
Contents

Micro Focus
RM/COBOL

RM/COBOL
User’s Guide

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are trademarks or registered trademarks of
Micro Focus Development Limited or its subsidiaries or affiliated companies in the United States, United Kingdom,
and other countries. All other marks are the property of their respective owners.

Revised 2018-05-21 for version 12.15

 RM/COBOL User's Guide iii

Contents
Preface .. 1

Welcome to RM/COBOL for Windows and UNIX ... 1
Who Should Use This Book .. 1
Organization of Information .. 2
Related Publications... 3
Conventions and Symbols .. 4
Technical Support .. 6

Support Guidelines ... 6
Test Cases ... 6

Chapter 1: Introduction .. 9

RM/COBOL Software ... 9
RM/COBOL Compiler... 9
RM/COBOL Runtime System ... 9
CodeWatch... 10
CodeBridge .. 10
Internal Libraries and Utility Programs ... 10
Integrated and Add-On Packages ... 10
File Naming Conventions .. 11

Chapter 2: Installation and System Considerations for UNIX 13

System Requirements for UNIX .. 13
Required Hardware ... 13
Required Software .. 13

System Installation for UNIX .. 14
Electronic Product Delivery Installation ... 14
CD-ROM Installation ... 15

Loading the License File ... 16
Mounting the Diskette as an MS-DOS File System ... 16
Transferring the RM/COBOL License File via FTP from a Windows Client 17

Loading the Distribution Media ... 18
Performing the Installation .. 19
Unloading the Distribution Media ... 20

System Removal for UNIX .. 20
Locating RM/COBOL Files on UNIX ... 21

File Locations within Operating System Pathnames on UNIX... 21
Directory Search Sequences on UNIX ... 21
File Access Names on UNIX .. 22

UNIX Resource File .. 25
Resource File Format .. 25
Command-Line Options ... 26
Specifying Synonyms ... 26

Example of .rmcobolrc File ... 27

iv RM/COBOL User's Guide

Example of .runcobolrc File .. 27
Example of .recover1rc File .. 28

Terminal Input and Output on UNIX ... 28
Terminal Interfaces ... 28

Termcap Database ... 29
Terminfo Database .. 29

Cursor Types ... 30
Terminal Attributes ... 30
Terminal Name ... 30
Terminfo and Termcap Capabilities Used by the Runtime System 31
Keyboard Input Character Sequences ... 32
Additional Termcap Capabilities Used by the Runtime System 36
Terminfo Considerations .. 37
Line Draw Characters ... 38

Other System Considerations for UNIX .. 39
Memory Available for a COBOL Run Unit on UNIX .. 39
Number of Files .. 39
Number of Region Locks .. 39
Network File Access ... 39
Redirection of Input and Output ... 40

Standard Input ... 40
Standard Output ... 41
Standard Error ... 42

Using Large Files on UNIX .. 42
Environment Variables for UNIX ... 43

Chapter 3: Installation and System Considerations for Microsoft
Windows ... 45

System Requirements for Windows ... 45
Required Hardware ... 45
Required Software .. 45

Local Area Network (LAN) Software ... 46
Btrieve Software .. 46

System Installation for Windows ... 46
Installation Locations .. 47
Electronic Product Delivery Installation ... 47
CD-ROM Installation ... 49
Installation Notes for Windows .. 52

Installation of RM/COBOL on Windows .. 52
Installation of RM/COBOL on Network Client Machines .. 54
Default Native Character Set ... 54

Registering the RM/COBOL Compiler and Runtime Executables 54
Compiler Registration .. 54
Runtime Registration ... 56

System Removal for Windows .. 59
System Configuration for Windows .. 59

Creating a Windows Shortcut ... 59
Using Associations with Filename Extensions ... 61
Prompting for a Filename ... 61

Locating RM/COBOL Files on Windows.. 62
File Locations within Operating System Pathnames on Windows 62
Directory Search Sequences on Windows .. 62
Novell NetWare Search Paths ... 64
File Access Names on Windows .. 64
Windows System Print Jobs ... 66

 RM/COBOL User's Guide v

Windows Registry .. 67
Windows Registry Considerations .. 67

Renaming the RM/COBOL for Windows Runtime ... 67
Setting Properties ... 68

Selecting a File to Configure .. 69
Setting Control Properties ... 72

Auto Paste Property ... 73
Auto Scale Property ... 73
Command Line Options Property .. 74
Cursor Overtype Property .. 74
Cursor Insert Property ... 75
Cursor Full Field Property ... 75
Enable Close Property ... 75
Enable Properties Dialog Property .. 76
Font Property ... 76
Font CharSet OEM Property ... 76
Full OEM To ANSI Conversions Property .. 76
Icon File Property .. 77
Load Registry On CALL Property .. 77
Load Registry On RETURN Property ... 77
Logo Bitmap Property ... 78
Logo Bitmap File Property .. 78
Main Window Type Property .. 78
Mark Alphanumeric Property .. 78
Offset X Property... 79
Offset Y Property... 79
Panels Controls 3D Property ... 79
Panels Static Controls Border Property ... 79
Paste Termination Property ... 79
Persistent Property ... 79
Pop-Up Window Positioning Property .. 80
Printer Dialog Always Property ... 80
Printer Dialog Never Property ... 80
Printer Enable Escape Sequences Property.. 81
Printer Enable Null Esc. Seq. Property .. 81
Printer Enable Raw Mode Property ... 81
Printer Font CharSet OEM Property .. 81
Remove Trailing Blanks Property ... 82
Screen Read Line Draw Property .. 82
Scroll Buffer Size Property .. 82
Show Return Code Dialog Property .. 83
Show Through Borders Property ... 83
Sizing Priority Property ... 83
Status Bar Property .. 83
Status Bar Text Property .. 83
SYSTEM Window Type Property ... 84
Title Text Property... 84
Toolbar Property .. 84
Toolbar Prompt Property ... 84
Update Timeout Property .. 85
Use Windows Colors Property .. 85

Setting Synonym Properties .. 86
Setting Color Properties .. 88
Setting Toolbar Properties .. 89
Setting Menu Bar Properties ... 93
Setting Pop-up Menu Properties ... 95

vi RM/COBOL User's Guide

Toolbar Editor .. 97
Running the Toolbar Editor .. 98
Editing a Bitmap ... 99
Testing the Bitmap .. 99
Transferring the Image Up .. 100
Importing and Exporting Bitmaps .. 100

Character Set Considerations for Windows ... 100
Codepages on Windows.. 100
RM/COBOL for ANSI Codepage on Windows ... 102
Installation Character Set Considerations on Windows .. 103

RMSETNCS Utility ... 103
Related Character Set Configuration on Windows ... 105

Terminal Input and Output on Windows ... 106
Terminal Interfaces ... 106
Cursor Types ... 106
Blinking Attribute ... 106
Portable Line Draw Characters ... 106
Keyboard Input Character Sequences ... 107

Other System Considerations for Windows ... 111
Memory Available for a COBOL Run Unit on Windows .. 111
Runtime System Window ... 111

Control Menu Icon... 113
Return Code Message Box ... 114
CALL “SYSTEM” .. 114
Performance .. 114
Using Large Files on Windows... 114

Windows File Systems Considerations .. 115
Large File Locking Issues .. 115
Test Programs Available ... 116

Environment Variables for Windows ... 116

Chapter 4: System Considerations for Btrieve 119

Btrieve Adapter Concepts .. 119
Indexed Files ... 119

Required Software Components .. 121
Novell NetWare .. 122
Btrieve MicroKernel Database Engine (MKDE) .. 122
Btrieve Requester for 32-Bit Windows ... 122
Pervasive PSQL v8 (or higher) for Linux ... 122
RM/COBOL Compiler (for Windows and Linux) .. 123
RM/COBOL Runtime System (for Windows and Linux) .. 123
Btrieve Adapter ... 123

Configuration for Btrieve ... 124
System Considerations for Btrieve Files ... 124
RM/COBOL versus Btrieve Indexed File Performance ... 125

Btrieve Adapter Options .. 126
EXTERNAL-ACCESS-METHOD Configuration Record Options 126

B (Btrieve Adapter Btrieve MKDE Page Size) Option ... 126
Create Option ... 127
D (Duplicates) Option ... 128
I (Initial Display) Option ... 128
L (Lock) Option ... 128
M (Mode) Option... 129
O (Owner) Option .. 130
P (Btrieve Adapter Page Size) Option ... 130

 RM/COBOL User's Guide vii

T (Diagnostic Trace Filename) Option .. 131
RUN-INDEX-FILES Configuration Record Options ... 131

Starting Btrieve Adapter for Linux .. 132
Starting Btrieve Adapter for Windows .. 133
RM/COBOL Indexed Files and Btrieve MicroKernel Database Engine (MKDE)
Limitations ... 134

Current Record Position Limitations .. 134
File Position Indicator Limitations ... 135
Permission Error Detection Limitations ... 135
Using Existing Btrieve Files with RM/COBOL ... 136
Btrieve MicroKernel Database Engine (MKDE) Limitations Affecting RM/COBOL
Applications .. 136
Variable-Length Records .. 137
Key Placement .. 137
Automatic Creation of Variable-Length Record Files .. 137
Verification of Maximum Record and Block Length ... 137
Support for RM/COBOL Internal Data Formats .. 137
Support for Btrieve Internal Data Formats ... 138
Input/Output Errors in Btrieve .. 138

Chapter 5: System Verification .. 139

System Verification for UNIX ... 139
Single-User Tests .. 139
Multi-User Test ... 140

System Verification for Windows .. 141
Single-User Tests .. 141
Multi-User Test ... 141

Chapter 6: Compiling .. 143

Compilation Process .. 143
System Files ... 143

Source Files .. 144
Object Files ... 144
Listing Files .. 144

Libraries ... 144
Compile Command .. 145

Batch Compilation on Windows ... 146
Multiple File Compilation on Windows ... 147

Multiple File Selection with File Open Dialog .. 147
Multiple File Selection with Wildcard Characters in Filename 147

Compile Command Options ... 148
Configuration Compile Command Options ... 151
Data Item Compile Command Options ... 152
File Type Compile Command Options .. 153
Listing Compile Command Options .. 154
Object Program Compile Command Options .. 157
Source Program Compile Command Options.. 160

Sample Compile Commands .. 162
Valid Compile Commands.. 162
Invalid Compile Command ... 162

Listing .. 163
Program Listing .. 163
Allocation Map ... 167

Alphabet-Names, Symbolic-Characters, Mnemonic-Names, and Class-Names 167

viii RM/COBOL User's Guide

Split Key Names .. 168
Data-Names, Index-Names, Condition-Names, File-Names and Cd-Names 169
Constant-Names .. 171

Called Program Summary ... 171
Cross Reference Listing .. 172
Summary Listing .. 173
Error Marker and Diagnostics ... 175
Error Recovery.. 176
Error Threading .. 176

Compile Command Messages .. 177
Compiler Status Messages ... 178
Compiler Configuration Errors .. 185

Compiler Initialization Errors ... 186
Support Module Version Errors .. 186

Compiler Exit Codes .. 187

Chapter 7: Running... 189

Runtime Command .. 189
Runtime Command Options ... 190

Configuration Runtime Command Options ... 192
Debug and Test Runtime Command Options .. 193
Environment Runtime Command Options .. 194
Program Runtime Command Options.. 195

Sample Runtime Commands .. 198
Valid Runtime Commands.. 198
Invalid Runtime Commands ... 198

Runtime Messages ... 198
Diagnostic Messages .. 198
Execution Messages .. 199

Program Exit Codes ... 199

Chapter 8: RM/COBOL Features .. 201

ACCEPT and DISPLAY Statements ... 201
Maximum Size of a Screen Field .. 201
Initial Contents of a Screen Field.. 201
Defined Keys .. 202

Field Edit Keys .. 202
Field Termination Keys ... 205

ACCEPT and DISPLAY Phrases ... 209
CONTROL Phrase ... 209
ERASE Phrase ... 215
HIGH Phrase ... 216
LOW Phrase .. 216
OFF Phrase .. 216
REVERSE Phrase .. 216
SIZE Phrase ... 216
TIME Phrase .. 217

ACCEPT Exception Status Values ... 217
Pop-Up Windows ... 218

Creating Pop-Up Windows ... 218
BEEP Phrase .. 219
BLINK Phrase ... 219
CONTROL Phrase ... 219
ERASE Phrase ... 220

 RM/COBOL User's Guide ix

HIGH and LOW Phrases ... 220
LINE and POSITION Phrases ... 220
REVERSE Phrase .. 221
UNIT Phrase .. 221

Removing a Pop-Up Window ... 221
CONTROL Phrase ... 221
UNIT Phrase .. 222

Pop-Up Window Control Block ... 222
Identifying the Pop-Up Window ... 222
Defining the Size of the Pop-Up Window ... 223
Defining the Location of the Pop-Up Window .. 223
Defining the Border of the Pop-Up Window ... 223
Initializing the Pop-Up Window Area ... 223
Defining the Location of the Title of the Pop-Up Window 224
Defining the Title of the Pop-Up Window .. 224

Pop-Up Window Operation Status.. 224
COPY Statement .. 225
STOP RUN Statement and RETURN-CODE Special Register ... 226
CALL and CANCEL Statements ... 226

Subprogram Loading .. 227
Argument Considerations ... 229
External Objects.. 230

Composite Date and Time ... 231
DELETE FILE Operation .. 232
File Sharing .. 232
File Buffering ... 233
Very Large File Support .. 234
File Types and Structure .. 234

Sequential Files ... 234
RECORD Clause (Sequential File Description Entry) .. 235
BLOCK CONTAINS Clause (Sequential File Description Entry) 235
LINAGE Clause (Sequential File Description Entry).. 236
RESERVE Clause (Sequential File Control Entry) ... 236
CODE-SET Clause (Sequential File Control Entry or File Description Entry) 236
REVERSED Phrase (OPEN Statement) .. 237
WITH NO LOCK Phrase (READ Statement) ... 237
ADVANCING ZERO LINES Phrase (WRITE Statement) 237
ADVANCING mnemonic-name Phrase (WRITE Statement) 237
REEL and UNIT Phrases (CLOSE Statement) .. 237
WITH NO REWIND Phrase (CLOSE Statement) .. 238
Device Support .. 238

Relative Files .. 240
RECORD Clause (Relative File Description Entry) .. 240
BLOCK CONTAINS Clause (Relative File Description Entry) 240
RESERVE Clause (Relative File Control Entry)... 241
CODE-SET Clause (Relative File Control Entry or File Description Entry) 241
WITH NO LOCK Phrase (READ Statement) ... 241

Indexed Files ... 242
Data Compression.. 242
Data Recoverability ... 242
RECORD Clause (Indexed File Description Entry) .. 243
BLOCK CONTAINS Clause (Indexed File Description Entry) 244
RESERVE Clause (Indexed File Control Entry) ... 245
CODE-SET Clause (Indexed File Control Entry or File Description Entry) 245
COLLATING SEQUENCE Clause (Indexed File Control Entry) 246
WITH NO LOCK Phrase (READ Statement) ... 246

x RM/COBOL User's Guide

File Allocation ... 246
File Size Estimation ... 247

Temporary Files ... 249
Indexed File Performance .. 250

In-Memory Buffering ... 250
Altering the Size of Indexed File Blocks .. 251
Controlling the Length of Record Keys .. 252
Correct Data Recovery Strategy ... 252
Using Key and Data Compression .. 253
Using RM/COBOL Facilities ... 253
Indexed File Version Levels ... 253

File Version Level 0 .. 254
File Version Level 2 .. 254
File Version Level 3 .. 254
File Version Level 4 .. 254
Changing the File Version Level ... 254

Chapter 9: Debugging .. 255

Invoking a Program for Debug .. 255
General Debug Concepts ... 257

Statements ... 258
Breakpoints ... 258
Traps ... 258
Stepping .. 258
Execution Counts .. 258
Line and Intraline Numbers .. 258
Debug Values.. 259
Data Types .. 259

Debug References .. 260
Program Area References ... 260
Data Item References .. 260

Screen Positions ... 261
Data Address Development ... 261

Identifier Format ... 261
Address-Size Format .. 263
Alias Format ... 265

Regaining Control .. 265
Debug Command Prompt .. 265
Debug Error Messages ... 266
A (Address Stop) Command .. 271
B (Breakpoint) Command .. 272
C (Clear) Command ... 273
D (Display) Command ... 274
E (End) Command ... 277
L (Line Display) Command ... 277
M (Modify) Command ... 278
Q (Quit) Command .. 281
R (Resume) Command ... 282
S (Step) Command ... 282
T (Trap) Command .. 283
U (Untrap) Command .. 286

Chapter 10: Configuration .. 289

Configuration File Structure .. 289

 RM/COBOL User's Guide xi

Automatic Configuration Files... 290
Command-Line Configuration Files .. 291
Configuration Processing Order... 291
Configuration Errors .. 292
Configuration Records ... 292
COMPILER-OPTIONS Configuration Record ... 294

ACCEPT-BEEP-DEFAULT .. 295
ACCEPT-SUPPRESS-CONVERSION .. 295
ALLOW-DATE-TIME-OVERRIDE ... 295
BINARY-ALLOCATION .. 296
BINARY-ALLOCATION-SIGNED .. 298
COBOL-74 ... 298
COMPUTATIONAL-AS-BINARY ... 299
COMPUTATIONAL-TYPE ... 299
COMPUTATIONAL-VERSION ... 299
DEBUG .. 300
DEBUG-TABLE-OUTPUT ... 300
DERESERVE ... 301
DISPLAY-UPDATE-MESSAGES .. 301
EXTERNAL-INDEX-NAMES .. 301
FLAGGING .. 301
INITIAL-MARGIN-R .. 302
KEEP-TEMP-XML-SYMBOL-TABLE-FILE .. 302
LINKAGE-ENTRY-SETTINGS .. 303
LISTING-ATTRIBUTES ... 305
LISTING-CONDITIONAL-EXCLUSION-INDICATOR ... 307
LISTING-CONDITIONAL-INCLUSION-INDICATOR .. 307
LISTING-DATE-FORMAT ... 307
LISTING-DATE-SEPARATOR .. 308
LISTING-DIAGNOSTIC-PREFIX .. 308
LISTING-ID-AREA-SEPARATOR ... 308
LISTING-LINE-LENGTH ... 308
LISTING-PATHNAME ... 308
LISTING-TIME-SEPARATOR ... 308
NO-DIAGNOSTIC ... 309
OBJECT-PATHNAME .. 309
OBJECT-VERSION ... 310
POSTPONE-COPY-IN-PSEUDO-TEXT .. 310
RESEQUENCE-LINE-NUMBERS ... 310
RMCOBOL-2 ... 310
SEPARATE-SIGN ... 310
SEQUENTIAL-FILE-TYPE .. 311
SOURCE-ON-INPUT-DEVICE... 311
SOURCE-PATTERN-EXCLUDE ... 311
SOURCE-PATTERN-INCLUDE... 312
SOURCE-RECORD-MAX-LENGTH ... 312
STRICT-REFERENCE-MODIFICATION .. 312
SUBSCRIPT-CHECKING ... 313
SUPPRESS-FILLER-IN-SYMBOL-TABLE ... 313
SUPPRESS-LITERAL-BY-CONTENT ... 313
SUPPRESS-NUMERIC-OPTIMIZATION .. 314
SUPPRESS-XML-SYMBOL-TABLE ... 314
SYMBOL-TABLE-OUTPUT .. 314
WHEN-COMPILED-FORMAT ... 314
WORKSPACE-SIZE .. 318

DEFINE-DEVICE Configuration Record .. 319

xii RM/COBOL User's Guide

DEVICE.. 319
ERROR-ON-CANCEL ... 320
ESCAPE-SEQUENCES ... 320
NONBLOCKING-FIFO ... 320
PATH .. 321
PIPE .. 321
REMOTE-PRINTER .. 321
RAW ... 322
TAPE .. 322
Windows Printers.. 322

EXTENSION-NAMES Configuration Record .. 323
COPY.. 324
LISTING ... 324
OBJECT.. 324
SOURCE .. 324

EXTERNAL-ACCESS-METHOD Configuration Record .. 324
CREATE-FILES ... 325
NAME .. 325
OPTIONS ... 325

INTERNATIONALIZATION Configuration Record ... 326
EURO-CODEPOINT-ANSI ... 326
EURO-CODEPOINT-OEM ... 326
EURO-SUPPORT-ENABLE .. 327
Euro Support Considerations Under Windows ... 327

PRINT-ATTR Configuration Record .. 328
AUTO-LINE-FEED ... 328
COLUMNS ... 328
FORM-FEED-AVAILABLE .. 328
LINAGE-INITIAL-FORM-POSITION.. 329
LINAGE-PAGES-PER-PHYSICAL-PAGE .. 329
LINES ... 330
TOP-OF-FORM-AT-CLOSE ... 330
WRAP-COLUMN .. 330
WRAP-MODE .. 330

RUN-ATTR Configuration Record ... 330
ACCEPT-FIELD-FROM-SCREEN ... 331
ACCEPT-INTENSITY ... 331
ACCEPT-PROMPT-CHAR ... 331
BEEP .. 332
BLINK .. 332
DISPLAY-INTENSITY ... 332
EDIT-COMMA .. 332
EDIT-CURRENCY-SYMBOL .. 332
EDIT-DECIMAL .. 333
EDIT-DOLLAR .. 333
ERROR-MESSAGE-DESTINATION ... 333
EXCEPTION-HANDLING .. 333
REVERSE .. 334
SCROLL-SCREEN-AT-TERMINATION ... 334
STRIP-LIKE-PATTERN-TRAILING-SPACES .. 334
TAB .. 334
UNDERLINE ... 335

RUN-FILES-ATTR Configuration Record .. 335
ALLOW-EXTENDED-CHARS-IN-FILENAMES .. 336
BLOCK-SIZE ... 336
BUFFER-POOL-SIZE .. 336

 RM/COBOL User's Guide xiii

DEFAULT-USE-PROCEDURE .. 336
DISABLE-LOCAL-ACCESS-METHOD .. 337
ENABLE-OLD-DOS-FILENAME-HANDLING .. 337
EXPANDED-PATH-SEARCH .. 337
FATAL-RECORD-LOCK-TIMEOUT ... 338
FILE-LOCK-LIMIT ... 338
FILE-PROCESS-COUNT .. 338
FORCE-USER-MODE ... 338
KEEP-FLOPPY-OPEN .. 339
LARGE-FILE-LOCK-LIMIT ... 339
RESOLVE-LEADING-NAME .. 339
RESOLVE-SUBSEQUENT-NAMES .. 340
SKIP-INITIAL-CWD-SEARCH .. 340
USE-PROCEDURE-RECORD-LOCK-TIMEOUT ... 341

RUN-INDEX-FILES Configuration Record .. 341
ALLOCATION-INCREMENT .. 342
BLOCK-SIZE ... 342
DATA-COMPRESSION .. 342
DEFAULT-FILE-VERSION-NUMBER ... 342
ENABLE-ATOMIC-IO .. 342
FORCE-CLOSED ... 342
FORCE-DATA ... 343
FORCE-DISK ... 343
FORCE-INDEX .. 343
IGNORE-BLOCK-CONTAINS ... 343
KEY-COMPRESSION ... 343
MINIMUM-BLOCK-SIZE ... 344
ROUND-TO-NICE-BLOCK-SIZE .. 344
USE-LARGE-FILE-LOCK-LIMIT .. 344

RUN-OPTION Configuration Record ... 344
B ... 345
DISPLAY-UPDATE-MESSAGES .. 345
ENABLE-LOGGING ... 345
FILL-CHARACTER .. 346
K ... 346
L .. 347
LIBRARY-PATH ... 347
LOG-PATH .. 347
M ... 347
MAIN-PROGRAM ... 348
V ... 348

RUN-REL-FILES Configuration Record .. 348
BLOCK-SIZE ... 348
USE-LARGE-FILE-LOCK-LIMIT .. 349

RUN-SEQ-FILES Configuration Record .. 349
BLOCK-SIZE ... 349
DEFAULT-TYPE ... 349
DEVICE-SLEWING-RESERVE ... 349
TAB-STOPS ... 350
USE-LARGE-FILE-LOCK-LIMIT .. 350

RUN-SORT Configuration Record .. 350
INTERMEDIATE-FILES ... 350
MEMORY-SIZE... 350

TERM-ATTR Configuration Record ... 351
ALWAYS-USE-CURSOR-POSITIONING ... 351
BCOLOR .. 351

xiv RM/COBOL User's Guide

CHARACTER-TIMEOUT ... 352
COLUMNS ... 352
DATA-CHARACTERS.. 352
DBCS-CHARACTERS .. 353
FCOLOR .. 354
PASS-THRU-ESCAPE .. 354
REDRAW-ON-CALL-SYSTEM ... 355
ROWS ... 355
SCREEN-CONTENT-OPTIMIZE ... 355
SUPPRESS-NULLS ... 355
USE-COLOR .. 356

TERM-INPUT Configuration Record ... 356
ACTION ... 357
CODE ... 357
DATA ... 358
EXCEPTION .. 358
PRECEDENCE... 358
Character Sequence Specification ... 358

Translation of TERM-INPUT Sequences on Windows ... 359
Translation of TERM-INPUT Sequences on UNIX .. 359
Character Sequence Specification for Input Data Character Keys 359
Character Sequence Specification for Field Editing Keys 360
Character Sequence Specification for Field Termination Keys 363

TERM-INTERFACE Configuration Record ... 365
GUI ... 365
TERMCAP ... 365
TERMINFO .. 365
WINDOWS .. 365

TERM-UNIT Configuration Record .. 366
BPS ... 366
CHARACTER-WIDTH.. 366
DEFINE-CONTROL-CHARACTERS .. 366
MOVE-ATTR ... 367
PARITY .. 367
PATH .. 367
STOP-BITS .. 367
TYPE .. 367
UNIT ... 367

Default Configuration Files ... 368
Termcap Example ... 368
Terminfo Example .. 370
Windows Example .. 372

Chapter 11: Instrumentation .. 377

Invoking Instrumentation ... 377
Data Collection .. 377
Data Analysis ... 379

Appendix A: Runtime Messages ... 383

Error Message Types ... 383
Data Reference Errors .. 384
Procedure Errors .. 387
Input/Output Errors .. 393
Internal Errors .. 413

 RM/COBOL User's Guide xv

Sort-Merge Errors .. 414
Message Control Errors ... 414
Configuration Errors .. 415
Runtime System Initialization Messages ... 416

Initialization Errors ... 416
Support Module Initialization Errors .. 416
Support Module Version Errors .. 416
Option Processing Errors .. 417
Main Program Loading Errors .. 417
Runcobol Banner Message ... 418
Runcobol Usage Message ... 418
Registration Error Messages ... 419

COBOL Normal Termination Messages .. 419

Appendix B: Limits and Ranges .. 421

RM/COBOL Limits and Ranges .. 421
File Locking ... 423

Appendix C: Internal Data Formats ... 425

Internal Data Formats .. 425
Nonnumeric Data ... 426

Alphanumeric (ANS) .. 427
Alphanumeric Edited (ANSE) .. 428
Alphabetic (ABS) ... 428
Alphabetic Edited (ABSE) .. 428
Numeric Edited (NSE) .. 428

Numeric Data ... 428
Unsigned Numeric DISPLAY (NSU) ... 429
Signed Numeric DISPLAY, TRAILING SEPARATE (NTS).. 429
Signed Numeric DISPLAY, LEADING SEPARATE (NLS) ... 430
Signed Numeric DISPLAY, TRAILING (NTC) .. 431
Signed Numeric DISPLAY, LEADING (NLC) ... 432
Unsigned Numeric COMPUTATIONAL (NCU) ... 433
Signed Numeric COMPUTATIONAL (NCS) .. 434
Signed Numeric COMPUTATIONAL-1 (NBS) .. 435
Unsigned Numeric COMPUTATIONAL-3 (NPP) ... 436
Signed Numeric COMPUTATIONAL-3 (NPS) ... 437
Unsigned Numeric COMPUTATIONAL-4 (NBU).. 438
Signed Numeric COMPUTATIONAL-4 (NBS) .. 440
Unsigned Numeric COMPUTATIONAL-5 (NBUN) ... 443
Signed Numeric COMPUTATIONAL-5 (NBSN).. 444
Unsigned Numeric COMPUTATIONAL-6 (NPU) .. 445

Pointer Data ... 445

Appendix D: Support Modules (Non-COBOL Add-Ons) 447

Introduction .. 447
Overview of Optional Support Modules .. 447
Locating Optional Support Modules .. 449

In Production Mode .. 449
In Test Mode ... 450

Using a Different Execution Directory .. 450
Using a Different Subdirectory .. 450
Using the L Option .. 451

Support Modules Available for RM/COBOL .. 452

xvi RM/COBOL User's Guide

Terminal Interface Support Modules on UNIX .. 452
Automatic Configuration File Support Module .. 453
RM/InfoExpress Client Support Module on UNIX .. 453
FlexGen Support Module on UNIX .. 453
Cobol-RPC Server Support Module on UNIX ... 454
Cobol-CGIX Server Support Module on UNIX ... 454

Building Your Own Support Module ... 455
User-Written Support Module .. 455
User-Written Support Module from Old sub.c or sub.o .. 456

Building a Message Control System (MCS) .. 456
Message Control System (MCS) Support Module ... 456
Initializing the MCS ... 457
Message Control System Data Structures ... 457
RM/COBOL Communications Descriptor (CCD) .. 458

Appendix E: Windows Printing .. 461

P$ Subprogram Library.. 461
Overview .. 464

Using Windows Printing Functions .. 466
Returning to a "Normal" Font ... 466
Common P$ Subprogram Arguments ... 466
Omitting P$ Subprogram Arguments ... 468

Windows Print Dialog Box Subprograms .. 469
Printing Multiple Copies ... 471
Printing Partial Reports ... 472
P$ClearDialog... 473
P$DisableDialog ... 473
P$DisplayDialog ... 473
P$EnableDialog .. 474
P$GetDialog ... 474
P$SetDialog .. 475

Drawing Subprograms ... 476
P$DrawBitmap ... 476
P$DrawBox .. 477
P$DrawLine .. 477
P$GetPosition ... 478
P$LineTo .. 478
P$MoveTo .. 478
P$SetBoxShade... 479
P$SetPen ... 479
P$SetPosition .. 480

Text Manipulation Subprograms ... 480
P$ClearFont .. 480
P$GetFont ... 481
P$GetTextExtent... 482
P$GetTextMetrics ... 482
P$GetTextPosition .. 484
P$SetDefaultAlignment .. 484
P$SetFont .. 485
P$SetLineExtendMode ... 487
P$SetLineSpacing ... 487
P$SetPitch ... 488
P$SetTabStops .. 488
P$SetTextColor... 488
P$SetTextPosition ... 489

 RM/COBOL User's Guide xvii

P$TextOut ... 489
Common Drawing and Text Manipulation Subprograms .. 490

P$SetDefaultMode .. 491
P$SetDefaultUnits .. 491
P$SetLeftMargin... 491
P$SetTopMargin ... 492

Printer Control Subprograms ... 492
P$ChangeDeviceModes .. 492
P$EnableEscapeSequences ... 493
P$EnumPrinterInfo ... 493
P$GetDefineDeviceInfo.. 494
P$GetDeviceCapabilities .. 495
P$GetHandle ... 496
P$GetPrinterInfo ... 497
P$NewPage ... 498
P$ResetPrinter .. 499
P$SetDocumentName ... 499
P$SetHandle ... 499
P$SetRawMode .. 500

Copy Files .. 500
DEFDEV.CPY ... 501
DEVCAPS.CPY .. 501
LOGFONT.CPY .. 503
PRINTDLG.CPY ... 506
PRINTINF.CPY ... 514
TXTMTRIC.CPY .. 516
WINDEFS.CPY ... 519
Example Code Fragments .. 521

Printing a Watermark .. 522
Drawing Shaded Boxes with Colors ... 522
Drawing a Box around Text .. 523
Drawing a Ruler .. 523
Presetting the Print Dialog Box .. 524
Checking the Exit Code after Displaying the Print Dialog Box 525
Printing a Bitmap .. 526
Changing a Font While Printing ... 526
Using the COBOL WRITE Statement to Print Multiple Text Outputs on the Same
Line ... 526
Changing Orientation, Pitch, and Line Spacing .. 527
Opening and Writing to Separate Printers .. 527
Printing Text at the Top of a Page .. 528
Printing Text at the Corners of a Page .. 528
Setting the Point Size for a Font ... 529
Setting Text Position ... 529

RM/COBOL-Specific Escape Sequences .. 530

Appendix F: Subprogram Library .. 533

Subprogram Library ... 533
C$Bitmap ... 536
C$BTRV .. 536
C$CARG .. 538
C$Century .. 540
C$ClearDevelopmentMode ... 540
C$CompilePattern .. 541
C$ConvertAnsiToOem .. 542

xviii RM/COBOL User's Guide

C$ConvertOemToAnsi .. 542
C$DARG ... 543
C$Delay ... 545
C$Forget .. 545
C$GetEnv .. 546
C$GetLastFileName .. 546
C$GetNativeCharset .. 547
C$GetLastFileOp ... 547
C$GetRMInfo .. 548
C$GetSyn ... 550
C$GetSysInfo... 551
C$GUICFG .. 552
C$LogicalAnd .. 553
C$LogicalComplement .. 554
C$LogicalOr .. 554
C$LogicalShiftLeft .. 555
C$LogicalShiftRight .. 555
C$LogicalXor .. 556
C$MBar ... 557
C$MemoryAllocate ... 557
C$MemoryDeallocate .. 558
C$NARG ... 559
C$OSLockInfo ... 559
C$PARG .. 560
C$PlaySound ... 560
C$RBMenu .. 561
C$RERR .. 562
C$SBar ... 564
C$SCRD .. 564
C$SCWR ... 565

Usage Notes .. 568
Fatal Errors ... 568
Exception Codes ... 569

C$SecureHash .. 570
C$SetDevelopmentMode ... 571
C$SetEnv ... 572
C$SetSyn ... 572
C$Show .. 573
C$ShowArgs .. 574
C$TBar .. 575
C$TBarEn .. 576
C$TBarSeq .. 576
C$Title ... 577
C$WRU ... 577
DELETE .. 578
RENAME .. 579
SYSTEM .. 579

UNIX Considerations ... 580
Windows Considerations .. 580

Appendix G: Utilities ... 583

Organization... 583
Utilities Delivered on Media .. 584
General Considerations .. 584

Installing the Utility Programs .. 585

 RM/COBOL User's Guide xix

Combine Program (rmpgmcom) Utility ... 585
Using the Utility ... 585
Execution of Programs within Libraries ... 586

Map Program File (rmmappgm) Utility ... 588
Using the Utility ... 588

Map Indexed File (rmmapinx) Utility .. 590
Using the Utility ... 590
Basic File Information Display ... 590
Detailed Information Report ... 592
Key Descriptor Information Display .. 592

Define Indexed File (rmdefinx) Utility .. 594
Using the Utility ... 595

File Pre-creation .. 596
File Modification ... 597

Indexed File Recovery (recover1) Utility .. 599
Recovery Command ... 600

Recovery Command Options ... 600
Recovery Process Description .. 603
Recovery Support Module Version Errors.. 605
Recovery Example .. 605
Recovery Program Error Messages .. 609
Standalone Use of the Recover2 Program .. 610
Recover2 Program Error Messages .. 612

Initialization File to Windows Registry Conversion (ini2reg) Utility.................................... 613
Using the Utility ... 614

RM/COBOL Configuration (rmconfig) Utility .. 614
Using the Utility ... 615

Appendix H: Object Versions .. 619

Level Numbers ... 619
Object Version 1 .. 621
Object Version 2 .. 621
Object Version 3 .. 622
Object Version 4 .. 623
Object Version 5 .. 623
Object Version 6 .. 624
Object Version 7 .. 625
Object Version 8 .. 625
Object Version 9 .. 627
Object Version 10 .. 627
Object Version 11 .. 628
Object Version 12 .. 628
Object Version 13 .. 629
Object Version 14 .. 629
Object Version 15 .. 630

Appendix I: Extension, Obsolete, and Subset Language Elements 631

Extension Elements .. 631
Obsolete Elements ... 637
Subset Elements ... 637

Appendix J: Code-Set Translation Tables .. 643

xx RM/COBOL User's Guide

Appendix K: Troubleshooting RM/COBOL 657

RM/COBOL for Windows Running in a Microsoft Windows or Novell Network
Environment... 657

Old vredir.vxd File .. 658
Network Redirector File Caching ... 658
Opportunistic Locking .. 659
Virus Protection Software ... 659
Novell NetWare Client32 Version .. 659
Printing to a Novell Print Queue Using Novell NetWare Client32 660
File and Printer Sharing for NetWare Networks Service .. 660

RM/COBOL for UNIX .. 661
Number of Available SEMUNDO Structures ... 661

Appendix L: Summary of Enhancements ... 663

Version 12 Enhancements .. 663
Version 12 Runtime System Features ... 663
Version 12 Compiler Features .. 664
Features Added to Support XML Extensions ... 667

Version 11 Enhancements .. 668
Version 11 Runtime System Features ... 668
Version 11 Compiler Features .. 669

Version 10 Enhancements .. 671
Version 10 Runtime System Features ... 671
Version 10 Compiler Features .. 672

Version 9 Enhancements .. 673
Version 9 Runtime System Features ... 673
Version 9 Compiler Features .. 674

Version 8 Enhancements .. 676
Version 8 Runtime System Features ... 676
Version 8 Compiler Features .. 677

Version 7.5 Enhancements ... 678
CodeWatch Application Development Environment Introduced 678
CodeBridge Enhancements ... 678
Console-Mode Compiler on Windows ... 679
Multiple and Batch Compiles Easier and Faster ... 679
More Reliable Indexed Files ... 679
Better Indexed File Performance .. 680
Automatic Configuration File Available for Windows ... 680
Tail Comments for Configuration Records ... 680
Enhancements for Non-COBOL Subprograms on Windows ... 680
Additions to the RM/COBOL Subprogram Library ... 681
Message Files Eliminated ... 681
Compiler Overlay File Eliminated .. 681
Version 7.5 Runtime System Features .. 682
Version 7.5 Compiler Features ... 684
Version 7.5 Utility Features .. 687
More Flexible Licensing ... 687
Automatic Update Check .. 687

Version 7.1 for UNIX Enhancements .. 688
Runtime Linking Eliminated .. 688
UNIX Resource File ... 688
Automatic Configuration File ... 688
Support for UNIX Added to CodeBridge ... 689
Enhancements to Configuration Records .. 689

 RM/COBOL User's Guide xxi

Version 7.0 for Windows Enhancements ... 689
CodeWatch Debugger Introduced... 689
CodeBridge Cross-Language Call System Introduced ... 689
Enhanced Windows Printing .. 690
Additions to the RM/COBOL Subprogram Library ... 690
Ability to Use Btrieve Interface .. 691
Version 7.0 Runtime System Features .. 691
Version 7.0 Compiler Features ... 692
Enhanced File Recovery Performance .. 695
New rmpgmcom Utility Option .. 695

Version 6.6 Enhancements ... 696
Override Date/Time Feature for Year 2000 Testing ... 696
Increased Compiler Capacity .. 696
Improved Compiler Performance for Large Programs ... 696
New Statistics in Compilation Listing File ... 696
Double-Byte Character Set (DBCS) Support .. 697
Enhanced Indexed File Recovery Program ... 697
Masked Input and Output ... 697
Support For Large Files .. 697

Version 6.5 Enhancements ... 698
Full 32-Bit Implementation .. 698
Windows Registry Support ... 698
Extensions for 32-bit Windows .. 698
Automated System Installation and Removal ... 698
Right Mouse Button Pop-Up Menu .. 698
New Subprograms for Windows ... 699
Window Style and the SYSTEM Non-COBOL Subprogram ... 699
Btrieve Adapter Enhancements... 699
Attached Configuration Files on Windows ... 699
Built-In Configuration File under UNIX .. 700
Year 2000 Subprogram ... 700
C$RERR Eleven-Character Extended Status .. 700
Improved recover1 Utility Program .. 700
Enhanced rmmapinx Utility Program ... 700
Dynamically Configurable Prompt Character ... 701
Building Custom Products Using the customiz Shell Script ... 701
Indexed File Block Sizes After OPEN OUTPUT ... 701
DELETE FILE under UNIX ... 701
Resolution of Program-Names .. 701
Compiler Support for External Access Methods .. 701

Index ... 703

List of Figures
Figure 1: Compiler Search Sequence .. 22
Figure 2: Runtime System Search Sequence .. 22
Figure 3: RM/COBOL Start Menu Programs Folder .. 51
Figure 4: Shortcut Properties Tab ... 60
Figure 5: Select an RM/COBOL Object File Dialog Box... 61
Figure 6: Compiler Search Sequence .. 63
Figure 7: Runtime System Search Sequence .. 63
Figure 8: Synonyms Tab of the Properties Dialog Box .. 65
Figure 9: Select File Tab ... 70
Figure 10: Control Properties Tab .. 72

xxii RM/COBOL User's Guide

Figure 11: Synonyms Properties Tab .. 87
Figure 12: Colors Properties Tab .. 88
Figure 13: Toolbar Properties Tab .. 90
Figure 14: Menu Bar Properties Tab ... 94
Figure 15: Pop-up Menu Properties Tab ... 96
Figure 16: Color Palette Showing Right and Left Mouse Colors ... 99
Figure 17: Sample Window of an RM/COBOL Program Running Under Windows 112
Figure 18: RM/COBOL for Windows Control Menu ... 113
Figure 19: Return Code Message Box .. 114
Figure 20: Indexed File Requests on a Single-User System ... 120
Figure 21: Indexed File Requests on a Local Area Network .. 120
Figure 22: Indexed File Requests on a Local Area Network by the Btrieve MicroKernel
Database Engine (MKDE) ... 121
Figure 23: Btrieve Adapter Acting as an External File Access Method (On Windows) 124
Figure 24: Program Listing Header .. 163
Figure 25: Program Listing Subheader with Identification Area .. 163
Figure 26: Program Listing Subheader without Identification Area 164
Figure 27: Sample Program Listing .. 166
Figure 28: Allocation Map (Part 1 of 4).. 167
Figure 29: Allocation Map (Part 2 of 4).. 168
Figure 30: Allocation Map (Part 3 of 4).. 170
Figure 31: Allocation Map (Part 4 of 4).. 171
Figure 32: Called Program Summary ... 171
Figure 33: Cross Reference Listing .. 172
Figure 34: Summary Listing ... 173
Figure 35: Error Marker and Diagnostics ... 175
Figure 36: Error Recovery Display ... 176
Figure 37: Data Allocation Map ... 264
Figure 38: Developed Data Address ... 265
Figure 39: Sample Data Structures Description .. 378
Figure 40: Excerpt of a Merged Listing .. 380
Figure 41: Communications Descriptor Map (CCD) .. 459
Figure 42: Standard Windows Print Dialog Box .. 465
Figure 43: Text Metrics .. 482
Figure 44: Indexed File Recovery Utility: File Recovery Verification 606
Figure 45: Indexed File Recovery Utility: recover1 Summary .. 607
Figure 46: Indexed File Recovery Utility: recover1 Statistics ... 607
Figure 47: Indexed File Recovery Utility: recover1 Finished Successfully 608
Figure 48: Indexed File Recovery Utility: Entering Key Information 608
Figure 49: Indexed File Recovery Utility: Entering KIB Information 609
Figure 50: Indexed File Recovery Utility: recover2 Main Screen 611
Figure 51: Indexed File Recovery Utility: Secondary Recovery ... 612
Figure 52: Select File Tab ... 616

List of Tables
Table 1: Sample Filenames ... 12
Table 2: Terminfo and Termcap Names for the Runtime System, Booleans 31
Table 3: Input Sequences for Terminfo and Termcap ... 32
Table 4: Additional Boolean Capabilities ... 36
Table 5: Additional Numeric Capability ... 36
Table 6: Additional Output String Capabilities... 36
Table 7: Standard Terminfo Strings .. 38
Table 8: vt100 Line Graphic Characters ... 38
Table 9: Environment Variables for UNIX ... 43

 RM/COBOL User's Guide xxiii

Table 10: RM/COBOL Program Icons ... 51
Table 11: Special Characters for the Button Character-String .. 91
Table 12: Default rmtbar.vrf File Button Icons... 97
Table 13: Additional Character Equivalents Under RM/COBOL for Windows 108
Table 14: Environment Variables for Windows ... 116
Table 15: RM/COBOL Compile Command Options .. 150
Table 16: Source Indicators in Compilation Listing ... 165
Table 17: Abnormal Termination Messages ... 179
Table 18: Compiler Configuration Errors ... 186
Table 19: Compiler Exit Codes ... 187
Table 20: RM/COBOL Runtime Command Options .. 191
Table 21: Program Exit Codes .. 199
Table 22: Edit Keys .. 202
Table 23: Default Editing Semantic Actions .. 204
Table 24: Keys that Terminate Field Input ... 205
Table 25: Valid COBOL Color Names ... 211
Table 26: System-Specific Line Draw Characters .. 211
Table 27: Characters Used with the MASK Keyword of a CONTROL Phrase 212
Table 28: Effect of Certain Keywords and Phrases on Masked Input Processing 214
Table 29: Pop-Up Window Error Codes ... 225
Table 30: Sharing Permissions .. 232
Table 31: RM/COBOL Debug Command Options ... 256
Table 32: Valid Data Type Indicators ... 259
Table 33: Types of Configuration Records ... 292
Table 34: MF-RM Binary Allocation ... 297
Table 35: Date and Time Format Codes ... 315
Table 36: ASCII Equivalents .. 359
Table 37: RM/COBOL Generic Exception Status Values .. 363
Table 38: Btrieve Status Codes and Messages 1 ... 410
Table 39: C Library Error Codes 1 .. 412
Table 40: File Manager Detected Error Codes ... 413
Table 41: Nonnumeric Data .. 427
Table 42: Combined Digit and Sign ... 431
Table 43: Bytes Allocated for an Unsigned Binary Numeric Data Item 439
Table 44: Bytes Allocated for a Signed Binary Numeric Data Item 441
Table 45: Optional Support Modules Used by RM/COBOL Components on UNIX 448
Table 46: Optional Support Modules Used by RM/COBOL Components on Windows 448
Table 47: MCS Completion Codes ... 458
Table 48: RM/COBOL Windows Printing Subprogram Library .. 461
Table 49: Default Colors Used With RM/COBOL ... 468
Table 50: Printer Dialog/Device Mode Parameters .. 469
Table 51: Text Metric Parameters ... 483
Table 52: Font Parameters .. 486
Table 53: Device Capability Parameters ... 495
Table 54: Printer Information Parameters ... 497
Table 55: Task Reference List .. 521
Table 56: RM/COBOL-Specific Escape Sequences ... 530
Table 57: RM/COBOL Subprogram Library .. 533
Table 58: RM/COBOL Data Types as Numbers .. 539
Table 59: Two-Digit OS Codes .. 563
Table 60: C$SCWR Exception Codes .. 569
Table 61: Object Version Numbers by Product .. 619
Table 62: ASCII to EBCDIC Conversion ... 643
Table 63: EBCDIC to ASCII Conversion ... 647
Table 64: Character Abbreviations ... 654

Preface

 RM/COBOL User's Guide 1

Preface

Welcome to RM/COBOL for Windows and UNIX
RM/COBOL for Windows and UNIX is a significantly enhanced version of Micro Focus’
widely used RM/COBOL compilers, designed for new program development and execution
of programs created with earlier versions of RM/COBOL. Although modeled on the
American National Standard COBOL X3.23-1985, there are areas where RM/COBOL varies
from the standard. A complete list of these variances is included in Appendix I: Extension,
Obsolete, and Subset Language Elements (on page 631).

The RM/COBOL operating procedures described in this manual are for use on Microsoft
32-bit Windows and UNIX-based systems that may have remote file access using Novell
NetWare (version 3.11 and later), Client for Microsoft Networks, Btrieve software, or NFS
(Network File System).

The new features for the most recent release of RM/COBOL are described in Appendix L:
Summary of Enhancements (on page 663). If you develop on one version of RM/COBOL and
deploy on other versions, you may also find it helpful to review Appendix H: Object Versions
(on page 619) as it relates new compiler and language features to the version when the
changes were introduced.

Notes

• Beginning with version 6.5, the -85 suffix is no longer a part of the RM/COBOL product
name. The -85 suffix was used to reflect current technology and to avoid confusion with
an earlier product named RM/COBOL, which referred to the 1974 ANSI standard
version. Support for RM/COBOL (74) ceased on December 31, 1994.

• The term “Windows” in this document refers to Microsoft 32-bit Windows operating
systems, including Microsoft Windows 2000, Windows XP, Windows Server 2003,
Windows Vista, or Windows Server 2008, unless specifically stated otherwise.

Who Should Use This Book
This book is intended for commercial application developers who are familiar with
programming concepts and with the COBOL language in general, and by persons running
COBOL programs developed with RM/COBOL.

Preface

2 RM/COBOL User's Guide

Organization of Information
This user’s guide is divided into the following parts:

Chapter 1—Introduction describes the general concepts of the RM/COBOL compiler and
runtime system and how they are used, lists other integrated and add-on development tools
that are available to support RM/COBOL programs, and explains file naming conventions.

Chapter 2—Installation and System Considerations for UNIX explains the installation
procedures for RM/COBOL and presents information about the RM/COBOL implementation
on UNIX-based operating systems.

Chapter 3—Installation and System Considerations for Microsoft Windows explains the
installation procedures for RM/COBOL and presents information about the RM/COBOL
implementation on Microsoft 32-bit Windows operating systems.

Chapter 4—System Considerations for Btrieve presents information about the
implementation of RM/COBOL for systems using Btrieve. This chapter also describes the
limitations of RM/COBOL indexed files and the Btrieve MicroKernel Database Engine
(MKDE).

Chapter 5—System Verification describes the suite of verification programs provided with
RM/COBOL.

Chapter 6—Compiling describes RM/COBOL files, details the RM/COBOL Compile
Command, rmcobol, and its options, defines the types of errors that can be encountered
during program compilation and the messages generated as a result, illustrates and defines
each section of the program listing, and presents information on RM/COBOL error recovery.

Chapter 7—Running details the RM/COBOL Runtime Command, runcobol, and its
options, and defines the types of errors that can be encountered during program execution. It
also lists the messages generated as a result.

Chapter 8—RM/COBOL Features presents information about the implementation of
RM/COBOL with respect to specific COBOL statements.

Chapter 9—Debugging presents general debug concepts and a detailed discussion of the
Debug commands.

Chapter 10—Configuration details the methods available for modifying the RM/COBOL
default configuration.

Chapter 11—Instrumentation details the data-gathering Instrumentation facility.
It also describes a sample data analysis program—provided with Instrumentation—called
analysis.

Appendix A—Runtime Messages lists and defines the messages that may be generated
during program execution.

Appendix B—Limits and Ranges describes RM/COBOL limits and ranges.

Appendix C—Internal Data Formats describes and illustrates the internal representation of
the data types.

Appendix D—Support Modules (Non-COBOL Add-Ons) provides information on using
optional support modules to add functionality to the runtime system, compiler, and Indexed
File Recovery components of RM/COBOL.

Appendix E—Windows Printing describes the subprograms supplied with the RM/COBOL
Windows runtime system that allow access to Windows printing features.

Preface

 RM/COBOL User's Guide 3

Appendix F—Subprogram Library describes a set of supplied subprograms that can be
called by any RM/COBOL program.

Appendix G—Utilities describes the full range of file conversion, management, and
manipulation facilities.

Appendix H—Object Versions lists the new object features that are incompatible with
earlier releases of RM/COBOL.

Appendix I—Extension, Obsolete, and Subset Language Elements lists the RM/COBOL
extensions to and variances from ANSI COBOL 1985. It also lists obsolete and subset
language elements.

Appendix J—Code-Set Translation Tables lists each ASCII and EBCDIC hexadecimal
value and its corresponding numeric, alphabetic or control character.

Appendix K—Troubleshooting RM/COBOL presents troubleshooting tips for some
common problems that might occur when running RM/COBOL on different systems.

Appendix L—Summary of Enhancements provides an overview of the new features in the
current release, and reviews the changes and enhancements that were added to earlier releases
of RM/COBOL.

The RM/COBOL User’s Guide also includes an index.

Related Publications
For additional information, refer to the following publications that are available from Micro
Focus:

CodeBridge User's Guide

CodeWatch User's Guide

Relativity Client/Server Installation Guides (Windows and UNIX)

Relativity Data Manager Installation Guide

Relativity DBA Installation Guide and Help File

Relativity Designer Installation Guide and Help File

Relativity UNIX Data Client Installation Guide

RM/COBOL Open File Manager User’s Guide

RM/COBOL Language Reference Manual

RM/COBOL Syntax Summary Help File

RM/InfoExpress User's Guide

Theory of Relativity, A Primer

WOW Extensions Designer Help File and WOW Extensions Functions and
Messages Help File

Xcentrisity Business Information Server (BIS) User's Guide

XML Extensions User’s Guide

Preface

4 RM/COBOL User's Guide

Contact the appropriate vendor for other publications:

• Btrieve products are available from Pervasive Software, Inc. (formerly
Btrieve Technologies, Inc.).

• NetWare products are available from Novell, Incorporated.

• Microsoft products are available from Microsoft Corporation.

Conventions and Symbols
The following conventions and symbols are used or followed throughout this guide.

1. Words in all capital letters indicate COBOL reserved words, such as statements, phrases,
and clauses; acronyms; configuration keywords; environment variables; and RM/COBOL
Compiler, Runtime, and Recovery Command-line options.

2. Bold lowercase letters represent names of files, directories, programs, commands, and
utilities. RM/COBOL accepts uppercase and lowercase filenames. Within this
document, the lowercase version is used. Remember, however, that under UNIX
filenames are case-sensitive (for example, TEST4 and test4 represent different files).

Bold type style is also used for emphasis on some types of lists.

3. Text that is displayed in a monospaced font indicates user input or system output
(according to context as it appears on the screen). This type style is also used for sample
command lines, program code and file listing examples, and sample sessions.

4. Italic type identifies the titles of other books and the names of chapters in this guide, and
it occasionally is used for emphasis.

In syntax, italic type denotes a placeholder or variable for information you supply, as
described in the following item.

5. The symbols found in the syntax charts are used as follows:

italicized words Indicate items for which you substitute a specific value.

UPPERCASE WORDS Indicate items that you enter exactly as shown (although
not necessarily in uppercase).

... Indicate indefinite repetition of the last item.

| Separate alternatives.

[] Surround optional items.

{ } Surround a set of alternatives, one of which is required.

{| |} Surround a set of unique alternatives, one or more of
which is required, but each alternative may be specified
only once; when multiple alternatives are specified,
they may be specified in any order.

6. All punctuation must appear exactly as shown.

7. The term “NetWare” refers to the Novell NetWare operating system.

8. The term “Micro Focus Visual COBOL” refers to Micro Focus COBOL systems other
than RM/COBOL. Implicitly included by this term are older versions of Micro Focus
such as MF COBOL, Net Express COBOL and Server Express COBOL.

Preface

 RM/COBOL User's Guide 5

9. Note the distinction of the following terminology:

• The term “window” refers to a delineated area of the screen, normally smaller than
the full screen.

• The term “Windows” refers to Microsoft 32-bit Windows operating systems,
including Microsoft Windows 2000, Windows XP, Windows Server 2003, Windows
Vista, or Windows Server 2008, unless specifically stated otherwise.

Note

RM/COBOL no longer supports earlier Microsoft Windows operating systems, including
Microsoft Windows 98, Windows 98 SE, Windows Me, and Windows NT 4.0.

Furthermore, in this document, any references to these versions, or to the shorthand
notation “Windows 9x-class” or “Windows NT-class” referring to these operating
systems, are included for historical purposes only.

10. Examples for UNIX-based systems in this document assume the use of the Bourne Shell
(sh) command interpreter.

11. Throughout this document, references to a printer refer to the device assigned to
PRINTER, in accordance with operating system conventions.

12. RM/COBOL Compile and Runtime Command-line options may be specified either with
or without a leading hyphen. Examples in this guide do not show a leading hyphen. If
any option on a command line is preceded by a hyphen, then a leading hyphen is required
for all options. When assigning a value to an option, the equal sign is optional if leading
hyphens are used.

Command-line options may be specified in either uppercase or lowercase characters.
Examples in this guide are shown in uppercase.

These capabilities are provided to support the command-line syntax of previous versions
of RM/COBOL.

13. Any text that applies only to a specific operating system is specified in a Note format.

14. Key combinations with a plus sign between key names indicate to press and hold down
the first key while pressing the second key. For example, “Press Alt + Esc” means to
press and hold down the Alt key and press the Escape key. Then release both keys. A
comma between key names means to press and release the keys one after the other.

15. If present in the electronic PDF file, this symbol represents a “note” that allows you to
view last-minute comments about a specific topic on the page in which it occurs. This
same information is also contained in the README text file under the section,
Documentation Changes. In Adobe Reader, you can open comments and review their
contents, although you cannot edit the comments. Notes do not print directly from the
comment that they annotate. You may, however, copy and paste the comment text into
another application, such as Microsoft Word, if you wish.

To review notes, do one of the following:

• To view a note, position the mouse over the note icon until the note description
pops up.

• To open a note, double-click the note icon.

• To close a note, click the Close box in the upper-left corner of the note window.

Preface

6 RM/COBOL User's Guide

Technical Support
Micro Focus is dedicated to helping you achieve the highest possible performance from the
Micro Focus family of products, including RM/COBOL. The Micro Focus Customer Care
team is committed to providing you prompt and professional service when you have problems
or questions about your Micro Focus products.

Support is subject to Micro Focus’ prices, terms, and conditions in place at the time the
service is requested.

While it is not possible to maintain and support specific releases of all software indefinitely,
we offer priority support for the most current release of each product. For customers who
elect not to upgrade to the most current release of the products, support is provided on a
limited basis, as time and resources allow.

Support Guidelines
When you need assistance, you can expedite your call by having the following information
available for the Customer Care representative:

1. Company name and contact information.

2. Micro Focus RM/COBOL product serial number (found in the Electronic Product
Delivery email, on the media label, or in the product banner message).

3. Micro Focus RM/COBOL product version number.

4. Operating system and version number.

5. Hardware, related equipment, and terminal type.

6. Exact message appearing on screen.

7. Concise explanation of the problem and process involved when the problem occurred.

Test Cases
You may be asked for an example (test case) that demonstrates the problem. Please
remember the following guidelines when submitting a test case:

• The smaller the test case is, the faster we will be able to isolate the cause of the problem.

• Do not send full applications.

• Reduce the test case to the smallest possible combination of components required to
reproduce the problem.

• If you have very large data files, write a small program to read in your current data files
and to create new data files with as few records as necessary to reproduce the problem.

• Test the test case before sending it to us to ensure that you have included all the
necessary components to recompile and run the test case. You may need to include an
RM/COBOL configuration file.

When submitting your test case, please include the following items:

1. README text file that explains the problems. This file must include information
regarding the hardware, operating system, and versions of all relevant software (including

Preface

 RM/COBOL User's Guide 7

the operating system and all Micro Focus products). It must also include step-by-step
instructions to reproduce the behavior.

2. Program source files. We require source for any program that is called during the
course of the test case. Be sure to include any copy files necessary for recompilation.

3. Data files required by the programs. These files should be as small as possible to
reproduce the problem described in the test case.

Chapter 1: Introduction

 RM/COBOL User's Guide 9

Chapter 1: Introduction

This introductory chapter of the RM/COBOL User’s Guide provides an overview of the
RM/COBOL product. It explains the general concepts of the RM/COBOL compiler and
runtime system and how they are used, lists other integrated and add-on development tools
that are available to support RM/COBOL programs, and explains file naming conventions.

Note For a description of the latest features available in this release, see Appendix L:
Summary of Enhancements (on page 663). If you develop on one version of RM/COBOL and
deploy on other versions, you may also find it helpful to review Appendix H: Object Versions
(on page 619), as it relates new compiler and language features to the version when the
changes were introduced.

RM/COBOL Software
RM/COBOL, delivered on appropriate media, contains a large number of individual files and
programs. The actual number of files and programs depends on the specific version of the
product you purchased and whether you purchased a development or a runtime-only system.
The delivered media contains one or more README files, which list the actual files and
programs delivered. Please check these README files after you have installed the product to
make sure that you have received all of the appropriate files and programs.

RM/COBOL Compiler
The RM/COBOL compiler reads COBOL source code and produces object files that can be
executed using the runtime system. These object files are portable, and they can be executed
by an RM/COBOL runtime system on many computer configurations—even computer
configurations that are different from the one used to compile the object files. For more
information on compiling COBOL programs, see Chapter 6: Compiling (on page 143).

RM/COBOL Runtime System
The RM/COBOL runtime system is used to execute compiled COBOL programs. Micro
Focus RM/COBOL provides a different runtime system for each supported computer, and
they help to insulate the COBOL programmer from the differences among computers. The

Chapter 1: Introduction

10 RM/COBOL User's Guide

runtime system also includes a debugger to assist in developing COBOL programs. For more
information on running COBOL programs, see Chapter 7: Running (on page 189).

CodeWatch
CodeWatch is a fully integrated development system for Windows that is included with the
RM/COBOL development system. CodeWatch supports the entire development cycle,
including editing, compiling, and debugging RM/COBOL applications. CodeWatch can be
used to debug and change programs that are independently compiled, without requiring you to
build projects. Instead, all the knowledge about the structure of your application is built up
during debugging sessions. For more information, see the CodeWatch User’s Guide. If you
are debugging remote service programs running under Business Information Server (BIS) on
Microsoft Windows with Internet Information Server (IIS), see also the CodeWatch for
Xcentrisity Business Information Server User’s Guide Supplement.

CodeBridge
CodeBridge is a cross-language call system included with the RM/COBOL development
system. This facility simplifies communication between COBOL programs and non-COBOL
subprograms (such as those written in C or C++). CodeBridge allows COBOL programmers
to call external APIs or custom-developed subprograms without introducing “foreign”
language and data dependencies into their programs. For more information, see the
CodeBridge User's Guide.

Internal Libraries and Utility Programs
The RM/COBOL runtime system also includes several built-in library routines to perform
functions not described in the COBOL standard. Among other things, these routines can be
used to determine information about program arguments, control the display screen, and
execute other (non-COBOL) programs. For more information, see Appendix F: Subprogram
Library (on page 533).

In addition, a library of P$ subprograms, supplied with the RM/COBOL for Windows runtime
system, allows access to Windows printing features. This library is described in Appendix E:
Windows Printing (see page 461).

There are several utility programs delivered with RM/COBOL. These utility programs are
used to manage and manipulate both data files and RM/COBOL object files. For more
information on the utility programs, see Appendix G: Utilities (on page 583).

Integrated and Add-On Packages
Several other integrated and add-on packages are available from Micro Focus to support
RM/COBOL programs. They include the following:

• XML Extensions. If appropriately licensed, XML Extensions is included with the
RM/COBOL development system. XML Extensions is a facility that allows

Chapter 1: Introduction

 RM/COBOL User's Guide 11

RM/COBOL applications to interoperate freely with other applications that use XML
(eXtensible Markup Language, the universal standard format for structured documents
and data on the Web). This capability to import and export XML documents easily to
and from COBOL data structures turns RM/COBOL into an “XML engine.” For more
information, see Features Added to Support XML Extensions (on page 667) in this
manual and the XML Extensions User’s Guide.

• Xcentrisity Business Information Server (BIS). Building on the power of XML as
the foundation of connectivity, Business Information Server (BIS) is a COBOL-specific
Web Application Server. Together with industry standard Web servers such as Microsoft
IIS and Apache, BIS offers application developers a unique opportunity to build state-of-
the-art, browser-based Web Applications or SOAP-based Web Services comprising
RM/COBOL programs and COBOL data files and databases. With BIS, business
application users can access data, access application functions and execute COBOL
service programs on one or many Web Information Servers located anywhere in
the world.

• WOW (Windows Object Workshop) Extensions. A visual tool for developing
full-featured Windows applications completely in RM/COBOL.

• Relativity. An integrated tool set that provides relational database functionality for
COBOL data without any application modifications or data conversions. It also provides
a full-featured, Microsoft Windows Open Database Connectivity (ODBC)-compliant
relational database engine that allows SQL-based access to COBOL application data.

• RM/InfoExpress. A file management system designed to optimize RM/COBOL data
file access on various local area networks (LANs) and wide area networks (WANs).
Implementation is available for TCP/IP (Transmission Control Protocol/Internet
Protocol).

• Cobol-RPC (Remote Procedure Calls). A tool for building distributed RM/COBOL
applications for LANs, WANs, and the Internet.

• Cobol-CGIX (Common Gateway Interface). A tool for integrating RM/COBOL
applications with the Internet’s World Wide Web.

• InstantSQL. A package for embedding SQL statements in COBOL source programs so
that the programs can access ODBC-enabled relational databases using SQL statements.

File Naming Conventions
On those operating systems that support case-sensitive filenames, RM/COBOL filenames can
contain any combination of uppercase and lowercase letters, and numerals.

The Windows version of RM/COBOL, like Microsoft 32-bit Windows, supports long
filenames and filenames containing embedded spaces. RM/COBOL filenames can be
enclosed in quotation marks (ASCII code 22 hex). RM/COBOL filenames containing
embedding spaces must be enclosed in quotation marks to avoid having the embedded
spaces interpreted as separators.

For example:

"C:\My Source Directory\My COBOL Program.cbl"

Note Although 32-bit Windows stores long filenames with case preserved, filenames are
always compared and searched for in a case-insensitive manner (that is, filenames that differ
only in whether letters are uppercase or lowercase refer to the same physical file).

Chapter 1: Introduction

12 RM/COBOL User's Guide

RM/COBOL uses the extensions .cbl, .cob, and .lst to designate the source, object and listing
files of a program. This allows all three files to reside in the same directory. These extension
names may be changed with the EXTENSION-NAMES configuration record (see page 323).

Source files do not need to have an extension of .cbl; in fact, they do not need an extension at
all. If the compiler cannot locate the source file with the name given and the name does not
have an extension, it will try to locate the file again, using first .cbl as an extension to the
filename and then .CBL.

