, /usr/bin or the execution directory specified when the
RM/COBOL files were installed). You are then asked which files you wish to remove.

You may elect to remove all of the RM/COBOL installed files, “complete (not prompted)”
mode, or the specific files of your choice, “selective (prompted)” mode. If, for example, you
decide that you no longer want to use the RM/InfoExpress client module, you may remove
just that single file. After the RM/COBOL system is removed, it is still possible to run the
installation command to reinstall RM/COBOL.

20 RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

Locating RM/COBOL Files on UNIX

File Locations within Operating System Pathnames on
UNIX

File locations are determined by the pathname of the file, according to operating system rules
and conventions. A fully qualified pathname consists of an optional directory path with slash
separators followed by a filename. The directory path may begin with a leading slash, tilde
(=), or period (.) character. A directory path with a leading slash or tilde is fully specified and
identifies a filename relative to the root file system. A directory path without a leading slash
or tilde character specifies a filename relative to the current directory.

If a pathname is specified without a directory path, RM/COBOL searches the current
directory.

Specifying a directory path with a leading slash or tilde indicates to RM/COBOL that an exact
filename has been specified. If RM/COBOL cannot find the file in the specified location, it
will not look elsewhere. If you do not specify a directory path, and RM/COBOL cannot find
the file relative to the current directory, it will search for the file according to the directory
search sequence. If a directory path is specified, but there is no leading slash or tilde, then the
EXPANDED-PATH-SEARCH keyword (see page 337) of the RUN-FILES-ATTR
configuration record determines whether the directory search sequence will be used. When
the configuration keyword is set to its default value of NO, the directory search sequence will
not be used. If the value is set to YES, then the entire name, including the directory path, will
be appended to each entry in the directory search sequence in an attempt to locate the file.

The tilde (~) character at the beginning of a pathname is used to refer to home directories.
When followed by a slash or standing alone, it expands to the user’s home directory as
reflected in the environment variable HOME. When followed by a name consisting of letter
and digit characters, the name identifies the user whose home directory should be used.

Directory Search Sequences on UNIX
You can direct RM/COBOL to search for a file not found in the current working directory by

using a predefined directory search sequence. There are two directory search sequences: one
for the compiler and one for the runtime system.

To direct the RM/COBOL compiler to use the directory search sequence, set the environment
variable RMPATH as follows:

RMPATH=path[:path] ... ; export RMPATH

To direct the RM/COBOL runtime system to use the directory search sequence, set the
environment variable RUNPATH as follows:

RUNPATH=path[:path] ... ; export RUNPATH

In both commands, path indicates the directory that is to be searched for the file and has the
form:

[/]1directory[/directory] ...

RM/COBOL User's Guide

21

Chapter 2: Installation and System Considerations for UNIX

where, directory is the name of an existing directory.

If multiple paths are specified, they must be separated with colons. If the file is not located in
the current directory or the explicitly defined paths and if the file should be created, then the
file is created in the current directory.

Figure 1 and Figure 2 illustrate the compiler and runtime system search sequences on UNIX,
respectively.

Figure 1: Compiler Search Sequence

Look first in this directory: —l

\ \
RMPATH=WAGE/HOURLY/OVERT IME: Zusr/local/cobol
\ |

Then look in this directory: 4T

Figure 2: Runtime System Search Sequence

Look first in this directory: —

A 4

\ \
RUNPATH=usr/local/cobol :~

Then look in this directory: —LTJ

The compiler and runtime system may be executed from a directory other than the current
directory if a complete pathname is specified on the command line, or if the PATH directory
search feature is used. If a complete pathname is not specified, the list of directories specified
by PATH is searched. Note that the current directory is not implicitly searched with the
PATH environment variable.

The compiler, runtime system, and recovery utility (recoverl.exe) require access to other files
in order to operate, including the license vault. The license vault must reside in the same
directory as the executable file. RM/COBOL looks for the other files first in the directory
containing the executable file, then in the current directory, and finally in the directories
specified in the PATH environment variable.

File Access Names on UNIX

The file access name you specify in the COBOL source program specifies the physical file or
device to which input or output is directed. For information on specifying the file access
name in a COBOL source program, see the discussion of the ASSIGN clause (file control
entry) in Chapter 3: Environment Division, and the discussion of the VALUE OF clause in
Chapter 4: Data Division, of the RM/COBOL Language Reference Manual.

To establish synonymy between a file access name specified in your source program and
another name specified when the program is run, use environment variables that are set before
starting the runtime system.

22 RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

If you specified a generic file access name for program input-output and wish to direct it to a
specific device or file, enter:

Ffile-access-name-1 = file-access-name-2;
export file-access-name-1

A generic file access name is one that does not specify a directory path. Since the format of
physical pathnames, including conventions of directory names, varies from one operating
system to another, for maximum portability it is recommended that source programs specify
generic file access names, preferably with eight or fewer letters. This recommendation
applies only when the file access name is hard coded into the program as a literal.

For example, if the file control entry specifies:
SELECT REPORT-FILE ASSIGN TO PRINT, "report™
and no environment variable named “report” exists, RM/COBOL will create a file named

report in the current directory.

If, prior to running the program, you enter the command:
REPORT=/dev/Ip; export report

all program output written to REPORT-FILE will be written to /dev/Ip.

If—again prior to execution—you enter the command:
REPORT=/output/audit. Ist; export report

RM/COBOL will create a file audit.Ist in the directory /output without any need to modify or
recompile the source program.

The RESOLVE-LEADING-NAME and RESOLVE-SUBSEQUENT-NAMES keywords of
the RUN-FILES-ATTR configuration record can be used to force resolution of one or more of
the directory names from the environment. For more information, see the discussion of the
RUN-FILES-ATTR configuration record (on page 335).

When environment variables are not used, the file access name in the COBOL program
specifies the UNIX filename. The effect of a prior environment variable assignment may be
canceled by the command:

unset file-access-name

Whether or not an environment variable is used to modify the file access name, if the resulting
file access name does not include a directory path, RUNPATH will be used by the runtime
system to obtain the fully qualified pathname. For additional information, see File Locations
within Operating System Pathnames on UNIX (on page 21).

Control characters, spaces, and nonprintable characters (per the locale setting) are removed
from the file access name, except that, if the path begins with a pipe character ('|'), white space
characters are preserved after the first non-white space character following the pipe character.

After environment variable mapping and removal of control characters, spaces, and
nonprintable characters, the file access name is checked against the DEFINE-DEVICE table,
which is either the default DEFINE-DEVICE table, or, if a configuration file with one or

RM/COBOL User's Guide

23

Chapter 2: Installation and System Considerations for UNIX

24

more DEFINE-DEVICE configuration records is supplied, the specified DEFINE-DEVICE
entries in the configuration. See the DEFINE-DEVICE configuration record (on page 319)
for more information. If the resulting file access name matches a DEFINE-DEVICE entry,
the PATH value from that DEFINE-DEVICE entry becomes the final file access name, which
is not further modified. If the resulting file access name does not match an entry in the
DEFINE-DEVICE table, it is not further modified.

When the resulting file access name is "*", then

o for asequential input file, the standard input file (stdin) is read; and,

o for a sequential output file, the standard output file (stdout) is written.

When the resulting file access name has a leading pipe character ('|), then the pipe character
and any immediately following white space characters are removed. The remainder of the file
access name is treated as a shell command to be started when the file is opened for input or
output. The open mode of the file determines the direction of the pipe as follows:

e When the file is opened for input, the shell command is started with its standard output
redirected to the input of the associated COBOL file. That is, the COBOL program will
read the records written by the process. The shell command may be a pipeline (a series
of commands separated by pipe characters), in which case the COBOL program will read
the output of the rightmost command (the rightmost command must start a program that
writes to standard output and output redirection using the > character must not be
specified for the rightmost command). For example, an input file access name value "|
sort -r -k 5 filel.txt file2.txt | uniq | grep Fail" will result in reading records from the files
filel.txt and file2.txt that have been sorted and merged together in reverse order on field
five of the record without any duplicate records and only records that have the word
"Fail" in them.

e When the file is opened for output, the shell command is started with its standard input
redirected to the output from the associated COBOL file. That is, the process will read
the records written by the COBOL program. The shell command may be a pipeline (a
series of commands separated by pipe characters), in which case the leftmost command
will read the output of the COBOL program (the leftmost command must start a program
that reads from standard input and input redirection using the < character must not be
specified for the leftmost command). For example, an output file access name value "|
sort -r | uniq | grep Pass >results.txt" will cause the records written by the COBOL
program to be sorted in reverse order, duplicates removed, and only records with the
word "Pass" in them written to the file results.txt.

If two or more COBOL files in the same run unit are open at the same time and specify the
same file access name with a leading pipe character, each will start a separate process and
pipe input or output from or to its associated process. In contrast, two or more files open at
the same time in the same run unit will start one process and share the pipe to that process if
they have the same file access hame and that file access name is resolved through a DEFINE-
DEVICE record to a pipe.

When the resulting file access hame is PRINTER or PRINTERL, then the default
configuration writes the file to the print spooler. For additional information on printing, see

Printer Support (on page 238).

When the resulting file access name is TAPE, then the default configuration writes the file to
the default tape device. For additional information on tape devices, see Tape Support (on
page 239).

The DEFINE-DEVICE configuration record may define other file access names that are to be
treated as devices and may change the default treatment of PRINTER and TAPE. See

RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

DEFINE-DEVICE configuration record (on page 319) for additional information on
configuring file access names that are to be treated as devices.

The resulting file access name should follow the operating system rules for valid filenames
and pathnames.

UNIX Resource File

A resource file capability is provided to support the C$GetSyn (see page 550) and

C$SetSyn (see page 572) subprograms and to provide stored configuration information for
the compiler, runtime system, and recovery utility. A resource file, similar in format to a
Windows initialization (.ini) file, allows for permanent storage of synonym names and values
on UNIX in the same way that the registry file does on Windows. You can use the resource
files to customize your RM/COBOL application.

The resource files may be located in the user’s home directory (local) for information that
does not need to be shared or in /etc/default (global) for information to be shared among a
group of users. For the compiler, the local resource file is named .rmcobolrc; the global
resource file is named rmcobolrc. For the runtime system, the local resource file is named
.runcobolrc; the global resource file is named runcobolrc. For the Indexed File Recovery
(recoverl) utility, the local resource file is named .recoverlrc; the global resource file is
named recoverlrc.

Note The global resource files for the compiler, runtime system, and recovery utility (located
in /etc/default) do not begin with a period. The local resource files for the compiler, runtime
system, and recovery utility (located in the user’s home directory) do include a leading period
in the name so that it is not visible to the user.

The resource files in the user’s home directory normally are maintained by the individual
user, while the resource files in /etc/default usually are maintained by the system
administrator. Although resource files may be maintained with the editor of your choice, no
editing should ever be done when the resource file is in use. There is a simple locking
mechanism to ensure that two users sharing the same resource file do not conflict with one
another, but this mechanism will not prevent an editor from changing the file.

Resource File Format

All resource files have the same general format. Each file may consist of a [Defaults] section
to specify default configuration information for all programs, a [Default Synonyms] section to
specify default synonyms to be used by all programs, one or more [Program] sections to
specify configuration information when a specific program is executed or compiled, and one
or more [Program Synonyms] sections to specify synonyms to be used when a specific
program is executed or compiled. Lines in a resource file should begin in column 1 (that is,
without leading spaces) and be no more than 4095 characters long. Section names, including
the Program portion of section names, are not case-sensitive. A section name matching a
prior section name, except for case, will be ignored. Comments may be included in a resource
file. Comment text begins with a semicolon (*;”) in column 1. Lines that have “;” in column
1, as well as blank lines, are ignored in their entirety.

The configuration information specified in a [Program] section overrides the configuration
information specified in the [Defaults] section when program Program is being executed or
compiled. Synonyms specified in a [Program Synonyms] section are added to the synonyms
specified in the [Default Synonyms] section with synonyms from the [Program Synonyms]
section overriding any duplicate definitions.

RM/COBOL User's Guide 25

Chapter 2: Installation and System Considerations for UNIX

26

Note For the recovery utility, Program is actually the indexed file name, not including any

directory path, but including the extension, if any. For example, the value of Program for the
indexed file /usr/guest/mydata.inx would be mydata.inx. In contrast, the value of Program
for the source file /usr/guest/myprog.cbl or the object file /usr/guest/myprog.cob would be

myprog.

Command-Line Options

Command-line options for the compiler, runtime system, or recovery utility may be specified
either in the [Defaults] or the [Program] sections. In each case, the command-line options are
specified as:

Options=command line options

where, the command line options parameter specifies a series of command-line options to be
passed to the compiler, runtime system, or recovery utility. The command-line options from
the resource files will be processed cumulatively in the following order: global [Defaults],
local [Defaults], global [Program], and local [Program]. Any options from the resource files
are processed before options on the actual command line are processed so that the command-
line options can override any options specified from the resource files. If duplicate options
appear in the same section of any resource file, the first entry is used.

Note Some options for the runtime system may not be overridden by the actual command-
line options because the options are cumulative; that is, multiple options of this type may be
specified on the command line. The L Option (for library loads) is an example of such a
parameter. For additional information, see the descriptions of the Runtime Command (on
page 189) and the L Option (on page 197).

The environment variable, RM_IGNORE_GLOBAL_RESOURCES, may be defined if you
wish the compiler, runtime system, or recovery utility not to access the command-line options
defined in /etc/default. This may be useful if you are trying to do development at the same
time others are running an application in live “production mode.”

Specifying Synonyms

Synonyms for the compiler, runtime system, or recovery utility may be specified either in the
[Default Synonyms] or [Program Synonyms] sections. These synonyms may be used to
establish a connection between the open name of the file and the actual file access name.
Synonyms may also be used to establish the RUNPATH and RMPATH directory search
sequences. Users should not attempt to specify synonym names differing only in case. For
more information, see Directory Search Sequences on UNIX (on page 21).

In each case the synonym name and value are specified as:

SynonymName=SynonymValue
When the compiler, runtime system, or recovery utility is being initialized, synonyms are
added to the environment in the order specified below. Synonyms names are case-sensitive.
However, a synonym whose name is the same as a prior synonym, except for case, will be
initialized to the value of the prior synonym.

[Default Synonyms] section of the global resource file

[Default Synonyms] section of the local resource file

RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

[Program Synonyms] section of the global resource file
[Program Synonyms] section of the local resource file

The environment variable, RM_IGNORE_GLOBAL_RESOURCES, may be defined if you
wish the compiler, runtime system, or recovery utility not to access the global synonyms
defined in /etc/default. This approach may be useful if you are trying to do development at
the same time others are running an application in live “production mode.”

The C$GetSyn and C$SetSyn subprograms may be used to retrieve and store synonym values
in the resource file. Specifically, C$GetSyn retrieves synonym values from either the
[Program Synonyms] or the [Default Synonyms] section of the local resource file (in the
user’s home directory) or, if the synonym was not found in the local resource file, from either
the [Program Synonyms] or the [Default Synonyms] section of the global resource file (in
[etc/default). C$GetSyn ignores case when searching for the synonyms. The third parameter
on the C$GetSyn CALL specifies the program-name for the synonym being retrieved.
Specifying SPACES indicates that the user wants the [Default Synonyms] section rather than
synonyms for a particular program-name. The environment variable,
RM_IGNORE_GLOBAL_RESOURCES, may be defined if you wish to always ignore the
global resource file for the runtime system. In this case, C$GetSyn will only have access to
the local resource file.

C$SetSyn stores synonym information in the local resource file. C$SetSyn ignores the case
of the synonym name when searching for an existing synonym value to replace. It is not
possible for C$SetSyn to modify the global resource file for the runtime system. C$SetSyn
stores the synonym information in either the [Program Synonyms] or the [Default Synonyms]
section depending upon the value of the third parameter on the CALL. If necessary,
C$SetSyn will create the local resource file in the user’s home directory.

Example of .rmcobolrc File
The following is an example of a UNIX local resource file for the RM/COBOL compiler:

[Defaults]
Options=<Compile Command options>

[Default Synonyms]

PRINTER=PrinterFile_prt
RMPATH=~/default/source

[AR]

Options=-1 -a -x -o=~/arobj
[AR Synonyms]

RMPATH=~/arsource
PRINTER=~/arlist/ar.prt

Example of .runcobolrc File

The following is an example of a UNIX resource file (local) for the RM/COBOL runtime
system:

RM/COBOL User's Guide

27

Chapter 2: Installation and System Considerations for UNIX

28

[Defaults]
Options=<Runtime Command options>

[Default Synonyms]
Printerl=PrinterFile
AR-Directory=/usr/company/ar-data

[AR]

Options=<Runtime Command options>

[AR Synonyms]
RUNPATH=<pathname>
AR-FILEl=compl/ar.dat

Example of .recoverlrc File

The following is an example of a UNIX local resource file for the RM/COBOL Indexed File
Recovery (recoverl) utility:

[Defaults]
Options=-1

[Default Synonyms]
PRINTER=recovery.log

[armaster.inx]
Options=-L armrec.log -K armtempl.inx -M 5

[armaster.inx Synonyms]
DROPFILE=~/ar/armdrop.fil

[artrans.inx]
Options=-L -K arttempl.inx -M 3

[artrans.inx Synonyms]
DROPFILE=~/ar/artdrop.fil
PRINTER=~/ar/artrec.log

Terminal Input and Output on UNIX

This section describes how terminal input and output are handled by the RM/COBOL runtime
system on UNIX.

Terminal Interfaces

The runtime system uses one of two terminal interface mechanisms, termcap or terminfo, to
control cursor positioning, video display attributes, and function key mapping.

The termcap version of the runtime system uses the older termcap database, which has a
description of the user’s terminal in it. For more information, see Termcap Database (on
page 29).

RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

The terminfo version of the runtime system uses the terminal description in the terminfo
database for both input and output control of the terminal. For more information, see
Terminfo Database (on page 29).

Both the terminfo and termcap Terminal Interface support modules are present on the
distribution media. During the installation process, you will be asked which Terminal
Interface support module to install. To switch to the other Terminal Interface support module,
you will need to run the installation command again and respond appropriately to the prompts
described in Performing the Installation (on page 19), paying particular attention to the
discussion of optional features.

Termcap Database

The runtime system locates the termcap database by first looking for the environment variable
TERMCAP. If the TERMCAP environment variable is found and contains a valid pathname,

that value is used as the pathname to the database. If the environment variable is found but it

contains a valid termcap entry, that entry will be used as the terminal description. Otherwise,

the filename /etc/termcap will be used as the name of the database.

The TERMCAP environment variable can be set as follows:

TERMCAP=pathname ; export TERMCAP

pathname is a pathname of the termcap file.
For example:

TERMCAP=/usr/sales/mytermcapfile; export TERMCAP

Terminfo Database

The runtime system locates the terminfo database by first looking for the environment
variable TERMINFO. If the TERMINFO environment variable is found, that value is used as
the pathname to the database subdirectories. Otherwise, the path /usr/lib/terminfo will be
used.

The TERMINFO environment variable can be set as follows:

TERMINFO=pathname ; export TERMINFO

pathname is a pathname of the terminfo file.
For example:

TERMINFO=/usr/sales/myterminfo; export TERMINFO

RM/COBOL User's Guide

29

Chapter 2: Installation and System Considerations for UNIX

30

Cursor Types

The termcap and terminfo versions of the runtime system support two types of cursors, each
of which indicates a different edit mode during ACCEPT operations.

1. The attribute cursor_normal (or cursor-on) indicates that standard overtype mode
is active.

2. The attribute cursor_visible (or cursor-blink) indicates that insert mode is active.

Terminal Attributes

Terminal attributes are sequences of characters (strings) that cause the terminal to perform
certain functions (they are often referred to as escape sequences). Some terminals under
UNIX require that special characters appear on the screen just before the start of an attribute
and right after the end of it. Characters in between these special characters take on the
specified attribute. To accommodate these terminals, the oV capability for termcap specifies
the number of screen positions to be used by the nM, nB, nR, nS, aL, aB, aR, aS, and rS
capabilities. The xmc capability is used for the terminfo runtime system. RM/COBOL places
the attribute characters at the position specified by the ACCEPT or DISPLAY operation, and
moves the actual start of the field by the number of positions specified by oV or xmc. You
can also use the MOVE-ATTR keyword (see page 367) with the TERM-UNIT configuration
record to specify moving the attributes back the number of positions specified by oV or xmc.
However, if MOVE-ATTR causes the attribute character to move back to the next line, and
such a move is prohibited by the IA (do not cross lines) capability described in the next
paragraph, the attribute will appear on the same line that is being displayed or accepted.

The IA is a Boolean termcap capability and is used with terminals that require screen
positions to implement attributes, as described in the preceding paragraph. The standard
RM/COBOL model is to keep an attribute in effect—without regard to the number of screen
lines to which it applies—until it encounters the special character that signals the end of the
attribute. Some terminals, however, recognize the end of a line as the end of the attribute,
without regard to the presence or absence of the ending special character. In this case, the
presence of IA will tell RM/COBOL that a new attribute character must be placed at the start
of every new line in a multiline ACCEPT or DISPLAY operation.

The sA is a Boolean termcap capability that is also used with terminals that require screen
positions to implement attributes. The RM/COBOL model is to assume that attributes will
not wrap from the bottom to the top of the screen. If your terminal behaves differently, and if
you have specified the MOVE-ATTR configuration keyword, use sA. This allows fields
placed at the home position (line 1, position 1) to have their attributes placed at the last line of
the screen.

Terminal Name

The name of the database entry that describes the behavior of your terminal is obtained from
the environment variable TERM. This variable should be set to the appropriate terminal name
before invoking the runtime system.

The TERM environment variable can be set as follows:

TERM=term-name ; export TERM

RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

term-name is the name of your terminal as it appears in the termcap or terminfo database.
The termcap or terminfo capabilities used by the runtime system (if present) are listed in
the tables that follow.

Terminfo and Termcap Capabilities Used by the Runtime
System

The runtime system on UNIX uses a set of terminfo or termcap capabilities, depending on the
terminal interface in use, for controlling output to the terminal screen. These capabilities are
listed in Table 2 for reference.

Table 2: Terminfo and Termcap Names for the Runtime System, Booleans

Terminfo Name Termcap Name Description
am Am Terminal has automatic margins.
bce Be Screen erased with background color.
xenl Xn Newline ignored after 80 columns. Also used

to signify that the terminal’s cursor will not
automatically advance to the next line after
column 80 is reached, but will instead wait for
the next character.

Table 2: Terminfo and Termcap Names for the Runtime System, Numbers

Terminfo Name Termcap Name Description
cols Co Number of columns in a line.
lines Li Number of lines on screen or page.
pb Pb Lowest baud where padding is needed.
xmc Sg Number of blank characters left by smso or rmso.

Table 2: Terminfo and Termcap Names for the Runtime System, Output Strings

Terminfo Name Termcap Name Description

acsc Ac Graphic charset pairs.

bel bl Audible signal (bell).

blink Turn on blinking.

civis vi Make cursor invisible.

clear cl Clear screen and home cursor.

cnorm ve Make cursor appear normal (undo vs/vi).
cr cr Carriage return.

cubl le Move cursor left one space.

cudl do Down one line.

cufl nd Nondestructive space (cursor right).
cup cm Cursor motion.

cuul up Upline (cursor up).

CwWis Vs Make cursor very visible—insert mode.
dim Turn on half-bright mode.

RM/COBOL User's Guide 31

Chapter 2: Installation and System Considerations for UNIX

Table 2: Terminfo and Termcap Names for the Runtime System, Output Strings

Terminfo Name Termcap Name Description

Ed cd Clear to end of display.

El ce Clear to end of line.

Enacs eA Enable alternate character set.

Home ho Home cursor.
Ko Termcap entries for other non-function keys.

ind sf Scroll text up.

Pad pc Pad character (rather than null).

Op op Set all colors to the original color pairs.

Rev Turn on reverse video mode.

Rmacs ae End alternate character set.

Rmcup te String to end programs that use cup.

Rmso se End of standout mode (if no nM or sgr0).
Is Terminal initialization string.

Rsl rl Terminal reset/initialization string 1.

Rs2 r2 Terminal reset/initialization string 2.

Rs3 r3 Terminal reset/initialization string 3.

Setb Sb Set current background color.

Setf Sf Set current foreground color.

Sgr Define video attributes, 1 through 9.

Sgr0 me Turn off all attributes.

Smacs as Start alternate character set.

Smcup ti String to begin programs that use cup.
Tc Entry of similar terminal.

Xenl Xn Newline ignored after 80 columns.

Keyboard Input Character Sequences

Character input sequences are used to interpret keyboard input for terminfo or termcap,
depending on the terminal interface being used by the runtime system. A particular input
character sequence can be mapped to an input character, input editing action, or input field
termination by use of the TERM-INPUT configuration record (see page 356).

Table 3 describes the input sequences that may be handled by the terminfo package. (For
convenience, the corresponding termcap name is also given.) These terminfo names are the
only names that will be recognized when using the TERM-INPUT configuration feature of the
runtime system. Termcap names other than the ones listed in this table can be used in TERM-
INPUT configuration records.

Table 3: Input Sequences for Terminfo and Termcap

Terminfo Name Termcap Name Description

kal K1 Upper-left of keypad.
Ka3 K3 Upper-right of keypad.
Kb2 K2 Center of keypad.
Kbeg @1 Sent by beginning key.
Kbs kb Sent by backspace key.
Kcl K4 Lower-left of keypad.
Kc3 K5 Lower-right of keypad.

32 RM/COBOL User's Guide

Terminfo Name

Kcan
Kclo
Kclr
Kemd
Kepy
Kert
Kctab
Kcubl
Kcudl
Kcufl
Kcuul
Kdchl
KdIl1l
Ked
Kel
Kend
Kent
Kext
Kf0
Kfl
Kf2
kf3
Kf4
Kf5
Kf6
Kf7
Kf8
Kf9
Kf10
Kf11l
Kf12
Kf13
Kf14
Kf15
Kf16
Kf17
Kf18
kf19
kf20
kf21
kf22
kf23
kf24
kf25
kf26
kf27

Table 3: Input Sequences for Terminfo and Termcap

Termcap Name
@2
@3
kC
@4
@5
@6
kt
ki
kd
kr
ku
kD
kL
kS
kE
@7
@8
@9
ko
k1
k2
k3
k4
k5
k6
k7
k8
k9
k;
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF
FG
FH

Description

Sent by cancel key.
Sent by close key.

Sent by clear screen or erase key.

Sent by command key.
Sent by copy key.
Sent by create key.
Sent by clear-tab key.

Sent by terminal left arrow key.
Sent by terminal down arrow key.
Sent by terminal right arrow key.
Sent by terminal up arrow key.
Sent by delete character key.

Sent by delete line key.

Sent by clear-to-end-of-screen key.
Sent by clear-to-end-of-line key.

Sent by end key.

Sent by enter/send key.

Sent by exit key.

Sent by function key f0.
Sent by function key f1.
Sent by function key f2
Sent by function key f3.
Sent by function key f4.
Sent by function key f5.
Sent by function key f6.
Sent by function key f7.
Sent by function key f8.
Sent by function key 9.

Sent by function key f10.
Sent by function key f11.
Sent by function key f12.
Sent by function key f13.
Sent by function key f14.
Sent by function key f15.
Sent by function key f16.
Sent by function key f17.
Sent by function key f18.
Sent by function key f19.
Sent by function key f20.
Sent by function key f21.
Sent by function key f22.
Sent by function key f23.
Sent by function key f24.
Sent by function key f25.
Sent by function key f26.
Sent by function key f27.

RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

33

Chapter 2: Installation and System Considerations for UNIX

Table 3: Input Sequences for Terminfo and Termcap

Terminfo Name Termcap Name Description
kf28 Fl Sent by function key f28.
kf29 FJ Sent by function key f29.
kf30 FK Sent by function key f30.
kf31l FL Sent by function key f31.
kf32 FM Sent by function key f32.
kf33 FN Sent by function key f33.
kf34 FO Sent by function key f34.
kf35 FP Sent by function key f35.
kf36 FQ Sent by function key f36.
kf37 FR Sent by function key f37.
Kf38 FS Sent by function key f38.
Kf39 FT Sent by function key f39.
Kf40 FU Sent by function key f40.
Kf41l FV Sent by function key f41.
Kf42 FW Sent by function key f42.
Kf43 FX Sent by function key f43.
Kf44 FY Sent by function key f44.
Kf45 Fz Sent by function key f45.
Kf46 Fa Sent by function key f46.
Kf47 Fb Sent by function key f47.
Kf48 Fc Sent by function key f48.
Kf49 Fd Sent by function key f49.
Kf50 Fe Sent by function key f50.
Kf51 Ff Sent by function key f51.
Kf52 Fg Sent by function key f52.
Kf53 Fh Sent by function key f53.
Kf54 Fi Sent by function key f54.
Kf55 Fj Sent by function key f55.
Kf56 Fk Sent by function key f56.
Kf57 Fi Sent by function key f57.
Kf58 Fm Sent by function key f58.
Kf59 Fn Sent by function key f59.
Kf60 Fo Sent by function key f60.
Kf61l Fp Sent by function key f61.
Kf62 Fq Sent by function key f62.
Kf63 Fr Sent by function key f63.
Kfnd @0 Sent by find key.
Khip %1 Sent by help key.
Khome Kh Sent by home key.
Khts kT Sent by set-tab key.
Kichl Kl Sent by insert character/enter insert mode key.
Kill kA Sent by insert line.
kind kF Sent by scroll-forward/down key.
kll kH Sent by home-down key.
kmsg %3 Sent by message key.
knp kN Sent by next-page key.

34 RM/COBOL User's Guide

Terminfo Name

knxt
kopn
kopt
kpp
kprt
kprv
krdo
kref
kres
krfr
kri
krmir
krpl
krst
ksav
kslt
kspd
kthc
kund
kBEG
kCAN
kCMD
kCPY
kCRT
kDC
kDL
KEND
kEOL
KEXT
kFND
kHLP
kHOM
kiC
Kmov
Kmrk
KLFT
KSAV
KSPD
KUND
KMSG
KMOV
KNXT
KOPT
KPRV
KPRT
KRDO

Table 3: Input Sequences for Terminfo and Termcap

Termcap Name

%5
%6
%7
kP
%9
%8
%0
&l
&5
&2
kR
kM
&3
&4
&6
*6
&7
Ka
&8
&9
&0
*1
*2
*3
*4
*5
*7
*g
*9
*0

Description

Sent by next-object key.

Sent by open key

Sent by options key

Sent by previous-page key.
Sent by print key.

Sent by previous-object key.
Sent by redo key.

Sent by reference key.

Sent by resume key.

Sent by refresh key.

Sent by scroll-backward/up key.
Sent by exit insert mode key
Sent by replace key.

Sent by restart key.

Sent by save key.

Sent by select key.

Sent by suspend key.

Sent by clear-all-tabs key.
Sent by undo key.

Sent by shifted beginning key.
Sent by shifted cancel key.
Sent by shifted command key.
Sent by shifted copy key.
Sent by shifted create key.
Sent by shifted delete-char key.
Sent by shifted delete-line key.
Sent by shifted end key.

Sent by shifted clear-line key.
Sent by shifted exit key.

Sent by shifted find key.

Sent by shifted help key.

Sent by shifted home key.
Sent by shifted input key
Sent by move key

Sent by mark key.

Sent by shifted left arrow key.
Sent by shifted save key.

Sent by shifted suspend key.
Sent by shifted undo key.
Sent by shifted message key.
Sent by shifted move key
Sent by shifted next key.

Sent by shifted options key.
Sent by shifted prev key.

Sent by shifted print key.

Sent by shifted redo key.

RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

35

36

Chapter 2: Installation and System Considerations for UNIX

Table 3: Input Sequences for Terminfo and Termcap

Terminfo Name Termcap Name Description
KRPL %h Sent by shifted replace key.
KRIT %l Sent by shifted right arrow key.
KRES %j Sent by shifted resume key.
Lfo 10 Labels on function key fO if not f0.
Lfl 11 Labels on function key f1 if not f1.
Lf2 12 Labels on function key f2 if not f2.
Lf3 13 Labels on function key f3 if not f3.
Lf4 14 Labels on function key f4 if not f4.
Lf5 15 Labels on function key f5 if not 5.
Lf6 16 Labels on function key f6 if not f6.
Lf7 17 Labels on function key f7 if not f7.
Lf8 18 Labels on function key f8 if not 8.
Lf9 19 Labels on function key f9 if not f9.
Lf10 la Labels on function key f10 if not f10.
Nel nw Sent by newline key.

Additional Termcap Capabilities Used by the Runtime
System

When the termcap terminal interface is used by the runtime system, additional termcap
capabilities not previously described may be used, as shown in the following tables.

Table 4 describes the additional Boolean capabilities used by RM/COBOL when accessing
the termcap database.

Table 4: Additional Boolean Capabilities

Termcap Name Description
1A Attributes will not wrap lines.
sA Attributes will wrap screen.

Table 5 describes the additional numeric capability used by RM/COBOL when accessing the
termcap database.

Table 5: Additional Numeric Capability
Termcap Name Description

oV Number of blank characters left by additional RM/COBOL
attribute capabilities.

Table 6 describes the additional output string capabilities used by RM/COBOL when
accessing the termcap database.

Table 6: Additional Output String Capabilities
Termcap Name Description

aB Low intensity blink.

RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

Table 6: Additional Output String Capabilities

Termcap Name Description
Ab Low intensity underline and blink.
aL Low intensity.
Al Low intensity underline.
aR Low intensity reverse.
asS Low intensity blink and reverse.
nB High intensity blink.
Nb High intensity underline and blink.
nM High intensity.
Nm High intensity underline.
nR High intensity reverse.
ns High intensity blink and reverse.
vr End of field.

Terminfo Considerations

The Boolean capabilities sA and 1A cannot be added to the terminfo database since it is a
closed system; these capabilities are not used by the terminfo runtime system. Under runtime
systems that use terminfo for output, the xmc numeric capability determines the width of
attribute characters and the starting position of fields. Specifying xmc#0 indicates a physical
attribute terminal for which the attributes do not occupy a screen position but still must be
written at the physical start and end of each field.

Runtime systems that use the terminfo database directly for output sequences will use the
set_attributes or sgr string for all field attributes, if it is available. The terminfo
set_attributes string has nine parameters or attributes that can be set. RM/COBOL makes
use of six of these parameters. The second parameter is set if the underline attribute is
requested. The third parameter is set if the reverse attribute is requested. The fourth
parameter is set if the blinking attribute is requested. The fifth parameter is set if the
low-intensity attribute is used. The sixth parameter is set if the high-intensity attribute is
used. The ninth parameter may be used when line draw characters are requested for pop-up
window borders. The only exception to requesting line draw characters in this manner is in
terminals where xmc and sgr are specified (for example, physical attribute terminals). On
these terminals, the alternate character set attribute can either be a field attribute or a single
character attribute. Because the terminfo database does not indicate how to determine this
behavior for a terminal, RM/COBOL will infer that the terminal has the alternate character set
as a single character attribute, if the smac definition is in the terminfo database for the
terminal. In this case, the smacs and rmacs sequence will be used for the writing of graphics
or alternate character set data and the ninth parameter will always be specified as off.

Each of the sgr parameters is set to one if an ACCEPT or DISPLAY requests the
corresponding attribute. Otherwise, a zero is set for the parameter. A zero is also set for all
other parameters.

Attributes are reset by using the sgro string if it is defined. Otherwise, they are reset using all
zeroes as parameters to the set_attributes string.

RM/COBOL User's Guide 37

Chapter 2: Installation and System Considerations for UNIX

If the set_attributes string is not available, the standard terminfo strings listed in Table 7 will

be used.
Table 7: Standard Terminfo Strings
Terminfo Name Description
blink High intensity blink.
dim Low intensity.
rev High intensity reverse video.
rmacs End alternate character set.
rmso Reset attributes (also used for high intensity if no sgr0).
sgr0 High intensity.
smacs Start alternate character set.
smso High intensity (if no sgrO or rmso).

If color keywords are specified in the CONTROL phrase, the terminfo setf or setb sequence
will be used to set the foreground or background color. These sequences accept a single
numeric parameter indicating the desired color. If these sequences are not already defined for
your terminal and you wish to define them, the association of colors to color numbers is
normally defined in the C include file, curses.h.

Line Draw Characters

If line draw characters are requested for either pop-up window borders, or because the
GRAPHICS keyword in the CONTROL phrase was specified in an ACCEPT or DISPLAY
statement, the terminfo database is examined for the acsc sequence. UNIX systems provide
the acsc string to map generic (vt100) line draw characters to the correct characters for your
terminal. These characters are then enabled through the ninth sgr parameter (see page 37).
To support double-line draw characters, RM/COBOL has extended the acsc string to include
six more mappings. These mappings extend the generic (vt100) characters by describing the
double-line graphic characters with the corresponding uppercase letters, as shown in Table 8.

Table 8: vt100 Line Graphic Characters

Description Single-Line Character Double-Line Character
lower-right corner id) Jd)
upper-right corner k() K@)
upper-left corner () L(p
lower-left corner m (L) M (L
horizontal line a@) QE
vertical line x(|) ()

38 RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

Other System Considerations for UNIX

This section describes special system considerations for using RM/COBOL under the UNIX
operating system.

Memory Available for a COBOL Run Unit on UNIX

The memory available for a run unit in the operating system environment is implementation
specific. If the total memory required by a run unit exceeds the amount of available memory,
runtime system errors will occur. These errors indicate the inability to obtain enough memory
to perform a desired operation. The RM/COBOL runtime system does not provide a virtual
memory scheme, although your system may.

Segmentation and subprograms should be used to manage the dynamic memory requirements
of very large run units.

Most modern UNIX systems (for example, BSD, System V, Sun OS) are supplied with
built-in virtual memory systems. These systems make it appear as though there is always
sufficient memory for the runtime system, regardless of how much physical RAM is installed
in the machine.

Number of Files

The operating system determines the number of files a run unit is allowed to open. The
maximum number of files that may be opened is three fewer than the maximum number of
open files per process. Most UNIX systems allow this maximum to be changed by
reconfiguring the kernel.

Number of Region Locks

The runtime system uses the operating system region lock facility to provide file level locking
and to control file sharing, as well as to support record locking. To implement file locking,
the runtime system applies one region lock to each open file in addition to the locks applied
for record locks. During an 1/O statement, one or two additional region locks may be applied
to a single file. If the program employs multiple record locking, these region locks remain
until the program unlocks the records.

Network File Access

It is possible to receive a 98,27 error when accessing an indexed file through the network file
system (NFS) when logged in as super-user (or root). If the file permissions do not include
write permission for “other”, an open operation may inadvertently succeed for modes other
than input mode. This is misleading because writes to the file will appear to succeed, even
though the data is not updated. This problem is undetectable and will appear as a 98,27 error
on the next access of the file after writing or deleting a record.

RM/COBOL User's Guide

39

Chapter 2: Installation and System Considerations for UNIX

40

Redirection of Input and Output

RM/COBOL supports standard piping and standard redirection of input and output.

The use of the redirection and piping operators (> , >>, <, and |) on the Runtime
Command line affects the operations of ACCEPT and DISPLAY statements in several ways.
Piping is a means of chaining the standard output (DISPLAY statements) of one run unit to
the standard input (ACCEPT statements) of a second run unit; therefore, piping appears
identical to redirection at the program level. Note that a Format 1 ACCEPT or DISPLAY
statement that includes the FROM/UPON CONSOLE phrase or FROM/UPON mnemonic-
name phrase where mnemonic-name is defined as CONSOLE IS mnemonic-name, is not
redirected or piped unless it is configured to come from standard input or go to standard
output. If this is not the case, you must use either 2> or 2>> for redirection. Note also that if
an ACCEPT or DISPLAY statement contains a UNIT phrase, it will not be redirected.

Standard Input

The standard input device is defined by default to be the keyboard of the terminal that started
the run unit. Standard input may be redirected to a file or other device by the operating
system conventions for standard input redirection and piping on the command line that starts
the run unit.

For example:
runcobol getdata <inputfile

redirects standard input to the file inputfile, and
runcobol putdata | runcobol getdata

pipes the standard output from program putdata to the standard input of program getdata.

ACCEPT statements that do not specify the FROM CONSOLE phrase read from the standard
input device.

When standard input is redirected, the ACCEPT statement (Formats 1 and 3) operation is
modified. Only the SIZE, CURSOR, ECHO, CONVERT and ON EXCEPTION phrases of
Format 3 are used; all other phrases are ignored. Note that Format 1 ACCEPT statements
with numeric operands are treated as Format 3 ACCEPT statements unless the program
containing the ACCEPT statements was compiled with the M Compile Command Option
(see page 157).

At the beginning of each ACCEPT statement, the next record is read from standard input into
the ACCEPT buffer. The following operations take place for each of the receiving data items
in the ACCEPT statement:

1. If there are no characters in the ACCEPT buffer, the next record is read from standard
input into the ACCEPT buffer. The default size for the ACCEPT buffer is 264
characters. However, the B Runtime Command Option (see page 194), or its equivalent
B keyword (see page 345) in the RUN-OPTION configuration record, may be specified
to change the size of this buffer up to a maximum of 65280 characters.