The RM/COBOL compiler always creates object and listing files with extensions. It will
either replace the current extension of the source file, or append an extension if the source
filename does not have one. The case of the extension will match the case of the first
character of the source file’s extension, or the first character in the source file’s name if there
is no extension. If there is no extension and the first character of the source filename is not a
letter, the extension will be lowercase.

The RM/COBOL runtime system does not require object files to have an extension of .cob.
However, since the compiler generates objects with the .cob extension, the runtime system
will try to locate object files by adding first .cob and then .COB, but only if the original
filename does not already have an extension. Table 1 contains sample filenames.

Table 1: Sample Filenames

Source Filename Resulting Object Filename

TESTFILE TESTFILE.COB

Testfile Testfile.COB

Test Test.COB

Test.Cbl Test.COB

Test.cbl Test.cob

test.xyz test.cob

test.XYZ test.COB

tESTFILE tESTFILE.cob

test test.cob

test.CBL test.COB

test.cbl test.cob

2TESTFIL 2TESTFIL.cob

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 13

Chapter 2: Installation and
System Considerations for UNIX

This chapter lists the hardware and software required to install the RM/COBOL product,
describes how to install RM/COBOL, and provides information specific to using RM/COBOL
with UNIX-based or Linux operating systems.

Your computer configuration is the assembled set of hardware and software that makes up
your system. Before you can develop or run RM/COBOL programs, your configuration must
meet or exceed the requirements set forth in this chapter.

System Requirements for UNIX
The version of RM/COBOL that you have purchased is for a particular combination of
hardware and operating systems. Several items listed below vary depending on the actual
version of the product that you have purchased.

Required Hardware
A machine capable of running a supported UNIX or Linux operating system.

Note Most Micro Focus RM/COBOL products and licenses are distributed electronically. If
you elect to receive physical media, an optical drive capable of reading a CD-ROM (for the
product) and a 3.5” floppy drive (for the license certificate file) are required at installation
time.

Required Software
A supported Unix or Linux operating system is required. See Support Resources | Product
Availability and Support Schedule at https://supportline.microfocus.com for supported Unix
and Linux operating systems. There are 32-bit and 64-bit versions of the RM/COBOL
product. The 32-bit versions of RM/COBOL will run on 32-bit or 64-bit operating systems.
The 64-bit versions of RM/COBOL require an operating system that supports 64-bit
applications. You can determine whether your operating system supports 64-bit applications
by running the indicated commands in this table:

https://supportline.microfocus.com/

Chapter 2: Installation and System Considerations for UNIX

14 RM/COBOL User's Guide

Operating System Command

AIX getconf KERNEL_BITMOD

HP-UX getconf KERNEL_BITS

Linux uname -i

SOLARIS isainfo -b

For all but Linux, the indicated command will display 64 if 64-bit applications are supported;
otherwise, it will display 32.

For Linux, the indicated command will display x86_64 if 64-bit applications are supported;
otherwise, it will display i386.

Note AIX 5.2 getconf KERNEL_BITMODE reports 32 even though it supports 64-bit
applications.

System Installation for UNIX
This section describes how to install RM/COBOL on UNIX or Linux systems using the
following methods:

• Electronic Product Delivery Installation (as described below)

• CD-ROM Installation (see page 15)

To verify that the installation is successful, see Chapter 5: System Verification (on page 139).

Electronic Product Delivery Installation
Note You must have an Internet connection and an Internet browser installed to proceed with
this method of installation.

The email containing notification of your Electronic Product Delivery contains an attachment,
a file named liant.lic. This file is a license certificate authorizing you to install the purchased
software. We recommend that you create a directory on your machine to store the license
certificates for your Micro Focus RM/COBOL products and save the liant.lic attachment to
this directory with a name that is meaningful to you.

RM/COBOL is available as a download from the Micro Focus Electronic Product Delivery
web site in two formats: UNIX GUNZIP TAR and ISO CD Image. The link to the web site
is provided in the notification email. From the web site, simply follow the file download and
decompress instructions for the format selected, and then perform the installation instructions
for that format, as outlined below.

• UNIX GUNZIP TAR. After downloading and decompressing the deliverables, and
creating the installation components directory from the UNIX GUNZIP TAR format,
follow these steps to install the RM/COBOL software:

1. Place a copy of your RM/COBOL license certificate, liant.lic, in the directory
containing the installation components.

2. Change to the directory containing the installation components. For example, enter:

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 15

cd /RMStage

3. Execute the installation script using the following command:

sh ./install.sh

4. Follow the prompts and instructions on the screen to complete the installation.

Messages are displayed periodically indicating the status of the installation.

During the execution of this command, you are prompted about which optional features
you wish to install. For example:

• You are asked whether you want to use the terminfo or termcap terminal interface.
For more information, see Terminal Interfaces (on page 28). Because RM/COBOL
uses separate support modules to support the two terminal interfaces, only a single
runtime and recovery utility are present on the distribution media. If you later decide
to switch from terminfo to termcap or vice versa, you will need to run the installation
command again and respond appropriately to the prompts.

• You are also asked whether you want to install the FlexGen support module, the
RM/InfoExpress Client support module, or the Automatic Configuration File support
module. For additional information, see Appendix D: Support Modules (Non-
COBOL Add-Ons) on page 447.

Note If you elect to install the Automatic Configuration File support module (on
page 453), you will be able to add a configuration file for the runtime system, the
compiler, and/or the recovery utility, which will be used automatically without the
need to specify it on the command line.

• If the installation process detects the presence of any other support modules in the
install directory, you will be asked whether you want to install those support
modules.

RM/COBOL is distributed with a default configuration that will satisfy your system
requirements. Configuration options for your system are discussed in Chapter 10:
Configuration (on page 289).

• ISO CD Image. The download format for ISO CD Image contains the full RM/COBOL
product CD. Use CD-ROM Burning software, such as Nero (http://www.nero.com) or
Roxio’s Easy CD Creator (http://www.roxio.com), to create the physical CD-ROM
media. Follow the instructions described in CD-ROM Installation (see the next topic) to
install your product.

CD-ROM Installation
There are four main steps to installing RM/COBOL for UNIX from the downloaded format of
the ISO CD Image:

1. Load the license file (see the following topic).

2. Load the distribution media (see page 18).

3. Perform the installation (see page 19).

4. Unload the distribution media (see page 20).

http://www.nero.com/
http://www.roxio.com/

Chapter 2: Installation and System Considerations for UNIX

16 RM/COBOL User's Guide

Loading the License File

The RM/COBOL license file, liant.lic, is a normal text file distributed on an MS-DOS-
formatted diskette. This file is a license certificate authorizing you to install the purchased
software. Not all UNIX operating systems, however, can read an MS-DOS-formatted
diskette, and not all UNIX server machines have diskette drives. To make the license file
available to the RM/COBOL for UNIX installation script, two techniques are provided:

1. Mounting the diskette as an MS-DOS file system (see the next topic).

2. Transferring the RM/COBOL license file via FTP from a Windows client (see page 17).

Mounting the Diskette as an MS-DOS File System

Use this option to load the license file if the UNIX operating system supports MS-DOS file
systems and your hardware has a diskette drive installed. Instructions for specific platforms
and versions of UNIX are provided. In the examples below, the license certificate file,
liant.lic, is placed in the directory /tmp. We recommend, however, that you create a
directory on your machine to store the license certificates for your Micro Focus RM/COBOL
products and save the liant.lic file to this directory with a name that is meaningful to you.

• HP-UX 11, IBM AIX 5.2, and Intel UNIX System V Release 4

These platforms do not support mounting MS-DOS diskettes. To transfer the license file
to the UNIX server, use the FTP instructions (on page 17).

• Linux (2.6 kernel or later)

a. Insert the diskette into the diskette drive.

b. Log in as root and enter:

mount –t msdos /dev/fd0H1440 /mnt/floppy

c. Copy the license file to the /tmp directory:

cp /mnt/floppy/liant.lic /tmp/liant.lic

d. Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

umount /mnt/floppy

• SCO OpenServer 5

a. Insert the diskette into the diskette drive.

b. Log in as root and enter:

mount –f DOS,lower /dev/fd0 /floppy

Note It may be necessary to create the mount directory, /floppy, before executing
this command.

c. Copy the license file to the /tmp directory:

cp /floppy/liant.lic /tmp/liant.lic

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 17

d. Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

umount /floppy

• SCO SVR5 (UnixWare 7.1.7 or later and SCO OpenServer 6)

a. Insert the diskette into the diskette drive.

b. Log in as root and enter:

mount –F dosfs /dev/dsk/f0q18dt /Disk_A

c. Copy the license file to the /tmp directory:

cp /Disk_A/liant.lic /tmp/liant.lic

d. Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

umount /Disk_A

• Sun Solaris SPARC (2.9) and Intel x86 (2.9)

a. Insert the diskette into the diskette drive.

b. Log in as root and enter:

volcheck

c. Copy the license file to the /tmp directory:

cp /floppy/floppy0/LIANT.LIC /tmp/liant.lic

d. Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

eject floppy

Transferring the RM/COBOL License File via FTP from a Windows Client

To transfer the RM/COBOL license file, liant.lic, from a Windows client to the UNIX server,
use one of the many graphical FTP utilities available on Windows and transfer liant.lic as a
text file. You can also follow the procedure described below. We recommend that you create
a directory on your machine to store the license certificates for your Micro Focus products
and save the liant.lic file to this directory with a name that is meaningful to you.

1. On the Windows client, insert the diskette into the diskette drive.

These instructions assume that this is drive A. If it is another drive, change the drive
letter to the appropriate letter in the remaining instructions.

2. Open a Command Prompt window by clicking Start on the task bar, point to Programs,
point to Accessories, and then click Command Prompt.

3. Connect to the UNIX server by entering:

Chapter 2: Installation and System Considerations for UNIX

18 RM/COBOL User's Guide

ftp UnixServerName

where, UnixServerName is the network name of your UNIX server.

4. Change the directory to the /tmp directory:

cd /tmp

5. Specify a text file transfer:

ascii

6. Send the license file to the UNIX server:

send A:\LIANT.LIC liant.lic

7. Disconnect from the UNIX server:

bye

8. Close the Command Prompt window with the following command and then remove the
diskette form the diskette drive:

Exit

Loading the Distribution Media

To load the distribution media on the UNIX machine:

1. Insert the RM/COBOL for UNIX CD-ROM in the appropriate CD-ROM drive.

2. Log in as root.

3. Enter the appropriate mount command for your system. See the following examples.

Notes

• In the list that follows, /cdrom is used as the mount directory name for all the UNIX
operating systems. Some UNIX systems, however, already have an established mount
directory for the CD-ROM. In this case, substitute the standard mount directory name for
/cdrom in the following list and in the subsequent instructions.

• The device names below are examples. The actual device name is dependent on the
hardware configuration of your UNIX server. It may be necessary to substitute the
proper value for your system. If needed, consult your UNIX System Administrator for
more details.

System Mount Command

HP-UX 11 mount –F cdfs –o ro,cdcase /dev/dsk/c0t4d0 /cdrom

IBM AIX 5.2 mount –o ro –v cdrfs /dev/cd0 /cdrom

Intel UNIX System V
Release 4

mount –o ro –F cdfs /dev/cdrom/c0t4l0 /cdrom

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 19

Linux (2.6 kernel or later) mount –o ro –t iso9660 /dev/cdrom /mnt/cdrom

SCO OpenServer 5 mount –o ro –f ISO9660,lower /dev/cd0 /cdrom

SCO SVR5
(UnixWare 7.1.1 or later
and SCO OpenServer 6)

mount –F cdfs –o ro /dev/cdrom/c1b0t0l0 /CD-ROM_1

Sun Solaris SPARC 2.9
and Intel x86 (2.9)

If Solaris does not automatically load the CD-ROM, log in as root
and enter: volcheck

Performing the Installation

After the CD-ROM has been successfully mounted, you will need to do the following:

1. Change the directory to the mount point for the CD-ROM. For example, enter:

cd /cdrom

2. From the mount point, execute the installation script using the following command:

sh ./install.sh

3. Follow the prompts and instructions on the screen to complete the installation.

Messages are displayed periodically indicating the status of the installation.

During the execution of this command, you are prompted about which optional features you
wish to install. For example:

• You are asked whether you want to use the terminfo or termcap terminal interface. For
more information, see Terminal Interfaces (on page 28). Because RM/COBOL uses
separate support modules to support the two terminal interfaces, only a single runtime
and recovery utility are present on the distribution media. If you later decide to switch
from terminfo to termcap or vice versa, you will need to run the installation command
again and respond appropriately to the prompts.

• You are also asked whether you want to install the FlexGen support module, the
RM/InfoExpress Client support module, or the Automatic Configuration File support
module. For additional information, see Appendix D: Support Modules (Non-COBOL
Add-Ons) on page 447.

Note If you elect to install the Automatic Configuration File support module (see
page 453), you will be able to add a configuration file for the runtime system, the
compiler, and/or the recovery utility, which will be used automatically without the need
to specify it on the command line.

• If the installation process detects the presence of any other support modules in the install
directory, you will be asked whether you want to install those support modules.

RM/COBOL is distributed with a default configuration that will satisfy your system
requirements. Configuration options for your system are discussed in Chapter 10:
Configuration (on page 289).

Chapter 2: Installation and System Considerations for UNIX

20 RM/COBOL User's Guide

Unloading the Distribution Media

To unload (remove) the distribution media from the hardware:

1. Change your directory to a location other than the CD-ROM mount point directory, as
described in Loading the Distribution Media (on page 18).

2. Enter the appropriate command for your system. See the examples listed below.

3. Remove the distribution media from the CD-ROM drive.

System Mount Command

HP-UX 11
IBM AIX 5.2
Intel UNIX System V Release 4
SCO OpenServer 5

umount /cdrom

Linux (2.6 kernel or later) umount /mnt/cdrom

SCO SVR5 (UnixWare 7.1.1 or later
and SCO OpenServer 6)

umount /CD-ROM_1

Sun Solaris SPARC (2.9)
and Intel x86 (2.9)

eject cdrom

System Removal for UNIX
The RM/COBOL system now comes with a command to remove the files installed in the
system command directory (or other execution directory of your choice). Issue the following
command to remove the RM/COBOL installed files, including any support modules:

./rmuninstall

During the execution of this command, you are asked to provide the location of the
RM/COBOL installed files (that is, /usr/bin or the execution directory specified when the
RM/COBOL files were installed). You are then asked which files you wish to remove.

You may elect to remove all of the RM/COBOL installed files, “complete (not prompted)”
mode, or the specific files of your choice, “selective (prompted)” mode. If, for example, you
decide that you no longer want to use the RM/InfoExpress client module, you may remove
just that single file. After the RM/COBOL system is removed, it is still possible to run the
installation command to reinstall RM/COBOL.

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 21

Locating RM/COBOL Files on UNIX

File Locations within Operating System Pathnames on
UNIX
File locations are determined by the pathname of the file, according to operating system rules
and conventions. A fully qualified pathname consists of an optional directory path with slash
separators followed by a filename. The directory path may begin with a leading slash, tilde
(~), or period (.) character. A directory path with a leading slash or tilde is fully specified and
identifies a filename relative to the root file system. A directory path without a leading slash
or tilde character specifies a filename relative to the current directory.

If a pathname is specified without a directory path, RM/COBOL searches the current
directory.

Specifying a directory path with a leading slash or tilde indicates to RM/COBOL that an exact
filename has been specified. If RM/COBOL cannot find the file in the specified location, it
will not look elsewhere. If you do not specify a directory path, and RM/COBOL cannot find
the file relative to the current directory, it will search for the file according to the directory
search sequence. If a directory path is specified, but there is no leading slash or tilde, then the
EXPANDED-PATH-SEARCH keyword (see page 337) of the RUN-FILES-ATTR
configuration record determines whether the directory search sequence will be used. When
the configuration keyword is set to its default value of NO, the directory search sequence will
not be used. If the value is set to YES, then the entire name, including the directory path, will
be appended to each entry in the directory search sequence in an attempt to locate the file.

The tilde (~) character at the beginning of a pathname is used to refer to home directories.
When followed by a slash or standing alone, it expands to the user’s home directory as
reflected in the environment variable HOME. When followed by a name consisting of letter
and digit characters, the name identifies the user whose home directory should be used.

Directory Search Sequences on UNIX
You can direct RM/COBOL to search for a file not found in the current working directory by
using a predefined directory search sequence. There are two directory search sequences: one
for the compiler and one for the runtime system.

To direct the RM/COBOL compiler to use the directory search sequence, set the environment
variable RMPATH as follows:

RMPATH=path[:path] ... ; export RMPATH

To direct the RM/COBOL runtime system to use the directory search sequence, set the
environment variable RUNPATH as follows:

RUNPATH=path[:path] ... ; export RUNPATH

In both commands, path indicates the directory that is to be searched for the file and has the
form:

[/]directory[/directory] ...

Chapter 2: Installation and System Considerations for UNIX

22 RM/COBOL User's Guide

where, directory is the name of an existing directory.

If multiple paths are specified, they must be separated with colons. If the file is not located in
the current directory or the explicitly defined paths and if the file should be created, then the
file is created in the current directory.

Figure 1 and Figure 2 illustrate the compiler and runtime system search sequences on UNIX,
respectively.

Figure 1: Compiler Search Sequence

Figure 2: Runtime System Search Sequence

The compiler and runtime system may be executed from a directory other than the current
directory if a complete pathname is specified on the command line, or if the PATH directory
search feature is used. If a complete pathname is not specified, the list of directories specified
by PATH is searched. Note that the current directory is not implicitly searched with the
PATH environment variable.

The compiler, runtime system, and recovery utility (recover1.exe) require access to other files
in order to operate, including the license vault. The license vault must reside in the same
directory as the executable file. RM/COBOL looks for the other files first in the directory
containing the executable file, then in the current directory, and finally in the directories
specified in the PATH environment variable.

File Access Names on UNIX
The file access name you specify in the COBOL source program specifies the physical file or
device to which input or output is directed. For information on specifying the file access
name in a COBOL source program, see the discussion of the ASSIGN clause (file control
entry) in Chapter 3: Environment Division, and the discussion of the VALUE OF clause in
Chapter 4: Data Division, of the RM/COBOL Language Reference Manual.

To establish synonymy between a file access name specified in your source program and
another name specified when the program is run, use environment variables that are set before
starting the runtime system.

Look first in this directory:

RMPATH=WAGE/HOURLY/OVERTIME:/usr/local/cobol

Then look in this directory:

Look first in this directory:

RUNPATH=usr/local/cobol:~

Then look in this directory:

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 23

If you specified a generic file access name for program input-output and wish to direct it to a
specific device or file, enter:

A generic file access name is one that does not specify a directory path. Since the format of
physical pathnames, including conventions of directory names, varies from one operating
system to another, for maximum portability it is recommended that source programs specify
generic file access names, preferably with eight or fewer letters. This recommendation
applies only when the file access name is hard coded into the program as a literal.

For example, if the file control entry specifies:

SELECT REPORT-FILE ASSIGN TO PRINT, "report"

and no environment variable named “report” exists, RM/COBOL will create a file named
report in the current directory.

If, prior to running the program, you enter the command:

REPORT=/dev/lp; export report

all program output written to REPORT-FILE will be written to /dev/lp.

If—again prior to execution—you enter the command:

REPORT=/output/audit.lst; export report

RM/COBOL will create a file audit.lst in the directory /output without any need to modify or
recompile the source program.

The RESOLVE-LEADING-NAME and RESOLVE-SUBSEQUENT-NAMES keywords of
the RUN-FILES-ATTR configuration record can be used to force resolution of one or more of
the directory names from the environment. For more information, see the discussion of the
RUN-FILES-ATTR configuration record (on page 335).

When environment variables are not used, the file access name in the COBOL program
specifies the UNIX filename. The effect of a prior environment variable assignment may be
canceled by the command:

Whether or not an environment variable is used to modify the file access name, if the resulting
file access name does not include a directory path, RUNPATH will be used by the runtime
system to obtain the fully qualified pathname. For additional information, see File Locations
within Operating System Pathnames on UNIX (on page 21).

Control characters, spaces, and nonprintable characters (per the locale setting) are removed
from the file access name, except that, if the path begins with a pipe character ('|'), white space
characters are preserved after the first non-white space character following the pipe character.

After environment variable mapping and removal of control characters, spaces, and
nonprintable characters, the file access name is checked against the DEFINE-DEVICE table,
which is either the default DEFINE-DEVICE table, or, if a configuration file with one or

file-access-name-1 = file-access-name-2;
 export file-access-name-1

unset file-access-name

Chapter 2: Installation and System Considerations for UNIX

24 RM/COBOL User's Guide

more DEFINE-DEVICE configuration records is supplied, the specified DEFINE-DEVICE
entries in the configuration. See the DEFINE-DEVICE configuration record (on page 319)
for more information. If the resulting file access name matches a DEFINE-DEVICE entry,
the PATH value from that DEFINE-DEVICE entry becomes the final file access name, which
is not further modified. If the resulting file access name does not match an entry in the
DEFINE-DEVICE table, it is not further modified.

When the resulting file access name is "*", then

• for a sequential input file, the standard input file (stdin) is read; and,

• for a sequential output file, the standard output file (stdout) is written.

When the resulting file access name has a leading pipe character ('|'), then the pipe character
and any immediately following white space characters are removed. The remainder of the file
access name is treated as a shell command to be started when the file is opened for input or
output. The open mode of the file determines the direction of the pipe as follows:

• When the file is opened for input, the shell command is started with its standard output
redirected to the input of the associated COBOL file. That is, the COBOL program will
read the records written by the process. The shell command may be a pipeline (a series
of commands separated by pipe characters), in which case the COBOL program will read
the output of the rightmost command (the rightmost command must start a program that
writes to standard output and output redirection using the > character must not be
specified for the rightmost command). For example, an input file access name value "|
sort -r -k 5 file1.txt file2.txt | uniq | grep Fail" will result in reading records from the files
file1.txt and file2.txt that have been sorted and merged together in reverse order on field
five of the record without any duplicate records and only records that have the word
"Fail" in them.

• When the file is opened for output, the shell command is started with its standard input
redirected to the output from the associated COBOL file. That is, the process will read
the records written by the COBOL program. The shell command may be a pipeline (a
series of commands separated by pipe characters), in which case the leftmost command
will read the output of the COBOL program (the leftmost command must start a program
that reads from standard input and input redirection using the < character must not be
specified for the leftmost command). For example, an output file access name value "|
sort -r | uniq | grep Pass >results.txt" will cause the records written by the COBOL
program to be sorted in reverse order, duplicates removed, and only records with the
word "Pass" in them written to the file results.txt.

If two or more COBOL files in the same run unit are open at the same time and specify the
same file access name with a leading pipe character, each will start a separate process and
pipe input or output from or to its associated process. In contrast, two or more files open at
the same time in the same run unit will start one process and share the pipe to that process if
they have the same file access name and that file access name is resolved through a DEFINE-
DEVICE record to a pipe.

When the resulting file access name is PRINTER or PRINTER1, then the default
configuration writes the file to the print spooler. For additional information on printing, see
Printer Support (on page 238).

When the resulting file access name is TAPE, then the default configuration writes the file to
the default tape device. For additional information on tape devices, see Tape Support (on
page 239).

The DEFINE-DEVICE configuration record may define other file access names that are to be
treated as devices and may change the default treatment of PRINTER and TAPE. See

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 25

DEFINE-DEVICE configuration record (on page 319) for additional information on
configuring file access names that are to be treated as devices.

The resulting file access name should follow the operating system rules for valid filenames
and pathnames.

UNIX Resource File
A resource file capability is provided to support the C$GetSyn (see page 550) and
C$SetSyn (see page 572) subprograms and to provide stored configuration information for
the compiler, runtime system, and recovery utility. A resource file, similar in format to a
Windows initialization (.ini) file, allows for permanent storage of synonym names and values
on UNIX in the same way that the registry file does on Windows. You can use the resource
files to customize your RM/COBOL application.

The resource files may be located in the user’s home directory (local) for information that
does not need to be shared or in /etc/default (global) for information to be shared among a
group of users. For the compiler, the local resource file is named .rmcobolrc; the global
resource file is named rmcobolrc. For the runtime system, the local resource file is named
.runcobolrc; the global resource file is named runcobolrc. For the Indexed File Recovery
(recover1) utility, the local resource file is named .recover1rc; the global resource file is
named recover1rc.

Note The global resource files for the compiler, runtime system, and recovery utility (located
in /etc/default) do not begin with a period. The local resource files for the compiler, runtime
system, and recovery utility (located in the user’s home directory) do include a leading period
in the name so that it is not visible to the user.

The resource files in the user’s home directory normally are maintained by the individual
user, while the resource files in /etc/default usually are maintained by the system
administrator. Although resource files may be maintained with the editor of your choice, no
editing should ever be done when the resource file is in use. There is a simple locking
mechanism to ensure that two users sharing the same resource file do not conflict with one
another, but this mechanism will not prevent an editor from changing the file.

Resource File Format
All resource files have the same general format. Each file may consist of a [Defaults] section
to specify default configuration information for all programs, a [Default Synonyms] section to
specify default synonyms to be used by all programs, one or more [Program] sections to
specify configuration information when a specific program is executed or compiled, and one
or more [Program Synonyms] sections to specify synonyms to be used when a specific
program is executed or compiled. Lines in a resource file should begin in column 1 (that is,
without leading spaces) and be no more than 4095 characters long. Section names, including
the Program portion of section names, are not case-sensitive. A section name matching a
prior section name, except for case, will be ignored. Comments may be included in a resource
file. Comment text begins with a semicolon (“;”) in column 1. Lines that have “;” in column
1, as well as blank lines, are ignored in their entirety.

The configuration information specified in a [Program] section overrides the configuration
information specified in the [Defaults] section when program Program is being executed or
compiled. Synonyms specified in a [Program Synonyms] section are added to the synonyms
specified in the [Default Synonyms] section with synonyms from the [Program Synonyms]
section overriding any duplicate definitions.

Chapter 2: Installation and System Considerations for UNIX

26 RM/COBOL User's Guide

Note For the recovery utility, Program is actually the indexed file name, not including any
directory path, but including the extension, if any. For example, the value of Program for the
indexed file /usr/guest/mydata.inx would be mydata.inx. In contrast, the value of Program
for the source file /usr/guest/myprog.cbl or the object file /usr/guest/myprog.cob would be
myprog.

Command-Line Options
Command-line options for the compiler, runtime system, or recovery utility may be specified
either in the [Defaults] or the [Program] sections. In each case, the command-line options are
specified as:

Options=command line options

where, the command line options parameter specifies a series of command-line options to be
passed to the compiler, runtime system, or recovery utility. The command-line options from
the resource files will be processed cumulatively in the following order: global [Defaults],
local [Defaults], global [Program], and local [Program]. Any options from the resource files
are processed before options on the actual command line are processed so that the command-
line options can override any options specified from the resource files. If duplicate options
appear in the same section of any resource file, the first entry is used.

Note Some options for the runtime system may not be overridden by the actual command-
line options because the options are cumulative; that is, multiple options of this type may be
specified on the command line. The L Option (for library loads) is an example of such a
parameter. For additional information, see the descriptions of the Runtime Command (on
page 189) and the L Option (on page 197).

The environment variable, RM_IGNORE_GLOBAL_RESOURCES, may be defined if you
wish the compiler, runtime system, or recovery utility not to access the command-line options
defined in /etc/default. This may be useful if you are trying to do development at the same
time others are running an application in live “production mode.”

Specifying Synonyms
Synonyms for the compiler, runtime system, or recovery utility may be specified either in the
[Default Synonyms] or [Program Synonyms] sections. These synonyms may be used to
establish a connection between the open name of the file and the actual file access name.
Synonyms may also be used to establish the RUNPATH and RMPATH directory search
sequences. Users should not attempt to specify synonym names differing only in case. For
more information, see Directory Search Sequences on UNIX (on page 21).

In each case the synonym name and value are specified as:

SynonymName=SynonymValue

When the compiler, runtime system, or recovery utility is being initialized, synonyms are
added to the environment in the order specified below. Synonyms names are case-sensitive.
However, a synonym whose name is the same as a prior synonym, except for case, will be
initialized to the value of the prior synonym.

[Default Synonyms] section of the global resource file

[Default Synonyms] section of the local resource file

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 27

[Program Synonyms] section of the global resource file

[Program Synonyms] section of the local resource file

The environment variable, RM_IGNORE_GLOBAL_RESOURCES, may be defined if you
wish the compiler, runtime system, or recovery utility not to access the global synonyms
defined in /etc/default. This approach may be useful if you are trying to do development at
the same time others are running an application in live “production mode.”

The C$GetSyn and C$SetSyn subprograms may be used to retrieve and store synonym values
in the resource file. Specifically, C$GetSyn retrieves synonym values from either the
[Program Synonyms] or the [Default Synonyms] section of the local resource file (in the
user’s home directory) or, if the synonym was not found in the local resource file, from either
the [Program Synonyms] or the [Default Synonyms] section of the global resource file (in
/etc/default). C$GetSyn ignores case when searching for the synonyms. The third parameter
on the C$GetSyn CALL specifies the program-name for the synonym being retrieved.
Specifying SPACES indicates that the user wants the [Default Synonyms] section rather than
synonyms for a particular program-name. The environment variable,
RM_IGNORE_GLOBAL_RESOURCES, may be defined if you wish to always ignore the
global resource file for the runtime system. In this case, C$GetSyn will only have access to
the local resource file.

C$SetSyn stores synonym information in the local resource file. C$SetSyn ignores the case
of the synonym name when searching for an existing synonym value to replace. It is not
possible for C$SetSyn to modify the global resource file for the runtime system. C$SetSyn
stores the synonym information in either the [Program Synonyms] or the [Default Synonyms]
section depending upon the value of the third parameter on the CALL. If necessary,
C$SetSyn will create the local resource file in the user’s home directory.

Example of .rmcobolrc File

The following is an example of a UNIX local resource file for the RM/COBOL compiler:

[Defaults]
Options=<Compile Command options>

[Default Synonyms]
PRINTER=PrinterFile.prt
RMPATH=~/default/source

[AR]
Options=-l -a -x -o=~/arobj

[AR Synonyms]
RMPATH=~/arsource
PRINTER=~/arlist/ar.prt

Example of .runcobolrc File

The following is an example of a UNIX resource file (local) for the RM/COBOL runtime
system:

Chapter 2: Installation and System Considerations for UNIX

28 RM/COBOL User's Guide

[Defaults]
Options=<Runtime Command options>

[Default Synonyms]
Printer1=PrinterFile
AR-Directory=/usr/company/ar-data

[AR]
Options=<Runtime Command options>

[AR Synonyms]
RUNPATH=<pathname>
AR-FILE1=comp1/ar.dat

Example of .recover1rc File

The following is an example of a UNIX local resource file for the RM/COBOL Indexed File
Recovery (recover1) utility:

[Defaults]
Options=-l

[Default Synonyms]
PRINTER=recovery.log

[armaster.inx]
Options=-L armrec.log -K armtempl.inx -M 5

[armaster.inx Synonyms]
DROPFILE=~/ar/armdrop.fil

[artrans.inx]
Options=-L -K arttempl.inx -M 3

[artrans.inx Synonyms]
DROPFILE=~/ar/artdrop.fil
PRINTER=~/ar/artrec.log

Terminal Input and Output on UNIX
This section describes how terminal input and output are handled by the RM/COBOL runtime
system on UNIX.

Terminal Interfaces
The runtime system uses one of two terminal interface mechanisms, termcap or terminfo, to
control cursor positioning, video display attributes, and function key mapping.

The termcap version of the runtime system uses the older termcap database, which has a
description of the user’s terminal in it. For more information, see Termcap Database (on
page 29).

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 29

The terminfo version of the runtime system uses the terminal description in the terminfo
database for both input and output control of the terminal. For more information, see
Terminfo Database (on page 29).

Both the terminfo and termcap Terminal Interface support modules are present on the
distribution media. During the installation process, you will be asked which Terminal
Interface support module to install. To switch to the other Terminal Interface support module,
you will need to run the installation command again and respond appropriately to the prompts
described in Performing the Installation (on page 19), paying particular attention to the
discussion of optional features.

Termcap Database

The runtime system locates the termcap database by first looking for the environment variable
TERMCAP. If the TERMCAP environment variable is found and contains a valid pathname,
that value is used as the pathname to the database. If the environment variable is found but it
contains a valid termcap entry, that entry will be used as the terminal description. Otherwise,
the filename /etc/termcap will be used as the name of the database.

The TERMCAP environment variable can be set as follows:

pathname is a pathname of the termcap file.

For example:

TERMCAP=/usr/sales/mytermcapfile; export TERMCAP

Terminfo Database

The runtime system locates the terminfo database by first looking for the environment
variable TERMINFO. If the TERMINFO environment variable is found, that value is used as
the pathname to the database subdirectories. Otherwise, the path /usr/lib/terminfo will be
used.

The TERMINFO environment variable can be set as follows:

pathname is a pathname of the terminfo file.

For example:

TERMINFO=/usr/sales/myterminfo; export TERMINFO

TERMCAP=pathname ; export TERMCAP

TERMINFO=pathname ; export TERMINFO

Chapter 2: Installation and System Considerations for UNIX

30 RM/COBOL User's Guide

Cursor Types
The termcap and terminfo versions of the runtime system support two types of cursors, each
of which indicates a different edit mode during ACCEPT operations.

1. The attribute cursor_normal (or cursor-on) indicates that standard overtype mode
is active.

2. The attribute cursor_visible (or cursor-blink) indicates that insert mode is active.

Terminal Attributes
Terminal attributes are sequences of characters (strings) that cause the terminal to perform
certain functions (they are often referred to as escape sequences). Some terminals under
UNIX require that special characters appear on the screen just before the start of an attribute
and right after the end of it. Characters in between these special characters take on the
specified attribute. To accommodate these terminals, the oV capability for termcap specifies
the number of screen positions to be used by the nM, nB, nR, nS, aL, aB, aR, aS, and rS
capabilities. The xmc capability is used for the terminfo runtime system. RM/COBOL places
the attribute characters at the position specified by the ACCEPT or DISPLAY operation, and
moves the actual start of the field by the number of positions specified by oV or xmc. You
can also use the MOVE-ATTR keyword (see page 367) with the TERM-UNIT configuration
record to specify moving the attributes back the number of positions specified by oV or xmc.
However, if MOVE-ATTR causes the attribute character to move back to the next line, and
such a move is prohibited by the lA (do not cross lines) capability described in the next
paragraph, the attribute will appear on the same line that is being displayed or accepted.

The lA is a Boolean termcap capability and is used with terminals that require screen
positions to implement attributes, as described in the preceding paragraph. The standard
RM/COBOL model is to keep an attribute in effect—without regard to the number of screen
lines to which it applies—until it encounters the special character that signals the end of the
attribute. Some terminals, however, recognize the end of a line as the end of the attribute,
without regard to the presence or absence of the ending special character. In this case, the
presence of lA will tell RM/COBOL that a new attribute character must be placed at the start
of every new line in a multiline ACCEPT or DISPLAY operation.

The sA is a Boolean termcap capability that is also used with terminals that require screen
positions to implement attributes. The RM/COBOL model is to assume that attributes will
not wrap from the bottom to the top of the screen. If your terminal behaves differently, and if
you have specified the MOVE-ATTR configuration keyword, use sA. This allows fields
placed at the home position (line 1, position 1) to have their attributes placed at the last line of
the screen.

Terminal Name
The name of the database entry that describes the behavior of your terminal is obtained from
the environment variable TERM. This variable should be set to the appropriate terminal name
before invoking the runtime system.

The TERM environment variable can be set as follows:

TERM=term-name ; export TERM

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 31

term-name is the name of your terminal as it appears in the termcap or terminfo database.
The termcap or terminfo capabilities used by the runtime system (if present) are listed in
the tables that follow.

Terminfo and Termcap Capabilities Used by the Runtime
System
The runtime system on UNIX uses a set of terminfo or termcap capabilities, depending on the
terminal interface in use, for controlling output to the terminal screen. These capabilities are
listed in Table 2 for reference.

Table 2: Terminfo and Termcap Names for the Runtime System, Booleans

Terminfo Name Termcap Name Description

am Am Terminal has automatic margins.

bce Be Screen erased with background color.

xenl Xn Newline ignored after 80 columns. Also used
to signify that the terminal’s cursor will not
automatically advance to the next line after
column 80 is reached, but will instead wait for
the next character.

Table 2: Terminfo and Termcap Names for the Runtime System, Numbers

Terminfo Name Termcap Name Description

cols Co Number of columns in a line.

lines Li Number of lines on screen or page.

pb Pb Lowest baud where padding is needed.

xmc Sg Number of blank characters left by smso or rmso.

Table 2: Terminfo and Termcap Names for the Runtime System, Output Strings

Terminfo Name Termcap Name Description

acsc Ac Graphic charset pairs.

bel bl Audible signal (bell).

blink Turn on blinking.

civis vi Make cursor invisible.

clear cl Clear screen and home cursor.

cnorm ve Make cursor appear normal (undo vs/vi).

cr cr Carriage return.

cub1 le Move cursor left one space.
cud1 do Down one line.
cuf1 nd Nondestructive space (cursor right).
cup cm Cursor motion.
cuu1 up Upline (cursor up).
cvvis vs Make cursor very visible—insert mode.
dim Turn on half-bright mode.

Chapter 2: Installation and System Considerations for UNIX

32 RM/COBOL User's Guide

Table 2: Terminfo and Termcap Names for the Runtime System, Output Strings

Terminfo Name Termcap Name Description

Ed cd Clear to end of display.
El ce Clear to end of line.
Enacs eA Enable alternate character set.
Home ho Home cursor.
 Ko Termcap entries for other non-function keys.
ind sf Scroll text up.
Pad pc Pad character (rather than null).
Op op Set all colors to the original color pairs.
Rev Turn on reverse video mode.
Rmacs ae End alternate character set.
Rmcup te String to end programs that use cup.
Rmso se End of standout mode (if no nM or sgr0).
 Is Terminal initialization string.
Rs1 r1 Terminal reset/initialization string 1.
Rs2 r2 Terminal reset/initialization string 2.
Rs3 r3 Terminal reset/initialization string 3.
Setb Sb Set current background color.
Setf Sf Set current foreground color.
Sgr Define video attributes, 1 through 9.
Sgr0 me Turn off all attributes.
Smacs as Start alternate character set.
Smcup ti String to begin programs that use cup.
 Tc Entry of similar terminal.
Xenl xn Newline ignored after 80 columns.

Keyboard Input Character Sequences
Character input sequences are used to interpret keyboard input for terminfo or termcap,
depending on the terminal interface being used by the runtime system. A particular input
character sequence can be mapped to an input character, input editing action, or input field
termination by use of the TERM-INPUT configuration record (see page 356).

Table 3 describes the input sequences that may be handled by the terminfo package. (For
convenience, the corresponding termcap name is also given.) These terminfo names are the
only names that will be recognized when using the TERM-INPUT configuration feature of the
runtime system. Termcap names other than the ones listed in this table can be used in TERM-
INPUT configuration records.

Table 3: Input Sequences for Terminfo and Termcap

Terminfo Name Termcap Name Description

ka1 K1 Upper-left of keypad.
Ka3 K3 Upper-right of keypad.
Kb2 K2 Center of keypad.
Kbeg @1 Sent by beginning key.
Kbs kb Sent by backspace key.
Kc1 K4 Lower-left of keypad.
Kc3 K5 Lower-right of keypad.

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 33

Table 3: Input Sequences for Terminfo and Termcap

Terminfo Name Termcap Name Description

Kcan @2 Sent by cancel key.
Kclo @3 Sent by close key.
Kclr kC Sent by clear screen or erase key.
Kcmd @4 Sent by command key.
Kcpy @5 Sent by copy key.
Kcrt @6 Sent by create key.
Kctab kt Sent by clear-tab key.
Kcub1 kl Sent by terminal left arrow key.
Kcud1 kd Sent by terminal down arrow key.
Kcuf1 kr Sent by terminal right arrow key.
Kcuu1 ku Sent by terminal up arrow key.
Kdch1 kD Sent by delete character key.
Kdl1 kL Sent by delete line key.
Ked kS Sent by clear-to-end-of-screen key.
Kel kE Sent by clear-to-end-of-line key.
Kend @7 Sent by end key.
Kent @8 Sent by enter/send key.
Kext @9 Sent by exit key.
Kf0 k0 Sent by function key f0.
Kf1 k1 Sent by function key f1.
Kf2 k2 Sent by function key f2
kf3 k3 Sent by function key f3.
Kf4 k4 Sent by function key f4.
Kf5 k5 Sent by function key f5.
Kf6 k6 Sent by function key f6.
Kf7 k7 Sent by function key f7.
Kf8 k8 Sent by function key f8.
Kf9 k9 Sent by function key f9.
Kf10 k; Sent by function key f10.
Kf11 F1 Sent by function key f11.
Kf12 F2 Sent by function key f12.
Kf13 F3 Sent by function key f13.
Kf14 F4 Sent by function key f14.
Kf15 F5 Sent by function key f15.
Kf16 F6 Sent by function key f16.
Kf17 F7 Sent by function key f17.
Kf18 F8 Sent by function key f18.
kf19 F9 Sent by function key f19.
kf20 FA Sent by function key f20.
kf21 FB Sent by function key f21.
kf22 FC Sent by function key f22.
kf23 FD Sent by function key f23.
kf24 FE Sent by function key f24.
kf25 FF Sent by function key f25.
kf26 FG Sent by function key f26.
kf27 FH Sent by function key f27.

Chapter 2: Installation and System Considerations for UNIX

34 RM/COBOL User's Guide

Table 3: Input Sequences for Terminfo and Termcap

Terminfo Name Termcap Name Description

kf28 FI Sent by function key f28.
kf29 FJ Sent by function key f29.
kf30 FK Sent by function key f30.
kf31 FL Sent by function key f31.
kf32 FM Sent by function key f32.
kf33 FN Sent by function key f33.
kf34 FO Sent by function key f34.
kf35 FP Sent by function key f35.
kf36 FQ Sent by function key f36.
kf37 FR Sent by function key f37.
Kf38 FS Sent by function key f38.
Kf39 FT Sent by function key f39.
Kf40 FU Sent by function key f40.
Kf41 FV Sent by function key f41.
Kf42 FW Sent by function key f42.
Kf43 FX Sent by function key f43.
Kf44 FY Sent by function key f44.
Kf45 FZ Sent by function key f45.
Kf46 Fa Sent by function key f46.
Kf47 Fb Sent by function key f47.
Kf48 Fc Sent by function key f48.
Kf49 Fd Sent by function key f49.
Kf50 Fe Sent by function key f50.
Kf51 Ff Sent by function key f51.
Kf52 Fg Sent by function key f52.
Kf53 Fh Sent by function key f53.
Kf54 Fi Sent by function key f54.
Kf55 Fj Sent by function key f55.
Kf56 Fk Sent by function key f56.
Kf57 Fl Sent by function key f57.
Kf58 Fm Sent by function key f58.
Kf59 Fn Sent by function key f59.
Kf60 Fo Sent by function key f60.
Kf61 Fp Sent by function key f61.
Kf62 Fq Sent by function key f62.
Kf63 Fr Sent by function key f63.
Kfnd @0 Sent by find key.
Khlp %1 Sent by help key.
Khome Kh Sent by home key.
Khts kT Sent by set-tab key.
Kich1 kI Sent by insert character/enter insert mode key.
Kil1 kA Sent by insert line.
kind kF Sent by scroll-forward/down key.
kll kH Sent by home-down key.
kmsg %3 Sent by message key.
knp kN Sent by next-page key.

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 35

Table 3: Input Sequences for Terminfo and Termcap

Terminfo Name Termcap Name Description

knxt %5 Sent by next-object key.
kopn %6 Sent by open key.
kopt %7 Sent by options key.
kpp kP Sent by previous-page key.
kprt %9 Sent by print key.
kprv %8 Sent by previous-object key.
krdo %0 Sent by redo key.
kref &1 Sent by reference key.
kres &5 Sent by resume key.
krfr &2 Sent by refresh key.
kri kR Sent by scroll-backward/up key.
krmir kM Sent by exit insert mode key.
krpl &3 Sent by replace key.
krst &4 Sent by restart key.
ksav &6 Sent by save key.
kslt *6 Sent by select key.
kspd &7 Sent by suspend key.
ktbc Ka Sent by clear-all-tabs key.
kund &8 Sent by undo key.
kBEG &9 Sent by shifted beginning key.
kCAN &0 Sent by shifted cancel key.
kCMD *1 Sent by shifted command key.
kCPY *2 Sent by shifted copy key.
kCRT *3 Sent by shifted create key.
kDC *4 Sent by shifted delete-char key.
kDL *5 Sent by shifted delete-line key.
kEND *7 Sent by shifted end key.
kEOL *8 Sent by shifted clear-line key.
kEXT *9 Sent by shifted exit key.
kFND *0 Sent by shifted find key.
kHLP #1 Sent by shifted help key.
kHOM #2 Sent by shifted home key.
kIC #3 Sent by shifted input key.
Kmov %4 Sent by move key.
Kmrk %2 Sent by mark key.
KLFT #4 Sent by shifted left arrow key.
KSAV !1 Sent by shifted save key.
KSPD !2 Sent by shifted suspend key.
KUND !3 Sent by shifted undo key.
KMSG %a Sent by shifted message key.
KMOV %b Sent by shifted move key.
KNXT %c Sent by shifted next key.
KOPT %d Sent by shifted options key.
KPRV %e Sent by shifted prev key.
KPRT %f Sent by shifted print key.
KRDO %g Sent by shifted redo key.

Chapter 2: Installation and System Considerations for UNIX

36 RM/COBOL User's Guide

Table 3: Input Sequences for Terminfo and Termcap

Terminfo Name Termcap Name Description

KRPL %h Sent by shifted replace key.
KRIT %I Sent by shifted right arrow key.
KRES %j Sent by shifted resume key.
Lf0 l0 Labels on function key f0 if not f0.
Lf1 l1 Labels on function key f1 if not f1.
Lf2 l2 Labels on function key f2 if not f2.
Lf3 l3 Labels on function key f3 if not f3.
Lf4 l4 Labels on function key f4 if not f4.
Lf5 l5 Labels on function key f5 if not f5.
Lf6 l6 Labels on function key f6 if not f6.
Lf7 l7 Labels on function key f7 if not f7.
Lf8 l8 Labels on function key f8 if not f8.
Lf9 l9 Labels on function key f9 if not f9.
Lf10 la Labels on function key f10 if not f10.
Nel nw Sent by newline key.

Additional Termcap Capabilities Used by the Runtime
System
When the termcap terminal interface is used by the runtime system, additional termcap
capabilities not previously described may be used, as shown in the following tables.

Table 4 describes the additional Boolean capabilities used by RM/COBOL when accessing
the termcap database.

Table 4: Additional Boolean Capabilities

Termcap Name Description

lA Attributes will not wrap lines.

sA Attributes will wrap screen.

Table 5 describes the additional numeric capability used by RM/COBOL when accessing the
termcap database.

Table 5: Additional Numeric Capability

Termcap Name Description

oV Number of blank characters left by additional RM/COBOL
attribute capabilities.

Table 6 describes the additional output string capabilities used by RM/COBOL when
accessing the termcap database.

Table 6: Additional Output String Capabilities

Termcap Name Description

aB Low intensity blink.

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 37

Table 6: Additional Output String Capabilities

Termcap Name Description

Ab Low intensity underline and blink.

aL Low intensity.

Al Low intensity underline.

aR Low intensity reverse.

aS Low intensity blink and reverse.

nB High intensity blink.

Nb High intensity underline and blink.

nM High intensity.

Nm High intensity underline.

nR High intensity reverse.

nS High intensity blink and reverse.

vr End of field.

Terminfo Considerations

The Boolean capabilities sA and lA cannot be added to the terminfo database since it is a
closed system; these capabilities are not used by the terminfo runtime system. Under runtime
systems that use terminfo for output, the xmc numeric capability determines the width of
attribute characters and the starting position of fields. Specifying xmc#0 indicates a physical
attribute terminal for which the attributes do not occupy a screen position but still must be
written at the physical start and end of each field.

Runtime systems that use the terminfo database directly for output sequences will use the
set_attributes or sgr string for all field attributes, if it is available. The terminfo
set_attributes string has nine parameters or attributes that can be set. RM/COBOL makes
use of six of these parameters. The second parameter is set if the underline attribute is
requested. The third parameter is set if the reverse attribute is requested. The fourth
parameter is set if the blinking attribute is requested. The fifth parameter is set if the
low-intensity attribute is used. The sixth parameter is set if the high-intensity attribute is
used. The ninth parameter may be used when line draw characters are requested for pop-up
window borders. The only exception to requesting line draw characters in this manner is in
terminals where xmc and sgr are specified (for example, physical attribute terminals). On
these terminals, the alternate character set attribute can either be a field attribute or a single
character attribute. Because the terminfo database does not indicate how to determine this
behavior for a terminal, RM/COBOL will infer that the terminal has the alternate character set
as a single character attribute, if the smac definition is in the terminfo database for the
terminal. In this case, the smacs and rmacs sequence will be used for the writing of graphics
or alternate character set data and the ninth parameter will always be specified as off.

Each of the sgr parameters is set to one if an ACCEPT or DISPLAY requests the
corresponding attribute. Otherwise, a zero is set for the parameter. A zero is also set for all
other parameters.

Attributes are reset by using the sgr0 string if it is defined. Otherwise, they are reset using all
zeroes as parameters to the set_attributes string.

Chapter 2: Installation and System Considerations for UNIX

38 RM/COBOL User's Guide

If the set_attributes string is not available, the standard terminfo strings listed in Table 7 will
be used.

Table 7: Standard Terminfo Strings

Terminfo Name Description

blink High intensity blink.

dim Low intensity.

rev High intensity reverse video.

rmacs End alternate character set.

rmso Reset attributes (also used for high intensity if no sgr0).

sgr0 High intensity.

smacs Start alternate character set.

smso High intensity (if no sgr0 or rmso).

If color keywords are specified in the CONTROL phrase, the terminfo setf or setb sequence
will be used to set the foreground or background color. These sequences accept a single
numeric parameter indicating the desired color. If these sequences are not already defined for
your terminal and you wish to define them, the association of colors to color numbers is
normally defined in the C include file, curses.h.

Line Draw Characters
If line draw characters are requested for either pop-up window borders, or because the
GRAPHICS keyword in the CONTROL phrase was specified in an ACCEPT or DISPLAY
statement, the terminfo database is examined for the acsc sequence. UNIX systems provide
the acsc string to map generic (vt100) line draw characters to the correct characters for your
terminal. These characters are then enabled through the ninth sgr parameter (see page 37).
To support double-line draw characters, RM/COBOL has extended the acsc string to include
six more mappings. These mappings extend the generic (vt100) characters by describing the
double-line graphic characters with the corresponding uppercase letters, as shown in Table 8.

Table 8: vt100 Line Graphic Characters

Description Single-Line Character Double-Line Character

lower-right corner j (┘) J (╝)

upper-right corner k (┐) K (╗)

upper-left corner l (┌) L (╔)

lower-left corner m (└) M (╚)

horizontal line q (─) Q (═)

vertical line x (│) X (║)

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 39

Other System Considerations for UNIX
This section describes special system considerations for using RM/COBOL under the UNIX
operating system.

Memory Available for a COBOL Run Unit on UNIX
The memory available for a run unit in the operating system environment is implementation
specific. If the total memory required by a run unit exceeds the amount of available memory,
runtime system errors will occur. These errors indicate the inability to obtain enough memory
to perform a desired operation. The RM/COBOL runtime system does not provide a virtual
memory scheme, although your system may.

Segmentation and subprograms should be used to manage the dynamic memory requirements
of very large run units.

Most modern UNIX systems (for example, BSD, System V, Sun OS) are supplied with
built-in virtual memory systems. These systems make it appear as though there is always
sufficient memory for the runtime system, regardless of how much physical RAM is installed
in the machine.

Number of Files
The operating system determines the number of files a run unit is allowed to open. The
maximum number of files that may be opened is three fewer than the maximum number of
open files per process. Most UNIX systems allow this maximum to be changed by
reconfiguring the kernel.

Number of Region Locks
The runtime system uses the operating system region lock facility to provide file level locking
and to control file sharing, as well as to support record locking. To implement file locking,
the runtime system applies one region lock to each open file in addition to the locks applied
for record locks. During an I/O statement, one or two additional region locks may be applied
to a single file. If the program employs multiple record locking, these region locks remain
until the program unlocks the records.

Network File Access
It is possible to receive a 98,27 error when accessing an indexed file through the network file
system (NFS) when logged in as super-user (or root). If the file permissions do not include
write permission for “other”, an open operation may inadvertently succeed for modes other
than input mode. This is misleading because writes to the file will appear to succeed, even
though the data is not updated. This problem is undetectable and will appear as a 98,27 error
on the next access of the file after writing or deleting a record.

Chapter 2: Installation and System Considerations for UNIX

40 RM/COBOL User's Guide

Redirection of Input and Output
RM/COBOL supports standard piping and standard redirection of input and output.

The use of the redirection and piping operators (> , >> , < , and |) on the Runtime
Command line affects the operations of ACCEPT and DISPLAY statements in several ways.
Piping is a means of chaining the standard output (DISPLAY statements) of one run unit to
the standard input (ACCEPT statements) of a second run unit; therefore, piping appears
identical to redirection at the program level. Note that a Format 1 ACCEPT or DISPLAY
statement that includes the FROM/UPON CONSOLE phrase or FROM/UPON mnemonic-
name phrase where mnemonic-name is defined as CONSOLE IS mnemonic-name, is not
redirected or piped unless it is configured to come from standard input or go to standard
output. If this is not the case, you must use either 2> or 2>> for redirection. Note also that if
an ACCEPT or DISPLAY statement contains a UNIT phrase, it will not be redirected.

Standard Input

The standard input device is defined by default to be the keyboard of the terminal that started
the run unit. Standard input may be redirected to a file or other device by the operating
system conventions for standard input redirection and piping on the command line that starts
the run unit.

For example:

runcobol getdata <inputfile

redirects standard input to the file inputfile, and

runcobol putdata | runcobol getdata

pipes the standard output from program putdata to the standard input of program getdata.

ACCEPT statements that do not specify the FROM CONSOLE phrase read from the standard
input device.

When standard input is redirected, the ACCEPT statement (Formats 1 and 3) operation is
modified. Only the SIZE, CURSOR, ECHO, CONVERT and ON EXCEPTION phrases of
Format 3 are used; all other phrases are ignored. Note that Format 1 ACCEPT statements
with numeric operands are treated as Format 3 ACCEPT statements unless the program
containing the ACCEPT statements was compiled with the M Compile Command Option
(see page 157).

At the beginning of each ACCEPT statement, the next record is read from standard input into
the ACCEPT buffer. The following operations take place for each of the receiving data items
in the ACCEPT statement:

1. If there are no characters in the ACCEPT buffer, the next record is read from standard
input into the ACCEPT buffer. The default size for the ACCEPT buffer is 264
characters. However, the B Runtime Command Option (see page 194), or its equivalent
B keyword (see page 345) in the RUN-OPTION configuration record, may be specified
to change the size of this buffer up to a maximum of 65280 characters.

2. If the number of characters in the ACCEPT buffer does not exceed the size of the current
receiving item, those characters are transferred to the receiving item in the appropriate
format (that is, left justified, space fill for all Format 1 and for alphanumeric Format 3,
and with appropriate conversion for numeric Format 3).

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 41

3. If the number of characters in the ACCEPT buffer exceeds the size of the current
receiving item, only the leftmost “size” characters are transferred, as described in the
previous operation. The characters that remain in the ACCEPT buffer are used for the
next receiving item or are discarded if the current receiving item is the last receiving item
in the ACCEPT statement.

Note Where numeric sending and receiving data items are used with piping, the use of the
CONVERT phrase with DISPLAY and ACCEPT statements is strongly recommended.

The M Runtime Command Option (see page 195) modifies the operation of Format 1
ACCEPT statements to conform to Level 2 ANSI semantics. The actions described above are
modified as follows:

1. If the number of characters in the ACCEPT buffer does not equal or exceed the size of
the current receiving item, one or more records are read from standard input and are
concatenated until there are enough characters.

2. The leftmost “size” characters are transferred as described in steps 2 and 3 in the
instructions above. The characters that remain in the ACCEPT buffer are discarded.

Note that the use of the M Runtime Command Option requires close matching of ACCEPT
and DISPLAY statements when used with piping.

Also note that the M Runtime Command Option affects the operation of Format 1 ACCEPT
statements which are not redirected; the console operator is required to enter enough
characters to fill the receiving item. If the Enter key is pressed before enough characters have
been entered, the request will be reissued until the concatenation of the characters entered is
sufficient to fill the receiving item.

The M Runtime Command Option does not affect the operation of Format 3 ACCEPT
statements.

An end-of-file condition is reported to Format 3 ACCEPT statements as an exception variable
of 64 (Send). If an end-of-file condition occurs and there is no ON EXCEPTION phrase, a
runtime system error is reported and execution ends.

Standard Output

The standard output device is defined by default to be the monitor of the terminal that started
the run unit. Standard output may be redirected to a file or other device by the operating
system conventions for standard output redirection and piping on the command line that starts
the run unit.

For example:

runcobol putdata >outputfile

redirects standard output to the file outputfile, and

runcobol putdata | runcobol getdata

pipes the standard output from program putdata to the standard input of program getdata.

DISPLAY statements—that do not specify the UPON or UPON CONSOLE phrase—write to
the standard output device.

When standard output is redirected, all phrases, except SIZE and CONVERT, of the Format 2
DISPLAY statement are ignored. All sending operands are concatenated (within the limits of
the DISPLAY buffer as described in the following paragraphs) and are transferred to standard

Chapter 2: Installation and System Considerations for UNIX

42 RM/COBOL User's Guide

output as one or more records. The default size for the DISPLAY buffer is 264 characters.
However, the B Runtime Command Option (see page 194), or its equivalent B keyword (see
page 345) in the RUN-OPTION configuration record, may be specified to change the size of
this buffer up to a maximum of 65280 characters.

A Format 1 DISPLAY statement generates one record and may generate more than one
record, depending on the presence or absence of the M Runtime Command Option (see
page 195). If the M Option is not present in the Runtime Command, all sending operands are
concatenated, the resulting operand is truncated to the DISPLAY buffer size, and a single
record is written. If the M Option is present, all sending operands are concatenated and the
resulting operand is split into zero or more records equal in length to the DISPLAY buffer
size, along with a final record no longer than the DISPLAY buffer size.

If a Format 2 DISPLAY statement is redirected, one or more records are generated,
depending on the size of the discrete sending items. If the size of the sending operand does
not exceed the space remaining in the DISPLAY buffer, the sending operand is appended to
the current buffer and the DISPLAY buffer is written if the sending operand is the last
operand. If the size of the sending operand exceeds the space remaining in the DISPLAY
buffer, the current DISPLAY buffer is written and the sending operand is truncated to the size
of the DISPLAY buffer. The new DISPLAY buffer contents are written if the sending
operand is the last operand.

Standard Error

The standard error device is defined by default to be the monitor and keyboard. Interactive
debug input and output, temporary STOP statement message output and operator response
input, and runtime system message output are directed to the standard error device. These
operations can be redirected by a configuration option; see the discussion of the ERROR-
MESSAGE-DESTINATION keyword (on page 333).

These operations also can be redirected using the operating system standard-error redirection
convention on the command line that starts the run unit.

For example:

runcobol putdata 2>error.out

To direct standard output and standard error to the same destination, specify:

runcobol putdata >all.out 2>&1

Using Large Files on UNIX
RM/COBOL supports files larger than 2 gigabytes (GB). Large file support is available only
on those UNIX systems that provide native support for files larger than 2 GB. The following
UNIX systems provide such support: IBM AIX 5.2; HP-UX 11; some versions of Linux, Sun
Solaris SPARC 2.9; and SCO SVR5 (UnixWare 7.1.1 or later and SCO OpenServer 6).

Many UNIX systems are configured to restrict the size of files to which normal user accounts
can write. Often this limit is 2 GB or less. On systems that support large files, the system
administrator may be able to configure the system or the user accounts to allow a large
ULIMIT, or the user may need to run the ulimit command to increase the ULIMIT before
creating or accessing large files.

For more information, refer to Very Large File Support (on page 234).

Chapter 2: Installation and System Considerations for UNIX

 RM/COBOL User's Guide 43

Environment Variables for UNIX
An environment variable is an operating system feature that allows a value to be equated with
a name. Table 9 lists those environment variables that are used by RM/COBOL on UNIX.

Note In addition to the environment variables listed in the following table, RM/COBOL uses
environment variables to map generic file access names as explained in File Access Names on
UNIX (on page 22).

Table 9: Environment Variables for UNIX

Environment Variable Usage

HOME Locating files. See File Locations Within Operating
System Pathnames on UNIX (on page 21).

LD_LIBRARY_PATH Locating optional support modules (see page 449).
Note that this environment variable is system-
specific. Other UNIX operating systems may use
the environment variables LIBPATH or SH_PATH.

PATH Locating files. See Directory Search Sequences on
UNIX (on page 21).

PRINTER Printer support (see page 238).

RMPATH Locating files. See Directory Search Sequences on
UNIX (on page 21).

RMTERM132 ACCEPT/DISPLAY CONTROL SCREEN-
COLUMNS (see page 215).

RMTERM80 ACCEPT/DISPLAY CONTROL SCREEN-
COLUMNS (see page 215).

RM_COMPILER_WRAP_LONGNAMES Controls whether the compiler will wrap rather than
truncate long user-defined words in the listing
summary (allocation map, cross reference, summary
error messages, and so forth). The value “Yes”
causes wrapping; the value “No” causes truncation.
The value can be specified as “Y” or “N” and case
does not matter. See also the WRAP-
LONGNAMES value (on page 306) for the
LISTING ATTRIBUTES keyword of the
COMPILER-OPTIONS configuration record.

RM_DEVELOPMENT_MODE C$SetDevelopmentMode subprogram (see
page 571).

RM_DYNAMIC_LIBRARY_TRACE Tracing support module loads. See Locating
optional support modules (on page 449).

RM_ENCODING Specifies the encoding of characters in the source
for purposes of translating them to Unicode in the
XML symbol table. The built-in and predefined
values of RM_LATIN_1 and RM_LATIN_9, which
are used to designate Latin-1 or Latin-9,
respectively, may be used as well as any encoding
names supported by an available iconv library. If
not specified, RM_LATIN_9 is assumed. For more
information, see “UNIX Character Encoding” in the
XML Extensions User’s Guide.

RM_ESCAPE_TO_COMMAND TERM-INPUT ACTION=ESCAPE-TO-
COMMAND (see page 357).

Chapter 2: Installation and System Considerations for UNIX

44 RM/COBOL User's Guide

Table 9: Environment Variables for UNIX

Environment Variable Usage

RM_IGNORE_GLOBAL_RESOURCES Causes the compiler, runtime system, or recovery
utility not to access the global resources file. This
may be useful if you are trying to develop at the
same time others are running an application in live
“production mode.” See Command-Line Options
(on page 26) and Specifying Synonyms (on
page 26).

RM_KEEP_XML_SYMTAB_FILE The value specifies the path of the directory where
the temporary XML-format symbol table file from
the compiler should be preserved. See also the
KEEP-TEMP-XML-SYMBOL-TABLE-FILE
keyword (on page 302) of the COMPILER-
OPTIONS configuration record.

RM_LIBRARY_SUBDIR Locating optional support modules. See Using a
Different Subdirectory (on page 450).

RM_LOAD_WOW_CLIENT Loading the WOW Extensions support module,
libtclnt.so.

RM_VERBOSE_BANNER Compile command messages (see page 177) and
runcobol banner message (see page 418).

RM_Y2K COMPILER-OPTIONS ALLOW-DATE-TIME-
OVERRIDE (see page 295).

RUNPATH Locating files. See Directory Search Sequences on
UNIX (on page 21).

SHELL SYSTEM subprogram (see page 579).

TAPE Tape support (see page 239).

TERM Terminal I/O. See Terminal Name (on page 30).

TERMCAP Terminal I/O. See Termcap Database (on page 29).

TERMINFO Terminal I/O. See Terminfo Database (on page 29).

TMPDIR Temporary files (see page 249).

TZ Standard C TimeZone variable.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 45

Chapter 3: Installation and
System Considerations for
Microsoft Windows

This chapter lists the hardware and software required to install the RM/COBOL product,
describes how to install RM/COBOL, and provides information specific to using RM/COBOL
with Microsoft 32-bit Windows operating systems.

Your computer configuration is the assembled set of hardware and software that makes up
your system. Before you can develop or run RM/COBOL programs, your configuration must
meet or exceed the requirements set forth in this chapter.

System Requirements for Windows
RM/COBOL runs on the IBM PC and full compatibles. Appropriately licensed versions run
in conjunction with Client for Microsoft Networks or Novell NetWare software to provide
support for multi-user file access.

Required Hardware
An IBM PC or compatible machine capable of running a supported Microsoft Windows
operating system as specified by Required Software. The 32-bit Windows version will run on
32-bit or 64-bit machines and Windows operating systems. The 64-bit Windows version
requres a 64-bit machine and Windows operating system.

Note Most Micro Focus RM/COBOL products and licenses are distributed electronically. If
you elect to receive physical media, an optical drive capable of reading a CD-ROM (for the
product) and a 3.5” floppy drive (for the license certificate file) are required at installation
time.

Required Software
A supported Windows operating system is required. See Support Resources | Product
Availability and Support Schedule at https://supportline.microfocus.com for supported

https://supportline.microfocus.com/

Chapter 3: Installation and System Considerations for Microsoft Windows

46 RM/COBOL User's Guide

Windows operating systems. Both 32-bit and 64-bit operating systems are supported. There
are 32-bit and 64-bit versions of the RM/COBOL product. The 32-bit versions of
RM/COBOL will run on 32-bit or 64-bit Windows operating systems. The 64-bit versions of
RM/COBOL require an operating system that supports 64-bit applications. You can
determine whether your Windows operating system supports 64-bit applications by looking at
“System type:” in Control Panel | System. If system type is “64-bit Operating System” 64-bit
applications are supported; otherwise only 32-bit applications are supported.

Note System type may specify “32-bit Operating System, x64-based processor”. This
indicates that the machine supports 64-bit data, but the Windows OS only supports 32-bit
applications.

Local Area Network (LAN) Software

To provide multi-user access, the network software built into Windows is required.

Btrieve Software

To access local Btrieve files, the following software is required:

• Version 6.15 or later of Btrieve for 32-bit Windows

To access remote Btrieve files, both of the following software components are required:

• Version 6.15 or later of Btrieve MicroKernel Database Engine for NetWare or a
Windows operating system

• Version 6.15 or later of Btrieve Requester for 32-bit Windows

Note Btrieve components are available from Pervasive Software Inc.

System Installation for Windows
This section describes how to install RM/COBOL on Microsoft Windows systems using the
following methods:

• Electronic Product Delivery Installation (as described below)

• CD-ROM Installation (see page 49)

You may also automate the installation program for RM/COBOL, which allows the
installation of RM/COBOL to be incorporated with the installation of your application. For
more information, navigate to https://supportline.microfocus.com/productdoc.aspx, Micro
Focus Developer – COBOL and Software Developer Tools | RM/COBOL | 12 | Windows
Installer Guide and refer to the “RM/COBOL Runtime Installation Details” and “RM/COBOL
Recover1 Utility Details” sections of the installer guide documentation. You may also wish
to refer to the “RM/COBOL Compiler Installation Details” and “RM/COBOL CodeWatch
Integrated Development Environment Installation Details” sections.

Both 32-bit and 64-bit versions of RM/COBOL are available. The 64-bit version of
RM/COBOL is installed separately from the 32-bit version and will co-exist with the 32-bit
version. All Micro Focus supplied runtime programs and extensions, such as RECOVER1,

https://supportline.microfocus.com/productdoc.aspx

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 47

RMCONFIG, InstantSQL and XML Extensions are available as both 32-bit and 64-bit
versions.

No special compilation options are required to build 64-bit RM/COBOL programs – compiled
object files (.cob files for the default object file extension) are fully compatible with either the
32-bit or 64-bit runcobol command. Non-COBOL programs not supplied by Micro Focus,
that is, user DLLs, must be rebuilt as 64-bit programs to be loaded by the 64-bit runtime. A
32-bit DLL cannot be loaded by the 64-bit runtime; this will often manifest as a “called
program not found” error since the search for a loadable program to satisfy the CALL
statement will be unsuccessful for the 64-bit runtime.

To verify that an installation is successful, see Chapter 5: System Verification (on page 139).

Installation Locations
On 64-bit Windows, the 64-bit programs (runtime, compiler, recovery, etc.) are installed in
“C:\Program Files\Micro Focus\RM\RMCOBOLv12-64”, while the 32-bit programs are
installed in “C:\Program Files (x86)\Micro Focus\RM\RMCOBOLv12”. Shared 64-bit
components are installed in “C:\Program Files\Common Files\RM\RMCOBOLv12-64”,
while 32-bit shared components are installed in “C:\Program Files\Common
Files\RM\RMCOBOLv12”. If these programs are installed in custom locations, it’s critical
that the 32-bit components and the 64-bit components are separated, that is, not installed in
the same folder.

On 32-bit Windows, the 32-bit programs (runtime, compiler, recovery, etc.) are installed in
“C:\Program Files\Micro Focus\RM\RMCOBOLv12”. Shared 32-bit components are
installed in “C:\Program Files\Common Files\RM\RMCOBOLv12”.

Electronic Product Delivery Installation
Note You must have an Internet connection and an Internet browser installed to proceed with
this method of installation.

The email containing notification of your Electronic Product Delivery contains an attachment,
a file named liant.lic. This file is a license certificate authorizing you to install the purchased
software. We recommend that you create a directory on your machine to store the license
certificates for your Micro Focus RM/COBOL products and save the liant.lic attachment to
this directory with a name that is meaningful to you.

RM/COBOL is available as a download from the Micro Focus Electronic Product Delivery
web site in two formats: Windows Self-Extracting EXE and ISO CD Image. A link to the
web site is provided in the notification email. From the web site, simply follow the download
and decompress instructions for the file format selected, and then perform the installation
instructions for that format, as outlined below.

• Windows Self-Extracting EXE. After downloading and decompressing the
deliverables, and creating the installation components directory from the Windows Self-
Extracting EXE format, follow these steps to install the RM/COBOL software on the
Windows operating system:

Note When the Windows Self-Extracting EXE is decompressed and the installation
components directory is created, the RM-Install program should start automatically. If
this is the case, proceed to step 6. Otherwise, begin with step 1.

1. Place a copy of your RM/COBOL license certificate, liant.lic, in the directory
containing the installation components.

Chapter 3: Installation and System Considerations for Microsoft Windows

48 RM/COBOL User's Guide

2. Click Start, and then click Run. In the Run dialog box, click the Browse button.

3. In the Browse dialog box, navigate to the directory containing the installation
components.

4. Click on the file, RM-Install, and then click Open.

5. In the Run dialog box, click OK.

6. The RM-Install program begins executing. Follow the instructions presented on the
screen and press the Next button to advance through the various pages.

7. On the Software License Agreement page, you must click “I accept the terms in the
license agreement” in order to continue with the installation.

8. On the License Certificates page, the license certificate file for the product being
installed is displayed. Do one of the following:

• If the license certificate for RM/COBOL software being installed is present in
the list area, press the Next button.

• If the license certificate for the RM/COBOL software being installed is not
present in the list area:

a. Press the Add button.

b. In the Select License Certificates dialog box, navigate to the directory
containing the license certificate file for the RM/COBOL software being
installed and select the filename for the license certificate. (This license
file, named liant.lic, is attached to the original Electronic Product Delivery
email for the product.)

c. Press the Open button and then press Next.

9. On the Installation Type page, do one of the following:

• Select the “Standard Installation” option to install all the components of all the
license certificates listed on the License Certificates page immediately, using
their default settings. Press the Install button.

• Select the “Custom Installation” option to select specific components (for those
products with multiple components) of all the license certificates listed on the
License Certificates page, and install them, changing their default installation
settings, as necessary.

Follow the custom installation instructions presented on the remaining pages.
On the Ready to Begin Installations page, press the Install button.

When the installation for the RM/COBOL components starts, follow the
additional instructions presented by the installation program.

• Select the “Administrative Installation” option to select specific components (for
those products with multiple components) to install in a shared Network Folder
for installation later on Network Client Machines.

Follow the administrative installation instructions presented on the remaining
pages. On the Ready to Begin Installations page, press the Install button.

Following the installation, the shared Network Folder will contain the necessary
files to install the components on the Network Client Machines, including the
license certificate files and a copy of the RM-Install program, which then can
be used to control the installation.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 49

• Select the “Network Installation” option to select specific components (for those
products with multiple components) to install from shared Network Folder onto
Network Client Machines.

Follow the network installation instructions presented on the remaining pages.
On the Ready to Begin Installation page, press the Install button.

10. When either the standard, custom, administrative, or network installation is
complete, click the Finished button on the Installation Status page.

After installation is complete, you can display the RM/COBOL Start Menu Programs
folder, which is illustrated in Figure 3 on page 51.

• ISO CD Image. The download format for ISO CD Image contains the full RM/COBOL
product CD. Use CD-ROM Burning software, such as Nero (http://www.nero.com) or
Roxio’s Easy CD Creator (http://www.roxio.com), to create the physical CD-ROM
media. Follow the instructions described in the following topic to install your product.

CD-ROM Installation
After downloading and decompressing the deliverables, and creating the installation
components directory from the ISO CD Image format, follow these steps to install the
RM/COBOL software on the Windows operating system:

1. Insert the RM/COBOL for 32-bit Windows CD-ROM in the appropriate CD-ROM drive.

2. Do one of the following:

• If the installation program starts automatically, proceed to step 3.

• If the installation program does not start automatically, click Start, and then click
Run. In the Open text box of the Run dialog box, type the following:

d:RM-Install

where, d is the drive letter of the CD-ROM drive. Click OK.

3. The RM-Install program begins executing. Follow the instructions presented on the
screen and press the Next button to advance through the various pages.

4. On the Software License Agreement page, you must click “I accept the terms in the
license agreement” in order to continue with the installation.

5. On the License Certificates page, the license certificate for the product being installed is
displayed. Do one of the following:

• If the license certificate for the RM/COBOL software being installed is present in the
list area, press the Next button.

• If license certificates for any products you do not wish to install are present in the list
area, select them and press the Remove button. Then, press the Next button.

• If the license certificate for the RM/COBOL product software being installed is not
present in the list area:

a. Press the Add button.

b. In the Select License Certificates dialog box, navigate to the directory
containing the license certificate file for the RM/COBOL software being
installed and select the filename for the license certificate.

http://www.nero.com/
http://www.roxio.com/

Chapter 3: Installation and System Considerations for Microsoft Windows

50 RM/COBOL User's Guide

This license file, usually named liant.lic, is included on the license diskette that
came as part of the installation media.

c. Press the Open button and then press Next.

Note The liant.lic license certificate file can be copied from the diskette to a
location on a hard drive and that location can be specified during installation. We
recommend that you create a separate directory on your machine to store the license
certificate files for all of your Micro Focus products and save those files with a name
that is meaningful to you.

• If there are license certificates for any other products that you wish to install at this
time, press the Add button again to add them; otherwise, press the Next button.

6. On the Installation Type page, do one of the following:

• Select the “Standard Installation” option to install all the components of all the
license certificates listed on the License Certificates page immediately, using their
default settings. Press the Install button.

• Select the “Custom Installation” option to select specific components (for those
products with multiple components) of all the license certificates listed on the
License Certificates page, and install them, changing their default installation
settings, as necessary.

Follow the custom installation instructions presented on the remaining pages. On the
Ready to Begin Installations page, press the Install button.

When the installation for the RM/COBOL components starts, follow the additional
instructions presented by the installation program.

• Select the “Administrative Installation” option to select specific components (for
those products with multiple components) to install in a shared Network Folder for
installation later on Network Client Machines.

Follow the administrative installation instructions presented on the remaining pages.
On the Ready to Begin Installations page, press the Install button.

Following the installation, the shared Network Folder will contain the necessary files
to install the components on the Network Client Machines, including the license
certificate files and a copy of the RM-Install program, which can then be used to
control the installation.

• Select the “Network Installation” option to select specific components (for those
products with multiple components) to install from shared Network Folder onto
Network Client Machines.

Follow the network installation instructions presented on the remaining pages. On
the Ready to Begin Installation page, press the Install button.

7. When either the standard, custom, administrative, or network installation is complete,
click the Finished button on the Installation Status page.

After installation is complete, you can display the RM/COBOL Start Menu Programs folder,
which is illustrated in Figure 3. The programs are described in Table 10 (see page 51).

Note For further information on installing RM/COBOL on a Windows operating system and
network client machines, see Installation Notes for Windows (on page 52).

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 51

Figure 3: RM/COBOL Start Menu Programs Folder

Note Depending upon the RM/COBOL package that you purchased, not all of the program
icons in Figure 3 will be displayed on your system or additional ones may be displayed. The
image for Figure 3 is from Windows XP. Later versions of Windows have revised or
eliminated the Start Menu.

Table 10: RM/COBOL Program Icons

Program Icon Name Description

CodeBridge User’s Guide Starts Adobe Reader for the CodeBridge User’s Guide PDF
file.

CodeWatch Starts CodeWatch, a fully integrated development
environment for RM/COBOL for Windows.

CodeWatch Help Starts the CodeWatch help file.

CodeWatch Readme Starts Notepad for the CodeWatch Readme text file.

CodeWatch User’s Guide Starts Adobe Reader for the CodeWatch User’s Guide PDF
file.

Compiler Starts the RM/COBOL compiler (rmcobol.exe) and prompts
for a source filename.

INI to Registry Starts the Initialization File to Windows Registry Conversion
utility (ini2reg.exe). This program takes a Windows
initialization (.ini) file and inserts its entries into the Windows
registry database used by RM/COBOL.

Readme Starts Notepad for the Readme text file, which contains
release notes for the installed version of RM/COBOL.

Recover1 Starts the Indexed File Recovery utility (recover1.exe). This
program is used to recover damaged indexed files.

Chapter 3: Installation and System Considerations for Microsoft Windows

52 RM/COBOL User's Guide

Table 10: RM/COBOL Program Icons

Program Icon Name Description

Registry Configuration Starts the RM/COBOL Configuration utility (rmconfig.exe).
This program sets the runtime system (runcobol.exe),
compiler (rmcobol.exe), and Indexed File Recovery utility
(recover1.exe) options for RM/COBOL programs and data
files.

RM Samples Shortcut to folder containing RM/COBOL samples.

RMCOBOL Language Ref. Starts Adobe Reader for the RM/COBOL Language
Reference Manual PDF file.

RMCOBOL Syntax Summary Starts Adobe Reader for the RM/COBOL Syntax Summary
PDF file.

RMCOBOL Syntax Summary
Help

Starts the RM/COBOL Syntax Summary help file.

RMCOBOL User’s Guide Starts Adobe Reader for the RM/COBOL User’s Guide PDF
file.

Runtime Starts the RM/COBOL runtime system (runcobol.exe) and
prompts for a program-name.

Toolbar Editor Starts the toolbar button editor program (rmtbedit.exe).

Xcentrisity Samples Shortcut to folder containing Xcentrisity samples.

XML Extensions Readme Starts Internet Explorer for the XML Extensions Readme file.

XML Extensions User’s Guide Starts Adobe Reader for the XML Extensions User’s Guide
PDF file.

Installation Notes for Windows
The following notes apply to installing RM/COBOL on Windows systems.

Installation of RM/COBOL on Windows

The RM/COBOL installation procedure checks the system configuration for compatibility of
other products with RM/COBOL. Certain Windows features can cause problems with
RM/COBOL. To avoid these problems and fix incorrect Windows registry entries, see
Network Redirector File Caching (on page 658) and Opportunistic Locking (on page 659).

The “C runtime” on Windows provides a library of routines used by RM/COBOL to interface
with the operating system and provide other functionallity. In the summer of 2015, Microsoft
initiated a major change in the way the C runtime is packaged with their operating systems.
Prior to that date, it was the responsibility of the software vendor to install the desired "C
runtime" for their product. To some extent, that is still true, but one important piece, called
UCRTBASE, has now been declared to be a part of the operating system, and it is now kept
up to date using Windows Update. The one exception to this is Windows XP, which is no
longer receiving Windows updates.

For most other Windows operating systems, if the system is being kept up to date with
Windows Update, the RM/COBOL and Relativity products should install without incident.
However, if UCRTBase is not already installed on a system, the following changes have been
made to the RM/COBOL and Relativity 12.13 product releases:

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 53

1. If the product is being installed on Windows XP, the RM-Install installer for
Windows will automatically install a UCRTBASE.

2. If the product is Window 7 (not Windows 7 Update 1) or Windows 8 (not Windows
8.1), the RM/COBOL products can no longer support these platforms as
UCRTBASE is not supported there.

3. If the product is installed via RM-Install and there isn't an UCRTBase present on the
system, RM-Install will automatically install the UCRTBase for the product.

4. If the RM/COBOL product is installed using the MSI directly, instead of using RM-
INSTALL, and there isn't a UCRTBase on the system, the installation will fail with a
message indicating this problem. If you have this or other problems installing your
RM/COBOL product, there is a redist folder in your installation media or electronic
software delivery. Within the redist folder there are two EXE's that can be used to
install the proper C Runtime. Execute vc_redist.x86.exe to install the C Runtime on a
32-bit Windows system or execute vc_redist.x64.exe to install the C Runtime on a
64-bit Windows system.

RM/COBOL for Windows is currently built with Microsoft Visual C/C++ 2017 (MS VC
v14.1). Prior versions of RM/COBOL were built with Microsoft Visual C/C++ 2015 and
2010 (MS VC v14.0 and v10) and, earlier still, Microsoft Visual C/C++ 2005 (MS VC v8).
For the most part, this does not affect users of the RM/COBOL product. An area where this
might affect users is when they have user DLLs built with a different version of Microsoft
Visual C than the RM/COBOL product they are using. Visual C 2017 uses the C/C++
runtime vcrutime140.dll, since it is version 14 (14.1 and 14.0 have the same name), and
Visual Studio 2010 uses the C runtime msvcr100.dll, since it is version 10. Installation of an
RM/COBOL product ensures that the necessary C runtime is installed and increments the use
count for that C runtime DLL. The following issues may exist for your user written DLL:

1. The DLL may use a different C runtime than the RM/COBOL Runtime is using.
This is generally not a problem except for certain cases where the C runtime has data
settings that are not shared between the two different C runtimes. An example of
this is the _fmode (file mode) variable that tells the C runtime whether files are to be
opened as text or binary on Windows. The RM/COBOL runtime sets the file mode
to binary while running COBOL programs, but resets the file mode to the Windows
default of text when calling a non-COBOL program, as in calling a user DLL, and
restores the binary mode after the non-COBOL program returns. When the C
runtime is different in the DLL, then the DLL depends on the Windows default for
the file mode. In such cases where the C runtime has a state variable that the user
expects to be consistent between RM/COBOL and their user DLL, it might be
necessary to rebuild the user DLL with the same Visual C used to build the
RM/COBOL product.

2. Uninstalling an older version of RM/COBOL and installing a newer version could
delete C runtime files from Windows\System32 or Windows\SysWOW64 directories
that are considered no longer needed by the installer during the uninstallation. Since
user DLLs are not often installed from an MSI that registers the shared DLLS needed
by the user DLL, uninstalling the RM/COBOL product may cause the C runtime
DLL (for example msvcr100.dll) referenced by the user DLL to be deleted during the
uninstallation of RM/COBOL. This would happen if RM/COBOL was the only
product installed that used the older shared DLL for the C runtime. After the
deletion, the user DLL would not load because it has an unsatisfied dependency on
the older C runtime that is no longer present. This usually presents itself as a “not
found” error for the CALL statement in the RM/COBOL program that calls the user
DLL; the DLL is actually found but cannot be loaded and the search continues for a
DLL that can be successfully loaded; when the search ends without success, the “not
found” error is reported. To fix this issue, the older C runtime DLL must be added

Chapter 3: Installation and System Considerations for Microsoft Windows

54 RM/COBOL User's Guide

back manually or the user DLL rebuilt with the same Visual C version used to build
the RM/COBOL product.

Installation of RM/COBOL on Network Client Machines

The RM/COBOL installation process for CodeWatch, Runtime, Recover1, and Compiler
supports users who wish to install RM/COBOL on a network server machine and then install
RM/COBOL on multiple client machines using the RM/COBOL installation on the server.

First, install all of the RM/COBOL components that you need onto the server machine using
the “Administrative Installation” method. This may be performed either directly on the server
or from a client machine via a mapped network drive. The administrative installation will
prompt for a Network Folder. This must be the shared folder that the client machines will
access for the installation.

Note Using the “Administrative Installation” will not result in a working installation on the
network server or the client machine on which it was run. An administrative installation is
merely a preparation for installing on client machines. You must perform a standard, custom,
or network installation to have a complete installation on the server machine. This is a change
in behavior from previous versions of RM/COBOL.

Then, on each remaining client machine, invoke the RM-Install program in the network
shared directory that was specified as the Network Folder during the administrative
installation, and then specify a network installation on the Installation Type page. This causes
the installation process to install the RM/COBOL program folder and icons for those
components that already exist in the original server installation. Shared system DLLs (such as
CTL3D32.DLL and MSVCRT.DLL) also will be installed on the client machine (if a later
version does not already exist there) and appropriate Windows registry entries will be created.

Default Native Character Set

Once RM/COBOL has been installed on Windows, the character set defined by the OEM
codepage becomes the default native character set for the compiler, runtime, and CodeWatch.
Starting with version 9, RM/COBOL also has support for a native character set using the
ANSI codepage. A complete explanation of native character set selection is provided in
Character Set Considerations for Windows (see page 100).

Registering the RM/COBOL Compiler and Runtime
Executables
The RM/COBOL compiler and runtime system use clients and servers that conform to
Microsoft Windows Component Object Model (COM) technology standard. The server must
be registered with Windows, which is normally done during system installation. This section
discusses the information that must be considered when components of the RM/COBOL
compiler or runtime system are moved or renamed after installation or if the Windows
registry is damaged. For information on registering the runtime, see Runtime Registration (on
page 56).

Compiler Registration

The RM/COBOL for Windows compiler consists of two components:

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 55

• A client, which may be either of the following:

− The console-mode client, called rmcobolc.exe

− The GUI-mode client, called rmcobolg.exe

Either client may be called rmcobol.exe.

• A server, called rmcbl12c.dll

The compiler server DLL, which must be registered with Windows before RM/COBOL
programs can be compiled, is automatically registered when the compiler is installed. If the
compiler is moved to a directory other than the installation directory without a reinstallation,
an error message is displayed indicating that there is a registration problem. The error
message is displayed either in the console window for the console-mode compiler or in a
message box for the GUI-mode compiler. The text of the error message is as follows:

An error occurred while the RM/COBOL compiler was loading:

 Class not registered (the code is 80040154).

To resolve this problem, reinstall the RM/COBOL compiler, or register
 the RM/COBOL compiler with the /REGSERVER command.

As indicated, there are two ways to resolve this problem. You can do either of the following:

• Repeat the installation process.

• Use the /REGSERVER command-line option.

Registering the Compiler

To register the RM/COBOL for Windows compiler in a directory other than the installation
directory using the /REGSERVER command-line option:

1. First, make sure that rmcbl12c.dll is in the Windows System directory.

2. Then, either click the Windows Start button and select Run from the menu, or open a
Command Prompt window.

3. Enter the following command:

path\RMCOBOL /REGSERVER

where, path is the drive and directory or the UNC location of these two files. For
example:

"c:\program files\rmcobol v12\rmcobol" /regserver

Note The quotes are necessary only if the executable pathname contains spaces.

4. If the registration process is successful, a message, such as the following, is displayed:

Server "c:\windows\system\rmcbl120c.dll"
 registration succeeded.

It does not matter which of the two clients, the console-mode or GUI-mode, is used to register
the server, other than that the console-mode compiler displays the message in the console

Chapter 3: Installation and System Considerations for Microsoft Windows

56 RM/COBOL User's Guide

window while the GUI-mode compiler displays the message in a message box. Regardless of
which client registers the server, either compiler client can use the registered server.

Unregistering the Compiler

The RM/COBOL compiler also provides the /UNREGSERVER command-line option to
unregister the compiler from Windows. Although the uninstallation program automatically
unregisters the compiler, this can be done manually with the following command:

path\RMCOBOL /UNREGSERVER

When the compiler server has been properly unregistered, a message, such as the following, is
displayed either in the console window for the console-mode compiler or in a message box for
the GUI-mode compiler:

Server "c:\windows\system\rmcbl12c.dll" unregistration succeeded.

If the compiler server had not been properly registered or has already been unregistered, a
detailed error message is displayed instead. For example:

The server could not be unregistered: Class not registered

In this error message, “Class not registered” indicates that the server was not registered.

It is not necessary to unregister the compiler server before re-registering the compiler server
from a different location.

Showing the Compiler Registration

Finally, the following option will display the location of the currently registered compiler
server:

path\RMCOBOL /SHOWSERVER

When the compiler server has been properly registered, a message, such as the following, is
displayed either in the console window for the console-mode compiler or in a message box for
the GUI-mode compiler:

Server "c:\windows\system\rmcbl12c.dll" is currently registered.

If the compiler server is not properly registered, a detailed error message is displayed instead.
For example:

Show server failed: Class not registered

In this error message, “Class not registered” indicates that the server is not registered.

Runtime Registration

The RM/COBOL for Windows runtime system consists of two components:

• A client, called runcobol.exe

• A server, called rmcbl12r.dll

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 57

The runtime server DLL, which must be registered with Windows before RM/COBOL
programs can be run, is automatically registered by the Setup program when the runtime
system is installed. If the runtime is moved to a directory other than the installation directory
without a reinstallation, an error message is displayed in a message box indicating that there is
a registration problem. The text of the error message is as follows:

An error occurred while the RM/COBOL runtime was loading:

 Class not registered (the code is 80040154).

To resolve this problem, reinstall the RM/COBOL runtime, or register
 the RM/COBOL runtime with the /REGSERVER command.

As indicated, there are two ways to resolve this problem. You can do either of the following:

• Repeat the installation process.

• Use the /REGSERVER command-line option.

Registering the Runtime

To register the RM/COBOL for Windows runtime in a directory other than the installation
directory using the /REGSERVER command-line option:

1. First, make sure that rmcbl12r.dll is in the Windows System directory.

2. Then, either click the Windows Start button and select Run from the menu, or open a
Command Prompt window.

3. Enter the following command:

path\RUNCOBOL /REGSERVER

where, path is the drive and directory or the UNC location of these two files. For
example:

"C:\program files\rmcobol v9\runcobol" /regserver

The registration is for the machine, but if that fails for lack of permissions, then the
registration is done for the current user.

Note The quotes are necessary only if the pathname contains spaces.

Registration can also now be performed for the current user only instead of per-machine
basis. This type of registration does not require the user have administrative privileges.
The above command silently registers the runtime only for the current use if per-machine
registration fails due to a lack of permissions. However, current user registration can not
be forced if the current user is an administrator. To register the runtime only for the
current user, use this Windows system command:

regsvr32 /n /i:user path\RMCBL12R.DLL

Note Omitting the /n /i:user is equivalent to registering runcobol with the /REGSERVER
option, that is, registering for the machine, and if that is not possible, then just for the
current user. Omitting just the /n registers both for the machine and the user; this does
require the user have administrative privileges.

Note If both the 32-bit and 64-bit runtime systems are installed, each must be registered
independently.

Chapter 3: Installation and System Considerations for Microsoft Windows

58 RM/COBOL User's Guide

4. If the registration process is successful, a message, such as the following, is displayed:

Server "c:\windows\system\rmcbl12r.dll" registration succeeded.

Unregistering the Runtime

The RM/COBOL runtime also provides the /UNREGSERVER command-line option to
unregister the runtime from Windows. Although the uninstallation program automatically
unregisters the runtime, this can be done manually with the following command:

path\RUNCOBOL /UNREGSERVER

When the runtime server has been properly unregistered, a message, such as the following, is
displayed:

Server "c:\windows\system\rmcbl12r.dll" unregistration succeeded.

If the runtime server had not been properly registered or has already been unregistered, a
detailed error message is displayed instead. For example:

The server could not be unregistered: Class not registered

In this error message, “Class not registered” indicates that the server was not registered.

It is not necessary to unregister the runtime server before re-registering the runtime server
from a different location.

To unregister the runtime only for the current user, use this Windows system command:

regsvr32 /u /n path\RMCBL12R.DLL

Showing the Runtime Registration

Finally, the following option will display the location of the currently registered runtime
server:

path\RUNCOBOL /SHOWSERVER

When the server has been properly registered, a message, such as the following,
is displayed:

Server "c:\windows\system\rmcbl12r.dll" is currently registered.

If the runtime server is not properly registered, a detailed error message is displayed instead.
For example:

Show server failed: Class not registered

In this error message, “Class not registered” indicates that the server is not registered.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 59

System Removal for Windows
To remove RM/COBOL from your system:

1. Open the Windows Control Panel.

2. In the Control Panel, do one of the following:

• On Windows 2000, XP, or Server 2003, double-click Add or Remove Programs.

• On Windows Vista or Server 2008, double-click Programs and Features.

3. In either the Add or Remove Programs Properties window or the Programs and Features
window, select Micro Focus RM/COBOL vx Compiler from the list of currently
installed programs and updates. (vx is the version number of the product to be removed.)

Note Follow these same instructions to select and remove other RM/COBOL product
components (for example, Micro Focus RM/COBOL vx CodeWatch Debugger, Micro
Focus RM/COBOL vx Recover1, and Micro Focus RM/COBOL vx Runtime), if
necessary.

4. Do one of the following to start the uninstall process:

• On Windows 2000, XP, or Server 2003, click the Remove button.

• On Windows Vista or Server 2008, click the Uninstall button.

5. In the message box, click Yes to proceed with the uninstall process.

6. The Micro Focus RM/COBOL vx Compiler dialog box is then displayed, detailing the
progress of the uninstall.

When the uninstall is successfully completed, click OK.

7. Click OK to close either the Add or Remove Programs window or the Programs and
Features window.

8. Close the Windows Control Panel.

All installed RM/COBOL system programs, files, shortcuts, and Windows registry entries are
now removed. Customer files are not affected.

System Configuration for Windows
As mentioned, RM/COBOL supports IBM PCs, full PC compatibles, and Windows systems.
This section sets forth information required to configure RM/COBOL with each type of
system.

Creating a Windows Shortcut
When you create a shortcut in Windows, you must also specify the properties of the item.
Properties include a description of the item (the application name) and the working directory
where the application files are stored.

To create a shortcut for an application under Windows:

1. Open the folder to which you want the item added. (Note that you can also add an item
directly to the desktop.)

Chapter 3: Installation and System Considerations for Microsoft Windows

60 RM/COBOL User's Guide

2. Click the right mouse button to open a context menu. Point to the New option and click
Shortcut. The Create Shortcut dialog box opens.

3. In the Command line text box, type in a runtime system command, as described in
Chapter 7: Running (on page 189). Click the Next button.

4. When prompted to name the shortcut, choose a name that uniquely identifies the
application program. This name becomes the label that is displayed under the shortcut
icon.

5. After Windows creates the shortcut, you must modify the properties of the shortcut in
order for it to work properly. Right-click the shortcut icon and choose Properties. The
Shortcut Properties dialog box opens.

6. Select the Shortcut tab in the dialog box. (Figure 4 illustrates the Shortcut Properties
Tab used in this example.)

7. In the Start in text box, enter the name of the directory where the program files for this
application are located and where new files will be placed. The directory you specify
here becomes the current directory while the application program is running.

Figure 4: Shortcut Properties Tab

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 61

Using Associations with Filename Extensions
During installation, RM/COBOL for Windows automatically sets up filename extension
associations for .cbl and .cob files. These associations allow the user to compile or run source
or object files by double-clicking these files when running the Windows File Manager or
Windows Explorer. Because the Windows shell can only associate file extensions with one
program at a time, the last-installed runtime system (32-bit or 64-bit) will be invoked when an
object file (.cob file) is double-clicked.

Note We do not recommend applications be launched with a Windows shell double-click
except on dedicated machines such as point-of-sale terminals. The recommendation is based
on the fact that an application from another vendor can take over ownership of .cob files at
any time.

Normally, you cannot pass command-line options to Windows programs executed using a
filename extension association. However, using the Windows registry (see page 67), it is
possible to inform the RM/COBOL compiler or runtime system of command-line options for
all programs or for specific programs. For a discussion of the command-line options in the
RM/COBOL configuration, see the Command Line Options property (on page 74).

Under Windows, it is also possible to drag and drop .cbl and .cob files to the RM/COBOL
compiler or runtime system for execution. Dropping a .cbl file on a printer icon will print that
source file.

Prompting for a Filename
If the command line specified for the compiler or the runtime system has a ? character for the
source or object filename, the Select an RM/COBOL Object File dialog box is displayed, as
shown in Figure 5.

Figure 5: Select an RM/COBOL Object File Dialog Box

Chapter 3: Installation and System Considerations for Microsoft Windows

62 RM/COBOL User's Guide

When the user selects the file from the list available in the space below the Look in
drop-down list box, the filename in the File name text box replaces the ? character on the
command line. To open (or start) the source or runtime system file, click the Open button.
Double-clicking the name of the file also opens (or starts) the selected object file.

Locating RM/COBOL Files on Windows

File Locations within Operating System Pathnames on
Windows
File locations are determined by the pathname of the file, according to operating system rules
and conventions. A fully qualified pathname contains the drive specifier, a directory path, the
filename, and the filename extension. A filename that begins with a universal naming
convention (UNC) specifier (\\server) is also treated as a fully qualified pathname.

Note Novell NetWare syntax (server\volume:filename) is no longer supported. Use of UNC
filename is now required (\\server\volume\filename).

If a pathname is specified without a drive specifier, the current drive is assumed. If a
pathname is specified without a directory path, RM/COBOL searches the current directory of
the specified or assumed drive.

Specifying a directory path with a leading slash, a drive letter, or a volume name indicates to
RM/COBOL that an exact filename has been specified. If RM/COBOL cannot find the file in
the specified location, it will not look elsewhere. If you do not specify a directory path, and
RM/COBOL cannot find the file in the assumed location, it will search for the file according
to the directory search sequence. If a directory path is specified, but there is no leading slash,
drive letter, or volume name, then the EXPANDED-PATH-SEARCH keyword (see page 337)
of the RUN-FILES-ATTR configuration record determines whether the directory search
sequence will be used. When the configuration keyword is set to its default value of NO, the
directory search sequence will not be used. If the value is set to YES, then the entire name,
including the directory path, will be appended to each entry in the directory search sequence
in an attempt to locate the file.

Directory Search Sequences on Windows
You can direct RM/COBOL to search for a file not found in the current working directory by
using a predefined directory search sequence. There are two directory search sequences: one
for the compiler and one for the runtime system.

To direct the RM/COBOL compiler to use the directory search sequence, set the RMPATH
environment variable. You can do this by setting a synonym with the RM/COBOL
Configuration (rmconfig) utility (see page 614). Alternatively, you can right-click the mouse
button on a .cbl file, select the Synonyms Properties tab, and set the RMPATH synonym with
the following syntax (as discussed in Setting Synonym Properties on page 86):

path [;path] ...

To direct the RM/COBOL runtime system to use the directory search sequence, set the
RUNPATH environment variable. You can do this by setting a synonym with the
RM/COBOL Configuration (rmconfig) utility. You may also right-click the mouse button on

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 63

a .cob file, select the Synonyms Properties tab, and set the RUNPATH synonym with the
following syntax (as discussed in Setting Synonym Properties on page 86):

path [;path] ...

For both the RMPATH and RUNPATH environment variable values, path indicates the
directory that is to be searched for the file, and has the form:

[d:] [\] directory [\directory] ...

where, d is the drive specifier.

directory is the location of an existing file, or the location of a file that will be created.

If multiple paths are specified, they must be separated with semicolons.

Means other than setting synonyms can be used to set the RMPATH or RUNPATH
environment variable values. Consult your operating system documentation for such
methods. If synonyms are set, the synonyms will override values set by the operating system.

Figure 6 and Figure 7 illustrate the compiler and runtime system search sequences,
respectively.

Figure 6: Compiler Search Sequence

Figure 7: Runtime System Search Sequence

Files made to appear in the current directory by using Novell search directories when the
Novell Search Mode is set to a value other than 2 will not be accessed. If a file to be accessed
resides in a directory other than the current directory, that directory must be included in the
RMPATH or RUNPATH directory list. This requirement also applies to files located in
Novell search directories when the Novell Search Mode is set to a value other than 2.

The compiler, runtime system, and Indexed File Recovery (recover1) utility (see page 599)
require access to other files in order to operate. These include the license vault and dynamic
link library files (with an extension of .dll). The license vault must reside in the same
directory as the executable file. RM/COBOL looks for the other files first in the directory
containing the executable file, then in the current directory, and finally in the directories
specified in the PATH environment variable. For the dynamic link library files, the default

Look first in this directory on drive A:

A:wage\hourly\overtime;B:

Then look in the current directory on drive B:

Look first in the current directory on drive A:,
then drive B:

A:;B:;C:\

Then look in the root directory on drive C:

Chapter 3: Installation and System Considerations for Microsoft Windows

64 RM/COBOL User's Guide

Windows system directory (or directories), followed by the default Windows directory, will
be searched prior to searching the directories specified in the PATH environment variable.
The search of the Windows 32-bit system directory is followed by a search of the Windows
16-bit system directory, if available.

The compiler and runtime system may be executed from a directory other than the current
directory if a complete pathname is specified in the command line, or if either the search
directory of Novell NetWare or the DOS PATH directory search feature is used. If a
complete pathname is not specified and the compiler or runtime system is not located in the
current directory, the directories specified by PATH are searched.

Novell NetWare Search Paths
Novell NetWare defines a search path for locating command files. RM/COBOL defines a
search path for locating compiler files (RMPATH) and for locating runtime system files
(RUNPATH). Both Novell NetWare and RM/COBOL search paths consist of a list of
directories from which attempts are made to open files.

With RM/COBOL search paths, if any one of the directories in a user’s path does not have
search permission for the user, then the searching sequence stops for all remaining directories
and a security violation is reported. This security violation indicates that the runtime system
has been prevented from examining the directory for a file. If a security violation occurs, and
the file is located in a directory for which the user has permission, examine the permissions
for other directories in the RUNPATH sequence.

To prevent this security violation, take one of the following actions:

• Give the user search permission for all directories in RUNPATH, RMPATH, and the
Novell NetWare search path.

• Alternatively, remove the directory from the search path.

Note This same security violation can occur when creating a new file, even if it is with
OPEN OUTPUT. The RM/COBOL runtime system still searches RUNPATH to locate a file
that needs to be replaced.

File Access Names on Windows
The file access name you specify in the COBOL source program specifies the physical file or
device to which input or output is directed. For information on specifying the file access
name in a COBOL source program, see the discussion of the ASSIGN clause (file control
entry) in Chapter 3: Environment Division, and the discussion of the VALUE OF clause in
Chapter 4: Data Division, of the RM/COBOL Language Reference Manual.

To establish synonymy between a file access name, specified in your source program and
another name specified when the program is run, use an environment variable. Environment
variables may be set using the Synonyms tab of the Properties dialog box, as illustrated in
Figure 8. The Synonyms Properties tab is described in the topic Setting Synonym Properties
(see page 86). Consult your operating system documentation for other methods of setting
environment variables.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 65

Figure 8: Synonyms Tab of the Properties Dialog Box

For example, let us say that you specified a generic file access name for program input-output
and wish to direct it to a specific device or file. A generic file access name is one that does
not specify a directory path or drive letter. Since the format of physical pathnames, including
conventions of specifying drive letters and directory names, varies from one operating system
to another, for maximum portability it is recommended that source programs specify generic
file access names, preferably with eight or fewer letters. This recommendation only applies
when the file access name is hard coded into the program as a literal.

For example, if the file control entry specifies:

SELECT REPORT-FILE ASSIGN TO PRINT, "report"

and no environment variable with the name “report” is found, RM/COBOL will create a file
named report in the current directory on the current drive.

If, prior to running the program, you set the synonym “report” to a value of LPT1, all program
output written to REPORT-FILE will be written to LPT1.

If—again prior to execution—you set the synonym “report” to a value of
“A:\output\audit.lst”, RM/COBOL will create a file named audit.lst in the subdirectory
\output on drive A without any need to modify or recompile the source program.

Chapter 3: Installation and System Considerations for Microsoft Windows

66 RM/COBOL User's Guide

When an environment variable is not set, because there is no synonym set and no other
method of setting the environment variable has been used, the file access name in the COBOL
program specifies the actual filename. Synonym values can be canceled by highlighting the
entry on the Synonyms tab of the Properties dialog box, clicking the Remove button, and
restarting runcobol.exe.

Whether or not an environment variable is used to modify the file access name, if the resulting
file access name does not include either a drive letter or a directory path, RUNPATH will be
used by the runtime system to obtain the fully qualified pathname. For additional
information, see File Locations within Operating System Pathnames on Windows (on
page 62).

The RESOLVE-LEADING-NAME and RESOLVE-SUBSEQUENT-NAMES keywords of
the RUN-FILES-ATTR configuration record can be used to force resolution of one or more of
the directory names from the environment. For more information, see the discussion of the
RUN-FILES-ATTR configuration record (on page 335).

Control characters are removed from the file access name, but spaces are preserved since
Win32 supports spaces in filenames.

The resulting file access name should follow the operating system rules for valid filenames
and pathnames. If the file access name contains any of the characters

\ / : * ? " < > |

an error will occur when the file is opened, with the exception that “\” may be used as a
directory separator and “:” may be used to indicate a device.

Windows System Print Jobs
When the resulting file access name is PRINTER or PRINTERn, where n is a decimal digit
from 1 to 9, RM/COBOL refers to the Windows printer device attached to LPT1: or LPTn:
respectively, provided that LPT1: or LPTn: has a Windows printer attached to it.

When the resulting file access name is a dynamic printer device, as described in Windows
Printers (on page 322), RM/COBOL displays the standard Windows Print dialog box when
the file is opened. This allows the user to select the destination Windows printer in a dynamic
manner (that is, at execution). Once the dynamic printer device has been opened, the selected
printer is remembered by the runtime, and subsequent opens do not display the standard
Windows Print dialog box. The program may call the P$EnableDialog subprogram (see
page 474) to force a standard Windows Print dialog box on the next open of a dynamic
printer. The program may also call the P$DisableDialog subprogram (see page 473) to cause
the Windows Print dialog box not to be displayed when the dynamic printer device is opened
for the first time. This feature can be useful when P$SetDialog (see page 475) has been called
to preset the needed printer (obtained from P$EnumPrinterInfo or by other methods) and the
application does not want the dialog to be displayed. The user may also set the Printer Dialog
Always property (see page 80) file to True to force the dialog box on every open of a dynamic
printer. The program may also call the P$DisplayDialog subprogram (see page 473) at any
time, to force the standard Windows Print dialog box to be displayed.

The DEFINE-DEVICE configuration record may define other file access names that are to be
treated as devices and change the default treatment of PRINTER and PRINTERn. See
DEFINE-DEVICE Configuration Record (on page 319) for additional information on
configuring file access names that are to be treated as devices.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 67

Windows Registry
Beginning with version 6.5, RM/COBOL for Windows stores configuration information for
the runtime system (runcobol), compiler (rmcobol), and Indexed File Recovery utility
program (recover1) in the Windows registry. The registry is a hierarchical database used to
store configuration settings and options maintained by Windows.

The Windows registry is organized much like a disk drive’s directory structure. All of
RM/COBOL’s configuration information is stored under the “directory” path
“HKEY_LOCAL_MACHINE\SOFTWARE\Liant Software
Corporation\RM/COBOL\CurrentVersion”. Three subdirectories underneath that path
(rmcobol, runcobol, and recover1) correspond with information previously stored in the
separate initialization files rmcobol.ini, runcobol.ini, and recover1.ini.

Note Previous versions of RM/COBOL for Windows stored program configuration
information in separate initialization files located in the main Windows directory. These
initialization files are no longer used. However, when distributing configuration information
to end-users, initialization files can still be shipped with your product. To merge your
program’s configuration information into the Windows registry, include a call to the supplied
Initialization File to Windows Registry Conversion (ini2reg) utility (see page 613) in your
application’s installation procedure.

You are not required to know the inner details of the Windows registry structure in order to
change the properties of your programs. RM/COBOL for Windows includes Windows shell
extensions that allow the manipulation of configuration information for default values as well
as individual program settings without having to navigate through the Windows Registry
Editor. Configuration information for a specific COBOL program may be edited by right-
clicking a source or object file and choosing Properties. If a source file is chosen, the
properties used when compiling that program can be modified. If an object file is chosen, the
properties used when running that program can be modified. The configuration options
available in the Properties dialog box are described in the section Setting Properties (on
page 68). Configuration information for programs and generic default values may also be
edited by running the supplied RM/COBOL Configuration (rmconfig) utility (see page 614).

Users may migrate the complete RM/COBOL Windows registry information from one
machine to another by using the Registry Editor (regedit.exe), which is included with
Windows. This program allows entire sections of the Windows registry to be exported to a
text file (with the .reg extension), which can then be imported into the Windows registry of
another machine. Consult the Microsoft Windows help documentation for more information
on regedit.exe.

Windows Registry Considerations
Several Windows registry issues may be encountered when using the Initialization File to
Windows Registry Conversion (ini2reg) utility (see page 613) if the RM/COBOL for
Windows runtime executable has been renamed.

Renaming the RM/COBOL for Windows Runtime

By default, the Windows registry key created by the ini2reg utility is the same as the name of
the input initialization file (.ini). This registry key is also used by the RM/COBOL
Configuration (rmconfig) utility (see page 614). The RM/COBOL for Windows runtime
expects to find the configuration information under a key based on the name of the executable

Chapter 3: Installation and System Considerations for Microsoft Windows

68 RM/COBOL User's Guide

module. If you rename the RM/COBOL for Windows runtime executable, runcobol.exe, it is
also necessary to rename the initialization file (runcobol.ini) to match the new runtime name
before the ini2reg utility is run.

Furthermore, if the RM/COBOL for Windows runtime is renamed, the Windows Explorer
SHELL/OPEN registry entry that names the runtime must be updated to reflect the new name.
Otherwise, Windows Explorer will be unable to find the runtime when a .cob file is opened,
and the runtime will not correctly read configuration information from the registry.

The RM/COBOL installation program automatically sets the SHELL/OPEN registry entry to
the drive and directory where the RM/COBOL for Windows runtime is installed. If the
runtime is later renamed or moved, the Registry Editor (regedit.exe) supplied with Windows
can be used to update the registry. The key is:

HKEY_LOCAL_MACHINE
 Software
 Classes
 RMCOBOL.Object
 shell
 open
 command

This entry must be set to the following:

x:\dir\filename.exe "%1"

where, x:\dir is the drive and directory containing the runtime, and filename is the name
of the RM/COBOL for Windows runtime. If this path contains spaces, it must be
surrounded by double quotes.

WARNING Use extreme caution when editing the Windows registry. Micro Focus
recommends that you do not change any other entries.

This entry can also be updated automatically using a properly prepared .reg file. See your
Windows documentation for details.

Setting Properties
This section describes the configuration options that can be set using the Properties
dialog box.

Note The Properties dialog box contains a set of seven tabs. Each tab contains a set of three
buttons that are active in all the tabs and which serve the same function. The OK button
accepts all the settings selected on that tab and then closes the dialog box. The Cancel button
closes the dialog box without saving any changes. The Apply button saves the settings
specified on that tab without closing the dialog box, allowing you to select another page of
options.

The following definitions explain terms used throughout this section.

Term Meaning

Boolean Indicates a value of True or False. A value of 1 or 0 may also be used to
indicate True or False.

number Indicates a positive integer value less than 65536, specified as a string of
decimal digits with an optional leading sign (“+”). A non-decimal digit
character, other than the optional leading sign character, terminates the

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 69

evaluation of the number, but is otherwise ignored, including any
characters which follow. Numbers greater than 65535 are evaluated
modulo 65536. A leading “-“ sign is allowed, but the decimal number
following is subtracted from 65536 to yield a positive value.

Valid examples (excluding the delimiter quotes):

“12”
“+12”

Invalid examples (excluding the delimiter quotes):

“-5” (yields +65531)
“=5” (yields 0 because of leading non-decimal digit)
“5A” (yields 5 because trailing non-decimal digits terminate scan of the

number)

string Indicates alphanumeric characters.

filename Indicates the operating system filename.

Selecting a File to Configure
The Select File tab, illustrated in Figure 9, allows you to select the source file, object file, or
indexed file that you want to configure. The title bar on each tab of the Properties dialog box
provides three important pieces of information depending on the settings selected on the
Select File tab. First, it displays either the name of the specific COBOL program you selected
or “Default”, if you are setting system defaults for all programs. Second, it displays whether
you are configuring the program for the runtime, compiler, or recovery utility. Third, it
indicates the name of the custom key in the Windows registry if the default key is not being
used.

Note If you have opened the Properties dialog box by right-clicking the mouse button on
an RM/COBOL source or object file and then selected Properties, this tab will not be
available. You are only able to configure options for the default key in the currently selected
individual file.

Chapter 3: Installation and System Considerations for Microsoft Windows

70 RM/COBOL User's Guide

Figure 9: Select File Tab

The Select File tab contains the following options:

• Configure. The two options provided in this area allow the specification of
configuration options for all programs or for a specific COBOL program.

− Default Properties. When selected, the Default Properties option enables the other
Properties tabs (Control, Synonyms, Colors, Toolbar, Menu Bar, and Pop-up Menu)
to set system defaults for all files.

− Individual File. When selected, the Individual File option enables the other
Properties tabs to change the properties for the file selected from the list box. (If the
needed file has not yet been configured, the Browse button can be used to add a new
file to the list or the Remove button can be used to remove a file from the list.) Any
directory path for the selected file must not be specified. For source and object files,
the extension must not be specified. For example, the source file
c:\mysrcdir\mysource.cbl must be specified as mysource and the object file
c:\myobjdir\myobject.cob must be specified as myobject. For indexed files, the
extension, if any, must be specified. For example, the indexed file
c:\mydatdir\mydata.inx must be specified as mydata.inx. The name specified is
not necessarily a file at all, but corresponds to the first argument from the command
line. In the case of the Runtime Command, this may be a program-name of a
program within a library file.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 71

Note that the following buttons are enabled only when the Individual File option is
selected:

• Browse. Use this button to open a dialog box that allows you to look for a file
for which you want to set properties.

• Remove. Use this button to remove a selected file from the list of files.

• Configure for. The three options provided in this area determine the activity for which
component the Properties tabs will configure a file.

− Runtime. If this option is selected, the settings for the object file (.cob) will be
shown and used when running the file.

− Compiler. If this option is selected, the settings for the source file (.cbl) are
affected.

− Recovery. If this option is selected, the settings used for recovering a data file with
the Indexed File Recovery (recover1) utility (see page 599) are affected.

• Scope. The two options provided in this area allow you to specify the extent of the
configuration settings.

− All Users. If this option is selected, all of the configuration options apply to all
users. These options are written into the Windows registry key,
HKEY_LOCAL_MACHINE. The Win32 version of RMCONFIG sets properties
that only affect Win32 programs. The Win64 version of RMCONFIG sets properties
that only affect the Win64 programs. This is only a concern when both Win32 and
Win64 RM/COBOL products are installed.

Note You must have Administrator privileges and, on Windows Vista, the
RM/COBOL Configuration (rmconfig) utility (see page 614) must be running as
Administrator. Furthermore, on Windows Vista,
HKEY_LOCAL_MACHINE\SOFTWARE always appears writable even without
Administrator privileges because it is virtualized for each user into:

HKEY_CURRENT_USER\Software\Classes\VirtualStore\MACHINE\SOFTWARE

− This User. If this option is selected, all of the configuration options apply only to
the current user. These options are written into the Windows registry key,
HKEY_CURRENT_USER. Properties set for This User affect both the 32-bit and
64-bit products; either version, Win32 or Win64, of RMCONFIG can be used to set
these options.

Note It is possible to configure programs by selecting “Properties” from the system
menu in the the runtime window. The above rules regarding 32-bit and 64-bit
applies to this form of configuration as well. The executing runtime can always
configure itself, but only changes made for This User will affect the runtime with the
opposite “bitness”.

• Key. This option allows you to override the master key in the Windows registry that is
used to store the configuration information. This is most useful if you have renamed the
compiler, runtime, or recovery utility program. The options in this area include:

− Default. If this option is selected, the default key for each product is used. For the
runtime, the default key is runcobol; for the compiler, it is rmcobol; and for the
recovery utility, it is recover1.

− Custom. Use this option to override the default key. Enter a new key name in the
text box and press the Set button.

Chapter 3: Installation and System Considerations for Microsoft Windows

72 RM/COBOL User's Guide

Note The combination of the selections in the Configure for area and the Key option
together affect where the values are stored.

• Use Defaults. The behavior of the Use Defaults button is dependent upon whether the
Default Properties or the Individual File option in the Configure area is in effect.

− If the Default Properties option is selected, choosing the Use Defaults button causes
the system defaults to be reset to the values that were in place when the product was
originally installed. Note, however, that any property values set for an individual file
will not be reset.

− If the Individual File option is selected, choosing the Use Defaults button causes
property values that have been overridden for the selected file to be reset to use the
system defaults.

Setting Control Properties

The Control Properties tab, illustrated in Figure 10, allows you to set various properties for
the Default Properties or Individual File, Configure for component (Runtime, Compiler, or
Recovery), Scope (All Users or This User), and Key (Default or Custom text) options that
were specified using the Select File tab (see page 69). The control properties that can be set
or modified are discussed in the following sections.

Figure 10: Control Properties Tab

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 73

The Control Properties tab contains the following options:

• Property. This list box presents an alphabetical listing of the properties that are used to
configure the physical appearance of the RM/COBOL program. An area below this list
box contains a description of the selected property. (Each of these properties is discussed
in the sections that follow.)

• Default Setting. Select this button to use the selected property’s default value. That
default value will be shown in the Value area (described below). See the Default
Properties option on the Select File tab for information on configuring default values, as
discussed in Selecting a File to Configure (on page 69).

• Custom Setting. Select this button to override the default value for the selected
property.

• Value. This area displays the value associated with the property selected in the Property
list box and allows you to change it. Note that this area is disabled unless the Custom
Settings button is selected.

Once set, control properties, other than the Command Line Options Property described on
page 74, are used by performing the following ordered search: Program Specific Properties
for the Current User, Program Specific Properties for All Users, Default Properties for the
Current User, and Default Properties for All Users. The first setting of a particular property
from this ordered search is used and the search is terminated.

Note A call to C$GUICFG (see page 552) to set a control property will temporarily override
this search. The value specified in C$GUICFG will be used instead until the next update of
control properties from the registry.

Auto Paste Property

The Auto Paste property specifies a Boolean value that enables or disables the Auto Paste
function. Setting Auto Paste to True enables the Auto Paste feature and double-clicking the
mouse button transfers the marked data to a pending ACCEPT field. If Auto Paste is set to
False, double-clicking the mouse button marks a word of text. The default value for this
property is False.

Note During installation you have the option to allow certain configuration information to be
added to the Windows registry. This configuration information, included in the file
rmcobol.reg, sets the system default value of the Auto Paste control property to the custom
setting True. This default value will be used for individual files unless overridden by a
custom setting.

The C$GUICFG subprogram (see page 552) can be used to change the Auto Paste property
temporarily in order to manipulate the graphical user interface.

Auto Scale Property

The Auto Scale property specifies a Boolean value that determines whether to implement auto
scaling of fonts when the RM/COBOL runtime window is resized. Setting Auto Scale to True
automatically changes the font size when the window is resized. Setting Auto Scale to False
turns off this capability. The default value for this property is True. See also the Sizing
Priority property (on page 83).

The setting of the Auto Scale property is ignored if the Scroll Buffer Size property (see
page 82) is set to a non-zero value.

Chapter 3: Installation and System Considerations for Microsoft Windows

74 RM/COBOL User's Guide

The C$GUICFG subprogram (see page 552) can be used to change the Auto Scale property
temporarily in order to manipulate the graphical user interface.

Command Line Options Property

The Command Line Options property defines a series of command-line options to be passed
to the compiler, runtime system, or recovery utility, depending on whether “Compiler”,
“Runtime”, or “Recovery” was selected as the “Configure for” component on the Select File
tab in the configuration Properties dialog box, as described in Selecting a File to Configure
(on page 69). Command-line options are processed first from the Command Line Options
property settings and then from the options specified in the actual command line submitted by
the user.

Since for most options, a later specification of the option overrides a prior specification, this
means that options specified on the actual command line take precedence over command-line
options specified in the Command Line Options property. This is not true of cumulative
options, such as the L Runtime Command Option, which are accumulated from left to right as
the command-line options are processed in the order given above. The maximum total length
of the command line options is 4095 characters. For more information, see Compile
Command Options (on page 148), Runtime Command Options (on page 190), and Recovery
Command Options (on page 600).

For the Command Line Options property, the options are processed in the following order:
Default Properties for All Users, Default Properties for the Current User, Program Specific
Property for All Users, and Program Specific Property for the Current User. Then the options
specified on the actual command-line, if any, are processed.

Notes

• Some options for the runtime system specified in the Command Lines Options property
may not be overridden by the actual command-line options because the options
themselves are cumulative; that is, multiple options of this type may be specified on the
command line. The L Option (for library loads) is an example of such a parameter. For
additional information, see the descriptions of the Runtime Command (on page 189) and
the L Option (on page 197).

• The environment variable RM_IGNORE_GLOBAL_RESOURCES may be defined if
you wish the compiler, runtime system, or recovery utility not to access the Command
Line Options Property defined for All Users. This may be useful if you are trying to
develop at the same time others are running an application in live “production mode.”

• For a clarification regarding the use of “?” or wildcard characters in the filename
specified on the Compile Command line and the effects for Command Line Options
property specified for a specific file, see Multiple File Compilation on Windows (on
page 147).

Cursor Overtype Property

The Cursor Overtype property determines the appearance of the cursor during ACCEPT
operations when in overtype mode. For more information, see Cursor Types (on page 106).
The following values are valid:

Value Meaning

HorzLine Displays the cursor as a horizontal line at the bottom
of the character cell.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 75

HalfBox Displays the cursor as a half box at the bottom of the
character cell.

FullBox Displays the cursor as a full box.

VertLine Displays the cursor as a vertical line at the right of the
character cell.

The default value for this property is HorzLine.

Cursor Insert Property

The Cursor Insert property determines the appearance of the cursor during ACCEPT
operations when in insert mode (see page 106). The following values are valid:

Value Meaning

HorzLine Displays the cursor as a horizontal line at the bottom
of the character cell.

HalfBox Displays the cursor as a half box at the bottom of the
character cell.

FullBox Displays the cursor as a full box.

VertLine Displays the cursor as a vertical line at the right of the
character cell.

The default value for this property is HalfBox.

Cursor Full Field Property

The Cursor Full Field property determines the appearance of the cursor during ACCEPT
operations when the input field is full. See Cursor Types (on page 106). The following
values are valid:

Value Meaning

HorzLine Displays the cursor as a horizontal line at the bottom
of the character cell.

HalfBox Displays the cursor as a half box at the bottom of the
character cell.

FullBox Displays the cursor as a full box.

VertLine Displays the cursor as a vertical line at the right of the
character cell.

The default value for this property is FullBox.

Enable Close Property

The Enable Close property specifies a Boolean value that enables or disables the Close menu
item on the Control menu as well as the Close button in the upper-right corner of the window.
Setting Enable Close to True enables the Close menu item and the Close button. Setting
Enable Close to False dims and disables the Close menu item and the Close button. The
default value for this property is True.

Chapter 3: Installation and System Considerations for Microsoft Windows

76 RM/COBOL User's Guide

The C$GUICFG subprogram (see page 552) can be used to change the Enable Close property
temporarily in order to manipulate the graphical user interface.

Enable Properties Dialog Property

The Enable Properties Dialog property specifies a Boolean value that enables or disables the
Properties menu item on the Control menu. Setting Enable Properties Dialog to True enables
the Properties menu item. Setting Enable Properties Dialog to False dims and disables the
Properties menu item. The default value for this property is True.

The C$GUICFG subprogram (see page 552) can be used to change the Enable Properties
Dialog property temporarily in order to manipulate the graphical user interface.

Font Property

The Font property specifies the typeface to use as well as point size and style. The typeface
must be a fixed-width (or monospaced) font, such as Courier. Clicking the Select Fonts
button opens the Fonts dialog box, which provides a list of available fonts, styles, and sizes.

Font CharSet OEM Property

The Font CharSet OEM property determines the display character sets considered to be OEM
character sets when the native character set uses the OEM codepage. In this case,
RM/COBOL considers internal character data to be OEM and converts displayed characters
to ANSI unless the chosen display font has an OEM character set. Fonts with the Arabic,
Baltic, East Europe, Greek, Hebrew, Russian, and Turkish character sets generally require
conversion from OEM to ANSI. The value NotANSI assumes all character sets other than the
ANSI character set are OEM; this was the original RM/COBOL assumption. The value
OEMSymbolDefault assumes that only the OEM, Symbol, and Default character sets are
OEM and that all other character sets are ANSI. The default is OEMSymbolDefault. For
printer character sets, as opposed to display character sets, see the Printer Font CharSet OEM
property (on page 81).

Note The value of the Font CharSet OEM property is stored in the registry as a string value
for the key FontCharsetOem. This string is a comma- or space-separated list of OEM
character set numbers. A range of OEM character set numbers may be specified with a
hyphen-separated pair of numbers. Alphabetic text or any text contained between braces is
considered commentary. While the RMCONFIG user interface only allows setting NotANSI
(that is, “1-255”) or OEMSymbolDefault (that is, “255,2,1”), any set of character set numbers
may be listed in the registry in order to include or exclude specific character sets for the OEM
to ANSI conversion done when characters are displayed. The specified string will be used
until it is modified, either by RMCONFIG or other means, such as regedit.

When the native character set uses the ANSI codepage, this property is ignored. In this case,
code points are converted from ANSI to OEM only when the display font default script is
OEM/DOS; otherwise, no conversion is necessary and none occurs.

Full OEM To ANSI Conversions Property

The Full OEM To ANSI Conversions property specifies a Boolean value that determines
whether to convert a character from OEM to ANSI or from ANSI to OEM when the native
character set uses the OEM codepage. This property affects titles, menus, and other Windows

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 77

objects. Because Windows uses the ANSI character set, the default setting (True) causes all
output to be converted from the OEM character set to the ANSI character set and all input
from these controls to be converted from ANSI to OEM. If, however, the user wants to avoid
these conversions, this property should be set to False in order to suppress the conversion.
Setting this value to False causes the runtime system to behave as it did prior to the
RM/COBOL 6.5 release.

Note The European “Latin-1” character set is the same as the Windows native ANSI
character set.

The C$GUICFG subprogram (see page 552) can be used to change the Full OEM to ANSI
Conversions property temporarily in order to manipulate the graphical user interface.

When the native character set uses the ANSI codepage, this property is ignored.

Icon File Property

The Icon File property specifies the icon filename from which to load icons for the toolbar.
See the Name option of the Toolbar Properties tab, described in Setting Toolbar Properties.
This property is used only if the Toolbar property (see page 84) is set to True. The default
value is rmtbar.vrf. See Table 12 on page 97 for more information.

The C$GUICFG subprogram (see page 552) can be used to change the Icon File property
temporarily in order to manipulate the graphical user interface.

Load Registry On CALL Property

The Load Registry On CALL property specifies a Boolean value that enables or disables
additional processing of the Windows registry file. If this property is set to True, the registry
is re-examined whenever a COBOL subprogram is called. The subprogram name is treated as
if it were a filename and causes corresponding registry entries to be processed. If the value is
set to False, the registry is not re-examined. The default value for this property is False.

Note Use caution when setting the value of the Load Registry On CALL property to True as
a system default. Doing so can affect the performance of your application. This behavior can
occur when using RM/Panels because an RM/Panels application uses many subprogram calls.
Alternatively, you can use the C$TBar (see page 575), C$MBar (see page 557), or
C$GUICFG (see page 552) subprograms to manipulate the toolbar and menu bar instead of
using the Windows registry file and the Load Registry on CALL property.

Load Registry On RETURN Property

The Load Registry On RETURN property specifies a Boolean value that enables or disables
additional processing of the Windows registry file. If this property is set to True, the registry
is re-examined whenever a COBOL subprogram is exited. The calling program’s name is
treated as if it were a filename and causes corresponding registry entries to be processed. If
the value is set to False, the registry is not re-examined. The default value for this property
is False.

Note Use caution when setting the value of the Load Registry On RETURN property to True
as a system default. Doing so can affect the performance of your application. This behavior
can occur when using RM/Panels because an RM/Panels application uses many subprogram
calls. Alternatively, you can use the C$TBar (see page 575), C$MBar (see page 557), or
C$GUICFG (see page 552) subprograms to manipulate the toolbar and menu bar instead of
using the Windows registry file and the Load Registry on RETURN property.

Chapter 3: Installation and System Considerations for Microsoft Windows

78 RM/COBOL User's Guide

Logo Bitmap Property

The Logo Bitmap property specifies a Boolean value that determines whether a Logo Bitmap
is displayed. If the value is set to True, the file specified by the Logo Bitmap File property
(described below) is displayed. If the value is set to False, it is not displayed. The default
value for this property is True.

Logo Bitmap File Property

The Logo Bitmap File property specifies the bitmap (.bmp) filename that may be displayed in
the RM/COBOL runtime window when an application is started. The bitmap is centered in
the RM/COBOL runtime window until an erase screen operation is encountered (DISPLAY
ERASE). You can build a simple RM/COBOL program that displays a bitmap, responds to
keyboard sequences (such as function keys that could be generated from the menus or
toolbar), and dispatches the appropriate code. The default value is run.bmp, rmc.bmp, or
rec.bmp for the runtime system, compiler, and Indexed File Recovery utility program,
respectively. If the bitmap file is not found, or if Logo Bitmap (described previously) is set to
False, this property is ignored.

Main Window Type Property

The Main Window Type property determines the style of the RM/COBOL runtime window
(the window that is activated when the RM/COBOL application begins execution). The
following values are valid:

Value Meaning

Hidden The window is not activated and is hidden.

Minimized The window is activated and is displayed as an icon.

Maximized The window is activated and is displayed in its
maximized state.

Show The window is activated and is displayed in its current
size and position.

The default value for this property is Show.

Mark Alphanumeric Property

The Mark Alphanumeric property specifies a Boolean value that determines the terminating
conditions for selecting a word from the application window. If Mark Alphanumeric is set to
True, double-clicking the mouse button to mark a word selects characters until a non-
alphanumeric character is encountered. If Mark Alphanumeric is set to False, selection occurs
when a blank is encountered. The default value for this property is True.

The C$GUICFG subprogram (see page 552) can be used to change the Mark Alphanumeric
property temporarily in order to manipulate the graphical user interface.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 79

Offset X Property

The Offset X property specifies a number that identifies the leftmost location (as a pixel offset
from the left edge of the screen) of the RM/COBOL runtime window. The default value for
this property is 0.

Offset Y Property

The Offset Y property specifies a number that identifies the uppermost location (as a pixel
offset from the top edge of the screen) of the RM/COBOL runtime window. The default
value for this property is 0.

Panels Controls 3D Property

The Panels Controls 3D property specifies a Boolean value that enables or disables three-
dimensional effects in certain RM/Panels for Windows controls (date, time, alpha, and
numeric fields). The default value, False, causes applications to be displayed as they were
before the 3D capability was added to RM/COBOL.

Panels Static Controls Border Property

The Panels Static Controls Border property specifies a Boolean value that causes the Static
Text Control (an RM/Panels control type) to have a border. The default value, False, causes
these controls to be drawn without a border.

Paste Termination Property

The Paste Termination property specifies a Boolean value that affects automatic termination
of fields pasted into a pending ACCEPT statement, using either the Paste function (see
page 113) or the Auto Paste property (see page 73). If Paste Termination is set to True, data
transfer will continue until the data is exhausted, including all tabs and carriage returns. If
Paste Termination is set to False, data transfer stops when a tab or carriage return is
encountered. There is a carriage return at the end of each line of text in the Windows
Clipboard. The default value for this property is True.