2. If the number of characters in the ACCEPT buffer does not exceed the size of the current
receiving item, those characters are transferred to the receiving item in the appropriate
format (that is, left justified, space fill for all Format 1 and for alphanumeric Format 3,
and with appropriate conversion for numeric Format 3).

RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

3. If the number of characters in the ACCEPT buffer exceeds the size of the current
receiving item, only the leftmost “size” characters are transferred, as described in the
previous operation. The characters that remain in the ACCEPT buffer are used for the
next receiving item or are discarded if the current receiving item is the last receiving item
in the ACCEPT statement.

Note Where numeric sending and receiving data items are used with piping, the use of the
CONVERT phrase with DISPLAY and ACCEPT statements is strongly recommended.

The M Runtime Command Option (see page 195) modifies the operation of Format 1
ACCEPT statements to conform to Level 2 ANSI semantics. The actions described above are
modified as follows:

1. If the number of characters in the ACCEPT buffer does not equal or exceed the size of
the current receiving item, one or more records are read from standard input and are
concatenated until there are enough characters.

2. The leftmost “size” characters are transferred as described in steps 2 and 3 in the
instructions above. The characters that remain in the ACCEPT buffer are discarded.

Note that the use of the M Runtime Command Option requires close matching of ACCEPT
and DISPLAY statements when used with piping.

Also note that the M Runtime Command Option affects the operation of Format 1 ACCEPT
statements which are not redirected; the console operator is required to enter enough
characters to fill the receiving item. If the Enter key is pressed before enough characters have
been entered, the request will be reissued until the concatenation of the characters entered is
sufficient to fill the receiving item.

The M Runtime Command Option does not affect the operation of Format 3 ACCEPT
statements.

An end-of-file condition is reported to Format 3 ACCEPT statements as an exception variable
of 64 (Send). If an end-of-file condition occurs and there is no ON EXCEPTION phrase, a
runtime system error is reported and execution ends.

Standard Output

The standard output device is defined by default to be the monitor of the terminal that started
the run unit. Standard output may be redirected to a file or other device by the operating
system conventions for standard output redirection and piping on the command line that starts
the run unit.

For example:
runcobol putdata >outputfile
redirects standard output to the file outputfile, and
runcobol putdata | runcobol getdata

pipes the standard output from program putdata to the standard input of program getdata.

DISPLAY statements—that do not specify the UPON or UPON CONSOLE phrase—write to
the standard output device.

When standard output is redirected, all phrases, except SIZE and CONVERT, of the Format 2
DISPLAY statement are ignored. All sending operands are concatenated (within the limits of
the DISPLAY buffer as described in the following paragraphs) and are transferred to standard

RM/COBOL User's Guide

41

Chapter 2: Installation and System Considerations for UNIX

42

output as one or more records. The default size for the DISPLAY buffer is 264 characters.
However, the B Runtime Command Option (see page 194), or its equivalent B keyword (see
page 345) in the RUN-OPTION configuration record, may be specified to change the size of
this buffer up to a maximum of 65280 characters.

A Format 1 DISPLAY statement generates one record and may generate more than one
record, depending on the presence or absence of the M Runtime Command Option (see

page 195). If the M Option is not present in the Runtime Command, all sending operands are
concatenated, the resulting operand is truncated to the DISPLAY buffer size, and a single
record is written. If the M Option is present, all sending operands are concatenated and the
resulting operand is split into zero or more records equal in length to the DISPLAY buffer
size, along with a final record no longer than the DISPLAY buffer size.

If a Format 2 DISPLAY statement is redirected, one or more records are generated,
depending on the size of the discrete sending items. If the size of the sending operand does
not exceed the space remaining in the DISPLAY buffer, the sending operand is appended to
the current buffer and the DISPLAY buffer is written if the sending operand is the last
operand. If the size of the sending operand exceeds the space remaining in the DISPLAY
buffer, the current DISPLAY buffer is written and the sending operand is truncated to the size
of the DISPLAY buffer. The new DISPLAY buffer contents are written if the sending
operand is the last operand.

Standard Error

The standard error device is defined by default to be the monitor and keyboard. Interactive
debug input and output, temporary STOP statement message output and operator response
input, and runtime system message output are directed to the standard error device. These
operations can be redirected by a configuration option; see the discussion of the ERROR-
MESSAGE-DESTINATION keyword (on page 333).

These operations also can be redirected using the operating system standard-error redirection
convention on the command line that starts the run unit.

For example:
runcobol putdata 2>error.out
To direct standard output and standard error to the same destination, specify:

runcobol putdata >all_out 2>&1

Using Large Files on UNIX

RM/COBOL supports files larger than 2 gigabytes (GB). Large file support is available only
on those UNIX systems that provide native support for files larger than 2 GB. The following
UNIX systems provide such support: IBM AIX 5.2; HP-UX 11; some versions of Linux, Sun
Solaris SPARC 2.9; and SCO SVR5 (UnixWare 7.1.1 or later and SCO OpenServer 6).

Many UNIX systems are configured to restrict the size of files to which normal user accounts
can write. Often this limit is 2 GB or less. On systems that support large files, the system
administrator may be able to configure the system or the user accounts to allow a large
ULIMIT, or the user may need to run the ulimit command to increase the ULIMIT before
creating or accessing large files.

For more information, refer to Very Large File Support (on page 234).

RM/COBOL User's Guide

Chapter 2: Installation and System Considerations for UNIX

Environment Variables for UNIX

An environment variable is an operating system feature that allows a value to be equated with
a name. Table 9 lists those environment variables that are used by RM/COBOL on UNIX.

Note In addition to the environment variables listed in the following table, RM/COBOL uses
environment variables to map generic file access names as explained in File Access Names on

UNIX (on page 22).

Table 9: Environment Variables for UNIX

Environment Variable

HOME

LD_LIBRARY_PATH

PATH

PRINTER
RMPATH

RMTERM132

RMTERMS80

RM_COMPILER_WRAP_LONGNAMES

RM_DEVELOPMENT_MODE

RM_DYNAMIC_LIBRARY_TRACE

RM_ENCODING

RM_ESCAPE_TO_COMMAND

Usage

Locating files. See File Locations Within Operating
System Pathnames on UNIX (on page 21).

Locating optional support modules (see page 449).
Note that this environment variable is system-
specific. Other UNIX operating systems may use
the environment variables LIBPATH or SH_PATH.

Locating files. See Directory Search Sequences on
UNIX (on page 21).

Printer support (see page 238).

Locating files. See Directory Search Sequences on
UNIX (on page 21).

ACCEPT/DISPLAY CONTROL SCREEN-
COLUMNS (see page 215).

ACCEPT/DISPLAY CONTROL SCREEN-
COLUMNS (see page 215).

Controls whether the compiler will wrap rather than
truncate long user-defined words in the listing
summary (allocation map, cross reference, summary
error messages, and so forth). The value “Yes”
causes wrapping; the value “No” causes truncation.
The value can be specified as “Y” or “N” and case
does not matter. See also the WRAP-
LONGNAMES value (on page 306) for the
LISTING ATTRIBUTES keyword of the
COMPILER-OPTIONS configuration record.

C$SetDevelopmentMode subprogram (see
page 571).

Tracing support module loads. See Locating
optional support modules (on page 449).

Specifies the encoding of characters in the source
for purposes of translating them to Unicode in the
XML symbol table. The built-in and predefined
values of RM_LATIN_1 and RM_LATIN_9, which
are used to designate Latin-1 or Latin-9,
respectively, may be used as well as any encoding
names supported by an available iconv library. If
not specified, RM_LATIN_9 is assumed. For more
information, see “UNIX Character Encoding” in the
XML Extensions User’s Guide.

TERM-INPUT ACTION=ESCAPE-TO-
COMMAND (see page 357).

RM/COBOL User's Guide

43

Chapter 2: Installation and System Considerations for UNIX

44

Table 9: Environment Variables for UNIX

Environment Variable

RM/COBOL User's Guide

RM_IGNORE_GLOBAL_RESOURCES

RM_KEEP_XML_SYMTAB_FILE

RM_LIBRARY_SUBDIR

RM_LOAD_WOW_CLIENT

RM_VERBOSE_BANNER

RM_Y2K

RUNPATH

SHELL
TAPE
TERM
TERMCAP
TERMINFO
TMPDIR
TZ

Usage

Causes the compiler, runtime system, or recovery
utility not to access the global resources file. This
may be useful if you are trying to develop at the
same time others are running an application in live
“production mode.” See Command-Line Options
(on page 26) and Specifying Synonyms (on

page 26).

The value specifies the path of the directory where
the temporary XML-format symbol table file from
the compiler should be preserved. See also the
KEEP-TEMP-XML-SYMBOL-TABLE-FILE
keyword (on page 302) of the COMPILER-
OPTIONS configuration record.

Locating optional support modules. See Using a
Different Subdirectory (on page 450).

Loading the WOW Extensions support module,
libtclnt.so.

Compile command messages (see page 177) and
runcobol banner message (see page 418).

COMPILER-OPTIONS ALLOW-DATE-TIME-
OVERRIDE (see page 295).

Locating files. See Directory Search Sequences on
UNIX (on page 21).

SYSTEM subprogram (see page 579).

Tape support (see page 239).
Terminal 1/0. See Terminal Name (on page 30).

Terminal I/O. See Termcap Database (on page 29).
Terminal 1/0O. See Terminfo Database (on page 29).

Temporary files (see page 249).
Standard C TimeZone variable.

Chapter 3: Installation and System Considerations for Microsoft Windows

Chapter 3: Installation and
System Considerations for
Microsoft Windows

This chapter lists the hardware and software required to install the RM/COBOL product,
describes how to install RM/COBOL, and provides information specific to using RM/COBOL
with Microsoft 32-bit Windows operating systems.

Your computer configuration is the assembled set of hardware and software that makes up
your system. Before you can develop or run RM/COBOL programs, your configuration must
meet or exceed the requirements set forth in this chapter.

System Requirements for Windows

RM/COBOL runs on the IBM PC and full compatibles. Appropriately licensed versions run
in conjunction with Client for Microsoft Networks or Novell NetWare software to provide
support for multi-user file access.

Required Hardware

An IBM PC or compatible machine capable of running a supported Microsoft Windows
operating system as specified by Required Software. The 32-bit Windows version will run on
32-bit or 64-bit machines and Windows operating systems. The 64-bit Windows version
requres a 64-bit machine and Windows operating system.

Note Most Micro Focus RM/COBOL products and licenses are distributed electronically. If
you elect to receive physical media, an optical drive capable of reading a CD-ROM (for the
product) and a 3.5” floppy drive (for the license certificate file) are required at installation
time.

Required Software

A supported Windows operating system is required. See Support Resources | Product
Availability and Support Schedule at https://supportline.microfocus.com for supported

RM/COBOL User's Guide

45

https://supportline.microfocus.com/

46

Chapter 3: Installation and System Considerations for Microsoft Windows

Windows operating systems. Both 32-bit and 64-bit operating systems are supported. There
are 32-bit and 64-bit versions of the RM/COBOL product. The 32-bit versions of
RM/COBOL will run on 32-bit or 64-bit Windows operating systems. The 64-bit versions of
RM/COBOL require an operating system that supports 64-bit applications. You can
determine whether your Windows operating system supports 64-bit applications by looking at
“System type:” in Control Panel | System. If system type is “64-bit Operating System” 64-bit
applications are supported; otherwise only 32-bit applications are supported.

Note System type may specify “32-bit Operating System, x64-based processor”. This
indicates that the machine supports 64-bit data, but the Windows OS only supports 32-bit
applications.

Local Area Network (LAN) Software

To provide multi-user access, the network software built into Windows is required.

Btrieve Software

To access local Btrieve files, the following software is required:

e Version 6.15 or later of Btrieve for 32-bit Windows

To access remote Btrieve files, both of the following software components are required:

e Version 6.15 or later of Btrieve MicroKernel Database Engine for NetWare or a
Windows operating system

e Version 6.15 or later of Btrieve Requester for 32-bit Windows

Note Btrieve components are available from Pervasive Software Inc.

System Installation for Windows

This section describes how to install RM/COBOL on Microsoft Windows systems using the
following methods:

e Electronic Product Delivery Installation (as described below)
e CD-ROM Installation (see page 49)

You may also automate the installation program for RM/COBOL, which allows the
installation of RM/COBOL to be incorporated with the installation of your application. For
more information, navigate to https://supportline.microfocus.com/productdoc.aspx, Micro
Focus Developer — COBOL and Software Developer Tools | RM/COBOL | 12 | Windows
Installer Guide and refer to the “RM/COBOL Runtime Installation Details” and “RM/COBOL
Recoverl Utility Details” sections of the installer guide documentation. You may also wish
to refer to the “RM/COBOL Compiler Installation Details” and “RM/COBOL CodeWatch
Integrated Development Environment Installation Details” sections.

Both 32-bit and 64-bit versions of RM/COBOL are available. The 64-bit version of
RM/COBOL is installed separately from the 32-bit version and will co-exist with the 32-bit
version. All Micro Focus supplied runtime programs and extensions, such as RECOVER1,

RM/COBOL User's Guide

https://supportline.microfocus.com/productdoc.aspx

Chapter 3: Installation and System Considerations for Microsoft Windows

RMCONFIG, InstantSQL and XML Extensions are available as both 32-bit and 64-bit
versions.

No special compilation options are required to build 64-bit RM/COBOL programs — compiled
object files (.cob files for the default object file extension) are fully compatible with either the
32-bit or 64-bit runcobol command. Non-COBOL programs not supplied by Micro Focus,
that is, user DLLs, must be rebuilt as 64-bit programs to be loaded by the 64-bit runtime. A
32-bit DLL cannot be loaded by the 64-bit runtime; this will often manifest as a “called
program not found” error since the search for a loadable program to satisfy the CALL
statement will be unsuccessful for the 64-bit runtime.

To verify that an installation is successful, see Chapter 5: System Verification (on page 139).

Installation Locations

On 64-bit Windows, the 64-bit programs (runtime, compiler, recovery, etc.) are installed in
“C:\Program Files\Micro Focus\RM\RMCOBOLV12-64", while the 32-bit programs are
installed in “C:\Program Files (x86)\Micro Focus\RM\RMCOBOLV12”. Shared 64-bit
components are installed in “C:\Program Files\Common Files\RM\RMCOBOLv12-64”",
while 32-bit shared components are installed in “C:\Program Files\Common
FilessRM\RMCOBOLV12”. If these programs are installed in custom locations, it’s critical
that the 32-bit components and the 64-bit components are separated, that is, not installed in
the same folder.

On 32-bit Windows, the 32-bit programs (runtime, compiler, recovery, etc.) are installed in
“C:\Program Files\Micro Focus\RM\RMCOBOLv12”. Shared 32-bit components are
installed in “C:\Program Files\Common Files\RM\RMCOBOLv12".

Electronic Product Delivery Installation

Note You must have an Internet connection and an Internet browser installed to proceed with
this method of installation.

The email containing notification of your Electronic Product Delivery contains an attachment,
a file named liant.lic. This file is a license certificate authorizing you to install the purchased
software. We recommend that you create a directory on your machine to store the license
certificates for your Micro Focus RM/COBOL products and save the liant.lic attachment to
this directory with a name that is meaningful to you.

RM/COBOL is available as a download from the Micro Focus Electronic Product Delivery
web site in two formats: Windows Self-Extracting EXE and ISO CD Image. A link to the
web site is provided in the notification email. From the web site, simply follow the download
and decompress instructions for the file format selected, and then perform the installation
instructions for that format, as outlined below.

e Windows Self-Extracting EXE. After downloading and decompressing the
deliverables, and creating the installation components directory from the Windows Self-
Extracting EXE format, follow these steps to install the RM/COBOL software on the
Windows operating system:

Note When the Windows Self-Extracting EXE is decompressed and the installation
components directory is created, the RM-Install program should start automatically. If
this is the case, proceed to step 6. Otherwise, begin with step 1.

1. Place a copy of your RM/COBOL license certificate, liant.lic, in the directory
containing the installation components.

RM/COBOL User's Guide

a7

Chapter 3: Installation and System Considerations for Microsoft Windows

48

RM/COBOL User's Guide

Click Start, and then click Run. In the Run dialog box, click the Browse button.

In the Browse dialog box, navigate to the directory containing the installation
components.

Click on the file, RM-Install, and then click Open.
In the Run dialog box, click OK.

The RM-Install program begins executing. Follow the instructions presented on the
screen and press the Next button to advance through the various pages.

On the Software License Agreement page, you must click “I accept the terms in the
license agreement” in order to continue with the installation.

On the License Certificates page, the license certificate file for the product being
installed is displayed. Do one of the following:

o If the license certificate for RM/COBOL software being installed is present in
the list area, press the Next button.

o If the license certificate for the RM/COBOL software being installed is not
present in the list area:

a. Press the Add button.

b. Inthe Select License Certificates dialog box, navigate to the directory
containing the license certificate file for the RM/COBOL software being
installed and select the filename for the license certificate. (This license
file, named liant.lic, is attached to the original Electronic Product Delivery
email for the product.)

c. Pressthe Open button and then press Next.
On the Installation Type page, do one of the following:

e Select the “Standard Installation” option to install all the components of all the
license certificates listed on the License Certificates page immediately, using
their default settings. Press the Install button.

e Select the “Custom Installation” option to select specific components (for those
products with multiple components) of all the license certificates listed on the
License Certificates page, and install them, changing their default installation
settings, as necessary.

Follow the custom installation instructions presented on the remaining pages.
On the Ready to Begin Installations page, press the Install button.

When the installation for the RM/COBOL components starts, follow the
additional instructions presented by the installation program.

e Select the “Administrative Installation” option to select specific components (for
those products with multiple components) to install in a shared Network Folder
for installation later on Network Client Machines.

Follow the administrative installation instructions presented on the remaining
pages. On the Ready to Begin Installations page, press the Install button.

Following the installation, the shared Network Folder will contain the necessary
files to install the components on the Network Client Machines, including the
license certificate files and a copy of the RM-Install program, which then can
be used to control the installation.

Chapter 3: Installation and System Considerations for Microsoft Windows

e Select the “Network Installation” option to select specific components (for those
products with multiple components) to install from shared Network Folder onto
Network Client Machines.

Follow the network installation instructions presented on the remaining pages.
On the Ready to Begin Installation page, press the Install button.

10. When either the standard, custom, administrative, or network installation is
complete, click the Finished button on the Installation Status page.

After installation is complete, you can display the RM/COBOL Start Menu Programs
folder, which is illustrated in Figure 3 on page 51.

ISO CD Image. The download format for ISO CD Image contains the full RM/COBOL
product CD. Use CD-ROM Burning software, such as Nero (http://www.nero.com) or
Roxio’s Easy CD Creator (http://www.roxio.com), to create the physical CD-ROM
media. Follow the instructions described in the following topic to install your product.

CD-ROM Installation

After downloading and decompressing the deliverables, and creating the installation
components directory from the ISO CD Image format, follow these steps to install the
RM/COBOL software on the Windows operating system:

1.
2.

Insert the RM/COBOL for 32-bit Windows CD-ROM in the appropriate CD-ROM drive.
Do one of the following:
e Ifthe installation program starts automatically, proceed to step 3.
e Ifthe installation program does not start automatically, click Start, and then click
Run. Inthe Open text box of the Run dialog box, type the following:
d:RM-Install

where, d is the drive letter of the CD-ROM drive. Click OK.

The RM-Install program begins executing. Follow the instructions presented on the
screen and press the Next button to advance through the various pages.

On the Software License Agreement page, you must click “I accept the terms in the
license agreement” in order to continue with the installation.

On the License Certificates page, the license certificate for the product being installed is
displayed. Do one of the following:

o Ifthe license certificate for the RM/COBOL software being installed is present in the
list area, press the Next button.

o Iflicense certificates for any products you do not wish to install are present in the list
area, select them and press the Remove button. Then, press the Next button.

o If the license certificate for the RM/COBOL product software being installed is not
present in the list area:

a. Press the Add button.

b. Inthe Select License Certificates dialog box, navigate to the directory
containing the license certificate file for the RM/COBOL software being
installed and select the filename for the license certificate.

RM/COBOL User's Guide

49

http://www.nero.com/
http://www.roxio.com/

Chapter 3: Installation and System Considerations for Microsoft Windows

50

6.

7.

This license file, usually named liant.lic, is included on the license diskette that
came as part of the installation media.

c. Press the Open button and then press Next.

Note The liant.lic license certificate file can be copied from the diskette to a
location on a hard drive and that location can be specified during installation. We
recommend that you create a separate directory on your machine to store the license
certificate files for all of your Micro Focus products and save those files with a name
that is meaningful to you.

If there are license certificates for any other products that you wish to install at this
time, press the Add button again to add them; otherwise, press the Next button.

On the Installation Type page, do one of the following:

Select the “Standard Installation” option to install all the components of all the
license certificates listed on the License Certificates page immediately, using their
default settings. Press the Install button.

Select the “Custom Installation” option to select specific components (for those
products with multiple components) of all the license certificates listed on the
License Certificates page, and install them, changing their default installation
settings, as necessary.

Follow the custom installation instructions presented on the remaining pages. On the
Ready to Begin Installations page, press the Install button.

When the installation for the RM/COBOL components starts, follow the additional
instructions presented by the installation program.

Select the “Administrative Installation” option to select specific components (for
those products with multiple components) to install in a shared Network Folder for
installation later on Network Client Machines.

Follow the administrative installation instructions presented on the remaining pages.
On the Ready to Begin Installations page, press the Install button.

Following the installation, the shared Network Folder will contain the necessary files
to install the components on the Network Client Machines, including the license
certificate files and a copy of the RM-Install program, which can then be used to
control the installation.

Select the “Network Installation” option to select specific components (for those
products with multiple components) to install from shared Network Folder onto
Network Client Machines.

Follow the network installation instructions presented on the remaining pages. On
the Ready to Begin Installation page, press the Install button.

When either the standard, custom, administrative, or network installation is complete,
click the Finished button on the Installation Status page.

After installation is complete, you can display the RM/COBOL Start Menu Programs folder,
which is illustrated in Figure 3. The programs are described in Table 10 (see page 51).

Note For further information on installing RM/COBOL on a Windows operating system and
network client machines, see Installation Notes for Windows (on page 52).

RM/COBOL User's Guide

Figure 3: RM/COBOL Start Menu Programs Folder

Chapter 3: Installation and System Considerations for Microsoft Windows

& Development v12 |’._||’E|E‘
File Edit Yiew Favorites Tools f
D Back - ¥ D search [Folders [e U] [% LL] B & F X & F
Address |23 C\Documents and Settingstall UsersiStart MenUiPrograms|\RMCOBOL Development v12 b Go

File and Folder Tasks

j Make a nevs Folder
@ Publish this folder ta the
Web

It Share this Folder

Other Places

|F) RMCOBOL

D My Docurnents
W My Computer
g [y Mebwork Places

®)Ml)

CodeBridge User's Guide
Sharkcut
1KE

Readie
Shorkcut
1KE

RMCOBOL Language Ref,

Shorkcut
1KE

RMCOBOL User's Guide
Sharkcut
1KE

* #ML Extensions ReadMe

Shorkcut
1KE

Campiler
Sharkcut
. 2B

P |

PO Reqistry Configuration
Shorkcut
1KE

%y RMCOBOL Synkas Summary
% Sharkcut
1KB

Toolbar Editar
Sharkcut
2B

% ML Extensions User's Guide
% Sharkcut
1KE

¥

[ﬁlz

&
&
=4
&

INI ko Registry
Shortcut
2B

RM Samples
Sharkcuk
1KE

RMCOBOL Syntax Summary Help
Sharkcuk
1KE

Heentrisity Samples
Shortcuk
1KE

Details

Development ¥12

File Falder

Date Modified: Today, May 12,
2017, 09:19

14,8 KB

14 objects :J Iy Computer

Note Depending upon the RM/COBOL package that you purchased, not all of the program
icons in Figure 3 will be displayed on your system or additional ones may be displayed. The
image for Figure 3 is from Windows XP. Later versions of Windows have revised or
eliminated the Start Menu.

Table 10: RM/COBOL Program Icons

Program Icon Name Description

CodeBridge User’s Guide Starts Adobe Reader for the CodeBridge User’s Guide PDF
file.
CodeWatch Starts CodeWatch, a fully integrated development

environment for RM/COBOL for Windows.

CodeWatch Help Starts the CodeWatch help file.

CodeWatch Readme Starts Notepad for the CodeWatch Readme text file.

CodeWatch User’s Guide Starts Adobe Reader for the CodeWatch User’s Guide PDF

file.

Compiler Starts the RM/COBOL compiler (rmcobol.exe) and prompts

for a source filename.

INI to Registry Starts the Initialization File to Windows Registry Conversion
utility (ini2reg.exe). This program takes a Windows
initialization (.ini) file and inserts its entries into the Windows

registry database used by RM/COBOL.

Readme Starts Notepad for the Readme text file, which contains
release notes for the installed version of RM/COBOL.
Recoverl Starts the Indexed File Recovery utility (recoverl.exe). This

program is used to recover damaged indexed files.

RM/COBOL User's Guide 51

52

Chapter 3: Installation and System Considerations for Microsoft Windows

Table 10: RM/COBOL Program Icons
Program Icon Name Description

Registry Configuration Starts the RM/COBOL Configuration utility (rmconfig.exe).
This program sets the runtime system (runcobol.exe),
compiler (rmcobol.exe), and Indexed File Recovery utility
(recoverl.exe) options for RM/COBOL programs and data

files.
RM Samples Shortcut to folder containing RM/COBOL samples.
RMCOBOL Language Ref. Starts Adobe Reader for the RM/COBOL Language

Reference Manual PDF file.

RMCOBOL Syntax Summary Starts Adobe Reader for the RM/COBOL Syntax Summary
PDF file.

RMCOBOL Syntax Summary Starts the RM/COBOL Syntax Summary help file.
Help

RMCOBOL User’s Guide lgtlarts Adobe Reader for the RM/COBOL User’s Guide PDF
ile.

Runtime Starts the RM/COBOL runtime system (runcobol.exe) and
prompts for a program-name.

Toolbar Editor Starts the toolbar button editor program (rmtbedit.exe).

Xcentrisity Samples Shortcut to folder containing Xcentrisity samples.

XML Extensions Readme Starts Internet Explorer for the XML Extensions Readme file.

XML Extensions User’s Guide Starts Adobe Reader for the XML Extensions User’s Guide
PDF file.

Installation Notes for Windows

The following notes apply to installing RM/COBOL on Windows systems.

Installation of RM/COBOL on Windows

The RM/COBOL installation procedure checks the system configuration for compatibility of
other products with RM/COBOL. Certain Windows features can cause problems with
RM/COBOL. To avoid these problems and fix incorrect Windows registry entries, see
Network Redirector File Caching (on page 658) and Opportunistic Locking (on page 659).

The “C runtime” on Windows provides a library of routines used by RM/COBOL to interface
with the operating system and provide other functionallity. In the summer of 2015, Microsoft
initiated a major change in the way the C runtime is packaged with their operating systems.
Prior to that date, it was the responsibility of the software vendor to install the desired "C
runtime" for their product. To some extent, that is still true, but one important piece, called
UCRTBASE, has now been declared to be a part of the operating system, and it is now kept
up to date using Windows Update. The one exception to this is Windows XP, which is no
longer receiving Windows updates.

For most other Windows operating systems, if the system is being kept up to date with
Windows Update, the RM/COBOL and Relativity products should install without incident.
However, if UCRTBase is not already installed on a system, the following changes have been
made to the RM/COBOL and Relativity 12.13 product releases:

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

If the product is being installed on Windows XP, the RM-Install installer for
Windows will automatically install a UCRTBASE.

If the product is Window 7 (not Windows 7 Update 1) or Windows 8 (not Windows
8.1), the RM/COBOL products can no longer support these platforms as
UCRTBASE is not supported there.

If the product is installed via RM-Install and there isn't an UCRTBase present on the
system, RM-Install will automatically install the UCRTBase for the product.

If the RM/COBOL product is installed using the MSI directly, instead of using RM-
INSTALL, and there isn't a UCRTBase on the system, the installation will fail with a
message indicating this problem. If you have this or other problems installing your
RM/COBOL product, there is a redist folder in your installation media or electronic
software delivery. Within the redist folder there are two EXE's that can be used to
install the proper C Runtime. Execute vc_redist.x86.exe to install the C Runtime on a
32-bit Windows system or execute vc_redist.x64.exe to install the C Runtime on a
64-bit Windows system.

RM/COBOL for Windows is currently built with Microsoft Visual C/C++ 2017 (MS VC
v14.1). Prior versions of RM/COBOL were built with Microsoft Visual C/C++ 2015 and
2010 (MS VC v14.0 and v10) and, earlier still, Microsoft Visual C/C++ 2005 (MS VC v8).
For the most part, this does not affect users of the RM/COBOL product. An area where this
might affect users is when they have user DLLs built with a different version of Microsoft
Visual C than the RM/COBOL product they are using. Visual C 2017 uses the C/C++
runtime vcrutime140.dll, since it is version 14 (14.1 and 14.0 have the same name), and
Visual Studio 2010 uses the C runtime msvcr100.dll, since it is version 10. Installation of an
RM/COBOL product ensures that the necessary C runtime is installed and increments the use
count for that C runtime DLL. The following issues may exist for your user written DLL:

1.

The DLL may use a different C runtime than the RM/COBOL Runtime is using.
This is generally not a problem except for certain cases where the C runtime has data
settings that are not shared between the two different C runtimes. An example of
this is the _fmode (file mode) variable that tells the C runtime whether files are to be
opened as text or binary on Windows. The RM/COBOL runtime sets the file mode
to binary while running COBOL programs, but resets the file mode to the Windows
default of text when calling a non-COBOL program, as in calling a user DLL, and
restores the binary mode after the non-COBOL program returns. When the C
runtime is different in the DLL, then the DLL depends on the Windows default for
the file mode. In such cases where the C runtime has a state variable that the user
expects to be consistent between RM/COBOL and their user DLL, it might be
necessary to rebuild the user DLL with the same Visual C used to build the
RM/COBOL product.

Uninstalling an older version of RM/COBOL and installing a newer version could
delete C runtime files from Windows\System32 or Windows\SysWOW®64 directories
that are considered no longer needed by the installer during the uninstallation. Since
user DLLs are not often installed from an MSI that registers the shared DLLS needed
by the user DLL, uninstalling the RM/COBOL product may cause the C runtime
DLL (for example msvcr100.dll) referenced by the user DLL to be deleted during the
uninstallation of RM/COBOL. This would happen if RM/COBOL was the only
product installed that used the older shared DLL for the C runtime. After the
deletion, the user DLL would not load because it has an unsatisfied dependency on
the older C runtime that is no longer present. This usually presents itself as a “not
found” error for the CALL statement in the RM/COBOL program that calls the user
DLL; the DLL is actually found but cannot be loaded and the search continues for a
DLL that can be successfully loaded; when the search ends without success, the “not
found” error is reported. To fix this issue, the older C runtime DLL must be added

RM/COBOL User's Guide

53

54

Chapter 3: Installation and System Considerations for Microsoft Windows

back manually or the user DLL rebuilt with the same Visual C version used to build
the RM/COBOL product.

Installation of RM/COBOL on Network Client Machines

The RM/COBOL installation process for CodeWatch, Runtime, Recoverl, and Compiler
supports users who wish to install RM/COBOL on a network server machine and then install
RM/COBOL on multiple client machines using the RM/COBOL installation on the server.

First, install all of the RM/COBOL components that you need onto the server machine using
the “Administrative Installation” method. This may be performed either directly on the server
or from a client machine via a mapped network drive. The administrative installation will
prompt for a Network Folder. This must be the shared folder that the client machines will
access for the installation.

Note Using the “Administrative Installation” will not result in a working installation on the
network server or the client machine on which it was run. An administrative installation is
merely a preparation for installing on client machines. You must perform a standard, custom,
or network installation to have a complete installation on the server machine. This is a change
in behavior from previous versions of RM/COBOL.

Then, on each remaining client machine, invoke the RM-Install program in the network
shared directory that was specified as the Network Folder during the administrative
installation, and then specify a network installation on the Installation Type page. This causes
the installation process to install the RM/COBOL program folder and icons for those
components that already exist in the original server installation. Shared system DLLs (such as
CTL3D32.DLL and MSVCRT.DLL) also will be installed on the client machine (if a later
version does not already exist there) and appropriate Windows registry entries will be created.

Default Native Character Set

Once RM/COBOL has been installed on Windows, the character set defined by the OEM
codepage becomes the default native character set for the compiler, runtime, and CodeWatch.
Starting with version 9, RM/COBOL also has support for a native character set using the
ANSI codepage. A complete explanation of native character set selection is provided in
Character Set Considerations for Windows (see page 100).

Registering the RM/COBOL Compiler and Runtime
Executables

The RM/COBOL compiler and runtime system use clients and servers that conform to
Microsoft Windows Component Object Model (COM) technology standard. The server must
be registered with Windows, which is normally done during system installation. This section
discusses the information that must be considered when components of the RM/COBOL
compiler or runtime system are moved or renamed after installation or if the Windows
registry is damaged. For information on registering the runtime, see Runtime Registration (on
page 56).

Compiler Registration

The RM/COBOL for Windows compiler consists of two components:

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

e Aclient, which may be either of the following:
— The console-mode client, called rmcobolc.exe
— The GUI-mode client, called rmcobolg.exe
Either client may be called rmcobol.exe.

e Aserver, called rmcbl12c.dll

The compiler server DLL, which must be registered with Windows before RM/COBOL
programs can be compiled, is automatically registered when the compiler is installed. If the
compiler is moved to a directory other than the installation directory without a reinstallation,
an error message is displayed indicating that there is a registration problem. The error
message is displayed either in the console window for the console-mode compiler or in a
message box for the GUI-mode compiler. The text of the error message is as follows:

An error occurred while the RM/COBOL compiler was loading:
Class not registered (the code is 80040154).

To resolve this problem, reinstall the RM/COBOL compiler, or register
the RM/COBOL compiler with the /REGSERVER command.

As indicated, there are two ways to resolve this problem. You can do either of the following:
e Repeat the installation process.

e Use the /REGSERVER command-line option.

Registering the Compiler

To register the RM/COBOL for Windows compiler in a directory other than the installation
directory using the /REGSERVER command-line option:
1. First, make sure that rmcbl12c.dll is in the Windows System directory.

2. Then, either click the Windows Start button and select Run from the menu, or open a
Command Prompt window.

3. Enter the following command:
path\RMCOBOL /REGSERVER

where, path is the drive and directory or the UNC location of these two files. For
example:

"c:\program files\rmcobol vl12\rmcobol" /regserver

Note The quotes are necessary only if the executable pathname contains spaces.

4. If the registration process is successful, a message, such as the following, is displayed:

Server "c:\windows\system\rmcb1120c.dll"
registration succeeded.

It does not matter which of the two clients, the console-mode or GUI-mode, is used to register
the server, other than that the console-mode compiler displays the message in the console

RM/COBOL User's Guide

55

Chapter 3: Installation and System Considerations for Microsoft Windows

56

window while the GUI-mode compiler displays the message in a message box. Regardless of
which client registers the server, either compiler client can use the registered server.

Unregistering the Compiler

The RM/COBOL compiler also provides the /UNREGSERVER command-line option to

unregister the compiler from Windows. Although the uninstallation program automatically

unregisters the compiler, this can be done manually with the following command:
path\RMCOBOL /UNREGSERVER

When the compiler server has been properly unregistered, a message, such as the following, is

displayed either in the console window for the console-mode compiler or in a message box for

the GUI-mode compiler:

Server "c:\windows\system\rmcbl12c._dIl" unregistration succeeded.

If the compiler server had not been properly registered or has already been unregistered, a
detailed error message is displayed instead. For example:

The server could not be unregistered: Class not registered

In this error message, “Class not registered” indicates that the server was not registered.

It is not necessary to unregister the compiler server before re-registering the compiler server
from a different location.

Showing the Compiler Registration

Finally, the following option will display the location of the currently registered compiler
server:

path\RMCOBOL /SHOWSERVER
When the compiler server has been properly registered, a message, such as the following, is
displayed either in the console window for the console-mode compiler or in a message box for
the GUI-mode compiler:

Server "c:\windows\system\rmcbl12c.dll" is currently registered.

If the compiler server is not properly registered, a detailed error message is displayed instead.
For example:

Show server failed: Class not registered

In this error message, “Class not registered” indicates that the server is not registered.

Runtime Registration

The RM/COBOL for Windows runtime system consists of two components:
e Aclient, called runcobol.exe

e Aserver, called rmcbl12r.dll

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

The runtime server DLL, which must be registered with Windows before RM/COBOL
programs can be run, is automatically registered by the Setup program when the runtime
system is installed. If the runtime is moved to a directory other than the installation directory
without a reinstallation, an error message is displayed in a message box indicating that there is
a registration problem. The text of the error message is as follows:

An error occurred while the RM/COBOL runtime was loading:
Class not registered (the code is 80040154).

To resolve this problem, reinstall the RM/COBOL runtime, or register
the RM/COBOL runtime with the /REGSERVER command.

As indicated, there are two ways to resolve this problem. You can do either of the following:

e Repeat the installation process.

e Use the /REGSERVER command-line option.

Registering the Runtime

To register the RM/COBOL for Windows runtime in a directory other than the installation
directory using the /REGSERVER command-line option:

1. First, make sure that rmcbl12r.dll is in the Windows System directory.

2. Then, either click the Windows Start button and select Run from the menu, or open a
Command Prompt window.

3. Enter the following command:
path\RUNCOBOL /REGSERVER

where, path is the drive and directory or the UNC location of these two files. For
example:

"C:\program files\rmcobol v9\runcobol" /regserver

The registration is for the machine, but if that fails for lack of permissions, then the
registration is done for the current user.

Note The quotes are necessary only if the pathname contains spaces.

Registration can also now be performed for the current user only instead of per-machine
basis. This type of registration does not require the user have administrative privileges.
The above command silently registers the runtime only for the current use if per-machine
registration fails due to a lack of permissions. However, current user registration can not
be forced if the current user is an administrator. To register the runtime only for the
current user, use this Windows system command:

regsvr32 /n /i:user path\RMCBL12R.DLL

Note Omitting the /n /i:user is equivalent to registering runcobol with the /REGSERVER
option, that is, registering for the machine, and if that is not possible, then just for the
current user. Omitting just the /n registers both for the machine and the user; this does
require the user have administrative privileges.

Note If both the 32-bit and 64-bit runtime systems are installed, each must be registered
independently.

RM/COBOL User's Guide

57

Chapter 3: Installation and System Considerations for Microsoft Windows

4. If the registration process is successful, a message, such as the following, is displayed:

Server "c:\windows\system\rmcbl12r_dIl" registration succeeded.

Unregistering the Runtime

The RM/COBOL runtime also provides the /UNREGSERVER command-line option to
unregister the runtime from Windows. Although the uninstallation program automatically
unregisters the runtime, this can be done manually with the following command:

path\RUNCOBOL /UNREGSERVER

When the runtime server has been properly unregistered, a message, such as the following, is
displayed:

Server "c:\windows\system\rmcbl12r_dIl" unregistration succeeded.

If the runtime server had not been properly registered or has already been unregistered, a
detailed error message is displayed instead. For example:

The server could not be unregistered: Class not registered

In this error message, “Class not registered” indicates that the server was not registered.

It is not necessary to unregister the runtime server before re-registering the runtime server
from a different location.

To unregister the runtime only for the current user, use this Windows system command:

regsvr32 /u /n path\RMCBL12R.DLL

Showing the Runtime Registration

Finally, the following option will display the location of the currently registered runtime
server:

path\RUNCOBOL /SHOWSERVER

When the server has been properly registered, a message, such as the following,
is displayed:

Server "c:\windows\system\rmcbl12r_dIl" is currently registered.

If the runtime server is not properly registered, a detailed error message is displayed instead.
For example:

Show server failed: Class not registered

In this error message, “Class not registered” indicates that the server is not registered.

58 RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

System Removal for Windows

To remove RM/COBOL from your system;

1.
2.

8.

Open the Windows Control Panel.

In the Control Panel, do one of the following:

e On Windows 2000, XP, or Server 2003, double-click Add or Remove Programs.
e On Windows Vista or Server 2008, double-click Programs and Features.

In either the Add or Remove Programs Properties window or the Programs and Features
window, select Micro Focus RM/COBOL vx Compiler from the list of currently
installed programs and updates. (vx is the version number of the product to be removed.)

Note Follow these same instructions to select and remove other RM/COBOL product
components (for example, Micro Focus RM/COBOL vx CodeWatch Debugger, Micro
Focus RM/COBOL vx Recoverl, and Micro Focus RM/COBOL vx Runtime), if
necessary.

Do one of the following to start the uninstall process:

e On Windows 2000, XP, or Server 2003, click the Remove button.
e On Windows Vista or Server 2008, click the Uninstall button.

In the message box, click Yes to proceed with the uninstall process.

The Micro Focus RM/COBOL vx Compiler dialog box is then displayed, detailing the
progress of the uninstall.

When the uninstall is successfully completed, click OK.

Click OK to close either the Add or Remove Programs window or the Programs and
Features window.

Close the Windows Control Panel.

All installed RM/COBOL system programs, files, shortcuts, and Windows registry entries are
now removed. Customer files are not affected.

System Configuration for Windows

As mentioned, RM/COBOL supports IBM PCs, full PC compatibles, and Windows systems.
This section sets forth information required to configure RM/COBOL with each type of
system.

Creating a Windows Shortcut

When you create a shortcut in Windows, you must also specify the properties of the item.
Properties include a description of the item (the application name) and the working directory
where the application files are stored.

To create a shortcut for an application under Windows:

1.

Open the folder to which you want the item added. (Note that you can also add an item
directly to the desktop.)

RM/COBOL User's Guide

59

60

Chapter 3: Installation and System Considerations for Microsoft Windows

Click the right mouse button to open a context menu. Point to the New option and click
Shortcut. The Create Shortcut dialog box opens.

In the Command line text box, type in a runtime system command, as described in
Chapter 7: Running (on page 189). Click the Next button.

When prompted to name the shortcut, choose a name that uniquely identifies the
application program. This name becomes the label that is displayed under the shortcut
icon.

After Windows creates the shortcut, you must modify the properties of the shortcut in
order for it to work properly. Right-click the shortcut icon and choose Properties. The
Shortcut Properties dialog box opens.

Select the Shortcut tab in the dialog box. (Figure 4 illustrates the Shortcut Properties
Tab used in this example.)

In the Start in text box, enter the name of the directory where the program files for this
application are located and where new files will be placed. The directory you specify
here becomes the current directory while the application program is running.

Figure 4: Shortcut Properties Tab

Shortcut to verify.cob Properties

General | Shorteut |Secur'rt§,'

Shortcut to verfy.cob

e

Target type:

Target location: RMCOBOLv12

RMCOBOL Object

Target: |C:"-.F‘n:|g|am Files*Liant "\RMCOBOLy 1 2 werfy cob |

Start in: |C:"-.F‘n:uglam Files'\Liant \RMCOBOLy 12 |

Shortout key: | Maons| |

Bun: | Momal window w |

Comment | |

[Eind Target...] [Change lcon...] [Advanced...]

ok || cancel || ooy |

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

Using Associations with Filename Extensions

During installation, RM/COBOL for Windows automatically sets up filename extension
associations for .cbl and .cob files. These associations allow the user to compile or run source
or object files by double-clicking these files when running the Windows File Manager or
Windows Explorer. Because the Windows shell can only associate file extensions with one
program at a time, the last-installed runtime system (32-bit or 64-bit) will be invoked when an
object file (.cob file) is double-clicked.

Note We do not recommend applications be launched with a Windows shell double-click
except on dedicated machines such as point-of-sale terminals. The recommendation is based
on the fact that an application from another vendor can take over ownership of .cob files at
any time.

Normally, you cannot pass command-line options to Windows programs executed using a
filename extension association. However, using the Windows registry (see page 67), it is
possible to inform the RM/COBOL compiler or runtime system of command-line options for
all programs or for specific programs. For a discussion of the command-line options in the
RM/COBOL configuration, see the Command Line Options property (on page 74).

Under Windows, it is also possible to drag and drop .cbl and .cob files to the RM/COBOL
compiler or runtime system for execution. Dropping a .cbl file on a printer icon will print that
source file.

Prompting for a Filename

If the command line specified for the compiler or the runtime system has a ? character for the
source or object filename, the Select an RM/COBOL Object File dialog box is displayed, as
shown in Figure 5.

Figure 5: Select an RM/COBOL Object File Dialog Box

21X

Select an RM/COBOL Object File

Look in: | £ RMCOBOLv12

| e &y E

1) chridge ghroevicecos @vdttest.cab
53) InstantsqL @hronaoccos @verify.cob
My Recent [C3PDFLb @hrcerFonT.coe @M winatrb.cob
Documents |~ pmautoLd @hrrnro.cos @winbardr.cob
'_T [CHRMNet ﬁprntest.cob ﬁ';-.'incnlnr.cob

[Chsamples ﬁF‘TEZx‘I‘I’ﬂI:‘I’.COB ﬁ';-.'inrelt'-.-'.cnb

Dasktop [isuppartTocls @MReEcovEr2.cos @Mwinstat.cob

) CsMLENT @hrecovery.coe @ wintest.cob

—_) @Manaivsis.coe @MRvoerccoE @ wintite.cob
@M coverify.cab ghrvmro.cos

My D it
Vy Documenis | o coniarc.cos

—_— ﬁﬁletest.cob
'jl)-g ﬁhelo';-.'rld.cnb
s ﬁix'-.-'eriﬁ'.cnb
ﬁnuctest.cob

ﬁpacetest.cnb

(]

Iy

@M rmapI CoB

@ rimappe,coB
@M rvecmcom.cos

@Mrunpanz.coB
ﬁsnrttest.cnb
@M srsiFo.coe

My Metwork
Flaces File name: | j Open
Files of type: |RIM/COBOL Objscts = Cancel

RM/COBOL User's Guide

61

62

Chapter 3: Installation and System Considerations for Microsoft Windows

When the user selects the file from the list available in the space below the Look in
drop-down list box, the filename in the File name text box replaces the ? character on the
command line. To open (or start) the source or runtime system file, click the Open button.
Double-clicking the name of the file also opens (or starts) the selected object file.

Locating RM/COBOL Files on Windows

File Locations within Operating System Pathnames on
Windows

File locations are determined by the pathname of the file, according to operating system rules
and conventions. A fully qualified pathname contains the drive specifier, a directory path, the
filename, and the filename extension. A filename that begins with a universal naming
convention (UNC) specifier (\server) is also treated as a fully qualified pathname.

Note Novell NetWare syntax (server\volume:filename) is no longer supported. Use of UNC
filename is now required (\\server\volume\filename).

If a pathname is specified without a drive specifier, the current drive is assumed. If a
pathname is specified without a directory path, RM/COBOL searches the current directory of
the specified or assumed drive.

Specifying a directory path with a leading slash, a drive letter, or a volume name indicates to
RM/COBOL that an exact filename has been specified. If RM/COBOL cannot find the file in
the specified location, it will not look elsewhere. If you do not specify a directory path, and
RM/COBOL cannot find the file in the assumed location, it will search for the file according
to the directory search sequence. If a directory path is specified, but there is no leading slash,
drive letter, or volume name, then the EXPANDED-PATH-SEARCH keyword (see page 337)
of the RUN-FILES-ATTR configuration record determines whether the directory search
sequence will be used. When the configuration keyword is set to its default value of NO, the
directory search sequence will not be used. If the value is set to YES, then the entire name,
including the directory path, will be appended to each entry in the directory search sequence
in an attempt to locate the file.

Directory Search Sequences on Windows

You can direct RM/COBOL to search for a file not found in the current working directory by
using a predefined directory search sequence. There are two directory search sequences: one
for the compiler and one for the runtime system.

To direct the RM/COBOL compiler to use the directory search sequence, set the RMPATH
environment variable. You can do this by setting a synonym with the RM/COBOL
Configuration (rmconfig) utility (see page 614). Alternatively, you can right-click the mouse
button on a .cbl file, select the Synonyms Properties tab, and set the RMPATH synonym with
the following syntax (as discussed in Setting Synonym Properties on page 86):

path [;path] ...

To direct the RM/COBOL runtime system to use the directory search sequence, set the
RUNPATH environment variable. You can do this by setting a synonym with the
RM/COBOL Configuration (rmconfig) utility. You may also right-click the mouse button on

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

a .cob file, select the Synonyms Properties tab, and set the RUNPATH synonym with the
following syntax (as discussed in Setting Synonym Properties on page 86):

path [;path]

For both the RMPATH and RUNPATH environment variable values, path indicates the
directory that is to be searched for the file, and has the form:

[d:1 [\] directory [\directory] ...

where, d is the drive specifier.

directory is the location of an existing file, or the location of a file that will be created.

If multiple paths are specified, they must be separated with semicolons.

Means other than setting synonyms can be used to set the RMPATH or RUNPATH
environment variable values. Consult your operating system documentation for such
methods. If synonyms are set, the synonyms will override values set by the operating system.

Figure 6 and Figure 7 illustrate the compiler and runtime system search sequences,
respectively.

Figure 6: Compiler Search Sequence

Look first in this directory on drive A: ‘l

\ \
A:-wage\hourly\overtime;B:

Then look in the current directory on drive B:

Figure 7: Runtime System Search Sequence

Look first in the current directory on drive A:,

then drive B:

Az;B:;C:\

Then look in the root directory on drive C: j

Files made to appear in the current directory by using Novell search directories when the
Novell Search Mode is set to a value other than 2 will not be accessed. If a file to be accessed
resides in a directory other than the current directory, that directory must be included in the
RMPATH or RUNPATH directory list. This requirement also applies to files located in
Novell search directories when the Novell Search Mode is set to a value other than 2.

The compiler, runtime system, and Indexed File Recovery (recoverl) utility (see page 599)
require access to other files in order to operate. These include the license vault and dynamic
link library files (with an extension of .dll). The license vault must reside in the same
directory as the executable file. RM/COBOL looks for the other files first in the directory
containing the executable file, then in the current directory, and finally in the directories
specified in the PATH environment variable. For the dynamic link library files, the default

RM/COBOL User's Guide

63

Chapter 3: Installation and System Considerations for Microsoft Windows

64

Windows system directory (or directories), followed by the default Windows directory, will
be searched prior to searching the directories specified in the PATH environment variable.
The search of the Windows 32-bit system directory is followed by a search of the Windows
16-bit system directory, if available.

The compiler and runtime system may be executed from a directory other than the current
directory if a complete pathname is specified in the command line, or if either the search
directory of Novell NetWare or the DOS PATH directory search feature is used. If a
complete pathname is not specified and the compiler or runtime system is not located in the
current directory, the directories specified by PATH are searched.

Novell NetWare Search Paths

Novell NetWare defines a search path for locating command files. RM/COBOL defines a
search path for locating compiler files (RMPATH) and for locating runtime system files
(RUNPATH). Both Novell NetWare and RM/COBOL search paths consist of a list of
directories from which attempts are made to open files.

With RM/COBOL search paths, if any one of the directories in a user’s path does not have
search permission for the user, then the searching sequence stops for all remaining directories
and a security violation is reported. This security violation indicates that the runtime system
has been prevented from examining the directory for a file. If a security violation occurs, and
the file is located in a directory for which the user has permission, examine the permissions
for other directories in the RUNPATH sequence.

To prevent this security violation, take one of the following actions:

e Give the user search permission for all directories in RUNPATH, RMPATH, and the
Novell NetWare search path.

e Alternatively, remove the directory from the search path.

Note This same security violation can occur when creating a new file, even if it is with
OPEN OUTPUT. The RM/COBOL runtime system still searches RUNPATH to locate a file
that needs to be replaced.

File Access Names on Windows

The file access name you specify in the COBOL source program specifies the physical file or
device to which input or output is directed. For information on specifying the file access
name in a COBOL source program, see the discussion of the ASSIGN clause (file control
entry) in Chapter 3: Environment Division, and the discussion of the VALUE OF clause in
Chapter 4: Data Division, of the RM/COBOL Language Reference Manual.

To establish synonymy between a file access name, specified in your source program and
another name specified when the program is run, use an environment variable. Environment
variables may be set using the Synonyms tab of the Properties dialog box, as illustrated in
Figure 8. The Synonyms Properties tab is described in the topic Setting Synonym Properties
(see page 86). Consult your operating system documentation for other methods of setting
environment variables.

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 8: Synonyms Tab of the Properties Dialog Box

¢ doverify Properties for Runtime

Colors] Toolbar] Menu Bar] Fop-up Menu]
Select File | Cortrol Synoryms

Select the synonym name you want to change at the top, and then
enter a new value at the bottom,

HName
repark
Hemove
R ermowve Al
Walle:
LPT1

O | Cancel Apphy

For example, let us say that you specified a generic file access name for program input-output
and wish to direct it to a specific device or file. A generic file access name is one that does
not specify a directory path or drive letter. Since the format of physical pathnames, including
conventions of specifying drive letters and directory names, varies from one operating system
to another, for maximum portability it is recommended that source programs specify generic
file access names, preferably with eight or fewer letters. This recommendation only applies
when the file access name is hard coded into the program as a literal.

For example, if the file control entry specifies:
SELECT REPORT-FILE ASSIGN TO PRINT, "report"
and no environment variable with the name “report” is found, RM/COBOL will create a file

named report in the current directory on the current drive.

If, prior to running the program, you set the synonym “report” to a value of LPT1, all program
output written to REPORT-FILE will be written to LPT1.

If—again prior to execution—you set the synonym “report” to a value of
“A:\output\audit.Ist”, RM/COBOL will create a file named audit.lst in the subdirectory
\output on drive A without any need to modify or recompile the source program.

RM/COBOL User's Guide

65

Chapter 3: Installation and System Considerations for Microsoft Windows

66

When an environment variable is not set, because there is ho synonym set and no other
method of setting the environment variable has been used, the file access name in the COBOL
program specifies the actual filename. Synonym values can be canceled by highlighting the
entry on the Synonyms tab of the Properties dialog box, clicking the Remove button, and
restarting runcobol.exe.

Whether or not an environment variable is used to modify the file access name, if the resulting
file access name does not include either a drive letter or a directory path, RUNPATH will be
used by the runtime system to obtain the fully qualified pathname. For additional
information, see File Locations within Operating System Pathnames on Windows (on

page 62).

The RESOLVE-LEADING-NAME and RESOLVE-SUBSEQUENT-NAMES keywords of
the RUN-FILES-ATTR configuration record can be used to force resolution of one or more of
the directory names from the environment. For more information, see the discussion of the
RUN-FILES-ATTR configuration record (on page 335).

Control characters are removed from the file access name, but spaces are preserved since
Win32 supports spaces in filenames.

The resulting file access name should follow the operating system rules for valid filenames
and pathnames. If the file access name contains any of the characters

\ 7/ : * o2 " < >]

an error will occur when the file is opened, with the exception that “\” may be used as a
directory separator and “:” may be used to indicate a device.

Windows System Print Jobs

When the resulting file access name is PRINTER or PRINTERN, where n is a decimal digit
from 1 to 9, RM/COBOL refers to the Windows printer device attached to LPT1: or LPTn:
respectively, provided that LPT1: or LPTn: has a Windows printer attached to it.

When the resulting file access name is a dynamic printer device, as described in Windows
Printers (on page 322), RM/COBOL displays the standard Windows Print dialog box when
the file is opened. This allows the user to select the destination Windows printer in a dynamic
manner (that is, at execution). Once the dynamic printer device has been opened, the selected
printer is remembered by the runtime, and subsequent opens do not display the standard
Windows Print dialog box. The program may call the P$EnableDialog subprogram (see

page 474) to force a standard Windows Print dialog box on the next open of a dynamic
printer. The program may also call the P$DisableDialog subprogram (see page 473) to cause
the Windows Print dialog box not to be displayed when the dynamic printer device is opened
for the first time. This feature can be useful when P$SetDialog (see page 475) has been called
to preset the needed printer (obtained from P$EnumPrinterInfo or by other methods) and the
application does not want the dialog to be displayed. The user may also set the Printer Dialog
Always property (see page 80) file to True to force the dialog box on every open of a dynamic
printer. The program may also call the P$DisplayDialog subprogram (see page 473) at any
time, to force the standard Windows Print dialog box to be displayed.

The DEFINE-DEVICE configuration record may define other file access names that are to be
treated as devices and change the default treatment of PRINTER and PRINTERnN. See
DEFINE-DEVICE Configuration Record (on page 319) for additional information on
configuring file access names that are to be treated as devices.

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

Windows Registry

Beginning with version 6.5, RM/COBOL for Windows stores configuration information for
the runtime system (runcobol), compiler (rmcobol), and Indexed File Recovery utility
program (recoverl) in the Windows registry. The registry is a hierarchical database used to
store configuration settings and options maintained by Windows.

The Windows registry is organized much like a disk drive’s directory structure. All of
RM/COBOL’s configuration information is stored under the “directory” path
“HKEY_LOCAL_MACHINE\SOFTWARE\Liant Software
Corporation\RM/COBOL\CurrentVersion”. Three subdirectories underneath that path
(rmcobol, runcobol, and recoverl) correspond with information previously stored in the
separate initialization files rmcobol.ini, runcobol.ini, and recoverl.ini.

Note Previous versions of RM/COBOL for Windows stored program configuration
information in separate initialization files located in the main Windows directory. These
initialization files are no longer used. However, when distributing configuration information
to end-users, initialization files can still be shipped with your product. To merge your
program’s configuration information into the Windows registry, include a call to the supplied
Initialization File to Windows Registry Conversion (ini2reg) utility (see page 613) in your
application’s installation procedure.

You are not required to know the inner details of the Windows registry structure in order to
change the properties of your programs. RM/COBOL for Windows includes Windows shell
extensions that allow the manipulation of configuration information for default values as well
as individual program settings without having to navigate through the Windows Registry
Editor. Configuration information for a specific COBOL program may be edited by right-
clicking a source or object file and choosing Properties. If a source file is chosen, the
properties used when compiling that program can be modified. If an object file is chosen, the
properties used when running that program can be modified. The configuration options
available in the Properties dialog box are described in the section Setting Properties (on

page 68). Configuration information for programs and generic default values may also be
edited by running the supplied RM/COBOL Configuration (rmconfig) utility (see page 614).

Users may migrate the complete RM/COBOL Windows registry information from one
machine to another by using the Registry Editor (regedit.exe), which is included with
Windows. This program allows entire sections of the Windows registry to be exported to a
text file (with the .reg extension), which can then be imported into the Windows registry of
another machine. Consult the Microsoft Windows help documentation for more information
on regedit.exe.

Windows Registry Considerations

Several Windows registry issues may be encountered when using the Initialization File to
Windows Registry Conversion (ini2req) utility (see page 613) if the RM/COBOL for
Windows runtime executable has been renamed.

Renaming the RM/COBOL for Windows Runtime

By default, the Windows registry key created by the ini2reg utility is the same as the name of
the input initialization file (.ini). This registry key is also used by the RM/COBOL
Configuration (rmconfig) utility (see page 614). The RM/COBOL for Windows runtime
expects to find the configuration information under a key based on the name of the executable

RM/COBOL User's Guide

67

Chapter 3: Installation and System Considerations for Microsoft Windows

module. If you rename the RM/COBOL for Windows runtime executable, runcobol.exe, it is
also necessary to rename the initialization file (runcobol.ini) to match the new runtime name
before the ini2reg utility is run.

Furthermore, if the RM/COBOL for Windows runtime is renamed, the Windows Explorer
SHELL/OPEN registry entry that names the runtime must be updated to reflect the new name.
Otherwise, Windows Explorer will be unable to find the runtime when a .cob file is opened,
and the runtime will not correctly read configuration information from the registry.

The RM/COBOL installation program automatically sets the SHELL/OPEN registry entry to
the drive and directory where the RM/COBOL for Windows runtime is installed. If the
runtime is later renamed or moved, the Registry Editor (regedit.exe) supplied with Windows
can be used to update the registry. The key is:

HKEY_LOCAL_MACHINE
Software
Classes
RMCOBOL .Object
shell
open
command

This entry must be set to the following:
x:\dir\filename.exe "%1"

where, x:\dir is the drive and directory containing the runtime, and filename is the name
of the RM/COBOL for Windows runtime. If this path contains spaces, it must be
surrounded by double quotes.

WARNING Use extreme caution when editing the Windows registry. Micro Focus
recommends that you do not change any other entries.

This entry can also be updated automatically using a properly prepared .reg file. See your
Windows documentation for details.

Setting Properties

This section describes the configuration options that can be set using the Properties
dialog box.

Note The Properties dialog box contains a set of seven tabs. Each tab contains a set of three
buttons that are active in all the tabs and which serve the same function. The OK button
accepts all the settings selected on that tab and then closes the dialog box. The Cancel button
closes the dialog box without saving any changes. The Apply button saves the settings
specified on that tab without closing the dialog box, allowing you to select another page of
options.

The following definitions explain terms used throughout this section.

Term Meaning

Boolean Indicates a value of True or False. A value of 1 or 0 may also be used to
indicate True or False.

number Indicates a positive integer value less than 65536, specified as a string of
decimal digits with an optional leading sign (“+”). A non-decimal digit
character, other than the optional leading sign character, terminates the

68 RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

evaluation of the number, but is otherwise ignored, including any
characters which follow. Numbers greater than 65535 are evaluated
modulo 65536. A leading “-“ sign is allowed, but the decimal number
following is subtracted from 65536 to yield a positive value.

Valid examples (excluding the delimiter quotes):
“gom
“p1om
Invalid examples (excluding the delimiter quotes):
“-5” (yields +65531)
“=5" (yields 0 because of leading non-decimal digit)
“5A” (yields 5 because trailing non-decimal digits terminate scan of the

number)
string Indicates alphanumeric characters.
filename Indicates the operating system filename.

Selecting a File to Configure

The Select File tab, illustrated in Figure 9, allows you to select the source file, object file, or
indexed file that you want to configure. The title bar on each tab of the Properties dialog box
provides three important pieces of information depending on the settings selected on the
Select File tab. First, it displays either the name of the specific COBOL program you selected
or “Default”, if you are setting system defaults for all programs. Second, it displays whether
you are configuring the program for the runtime, compiler, or recovery utility. Third, it
indicates the name of the custom key in the Windows registry if the default key is not being
used.

Note If you have opened the Properties dialog box by right-clicking the mouse button on

an RM/COBOL source or object file and then selected Properties, this tab will not be
available. You are only able to configure options for the default key in the currently selected
individual file.

RM/COBOL User's Guide 69

70

Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 9: Select File Tab

¢ doverify Properties for Runtime

Colors]
Select File

Toolbar] Menu Bar] Fop-up Menu

l Control

] Symaryms

Select the RM/COBOL component and the file you wizh to
configure. Thiz zelection affectz all other configuration pages.

Configure Configure for
¢ Default Properties * Buntirme

] & " Compiler
doverify *" Rgcovery
doverify Scope
filetest

o

nctest * .-'1'-.|_|.L|sers
prrtest " Thiz Uszer
zorttest
vittest Key
werify + Default
winattrb © Custam
winbordr —
wincalar
iwinrelky
winztat

|
l

I—
-
Browsze Remove
Use Defaus |

Uze Defaulkz

ok | cancel | Apply |

The Select File tab contains the following options:

RM/COBOL User's Guide

Configure. The two options provided in this area allow the specification of
configuration options for all programs or for a specific COBOL program.

Default Properties. When selected, the Default Properties option enables the other
Properties tabs (Control, Synonyms, Colors, Toolbar, Menu Bar, and Pop-up Menu)
to set system defaults for all files.

Individual File. When selected, the Individual File option enables the other
Properties tabs to change the properties for the file selected from the list box. (If the
needed file has not yet been configured, the Browse button can be used to add a new
file to the list or the Remove button can be used to remove a file from the list.) Any
directory path for the selected file must not be specified. For source and object files,
the extension must not be specified. For example, the source file
c:\mysrcdir\mysource.cbl must be specified as mysource and the object file
c:\myobjdir\myobject.cob must be specified as myobject. For indexed files, the
extension, if any, must be specified. For example, the indexed file
c:\mydatdir\mydata.inx must be specified as mydata.inx. The name specified is
not necessarily a file at all, but corresponds to the first argument from the command
line. In the case of the Runtime Command, this may be a program-name of a
program within a library file.

Chapter 3: Installation and System Considerations for Microsoft Windows

Note that the following buttons are enabled only when the Individual File option is
selected:

e Browse. Use this button to open a dialog box that allows you to look for a file
for which you want to set properties.

e Remove. Use this button to remove a selected file from the list of files.

Configure for. The three options provided in this area determine the activity for which
component the Properties tabs will configure a file.

Runtime. If this option is selected, the settings for the object file (.cob) will be
shown and used when running the file.

Compiler. If this option is selected, the settings for the source file (.cbl) are
affected.

Recovery. If this option is selected, the settings used for recovering a data file with
the Indexed File Recovery (recoverl) utility (see page 599) are affected.

Scope. The two options provided in this area allow you to specify the extent of the
configuration settings.

All Users. If this option is selected, all of the configuration options apply to all
users. These options are written into the Windows registry key,
HKEY_LOCAL_MACHINE. The Win32 version of RMCONFIG sets properties
that only affect Win32 programs. The Win64 version of RMCONFIG sets properties
that only affect the Win64 programs. This is only a concern when both Win32 and
Win64 RM/COBOL products are installed.

Note You must have Administrator privileges and, on Windows Vista, the
RM/COBOL Configuration (rmconfig) utility (see page 614) must be running as
Administrator. Furthermore, on Windows Vista,
HKEY_LOCAL_MACHINE\SOFTWARE always appears writable even without
Administrator privileges because it is virtualized for each user into:

HKEY_CURRENT_USER\Software\Classes\VirtualStore\MACHINE\SOFTWARE

This User. If this option is selected, all of the configuration options apply only to
the current user. These options are written into the Windows registry key,
HKEY_CURRENT_USER. Properties set for This User affect both the 32-bit and
64-bit products; either version, Win32 or Win64, of RMCONFIG can be used to set
these options.

Note It is possible to configure programs by selecting “Properties” from the system
menu in the the runtime window. The above rules regarding 32-bit and 64-bit
applies to this form of configuration as well. The executing runtime can always
configure itself, but only changes made for This User will affect the runtime with the
opposite “bitness”.

Key. This option allows you to override the master key in the Windows registry that is
used to store the configuration information. This is most useful if you have renamed the
compiler, runtime, or recovery utility program. The options in this area include:

Default. If this option is selected, the default key for each product is used. For the
runtime, the default key is runcobol; for the compiler, it is rmcobol; and for the
recovery utility, it is recoverl.

Custom. Use this option to override the default key. Enter a new key name in the
text box and press the Set button.

RM/COBOL User's Guide

71

Chapter 3: Installation and System Considerations for Microsoft Windows

72

Note The combination of the selections in the Configure for area and the Key option

together affect where the values are stored.

Use Defaults. The behavior of the Use Defaults button is dependent upon whether the
Default Properties or the Individual File option in the Configure area is in effect.

— If the Default Properties option is selected, choosing the Use Defaults button causes
the system defaults to be reset to the values that were in place when the product was
originally installed. Note, however, that any property values set for an individual file

will not be reset.

— Ifthe Individual File option is selected, choosing the Use Defaults button causes
property values that have been overridden for the selected file to be reset to use the

system defaults.

Setting Control Properties

The Control Properties tab, illustrated in Figure 10, allows you to set various properties for
the Default Properties or Individual File, Configure for component (Runtime, Compiler, or
Recovery), Scope (All Users or This User), and Key (Default or Custom text) options that
were specified using the Select File tab (see page 69). The control properties that can be set

or modified are discussed in the following sections.

Figure 10: Control Properties Tab

v
HN
1

doverify Properties for Runtime

Colors] Toolbar] Menu Bar] Pop-up Menu
Select File Control l Synormyms

Select the zetting you want to change on the left, and then
zelect itz new value an the right.

* Default Setting
" Custom Setting

Property

Command Line Optionz Walye:

Curzar Dvertype r

Cursar [naert J
Curzar Full Field

Enable Cloze

Enable Properties Dialog

Font

Font CharSet OEM ol

The Auta Paste property zpecifies a Boolean value that enables
or dizables the Auto Pazte function. Setting Auta Paste to True
enables the Auto Paste feature and double-clicking the mouse
buttor transfers the marked data to a pending ACCEPT field. |f
Auto Paste iz zet to Falze, double-clicking the mouse buttan
markz a word of text. The default value iz Falze.

|
l

Ok | Cancel

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

The Control Properties tab contains the following options:

e Property. This list box presents an alphabetical listing of the properties that are used to
configure the physical appearance of the RM/COBOL program. An area below this list
box contains a description of the selected property. (Each of these properties is discussed
in the sections that follow.)

e Default Setting. Select this button to use the selected property’s default value. That
default value will be shown in the Value area (described below). See the Default
Properties option on the Select File tab for information on configuring default values, as
discussed in Selecting a File to Configure (on page 69).

e Custom Setting. Select this button to override the default value for the selected
property.

e Value. This area displays the value associated with the property selected in the Property
list box and allows you to change it. Note that this area is disabled unless the Custom
Settings button is selected.

Once set, control properties, other than the Command Line Options Property described on
page 74, are used by performing the following ordered search: Program Specific Properties
for the Current User, Program Specific Properties for All Users, Default Properties for the
Current User, and Default Properties for All Users. The first setting of a particular property
from this ordered search is used and the search is terminated.

Note A call to CSGUICFG (see page 552) to set a control property will temporarily override
this search. The value specified in CSGUICFG will be used instead until the next update of
control properties from the registry.

Auto Paste Property

The Auto Paste property specifies a Boolean value that enables or disables the Auto Paste
function. Setting Auto Paste to True enables the Auto Paste feature and double-clicking the
mouse button transfers the marked data to a pending ACCEPT field. If Auto Paste is set to
False, double-clicking the mouse button marks a word of text. The default value for this
property is False.

Note During installation you have the option to allow certain configuration information to be
added to the Windows registry. This configuration information, included in the file
rmcobol.reg, sets the system default value of the Auto Paste control property to the custom
setting True. This default value will be used for individual files unless overridden by a
custom setting.

The C$GUICFG subprogram (see page 552) can be used to change the Auto Paste property
temporarily in order to manipulate the graphical user interface.

Auto Scale Property

The Auto Scale property specifies a Boolean value that determines whether to implement auto
scaling of fonts when the RM/COBOL runtime window is resized. Setting Auto Scale to True
automatically changes the font size when the window is resized. Setting Auto Scale to False
turns off this capability. The default value for this property is True. See also the Sizing
Priority property (on page 83).

The setting of the Auto Scale property is ignored if the Scroll Buffer Size property (see
page 82) is set to a non-zero value.

RM/COBOL User's Guide

73

Chapter 3: Installation and System Considerations for Microsoft Windows

The C$GUICFG subprogram (see page 552) can be used to change the Auto Scale property
temporarily in order to manipulate the graphical user interface.

Command Line Options Property

The Command Line Options property defines a series of command-line options to be passed
to the compiler, runtime system, or recovery utility, depending on whether “Compiler”,
“Runtime”, or “Recovery” was selected as the “Configure for” component on the Select File
tab in the configuration Properties dialog box, as described in Selecting a File to Configure
(on page 69). Command-line options are processed first from the Command Line Options
property settings and then from the options specified in the actual command line submitted by
the user.

Since for most options, a later specification of the option overrides a prior specification, this
means that options specified on the actual command line take precedence over command-line
options specified in the Command Line Options property. This is not true of cumulative
options, such as the L Runtime Command Option, which are accumulated from left to right as
the command-line options are processed in the order given above. The maximum total length
of the command line options is 4095 characters. For more information, see Compile
Command Options (on page 148), Runtime Command Options (on page 190), and Recovery
Command Options (on page 600).

For the Command Line Options property, the options are processed in the following order:
Default Properties for All Users, Default Properties for the Current User, Program Specific
Property for All Users, and Program Specific Property for the Current User. Then the options
specified on the actual command-line, if any, are processed.

Notes

e Some options for the runtime system specified in the Command Lines Options property
may not be overridden by the actual command-line options because the options
themselves are cumulative; that is, multiple options of this type may be specified on the
command line. The L Option (for library loads) is an example of such a parameter. For
additional information, see the descriptions of the Runtime Command (on page 189) and
the L Option (on page 197).

e The environment variable RM_IGNORE_GLOBAL_RESOURCES may be defined if
you wish the compiler, runtime system, or recovery utility not to access the Command
Line Options Property defined for All Users. This may be useful if you are trying to
develop at the same time others are running an application in live “production mode.”

e For aclarification regarding the use of “?” or wildcard characters in the filename
specified on the Compile Command line and the effects for Command Line Options
property specified for a specific file, see Multiple File Compilation on Windows (on
page 147).

Cursor Overtype Property

The Cursor Overtype property determines the appearance of the cursor during ACCEPT
operations when in overtype mode. For more information, see Cursor Types (on page 106).
The following values are valid:

Value Meaning

HorzLine Displays the cursor as a horizontal line at the bottom
of the character cell.

74 RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

HalfBox Displays the cursor as a half box at the bottom of the
character cell.

FullBox Displays the cursor as a full box.

VertLine Displays the cursor as a vertical line at the right of the

character cell.

The default value for this property is HorzLine.

Cursor Insert Property

The Cursor Insert property determines the appearance of the cursor during ACCEPT
operations when in insert mode (see page 106). The following values are valid:

Value Meaning
HorzLine Displays the cursor as a horizontal line at the bottom
of the character cell.
HalfBox Displays the cursor as a half box at the bottom of the
character cell.
FullBox Displays the cursor as a full box.
VertLine Displays the cursor as a vertical line at the right of the

character cell.

The default value for this property is HalfBox.

Cursor Full Field Property

The Cursor Full Field property determines the appearance of the cursor during ACCEPT
operations when the input field is full. See Cursor Types (on page 106). The following
values are valid:

Value Meaning
HorzLine Displays the cursor as a horizontal line at the bottom
of the character cell.
HalfBox Displays the cursor as a half box at the bottom of the
character cell.
FullBox Displays the cursor as a full box.
VertLine Displays the cursor as a vertical line at the right of the

character cell.

The default value for this property is FullBox.

Enable Close Property

The Enable Close property specifies a Boolean value that enables or disables the Close menu
item on the Control menu as well as the Close button in the upper-right corner of the window.
Setting Enable Close to True enables the Close menu item and the Close button. Setting
Enable Close to False dims and disables the Close menu item and the Close button. The
default value for this property is True.

RM/COBOL User's Guide

75

Chapter 3: Installation and System Considerations for Microsoft Windows

76

The C$GUICFG subprogram (see page 552) can be used to change the Enable Close property
temporarily in order to manipulate the graphical user interface.

Enable Properties Dialog Property

The Enable Properties Dialog property specifies a Boolean value that enables or disables the
Properties menu item on the Control menu. Setting Enable Properties Dialog to True enables
the Properties menu item. Setting Enable Properties Dialog to False dims and disables the
Properties menu item. The default value for this property is True.

The C$GUICFG subprogram (see page 552) can be used to change the Enable Properties
Dialog property temporarily in order to manipulate the graphical user interface.

Font Property

The Font property specifies the typeface to use as well as point size and style. The typeface
must be a fixed-width (or monospaced) font, such as Courier. Clicking the Select Fonts
button opens the Fonts dialog box, which provides a list of available fonts, styles, and sizes.

Font CharSet OEM Property

The Font CharSet OEM property determines the display character sets considered to be OEM
character sets when the native character set uses the OEM codepage. In this case,
RM/COBOL considers internal character data to be OEM and converts displayed characters
to ANSI unless the chosen display font has an OEM character set. Fonts with the Arabic,
Baltic, East Europe, Greek, Hebrew, Russian, and Turkish character sets generally require
conversion from OEM to ANSI. The value NotANSI assumes all character sets other than the
ANSI character set are OEM; this was the original RM/COBOL assumption. The value
OEMSymbolDefault assumes that only the OEM, Symbol, and Default character sets are
OEM and that all other character sets are ANSI. The default is OEMSymbolDefault. For
printer character sets, as opposed to display character sets, see the Printer Font CharSet OEM
property (on page 81).

Note The value of the Font CharSet OEM property is stored in the registry as a string value
for the key FontCharsetOem. This string is a comma- or space-separated list of OEM
character set numbers. A range of OEM character set numbers may be specified with a
hyphen-separated pair of numbers. Alphabetic text or any text contained between braces is
considered commentary. While the RMCONFIG user interface only allows setting NotANSI
(that is, “1-255") or OEMSymbolDefault (that is, “255,2,1”), any set of character set numbers
may be listed in the registry in order to include or exclude specific character sets for the OEM
to ANSI conversion done when characters are displayed. The specified string will be used
until it is modified, either by RMCONFIG or other means, such as regedit.

When the native character set uses the ANSI codepage, this property is ignored. In this case,
code points are converted from ANSI to OEM only when the display font default script is
OEMY/DOS; otherwise, no conversion is necessary and none occurs.

Full OEM To ANSI Conversions Property

The Full OEM To ANSI Conversions property specifies a Boolean value that determines
whether to convert a character from OEM to ANSI or from ANSI to OEM when the native
character set uses the OEM codepage. This property affects titles, menus, and other Windows

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

objects. Because Windows uses the ANSI character set, the default setting (True) causes all
output to be converted from the OEM character set to the ANSI character set and all input
from these controls to be converted from ANSI to OEM. If, however, the user wants to avoid
these conversions, this property should be set to False in order to suppress the conversion.
Setting this value to False causes the runtime system to behave as it did prior to the
RM/COBOL 6.5 release.

Note The European “Latin-1" character set is the same as the Windows native ANSI
character set.

The C$GUICFG subprogram (see page 552) can be used to change the Full OEM to ANSI
Conversions property temporarily in order to manipulate the graphical user interface.

When the native character set uses the ANSI codepage, this property is ignored.

Icon File Property

The Icon File property specifies the icon filename from which to load icons for the toolbar.
See the Name option of the Toolbar Properties tab, described in Setting Toolbar Properties.
This property is used only if the Toolbar property (see page 84) is set to True. The default
value is rmtbar.vrf. See Table 12 on page 97 for more information.

The C$GUICFG subprogram (see page 552) can be used to change the Icon File property
temporarily in order to manipulate the graphical user interface.

Load Registry On CALL Property

The Load Registry On CALL property specifies a Boolean value that enables or disables
additional processing of the Windows registry file. If this property is set to True, the registry
is re-examined whenever a COBOL subprogram is called. The subprogram name is treated as
if it were a filename and causes corresponding registry entries to be processed. If the value is
set to False, the registry is not re-examined. The default value for this property is False.

Note Use caution when setting the value of the Load Registry On CALL property to True as
a system default. Doing so can affect the performance of your application. This behavior can
occur when using RM/Panels because an RM/Panels application uses many subprogram calls.
Alternatively, you can use the C$TBar (see page 575), C$MBar (see page 557), or
C3$GUICFG (see page 552) subprograms to manipulate the toolbar and menu bar instead of
using the Windows registry file and the Load Registry on CALL property.

Load Registry On RETURN Property

The Load Registry On RETURN property specifies a Boolean value that enables or disables
additional processing of the Windows registry file. If this property is set to True, the registry
is re-examined whenever a COBOL subprogram is exited. The calling program’s name is
treated as if it were a filename and causes corresponding registry entries to be processed. If
the value is set to False, the registry is not re-examined. The default value for this property
is False.

Note Use caution when setting the value of the Load Registry On RETURN property to True
as a system default. Doing so can affect the performance of your application. This behavior
can occur when using RM/Panels because an RM/Panels application uses many subprogram
calls. Alternatively, you can use the C$TBar (see page 575), C$MBar (see page 557), or
C$GUICFG (see page 552) subprograms to manipulate the toolbar and menu bar instead of
using the Windows registry file and the Load Registry on RETURN property.

RM/COBOL User's Guide

77

Chapter 3: Installation and System Considerations for Microsoft Windows

78

Logo Bitmap Property

The Logo Bitmap property specifies a Boolean value that determines whether a Logo Bitmap
is displayed. If the value is set to True, the file specified by the Logo Bitmap File property
(described below) is displayed. If the value is set to False, it is not displayed. The default
value for this property is True.

Logo Bitmap File Property

The Logo Bitmap File property specifies the bitmap (.bmp) filename that may be displayed in
the RM/COBOL runtime window when an application is started. The bitmap is centered in
the RM/COBOL runtime window until an erase screen operation is encountered (DISPLAY
ERASE). You can build a simple RM/COBOL program that displays a bitmap, responds to
keyboard sequences (such as function keys that could be generated from the menus or
toolbar), and dispatches the appropriate code. The default value is run.bomp, rmc.bmp, or
rec.bmp for the runtime system, compiler, and Indexed File Recovery utility program,
respectively. If the bitmap file is not found, or if Logo Bitmap (described previously) is set to
False, this property is ignored.

Main Window Type Property
The Main Window Type property determines the style of the RM/COBOL runtime window

(the window that is activated when the RM/COBOL application begins execution). The
following values are valid:

Value Meaning
Hidden The window is not activated and is hidden.
Minimized The window is activated and is displayed as an icon.
Maximized The window is activated and is displayed in its

maximized state.

Show The window is activated and is displayed in its current
size and position.

The default value for this property is Show.

Mark Alphanumeric Property

The Mark Alphanumeric property specifies a Boolean value that determines the terminating
conditions for selecting a word from the application window. If Mark Alphanumeric is set to
True, double-clicking the mouse button to mark a word selects characters until a non-
alphanumeric character is encountered. If Mark Alphanumeric is set to False, selection occurs
when a blank is encountered. The default value for this property is True.

The C$GUICFG subprogram (see page 552) can be used to change the Mark Alphanumeric
property temporarily in order to manipulate the graphical user interface.

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

Offset X Property

The Offset X property specifies a number that identifies the leftmost location (as a pixel offset
from the left edge of the screen) of the RM/COBOL runtime window. The default value for
this property is 0.

Offset Y Property

The Offset Y property specifies a number that identifies the uppermost location (as a pixel
offset from the top edge of the screen) of the RM/COBOL runtime window. The default
value for this property is 0.