The C$GUICFG subprogram (see page 552) can be used to change the Paste Termination
property temporarily in order to manipulate the graphical user interface.

Persistent Property

The Persistent property specifies a Boolean value that affects the behavior of the RM/COBOL
runtime window when the RM/COBOL program, compiler, or Indexed File Recovery utility
program terminates. If Persistent is set to True, the window will not close until dismissed by
the user. If Persistent is set to False, the window will close immediately upon completion.
The default value for this property is False.

If any RM/COBOL runtime window disappears upon completion before the user is able to
read the final text displayed in that window, then set Persistent to True; the window may then
be closed manually by the user after reading the final text.

Chapter 3: Installation and System Considerations for Microsoft Windows

80 RM/COBOL User's Guide

The runtime command option P (see page 192) may be used to change the Persistent property
temporarily for a single invocation of a run unit.

The C$GUICFG subprogram (see page 552) may be used to change the Persistent property
temporarily.

Pop-Up Window Positioning Property

The Pop-Up Window Positioning property determines the method used to initially position a
pop-up window. The value Corrected positions the pop-up window with LINE 1 COLUMN 1
at the line and column specified in the DISPLAY statement, as specified in the documentation
for pop-up windows in Line and Position Phrases (see page 220). The value Traditional
positions the pop-up window as incorrectly implemented in initial releases of RM/COBOL for
Windows, where the pop-up window is generally positioned lower and further to the right by
a few pixels. The default value is Traditional.

Printer Dialog Always Property

The Printer Dialog Always property specifies a Boolean value that affects the behavior of the
RM/COBOL runtime when opening the selected dynamic printer device (see page 322). If
Printer Dialog Always is set to True, the standard Windows Print dialog box will be displayed
each time the dynamic printer device is opened, unless the P$DisableDialog subprogram
(see page 473) has been called to suppress the dialog box. If Printer Dialog Always is set to
False, the dialog box will be displayed only the first time the dynamic printer is opened,
unless the P$DisableDialog subprogram has been called to suppress the dialog box. In the
False case, the P$EnableDialog subprogram (see page 474) may be called to cause the dialog
to be displayed on a subsequent open of the dynamic printer. The default value for this
property is False.

The C$GUICFG subprogram (see page 552) can be used to change the Printer Dialog Always
property temporarily.

Printer Dialog Never Property

The Printer Dialog Never property specifies a Boolean value that affects the behavior of the
RM/COBOL runtime when opening a dynamic printer device, as described in Windows
Printers (see page 322). If Printer Dialog Never is set to True, the standard Windows Print
dialog box will never be displayed when a dynamic printer device is opened. In this case, a
dynamic printer device behaves like a default (PATH=DEFAULT,… in the DEFINE-DEVICE
configuration record) printer device, that is, the Windows default printer is opened. If Printer
Dialog Never is set to False, the display of the dialog box is controlled by the setting of the
Printer Dialog Always property, described above. The default value for this property is False.

The C$GUICFG subprogram (see page 552) can be used to change the Printer Dialog Never
property temporarily.

Note If the Printer Dialog Never property is set to True, the standard Windows Print dialog
box will never be displayed, regardless of the state of the Printer Dialog Always property.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 81

Printer Enable Escape Sequences Property

The Printer Enable Escape Sequences property specifies a Boolean value that determines
whether printing will allow embedded RM/COBOL-specific escape sequences. For a
description of these sequences, see RM/COBOL-Specific Escape Sequences (on page 530).
If the value is set to True, the RM/COBOL runtime system will recognize the sequences. If
the value is set to False, the runtime system will ignore those escape sequences. The default
value for this property is False.

Note Setting the Printer Enable Escape Sequences property to True affects all Windows
printers that the COBOL program uses. To allow embedded RM/COBOL-specific escape
sequences for only specific printers, use the P$EnableEscapeSequences subprogram (see
page 493) or the ESCAPE-SEQUENCES keyword (see page 320) of the DEFINE-DEVICE
configuration record.

Printer Enable Null Esc. Seq. Property

The Printer Enable Null Esc. Seq. property defines a Boolean value that specifies whether the
ASCII NUL character will be ignored when written to a printer from within an escape
sequence. When the value is set to True, NUL characters within an escape sequence are
ignored and are not sent to the printer. When the value is set to False, NUL characters are
changed to spaces. The default value for this property is False. For more information, see
RM/COBOL-Specific Escape Sequences (on page 530).

Printer Enable Raw Mode Property

The Printer Enable Raw Mode property specifies a Boolean value that determines whether
Windows printers will be opened in raw mode. If the value is set to True, the runtime system
will open printers in raw mode. This allows certain networked printers on Windows servers
to respond to embedded escape sequences. See the P$SetRawMode subprogram (on
page 500) for a more complete description of raw mode. Most P$ subprograms are not
available if raw mode is used. If the value is set to False, the runtime system will treat the
printer as a normal Windows printer. The default value for this property is False.

Note Setting the Printer Enable Raw Mode property to True affects all Windows printers (see
page 322) that the COBOL program uses. To allow raw mode printing for only specific
printers, use the P$SetRawMode subprogram.

Printer Font CharSet OEM Property

The Printer Font CharSet OEM property determines the character sets considered to be OEM
character sets for printer fonts when the native character set uses the OEM codepage. In this
case, RM/COBOL considers internal character data to be OEM and converts printed
characters to ANSI unless the chosen printer font has an OEM character set. Fonts with the
Arabic, Baltic, East Europe, Greek, Hebrew, Russian, and Turkish character sets generally
require conversion from OEM to ANSI. The value NotANSI assumes all character sets other
than the ANSI character set are OEM; this was the original RM/COBOL assumption. The
value OEMSymbolDefault assumes that only the OEM, Symbol, and Default character sets
are OEM and that all other character sets are ANSI. The default value for this property is
OEMSymbolDefault. For display character sets, as opposed to printer character sets, see the
Font CharSet OEM property (on page 76).

Chapter 3: Installation and System Considerations for Microsoft Windows

82 RM/COBOL User's Guide

Note The value of the Printer Font CharSet OEM property is stored in the registry as a string
value for the key PrinterFontCharsetOem. This string is a comma or space separated list of
OEM character set numbers. A range of OEM character set numbers may be specified with a
hyphen-separated pair of numbers. Alphabetic text or any text contained between braces is
considered commentary. While the RMCONFIG user interface only allows setting NotANSI
(that is “1-255”) or OEMSymbolDefault (that is, “255,2,1”), any set of character set numbers
may be listed in the registry in order to include or exclude specific character sets for the OEM
to ANSI conversion done when characters are printed. The specified string will be used until
it is modified, either by RMCONFIG or other means such as regedit.

When the native character set uses the ANSI codepage, this property is ignored. In this case,
code points are converted from ANSI to OEM only when the printer font default script is
OEM/DOS; otherwise, no conversion is necessary and none occurs.

Remove Trailing Blanks Property

The Remove Trailing Blanks property defines a Boolean value that specifies whether trailing
blanks will be removed from the Toolbar and Menu Bar strings before they are sent to the
COBOL program’s ACCEPT statement for processing. The default value for this property is
True. For more information, see Setting Toolbar Properties (on page 89) and Setting Menu
Bar Properties (on page 93).

The C$GUICFG subprogram (see page 552) can be used to change the Remove Trailing
Blanks property temporarily in order to manipulate the graphical user interface.

Screen Read Line Draw Property

The Screen Read Line Draw property defines a Boolean value that enables or disables the
return of DOS line draw characters in the screen read buffer for the line draw characters
specified in Table 26: System-Specific Line Draw Characters (on page 211) when doing a
screen read, as discussed in the C$SCRD subprogram (on page 564). The default value for
this property is False, which causes a screen read to return plus, hyphen, and bar characters
for line draw characters.

The C$GUICFG subprogram (see page 552) can be used to change the Screen Read Line
Draw property temporarily during the execution of a run unit.

Scroll Buffer Size Property

The Scroll Buffer Size property specifies a number that affects the virtual size of the
RM/COBOL runtime window. The number of rows initially displayed in the window is
determined by the ROWS keyword (see page 355) in the TERM-ATTR configuration record.
The Scroll Buffer Size property determines the number of rows that can be scrolled off the
screen using the vertical scroll bar. Setting the Scroll Buffer Size to a non-zero value
overrides the Auto Scale property (see page 73) and automatically turns on the vertical scroll
bar. The default value for this property is 0.

The maximum value depends on the font size and is limited to approximately 2400 lines on
Windows operating systems. Values larger than the maximum may be set, but display
problems can occur if more than the actual maximum number of lines is scrolled without an
intervening erase. The actual maximum is a limit on the number of pixels in the virtual screen
height, which is computed as the font height in pixels (typically, 15 to 20) times the quantity
of the Scroll Buffer Size plus the number of rows in the actual screen area. This pixel limit is
50,000 because of an RM/COBOL implementation limit.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 83

Show Return Code Dialog Property

The Show Return Code Dialog property specifies a Boolean value that determines whether the
Return Code message box (see page 114), indicating the compiler exit codes (see page 187)
and program exit codes (see page 199), should be displayed when an error occurs. Automated
systems, which handle such errors and do not require operator assistance, may wish to
suppress the message box and continue processing. The default value for this property is
True, which causes the message box to be displayed.

Show Through Borders Property

The Show Through Borders property specifies a Boolean value that determines whether the
border of an overlaid pop-up window is shown when overlaid by a pop-up window without a
FILL character. When Show Through Borders is set to True, the border is visible. When
Show Through Borders is set to False, the border is not visible. The default value for this
property is False.

Sizing Priority Property

The Sizing Priority property specifies whether to make the width or height a priority when
auto scaling fonts. If the user resizes the window and auto scaling is on, the system will select
a font to match the new size of the window. The new size will be based on the width or
height of the window. The default value for this property is Width. See also the Auto Scale
property (on page 73).

The C$GUICFG subprogram (see page 552) can be used to change the Sizing Priority
property temporarily in order to manipulate the graphical user interface.

Status Bar Property

The Status Bar property specifies a Boolean value that determines whether the status bar is
initially visible. Setting Status Bar to True turns on the status bar. Setting Status Bar to False
turns off the status bar. The default value for this property is False.

The C$GUICFG subprogram (see page 552) can be used to change the Status Bar property
temporarily in order to manipulate the graphical user interface.

Status Bar Text Property

The Status Bar Text property specifies the initial string of text to be placed in the status bar.
The default value is an empty string. This text is displayed in the status bar whenever the
mouse is in the client area of the window.

Note The C$SBar subprogram (see page 564) also can be used to display a status bar in the
RM/COBOL runtime window.

Chapter 3: Installation and System Considerations for Microsoft Windows

84 RM/COBOL User's Guide

SYSTEM Window Type Property

The SYSTEM Window Type property determines the style of the window shown by a
program run using the SYSTEM (see page 579) non-COBOL subprogram. The following
values are valid:

Value Meaning

Hidden The window is not activated and is hidden.

Minimized The window is activated and is displayed as an icon.

Maximized The window is activated and is displayed in its
maximized state.

Show The window is activated and is displayed in its
current size and position.

ShowNoActivate The window is displayed in its most recent size and
position, but is neither activated nor given focus.

MinimizedNoActive The window is displayed as a minimized window,
but the window is neither activated nor given focus.

The default value for this property is Show.

The C$GUICFG subprogram (see page 552) can be used to change the System Window Type
property temporarily for subsequent calls to the SYSTEM non-COBOL subprogram in the
same run unit.

Title Text Property

The Title Text property specifies the string of text to be placed in the runtime window of the
RM/COBOL program that is currently running. The default title is “RM/COBOL” if no
program-name is specified on the runcobol command line. Otherwise, the default value for
this property is the initial program-name.

Note The C$Title subprogram (see page 577) also can be used to specify the text to be placed
in the RM/COBOL runtime window.

Toolbar Property

The Toolbar property specifies a Boolean value that determines whether the toolbar is visible
initially. Setting Toolbar to True turns on the toolbar. Setting Toolbar to False turns off the
toolbar. The default value for this property is False.

The C$GUICFG subprogram (see page 552) can be used to change the Toolbar property
temporarily in order to manipulate the graphical user interface. In addition, the C$TBar (see
page 575), C$TBarEn (see page 576), and C$TBarSeq (see page 576) subprograms can be
used to affect the toolbar during execution.

Toolbar Prompt Property

The Toolbar Prompt property specifies how to display the toolbar prompt string value when
the mouse cursor hovers over a toolbar command button. The following values are valid:

Value Meaning

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 85

None The prompt is not displayed.

StatusBar The prompt is displayed only in the status bar.

ToolTip The prompt is displayed only as a tooltip.

Both The prompt is displayed in the status bar and as
a tooltip.

SplitNewline The prompt is split at the first newline (x'0a')
character; the leading portion is displayed in the status
bar and the trailing portion is displayed as a tooltip.

SplitColon The prompt is split at the first colon (:) character; the
leading portion is displayed in the status bar and the
trailing portion is displayed as a tooltip.

SplitVertBar The prompt is split at the first vertical bar (|)
character; the leading portion is displayed in the status
bar and the trailing portion is displayed as a tooltip.

The default value for this property is Both.

For information on setting toolbar prompt values, see Setting Toolbar Properties (on page 89)
and C$TBar (on page 575).

The C$GUICFG subprogram (see page 552) can be used to change the Toolbar Prompt
property temporarily in order to manipulate the graphical user interface. Changes to the
Toolbar Prompt property do not affect the display of the prompt for an existing toolbar; the
change affects only the display of the prompt for a toolbar created by calling C$TBar after the
change has been made.

Update Timeout Property

The Update Timeout property specifies a number that represents a delay before a screen
refresh occurs. The value of number is specified in milliseconds. A larger number causes
DISPLAY statements to occur less frequently, potentially improving screen display
performance (especially when multiple DISPLAY statements of short records occur in a short
period of time). This property may also be used to force DISPLAY statements to occur more
frequently. The default value is 500 milliseconds (half of a second).

The C$GUICFG subprogram (see page 552) can be used to change the Update Timeout
property temporarily in order to manipulate the graphical user interface.

Use Windows Colors Property

The Use Windows Colors property defines a Boolean value that specifies whether the
standard Windows colors, as set in the Windows Control Panel (Display Properties dialog
box, Appearance tab), are used as the RM/COBOL default foreground and background colors.
If Use Windows Colors is set to True, the standard Windows colors will be used. If Use
Windows Colors is set to False, BLACK will be used for the background and WHITE for the
foreground. A value of False allows the same behavior as that found in versions of
RM/COBOL prior to 6.0. The default value for this property is True.

Chapter 3: Installation and System Considerations for Microsoft Windows

86 RM/COBOL User's Guide

Setting Synonym Properties
The Synonyms Properties tab, illustrated in Figure 11, allows you to establish synonym
name(s) and their value(s) for the Default Properties or Individual File, Configure for
component (Runtime, Compiler, or Recovery), Scope (All Users or This User), and Key
(Default or Custom text) options that were specified using the Select File tab (see page 69).
The name is a string that is the name of a variable placed in the program’s environment. The
value is a string that is the value of name in the environment. A synonym can be used to
specify the actual file access name for a COBOL program, or to specify other environment
variables such as the RMPATH and RUNPATH directory search sequences described in
Directory Search Sequences on Windows (on page 62).

During initialization, the synonym name(s) and their value(s) are set into the environment in
the following order: Default Properties for All Users, Default Properties for the Current User,
Program Specific Properties for All Users, and Program Specific Properties for the Current
User. When duplicate synonym names occur in this ordering, the last setting of a synonym
name is the result setting in the environment.

Note The environment variable RM_IGNORE_GLOBAL_RESOURCES may be defined if
you wish the compiler, runtime system, or recovery utility not to access the Synonym
Properties defined for All Users. This may be useful if you are trying to develop at the same
time others are running an application in live “production mode.”

C$GetSyn (see page 550) obtains the specified synonym for the Current User, if the synonym
is defined for the Current User. If the specified synonym is not defined for the Current User,
then C$GetSyn gets the synonym for All Users. If the
RM_IGNORE_GLOBAL_RESOURCES environment variable is defined, the All Users
setting is ignored when the synonym is not defined for the Current User.

C$SetSyn (see page 572) always sets the synonym for the Current User; that is, the property
does not attempt to change the synonym for All Users.

Note This is a change in RM/COBOL behavior on Windows. C$SetSyn previously always
set the synonym for All Users. The old behavior would not be possible on Windows Vista
without running as Administrator.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 87

Figure 11: Synonyms Properties Tab

The Synonyms Properties tab contains the following options:

• Name. The value entered in this list box is the name of the synonym to which you are
assigning a value.

• Value. The value in this text box is the value assigned to the synonym selected in the
Name list box.

• Remove. Use this button to clear the value for the currently selected synonym name and
remove it from the list.

• Remove All. Use this button to clear all synonym values for the currently selected
program.

These synonyms are used to set environment variables for the runtime, compiler, or
recovery utility (per the Select File tab setting, as described in Selecting a File to Configure
on page 69). Synonyms override environment variable settings that may already exist
because of operating system methods of setting environment variables, such as the DOS SET
command or the Environment Variables system property on Windows operating systems.
However, environment variables set with CodeWatch cause any matching synonym names to
be ignored, so that the environment variables will have the values specified in CodeWatch
(see the “Creating a Workspace” topic in the CodeWatch manual for information on setting
environment variables with CodeWatch). As a result, these synonyms may be used to
establish a connection between the open name of the file, literal-1 or data-name-1 (see the

Chapter 3: Installation and System Considerations for Microsoft Windows

88 RM/COBOL User's Guide

“Input-Output Section” in Chapter 3: Environment Division of the RM/COBOL Language
Reference Manual for more information), and the actual file access name.

If either the Load Registry On CALL property (see page 77) or Load Registry On RETURN
property (see page 77) is set to True, synonyms will be reprocessed whenever a subprogram is
called or exited. Synonym assignments are cumulative. For example, if a synonym is
assigned for a called subprogram, its value is unchanged when the subprogram exits unless
Load Registry On RETURN is set to True and the synonym is defined for the calling
program.

Setting Color Properties
The Colors Properties tab, illustrated in Figure 12, allows you to control color mapping for the
Default Properties or Individual File, Configure for component (Runtime, Compiler, or
Recovery), Scope (All Users or This User), and Key (Default or Custom text) options that
were specified using the Select File tab (see page 69). Note that only the Runtime component
uses Color properties.

Once set, color properties are processed cumulatively in the following order: Program
Specific Properties for the Current User, Program Specific Properties for All Users, Default
Properties for the Current User, and Default Properties for All Users. The first setting of a
particular property from this ordered search is used and the search is terminated.

Figure 12: Colors Properties Tab

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 89

The Colors Properties tab contains the following options:

• Color. Use this list box to select the color you want to change. The first eight colors in
this list box correspond to the color-names for the keywords (FCOLOR and BCOLOR)
allowed in a CONTROL phrase of an ACCEPT or DISPLAY statement. These colors
are displayed if low intensity is selected. The remaining eight colors correspond to the
same color-names if high intensity is selected. Note that GRAY is “HIGH BLACK” and
YELLOW is “HIGH BROWN.” The current color setting is displayed to the right of
each name. For more information, see ACCEPT and DISPLAY Phrases (on page 209).

Note An asterisk (*) after the name indicates that the default color has not been
overridden and the default will be used. If the Change button (see the following item) is
used to override the default, the overriding color is displayed on the right.

• Change. Use this button to display a Color Selection dialog box that allows you to select
a color to override the selected color name.

• Use Default. Use this button to clear the overriding color for the currently selected color
name, thereby using the default color.

Setting Toolbar Properties
The Toolbar Properties tab, illustrated in Figure 13, allows you to define the string that is to
be sent to the program through the COBOL ACCEPT statement when the corresponding
toolbar button is pressed. The Toolbar Properties tab affects the program determined from the
Default Properties or Individual File, Configure for component (Runtime, Compiler, or
Recovery), Scope (All Users or This User), and Key (Default or Custom text) options that
were specified using the Select File tab (see page 69). Note that only the Runtime component
uses Toolbar properties.

The C$TBar subprogram (see page 575) also can be used to display a toolbar in the
RM/COBOL runtime window.

Once set, toolbar properties are processed cumulatively in the following order: Program
Specific Properties for the Current User, Program Specific Properties for All Users, Default
Properties for the Current User, and Default Properties for All Users. The first setting of a
particular property from this ordered search is used and the search is terminated.

Chapter 3: Installation and System Considerations for Microsoft Windows

90 RM/COBOL User's Guide

Figure 13: Toolbar Properties Tab

The Toolbar Properties tab contains the following options:

• Name. The value entered in this text box is the name of the icon stored in the filename
specified by the Icon File property (see page 77).

• Prompt. The value entered in this text box is an optional text string that is displayed
whenever the mouse cursor hovers over the toolbar icon that is specified by the icon
name. The text string may be displayed in the status bar, as a tooltip, or both as specified
by the Toolbar Prompt property (see page 84). The text string may contain one of the
separator characters newline (x’0a’), colon (“:”), or vertical bar (“|”) to divide it into
separate status bar and tooltip text. The appropriate separator character is determined by
the Toolbar Prompt property.

• String. The value entered in this text box is the ASCII text string returned when the
toolbar icon is clicked. This text string may also contain special characters for the
Return, Tab, Escape, or Function keys. If the first character is a greater than character
(>), the characters that follow are executed as a command. The special characters are
described in Table 11. (These characters are interpreted by the COBOL ACCEPT
statement, as configured by the TERM-INPUT configuration record on page 356 or by
the default configuration supplied by the runtime. The default TERM-INPUT
configuration is specified by the Windows Example, as discussed on page 372.)

Notes

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 91

− The modifiers “\a” (Alt), “\c” (Ctrl), “\g” (AltGr), and “\s” (Shift), are not required
before ASCII character values, but are necessary to modify non-character items such
as function keys when the modifier is needed. The modifier “\a” (Alt) is actually
shorthand for “\c\s” (Ctrl+Shift), the Windows substitute for the Alt key. The Alt
key is trapped by the Windows operating system and is therefore not available to
applications. The modifier “\g” (AltGr) is actually shorthand for Alt+Ctrl (but not
“\a\c”), the Windows substitute for the AltGr key.

− When the characters “a” through “z” (lowercase only) are preceded by “\c” (Ctrl) or
either of the modifiers “\a” or “\g”, which imply Ctrl, they are converted to 1 through
26 (SOH through SUB). Since the values 1 through 26 are not normally configured
as data characters, this means that the configured TERM-INPUT virtual-key code
will be used to determine the action. The toolbar button generated virtual-key code
is the uppercase equivalent of the letter; that is, “A” through “Z”, plus any modifier
flags for Ctrl, Alt, or Shift. Thus, “\c” followed by “a” through “z” matches the
default Windows configuration for Ctrl+“a” through Ctrl+“z”, respectively.

Table 11: Special Characters for the Button Character-String

Special Character Description

>commandline execute commandline:

\a Alt

\b Backspace

\\ Backslash character

\c Control

\d Delete

\e Escape

\f0 Function key 10

\f1 Function key 1

\f2 Function key 2

\f3 Function key 3

\f4 Function key 4

\f5 Function key 5

\f6 Function key 6

\f7 Function key 7

\f8 Function key 8

\f9 Function key 9

\fa Function key 10

\fb Function key 11

\fc Function key 12

\fd to \fn Function key 13 to Function key 23

\g AltGr (TERM-INPUT: NUL WAGR)

\i Insert

\n Newline

Chapter 3: Installation and System Considerations for Microsoft Windows

92 RM/COBOL User's Guide

Table 11: Special Characters for the Button Character-String

Special Character Description

\p Pause (TERM-INPUT: NUL PAUSE)

\qa ATTN (TERM-INPUT: NUL ATTN)

\qc Caps Lock (TERM-INPUT: NUL CAPITAL)

\qp PA1 (TERM-INPUT: NUL PA1)

\s Shift

\t Tab

\wa Applications (TERM-INPUT: NUL APPS)

\wc CRSEL (TERM-INPUT: NUL CRSEL)

\we EREOF (TERM-INPUT: NUL EREOF)

\wl Left Windows Logo (TERM-INPUT: NUL LWIN)

\wp PLAY (TERM-INPUT: NUL PLAY)

\wr Right Windows Logo (TERM-INPUT: NUL RWIN)

\wx EXSEL (TERM-INPUT: NUL EXSEL)

\x Exit program

\zb Begin

\zc Clear

\zd Down Arrow

\ze End

\zh Home

\zl Left Arrow

\zm ZOOM (TERM-INPUT: NUL ZOOM)

\zn Next (Page Down)

\zp Prior (Page Up)

\zr Right Arrow

\zs Scroll Lock (TERM-INPUT: NUL SCROLL)

\zu Up Arrow

\z9 Num Lock (TERM-INPUT: NUL NUMLOCK)

The string “\g” is used as a modifier corresponding to the AltGr (alternate graphics) key
found on many international keyboards. Windows supports the AltGr key with the key
combination Alt+Ctrl, which can be entered even on a keyboard that does not have an
AltGr key. In a button string, the escape “\g” is normally followed by another escape,
such as “\f1”, to represent AltGr+F1.

To be effective in a button string, these keys must be configured in the TERM-INPUT
records of the configuration. The commonly used keys, such as F1 through F12, are
configured by the default Windows configuration, but several of the less common keys
such as F13 through F23, CRSEL, EXSEL, PA1, and ZOOM are not configured in the
default Windows configuration. (For the keys configured by the default configuration,
see the Windows Example on page 372; additionally, the windows.cfg file, which is

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 93

provided by product installation, also represents the default Windows configuration and
has commentary that clarifies which keys are configured.) When configured by TERM-
INPUT configuration records, the buttons will activate the configured entry regardless of
whether the keyboard actually supports the particular key. The Caps Lock, Num Lock,
and Scroll Lock keys can be sent to the application, but do not affect the state of the
keyboard; that is, they do not toggle the corresponding lock state.

• Move Up and Move Down. Use these buttons to control the order of the buttons shown
in the toolbar. This order is determined by the order of the names in the Name list box.
When you choose Move Up, the currently selected name moves up one position in the
list. Choosing the Move Down button moves the selected name down one position.

• Remove. Use this button to clear the value for the currently selected toolbar button
name and remove it from the list.

• Remove All. Use this button to clear all toolbar button values for the currently
selected program.

Setting Menu Bar Properties
The Menu Bar Properties tab, illustrated in Figure 14, allows you to identify a list of pulldown
menu names and their associated values for the Default Properties or Individual File,
Configure for component (Runtime, Compiler, or Recovery), Scope (All Users or This User),
and Key (Default or Custom text) options that were specified using the Select File tab (see
page 69). Note that only the Runtime component uses Menu Bar properties.

The C$MBar subprogram (see page 557) also can be used to display a menu bar in the
RM/COBOL runtime window.

Once set, menu bar properties are processed cumulatively the following order: Program
Specific Properties for the Current User, Program Specific Properties for All Users, Default
Properties for the Current User, and Default Properties for All Users. The first setting of a
particular property from this ordered search is used and the search is terminated.

Chapter 3: Installation and System Considerations for Microsoft Windows

94 RM/COBOL User's Guide

Figure 14: Menu Bar Properties Tab

The Menu Bar Properties tab contains the following options:

• Name. The value entered in this text box is the string that is displayed in the menu bar.
If the first character is a tilde (~), the name is disabled. An ampersand (&) character
causes the next character to be underlined and used as an accelerator.

• Prompt. The value entered in this text box is an optional text string that is displayed
when the cursor is placed on the menu bar item.

• String. The value entered in this text box defines the items in the pulldown menu along
with the strings that are returned to the COBOL program when an item is selected. Using
the following syntax, it can specify either a value to be returned or additional sub-menu
items:

pulldownname["prompt"]=menu

where, pulldownname is the string that is displayed in the menu bar.

prompt is an optional text string that is displayed on the status bar when the cursor is
placed on the menu bar item specified by pulldownname.

menu defines the items in the pulldown menu along with the strings that are returned
to the COBOL program when an item is selected. The syntax for menu is shown as
follows:

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 95

menu -> [(]items[)]
items -> item name=[string | (menu)][,items]
item name -> pulldownname["menu prompt"]
string -> string to be sent (see the Toolbar Properties tab)

If the first character of pulldownname is a tilde (~), the menu is disabled. An ampersand
(&) in pulldownname causes the next character to be underlined and used as an
accelerator.

• Move Up and Move Down. Use these buttons to control the order of the pulldown menu
names shown in the menu bar. This order is determined by the order of the names in the
Name list box. When you choose Move Up, the currently selected name moves up one
position in the list. Choosing the Move Down button moves the selected name down one
position.

• Remove. Use this button to clear the value for the currently selected pulldown menu
name and remove it from the list.

• Remove All. Use this button to clear all pulldown menu values for the currently selected
program.

Setting Pop-up Menu Properties
The Pop-up Menu Properties tab, illustrated in Figure 15, allows you to identify a list of pop-
up menu names and their associated values that will be displayed when right-clicking the
mouse button on an RM/COBOL program in the client area of the window. The Pop-up
Menu Properties tab affects the program determined from the Default Properties or Individual
File, Configure for component (Runtime, Compiler, or Recovery), Scope (All Users or This
User), and Key (Default or Custom text) options that were specified using the Select File tab
(see page 69). Note that only the Runtime component uses Pop-up Menu properties.

The C$RBMenu subprogram (see page 561) also can be used to display a pop-up menu in the
RM/COBOL runtime window when the right mouse button is pressed.

Note If you are using RM/Panels, a pop-up menu defined by RM/Panels will override a pop-
up menu defined by setting mouse menu properties.

Once set, pop-up menu properties are processed cumulatively in the following order:
Program Specific Properties for the Current User, Program Specific Properties for All Users,
Default Properties for the Current User, and Default Properties for All Users. The first setting
of a particular property from this ordered search is used and the search is terminated.

Chapter 3: Installation and System Considerations for Microsoft Windows

96 RM/COBOL User's Guide

Figure 15: Pop-up Menu Properties Tab

The Pop-up Menu Properties tab contains the following options:

• Name. The value entered in this text box is the string that is displayed in the pop-up
menu. If the first character is a tilde (~), the name is disabled. An ampersand (&) causes
the next character to be underlined and used as an accelerator.

• Prompt. The value entered in this text box is an optional text string that is displayed
when the cursor is placed on the pop-up menu item.

• String. The value entered in this text box defines the items in the pop-up menu along
with the strings that are returned to the COBOL program when an item is selected. It can
specify either a value to be returned or additional sub-menu items by using the following
syntax:

pop-upname["prompt"]=menu

where, pop-upname is the string that is displayed in the pop-up menu.

prompt is an optional text string that is displayed on the status bar when the cursor is
placed on the pop-up menu item specified by pop-upname.

menu defines the items in the pop-up menu along with the strings that are returned to
the COBOL program when an item is selected. The syntax for menu is shown as
follows:

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 97

menu -> [(]items[)]
items -> item name=[string | (menu)][,items]
item name -> pop-upname["menu prompt"]
string -> string to be sent (see the Toolbar Properties tab)

If the first character of pop-upname is a tilde (~), the menu is disabled. An ampersand
(&) in pop-upname causes the next character to be underlined and used as an accelerator.

• Move Up and Move Down. Use these buttons to control the order of the names shown
in the pop-up menu. This order is determined by the order of the names in the Name list
box. When you choose Move Up, the currently selected name moves up one position in
the list. Choosing the Move Down button moves the selected name down one position.

• Remove. Use this button to clear the value for the currently selected pop-up menu name
and remove it from the list.

• Remove All. Use this button to clear all pop-up menu values for the currently selected
program.

Toolbar Editor
RM/COBOL provides a default toolbar in the file, rmtbar.vrf. This toolbar is the default
value specified in the Icon File property (see page 77). The buttons provided in the default
toolbar are documented in Table 12. A bitmap editor (rmtbedit.exe), provided with your
RM/COBOL development system, allows you to create or edit the buttons on the toolbar.

Table 12: Default rmtbar.vrf File Button Icons

Button Description

1 – 39 Numbers 1 through 39 (useful for menu picks)

A – Z Letters A through Z (useful for menu picks)

AF1 – AF23 Alternate Function keys 1 through 23

AP Accounts Payable

AR Accounts Receivable

BREAK Hammer smashing object (Break key)

CF1 – CF23 Control Function keys 1 through 23

COMPANION Two buddies (Companion)

DISK Hard disk drive

DISKETTE Floppy disk

DOWN Down Arrow key

END Curtains closing (End key)

ENTER Enter key

ESCAPE Escape key

EXIT Door with exit sign

F1 – F23 Function keys 1 through 23

FILE File cabinet

Chapter 3: Installation and System Considerations for Microsoft Windows

98 RM/COBOL User's Guide

Table 12: Default rmtbar.vrf File Button Icons

Button Description

GF1 – GF23 Alternate Graphics Function keys 1 through 23 (AltGr)

GL General Ledger

GO GO sign

GRAPH Three-dimensional graph

GREEN Green traffic light

HELP Question mark

HOME Little house (Home key)

INFO Italic lowercase i

LEFT Left Arrow key

LINELEFT Left Arrow key pointing at margin bar (Tab left)

LINERIGHT Right Arrow key pointing at margin bar (Tab right)

MAIL Bundle of letters

MENU Menu

PAGEDOWN Down Arrow key pointing at margin bar

PAGEUP Up Arrow key pointing at margin bar

PHONE Telephone

PR Payroll

PRINTER Printer

RED Red traffic light

REPORT Text on computer paper

RIGHT Right Arrow key

SAFE Archive (Safe)

SEARCH Flashlight

SF1 – SF23 Shift Function keys 1 through 23

SGF1 – SGF23 Shift Alternate Graphics Function keys 1 through 23

STOP Stop sign

TERMINAL Display and keyboard (Data terminal or PC)

UP Up Arrow key

WRITE Pencil writing on paper

YELLOW Yellow traffic light

YIELD Yield sign

Running the Toolbar Editor
To run the Toolbar Editor, choose the Toolbar Editor icon. The application presents you
with a menu bar. Under the File menu, you can choose a command to open a toolbar file or

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 99

create a new one. A Resource dialog box then displays the bitmap buttons available in the
toolbar file.

Note The file created by the Toolbar Editor is a resource file that is composed of bitmap
buttons, each of which has a name. It is that name that you reference in the Toolbar
Properties tab when defining character actions, as described in Setting Toolbar Properties (on
page 89).

When the Resource dialog box is active, a Resource menu is available. You can edit, delete,
copy, and save the bitmap buttons presented in the Resource dialog box. Opening or creating
a bitmap Resource dialog box opens a bitmap editor.

Editing a Bitmap
When you start the bitmap editor, you are in draw mode. When you move the cursor into the
editor’s grid area, the cursor changes to a pen. You can use the left and right mouse buttons
to modify your bitmap. Each button can hold in memory a color that you choose from the
color palette. For example, if you click red with the left mouse button and blue with the right
mouse button, these colors are stored until you click on another color. By default, when you
start the bitmap editor, the left button is black and the right button is gray until you change the
color.

In the bottom portion of the color palette, the center square contains the mouse’s left button
color and the background color is in the mouse’s right button color. For example, the color
palette in Figure 16 shows the center square to be black (indicating that the color stored in the
left mouse button is black) and the background is gray (indicating that the color stored in the
right mouse button is gray).

Figure 16: Color Palette Showing Right and Left Mouse Colors

Buttons are shown in a pair of frames. The first frame represents the up image of the button.
The second frame in the sequence represents the down image of the button.

Testing the Bitmap
To test a button, choose the Bitmap | Test Button command from the menu bar.

A dialog box is displayed that shows the bitmap as a button.

Chapter 3: Installation and System Considerations for Microsoft Windows

100 RM/COBOL User's Guide

Transferring the Image Up
The bitmap that you create can be duplicated to the down image of the button. Select the
Transfer Up Image command from the Bitmap menu on the menu bar. At the prompt, either
choose Yes to transfer the image or choose No to terminate the transfer.

Importing and Exporting Bitmaps
You may import a bitmap by choosing the Import command from the Resource menu on the
menu bar. This command opens the Import Bitmap dialog box. Enter the name of the .bmp
file you want to import and choose the OK button.

You may export a bitmap by choosing the Export command from the Resource menu on the
menu bar. This command opens the Save Bitmap As dialog. Enter the name of the file you
want to export and choose the OK button.

Character Set Considerations for Windows
This section describes character set considerations for using RM/COBOL under the Windows
operating system, including the following topics:

• Codepages on Windows (see the following topic)

• RM/COBOL for ANSI Codepage on Windows (see page 102)

• Installation Character Set Considerations On Windows (see page 103)

• Related Character Set Configuration On Windows (see page 105)

These considerations result from Windows having both an OEM codepage for MS-DOS and
an ANSI codepage for Windows. RM/COBOL has historical roots in MS-DOS and, thus, in
the OEM codepage, which has resulted in issues caused by the dominance of Windows and
its preference for the ANSI codepage.

Codepages on Windows
Windows has two system codepages: the ANSI codepage and the OEM codepage. A
codepage defines a mapping of character code points (often called bytes) to a set of character
glyphs. The lower half of all Windows-supported ANSI and OEM codepages, code points
000 – 127 (0x00 – 0x7F), always match each other exactly because they represent the same
ASCII character set. The upper half of Windows ANSI and OEM codepages, code points 128
– 255 (0x80 – 0xFF) can differ significantly in the characters that particular code points
represent. If you know that your programs do not use code points from the upper half of the
codepage, that is, your programs only use and accept ASCII characters, these character set
considerations do not affect you. However, if your program does expect to use characters
from the upper half of the codepage, that is, extended characters, you need to understand these
character set considerations as further described here.

Note The acronym “ANSI” actually stands for American National Standards Institute. In
RM/COBOL documentation, “ANSI” is usually used with its appropriate meaning. For
example, “ANSI COBOL” refers to an implementation of COBOL that follows the American
National Standard for the COBOL language and “ANSI ACCEPT/DISPLAY” refers to the

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 101

American National Standard Institute’s definition of the COBOL ACCEPT and DISPLAY
verbs. Such uses have nothing to do with character sets or codepages. Microsoft originally
designed the Windows character set following an ANSI standard character set, but then
deviated from that standard in their actual implementation. Microsoft documentation,
however, continued to use “ANSI” to designate the Windows character set as opposed to the
MS-DOS OEM character sets used before Windows. Thus, the term “ANSI codepage” or
“ANSI character set” is misleading, but must be used to aid in relating this discussion to
Microsoft documentation of character sets on Windows.

Most Windows internal functions interpret code points as being from the ANSI codepage.
RM/COBOL was developed and in use much earlier than Windows, so data files written by
RM/COBOL under MS-DOS have long existed with OEM code points stored in the files,
including files that contain COBOL source programs. Rather than make customers convert
their source and data files when Windows was introduced, RM/COBOL continued to consider
character data—in files and in memory—as being from the OEM codepage. Thus,
conversions from OEM to ANSI or ANSI to OEM take place on RM/COBOL for Windows in
the following principal cases:

• When the RM/COBOL runtime system makes calls to Windows functions requiring
ANSI code points, the runtime system converts the code points from the OEM codepage
to their corresponding code points in the ANSI codepage.

• Most screen and printer fonts have a default script (also called a character set) that
interprets code points as being from the ANSI codepage. Thus, when displaying or
printing character data to such fonts, the RM/COBOL runtime system converts the in-
memory code points from the OEM codepage to the ANSI codepage. (Fonts can support
multiple scripts, but the RM/COBOL system currently uses only the default script for a
font.)

• Windows delivers data entered from the keyboard to the runtime system with code points
from the ANSI codepage. Accordingly, the RM/COBOL runtime system converts the
keyed data to the corresponding code points in the OEM codepage to keep the in-memory
data consistently OEM. (Note that extended characters can be keyed only when the
TERM-ATTR configuration record on page 351 specifies the keyword DATA-
CHARACTERS with a value that allows characters with a code point greater than 126 to
be treated as input data characters; otherwise, only ASCII code points 32 – 126 are
considered to be valid input data characters.)

Now that Windows has been the dominant operating system for such a long time, customers
who use extended characters are having difficulties with the assumption that RM/COBOL
character data is from the OEM codepage. They use Windows editors that produce source
program files using code points from the upper half of the ANSI codepage. Nonnumeric
literal values containing these non-ASCII characters display as expected in the editor, but do
not display or print as expected at runtime. This is because the RM/COBOL runtime system
assumes that they are code points in the OEM codepage and converts them to the
corresponding code points in the ANSI codepage. Since the code points were already from
the ANSI codepage, this conversion scrambles the code points in the upper half instead of
producing the desired code points. As a result, the extended characters are displayed or
printed incorrectly. Also, data entered from the keyboard often undergoes two conversions,
one from ANSI to OEM on being keyed, and then from OEM to ANSI on being displayed or
printed to a font with a default script that is not OEM/DOS. Since among the extended
characters of the two codepages there is not always a matching character, these conversions
prevent some characters that can be keyed from displaying or printing as intended by the
person entering the characters. The conversion from ANSI to OEM may substitute a close
match such as “Y” (LATIN CAPITAL LETTER Y) for “Ÿ” (LATIN CAPITAL LETTER Y
WITH DIAERESIS) or, if there is no close match, a character such as “?” (QUESTION
MARK) or “_” (LOW LINE or SPACING UNDERSCORE), which then remains the same
when converted from OEM to ANSI since the replacement characters are in the lower

Chapter 3: Installation and System Considerations for Microsoft Windows

102 RM/COBOL User's Guide

common half of the character set. That is, the original ANSI character keyed is not recovered
despite the conversion back to ANSI.

RM/COBOL for ANSI Codepage on Windows
RM/COBOL provides direct support for using the ANSI codepage in order to assist customers
desiring to develop new applications in ANSI mode. Prior to version 9 of RM/COBOL, there
was only support for the OEM codepage. The OEM mode should be used for applications
previously created for the OEM codepage.

WARNING Great care should be taken to avoid mixing ANSI and OEM code points in any
one application or set of application data files, since there is no computable means of undoing
the mixing; a human would need to review all the character data to undo the mixed set of code
points. If necessary, an application can be converted from OEM to ANSI or ANSI to OEM,
but the entire application and its entire set of data files must be converted to avoid mixing
ANSI and OEM code points in the same application. If two or more applications share a set
of data files, all the applications must be converted at the same time.

When RM/COBOL is installed, it defaults to OEM mode, as was the case before version 9.
The command-line option /cs_ansi may be specified before the program name to enable ANSI
mode. If ANSI mode will be your preferred mode, the runcobol_ansi.exe file, installed into
the installation directory at install time, may be copied over the runcobol.exe file. The
compiler can be switched to ANSI mode in a similar manner so that data displayed or printed
by the compiler will interpret the code points in the source program correctly. CodeWatch
also supports setting the project mode to OEM or ANSI, and the CodeWatch command-line
program, rmcw.exe, supports the /cs_ansi and /cs_oem command-line options. (Further
information about the support for ANSI or OEM native character sets is provided in the
CodeWatch User’s Guide.) A utility named RMSETNCS Utility (see page 103) is provided
to accomplish switching between a default of OEM and ANSI.

In ANSI mode, the compiler, runtime system and CodeWatch development environment
assume that code points represent characters from the Windows system ANSI codepage.
Thus, a data conversion for character data is required only in that rare situation where a
display or printer font is chosen that has a default script of OEM/DOS. In such a situation,
the ANSI code points are converted to their corresponding OEM code points before the data is
displayed or printed. Also, no conversion is required for keyboard input in ANSI mode since
Windows delivers the characters as code points from the ANSI codepage.

Note The compiler running in ANSI console mode will not display characters correctly in the
console window when the default raster fonts for console windows are used. Use the Console
Window Properties dialog box to change the console window font to a True Type font, such
as Lucida Console, so that the characters will display correctly.

The C$GetNativeCharset subprogram (see page 547)s has been provided so that a COBOL
program can determine at runtime which character set, ANSI or OEM, is in use as the native
character set. The runtime call back table, described in the CodeBridge User’s Guide, has
also been extended to contain a pNativeCharset pointer so that non-COBOL programs can
determine the native character set used by the calling COBOL program. Note that any single
run unit can have only one native character set for the entire duration of that run unit. The
native character set for the run unit is established when the run unit is started.

CodeBridge version 9 has been enhanced to allow the native character set of the non-COBOL
character data to be declared ANSI or OEM. This information is used in conjunction with the
known native character set of the COBOL run unit to provide the appropriate translations for
nonnumeric data passed between the COBOL and non-COBOL programs. If the non-
COBOL character data is not declared to be from the ANSI or OEM codepage, then no
conversion is done. In this case, the non-COBOL character data must either match the native

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 103

character set of the COBOL run unit or the COBOL program must handle any necessary
translations using the C$ConvertAnsiToOem (see page 542) or C$ConvertOemToAnsi (see
page 542) library subprograms.

Installation Character Set Considerations on Windows
When RM/COBOL version 9 is installed on Windows, two client files are installed for
starting a COBOL run unit: runcobol_oem.exe and runcobol_ansi.exe. These two clients
differ only in their default native character set, as indicated by their names. The
runcobol_oem.exe client is also copied to runcobol.exe during installation. Thus, the default
native character set after installation is OEM when the runcobol command is used to start the
runtime system. The runcobol_ansi.exe file can be copied to the runcobol.exe file to change
the default native character set to ANSI.

Either client can be started with the /cs_oem or /cs_ansi command-line option before the
main program file name to force the native character set for that run unit to OEM or ANSI,
respectively. Alternatively, the runcobol_oem.exe or runcobol_ansi.exe client may be used
to start the run unit.

Similarly for a development system, four client files are installed for starting a COBOL
compilation: rmcobolc_oem.exe, rmcobolg_oem.exe, rmcobolc_ansi.exe, and
rmcobolg_ansi.exe. These correspond, respectively, to the console and GUI compiler clients
with a default native character set of OEM, and the console and GUI compiler clients with a
default native character set of ANSI.

RMSETNCS Utility

A utility named rmsetncs.exe is provided during installation to allow easy switching between
the ANSI and OEM default clients, and, for a development system, between the console and
GUI compilers. The utility also modifies the CodeWatch INI file rmcw.ini in the Windows
directory so that new projects will default to the same character set mode as the runcobol and
rmcobol commands.

The RMSETNCS command line is as follows:

RMSETNCS charset-spec [compiler-mode]

where,

charset-spec:
 /cs_ansi to select the ANSI character set
 /cs_oem to select the OEM character set

compiler-mode:
 /console to select the console-mode compiler
 /GUI to select the GUI mode compiler

The command-line options are case-insensitive per Windows conventions. The options can
be specified in either order if both are specified. The charset-spec option is required, but
compiler-mode is optional and will default to /console. Hyphens can be used instead of
slashes to introduce the options, if desired.

The RMSETNCS utility must be run in an RM/COBOL installation folder and assumes
that the execution folder is the folder to be modified. That is, the folder to be modified is
the folder containing the rmsetncs.exe file, which is not necessarily the current directory. For

Chapter 3: Installation and System Considerations for Microsoft Windows

104 RM/COBOL User's Guide

example, when the command is executed with a pathname specified preceding the command,
the pathname specifies the installation folder to be modified. Successful execution results in a
display of the following lines in a development installation folder for the given command line:

[C:\Micro Focus\test\cw1] rmsetncs /cs_ansi /gui
Modifying folder C:\Micro Focus\test\cw1\ --
 setting character set to ANSI;
 setting compiler mode to GUI.
Runtime client runcobol_ANSI.exe copied to runcobol.exe.
Compiler client rmcobolg_ANSI.exe copied to rmcobol.exe.
CodeWatch INI file rmcw.ini file modified.
RMSETNCS modified folder C:\Micro Focus\test\cw1\ successfully
 for a development system.

For a runtime-only installation folder, that is, one without a compiler client, the following
output would be produced for the given command line:

[C:\Micro Focus\test\cw1] rmsetncs /cs_ansi
Modifying folder C:\Micro Focus\test\cw1\ --
 setting character set to ANSI;
 setting compiler mode to Console.
Runtime client runcobol_ANSI.exe copied to runcobol.exe.
Installation path does not contain compiler client rmcobolc_ANSI.exe.
RMSETNCS modified folder C:\Micro Focus\test\cw1\ successfully
 for a runtime-only system (compiler client not found).

The runtime client must exist in the execution folder. If it does not, output similar to the
following will occur for the given command line:

[C:\Micro Focus\test\cw1] rmsetncs /cs_ansi
Modifying folder C:\Micro Focus\test\cw1\ --
 setting character set to ANSI;
 setting compiler mode to Console.
Installation path does not contain runtime client runcobol_ANSI.exe.
RMSETNCS terminated with error. Be sure utility was run in
 installation folder.

The RMSETNCS utility sets the exit code (ERRORLEVEL) to zero if successful and one if
unsuccessful. The results of running the utility can be checked using the following
commands:

runcobol /showcharset (for a runtime-only or development system)

rmcobol /showcharset (for a development system)

Note There is a conflict with Windows User Access Control (UAC) because the normal
installation folder and Windows folder are protected folders. The utility tries to modify files
in the folder it is run and in the Windows folder. With UAC on (the default for Windows
installations), these modifcations will fail unless the utility is run elevated.

Note The utility modifies the runcobol.exe or rmcobol.exe in the same directory as the utility
itself. The 64-bit and 32-bit executables can be modified separately and need not have the
same default character set, but it is recommended that when 32-bit and 64-bit RM/COBOL
versions are installed they have the same default character set for consistency.

Running any runtime or compiler client with just the /showcharset command-line option will
cause the client to display its native default character set. This is useful when the client has

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 105

been renamed and it is necessary to verify the default native character set. The native
character set actually in use is shown in the banner when verbose banners are requested, either
with the –V Runtime Command Option or the RM_VERBOSE_BANNER=Y environment
variable setting. (The native character set actually in use may differ from the default native
character set for a client if the /cs_ansi or /cs_oem command-line option has been specified.)

Related Character Set Configuration on Windows
Several properties and configuration keywords allow modification of how RM/COBOL
handles the ANSI and OEM conversions. These are described briefly below, along with how
they relate to whether the native character set is ANSI or OEM.

• The Font CharSet OEM property (see page 76) specifies those display font scripts that are
considered to be OEM/DOS and thus whether a conversion does not occur when the
native character set is OEM; otherwise, a conversion from OEM to ANSI is done as
required. If the native character set is ANSI, this property is ignored and a conversion
from ANSI to OEM occurs only when the display font script is OEM/DOS.

• The Full OEM To ANSI Conversions property (see page 76) causes additional
conversions from OEM to ANSI to occur when the native character set is OEM. These
conversions are ones that were missed in earlier implementations of the runtime system
for Windows. This property has no effect when the native character set is ANSI, since no
OEM to ANSI conversions are needed in this case.

• The Printer Font CharSet OEM property (see page 81) specifies those printer font scripts
that are considered to be OEM/DOS and thus whether a conversion does not occur when
the native character set is OEM; otherwise, a conversion from OEM to ANSI is done as
required. If the native character set is ANSI, this property is ignored and a conversion
from ANSI to OEM occurs only when the printer font script is OEM/DOS.

• The ALLOW-EXTENDED-CHARS-IN-FILENAMES keyword (see page 336) in the
RUN-FILES-ATTR configuration record determines whether extended characters are
allowed in filenames passed from the runtime system to Windows file management
functions. If extended characters are allowed, this keyword can further specify whether
the characters should be interpreted as ANSI or OEM code points. This keyword should
generally be set to the value ANSI when the native character set is ANSI and extended
characters are used in filenames. Similarly, it should be set to the value OEM when the
native character set is OEM and extended characters are used in filenames.

• The DATA-CHARACTERS keyword (see page 352) in the TERM-ATTR configuration
record determines if keyboard input can include extended characters. By default,
extended characters cannot be entered from the keyboard.

• The EURO-CODEPOINT-ANSI keyword (see page 326) in the
INTERNATIONALIZATION configuration record specifies the code point in the ANSI
codepage to use to represent the euro symbol. This can be used to preserve the euro
symbol when converting between ANSI and OEM codepages that may not have a euro
symbol defined.

• The EURO-CODEPOINT-OEM keyword (see page 326) in the
INTERNATIONALIZATION configuration record specifies the code point in the OEM
codepage to use to represent the euro symbol. This can be used to preserve the euro
symbol when converting between ANSI and OEM codepages that may not have a euro
symbol defined.

Chapter 3: Installation and System Considerations for Microsoft Windows

106 RM/COBOL User's Guide

Terminal Input and Output on Windows
This section describes how terminal input and output are handled by the RM/COBOL runtime
system on Windows.

Terminal Interfaces
The runtime system uses only one terminal interface named GUI (Graphical User Interface)
on Windows. Screen output is displayed within the client area of the Runtime System
Window (see page 111).

Cursor Types
Under default conditions, there are three types of cursors, each of which indicates a different
edit mode during ACCEPT operations.

_ The underscore cursor indicates that standard overtype mode is active.

█ The full-height cursor indicates that you have typed to the end of the field
and that the TAB phrase has been specified in the ACCEPT statement.
A backspace key or field termination key is the only valid keystroke in
this mode.

 The half-height cursor indicates that insert mode is active.

In versions of RM/COBOL prior to 7.5, the cursors were drawn by the RM/COBOL runtime
system. In versions 7.5 and higher, the runtime uses the Windows cursor, which is a blinking
cursor where the rate at which the cursor blinks is controlled by the Keyboard settings in the
Windows Control Panel. The shapes of the three cursors can be configured using three
properties in the RM/COBOL Windows registry file: Cursor Overtype property, Cursor Insert
property, and Cursor Full Field property. For more information, see the discussion of these
properties in Setting Control Properties (on page 72).

Blinking Attribute
The blinking attribute is not supported in the Windows environment, as noted in the
description of the BLINK keyword (on page 332) in the RUN-ATTR configuration record.

Portable Line Draw Characters
The GRAPHICS keyword of the ACCEPT and/or DISPLAY CONTROL phrase translates the
characters described in Table 26 (on page 211) to system-specific line draw characters.
Characters that are not listed in this table are output unchanged.

It is not required that the current font contain line draw characters because the runtime system
dynamically creates these characters as required.

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 107

Keyboard Input Character Sequences
Input character sequences are translated to field input data characters, field editing actions, or
field termination by use of the TERM-INPUT configuration record (see page 356). There is a
default set of TERM-INPUT configuration records when the configuration file is not specified
or does not contain any TERM-INPUT configuration records.

The interpretation of a particular input character sequence differs depending on whether the
sequence begins with a NUL character or without a NUL character, as described in the
following paragraphs.

When the sequence specification does not begin with a NUL on Windows, the translation of
TERM-INPUT sequences is as follows:

1. Character values 1 through 26, SOH through SUB as shown in Table 36: ASCII
Equivalents (on page 359), are translated to Ctrl+“a” through Ctrl+“z”, respectively. For
example, the sequence “BS” is the same as “NUL WCNT H”; that is, Ctrl+“h”.

2. Character value 27 (ESC) is not translated and corresponds to the virtual-key code for the
Esc key.

3. Character value 28 (FS) is translated to Ctrl+“\” for U.S. keyboards. The translation uses
VK_OEM_5 (0xDC), which may correspond to a different key on non-U.S. keyboards.

4. Character value 29 (GS) is translated to Ctrl+“]” for U.S. keyboards. The translation uses
VK_OEM_6 (0xDD), which may correspond to a different key on non-U.S. keyboards.

5. Character value 30 (RS) is translated to Ctrl+“6”.

6. Character value 31 (US) is translated to Ctrl+“-”. The translation uses
VK_OEM_MINUS (0xBD), which should be the minus key for any country.

7. Character values 32 (SP) through 255, with twenty-two exceptions, are not translated and
correspond directly to the virtual-key code values. The exceptions are as follows:

• 034/039 (“ " ' ”) are translated to VK_OEM_7=0xDE

• 043/061 (“+=”) are translated to VK_OEM_PLUS=0xBB

• 044/060 (“,<”) are translated to VK_OEM_COMMA=0xBC

• 045/095 (“-_”) are translated to VK_OEM_MINUS=0xBD

• 046/062 (“.>”) are translated to VK_OEM_PERIOD=0xBE

• 047/063 (“/?”) are translated to VK_OEM_2=0xBF

• 058/059 (“;:”) are translated to VK_OEM_1=0xBA

• 091/123 (“[{”) are translated to VK_OEM_4=0xDB

• 092/124 (“\|”) are translated to VK_OEM_5=0xDC

• 093/125 (“]}”) are translated to VK_OEM_6=0xDD

• 096/126 (“`~”) are translated to VK_OEM_3=0xC0

These exceptions allow a character sequence to specify a nonalphanumeric character to obtain
the virtual-key code for that key on a U.S. keyboard. For non-U.S. keyboards, the translation
is often incorrect. Thus, outside the U.S., this method of specifying a sequence should be
avoided by specifying a leading NUL in the sequence.

When the sequence specification does begin with a NUL on Windows, the translation is
as follows:

Chapter 3: Installation and System Considerations for Microsoft Windows

108 RM/COBOL User's Guide

1. Two 0 (NUL) characters in sequence (NUL NUL) represents a Ctrl+Break key press.
(RM/COBOL internally converts the 0x03 virtual-key code returned by Ctrl+Break to
zero, an unused virtual-key code value, for historical reasons having to do with
RM/COBOL on MS-DOS).

2. The value 127 (DEL) indicates that the next character, if there is one, is an ASCII OEM
character code. If there is no next character, 127 is interpreted the same as WF16
(VK_F16 = 0x7F = 127).

3. Any other value is treated as a virtual-key code value. The value may be specified as one
of the following:

• a single OEM ASCII character (example: A);

• a quoted single OEM ASCII character (example: “A”);

• one of the ASCII equivalents from Table 36 (see page 359) (example: ETX);

• one of the Code Names from Table 13 (example: WF2);

• a decimal number (example: 113 for F2); or

• a hexadecimal number (example: 0x71 for F2).

However, even though OEM ASCII values can be specified in a TERM-INPUT character
sequence, they represent virtual-key code values, except as described in the translation used
when the sequence does not begin with a NUL. The description of a value specification in a
configuration record (see page 290) describes how to specify a decimal or hexadecimal
numeric value and when quotes are required around an ASCII character. The virtual-key
codes for letters are the uppercase version of the letter; the lowercase letters represent other
keys on the keyboard (for example, the letter “a”, with the value 0x61, is the virtual-key code
for the numeric keypad 1 key). Documentation on virtual-key codes is available from
Microsoft on their MSDN Library web site at http://msdn.microsoft.com/library/.

Additional character equivalents, listed in Table 13, have been defined for the character
sequence specifications. If a character equivalent, which actually specifies a virtual-key code
value, is used to specify a character sequence, the sequence specification should begin with a
NUL. This is necessary because character values are translated in the absence of a leading
NUL, and there is overlap between character values and virtual-key code values.

Another special incoming character sequence has been added. Specify NUL DEL <ascii-
char-code> on the TERM-INPUT record to match on the ASCII character code rather than the
virtual key code. <ascii-char-code> is the decimal value of the ASCII code in the range 0
through 255. In order for this record to be effective, the <ascii-char-code> must not be
included in the TERM-ATTR record DATA-CHARACTERS range. As an example, an
Umlaut-Uppercase-U can be input by:

TERM-INPUT DATA=154 NUL DEL 154

Note Alt-key sequences are not available under RM/COBOL for Windows because the
underlying Windows-based environment traps the Alt-key sequences. Alt-key sequences
are entered as Ctrl-Shift-key combination sequences. For example, use Ctrl-Shift-I instead
of Alt-I.

Table 13: Additional Character Equivalents Under RM/COBOL for Windows

Code Name Description (Virtual key code)

APPS Applications key (0x5D)

ATTN ATTN key (0xF6)

http://msdn.microsoft.com/library/

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 109

Table 13: Additional Character Equivalents Under RM/COBOL for Windows

Code Name Description (Virtual key code)

CAPITAL Caps Lock key (0x14)

CRSEL CRSEL key (0xF7)

EREOF Erase EOF key (0xF9)

EXSEL EXSEL key (0xF8)

KB' " Regular KeyBoard apostrophe/quotation mark (0xDE)

KB,< Regular KeyBoard comma/less than (0xBC)

KB.> Regular KeyBoard period/greater than (0xBE)

KB/? Regular KeyBoard slash/question mark (0xBF)

KB;: Regular KeyBoard semicolon/colon (0xBA)

KB[{ Regular KeyBoard left bracket/left brace (0xDB)

KB\| Regular KeyBoard backslash/vertical bar (0xDC)

KB]} Regular KeyBoard right bracket/right brace (0xDD)

KB-_ Regular KeyBoard minus sign/underscore (0xBD)

KB`~ Regular KeyBoard grave accent/tilde (0xC0)

KB=+ Regular KeyBoard equal sign/plus sign (0xBB)

KB0) Regular KeyBoard zero/right parenthesis (0x30)

KB1! Regular KeyBoard one/exclamation point (0x31)

KB2@ Regular KeyBoard two/at sign (0x32)

KB3# Regular KeyBoard three/number sign (0x33)

KB4$ Regular KeyBoard four/dollar sign (0x34)

KB5% Regular KeyBoard five/percent sign (0x35)

KB6^ Regular KeyBoard six/caret (0x36)

KB7& Regular KeyBoard seven/ampersand (0x37)

KB8* Regular KeyBoard eight/asterisk (0x38)

KB9(Regular KeyBoard nine/left parenthesis (0x39)

LWIN Left Windows logo key (0x5B)

NKP- Numeric KeyPad Subtract (minus sign) (0x6D)

NKP* Numeric KeyPad Multiply (asterisk) (0x6A)

NKP. Numeric KeyPad Decimal (period) (0x6E)

NKP/ Numeric KeyPad Divide (slash) (0x6F)

NKP+ Numeric KeyPad Add (plus sign) (0x6B)

NKP0 … NKP9 Numeric KeyPad 0 … 9 (zero … nine) (0x60 … 0x69)

NKPS Numeric KeyPad Separator (not on most keyboards) (0x6C)

NUMLOCK Num Lock key (0x90)

OEM_1 “;:” for US (0xBA)

Chapter 3: Installation and System Considerations for Microsoft Windows

110 RM/COBOL User's Guide

Table 13: Additional Character Equivalents Under RM/COBOL for Windows

Code Name Description (Virtual key code)

OEM_2 “/?” for US (0xBF)

OEM_3 “`~” for US (0xC0)

OEM_4 “[{” for US (0xDB)

OEM_5 “\|” for US (0xDC)

OEM_6 “]}” for US (0xDD)

OEM_7 “ ‘ “ ” for US (0xDE)

OEM_8 (0xDF)

OEM_COMMA “,” for any country (0xBC)

OEM_MINUS “-” for any country (0xBD)

OEM_PERIOD “.” For any country (0xBE)

OEM_PLUS “+” for any country (0xBB)

PA1 PA1 key (0xFD)

PAUSE Pause key (0x13)

PLAY Play key (0xFA)

RWIN Right Windows logo key (0x5C)

SCROLL Scroll Lock key (0x91)

WAGR AltGr key (Ctrl+Alt under Windows)

WCNT Control key (0x11)

WCNT Control key (0x11)

WDEL Delete key (0x2E)

WDWN Down Arrow key (0x28)

WEND End key (0x23)

WEND End key (0x23)

WF1 . . . WF23 Function 1 … Function 23 (0x70 … 0x86)

WHOM Home key (0x24)

WINS Insert key (0x2D)

WLFT Left Arrow key (0x25)

WPGD PgDn key (0x22)

WPGU PgUp key (0x21)

WPRT Print key (0x2C)

WRGT Right Arrow key (0x27)

WSFT Shift key (0x10)

WUP Up Arrow key (0x26)

ZOOM Zoom key (0xFB)

Example

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 111

The NKPx and KBxx names are useful if you want the numeric keypad to return a different
character than the same key on the regular portion of the keyboard. Suppose you want the
period key on the regular keyboard to continue to return a period (ASCII decimal 46), while
the period key on the numeric keypad returns a comma (ASCII decimal 44). To remove the
period (46) from the range, replace the normal record:

TERM-ATTR DATA-CHARACTERS=32,126

with the following two new records:

TERM-ATTR DATA-CHARACTERS=32,45

TERM-ATTR DATA-CHARACTERS=47,126

Then, to obtain the required behavior, add the following two new records:

TERM-INPUT DATA=46 NUL KB.>

TERM-INPUT DATA=44 NUL NKP.

Other System Considerations for Windows
This section describes special system considerations for using RM/COBOL under the
Windows operating system.

Memory Available for a COBOL Run Unit on Windows
The memory available for a run unit depends on the configuration of your PC. If the total
memory required by a run unit exceeds the amount of available memory, runtime system
errors will occur. These errors indicate an inability to obtain enough memory to perform a
desired operation. This is unlikely to occur under Windows because 32-bit Windows
provides virtual memory. However, it is still possible to use segmentation and subprograms
to manage the dynamic memory requirements of very large run units.

Runtime System Window
Figure 17 illustrates a sample window of an RM/COBOL program running under Windows.

Chapter 3: Installation and System Considerations for Microsoft Windows

112 RM/COBOL User's Guide

Figure 17: Sample Window of an RM/COBOL Program Running Under Windows

The runtime system window is a typical Windows operating system window with the
following areas:

• Client area. Used by the RM/COBOL program input and output.

• Menu bar. Configurable by the developer. Menu bar can be different for each program.
COBOL programs can also display a menu bar by using the C$MBar subprogram (see
page 557).

• Status bar. Displays prompt text when the user moves the mouse in the client area,
through a menu pick or over a toolbar button. It is configurable by the developer. Status
bar can be different for each program. COBOL programs can also display text in the
status bar by using the C$SBar subprogram (see page 564). It can be turned on or off by
the user.

• Control menu button. Opens the Control menu.

• Title bar. Identifies the program-name currently running the COBOL program and
displays the Minimize, Maximize, and Close buttons. It is configurable by the developer.
Title bar can be different for each program. COBOL programs can also display a title by
using the C$Title subprogram (see page 577).

• Toolbar. Configurable by the developer. Toolbar can be different for each program. It
can be turned on or off by the user. COBOL programs can also display a toolbar by
using the C$TBar subprogram (see page 575).

• Pop-up menu. Configurable by the developer. Pop-up menu can be different for each
program. RM/COBOL programs can also change the contents of a pop-up menu by
using the C$RBMenu subprogram (see page 561).

Menu bar
Control menu button

Toolbar

Status bar

Title bar

Client area
Pop-up menu

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 113

Control Menu Icon

The upper-left corner of the title bar has a button that enables the Control menu (sometimes
referred to as System menu). Although the Control menu is standard in the Windows
operating system, RM/COBOL for Windows has added functions to this menu. Figure 18
illustrates the RM/COBOL for Windows Control menu.

Figure 18: RM/COBOL for Windows Control Menu

The Restore, Move, Size, Minimize, Maximize, and Close commands are standard Control
menu functions for the Windows operating system. (For more information, see the Microsoft
Windows documentation that accompanied the operating system.) The Copy, Copy table,
Paste, and Properties commands have been added to the Control menu by RM/COBOL for
Windows. Each of these commands is described in the following sections.

Copy

Choosing the Copy command from the Control menu copies the text selected in the client area
of the RM/COBOL runtime window to the Windows Clipboard. To select text, hold down
the mouse button and drag the mouse to the target area. Double-clicking the mouse button
selects text in the manner described in the Mark Alphanumeric property (see page 78).

Copy table

Choosing the Copy table command from the Control menu copies the text selected in the
client area of the RM/COBOL runtime window to the Windows Clipboard, and also replaces
multiple spaces with a tab. This feature is useful in copying a table of numbers to a
spreadsheet, since spreadsheets require that number fields be separated by the tab character.

Paste

Choosing the Paste command from the Control menu copies the text in the Windows
Clipboard to the currently running RM/COBOL program through the COBOL ACCEPT
statement. If more data is pasted than can be accepted by the ACCEPT command, the data
is buffered.

Chapter 3: Installation and System Considerations for Microsoft Windows

114 RM/COBOL User's Guide

Properties

Choosing the Properties command from the Control menu opens the Properties dialog box,
which is illustrated in Figure 10 (see page 72).

Return Code Message Box
When runcobol.exe terminates with an exit code other than 0, a Return Code message box is
displayed with the status code (that is, the exit code), as shown in Figure 19. For more
information, see compiler exit codes (on page 187) and program exit codes (on page 199). If
a COBOL error occurred, that error message is displayed as well. The Show Return Code
Dialog property (see page 83) can be used to suppress the display of this message box.

The message box contains two command buttons. The OK button dismisses the message box
and closes the application. The Cancel button dismisses the message box only. The
application window remains open until you select the Close option from the Control menu.
To close the message box, you can click the Close button in the upper-right corner of the
window.

Figure 19: Return Code Message Box

CALL “SYSTEM”
When using the SYSTEM (see page 579) non-COBOL subprogram (CALL “SYSTEM”) with
DOS programs and batch files, you can customize how these programs run by modifying the
Command Prompt properties. This can be done by right-clicking the mouse on the Command
Prompt icon and selecting Properties from the pop-up menu.

Performance
For increased file system performance in single-user mode, set the RUN-FILES-ATTR
configuration record option to FORCE-USER-MODE=SINGLE (see page 338).

Using Large Files on Windows
RM/COBOL supports files larger than 2 gigabytes (GB), but not on all versions of Windows
and not on all Windows file systems. In addition, even if a particular version of Windows and
a particular version of the Windows file system allow local files larger than 2 GB, this does
not guarantee that all other machines in a peer-to-peer network can successfully access the

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 115

large file. The following information describes the conditions under which applications can
count on large file support in various Windows environments.

Windows File Systems Considerations

Microsoft provides several different Windows file systems.

Windows 95 operating systems prior to the release of Windows 95 OEM Service Release 2
(OSR2), version number 4.00.950B, support only the File Allocation Table (FAT) file system,
which limits files to no more than 2 GB. The Windows 9x-class of operating systems
(excluding Windows 95 without OSR2) included an updated version of the File Allocation
Table file system, called FAT32. This updated file system allows support for files larger than
2 GB, but not larger than 4 GB. Windows 98 and Windows Me support both the FAT (2 GB)
and the FAT32 (4 GB) file system.

Although the FAT32 file system supports local files up to 4 GB, Micro Focus has determined
that Windows 95 does not support access to files larger than 2 GB from remote clients.
Attempts to create files larger than 2 GB on a Windows 95 FAT32 file system and to access
the file from another machine may result in a hung client when the RM/COBOL runtime
attempts the WRITE operation that would cause the file to grow past 2 GB. Everything will
work correctly until the attempt to exceed the 2 GB boundary.

While Windows NT-class operating systems do not support the FAT32 file system, they do
support the NTFS file system, which allows multiple terabyte (TB) files.

In addition to these file systems considerations for the different versions of the Windows
operating system, there are also other variants of the Windows operating systems. In
particular, there have been several Service Pack updates for Windows NT 4.0. Micro Focus
recommends that Windows NT 4.0 Servers be upgraded to at least Service Pack 6. Microsoft
generally provides downloadable updates for system modules from their web site between
updates.

Large File Locking Issues

Very large files, defined as RM/COBOL indexed files larger than 2 GB, and RM/COBOL
relative and sequential files larger than 1 GB, require the use of the LARGE-FILE-LOCK-
LIMIT keyword (see page 339) of the RUN-FILES-ATTR configuration record to specify a
lock limit larger than 2 GB. The Define Indexed File (rmdefinx) utility (see page 594) may
be used to set the Large File Lock Limit for version 3 indexed files. The lock limit may not
be set to more than 4 GB unless the RM/COBOL runtime is running on a Windows NT-class
operating system and the file resides on an NTFS file system.

For indexed files, the block size and the value of the lock limit determine how large the
indexed file can be. For example, with a 4 GB lock limit, a block size of 1024 will allow a
3.2 GB indexed file and a block size of 4096 will allow a 3.7 GB indexed file. For relative
and sequential files, the file size may be no more than one half of the lock limit. Thus, a
sequential file may be no more than 2 GB when the lock limit is 4 GB.

Using very large files also requires that the Windows system support region locking at the
value specified by the Large File Lock Limit. All Windows systems seem to be able to lock
at 4 GB (above 4 GB in the case of a Windows NT-class operating system), but remote access
to very large files requires that the network redirector (on the client machine) and the File and
Printer Sharing Network Service (on the server machine) also support such locks.

Chapter 3: Installation and System Considerations for Microsoft Windows

116 RM/COBOL User's Guide

Test Programs Available

In order to help the RM/COBOL applications developer who needs to use files larger than 2
GB in a Windows environment, Micro Focus has developed some simple C programs which
attempt to answer the question of how various Windows systems react to the use of very large
files. These programs and any additional information discovered after the release of this
product may be found on the Micro Focus web site at https://supportline.microfocus.com.

Because the Windows environment is very complex with regard to the use of very large files,
Micro Focus strongly recommends that the applications developer use these test programs to
determine whether it is possible to use very large files in the required Windows environment.
Failure to do this testing may result in unfortunate surprises (for example, when the file grows
larger than 2 GB) long after the application has been deployed at a customer site.
Periodically, Micro Focus will add additional information to the web site. If your application
requires very large files, continue to check the web site often for updates.

It is also possible to use the RM/COBOL runtime system to write a test indexed file of the
desired size to verify that your application will not have problems with a specific Windows
environment. This technique is particularly useful when running in a Windows peer-to-peer
environment.

Environment Variables for Windows
An environment variable is an operating system feature that allows a value to be equated with
a name. Table 14 lists those environment variables that are used by RM/COBOL on
Windows.

Note In addition to the environment variables listed in the following table, RM/COBOL uses
environment variables to map generic file access names, as explained in File Access Names
on Windows (on page 64).

Table 14: Environment Variables for Windows

Environment Variable Usage

COMSPEC SYSTEM subprogram (see page 579).

GROUP C$GetSysInfo subprogram (see page 551).

GROUPID C$GetSysInfo subprogram (see page 551).

NAME C$GetSysInfo subprogram (see page 551).

PATH Locating files (see page 62).

PRINTER Printer support (see page 238).

RMPATH Locating files (see page 62).

RM_COMPILER_WRAP_LONGNAMES Controls whether the compiler will wrap rather than
truncate long user-defined words in the listing
summary (allocation map, cross reference, summary
error messages, and so forth). The value “Yes”
causes wrapping; the value “No” causes truncation.
The value can be specified as “Y” or “N” and case
does not matter. See also the WRAP-
LONGNAMES value (on page 306) for the
LISTING ATTRIBUTES keyword of the
COMPILER-OPTIONS configuration record.

https://supportline.microfocus.com/

Chapter 3: Installation and System Considerations for Microsoft Windows

 RM/COBOL User's Guide 117

Table 14: Environment Variables for Windows

Environment Variable Usage

RM_DEVELOPMENT_MODE C$SetDevelopmentMode subprogram (see
page 571).

RM_DYNAMIC_LIBRARY_TRACE Tracing support module loads (see page 449).

RM_IGNORE_GLOBAL_RESOURCES Causes the compiler, runtime system, or recovery
utility not to access the Command Line Options
property defined for All Users. This may be useful
if you are trying to develop at the same time others
are running an application in live “production
mode.” See Setting Control Properties (on page 72)
and Setting Synonym Properties (on page 86).

RM_KEEP_XML_SYMTAB_FILE The value specifies the path of the folder where the
temporary XML-format symbol table file from the
compiler should be preserved. See also the KEEP-
TEMP-XML-SYMBOL-TABLE-FILE keyword (on
page 302) of the COMPILER-OPTIONS
configuration record.

RM_LOAD_WOW_CLIENT Loading the WOW Extensions support module,
rpcpluswow.dll.

RM_LIBRARY_SUBDIR Locating optional support modules (see page 449).

RM_VERBOSE_BANNER Compile command messages (see page 177) and
runcobol banner message (see page 418).

RM_Y2K COMPILER-OPTIONS ALLOW-DATE-TIME-
OVERRIDE (see page 295)

RUNPATH Locating files (see page 62).

STATION C$GetSysInfo subprogram (see page 551).

TEMP or TMP Temporary files (see page 249).

TZ Standard C TimeZone variable.

USER C$GetSysInfo subprogram (see page 551).

USERID C$GetSysInfo subprogram (see page 551).

Chapter 4: System Considerations for Btrieve

 RM/COBOL User's Guide 119

Chapter 4: System
Considerations for Btrieve

This chapter describes special considerations for using RM/COBOL to access Btrieve files.
Btrieve files are an alternative indexed file format to the RM/COBOL indexed file format.
Btrieve files can reside on the local machine, in which case they are accessed via client-based
Btrieve, or they can reside on a remote machine, in which case they are accessed via
server-based Btrieve. Btrieve Adapter for Windows (rmbtrv32.dll) provides the
communication between the RM/COBOL runtime and Btrieve runtime, translating COBOL
requests to Btrieve requests.

Btrieve Adapter for Linux (librmbtrv.so) is also available. While this chapter primarily
describes the Windows systems considerations for Btrieve, most of the content also applies to
the implementation of the Btrieve support module on the Linux operating system. For
specific considerations on Linux, see Starting Btrieve Adapter for Linux (on page 132) in this
chapter and the EXTERNAL-ACCESS-METHOD configuration record (on page 324).

Btrieve Adapter Concepts
Btrieve Adapter, which collectively refers to both the rmbtrv32.dll program on Windows and
the librmbtrv.so support module on Linux, improves performance by providing a mechanism
to reduce the overhead required to transmit requests for records in an indexed file across a
local area network (LAN).

The goal of the Btrieve Adapter is to use the local area network for passing general requests to
other machines and for receiving completed requests back from the other machines. As a
result, significant increases may occur in the performance of the application program, the
cost-effectiveness of the local area network, and the productivity of the user.

Note See RM/COBOL versus Btrieve Indexed File Performance (on page 125) for a
situation in which the performance of Btrieve index files may not exceed that of RM/COBOL
indexed files.

Indexed Files
The application program can request a specific record of information in an indexed file. The
location of the specified record within the indexed file is determined by means of an identifier
known as a key. Indexed files use a much more efficient method of locating the record than

Chapter 4: System Considerations for Btrieve

120 RM/COBOL User's Guide

simply searching through all the records in the file until the requested record is found.
Instead, indexed files build overhead tables into the file that are similar to indexes in a book.
These overhead tables enable the indexed files to quickly look up the desired location and
then read the desired data. Figure 20 illustrates this process on a single-user system.

Note In Figure 20, Figure 21, and Figure 22, each line represents a separate event that
happens at a separate time. The lighter lines represent a small transfer of information, and the
heavier lines represent a large transfer.

Figure 20: Indexed File Requests on a Single-User System

When this process happens over a network, the situation is very similar, as shown in
Figure 21.

Figure 21: Indexed File Requests on a Local Area Network

In Figure 21, Computer 2 acts as a conduit, called a server, through which the requests of
Computer 1, called a client, are routed. (The server routes requests for more than one client
computer, which is an advantage of local area networks.) A more effective way to route
requests, however, is shown in Figure 22.

Disk Drive

Computer

Request for Overhead Table

Overhead Table Data

Request for Actual Data

Actual Data

Disk Drive

Local Area Network Cable

Computer 1
(Client)

Computer 2
(Server)

Chapter 4: System Considerations for Btrieve

 RM/COBOL User's Guide 121

Figure 22: Indexed File Requests on a Local Area Network by the Btrieve MicroKernel
Database Engine (MKDE)

Figure 22 illustrates the way in which a Btrieve Requester (running on the client, Computer 1)
and a Btrieve MicroKernel Database Engine (running on the server, Computer 2), makes the
processing of messages even more efficient. (Note that the Btrieve MicroKernel Database
Engine is a key external component of the Btrieve Adapter.) Although the interactions
between Computer 2 and the disk drive are the same as shown in Figure 21, the interactions
between Computer 1 and Computer 2 are significantly different. Instead of Computer 1
giving Computer 2 many small instructions to carry out, Computer 1 now gives Computer 2
a single, general request. Computer 2 searches the overhead table for the indexed files to
locate the desired record and then returns only the requested record.

There are several advantages to this method, but the following two are the most significant:

1. The overall operation may be quicker because the number of transfers between the two
computers is reduced.

2. Because there are fewer transfers between the Computer 1 and Computer 2, the local area
network can use the time that it is not performing transfers between the two computers to
make transfers between other computers on the network. It allows the network to handle
more computers, which makes it more cost-effective.

Required Software Components
The components required when using RM/COBOL to access Btrieve files are described in the
following sections.

For Windows

• Novell NetWare version 3.11 or later

• Btrieve MicroKernel Database Engine (MKDE) for NetWare Server

• Btrieve Requester for 32-bit Windows

• RM/COBOL compiler (development system) for Windows

• RM/COBOL runtime system for Windows

• Btrieve Adapter for Windows (rmbtrv32.dll)

Disk Drive

Cable

Computer 1
(Client)

Computer 2
(Server)

Requests for Key

Data for Key

Chapter 4: System Considerations for Btrieve

122 RM/COBOL User's Guide

For Linux

• Pervasive PSQL v8 (or higher)

• RM/COBOL compiler (development system) for Linux

• RM/COBOL runtime system for Linux

• Btrieve Adapter for Linux (librmbtrv.so)

Note NetWare products are available from Novell, Incorporated. Btrieve products are
available from Pervasive Software Inc. (formerly Btrieve Technologies Inc.).

Novell NetWare
NetWare is the software that communicates between computers on the local area network.
These NetWare products are responsible for handling the actual hardware connections,
recovering from transmission errors detected by the hardware, and routing the messages from
one program executing on one computer to another program executing on another computer.

NetWare augments the operating system by providing access to files on file servers.

Btrieve MicroKernel Database Engine (MKDE)
The MKDE component consists of two types. The first type, a client-based Btrieve MKDE,
provides access to files that are located on the same machine as the application program. The
second type, NetWare Btrieve MKDE, provides access to files that are located on a remote
machine in a multi-user environment.

The NetWare Btrieve MKDE is a record management system similar to the indexed files built
into the RM/COBOL runtime system. Because the NetWare Btrieve MKDE is not built into
the RM/COBOL runtime system, it can run on a separate computer using NetWare, thus
providing access to files in the manner illustrated in Figure 22 (on page 121).

There are also versions of the Btrieve MKDE that run on other types of networks and on a
single machine (client-based Btrieve MKDE), without network support. The client-based
Btrieve MKDE, however, no longer has the speed advantage over the RM/COBOL file
management system, since both systems have the same access to the disk drive.

Btrieve Requester for 32-Bit Windows
The 32-bit Windows requester, a dynamic link library (DLL) program, runs on the client
computer and communicates with either the server-based or the client-based Btrieve MKDE.

Pervasive PSQL v8 (or higher) for Linux
The Pervasive PSQL components are a set of programs and libraries that communicate with
either the server-based or the client-based Btrieve MKDE.

Chapter 4: System Considerations for Btrieve

 RM/COBOL User's Guide 123

RM/COBOL Compiler (for Windows and Linux)
The RM/COBOL compiler (development system) is a GSA-certified high implementation of
the American National Standard COBOL X3.23-1985 with extensions and support for most
optional features of the language.

RM/COBOL Runtime System (for Windows and Linux)
The RM/COBOL runtime system executes the application program and carries out its
instructions. The runtime system has an internal file management system that accepts input
from the user, processes data, produces data in the form of output to the user, and, most
importantly, generates requests for records to be written to and read from files.

The runtime system has been designed so that any existing RM/COBOL application may be
run in many different environments without changes either to the source of the program or to
the actual executable object. Furthermore, any existing RM/COBOL runtime system that
executes on Windows or Linux can also use Btrieve Adapter.

Btrieve Adapter
Btrieve Adapter acts as an interpreter between either of the two types of Btrieve MKDEs,
which are described in Btrieve MicroKernel Database Engine (MKDE) on page 122, and
COBOL application programs. In order to understand how this transparent interface is
achieved, it is necessary to briefly describe the different ways in which the Btrieve MKDE
and the COBOL language provide access to indexed files.

The Btrieve MKDE lets an application program access records stored in indexed files, and
provides the necessary functions for storing, retrieving, and updating the information. The
Btrieve MKDE’s method of accessing indexed files is an efficient system that provides
significant increases in functionality to the user in certain cases. However, because the
Btrieve MKDE does not use COBOL language features that provide access to indexed files, a
COBOL application program cannot communicate directly with the Btrieve MKDE.

A COBOL application program uses American National Standard COBOL 1985 language
features, such as OPEN, READ, WRITE, REWRITE, and CLOSE, to access indexed files.
The RM/COBOL runtime system contains a file management system that provides the
runtime system with support for these features. The RM/COBOL runtime system
communicates with the file management system by means of requests and responses that are
called messages. These messages are processed outside of the file management system by
any one of a variety of external file access methods.

The Btrieve Adapter, in effect, is one such external file access method for the RM/COBOL
runtime system. Btrieve Adapter receives messages from the RM/COBOL file management
system. Then, acting as an application program for the Btrieve MKDE, Btrieve Adapter
translates the messages into Btrieve requests, enabling the Btrieve MKDE to carry out the
action originally requested by the COBOL application program. The Btrieve MKDE
performs the action either on the user’s computer system or acts with NetWare on a remote
system using the local area network. (The drive letter in the pathname of the file indicates the
machine on which the file resides.) After the Btrieve MKDE has completed the requests,
Btrieve Adapter constructs an appropriate response message, which is sent to the RM/COBOL
file management system, and, finally, back to the COBOL application program. Figure 23
illustrates this process (for Windows).

Chapter 4: System Considerations for Btrieve

124 RM/COBOL User's Guide

Figure 23: Btrieve Adapter Acting as an External File Access Method (On Windows)

See also Btrieve Adapter Options (on page 126).

Configuration for Btrieve
The installation and configuration of client-based Btrieve (also called Workstation Btrieve)
for 32-bit Windows are fully described in the appropriate Btrieve installation and operation
manual supplied by Pervasive Software with your Btrieve system. The client-based Btrieve is
the MicroKernel Database Engine (MKDE) that is used to access local files (that is, Btrieve
files residing on the computer where the RM/COBOL runtime system is run). A number of
configuration settings can be modified using the Btrieve Setup utility. After configuring
Btrieve, use the Btrieve File Manager utility (or other Btrieve software) to verify that Btrieve
is working properly before using Btrieve with RM/COBOL.

Similarly, the installation and configuration of server-based Btrieve (for NetWare or for a
Windows Server) are fully described in the appropriate Btrieve installation and operation
manual that was supplied by Pervasive Software with your Btrieve system. These manuals
also describe the installation and configuration of the requesters used to communicate with
server-based Btrieve. The server-based Btrieve is the MKDE that is used to access remote
files (that is, Btrieve files residing on the NetWare or on a Windows Server). A number of
configuration settings for both the MKDE and the requesters can be modified by using the
appropriate Btrieve Setup utility.

The Btrieve Programmer’s Guide, supplied by Pervasive Software with your Btrieve
Developer Kit, is an excellent source of information for help in setting the Btrieve
configuration options properly. In addition, several books on Btrieve are available
commercially, and the Btrieve Developer’s Journal is published quarterly by Smithware, Inc.

System Considerations for Btrieve Files
Btrieve Adapter creates Btrieve files when necessary or if requested. Btrieve files created by
Btrieve Adapter have a computed page size based on one of the following methods that
produces the largest value:

1. The size of the block requested by the COBOL application.

2. The size necessary for the length of the longest key, times eight.

COBOL application
program requests
record.

The rmbtrv32 program
translates COBOL request
into Btrieve request and
sends it to the Btrieve
MKDE.

RM/COBOL file
management system
sends response to
the COBOL
application program.

The Btrieve MKDE carries
out the request and sends
the Btrieve response to the
rmbtrv32 program.

RM/COBOL file
management system
sends request to the
rmbtrv32 program
for processing.

rmbtrv32 translates
Btrieve response into
COBOL response
and sends it to the
RM/COBOL file
management system.

Chapter 4: System Considerations for Btrieve

 RM/COBOL User's Guide 125

3. The size of the largest record requested by the application, plus eight times the number of
linked duplicate keys, plus six (for overhead information), plus four if the file specifies
variable-length records (again for overhead information). For more information, see
Variable-Length Records (on page 137).

Furthermore, if the record size is greater than the maximum page size and the keys of the file
all fit into that maximum, the Btrieve Adapter creates a variable-length file. (The Btrieve
MKDE restricts the fixed-length part of records to less than the page size.)

Finally, Btrieve Adapter creates the file with the following characteristics:

• Data compression

• Blank truncation

• Five-percent, free-space threshold

• No page preallocation

To create Btrieve files with characteristics other than those previously listed, use the Btrieve
File Manager utility, the filename, and the Btrieve description-file that contains the
characteristics for the new file. For more information, see the chapter about using the File
Manager utility in the appropriate Btrieve installation and operation manual. Characteristics
established using the Btrieve File Manager utility could have a direct impact on performance,
including the following:

• The page preallocation value can be used to reserve pages for use by the file. This has
the advantage of ensuring, in advance, that the file has the disk space it needs. It can also
improve performance by concentrating the location of the file on the disk media
(assuming that the disk space is not already fragmented).

• The free-space threshold value can be set to 10, 20, or 30 percent to allow for growth of
variable-length records.

• Keys can be created that are binary or have any of the extended key types.

• Null keys can be created.

• More keys can be defined than can be used by the COBOL program. These keys must be
defined either at starting locations that are different from the COBOL keys or after the
COBOL key description for the same location. Such keys can have any Btrieve attribute
and can be split.

RM/COBOL versus Btrieve Indexed File Performance
In general, when used across the network, Btrieve indexed files have better performance than
RM/COBOL indexed files because less network activity has to occur to access a record.

However, this may not be true when a COBOL program opens an indexed file WITH LOCK.
In this case, the COBOL program then has exclusive access to that file. This has an important
consequence for RM/COBOL indexed files. In this case, the RM/COBOL runtime system
knows that no other user is able to change the indexed file overhead tables on the server, and
it keeps the overhead tables on the local machine. This results in fewer requests across the
network for the overhead tables and may result in better performance than the same program
using Btrieve indexed files.

This effect is most pronounced when the indexed file is being read sequentially (for example,
producing a report).

Chapter 4: System Considerations for Btrieve

126 RM/COBOL User's Guide

Btrieve Adapter Options
Btrieve Adapter has options that are specified on the EXTERNAL-ACCESS-METHOD
configuration record (see page 324) or on the RUN-INDEX-FILES configuration record (see
page 341) in the RM/COBOL configuration file. These configuration file options, described
in the following sections, give Btrieve Adapter information that the Btrieve MKDE requires,
but which is not contained in RM/COBOL file management system messages.

Note Typically when configuring the Btrieve MKDE, it is often sufficient to specify only the
“Largest Compressed Record Size” Btrieve configuration option, if you are using
compression (see the appropriate Btrieve installation and operation manual for more details).

EXTERNAL-ACCESS-METHOD Configuration Record
Options
Most of the information that the Btrieve Adapter needs to operate can be obtained through
requests received from the RM/COBOL file management system. However, when Btrieve
Adapter needs information required by the Btrieve MKDE, which the RM/COBOL file
management system cannot supply, it is possible to provide this information directly to
Btrieve Adapter with options in the EXTERNAL-ACCESS-METHOD configuration record.

These options are as follows:

• B (Btrieve Adapter Btrieve MKDE page size) option

• Create option

• D (duplicates) option

• I (initial display) option

• L (lock) option

• M (mode) option

• O (owner) option

• P (Btrieve Adapter page size) option

• T (diagnostic trace filename) option

These options are described in the following sections.

Note The create option is specified by the CREATE-FILES keyword and the other options
(B, D, I, L, M, O, P, and T) are specified by the OPTIONS keyword, both of which are in the
EXTERNAL-ACCESS-METHOD configuration record (see page 324).

B (Btrieve Adapter Btrieve MKDE Page Size) Option

This option is obsolete and should not be specified. The “Maximum Page Size” is no longer
a configurable parameter of the Btrieve engine, which always assumes the Btrieve limit of
4096 bytes. If this value were inadvertently specified as an amount smaller than 4096,
Btrieve Adapter may create a Btrieve file with variable-length records when such records
would not be needed.

Chapter 4: System Considerations for Btrieve

 RM/COBOL User's Guide 127

Create Option

The create option, for creating a new file, has the following values:

• Y (Yes) Create new files as Btrieve indexed files (the default).

• N (No) Do not create new files.

See the description of the CREATE-FILES keyword (on page 325) in the EXTERNAL-
ACCESS-METHOD configuration record.

The create option is the determinant parameter supplied to Btrieve Adapter, because it
determines the system that will be responsible for creating a new indexed file. Depending on
the value specified in this parameter, the new file can be created by Btrieve Adapter, by
another external file access method, or by the RM/COBOL file management system. In order
to understand how this process works, it is helpful to know more about the way in which the
RM/COBOL file management system searches for a file.

Before an application program creates a file, the RM/COBOL file management system first
tries to locate an existing file having the same name as the one specified in the create attempt.
The file management system searches the current directory first, and then all the other
directories located in the environment variable, RUNPATH. See Directory Search Sequences
on Windows (on page 62) for more information on setting the RUNPATH variable.

In addition to Btrieve Adapter, other external file access methods can be running on the
computer or network at the same time. In searching for a file, the RM/COBOL file
management system also communicates with all other known external file access methods.

The search for the filename occurs in the following sequence:

1. Any external file access methods currently running (including Btrieve Adapter) search
the current directory.

2. The RM/COBOL file management system searches the current directory.

3. The external file access methods search the first directory in the RUNPATH list.

4. The RM/COBOL file management system searches the first directory in the
RUNPATH list.

The search continues until all pertinent directories have been checked. If a file having the
same name as the one specified in the create attempt is found, it will be opened. If such a file
cannot be found, and the application program wants to create one, then a designated external
file access method can create the file.

The Btrieve Adapter create option value is a yes or no indicator that specifies whether you
want Btrieve Adapter to create any new indexed files as Btrieve files. Regardless of the value
specified, any new file is created in the first directory possible, usually the current directory.
Valid values are Yes and No. The default value is Yes.

A value of Yes causes any new indexed files to be created as Btrieve files:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 CREATE-FILES=YES

A value of No causes Btrieve Adapter not to create the file and enables another external file
access method or the RM/COBOL file management system to create new indexed files:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 CREATE-FILES=NO

Chapter 4: System Considerations for Btrieve

128 RM/COBOL User's Guide

D (Duplicates) Option

The duplicates option is used to specify whether linked or repeating duplicatable keys are
used for files created by Btrieve Adapter.

The duplicates option has the following values:

• L Create linked duplicatable keys. Linked duplicates mean that only one copy of the
duplicated key value is stored in index pages. The data records with the duplicated
key value are linked together with pointers in a doubly linked list.

• R Create repeating duplicatable keys. Repeating duplicates mean that the duplicated
key value is repeated in the index pages for each data record with that value. The
data records are not linked together. Using repeating duplicates uses more space in
index pages, but saves space in data pages and also helps avoid position lost errors
when files are shared.

The default value is L. Refer to the Btrieve Programmer’s Guide for more information.

The following example tells Btrieve Adapter to create files with repeating duplicatable keys:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='D=R'

I (Initial Display) Option

The initial display option is used to specify whether Btrieve Adapter should display an initial
message box when it is first invoked.

The initial display option has the following values:

• Y (Yes) Display the message box. The message box shows the Btrieve Adapter
version number and the OPTIONS parameter string that was passed to it from the
EXTERNAL-ACCESS-METHOD configuration record. The user must click the
OK button to acknowledge and continue. This option is most useful the first time the
user attempts to use Btrieve Adapter with RM/COBOL and Btrieve.

Note I=Y should not be used in a production environment.

• N (No) Do not display the message box.

The default value is N.

Example

The following example tells Btrieve Adapter to display the informative message box:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='I=Y'

L (Lock) Option

The lock option is used to specify the manner in which Btrieve Adapter is to handle the WITH
LOCK phrase on OPEN statements.

The lock option has the following values:

Chapter 4: System Considerations for Btrieve

 RM/COBOL User's Guide 129

• I Ignore the WITH LOCK phrase. Use the Btrieve MKDE open mode indicated with
the M (mode) option (see page 129).

• D Deny the WITH LOCK phrase.

• A Accept the WITH LOCK phrase. If OPEN WITH LOCK is requested by the
application, ignore the open mode indicated with the M (mode) option (see page 129).

The default value is A.

Examples

The following example tells Btrieve Adapter to ignore the WITH LOCK phrase on OPEN
statements:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='L=I'

The following example tells Btrieve Adapter to deny the WITH LOCK phrase on OPEN
statements:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='L=D'

The following example tells Btrieve Adapter to accept the WITH LOCK phrase on OPEN
statements:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='L=A'

M (Mode) Option

The mode option is used to specify a value to Btrieve Adapter at the time a Btrieve file is
opened. The following values are used only if the file is not OPENed WITH LOCK. The
mode option has the following values:

• N Normal

• A Accelerated

• R Read-only

• V Verify

• E Exclusive

The default value is N.

Note The ability of Btrieve Adapter to specify a mode value is dependent on whether the
application program requests the WITH LOCK phrase on OPEN statements. For more
information, see the L (lock) option (on page 128).

Examples

In normal mode, the Btrieve MKDE behaves as it normally does with its recovery option
enabled, allowing update requests and performing normal writes to the disk drive. The
following example specifies a value of normal when the file is opened:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='M=N'

Chapter 4: System Considerations for Btrieve

130 RM/COBOL User's Guide

In accelerated mode, the data recovery capability of the Btrieve MKDE is disabled to increase
the speed at which records are updated. The following example specifies a value of
accelerated when the file is opened:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='M=A'

In read-only mode, no updates can be performed. The following example specifies a value of
read-only when the file is opened:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='M=R'

Verify mode is now disregarded and the MKDE assumes normal mode instead.

In exclusive mode, the user has exclusive access to the file until the user closes it. This is the
same as specifying EXCLUSIVE or WITH LOCK on the OPEN statement in the COBOL
program.

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='M=E'

O (Owner) Option

The owner option specifies the “owner” ID (actually a security password) for new files and
open requests for existing files. The value is a string of up to a maximum of eight characters
delimited by a trailing space. The value cannot contain spaces. The following example
specifies an owner ID of YELLOW:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='O=YELLOW'

P (Btrieve Adapter Page Size) Option

The Btrieve Adapter page size option is the default minimum page size for the files created by
Btrieve Adapter. Btrieve files are physically accessed in fixed-length pieces called pages.
When Btrieve Adapter creates a new file, the Btrieve MKDE requires the specification of a
page size. The size of a page is determined from either the page size option or a computation
based on the size of the record. For more information, see Variable-Length Records (on
page 137). A larger page size transfers more data in a single disk request, requires more time
to transfer, and requires more memory to contain the pages. A smaller page size allows more
blocks in memory for a fixed amount of memory, but requires more time to randomly access a
record by increasing the tree depth of each index for the file.

If specified, the value must be a multiple of 512 in the range of 512 to 4096, inclusive. When
creating a file, the page size used will be the smallest multiple of 512 sufficient to hold the file
overhead, eight keys, the fixed part of the record, or, if specified, the default page size,
whichever is greater.

The following example sets the value of the page size option to 1024:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='P=1024'

Chapter 4: System Considerations for Btrieve

 RM/COBOL User's Guide 131

T (Diagnostic Trace Filename) Option

This diagnostic trace filename option is used to specify the pathname of a file to which
Btrieve Adapter will write a trace of open requests. This feature is used when there is a
problem with a Btrieve file not being successfully opened by a COBOL program. It is not to
be used in a production environment, because it degrades performance and the trace file can
become quite large, which might exhaust disk space. To turn on the trace feature, edit the
RM/COBOL configuration file for the COBOL program in question and add a T=trace-file-
name parameter to the OPTIONS keyword (see page 325) in the EXTERNAL-ACCESS-
METHOD configuration record.

For example, the following record writes trace information to the file c:\test\trace.fil:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='T=C:\test\trace.fil'

The trace file contains a “Begin open” and “End open” pair of records for every open request
that Btrieve Adapter receives. This includes all opens that runcobol does for files, such as
the COBOL program file, as well as every OPEN statement executed by the COBOL
program. The “End open” line shows the COBOL status code returned to the RM/COBOL
file management system. Between the “Begin” and “End” lines, zero or more “BTRV
Create” or “BTRV Open” lines show the full pathname of the file, the exact Btrieve status
code returned by the name of the file, and the exact Btrieve status code returned by the
Windows Btrieve DLLs. The following is a sample trace file:

Trace Initialized
Begin open, Not indexed
End open, Code=35
Begin open, Not indexed
End open, Code=35
Begin open, Not indexed
End open, Code=35
Begin open, Flags=0x4900 (file must exist)
 UFN=INX1
 BTRV Open status 0 on file C:\TEST\INX1
End open, Code=0
Begin open, Flags=0xe100 (file must exist)
 UFN=INX2
 BTRV Open status 12 on file C:\TEST\INX2
End open, Code=35
Begin open, Flags=0xe000
 UFN=INX2
 BTRV Open status 12 on file C:\TEST\INX2
 BTRV Create status 0 on file C:\TEST\INX2
End open, Code=0

When you are finished diagnosing the problem, be sure to edit the configuration file again and
remove the T=trace-file-name parameter from the OPTIONS keyword in the EXTERNAL-
ACCESS-METHOD configuration record.

RUN-INDEX-FILES Configuration Record Options
In addition to the options specified on the EXTERNAL-ACCESS-METHOD, two RUN-
INDEX-FILES keywords have meaning for Btrieve Adapter: DATA-COMPRESSION (see
page 342) and BLOCK-SIZE (see page 342).

Chapter 4: System Considerations for Btrieve

132 RM/COBOL User's Guide

Specifying DATA-COMPRESSION=NO causes Btrieve Adapter to create uncompressed
Btrieve files. The default is to create compressed Btrieve files. (Note that Btrieve does not
support key compression.)

Specifying BLOCK-SIZE=nnnn causes Btrieve Adapter to create files with a page size of
nnnn. Btrieve Adapter first computes the minimum allowable page size for the file based on
the record size, number of key segments, type of duplicates, and so forth. It then uses the first
value greater than or equal to the computed minimum value in the following order:

1. From the BLOCK CONTAINS clause in the program’s file description entry.

2. From the P=<page size> option parameter on the OPTIONS keyword (see page 325) in
the EXTERNAL-ACCESS-METHOD configuration record (see page 324).

3. From the RUN-INDEX-FILES BLOCK-SIZE=<size> configuration record.

If none of these three values is present or acceptable, Btrieve Adapter uses the computed
minimum value.

Example

The following example represents a typical command line invoking runcobol using Btrieve
Adapter:

runcobol userprog x=config.cfg

where, the config.cfg file contains the following records:

RUN-INDEX-FILES DATA-COMPRESSION=NO
EXTERNAL-ACCESS-METHOD NAME=RMBTRV32
& CREATE-FILES=YES
& OPTIONS='P=1024, D=R, O=XyZzY'

The ampersand (&), which begins the third and fourth lines in this example, is the
configuration file record continuation character. Note that different RM/COBOL applications
can specify different Btrieve Adapter option parameters by using different RM/COBOL
configuration files.

Starting Btrieve Adapter for Linux
Btrieve Adapter for Linux, librmbtrv.so, can be used by placing the shared object (support
module) in the execution directory for the RM/COBOL runtime.

Note If you are using the RM/COBOL installation directory as your execution directory and
you have Btrieve in use on your system, the external access method for Btrieve from
RM/COBOL will be used automatically. If you do not want to use the Btrieve support
module, you may specify one or more EXTERNAL-ACCESS-METHOD configuration
records (see page 324) to identify the external access methods you do wish to use.

The only installation requirement is that Linux must be able to locate the various executable
files that are required. Place librmbtrv.so in the same directory as the RM/COBOL runtime
system (runcobol) for Linux, typically, /usr/bin.

Furthermore, in order for this support module to be loaded properly, you must make sure that
you have set the LD_LIBRARY_PATH environment variable. Add the directory that

Chapter 4: System Considerations for Btrieve

 RM/COBOL User's Guide 133

contains the Pervasive libraries, DSOs (dynamic shared objects), to LD_LIBRARY_PATH.
For example:

export LD_LIBRARY_PATH=/usr/local/psql/lib:/usr/lib

Note that if you logged into the system as “psql”, these paths will have already been set.

To verify that the shared object, librmbtrv.so, is being loaded properly by the RM/COBOL
runtime, type the following from the shell command line. For more information about the V
Option, see Configuration Runtime Command Options (on page 192).

runcobol xxx –v

If the following line is displayed in the RM/COBOL runtime banner, then Btrieve Adapter for
Linux has been loaded correctly:

$EXEDIR/librmbtrv.so – RM/COBOL Btrieve Adapter (vnn.nn/rnnnn).

Note The server-based Btrieve MKDE must be started separately. Refer to the appropriate
Btrieve installation and operation manual for information on starting server-based Btrieve.

Starting Btrieve Adapter for Windows
Btrieve Adapter for Windows, rmbtrv32.dll, and either the client-based Btrieve MKDE or
32-bit Windows Btrieve Requester programs, are all started automatically. This process is
initiated by the user placing the following configuration record in the RM/COBOL
configuration file and starting the RM/COBOL runtime system:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32

The only requirement is that Windows must be able to locate the various executable files that
are required.

Note The server-based Btrieve MKDE must be started separately. Refer to the appropriate
Btrieve installation and operation manual for information on starting server-based Btrieve.

Btrieve Adapter program for Windows, rmbtrv32.dll, is a dynamic link library (DLL) that
can be loaded by the 32-bit Windows version of RM/COBOL. rmbtrv32.dll communicates
directly with wbtrv32.dll, which is the Btrieve interface DLL supplied with your Btrieve
system. The wbtrv32.dll file is normally installed, along with a number of other DLL, EXE,
and other Btrieve files, in a separate Btrieve executable subdirectory.

Since RM/COBOL and Btrieve are separate products supplied by separate vendors, the
executable files required by each are normally installed in the separate directory structures.
Therefore, the recommended way of ensuring that Windows can locate the files is to place the
directory names containing the files into the Windows PATH environment variable. For
RM/COBOL, this is the directory containing rmbtrv32.dll (and also containing
runcobol.exe, and so forth). For Btrieve, this is the directory containing wbtrv32.dll (and
other DLLs and EXEs). Add these two directory names to your Windows PATH (which is
often done in the autoexec.bat file).

Although it is not the recommended method, Windows will find the executable files if they
reside in any combination of the following:

1. The directory that contains the runcobol.exe that is started.

Chapter 4: System Considerations for Btrieve

134 RM/COBOL User's Guide

2. The current directory.

3. The Windows system directory (normally c:\windows\system).

4. The main Windows directory (normally c:\windows).

5. Any directory in the PATH environment variable

Note Both the Btrieve MKDEs and rmbtrv32.dll have keywords that can be passed to them
when they are started. If no parameters are specified, the programs use default values.

For information on specifying keywords, see the EXTERNAL-ACCESS-METHOD
configuration record (on page 324). For more information on Btrieve Adapter options, see
Btrieve Adapter Options (on page 126).

The rmbtrv32.dll program, the 32-bit Windows Btrieve Requester, and the client-based
Btrieve Microkernel Database Engine (MKDE) all terminate automatically when the final
RM/COBOL runtime system using them terminates. Server-based Btrieve must be terminated
separately; however, server-based Btrieve normally remains running as long as the server
computer remains running.

RM/COBOL Indexed Files and Btrieve MicroKernel
Database Engine (MKDE) Limitations

This section describes the limitations of the Btrieve MicroKernel Database Engine (MKDE),
and the way in which these limitations affect RM/COBOL indexed files. Although these two
systems perform the same functions, they do not operate in the same manner.

Note For more information on the RM/COBOL limits and ranges, see Appendix B: Limits
and Ranges (on page 421).

Current Record Position Limitations
A COBOL application program can sequentially read through all the records in an indexed
file. The manner in which a requested record is presented to the application program for the
READ operation varies, depending on how the file was created. The Btrieve MicroKernel
Database Engine (MKDE) behaves according to ANSI COBOL 1985 for simple READ
statements.

However, for READ NEXT statements, the behavior of the Btrieve MKDE can vary from
ANSI COBOL 1985. According to ANSI COBOL 1985, the determination of the next record
to be read is not affected by subsequent non-READ operations. As long as the COBOL
application program does not perform any non-READ operations to the indexed file, the
Btrieve MKDE behaves according to ANSI COBOL 1985. If non-READ operations are
performed to the file, however, the Btrieve MKDE defines the next record as being the one
after the non-READ operation.

The Btrieve Adapter compensates for this variation by remembering the location of the record
that was last read, and the surrounding records, in order to set the position indicator back to
the correct place following the non-READ operation. This compensation works completely
when a single-user is accessing the file, but can fail in a shared file environment.

In a Btrieve shared file environment, Btrieve Adapter can become lost when reading records
via a key containing duplicate key values. If the COBOL application program performs a
non-READ operation between a READ and a READ NEXT statement, and an application

Chapter 4: System Considerations for Btrieve

 RM/COBOL User's Guide 135

program running on the same or another computer deletes the current record and the records
around it (and all these records contain duplicate key values), then Btrieve Adapter becomes
lost and returns an error message 46, 02 to the application program. See Input/Output Errors
for more information.

This position-lost problem can be avoided when the shared Btrieve file is accessed via Btrieve
MKDE. Btrieve Adapter sets the new No Currency Change (NCC) option on Insert and
Update operations so that Btrieve will not change the current record position. In addition,
the user can specify the use of repeating duplicatable keys (see the D (Duplicates) Option on
page 128 of this user’s guide and the discussion of Linked versus Repeating Duplicatable
keys in the Btrieve Programmer’s Guide). Using both of these features avoids the position
lost problem and retrieves the correct record.

File Position Indicator Limitations
The file position indicator specifies the next record to access within a file during certain
sequences of input-output operations.

If the COBOL program executes a START LESS THAN statement and there are multiple
records in the file that contain duplicate keys (for example, multiple records having the same
key value that satisfy the START LESS THAN condition), then the file position indicator will
be positioned to the last record in the sequence of duplicate key values. The same result
occurs if you execute a START LESS THAN OR EQUAL statement where the equal
condition is not met.

If no new records containing duplicates for a key value are added to the file, then Btrieve
Adapter behaves identically to the RM/COBOL file management system for the succeeding
READ NEXT or READ PREVIOUS statements. The RM/COBOL file management system
does not move the file position indicator from the record originally located by the START
statement. This position is the record returned for succeeding READ NEXT or READ
PREVIOUS statements.

The Btrieve MKDE does not allow Btrieve Adapter to emulate this behavior if new records
are added that contain duplicates for a key value. Btrieve Adapter moves the file position
indicator to the last record added at the time of the succeeding READ NEXT or READ
PREVIOUS statement.

Note Once the READ statement has been executed, the position is known, and the
RM/COBOL file management system and the Btrieve MKDE again behave the same.

Permission Error Detection Limitations
When you attempt to open an RM/COBOL indexed file and Btrieve Adapter is active, Btrieve
Adapter may open the file before the RM/COBOL file management system opens the file. If
the indexed file is already opened by the RM/COBOL file management system on another
computer, the Btrieve MKDE returns a Permission Error to Btrieve Adapter instead of a Not a
Btrieve File error. Btrieve Adapter assumes that the file is an already-opened RM/COBOL
indexed file and reports an Invalid Organization error to the file management system, which
then attempts to open the file. If the file is an RM/COBOL indexed file, the open succeeds.
If the problem was one with permissions, then the RM/COBOL file management system
encounters it also and returns the correct error code.

Chapter 4: System Considerations for Btrieve

136 RM/COBOL User's Guide

Using Existing Btrieve Files with RM/COBOL
RM/COBOL and ANSI COBOL 1985 define some limitations on indexed files that are not
imposed by the Btrieve MKDE.

Btrieve Adapter creates new Btrieve files that are compatible with the COBOL concept of
indexed files. Existing Btrieve files can be used also, providing they have the following
characteristics:

• The primary key cannot have a null value.

• Alternate keys can be modified, can use either the native or alternate collating sequence
(ACS), can be binary, and can have a null value.

• Keys cannot have the following Btrieve key flags: descending, supplemental, and any-
segment null. Keys must use ACS number zero, if any.

• Keys do not have to be created in the file in any particular order. However, within the
file, there must be at least one key residing at the correct position for each COBOL key.
That key must be of the correct length, contain the correct duplicates flag, and cannot
contain any of the restrictions on keys as described above. Furthermore, this key must be
defined within the Btrieve file before any other keys that start at the same position.
Subsequent keys may have forbidden characteristics.

• There can be more keys in the Btrieve file than in the COBOL description, and they can
have characteristics that are not legal for COBOL keys. However, they must either have
a starting position that does not match the starting position for any COBOL key, or they
must occur in the Btrieve definition after the COBOL key description for that position.

• Within the record, there should not be any multiple-byte integer data fields. Btrieve
Adapter will not reject any files with fields of this type. Because of byte ordering,
however, there are no COBOL data types that can directly manipulate the integer data in
the field.

If an OPEN OUTPUT is performed on an existing Btrieve file, all characteristics of the
original file are preserved. This includes any compression (or lack of it) and any extra keys.
The file is simply made empty.

Btrieve MicroKernel Database Engine (MKDE)
Limitations Affecting RM/COBOL Applications
The Btrieve MKDE has limitations that may affect existing COBOL applications:

• Version 5 Btrieve files have a maximum record size of 55296 bytes. Version 6 Btrieve
files support record sizes of 64 KB or more using “chunk” operations. Btrieve Adapter
does not use any Btrieve “chunk” operations; therefore, the maximum record size is
limited by the communication environment in which Btrieve runs. When accessing
server-based Btrieve (remote files), the maximum record size is 57000 bytes. When
accessing client-based Btrieve (local files), the maximum record size is 64512 bytes. The
largest possible record size without using variable-length records is 4088 bytes.
RM/COBOL files have a maximum record size of 65280 bytes.

• Btrieve files have a minimum record length of four bytes. RM/COBOL files have a
minimum record length of one byte. Btrieve Adapter supports files whose record size is
less than four bytes by using a zero-filled, four-byte record.

• Btrieve files must have all keys located within the first 4096 bytes of a record.
RM/COBOL files may have keys located anywhere within the record.

Chapter 4: System Considerations for Btrieve

 RM/COBOL User's Guide 137

• Btrieve files have a limit of 119 key segments. RM/COBOL files have a limit of 255
key segments.

• Btrieve files have a maximum key size of 255 bytes. The RM/COBOL runtime system
(including Btrieve Adapter), however, supports a maximum key size of 254 bytes.

Variable-Length Records
RM/COBOL will support variable-length records using the Btrieve MKDE’s variable-length
record files. The size of the Btrieve data page will be either the minimum record length or the
maximum Btrieve MKDE page size, whichever is smaller.

For more details, refer to the discussion of variable-length records, logical and physical record
lengths, and page sizes in the Btrieve Programmer’s Guide.

Key Placement
The Btrieve MKDE restricts placement of keys within the first data page of a record. If a file
has variable-length records, the keys must fit within the minimum record length of the file or
the maximum Btrieve MKDE page size, whichever is smaller.

Automatic Creation of Variable-Length Record Files
If a COBOL program creates a file with a record size greater than the maximum Btrieve page
size, and the keys of that file fit within the maximum Btrieve page size, then the file will be
created with a record size equal to the maximum Btrieve page size, with the remainder of the
record in the variable-length portion of the Btrieve record. (The Btrieve MKDE allows the
portion of the record past the fixed length to be considerably longer.)

Verification of Maximum Record and Block Length
Btrieve files do not have a mechanism for storing the maximum record length and maximum
block length for a file. If a Btrieve file is opened with a maximum length for its RECORD
CONTAINS or BLOCK CONTAINS clause that does not match the maximum length at the
time the file was created, the mismatch will not be detected.

Support for RM/COBOL Internal Data Formats
The Btrieve MKDE internally stores integers in Intel binary integer format, with the most
significant byte at the highest address and the least significant byte at the lowest address.
Therefore, applications that access Btrieve files written outside of RM/COBOL cannot
directly access the following three RM/COBOL internal data formats since they store
numbers in the opposite manner (as binary integers with the most significant byte at the
lowest address and the least significant byte at the highest address):

• BINARY data

• COMPUTATIONAL-1 data

• COMPUTATIONAL-4 data

Chapter 4: System Considerations for Btrieve

138 RM/COBOL User's Guide

For more information about RM/COBOL internal data formats, refer to Appendix C: Internal
Data Formats (on page 425).

Support for Btrieve Internal Data Formats
RM/COBOL programs can directly access the following Btrieve internal data formats:

• Decimal

• Money

• Numeric Signed ASCII

• Numeric Signed Trailing Separate

• String

All other Btrieve internal data formats can be interpreted by an RM/COBOL program on a
byte-by-byte basis. For more information about Btrieve internal data formats, refer to
“Extended Key Types” in the Btrieve Programmer’s Guide.

Input/Output Errors in Btrieve
Input/output errors that you would expect to occur for an RM/COBOL indexed file may not
occur for a Btrieve file. Because of its file structure and organization, information in Btrieve
files is stored differently than in RM/COBOL indexed files, or it is not recorded at all. Thus,
the RM/COBOL runtime system is unable to check or verify certain values in these files.

For example, the error message 39, 01, which normally occurs if an error is encountered when
the runtime system is trying to open an RM/COBOL indexed file, may not occur if the file is a
Btrieve file. Appendix A: Runtime Messages (see page 383) provides more information on
this and other specific input/output error codes where this behavior can occur.

Chapter 5: System Verification

 RM/COBOL User's Guide 139

Chapter 5: System Verification

A suite of verification programs is provided with RM/COBOL. These programs ensure that
you have installed the required software correctly, as described in Chapter 2: Installation and
System Considerations for UNIX (on page 13) and Chapter 3: Installation and System
Considerations for Microsoft Windows (on page 45).

System Verification for UNIX
To invoke compilation and execution of the verification suite, enter:

doverify

For runtime-only systems, the compilation step is ignored.

The verification suite is designed to be self-explanatory. Follow the prompts on the screen for
instructions on selecting and running individual tests.

Notes

• If a problem occurs with the display features of the verification suite, make sure you have
properly set and exported the environment variable TERM for your terminal type. If you
have done this and a problem exists, verify that your terminal type has an entry in the
system terminal database (termcap or terminfo) and check the accuracy of the cursor
motion sequence. This can be accomplished by running the system visual editor (vi).

• If any of the menu selections within the terminal configuration test work incorrectly, refer
to Chapter 8: RM/COBOL Features (on page 201) for details on the terminal attributes
required by the runtime system for complete ACCEPT and DISPLAY functionality.

Single-User Tests
Six sets of tests are provided in the verification suite for single-user versions. They are as
follows:

1. Terminal Configuration Test. This consists of individual tests that verify the
functionality of ACCEPT and DISPLAY statements and defaults, screen editing
functions and color functions (for appropriately configured terminals).

2. File System Test. This tests the sequential, relative, and indexed file system. It reads
and writes records to each of the three file types.

Chapter 5: System Verification

140 RM/COBOL User's Guide

3. Nucleus Test. This tests the modules of the RM/COBOL nucleus.

4. Printer Test. This tests that the printer configuration is correct and that communication
from RM/COBOL to the printer is successful. If no printer is attached, preserve the test
result in the prntst.out file by entering:

PRINTER=prntst.out; export PRINTER

before running this test.

5. Sort-Merge Test. This tests the sort-merge function of RM/COBOL.

6. Pop-Up Window Manager Test. This tests the RM/COBOL Pop-Up Window Manager
feature. The program displays a self-explanatory menu that allows you to test the various
features of the Pop-Up Window Manager system.

Multi-User Test
An additional verification program is provided with an appropriately licensed, multi-user
version of RM/COBOL. This test ensures that RM/COBOL is interacting correctly with the
file protection mechanisms employed by your system.

The program pacetest needs to be run simultaneously from at least two terminals that use the
RM/COBOL runtime system on the computer. This test creates and uses two indexed files:
pinx and pinxfl. pinx is a file that contains a single control record, which contains the next
available record in pinxfl. pinxfl is the working data file.

pacetest reads the control record, saves it, increments the control record, and writes it back to
pinx. The original number read is used as the primary key for the record written to the
growing pinxfl file. This scenario is repeated 100 times for each user running the test. With
two users running, 200 records would be written to pinxfl. The directions for running
pacetest are as follows:

1. Invoke pacetest at each terminal as follows:

runcobol pacetest

2. At one terminal only, choose function 1 to create the initial files. Wait for this operation
to complete.

3. At each terminal, choose function 2 to do simultaneous write operations. You will be
required to enter a unique station ID (1, 2, and so forth). Then, all stations should try to
press the Enter key simultaneously.

4. At any of the terminals, choose function 3 to read the file. Make sure all the records are
shown in order and are all there (100 records are written by each station).

If pacetest encounters any errors while reading the file, it will sound an alarm and display an
error message next to the record in question. Should this occur, double-check your software
installation. If everything appears to be set up correctly and you are still having problems,
contact Micro Focus Customer Care.

Chapter 5: System Verification

 RM/COBOL User's Guide 141

System Verification for Windows
To invoke compilation and execution of the verification suite, choose the icon named
doverify. The doverify program allows the user to select compilation and/or execution. For
runtime-only systems, the program detects that the compiler is not present and informs the
user. The user may still select the execution option.

The verification suite is designed to be self-explanatory. Follow the prompts on the screen for
instructions on selecting and running individual tests.

Single-User Tests
Six sets of tests are provided in the verification suite for single-user versions. They are as
follows:

1. Terminal Configuration Test. This consists of individual tests that verify the
functionality of ACCEPT and DISPLAY statements and defaults, screen editing
functions and color functions (for appropriately configured terminals).

2. File System Test. This tests the sequential, relative and indexed file system. It reads and
writes records to each of the three file types.

3. Nucleus Test. This tests the modules of the RM/COBOL nucleus.

4. Printer Test. This tests that the printer configuration is correct and that communication
from RM/COBOL to the printer is successful. If no printer is attached, preserve the test
result in the prntst.out file by setting a synonym before running this test. Using the
Synonyms Properties tab, type PRINTER in the Name text box and type prntst.out in the
Value text box. For more information, see Setting Synonym Properties (on page 86).

5. Sort-Merge Test. This tests the sort-merge function of RM/COBOL.

6. The Pop-Up Window Manager Test. This program displays a self-explanatory menu
that allows you to test the various features of the Pop-Up Window Manager.

Multi-User Test
An additional verification program is provided with an appropriately licensed, multi-user
version of RM/COBOL. This test ensures that RM/COBOL is interacting correctly in a
network environment.

The program pacetest needs to be run simultaneously from each computer that uses the
RM/COBOL runtime system on the network. This test creates and uses two indexed files:
pinx and pinxfl. pinx is a file that contains a single control record, which contains the next
available record in pinxfl. pinxfl is the working data file.

pacetest reads the control record, saves it, increments the control record, and rewrites it back
to pinx. The original number read is used as the primary key for the record written to the
growing pinxfl file. This scenario is repeated 100 times for each user running the test. With
two users running, 200 records would be written to pinxfl. The directions for running
pacetest are as follows:

1. Compile pacetest by choosing the RMCOBOL icon and selecting pacetest.cbl as the
source file.

2. Invoke pacetest at each computer by choosing the RUNCOBOL icon and selecting
pacetest.cob as the object file.

Chapter 5: System Verification

142 RM/COBOL User's Guide

3. At one computer only, choose function 1 to create the initial files. Wait for this to
complete.

4. At each computer, choose function 2 to do simultaneous write operations. You will be
required to enter a unique station ID (1, 2, and so forth). Then, all stations should try to
press the Enter key simultaneously.

5. At any of the computers, choose function 3 to read the file. Make sure all the records are
shown in order and are all there (100 records are written by each station).

If pacetest encounters any errors while reading the file, it will sound an alarm and display an
error message next to the record in question. Should this occur, double-check your network
installation. If everything appears to be set up correctly and you are still having problems,
contact Micro Focus Customer Care.

Chapter 6: Compiling

 RM/COBOL User's Guide 143

Chapter 6: Compiling

RM/COBOL programs are compiled with a single pass of the RM/COBOL compiler.
Specifically, the compiler performs the following actions on the contents of the source
programs:

• Verifies syntactic accuracy.

• Creates object programs for execution with the RM/COBOL runtime system. Micro
Focus RM/COBOL’s use of this technique provides compactness and machine-
independence.

• Creates program listings, the contents of which are chosen by entering the appropriate
Compile Command options.

This chapter presents complete information about the RM/COBOL compiler.

Compilation Process
Once invoked, the compiler makes one pass through the specified source file. During this
pass, both object files and listing files are generated. The RM/COBOL compiler is invoked
when you enter the Compile Command, rmcobol. The object file contains the machine-
independent object code, executed at runtime, for the RM/COBOL program. The listing file
contains a source image, which may be printed at the end of each compilation. Using the
available Compile Command options, you can alter, augment, and suppress portions of the
information contained in the listing.

RM/COBOL provides standard COBOL subprogram structure, but no intermediate linkage
process stands between program compilation and execution. It is also possible to define
sections of code within your program as overlay segments to the fixed permanent segment, as
explained in the discussion of segmentation in Chapter 5: Procedure Division of the
RM/COBOL Language Reference Manual.

Note By default, on Windows the RM/COBOL GUI compiler window disappears
immediately when a successful compilation completes. If you want the window to remain
visible, set the Persistent property (see page 79) to True or use the console mode compiler.

System Files
RM/COBOL takes its input from a source file, and creates an object file and a listing file.

Chapter 6: Compiling

144 RM/COBOL User's Guide

Source Files
RM/COBOL source files contain the RM/COBOL source code. Source lines are made up
of variable-length records. Source text is ASCII, with either a line feed (LF) character or
a carriage return (CR) and line feed (LF) character paired as the line separator. Embedded
tab characters are expanded to one or more spaces, according to the default tab column
position, which is every fourth column, starting with column 8 and ending with column 72,
or according to the value of the TAB-STOPS keyword (see page 350) in the RUN-SEQ-
FILES configuration record.

Object Files
An object file is created on disk as a purely binary file. Its filename is identical to the
filename of the source file, with the filename extension .cob or .COB or the extension
specified in the EXTENSION-NAMES configuration record (see page 323).

You can direct the object file to a directory other than the one on which the source file resides.
To do this, use the O Compile Command Option (see page 158). The object file may be
suppressed by the use of the N Compile Command Option (see page 158).

Listing Files
The contents of RM/COBOL listings are detailed in the topic Listing (on page 163). Listings
can be directed to a disk file, the printer, the screen, or any combination thereof, depending
on the options selected in the Compile Command. Listing files are given the filename of the
source program, with the filename extension .lst or .LST or the extension specified in the
EXTENSION-NAMES configuration record (see page 323). The listing file is a printer
file and, therefore, may be configured using the PRINT-ATTR configuration record (see
page 328).

Libraries
A source file can contain more than one source program. Files containing a sequence of two
or more programs are referred to in this manual as libraries. With libraries, the generated
object file contains a distinct object module for each source program in the source file,
excluding contained programs. The object for a contained program is considered part of the
object of the program that contains it. The listing file contains a complete listing of each
source program in the source file.

Each noncontained program in a source file or library is compiled strictly independent of the
other programs: there need be no relationship between them. However, this capability to
concatenate multiple source programs into a single library is used most effectively when there
is some logical relationship among the programs. This might be a main program and the
called subprograms, or all the programs that include a specific copy file or group of copy
files. In the latter case, recompilation of all the source programs affected by a change in one
of the copy files can be accomplished with a single invocation of the Compile Command
(rmcobol).

Note RM/COBOL versions 1 and 2 did not require END PROGRAM headers to separate a
sequence of source programs. Versions 3 and later support nested programs, which make
END PROGRAM headers necessary. If you have a source file with a sequence of programs

Chapter 6: Compiling

 RM/COBOL User's Guide 145

and no END PROGRAM headers, you can either add the headers or specify the Z=2 Compile
Command Option (see page 159).

Use the Combine Program (rmpgmcom) utility (on page 585) to combine multiple object files
into a single library when the source modules are contained in separate files.

Compile Command
Use the Compile Command (rmcobol) to request program compilation and to specify options.

Under UNIX, the Compile Command is entered at a shell prompt. After typing the desired
command and options, press Enter to begin compilation.

Under Windows, the Compile Command can be entered in the Command line text box of the
Create Shortcut dialog box. For instructions, see Creating a Windows Shortcut (on page 59).
Choose the RMCOBOL icon to begin compilation. Programs also may be executed by
dragging the .cbl source file to the RMCOBOL object or by double-clicking the source file.

The format of the Compile Command is as follows:

filename is the name of the source file to be compiled. It may be any valid operating
system pathname, and may by partially or fully qualified. Specifying an extension is
optional, but that extension must not be the same as the object file extension (.cob or
.COB unless configured otherwise). If you do not enter a filename extension with the
pathname, the compiler begins its search for the source file by looking first for the file
exactly as specified. If it cannot find such a file, it looks for a file with the supplied name
and an extension .cbl. If the file is still not found when running under UNIX, it looks for
a file with an extension of .CBL. For all attempts to open the source file, if neither a
drive designator nor a directory path is specified, the directory search sequence is used.
If a directory path is specified, a directory search sequence may be used if configured
properly. See the discussions of Directory Search Sequences on UNIX (on page 21),
Directory Search Sequences on Windows (on page 62), and the EXPANDED-PATH-
SEARCH keyword (on page 337) in the RUN-FILES-ATTR configuration record.

~ (tilde) can be used as a negation character. Its purpose is to negate the presence of
attributes in a COMPILER-OPTIONS configuration record (see page 294). Its use is
described in Compile Command Options (see page 148).

option specifies the RM/COBOL compiler options. (A complete discussion of the
Compile Command options begins on page 148.) Spaces or commas must separate
options. Options may be entered in either uppercase or lowercase letters. If an option is
repeated in a command, the last occurrence of the option is used. Each option may be
preceded by a hyphen. If any option is preceded by a hyphen, then a leading hyphen
must precede all options. When a value is assigned to an option, the equal sign is
optional if leading hyphens are used.

comment is used to annotate the command. The comment is ignored by the compiler and
has no effect on the compilation. The left parenthesis is always optional. The right
parenthesis is a required separator if comments are entered. Under UNIX, the parenthesis
must be preceded with a backslash (\) character in order to be protected from the shell.

rmcobol filename [[(] [[~]option] ... [)comment]]

Chapter 6: Compiling

146 RM/COBOL User's Guide

Up to 54 characters of the filename specified in the Compile Command are copied into the
“Source file:” field of the listing header. Up to 110 characters of options and comment from
the Compile Command are copied into the “Options:” field within the listing header. The
options will also include options specified in the registry (on Windows) or resource files (on
UNIX). Thus, this information is reproduced at the top of each listing page. See Figure 24 on
page 163 for an example of a listing header.

In addition, the RM/COBOL for Windows compiler also supports the following command-
line options, which do not follow the command format described earlier in this section:

• Three OLE server registration commands. These options are described in Compiler
Registration (see page 54).

• Three character-set commands. These options are described in Character Set
Considerations for Windows (see page 100).

Batch Compilation on Windows
For Windows, the RM/COBOL compiler can be run as a console application using the
rmcobolc command or as a GUI application using the rmcobolg command. Copying or
renaming either of these executables to rmcobol can be done to choose the default method of
compilation. The two compilers support the same Compile Command options and produce
the same results. The console application compiler runs in a console window (a Command
Prompt window). The GUI compiler runs in a standard graphical Windows window.

The console application is particularly useful for batch compilations using a command script,
for example, in a batch command file. The GUI compiler can also be used for batch
compilations, but in this case, the Windows start command with the wait option should be
used as follows:

start /wait rmcobolg [options]

This command causes the script to wait until the compilation completes before executing the
next command in the script; otherwise, the next command in the script is executed in parallel,
which can lead to problems such as script errors if the next command attempts to access files
produced by the compilation or too many parallel compilations. When using the GUI
compiler in batch mode, it is often desirable to set the Main Window Type property to Hidden
for compiling so that GUI windows are not flashed on the display screen as each file is
compiled. For more information, see the Main Window Type property (on page 78).

rmcobol /regserver
rmcobol /unregserver
rmcobol /showserver

rmcobol /cs_ansi
rmcobol /cs_oem
rmcobol /showcharset

Chapter 6: Compiling

 RM/COBOL User's Guide 147

Multiple File Compilation on Windows
The Compile Command on Windows supports two methods of selecting more than one file
for compilation. The first method involves the use of the File Open dialog box and the second
method involves the use of wildcard characters within a filename specification. Both methods
employ the question mark character (?), although in different ways.