Panels Controls 3D Property

The Panels Controls 3D property specifies a Boolean value that enables or disables three-
dimensional effects in certain RM/Panels for Windows controls (date, time, alpha, and
numeric fields). The default value, False, causes applications to be displayed as they were
before the 3D capability was added to RM/COBOL.

Panels Static Controls Border Property

The Panels Static Controls Border property specifies a Boolean value that causes the Static
Text Control (an RM/Panels control type) to have a border. The default value, False, causes
these controls to be drawn without a border.

Paste Termination Property

The Paste Termination property specifies a Boolean value that affects automatic termination
of fields pasted into a pending ACCEPT statement, using either the Paste function (see

page 113) or the Auto Paste property (see page 73). If Paste Termination is set to True, data
transfer will continue until the data is exhausted, including all tabs and carriage returns. If
Paste Termination is set to False, data transfer stops when a tab or carriage return is
encountered. There is a carriage return at the end of each line of text in the Windows
Clipboard. The default value for this property is True.

The C$GUICFG subprogram (see page 552) can be used to change the Paste Termination
property temporarily in order to manipulate the graphical user interface.

Persistent Property

The Persistent property specifies a Boolean value that affects the behavior of the RM/COBOL
runtime window when the RM/COBOL program, compiler, or Indexed File Recovery utility
program terminates. If Persistent is set to True, the window will not close until dismissed by
the user. If Persistent is set to False, the window will close immediately upon completion.
The default value for this property is False.

If any RM/COBOL runtime window disappears upon completion before the user is able to
read the final text displayed in that window, then set Persistent to True; the window may then
be closed manually by the user after reading the final text.

RM/COBOL User's Guide

79

Chapter 3: Installation and System Considerations for Microsoft Windows

80

The runtime command option P (see page 192) may be used to change the Persistent property
temporarily for a single invocation of a run unit.

The C$GUICFG subprogram (see page 552) may be used to change the Persistent property
temporarily.

Pop-Up Window Positioning Property

The Pop-Up Window Positioning property determines the method used to initially position a
pop-up window. The value Corrected positions the pop-up window with LINE 1 COLUMN 1
at the line and column specified in the DISPLAY statement, as specified in the documentation
for pop-up windows in Line and Position Phrases (see page 220). The value Traditional
positions the pop-up window as incorrectly implemented in initial releases of RM/COBOL for
Windows, where the pop-up window is generally positioned lower and further to the right by
a few pixels. The default value is Traditional.

Printer Dialog Always Property

The Printer Dialog Always property specifies a Boolean value that affects the behavior of the
RM/COBOL runtime when opening the selected dynamic printer device (see page 322). If
Printer Dialog Always is set to True, the standard Windows Print dialog box will be displayed
each time the dynamic printer device is opened, unless the P$DisableDialog subprogram

(see page 473) has been called to suppress the dialog box. If Printer Dialog Always is set to
False, the dialog box will be displayed only the first time the dynamic printer is opened,
unless the P$DisableDialog subprogram has been called to suppress the dialog box. In the
False case, the P$EnableDialog subprogram (see page 474) may be called to cause the dialog
to be displayed on a subsequent open of the dynamic printer. The default value for this
property is False.

The C$GUICFG subprogram (see page 552) can be used to change the Printer Dialog Always
property temporarily.

Printer Dialog Never Property

The Printer Dialog Never property specifies a Boolean value that affects the behavior of the
RM/COBOL runtime when opening a dynamic printer device, as described in Windows
Printers (see page 322). If Printer Dialog Never is set to True, the standard Windows Print
dialog box will never be displayed when a dynamic printer device is opened. In this case, a
dynamic printer device behaves like a default (PATH=DEFAULT, ... in the DEFINE-DEVICE
configuration record) printer device, that is, the Windows default printer is opened. If Printer
Dialog Never is set to False, the display of the dialog box is controlled by the setting of the
Printer Dialog Always property, described above. The default value for this property is False.

The C$GUICFG subprogram (see page 552) can be used to change the Printer Dialog Never
property temporarily.

Note If the Printer Dialog Never property is set to True, the standard Windows Print dialog
box will never be displayed, regardless of the state of the Printer Dialog Always property.

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

Printer Enable Escape Sequences Property

The Printer Enable Escape Sequences property specifies a Boolean value that determines
whether printing will allow embedded RM/COBOL-specific escape sequences. For a
description of these sequences, see RM/COBOL -Specific Escape Sequences (on page 530).
If the value is set to True, the RM/COBOL runtime system will recognize the sequences. If
the value is set to False, the runtime system will ignore those escape sequences. The default
value for this property is False.

Note Setting the Printer Enable Escape Sequences property to True affects all Windows
printers that the COBOL program uses. To allow embedded RM/COBOL-specific escape
sequences for only specific printers, use the P$EnableEscapeSequences subprogram (see
page 493) or the ESCAPE-SEQUENCES keyword (see page 320) of the DEFINE-DEVICE
configuration record.

Printer Enable Null Esc. Seq. Property

The Printer Enable Null Esc. Seq. property defines a Boolean value that specifies whether the
ASCII NUL character will be ignored when written to a printer from within an escape
sequence. When the value is set to True, NUL characters within an escape sequence are
ignored and are not sent to the printer. When the value is set to False, NUL characters are
changed to spaces. The default value for this property is False. For more information, see
RM/COBOL-Specific Escape Sequences (on page 530).

Printer Enable Raw Mode Property

The Printer Enable Raw Mode property specifies a Boolean value that determines whether
Windows printers will be opened in raw mode. If the value is set to True, the runtime system
will open printers in raw mode. This allows certain networked printers on Windows servers
to respond to embedded escape sequences. See the P$SetRawMode subprogram (on

page 500) for a more complete description of raw mode. Most P$ subprograms are not
available if raw mode is used. If the value is set to False, the runtime system will treat the
printer as a normal Windows printer. The default value for this property is False.

Note Setting the Printer Enable Raw Mode property to True affects all Windows printers (see
page 322) that the COBOL program uses. To allow raw mode printing for only specific
printers, use the P$SetRawMode subprogram.

Printer Font CharSet OEM Property

The Printer Font CharSet OEM property determines the character sets considered to he OEM
character sets for printer fonts when the native character set uses the OEM codepage. In this
case, RM/COBOL considers internal character data to be OEM and converts printed
characters to ANSI unless the chosen printer font has an OEM character set. Fonts with the
Arabic, Baltic, East Europe, Greek, Hebrew, Russian, and Turkish character sets generally
require conversion from OEM to ANSI. The value NotANSI assumes all character sets other
than the ANSI character set are OEM,; this was the original RM/COBOL assumption. The
value OEMSymbolDefault assumes that only the OEM, Symbol, and Default character sets
are OEM and that all other character sets are ANSI. The default value for this property is
OEMSymbolDefault. For display character sets, as opposed to printer character sets, see the
Font CharSet OEM property (on page 76).

RM/COBOL User's Guide

81

Chapter 3: Installation and System Considerations for Microsoft Windows

82

Note The value of the Printer Font CharSet OEM property is stored in the registry as a string
value for the key PrinterFontCharsetOem. This string is a comma or space separated list of
OEM character set numbers. A range of OEM character set numbers may be specified with a
hyphen-separated pair of numbers. Alphabetic text or any text contained between braces is
considered commentary. While the RMCONFIG user interface only allows setting NotANSI
(that is “1-255"") or OEMSymbolDefault (that is, “255,2,1”), any set of character set numbers
may be listed in the registry in order to include or exclude specific character sets for the OEM
to ANSI conversion done when characters are printed. The specified string will be used until
it is modified, either by RMCONFIG or other means such as regedit.

When the native character set uses the ANSI codepage, this property is ignored. In this case,
code points are converted from ANSI to OEM only when the printer font default script is
OEM/DOS; otherwise, no conversion is necessary and none occurs.

Remove Trailing Blanks Property

The Remove Trailing Blanks property defines a Boolean value that specifies whether trailing
blanks will be removed from the Toolbar and Menu Bar strings before they are sent to the
COBOL program’s ACCEPT statement for processing. The default value for this property is
True. For more information, see Setting Toolbar Properties (on page 89) and Setting Menu

Bar Properties (on page 93).

The C$GUICFG subprogram (see page 552) can be used to change the Remove Trailing
Blanks property temporarily in order to manipulate the graphical user interface.

Screen Read Line Draw Property

The Screen Read Line Draw property defines a Boolean value that enables or disables the
return of DOS line draw characters in the screen read buffer for the line draw characters
specified in Table 26: System-Specific Line Draw Characters (on page 211) when doing a
screen read, as discussed in the C$SCRD subprogram (on page 564). The default value for
this property is False, which causes a screen read to return plus, hyphen, and bar characters
for line draw characters.

The C$GUICFG subprogram (see page 552) can be used to change the Screen Read Line
Draw property temporarily during the execution of a run unit.

Scroll Buffer Size Property

The Scroll Buffer Size property specifies a number that affects the virtual size of the
RM/COBOL runtime window. The number of rows initially displayed in the window is
determined by the ROWS keyword (see page 355) in the TERM-ATTR configuration record.
The Scroll Buffer Size property determines the number of rows that can be scrolled off the
screen using the vertical scroll bar. Setting the Scroll Buffer Size to a non-zero value
overrides the Auto Scale property (see page 73) and automatically turns on the vertical scroll
bar. The default value for this property is 0.

The maximum value depends on the font size and is limited to approximately 2400 lines on
Windows operating systems. Values larger than the maximum may be set, but display
problems can occur if more than the actual maximum number of lines is scrolled without an
intervening erase. The actual maximum is a limit on the number of pixels in the virtual screen
height, which is computed as the font height in pixels (typically, 15 to 20) times the quantity
of the Scroll Buffer Size plus the number of rows in the actual screen area. This pixel limit is
50,000 because of an RM/COBOL implementation limit.

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

Show Return Code Dialog Property

The Show Return Code Dialog property specifies a Boolean value that determines whether the
Return Code message box (see page 114), indicating the compiler exit codes (see page 187)
and program exit codes (see page 199), should be displayed when an error occurs. Automated
systems, which handle such errors and do not require operator assistance, may wish to
suppress the message box and continue processing. The default value for this property is
True, which causes the message box to be displayed.

Show Through Borders Property

The Show Through Borders property specifies a Boolean value that determines whether the
border of an overlaid pop-up window is shown when overlaid by a pop-up window without a
FILL character. When Show Through Borders is set to True, the border is visible. When
Show Through Borders is set to False, the border is not visible. The default value for this
property is False.

Sizing Priority Property

The Sizing Priority property specifies whether to make the width or height a priority when
auto scaling fonts. If the user resizes the window and auto scaling is on, the system will select
a font to match the new size of the window. The new size will be based on the width or
height of the window. The default value for this property is Width. See also the Auto Scale
property (on page 73).

The C$GUICFG subprogram (see page 552) can be used to change the Sizing Priority
property temporarily in order to manipulate the graphical user interface.

Status Bar Property

The Status Bar property specifies a Boolean value that determines whether the status bar is
initially visible. Setting Status Bar to True turns on the status bar. Setting Status Bar to False
turns off the status bar. The default value for this property is False.

The C$GUICFG subprogram (see page 552) can be used to change the Status Bar property
temporarily in order to manipulate the graphical user interface.

Status Bar Text Property

The Status Bar Text property specifies the initial string of text to be placed in the status bar.
The default value is an empty string. This text is displayed in the status bar whenever the
mouse is in the client area of the window.

Note The C$SBar subprogram (see page 564) also can be used to display a status bar in the
RM/COBOL runtime window.

RM/COBOL User's Guide

83

84

Chapter 3: Installation and System Considerations for Microsoft Windows

SYSTEM Window Type Property

The SYSTEM Window Type property determines the style of the window shown by a
program run using the SYSTEM (see page 579) non-COBOL subprogram. The following
values are valid:

Value Meaning
Hidden The window is not activated and is hidden.
Minimized The window is activated and is displayed as an icon.
Maximized The window is activated and is displayed in its

maximized state.

Show The window is activated and is displayed in its
current size and position.

ShowNoActivate The window is displayed in its most recent size and
position, but is neither activated nor given focus.

MinimizedNoActive The window is displayed as a minimized window,
but the window is neither activated nor given focus.

The default value for this property is Show.

The C$GUICFG subprogram (see page 552) can be used to change the System Window Type
property temporarily for subsequent calls to the SYSTEM non-COBOL subprogram in the
same run unit.

Title Text Property

The Title Text property specifies the string of text to be placed in the runtime window of the
RM/COBOL program that is currently running. The default title is “RM/COBOL” if no
program-name is specified on the runcobol command line. Otherwise, the default value for
this property is the initial program-name.

Note The C$Title subprogram (see page 577) also can be used to specify the text to be placed
in the RM/COBOL runtime window.

Toolbar Property

The Toolbar property specifies a Boolean value that determines whether the toolbar is visible
initially. Setting Toolbar to True turns on the toolbar. Setting Toolbar to False turns off the
toolbar. The default value for this property is False.

The C$GUICFG subprogram (see page 552) can be used to change the Toolbar property
temporarily in order to manipulate the graphical user interface. In addition, the C$TBar (see
page 575), C$TBarEn (see page 576), and C$TBarSeq (see page 576) subprograms can be
used to affect the toolbar during execution.

Toolbar Prompt Property

The Toolbar Prompt property specifies how to display the toolbar prompt string value when
the mouse cursor hovers over a toolbar command button. The following values are valid:

Value Meaning

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

None The prompt is not displayed.

StatusBar The prompt is displayed only in the status bar.

ToolTip The prompt is displayed only as a tooltip.

Both The prompt is displayed in the status bar and as
a tooltip.

SplitNewline The prompt is split at the first newline (x*0a™)

character; the leading portion is displayed in the status
bar and the trailing portion is displayed as a tooltip.

SplitColon The prompt is split at the first colon (:) character; the
leading portion is displayed in the status bar and the
trailing portion is displayed as a tooltip.

SplitVertBar The prompt is split at the first vertical bar (])
character; the leading portion is displayed in the status
bar and the trailing portion is displayed as a tooltip.

The default value for this property is Both.

For information on setting toolbar prompt values, see Setting Toolbar Properties (on page 89)
and C$TBar (on page 575).

The C$GUICFG subprogram (see page 552) can be used to change the Toolbar Prompt
property temporarily in order to manipulate the graphical user interface. Changes to the
Toolbar Prompt property do not affect the display of the prompt for an existing toolbar; the
change affects only the display of the prompt for a toolbar created by calling C$TBar after the
change has been made.

Update Timeout Property

The Update Timeout property specifies a number that represents a delay before a screen
refresh occurs. The value of number is specified in milliseconds. A larger number causes
DISPLAY statements to occur less frequently, potentially improving screen display
performance (especially when multiple DISPLAY statements of short records occur in a short
period of time). This property may also be used to force DISPLAY statements to occur more
frequently. The default value is 500 milliseconds (half of a second).

The C$GUICFG subprogram (see page 552) can be used to change the Update Timeout
property temporarily in order to manipulate the graphical user interface.

Use Windows Colors Property

The Use Windows Colors property defines a Boolean value that specifies whether the
standard Windows colors, as set in the Windows Control Panel (Display Properties dialog
box, Appearance tab), are used as the RM/COBOL default foreground and background colors.
If Use Windows Colors is set to True, the standard Windows colors will be used. If Use
Windows Colors is set to False, BLACK will be used for the background and WHITE for the
foreground. A value of False allows the same behavior as that found in versions of
RM/COBOL prior to 6.0. The default value for this property is True.

RM/COBOL User's Guide

85

Chapter 3: Installation and System Considerations for Microsoft Windows

86

Setting Synonym Properties

The Synonyms Properties tab, illustrated in Figure 11, allows you to establish synonym
name(s) and their value(s) for the Default Properties or Individual File, Configure for
component (Runtime, Compiler, or Recovery), Scope (All Users or This User), and Key
(Default or Custom text) options that were specified using the Select File tab (see page 69).
The name is a string that is the name of a variable placed in the program’s environment. The
value is a string that is the value of name in the environment. A synonym can be used to
specify the actual file access name for a COBOL program, or to specify other environment
variables such as the RMPATH and RUNPATH directory search sequences described in
Directory Search Sequences on Windows (on page 62).

During initialization, the synonym name(s) and their value(s) are set into the environment in
the following order: Default Properties for All Users, Default Properties for the Current User,
Program Specific Properties for All Users, and Program Specific Properties for the Current
User. When duplicate synonym names occur in this ordering, the last setting of a synonym
name is the result setting in the environment.

Note The environment variable RM_IGNORE_GLOBAL_RESOURCES may be defined if
you wish the compiler, runtime system, or recovery utility not to access the Synonym
Properties defined for All Users. This may be useful if you are trying to develop at the same
time others are running an application in live “production mode.”

C$GetSyn (see page 550) obtains the specified synonym for the Current User, if the synonym
is defined for the Current User. If the specified synonym is not defined for the Current User,
then C$GetSyn gets the synonym for All Users. If the
RM_IGNORE_GLOBAL_RESOURCES environment variable is defined, the All Users
setting is ignored when the synonym is not defined for the Current User.

C$SetSyn (see page 572) always sets the synonym for the Current User; that is, the property
does not attempt to change the synonym for All Users.

Note This is a change in RM/COBOL behavior on Windows. C$SetSyn previously always
set the synonym for All Users. The old behavior would not be possible on Windows Vista
without running as Administrator.

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 11: Synonyms Properties Tab

¢ doverify Properties for Runtime

Colors] Toolbar] Menu Bar] Fop-up Menu]
Select File | Cortrol Synoryms

Select the synonym name you want to change at the top, and then
enter a new value at the bottom,

HName
repark
Hemove
R ermowve Al
Walle:
LPT1

O | Cancel Apphy

The Synonyms Properties tab contains the following options:

e Name. The value entered in this list box is the name of the synonym to which you are
assigning a value.

e Value. The value in this text box is the value assigned to the synonym selected in the
Name list box.

e Remove. Use this button to clear the value for the currently selected synonym name and
remove it from the list.

e Remove All. Use this button to clear all synonym values for the currently selected
program.

These synonyms are used to set environment variables for the runtime, compiler, or

recovery utility (per the Select File tab setting, as described in Selecting a File to Configure
on page 69). Synonyms override environment variable settings that may already exist
because of operating system methods of setting environment variables, such as the DOS SET
command or the Environment Variables system property on Windows operating systems.
However, environment variables set with CodeWatch cause any matching synonym names to
be ignored, so that the environment variables will have the values specified in CodeWatch
(see the “Creating a Workspace” topic in the CodeWatch manual for information on setting
environment variables with CodeWatch). As a result, these synonyms may be used to
establish a connection between the open name of the file, literal-1 or data-name-1 (see the

RM/COBOL User's Guide

87

Chapter 3: Installation and System Considerations for Microsoft Windows

“Input-Output Section” in Chapter 3: Environment Division of the RM/COBOL Language
Reference Manual for more information), and the actual file access name.

If either the Load Registry On CALL property (see page 77) or Load Registry On RETURN
property (see page 77) is set to True, synonyms will be reprocessed whenever a subprogram is
called or exited. Synonym assignments are cumulative. For example, if a synonym is
assigned for a called subprogram, its value is unchanged when the subprogram exits unless
Load Registry On RETURN is set to True and the synonym is defined for the calling
program.

Setting Color Properties

The Colors Properties tab, illustrated in Figure 12, allows you to control color mapping for the
Default Properties or Individual File, Configure for component (Runtime, Compiler, or
Recovery), Scope (All Users or This User), and Key (Default or Custom text) options that
were specified using the Select File tab (see page 69). Note that only the Runtime component
uses Color properties.

Once set, color properties are processed cumulatively in the following order: Program
Specific Properties for the Current User, Program Specific Properties for All Users, Default
Properties for the Current User, and Default Properties for All Users. The first setting of a
particular property from this ordered search is used and the search is terminated.

Figure 12: Colors Properties Tab

¢ doverify Properties for Runtime

Select File] Control] Synormyms]
Calors l Toolbar] Menu Bar] Fop-up Menu]

Select the color you want to change on the left, and then select the
"Change..." button ta change it

Color

LChange. ..

Usze Default

b agenta *
Brovn
"white
Gray *
LightBlue *
LightGreen *
LightCyan *

An * after the color name indicates
that the default will be uzed.

Ok | Cancel

88 RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

The Colors Properties tab contains the following options:

e Color. Use this list box to select the color you want to change. The first eight colors in
this list box correspond to the color-names for the keywords (FCOLOR and BCOLOR)
allowed in a CONTROL phrase of an ACCEPT or DISPLAY statement. These colors
are displayed if low intensity is selected. The remaining eight colors correspond to the
same color-names if high intensity is selected. Note that GRAY is “HIGH BLACK” and
YELLOW is “HIGH BROWN.” The current color setting is displayed to the right of
each name. For more information, see ACCEPT and DISPLAY Phrases (on page 209).

Note An asterisk (*) after the name indicates that the default color has not been
overridden and the default will be used. If the Change button (see the following item) is
used to override the default, the overriding color is displayed on the right.

e Change. Use this button to display a Color Selection dialog box that allows you to select
a color to override the selected color name.

e Use Default. Use this button to clear the overriding color for the currently selected color
name, thereby using the default color.

Setting Toolbar Properties

The Toolbar Properties tab, illustrated in Figure 13, allows you to define the string that is to
be sent to the program through the COBOL ACCEPT statement when the corresponding
toolbar button is pressed. The Toolbar Properties tab affects the program determined from the
Default Properties or Individual File, Configure for component (Runtime, Compiler, or
Recovery), Scope (All Users or This User), and Key (Default or Custom text) options that
were specified using the Select File tab (see page 69). Note that only the Runtime component
uses Toolbar properties.

The C$TBar subprogram (see page 575) also can be used to display a toolbar in the
RM/COBOL runtime window.

Once set, toolbar properties are processed cumulatively in the following order: Program
Specific Properties for the Current User, Program Specific Properties for All Users, Default
Properties for the Current User, and Default Properties for All Users. The first setting of a
particular property from this ordered search is used and the search is terminated.

RM/COBOL User's Guide 89

90

Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 13: Toolbar Properties Tab

1
l".
i

' doverify Properties for Runtime

Select File] Cortrol] Symonyms]
Colare Toalbar l Menu Bar] Pop-up Menu]
Select the button name wou want to set, and then enter the new
prompt and string values below,
HName
EMTER
1ESE.-'1'-.F'E beowve Up
] _HoveDown |
3
EMTER
Hemove
R ermowve Al
Prompt;
|Enter F.ey
String:
|'\n

o]

Cancel

The Toolbar Properties tab contains the following options:

RM/COBOL User's Guide

Name. The value entered in this text box is the name of the icon stored in the filename
specified by the Icon File property (see page 77).

Prompt. The value entered in this text box is an optional text string that is displayed
whenever the mouse cursor hovers over the toolbar icon that is specified by the icon
name. The text string may be displayed in the status bar, as a tooltip, or both as specified
by the Toolbar Prompt property (see page 84). The text string may contain one of the
separator characters newline (x’0a’), colon (“:™), or vertical bar (“|”) to divide it into
separate status bar and tooltip text. The appropriate separator character is determined by
the Toolbar Prompt property.

String. The value entered in this text box is the ASCII text string returned when the
toolbar icon is clicked. This text string may also contain special characters for the
Return, Tab, Escape, or Function keys. If the first character is a greater than character
(>), the characters that follow are executed as a command. The special characters are
described in Table 11. (These characters are interpreted by the COBOL ACCEPT
statement, as configured by the TERM-INPUT configuration record on page 356 or by
the default configuration supplied by the runtime. The default TERM-INPUT
configuration is specified by the Windows Example, as discussed on page 372.)

Notes

Chapter 3: Installation and System Considerations for Microsoft Windows

The modifiers “\a” (Alt), “\c” (Ctrl), “\g” (AltGr), and “\s” (Shift), are not required
before ASCII character values, but are necessary to modify non-character items such
as function keys when the modifier is needed. The modifier “\a” (Alt) is actually
shorthand for “\c\s” (Ctrl+Shift), the Windows substitute for the Alt key. The Alt
key is trapped by the Windows operating system and is therefore not available to
applications. The modifier “\g” (AltGr) is actually shorthand for Alt+Ctrl (but not
“\a\c”), the Windows substitute for the AltGr key.

When the characters “a” through “z” (lowercase only) are preceded by “\c” (Ctrl) or
either of the modifiers “\a” or “\g”, which imply Ctrl, they are converted to 1 through
26 (SOH through SUB). Since the values 1 through 26 are not normally configured
as data characters, this means that the configured TERM-INPUT virtual-key code
will be used to determine the action. The toolbar button generated virtual-key code
is the uppercase equivalent of the letter; that is, “A” through “Z”, plus any modifier
flags for Ctrl, Alt, or Shift. Thus, “\c” followed by “a” through “z” matches the
default Windows configuration for Ctrl+“a” through Ctrl+“z”, respectively.

Table 11: Special Characters for the Button Character-String

Special Character Description
>commandline execute commandline:
\a Alt
\b Backspace
\\ Backslash character
\c Control
\d Delete
\e Escape
\fO Function key 10
\f1 Function key 1
\f2 Function key 2
\f3 Function key 3
\f4 Function key 4
\f5 Function key 5
\f6 Function key 6
\f7 Function key 7
\f8 Function key 8
\f9 Function key 9
\fa Function key 10
\fb Function key 11
\fc Function key 12
\fd to \fn Function key 13 to Function key 23
\g AltGr (TERM-INPUT: NUL WAGR)
\i Insert
\n Newline

RM/COBOL User's Guide

91

Chapter 3: Installation and System Considerations for Microsoft Windows

92

RM/COBOL User's Guide

Table 11: Special Characters for the Button Character-String

Special Character Description

\p Pause (TERM-INPUT: NUL PAUSE)

\ga ATTN (TERM-INPUT: NUL ATTN)

\qc Caps Lock (TERM-INPUT: NUL CAPITAL)
\gp PAL (TERM-INPUT: NUL PA1)

\s Shift

\t Tab

\wa Applications (TERM-INPUT: NUL APPS)
\we CRSEL (TERM-INPUT: NUL CRSEL)

\we EREOF (TERM-INPUT: NUL EREOF)

\wi Left Windows Logo (TERM-INPUT: NUL LWIN)
\wp PLAY (TERM-INPUT: NUL PLAY)

\wr Right Windows Logo (TERM-INPUT: NUL RWIN)
\wx EXSEL (TERM-INPUT: NUL EXSEL)

\X Exit program

\zb Begin

\zc Clear

\zd Down Arrow

\ze End

\zh Home

\zI Left Arrow

\zm ZOOM (TERM-INPUT: NUL ZOOM)

\zn Next (Page Down)

\zp Prior (Page Up)

\zr Right Arrow

\zs Scroll Lock (TERM-INPUT: NUL SCROLL)
\zu Up Arrow

\z9 Num Lock (TERM-INPUT: NUL NUMLOCK)

The string “\g” is used as a modifier corresponding to the AltGr (alternate graphics) key
found on many international keyboards. Windows supports the AltGr key with the key
combination Alt+Ctrl, which can be entered even on a keyboard that does not have an
AlItGr key. In a button string, the escape “\g” is normally followed by another escape,
such as “\f1”, to represent AltGr+F1.

To be effective in a button string, these keys must be configured in the TERM-INPUT
records of the configuration. The commonly used keys, such as F1 through F12, are
configured by the default Windows configuration, but several of the less common keys
such as F13 through F23, CRSEL, EXSEL, PAL, and ZOOM are not configured in the
default Windows configuration. (For the keys configured by the default configuration,
see the Windows Example on page 372; additionally, the windows.cfg file, which is

Chapter 3: Installation and System Considerations for Microsoft Windows

provided by product installation, also represents the default Windows configuration and
has commentary that clarifies which keys are configured.) When configured by TERM-
INPUT configuration records, the buttons will activate the configured entry regardless of
whether the keyboard actually supports the particular key. The Caps Lock, Num Lock,
and Scroll Lock keys can be sent to the application, but do not affect the state of the
keyboard; that is, they do not toggle the corresponding lock state.

e Move Up and Move Down. Use these buttons to control the order of the buttons shown
in the toolbar. This order is determined by the order of the names in the Name list box.
When you choose Move Up, the currently selected name moves up one position in the
list. Choosing the Move Down button moves the selected name down one position.

e Remove. Use this button to clear the value for the currently selected toolbar button
name and remove it from the list.

e Remove All. Use this button to clear all toolbar button values for the currently
selected program.

Setting Menu Bar Properties

The Menu Bar Properties tab, illustrated in Figure 14, allows you to identify a list of pulldown
menu names and their associated values for the Default Properties or Individual File,
Configure for component (Runtime, Compiler, or Recovery), Scope (All Users or This User),
and Key (Default or Custom text) options that were specified using the Select File tab (see
page 69). Note that only the Runtime component uses Menu Bar properties.

The C$MBar subprogram (see page 557) also can be used to display a menu bar in the
RM/COBOL runtime window.

Once set, menu bar properties are processed cumulatively the following order: Program
Specific Properties for the Current User, Program Specific Properties for All Users, Default
Properties for the Current User, and Default Properties for All Users. The first setting of a
particular property from this ordered search is used and the search is terminated.

RM/COBOL User's Guide 93

Chapter 3: Installation and System Considerations for Microsoft Windows

94

Figure 14: Menu Bar Properties Tab

ta
l".
i

doverify Properties for Runtime PX|
Select File] Cortrol] Symonyms]
Colare] Toalbar Menu Bar l Pop-up Menu]

Select the menu name you want to zet, and then enter the new
prompt and string values below,

HName
EFunction
Hemove
R ermowve Al
Prompt;

|Seleu:t Functior|
String:

|[&1 :Compile"Compile venfy suite''=1 22 enfy"Run vernfy suite"

O | Cancel

The Menu Bar Properties tab contains the following options:

RM/COBOL User's Guide

Name. The value entered in this text box is the string that is displayed in the menu bar.
If the first character is a tilde (~), the name is disabled. An ampersand (&) character
causes the next character to be underlined and used as an accelerator.

Prompt. The value entered in this text box is an optional text string that is displayed
when the cursor is placed on the menu bar item.

String. The value entered in this text box defines the items in the pulldown menu along
with the strings that are returned to the COBOL program when an item is selected. Using
the following syntax, it can specify either a value to be returned or additional sub-menu
items:

pul ldownname["'prompt’*]=menu

where, pulldownname is the string that is displayed in the menu bar.

prompt is an optional text string that is displayed on the status bar when the cursor is
placed on the menu bar item specified by pulldownname.

menu defines the items in the pulldown menu along with the strings that are returned
to the COBOL program when an item is selected. The syntax for menu is shown as
follows:

Chapter 3: Installation and System Considerations for Microsoft Windows

menu -> [QitemsD]

items -> item name=[string | (menu)][,items]
item name -> pulldownname["'menu prompt']

string —> string to be sent (see the Toolbar Properties tab)

If the first character of pulldownname is a tilde (~), the menu is disabled. An ampersand
(&) in pulldownname causes the next character to be underlined and used as an
accelerator.

e Move Up and Move Down. Use these buttons to control the order of the pulldown menu
names shown in the menu bar. This order is determined by the order of the names in the
Name list box. When you choose Move Up, the currently selected name moves up one
position in the list. Choosing the Move Down button moves the selected name down one
position.

e Remove. Use this button to clear the value for the currently selected pulldown menu
name and remove it from the list.

e Remove All. Use this button to clear all pulldown menu values for the currently selected
program.

Setting Pop-up Menu Properties

The Pop-up Menu Properties tab, illustrated in Figure 15, allows you to identify a list of pop-
up menu names and their associated values that will be displayed when right-clicking the
mouse button on an RM/COBOL program in the client area of the window. The Pop-up
Menu Properties tab affects the program determined from the Default Properties or Individual
File, Configure for component (Runtime, Compiler, or Recovery), Scope (All Users or This
User), and Key (Default or Custom text) options that were specified using the Select File tab
(see page 69). Note that only the Runtime component uses Pop-up Menu properties.

The C$RBMenu subprogram (see page 561) also can be used to display a pop-up menu in the
RM/COBOL runtime window when the right mouse button is pressed.

Note If you are using RM/Panels, a pop-up menu defined by RM/Panels will override a pop-
up menu defined by setting mouse menu properties.

Once set, pop-up menu properties are processed cumulatively in the following order:

Program Specific Properties for the Current User, Program Specific Properties for All Users,
Default Properties for the Current User, and Default Properties for All Users. The first setting
of a particular property from this ordered search is used and the search is terminated.

RM/COBOL User's Guide

95

Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 15: Pop-up Menu Properties Tab

¢ doverify Properties for Runtime

Select File] Cortrol Synonyms]
Colars] Toolbar] Meru Bar Popup Menu

Select the menu name you want to zet, and then enter the new
prompt and string values below,

HName
|&Funn:tiu:url
Hemove
R ermowve Al
Prompt;

|Seleu:t Functiar

String:

|[&1 :Compile"Compile venfy suite''=1 22 enfy"Run vernfy suite"

O | Cancel

The Pop-up Menu Properties tab contains the following options:

e Name. The value entered in this text box is the string that is displayed in the pop-up
menu. If the first character is a tilde (~), the name is disabled. An ampersand (&) causes
the next character to be underlined and used as an accelerator.

e Prompt. The value entered in this text box is an optional text string that is displayed
when the cursor is placed on the pop-up menu item.

e String. The value entered in this text box defines the items in the pop-up menu along
with the strings that are returned to the COBOL program when an item is selected. It can
specify either a value to be returned or additional sub-menu items by using the following
syntax:

pop-upname[*'prompt']=menu

where, pop-upname is the string that is displayed in the pop-up menu.

prompt is an optional text string that is displayed on the status bar when the cursor is
placed on the pop-up menu item specified by pop-upname.

menu defines the items in the pop-up menu along with the strings that are returned to
the COBOL program when an item is selected. The syntax for menu is shown as
follows:

96 RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

menu -> [QitemsD]

items -> item name=[string | (menu)][,items]
item name -> pop-upname["'menu prompt']

string —-> string to be sent (see the Toolbar Properties tab)

If the first character of pop-upname is a tilde (~), the menu is disabled. An ampersand
(&) in pop-upname causes the next character to be underlined and used as an accelerator.

e Move Up and Move Down. Use these buttons to control the order of the names shown
in the pop-up menu. This order is determined by the order of the names in the Name list
box. When you choose Move Up, the currently selected name moves up one position in
the list. Choosing the Move Down button moves the selected name down one position.

e Remove. Use this button to clear the value for the currently selected pop-up menu name

and remove it from the list.

e Remove All. Use this button to clear all pop-up menu values for the currently selected

program.

Toolbar Editor

RM/COBOL provides a default toolbar in the file, rmtbar.vrf. This toolbar is the default
value specified in the Icon File property (see page 77). The buttons provided in the default

toolbar are documented in Table 12. A bitmap editor (rmtbedit.exe), provided with your
RM/COBOL development system, allows you to create or edit the buttons on the toolbar.

Table 12: Default rmtbar.vrf File Button Icons

Button Description

1-39 Numbers 1 through 39 (useful for menu picks)
A-Z Letters A through Z (useful for menu picks)
AF1 - AF23 Alternate Function keys 1 through 23

AP Accounts Payable

AR Accounts Receivable

BREAK Hammer smashing object (Break key)
CF1-CF23 Control Function keys 1 through 23
COMPANION Two buddies (Companion)

DISK Hard disk drive

DISKETTE Floppy disk

DOWN Down Arrow key

END Curtains closing (End key)

ENTER Enter key

ESCAPE Escape key

EXIT Door with exit sign

F1-F23 Function keys 1 through 23

FILE File cabinet

RM/COBOL User's Guide

97

Chapter 3: Installation and System Considerations for Microsoft Windows

Table 12: Default rmtbar.vrf File Button Icons

98

Button Description

GF1 - GF23 Alternate Graphics Function keys 1 through 23 (AltGr)
GL General Ledger

GO GO sign

GRAPH Three-dimensional graph

GREEN Green traffic light

HELP Question mark

HOME Little house (Home key)

INFO Italic lowercase i

LEFT Left Arrow key

LINELEFT Left Arrow key pointing at margin bar (Tab left)
LINERIGHT Right Arrow key pointing at margin bar (Tab right)
MAIL Bundle of letters

MENU Menu

PAGEDOWN Down Arrow key pointing at margin bar
PAGEUP Up Arrow key pointing at margin bar

PHONE Telephone

PR Payroll

PRINTER Printer

RED Red traffic light

REPORT Text on computer paper

RIGHT Right Arrow key

SAFE Archive (Safe)

SEARCH Flashlight

SF1 - SF23 Shift Function keys 1 through 23

SGF1 - SGF23 Shift Alternate Graphics Function keys 1 through 23
STOP Stop sign

TERMINAL Display and keyboard (Data terminal or PC)

upP Up Arrow key

WRITE Pencil writing on paper

YELLOW Yellow traffic light

YIELD Yield sign

Running the Toolbar Editor

To run the Toolbar Editor, choose the Toolbar Editor icon. The application presents you

with a menu bar. Under the File menu, you can choose a command to open a toolbar file or

RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

create a new one. A Resource dialog box then displays the bitmap buttons available in the
toolbar file.

Note The file created by the Toolbar Editor is a resource file that is composed of bitmap
buttons, each of which has a name. It is that name that you reference in the Toolbar
Properties tab when defining character actions, as described in Setting Toolbar Properties (on
page 89).

When the Resource dialog box is active, a Resource menu is available. You can edit, delete,
copy, and save the bitmap buttons presented in the Resource dialog box. Opening or creating
a bitmap Resource dialog box opens a bitmap editor.

Editing a Bitmap

When you start the bitmap editor, you are in draw mode. When you move the cursor into the
editor’s grid area, the cursor changes to a pen. You can use the left and right mouse buttons
to modify your bitmap. Each button can hold in memory a color that you choose from the
color palette. For example, if you click red with the left mouse button and blue with the right
mouse button, these colors are stored until you click on another color. By default, when you
start the bitmap editor, the left button is black and the right button is gray until you change the
color.

In the bottom portion of the color palette, the center square contains the mouse’s left button
color and the background color is in the mouse’s right button color. For example, the color
palette in Figure 16 shows the center square to be black (indicating that the color stored in the
left mouse button is black) and the background is gray (indicating that the color stored in the
right mouse button is gray).

Figure 16: Color Palette Showing Right and Left Mouse Colors

Buttons are shown in a pair of frames. The first frame represents the up image of the button.
The second frame in the sequence represents the down image of the button.

Testing the Bitmap

To test a button, choose the Bitmap | Test Button command from the menu bar.

A dialog box is displayed that shows the bitmap as a button.

RM/COBOL User's Guide 99

Chapter 3: Installation and System Considerations for Microsoft Windows

Transferring the Image Up

The bitmap that you create can be duplicated to the down image of the button. Select the
Transfer Up Image command from the Bitmap menu on the menu bar. At the prompt, either
choose Yes to transfer the image or choose No to terminate the transfer.

Importing and Exporting Bitmaps

You may import a bitmap by choosing the Import command from the Resource menu on the
menu bar. This command opens the Import Bitmap dialog box. Enter the name of the .bmp
file you want to import and choose the OK button.

You may export a bitmap by choosing the Export command from the Resource menu on the
menu bar. This command opens the Save Bitmap As dialog. Enter the name of the file you
want to export and choose the OK button.

Character Set Considerations for Windows

This section describes character set considerations for using RM/COBOL under the Windows
operating system, including the following topics:

e Codepages on Windows (see the following topic)
e RM/COBOL for ANSI Codepage on Windows (see page 102)

o Installation Character Set Considerations On Windows (see page 103)

o Related Character Set Configuration On Windows (see page 105)

These considerations result from Windows having both an OEM codepage for MS-DOS and
an ANSI codepage for Windows. RM/COBOL has historical roots in MS-DOS and, thus, in
the OEM codepage, which has resulted in issues caused by the dominance of Windows and
its preference for the ANSI codepage.

Codepages on Windows

Windows has two system codepages: the ANSI codepage and the OEM codepage. A
codepage defines a mapping of character code points (often called bytes) to a set of character
glyphs. The lower half of all Windows-supported ANSI and OEM codepages, code points
000 — 127 (0x00 — 0x7F), always match each other exactly because they represent the same
ASCII character set. The upper half of Windows ANSI and OEM codepages, code points 128
— 255 (0x80 — OxFF) can differ significantly in the characters that particular code points
represent. If you know that your programs do not use code points from the upper half of the
codepage, that is, your programs only use and accept ASCII characters, these character set
considerations do not affect you. However, if your program does expect to use characters
from the upper half of the codepage, that is, extended characters, you need to understand these
character set considerations as further described here.

Note The acronym “ANSI” actually stands for American National Standards Institute. In
RM/COBOL documentation, “ANSI” is usually used with its appropriate meaning. For
example, “ANSI COBOL” refers to an implementation of COBOL that follows the American
National Standard for the COBOL language and “ANSI ACCEPT/DISPLAY” refers to the

100 RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

American National Standard Institute’s definition of the COBOL ACCEPT and DISPLAY
verbs. Such uses have nothing to do with character sets or codepages. Microsoft originally
designed the Windows character set following an ANSI standard character set, but then
deviated from that standard in their actual implementation. Microsoft documentation,
however, continued to use “ANSI” to designate the Windows character set as opposed to the
MS-DOS OEM character sets used before Windows. Thus, the term “ANSI codepage” or
“ANSI character set” is misleading, but must be used to aid in relating this discussion to
Microsoft documentation of character sets on Windows.