When multiple files are compiled either by selecting multiple files after specifying a question
mark for the filename on the command line or by using wildcard characters in the filename on
the command line, the multiple files are compiled as if the user had entered a sequence of
command lines with the selected filenames and the same set of Compile Command options
specified in the original command line. The question mark or filename with wildcard
characters in it is not used as a registry key for looking up properties set for a particular
program. Instead, for each selected program, the properties set for that program are used. For
information on setting default properties and program-specific properties in the registry, see
Setting Properties (on page 68).

Multiple File Selection with File Open Dialog

Both the console and GUI mode compilers support specifying a question mark for the
filename Compile Command parameter, which displays a File Open dialog box for selecting
the file or files to be compiled. Multiple files may be selected by using the Ctrl or Shift keys
in the standard Windows manner for multiple selections. Compilation stops after all the files
are compiled or when any single compilation returns a non-zero compiler exit code. Each
compilation uses the same Compile Command options that were specified with the question
mark for the filename. For example, the Compile Command:

rmcobol ? L A X

would display the File Open dialog box and then compile all the selected files with a listing
file (the L Option) and the list file will contain an allocation map (the A Option) and a cross
reference listing (the X Option).

Note The default filter for the File Open dialog box Files of type: drop-down list is “*.cbl”
regardless of the value defined by the SOURCE keyword (see page 324) of the EXTENSION-
NAMES configuration record.

Multiple File Selection with Wildcard Characters in Filename

In the preceding example, the question mark is not quoted in the Compile Command because
quotes cause the question mark to be interpreted as a wildcard character within a filename
specification. In addition to the question mark, an asterisk (*) is also recognized as a wildcard
character. An asterisk represents zero or more of any character whereas the question mark
represents zero or one of any character. Hidden files, system files, offline files, directories,
and reparse points are ignored. For example, the Compile Command:

rmcobol *.cbl Y=3 L

compiles all regular files in the current directory that have an extension of .cbl. The Y=3
Compile Command Option is set for each of the compilations. Compilations stop when all
the indicated files have been compiled or when any single compilation returns a non-zero
compiler exit code.

Chapter 6: Compiling

148 RM/COBOL User's Guide

As another example, the Compile Command:

rmcobol \\server\src\???.cbl L

compiles all regular files in the directory \\server\src that have filenames zero to three
characters in length and an extension of .cbl. The L Compile Command Option is set for each
compilation.

More than one asterisk can be used. For example, the Compile Command:

rmcobol *ar*.cbl L X

compiles all regular files in the current directory that have “ar” somewhere in the filename
and an extension of .cbl. The L and X Compile Command Options are set for each
compilation. A single unquoted question mark (?) is interpreted as meaning that a File Open
dialog box should be displayed instead of as a pathname with a wildcard character. If the
question mark is quoted or is part of a pathname, it is interpreted as a wildcard character. For
example, either of the Compile Commands:

rmcobol "?" L

rmcobol .\? L

compile all regular files that have a 0 to 1 character length name in the current directory. A
File Open dialog box is not displayed in either of these cases. Quotes are required if the
filename contains spaces, regardless of whether wildcard characters are used or not used. The
wildcard characters are only permitted in the final edgename of the filename. For example,
the Compile Commands:

rmcobol ?\test.cbl

rmcobol *\test.cbl

will cause an open error because the path portion of the filename contains a wildcard
character. The open error will occur regardless of the existence of a file named test.cbl in a
subdirectory of the current directory. If the list of files that match a filename containing
wildcard characters is empty, the compiler attempts to open the given filename. Since
Windows prohibits the wildcard characters in filenames, this will normally result in an open
error. See Open error for file pathname (on page 184) for information about the open error
message that is displayed. (The expansion of wildcard characters is accomplished using the
Windows FindFirstFile and FindNextFile functions.)

Compile Command Options
Compile Command options can be specified in the following three ways:

1. They can be placed into the registry (on Windows) or the resource files (on UNIX). In
the registry, the Command Line Options property (see page 74) provides command-line
options for the compiler when Compiler is selected on the Select File tab of the
RM/COBOL Properties dialog box. In resource files, the Options keyword, which is
described in Command-Line Options (on page 26), provides command-line options for
the compiler in the global resource file /etc/default/rmcobolrc and the local resource file
~/.rmcobolrc.

2. They can be specified in the Compile Command itself.

Chapter 6: Compiling

 RM/COBOL User's Guide 149

3. They can be placed into a configuration file, which is processed by the RM/COBOL
compiler when the configuration file is automatically located or specified with a
configuration command-line option. For information on configuration files, see
Automatic Configuration Files (on page 290) or Configuration Compile Command
Options (on page 151). For a discussion of the compiler options that can be configured,
see the COMPILER-OPTIONS configuration record (on page 294).

Options are processed in the order given above, but options specified in the configuration do
not override options specified in the resultant set of command-line options as determined from
items 1 and 2 above. This means that options specified in a Compile Command will take
precedence over conflicting or contradictory options specified by the registry or resource files
(item 1) or configuration (item 3). The configured options, together with the options that
appear in a Compile Command, apply to every source program in the source file (or, on
Windows, files) specified in that Compile Command.

You can override specific options in a configuration file by negating the option in the
Compile Command. To do this, enter a tilde (~) and the option in the Compile Command.
For example, the following configuration file, possibly named config.cfg:

COMPILER-OPTIONS FLAGGING=HIGH,COM2,OBSOLETE
& OBJECT-VERSION=9
& LISTING-PATHNAME=LISTINGS

directs RM/COBOL to flag HIGH, COM2 and OBSOLETE language elements, to restrict the
object version level to 9, and to write the listing file to the directory named LISTINGS.

For a particular compilation, you may want to suppress some or all configured options. For
example, to suppress the flagging of COM2 elements and the creation of the listing file (here,
assuming the program-name is PAYROLL), enter the following Compile Command:

rmcobol payroll G=config.cfg F=~COM2 ~L

This negates the flagging of COM2 elements and suppresses the creation of the listing file (L
option) for the compilation. The next time you use this configuration file in a compilation,
the configured options will be in effect again.

To disable all flagging, and to write the listing to the current directory, enter the following
Compile Command:

rmcobol payroll G=config.cfg ~F, L=.

This negates the flagging of HIGH, COM2 and OBSOLETE elements, and writes the listing
to the current directory instead of to LISTINGS as specified in the configuration file.

A negated option calls up the default value for that option; that is, it behaves exactly as if no
option were configured.

For quick reference, Table 15 summarizes the Compile Command options in alphabetical
order. The Compile Command options, however, are grouped into six categories and are
explained more fully in these sections:

1. Configuration (see page 151)

2. Data Item (see page 152)

3. File Type (see page 153)

4. Listing (see page 154)

5. Object Program (see page 157)

Chapter 6: Compiling

150 RM/COBOL User's Guide

6. Source Program (see page 160)

Table 15: RM/COBOL Compile Command Options

Option Description

A
(see page 154)

Directs the compiler to generate the allocation map in the
listing.

B
(see page 153)

Defines as binary sequential those sequential files not
explicitly declared to be line sequential in their file control
entries.

C[=n]
see page 154)

Suppresses the inclusion of copied text, replaced text,
replacement text, or COPY statement text in the listing.
n can be 0 to 15 Specifying C is equivalent to C=1.

D
(see page 160)

Directs RM/COBOL to compile all source programs as if the
WITH DEBUGGING MODE clause appeared in each
compiled program.

E
(on page 155)

Suppresses the inclusion of the source program component in
the listing except for lines associated with diagnostic
messages.

F={(keyword-list)|keyword}
(see page 160)

Directs the compiler to flag occurrences of these language
elements:

COM1 INTERMEDIATE
COM2 OBSOLETE
EXTENSION SEG1
HIGH SEG2

If leading hyphens are used, the parentheses are optional.

G=pathname
(see page 152)

Designates a file to be used as the primary compiler
configuration.

H=pathname
(see page 152)

Designates a file as a supplement to the compiler
configuration.

K
(see page 152)

Suppresses the banner message and the terminal error listing.

L[=pathname]
(see page 156)

Directs the compiler to produce a listing file and optionally
specify the directory in which to place the listing file.

M
(see page 157)

Directs the compiler to suppress automatic input conversion
for Format 1 and 3 ACCEPT statements with numeric
operands and to suppress right justification of justified
operands. Direct the compiler to suppress automatic output
conversion for numeric fields of Format 3 DISPLAY
statements.

N
(see page 158)

Suppresses the generation of an object program.

O=pathname
(see page 158)

Specifies the directory pathname where the object file will be
placed.

P
(see page 156)

Directs the compiler to write a copy of the listing to the
printer.

Q
(see page 158)

Directs the compiler to eliminate debugging information from
generated object programs.

Chapter 6: Compiling

 RM/COBOL User's Guide 151

Table 15: RM/COBOL Compile Command Options

Option Description

R
(see page 158)

Directs the compiler to generate a sequential number in the
first six columns of source records as they appear on the
listing.

S
(see page 152)

Directs the compiler to assume a separate sign when the SIGN
clause is not specified for a DISPLAY usage, signed numeric
data item (that is, for a data item whose character-string
within a PICTURE clause begins with S).

T
(see page 153)

Directs the compiler to write a copy of the listing to the
standard output device.

U[={B|D|P}]
(see page 153)

Directs the compiler to assume an alternative usage for data
items described as COMP or COMPUTATIONAL.

• The U Option specified alone or as U=B directs the
compiler to assume BINARY usage for data items
described as COMP or COMPUTATIONAL.

• The U=D Option directs the compiler to assume
DISPLAY usage for items described as COMP or
COMPUTATIONAL.

• The U=P Option directs the compiler to assume
PACKED-DECIMAL usage for items described as
COMP or COMPUTATIONAL.

V
(see page 153)

Defines as line sequential those sequential files not explicitly
declared to be binary sequential in their file control entries.

W=n
(see page 152)

Specifies the amount of memory (in kilobytes) that the
compiler should use for its internal table storage. n can be a
decimal number from 32 to 524288.

X
(see page 157)

Directs the compiler to generate a cross reference map in the
listing.

Y[=n]
(see page 159)

Directs the compiler to output the symbol table and debug line
table to the object program file. n can be 0 to 3. Specifying
Y is equivalent to Y=1.

Z=version
(see page 159)

Indicates the object version of the RM/COBOL runtime you
want to use. version can be 9 through 15.

2
(see page 161)

Directs the compiler to accept source programs created for the
RM/COBOL 2.n compiler.

7
(see page 160)

Specifies the semantic rules under which the program is to be
compiled as conforming to the American National Standard
COBOL 1974.

Configuration Compile Command Options

The following options designate a file to be used as the complete compiler configuration or as
a supplement to it and allow suppression of the compiler banner message.

Chapter 6: Compiling

152 RM/COBOL User's Guide

G Use the G Option to designate a file to be used as the compiler configuration. If
the G Option is specified, any automatic configuration is ignored (that is, not
processed). The G Option has the following format:

G=pathname

Configuration files are fully described in Chapter 10: Configuration (on page 289).
See also the H Compile Command Option below.

By default, a configuration file is not designated.

H Use the H Option to designate a file as a supplement to the compiler
configuration. The specified file is processed after any automatic configuration
and after any file specified in the G Option, but before any other command-line
options are processed. The H Option has the following format:

H=pathname

If no configuration exists (either automatic or specified with the G Compile
Command Option), the specified file serves as the complete configuration. For more
information, see Chapter 10: Configuration (on page 289).

By default, a supplemental file is not designated.

K Use the K Option to suppress the banner message and the terminal error listing.
This is useful when you are running under batch files or shell scripts.

By default, this information is displayed on the standard output device. The default
can be configured with the NO-TERMINAL-DISPLAY value for the COMPILER-
OPTIONS configuration record keyword LISTING-ATTRIBUTES (see page 305).

W Use the W Option to specify the amount of memory (in kilobytes) that the
compiler should use for its internal table storage. The W Option has the
following format:

W=n

where, n is a decimal number from 32 to 524288.

The default value is 1024 kilobytes (1024 KB) and is generally sufficient for a
20,000 – 40,000 line source program. A program with 135,000 source lines
compiles at top speed with w=3072. The compiler will adjust the workspace size
automatically as needed, but with a performance penalty. The compilation listing
summary has information about the maximum amount of memory required for
compilation, as described in Summary Listing (on page 173). This information can
be used to choose an appropriate value for the W option.

The default can be configured with the COMPILER-OPTIONS configuration record
keyword WORKSPACE-SIZE (see page 318).

Data Item Compile Command Options

The following compiler options direct the compiler to assume a certain usage for data items.

S Use the S Option to direct the compiler to assume a separate sign when the
SIGN clause is not specified for a DISPLAY usage, signed numeric data item
(that is, for a data item whose PICTURE character-string clause begins with S).

Chapter 6: Compiling

 RM/COBOL User's Guide 153

The S Option also allows a BLANK WHEN ZERO clause to be specified in the
data description entry of a signed numeric data item for compatibility with
RM/COBOL 2.n. In such cases, a trailing fixed insertion plus symbol (+) is
assumed for the PICTURE character-string.

Note This option should be used only when compiling existing source programs
written with an earlier version of RM/COBOL, and then only with caution. The use
of this option creates inconsistencies between RM/COBOL and ANSI COBOL 1974
and 1985.

The default is to assume a trailing combined (zoned) sign unless the SIGN clause is
present and to disallow the BLANK WHEN ZERO clause for signed numeric data
items. For more information about trailing combined (zoned) signs, see Table 41:
Nonnumeric Data (on page 427).

The default can be configured with the COMPILER-OPTIONS configuration record
keyword SEPARATE-SIGN (see page 310).

U Use the U Option to direct the compiler to assume an alternative usage for data
items described as COMP or COMPUTATIONAL. The U Option has the
following format:

U[=B|D|P]

The U Option specified alone or as U=B directs the compiler to assume BINARY
usage for data items described as COMP or COMPUTATIONAL. This option
causes COMP data items to be compatible with IBM OS/VS COBOL COMP data
items and may result in improved computational speed at runtime.

The U=D Option directs the compiler to assume DISPLAY usage for items described
as COMP or COMPUTATIONAL.

The U=P Option directs the compiler to assume PACKED-DECIMAL usage for
items described as COMP or COMPUTATIONAL.

The U[=B] and 2 Options are mutually exclusive; they may not appear in the same
Compile Command.

The default is to assume unpacked decimal format for data items described as COMP
or COMPUTATIONAL. The default can be configured with the COMPILER-
OPTIONS configuration record keywords COMPUTATIONAL-AS-BINARY (see
page 299) or COMPUTATIONAL-TYPE (see page 299).

File Type Compile Command Options

The following compiler options determine whether a sequential file is declared as a binary
sequential or a line sequential file.

B Use the B Option to define as binary sequential those sequential files not
explicitly declared to be line sequential in their file control entries. For more
information, see the discussion of file types and structure (on page 234).

V Use the V Option to direct that any sequential file not declared to be binary
sequential be considered line sequential.

The defaults for these compiler options can be configured with the COMPILER-OPTIONS
configuration record keyword SEQUENTIAL-FILE-TYPE (see page 311).

Chapter 6: Compiling

154 RM/COBOL User's Guide

Note The B and V Options are mutually exclusive; they may not appear in the same Compile
Command. If neither the B nor the V Option is used, the decision as to whether the file is
binary sequential or line sequential is deferred to program execution. The choice is then
controlled by the configured DEFAULT-TYPE keyword (see page 349) in the RUN-SEQ-
FILES configuration record.

Listing Compile Command Options

The following compiler options generate a listing and control the destination and contents of
the listing.

Note The L, P, and T Options direct the listing to different destinations; any or all of these
options may appear in the same Compile Command. If neither the T nor the K Option is
selected, an error-only listing is written to standard output.

A Use the A Option to direct the compiler to generate the allocation map (see
page 167) in the listing.

This is useful during program development for use with the RM/COBOL Interactive
Debugger.

The A Option may not be specified if none of the L, P, T, or Y=3 Options are
specified or configured.

By default, the allocation map is not created as part of the listing or debugging
information in the object file. The default can be configured with the
ALLOCATION-MAP value of the COMPILER-OPTIONS configuration record
keyword LISTING-ATTRIBUTES (see page 305).

C Use the C Option to suppress the inclusion of copied text in the listing. Copied
text is source text brought into the program as a result of encountering a COPY
statement. See the description of the COPY statement (on page 225) and in
Chapter 1: Language Structure of the RM/COBOL Language Reference
Manual.

The C Option suppresses only the inclusion of the copied text in the listing; the
copied text is always compiled. Even though the C Option is selected, erroneous
lines encountered in the copied text during compilation are written to the listing
along with the associated diagnostic message.

Text to the right of the COPY statement in the source line that contains that
statement appears on a line by itself, immediately following the copied text.

The C Option may not be specified if none of the L, P, or T Options is specified or
configured.

The value specified in the C Option has been extended to allow specification of a
numeric value from 0 through 15. When the binary value includes the 4 bit (0100),
then replacement lines are suppressed in the listing. When the binary value includes
the 8 bit (1000), then COPY statement lines are suppressed in the listing.

The C Option has the following variations:

Option Action

C=0 or ~C Is equivalent to specifying the negated C Option (~C); that is, copied text is
not suppressed in the listing. This is also the default behavior if C is not
specified. In version 11 and later, replaced text is also suppressed by
default unless the KEEP-REPLACED-LINES value of the LISTING-

Chapter 6: Compiling

 RM/COBOL User's Guide 155

ATTRIBUTES keyword of the COMPILER-OPTIONS configuration
record is specified.

C=1 or C Specifies suppression of copied text in the listing. This option setting can
also be configured with the SUPPRESS-COPIED-LINES value of the
LISTING-ATTRIBUTES keyword in the COMPILER-OPTIONS
configuration record.

C=2 Specifies suppression of replaced text in the listing. This option setting can
also be configured with the SUPPRESS-REPLACED-LINES value of the
LISTING-ATTRIBUTES keyword in the COMPILER-OPTIONS
configuration record.

C=3 Specifies suppression of copied and replaced text in the listing.

C=4 Specifies suppression of replacement text in the listing. This option setting
can also be configured with the SUPPRESS-REPLACEMENT-LINES
value of the LISTING-ATTRIBUTES keyword in the COMPILER-
OPTIONS configuration record.

C=5 Specifies suppression of copied and replacement text in the listing.

C=6 Specifies suppression of replaced and replacement text in the listing.

C=7 Specifies suppression of copied, replaced, and replacement text in
the listing.

C=8 Specifies suppression of COPY statement text in the listing. This option
setting can also be configured with the SUPPRESS-COPY-STATEMENT-
LINES value of the LISTING-ATTRIBUTES keyword in the COMPILER-
OPTIONS configuration record.

C=9 Specifies suppression of copied and COPY statement text in the listing.

C=10 Specifies suppression of replaced text and COPY statement and text in
the listing.

C=11 Specifies suppression of copied, replaced and COPY statement text in
the listing.

C=12 Specifies suppression of replacement and COPY statement text in the
listing.

C=13 Specifies suppression of copied, replacement and COPY statement text in
the listing.

C=14 Specifies suppression of replaced, replacement and COPY statement text in
the listing.

C=15 Specifies suppression of copied, replaced, replacement, and COPY
statement text in the listing.

By default, copied text is included in the source listing. Copied text immediately
follows the line that contains the COPY statement. The default option settings can
be configured with the LISTING-ATTRIBUTES keyword (see page 305) in the
COMPILER-OPTIONS configuration record.

Note The LISTING directive provides more control over what source is listed or not
listed in the compilation listing. For more information on compiler directives, see
Chapter 1: Language Structure of the RM/COBOL Language Reference Manual.

E Use the E Option to suppress the inclusion of the source program component in
the listing. However, if errors are encountered during compilation, the listing
will include the erroneous lines and their associated diagnostic messages.

The E Option may not be specified if none of the L, P, or T Options is specified or
configured.

Chapter 6: Compiling

156 RM/COBOL User's Guide

By default, the source program component is included in the listing. The default can
be configured with the ERROR-ONLY-LIST value of the COMPILER-OPTIONS
configuration record keyword LISTING-ATTRIBUTES (see page 305).

L Use the L Option to direct that a listing file be written to disk. The L Option has
the following format:

L[=pathname]

The L Option specified above directs the compiler to write the listing to the default
directory.

pathname specifies a directory into which the listing file is to be written.

The listing file will always have the same name as the source file; its extension will
be the listing file extension (.lst or .LST unless configured otherwise). On those
operating systems that have case-sensitive filenames, the case of the extension will
match the case of the first character of the source file’s extension, or the first
character in the source file’s name if there is no extension. If there is no extension
and the first character of the source filename is not a letter, then the extension .lst
will be used. For examples of valid filenames, see Table 1 (on page 12).

The default directory, when pathname is not specified, depends on whether the
source filename was specified with a drive or directory in its value.

If the source filename was specified with a drive or directory in its value, the default
directory is the one containing the source file.

Otherwise, the default directory is determined by using the compiler directory search
sequence. If an existing file with the same name as the source file and the listing file
extension is found using the compiler directory search sequence, the default
directory is the one in which that file is found. If such a file is not found using the
compiler directory search sequence, the default directory is the current directory.
See the discussions of Directory Search Sequences on UNIX (on page 21) and
Directory Search Sequences on Windows (on page 62).

If a file already exists with the specified name and extension in the specified or
default directory, it is overwritten.

By default, the listing is not written to disk. The default can be configured with the
LISTING-FILE value of the COMPILER-OPTIONS configuration record keyword
LISTING-ATTRIBUTES (see page 305).

P Use the P Option to direct the compiler to write a copy of the listing to the
printer.

Without a print spooler, the P Option cannot be used when the printer is busy.

By default, a copy of the listing is not written to the printer; see the discussion of the
topic Listing (on page 163). The default can be configured with the PRINT-
LISTING value of the COMPILER-OPTIONS configuration record keyword
LISTING-ATTRIBUTES (see page 305).

R Use the R Option to direct the compiler to generate a sequential number in the
first six columns of source records as they appear on the listing. The source file
itself is not affected.

If selected, this option numbers records beginning with 1 for each source or copy
input file. The number can be helpful when editing the source file. This line number
cannot be used with the RM/COBOL Interactive Debugger.

Chapter 6: Compiling

 RM/COBOL User's Guide 157

The default is to print the source record exactly as read, including any commentary
information present in columns 1 through 6. The default can be configured with
either of the following options in the COMPILER-OPTIONS configuration record:

• the RENUMBER-SEQUENCE-AREA value of the LISTING-ATTRIBUTES
keyword (see page 305)

• the RESEQUENCE-LINE-NUMBERS keyword (see page 310)

T Use the T Option to direct the compiler to write a copy of the listing to the
standard output device. Generally, the standard output device is the screen, but
this can be controlled through redirection.

By default, a copy of the listing is not written to the standard output device.
However, the last two lines of the summary listing—as well as all erroneous lines
and associated diagnostic messages—are written to the standard output device
regardless of the T Option. This display can be suppressed with the K Option (see
page 152). The default can be configured with the TERMINAL-LISTING value of
the COMPILER-OPTIONS configuration record keyword LISTING-ATTRIBUTES
(see page 305).

X Use the X Option to direct the compiler to generate a cross reference map in the
listing. The cross reference map contains an alphabetic list of all user-defined
words that appear in the source program. For each user-defined word, the line
number of each appearance is listed. Each line number is marked to indicate
that the word is being used as a declaration, a source operand or a possible
destination operand. (See Figure 33 on page 172 for a sample of the cross
reference map.)

The X Option may not be specified if none of the L, P, T, or Y=3 Options is
specified or configured.

By default, the cross reference map is not included in the listing or in the debugging
information in the object file. The default can be configured with the CROSS-
REFERENCE value of the COMPILER-OPTIONS configuration record keyword
LISTING-ATTRIBUTES (see page 305).

Object Program Compile Command Options

The following compiler options generate or suppress an object program and control the
destination and features of the object program.

M Use the M Option to direct the compiler to suppress automatic conversions in
certain ACCEPT and DISPLAY statements. In Format 1 and 3 ACCEPT
statements, this option suppresses automatic input conversion for numeric
operands and suppresses right justification for justified operands. For Format 3
DISPLAY statements (DISPLAY screen-name), this option suppresses
automatic output conversion for numeric fields within the screen description
entry.

Note This option must be used if Format 1 ACCEPT statements with numeric
operands are to be treated in compliance with ANSI COBOL 1985 and 1974.

The default is to provide input conversion for numeric operands of Format 1 and 3
ACCEPT statements, right justification for justified operands of Format 1 and 3
ACCEPT statements, and output conversion for numeric fields of Format 3
DISPLAY statements. The default can be configured with the COMPILER-

Chapter 6: Compiling

158 RM/COBOL User's Guide

OPTIONS configuration record keyword ACCEPT-SUPPRESS-CONVERSION
(see page 295).

N Use the N Option to suppress the generation of an object program.

The default is to generate object code according to the rules for the O Option,
described in the following section. There is no corresponding configuration for this
command-line option.

O Use the O Option to specify the directory pathname where the object file will be
placed. The O Option has the following format:

O=pathname

where, pathname specifies a directory into which the object file is to be written.

The object file will always have the same name as the source file. Its extension will
be the object file extension (.cob or .COB unless configured otherwise). On those
operating systems that have case-sensitive filenames, the case of the extension will
match the case of the first character of the source file’s extension, or the first
character in the source file’s name if there is no extension. If there is no extension
and the first character of the source filename is not a letter, then the extension .cob
will be used. For examples of valid filenames, see Table 1 (on page 12).

The O and N Options may appear together in a single compilation. For example, the
OBJECT-PATHNAME keyword (see page 309) in the COMPILER-OPTIONS
configuration record specifies the directory for the object file. Entering the N Option
on the Compile Command suppresses the generation of the object file (and as a result
negates the OBJECT-PATHNAME keyword in the configuration file).

The default directory depends on whether or not the source filename was specified
with a drive or directory in its value.

If the source filename was specified with a drive or directory in its value, the default
directory is the one containing the source file.

Otherwise, the default directory is determined by using the directory search
sequence. If an existing file with the same name as the source file and the object file
extension is found using the compiler directory search sequence, the default
directory is the one in which that file is found. If such a file is not found using the
compiler directory search sequence (see the appropriate installation and systems
considerations chapter in this user’s guide for your specific operating system), the
default directory is the current directory.

If a file already exists with the specified name and extension in the specified or
default directory, it is overwritten.

Q Use the Q Option to direct the compiler to eliminate debugging information
from generated object programs. Programs compiled with this option will
appear invisible to the Interactive Debugger and Instrumentation. A statement
address consisting of an optional segment number and segment offset will be
substituted for line numbers in Normal Termination, Error Termination and
Traceback runtime system messages. A segment number and segment offset
replace line number references when this option is selected.

The Q and Y options are mutually exclusive; that is, they may not appear in the same
Compile Command.

Note This option may be used to both reduce the memory requirements and increase
the execution speed of most programs.

Chapter 6: Compiling

 RM/COBOL User's Guide 159

The default is to generate debugging line number information in object programs.
There is no corresponding configuration for this command-line option.

Y Use the Y Option to direct the compiler to output debugging information in the
object file. The Y Option has the following variations:

Option Action

Y=0 or ~Y Omits the symbol and debug line table from the object program
file. This is also the default behavior if Y is not specified.

Y=1 or Y Places the symbol table but not the debug line table in the object
file. When the symbol table is included in the object program file,
the source program data-names and index-names may be used in
Debug commands during execution. For more information, see
Chapter 9: Debugging (on page 255).

Y=2 Places both the symbol table and the debug line table in the object
file. The line table is used by CodeWatch to display the source
program.

Y=3 Same as Y=2, except that the debug line table also includes
allocation map and cross-reference information if the A and/or X
options are also specified. This information can then be viewed
within CodeWatch, but may lead to large object program files.

Object program files created with Y=2 and Y=3 are fully compatible with all
versions of the RM/COBOL runtime (note that previous versions will ignore these
tables). This option does increase the size of the object program files, but has no
effect on runtime performance or memory requirements.

The Y and Q options are mutually exclusive; that is, they may not appear in the same
Compile Command.

Note A new option in the Combine Program (rmpgmcom) utility (see page 585),
STRIP, may be used to remove symbol table and debug line table information from
object files that were created with Y=1 or Y=2. For source code security, object
program files that contain line table information should be reduced in size with this
option or recompiled without the Y option before they are redistributed.

By default, the symbol table is omitted from the object file. The default option
settings can be configured with the COMPILER-OPTIONS configuration record
keywords DEBUG-TABLE-OUTPUT (see page 300) and SYMBOL-TABLE-
OUTPUT (see page 314).

Z Use the Z Option to indicate the highest allowed object version of the generated
code. The Z Option has the following format:

Z=version

where, version must be an integer in the range 9 through 15.

Statements or clauses that require a higher object version level than the value specified
will be flagged in error. See the Compile Command Messages (on page 177) and the
description of the COMPUTATIONAL-VERSION keyword (on page 299) for the
COMPILER-OPTIONS configuration record. This option forces the generation of
code accepted by earlier versions of the RM/COBOL runtime system.

Appendix H: Object Versions (on page 619) lists the changes between object
versions.

Chapter 6: Compiling

160 RM/COBOL User's Guide

The default is to use the current object version number (15) as the limit, but the
generated object version is the minimum necessary for any given source program,
but not less than 9. The default can be configured with the COMPILER-OPTIONS
configuration record keyword OBJECT-VERSION (see page 310).

7 Use the 7 Option to specify the semantic rules under which the program is to be
compiled.

7 specifies that the source program is to be compiled with ANSI COBOL 1974
semantics. ANSI COBOL 1974 semantics affect the I-O status values,
PERFORM . . . VARYING statements, ALPHABETIC class conditions, and
alphabetic-edited data items. A more specific discussion of these semantic
differences can be obtained by contacting Micro Focus Customer Care.

The 7 Option is implied if the 2 Option is specified.

The default is to compile the source program using ANSI COBOL 1985 semantics.
The default can be configured with the COMPILER-OPTIONS configuration record
keyword COBOL-74 (see page 298).

Source Program Compile Command Options

The following compiler options affect the analysis of the source program and cause flagging
of certain source features.

D Use the D Option to direct RM/COBOL to compile all source programs as if the
WITH DEBUGGING MODE clause appeared in each compiled program. This
option causes all source lines with the letter D in the indicator area to be
compiled as if they had a space in the indicator area.

This option is independent of the RM/COBOL Interactive Debugger, described in
Chapter 9: Debugging (on page 255).

The default is to treat source lines with the letter D in the indicator area as
commentary information unless the WITH DEBUGGING MODE clause is specified
in the source program. The default can be configured with the COMPILER-
OPTIONS configuration record keyword DEBUG (see page 300).

F Use the F Option to direct the compiler to flag occurrences of these language
elements:

COM1 INTERMEDIATE
COM2 OBSOLETE
EXTENSION SEG1
HIGH SEG2

The F Option has the following format:

where, keyword-list specifies multiple elements to be flagged. Enclose the list in
parentheses, and if the keyword-list contains more than one item, separate them with
a space or comma. If leading hyphens are being used, the parentheses are optional.
You can negate an individual keyword by preceding it with a tilde (~).

keyword specifies a single element to be flagged.









=

−=
keywordF

list)(keywordF

Chapter 6: Compiling

 RM/COBOL User's Guide 161

The names of elements can be abbreviated, as long as they remain unique. If the
abbreviation is not unique, the keyword that occurs first alphabetically is chosen.
For example, C, CO and COM are valid abbreviations of COM1 but not of COM2.

Certain keywords cause more than one element of the language to be flagged:

1. Selecting INTERMEDIATE flags both HIGH and INTERMEDIATE elements.

2. Selecting COM1 flags both COM1 and COM2 elements.

3. Selecting SEG1 flags both SEG1 and SEG2 elements.

See Appendix I: Extension, Obsolete, and Subset Language Elements (on page 631)
for a complete list of elements flagged.

By default, no elements of the language are flagged. The default can be configured
with the COMPILER-OPTIONS configuration record keyword FLAGGING (see
page 301).

2 Use the 2 Option to direct the compiler to accept source programs created for the
RM/COBOL (74) 2.n compiler.

If the programs were compiled (or designed to be compiled) without the RM/COBOL
(74) 2.n compiler ANSI Option, the separate sign (S) Option (see page 152) and
line sequential (V) Option (see page 153) may also need to be selected.

The 2 Option removes certain words from the list of RM/COBOL reserved words.
The removed words are those that are RM/COBOL additions to RM/COBOL (74)
2.n; thus, all words used in the earlier version as user-defined words are still valid.
Note carefully that if RM/COBOL language features are added to the program,
the 2 Option can no longer be used, and the program must be changed accordingly.
There is also a technique for removing individual words from the list of reserved
words. See the discussion of the COMPILER-OPTIONS configuration record (on
page 294).

The 2 Option directs that COMP-3 data items always be signed, irrespective of the
presence or absence of an S in the associated PICTURE character-string.

The 2 Option directs that COMP-1 data items behave as in RM/COBOL (74) 2.n.
This causes the number of digits in the PICTURE character-string describing a
COMP-1 item to be ignored in three situations: when the item is the receiving item
in a MOVE statement, in an arithmetic statement that specifies ON SIZE ERROR,
and in an ACCEPT statement that specifies, explicitly or implicitly, input
conversion. In these situations, the COMP-1 item may contain any value in the
range –32768 through 32767.

The 2 Option directs that OPEN EXTEND create a new file when the file is not
present, even when OPTIONAL was not specified in the file control entry.

The 2 Option directs that equality and inequality relation conditions, where the
subject and object are similar signed packed-decimal (COMP-3 or PACKED-
DECIMAL usage) or signed unpacked-decimal (COMP usage) operands, should not
be optimized to use string comparison operations. The string comparison
optimization prevents detection of equality when the only difference between the
subject and object of the relation results from the change in positive sign convention
for such items.

The 2 Option directs that the size of index data items be two bytes in length.

The 2 Option directs that the implied EXIT PROGRAM required by ANSI COBOL
1985 at the end of the Procedure Division be omitted. RM/COBOL (74) 2.n had
only an implied STOP RUN at the end of the Procedure Division.

Chapter 6: Compiling

162 RM/COBOL User's Guide

The 2 and U[=B] Options are mutually exclusive; they may not appear in the same
Compile Command.

The 2 Option implies the 7 Option.

The default is to recognize all RM/COBOL reserved words, treat COMP-3 data
items without an S in their PICTURE character-string as unsigned data items, treat
COMP-1 data items the same as two-byte COMP-4 data items, return a file not
present error for OPEN EXTEND of a nonexistent file not described with the
OPTIONAL phrase in its file control entry, use the string comparison optimization
for conditional relations of similar signed COMP-3 and COMP data items, use a size
of four bytes for index data items, and include the implied EXIT PROGRAM at the
end of the Procedure Division. The default can be configured with the COMPILER-
OPTIONS configuration record keyword RMCOBOL-2 (see page 310).

Sample Compile Commands
Here are examples of valid and invalid RM/COBOL Compile Commands.

Valid Compile Commands

rmcobol payroll.con P, V R

This command compiles the program named payroll.con; it directs the listing to the system
printer (the P Option); declares all sequential files not defined as binary sequential in the
source program to be line sequential files (the V Option); and sequentially numbers the
printed listing, starting with 1 for each copy level, in the first six columns of the listing (the R
Option).

rmcobol demo.prg (D,L=COBOL,S X) 3RD COMPILE

This command compiles the program demo.prg; the program is compiled as if the WITH
DEBUGGING clause were present (the D Option); the listing is written to the directory
named COBOL (the L Option); a separate sign is assumed in the absence of a SIGN clause
(the S Option); and the cross reference map is generated (the X Option). A comment—3RD
COMPILE—is reproduced in the listing header, but is ignored by the compiler.

Note Under UNIX, the parenthesis must be preceded with a backslash (\) character in order
to be protected from the shell.

Invalid Compile Command

rmcobol payroll.cob B V

Here, the extension to the filename (.cob) is illegal, since .cob is the default extension for the
object file. The B and V Options are entered together: B treats all sequential files not
specified as either binary sequential or line sequential in the file control entry as binary
sequential, but V treats all such files as line sequential.

Chapter 6: Compiling

 RM/COBOL User's Guide 163

Listing
Depending on the options specified in the Compile Command, the compiler generates a
detailed listing. The T Option (see page 157) directs the listing to standard output. The
listing can be directed to the printer with the P Option (see page 156) and to a file with the
L Option (see page 156). All three of these options—or any combination thereof—may be
specified. However, keep in mind that in certain circumstances the listing may contain lines
as long as 132 characters. If the device to which the listing is sent cannot accommodate lines
of that width, characters at the right end of the long lines may be truncated or wrapped.

Note Error lines are always listed to standard output unless suppressed by the K Option
(see page 152).

The components of the listing (in order of appearance) are as follows:

1. Program listing, which contains the source image of the program.

2. Allocation map, which defines and locates each identifier used in the program.

3. Called program summary, which lists the names of all programs called or canceled by
the program being compiled.

4. Cross reference listing, which lists the names of all identifiers used in the program,
along with the source line numbers at which they are declared and used.

5. Summary listing, which provides status information on the compilation itself.

When the listing is written to a printer (either because the P Option is selected or because a
disk file that was generated as a result of the L Option is printed), each component starts a
new page.

Program Listing
At the top of each page of the program listing, a header appears, a sample of which appears in
Figure 24.

Figure 24: Program Listing Header

 RM/COBOL (Version 12.0n.00) for operating-system 03/15/2008 08:52:03 Page 1 
O Source file: ALLOCMAP Options: L A X O

Note The date and time formats are configurable. For more information, see the discussion
of the COMPILER-OPTIONS configuration record (on page 294).

Each page of the program listing also contains a subheader, illustrated in Figure 25 and
Figure 26.

Figure 25: Program Listing Subheader with Identification Area

 LINE DEBUG PG/LN -A 1
B..+....2....+....3....+....4....+....5....+....6....7..|IDENTFCN



O O

Chapter 6: Compiling

164 RM/COBOL User's Guide

Figure 26: Program Listing Subheader without Identification Area

 LINE DEBUG PG/LN -A 1
B..+....2....+....3....+....4....+....5....+....6....7....+...8..



O O

These subheaders set a scale against which material on each page can be measured. The
column of numbers under the “LINE” heading contains sequential line numbers assigned by
the compiler to each line read from the source file or from a copy file; these line numbers are
used in the cross reference listing and in Debug. The numbers under the “DEBUG” heading
are used with the Interactive Debugger or for interpreting error messages when the compiler
Q Option is used; this column is used only when listing the Procedure Division. The
remaining headings locate the regions of the source line images: the internal six-column line
number field, area A, area B, the main body of the source image (subdivided into ten-column
subregions) and the Identification area, if present.

If the R Option was present in the Compile Command or the configuration specified an
equivalent, the program listing contains a compiler-generated line number in the PG/LN
column. This line number, in the listing only, replaces whatever was in columns 1 through 6
of the original source line.

The setting of margin R, as determined by the INITIAL-MARGIN-R keyword (see page 302)
of the COMPILER-OPTIONS configuration record and the IMP MARGIN-R directive,
determines whether or not there is an Identification area. When margin R is set less than the
maximum source record length, the Identification area is present from margin R to the end of
the source record. When margin R is set greater than or equal to the maximum source record
length, the Identification area is not present. The program listing subheader indicates the
presence or absence of an Identification area as follows:

• If there is an Identification area, the listing source column header shows the Identification
area starting with “IDENTFCN”. Unless configured differently, as described in the
LISTING-ID-AREA-SEPARATOR keyword (see page 308), the Identification area is
separated from the program-text area by a “|” character in the header and each source line
that is printed in the listing. The separator character is suppressed for comment lines that
have nonblank characters within two characters of the Identification area (to avoid
changing comments that continue from the program-text area into the Identification area)
and for directives.

• When there is no Identification area, the listing source column header simply shows a
column ruler to the configured listing line length (see the LISTING-LINE-LENGTH
keyword on page 308), or the maximum source record length (see the SOURCE-
RECORD-MAX-LENGTH keyword on page 312) if the maximum source record length
is less than the configured listing line length.

The compiler updates the source column header for the listing file when the margin R setting
is changed by the IMP MARGIN-R directive in the source, but does not automatically force a
new page. If the new header is desired immediately, a new listing page can be forced with the
“/” comment indicator or by using the PAGE directive on a line following the IMP MARGIN-
R directive.

The program listing itself contains the sequential line number, statement address, copy level
indicator (described in the next paragraph) and the source record. If errors were detected
during compilation, the appropriate error message diagnostic appears. See Error Marker and
Diagnostics (on page 175).

The copy level indicator is a character-string of the following form:

Chapter 6: Compiling

 RM/COBOL User's Guide 165

where, n is a decimal digit in the range 1 through 9. The copy level indicator appears
between the sentence address (DEBUG heading) and source record in the listing
whenever the source record has been copied at level n.

Note The “+” indicator characters may be replaced with other indicator characters as
noted in Table 16.

A sample of a program listing is shown in Figure 27 on page 166.

Statement addresses are listed in decimal notation. For overlay segments, the segment
number is printed as part of the statement address. A slash separates the segment number
from the offset within the segment. For example:

50/000100

refers to location 100 within segment 50. Segment numbers and the slash are suppressed for
the fixed permanent segment.

The generation of the program listing may be suppressed by specifying the E Option (see
page 155) in the Compile Command. Copied source text can be suppressed with the
C Option (see page 154). Error messages (if any) and their associated undermarks and
source text are not suppressed, even when the C or E Option has been selected.

The copy level indicator has been expanded into a source indicator by varying the brackets
around the copy nesting level number n. Copy nesting level number 0 is the original source
file that is being compiled. A source indicator of +0+ is never included in the listing, but the
new source indicators may be used with copy nesting level number 0 because of the
REPLACE statement. The source indicators have the following meanings:

Table 16: Source Indicators in Compilation Listing

Source Indicator Meaning

+n+ The source text was copied at copy nesting level n without modification.

<n> The source text was replaced at copy nesting level n because of a
REPLACE statement, the REPLACING phrase of a COPY statement, or
the DATE-COMPILED paragraph. Such source text is listed on a
comment line in the listing, even though the original line that contained
the source text was not a comment line.

>n< The source line was inserted at copy nesting level n by a REPLACE
statement, the REPLACING phrase of a COPY statement, or the DATE-
COMPILED paragraph.

[n] The source line contains a COPY statement, which has been logically
replaced by the copied file.
Note Prior to version 11, this indicator meant the source line was
modified by a REPLACE statement, the REPLACING phrase of a COPY
statement, or by relocation of source text that occurred on the same line as
all or part of a COPY statement (the compiler relocated the source text so
that it would be compiled after the copied file). Version 11 and later
eliminated such “modified” lines by treating them as replaced lines.

+ n +

Chapter 6: Compiling

166 RM/COBOL User's Guide

{n} The source text was relocated to a new line because it followed a matching
replacement key of a REPLACE statement or of the REPLACING phrase
of a COPY statement, or it occurred on the same line as all or part of a
COPY statement. When possible for replacements, such source text is
merged with the last line of the inserted replacement text. Therefore, this
source indicator only occurs when the merge is not possible. That is,
when the merge is possible, the source indicator >n< is printed for the last
line of the inserted replacement text that includes the merged text-words.
(Source text that is split from a COPY statement is not merged with the
last line of the copied file.)

For easy reference, a summary of the source indicator meanings is included in the summary
listing portion of the listing file when the source indicator is used in the listing, as described in
Summary Listing (on page 173).

Figure 27: Sample Program Listing

 1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. ALLOCMAP.



O 3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.

O

 5 SOURCE-COMPUTER. IBM-PC-XT.
6 OBJECT-COMPUTER. IBM-PC-XT,



O 7 PROGRAM COLLATING SEQUENCE EBCDIC-CODE.
8 SPECIAL-NAMES.

O

 9 SWITCH-1 IS REPORT-MODE,
10 ON STATUS IS REPORT-LIST,



O 11 OFF STATUS IS REPORT-NOLIST;
12 SWITCH-3 IS DISPLAY-MODE,

O

 13 ON STATUS IS DISPLAY-LIST,
14 OFF STATUS IS DISPLAY-NOLIST;



O 15 CO1 IS TOP-OF-FORM;
16 CO5 IS AMOUNT-LINE;

O

 17 CONSOLE IS PC-DISPLAY;
18 SYSIN IS STANDARD-IN;



O 19 SYSIN IS STANDARD-OUT;
20 ALPHABET ASCII-1 IS STANDARD-1;

O

 21 ALPHABET ASCII-2 IS STANDARD-2;
22 ALPHABET NATIVE-1 IS NATIVE;



O 23 ALPHABET EBCDIC-CODE IS EBCDIC;
24 ALPHABET BACKWARDS IS "ZYXWVUTSRQPONMLKJIHGFEDCBA";

O

 25 SYMBOLIC CHARACTERS QUESTION-MARK, ASTERISK ARE 64, 43;
26 CLASS PUNCTUATION IS ";", ",", ".", "!", "?".



O 27 INPUT-OUTPUT SECTION.
28 FILE-CONTROL.

O

 29 SELECT REPORT-FILE1 ASSIGN TO PRINTER;
30 ORGANIZATION IS SEQUENTIAL;



O 31 ACCESS IS SEQUENTIAL.
32 SELECT LOOKUP-FILE1 ASSIGN TO DISC;

O

 33 ORGANIZATION IS RELATIVE;
34 ACCESS IS SEQUENTIAL.



O . O

Chapter 6: Compiling

 RM/COBOL User's Guide 167

 .

 .
151 PROCEDURE DIVISION USING ARG1-GROUP, ARG2-GROUP.



O 152 000002 A.
153 000005 CALL "CHRRTN" USING NW5-MDATE, NW5-MTIME.

O

 154 000016 CALL MATHRTN USING NBS-1, NBU-1, NCS-1, NCU-1,
155 NLC-1, NPS-1.



O 156 000035 STOP RUN.
157 END PROGRAM ALLOCMAP.

O

Allocation Map
The allocation map provides information on each user-defined word from the source
program, listed in the order declared. The type of user-defined word (described in the
following section) determines the allocation map format. The allocation map is generated
in the listing when the A Option (see page 154) is specified in the Compile Command or the
LISTING-ATTRIBUTES keyword (see page 305) is configured with the ALLOCATION-
MAP value.

Alphabet-Names, Symbolic-Characters, Mnemonic-Names, and
Class-Names

User-defined words declared in the SPECIAL-NAMES paragraph are listed in the allocation
map with the following information:

1. Association, which is the value for a figurative or symbolic-character; the code-name for
an alphabet-name; the switch-name for a mnemonic-name or condition-name associated
with a switch-name; the channel-name for a mnemonic-name associated with a
channel-name; the low-volume-I-O-name for a mnemonic-name associated with a
low-volume-I-O-name; or blank for a class-name. The value of a figurative or
symbolic-character is listed as the hexadecimal value in the native character set. If that
value represents a printable character, the printable character is listed in quotation marks.

2. Status, which is On or Off for a condition-name associated with a switch-name. The
letters PCS appear with an alphabet-name declared as the program collating sequence.
Otherwise, the column is blank.

3. Type, which indicates whether the user-defined word is: an alphabet-name; a mnemonic-
name associated with a switch-name; a condition-name; a mnemonic-name associated
with a channel-name; a mnemonic-name associated with a low-volume-I-O-name; a
class-name; or a symbolic-character.

4. Name, which is the actual user-defined word declared with the indicated attributes or the
figurative constant LOW-VALUE or HIGH-VALUE. These particular figurative
constants are listed since their value depends on the program collating sequence declared
in the source program.

Figure 28 is an example of this part of the allocation map.

Figure 28: Allocation Map (Part 1 of 4)

 Special-Names
 Association Status Type Name



Chapter 6: Compiling

168 RM/COBOL User's Guide

O X"00" Figurative constant LOW-VALUE
 X"FF" Figurative constant HIGH-VALUE

O

 SWITCH-1 Switch-name REPORT-MODE
 SWITCH-1 On Condition-name REPORT-LIST



O SWITCH-1 Off Condition-name REPORT-NOLIST
 SWITCH-3 Switch-name REPORT-MODE

O

 SWITCH-3 On Condition-name REPORT-LIST
 SWITCH-3 Off Condition-name REPORT-NOLIST



O C01 Channel-name TOP-OF-FORM
 C05 Channel-name AMOUNT-LINE

O

 CONSOLE Low-volume-I-O-name PC-DISPLAY
 SYSIN Low-volume-I-O-name STANDARD-IN



O SYSOUT Low-volume-I-O-name STANDARD-OUT
 STANDARD-1 Alphabet-name ASCII-1

O

 STANDARD-2 Alphabet-name ASCII-2
 NATIVE Alphabet-name NATIVE-1



O EBCDIC PCS Alphabet-name EBCDIC-CODE
 Literal Alphabet-name BACKWARDS

O

 X"3F" = "?" Symbolic-character QUESTION-MARK
 X"2A" = "*" Symbolic-character ASTERISK



O Class-name PUNCTUATION

O

alphabet-names, symbolic-characters, mnemonic-names, and class-names

Split Key Names

User-defined words, declared as part of a RECORD KEY clause in an indexed file control
entry of the Environment Division that defines a split key, are listed in the allocation map
with the following information:

1. File-Name is the name of the file from the indexed file control entry.

2. Key-Number specifies the number of the key that has a split key defined. A value of
zero indicates the prime record key. Alternate keys are numbered from 1 to 254.

3. Type indicates that the entry is a split-key-name.

4. Name is the name associated with the split key.

Figure 29 illustrates a section of the allocation map for a file that defines split keys for the
primary key and the second alternate key in the file control entry.

Figure 29: Allocation Map (Part 2 of 4)

 Split Key Names for program SPLITKEY
File-Name Key-Number Type Name



O FILE-1 0 Split-key-name KEY-1
 2 Split-key-name KEY-2

O

split-key-names

Chapter 6: Compiling

 RM/COBOL User's Guide 169

Data-Names, Index-Names, Condition-Names, File-Names and
Cd-Names

User-defined words declared in the Data Division are listed in the allocation map with the
following information:

1. Address, which is the decimal address for data-names and index-names. The “Address”
column is blank for file-names, cd-names and condition-names.

For data items declared with the external attribute in the File Section or Working-Storage
Section, the compiler-generated external number is printed on a line preceding the file or
level 01 item description or index-name.

For data-names declared in the Linkage Section, each level 01 or 77 item is preceded by
an indication of how it is addressable:

• If it is listed in the USING phrase of the Procedure Division header, “Un:” and
“Using argument n” are printed to indicate the formal argument umber is n within
the USING argument list.

• If it is listed in the GIVING (RETURNING) phrase of the Procedure Division
header, “G:” and “Giving argument” are printed to indicate that the item is the
formal GIVING argument.

• If it is a based linkage record and is not a formal argument, “Bn:” and “Based
linkage record n” are printed to indicate that the compiler assigned based linkage
record number is n.

• If none of the preceding descriptions apply, “Not addressable” is printed to indicate
that the Linkage Section data item is not available to the program.

2. Size, which is the decimal number of character positions required to store the value of a
data-name, or the maximum block size—in characters or records—for a file-name
declared with a non-zero block size. The “Size” column is blank for cd-names and
condition-names. The “Size” column for index-names contains the span of the table
entry associated with the index-name, that is, the decimal number of character positions
to advance the index-name value from one occurrence of the table to the next occurrence;
the actual size of an index-name itself is always four bytes.

3. Debug, which contains an abbreviated type indicator used in the Interactive Debugger to
describe the format of the data item. The “Debug” column contains “Fixed” or
“Variable” for file-names to indicate that records of the file are fixed or variable length,
respectively. The “Debug” column is blank for cd-names and condition-names.

Note These first three columns (Address, Size, and Debug) are used with the Interactive
Debugger to display and modify the values of data-names. See Chapter 9: Debugging
(on page 255).

4. Order, which indicates the number of subscripts required when referencing the
data-name or condition-name. The “Order” column is blank for data-names not requiring
subscripting and also for file-names and cd-names. When one or more subscripts are
required, the order is indicated with a decimal number enclosed in parentheses. In
version 12 and later, for an item described with the OCCURS clause without the
DEPENDING ON phrase, an asterisk (“*”) follows the closing parenthesis and, for an
item described with the OCCURS clause with the DEPENDING ON phrase, an
octothorpe (“#”) follows the closing parenthesis. When the parenthesized order is present
and neither an asterisk nor an octothorpe follows the closing parenthesis, the data item is
a subordinate item of the nearest preceding group table item of the same order and is not
described with an OCCURS clause itself.

Chapter 6: Compiling

170 RM/COBOL User's Guide

5. Type, which is a brief description of the item associated with the user-defined word. For
files, the organization and access are listed, in that order, separated by a slash.

6. [Level], which is the level-number of data-names. The level-number is omitted for
index-names. The level-indicator FD or CD is shown for file-names or cd-names,
respectively.

7. Name, which is the actual user-defined word declared with the listed attributes. The
name is indented one column to the right for each increase in level-number.

Figure 30 is an example of this part of the allocation map.

Figure 30: Allocation Map (Part 3 of 4)

 File Section for program ALLOCMAP
 Address Size Debug Order Type [Level] Name



O Variable File Seq/Seq FD REPORT-FILE1
 8 80 ANS Alphanumeric 01 REPORT-RECORD-1

O

 8 40 ANS Alphanumeric 01 REPORT-RECORD-2
 .



O .
 .

O

 Working-Storage Section for program ALLOCMAP
 Address Size Debug Order Type [Level] Name



O 532 112 GRP Group 01 G1
 532 8 ABS Alphabetic 05 ABS-1

O

 540 8 ANSE Alphanumeric edited 05 ANSE-1
 548 8 ABS Alphabetic, just 05 ABSR-1



O 556 6 NSU (1)* Numeric unsigned 05 NUM-1
 0 6 INX Index-name INX-1

O

 .
 .



O .

O


Linkage Section for program ALLOCMAP



O Address Size Debug Order Type [Level] Name
 U1: Using argument 1

O

 0 44 GRP Group 01 ARG-GROUP
 0 4 NSU Numeric unsigned 05 ARG-COUNT



O 4 8 ANS (1)* Alphanumeric 05 ARG-AREA
 .

O

 .
 .



O Communication Section for program ALLOCMAP
 Address Size Debug Order Type [Level] Name

O

 Cd for Input CD NET-WORK-1
 734 12 ANS Alphanumeric 02 NW1-SYM-Q



O 746 12 ANS Alphanumeric 02 NW1-SQ1
 758 12 ANS Alphanumeric 02 NW1-SQ2

O

 770 12 ANS Alphanumeric 02 NW1-SQ3
 782 6 NSU Numeric unsigned 02 NW1-MDATE



Chapter 6: Compiling

 RM/COBOL User's Guide 171

data-names, index-names, condition-names, file-names and cd-names

Constant-Names

User-defined words declared as constant-names in the Data Division are listed in the
allocation map with the following information:

1. Constant Value, which is the value associated with the constant-name. If the constant-
name value was specified with a constant-expression, then the result value is shown.
Otherwise, the literal associated with the constant-name is shown.

2. Type, which is a brief description of the type of the value associated with the constant-
name. If the constant-name value was specified with a constant-expression, then the type
is always Numeric unsigned. Otherwise, the type is the type of the literal specified as the
value for the constant-name.

3. [Level], which is the level-number for constant-names. Constant-names always have a
level-number of 78.

4. Name, which is the actual user-defined word declared as the constant-name.

Figure 31 is an example of this part of the allocation map.

Figure 31: Allocation Map (Part 4 of 4)

 Constant-names for program ALLOCMAP
 Constant Value Type [Level] Name



O 2 Numeric unsigned 78 TWO
"STRING1" Alphanumeric 78 STRING1

O

 QUOTE (QUOTES) Alphanumeric 78 MY-QUOTES
-256.357 Numeric signed 78 CONSTANT1



O X"454647" Alphanumeric 78 HEX1
ALL "ABC" Alphanumeric 78 STRING2

O

 ZERO (ZEROS, ZEROES) Numeric unsigned 78 MY-ZEROS
SPACE (SPACES) Alphabetic 78 MY-SPACES



constant-names

Called Program Summary
The called program summary lists the names of all called and canceled programs and the
using count associated with each. Figure 32 illustrates this listing.

Figure 32: Called Program Summary

 Called Program Summary
Program-name required Using count



O MATHRTN 6
"CHARRTN" 2

O

The program-name appears without quotation marks for dynamic (identifier) references and
inside quotation marks for static (literal) references. The “Using count” field lists the
maximum number of arguments used in any CALL reference to the listed literal or identifier.

Chapter 6: Compiling

172 RM/COBOL User's Guide

Cross Reference Listing
The cross reference alphabetically lists all user-defined words used in the program, and
provides the line number of each declaration, source, and possible destination reference. The
line number is enclosed in slashes if the reference is a declaration or in asterisks if the
reference is a possible receiving item. The line number is not marked for sending items.
Procedure-names specified as the first operand of an ALTER statement and data-names that
are specified as receiving operands of Procedure Division statements are considered
destination references and are thus marked with asterisks in the cross reference listing. The
cross reference is generated in the listing when the X Option (see page 157) is specified in the
Compile Command or the LISTING-ATTRIBUTES keyword (see page 305) is configured
with the CROSS-REFERENCE value. Figure 33 illustrates the cross reference listing.

Note The method used to mark possible destination references with surrounding asterisks errs
on the conservative side, particularly in arithmetic statements. The compiler marks the
second operand of an arithmetic statement as a possible destination even though it may be
followed by the GIVING phrase, which causes the second operand to be only a sending item.
The operands in the USING phrase of a CALL statement are always considered to be possible
destination references unless they are subject to a BY CONTENT phrase.

Figure 33: Cross Reference Listing

 Cross reference /Declaration/ *Destination*
A /0152/



O ABSE-1 /0082/
ABSR-1 /0083/

O

 ABS-1 /0081/
AMOUNT-LINE /0016/



O ANSE-1 /0085
ANSR-1 /0086/

O

 ANS-1 /0084/
ARG1-AREA /0113/



O ARG1-COUNT /0112/
ARG1-GROUP /0111/ 0151

O

 ARG2-AREA /0116/
ARG2-COUNT /0115/



O ARG2-GROUP /0114/ 0151
ARG3-AREA /0119/

O

 ARG3-COUNT /0118/
ARG3-GROUP /0117/



O ASCII-1 /0020/
ASCII-2 /0021/

O

 ASTERISK /0025/
BACKWARDS /0024/



O DB1-DATA /0070/
DB1-KEY 0047 /0069/

O

Chapter 6: Compiling

 RM/COBOL User's Guide 173

Summary Listing
The summary listing shows the sizes of the regions of the generated object program, the
maximum compilation memory used, and other summary information about the entire source
program. Figure 34 illustrates this listing.

Figure 34: Summary Listing

 Program Summary Statistics
Read only size: 266 (X"0000010A") bytes



O Read/write size: 532 (X"00000214") bytes
Overlayable segment size: 0 (X"00000000") bytes

O

 Total generated object size: 798 (X"0000031E") bytes
Maximum EXTERNAL size: 88 (X"00000058") bytes



O Total EXTERNAL size: 92 (X"0000005C") bytes
Source program used 4489 (0%) of 840000 available identifiers

O

 (T1C limit).
Source program used 33004 (0%) of 8400000 available user-defined



O word space (T2B limit).
Maximum compilation memory used was 487K bytes (2 presses and 0

O

 increases required).
+n+ Source was copied from copy file at copy nesting level n



O (level 0 indicator is suppressed).
<n> Source was replaced at copy nesting level n because of REPLACE

O

 or REPLACING.
>n< Source was inserted by REPLACE or REPLACING.



O [n] Source was modified by REPLACE, REPLACING, or split of text
following a COPY statement.

O

 (n) Source was split from a previous line with a replacement
match or COPY statement.



O Errors: 1, Warnings: 0, Lines: 157 for program ALLOCMAP
Previous diagnostic message occurred at line 151.

O

 Object version level = 3
Options in effect:



O A - Allocation map listing
L – Listing file

X - Cross reference listing

O

The line labeled “Read only size” lists the size of that region of the object program that
contains values that do not change during program execution. It consists primarily of the
instructions generated for the resident (or fixed) portion of the Procedure Division,
representations of the literals mentioned in the Procedure Division, and descriptors of the
operands referred to in the Procedure Division.

The line labeled “Read/write size” lists the size of that region of the object program that
contains values that might change during the course of execution. It consists primarily of a
current record area and a control block for each of the files specified, an area for the Working-
Storage Section and other internal control information.

The line labeled “Overlayable segment size” lists the size of the region of the object program
that is reserved for the independent and fixed overlayable segments of the Procedure Division.

Chapter 6: Compiling

174 RM/COBOL User's Guide

Its length is the length of the longest independent or fixed overlayable segment. All such
segments are loaded into this common region on an as-needed basis.

The line labeled “Total generated object size” lists the sum of the preceding values, and is
therefore the amount of memory needed to load the object program. It is not the total size
needed to execute that program. To execute the program there must be memory available to
accommodate not only the total size (as shown on the fourth line) but also the operating
system, the runtime system, any external data items and the I/O buffers. Although you have
no control over the size of the operating system or runtime system, you can exercise some
control over the memory requirement for the I/O buffers by use of the RESERVE and
BLOCK CONTAINS clauses, described in detail in File Types and Structure (on page 234) in
Chapter 8: RM/COBOL Features. Since the compiler uses 32-bit arithmetic, if the total
generated object size exceeds 4 GB this line will say “Total generated object size: {32-bit
overflow!} bytes” and compiler error message 344 will be generated in the listing after the
end of the program.

The line labeled “Maximum EXTERNAL size” indicates the size of the single largest record
area with the external attribute declared in the source program. This number is useful because
the maximum allowed value varies depending on the environment in which the program is
run. For more information on these limitations, see Memory Available for a COBOL Run
UNIT on UNIX (on page 39) and Memory Available for a COBOL Run UNIT on Windows
(on page 111).

The line labeled “Total EXTERNAL size” indicates the sum of the sizes of all record areas
with the external attribute declared in the source program. This number provides information
needed in estimating the runtime system memory requirements of the program, but is not a
direct measure since the memory requirements depend on the use of matching external
records in other programs of the run unit.

Note The two lines regarding EXTERNAL size are omitted in the listing file when the
program does not specify the EXTERNAL clause for any item.

The line labeled “Source program used ... of 840000 available identifiers ...” indicates the
amount of the identifier table limit consumed. Identifiers are the individual items (classes,
symbolic-characters, data items, conditions, and so forth) declared in the program. Each data
item and condition defined in the program requires its own identifier entry even if the data-
name or condition-name for the data item or condition is the same, since qualification can be
used to distinguish between the data items or conditions. The T1C in the message refers to
the compiler limit listed in Table 17 (beginning on page 179).

The line labeled “Source program used ... of 8400000 available user-defined word space ...”
indicates the amount of the user-defined word space consumed. User-defined words are the
unique spellings of words used as alphabet-names, cd-names, class-names, condition-names,
data-names, file-names, index-names, key-names, mnemonic-names, paragraph-names,
section-names, and symbolic-characters in the source program. Any particular spelling
consumes space only once in the user-defined word table. The T2B in the message refers to
the compiler limit listed in Table 17. The limit of 1400000 shown in that table assumes 30-
character names, which use six words each in the user-defined word space. If names averaged
24-characters in length (5 words average use of word space), the limit would be 1680000
names.

The line labeled “Maximum compilation memory ...” indicates the amount of memory
required to compile the source program. Setting the workspace size for the compiler to a
value at least this size or slightly larger results in the best compilation speed with the
minimum amount of memory consumption. The workspace size can be set using the
W Compile Command Option (see page 152) or the WORKSPACE-SIZE keyword (see
page 318) of the COMPILER-OPTIONS configuration record. The number of presses
indicates how many times the compiler attempted to recover unused memory. Minimizing the
number of presses by increasing the workspace size provides improved compilation speed. If

Chapter 6: Compiling

 RM/COBOL User's Guide 175

the number of presses is zero, then the compilation speed cannot be improved by increasing
the workspace size. The number of increases indicates the number of times the compiler had
to request more memory because the original workspace size was too small.

The line labeled “Source indicators ...” and the lines indented under this header provide a
summary of the source indicators used in columns 16-18 of the listing. Only those
explanation lines for source indicators actually used in the program listing are included in the
summary. If no source indicators were used in the program listing, then the header line is not
printed in the summary listing. For further details, see source indicators (on page 165).

The lines labeled “Errors: . . .” and “Previous diagnostic message . . .” summarize the number
of diagnostic messages issued during compilation and the location of the last diagnostic
message, respectively.

The line labeled “Object version level” indicates the object version level of the object
program associated with the program being compiled. For complete information on the object
version levels accepted by RM/COBOL, see Appendix H: Object Versions (on page 619).

The line labeled “Options in effect” and the lines that follow list the options selected for the
compilation. The listed options may have been specified in the Compile Command (see
page 145) or be part of a configuration file, as discussed in the COMPILER-OPTIONS
configuration record (see page 294). All command-line options are listed, as well as some
configuration options important to understanding the generated object program, such as
BINARY-ALLOCATION in the COMPILER-OPTIONS configuration record; if no options
were specified, these lines will not appear.

Error Marker and Diagnostics
Violations of syntactical or semantic rules are detected during the compiler’s pass through the
source program. If an error is detected, it is undermarked by a dollar sign. Figure 35
illustrates the RM/COBOL diagnostic message format.

Figure 35: Error Marker and Diagnostics

 1 IDENTIFICATION DIVISION.
 2 PROGRAM-ID. ALLOCMAP.



O 3 ENVIRONMENT DIVISION
 4 CONFIGURATION SECTION.

O

 $
***** 1) 0319: E Period space separator expected.



O 5 SOURCE-COMPUTER. RMCOBOL.
 6 OBJECT-COMPUTER. same.

O

 $
***** 1) 0382: E Computer-name must be user-defined word instead of



O reserved word. (scan suppressed).
*****Previous diagnostic message occurred at line 4.

O

 7 PROGRAM COLLATING SEQUENCE EBCDIC-CODE.
 $



O ***** 1) 0005: I Scan resumed.
*****Previous diagnostic message occurred at line 6.

O

 8 SPECIAL-NAMES.
 9 SWITCH-1 IS REPORT-MODE,



The first number on the line following the line with the undermark refers to the undermark
number. Multiple errors on the same line are numbered in ascending order, reading left to

Chapter 6: Compiling

176 RM/COBOL User's Guide

right. The next number is the error number. This corresponds to the appropriate message
listed in Appendix B: Compiler Messages of the RM/COBOL Language Reference Manual.

Following the error number is a single letter that indicates the severity of the error. There are
three classes:

1. I indicates the message is informational only.

2. E indicates a severe error.

3. W indicates a warning.

Error Recovery
The RM/COBOL compiler may display a recovery message along with the error diagnostic.
This recovery message is generated if—as often happens—a compilation error interrupts
scanning. In this case, the source text is ignored until the compiler finds a recovery point.
This minimizes the amount of code you need to examine if an error occurs. See Figure 36 for
an illustration.

Figure 36: Error Recovery Display

 10 ON STATUS IS REPORT-LIST,

11 OFF STATUS IS REPORT-NOLIST;

O 12 C21 IS TOP-OF-FORM;
 $

O

 ***** 1) 0088: E Wrong code-name in ALPHABET clause. (scan suppressed).
*****Previous diagnostic message occurred at line 7.



O 13 CONSOLE IS CRT-DISPLAY;
14 PROCEDURE DIVISION.

O

 $
***** 1) 0005: I Scan resumed.



The undermark indicates that the compiler did not recognize the alphabet code-name given.

When the compiler encounters an error, it first attempts to make an assumption about what
was actually meant. When it can do so, it continues compiling from the point of error,
without displaying the “(scan suppressed)” portion of the message.

If it cannot do so, the compiler suppresses scanning until it finds a point where it can begin
again. In this case, an undermark indicates where it restarted scanning, and the informational
“Scan resumed” message is written. No source text between the undermark associated with
the “(scan suppressed)” message and the “Scan resumed” message is compiled. This may
result in data-names being undefined if the message occurs in the Data Division.

The diagnostic information described previously is always contained in the listing regardless
of the setting of the compiler options. If the L, P, and T Options are all absent (meaning that
the listing is not being written to any device), the diagnostic information is written to the
standard output device.

Error Threading
RM/COBOL provides error-threading facilities. By reading the “Previous diagnostic message
occurred at line” message, you can trace back through every error encountered during

Chapter 6: Compiling

 RM/COBOL User's Guide 177

compilation. This message may also appear after the summary listing, to point to the last
error in the program.

Compilation always proceeds to the end of the program regardless of the number of errors
found, unless an error causes abnormal termination. Global errors, such as undefined
paragraph names and illegal control transfers, are listed at the end of the listing file
allocation map.

Compile Command Messages
The banner appears when you first invoke the compiler:

RM/COBOL Compiler - Version 12.14 for operating system
Copyright © 1985-2017 by Micro Focus. All rights reserved.
Configured Options: option list

Registration Number: xx-nnnn-nnnnn-nnnn

The third line of the compiler banner appears only when options have been specified in a
configuration file or in the Compile Command. Options displayed as a single character
appear first. If flagging is configured, the configured keywords appear next; long keywords
are abbreviated. If an object pathname or a listing pathname is configured, it appears in the
form O=pathname or L=pathname. If the object version level number is configured, it
appears in the form Z=nn.

A verbose banner has additional information about the product and environment in which it is
running. The verbose banner is obtained for the compiler by setting the environment variable
RM_VERBOSE_BANNER to a value that begins with “Y” or “y”. The verbose banner adds
the following lines to the banner:

RM/COBOL: User user-name running on machine machine-name (system-name)
RM/COBOL: Native character set: ncs (Codepage: cp-number)

The lines in the verbose banner are not suppressed by the K Runtime Command Option (see
page 192).

You may produce a list of the support modules loaded by the RM/COBOL compiler by
defining the environment variable RM_DYNAMIC_LIBRARY_TRACE. The listing will
indicate which modules are present, such as the Automatic Configuration File module or the
Message Control System (MCS). This information is most helpful when attempting to
diagnose a problem with support modules. For example, on UNIX, presence of the Terminfo
Terminal Interface or Termcap Terminal Interface indicates which terminal interface is in use
by the runtime system. When the environment variable RM_VERBOSE_BANNER is set to
“Y” or “y”, the list of support modules is also produced, regardless of the setting of the
RM_DYNAMIC_LIBRARY_TRACE environment variable.

If you enter an invalid Compile Command, you will see:

Usage: RMCOBOL name [options]
Options: [(] [A] [B] [C[=0-3] [D] [E] [F=(keyword list)] [G=cfgfile1]
 [H=cfgfile2] [K] [L[=path]] [M] [N] [O=path] [P] [Q] [R] [S] [T]
 [U[=B|D|P]] [V] [W=workspace] [X] [Y[=0-3] [Z=version] [2] [7]
 [)comments]

Chapter 6: Compiling

178 RM/COBOL User's Guide

In addition, the following messages may be displayed:

Command line error: file name is missing from command line.

Conflict error: COMPUTATIONAL-VERSION conflicts with OBJECT-VERSION.

Conflict error: option Q conflicts with Y.

Conflict error: option U conflicts with 2.

Conflict error: option V conflicts with B.

Mismatch error: options A and X require option L, P, T, or Y=3.

Mismatch error: option C requires option L, P, or T.

Mismatch error: option E requires option L, P, or T.

Syntax error: flag keyword is incorrect.

Syntax error: option characters must be followed by space or comma.

Syntax error: option characters must be preceded by hyphen.

Syntax error: option C requires option L, P, or T.

Syntax error: option C specifies an incorrect numeric value.

Syntax error: option E requires option L, P, or T.

Syntax error: option G or H requires path specification.

Syntax error: option O requires path specification.

Syntax error: option U specifies invalid type character.

Syntax error: option U describes incorrect type character.

Syntax error: option W requires numeric workspace value <= 524288.

Syntax error: option Y specifies an incorrect numeric debug level.

Syntax error: option Z requires numeric version specification.

Syntax error: symbol n is incorrect option letter.

Version error: value must be greater than 8 and less than or equal to 14.

Version error: value must be greater than n for current compiler license.

Workspace error: value must be between 32 and 524288 inclusive.

Error invoking unauthorized copy of compiler.

Compiler Status Messages
The RM/COBOL compiler displays messages that tell you it has completed normally, or that
it has terminated abnormally.

One of these messages—Compilation complete—appears every time the compilation is
finished, regardless of the number of errors that appear. This message has the following form:

Compilation complete -- Programs: p, Errors: e, Warnings: w

Chapter 6: Compiling

 RM/COBOL User's Guide 179

where,

p is the number of programs in the source file, excluding contained programs.

E is the number of errors found.

W is the number of warnings issued.

The other messages are displayed under specific circumstances. They are listed in
Appendix B: Compiler Messages of the RM/COBOL Language Reference Manual.

If a compilation error results in an abnormal termination, a message is displayed in the
following general form:

Compiler error n: text.

where,

n is a compiler error number.

text is any of the first sentences in the following definitions.

The numbers and their definitions are listed in Table 17.

In addition to these errors, unnumbered error messages may appear as a result of
configuration or I/O errors. These unnumbered error messages are described beginning on
page 183.

Table 17: Abnormal Termination Messages

Error
Number

Message Text

1 Compiler limit exceeded, Tnn message.

The program has exceeded an internal compiler limit. This can be remedied by dividing
the program into a main program with multiple subprograms. The table number and
table usage are included in the message to provide additional information to help keep
the program in conformance with compiler limits. If this error continues to occur even in
a small program, it suggests an internal compiler malfunction. Provide a source copy
and the table number as it appears in this message to Micro Focus Customer Care.

The values of nn are listed as table numbers, and the values for message are listed as
table usage in the following table. Limits are provided only where meaningful and in all
cases are approximate; all compiler tables are listed since error number 2 also displays
this information.

Table
Number

Table Usage

Limit

T00 Source (input source records, contiguous comments) 65536

T01 AliasID (aliased identifiers) 2100000

T02 Alter (ALTER statements) 2100000

T03 BackPatchPsect (object back patches)

T04 Cfd (COBOL file definers) 311111

T05 Code (object code buffer)

T06 Condition (condition-names) 280000

T07 Corresponding (CORRESPONDING items for MOVE,
ADD, or SUBTRACT)

Chapter 6: Compiling

180 RM/COBOL User's Guide

Table 17: Abnormal Termination Messages

Error
Number

Message Text

T08 CrossRef (cross reference entries) 4200000

T09 DataParameter (forward data references, for example,
FILE STATUS)

 280000

T0A DataRecord (DATA RECORDS clause references)

T0B DeclarativeRefError (declarative reference errors)

T0C DeferredScript (deferred subscripting in Screen Section) 8400000

T0D DimensionTemp (table dimensions in subscripting)

T0E Dsect (data descriptions for data references) 2800000

T0F ErrorID (identifier errors discovered after the definition)

T10 ErrorMessage (diagnostic messages for current line)

T11 ErrorProcedure (procedure errors)

T12 Error (diagnostic message entries)

T13 ErrorTemp (diagnostic message temporaries)

T14 Exit (stacked internal exit locations)

T15 External (external data items or files)

T16 Fail (stacked recovery information for parsing errors)

T17 FileArea (file areas for SAME [RECORD] AREA
clauses)

 4200000

T18 FileAreaTemp (file area temporaries)

T19 Fsect (file references) 8400000

T1A Global (global data items or files) 8400000

T1B Group (group data items stack for a record)

T1C ID (identifier definitions) 840000

T1D IndexTempHold (held index temporaries)

T1E IndexTemp (index temporaries)

T1F InspectTempHold (held INSPECT temporaries)

T20 InspectTemp (INSPECT temporaries)

T21 IntegerConstant (integer constants) 8400000

T22 Jsect (procedure references) 4200000

T23 Label (made intra-statement labels) 4200000

T24 LiteralCharacter (literal characters) 8400000

T25 LiteralRef (literal references) 4200000

T26 Literal (literal descriptors) 2800000

T27 LiteralTemp (literal temporaries)

T28 LiteralValue (literal values) 280000

Chapter 6: Compiling

 RM/COBOL User's Guide 181

Table 17: Abnormal Termination Messages

Error
Number

Message Text

T29 LocalSymbol (local symbol information for object
symbol table)

T2A NameLink (user-defined word links) 840000

T2B Name (user-defined words) 1400000

T2C NextSentenceLabel (NEXT SENTENCE labels)

T2D NumericTemp (numeric temporaries) 8400000

T2E Operand (statement operands)

T2F PackTemp (character packing temporaries)

T30 ParameterText (diagnostic message parameter text)

T31 Partial (partial segments) 1680000

T32 Perform (PERFORM statements) 2100000

T33 PictureTemp (PICTURE character-string temporaries)

T34 PointerTemp (pointer temporaries stack)

T35 PointerTempHold (pointer temporaries save)

T36 Polish (expression evaluation Polish)

T37 PolishTemp (expression evaluation Polish temporary)

T38 PrecomputeRef (precomputed subscripting or reference
modification)

 4200000

T39 Preset (initial VALUE clause values)

T3A ProcedureRef (procedure references) 2100000

T3B Procedure (procedure definitions) 1200000

T3C ProgramName (program-names)

T3D ProgramNest (contained programs)

T3E Program (programs referenced by CALL statements) 4200000

T3F Qualifier (qualifiers in identifiers)

T40 QualifierTemp (qualifier temporaries)

T41 RecordKey (record keys) 1200000

T42 RecordKeyTemp (record key temporaries)

T43 RefMod (reference modifiers) 2100000

T44 ReplaceKey (REPLACE statement keys) 210000

T45 ReplaceText (REPLACE statement text) 210000

T46 ReplacingKey (REPLACING phrase keys in COPY
statements)

 210000

T47 ReplacingText (REPLACING phrase text in COPY
statements)

 210000

T48 SameSortArea (SAME SORT AREA list)

Chapter 6: Compiling

182 RM/COBOL User's Guide

Table 17: Abnormal Termination Messages

Error
Number

Message Text

T49 ScreenAttributes (Screen Section data item attributes) 933333

T4A ScreenGroup (Screen Section groups)

T4B ScriptPlex (subscripted reference entries) 840000

T4C ScriptRef (subscripted references) 2800000

T4D ScriptTemp (subscript temporaries)

T4E Segment (Procedure Division segments) 1400000

T4F SortMergeBlock (SORT and MERGE statements)

T50 SourceTemp (input source character temporaries)

T51 SpecialRegister (special register references) 2800000

T52 Symbol (user-defined word temporaries)

T53 SystemNames (implementor-names)

T54 TableIndex (INDEXED BY phrases of OCCURS
clauses)

T55 TableKey (KEY phrases of OCCURS clauses) 840000

T56 Table (OCCURS clauses) 840000

T57 UndefinedProcedure (undefined procedure references)

T58 UsingID (Procedure Division header USING list) 2047

T59 PatternError (regular expression pattern errors) 65534

T5A SameAsTable (SAME AS tables) 65534

T5B Redefines (REDEFINES stack) 65534

T5C Work (compiler data stack) 65534

2 Table memory overflow, Tnn message.

The program has exceeded the available workspace when adding information to the
indicated compiler table. Increase the amount of user space available to the compiler
with the W Option, reduce the program size by dividing the program into a main
program with multiple subprograms or by using segmentation, or use shorter data-names.

The values of nn are listed as table numbers, and the values for message are listed as
table usage in the table provided above for error number 1. Note that the table listed is
not necessarily one of the tables causing the problem; it may simply be the table being
increased in size when the operating system refuses to provide more memory to the
compiler.

Chapter 6: Compiling

 RM/COBOL User's Guide 183

Table 17: Abnormal Termination Messages

Error
Number

Message Text

3 Program data or code overflow.

The program exceeded an internal compiler limit. The listing file shows whether a data
or procedure overflow occurred.

One of the object sections has run out of space. Segmenting the program or dividing it
into a main program with multiple subprograms may solve a procedure overflow.
Reducing the size of data items described in the Data Division may solve a data overflow
condition.

A program overflow can also occur if the program has too many source lines; that is, a
Procedure Division header that begins at line 65536 or higher or more than 65535 lines
of code in the Procedure Division and the object version is restricted to less than 12 and
the Q Compile Command option is not specified or configured. Object version 12 is
required to properly support debugging line numbers in excess of 65535.

4 Internal logic error, <error location information>

An internal compiler error has been encountered. If this problem arises, call Micro
Focus Customer Care for assistance. The <error location information> included in this
message may help determine the cause of this malfunction and should be recorded for
reference.

5 Fatal syntax error.

The compiler has encountered a syntax error from which it cannot recover. Fix the
syntax error in the source program and then compile the program again.

6 Object file overflow.

The object file has become too large for the compiler to produce a correct object file.
Break the program into two or more smaller programs that communicate using the CALL
statement.

7 Internal logic error, <error location information>

An internal compiler error has been encountered: an invalid compiler table number (roll)
has been referenced. If this problem arises, call Micro Focus Customer Care for
assistance. The <error location information> included in this message may help
determine the cause of this malfunction and should be recorded for reference.

8 Internal logic error, <error location information>

An internal compiler error has been encountered: an erroneous compiler table entry
number (group) has been referenced. If this problem arises, call Micro Focus Customer
Care for assistance. The <error location information> included in this message may
help determine the cause of this malfunction and should be recorded for reference.

9 Internal logic error, <error location information>

An internal compiler error has been encountered: an erroneous compiler table entry
offset (rung) has been referenced. If this problem arises, call Micro Focus Customer
Care for assistance. The <error location information> included in this message may
help determine the cause of this malfunction and should be recorded for reference.

n Unknown error number.

The value of n was not 1 through 9, inclusive. If this occurs, call Micro Focus Customer
Care for assistance.

In the unnumbered error messages described below, pathname may be one of the following: a
valid pathname, PRINTER if the P Option is used, or the standard output device if the T
Option is used.

Chapter 6: Compiling

184 RM/COBOL User's Guide

Close error for file pathname.

This message may occur for a temporary XML symbol table file. There are a number of
reasons this message may appear, including the following:

• A file does not exist.

• A file is corrupted.

Contact Micro Focus Customer Care for further assistance.

Code point value is not allowed in an XML attribute value.

The code point represents a character that cannot appear in an XML attribute value of the
XML symbol table.

Contact Micro Focus Customer Care for further assistance.

IDRef allocation error for file pathname.

This message may occur for a temporary XML symbol table file. It means that an internal
table could not be allocated for this file.

Contact Micro Focus Customer Care for further assistance.

Open error for file pathname.

This message may occur for program listings, object files, or temporary XML symbol table
files. There are a number of reasons this message may appear, including:

• A write-protected file was opened for output.

• The system is out of disk space.

• An invalid pathname was specified.

• A file exists, but RM/COBOL could not locate it because the directory search sequence
was not specified or was specified incorrectly.

• The system has reached its limit for the number of files that can be open at one time.

Read error for file pathname.

This message can occur for source, object, and temporary XML symbol table files.
Generally, it indicates a corrupted file. The error will also occur on source files that contain
a NULL character. Restore the file from its backup copy, or, for object files, restart the
compilation.

Remove error for file pathname.

This message may occur for a temporary XML symbol table file. There are a number of
reasons this message may appear, including the following:

• A file does not exist.

• A file is corrupted.

• The user does not have delete permissions for the directory containing the file.

Contact Micro Focus Customer Care for further assistance.

Chapter 6: Compiling

 RM/COBOL User's Guide 185

Unable to locate iconv library required to process code point value.

This message appears only on UNIX and only when the compiler cannot find the character
conversion library, iconv, which converts an encoding other than RM_LATIN_1 and
RM_LATIN_9 to Unicode for an XML symbol table.

Contact Micro Focus Customer Care for further assistance.

Unknown RM_ENCODING environment variable value while processing code point
value.

This message occurs only on UNIX and only when a user specifies an unknown
RM_ENCODING environment variable value when building an XML symbol table.

Contact Micro Focus Customer Care for further assistance.

Write error for file pathname.

This message can occur for listings, object files and temporary XML symbol table files.
Generally, it means space is not available to perform the write operation.

XML symbol table compression error for file pathname.

This message may occur for a temporary XML symbol table file. The XML symbol table
failed to successfully compress into the object file. This could occur because of insufficient
memory or insufficient disk space.

Contact Micro Focus Customer Care for further assistance.

Compiler Configuration Errors
Compiler configuration errors include all errors that occur because of an error in the
configuration. The formats are as follows:

Error code at record number in location.

Error code in configuration.

where, code is one of the following:

• The compiler configuration error number listed in Table 18. See also Configuration
Errors (on page 415).

• An input/output error, as described in Input/Output Errors (on page 393).

number is the logical record in the configuration file where the error occurred. When
using number to determine which record is in error, count lines combined with their
continuation lines as one record, and do not count comment lines or blank lines.

location identifies one of the following sources of configuration records:

• Automatic configuration file

• Overriding configuration file

• Supplemental configuration file

Chapter 6: Compiling

186 RM/COBOL User's Guide

Automatic configuration file refers to configuration files located automatically by the
Automatic Configuration Support module on UNIX or Windows. For more information, see
Automatic Configuration Files (on page 290). Overriding configuration file refers to a
configuration file specified by the G Option (see page 152). Supplemental configuration file
refers to a configuration file specified by the H Option (see page 152).

The format with the record number and filename appears if an error is detected during the
processing of a configuration record. The text of the configuration record in error follows the
message. The other format is used if an error is detected after all configuration records have
been processed or if an error is detected without an associated record.

Table 18: Compiler Configuration Errors

Code Description

E002 An invalid delimiter was found.

E004 A keyword has not been provided where one was expected or the keyword
is invalid.

E007 Syntax error.

E009 A value has not been provided where one was expected or the value is
invalid.

E00B A logical configuration record exceeds the maximum length.

E00C Token requested to dereserve was not found.

Compiler Initialization Errors
If the compiler encounters difficulties initializing the RM/COBOL file management system,
one of the following error messages will appear:

Error initializing file manager.

This error generally occurs because a buffer pool has been configured that is too large to be
allocated. See the BUFFER-POOL-SIZE keyword (on page 336) of the RUN-FILES-ATTR
configuration record for instructions on changing the buffer pool size.

Insufficient memory for compiler initialization.

This error indicates that the compiler could not successfully allocate memory during
initialization. Reducing the initial size of the compiler workspace specified in the
W Compiler Command Option (see page 152) or the maximum source record length with the
configuration keyword SOURCE-RECORD-MAX-LENGTH (see page 312) might resolve
this problem. Adding physical memory to the machine or modifying the OS-specified user
limits on memory allocation might also resolve this problem.

Support Module Version Errors
During initialization, the compiler locates and loads various support modules, including the
automatic configuration support module. Also, at initialization, the compiler verifies that
each support module is the correct version for the runtime system. If a support module is not
the correct version, the following message is displayed:

Chapter 6: Compiling

 RM/COBOL User's Guide 187

RM/COBOL: module-name version mismatch, expected 12.0n.nn,
 found n.nn.nn.

When the previous message is displayed, the compiler terminates with the following message:

Error invoking mismatched compiler and support module.

Compiler Exit Codes
Compiler exit codes indicate the status of the compilation (either successful or unsuccessful).
These codes and their associated definitions are listed in Table 19.

Under UNIX, the exit code can be interrogated from the shell. See shell (sh) in your UNIX
documentation for details.

Under Windows, a non-zero exit code is displayed in a message box titled “Return Code”.
Selecting the OK button closes the compiler window. The message box also will contain the
COBOL error code, if one occurred. Display of the Return Code message box may be
disabled by setting the value of the Show Return Code Dialog property (see page 83) to False.

If the compiler was invoked from a COBOL program using the SYSTEM non-COBOL
subprogram (CALL “SYSTEM”), the exit code can be retrieved by passing an exit code
variable in the USING list. For more information, see the SYSTEM (on page 579)
subprogram.

Table 19: Compiler Exit Codes

Code Description

 0 Normal termination.

249 Warnings in program.

250 System initialization error.

251 Incorrect Compile Command.

252 Errors in program.

253 Reserved.

254 Compilation canceled (by pressing the CTRL and BREAK keys or the
system Interrupt key).

255 Compiler error.

Chapter 7: Running

 RM/COBOL User's Guide 189

Chapter 7: Running

One of the immediate results of compilation is the creation of the object file. Object files
contain the object version of the source program. The object version of the program can be
executed with the runtime command. To execute the object program, use the RM/COBOL
Runtime Command described in the following section.

If your program uses segmentation, the segments are loaded and executed—as they are
referenced—by the RM/COBOL runtime system. The runtime system also allocates memory
for file buffers, external data items, and called RM/COBOL and non-COBOL subprograms.

This chapter contains information on the RM/COBOL Runtime Command, runcobol, and its
options, examples of valid and invalid runtime commands, runtime messages, and program
exit codes.

Runtime Command
The RM/COBOL Runtime Command (runcobol) loads and executes RM/COBOL programs.

Under UNIX, the Runtime Command is entered at a shell prompt. After typing the desired
command and options, press Enter to begin execution.

Under Windows, the Runtime Command can be entered in the Command line text box of the
Create Shortcut dialog box. For instructions on creating a shortcut, see Creating a Windows
Shortcut (on page 59). Choose the RUNCOBOL icon to begin execution. Programs also may
be executed by dragging the .cob object file to the RUNCOBOL object or by double-clicking
on the object file.

The format of the Runtime Command is as follows:

filename is the name of the main program of the run unit. If the L Option (described in
the next paragraph) is not specified, filename must be a valid pathname to an object file
that contains exactly one program. In this case, if a filename extension is not specified,
RM/COBOL uses first .cob, and then .COB unless configured otherwise with the
OBJECT keyword (see page 324) of the EXTENSION-NAMES configuration record.
Note that when the configuration includes the MAIN-PROGRAM keyword (see
page 348) of the RUN-OPTION configuration record, the filename specified is ignored,
and, if options are specified with a leading hyphen, may even be omitted.

runcobol filename [option] ...

Chapter 7: Running

190 RM/COBOL User's Guide

The L Option allows you to invoke execution of a program contained in a library by
entering the name of the main program within a library. See the discussion of libraries
(on page 144). The rules for invocation of programs within libraries are as follows:

1. If the main program is not in a library, you may enter the appropriately qualified
pathname for filename or you may treat the object program as a library as described
in item 2 even though it is a library containing one program.

2. If the main program is in a library, you must enter the L Option and the library name
containing the main program. The main program-name specified by filename must
have been specified in the PROGRAM-ID paragraph of the program.

option specifies the available RM/COBOL Runtime Command options, described in the
next section. Spaces or commas must separate options. Options may be entered in
uppercase or lowercase letters. Each option may be preceded by a hyphen. If any option
is preceded by a hyphen, then a leading hyphen must precede all options. When a value
is assigned to an option, the equal sign is optional if leading hyphens are used. In
general, command-line options are processed from left to right and, for most options, the
last value encountered is the one used.

Note More than one L Option may be specified without one overriding the other. See
the description of the L Option (see page 197) for more information.

In addition, the RM/COBOL for Windows runtime system also supports the following
command-line options, which do not follow the command format described earlier in this
section:

• Three OLE server registration commands. These options are described in Runtime
Registration (see page 56).

• Three character-set commands. These options are described in Character Set
Considerations for Windows (see page 100).

Runtime Command Options
Runtime Command options can be specified in the following three ways:

1. They can be placed into the registry (on Windows) or the resource files (on UNIX). In
the registry, the Command Line Options property (see page 74) provides command-line
options for the runtime when Runtime is selected on the Select File tab of the
RM/COBOL Properties dialog box. In resource files, the Options keyword, which is
described in Command Line Options (on page 26), provides command-line options for
the runtime in the global resource file /etc/default/runcobolrc and the local resource file
~/.runcobolrc.

2. They can be specified in the Runtime Command itself.

runcobol /regserver
runcobol /unregserver
runcobol /showserver

runcobol /cs_ansi
runcobol /cs_oem
runcobol /showcharset

Chapter 7: Running

 RM/COBOL User's Guide 191

3. They can be placed into a configuration file, which is processed by the RM/COBOL
runtime when the configuration file is automatically located or specified with a
configuration command-line option. For information on configuration files, see
Automatic Configuration Files (on page 290) or Configuration Runtime Command
Options (on page 192). For a discussion of the runtime options that can be configured,
see the RUN-OPTION configuration record (on page 344) and the RUN-SORT
configuration record (on page 350).

Options are processed in the order given above, but options specified in the configuration do
not override options specified in the resultant set of command-line options as determined from
items 1 and 2 above. This means that options specified in a Runtime Command will take
precedence over conflicting or contradictory options specified by the Windows registry or
UNIX resource files (step 1) or configuration (step 3).

For quick reference, Table 20 (see page 191) summarizes the Runtime Command options in
alphabetical order. The Runtime Command options, however, are grouped into four
categories and are explained more fully in these sections:

1. Configuration (see page 192)

2. Debug and Test (see page 193)

3. Environment (see page 194)

4. Program (see page 195)

Table 20: RM/COBOL Runtime Command Options

Option Description

A=[delim] [string] [delim]
(see page 195)

Passes an argument to the main program. The delimiter
characters are optional if string does not contain spaces.

B=n
(see page 194)

Specifies a maximum buffer size for use with the ACCEPT
and DISPLAY statements.

C=pathname
(see page 192)

Designates a file to be used as the primary runtime
configuration file.

D
(see page 194)

Invokes the RM/COBOL Interactive Debugger.

F=fillchar
(see page 194)

Uses fillchar instead of space to preset read-write memory
upon program load.

I
(see page 194)

Collects RM/COBOL program instrumentation data.

K
(see page 192)

Suppresses the banner message and the STOP RUN message.

L=pathname
(see page 197)

Designates RM/COBOL non-COBOL subprogram libraries.

M
(on page 195)

Directs that level 2 ANSI semantics are to be used for
Format 1 ACCEPT and DISPLAY statements.

P[=Y|N]
(on page 192)

Directs that the runtime window be persistent or not persistent
after the COBOL program terminates on Windows. (The P
option is for Windows only; the P option is not valid or
meaningful on UNIX.)

Chapter 7: Running

192 RM/COBOL User's Guide

Table 20: RM/COBOL Runtime Command Options

Option Description

Q=[delim] [string] [delim]
(see page 197)

Specifies the value used to initialize the SYMBOLIC
QUEUE, SYMBOLIC SUB-QUEUE-1, SYMBOLIC
SUB-QUEUE-2, and SYMBOLIC SUB-QUEUE-3 area in
a CD FOR INITIAL INPUT record area or the SYMBOLIC
TERMINAL area in a CD FOR INITIAL I-O record area.
The delimiter characters are optional if string does not
contain spaces.

S=n . . . n
(see page 195)

Sets (or resets) the initial value of switches in the
RM/COBOL program.

T=n
(see page 195)

Specifies the amount of memory (n bytes) to be used for a
sort operation.

V
(see page 193)

Directs that a trace of support modules loaded by the
RM/COBOL runtime system be displayed.

X=pathname
(see page 193)

Designates a file as a supplement to the runtime
configuration.

Configuration Runtime Command Options

The following options designate a file to be used as the complete runtime configuration or as
a supplement to it and allow suppression of the banner and STOP RUN messages.

C Use the C Option to designate a file to be used as the runtime configuration. If
the C Option is specified, any automatic configuration is ignored (that is, not
processed). The C Option has the following format:

C=pathname

See also the discussion of the runtime X Option (on page 193).

The default is to use the default configuration options. The contents of a
configuration file are described in Chapter 10: Configuration (on page 289).

K Use the K Option to suppress the banner message and the STOP RUN message.
This option is most useful when running under batch command files or shell
scripts.

The default is to display the banner and STOP RUN messages. The default can be
configured with the RUN-OPTION configuration record keyword K (see page 346).

P Use the P Option to specify the Persistent property on Windows. The Persistent
property controls whether the runtime window persists after the COBOL
program terminates, either because of the execution of a STOP RUN statement
or a fatal runtime error. The topic Persistent Property (see page 79) has
additional information about the property meaning.

The P Option has the following format:

P[=Y|N]

The P option may be specified as P=Y to turn Persistent on or as P=N to turn
Persistent off; specifying just the option letter P without a value is equivalent to

Chapter 7: Running

 RM/COBOL User's Guide 193

specifying P=Y. The P option is for Windows only; for the Unix runtime the P
option is neither valid nor meaningful.

Specifying the P option on the runtime command line is equivalent to calling
C$GUICFG (see page 552) to set the Persistent property at the beginning of your
COBOL program. Thus, the P option setting overrides the Persistent property value
stored in the registry but only for the current invocation of the runtime. If your
COBOL program subsequently calls C$GUICFG to set the Persistent property then
the value specified in that call will be used when the program terminates.

The Persistent property value stored in the registry for RM/COBOL on Windows can
be changed with the RMCONFIG utility (see page 614). The P Option allows a
convenient way to override the property setting without the need to run the utility or
calling C$GUICFG.

V Use the V Option to display a verbose banner, including a list of the support
modules (shared objects on UNIX and dynamic link libraries on Windows)
loaded by the RM/COBOL runtime system. For UNIX, this list will indicate
which Terminal Interface support module is being used and which other optional
modules are present, if any. For both UNIX and Windows, the list will include
any non-COBOL modules loaded because of the L Runtime Command Option
(see page 197). The list indicates the full pathname of the support module, so
the location of the loaded file can be determined by examining the list. This
option is most useful when attempting to diagnose a problem with support
modules. For more information, see Appendix D: Support Modules (Non-
COBOL Add-Ons) on page 447 in this user’s guide and the CodeBridge User's
Guide.

Alternatively, the RM_DYNAMIC_LIBRARY_TRACE environment variable may
be defined (with any value) or the V keyword (see page 348) of the RUN-OPTION
configuration record may be set to DISPLAY if you wish to see just the list of
support modules. The RM_VERBOSE_BANNER environment variable may be
defined with a value that begins with “Y” or “y” to obtain the complete verbose
banner, including the list of support modules.

The default is not to display the verbose banner or the list of support modules loaded.
The default can be configured with the V keyword of the RUN-OPTION
configuration record.

X Use the X Option to designate a file as a supplement to the runtime
configuration. The specified file is processed after any automatic configuration
and after any file specified in the C Option, but before any other command-line
options are processed. The X Option has the following format:

X=pathname

If no configuration exists (either automatic or specified with the C Option, described
earlier in this section), the specified file serves as the complete configuration. The
default is to use the default configuration options. The contents of a configuration
file are described in Chapter 10: Configuration (on page 289).

Debug and Test Runtime Command Options

The following options invoke the RM/COBOL Interactive Debugger and collect program
instrumentation data.

Chapter 7: Running

194 RM/COBOL User's Guide

D Use the D Option to invoke the RM/COBOL Interactive Debugger (called
Debug). Complete details on program debugging are contained in Chapter 9:
Debugging (on page 255).

By default, the Interactive Debugger is not invoked. There is no corresponding
configuration for this command-line option.

Note The Interactive Debugger may also be started during execution of an ACCEPT
terminal I/O statement by specifying ENTER-DEBUGGER (see page 361) as the
semantic action value of the ACTION keyword (see page 357) in the TERM-INPUT
configuration record.

I Use the I Option to collect RM/COBOL program instrumentation data.
Complete details on program instrumentation are contained in Chapter 11:
Instrumentation (on page 377).

By default, instrumentation data is not collected. There is no corresponding
configuration for this command-line option.

Environment Runtime Command Options

The following options specify the runtime environment.

B Use the B Option to specify a maximum buffer size for use with ACCEPT and
DISPLAY statements. The B Option has the following format:

B=n

The maximum buffer size is 65280 characters. The default size is 264 characters.
The default can be configured with the RUN-OPTION configuration record
keyword B (see page 345).

For more information, see Maximum Size of a Screen Field (on page 201).

The ACCEPT and DISPLAY buffer size also affects redirection of ACCEPT and
DISPLAY operations for RM/COBOL on UNIX. For information on input and
output redirection, see Standard Input (on page 40) and Standard Output (on
page 41).

F Use the F Option to specify a fill character value. The fill character value is
used to initialize read-write memory allocated for the run unit. Working-Storage
data items that do not specify a VALUE clause in their data description entry
will be filled with this character value at program load time. The F Option has
the following format:

F=<fill-char>

where, <fill-char> can be a single character, a decimal number from 00 to 255, or a
hexadecimal number from 0x00 to 0xFF. The single character digits 0 through 9
represent the ASCII digit characters (“0” – “9”, 0x30 – 0x39, or decimal 48 – 57), so
if they are meant as numeric code points, a leading 0 is required to make them more
than a single character. Quoting the fill character value is allowed, but has no effect
on whether the value is interpreted as a number or a character.

The default is to use a space character to fill read-write memory allocated for the run
unit. The default can be configured with the RUN-OPTION configuration record
keyword FILL-CHARACTER (on page 346).

Chapter 7: Running

 RM/COBOL User's Guide 195

M Use the M Option to direct that level 2 ANSI semantics are to be used for
Format 1 ACCEPT and DISPLAY statements.

The default is to use level 1 ANSI semantics in these situations (see the discussion
that begins on page 41). The default can be configured with the RUN-OPTION
configuration record keyword M (see page 347).

S Use the S Option to set (or reset) the initial state of switches in the RM/COBOL
run unit. The S Option has the following format:

S=n ... n

Switch initial states are specified left to right from switch 1 to switch 8. Each n
indicates a switch state value: 0 indicates OFF and 1 indicates ON. Fewer than eight
initial switch state values may be specified, in which case the remaining switches are
initialized to OFF. Specifying more than 8 initial switch state values is not allowed;
an option not valid error will occur and the run unit will not be started.

The default is to initialize all switches to OFF at the start of the run unit. There is no
corresponding configuration for this command-line option.

T Use the T Option to specify the amount of memory (n bytes) to be used for a
sort operation. The T Option has the following format:

T=n

There are a number of reasons to use the T Option in association with a sort
operation:

• To increase the amount of memory available for the sort operation, thereby
increasing the efficiency of the sort operation.

• To reduce the default memory allocation. This provides more room for loading
other data or called subprograms into memory during an input procedure.

If no SORT or MERGE statement is used in the run unit, using a value of 0 will
allow the runtime system to allocate the memory generally used to contain the
sort-merge logic for other purposes.

The default is 256000 bytes. The maximum allowed value is 2147483647 bytes.
The default can be configured with the RUN-SORT configuration record keyword
MEMORY-SIZE (see page 350).

Program Runtime Command Options

The following options define an argument to be passed to the main program and the object
libraries to be used for the run unit.

A Use the A Option to pass an argument to the main program. The A Option has
the following format:

A=[delim]string[delim]

where, string is an alphanumeric series of characters.

The delimiter character specified for delim may be either ' or ".

Chapter 7: Running

196 RM/COBOL User's Guide

The delimiter character chosen as the opening delimiter must be used as the closing
delimiter as well. The closing delimiter must be followed by a space or comma if
another option follows the A Option. The delimiter character used cannot appear as
part of string.

If string contains no spaces, delimiter characters are not required.

Under UNIX, it is safer to delimit string using single quotation marks '. . .' because
characters in the argument might otherwise be meaningful to the shell (sh) command
interpreter.

To use the string assigned to the A option, you must have a Linkage Section for the
main program with the following form:

 01 MAIN-PARAMETER.
 02 PARAMETER-LENGTH PIC S9(4) BINARY (2).
 02 PARAMETER-TEXT.
 03 PARAMETER-CHAR PIC X OCCURS 0 TO 2048 TIMES
 DEPENDING ON PARAMETER-LENGTH.

The Procedure Division header should have the following form:

 PROCEDURE DIVISION USING MAIN-PARAMETER.

The variable PARAMETER-LENGTH contains the number of characters between
delimiter characters. PARAMETER-TEXT contains a copy of the characters
between the delimiter characters. If no parameter is passed with the A Option and
the main program describes a parameter as shown above, the value of
PARAMETER-LENGTH will be zero. When this is the case, PARAMETER-TEXT
should not be referenced. In all cases, no part of MAIN-PARAMETER should be
modified.

The number of characters between the delimiter characters cannot exceed 2048.

Note Starting in version 10 of the RM/COBOL runtime system, the maximum A
Runtime Command Option value length is 2048 characters; previous versions
supported a maximum length of 100 characters. A COBOL program may specify a
lower value in the OCCURS clause. In particular, existing programs that specify the
previous limit of 100 for the maximum are still valid and do not need to be modified.
COBOL programs that specify a lower value can even access up to the current
maximum 2048 characters if reference modification is used, as in MAIN-
PARAMETER(3:).

The following is an example program using the A Option.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CPASS.
 * To see a command-line argument string passed to a
 * COBOL main program, run this program as follows:
 * runcobol cpass A="string"
 DATA DIVISION.
 LINKAGE SECTION.
 01 APARAM.
 02 APARAM-SIZE PIC S9(4) BINARY (2).
 02 APARAM-STRING.
 03 FILLER PIC X OCCURS 0 TO 2048 TIMES
 DEPENDING ON APARAM-SIZE.
 PROCEDURE DIVISION USING APARAM.
 0010-BEGIN.
 DISPLAY APARAM-STRING(1:) LINE 22 ERASE.

Chapter 7: Running

 RM/COBOL User's Guide 197

 STOP RUN.
 END PROGRAM CPASS.

The default main program argument is an empty string; that is, a string where
APARAM-SIZE is zero. There is no corresponding configuration for this command-
line option.

L Use the L Option to designate RM/COBOL object or non-COBOL subprogram
libraries. The L Option has the following format:

L=pathname

These libraries allow more than one program to be contained within a file.
RM/COBOL imposes no limitation on the number of times the L Option may appear
in a single Runtime Command. Multiple uses of the L Option are processed
cumulatively from left to right as they are encountered on the command line. For
additional information on how the libraries specified by the L Option are searched,
see the discussion of Subprogram Loading (on page 227). Further information on
RM/COBOL libraries may be found in the topic Libraries (see page 144). You can
also learn more about non-COBOL libraries in the appropriate appendixes in the
CodeBridge User's Guide on the non-COBOL subprogram internals for Windows
and UNIX.

See also the RUN-OPTION configuration record keyword L (on page 347).

Q Use the Q Option to indicate that the program is being scheduled by the
Message Control System (MCS) to process a message. The Q Option has the
following format:

Q=[delim]string[delim]

where, string is an alphanumeric series of characters.

delim may be either of the delimiter characters double quote (") or single quote (').
The delimiter character chosen as the opening delimiter must be used as the closing
delimiter as well. The closing delimiter must be followed by a space or comma if
another option follows the Q Option. The delimiter character cannot appear as part
of string. If string contains no spaces, delimiter characters are not required. Under
UNIX, it is safer to delimit string using the single quotation (') delimiter because
characters in the argument might otherwise be meaningful to the shell (sh) command
interpreter.

The value of string is moved into the SYMBOLIC QUEUE, SYMBOLIC SUB-
QUEUE-1, SYMBOLIC SUB-QUEUE-2, and SYMBOLIC SUB-QUEUE-3 fields
(4 * 12 characters each = 48 characters total) of a CD FOR INITIAL INPUT or in
the SYMBOLIC TERMINAL field (12 characters) of a CD FOR INITIAL I-O.
When the indicated fields in the CD FOR INITIAL record area are not spaces, it
indicates that the program was scheduled by the MCS to process a message. Thus,
the Q option is intended for use in a script used by the MCS to schedule a run unit to
process a message.

When the main program does not contain a CD FOR INITIAL, the Q Option, if
specified, is ignored.

When the Q Option is omitted and the main program contains a CD FOR INITIAL,
the specified fields of the initial CD contain spaces. This indicates that the program
was not scheduled by the MCS to process a message.

There is no corresponding configuration for this command–line option.

Chapter 7: Running

198 RM/COBOL User's Guide

Sample Runtime Commands
Following are examples of valid and invalid RM/COBOL Runtime Commands.

Valid Runtime Commands

runcobol payroll B=500,K

This command executes the program named payroll.cob. It establishes a maximum buffer
size of 500 bytes for ACCEPT and DISPLAY statements (the B Option) and suppresses
banner and STOP RUN messages (the K Option).

runcobol FIRSTPRG L=lib1\library.cob,D

This command executes the program FIRSTPRG contained in the RM/COBOL library named
lib1\library.cob.

It informs the runtime system of the name of the library (the L Option) that contains the
programs, and invokes the Interactive Debugger (the D Option).

Invalid Runtime Commands

runcobol payroll.sal A='PRINT-RUN"

Here, the A Option is invalid, since the opening and closing delimiters are not identical.

runcobol lib1\library D T

In this example, the library used in the valid example cannot be executed by this command,
assuming the library contains more than one program. Also, the T Option is specified without
an associated value.

Runtime Messages
Messages of different classes may appear on the screen during program execution. The
message types are defined in the following paragraphs.

Diagnostic Messages
Diagnostic messages indicate either that an internal RM/COBOL error occurred or that an I/O
error occurred that was not handled by an appropriate USE procedure (see the description of
the USE statement in Chapter 5: Procedure Division of the RM/COBOL Language Reference
Manual). If the D Option (see page 194) was entered in the Runtime Command and one of
these errors occurs, the Interactive Debugger will be entered to allow examination of program
data values. Otherwise, control will return to the operating system.

Chapter 7: Running

 RM/COBOL User's Guide 199

Execution Messages
Execution messages report the status of the runtime system, or problems within the
RM/COBOL program that prevent successful execution.

These messages result from normal program termination including execution of a STOP RUN
statement, the execution of a temporary STOP statement, or an incorrectly entered command-
line option.

Diagnostic and execution error messages are detailed in Appendix A: Runtime Messages (on
page 383).

Program Exit Codes
An appropriate exit code is returned to the operating system when program execution ends.
The exit code may indicate that execution was successful or unsuccessful. Users may move
(or otherwise assign) any exit code value in the range 0 through 255 to the implicitly defined
RETURN-CODE special register. The program exit codes are listed and defined in Table 21.

Under UNIX, the exit code can be interrogated from the shell. See shell (sh) in your UNIX
documentation for details.

Under Windows, a non-zero exit code is displayed in a message box titled “Return Code”.
Choosing the OK button closes the runtime window. The message box also will contain the
COBOL error code, if one occurred. Display of the Return Code message box (see page 114)
may be disabled by setting the value of the Show Return Code Dialog property (see page 83)
to False.

Note The exit code is not available for testing with ERRORLEVEL on Windows because
the program is run in a separate window from the window that starts the program with a
Runtime Command.

If the runtime system was invoked from a COBOL program using the SYSTEM non-COBOL
subprogram (CALL “SYSTEM”), the exit code can be retrieved by passing an exit code
variable in the USING list. For more information, see the SYSTEM subprogram (on
page 579).

Note User-defined exit codes (those exit codes set by using the RETURN-CODE special
register) in the range 249 – 255 will be ambiguous if a runtime system error occurs.

Table 21: Program Exit Codes

Code Description

 0 Normal termination.

249 Internal library subprogram called with incorrect parameters.

250 System initialization error.

251 Incorrect Runtime Command.

252 Program load failure.

253 Program error.

254 Run unit canceled (by pressing the Ctrl and Break keys or the system
Interrupt key).

255 I/O error.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 201

Chapter 8: RM/COBOL Features

This chapter offers operating system-specific information on the use of RM/COBOL
statements and on RM/COBOL file types and structure. It is assumed the reader is familiar
with RM/COBOL statements.

ACCEPT and DISPLAY Statements
Specific characteristics of your operating system affect the following aspects of RM/COBOL
ACCEPT and DISPLAY statement usage:

• The maximum size of a screen field.

• The initial contents of a screen field.

• The use of defined field edit and field termination keys with the ACCEPT statement.

• The use of phrases with ACCEPT and DISPLAY statements.

• Redirection and piping of standard input and standard output. For more information, see
Chapter 2: Installation and System Considerations for UNIX (on page 13).

Maximum Size of a Screen Field
The maximum size of a screen field is limited to the size of the ACCEPT and DISPLAY
buffer. The default size for the ACCEPT and DISPLAY buffer is 264 characters. However,
the B Runtime Command Option (see page 194), or its equivalent B keyword (see page 345)
in the RUN-OPTION configuration record, may be specified to change the size of this buffer
up to a maximum of 65280 characters. Operands with a length larger than the buffer size are
space padded on the right when accepted because the input field size is limited to the
ACCEPT buffer size and are truncated on the right when displayed because the output field
size is limited to the DISPLAY buffer size.

Initial Contents of a Screen Field
Depending on the current configuration and the phrases specified in the ACCEPT statement,
the initial contents of a screen field may be the following:

• Unchanged but treated as if the field contained all spaces. This is the default if neither
the PROMPT nor UPDATE phrase is specified, and if the ACCEPT-FIELD-FROM-

Chapter 8: RM/COBOL Features

202 RM/COBOL User's Guide

SCREEN keyword (see page 331) of the RUN-ATTR record is not specified or is set to
NO in the configuration file.

• Unchanged if neither the PROMPT nor UPDATE phrase is specified and the ACCEPT-
FIELD-FROM-SCREEN keyword of the RUN-ATTR record is set to YES in the
configuration file.

• Filled with prompt characters if the PROMPT phrase is specified in the ACCEPT
statement.

• Filled with the current value of the associated ACCEPT operand if the UPDATE phrase
is specified in the ACCEPT statement.

• Filled with the literal characters specified with the MASK keyword of the CONTROL
phrase, if that CONTROL phrase is specified. If UPDATE is also specified, or the
ACCEPT-FIELD-FROM-SCREEN keyword of the RUN-ATTR configuration record is
set to YES, then the input character positions specified in the mask are replaced by the
contents of the ACCEPT operand or the current contents of the screen field, respectively.

You can then modify the contents of the screen field. Except for literal characters specified
with the MASK keyword of the CONTROL phrase, all positions of that field can be modified
until a field termination key is pressed. This modification of displayed data is called field
editing.

Defined Keys
The following sections list and explain the specially defined screen field editing keys (that is,
keys with editing actions) and the field termination keys that terminate field input and
generate ACCEPT exception status values, which provide information on the cause of input
termination.

Before these keys can function as described under UNIX, the key must be associated with the
definition in the termcap or terminfo database, as described in Terminal Input and Output on
UNIX (on page 28), and detailed in TERM-INPUT Configuration Record (on page 356) and
the examples provided in Default Configuration Files (on page 368). For example, the Left
Arrow key might be associated with the k1 termcap capability name or kcub1 terminfo
capability name. Similarly, under Windows, the key must be associated with the input
character sequence generated for the key, as described in Keyboard Input Character
Sequences (on page 32). A default configuration exists to make these associations. Keys can
be redefined from their default configuration by providing TERM-INPUT configuration
records.

Field Edit Keys

Table 22 describes the keys used to manipulate the cursor during field editing.

Table 22: Edit Keys

Key

CONTROL
Phrase

Action

Left Arrow

Default Moves the cursor left one character without affecting
any input characters. If the cursor is already at the
leftmost character in the screen field, a beep sounds.

MASK Same as above; however, the cursor skips over literal
characters that were specified in the mask.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 203

Table 22: Edit Keys

Key

CONTROL
Phrase

Action

Right Arrow

Default Moves the cursor right one character without affecting
any input characters. If the cursor is already at the
rightmost character in the screen field, a beep sounds.

MASK Same as above; however, the cursor skips over literal
characters that were specified in the mask.

Backspace

Default Moves the cursor left one character, and deletes the
input character in that position. All characters to the
right of the deleted characters are shifted to the left.
The prompt character (or a space if the PROMPT
phrase was not specified) is used to pad the screen field
on the right. If the cursor is already at the leftmost
character in the screen field, a beep sounds.

MASK Same as above; however, if the character to the left of
the cursor is a literal character, the cursor is moved left
until another input character is encountered, and that
character is deleted without altering any subsequent
input characters.

Delete Character

Default Deletes the input character at the cursor position. All
screen field characters to the right of the cursor are
shifted to the left. The cursor remains stationary. The
prompt character (either as specified in the PROMPT
phrase, or spaces if the PROMPT phrase was not
specified) is used to pad the screen field on the right. If
the cursor is positioned at the right margin when this
key is pressed, and no characters are deleted, a beep
sounds.

MASK Same as above; however, only input characters up
to the next literal character to the right are shifted to
the left.

Erase Entire

Default Places the cursor at the leftmost field position, and fills
all input positions with the prompt character, or spaces
if the PROMPT phrase was not specified. Note that the
Erase Entire key is not a field terminator.

MASK Same as above; however, literal characters in the mask
are not overwritten.

Erase Remainder

Default Without moving the cursor, fills all input positions from
the current cursor position to the rightmost position of
the screen field with the prompt character, or spaces if
the PROMPT phrase was not specified. Note that the
Erase Remainder key is also a field termination key.

MASK Same as above; however, literal characters in the mask
are not overwritten.

Chapter 8: RM/COBOL Features

204 RM/COBOL User's Guide

Table 22: Edit Keys

Key

CONTROL
Phrase

Action

Insert Character

Default Initializes insert mode. Subsequent keystrokes insert
characters at the cursor position. Screen field
characters to the right of the cursor are shifted further to
the right to accommodate the inserted characters. If an
attempt is made to shift any character except for a space
or a prompt character (if the PROMPT phrase was
specified) beyond the rightmost input position of the
screen field, a beep sounds.

Insert mode is canceled when you press a field
termination key or any screen field editing key other
than Insert Character.

MASK Same as above; however, an attempt to shift an input
character past a literal character specified in the mask is
rejected and results in a beep.

Table 23 lists the default editing semantic actions that the runtime system performs for input
sequences on Windows and for the two terminal interfaces on UNIX.

Table 23: Default Editing Semantic Actions

Semantic Action Windows Sequence Terminfo Name Termcap Name

Backspace NUL BS kbs [Ctrl+H] kb [Ctrl+H]

Delete Character NUL WDEL kdch1 kD

Erase Entire 1 kclr kC

Erase Remainder 2 WSFT WCNT E kel kE

Erase Remainder 3 WSFT WCNT K

Left Arrow NUL WLFT kcub1 kl

Right Arrow NUL WRGT kcuf1 kr

Screen Escape NUL ESC 0x1b 0x1b

Screen Home NUL WHOM khome kh

Screen Previous Field NUL WUP kcuu1 ku

Screen Terminate

NUL WF1 k1 kf1

NUL WF2 k2 kf2

NUL WF3 k3 kf3

NUL WF4 k4 kf4

NUL WF5 k5 kf5

NUL WF6 k6 kf6

NUL WF7 k7 kf7

NUL WF8 k8 kf8

NUL WF9 k9 kf9

NUL WF10 k; kf10

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 205

Table 23: Default Editing Semantic Actions

Semantic Action Windows Sequence Terminfo Name Termcap Name

1 The default Windows configuration does not include this semantic editing action.

2 The default configuration for this action also terminates input with an exception and generates an
exception status value 57.

3 The default Windows configuration for this action terminates input without an exception and generates
an exception status value 13. The default UNIX configuration does not include this semantic editing
action.

Field Termination Keys

Table 24 lists the field termination keys and the associated default ACCEPT exception status
values for the indicated PC keyboard keys, and for the input sequences from the Windows or
UNIX terminfo and termcap interfaces. The keys may be configured to perform different
actions and return different exception status values. For information on these specifications,
see the TERM-INPUT configuration record (on page 356).

An entry in brackets ([]) next to a terminfo or termcap entry identifies an alternate actual
input sequence that will generate the same exception status value under UNIX. These
predefined input sequences are implied by the terminfo and termcap databases, as they have
no defined terminfo or termcap name.

Note Any key not covered by footnote 1 in Table 24 causes the ON EXCEPTION imperative
sequence.

The generic key name is described in the “ON EXCEPTION and NOT ON EXCEPTION
Phrases” section of the ACCEPT statement in Chapter 6: Procedure Division Statements of
the RM/COBOL Language Reference Manual. For more information, see Table 37:
RM/COBOL Generic Field Termination Key Names (on page 363).

Note In addition to field termination keys, input can be terminated by auto completion when
the TAB phrase is not specified (exception status 0) or by a time-out exception when the
TIME phrase is specified (exception status 99). Further, when the CONVERT phrase is
specified, an input data conversion rule violation can cause the exception status value to be
overridden with the conversion error exception status value 98. See ACCEPT Exception
Status Values (on page 217) for information on exception status values not covered in Table
24.

Table 24: Keys that Terminate Field Input

PC Keyboard Key

Windows Sequence

Terminfo
Name

Termcap
Name

Generic Key
Name

Exception
Status

F1 NUL WF1 kf1 k1 Function 1 01

F2 NUL WF2 kf2 k2 Function 2 02

F3 NUL WF3 kf3 k3 Function 3 03

F4 NUL WF4 kf4 k4 Function 4 04

F5 NUL WF5 kf5 k5 Function 5 05

F6 NUL WF6 kf6 k6 Function 6 06

F7 NUL WF7 kf7 k7 Function 7 07

F8 NUL WF8 kf8 k8 Function 8 08

Chapter 8: RM/COBOL Features

206 RM/COBOL User's Guide

Table 24: Keys that Terminate Field Input

PC Keyboard Key

Windows Sequence

Terminfo
Name

Termcap
Name

Generic Key
Name

Exception
Status

F9 NUL WF9 kf9 k9 Function 9 09

F10 NUL WF10 kf10 k; Function 10 10

F11 NUL WF11 kf11 F1 Function 11 11

F12 NUL WF12 kf12 F2 Function 12 12

Shift+F1 NUL WSFT WF1 kf11 F1 Function 11 11

Shift+F2 NUL WSFT WF2 kf12 F2 Function 12 12

Shift+F3 NUL WSFT WF3 kf13 F3 Function 13 13

Shift+F4 NUL WSFT WF4 kf14 F4 Function 14 14

Shift+F5 NUL WSFT WF5 kf15 F5 Function 15 15

Shift+F6 NUL WSFT WF6 kf16 F6 Function 16 16

Shift+F7 NUL WSFT WF7 kf17 F7 Function 17 17

Shift+F8 NUL WSFT WF8 kf18 F8 Function 18 18

Shift+F9 NUL WSFT WF9 kf19 F9 Function 19 19

Shift+F10 NUL WSFT WF10 kf20 FA Function 20 20

Ctrl+F1 NUL WCNT WF1 kf21 FB Function 21 21

Ctrl+F2 NUL WCNT WF2 kf22 FC Function 22 22

Ctrl+F3 NUL WCNT WF3 kf23 FD Function 23 23

Ctrl+F4 NUL WCNT WF4 kf24 FE Function 24 24

Ctrl+F5 NUL WCNT WF5 kf25 FF Function 25 25

Ctrl+F6 NUL WCNT WF6 kf26 FG Function 26 26

Ctrl+F7 NUL WCNT WF7 kf27 FH Function 27 27

Ctrl+F8 NUL WCNT WF8 kf28 FI Function 28 28

Ctrl+F9 NUL WCNT WF9 kf29 FJ Function 29 29

Ctrl+F10 NUL WCNT WF10 kf30 FK Function 30 30

Ctrl+Shift+F1 NUL WSFT WCNT WF1 kf31 FL Function 31 31

Ctrl+Shift+F2 NUL WSFT WCNT WF2 kf32 FM Function 32 32

Ctrl+Shift+F3 NUL WSFT WCNT WF3 kf33 FN Function 33 33

Ctrl+Shift+F4 NUL WSFT WCNT WF4 kf34 FO Function 34 34

Ctrl+Shift+F5 NUL WSFT WCNT WF5 kf35 FP Function 35 35

Ctrl+Shift+F6 NUL WSFT WCNT WF6 kf36 FQ Function 36 36

Ctrl+Shift+F7 NUL WSFT WCNT WF7 kf37 FR Function 37 37

Ctrl+Shift+F8 NUL WSFT WCNT WF8 kf38 FS Function 38 38

Ctrl+Shift+F9 NUL WSFT WCNT WF9 kf39 FT Function 39 39

Ctrl+Shift+F10 NUL WSFT WCNT WF10 kf40 FU Function 40 40

 kf41 FV Function 41 41

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 207

Table 24: Keys that Terminate Field Input

PC Keyboard Key

Windows Sequence

Terminfo
Name

Termcap
Name

Generic Key
Name

Exception
Status

 kf42 FW Function 42 42

 kf43 FX Function 43 43

 kf44 FY Function 44 44

 kf45 FZ Function 45 45

 kf46 Fa Function 46 46

 kf47 Fb Function 47 47

 kf48 Fc Function 48 48

 kf49 Fd Function 49 49

 kf50 Fe Function 50 50

 kf51 Ff Function 51 51

 kf52 Fg Function 52 52

 kf53 Fh Function 53 53

 kf54 Fi Function 54 54

 kf55 Fj Function 55 55

 kf56 Fk Function 56 56

 kf57 Fl Function 57 57

 kf58 Fm Function 58 58

 kf59 Fn Function 59 59

 kf60 Fo Function 60 60

 kf61 Fp Function 61 61

 kf62 Fq Function 62 62

 kf63 Fr Function 63 63

Enter [Ctrl+M] 1 NUL CR cr [Ctrl+M] cr [Ctrl+M] Enter 13

Ctrl+Shift+K 1, 2 NUL WSFT WCNT K 13

→| NUL HT kc3 [Ctrl+I] K5 [Ctrl+I] Tab Right 58

Ctrl+A NUL WCNT A Function 1 01

Ctrl+B NUL WCNT B Function 2 02

Ctrl+C 4 NUL WCNT C Function 3 03

Ctrl+D NUL WCNT D Function 4 04

Ctrl+E NUL WCNT E Function 5 05

Ctrl+F NUL WCNT F Function 6 06

Ctrl+G NUL WCNT G Function 7 07

Ctrl+I NUL WCNT I Function 9 09 (58 on UNIX)

Ctrl+J NUL WCNT J Function 10 10 (55 on UNIX)

Ctrl+K NUL WCNT K Function 11 11

Chapter 8: RM/COBOL Features

208 RM/COBOL User's Guide

Table 24: Keys that Terminate Field Input

PC Keyboard Key

Windows Sequence

Terminfo
Name

Termcap
Name

Generic Key
Name

Exception
Status

Ctrl+L NUL WCNT L Function 12 12

Ctrl+N NUL WCNT N Function 14 14

Ctrl+O NUL WCNT O Function 15 15

Ctrl+P NUL WCNT P Function 16 16

Ctrl+Q NUL WCNT Q Function 17 17

Ctrl+R NUL WCNT R Function 18 18

Ctrl+S NUL WCNT S Function 19 19

Ctrl+T NUL WCNT T Function 20 20

Ctrl+U NUL WCNT U Function 21 21

Ctrl+V NUL WCNT V Function 22 22

Ctrl+W NUL WCNT W Function 23 23

Ctrl+X NUL WCNT X Function 24 24

Ctrl+Y NUL WCNT Y Function 25 25

Ctrl+Z NUL WCNT Z Function 26 26

Esc NUL ESC Escape 27

Ctrl+[NUL WCNT 0xDB 27

Ctrl+\ 3 NUL WCNT 0xDC 28

Ctrl+] NUL WCNT 0xDD 29

Ctrl+6 NUL WCNT 6 30

Ctrl+ – NUL WCNT 0xBD 31

Ctrl+Shift+C NUL WSFT WCNT C kf0 k0 Command 40

Ctrl+Shift+A NUL WSFT WCNT A ka3 K3 Attention 41

Ctrl+Shift+P NUL WSFT WCNT P lf0 l0 Print 49

↑ NUL WUP kcuu1 ku Up Arrow 52

↓ NUL WDWN kcud1 kd Down Arrow 53

Home NUL WHOM khome kh Home 54

Ctrl+Shift+N NUL WSFT WCNT N nel [Ctrl+J] nw [Ctrl+J] New Line 55

|← NUL WSFT HT kc1 K4 Tab Left 56

Ctrl+Shift+E NUL WSFT WCNT E kel kE Erase
Remainder

57

Ctrl+Shift+R NUL WSFT WCNT R kc3 k5 Tab Right 58

Ctrl+Shift+I NUL WSFT WCNT I kil1 kA Insert Line 59

Ctrl+Shift+D NUL WSFT WCNT D kdl1 kL Delete Line 61

Ctrl+Shift+S NUL WSFT WCNT S kb2 K2 Send 64

Ctrl+← NUL WCNT WLFT 65

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 209

Table 24: Keys that Terminate Field Input

PC Keyboard Key

Windows Sequence

Terminfo
Name

Termcap
Name

Generic Key
Name

Exception
Status

Ctrl+→ NUL WCNT WRGT 66

PgUp NUL WPGU kpp kP Page Up 67

PgDn NUL WPGD knp kN Page Down 68

Ctrl+PgUp NUL WCNT WPGU 69

Ctrl+PgDn NUL WCNT WPGD 70

Ctrl+Shift+1 NUL WSFT WCNT 1 71

Ctrl+Shift+2 NUL WSFT WCNT 2 72

Ctrl+Shift+3 NUL WSFT WCNT 3 73

Ctrl+Shift+4 NUL WSFT WCNT 4 74

Ctrl+Shift+5 NUL WSFT WCNT 5 75

Ctrl+Shift+6 NUL WSFT WCNT 6 76

Ctrl+Shift+7 NUL WSFT WCNT 7 77

Ctrl+Shift+8 NUL WSFT WCNT 8 78

Ctrl+Shift+9 NUL WSFT WCNT 9 79

Ctrl+Shift+0 NUL WSFT WCNT 0 80

Ctrl+Home NUL WCNT WHOM 81

End NUL WEND ka1 K1 End 82

Ctrl+End NUL WCNT WEND khlp %1 Help 83

N/A krdo %0 Redo 84

Ctrl+Shift+ – NUL WSFT WCNT – 85

Ctrl+Shift+= NUL WSFT WCNT = 87

1 Causes field termination but does not take the ON EXCEPTION imperative sequence.
2 Performs the Erase Remainder action.
3 Normal STTY configuration to terminate the runtime system under UNIX.
4 Terminates the runtime system under Windows. Also, the normal STTY configuration to terminate the runtime system under UNIX.

ACCEPT and DISPLAY Phrases
The CONTROL, ERASE, HIGH, LOW, OFF, and REVERSE phrases affect the use of color
attributes with the ACCEPT and DISPLAY statements. The SIZE phrase used with the
ACCEPT and DISPLAY statements affects the size of the screen field. The TIME phrase is
used to “time-out” the execution of a pending ACCEPT statement. These phrases are defined
in the following paragraphs.

CONTROL Phrase

Some of the system dependencies that apply to the CONTROL phrase value concern color-
capable terminals. Systems with monochrome terminals ignore color information contained

Chapter 8: RM/COBOL Features

210 RM/COBOL User's Guide

in the CONTROL phrase value. (See the appropriate manufacturer’s manual for information
on configuring your system with color capability.)

Under UNIX, color requests are processed only if the terminal does not require an attribute
byte and if one of the following conditions is met:

1. The terminfo database contains the set_foreground and set_background string sequences.
(The back_color_erase and orig_pairs string sequences are not required.) The termcap
database contains the Sb (set current background color) and St (set current foreground
color) sequences.

2. A configuration record is present to force the use of ISO Set Graphics Rendition (SGR)
sequences when the terminfo information is not available.

The method a terminal uses to process SGR color sequences will vary from one manufacturer
to another. When color sequences are sent to monochrome terminals, they are ignored,
processed as shades of gray, or represented as characters on the screen. Color sequences sent
to color-capable terminals may or may not conflict with other attributes sent to the terminal.
For example, sending a color sequence followed by a blink sequence may result in the loss of
the color request. RM/COBOL always sends color sequences after all other requested
attributes. This prevents areas of the terminal screen from appearing without the desired
color. You will need to refer to the terminal manufacturer and the UNIX terminfo
documentation in order to determine the sequences necessary to access color capabilities. For
information on the color options, see the TERM-ATTR configuration record (on page 351).

RM/COBOL provides eight system-dependent keywords in the CONTROL phrase that affect
an ACCEPT or DISPLAY field: FCOLOR, BCOLOR, GRAPHICS, MASK1, PASS-THRU1,
PROMPT, REPAINT-SCREEN1, and SCREEN-COLUMNS1.

1. FCOLOR = color-name

When FCOLOR is present, color-name specifies the foreground color of the ACCEPT or
DISPLAY field. This name is then used as the default value for subsequent ACCEPT
and DISPLAY statements in the program.