Most Windows internal functions interpret code points as being from the ANSI codepage.
RM/COBOL was developed and in use much earlier than Windows, so data files written by
RM/COBOL under MS-DOS have long existed with OEM code points stored in the files,
including files that contain COBOL source programs. Rather than make customers convert
their source and data files when Windows was introduced, RM/COBOL continued to consider
character data—in files and in memory—as being from the OEM codepage. Thus,
conversions from OEM to ANSI or ANSI to OEM take place on RM/COBOL for Windows in
the following principal cases:

e When the RM/COBOL runtime system makes calls to Windows functions requiring
ANSI code points, the runtime system converts the code points from the OEM codepage
to their corresponding code points in the ANSI codepage.

e Most screen and printer fonts have a default script (also called a character set) that
interprets code points as being from the ANSI codepage. Thus, when displaying or
printing character data to such fonts, the RM/COBOL runtime system converts the in-
memory code points from the OEM codepage to the ANSI codepage. (Fonts can support
multiple scripts, but the RM/COBOL system currently uses only the default script for a
font.)

o Windows delivers data entered from the keyboard to the runtime system with code points
from the ANSI codepage. Accordingly, the RM/COBOL runtime system converts the
keyed data to the corresponding code points in the OEM codepage to keep the in-memory
data consistently OEM. (Note that extended characters can be keyed only when the
TERM-ATTR configuration record on page 351 specifies the keyword DATA-
CHARACTERS with a value that allows characters with a code point greater than 126 to
be treated as input data characters; otherwise, only ASCII code points 32 — 126 are
considered to be valid input data characters.)

Now that Windows has been the dominant operating system for such a long time, customers
who use extended characters are having difficulties with the assumption that RM/COBOL
character data is from the OEM codepage. They use Windows editors that produce source
program files using code points from the upper half of the ANSI codepage. Nonnumeric
literal values containing these non-ASCII characters display as expected in the editor, but do
not display or print as expected at runtime. This is because the RM/COBOL runtime system
assumes that they are code points in the OEM codepage and converts them to the
corresponding code points in the ANSI codepage. Since the code points were already from
the ANSI codepage, this conversion scrambles the code points in the upper half instead of
producing the desired code points. As a result, the extended characters are displayed or
printed incorrectly. Also, data entered from the keyboard often undergoes two conversions,
one from ANSI to OEM on being keyed, and then from OEM to ANSI on being displayed or
printed to a font with a default script that is not OEM/DOS. Since among the extended
characters of the two codepages there is not always a matching character, these conversions
prevent some characters that can be keyed from displaying or printing as intended by the
person entering the characters. The conversion from ANSI to OEM may substitute a close
match such as “Y” (LATIN CAPITAL LETTER Y) for “Y” (LATIN CAPITAL LETTER Y
WITH DIAERESIS) or, if there is no close match, a character such as “?” (QUESTION
MARK) or “_” (LOW LINE or SPACING UNDERSCORE), which then remains the same
when converted from OEM to ANSI since the replacement characters are in the lower

RM/COBOL User's Guide

101

Chapter 3: Installation and System Considerations for Microsoft Windows

common half of the character set. That is, the original ANSI character keyed is not recovered
despite the conversion back to ANSI.

RM/COBOL for ANSI Codepage on Windows

RM/COBOL provides direct support for using the ANSI codepage in order to assist customers
desiring to develop new applications in ANSI mode. Prior to version 9 of RM/COBOL, there
was only support for the OEM codepage. The OEM mode should be used for applications
previously created for the OEM codepage.

WARNING Great care should be taken to avoid mixing ANSI and OEM code points in any
one application or set of application data files, since there is no computable means of undoing
the mixing; a human would need to review all the character data to undo the mixed set of code
points. If necessary, an application can be converted from OEM to ANSI or ANSI to OEM,
but the entire application and its entire set of data files must be converted to avoid mixing
ANSI and OEM code points in the same application. If two or more applications share a set
of data files, all the applications must be converted at the same time.

When RM/COBOL is installed, it defaults to OEM mode, as was the case before version 9.
The command-line option /cs_ansi may be specified before the program name to enable ANSI
mode. If ANSI mode will be your preferred mode, the runcobol_ansi.exe file, installed into
the installation directory at install time, may be copied over the runcobol.exe file. The
compiler can be switched to ANSI mode in a similar manner so that data displayed or printed
by the compiler will interpret the code points in the source program correctly. CodeWatch
also supports setting the project mode to OEM or ANSI, and the CodeWatch command-line
program, rmcw.exe, supports the /cs_ansi and /cs_oem command-line options. (Further
information about the support for ANSI or OEM native character sets is provided in the
CodeWatch User’s Guide.) A utility named RMSETNCS Utility (see page 103) is provided
to accomplish switching between a default of OEM and ANSI.

In ANSI mode, the compiler, runtime system and CodeWatch development environment
assume that code points represent characters from the Windows system ANSI codepage.
Thus, a data conversion for character data is required only in that rare situation where a
display or printer font is chosen that has a default script of OEM/DOS. In such a situation,

the ANSI code points are converted to their corresponding OEM code points before the data is
displayed or printed. Also, no conversion is required for keyboard input in ANSI mode since
Windows delivers the characters as code points from the ANSI codepage.

Note The compiler running in ANSI console mode will not display characters correctly in the
console window when the default raster fonts for console windows are used. Use the Console
Window Properties dialog box to change the console window font to a True Type font, such
as Lucida Console, so that the characters will display correctly.

The C$GetNativeCharset subprogram (see page 547)s has been provided so that a COBOL
program can determine at runtime which character set, ANSI or OEM, is in use as the native
character set. The runtime call back table, described in the CodeBridge User’s Guide, has
also been extended to contain a pNativeCharset pointer so that non-COBOL programs can
determine the native character set used by the calling COBOL program. Note that any single
run unit can have only one native character set for the entire duration of that run unit. The
native character set for the run unit is established when the run unit is started.

CodeBridge version 9 has been enhanced to allow the native character set of the non-COBOL
character data to be declared ANSI or OEM. This information is used in conjunction with the
known native character set of the COBOL run unit to provide the appropriate translations for
nonnumeric data passed between the COBOL and non-COBOL programs. If the non-
COBOL character data is not declared to be from the ANSI or OEM codepage, then no
conversion is done. In this case, the non-COBOL character data must either match the native

102 RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

character set of the COBOL run unit or the COBOL program must handle any necessary
translations using the C$ConvertAnsiToOem (see page 542) or C$ConvertOemToAnsi (see
page 542) library subprograms.

Installation Character Set Considerations on Windows

When RM/COBOL version 9 is installed on Windows, two client files are installed for
starting a COBOL run unit: runcobol_oem.exe and runcobol_ansi.exe. These two clients
differ only in their default native character set, as indicated by their names. The
runcobol_oem.exe client is also copied to runcobol.exe during installation. Thus, the default
native character set after installation is OEM when the runcobol command is used to start the
runtime system. The runcobol_ansi.exe file can be copied to the runcobol.exe file to change
the default native character set to ANSI.

Either client can be started with the /cs_oem or /cs_ansi command-line option before the
main program file name to force the native character set for that run unit to OEM or ANSI,
respectively. Alternatively, the runcobol_oem.exe or runcobol_ansi.exe client may be used
to start the run unit.

Similarly for a development system, four client files are installed for starting a COBOL
compilation: rmcobolc_oem.exe, rmcobolg_oem.exe, rmcobolc_ansi.exe, and
rmcobolg_ansi.exe. These correspond, respectively, to the console and GUI compiler clients
with a default native character set of OEM, and the console and GUI compiler clients with a
default native character set of ANSI.

RMSETNCS Utility

A utility named rmsetncs.exe is provided during installation to allow easy switching between
the ANSI and OEM default clients, and, for a development system, between the console and
GUI compilers. The utility also modifies the CodeWatch INI file rmcw.ini in the Windows
directory so that new projects will default to the same character set mode as the runcobol and
rmcobol commands.

The RMSETNCS command line is as follows:
RMSETNCS charset-spec [compiler-mode]
where,

charset-spec:
/cs_ansi to select the ANSI character set
/cs_oem to select the OEM character set

compi ler-mode:
/console to select the console-mode compiler
/GUlI to select the GUI mode compiler

The command-line options are case-insensitive per Windows conventions. The options can
be specified in either order if both are specified. The charset-spec option is required, but
compiler-mode is optional and will default to /console. Hyphens can be used instead of
slashes to introduce the options, if desired.

The RMSETNCS utility must be run in an RM/COBOL installation folder and assumes
that the execution folder is the folder to be modified. That is, the folder to be modified is
the folder containing the rmsetncs.exe file, which is not necessarily the current directory. For

RM/COBOL User's Guide

103

Chapter 3: Installation and System Considerations for Microsoft Windows

example, when the command is executed with a pathname specified preceding the command,
the pathname specifies the installation folder to be modified. Successful execution results in a
display of the following lines in a development installation folder for the given command line:

[C:\Micro Focus\test\cwl] rmsetncs /cs_ansi /gui
Modifying folder C:\Micro Focus\test\cwl\ --
setting character set to ANSI;
setting compiler mode to GUI.
Runtime client runcobol ANSI.exe copied to runcobol.exe.
Compiler client rmcobolg_ANSI_exe copied to rmcobol.exe.
CodeWatch INI file rmcw.ini File modified.
RMSETNCS modified folder C:\Micro Focus\test\cwl\ successfully
for a development system.

For a runtime-only installation folder, that is, one without a compiler client, the following
output would be produced for the given command line:

[C:\Micro Focus\test\cwl] rmsetncs /cs_ansi
Modifying folder C:\Micro Focus\test\cwl\ --
setting character set to ANSI;
setting compiler mode to Console.
Runtime client runcobol_ANSI_exe copied to runcobol._exe.
Installation path does not contain compiler client rmcobolc_ANSI.exe.
RMSETNCS modified folder C:\Micro Focus\test\cwl\ successfully
for a runtime-only system (compiler client not found).

The runtime client must exist in the execution folder. If it does not, output similar to the
following will occur for the given command line:

[C:\Micro Focus\test\cwl] rmsetncs /cs_ansi
Modifying folder C:\Micro Focus\test\cwl\ --
setting character set to ANSI;
setting compiler mode to Console.
Installation path does not contain runtime client runcobol_ANSI.exe.
RMSETNCS terminated with error. Be sure utility was run in
installation folder.

The RMSETNCS utility sets the exit code (ERRORLEVEL) to zero if successful and one if
unsuccessful. The results of running the utility can be checked using the following
commands:

runcobol /showcharset (for a runtime-only or development system)

rmcobol /showcharset (for a development system)

Note There is a conflict with Windows User Access Control (UAC) because the normal
installation folder and Windows folder are protected folders. The utility tries to modify files
in the folder it is run and in the Windows folder. With UAC on (the default for Windows
installations), these modifcations will fail unless the utility is run elevated.

Note The utility modifies the runcobol.exe or rmcobol.exe in the same directory as the utility
itself. The 64-bit and 32-bit executables can be modified separately and need not have the
same default character set, but it is recommended that when 32-bit and 64-bit RM/COBOL
versions are installed they have the same default character set for consistency.

Running any runtime or compiler client with just the /showcharset command-line option will
cause the client to display its native default character set. This is useful when the client has

104 RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

been renamed and it is necessary to verify the default native character set. The native
character set actually in use is shown in the banner when verbose banners are requested, either
with the =V Runtime Command Option or the RM_VERBOSE_BANNER=Y environment
variable setting. (The native character set actually in use may differ from the default native
character set for a client if the /cs_ansi or /cs_oem command-line option has been specified.)

Related Character Set Configuration on Windows

Several properties and configuration keywords allow modification of how RM/COBOL
handles the ANSI and OEM conversions. These are described briefly below, along with how
they relate to whether the native character set is ANSI or OEM.

e The Font CharSet OEM property (see page 76) specifies those display font scripts that are
considered to be OEM/DQOS and thus whether a conversion does not occur when the
native character set is OEM; otherwise, a conversion from OEM to ANSI is done as
required. If the native character set is ANSI, this property is ignored and a conversion
from ANSI to OEM occurs only when the display font script is OEM/DOS.

e The Full OEM To ANSI Conversions property (see page 76) causes additional
conversions from OEM to ANSI to occur when the native character set is OEM. These
conversions are ones that were missed in earlier implementations of the runtime system
for Windows. This property has no effect when the native character set is ANSI, since no
OEM to ANSI conversions are needed in this case.

e The Printer Font CharSet OEM property (see page 81) specifies those printer font scripts
that are considered to be OEM/DOS and thus whether a conversion does not occur when
the native character set is OEM; otherwise, a conversion from OEM to ANSI is done as
required. If the native character set is ANSI, this property is ignored and a conversion
from ANSI to OEM occurs only when the printer font script is OEM/DOS.

e The ALLOW-EXTENDED-CHARS-IN-FILENAMES keyword (see page 336) in the
RUN-FILES-ATTR configuration record determines whether extended characters are
allowed in filenames passed from the runtime system to Windows file management
functions. If extended characters are allowed, this keyword can further specify whether
the characters should be interpreted as ANSI or OEM code points. This keyword should
generally be set to the value ANSI when the native character set is ANSI and extended
characters are used in filenames. Similarly, it should be set to the value OEM when the
native character set is OEM and extended characters are used in filenames.

e The DATA-CHARACTERS keyword (see page 352) in the TERM-ATTR configuration
record determines if keyboard input can include extended characters. By default,
extended characters cannot be entered from the keyboard.

e The EURO-CODEPOINT-ANSI keyword (see page 326) in the
INTERNATIONALIZATION configuration record specifies the code point in the ANSI
codepage to use to represent the euro symbol. This can be used to preserve the euro
symbol when converting between ANSI and OEM codepages that may not have a euro
symbol defined.

e The EURO-CODEPOINT-OEM keyword (see page 326) in the
INTERNATIONALIZATION configuration record specifies the code point in the OEM
codepage to use to represent the euro symbol. This can be used to preserve the euro
symbol when converting between ANSI and OEM codepages that may not have a euro
symbol defined.

RM/COBOL User's Guide

105

Chapter 3: Installation and System Considerations for Microsoft Windows

Terminal Input and Output on Windows

This section describes how terminal input and output are handled by the RM/COBOL runtime
system on Windows.

Terminal Interfaces

The runtime system uses only one terminal interface named GUI (Graphical User Interface)
on Windows. Screen output is displayed within the client area of the Runtime System
Window (see page 111).

Cursor Types

Under default conditions, there are three types of cursors, each of which indicates a different
edit mode during ACCEPT operations.

The underscore cursor indicates that standard overtype mode is active.

| The full-height cursor indicates that you have typed to the end of the field
and that the TAB phrase has been specified in the ACCEPT statement.
A backspace key or field termination key is the only valid keystroke in
this mode.

u The half-height cursor indicates that insert mode is active.

In versions of RM/COBOL prior to 7.5, the cursors were drawn by the RM/COBOL runtime
system. In versions 7.5 and higher, the runtime uses the Windows cursor, which is a blinking
cursor where the rate at which the cursor blinks is controlled by the Keyboard settings in the
Windows Control Panel. The shapes of the three cursors can be configured using three
properties in the RM/COBOL Windows registry file: Cursor Overtype property, Cursor Insert
property, and Cursor Full Field property. For more information, see the discussion of these
properties in Setting Control Properties (on page 72).

Blinking Attribute

The blinking attribute is not supported in the Windows environment, as noted in the
description of the BLINK keyword (on page 332) in the RUN-ATTR configuration record.

Portable Line Draw Characters

The GRAPHICS keyword of the ACCEPT and/or DISPLAY CONTROL phrase translates the
characters described in Table 26 (on page 211) to system-specific line draw characters.
Characters that are not listed in this table are output unchanged.

It is not required that the current font contain line draw characters because the runtime system
dynamically creates these characters as required.

106 RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

Keyboard Input Character Sequences

Input character sequences are translated to field input data characters, field editing actions, or

field termination by use of the TERM-INPUT configuration record (see page 356). There is a
default set of TERM-INPUT configuration records when the configuration file is not specified
or does not contain any TERM-INPUT configuration records.

The interpretation of a particular input character sequence differs depending on whether the
sequence begins with a NUL character or without a NUL character, as described in the
following paragraphs.

When the sequence specification does not begin with a NUL on Windows, the translation of
TERM-INPUT sequences is as follows:

1. Character values 1 through 26, SOH through SUB as shown in Table 36: ASCII
Equivalents (on page 359), are translated to Ctrl+*“a” through Ctrl+“z”, respectively. For
example, the sequence “BS” is the same as “NUL WCNT H”; that is, Ctrl+“h”.

2. Character value 27 (ESC) is not translated and corresponds to the virtual-key code for the
Esc key.

3. Character value 28 (FS) is translated to Ctrl+“\” for U.S. keyboards. The translation uses
VK_OEM _5 (0xDC), which may correspond to a different key on non-U.S. keyboards.

4. Character value 29 (GS) is translated to Ctrl+*]” for U.S. keyboards. The translation uses
VK_OEM_6 (0xDD), which may correspond to a different key on non-U.S. keyboards.

5. Character value 30 (RS) is translated to Ctrl+“6”.

6. Character value 31 (US) is translated to Ctrl+“-”. The translation uses
VK_OEM_MINUS (0xBD), which should be the minus key for any country.

7. Character values 32 (SP) through 255, with twenty-two exceptions, are not translated and
correspond directly to the virtual-key code values. The exceptions are as follows:

e 034/039 (*"'™) are translated to VK_OEM_7=0xDE

e 043/061 (*+=") are translated to VK_OEM_PLUS=0xBB

e 044/060 (“,<”) are translated to VK_OEM_COMMA=0xBC
e 045/095 (“-_") are translated to VK_OEM_MINUS=0xBD
o 046/062 (“.>) are translated to VK_OEM_PERIOD=0xBE
e 047/063 (“/?") are translated to VK_OEM_2=0xBF

e (058/059 (“;:) are translated to VK_OEM_1=0xBA

o 091/123 (“[{”) are translated to VK_OEM_4=0xDB

o 092/124 (*\]”) are translated to VK_OEM_5=0xDC

e (093/125 (“1}”) are translated to VK_OEM_6=0xDD

e 096/126 (“*~") are translated to VK_OEM_3=0xC0

These exceptions allow a character sequence to specify a nonalphanumeric character to obtain
the virtual-key code for that key on a U.S. keyboard. For non-U.S. keyboards, the translation
is often incorrect. Thus, outside the U.S., this method of specifying a sequence should be
avoided by specifying a leading NUL in the sequence.

When the sequence specification does begin with a NUL on Windows, the translation is
as follows:

RM/COBOL User's Guide 107

Chapter 3: Installation and System Considerations for Microsoft Windows

1. Two 0 (NUL) characters in sequence (NUL NUL) represents a Ctrl+Break key press.
(RM/COBOL internally converts the 0x03 virtual-key code returned by Ctrl+Break to
zero, an unused virtual-key code value, for historical reasons having to do with
RM/COBOL on MS-DOS).

2. The value 127 (DEL) indicates that the next character, if there is one, is an ASCII OEM
character code. If there is no next character, 127 is interpreted the same as WF16
(VK_F16 = Ox7F = 127).

3. Any other value is treated as a virtual-key code value. The value may be specified as one
of the following:
e asingle OEM ASCII character (example: A);
e aquoted single OEM ASCII character (example: “A”);
o one of the ASCII equivalents from Table 36 (see page 359) (example: ETX);
e one of the Code Names from Table 13 (example: WF2);
e adecimal number (example: 113 for F2); or

e ahexadecimal number (example: 0x71 for F2).

However, even though OEM ASCII values can be specified in a TERM-INPUT character
sequence, they represent virtual-key code values, except as described in the translation used
when the sequence does not begin with a NUL. The description of a value specification in a
configuration record (see page 290) describes how to specify a decimal or hexadecimal
numeric value and when quotes are required around an ASCII character. The virtual-key
codes for letters are the uppercase version of the letter; the lowercase letters represent other
keys on the keyboard (for example, the letter “a”, with the value 0x61, is the virtual-key code
for the numeric keypad 1 key). Documentation on virtual-key codes is available from
Microsoft on their MSDN Library web site at http://msdn.microsoft.com/library/.

Additional character equivalents, listed in Table 13, have been defined for the character
sequence specifications. If a character equivalent, which actually specifies a virtual-key code
value, is used to specify a character sequence, the sequence specification should begin with a
NUL. This is necessary because character values are translated in the absence of a leading
NUL, and there is overlap between character values and virtual-key code values.

Another special incoming character sequence has been added. Specify NUL DEL <ascii-
char-code> on the TERM-INPUT record to match on the ASCII character code rather than the
virtual key code. <ascii-char-code> is the decimal value of the ASCII code in the range 0
through 255. In order for this record to be effective, the <ascii-char-code> must not be
included in the TERM-ATTR record DATA-CHARACTERS range. As an example, an
Umlaut-Uppercase-U can be input by:

TERM-INPUT DATA=154 NUL DEL 154
Note Alt-key sequences are not available under RM/COBOL for Windows because the

underlying Windows-based environment traps the Alt-key sequences. Alt-key sequences
are entered as Ctrl-Shift-key combination sequences. For example, use Ctrl-Shift-1 instead

of Alt-1.
Table 13: Additional Character Equivalents Under RM/COBOL for Windows
Code Name Description (Virtual key code)
APPS Applications key (0x5D)
ATTN ATTN key (0xF6)

108 RM/COBOL User's Guide

http://msdn.microsoft.com/library/

Chapter 3: Installation and System Considerations for Microsoft Windows

Table 13: Additional Character Equivalents Under RM/COBOL for Windows

Code Name Description (Virtual key code)

CAPITAL Caps Lock key (0x14)

CRSEL CRSEL key (0XF7)

EREOF Erase EOF key (0xF9)

EXSEL EXSEL key (0xF8)

KB'" Regular KeyBoard apostrophe/quotation mark (OxDE)
KB,< Regular KeyBoard comma/less than (0xBC)

KB.> Regular KeyBoard period/greater than (OXxBE)
KB/? Regular KeyBoard slash/question mark (OxBF)
KB;: Regular KeyBoard semicolon/colon (0OxBA)

KB[{ Regular KeyBoard left bracket/left brace (0xDB)
KB\| Regular KeyBoard backslash/vertical bar (0xDC)
KB} Regular KeyBoard right bracket/right brace (0xDD)
KB-_ Regular KeyBoard minus sign/underscore (0xBD)
KB~ Regular KeyBoard grave accent/tilde (0xCO0)

KB=+ Regular KeyBoard equal sign/plus sign (0xBB)
KBO0) Regular KeyBoard zero/right parenthesis (0x30)
KB1! Regular KeyBoard one/exclamation point (0x31)
KB2@ Regular KeyBoard two/at sign (0x32)

KB3# Regular KeyBoard three/number sign (0x33)

KB4$ Regular KeyBoard four/dollar sign (0x34)

KB5% Regular KeyBoard five/percent sign (0x35)

KB6" Regular KeyBoard six/caret (0x36)

KB7& Regular KeyBoard seven/ampersand (0x37)

KB8* Regular KeyBoard eight/asterisk (0x38)

KBY(Regular KeyBoard nine/left parenthesis (0x39)
LWIN Left Windows logo key (0x5B)

NKP- Numeric KeyPad Subtract (minus sign) (0x6D)
NKP* Numeric KeyPad Multiply (asterisk) (Ox6A)

NKP. Numeric KeyPad Decimal (period) (OX6E)

NKP/ Numeric KeyPad Divide (slash) (0x6F)

NKP+ Numeric KeyPad Add (plus sign) (0x6B)

NKPO ... NKP9 Numeric KeyPad 0 ... 9 (zero ... nine) (0x60 ... 0x69)
NKPS Numeric KeyPad Separator (not on most keyboards) (0x6C)
NUMLOCK Num Lock key (0x90)

OEM_1 “:7 for US (0XBA)

RM/COBOL User's Guide 109

110 RM/COBOL User's Guide

Table 13: Additional Character Equivalents Under RM/COBOL for Windows

Code Name
OEM_2
OEM_3
OEM_4
OEM_5
OEM_6
OEM_7
OEM_8
OEM_COMMA
OEM_MINUS
OEM_PERIOD
OEM_PLUS
PAl
PAUSE
PLAY
RWIN
SCROLL
WAGR
WCNT
WCNT
WDEL
WDWN
WEND
WEND
WF1...WF23
WHOM
WINS
WLFT
WPGD
WPGU
WPRT
WRGT
WSFT
WUP
ZOOM

Example

Chapter 3: Installation and System Considerations for Microsoft Windows

Description (Virtual key code)
“/?” for US (OxBF)
“~” for US (0XCO)
“[{” for US (0xDB)
“\[" for US (0xDC)
“1}” for US (0xDD)
“ <« for US (OXDE)
(OXDF)
“” for any country (0xBC)
“-” for any country (0xBD)
“.” For any country (OXBE)
“+” for any country (0xBB)
PA1 key (OxFD)
Pause key (0x13)
Play key (OxFA)
Right Windows logo key (0x5C)
Scroll Lock key (0x91)
AltGr key (Ctrl+Alt under Windows)
Control key (0x11)
Control key (0x11)
Delete key (0x2E)
Down Arrow key (0x28)
End key (0x23)
End key (0x23)

Function 1 ... Function 23 (0x70 ... 0x86)

Home key (0x24)

Insert key (0x2D)

Left Arrow key (0x25)
PgDn key (0x22)

PgUp key (0x21)

Print key (0x2C)

Right Arrow key (0x27)
Shift key (0x10)

Up Arrow key (0x26)
Zoom key (OxFB)

Chapter 3: Installation and System Considerations for Microsoft Windows

The NKPx and KBxx names are useful if you want the numeric keypad to return a different
character than the same key on the regular portion of the keyboard. Suppose you want the
period key on the regular keyboard to continue to return a period (ASCII decimal 46), while
the period key on the numeric keypad returns a comma (ASCII decimal 44). To remove the
period (46) from the range, replace the normal record:

TERM-ATTR DATA-CHARACTERS=32,126
with the following two new records:

TERM-ATTR DATA-CHARACTERS=32,45

TERM-ATTR DATA-CHARACTERS=47,126
Then, to obtain the required behavior, add the following two new records:

TERM-INPUT DATA=46 NUL KB.>

TERM-INPUT DATA=44 NUL NKP.

Other System Considerations for Windows

This section describes special system considerations for using RM/COBOL under the
Windows operating system.

Memory Available for a COBOL Run Unit on Windows

The memory available for a run unit depends on the configuration of your PC. If the total
memory required by a run unit exceeds the amount of available memory, runtime system
errors will occur. These errors indicate an inability to obtain enough memory to perform a
desired operation. This is unlikely to occur under Windows because 32-bit Windows
provides virtual memory. However, it is still possible to use segmentation and subprograms
to manage the dynamic memory requirements of very large run units.

Runtime System Window

Figure 17 illustrates a sample window of an RM/COBOL program running under Windows.

RM/COBOL User's Guide 111

Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 17: Sample Window of an RM/COBOL Program Running Under Windows

Menu bar Title bar
l_ Control menu button J
Doverify [_ O[]
Function
SRR ER
RM/COBOL Verification Suite |
Press 1 to Compile, 2 to execute, 3 to exit_
Toolbar
The Liant COBOL Solution
1:Compile
2ZWeiify
FExit
Teminal te:
’7 [-
— Pop-up menu .
Status bar Client area

The runtime system window is a typical Windows operating system window with the
following areas:

112 RM/COBOL User's Guide

Client area. Used by the RM/COBOL program input and output.

Menu bar. Configurable by the developer. Menu bar can be different for each program.
COBOL programs can also display a menu bar by using the C$MBar subprogram (see
page 557).

Status bar. Displays prompt text when the user moves the mouse in the client area,
through a menu pick or over a toolbar button. It is configurable by the developer. Status
bar can be different for each program. COBOL programs can also display text in the
status bar by using the C$SBar subprogram (see page 564). It can be turned on or off by
the user.

Control menu button. Opens the Control menu.

Title bar. Identifies the program-name currently running the COBOL program and
displays the Minimize, Maximize, and Close buttons. It is configurable by the developer.
Title bar can be different for each program. COBOL programs can also display a title by
using the C$Title subprogram (see page 577).

Toolbar. Configurable by the developer. Toolbar can be different for each program. It
can be turned on or off by the user. COBOL programs can also display a toolbar by
using the C$TBar subprogram (see page 575).

Pop-up menu. Configurable by the developer. Pop-up menu can be different for each
program. RM/COBOL programs can also change the contents of a pop-up menu by
using the CSRBMenu subprogram (see page 561).

Chapter 3: Installation and System Considerations for Microsoft Windows

Control Menu Icon

The upper-left corner of the title bar has a button that enables the Control menu (sometimes
referred to as System menu). Although the Control menu is standard in the Windows
operating system, RM/COBOL for Windows has added functions to this menu. Figure 18
illustrates the RM/COBOL for Windows Control menu.

Figure 18: RM/COBOL for Windows Control Menu

Restore

Mowe
Size
— Minimize

O Maximize
¥ Close Alt+F4

Copy
Copy table
Paste

Properties

The Restore, Move, Size, Minimize, Maximize, and Close commands are standard Control
menu functions for the Windows operating system. (For more information, see the Microsoft
Windows documentation that accompanied the operating system.) The Copy, Copy table,
Paste, and Properties commands have been added to the Control menu by RM/COBOL for
Windows. Each of these commands is described in the following sections.

Copy

Choosing the Copy command from the Control menu copies the text selected in the client area
of the RM/COBOL runtime window to the Windows Clipboard. To select text, hold down
the mouse button and drag the mouse to the target area. Double-clicking the mouse button
selects text in the manner described in the Mark Alphanumeric property (see page 78).

Copy table

Choosing the Copy table command from the Control menu copies the text selected in the
client area of the RM/COBOL runtime window to the Windows Clipboard, and also replaces
multiple spaces with a tab. This feature is useful in copying a table of numbers to a
spreadsheet, since spreadsheets require that number fields be separated by the tab character.

Paste

Choosing the Paste command from the Control menu copies the text in the Windows
Clipboard to the currently running RM/COBOL program through the COBOL ACCEPT
statement. If more data is pasted than can be accepted by the ACCEPT command, the data
is buffered.

RM/COBOL User's Guide

113

Chapter 3: Installation and System Considerations for Microsoft Windows

Properties

Choosing the Properties command from the Control menu opens the Properties dialog box,
which is illustrated in Figure 10 (see page 72).

Return Code Message Box

When runcobol.exe terminates with an exit code other than 0, a Return Code message box is
displayed with the status code (that is, the exit code), as shown in Figure 19. For more
information, see compiler exit codes (on page 187) and program exit codes (on page 199). If
a COBOL error occurred, that error message is displayed as well. The Show Return Code
Dialog property (see page 83) can be used to suppress the display of this message box.

The message box contains two command buttons. The OK button dismisses the message box
and closes the application. The Cancel button dismisses the message box only. The
application window remains open until you select the Close option from the Control menu.
To close the message box, you can click the Close button in the upper-right corner of the
window.

Figure 19: Return Code Message Box

Return Code

CALL “SYSTEM”

When using the SYSTEM (see page 579) non-COBOL subprogram (CALL “SYSTEM”) with
DOS programs and batch files, you can customize how these programs run by modifying the
Command Prompt properties. This can be done by right-clicking the mouse on the Command
Prompt icon and selecting Properties from the pop-up menu.

Performance

For increased file system performance in single-user mode, set the RUN-FILES-ATTR
configuration record option to FORCE-USER-MODE=SINGLE (see page 338).

Using Large Files on Windows

RM/COBOL supports files larger than 2 gigabytes (GB), but not on all versions of Windows
and not on all Windows file systems. In addition, even if a particular version of Windows and
a particular version of the Windows file system allow local files larger than 2 GB, this does
not guarantee that all other machines in a peer-to-peer network can successfully access the

114 RM/COBOL User's Guide

Chapter 3: Installation and System Considerations for Microsoft Windows

large file. The following information describes the conditions under which applications can
count on large file support in various Windows environments.

Windows File Systems Considerations

Microsoft provides several different Windows file systems.

Windows 95 operating systems prior to the release of Windows 95 OEM Service Release 2
(OSR2), version number 4.00.950B, support only the File Allocation Table (FAT) file system,
which limits files to no more than 2 GB. The Windows 9x-class of operating systems
(excluding Windows 95 without OSR?2) included an updated version of the File Allocation
Table file system, called FAT32. This updated file system allows support for files larger than
2 GB, but not larger than 4 GB. Windows 98 and Windows Me support both the FAT (2 GB)
and the FAT32 (4 GB) file system.

Although the FAT32 file system supports local files up to 4 GB, Micro Focus has determined
that Windows 95 does not support access to files larger than 2 GB from remote clients.
Attempts to create files larger than 2 GB on a Windows 95 FAT32 file system and to access
the file from another machine may result in a hung client when the RM/COBOL runtime
attempts the WRITE operation that would cause the file to grow past 2 GB. Everything will
work correctly until the attempt to exceed the 2 GB boundary.

While Windows NT-class operating systems do not support the FAT32 file system, they do
support the NTFS file system, which allows multiple terabyte (TB) files.

In addition to these file systems considerations for the different versions of the Windows
operating system, there are also other variants of the Windows operating systems. In
particular, there have been several Service Pack updates for Windows NT 4.0. Micro Focus
recommends that Windows NT 4.0 Servers be upgraded to at least Service Pack 6. Microsoft
generally provides downloadable updates for system modules from their web site between
updates.

Large File Locking Issues

Very large files, defined as RM/COBOL indexed files larger than 2 GB, and RM/COBOL
relative and sequential files larger than 1 GB, require the use of the LARGE-FILE-LOCK-
LIMIT keyword (see page 339) of the RUN-FILES-ATTR configuration record to specify a
lock limit larger than 2 GB. The Define Indexed File (rmdefinx) utility (see page 594) may
be used to set the Large File Lock Limit for version 3 indexed files. The lock limit may not
be set to more than 4 GB unless the RM/COBOL runtime is running on a Windows NT-class
operating system and the file resides on an NTFS file system.

For indexed files, the block size and the value of the lock limit determine how large the
indexed file can be. For example, with a 4 GB lock limit, a block size of 1024 will allow a
3.2 GB indexed file and a block size of 4096 will allow a 3.7 GB indexed file. For relative
and sequential files, the file size may be no more than one half of the lock limit. Thus, a
sequential file may be no more than 2 GB when the lock limit is 4 GB.

Using very large files also requires that the Windows system support region locking at the
value specified by the Large File Lock Limit. All Windows systems seem to be able to lock
at 4 GB (above 4 GB in the case of a Windows NT-class operating system), but remote access
to very large files requires that the network redirector (on the client machine) and the File and
Printer Sharing Network Service (on the server machine) also support such locks.

RM/COBOL User's Guide

115

Chapter 3: Installation and System Considerations for Microsoft Windows

Test Programs Available

In order to help the RM/COBOL applications developer who needs to use files larger than 2
GB in a Windows environment, Micro Focus has developed some simple C programs which
attempt to answer the question of how various Windows systems react to the use of very large
files. These programs and any additional information discovered after the release of this
product may be found on the Micro Focus web site at https://supportline.microfocus.com.

Because the Windows environment is very complex with regard to the use of very large files,
Micro Focus strongly recommends that the applications developer use these test programs to
determine whether it is possible to use very large files in the required Windows environment.
Failure to do this testing may result in unfortunate surprises (for example, when the file grows
larger than 2 GB) long after the application has been deployed at a customer site.

Periodically, Micro Focus will add additional information to the web site. If your application
requires very large files, continue to check the web site often for updates.

It is also possible to use the RM/COBOL runtime system to write a test indexed file of the
desired size to verify that your application will not have problems with a specific Windows
environment. This technique is particularly useful when running in a Windows peer-to-peer
environment.

Environment Variables for Windows

An environment variable is an operating system feature that allows a value to be equated with
a name. Table 14 lists those environment variables that are used by RM/COBOL on
Windows.

Note In addition to the environment variables listed in the following table, RM/COBOL uses
environment variables to map generic file access names, as explained in File Access Names
on Windows (on page 64).

Table 14: Environment Variables for Windows

Environment Variable Usage
COMSPEC SYSTEM subprogram (see page 579).
GROUP C$GetSysinfo subprogram (see page 551).
GROUPID C$GetSysinfo subprogram (see page 551).
NAME C$GetSyslinfo subprogram (see page 551).
PATH Locating files (see page 62).
PRINTER Printer support (see page 238).
RMPATH Locating files (see page 62).

RM_COMPILER_WRAP_LONGNAMES | Controls whether the compiler will wrap rather than
truncate long user-defined words in the listing
summary (allocation map, cross reference, summary
error messages, and so forth). The value “Yes”
causes wrapping; the value “No” causes truncation.
The value can be specified as “Y” or “N” and case
does not matter. See also the WRAP-
LONGNAMES value (on page 306) for the
LISTING ATTRIBUTES keyword of the
COMPILER-OPTIONS configuration record.

116 RM/COBOL User's Guide

https://supportline.microfocus.com/

Chapter 3: Installation and System Considerations for Microsoft Windows

Table 14: Environment Variables for Windows

Environment Variable

RM_DEVELOPMENT_MODE

RM_DYNAMIC_LIBRARY_TRACE
RM_IGNORE_GLOBAL_RESOURCES

RM_KEEP_XML_SYMTAB_FILE

RM_LOAD_WOW_CLIENT

RM_LIBRARY_SUBDIR
RM_VERBOSE_BANNER

RM_Y2K

RUNPATH
STATION
TEMP or TMP
TZ

USER
USERID

Usage

C$SetDevelopmentMode subprogram (see
page 571).

Tracing support module loads (see page 449).

Causes the compiler, runtime system, or recovery
utility not to access the Command Line Options
property defined for All Users. This may be useful
if you are trying to develop at the same time others
are running an application in live “production
mode.” See Setting Control Properties (on page 72)
and Setting Synonym Properties (on page 86).

The value specifies the path of the folder where the
temporary XML-format symbol table file from the
compiler should be preserved. See also the KEEP-
TEMP-XML-SYMBOL-TABLE-FILE keyword (on
page 302) of the COMPILER-OPTIONS
configuration record.

Loading the WOW Extensions support module,
rpcpluswow.dll.

Locating optional support modules (see page 449).

Compile command messages (see page 177) and
runcobol banner message (see page 418).

COMPILER-OPTIONS ALLOW-DATE-TIME-
OVERRIDE (see page 295)

Locating files (see page 62).
C$GetSysinfo subprogram (see page 551).

Temporary files (see page 249).

Standard C TimeZone variable.

C$GetSysinfo subprogram (see page 551).

C$GetSysinfo subprogram (see page 551).

RM/COBOL User's Guide 117

Chapter 4: System Considerations for Btrieve

Chapter 4. System
Considerations for Btrieve

This chapter describes special considerations for using RM/COBOL to access Btrieve files.
Btrieve files are an alternative indexed file format to the RM/COBOL indexed file format.
Btrieve files can reside on the local machine, in which case they are accessed via client-based
Btrieve, or they can reside on a remote machine, in which case they are accessed via
server-based Btrieve. Btrieve Adapter for Windows (rmbtrv32.dil) provides the
communication between the RM/COBOL runtime and Btrieve runtime, translating COBOL
requests to Btrieve requests.

Btrieve Adapter for Linux (librmbtrv.so) is also available. While this chapter primarily
describes the Windows systems considerations for Btrieve, most of the content also applies to
the implementation of the Btrieve support module on the Linux operating system. For
specific considerations on Linux, see Starting Btrieve Adapter for Linux (on page 132) in this
chapter and the EXTERNAL-ACCESS-METHOD configuration record (on page 324).

Btrieve Adapter Concepts

Btrieve Adapter, which collectively refers to both the rmbtrv32.dll program on Windows and
the librmbtrv.so support module on Linux, improves performance by providing a mechanism
to reduce the overhead required to transmit requests for records in an indexed file across a
local area network (LAN).

The goal of the Btrieve Adapter is to use the local area network for passing general requests to
other machines and for receiving completed requests back from the other machines. As a
result, significant increases may occur in the performance of the application program, the
cost-effectiveness of the local area network, and the productivity of the user.

Note See RM/COBOL versus Btrieve Indexed File Performance (on page 125) for a
situation in which the performance of Btrieve index files may not exceed that of RM/COBOL
indexed files.

Indexed Files

The application program can request a specific record of information in an indexed file. The
location of the specified record within the indexed file is determined by means of an identifier
known as a key. Indexed files use a much more efficient method of locating the record than

RM/COBOL User's Guide 119

Chapter 4: System Considerations for Btrieve

simply searching through all the records in the file until the requested record is found.
Instead, indexed files build overhead tables into the file that are similar to indexes in a book.
These overhead tables enable the indexed files to quickly look up the desired location and
then read the desired data. Figure 20 illustrates this process on a single-user system.

Note In Figure 20, Figure 21, and Figure 22, each line represents a separate event that
happens at a separate time. The lighter lines represent a small transfer of information, and the
heavier lines represent a large transfer.

Figure 20: Indexed File Requests on a Single-User System

Request for Overhead Table
_—

Overhead Table Data
-— ° I
Request for Actual Data
— _— Disk Drive

«——

Computer

When this process happens over a network, the situation is very similar, as shown in
Figure 21.

Figure 21: Indexed File Requests on a Local Area Network

Local Area Network Cable
E— —
D — — [0 =l

=t @ @ — === - —

R —— Y R —— Disk Drive
— —

Computer 1 Computer 2
(Client) (Server)

In Figure 21, Computer 2 acts as a conduit, called a server, through which the requests of
Computer 1, called a client, are routed. (The server routes requests for more than one client
computer, which is an advantage of local area networks.) A more effective way to route
requests, however, is shown in Figure 22.

120 RM/COBOL User's Guide

Chapter 4: System Considerations for Btrieve

Figure 22: Indexed File Requests on a Local Area Network by the Btrieve MicroKernel
Database Engine (MKDE)

Requests for Key Cable

— —

¢ ° [—

= =\ Data for Key /5 = Disk Drive
— —

Computer 1 Computer 2
(Client) (Server)

Figure 22 illustrates the way in which a Btrieve Requester (running on the client, Computer 1)
and a Btrieve MicroKernel Database Engine (running on the server, Computer 2), makes the
processing of messages even more efficient. (Note that the Btrieve MicroKernel Database
Engine is a key external component of the Btrieve Adapter.) Although the interactions
between Computer 2 and the disk drive are the same as shown in Figure 21, the interactions
between Computer 1 and Computer 2 are significantly different. Instead of Computer 1
giving Computer 2 many small instructions to carry out, Computer 1 now gives Computer 2

a single, general request. Computer 2 searches the overhead table for the indexed files to
locate the desired record and then returns only the requested record.

There are several advantages to this method, but the following two are the most significant:

1. The overall operation may be quicker because the number of transfers between the two
computers is reduced.

2. Because there are fewer transfers between the Computer 1 and Computer 2, the local area
network can use the time that it is not performing transfers between the two computers to
make transfers between other computers on the network. It allows the network to handle
more computers, which makes it more cost-effective.

Required Software Components

The components required when using RM/COBOL to access Btrieve files are described in the
following sections.

For Windows

e Novell NetWare version 3.11 or later

e Btrieve MicroKernel Database Engine (MKDE) for NetWare Server
e Btrieve Requester for 32-bit Windows

e RM/COBOL compiler (development system) for Windows

e RM/COBOL runtime system for Windows

e Btrieve Adapter for Windows (rmbtrv32.dll)

RM/COBOL User's Guide 121

Chapter 4: System Considerations for Btrieve

For Linux

e Pervasive PSQL v8 (or higher)

e RM/COBOL compiler (development system) for Linux
e RM/COBOL runtime system for Linux

e Btrieve Adapter for Linux (librmbtrv.so)

Note NetWare products are available from Novell, Incorporated. Btrieve products are
available from Pervasive Software Inc. (formerly Btrieve Technologies Inc.).

Novell NetWare

NetWare is the software that communicates between computers on the local area network.
These NetWare products are responsible for handling the actual hardware connections,
recovering from transmission errors detected by the hardware, and routing the messages from
one program executing on one computer to another program executing on another computer.

NetWare augments the operating system by providing access to files on file servers.

Btrieve MicroKernel Database Engine (MKDE)

The MKDE component consists of two types. The first type, a client-based Btrieve MKDE,
provides access to files that are located on the same machine as the application program. The
second type, NetWare Btrieve MKDE, provides access to files that are located on a remote
machine in a multi-user environment.

The NetWare Btrieve MKDE is a record management system similar to the indexed files built
into the RM/COBOL runtime system. Because the NetWare Btrieve MKDE is not built into
the RM/COBOL runtime system, it can run on a separate computer using NetWare, thus
providing access to files in the manner illustrated in Figure 22 (on page 121).

There are also versions of the Btrieve MKDE that run on other types of networks and on a
single machine (client-based Btrieve MKDE), without network support. The client-based
Btrieve MKDE, however, no longer has the speed advantage over the RM/COBOL file
management system, since both systems have the same access to the disk drive.

Btrieve Requester for 32-Bit Windows

The 32-bit Windows requester, a dynamic link library (DLL) program, runs on the client
computer and communicates with either the server-based or the client-based Btrieve MKDE.

Pervasive PSQL v8 (or higher) for Linux

The Pervasive PSQL components are a set of programs and libraries that communicate with
either the server-based or the client-based Btrieve MKDE.

122 RM/COBOL User's Guide

Chapter 4: System Considerations for Btrieve

RM/COBOL Compiler (for Windows and Linux)

The RM/COBOL compiler (development system) is a GSA-certified high implementation of
the American National Standard COBOL X3.23-1985 with extensions and support for most
optional features of the language.

RM/COBOL Runtime System (for Windows and Linux)

The RM/COBOL runtime system executes the application program and carries out its
instructions. The runtime system has an internal file management system that accepts input
from the user, processes data, produces data in the form of output to the user, and, most
importantly, generates requests for records to be written to and read from files.

The runtime system has been designed so that any existing RM/COBOL application may be
run in many different environments without changes either to the source of the program or to
the actual executable object. Furthermore, any existing RM/COBOL runtime system that
executes on Windows or Linux can also use Btrieve Adapter.

Btrieve Adapter

Btrieve Adapter acts as an interpreter between either of the two types of Btrieve MKDEs,
which are described in Btrieve MicroKernel Database Engine (MKDE) on page 122, and
COBOL application programs. In order to understand how this transparent interface is
achieved, it is necessary to briefly describe the different ways in which the Btrieve MKDE
and the COBOL language provide access to indexed files.

The Btrieve MKDE lets an application program access records stored in indexed files, and
provides the necessary functions for storing, retrieving, and updating the information. The
Btrieve MKDE’s method of accessing indexed files is an efficient system that provides
significant increases in functionality to the user in certain cases. However, because the
Btrieve MKDE does not use COBOL language features that provide access to indexed files, a
COBOL application program cannot communicate directly with the Btrieve MKDE.

A COBOL application program uses American National Standard COBOL 1985 language
features, such as OPEN, READ, WRITE, REWRITE, and CLOSE, to access indexed files.
The RM/COBOL runtime system contains a file management system that provides the
runtime system with support for these features. The RM/COBOL runtime system
communicates with the file management system by means of requests and responses that are
called messages. These messages are processed outside of the file management system by
any one of a variety of external file access methods.

The Btrieve Adapter, in effect, is one such external file access method for the RM/COBOL
runtime system. Btrieve Adapter receives messages from the RM/COBOL file management
system. Then, acting as an application program for the Btrieve MKDE, Btrieve Adapter
translates the messages into Btrieve requests, enabling the Btrieve MKDE to carry out the
action originally requested by the COBOL application program. The Btrieve MKDE
performs the action either on the user’s computer system or acts with NetWare on a remote
system using the local area network. (The drive letter in the pathname of the file indicates the
machine on which the file resides.) After the Btrieve MKDE has completed the requests,
Btrieve Adapter constructs an appropriate response message, which is sent to the RM/COBOL
file management system, and, finally, back to the COBOL application program. Figure 23
illustrates this process (for Windows).

RM/COBOL User's Guide

123

Chapter 4: System Considerations for Btrieve

Figure 23: Btrieve Adapter Acting as an External File Access Method (On Windows)

COBOL application RM/COBOL file The rmbtrv32 program |
program requests management system translates COBOL request
record. sends request to the into Btrieve request and
rmbtrv32 program sends it to the Btrieve
for processing. MKDE.
RM/COBOL file rmbtrv32 translates The Btrieve MKDE carries
management system |¢ Btrieve response into out the request and sends | |
sends response to COBOL response the Btrieve response to the
the COBOL and sends it to the rmbtrv32 program.
application program. RM/COBOL file

management system.

See also Btrieve Adapter Options (on page 126).

Configuration for Btrieve

The installation and configuration of client-based Btrieve (also called Workstation Btrieve)
for 32-bit Windows are fully described in the appropriate Btrieve installation and operation
manual supplied by Pervasive Software with your Btrieve system. The client-based Btrieve is
the MicroKernel Database Engine (MKDE) that is used to access local files (that is, Btrieve
files residing on the computer where the RM/COBOL runtime system is run). A number of
configuration settings can be modified using the Btrieve Setup utility. After configuring
Btrieve, use the Btrieve File Manager utility (or other Btrieve software) to verify that Btrieve
is working properly before using Btrieve with RM/COBOL.

Similarly, the installation and configuration of server-based Btrieve (for NetWare or for a
Windows Server) are fully described in the appropriate Btrieve installation and operation
manual that was supplied by Pervasive Software with your Btrieve system. These manuals
also describe the installation and configuration of the requesters used to communicate with
server-based Btrieve. The server-based Btrieve is the MKDE that is used to access remote
files (that is, Btrieve files residing on the NetWare or on a Windows Server). A number of
configuration settings for both the MKDE and the requesters can be modified by using the
appropriate Btrieve Setup utility.

The Btrieve Programmer’s Guide, supplied by Pervasive Software with your Btrieve
Developer Kit, is an excellent source of information for help in setting the Btrieve
configuration options properly. In addition, several books on Btrieve are available
commercially, and the Btrieve Developer’s Journal is published quarterly by Smithware, Inc.

System Considerations for Btrieve Files

Btrieve Adapter creates Btrieve files when necessary or if requested. Btrieve files created by
Btrieve Adapter have a computed page size based on one of the following methods that
produces the largest value:

1. The size of the block requested by the COBOL application.

2. The size necessary for the length of the longest key, times eight.

124 RM/COBOL User's Guide

Chapter 4: System Considerations for Btrieve

3. The size of the largest record requested by the application, plus eight times the number of
linked duplicate keys, plus six (for overhead information), plus four if the file specifies
variable-length records (again for overhead information). For more information, see
Variable-Length Records (on page 137).

Furthermore, if the record size is greater than the maximum page size and the keys of the file
all fit into that maximum, the Btrieve Adapter creates a variable-length file. (The Btrieve
MKDE restricts the fixed-length part of records to less than the page size.)

Finally, Btrieve Adapter creates the file with the following characteristics:
e Data compression

e Blank truncation

e Five-percent, free-space threshold

e No page preallocation

To create Btrieve files with characteristics other than those previously listed, use the Btrieve
File Manager utility, the filename, and the Btrieve description-file that contains the
characteristics for the new file. For more information, see the chapter about using the File
Manager utility in the appropriate Btrieve installation and operation manual. Characteristics
established using the Btrieve File Manager utility could have a direct impact on performance,
including the following:

e The page preallocation value can be used to reserve pages for use by the file. This has
the advantage of ensuring, in advance, that the file has the disk space it needs. It can also
improve performance by concentrating the location of the file on the disk media
(assuming that the disk space is not already fragmented).

e The free-space threshold value can be set to 10, 20, or 30 percent to allow for growth of
variable-length records.

o Keys can be created that are binary or have any of the extended key types.
e Null keys can be created.

e More keys can be defined than can be used by the COBOL program. These keys must be
defined either at starting locations that are different from the COBOL keys or after the
COBOL key description for the same location. Such keys can have any Btrieve attribute
and can be split.

RM/COBOL versus Btrieve Indexed File Performance

In general, when used across the network, Btrieve indexed files have better performance than
RM/COBOL indexed files because less network activity has to occur to access a record.

However, this may not be true when a COBOL program opens an indexed file WITH LOCK.
In this case, the COBOL program then has exclusive access to that file. This has an important
consequence for RM/COBOL indexed files. In this case, the RM/COBOL runtime system
knows that no other user is able to change the indexed file overhead tables on the server, and
it keeps the overhead tables on the local machine. This results in fewer requests across the
network for the overhead tables and may result in better performance than the same program
using Btrieve indexed files.

This effect is most pronounced when the indexed file is being read sequentially (for example,
producing a report).

RM/COBOL User's Guide

125

Chapter 4: System Considerations for Btrieve

Btrieve Adapter Options

Btrieve Adapter has options that are specified on the EXTERNAL-ACCESS-METHOD
configuration record (see page 324) or on the RUN-INDEX-FILES configuration record (see
page 341) in the RM/COBOL configuration file. These configuration file options, described
in the following sections, give Btrieve Adapter information that the Btrieve MKDE requires,
but which is not contained in RM/COBOL file management system messages.

Note Typically when configuring the Btrieve MKDE, it is often sufficient to specify only the
“Largest Compressed Record Size” Btrieve configuration option, if you are using
compression (see the appropriate Btrieve installation and operation manual for more details).

EXTERNAL-ACCESS-METHOD Configuration Record
Options

Most of the information that the Btrieve Adapter needs to operate can be obtained through
requests received from the RM/COBOL file management system. However, when Btrieve
Adapter needs information required by the Btrieve MKDE, which the RM/COBOL file
management system cannot supply, it is possible to provide this information directly to
Btrieve Adapter with options in the EXTERNAL-ACCESS-METHOD configuration record.

These options are as follows:

o B (Btrieve Adapter Btrieve MKDE page size) option
e Create option

e D (duplicates) option

o | (initial display) option

e L (lock) option

e M (mode) option

e O (owner) option

e P (Btrieve Adapter page size) option

e T (diagnostic trace filename) option

These options are described in the following sections.

Note The create option is specified by the CREATE-FILES keyword and the other options
(B,D, I, L, M, O, P,and T) are specified by the OPTIONS keyword, both of which are in the
EXTERNAL-ACCESS-METHOD configuration record (see page 324).

B (Btrieve Adapter Btrieve MKDE Page Size) Option

This option is obsolete and should not be specified. The “Maximum Page Size” is no longer
a configurable parameter of the Btrieve engine, which always assumes the Btrieve limit of
4096 bytes. If this value were inadvertently specified as an amount smaller than 4096,
Btrieve Adapter may create a Btrieve file with variable-length records when such records
would not be needed.

126 RM/COBOL User's Guide

Chapter 4: System Considerations for Btrieve

Create Option

The create option, for creating a new file, has the following values:
e Y (Yes) Create new files as Btrieve indexed files (the default).

e N (No) Do not create new files.

See the description of the CREATE-FILES keyword (on page 325) in the EXTERNAL-
ACCESS-METHOD configuration record.

The create option is the determinant parameter supplied to Btrieve Adapter, because it
determines the system that will be responsible for creating a new indexed file. Depending on
the value specified in this parameter, the new file can be created by Btrieve Adapter, by
another external file access method, or by the RM/COBOL file management system. In order
to understand how this process works, it is helpful to know more about the way in which the
RM/COBOL file management system searches for a file.

Before an application program creates a file, the RM/COBOL file management system first
tries to locate an existing file having the same name as the one specified in the create attempt.
The file management system searches the current directory first, and then all the other
directories located in the environment variable, RUNPATH. See Directory Search Sequences
on Windows (on page 62) for more information on setting the RUNPATH variable.

In addition to Btrieve Adapter, other external file access methods can be running on the
computer or network at the same time. In searching for a file, the RM/COBOL file
management system also communicates with all other known external file access methods.

The search for the filename occurs in the following sequence:

1. Any external file access methods currently running (including Btrieve Adapter) search
the current directory.

2. The RM/COBOL file management system searches the current directory.

3. The external file access methods search the first directory in the RUNPATH list.

4. The RM/COBOL file management system searches the first directory in the
RUNPATH list.

The search continues until all pertinent directories have been checked. If a file having the
same name as the one specified in the create attempt is found, it will be opened. If such a file
cannot be found, and the application program wants to create one, then a designated external
file access method can create the file.

The Btrieve Adapter create option value is a yes or no indicator that specifies whether you
want Btrieve Adapter to create any new indexed files as Btrieve files. Regardless of the value
specified, any new file is created in the first directory possible, usually the current directory.
Valid values are Yes and No. The default value is Yes.

A value of Yes causes any new indexed files to be created as Btrieve files:
EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 CREATE-FILES=YES

A value of No causes Btrieve Adapter not to create the file and enables another external file
access method or the RM/COBOL file management system to create new indexed files:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 CREATE-FILES=NO

RM/COBOL User's Guide

127

Chapter 4: System Considerations for Btrieve

D (Duplicates) Option

The duplicates option is used to specify whether linked or repeating duplicatable keys are
used for files created by Btrieve Adapter.

The duplicates option has the following values:

e L Create linked duplicatable keys. Linked duplicates mean that only one copy of the
duplicated key value is stored in index pages. The data records with the duplicated
key value are linked together with pointers in a doubly linked list.

e R Create repeating duplicatable keys. Repeating duplicates mean that the duplicated
key value is repeated in the index pages for each data record with that value. The
data records are not linked together. Using repeating duplicates uses more space in
index pages, but saves space in data pages and also helps avoid position lost errors
when files are shared.

The default value is L. Refer to the Btrieve Programmer’s Guide for more information.

The following example tells Btrieve Adapter to create files with repeating duplicatable keys:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="D=R*"

| (Initial Display) Option

The initial display option is used to specify whether Btrieve Adapter should display an initial
message box when it is first invoked.

The initial display option has the following values:

e Y (Yes) Display the message box. The message box shows the Btrieve Adapter
version number and the OPTIONS parameter string that was passed to it from the
EXTERNAL-ACCESS-METHOD configuration record. The user must click the
OK button to acknowledge and continue. This option is most useful the first time the
user attempts to use Btrieve Adapter with RM/COBOL and Btrieve.

Note I=Y should not be used in a production environment.

e N (No) Do not display the message box.

The default value is N.

Example
The following example tells Btrieve Adapter to display the informative message box:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="1=Y"

L (Lock) Option

The lock option is used to specify the manner in which Btrieve Adapter is to handle the WITH
LOCK phrase on OPEN statements.

The lock option has the following values:

128 RM/COBOL User's Guide

Chapter 4: System Considerations for Btrieve

e | Ignore the WITH LOCK phrase. Use the Btrieve MKDE open mode indicated with
the M (mode) option (see page 129).

e D Denythe WITH LOCK phrase.
e A Acceptthe WITH LOCK phrase. If OPEN WITH LOCK is requested by the

application, ignore the open mode indicated with the M (mode) option (see page 129).

The default value is A.

Examples

The following example tells Btrieve Adapter to ignore the WITH LOCK phrase on OPEN
statements:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="L=I"

The following example tells Btrieve Adapter to deny the WITH LOCK phrase on OPEN
statements:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="L=D"

The following example tells Btrieve Adapter to accept the WITH LOCK phrase on OPEN
statements:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="L=A"

M (Mode) Option

The mode option is used to specify a value to Btrieve Adapter at the time a Btrieve file is
opened. The following values are used only if the file is not OPENed WITH LOCK. The
mode option has the following values:

e N Normal

) Accelerated
[)

Read-only
Verify

m < 0 >

) Exclusive

The default value is N.

Note The ability of Btrieve Adapter to specify a mode value is dependent on whether the
application program requests the WITH LOCK phrase on OPEN statements. For more
information, see the L (lock) option (on page 128).

Examples

In normal mode, the Btrieve MKDE behaves as it normally does with its recovery option
enabled, allowing update requests and performing normal writes to the disk drive. The
following example specifies a value of normal when the file is opened:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="M=N"

RM/COBOL User's Guide

129

Chapter 4: System Considerations for Btrieve

In accelerated mode, the data recovery capability of the Btrieve MKDE is disabled to increase
the speed at which records are updated. The following example specifies a value of
accelerated when the file is opened:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="M=A"

In read-only mode, no updates can be performed. The following example specifies a value of
read-only when the file is opened:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="M=R*"

Verify mode is now disregarded and the MKDE assumes normal mode instead.

In exclusive mode, the user has exclusive access to the file until the user closes it. This is the
same as specifying EXCLUSIVE or WITH LOCK on the OPEN statement in the COBOL
program.

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="M=E*"

O (Owner) Option

The owner option specifies the “owner” ID (actually a security password) for new files and
open requests for existing files. The value is a string of up to a maximum of eight characters
delimited by a trailing space. The value cannot contain spaces. The following example
specifies an owner ID of YELLOW:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="O=YELLOW"

P (Btrieve Adapter Page Size) Option

The Btrieve Adapter page size option is the default minimum page size for the files created by
Btrieve Adapter. Btrieve files are physically accessed in fixed-length pieces called pages.
When Btrieve Adapter creates a new file, the Btrieve MKDE requires the specification of a
page size. The size of a page is determined from either the page size option or a computation
based on the size of the record. For more information, see Variable-Length Records (on

page 137). A larger page size transfers more data in a single disk request, requires more time
to transfer, and requires more memory to contain the pages. A smaller page size allows more
blocks in memory for a fixed amount of memory, but requires more time to randomly access a
record by increasing the tree depth of each index for the file.

If specified, the value must be a multiple of 512 in the range of 512 to 4096, inclusive. When
creating a file, the page size used will be the smallest multiple of 512 sufficient to hold the file
overhead, eight keys, the fixed part of the record, or, if specified, the default page size,
whichever is greater.

The following example sets the value of the page size option to 1024:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="P=1024"

130 RM/COBOL User's Guide

Chapter 4: System Considerations for Btrieve

T (Diagnostic Trace Filename) Option

This diagnostic trace filename option is used to specify the pathname of a file to which
Btrieve Adapter will write a trace of open requests. This feature is used when there is a
problem with a Btrieve file not being successfully opened by a COBOL program. It is not to
be used in a production environment, because it degrades performance and the trace file can
become quite large, which might exhaust disk space. To turn on the trace feature, edit the
RM/COBOL configuration file for the COBOL program in question and add a T=trace-file-
name parameter to the OPTIONS keyword (see page 325) in the EXTERNAL-ACCESS-
METHOD configuration record.

For example, the following record writes trace information to the file c:\test\trace.fil:
EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS="T=C:\test\trace.fil"

The trace file contains a “Begin open” and “End open” pair of records for every open request
that Btrieve Adapter receives. This includes all opens that runcobol does for files, such as
the COBOL program file, as well as every OPEN statement executed by the COBOL
program. The “End open” line shows the COBOL status code returned to the RM/COBOL
file management system. Between the “Begin” and “End” lines, zero or more “BTRV
Create” or “BTRV Open” lines show the full pathname of the file, the exact Btrieve status
code returned by the name of the file, and the exact Btrieve status code returned by the
Windows Btrieve DLLs. The following is a sample trace file:

Trace Initialized
Begin open, Not indexed
End open, Code=35
Begin open, Not indexed
End open, Code=35
Begin open, Not indexed
End open, Code=35
Begin open, Flags=0x4900 (file must exist)
UFN=INX1
BTRV Open status 0 on file C:\TEST\INX1
End open, Code=0
Begin open, Flags=0xel00 (file must exist)
UFN=INX2
BTRV Open status 12 on file C:\TEST\INX2
End open, Code=35
Begin open, Flags=0xe000
UFN=INX2
BTRV Open status 12 on file C:\TEST\INX2
BTRV Create status O on file C:\TEST\INX2
End open, Code=0

When you are finished diagnosing the problem, be sure to edit the configuration file again and
remove the T=trace-file-name parameter from the OPTIONS keyword in the EXTERNAL-
ACCESS-METHOD configuration record.

RUN-INDEX-FILES Configuration Record Options

In addition to the options specified on the EXTERNAL-ACCESS-METHOD, two RUN-
INDEX-FILES keywords have meaning for Btrieve Adapter: DATA-COMPRESSION (see
page 342) and BLOCK-SIZE (see page 342).

RM/COBOL User's Guide 131

Chapter 4: System Considerations for Btrieve

Specifying DATA-COMPRESSION=NO causes Btrieve Adapter to create uncompressed
Btrieve files. The default is to create compressed Btrieve files. (Note that Btrieve does not
support key compression.)

Specifying BLOCK-SIZE=nnnn causes Btrieve Adapter to create files with a page size of
nnnn. Btrieve Adapter first computes the minimum allowable page size for the file based on
the record size, number of key segments, type of duplicates, and so forth. It then uses the first
value greater than or equal to the computed minimum value in the following order:

1. Fromthe BLOCK CONTAINS clause in the program’s file description entry.

2. From the P=<page size> option parameter on the OPTIONS keyword (see page 325) in
the EXTERNAL-ACCESS-METHOD configuration record (see page 324).

3. Fromthe RUN-INDEX-FILES BLOCK-SIZE=<size> configuration record.

If none of these three values is present or acceptable, Btrieve Adapter uses the computed
minimum value.

Example

The following example represents a typical command line invoking runcobol using Btrieve
Adapter:

runcobol userprog x=config.cfg
where, the config.cfg file contains the following records:

RUN-INDEX-FILES DATA-COMPRESSION=NO
EXTERNAL-ACCESS-METHOD NAME=RMBTRV32
& CREATE-FILES=YES

& OPTIONS="P=1024, D=R, O=XyZzY"

The ampersand (&), which begins the third and fourth lines in this example, is the
configuration file record continuation character. Note that different RM/COBOL applications
can specify different Btrieve Adapter option parameters by using different RM/COBOL
configuration files.

Starting Btrieve Adapter for Linux

Btrieve Adapter for Linux, librmbtrv.so, can be used by placing the shared object (support
module) in the execution directory for the RM/COBOL runtime.

Note If you are using the RM/COBOL installation directory as your execution directory and
you have Btrieve in use on your system, the external access method for Btrieve from
RM/COBOL will be used automatically. If you do not want to use the Btrieve support
module, you may specify one or more EXTERNAL-ACCESS-METHOD configuration
records (see page 324) to identify the external access methods you do wish to use.

The only installation requirement is that Linux must be able to locate the various executable
files that are required. Place librmbtrv.so in the same directory as the RM/COBOL runtime
system (runcobol) for Linux, typically, /usr/bin.

Furthermore, in order for this support module to be loaded properly, you must make sure that
you have set the LD_LIBRARY_PATH environment variable. Add the directory that

132 RM/COBOL User's Guide

Chapter 4: System Considerations for Btrieve

contains the Pervasive libraries, DSOs (dynamic shared objects), to LD_LIBRARY_PATH.
For example:

export LD_LIBRARY_PATH=/usr/local/psql/lib:/usr/lib

Note that if you logged into the system as “psql”, these paths will have already been set.

To verify that the shared object, librmbtrv.so, is being loaded properly by the RM/COBOL
runtime, type the following from the shell command line. For more information about the V
Option, see Configuration Runtime Command Options (on page 192).

runcobol xxx —v

If the following line is displayed in the RM/COBOL runtime banner, then Btrieve Adapter for
Linux has been loaded correctly:

$EXEDIR/1ibrmbtrv.so — RM/COBOL Btrieve Adapter (vnn.nn/rnnnn).

Note The server-based Btrieve MKDE must be started separately. Refer to the appropriate
Btrieve installation and operation manual for information on starting server-based Btrieve.

Starting Btrieve Adapter for Windows

Btrieve Adapter for Windows, rmbtrv32.dll, and either the client-based Btrieve MKDE or
32-bit Windows Btrieve Requester programs, are all started automatically. This process is
initiated by the user placing the following configuration record in the RM/COBOL
configuration file and starting the RM/COBOL runtime system:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32

The only requirement is that Windows must be able to locate the various executable files that
are required.

Note The server-based Btrieve MKDE must be started separately. Refer to the appropriate
Btrieve installation and operation manual for information on starting server-based Btrieve.

Btrieve Adapter program for Windows, rmbtrv32.dll, is a dynamic link library (DLL) that
can be loaded by the 32-bit Windows version of RM/COBOL. rmbtrv32.dll communicates
directly with wbtrv32.dll, which is the Btrieve interface DLL supplied with your Btrieve
system. The wbtrv32.dll file is normally installed, along with a number of other DLL, EXE,
and other Btrieve files, in a separate Btrieve executable subdirectory.

Since RM/COBOL and Btrieve are separate products supplied by separate vendors, the
executable files required by each are normally installed in the separate directory structures.
Therefore, the recommended way of ensuring that Windows can locate the files is to place the
directory names containing the files into the Windows PATH environment variable. For
RM/COBOL, this is the directory containing rmbtrv32.dll (and also containing
runcobol.exe, and so forth). For Btrieve, this is the directory containing wbtrv32.dll (and
other DLLs and EXEs). Add these two directory names to your Windows PATH (which is
often done in the autoexec.bat file).

Although it is not the recommended method, Windows will find the executable files if they
reside in any combination of the following:

1. The directory that contains the runcobol.exe that is started.

RM/COBOL User's Guide 133

Chapter 4: System Considerations for Btrieve

2. The current directory.

3. The Windows system directory (normally c:\windows\system).

4. The main Windows directory (normally c:\windows).

5. Any directory in the PATH environment variable

Note Both the Btrieve MKDEs and rmbtrv32.dll have keywords that can be passed to them
when they are started. If no parameters are specified, the programs use default values.

For information on specifying keywords, see the EXTERNAL-ACCESS-METHOD
configuration record (on page 324). For more information on Btrieve Adapter options, see
Btrieve Adapter Options (on page 126).

The rmbtrv32.dll program, the 32-bit Windows Btrieve Requester, and the client-based
Btrieve Microkernel Database Engine (MKDE) all terminate automatically when the final
RM/COBOL runtime system using them terminates. Server-based Btrieve must be terminated
separately; however, server-based Btrieve normally remains running as long as the server
computer remains running.

RM/COBOL Indexed Files and Btrieve MicroKernel
Database Engine (MKDE) Limitations

This section describes the limitations of the Btrieve MicroKernel Database Engine (MKDE),
and the way in which these limitations affect RM/COBOL indexed files. Although these two
systems perform the same functions, they do not operate in the same manner.

Note For more information on the RM/COBOL limits and ranges, see Appendix B: Limits
and Ranges (on page 421).

Current Record Position Limitations

A COBOL application program can sequentially read through all the records in an indexed
file. The manner in which a requested record is presented to the application program for the
READ operation varies, depending on how the file was created. The Btrieve MicroKernel
Database Engine (MKDE) behaves according to ANSI COBOL 1985 for simple READ
statements.

However, for READ NEXT statements, the behavior of the Btrieve MKDE can vary from
ANSI COBOL 1985. According to ANSI COBOL 1985, the determination of the next record
to be read is not affected by subsequent non-READ operations. As long as the COBOL
application program does not perform any non-READ operations to the indexed file, the
Btrieve MKDE behaves according to ANSI COBOL 1985. If non-READ operations are
performed to the file, however, the Btrieve MKDE defines the next record as being the one
after the non-READ operation.

The Btrieve Adapter compensates for this variation by remembering the location of the record
that was last read, and the surrounding records, in order to set the position indicator back to
the correct place following the non-READ operation. This compensation works completely
when a single-user is accessing the file, but can fail in a shared file environment.

In a Btrieve shared file environment, Btrieve Adapter can become lost when reading records
via a key containing duplicate key values. If the COBOL application program performs a
non-READ operation between a READ and a READ NEXT statement, and an application

134 RM/COBOL User's Guide

Chapter 4: System Considerations for Btrieve

program running on the same or another computer deletes the current record and the records
around it (and all these records contain duplicate key values), then Btrieve Adapter becomes
lost and returns an error message 46, 02 to the application program. See Input/Output Errors
for more information.

This position-lost problem can be avoided when the shared Btrieve file is accessed via Btrieve
MKDE. Btrieve Adapter sets the new No Currency Change (NCC) option on Insert and
Update operations so that Btrieve will not change the current record position. In addition,

the user can specify the use of repeating duplicatable keys (see the D (Duplicates) Option on
page 128 of this user’s guide and the discussion of Linked versus Repeating Duplicatable
keys in the Btrieve Programmer’s Guide). Using both of these features avoids the position
lost problem and retrieves the correct record.

File Position Indicator Limitations

The file position indicator specifies the next record to access within a file during certain
sequences of input-output operations.

If the COBOL program executes a START LESS THAN statement and there are multiple
records in the file that contain duplicate keys (for example, multiple records having the same
key value that satisfy the START LESS THAN condition), then the file position indicator will
be positioned to the last record in the sequence of duplicate key values. The same result
occurs if you execute a START LESS THAN OR EQUAL statement where the equal
condition is not met.

If no new records containing duplicates for a key value are added to the file, then Btrieve
Adapter behaves identically to the RM/COBOL file management system for the succeeding
READ NEXT or READ PREVIOUS statements. The RM/COBOL file management system
does not move the file position indicator from the record originally located by the START
statement. This position is the record returned for succeeding READ NEXT or READ
PREVIOUS statements.

The Btrieve MKDE does not allow Btrieve Adapter to emulate this behavior if new records
are added that contain duplicates for a key value. Btrieve Adapter moves the file position
indicator to the last record added at the time of the succeeding READ NEXT or READ
PREVIOUS statement.

Note Once the READ statement has been executed, the position is known, and the
RM/COBOL file management system and the Btrieve MKDE again behave the same.

Permission Error Detection Limitations

When you attempt to open an RM/COBOL indexed file and Btrieve Adapter is active, Btrieve
Adapter may open the file before the RM/COBOL file management system opens the file. If
the indexed file is already opened by the RM/COBOL file management system on another
computer, the Btrieve MKDE returns a Permission Error to Btrieve Adapter instead of a Not a
Btrieve File error. Btrieve Adapter assumes that the file is an already-opened RM/COBOL
indexed file and reports an Invalid Organization error to the file management system, which
then attempts to open the file. If the file is an RM/COBOL indexed file, the open succeeds.

If the problem was one with permissions, then the RM/COBOL file management system
encounters it also and returns the correct error code.

RM/COBOL User's Guide

135

Chapter 4: System Considerations for Btrieve

Using Existing Btrieve Files with RM/COBOL

RM/COBOL and ANSI COBOL 1985 define some limitations on indexed files that are not
imposed by the Btrieve MKDE.

Btrieve Adapter creates new Btrieve files that are compatible with the COBOL concept of
indexed files. Existing Btrieve files can be used also, providing they have the following
characteristics:

e The primary key cannot have a null value.

e Alternate keys can be modified, can use either the native or alternate collating sequence
(ACS), can be binary, and can have a null value.

e Keys cannot have the following Btrieve key flags: descending, supplemental, and any-
segment null. Keys must use ACS number zero, if any.

e Keys do not have to be created in the file in any particular order. However, within the
file, there must be at least one key residing at the correct position for each COBOL key.
That key must be of the correct length, contain the correct duplicates flag, and cannot
contain any of the restrictions on keys as described above. Furthermore, this key must be
defined within the Btrieve file before any other keys that start at the same position.
Subsequent keys may have forbidden characteristics.

e There can be more keys in the Btrieve file than in the COBOL description, and they can
have characteristics that are not legal for COBOL keys. However, they must either have
a starting position that does not match the starting position for any COBOL key, or they
must occur in the Btrieve definition after the COBOL key description for that position.

e Within the record, there should not be any multiple-byte integer data fields. Btrieve
Adapter will not reject any files with fields of this type. Because of byte ordering,
however, there are no COBOL data types that can directly manipulate the integer data in
the field.

If an OPEN OUTPUT is performed on an existing Btrieve file, all characteristics of the
original file are preserved. This includes any compression (or lack of it) and any extra keys.
The file is simply made empty.

Btrieve MicroKernel Database Engine (MKDE)
Limitations Affecting RM/COBOL Applications

The Btrieve MKDE has limitations that may affect existing COBOL applications:

e Version 5 Btrieve files have a maximum record size of 55296 bytes. Version 6 Btrieve
files support record sizes of 64 KB or more using “chunk” operations. Btrieve Adapter
does not use any Btrieve “chunk” operations; therefore, the maximum record size is
limited by the communication environment in which Btrieve runs. When accessing
server-based Btrieve (remote files), the maximum record size is 57000 bytes. When
accessing client-based Btrieve (local files), the maximum record size is 64512 bytes. The
largest possible record size without using variable-length records is 4088 bytes.
RM/COBOL files have a maximum record size of 65280 bytes.

o Btrieve files have a minimum record length of four bytes. RM/COBOL files have a
minimum record length of one byte. Btrieve Adapter supports files whose record size is
less than four bytes by using a zero-filled, four-byte record.

e Btrieve files must have all keys located within the first 4096 bytes of a record.
RM/COBOL files may have keys located anywhere within the record.

136 RM/COBOL User's Guide

Chapter 4: System Considerations for Btrieve

e Btrieve files have a limit of 119 key segments. RM/COBOL files have a limit of 255
key segments.

e Btrieve files have a maximum key size of 255 bytes. The RM/COBOL runtime system
(including Btrieve Adapter), however, supports a maximum key size of 254 bytes.

Variable-Length Records

RM/COBOL will support variable-length records using the Btrieve MKDE’s variable-length
record files. The size of the Btrieve data page will be either the minimum record length or the
maximum Btrieve MKDE page size, whichever is smaller.

For more details, refer to the discussion of variable-length records, logical and physical record
lengths, and page sizes in the Btrieve Programmer’s Guide.

Key Placement

The Btrieve MKDE restricts placement of keys within the first data page of a record. If a file
has variable-length records, the keys must fit within the minimum record length of the file or
the maximum Btrieve MKDE page size, whichever is smaller.

Automatic Creation of Variable-Length Record Files

If a COBOL program creates a file with a record size greater than the maximum Btrieve page
size, and the keys of that file fit within the maximum Btrieve page size, then the file will be
created with a record size equal to the maximum Btrieve page size, with the remainder of the
record in the variable-length portion of the Btrieve record. (The Btrieve MKDE allows the
portion of the record past the fixed length to be considerably longer.)

Verification of Maximum Record and Block Length

Btrieve files do not have a mechanism for storing the maximum record length and maximum
block length for a file. If a Btrieve file is opened with a maximum length for its RECORD
CONTAINS or BLOCK CONTAINS clause that does not match the maximum length at the
time the file was created, the mismatch will not be detected.

Support for RM/COBOL Internal Data Formats

The Btrieve MKDE internally stores integers in Intel binary integer format, with the most
significant byte at the highest address and the least significant byte at the lowest address.
Therefore, applications that access Btrieve files written outside of RM/COBOL cannot
directly access the following three RM/COBOL internal data formats since they store
numbers in the opposite manner (as binary integers with the most significant byte at the
lowest address and the least significant byte at the highest address):

e BINARY data
e COMPUTATIONAL-1 data
e COMPUTATIONAL-4 data

RM/COBOL User's Guide

137

Chapter 4: System Considerations for Btrieve

For more information about RM/COBOL internal data formats, refer to Appendix C: Internal
Data Formats (on page 425).

Support for Btrieve Internal Data Formats

RM/COBOL programs can directly access the following Btrieve internal data formats:

e Decimal

e Money

e Numeric Signed ASCII

e Numeric Signed Trailing Separate

e String

All other Btrieve internal data formats can be interpreted by an RM/COBOL program on a

byte-by-byte basis. For more information about Btrieve internal data formats, refer to
“Extended Key Types” in the Btrieve Programmer’s Guide.

Input/Output Errors in Btrieve

Input/output errors that you would expect to occur for an RM/COBOL indexed file may not
occur for a Btrieve file. Because of its file structure and organization, information in Btrieve
files is stored differently than in RM/COBOL indexed files, or it is not recorded at all. Thus,
the RM/COBOL runtime system is unable to check or verify certain values in these files.

For example, the error message 39, 01, which normally occurs if an error is encountered when
the runtime system is trying to open an RM/COBOL indexed file, may not occur if the file isa
Btrieve file. Appendix A: Runtime Messages (see page 383) provides more information on
this and other specific input/output error codes where this behavior can occur.

138 RM/COBOL User's Guide

Chapter 5: System Verification

Chapter 5. System Verification

A suite of verification programs is provided with RM/COBOL. These programs ensure that
you have installed the required software correctly, as described in Chapter 2: Installation and
System Considerations for UNIX (on page 13) and Chapter 3: Installation and System
Considerations for Microsoft Windows (on page 45).

System Verification for UNIX

To invoke compilation and execution of the verification suite, enter:
doverify

For runtime-only systems, the compilation step is ignored.

The verification suite is designed to be self-explanatory. Follow the prompts on the screen for
instructions on selecting and running individual tests.

Notes

o Ifaproblem occurs with the display features of the verification suite, make sure you have
properly set and exported the environment variable TERM for your terminal type. If you
have done this and a problem exists, verify that your terminal type has an entry in the
system terminal database (termcap or terminfo) and check the accuracy of the cursor
motion sequence. This can be accomplished by running the system visual editor (vi).

o If any of the menu selections within the terminal configuration test work incorrectly, refer
to Chapter 8: RM/COBOL Features (on page 201) for details on the terminal attributes
required by the runtime system for complete ACCEPT and DISPLAY functionality.

Single-User Tests

Six sets of tests are provided in the verification suite for single-user versions. They are as
follows:

1. Terminal Configuration Test. This consists of individual tests that verify the
functionality of ACCEPT and DISPLAY statements and defaults, screen editing
functions and color functions (for appropriately configured terminals).

2. File System Test. This tests the sequential, relative, and indexed file system. It reads
and writes records to each of the three file types.

RM/COBOL User's Guide 139

Chapter 5: System Verification

3. Nucleus Test. This tests the modules of the RM/COBOL nucleus.

4. Printer Test. This tests that the printer configuration is correct and that communication
from RM/COBOL to the printer is successful. If no printer is attached, preserve the test
result in the prntst.out file by entering:

PRINTER=prntst.out; export PRINTER

before running this test.
5. Sort-Merge Test. This tests the sort-merge function of RM/COBOL.

6. Pop-Up Window Manager Test. This tests the RM/COBOL Pop-Up Window Manager
feature. The program displays a self-explanatory menu that allows you to test the various
features of the Pop-Up Window Manager system.

Multi-User Test

An additional verification program is provided with an appropriately licensed, multi-user
version of RM/COBOL. This test ensures that RM/COBOL is interacting correctly with the
file protection mechanisms employed by your system.

The program pacetest needs to be run simultaneously from at least two terminals that use the
RM/COBOL runtime system on the computer. This test creates and uses two indexed files:
pinx and pinxfl. pinx is a file that contains a single control record, which contains the next
available record in pinxfl. pinxfl is the working data file.

pacetest reads the control record, saves it, increments the control record, and writes it back to
pinx. The original number read is used as the primary key for the record written to the
growing pinxfl file. This scenario is repeated 100 times for each user running the test. With
two users running, 200 records would be written to pinxfl. The directions for running
pacetest are as follows:

1. Invoke pacetest at each terminal as follows:
runcobol pacetest

2. At one terminal only, choose function 1 to create the initial files. Wait for this operation
to complete.

3. Ateach terminal, choose function 2 to do simultaneous write operations. You will be
required to enter a unique station ID (1, 2, and so forth). Then, all stations should try to
press the Enter key simultaneously.

4. Atany of the terminals, choose function 3 to read the file. Make sure all the records are
shown in order and are all there (100 records are written by each station).

If pacetest encounters any errors while reading the file, it will sound an alarm and display an
error message next to the record in question. Should this occur, double-check your software
installation. If everything appears to be set up correctly and you are still having problems,
contact Micro Focus Customer Care.

140 RM/COBOL User's Guide

Chapter 5: System Verification

System Verification for Windows

To invoke compilation and execution of the verification suite, choose the icon named
doverify. The doverify program allows the user to select compilation and/or execution. For
runtime-only systems, the program detects that the compiler is not present and informs the
user. The user may still select the execution option.

The verification suite is designed to be self-explanatory. Follow the prompts on the screen for
instructions on selecting and running individual tests.

Single-User Tests

Six sets of tests are provided in the verification suite for single-user versions. They are as
follows:

1. Terminal Configuration Test. This consists of individual tests that verify the
functionality of ACCEPT and DISPLAY statements and defaults, screen editing
functions and color functions (for appropriately configured terminals).

2. File System Test. This tests the sequential, relative and indexed file system. It reads and
writes records to each of the three file types.

3. Nucleus Test. This tests the modules of the RM/COBOL nucleus.

4. Printer Test. This tests that the printer configuration is correct and that communication
from RM/COBOL to the printer is successful. If no printer is attached, preserve the test
result in the prntst.out file by setting a synonym before running this test. Using the
Synonyms Properties tab, type PRINTER in the Name text box and type prntst.out in the
Value text box. For more information, see Setting Synonym Properties (on page 86).

5. Sort-Merge Test. This tests the sort-merge function of RM/COBOL.

6. The Pop-Up Window Manager Test. This program displays a self-explanatory menu
that allows you to test the various features of the Pop-Up Window Manager.

Multi-User Test

An additional verification program is provided with an appropriately licensed, multi-user
version of RM/COBOL. This test ensures that RM/COBOL is interacting correctly in a
network environment.

The program pacetest needs to be run simultaneously from each computer that uses the
RM/COBOL runtime system on the network. This test creates and uses two indexed files:
pinx and pinxfl. pinx is a file that contains a single control record, which contains the next
available record in pinxfl. pinxfl is the working data file.

pacetest reads the control record, saves it, increments the control record, and rewrites it back
to pinx. The original number read is used as the primary key for the record written to the
growing pinxfl file. This scenario is repeated 100 times for each user running the test. With
two users running, 200 records would be written to pinxfl. The directions for running
pacetest are as follows:

1. Compile pacetest by choosing the RMCOBOL icon and selecting pacetest.cbl as the
source file.

2. Invoke pacetest at each computer by choosing the RUNCOBOL icon and selecting
pacetest.cob as the object file.

RM/COBOL User's Guide 141

Chapter 5: System Verification

3. At one computer only, choose function 1 to create the initial files. Wait for this to
complete.

4. At each computer, choose function 2 to do simultaneous write operations. You will be
required to enter a unique station ID (1, 2, and so forth). Then, all stations should try to
press the Enter key simultaneously.

5. Atany of the computers, choose function 3 to read the file. Make sure all the records are
shown in order and are all there (100 records are written by each station).

If pacetest encounters any errors while reading the file, it will sound an alarm and display an
error message next to the record in question. Should this occur, double-check your network
installation. If everything appears to be set up correctly and you are still having problems,
contact Micro Focus Customer Care.

142 RM/COBOL User's Guide

Chapter 6: Compiling

Chapter 6: Compiling

RM/COBOL programs are compiled with a single pass of the RM/COBOL compiler.
Specifically, the compiler performs the following actions on the contents of the source
programs:

o Verifies syntactic accuracy.

e Creates object programs for execution with the RM/COBOL runtime system. Micro
Focus RM/COBOL’s use of this technique provides compactness and machine-
independence.

e Creates program listings, the contents of which are chosen by entering the appropriate
Compile Command options.

This chapter presents complete information about the RM/COBOL compiler.

Compilation Process

Once invoked, the compiler makes one pass through the specified source file. During this
pass, both object files and listing files are generated. The RM/COBOL compiler is invoked
when you enter the Compile Command, rmcobol. The object file contains the machine-
independent object code, executed at runtime, for the RM/COBOL program. The listing file
contains a source image, which may be printed at the end of each compilation. Using the
available Compile Command options, you can alter, augment, and suppress portions of the
information contained in the listing.

RM/COBOL provides standard COBOL subprogram structure, but no intermediate linkage
process stands between program compilation and execution. It is also possible to define
sections of code within your program as overlay segments to the fixed permanent segment, as
explained in the discussion of segmentation in Chapter 5: Procedure Division of the
RM/COBOL Language Reference Manual.

Note By default, on Windows the RM/COBOL GUI compiler window disappears
immediately when a successful compilation completes. If you want the window to remain
visible, set the Persistent property (see page 79) to True or use the console mode compiler.

System Files

RM/COBOL takes its input from a source file, and creates an object file and a listing file.

RM/COBOL User's Guide 143

Chapter 6: Compiling

Source Files

RM/COBOL source files contain the RM/COBOL source code. Source lines are made up
of variable-length records. Source text is ASCII, with either a line feed (LF) character or
a carriage return (CR) and line feed (LF) character paired as the line separator. Embedded
tab characters are expanded to one or more spaces, according to the default tab column
position, which is every fourth column, starting with column 8 and ending with column 72,
or according to the value of the TAB-STOPS keyword (see page 350) in the RUN-SEQ-
FILES configuration record.

Object Files

An object file is created on disk as a purely binary file. Its filename is identical to the
filename of the source file, with the filename extension .cob or .COB or the extension
specified in the EXTENSION-NAMES configuration record (see page 323).

You can direct the object file to a directory other than the one on which the source file resides.
To do this, use the O Compile Command Option (see page 158). The object file may be
suppressed by the use of the N Compile Command Option (see page 158).

Listing Files

The contents of RM/COBOL listings are detailed in the topic Listing (on page 163). Listings
can be directed to a disk file, the printer, the screen, or any combination thereof, depending
on the options selected in the Compile Command. Listing files are given the filename of the
source program, with the filename extension .Ist or .LST or the extension specified in the
EXTENSION-NAMES configuration record (see page 323). The listing file is a printer

file and, therefore, may be configured using the PRINT-ATTR configuration record (see
page 328).

Libraries

A source file can contain more than one source program. Files containing a sequence of two
or more programs are referred to in this manual as libraries. With libraries, the generated
object file contains a distinct object module for each source program in the source file,
excluding contained programs. The object for a contained program is considered part of the
object of the program that contains it. The listing file contains a complete listing of each
source program in the source file.

Each noncontained program in a source file or library is compiled strictly independent of the
other programs: there need be no relationship between them. However, this capability to
concatenate multiple source programs into a single library is used most effectively when there
is some logical relationship among the programs. This might be a main program and the
called subprograms, or all the programs that include a specific copy file or group of copy
files. In the latter case, recompilation of all the source programs affected by a change in one
of the copy files can be accomplished with a single invocation of the Compile Command
(rmcobol).

Note RM/COBOL versions 1 and 2 did not require END PROGRAM headers to separate a
sequence of source programs. Versions 3 and later support nested programs, which make
END PROGRAM headers necessary. If you have a source file with a sequence of programs

144 RM/COBOL User's Guide

Chapter 6: Compiling

and no END PROGRAM headers, you can either add the headers or specify the Z=2 Compile
Command Option (see page 159).

Use the Combine Program (rmpgmcom) utility (on page 585) to combine multiple object files
into a single library when the source modules are contained in separate files.

Compile Command

Use the Compile Command (rmcobol) to request program compilation and to specify options.

Under UNIX, the Compile Command is entered at a shell prompt. After typing the desired
command and options, press Enter to begin compilation.

Under Windows, the Compile Command can be entered in the Command line text box of the
Create Shortcut dialog box. For instructions, see Creating a Windows Shortcut (on page 59).
Choose the RMCOBOL icon to begin compilation. Programs also may be executed by
dragging the .cbl source file to the RMCOBOL object or by double-clicking the source file.

The format of the Compile Command is as follows:

rmcobol filename [[(Q [[~]option] ... [Dcomment]]

filename is the name of the source file to be compiled. It may be any valid operating
system pathname, and may by partially or fully qualified. Specifying an extension is
optional, but that extension must not be the same as the object file extension (.cob or
.COB unless configured otherwise). If you do not enter a filename extension with the
pathname, the compiler begins its search for the source file by looking first for the file
exactly as specified. If it cannot find such a file, it looks for a file with the supplied name
and an extension .cbl. If the file is still not found when running under UNIX, it looks for
a file with an extension of .CBL.. For all attempts to open the source file, if neither a
drive designator nor a directory path is specified, the directory search sequence is used.
If a directory path is specified, a directory search sequence may be used if configured
properly. See the discussions of Directory Search Sequences on UNIX (on page 21),
Directory Search Sequences on Windows (on page 62), and the EXPANDED-PATH-
SEARCH keyword (on page 337) in the RUN-FILES-ATTR configuration record.

~ (tilde) can be used as a negation character. Its purpose is to negate the presence of
attributes in a COMPILER-OPTIONS configuration record (see page 294). Its use is
described in Compile Command Options (see page 148).

option specifies the RM/COBOL compiler options. (A complete discussion of the
Compile Command options begins on page 148.) Spaces or commas must separate
options. Options may be entered in either uppercase or lowercase letters. If an option is
repeated in a command, the last occurrence of the option is used. Each option may be
preceded by a hyphen. If any option is preceded by a hyphen, then a leading hyphen
must precede all options. When a value is assigned to an option, the equal sign is
optional if leading hyphens are used.

comment is used to annotate the command. The comment is ignored by the compiler and
has no effect on the compilation. The left parenthesis is always optional. The right
parenthesis is a required separator if comments are entered. Under UNIX, the parenthesis
must be preceded with a backslash (\) character in order to be protected from the shell.

RM/COBOL User's Guide

145

Chapter 6: Compiling

Up to 54 characters of the filename specified in the Compile Command are copied into the
“Source file:” field of the listing header. Up to 110 characters of options and comment from
the Compile Command are copied into the “Options:” field within the listing header. The
options will also include options specified in the registry (on Windows) or resource files (on
UNIX). Thus, this information is reproduced at the top of each listing page. See Figure 24 on
page 163 for an example of a listing header.

In addition, the RM/COBOL for Windows compiler also supports the following command-
line options, which do not follow the command format described earlier in this section:

e Three OLE server registration commands. These options are described in Compiler
Registration (see page 54).

rmcobol /regserver
rmcobol /unregserver
rmcobol /showserver

e Three character-set commands. These options are described in Character Set
Considerations for Windows (see page 100).

rmcobol /cs_ansi
rmcobol /cs_oem
rmcobol /showcharset

Batch Compilation on Windows

For Windows, the RM/COBOL compiler can be run as a console application using the
rmcobolc command or as a GUI application using the rmcobolg command. Copying or
renaming either of these executables to rmcobol can be done to choose the default method of
compilation. The two compilers support the same Compile Command options and produce
the same results. The console application compiler runs in a console window (a Command
Prompt window). The GUI compiler runs in a standard graphical Windows window.

The console application is particularly useful for batch compilations using a command script,
for example, in a batch command file. The GUI compiler can also be used for batch
compilations, but in this case, the Windows start command with the wait option should be
used as follows:

start /wait rmcobolg [options]

This command causes the script to wait until the compilation completes before executing the
next command in the script; otherwise, the next command in the script is executed in parallel,
which can lead to problems such as script errors if the next command attempts to access files
produced by the compilation or too many parallel compilations. When using the GUI
compiler in batch mode, it is often desirable to set the Main Window Type property to Hidden
for compiling so that GUI windows are not flashed on the display screen as each file is
compiled. For more information, see the Main Window Type property (on page 78).

146 RM/COBOL User's Guide

Chapter 6: Compiling

Multiple File Compilation on Windows

The Compile Command on Windows supports two methods of selecting more than one file
for compilation. The first method involves the use of the File Open dialog box and the second
method involves the use of wildcard characters within a filename specification. Both methods
employ the question mark character (?), although in different ways.

When multiple files are compiled either by selecting multiple files after specifying a question
mark for the filename on the command line or by using wildcard characters in the filename on
the command line, the multiple files are compiled as if the user had entered a sequence of
command lines with the selected filenames and the same set of Compile Command options
specified in the original command line. The question mark or filename with wildcard
characters in it is not used as a registry key for looking up properties set for a particular
program. Instead, for each selected program, the properties set for that program are used. For
information on setting default properties and program-specific properties in the registry, see

Setting Properties (on page 68).

Multiple File Selection with File Open Dialog

Both the console and GUI mode compilers support specifying a question mark for the
filename Compile Command parameter, which displays a File Open dialog box for selecting
the file or files to be compiled. Multiple files may be selected by using the Ctrl or Shift keys
in the standard Windows manner for multiple selections. Compilation stops after all the files
are compiled or when any single compilation returns a non-zero compiler exit code. Each
compilation uses the same Compile Command options that were specified with the question
mark for the filename. For example, the Compile Command:

rmcobol ? L A X

would display the File Open dialog box and then compile all the selected files with a listing
file (the L Option) and the list file will contain an allocation map (the A Option) and a cross
reference listing (the X Option).

Note The default filter for the File Open dialog box Files of type: drop-down list is “*.cbl”
regardless of the value defined by the SOURCE keyword (see page 324) of the EXTENSION-
NAMES configuration record.

Multiple File Selection with Wildcard Characters in Filename

In the preceding example, the question mark is not quoted in the Compile Command because
quotes cause the question mark to be interpreted as a wildcard character within a filename
specification. In addition to the question mark, an asterisk (*) is also recognized as a wildcard
character. An asterisk represents zero or more of any character whereas the question mark
represents zero or one of any character. Hidden files, system files, offline files, directories,
and reparse points are ignored. For example, the Compile Command:

rmcobol *.cbl Y=3 L
compiles all regular files in the current directory that have an extension of .cbl. The Y=3
Compile Command Option is set for each of the compilations. Compilations stop when all

the indicated files have been compiled or when any single compilation returns a non-zero
compiler exit code.

RM/COBOL User's Guide

147

Chapter 6: Compiling

As another example, the Compile Command:
rmcobol \\server\src\???.cbl L

compiles all regular files in the directory \\server\src that have filenames zero to three
characters in length and an extension of .cbl. The L Compile Command Option is set for each
compilation.

More than one asterisk can be used. For example, the Compile Command:
rmcobol *ar*.cbl L X

compiles all regular files in the current directory that have “ar” somewhere in the filename
and an extension of .cbl. The L and X Compile Command Options are set for each
compilation. A single unquoted question mark (?) is interpreted as meaning that a File Open
dialog box should be displayed instead of as a pathname with a wildcard character. If the
question mark is quoted or is part of a pathname, it is interpreted as a wildcard character. For
example, either of the Compile Commands:

rmcobol "?" L
rmcobol _\? L

compile all regular files that have a 0 to 1 character length name in the current directory. A
File Open dialog box is not displayed in either of these cases. Quotes are required if the
filename contains spaces, regardless of whether wildcard characters are used or not used. The
wildcard characters are only permitted in the final edgename of the filename. For example,
the Compile Commands:

rmcobol ?\test.cbl
rmcobol *\test.cbl

will cause an open error because the path portion of the filename contains a wildcard
character. The open error will occur regardless of the existence of a file named test.cbl in a
subdirectory of the current directory. If the list of files that match a filename containing
wildcard characters is empty, the compiler attempts to open the given filename. Since
Windows prohibits the wildcard characters in filenames, this will normally result in an open
error. See Open error for file pathname (on page 184) for information about the open error
message that is displayed. (The expansion of wildcard characters is accomplished using the
Windows FindFirstFile and FindNextFile functions.)

Compile Command Options

Compile Command options can be specified in the following three ways:

1. They can be placed into the registry (on Windows) or the resource files (on UNIX). In
the registry, the Command Line Options property (see page 74) provides command-line
options for the compiler when Compiler is selected on the Select File tab of the
RM/COBOL Properties dialog box. In resource files, the Options keyword, which is
described in Command-Line Options (on page 26), provides command-line options for
the compiler in the global resource file /etc/default/rmcobolrc and the local resource file
~/.rmcobolrc.

2. They can be specified in the Compile Command itself.

148 RM/COBOL User's Guide

Chapter 6: Compiling

3. They can be placed into a configuration file, which is processed by the RM/COBOL
compiler when the configuration file is automatically located or specified with a
configuration command-line option. For information on configuration files, see
Automatic Configuration Files (on page 290) or Configuration Compile Command
Options (on page 151). For a discussion of the compiler options that can be configured,
see the COMPILER-OPTIONS configuration record (on page 294).

Options are processed in the order given above, but options specified in the configuration do
not override options specified in the resultant set of command-line options as determined from
items 1 and 2 above. This means that options specified in a Compile Command will take
precedence over conflicting or contradictory options specified by the registry or resource files
(item 1) or configuration (item 3). The configured options, together with the options that
appear in a Compile Command, apply to every source program in the source file (or, on
Windows, files) specified in that Compile Command.

You can override specific options in a configuration file by negating the option in the
Compile Command. To do this, enter a tilde (~) and the option in the Compile Command.
For example, the following configuration file, possibly named config.cfg:

COMPILER-OPTIONS FLAGGING=HIGH,COM2,0BSOLETE
& OBJECT-VERSION=9
& LISTING-PATHNAME=LISTINGS

directs RM/COBOL to flag HIGH, COM2 and OBSOLETE language elements, to restrict the
object version level to 9, and to write the listing file to the directory named LISTINGS.

For a particular compilation, you may want to suppress some or all configured options. For
example, to suppress the flagging of COM2 elements and the creation of the listing file (here,
assuming the program-name is PAYROLL), enter the following Compile Command:

rmcobol payroll G=config.cfg F=~COM2 ~L

This negates the flagging of COM2 elements and suppresses the creation of the listing file (L
option) for the compilation. The next time you use this configuration file in a compilation,
the configured options will be in effect again.

To disable all flagging, and to write the listing to the current directory, enter the following
Compile Command:

rmcobol payroll G=config.cfg ~F, L=.
This negates the flagging of HIGH, COM2 and OBSOLETE elements, and writes the listing
to the current directory instead of to LISTINGS as specified in the configuration file.

A negated option calls up the default value for that option; that is, it behaves exactly as if no
option were configured.

For quick reference, Table 15 summarizes the Compile Command options in alphabetical
order. The Compile Command options, however, are grouped into six categories and are
explained more fully in these sections:

1. Configuration (see page 151)
Data Item (see page 152)

2

3. File Type (see page 153)
4. Listing (see page 154)
5

Object Program (see page 157)

RM/COBOL User's Guide

149

Chapter 6: Compiling

6.

150 RM/COBOL User's Guide

Source Program (see page 160)

Table 15: RM/COBOL Compile Command Options

Option

A
(see page 154)

B
(see page 153)

C[=n
see page 154)

D
(see page 160)

E
(on page 155)

F={(keyword-list)|keyword}
(see page 160)

G=pathname
(see page 152)

H=pathname
(see page 152)

K
(see page 152)

L[=pathname]
(see page 156)

M
(see page 157)

N
(see page 158)

O=pathname
(see page 158)

P
(see page 156)

Q
(see page 158)

Description

Directs the compiler to generate the allocation map in the
listing.

Defines as binary sequential those sequential files not
explicitly declared to be line sequential in their file control
entries.

Suppresses the inclusion of copied text, replaced text,
replacement text, or COPY statement text in the listing.
n can be 0 to 15 Specifying C is equivalent to C=1.

Directs RM/COBOL to compile all source programs as if the
WITH DEBUGGING MODE clause appeared in each
compiled program.

Suppresses the inclusion of the source program component in
the listing except for lines associated with diagnostic
messages.

Directs the compiler to flag occurrences of these language
elements:

CoOM1 INTERMEDIATE
COM2 OBSOLETE
EXTENSION SEG1

HIGH SEG2

If leading hyphens are used, the parentheses are optional.

Designates a file to be used as the primary compiler
configuration.

Designates a file as a supplement to the compiler
configuration.

Suppresses the banner message and the terminal error listing.

Directs the compiler to produce a listing file and optionally
specify the directory in which to place the listing file.

Directs the compiler to suppress automatic input conversion
for Format 1 and 3 ACCEPT statements with numeric
operands and to suppress right justification of justified
operands. Direct the compiler to suppress automatic output
conversion for numeric fields of Format 3 DISPLAY
statements.

Suppresses the generation of an object program.

Specifies the directory pathname where the object file will be
placed.

Directs the compiler to write a copy of the listing to the
printer.

Directs the compiler to eliminate debugging information from
generated object programs.

Chapter 6: Compiling

Table 15: RM/COBOL Compile Command Options

Option Description
R Directs the compiler to generate a sequential number in the
(see page 158) first six columns of source records as they appear on the
listing.
S Directs the compiler to assume a separate sign when the SIGN
(see page 152) clause is not specified for a DISPLAY usage, signed numeric
data item (that is, for a data item whose character-string

within a PICTURE clause begins with S).

T Directs the compiler to write a copy of the listing to the
(see page 153) standard output device.

U[={BID|P}] Directs the compiler to assume an alternative usage for data
(see page 153) items described as COMP or COMPUTATIONAL.

e The U Option specified alone or as U=B directs the
compiler to assume BINARY usage for data items
described as COMP or COMPUTATIONAL.

e The U=D Option directs the compiler to assume
DISPLAY usage for items described as COMP or
COMPUTATIONAL.

e The U=P Option directs the compiler to assume
PACKED-DECIMAL usage for items described as
COMP or COMPUTATIONAL.

\Y4 Defines as line sequential those sequential files not explicitly
(see page 153) declared to be binary sequential in their file control entries.
W=n Specifies the amount of memory (in kilobytes) that the

(see page 152) compiler should use for its internal table storage. n can be a

decimal number from 32 to 524288.

X Directs the compiler to generate a cross reference map in the
(see page 157) listing.

Y[=n] Directs the compiler to output the symbol table and debug line
(see page 159) table to the object program file. n can be 0 to 3. Specifying

Y is equivalent to Y=1.

Z=version Indicates the object version of the RM/COBOL runtime you
(see page 159) want to use. version can be 9 through 15.

2 Directs the compiler to accept source programs created for the
(see page 161) RM/COBOL 2.n compiler.

7 Specifies the semantic rules under which the program is to be
(see page 160) compiled as conforming to the American National Standard

COBOL 1974.

Configuration Compile Command Options

The following options designate a file to be used as the complete compiler configuration or as
a supplement to it and allow suppression of the compiler banner message.

RM/COBOL User's Guide 151

Chapter 6: Compiling

G Use the G Option to designate a file to be used as the compiler configuration. If
the G Option is specified, any automatic configuration is ignored (that is, not
processed). The G Option has the following format:

G=pathname

Configuration files are fully described in Chapter 10: Configuration (on page 289).
See also the H Compile Command Option below.

By default, a configuration file is not designated.

H Use the H Option to designate a file as a supplement to the compiler
configuration. The specified file is processed after any automatic configuration
and after any file specified in the G Option, but before any other command-line
options are processed. The H Option has the following format:

H=pathname
If no configuration exists (either automatic or specified with the G Compile

Command Option), the specified file serves as the complete configuration. For more
information, see Chapter 10: Configuration (on page 289).

By default, a supplemental file is not designated.

K Use the K Option to suppress the banner message and the terminal error listing.
This is useful when you are running under batch files or shell scripts.

By default, this information is displayed on the standard output device. The default
can be configured with the NO-TERMINAL-DISPLAY value for the COMPILER-
OPTIONS configuration record keyword LISTING-ATTRIBUTES (see page 305).

W Use the W Option to specify the amount of memory (in kilobytes) that the
compiler should use for its internal table storage. The W Option has the
following format:

W=n

where, n is a decimal number from 32 to 524288.

The default value is 1024 kilobytes (1024 KB) and is generally sufficient for a
20,000 — 40,000 line source program. A program with 135,000 source lines
compiles at top speed with w=3072. The compiler will adjust the workspace size
automatically as needed, but with a performance penalty. The compilation listing
summary has information about the maximum amount of memory required for
compilation, as described in Summary Listing (on page 173). This information can
be used to choose an appropriate value for the W option.

The default can be configured with the COMPILER-OPTIONS configuration record
keyword WORKSPACE-SIZE (see page 318).

Data Item Compile Command Options
The following compiler options direct the compiler to assume a certain usage for data items.
S Use the S Option to direct the compiler to assume a separate sign when the

SIGN clause is not specified for a DISPLAY usage, signed numeric data item
(that is, for a data item whose PICTURE character-string clause begins with S).

152 RM/COBOL User's Guide

Chapter 6: Compiling

The S Option also allows a BLANK WHEN ZERO clause to be specified in the
data description entry of a signed numeric data item for compatibility with
RM/COBOL 2.n. Insuch cases, a trailing fixed insertion plus symbol (+) is
assumed for the PICTURE character-string.

Note This option should be used only when compiling existing source programs
written with an earlier version of RM/COBOL, and then only with caution. The use
of this option creates inconsistencies between RM/COBOL and ANSI COBOL 1974
and 1985.

The default is to assume a trailing combined (zoned) sign unless the SIGN clause is
present and to disallow the BLANK WHEN ZERO clause for signed numeric data
items. For more information about trailing combined (zoned) signs, see Table 41:
Nonnumeric Data (on page 427).

The default can be configured with the COMPILER-OPTIONS configuration record
keyword SEPARATE-SIGN (see page 310).

Use the U Option to direct the compiler to assume an alternative usage for data
items described as COMP or COMPUTATIONAL. The U Option has the
following format:

U[=B|DIP]

The U Option specified alone or as U=B directs the compiler to assume BINARY
usage for data items described as COMP or COMPUTATIONAL. This option
causes COMP data items to be compatible with IBM OS/VS COBOL COMP data
items and may result in improved computational speed at runtime.

The U=D Option directs the compiler to assume DISPLAY usage for items described
as COMP or COMPUTATIONAL.

The U=P Option directs the compiler to assume PACKED-DECIMAL usage for
items described as COMP or COMPUTATIONAL.

The U[=B] and 2 Options are mutually exclusive; they may not appear in the same
Compile Command.

The default is to assume unpacked decimal format for data items described as COMP
or COMPUTATIONAL. The default can be configured with the COMPILER-
OPTIONS configuration record keywords COMPUTATIONAL-AS-BINARY (see
page 299) or COMPUTATIONAL-TYPE (see page 299).

File Type Compile Command Options

The following compiler options determine whether a sequential file is declared as a binary
sequential or a line sequential file.

B

Use the B Option to define as binary sequential those sequential files not
explicitly declared to be line sequential in their file control entries. For more
information, see the discussion of file types and structure (on page 234).

Use the V Option to direct that any sequential file not declared to be binary
sequential be considered line sequential.

The defaults for these compiler options can be configured with the COMPILER-OPTIONS
configuration record keyword SEQUENTIAL-FILE-TYPE (see page 311).

RM/COBOL User's Guide

153

Chapter 6: Compiling

Note The B and V Options are mutually exclusive; they may not appear in the same Compile
Command. If neither the B nor the V Option is used, the decision as to whether the file is
binary sequential or line sequential is deferred to program execution. The choice is then
controlled by the configured DEFAULT-TYPE keyword (see page 349) in the RUN-SEQ-
FILES configuration record.

Listing Compile Command Options

The following compiler options generate a listing and control the destination and contents of
the listing.

Note The L, P, and T Options direct the listing to different destinations; any or all of these
options may appear in the same Compile Command. If neither the T nor the K Option is
selected, an error-only listing is written to standard output.

A Use the A Option to direct the compiler to generate the allocation map (see
page 167) in the listing.

This is useful during program development for use with the RM/COBOL Interactive
Debugger.

The A Option may not be specified if none of the L, P, T, or Y=3 Options are
specified or configured.

By default, the allocation map is not created as part of the listing or debugging
information in the object file. The default can be configured with the
ALLOCATION-MAP value of the COMPILER-OPTIONS configuration record
keyword LISTING-ATTRIBUTES (see page 305).

C Use the C Option to suppress the inclusion of copied text in the listing. Copied
text is source text brought into the program as a result of encountering a COPY
statement. See the description of the COPY statement (on page 225) and in
Chapter 1: Language Structure of the RM/COBOL Language Reference
Manual.

The C Option suppresses only the inclusion of the copied text in the listing; the
copied text is always compiled. Even though the C Option is selected, erroneous
lines encountered in the copied text during compilation are written to the listing
along with the associated diagnostic message.

Text to the right of the COPY statement in the source line that contains that
statement appears on a line by itself, immediately following the copied text.

The C Option may not be specified if none of the L, P, or T Options is specified or
configured.

The value specified in the C Option has been extended to allow specification of a
numeric value from 0 through 15. When the binary value includes the 4 bit (0100),
then replacement lines are suppressed in the listing. When the binary value includes
the 8 bit (1000), then COPY statement lines are suppressed in the listing.

The C Option has the following variations:

Option Action

C=0or~C Is equivalent to specifying the negated C Option (~C); that is, copied text is
not suppressed in the listing. This is also the default behavior if C is not
specified. In version 11 and later, replaced text is also suppressed by
default unless the KEEP-REPLACED-LINES value of the LISTING-

154 RM/COBOL User's Guide

Chapter 6: Compiling

ATTRIBUTES keyword of the COMPILER-OPTIONS configuration
record is specified.

C=lorC Specifies suppression of copied text in the listing. This option setting can

C=2

c=3
C=4

C=5
C=6
C=7

C=8

C=9
C=10

Cc=11

C=12

C=13

C=14

C=15

also be configured with the SUPPRESS-COPIED-LINES value of the
LISTING-ATTRIBUTES keyword in the COMPILER-OPTIONS
configuration record.

Specifies suppression of replaced text in the listing. This option setting can
also be configured with the SUPPRESS-REPLACED-LINES value of the
LISTING-ATTRIBUTES keyword in the COMPILER-OPTIONS
configuration record.

Specifies suppression of copied and replaced text in the listing.

Specifies suppression of replacement text in the listing. This option setting
can also be configured with the SUPPRESS-REPLACEMENT-LINES
value of the LISTING-ATTRIBUTES keyword in the COMPILER-
OPTIONS configuration record.

Specifies suppression of copied and replacement text in the listing.
Specifies suppression of replaced and replacement text in the listing.

Specifies suppression of copied, replaced, and replacement text in
the listing.

Specifies suppression of COPY statement text in the listing. This option
setting can also be configured with the SUPPRESS-COPY-STATEMENT-
LINES value of the LISTING-ATTRIBUTES keyword in the COMPILER-
OPTIONS configuration record.

Specifies suppression of copied and COPY statement text in the listing.

Specifies suppression of replaced text and COPY statement and text in
the listing.

Specifies suppression of copied, replaced and COPY statement text in
the listing.

Specifies suppression of replacement and COPY statement text in the
listing.

Specifies suppression of copied, replacement and COPY statement text in
the listing.

Specifies suppression of replaced, replacement and COPY statement text in
the listing.

Specifies suppression of copied, replaced, replacement, and COPY
statement text in the listing.

By default, copied text is included in the source listing. Copied text immediately
follows the line that contains the COPY statement. The default option settings can
be configured with the LISTING-ATTRIBUTES keyword (see page 305) in the
COMPILER-OPTIONS configuration record.

Note The LISTING directive provides more control over what source is listed or not
listed in the compilation listing. For more information on compiler directives, see
Chapter 1: Language Structure of the RM/COBOL Language Reference Manual.

Use the E Option to suppress the inclusion of the source program component in
the listing. However, if errors are encountered during compilation, the listing
will include the erroneous lines and their associated diagnostic messages.

The E Option may not be specified if none of the L, P, or T Options is specified or
configured.

RM/COBOL User's Guide

155

Chapter 6: Compiling

156 RM/COBOL User's Guide

By default, the source program component is included in the listing. The default can
be configured with the ERROR-ONLY-LIST value of the COMPILER-OPTIONS
configuration record keyword LISTING-ATTRIBUTES (see page 305).

Use the L Option to direct that a listing file be written to disk. The L Option has
the following format:

L[=pathname]

The L Option specified above directs the compiler to write the listing to the default
directory.

pathname specifies a directory into which the listing file is to be written.

The listing file will always have the same name as the source file; its extension will
be the listing file extension (.Ist or .LST unless configured otherwise). On those
operating systems that have case-sensitive filenames, the case of the extension will
match the case of the first character of the source file’s extension, or the first
character in the source file’s name if there is no extension. If there is no extension
and the first character of the source filename is not a letter, then the extension .Ist
will be used. For examples of valid filenames, see Table 1 (on page 12).

The default directory, when pathname is not specified, depends on whether the
source filename was specified with a drive or directory in its value.

If the source filename was specified with a drive or directory in its value, the default
directory is the one containing the source file.

Otherwise, the default directory is determined by using the compiler directory search
sequence. If an existing file with the same name as the source file and the listing file
extension is found using the compiler directory search sequence, the default
directory is the one in which that file is found. If such a file is not found using the
compiler directory search sequence, the default directory is the current directory.

See the discussions of Directory Search Sequences on UNIX (on page 21) and
Directory Search Sequences on Windows (on page 62).

If a file already exists with the specified name and extension in the specified or
default directory, it is overwritten.

By default, the listing is not written to disk. The default can be configured with the
LISTING-FILE value of the COMPILER-OPTIONS configuration record keyword
LISTING-ATTRIBUTES (see page 305).

Use the P Option to direct the compiler to write a copy of the listing to the
printer.

Without a print spooler, the P Option cannot be used when the printer is busy.

By default, a copy of the listing is not written to the printer; see the discussion of the
topic Listing (on page 163). The default can be configured with the PRINT-
LISTING value of the COMPILER-OPTIONS configuration record keyword
LISTING-ATTRIBUTES (see page 305).

Use the R Option to direct the compiler to generate a sequential number in the
first six columns of source records as they appear on the listing. The source file
itself is not affected.

If selected, this option numbers records beginning with 1 for each source or copy
input file. The number can be helpful when editing the source file. This line number
cannot be used with the RM/COBOL Interactive Debugger.

Chapter 6: Compiling

The default is to print the source record exactly as read, including any commentary
information present in columns 1 through 6. The default can be configured with
either of the following options in the COMPILER-OPTIONS configuration record:

e the RENUMBER-SEQUENCE-AREA value of the LISTING-ATTRIBUTES
keyword (see page 305)

o the RESEQUENCE-LINE-NUMBERS keyword (see page 310)

Use the T Option to direct the compiler to write a copy of the listing to the
standard output device. Generally, the standard output device is the screen, but
this can be controlled through redirection.

By default, a copy of the listing is not written to the standard output device.
However, the last two lines of the summary listing—as well as all erroneous lines
and associated diagnostic messages—are written to the standard output device
regardless of the T Option. This display can be suppressed with the K Option (see
page 152). The default can be configured with the TERMINAL-LISTING value of
the COMPILER-OPTIONS configuration record keyword LISTING-ATTRIBUTES
(see page 305).

Use the X Option to direct the compiler to generate a cross reference map in the
listing. The cross reference map contains an alphabetic list of all user-defined
words that appear in the source program. For each user-defined word, the line
number of each appearance is listed. Each line number is marked to indicate
that the word is being used as a declaration, a source operand or a possible
destination operand. (See Figure 33 on page 172 for a sample of the cross
reference map.)

The X Option may not be specified if none of the L, P, T, or Y=3 Options is
specified or configured.

By default, the cross reference map is not included in the listing or in the debugging
information in the object file. The default can be configured with the CROSS-
REFERENCE value of the COMPILER-OPTIONS configuration record keyword
LISTING-ATTRIBUTES (see page 305).

Object Program Compile Command Options

The following compiler options generate or suppress an object program and control the
destination and features of the object program.

M

Use the M Option to direct the compiler to suppress automatic conversions in
certain ACCEPT and DISPLAY statements. In Format 1 and 3 ACCEPT
statements, this option suppresses automatic input conversion for numeric
operands and suppresses right justification for justified operands. For Format 3
DISPLAY statements (DISPLAY screen-name), this option suppresses
automatic output conversion for numeric fields within the screen description
entry.

Note This option must be used if Format 1 ACCEPT statements with numeric
operands are to be treated in compliance with ANSI COBOL 1985 and 1974.

The default is to provide input conversion for numeric operands of Format 1 and 3
ACCEPT statements, right justification for justified operands of Format 1 and 3
ACCEPT statements, and output conversion for numeric fields of Format 3
DISPLAY statements. The default can be configured with the COMPILER-

RM/COBOL User's Guide

157

Chapter 6: Compiling

158 RM/COBOL User's Guide

OPTIONS configuration record keyword ACCEPT-SUPPRESS-CONVERSION
(see page 295).

Use the N Option to suppress the generation of an object program.

The default is to generate object code according to the rules for the O Option,
described in the following section. There is no corresponding configuration for this
command-line option.

Use the O Option to specify the directory pathname where the object file will be
placed. The O Option has the following format:

O=pathname

where, pathname specifies a directory into which the object file is to be written.

The object file will always have the same name as the source file. Its extension will
be the object file extension (.cob or .COB unless configured otherwise). On those
operating systems that have case-sensitive filenames, the case of the extension will
match the case of the first character of the source file’s extension, or the first
character in the source file’s name if there is no extension. If there is no extension
and the first character of the source filename is not a letter, then the extension .cob
will be used. For examples of valid filenames, see Table 1 (on page 12).

The O and N Options may appear together in a single compilation. For example, the
OBJECT-PATHNAME keyword (see page 309) in the COMPILER-OPTIONS
configuration record specifies the directory for the object file. Entering the N Option
on the Compile Command suppresses the generation of the object file (and as a result
negates the OBJECT-PATHNAME keyword in the configuration file).

The default directory depends on whether or not the source filename was specified
with a drive or directory in its value.

If the source filename was specified with a drive or directory in its value, the default
directory is the one containing the source file.

Otherwise, the default directory is determined by using the directory search
sequence. If an existing file with the same name as the source file and the object file
extension is found using the compiler directory search sequence, the default
directory is the one in which that file is found. If such a file is not found using the
compiler directory search sequence (see the appropriate installation and systems
considerations chapter in this user’s guide for your specific operating system), the
default directory is the current directory.

If a file already exists with the specified name and extension in the specified or
default directory, it is overwritten.

Use the Q Option to direct the compiler to eliminate debugging information
from generated object programs. Programs compiled with this option will
appear invisible to the Interactive Debugger and Instrumentation. A statement
address consisting of an optional segment number and segment offset will be
substituted for line numbers in Normal Termination, Error Termination and
Traceback runtime system messages. A segment number and segment offset
replace line number references when this option is selected.

The Q and Y options are mutually exclusive; that is, they may not appear in the same
Compile Command.

Note This option may be used to both reduce the memory requirements and increase
the execution speed of most programs.

Chapter 6: Compiling

The default is to generate debugging line number information in object programs.
There is no corresponding configuration for this command-line option.

Use the Y Option to direct the compiler to output debugging information in the
object file. The Y Option has the following variations:

Option Action

Y=0or~Y Omits the symbol and debug line table from the object program
file. This is also the default behavior if Y is not specified.

Y=1lorY Places the symbol table but not the debug line table in the object
file. When the symbol table is included in the object program file,
the source program data-names and index-names may be used in
Debug commands during execution. For more information, see
Chapter 9: Debugging (on page 255).

Y=2 Places both the symbol table and the debug line table in the object
file. The line table is used by CodeWatch to display the source
program.

Y=3 Same as Y=2, except that the debug line table also includes

allocation map and cross-reference information if the A and/or X
options are also specified. This information can then be viewed
within CodeWatch, but may lead to large object program files.

Object program files created with Y=2 and Y=3 are fully compatible with all
versions of the RM/COBOL runtime (note that previous versions will ignore these
tables). This option does increase the size of the object program files, but has no
effect on runtime performance or memory requirements.

The Y and Q options are mutually exclusive; that is, they may not appear in the same
Compile Command.

Note A new option in the Combine Program (rmpgmcom) utility (see page 585),
STRIP, may be used to remove symbol table and debug line table information from
object files that were created with Y=1 or Y=2. For source code security, object
program files that contain line table information should be reduced in size with this
option or recompiled without the Y option before they are redistributed.

By default, the symbol table is omitted from the object file. The default option
settings can be configured with the COMPILER-OPTIONS configuration record
keywords DEBUG-TABLE-OUTPUT (see page 300) and SYMBOL-TABLE-
OUTPUT (see page 314).

Use the Z Option to indicate the highest allowed object version of the generated
code. The Z Option has the following format:

Z=version

where, version must be an integer in the range 9 through 15.

Statements or clauses that require a higher object version level than the value specified
will be flagged in error. See the Compile Command Messages (on page 177) and the
description of the COMPUTATIONAL-VERSION keyword (on page 299) for the
COMPILER-OPTIONS configuration record. This option forces the generation of
code accepted by earlier versions of the RM/COBOL runtime system.

Appendix H: Obiject Versions (on page 619) lists the changes between object
versions.

RM/COBOL User's Guide 159

Chapter 6: Compiling

The default is to use the current object version number (15) as the limit, but the
generated object version is the minimum necessary for any given source program,
but not less than 9. The default can be configured with the COMPILER-OPTIONS
configuration record keyword OBJECT-VERSION (see page 310).

Use the 7 Option to specify the semantic rules under which the program is to be
compiled.

7 specifies that the source program is to be compiled with ANSI COBOL 1974
semantics. ANSI COBOL 1974 semantics affect the 1-O status values,
PERFORM ... VARYING statements, ALPHABETIC class conditions, and
alphabetic-edited data items. A more specific discussion of these semantic
differences can be obtained by contacting Micro Focus Customer Care.

The 7 Option is implied if the 2 Option is specified.

The default is to compile the source program using ANSI COBOL 1985 semantics.
The default can be configured with the COMPILER-OPTIONS configuration record
keyword COBOL-74 (see page 298).

Source Program Compile Command Options

The following compiler options affect the analysis of the source program and cause flagging
of certain source features.

D

160 RM/COBOL User's Guide

Use the D Option to direct RM/COBOL to compile all source programs as if the
WITH DEBUGGING MODE clause appeared in each compiled program. This
option causes all source lines with the letter D in the indicator area to be
compiled as if they had a space in the indicator area.

This option is independent of the RM/COBOL Interactive Debugger, described in
Chapter 9: Debugging (on page 255).

The default is to treat source lines with the letter D in the indicator area as
commentary information unless the WITH DEBUGGING MODE clause is specified
in the source program. The default can be configured with the COMPILER-
OPTIONS configuration record keyword DEBUG (see page 300).

Use the F Option to direct the compiler to flag occurrences of these language
elements:

coM1 INTERMEDIATE
COM2 OBSOLETE
EXTENSION SEG1

HIGH SEG2

The F Option has the following format:

F =(keyword-list)
F =keyword

where, keyword-list specifies multiple elements to be flagged. Enclose the list in
parentheses, and if the keyword-list contains more than one item, separate them with
a space or comma. If leading hyphens are being used, the parentheses are optional.
You can negate an individual keyword by preceding it with a tilde (~).

keyword specifies a single element to be flagged.

Chapter 6: Compiling

The names of elements can be abbreviated, as long as they remain unique. If the
abbreviation is not unique, the keyword that occurs first alphabetically is chosen.
For example, C, CO and COM are valid abbreviations of COM1 but not of COM2.

Certain keywords cause more than one element of the language to be flagged:

1. Selecting INTERMEDIATE flags both HIGH and INTERMEDIATE elements.
2. Selecting COML1 flags both COM1 and COM2 elements.

3. Selecting SEG1 flags both SEG1 and SEG2 elements.

See Appendix I: Extension, Obsolete, and Subset Language Elements (on page 631)
for a complete list of elements flagged.

By default, no elements of the language are flagged. The default can be configured
with the COMPILER-OPTIONS configuration record keyword FLAGGING (see
page 301).

Use the 2 Option to direct the compiler to accept source programs created for the
RM/COBOL (74) 2.n compiler.

If the programs were compiled (or designed to be compiled) without the RM/COBOL
(74) 2.n compiler ANSI Option, the separate sign (S) Option (see page 152) and
line sequential (V) Option (see page 153) may also need to be selected.

The 2 Option removes certain words from the list of RM/COBOL reserved words.
The removed words are those that are RM/COBOL additions to RM/COBOL (74)
2.n; thus, all words used in the earlier version as user-defined words are still valid.
Note carefully that if RM/COBOL language features are added to the program,

the 2 Option can no longer be used, and the program must be changed accordingly.
There is also a technique for removing individual words from the list of reserved
words. See the discussion of the COMPILER-OPTIONS configuration record (on
page 294).

The 2 Option directs that COMP-3 data items always be signed, irrespective of the
presence or absence of an S in the associated PICTURE character-string.

The 2 Option directs that COMP-1 data items behave as in RM/COBOL (74) 2.n.
This causes the number of digits in the PICTURE character-string describing a
COMP-1 item to be ignored in three situations: when the item is the receiving item
in a MOVE statement, in an arithmetic statement that specifies ON SIZE ERROR,
and in an ACCEPT statement that specifies, explicitly or implicitly, input
conversion. In these situations, the COMP-1 item may contain any value in the
range —32768 through 32767.

The 2 Option directs that OPEN EXTEND create a new file when the file is not
present, even when OPTIONAL was not specified in the file control entry.

The 2 Option directs that equality and inequality relation conditions, where the
subject and object are similar signed packed-decimal (COMP-3 or PACKED-
DECIMAL usage) or signed unpacked-decimal (COMP usage) operands, should not
be optimized to use string comparison operations. The string comparison
optimization prevents detection of equality when the only difference between the
subject and object of the relation results from the change in positive sign convention
for such items.

The 2 Option directs that the size of index data items be two bytes in length.

The 2 Option directs that the implied EXIT PROGRAM required by ANSI COBOL
1985 at the end of the Procedure Division be omitted. RM/COBOL (74) 2.n had
only an implied STOP RUN at the end of the Procedure Division.

RM/COBOL User's Guide

161

Chapter 6: Compiling

The 2 and U[=B] Options are mutually exclusive; they may not appear in the same
Compile Command.

The 2 Option implies the 7 Option.

The default is to recognize all RM/COBOL reserved words, treat COMP-3 data
items without an S in their PICTURE character-string as unsigned data items, treat
COMP-1 data items the same as two-byte COMP-4 data items, return a file not
present error for OPEN EXTEND of a nonexistent file not described with the
OPTIONAL phrase in its file control entry, use the string comparison optimization
for conditional relations of similar signed COMP-3 and COMP data items, use a size
of four bytes for index data items, and include the implied EXIT PROGRAM at the
end of the Procedure Division. The default can be configured with the COMPILER-
OPTIONS configuration record keyword RMCOBOL-2 (see page 310).

Sample Compile Commands

Here are examples of valid and invalid RM/COBOL Compile Commands.

Valid Compile Commands

rmcobol payroll.con P, V R

This command compiles the program named payroll.con; it directs the listing to the system
printer (the P Option); declares all sequential files not defined as binary sequential in the
source program to be line sequential files (the V Option); and sequentially numbers the
printed listing, starting with 1 for each copy level, in the first six columns of the listing (the R
Option).

rmcobol demo.prg (D,L=COBOL,S X) 3RD COMPILE

This command compiles the program demo.prg; the program is compiled as if the WITH
DEBUGGING clause were present (the D Option); the listing is written to the directory
named COBOL (the L Option); a separate sign is assumed in the absence of a SIGN clause
(the S Option); and the cross reference map is generated (the X Option). A comment—3RD
COMPILE—is reproduced in the listing header, but is ignored by the compiler.

Note Under UNIX, the parenthesis must be preceded with a backslash (\) character in order
to be protected from the shell.

Invalid Compile Command

rmcobol payroll.cob B V

Here, the extension to the filename (.cob) is illegal, since .cob is the default extension for the
object file. The B and V Options are entered together: B treats all sequential files not
specified as either binary sequential or line sequential in the file control entry as binary
sequential, but V treats all such files as line sequential.

162 RM/COBOL User's Guide

Chapter 6: Compiling

Listing

Depending on the options specified in the Compile Command, the compiler generates a
detailed listing. The T Option (see page 157) directs the listing to standard output. The
listing can be directed to the printer with the P_Option (see page 156) and to a file with the

L Option (see page 156). All three of these options—or any combination thereof—may be
specified. However, keep in mind that in certain circumstances the listing may contain lines
as long as 132 characters. If the device to which the listing is sent cannot accommodate lines
of that width, characters at the right end of the long lines may be truncated or wrapped.

Note Error lines are always listed to standard output unless suppressed by the K Option
(see page 152).

The components of the listing (in order of appearance) are as follows:
1. Program listing, which contains the source image of the program.
2. Allocation map, which defines and locates each identifier used in the program.

3. Called program summary, which lists the names of all programs called or canceled by
the program being compiled.

4. Cross reference listing, which lists the names of all identifiers used in the program,
along with the source line numbers at which they are declared and used.

5. Summary listing, which provides status information on the compilation itself.
When the listing is written to a printer (either because the P Option is selected or because a

disk file that was generated as a result of the L Option is printed), each component starts a
new page.

Program Listing

At the top of each page of the program listing, a header appears, a sample of which appears in
Figure 24.

Figure 24: Program Listing Header

RM/COBOL (Version 12.0n.00) for operating-system 03/15/2008 08:52:03 Page 1
O source File: ALLOCMAP Options: L A X 0]

Note The date and time formats are configurable. For more information, see the discussion
of the COMPILER-OPTIONS configuration record (on page 294).

Each page of the program listing also contains a subheader, illustrated in Figure 25 and
Figure 26.

Figure 25: Program Listing Subheader with Identification Area

LINE DEBUG PG/LN -A 1
[Ba 0TFo 000260 000 00 6@0 6 0 0Fo 06 ollo o 0 oo 0o oo o0 o¥e 0o 0@ oo o a o[| IBENTTFEN

0 0

RM/COBOL User's Guide

163

Chapter 6: Compiling

Figure 26: Program Listing Subheader without Identification Area

LINE DEBUG PG/LN -A 1
BooFoocoBoocoTosocBooocPooscblocsoPoooo®ooco¥oooc@oooclosocFooalos

0 0

These subheaders set a scale against which material on each page can be measured. The
column of numbers under the “LINE” heading contains sequential line numbers assigned by
the compiler to each line read from the source file or from a copy file; these line numbers are
used in the cross reference listing and in Debug. The numbers under the “DEBUG” heading
are used with the Interactive Debugger or for interpreting error messages when the compiler
Q Option is used; this column is used only when listing the Procedure Division. The
remaining headings locate the regions of the source line images: the internal six-column line
number field, area A, area B, the main body of the source image (subdivided into ten-column
subregions) and the Identification area, if present.

If the R Option was present in the Compile Command or the configuration specified an
equivalent, the program listing contains a compiler-generated line number in the PG/LN
column. This line number, in the listing only, replaces whatever was in columns 1 through 6
of the original source line.

The setting of margin R, as determined by the INITIAL-MARGIN-R keyword (see page 302)
of the COMPILER-OPTIONS configuration record and the IMP MARGIN-R directive,
determines whether or not there is an Identification area. When margin R is set less than the
maximum source record length, the Identification area is present from margin R to the end of
the source record. When margin R is set greater than or equal to the maximum source record
length, the Identification area is not present. The program listing subheader indicates the
presence or absence of an Identification area as follows:

e Ifthere is an Identification area, the listing source column header shows the Identification
area starting with “IDENTFCN”. Unless configured differently, as described in the
LISTING-ID-AREA-SEPARATOR keyword (see page 308), the Identification area is
separated from the program-text area by a “|” character in the header and each source line
that is printed in the listing. The separator character is suppressed for comment lines that
have nonblank characters within two characters of the Identification area (to avoid
changing comments that continue from the program-text area into the Identification area)
and for directives.

e When there is no Identification area, the listing source column header simply shows a
column ruler to the configured listing line length (see the LISTING-LINE-LENGTH
keyword on page 308), or the maximum source record length (see the SOURCE-
RECORD-MAX-LENGTH keyword on page 312) if the maximum source record length
is less than the configured listing line length.

The compiler updates the source column header for the listing file when the margin R setting
is changed by the IMP MARGIN-R directive in the source, but does not automatically force a
new page. If the new header is desired immediately, a new listing page can be forced with the
“/” comment indicator or by using the PAGE directive on a line following the IMP MARGIN-
R directive.

The program listing itself contains the sequential line number, statement address, copy level
indicator (described in the next paragraph) and the source record. If errors were detected
during compilation, the appropriate error message diagnostic appears. See Error Marker and

Diagnostics (on page 175).
The copy level indicator is a character-string of the following form:

164 RM/COBOL User's Guide

Chapter 6: Compiling

where, n is a decimal digit in the range 1 through 9. The copy level indicator appears
between the sentence address (DEBUG heading) and source record in the listing
whenever the source record has been copied at level n.

Note The “+” indicator characters may be replaced with other indicator characters as
noted in Table 16.

A sample of a program listing is shown in Figure 27 on page 166.

Statement addresses are listed in decimal notation. For overlay segments, the segment
number is printed as part of the statement address. A slash separates the segment number
from the offset within the segment. For example:

507000100

refers to location 100 within segment 50. Segment numbers and the slash are suppressed for
the fixed permanent segment.

The generation of the program listing may be suppressed by specifying the E Option (see
page 155) in the Compile Command. Copied source text can be suppressed with the

C Option (see page 154). Error messages (if any) and their associated undermarks and
source text are not suppressed, even when the C or E Option has been selected.

The copy level indicator has been expanded into a source indicator by varying the brackets
around the copy nesting level number n. Copy nesting level number 0 is the original source
file that is being compiled. A source indicator of +0+ is never included in the listing, but the
new source indicators may be used with copy nesting level number 0 because of the
REPLACE statement. The source indicators have the following meanings:

Table 16: Source Indicators in Compilation Listing

Source Indicator Meaning
+n+ The source text was copied at copy nesting level n without modification.
<n> The source text was replaced at copy nesting level n because of a

REPLACE statement, the REPLACING phrase of a COPY statement, or
the DATE-COMPILED paragraph. Such source text is listed on a
comment line in the listing, even though the original line that contained
the source text was not a comment line.

>n< The source line was inserted at copy nesting level n by a REPLACE
statement, the REPLACING phrase of a COPY statement, or the DATE-
COMPILED paragraph.

[n] The source line contains a COPY statement, which has been logically
replaced by the copied file.

Note Prior to version 11, this indicator meant the source line was
modified by a REPLACE statement, the REPLACING phrase of a COPY
statement, or by relocation of source text that occurred on the same line as
all or part of a COPY statement (the compiler relocated the source text so
that it would be compiled after the copied file). Version 11 and later
eliminated such “modified” lines by treating them as replaced lines.

RM/COBOL User's Guide 165

Chapter 6: Compiling

{n} The source text was relocated to a new line because it followed a matching
replacement key of a REPLACE statement or of the REPLACING phrase
of a COPY statement, or it occurred on the same line as all or part of a
COPY statement. When possible for replacements, such source text is
merged with the last line of the inserted replacement text. Therefore, this
source indicator only occurs when the merge is not possible. That is,
when the merge is possible, the source indicator >n< is printed for the last
line of the inserted replacement text that includes the merged text-words.
(Source text that is split from a COPY statement is not merged with the
last line of the copied file.)

For easy reference, a summary of the source indicator meanings is included in the summary
listing portion of the listing file when the source indicator is used in the listing, as described in

Summary Listing (on page 173).

Figure 27: Sample Program Listing

1 IDENTIFICATION DIVISION.
2 PROGRAM- 1D ALLOCMAP .

(OJ:} ENVIRONMENT DIVISION. 0]
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. 1BM-PC-XT.
6 OBJECT-COMPUTER. IBM-PC-XT,

07 PROGRAM COLLATING SEQUENCE EBCDIC-CODE. O
8 SPECIAL-NAMES.
9 SWITCH-1 1S REPORT-MODE,
10 ON STATUS IS REPORT-LIST,

011 OFF STATUS 1S REPORT-NOLIST; 0
12 SWITCH-3 IS DISPLAY-MODE,
13 ON STATUS IS DISPLAY-LIST,
14 OFF STATUS IS DISPLAY-NOLIST;

0 15 CO1 IS TOP-OF-FORM; 0
16 CO5 IS AMOUNT-LINE;
17 CONSOLE IS PC-DISPLAY;
18 SYSIN IS STANDARD-IN;

0 19 SYSIN IS STANDARD-OUT; 0
20 ALPHABET ASCII-1 IS STANDARD-1;
21 ALPHABET ASCII1-2 IS STANDARD-2;
22 ALPHABET NATIVE-1 IS NATIVE;

0 23 ALPHABET EBCDIC-CODE 1S EBCDIC; 0
24 ALPHABET BACKWARDS IS "'ZYXWVUTSRQPONMLKJIHGFEDCBA'™;
25 SYMBOLIC CHARACTERS QUESTION-MARK, ASTERISK ARE 64, 43;
26 CLASS PUNCTUATION IS ™5™, ™, ™o, =, wom,

0 27 INPUT-OUTPUT SECTION. 0
28 FILE-CONTROL .
29 SELECT REPORT-FILEL ASSIGN TO PRINTER;
30 ORGANIZATION IS SEQUENTIAL;

031 ACCESS 1S SEQUENTIAL. 0
32 SELECT LOOKUP-FILE1 ASSIGN TO DISC;
33 ORGANIZATION 1S RELATIVE;
34 ACCESS 1S SEQUENTIAL.

0 0

166 RM/COBOL User's Guide

Chapter 6: Compiling

151 PROCEDURE DIVISION USING ARG1-GROUP, ARG2-GROUP.

0 152 000002 A. 0
153 000005 CALL "CHRRTN" USING NW5-MDATE, NW5-MTIME.
154 000016 CALL MATHRTN USING NBS-1, NBU-1, NCS-1, NCU-1,
155 NLC-1, NPS-1.

0 156 000035 STOP RUN. 0
157 END PROGRAM ALLOCMAP.

Allocation Map

The allocation map provides information on each user-defined word from the source
program, listed in the order declared. The type of user-defined word (described in the
following section) determines the allocation map format. The allocation map is generated
in the listing when the A Option (see page 154) is specified in the Compile Command or the
LISTING-ATTRIBUTES keyword (see page 305) is configured with the ALLOCATION-
MAP value.

Alphabet-Names, Symbolic-Characters, Mnemonic-Names, and
Class-Names

User-defined words declared in the SPECIAL-NAMES paragraph are listed in the allocation
map with the following information:

1. Association, which is the value for a figurative or symbolic-character; the code-name for
an alphabet-name; the switch-name for a mnemonic-name or condition-name associated
with a switch-name; the channel-name for a mnemonic-name associated with a
channel-name; the low-volume-I-O-name for a mnemonic-name associated with a
low-volume-1-O-name; or blank for a class-name. The value of a figurative or
symbolic-character is listed as the hexadecimal value in the native character set. If that
value represents a printable character, the printable character is listed in quotation marks.

2. Status, which is On or Off for a condition-name associated with a switch-name. The
letters PCS appear with an alphabet-name declared as the program collating sequence.
Otherwise, the column is blank.

3. Type, which indicates whether the user-defined word is: an alphabet-name; a mnemonic-
name associated with a switch-name; a condition-name; a mnemonic-name associated
with a channel-name; a mnemonic-name associated with a low-volume-I-O-name; a
class-name; or a symbolic-character.

4. Name, which is the actual user-defined word declared with the indicated attributes or the
figurative constant LOW-VALUE or HIGH-VALUE. These particular figurative
constants are listed since their value depends on the program collating sequence declared
in the source program.

Figure 28 is an example of this part of the allocation map.

Figure 28: Allocation Map (Part 1 of 4)

Special-Names

Association Status Type Name

RM/COBOL User's Guide

167

Chapter 6: Compiling

LOW-VALUE
HIGH-VALUE
REPORT-MODE
REPORT-LIST
REPORT-NOLIST
REPORT-MODE
REPORT-LIST
REPORT-NOLIST
TOP-OF-FORM
AMOUNT-LINE
PC-DISPLAY
STANDARD-IN
STANDARD-OUT
ASCII-1
ASCI1-2
NATIVE-1
EBCDIC-CODE
BACKWARDS
QUESTION-MARK
ASTERISK
PUNCTUATION

O x"oo" Figurative constant
X"FF" Figurative constant
SWITCH-1 Switch-name
SWITCH-1 on Condition-name

O swiTcH-1 Off Condition-name
SWITCH-3 Switch-name
SWITCH-3 Oon Condition-name
SWITCH-3 Off Condition-name

0 co1 Channel-name
C05 Channel-name
CONSOLE Low-volume-1-0-name
SYSIN Low-volume-1-0-name

0 sysout Low-volume-1-0-name
STANDARD-1 Alphabet-name
STANDARD-2 Alphabet-name
NATIVE Alphabet-name

O EBcopIC PCS Alphabet-name
Literal Alphabet-name
X"3F" = "ov Symbolic-character
XU2A™ = e Symbolic-character

0 Class-name

alphabet-names, symbolic-characters, mnemonic-names, and class-names

Split Key Names

User-defined words, declared as part of a RECORD KEY clause in an indexed file control
entry of the Environment Division that defines a split key, are listed in the allocation map

with the following information:

1. File-Name is the name of the file from the indexed file control entry.

2. Key-Number specifies the number of the key that has a split key defined. A value of
zero indicates the prime record key. Alternate keys are numbered from 1 to 254.

3. Type indicates that the entry is a split-key-name.

4. Name is the name associated with the split key.

Figure 29 illustrates a section of the allocation map for a file that defines split keys for the

primary key and the second alternate key in the file control entry.

Figure 29: Allocation Map (Part 2 of 4)

Split Key Names for program SPLITKEY
File-Name Key-Number Type
O FILE-1 0 Split-key-name

2 Split-key-name

Name
KEY-1
KEY-2

split-key-names

168 RM/COBOL User's Guide

Chapter 6: Compiling

Data-Names, Index-Names, Condition-Names, File-Names and
Cd-Names

User-defined words declared in the Data Division are listed in the allocation map with the
following information:

1.

Address, which is the decimal address for data-names and index-names. The “Address”
column is blank for file-names, cd-names and condition-names.

For data items declared with the external attribute in the File Section or Working-Storage
Section, the compiler-generated external number is printed on a line preceding the file or
level 01 item description or index-name.

For data-names declared in the Linkage Section, each level 01 or 77 item is preceded by
an indication of how it is addressable:

o Ifitis listed in the USING phrase of the Procedure Division header, “Un:” and
“Using argument n” are printed to indicate the formal argument umber is n within
the USING argument list.

o Ifitis listed in the GIVING (RETURNING) phrase of the Procedure Division
header, “G:” and “Giving argument” are printed to indicate that the item is the
formal GIVING argument.

e Ifitisabased linkage record and is not a formal argument, “Bn:” and “Based
linkage record n” are printed to indicate that the compiler assigned based linkage
record number is n.

e If none of the preceding descriptions apply, “Not addressable” is printed to indicate
that the Linkage Section data item is not available to the program.

Size, which is the decimal number of character positions required to store the value of a
data-name, or the maximum block size—in characters or records—for a file-name
declared with a non-zero block size. The “Size” column is blank for cd-names and
condition-names. The “Size” column for index-names contains the span of the table
entry associated with the index-name, that is, the decimal number of character positions
to advance the index-name value from one occurrence of the table to the next occurrence;
the actual size of an index-name itself is always four bytes.

Debug, which contains an abbreviated type indicator used in the Interactive Debugger to
describe the format of the data item. The “Debug” column contains “Fixed” or
“Variable” for file-names to indicate that records of the file are fixed or variable length,
respectively. The “Debug” column is blank for cd-names and condition-names.

Note These first three columns (Address, Size, and Debug) are used with the Interactive
Debugger to display and modify the values of data-names. See Chapter 9: Debugging
(on page 255).

Order, which indicates the number of subscripts required when referencing the
data-name or condition-name. The “Order” column is blank for data-names not requiring
subscripting and also for file-names and cd-names. When one or more subscripts are
required, the order is indicated with a decimal number enclosed in parentheses. In
version 12 and later, for an item described with the OCCURS clause without the
DEPENDING ON phrase, an asterisk (“*”) follows the closing parenthesis and, for an
item described with the OCCURS clause with the DEPENDING ON phrase, an
octothorpe (“#”) follows the closing parenthesis. When the parenthesized order is present
and neither an asterisk nor an octothorpe follows the closing parenthesis, the data item is
a subordinate item of the nearest preceding group table item of the same order and is not
described with an OCCURS clause itself.

RM/COBOL User's Guide

169

Chapter 6: Compiling

5. Type, which is a brief description of the item associated with the user-defined word. For
files, the organization and access are listed, in that order, separated by a slash.

6. [Level], which is the level-number of data-names. The level-number is omitted for
index-names. The level-indicator FD or CD is shown for file-names or cd-names,
respectively.

7. Name, which is the actual user-defined word declared with the listed attributes. The
name is indented one column to the right for each increase in level-number.

Figure 30 is an example of this part of the allocation map.

Figure 30: Allocation Map (Part 3 of 4)

File Section for program ALLOCMAP

Working-Storage Section for program ALLOCMAP

Address Size Debug Order Type [Level] Name
0] Variable File Seq/Seq FD REPORT-FILE1
80 ANS Alphanumeric 01 REPORT-RECORD-1
40 ANS Alphanumeric 01 REPORT-RECORD-2
0

Address Size Debug Order Type [Level] Name
0 532 112 GRP Group 01 G1
532 8 ABS Alphabetic 05 ABS-1
540 8 ANSE Alphanumeric edited 05 ANSE-1
548 8 ABS Alphabetic, just 05 ABSR-1
0] 556 6 NSU = Numeric unsigned 05 NUM-1
0 6 INX Index-name INX-1
0
Linkage Section for program ALLOCMAP
O Address Size Debug Order Type [Level] Name
Ul: Using argument 1
0 44 GRP Group 01 ARG-GROUP
4 NSU Numeric unsigned 05 ARG-COUNT
0] 4 8 ANS = Alphanumeric 05 ARG-AREA
O communication Section for program ALLOCMAP
Address Size Debug Order Type [Level] Name
Cd for Input CD NET-WORK-1
734 12 ANS Alphanumeric 02 NW1-SYM-Q
0 746 12 ANS Alphanumeric 02 Nw1-SQ1
758 12 ANS Alphanumeric 02 NW1-SQ2
770 12 ANS Alphanumeric 02 NW1-SQ3
782 6 NSU Numeric unsigned 02 NW1-MDATE

170 RM/COBOL User's Guide

Chapter 6: Compiling

data-names, index-names, condition-names, file-names and cd-names

Constant-Names
User-defined words declared as constant-names in the Data Division are listed in the
allocation map with the following information:

1. Constant Value, which is the value associated with the constant-name. If the constant-
name value was specified with a constant-expression, then the result value is shown.
Otherwise, the literal associated with the constant-name is shown.

2. Type, which is a brief description of the type of the value associated with the constant-
name. If the constant-name value was specified with a constant-expression, then the type
is always Numeric unsigned. Otherwise, the type is the type of the literal specified as the
value for the constant-name.

3. [Level], which is the level-number for constant-names. Constant-names always have a
level-number of 78.

4. Name, which is the actual user-defined word declared as the constant-name.
Figure 31 is an example of this part of the allocation map.

Figure 31: Allocation Map (Part 4 of 4)

Constant-names for program ALLOCMAP
Constant Value Type [Level] Name
02 Numeric unsigned 78 TWO 0
"STRING1™ Alphanumeric 78 STRING1
QUOTE (QUOTES) Alphanumeric 78 MY-QUOTES
-256.357 Numeric signed 78 CONSTANT1
O x“454647" Alphanumeric 78 HEX1 0
ALL "ABC" Alphanumeric 78 STRING2
ZERO (ZEROS, ZEROES) Numeric unsigned 78 MY-ZEROS
SPACE (SPACES) Alphabetic 78 MY-SPACES
constant-names

Called Program Summary

The called program summary lists the names of all called and canceled programs and the
using count associated with each. Figure 32 illustrates this listing.

Figure 32: Called Program Summary

Called Program Summary

Program-name required Using count
O MATHRTN 6 0
""CHARRTN" 2

The program-name appears without quotation marks for dynamic (identifier) references and
inside quotation marks for static (literal) references. The “Using count” field lists the
maximum number of arguments used in any CALL reference to the listed literal or identifier.

RM/COBOL User's Guide 171

Chapter 6: Compiling

Cross Reference Listing

The cross reference alphabetically lists all user-defined words used in the program, and
provides the line number of each declaration, source, and possible destination reference. The
line number is enclosed in slashes if the reference is a declaration or in asterisks if the
reference is a possible receiving item. The line number is not marked for sending items.
Procedure-names specified as the first operand of an ALTER statement and data-names that
are specified as receiving operands of Procedure Division statements are considered
destination references and are thus marked with asterisks in the cross reference listing. The
cross reference is generated in the listing when the X Option (see page 157) is specified in the
Compile Command or the LISTING-ATTRIBUTES keyword (see page 305) is configured
with the CROSS-REFERENCE value. Figure 33 illustrates the cross reference listing.

Note The method used to mark possible destination references with surrounding asterisks errs
on the conservative side, particularly in arithmetic statements. The compiler marks the
second operand of an arithmetic statement as a possible destination even though it may be
followed by the GIVING phrase, which causes the second operand to be only a sending item.
The operands in the USING phrase of a CALL statement are always considered to be possible
destination references unless they are subject to a BY CONTENT phrase.

Figure 33: Cross Reference Listing

Cross reference /Declaration/ *Destination*
A 70152/

O ABSE-1 /0082/ 0
ABSR-1 /0083/
ABS-1 /0081/
AMOUNT-L INE /0016/

O ANSE-1 /0085 0
ANSR-1 /0086/
ANS-1 /0084/
ARG1-AREA /0113/

O ARG1-COUNT 70112/ 0
ARG1-GROUP /0111/ 0151
ARG2-AREA /0116/
ARG2-COUNT /0115/

O ARG2-GROUP /01147 0151 0
ARG3-AREA 70119/
ARG3-COUNT /01187
ARG3-GROUP 70117/

0 ascri-1 /0020/ 0
ASCII-2 70021/
ASTERISK 70025/
BACKWARDS 70024/

O DB1-DATA /0070/ 0]
DB1-KEY 0047 /0069/

172 RM/COBOL User's Guide

Chapter 6: Compiling

Summary Listing
The summary listing shows the sizes of the regions of the generated object program, the
maximum compilation memory used, and other summary information about the entire source

program. Figure 34 illustrates this listing.

Figure 34: Summary Listing

Program Summary Statistics

Read only size: 266 (X'0000010A™) bytes
O Read/write size: 532 (X'"'00000214™) bytes 0
Overlayable segment size: 0 (X''00000000') bytes
Total generated object size: 798 (X'0000031E™) bytes
Maximum EXTERNAL size: 88 (X''00000058') bytes
O Total EXTERNAL size: 92 (X"'0000005C*") bytes 0

Source program used 4489 (0%) of 840000 available identifiers
(T1C limit).
Source program used 33004 (0%) of 8400000 available user-defined
O word space (T2B limit). 0]
Maximum compilation memory used was 487K bytes (2 presses and 0
increases required).
+n+ Source was copied from copy file at copy nesting level n
0 (level 0O indicator is suppressed). 0
<n> Source was replaced at copy nesting level n because of REPLACE
or REPLACING.
>n< Source was inserted by REPLACE or REPLACING.
0 [n] Source was modified by REPLACE, REPLACING, or split of text 0
following a COPY statement.
(n) Source was split from a previous line with a replacement
match or COPY statement.
O Errors: 1, Warnings: 0, Lines: 157 for program ALLOCMAP 0
Previous diagnostic message occurred at line 151.
Object version level = 3
Options in effect:

O A - Allocation map listing 0
L — Listing file

X - Cross reference listing

The line labeled “Read only size” lists the size of that region of the object program that
contains values that do not change during program execution. It consists primarily of the
instructions generated for the resident (or fixed) portion of the Procedure Division,
representations of the literals mentioned in the Procedure Division, and descriptors of the
operands referred to in the Procedure Division.

The line labeled “Read/write size” lists the size of that region of the object program that
contains values that might change during the course of execution. It consists primarily of a
current record area and a control block for each of the files specified, an area for the Working-
Storage Section and other internal control information.

The line labeled “Overlayable segment size” lists the size of the region of the object program
that is reserved for the independent and fixed overlayable segments of the Procedure Division.

RM/COBOL User's Guide

173

Chapter 6: Compiling

Its length is the length of the longest independent or fixed overlayable segment. All such
segments are loaded into this common region on an as-needed basis.

The line labeled “Total generated object size” lists the sum of the preceding values, and is
therefore the amount of memory needed to load the object program. It is not the total size
needed to execute that program. To execute the program there must be memory available to
accommodate not only the total size (as shown on the fourth line) but also the operating
system, the runtime system, any external data items and the 1/O buffers. Although you have
no control over the size of the operating system or runtime system, you can exercise some
control over the memory requirement for the 1/0 buffers by use of the RESERVE and
BLOCK CONTAINS clauses, described in detail in File Types and Structure (on page 234) in
Chapter 8: RM/COBOL Features. Since the compiler uses 32-bit arithmetic, if the total
generated object size exceeds 4 GB this line will say “Total generated object size: {32-bit
overflow!} bytes” and compiler error message 344 will be generated in the listing after the
end of the program.

The line labeled “Maximum EXTERNAL size” indicates the size of the single largest record
area with the external attribute declared in the source program. This number is useful because
the maximum allowed value varies depending on the environment in which the program is
run. For more information on these limitations, see Memory Available for a COBOL Run
UNIT on UNIX (on page 39) and Memory Available for a COBOL Run UNIT on Windows
(on page 111).

The line labeled “Total EXTERNAL size” indicates the sum of the sizes of all record areas
with the external attribute declared in the source program. This number provides information
needed in estimating the runtime system memory requirements of the program, but is not a
direct measure since the memory requirements depend on the use of matching external
records in other programs of the run unit.

Note The two lines regarding EXTERNAL size are omitted in the listing file when the
program does not specify the EXTERNAL clause for any item.

The line labeled “Source program used ... of 840000 available identifiers ...” indicates the
amount of the identifier table limit consumed. Identifiers are the individual items (classes,
symbolic-characters, data items, conditions, and so forth) declared in the program. Each data
item and condition defined in the program requires its own identifier entry even if the data-
name or condition-name for the data item or condition is the same, since qualification can be
used to distinguish between the data items or conditions. The T1C in the message refers to
the compiler limit listed in Table 17 (beginning on page 179).

The line labeled “Source program used ... of 8400000 available user-defined word space ...”
indicates the amount of the user-defined word space consumed. User-defined words are the
unique spellings of words used as alphabet-names, cd-names, class-names, condition-names,
data-names, file-names, index-names, key-names, mnemonic-names, paragraph-names,
section-names, and symbolic-characters in the source program. Any particular spelling
consumes space only once in the user-defined word table. The T2B in the message refers to
the compiler limit listed in Table 17. The limit of 1400000 shown in that table assumes 30-
character names, which use six words each in the user-defined word space. If names averaged
24-characters in length (5 words average use of word space), the limit would be 1680000
names.

The line labeled “Maximum compilation memory ...” indicates the amount of memory
required to compile the source program. Setting the workspace size for the compiler to a
value at least this size or slightly larger results in the best compilation speed with the
minimum amount of memory consumption. The workspace size can be set using the

W Compile Command Option (see page 152) or the WORKSPACE-SIZE keyword (see

page 318) of the COMPILER-OPTIONS configuration record. The number of presses
indicates how many times the compiler attempted to recover unused memory. Minimizing the
number of presses by increasing the workspace size provides improved compilation speed. If

174 RM/COBOL User's Guide

Chapter 6: Compiling

the number of presses is zero, then the compilation speed cannot be improved by increasing
the workspace size. The number of increases indicates the number of times the compiler had
to request more memory because the original workspace size was too small.

The line labeled “Source indicators ...” and the lines indented under this header provide a
summary of the source indicators used in columns 16-18 of the listing. Only those
explanation lines for source indicators actually used in the program listing are included in the
summary. If no source indicators were used in the program listing, then the header line is not
printed in the summary listing. For further details, see source indicators (on page 165).

The lines labeled “Errors: . . .” and “Previous diagnostic message . . .” summarize the number
of diagnostic messages issued during compilation and the location of the last diagnostic
message, respectively.

The line labeled “Object version level” indicates the object version level of the object
program associated with the program being compiled. For complete information on the object
version levels accepted by RM/COBOL, see Appendix H: Object Versions (on page 619).

The line labeled “Options in effect” and the lines that follow list the options selected for the
compilation. The listed options may have been specified in the Compile Command (see
page 145) or be part of a configuration file, as discussed in the COMPILER-OPTIONS
configuration record (see page 294). All command-line options are listed, as well as some
configuration options important to understanding the generated object program, such as
BINARY-ALLOCATION in the COMPILER-OPTIONS configuration record; if no options
were specified, these lines will not appear.

Error Marker and Diagnostics

Violations of syntactical or semantic rules are detected during the compiler’s pass through the
source program. If an error is detected, it is undermarked by a dollar sign. Figure 35
illustrates the RM/COBOL diagnostic message format.

Figure 35: Error Marker and Diagnostics

1 IDENTIFICATION DIVISION.
2 PROGRAM-1D. ALLOCMAP.
0 3 ENVIRONMENT DIVISION 0
4 CONFIGURATION SECTION.
$
*xk%%k 1) 0319: E Period space separator expected.
0 5 SOURCE-COMPUTER. RMCOBOL . 0
OBJECT-COMPUTER. same.
$
lkaiaiated 1) 0382: E Computer-name must be user-defined word instead of
0] reserved word. (scan suppressed). 0]
*****Previous diagnostic message occurred at line 4.
7 PROGRAM COLLATING SEQUENCE EBCDIC-CODE.
$
O swenx 1) 0005: 1 Scan resumed. 0
*****pPrevious diagnostic message occurred at line 6.
8 SPECIAL-NAMES.
9 SWITCH-1 1S REPORT-MODE,

The first number on the line following the line with the undermark refers to the undermark
number. Multiple errors on the same line are numbered in ascending order, reading left to

RM/COBOL User's Guide 175

Chapter 6: Compiling

right. The next number is the error number. This corresponds to the appropriate message
listed in Appendix B: Compiler Messages of the RM/COBOL Language Reference Manual.

Following the error number is a single letter that indicates the severity of the error. There are
three classes:

1. lindicates the message is informational only.
2. E indicates a severe error.

3. W indicates a warning.

Error Recovery

The RM/COBOL compiler may display a recovery message along with the error diagnostic.
This recovery message is generated if—as often happens—a compilation error interrupts
scanning. In this case, the source text is ignored until the compiler finds a recovery point.
This minimizes the amount of code you need to examine if an error occurs. See Figure 36 for
an illustration.

Figure 36: Error Recovery Display

10 ON STATUS IS REPORT-LIST,
11 OFF STATUS 1S REPORT-NOLIST;
012 C21 1S TOP-OF-FORM; 0]
$

***%% 1) 0088: E Wrong code-name in ALPHABET clause. (scan suppressed).

*****previous diagnostic message occurred at line 7.

013 CONSOLE IS CRT-DISPLAY; 0
14 PROCEDURE DIVISION.
$
***x*x* 1) 0005: 1 Scan resumed.

The undermark indicates that the compiler did not recognize the alphabet code-name given.

When the compiler encounters an error, it first attempts to make an assumption about what
was actually meant. When it can do so, it continues compiling from the point of error,
without displaying the “(scan suppressed)” portion of the message.

If it cannot do so, the compiler suppresses scanning until it finds a point where it can begin
again. In this case, an undermark indicates where it restarted scanning, and the informational
“Scan resumed” message is written. No source text between the undermark associated with
the “(scan suppressed)” message and the “Scan resumed” message is compiled. This may
result in data-names being undefined if the message occurs in the Data Division.

The diagnostic information described previously is always contained in the listing regardless
of the setting of the compiler options. If the L, P, and T Options are all absent (meaning that
the listing is not being written to any device), the diagnostic information is written to the
standard output device.

Error Threading

RM/COBOL provides error-threading facilities. By reading the “Previous diagnostic message
occurred at line” message, you can trace back through every error encountered during

176 RM/COBOL User's Guide

Chapter 6: Compiling

compilation. This message may also appear after the summary listing, to point to the last
error in the program.

Compilation always proceeds to the end of the program regardless of the number of errors
found, unless an error causes abnormal termination. Global errors, such as undefined
paragraph names and illegal control transfers, are listed at the end of the listing file
allocation map.

Compile Command Messages

The banner appears when you first invoke the compiler:

RM/COBOL Compiler - Version 12.14 for operating system
Copyright © 1985-2017 by Micro Focus. All rights reserved.
Configured Options: option list

Registration Number: XxxX-nnnn-nnnnn-nnnn

The third line of the compiler banner appears only when options have been specified in a
configuration file or in the Compile C