See the discussion of the HIGH, LOW and OFF phrases in the following section for
information concerning high-intensity colors.

The initial default for color-name is white.

Note Under Windows, the default colors are determined by the Use Windows Colors
property (on page 85).

2. BCOLOR = color-name

When BCOLOR is present, color-name specifies the background color of the ACCEPT
or DISPLAY field. This value is then used as the default value for subsequent ACCEPT
and DISPLAY statements in the program.

The initial default for color-name is black.

Table 25 contains a list of all the possible names for color-name. The left column
contains the valid color name. The right column shows the color that appears when high
intensity is specified (the default intensity).

Note Under Windows, the default colors are determined by the Use Windows Colors
property (see page 85).

1 These keywords are supported only on RM/COBOL for UNIX.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 211

Table 25: Valid COBOL Color Names

Valid Color Names High-Intensity Color Values (Defaults)

Black Gray

Blue Light Blue

Green Light Green

Cyan Light Cyan

Red Light Red

Magenta Light Magenta

Brown Yellow

White High-Intensity White

GRAPHICS

The GRAPHICS keyword causes the characters in Table 26 to be translated to portable,
system-specific line draw characters. Characters that are not listed in the following table
are output unchanged.

Table 26: System-Specific Line Draw Characters

Description Single-Line Character Double-Line Character

lower-right corner j(┘) J(╝)

upper-right corner k(┐) K(╗)

upper-left corner l(┌) L(╔)

lower-left corner m(└) M(╚)

plus n(┼) N(╬)

horizontal line q(─) Q(═)

left tee t(├) T(╠)

right tee u(┤) U(╣)

bottom tee v(┴) V(╩)

top tee w(┬) W(╦)

vertical line x(│) X(║)

If the requested line draw characters are not available, the runtime system uses the best
available characters. If double-line characters are requested and only single-line
characters are available, they are used. If no line draw characters are available, then plus-
characters, vertical bars, and dashes are used.

For details, see the discussion of how the runtime system, under UNIX, determines
whether line draw characters are available for a given terminal (on page 38).

Chapter 8: RM/COBOL Features

212 RM/COBOL User's Guide

Here is a sample program that demonstrates how boxes are drawn:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. GRAPHXMP.
 PROCEDURE DIVISION.
 GRAPHXMP.
 DISPLAY " ", LINE 5 POSITION 1 ERASE.
 * Single-line graphics
 DISPLAY "lqqqqwqqqqk", CONTROL "HIGH, GRAPHICS".
 DISPLAY "x x x", CONTROL "HIGH, GRAPHICS".
 DISPLAY "tqqqqnqqqqu", CONTROL "HIGH, GRAPHICS".
 DISPLAY "x x x", CONTROL "HIGH, GRAPHICS".
 DISPLAY "mqqqqvqqqqj", CONTROL "HIGH, GRAPHICS".
 DISPLAY " ".
 * Double-line graphics
 DISPLAY "LQQQQWQQQQK", CONTROL "HIGH, GRAPHICS".
 DISPLAY "X X X", CONTROL "HIGH, GRAPHICS".
 DISPLAY "TQQQQNQQQQU", CONTROL "HIGH, GRAPHICS".
 DISPLAY "X X X", CONTROL "HIGH, GRAPHICS".
 DISPLAY "MQQQQVQQQQJ", CONTROL "HIGH, GRAPHICS".
 END PROGRAM GRAPHXMP.

3. MASK 1

A new keyword, MASK, has been added to the CONTROL phrase in ACCEPT and
DISPLAY statements. Use the following format:

MASK = mask

Note The MASK keyword is ignored when standard input or standard output is
redirected. This keyword is supported only under UNIX.

The MASK keyword in the CONTROL phrase causes a literal mask to be edited into the
ACCEPT or DISPLAY screen field. Literal mask characters are inserted into the operand
as it is transferred to the screen field if UPDATE is specified, or overlaid onto the screen
field if ACCEPT-FIELD-FROM-SCREEN is in effect.

In all cases, the size of the mask determines the size of the actual ACCEPT or DISPLAY
screen field. The optional SIZE phrase, or the size of the actual operand, is used only to
limit the number of data characters that may be edited and entered into the ACCEPT
screen field, or edited into the DISPLAY screen field prior to the screen operation.

The mask is specified in the CONTROL phrase as a literal string with no embedded
spaces. If the mask specifies more input positions than are contained in the
ACCEPT/DISPLAY operand, then excess mask input positions are replaced by literal
spaces. The mask is limited to a total of 80 characters, including escape characters.
When a screen field is edited, literal characters specified with the MASK keyword cannot
be modified.

Table 27 lists the characters and character sequences that have special meanings in the
MASK keyword in a CONTROL phrase string. All other characters are treated as literal
characters.

Table 27: Characters Used with the MASK Keyword of a CONTROL Phrase

Character Meaning

X Specifies an input/output position. Characters will be accepted wherever
an uppercase “X” appears in the mask. DBCS characters can be entered
only into two, adjacent input positions.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 213

Table 27: Characters Used with the MASK Keyword of a CONTROL Phrase

Character Meaning

_ Specifies a literal space.

\ Forces the following character to be treated as a literal character. The
backslash character is the escape character.

\X Specifies a literal “X”.

_ Specifies a literal underscore.

\, Specifies a literal comma.

\= Specifies a literal equal sign.

\\ Specifies a literal backslash.

Notes

• The preceding characters are case-sensitive. For example, “x” is not the same as
“X”.

• If a mask character overlays part of a double-byte (DBCS) character, the entire
character is replaced by blanks.

When an ACCEPT operation that specifies the MASK keyword in a CONTROL phrase
is processed, the RM/COBOL runtime takes the following actions:

a. If the operation is ACCEPT with UPDATE, characters from the operand are copied
(from left to right) into mask input positions. Mask literal characters are skipped. If
the operand is exhausted while there are still remaining input positions, such
positions are changed to literal spaces. If the mask is exhausted before the operand,
the remainder of the operand is ignored. The SIZE phrase, if specified, limits the
size of the operand, not the size of the mask.

The size of the screen field is then set to the size of the mask, including trailing
literal characters.

If PROMPT is also specified, trailing input positions that are initialized with spaces
are replaced with the prompt character.

b. If ACCEPT without UPDATE is specified, and ACCEPT-FIELD-FROM-SCREEN
is not in effect, mask input positions are initialized with spaces or with the prompt
character, if PROMPT is specified. The number of mask input positions is still
restricted, based on the SIZE phrase or the size of the operand.

c. If ACCEPT without UPDATE is specified, and ACCEPT-FIELD-FROM-SCREEN
is in effect, mask input positions are initialized from the current screen field. In this
case, there is a one-for-one correspondence between mask characters and screen
characters; that is, the mask is overlaid rather than inserted into the screen field. If
PROMPT is specified, trailing input positions that are initialized with spaces are
replaced with the prompt character.

When the ACCEPT is terminated, the input field is scanned from left to right. Characters
appearing in input positions only are copied into the ACCEPT operand. The operand is
then processed by the CONVERT and UPPER phrases as if a regular ACCEPT operation
had been performed.

Table 28 lists keywords and phrases that, when specified in ACCEPT and/or DISPLAY
statements, have an effect on masked input processing.

Chapter 8: RM/COBOL Features

214 RM/COBOL User's Guide

Table 28: Effect of Certain Keywords and Phrases on Masked Input Processing

Keyword or Phrase Effect

CURSOR The CURSOR phrase in an ACCEPT statement specifies the input
position, rather than the field position where the cursor is placed. It
returns the input position occupied by the cursor when the ACCEPT
statement is terminated.

GRAPHICS The GRAPHICS keyword in the CONTROL phrase of an ACCEPT
or a DISPLAY statement translates mask characters and input
characters.

HIGH, LOW,
HIGHLIGHT,
LOWLIGHT

The presence of these phrases in an ACCEPT or a DISPLAY
statement causes literal mask characters and input characters to be
displayed at the specified intensity.

OFF, SECURE When the OFF (SECURE) phrase is specified in an ACCEPT
statement, literal mask characters are displayed, while input
characters are not displayed.

PROMPT When the PROMPT phrase is specified in an ACCEPT statement,
trailing input positions are filled with the specified prompt character.

SIZE When the SIZE phrase is specified in an ACCEPT or a DISPLAY
statement, the size of the ACCEPT and DISPLAY operand is limited,
but there is no effect on the screen field size.

TAB If the TAB keyword is not specified in the CONTROL phrase of an
ACCEPT statement (or the TAB phrase is not specified in an
ACCEPT statement), field termination occurs when the cursor leaves
the last input position, which may be followed by literal characters.

4. PASS-THRU1

The ability to write escape sequences (such as pass-through printing) to the terminal with
DISPLAY statements requires an additional keyword in the CONTROL phrase. The
keyword, PASS-THRU, indicates that all data specified in the corresponding DISPLAY
statement is to be written directly to the unit and not recorded in the in-memory image of
the screen. Thus, if the DISPLAY statement causes the screen to change, the runtime
system will have no knowledge of the change, and subsequent DISPLAY statements may
cause confusion for the terminal operator.

This ability also can be used automatically by specifying a PASS-THRU-ESCAPE
keyword (see page 354) in the TERM-ATTR configuration file record. If used, any
DISPLAY statements beginning with one of the escape characters will behave as if
PASS-THRU were specified in the statement.

Note This keyword is supported only under UNIX.

5. PROMPT = prompt-char

The PROMPT keyword causes ACCEPT statements to accept data with fill characters in
positions from which data is to be accepted. Optionally, the PROMPT keyword may
specify prompt-char, which causes the ACCEPT operation to use a prompt character that
is different from the system default. prompt-char must be a single, literal character.

For example:

ACCEPT FOO CONTROL "PROMPT=*,TAB".

where, asterisk (*) is the prompt-char.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 215

6. REPAINT-SCREEN 1

The REPAINT-SCREEN keyword causes the entire screen to be refreshed from the
runtime system’s in-memory screen image. Any characters that were written directly to
the screen, such as from C routines or DISPLAY statements with the PASS-THRU
keyword (which are not recorded in the in-memory screen image), are replaced by the
last value written to that location by regular DISPLAY statements. This provides the
ability to clean up the screen without manually having to redraw the entire display.
REPAINT-SCREEN may be used in both ACCEPT and DISPLAY statements. It is also
callable from C subprograms contained in optional support modules. See the “Runtime
Functions for Support Modules” topic in Appendix H: Non-COBOL Subprogram
Internals for UNIX in the CodeBridge User's Guide.

Note This keyword is supported only under UNIX.

7. SCREEN-COLUMNS1 = screen-width

The SCREEN-COLUMNS keyword instructs the runtime system to change the current
display state of the user’s terminal to accommodate the requested screen size. Screen-
width values of 80 and 132 are currently supported.

Changing the terminal state produces a new, blank screen of the requested screen width.
All characters and windows on the original display are erased. In order to maintain valid
user-defined window control blocks, programs using pop-up windows must close all pop-
up windows before changing the screen size.

Most terminals support varying screen dimensions through normal and wide terminfo and
termcap entries. These normally correspond to 80 and 132 columns, respectively. When
a screen dimension change is requested, the runtime system switches the TERM
environment variable to the appropriate value and then sends reset or initialization strings
that change the terminal’s state. For terminfo, the strings are defined with the capabilities
rs1, rs2, and rs3. For termcap, the strings are defined with the capabilities r1, r2, and r3.
If these termcap capabilities are not defined, the runtime system attempts to use the
capability is. If these strings are not set correctly, the terminal may be changed to an
unpredictable state.

Most UNIX systems append a “–w” to terminal descriptions to indicate a terminal’s wide
screen mode. For example, the wyse60 terminal description for wide displays is
normally referred to as wyse60–w. Because not all UNIX systems follow this standard,
the COBOL runtime allows users to use the RMTERM80 and RMTERM132
environment variables. If both variables are set, the runtime system changes the TERM
environment variable to the appropriate name, as specified in RMTERM80 or
RMTERM132. For example, some systems append “w” to wide terminal descriptions.
RMTERM132 can be used to ensure proper behavior by setting it as
RMTERM132=wyse60w.

Note This keyword is supported only under UNIX.

ERASE Phrase

All valid ERASE options (that is, ERASE, ERASE EOL, and ERASE EOS) erase the screen
with the specified background color, if possible. Under UNIX, if the back_color_erase
termcap or terminfo capability is set to false, or the appropriate termcap or terminfo capability
to perform the specified ERASE operation is not available, blanks will be used to perform the
operation.

Chapter 8: RM/COBOL Features

216 RM/COBOL User's Guide

HIGH Phrase

HIGH specifies that the foreground color be the corresponding high-intensity color listed in
Table 25 on page 211.

Under UNIX, when the HIGH phrase is present, the termcap capabilities used to set the
attributes of the terminal are nM, nB, nR or nS. The terminfo capabilities are sgr0, blink,
rev, or sgr. The capability used is determined by the BLINK and REVERSE phrases, and by
the definition of termcap or terminfo capabilities in the terminal database.

When used with a color monitor under UNIX, the HIGH phrase specifies that the foreground
color be the high-intensity color from Table 25 that corresponds to the foreground color name.
If the REVERSE phrase is also present in the statement, it takes precedence over the HIGH
phrase. That is, any reversal of colors takes place before the intensity is determined.

LOW Phrase

LOW specifies that the foreground color be the default foreground color unless overridden
with the FCOLOR keyword.

When the LOW phrase is present under UNIX, the termcap capabilities used to set the
attributes of the terminal are aL, aB, aR, or aS. The terminfo capabilities are dim or sgr.
The capability used is determined by the BLINK and REVERSE phrases, and by the
definition of termcap or terminfo capabilities in the terminal database. The BLINK and
REVERSE phrases are not supported by a terminfo runtime system unless the sgr capability
is available.

If the REVERSE phrase is also present in the statement, it takes precedence over the LOW
phrase; that is, any reversal of colors takes place before the intensity is determined.

OFF Phrase

OFF specifies that the background color be used for the foreground color. During field
editing for ACCEPT operations, the cursor is moved as specified, but without character
echoing.

If the REVERSE phrase is also present in the statement, it takes precedence over the OFF
phrase; that is, any reversal of colors takes place before the background color is determined.

SECURE is a synonym for OFF.

REVERSE Phrase

When the REVERSE phrase is present, the specified (or default) foreground color is used as
the background color, and the background color is used as the foreground color. The
REVERSE phrase is processed before the HIGH, LOW, and OFF phrases.

SIZE Phrase

The SIZE phrase is used to specify the size of an ACCEPT or DISPLAY field. The runtime
system imposes the following restrictions and limitations on the value of the SIZE phrase:

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 217

1. The size of an ACCEPT or DISPLAY field must not exceed the number of characters
that can appear on the screen at one time, minus the column of the first character of the
data item.

2. The ACCEPT or DISPLAY field must not exceed the size of the associated buffer: the
default is 264. See the discussion of the B Runtime Command Option (on page 194).

3. Fields that extend beyond the physical right margin of the screen wrap around to the next
line.

4. Fields that extend beyond the last line of the screen cause the screen to scroll one line.

TIME Phrase

The BEFORE TIME phrase is used to “time-out” the execution of a pending ACCEPT
statement. The value of literal-8 or identifier-8 in the BEFORE TIME phrase represents the
time-out value in hundredths of seconds. The time-out value is limited to 23 hours, 59
minutes, 59.99 seconds (or 8,639,999). A value greater than 8,639,999 and less than or equal
to 4,294,967,295 (232 – 1) is set to 8,639,999.

A time-out value of 0 indicates that the ACCEPT operation should terminate immediately if
there is no character waiting. A time-out value greater than 4,294,967,295 (a PIC 9(10) data
item set to a value of 9999999999 is recommended) indicates that the BEFORE TIME phrase
is being overridden and the ACCEPT statement will behave as if the BEFORE TIME phrase
were not specified.

When the ACCEPT statement is executed, a target time is calculated as the sum of the current
time and the time-out value. The time-out operation runs until the target time is reached or a
key is pressed. Once a key has been pressed, the time-out function is disabled.

If the target time is reached before a key has been pressed, the ACCEPT statement is
terminated. An exception status value of 99 is returned in identifier-9 if the ON EXCEPTION
phrase is specified.

The BEFORE TIME phrase is intended for terminal input. The phrase is not available if input
is redirected.

Under UNIX, if the CHARACTER-TIMEOUT keyword (see page 352) of the TERM-ATTR
configuration record has a value, it will affect the BEFORE TIME phrase of the ACCEPT
statement. The actual time-out value will be the first integral multiple of the CHARACTER-
TIMEOUT value that is greater than or equal to the value specified in the ACCEPT BEFORE
TIME phrase.

ACCEPT Exception Status Values
Field termination keys generate exception status values, as described in Field Termination
Keys (on page 205). In addition to exception status values set by field termination keys, the
following special exception status values are returned.

Value Meaning

0 Auto completion (no TAB phrase).

98 Conversion error (CONVERT phrase); overrides any
other exception status value.

99 Time out before data entry (TIME phrase).

Chapter 8: RM/COBOL Features

218 RM/COBOL User's Guide

Pop-Up Windows
A COBOL program can create one or more pop-up windows on the terminal output device. A
pop-up window (referred to hereinafter as a window) is a temporary subscreen within the
terminal screen to which all terminal output is directed. The rules concerning placement of
data and default video attributes that apply to full screen input/output also apply to the
window (including wrapping and scrolling). Thus, the window performs just like a full
screen, except that a window is usually smaller.

A window is used for terminal input/output from the time it is created until the window is
removed by the COBOL program or another window is created. When a window is removed,
the contents that occupied the window area before it was created are restored, and the
previous window again becomes the active subscreen. All current defaults that are associated
with the newly restored window, such as the current video attributes, the current line, and the
current position, are restored.

Note Only information written to the screen by the RM/COBOL runtime system can be
restored to the screen in the event that it is covered by a window that is later removed.

For examples on using the RM/COBOL Pop-Up Window Manager, see your installation
directory and examine the following programs:

• wintest.cbl • winreltv.cbl

• winattrb.cbl • winstat.cbl

• winbordr.cbl • wintitle.cbl

• wincolor.cbl

Creating Pop-Up Windows
A window is created by a Format 2 DISPLAY statement containing the WINDOW-CREATE
keyword in its CONTROL phrase. See the description of the DISPLAY statement (terminal
I-O) in Chapter 6: Procedure Division Statements of the RM/COBOL Language Reference
Manual. The general format of a DISPLAY statement used to create a window is shown
below.

Note The format shown is a subset of the Format 2 DISPLAY Terminal I-O statement
because some options of the complete statement are not applicable to window creation.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 219

identifier-1 specifies the window control block for the window creation. For more
information, see CONTROL Phrase (on page 219) and Pop-Up Window Control Block (on
page 222).

BEEP Phrase

The presence of the BEEP phrase in the DISPLAY statement causes the audio alarm signal to
occur at the creation of the window. If the BEEP phrase is omitted, no signal is given.

BELL is a synonym for BEEP.

BLINK Phrase

The presence of the BLINK phrase causes the border, title, and fill characters of the window
to appear in a blinking mode. If the BLINK phrase is not specified, the border, title, and fill
characters appear in a nonblinking mode.

Note The blinking attribute is not available under Windows.

CONTROL Phrase

A DISPLAY statement with a CONTROL phrase containing the WINDOW-CREATE
keyword (see discussion of the CONTROL phrase of the DISPLAY statement in Chapter 6:
Procedure Division Statements of the RM/COBOL Language Reference Manual) causes








































































































































































































































































































VIDEO-REVERSE
REVERSED
REVERSE

BLOCKISMODE

AT

POSITION
COL
COLUMN

LINE

AT

LOWLIGHT
LOW
HIGHLIGHT
HIGH

ERASE

CONTROL

BLINK
BELL
BEEP

WITHUNITDISPLAY

literal-7
-7identifier

literal-3
-3identifier

literal-5
-5identifier

literal-4
-4identifier

literal-2
-2identifier

-1identifier

Chapter 8: RM/COBOL Features

220 RM/COBOL User's Guide

identifier-1 to be treated as a window control block, and this data item must have the structure
described in Pop-Up Window Control Block (see page 222). The window is created
according to the specifications given in the window control block. The window control block
provided must not be that of an active window.

The FCOLOR and BCOLOR keywords can be used to set the colors of the border characters,
title characters, and fill characters of the window being created. FCOLOR specifies the
foreground color of each character, and BCOLOR defines the background color. FCOLOR
and BCOLOR also establish the initial default colors for ACCEPT and DISPLAY statements
performed while the window is active. See Table 25 on page 211 for valid color names. If
FCOLOR and BCOLOR are not specified when creating a window, the default colors (if any)
in effect when the window creation is requested are carried over to the new window.

Additional keywords that may be specified in the CONTROL phrase and that affect the
creation of the window include: HIGH, LOW, BLINK, NO BLINK, REVERSE, NO
REVERSE, ERASE, NO ERASE, BEEP, and NO BEEP. The meanings of these keywords
when they appear in the value of the CONTROL phrase operand are the same as the
corresponding phrases that may be written as static options of the DISPLAY statement, with
the addition of the negative forms to allow suppression of statically declared options. The
window creation effects of the static phrases and the corresponding CONTROL phrase
keywords are described in the following paragraphs.

ERASE Phrase

The presence of the ERASE phrase causes the window area to be erased upon creation of the
window.

Note Using the EOS or EOL reserved words with ERASE causes the ERASE phrase to be
ignored.

HIGH and LOW Phrases

The presence of the HIGH or LOW phrase causes the border, title, and fill characters of the
window to be painted at the specified intensity. When HIGH or LOW is not specified, the
default intensity is HIGH.

HIGHLIGHT is a synonym for HIGH and LOWLIGHT is a synonym for LOW.

Note Under Windows, the HIGH and LOW phrases do not affect the border or the title of the
window.

LINE and POSITION Phrases

The window is painted on the screen with LINE 1 and POSITION 1 of the window positioned
at the LINE and POSITION specified in the DISPLAY statement creating the window. For
further discussion of the placement of the window, see Defining the Location of the Pop-Up
Window (on page 223). LINE 1, POSITION 1 of the window is limited to the boundaries of
the screen.

If requested, the border occupies the lines immediately above and below the window, and the
columns immediately to the right and to the left of the window. If a title is requested, it will
be painted within the top or bottom border. If a title is requested and a border is not
requested, the title will occupy the line either immediately above or immediately below the
window.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 221

If the LINE or POSITION phrase is omitted from the DISPLAY statement, the line and
position values for the window are determined in the same manner as the line and position
values in a non-window Format 2 DISPLAY statement, except that the ERASE phrase and the
window dimensions are not considered (see the section “Determining Line and Position” for
the DISPLAY statement in Chapter 6: Procedure Division Statements of the RM/COBOL
Language Reference Manual).

COLUMN and COL are synonyms for POSITION.

REVERSE Phrase

The presence of the REVERSE phrase causes the border, title, and fill characters of the
window to appear in a reverse video mode. If the REVERSE phrase is not specified, the
border, title, and fill characters appear in the normal video mode.

REVERSED and REVERSE-VIDEO are synonyms for REVERSE.

Note Under Windows, the REVERSE phrase does not affect the border or the title of the
window.

UNIT Phrase

The UNIT phrase, if specified, must be written first. The other phrases may be written in any
order. If not running under UNIX, the value of identifier-2 or literal-2 in the UNIT phrase is
ignored. Under UNIX, the value of identifier-2 or literal-2 specifies the terminal upon which
the window is to be created. If the UNIT phrase is omitted, the terminal that started the run
unit is used. Units other than the default unit must be configured with the TERM-UNIT
configuration record.

Removing a Pop-Up Window
A window is removed by a Format 2 DISPLAY statement (see the description of the
“DISPLAY Statement” in Chapter 6 of the RM/COBOL Language Reference Manual)
containing the WINDOW-REMOVE keyword in its CONTROL phrase. The general format
of a DISPLAY statement used to remove a window is shown below.

Note The format shown is a subset of the Format 2 DISPLAY statement because some
options of the complete statement are not applicable to window removal.

identifier-1 specifies the window control block for the window creation. For more
information, see CONTROL phrase (on page 219) and Pop-Up Window Control Block (on
page 222).

CONTROL Phrase

A DISPLAY statement with a CONTROL phrase containing the WINDOW-REMOVE
keyword (see discussion of the CONTROL phrase of the DISPLAY statement in Chapter 6 of
the RM/COBOL Language Reference Manual) causes identifier-1 to be treated as a window
control block, and causes the active window to be removed. The window control block


































literal-4
-4identifier

literal-2
-2identifier

literal-1
-1identifier CONTROLWITHUNITDISPLAY

Chapter 8: RM/COBOL Features

222 RM/COBOL User's Guide

should be the same one used to create the window; it must not be that of a different active
window.

UNIT Phrase

The UNIT phrase, if specified, must be written first. The other phrases may be written in any
order. If not running under UNIX, the value of identifier-2 or literal-2 in the UNIT phrase is
ignored. Under UNIX, the value of identifier-2 or literal-2 specifies the terminal upon which
the window is to be created. If the UNIT phrase is omitted, the terminal that started the run
unit is used. Units other than the default unit must be configured with the TERM-UNIT
configuration record (see page 366).

Pop-Up Window Control Block
The following is an example of a window control block in a COBOL program. The order of
the fields, the PICTURE character-string, and the declared usage in the example are fixed
parameters that cannot be changed when defining a window control block. The data-names
and contents of the fields in the example are variable and thus may be changed.

 01 WINDOW-CONTROL-BLOCK.
 03 WCB-HANDLE PIC 999 BINARY(2)
 VALUE 0.
 03 WCB-NUM-ROWS PIC 999 BINARY(2).
 03 WCB-NUM-COLS PIC 999 BINARY(2).
 03 WCB-LOCATION-REFERENCE PIC X.
 88 WCB-SCREEN-RELATIVE VALUE "S".
 88 WCB-WINDOW-RELATIVE VALUE "W".
 03 WCB-BORDER-SWITCH PIC X.
 88 WCB-BORDER-ON VALUE "Y" FALSE "N".
 03 WCB-BORDER-TYPE PIC 9.
 88 WCB-BORDER-WCB-CHAR VALUE 0.
 88 WCB-BORDER-PLUS-MINUS-BAR VALUE 1.
 88 WCB-BORDER-LINE-DRAW VALUE 2.
 88 WCB-BORDER-DBL-LINE-DRAW VALUE 3.
 03 WCB-BORDER-CHAR PIC X.
 03 WCB-FILL-SWITCH PIC X.
 88 WCB-FILL-ON VALUE "Y" FALSE "N".
 03 WCB-FILL-CHAR PIC X.
 03 WCB-TITLE-LOCATION PIC X.
 88 WCB-TITLE-TOP VALUE "T".
 88 WCB-TITLE-BOTTOM VALUE "B".
 03 WCB-TITLE-JUSTIFICATION PIC X.
 88 WCB-TITLE-CENTER VALUE "C".
 88 WCB-TITLE-LEFT VALUE "L".
 88 WCB-TITLE-RIGHT VALUE "R".
 03 WCB-TITLE-LENGTH PIC 999 BINARY(2).
 88 WCB-TITLE-LENGTH-COMPUTE VALUE 0.
 03 WCB-TITLE PIC X(40).

Identifying the Pop-Up Window

The field WCB-HANDLE is initialized by the WINDOW-CREATE DISPLAY operation to
contain a value that identifies the window. This field must be set to zero before the
WINDOW-CREATE operation. The value that was placed in this field following the

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 223

WINDOW-CREATE operation must be in the WCB-HANDLE field when the WINDOW-
REMOVE DISPLAY operation is performed to remove the window. The only other value
that is allowed is zero, which removes the active window.

Note The use of zero is allowed for compatibility with previous versions of the Pop-Up
Window Manager, but it is strongly discouraged.

Defining the Size of the Pop-Up Window

The parameters WCB-NUM-ROWS and WCB-NUM-COLS define the number of rows and
columns available for ACCEPT and DISPLAY statements within the window. If the window
is to have a border, it will occupy two additional rows and two additional columns on the
screen. If the window has a title but does not have a border, the window occupies one
additional line on the screen.

Defining the Location of the Pop-Up Window

The WCB-LOCATION-REFERENCE parameter determines whether the LINE and
POSITION in the DISPLAY statement used to create the window describes a location relative
to the physical screen or the active window. A value of S indicates the location is relative to
the physical screen. A value of W indicates the location is relative to the active window.

The created window is limited to the boundaries of the screen, not to the boundaries of the
active window.

Defining the Border of the Pop-Up Window

The parameter WCB-BORDER-SWITCH determines whether a border should be painted
around the window. A value of Y indicates that a border is to be painted. A value of N
indicates that a border is not to be painted.

The parameter WCB-BORDER-TYPE determines what characters are used to make up the
border. A value of 0 indicates that the character specified by WCB-BORDER-CHAR is used
to paint the border. A value of 1 indicates that the plus sign, hyphen, and vertical bar
characters (+, –, |) are used to paint the border. A value of 2 in the WCB-BORDER-TYPE
field indicates that graphic line draw characters are used to paint the border. A value of 3 in
the WCB-BORDER-TYPE field indicates that graphic double-line line draw characters are
used to paint the border. If the terminal does not support line draw graphics characters, the
border will be drawn using normal characters (+, –, |). This field is ignored unless WCB-
BORDER-SWITCH has a value of Y.

The WCB-BORDER-CHAR parameter determines the character to be used in building the
border around the window. This field is ignored unless WCB-BORDER-SWITCH has a
value of Y and WCB-BORDER-TYPE has a value of 0.

Note The WCB-BORDER-CHAR and WCB-BORDER-TYPE parameters are ignored
under Windows.

Initializing the Pop-Up Window Area

WCB-FILL-SWITCH determines whether the window should be filled with the character
defined by WCB-FILL-CHAR when it is created. If the window is not filled, then the
contents in the defined window area remain untouched until modified by a subsequent

Chapter 8: RM/COBOL Features

224 RM/COBOL User's Guide

ACCEPT or DISPLAY statement in the window. A value of Y indicates that the window area
is to be filled with the defined character. A value of Y will also cause an ERASE phrase to be
ignored. A value of N indicates that the window area is to be left unchanged.

The parameter WCB-FILL-CHAR determines the character to be used to fill the window area.
This field is ignored unless WCB-FILL-SWITCH has a value of Y.

Defining the Location of the Title of the Pop-Up Window

The parameter WCB-TITLE-LOCATION determines whether the text in WCB-TITLE should
be placed within the location of the top border or bottom border. A value of T indicates that
the title is to be painted at the top of the window. A value of B indicates that the title is to be
painted at the bottom of the window. This field is ignored if WCB-TITLE-LENGTH has a
value of zero and WCB-TITLE is filled with spaces.

The WCB-TITLE-JUSTIFICATION parameter determines whether the text of the title should
be centered, left-justified, or right-justified in its location at the top or bottom of the window.
A value of C indicates that the title should be centered; L indicates that it should be left
justified; and R indicates that the window should be right justified. This field is ignored if
WCB-TITLE-LENGTH has a value of zero and WCB-TITLE is filled with spaces.

Note The WCB-TITLE-JUSTIFICATION and WCB-TITLE-LOCATION parameters are
ignored under Windows.

Defining the Title of the Pop-Up Window

The length of the title is defined by the value of the WCB-TITLE-LENGTH parameter. If the
value of this field is non-zero, WCB-TITLE-LENGTH indicates the number of characters,
beginning with the first character of the WCB-TITLE field that is to be used as the title of the
window. If the value of this field is zero, the title string is made up of all characters between
the first character of the WCB-TITLE field to the last non-blank character in the field.

The WCB-TITLE parameter defines the text to be placed in the title of the window. This
field may be any length sufficient to contain the desired title, and must be the last data item in
the window control block. The length of 40 specified in the example is an arbitrary value.

If the WCB-TITLE field contains all spaces, regardless of whether WCB-TITLE-LENGTH is
set to a zero or non-zero value, the pop-up window does not have a title.

Pop-Up Window Operation Status
The COBOL program can obtain the status of a window operation immediately after a request
is made to create or remove a window. The ACCEPT FROM EXCEPTION STATUS
statement places the status in the field designated by identifier-1. The general format of the
ACCEPT FROM EXCEPTION STATUS statement is shown below.

The information requested is transferred from EXCEPTION STATUS to identifier-1
according to the rules of the MOVE statement (see the discussion of the MOVE statement in
Chapter 6: Procedure Division Statements of the RM/COBOL Language Reference Manual).
EXCEPTION STATUS is an implicitly defined data item that behaves as if it had been
defined in the Data Division as an unsigned, three-digit, numeric integer data item.

[]ACCEPT-ENDSTATUSEXCEPTIONFROMACCEPT -1identifier

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 225

Table 29 is a list of the error codes and values returned to the COBOL program after a request
is made to create or remove a window.

Table 29: Pop-Up Window Error Codes

Code Description

 0 Operation successfully completed.

301 1 Window border or title does not fit on screen.

302 1 Title is too long for window or specified title length is longer than the
title field in the window control block.

303 1 Requested window will not fit on screen.

304 No windows are active.

305 Window manager is not available.

306 Out of memory.

307 Too many windows.

308 Buffer I/O error.

309 Requested REMOVE-WINDOW for inactive WCB.

310 CREATE-WINDOW requested with active WCB.

311 Invalid parameter in WCB.

1 These error codes are reported differently under Windows than under UNIX, or they are
not reported.

COPY Statement
Use the COPY statement to copy RM/COBOL source text from a specified file into the source
program. The text copied may have been created outside RM/COBOL, either through a text
editor or through some other process. The file is copied at the point at which the COPY
statement appears in the program; the file logically replaces the COPY statement.

A copied file may in turn contain COPY statements, up to the limits of either five (the typical
case) or nine (if the last statement in the copy file is a COPY statement).

See the discussion of the COPY statement in Chapter 1: Language Structure of the
RM/COBOL Language Reference Manual, for a description of the syntax and field
definitions.

Filenames that are not reserved words and that are made up of valid RM/COBOL alphabetic,
numeric and special characters do not need to be enclosed in quotation marks within the
COPY statement. Filenames that are reserved words or contain characters other than the
standard set must be specified as a nonnumeric literal (that is, they must be enclosed in
quotation marks). A period followed by a space terminates the COPY statement (that is, it is
not considered part of a text-name or a library-name).

If a library-name is specified in the COPY statement, it is treated as a pathname for
the filename.

If you do not enter a filename extension with the filename, the compiler assumes an extension
of .cbl. If it cannot find such a file, it then looks for a file with the supplied name with the
extension .CBL. The assumed extension can be changed with the EXTENSION-NAMES

Chapter 8: RM/COBOL Features

226 RM/COBOL User's Guide

configuration record (see page 323). For all attempts to open the copied file, if a directory
path or a drive letter is not specified, the directory search sequence is used to try to locate the
file. See the discussion of search sequences in Directory Search Sequences on UNIX and
Directory Search Sequences on Windows.

Here are three examples of valid COPY statements.

 IDENTIFICATION DIVISION.
 COPY STDID.

The preceding COPY statement copies the file stdid.cbl from the path specified by
RMPATH.

 ENVIRONMENT DIVISION.
 COPY "cobol".

The preceding COPY statement copies the file cobol.cbl from the path specified by
RMPATH (see the discussion of RMPATH in the appropriate installation and system
considerations chapter in this user’s guide for your specific operating system).

 COPY data1 OF lib1.

The preceding COPY statement copies the file lib1/data1.cbl relative to the current directory.

STOP RUN Statement and RETURN-CODE Special
Register

When a run unit terminates, a numeric value—termed an exit code—is returned to the
operating system. The exit code is made up of the low-order eight bits of the binary
RETURN-CODE special register.

At the start of the run unit, the RETURN-CODE special register is initialized to zero. The
program may change the RETURN-CODE special register value by using it as the destination
of a MOVE statement or arithmetic verb, or by using a STOP RUN statement that specifies
identifier-1 or integer-1. Certain program exit codes (see page 199) are used by the runtime
system to indicate error conditions. Use of these values should be avoided in the program.

CALL and CANCEL Statements
The CALL statement transfers control to a contained RM/COBOL subprogram, to an external
RM/COBOL subprogram, or to a non-COBOL subprogram. Called subprograms may
themselves call other subprograms during the course of execution.

There are certain requirements that must be observed before RM/COBOL subprograms or
non-COBOL subprograms can be called:

1. The RM/COBOL subprogram must have been compiled.

2. Under UNIX, the non-COBOL subprogram must be contained in an optional support
module (shared object). The optional support module may be built using CodeBridge,
RM/COBOL’s cross-language call system, or it may be built using the method described
in Appendix H: Non-COBOL Subprogram Internals for UNIX in the CodeBridge User's

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 227

Guide. In either case, however, the support module must conform to the rules set forth in
the CodeBridge appendix.

Under Windows, the non-COBOL subprogram must be contained in a dynamic link
library (DLL). The dynamic link library may be built using CodeBridge, RM/COBOL’s
cross-language call system, or it may be built using the method described in Appendix G:
Non-COBOL Subprogram Internals for Windows in the CodeBridge User's Guide. In
either case, however, the support module must conform to the rules set forth in the
CodeBridge appendix.

3. The name specified in the CALL statement must be complete enough to search for and
locate the program.

A called subprogram is loaded and is in its initial state in the following instances: the first
time it is called in the run unit; the first time it is called after execution of a CANCEL
statement identifying the program that directly or indirectly contains the subprogram; every
time the subprogram is called if it possesses the initial attribute; and the first time the
subprogram is called after the execution of a CALL statement identifying a program that
possesses the initial attribute and that directly or indirectly contains the subprogram. In all
other entries into the called subprogram, the state of that program is unchanged from its state
when last exited.

Called RM/COBOL subprograms remain in memory until implicitly or explicitly canceled.
Optional support modules are loaded during RM/COBOL runtime system initialization and
remain loaded until the runtime system terminates. A called subprogram is implicitly
canceled in only two cases. A called subprogram with the initial attribute (that is, one with
the INITIAL clause specified in the PROGRAM-ID paragraph) is implicitly canceled
whenever it executes an EXIT PROGRAM statement, and is therefore in its initial state every
time it is called. All programs associated with a run unit are implicitly canceled when the run
unit terminates. In all other cases, an explicit CANCEL statement identifying the program is
required in order to cancel it. Use of the CANCEL statement to cancel a C subprogram sets
the initial flag to zero on the next entry into the subprogram, but has no effect on the values of
the external and static variables used in the C subprogram. An explicit CANCEL of a non-
COBOL subprogram in a support module, but neither of the two implicit cancels, causes the
runtime system to call the RM_AddOnCancelNonCOBOLProgram special entry point
when that entry point is defined in the support module that defines the non-COBOL
subprogram. For complete details about special entry points in support modules, see the
“Special Entry Points for Support Modules” topic in Appendix G: Non-COBOL Subprogram
Internals for Windows and Appendix H: Non-COBOL Subprogram Internals for UNIX of the
CodeBridge User's Guide.

Subprogram Loading
When a CALL statement is executed, the program-name (the value of identifier-1 or literal-1
as defined in the discussion of the CALL statement in Chapter 1: Language Structure of the
RM/COBOL Language Reference Manual) determines the subprogram to which control is
transferred. This is done in the following order:

1. If the program-name matches the value of program-name or literal as specified in the
PROGRAM-ID paragraph of a program directly contained in the calling program or of
a program possessing the common attribute that is directly contained in a program that
directly or indirectly contains the calling program, control is transferred to that program.

2. If a program has been loaded and not canceled, and is called again by the same
program-name, control is transferred to that program.

Chapter 8: RM/COBOL Features

228 RM/COBOL User's Guide

3. If the program-name matches the value of program-name or literal (see the
RM/COBOL Language Reference Manual) as specified in the PROGRAM-ID
paragraph of a program in an RM/COBOL program library, the program is loaded
and control transferred to it. Remember, at the point of loading, the program is in its
initial state. In the same manner, if the program-name matches a called name literal in a
non-COBOL subprogram library (see the appropriate appendixes in the CodeBridge
User's Guide for information on the non-COBOL subprogram internals for Windows and
UNIX), control transfers to the subprogram associated with the called name literal.

Libraries—both RM/COBOL and non-COBOL—are searched in the order specified,
from left to right, by one or more L Runtime Command Options, as described in Program
Runtime Command Options (on page 195). Other non-COBOL libraries (optional
support modules), automatically loaded from either the runtime execution directory or the
rmcobolso (on UNIX) or RmAutoLd (on Windows) subdirectory of the execution
directory, are searched next, as described in Appendix D: Support Modules (Non-
COBOL Add-Ons) on page 447. The first program-name matched is the only one
considered during program loading. Because libraries specified on the command line are
searched before libraries loaded automatically, it is possible for a developer to test a new
optional support module while other users are running an application in live “production
mode.”

If the RPC (Remote Procedure Calls) optional support module is present, RM/COBOL
programs specified to be executed remotely by the RPC server override programs
contained in either RM/COBOL or non-COBOL libraries, including automatically loaded
optional support modules. RM/COBOL programs executed remotely using the CALL
“REMOTEPROGRAM” capability of RPC do not override programs contained in
libraries.

4. If the program-name matches the name of a subprogram in the RM/COBOL
subprogram library, control transfers to that subprogram. See Appendix F:
Subprogram Library (on page 533) for a description of the RM/COBOL subprogram
library.

5. If the program-name contains no extension, a default filename extension of first .cob
and then .COB is added to the name before beginning the search for a valid program file.
If such a file exists and contains only one object program, the program is loaded and
control is transferred to that program, regardless of the name in its PROGRAM-ID
paragraph. The default extension can be changed with the EXTENSION-NAMES
configuration record (on page 323).

6. Under Windows, if the program-name specifies a filename extension .dll—or if it
specifies no filename extension at all—the filename extension .dll is used with the
filename before starting the search for a valid non-COBOL subprogram file. If such a
file exists, it is loaded and control is transferred to that program, as described in
Appendix G: Non-COBOL Subprogram Internals for Windows of the CodeBridge
User's Guide.

7. If the program-name does not specify a filename extension, or if the program-name
specifies a filename extension other than .dll (under Windows), the program-name is
used to search for a valid RM/COBOL program file. If such a file exists, and contains
only one object program, the program is loaded and control is transferred to it, regardless
of the name in its PROGRAM-ID paragraph.

8. If the program-name cannot be found, an exception condition occurs. This condition
may be detected by the calling program with the ON EXCEPTION or ON OVERFLOW
phrase. If the calling statement does not contain the ON EXCEPTION or ON
OVERFLOW phrase, execution ends.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 229

The use of contained programs and program libraries eliminates Step 5 through Step 7. In the
case of RM/COBOL program libraries, the I/O overhead of searching for the program file is
minimized.

Steps 5 through 7 search the environment for a match with the name used in each step.
If an environment variable name matches the name in one of those steps, the value of
the environment variable replaces that name in that step for locating the file. Steps 5
through 7 also use the RUNPATH directory search sequence, as described in either
Directory Search Sequences on UNIX (on page 21) or Directory Search Sequences on
Windows (on page 62).

RM/COBOL for Windows searches for dynamic link libraries (DLLs) specified without a
drive or path specification in the following order:

1. The directory from which the application executable was loaded; for example, the
directory containing runcobol.exe.

2. The current working directory.

3. The Windows system directory (for example, c:\windows\system). The search of the
Windows 32-bit system directory first (for example, c:\windows\system32) is followed
by a search of the Windows 16-bit system directory (for example, c:\windows\system), if
available.

4. The Windows directory; for example, c:\windows.

5. The directories listed in the PATH environment variable.

6. The directories listed in the RUNPATH environment variable.

RM/COBOL for UNIX does not search for shared object files except for names specified in
the L Runtime Command Option, as described in Program Runtime Command Options (on
page 195). When specified in the L Runtime Command Option, the UNIX runtime searches
for shared objects (.so files) specified without a path specification in the following order:

1. The execution directory; for example, the directory containing runcobol, which is
typically, /usr/bin.

2. The current working directory.

3. The directory search sequence used by the UNIX dynamic-load open library system
function (dlopen on many UNIX systems). On some UNIX systems, this may be
influenced by an environment variable, such as LD_LIBRARY_PATH. Consult your
UNIX system documentation for information on the search sequence used on your
system.

4. The directories listed in the RUNPATH environment variable.

Argument Considerations
RM/COBOL allows, as a nonstandard extension to COBOL, passing literals as argument
values from a calling program to a called program in the USING phrase of the CALL
statement. Prior to version 7.5, if the literal was not subject to a BY CONTENT phrase, the
compiler generated code to pass the literal by reference (for compatibility with older versions
of RM/COBOL prior to the addition of the BY REFERENCE and BY CONTENT phrases).
When a literal is passed by reference and the called program modifies the corresponding
Linkage Section data item, the literal value is modified in the calling program. Since the
compiler shares literal references among multiple uses of the same value, a changed literal
value can cause unexpected behavior and failures in the calling program. Thus, the version
7.5 or later compiler has been changed to generate code to pass all literals specified in the

Chapter 8: RM/COBOL Features

230 RM/COBOL User's Guide

USING phrase of the CALL statement as if BY CONTENT were specified. When passed by
content, a temporary copy of the literal is passed to the called program. A new COMPILER-
OPTIONS configuration record keyword, SUPPRESS-LITERAL-BY-CONTENT (see
page 313), has been added to override this new behavior.

External Objects
A source program may use the EXTERNAL clause to declare three types of external objects:

1. Data records, named by record-names

2. File connectors, named by file-names

3. Indexes, named by index-names

See the discussion of the EXTERNAL clause in Chapter 4: Data Division of the RM/COBOL
Language Reference Manual for more details.

During execution of a run unit, the runtime system maintains a list of external objects. The
list is established as being empty when the run unit begins. When an object program is
loaded, the names of external objects it declares are checked for a match—of both name and
type—against the list of external objects. If both name and type match, the declared external
objects and existing external objects are considered references to the same object. Only the
first 30 characters of the name are used in this matching operation. The declared object is
then checked to determine whether it matches the description of the external object. A
mismatch in the description terminates execution and displays an error message. If either
name or type does not match, the declared external object is allocated and added to the list. If
there is not enough memory to load the object, execution ends and an error message is
displayed.

The determination of matching descriptions depends on the type of object file:

1. Data Records. The record-name for both objects must be described with the same
number of character positions.

2. File Connectors. The file-name for both objects must be described as follows:

• The file organization specified in the ORGANIZATION clause, that is,
SEQUENTIAL, RELATIVE, or INDEXED, must be the same.

- If the organization is sequential, both objects must agree on the presence or
absence of LINAGE and PADDING CHARACTER clauses.

- If the organization is relative, both objects must declare the same external data
item as the relative key data item, or must omit specification of a relative key
data item.

- If the organization is indexed, both objects must declare the same number of
record keys at the same positions in the record, and must agree on the presence
or absence of a COLLATING SEQUENCE clause. Both objects must have the
same COLLATING SEQUENCE clause, if the clause is present. In addition, if
split keys are present, both objects must have the same split key clauses.

• The access mode specified in the ACCESS MODE clause must be the same.

• The presence or absence of the OPTIONAL phrase in the SELECT clause of the file
control entry must be the same.

• The number of input-output areas specified in the RESERVE clause must be
the same.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 231

• The alphabet specified in the CODE-SET clause of the file control entry or the file
description entry (RM/COBOL allows the CODE-SET clause in either entry) must
be the same.

• The BLOCK CONTAINS clause in the file description entry must specify the same
minimum and maximum values, and must agree on whether these are expressed in
CHARACTERS or RECORDS clauses.

• The RECORD clause in the file description entry must specify the same minimum
and maximum record size.

• The LABEL RECORDS clause in the file description entry must specify the same
property of OMITTED or STANDARD.

3. Indexes. The index-name for both objects must be associated with the same external
data record. Both index-names must be associated with table items that span the same
number of character positions.

Note It is recommended that source programs use COPY statements to copy a common
definition of an external object in order to avoid mismatched external object descriptions.

Once an external object is added to the runtime-maintained list, it remains in existence until
the end of the run unit. Execution of a CANCEL statement identifying a program that
describes an external object does not affect the allocation, contents or state of the external
object. For external file connectors left in an open mode, the runtime system closes the file
when the run unit terminates but not when a program describing the file is canceled.

Composite Date and Time
Beginning with version 7.0 of RM/COBOL, the Format 2 ACCEPT statement supports the
CENTURY-DATE, CENTURY-DAY, and DATE-AND-TIME options (for more
information, see the RM/COBOL Language Reference Manual). These options provide a
four-digit year in one operation without using the C$Century subprogram (see page 540). In
addition, the DATE-AND-TIME option provides the date and time in a single operation that
is guaranteed to be consistent.

Prior to version 7.0, RM/COBOL followed the standard COBOL, which has separate
statements to obtain the date and the time. This may cause the composite date and time to be
inaccurate for times near midnight. For example, the following two ACCEPT statements will
obtain a date and time that is nearly a full day earlier than correct if executed such that
midnight occurs between the two statements:

ACCEPT CURRENT-DATE FROM DATE.

ACCEPT CURRENT-TIME FROM TIME.

COBOL developers have long been aware of such date/time problems and many have already
solved it by checking to see whether the time crossed midnight while fetching the date and
time and, if necessary, fetching the date and time again.

Chapter 8: RM/COBOL Features

232 RM/COBOL User's Guide

DELETE FILE Operation
Under UNIX, the DELETE FILE operation will fail if the user does not have write permission
for both the file to be deleted and the directory containing the file.

File Sharing
RM/COBOL supports shared environments1, which allow files to be shared by two or more
users. This includes allowing two or more users to have a file open simultaneously and apply
updates to that file. The FORCE-USER-MODE keyword (see page 338) of the RUN-FILES-
ATTR configuration record can force files not to be shared.

The WITH LOCK phrase may be used on the OPEN statement to restrict the use of a file by
other users during the period the file is open. When used on an OPEN I-O, OUTPUT or
EXTEND statement, the WITH LOCK phrase prevents other RM/COBOL users from
opening the file. When used on an OPEN INPUT statement, the WITH LOCK phrase
prevents other RM/COBOL users from opening the file I-O, OUTPUT or EXTEND. When
the WITH LOCK phrase is used, file performance is improved by eliminating the overhead of
locking records and permitting the buffering of file data in program memory.

Note On UNIX systems in which record locking is implemented through the fcntl() system
call, the file must be available with read/write access to enforce file locking. If the file is not
available with read/write access, the file is opened but file locking is not enforced.

When the WITH LOCK phrase is absent, file access permits sharing by other users. The
WITH LOCK phrase is ignored in single-user configurations. Table 30 illustrates the sharing
permitted between applications in shared environments.

In a shared environment, a sequential file is considered shared if the WITH LOCK phrase is
omitted, even for OPEN OUTPUT and OPEN EXTEND. This permits other users to OPEN
EXTEND the same file and write records at the end of file.

If the EXCLUSIVE phrase is specified in the OPEN statement or in the applicable
LOCK MODE clause, the same behavior, as described above for the WITH LOCK
phrase, applies.

Note RM/COBOL version 5.3 and later runtime systems do not lock program files that
are being executed. Although this characteristic improves performance, under certain
circumstances it can allow the compiler to recompile a program that is being executed at
the time.

Table 30: Sharing Permissions

 Current Open Mode

Desired
Open
Mode

Input

Input/
Output

Output

Extend

Input 1

I-O 1
Output
Extend

Input

1 Shared environments apply to appropriately licensed users only.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 233

Table 30: Sharing Permissions

 Current Open Mode

Desired
Open
Mode

Input

Input/
Output

Output

Extend

Input 1

I-O 1
Output
Extend

Input/
Output

Output

Extend

Input 1

I-O 1
Output
Extend

 Open granted.

 Open denied with I/O error 93,02 or 90,05.

 1 WITH LOCK.

File Buffering
Buffering of the data in files can significantly increase the speed of accessing a file by
keeping frequently accessed data in memory buffers instead of reading the data from disk
every time it is needed. RM/COBOL maintains a pool of memory from which it takes the
buffers for all files. When the memory in this pool is exhausted, the memory for buffers,
which have not been used recently, will be taken from the file that had been using them and
given to the file that needs them. This accommodates applications that open large numbers of
files, but concentrates on only a few files at once.

Sequential and relative files must be opened WITH LOCK in order to make use of more than
one buffer from the buffer pool.

The amount of memory in the buffer pool can be controlled by use of the BUFFER-POOL-
SIZE keyword (on page 336) of the RUN-FILES-ATTR configuration record. Increasing the
default may improve the performance of the I/O of the application file. Decreasing the
default value can increase the amount of program memory available.

The minimum size of the buffer pool must be adequate for the block sizes of the files opened
by the application. For more information, see the description of the BLOCK CONTAINS
clause (indexed file description entry) (on page 244) for indexed files.

Chapter 8: RM/COBOL Features

234 RM/COBOL User's Guide

Very Large File Support
Very large files are defined as RM/COBOL indexed files larger than 2 gigabytes (GB) and
RM/COBOL relative and sequential files larger than 1 GB. The RM/COBOL runtime system
allows RM/COBOL files to have file sizes of 2 GB and larger when running under operating
systems that support very large files. For information about the operating systems that
support large files, see Using Large Files on UNIX (on page 42) and Using Large Files on
Windows (on page 114).

Support for large files is provided by the LARGE-FILE-LOCK-LIMIT keyword (see
page 339) of the RUN-FILES-ATTR configuration record. In order to use this new limit on
relative or sequential files, you must use the USE-LARGE-FILE-LOCK-LIMIT keyword in a
RUN-REL-FILES or RUN-SEQ-FILES configuration record. In order to use this new limit
on indexed files, you must either use an indexed file version level 3 (see page 254), or use an
indexed file version level 4 (see page 254) and the USE-LARGE-FILE-LOCK-LIMIT
keyword (see page 344) in a RUN-INDEX-FILES configuration record.

File Types and Structure
There are three types of files supported by RM/COBOL. Each file type and structure is most
useful for specific functions. This section describes each of the following file types:

1. Sequential files (see the following topic)

2. Relative files (see page 240)

3. Indexed files (see page 242)

Sequential Files
Sequential files are organized such that records are always read or written serially. In other
words, during a specific I/O operation, the first record read is always the first record in the
file, and the next record written is always written after the last record currently in the file.
RM/COBOL has two types of sequential files:

1. Line Sequential Files. Line sequential files should contain only ASCII text data.
(In other words, they are equivalent to standard source files.) Each logical record within
line sequential files is variable in length and ends with a line feed or carriage return/line
feed pair.

If the ASCII control codes, that is, carriage return (CR), line feed (LF), form feed (FF) or
SUB, are present in a record, the record cannot be written. When reading a file under
UNIX, the LF, CR, FF, LF CR, CR LF, and FF CR sequences terminate a record. Under
Windows, the CR LF sequence terminates a record and leading and trailing LF and FF
sequences are ignored. SUB terminates the file and tab (HT) causes one or more spaces
to be inserted according to the default tab column positions, which are every four
columns, starting with column 8 and ending with column 72.

The device-name in the ASSIGN clause of the file control entry determines the treatment
of spaces in a line sequential record. If the device-name is DISC, DISK, or RANDOM,
trailing spaces are preserved when a line sequential record is written. The record length
returned when the record is read is the length of the record when it was written. If the
device-name is CASSETTE, INPUT-OUTPUT, MAGNETIC-TAPE, OUTPUT, PRINT
or PRINTER, all trailing spaces are removed when a record is written to the file. If the

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 235

device-name is CARD-READER, CARD-PUNCH, CASSETTE, INPUT, INPUT-
OUTPUT or MAGNETIC-TAPE, records read are padded with spaces to the maximum
record length, and the record length returned is always the maximum record length.

A file that is assigned to either of the device-names PRINT or PRINTER, for which the
LINAGE clause is used, or for which the ADVANCING phrase of the WRITE statement
is used, is always treated as a line sequential file. In this case, ASCII control codes are
allowed.

Each logical record within line sequential files has a maximum record length of 65280
bytes.

2. Binary Sequential Files. Whereas line sequential files contain ASCII text data, binary
sequential files may contain any type of data. Binary sequential files may be fixed length
or variable length.

A fixed-length binary sequential file is one for which only one record description exists
or all record descriptions describe the same number of characters, and for which no
record description contains the OCCURS . . . DEPENDING ON clause, or for which the
RECORD clause specifies fixed-length records. Such files may have a maximum record
length of 65280 characters. Fixed-length binary sequential files are recorded by
RM/COBOL without any additional structure; the byte count implied by the record length
provides data transparency.

A variable-length binary sequential file does not satisfy the record length requirements
for fixed length. The data is encapsulated in an eight-byte overhead to provide data
transparency. The maximum record size for variable-length binary sequential files is
65280 characters.

Note The compiler listing allocation map indicates in the Debug column (see page 169)
whether a file has been described with fixed- or variable-length records. See also the
illustration in Figure 30: Allocation Map (Part 3 of 4) on page 170.

RECORD Clause (Sequential File Description Entry)

The RECORD clause specifies the minimum and maximum lengths of records in a sequential
file. The minimum and maximum record lengths are not recorded with the file; however, a
READ statement encountering a record whose length is less than the minimum record length
receives an error. Also, an OPEN EXTEND for a fixed-length binary sequential file succeeds
only if the total file size at the time of the OPEN is a multiple of the maximum record length
of the file.

BLOCK CONTAINS Clause (Sequential File Description Entry)

In a single-user environment, sequential disk files are physically read and written in fixed-
length pieces called blocks. In a shared environment, sequential files are read and written in
blocks only when the WITH LOCK phrase is specified. When the WITH LOCK phrase is
omitted, the records of the file are read or written individually (without blocking) from the
operating system.

The size of a block is determined by the BLOCK CONTAINS clause in the RM/COBOL
program. A larger block size causes more data to be transferred in a single request, requires
more time to affect the data transfer, reduces the total number of disk accesses, and requires
more memory from the buffer pool. Blocking in this fashion may increase performance;
however, because blocking may defer the physical writing of a block to disk until well after
the WRITE statement that first places data in the block, errors (which can include loss of data)

Chapter 8: RM/COBOL Features

236 RM/COBOL User's Guide

caused by that physical write may not be reported until a subsequent WRITE or CLOSE
statement for the file is executed.

The file block size is not considered a fixed attribute of a sequential file; different programs
may specify different block sizes for the same file.

The runtime system uses the following algorithm to determine the block size when opening a
sequential disk file:

1. If no BLOCK CONTAINS clause is present, the block size is 4096 characters. The
default block size may be changed with a RUN-SEQ-FILES configuration record (see
page 349).

2. If a BLOCK CONTAINS nnn CHARACTERS clause is present, the block size is the
specified number of characters.

3. If a BLOCK CONTAINS nnn RECORDS clause is present, the block size is the specified
number of records multiplied by the sum of the maximum record length and the record
overhead.

The maximum allowed block size on most systems is 65535 characters.

LINAGE Clause (Sequential File Description Entry)

When a file described with the LINAGE clause is opened for output, it is assumed the output
device is already positioned to the first line of the first logical page body. This is the
operator’s responsibility. The program should be written to allow the operator an opportunity
to adjust the forms in the printer (or any other output device) as required.

As an alternative, the LINAGE-INITIAL-FORM-POSITION keyword (see page 329) in the
PRINT-ATTR configuration record may be set to the value TOP-OF-FORM. In this case,
which is particularly useful for page printers, it is assumed that the output device is positioned
at the top of the form. When the first record is written to the file, the record will be written
after advancing over the top margin on the first logical page.

The logical pages of a file described with the LINAGE clause are normally written
contiguously with no additional spacing provided between pages. The LINAGE-PAGES-
PER-PHYSICAL-PAGE keyword (see page 329) in the PRINT-ATTR configuration record
may be used to cause physical page breaks, such as form feed characters, to be written to
the file.

RESERVE Clause (Sequential File Control Entry)

The RESERVE clause is ignored. Buffer memory is automatically managed based on the
amount of activity of a particular file. See File Buffering (on page 233).

CODE-SET Clause (Sequential File Control Entry or File
Description Entry)

The CODE-SET clause determines the character set used to represent the sequential file. For
example, if the CODE-SET is EBCDIC, all records written to the file are translated from
ASCII to EBCDIC. The CODE-SET is not considered a fixed attribute of the sequential file.
Different programs may specify different character sets for the same file.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 237

REVERSED Phrase (OPEN Statement)

The REVERSED phrase is not supported. If specified, it is ignored.

WITH NO LOCK Phrase (READ Statement)

If a READ statement without the WITH NO LOCK phrase fails because the record is locked,
the contents of the record area are undefined and the file position indicator is unchanged. A
subsequent READ behaves as if the failing READ statement had never been issued.

A READ statement with the WITH NO LOCK phrase may be used to read a record without
regard to the lock status of the record. If an OPEN INPUT statement opened the file, the
WITH NO LOCK phrase is assumed on all READ statements on the file.

If the file control entry does not contain a FILE STATUS clause or there is no USE
declarative procedure defined for a file, record lock status is not reported to the program.
Instead, the runtime system waits for the record to become unlocked. By using the FATAL-
RECORD-LOCK-TIMEOUT keyword (see page 338) in the RUN-FILES-ATTR
configuration record, the runtime system can be made to return a fatal error instead of waiting
indefinitely. If the record is locked using a different file descriptor in the same run unit, then
the runtime system never waits. Instead, to prevent a deadlock situation, it returns an error
indicating that the record is locked.

If the file control entry does contain a FILE STATUS clause and there is a USE declarative
procedure defined for a file, the record lock status is normally reported to the program
immediately by calling the USE procedure. By using the USE-PROCEDURE-RECORD-
LOCK-TIMEOUT keyword (see page 341) in the RUN-FILES-ATTR configuration record,
the runtime system can be told how long to wait before calling the USE procedure. If the
record is unlocked during this time, the USE procedure is not called.

ADVANCING ZERO LINES Phrase (WRITE Statement)

As explained in the discussion on the WRITE statement in Chapter 6: Procedure Division
Statements of the RM/COBOL Language Reference Manual, WRITE statements acting on
sequential files allow overprinting on a line for systems whose physical devices support this
feature. However, some line printers are designed to advance one line after each line is
printed. In such a case, the ADVANCING ZERO LINES phrase is treated as an
ADVANCING 1 LINE phrase.

ADVANCING mnemonic-name Phrase (WRITE Statement)

RM/COBOL allows the WRITE . . . ADVANCING mnemonic-name statement when
mnemonic-name is associated with a channel-name from the SPECIAL-NAMES paragraph.
No standard way exists to communicate channel-slewing information. Because of this, the
runtime system interprets C01 as if page were specified; it interprets any other channel as
if 1 LINE were specified.

REEL and UNIT Phrases (CLOSE Statement)

The REEL and UNIT phrases are not supported. If specified, they are ignored.

Chapter 8: RM/COBOL Features

238 RM/COBOL User's Guide

WITH NO REWIND Phrase (CLOSE Statement)

A print file is released to the operating system at run unit termination or when a CLOSE
statement (without the WITH NO REWIND phrase) is issued.

The WITH NO REWIND phrase may be used to prevent the release of a print file to the
operating system. This feature may be used to prevent undesirable side effects such as banner
pages and form feeds provided by the operating system when the print file is released.

A subsequent OPEN statement (typically, OPEN EXTEND) must be issued before the
program can again successfully access the print file.

A print file is a line sequential file that has any or all of the following RM/COBOL source
program features:

1. ASSIGN TO PRINT or ASSIGN TO PRINTER clause in the file control entry
for the file.

2. LINAGE clause in the file description entry for the file.

3. ADVANCING phrase in a WRITE statement for the file.

For all other file types, the WITH NO REWIND phrase is ignored.

Device Support

Files that are opened on devices are treated as read-only (INPUT) or write-only (OUTPUT or
EXTEND) sequential files. A program may open the same device more than once within the
same run unit. Those devices that are opened with the same mode (read-only or write-only)
share the same file handle and the same buffer. Those devices that are opened with different
modes use different file handles and have different buffers.

At most, two buffers are allocated to each device; one when opened for read-only and one
when opened for write-only. These buffers are dedicated to the device and do not come from
the buffer pool.

Because of the non-portability of applying locks to devices, locks are never applied to device
files. Thus, files opened on devices WITH LOCK do not guarantee exclusive access to the
file.

Printer Support

Under UNIX, printer support is provided either through the lp or the lpr spooler. Under
Windows, RM/COBOL provides printer support using the Windows printer devices.

Under UNIX, the RM/COBOL runtime system creates a write-only pipe to the print spooler
and sends all print records to it. The pipe is closed and the output is allowed to print only
when the RM/COBOL program issues a CLOSE statement to the file (except for CLOSE
WITH NO REWIND, as explained previously).

Under Windows, when a file is opened with the name PRINTER, the output is sent to the
default system printer configured under the Windows operating system. When a file is
opened with the name PRINTERx, where x is a single-digit number, output is sent to the
device connected to LPTx.

The device is opened for writing only and is closed only when the RM/COBOL program
issues a CLOSE statement to the file (except for CLOSE WITH NO REWIND, as explained
previously).

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 239

The destination for files named PRINTER can be changed by doing any of the following:

• Assigning an environment variable PRINTER, as discussed in File Access Names on
UNIX (on page 22) and File Access Names on Windows (on page 64).

• Defining a synonym in the Windows registry, as detailed in Setting Synonym Properties
(on page 86).

• Configuring a keyword in the DEFINE-DEVICE configuration record (see page 319).

Tape Support

Under UNIX, RM/COBOL provides tape support through direct access to the tape devices.
Given the default configuration of RM/COBOL for UNIX, as described in “, when a file is
opened with the name TAPE, the RM/COBOL runtime system opens the tape device and
writes or reads to it as directed by the RM/COBOL program. (For further information, see the
keywords that apply to UNIX in the DEFINE-DEVICE configuration record on page 319 and
the “Termcap Example” and “Termcap Example” topics under Default Configuration Files on
page 368.) The tape device is closed when the RM/COBOL program issues a close to the file
except for CLOSE WITH NO REWIND. Since the operating system does not provide a
mechanism to write a tape mark to a tape without closing the device (which may rewind it),
the RM/COBOL runtime system only simulates the close as it does for the printer device.

Most systems allow multiple files to be placed on a tape by specifying that the tape is not to
be rewound on OPEN and CLOSE. This must be specified at the OPEN of the file by using
the correct name for the operation. For example, rtpyy may mean rewind on OPEN and
CLOSE while rtpyn may mean rewind on OPEN but not on CLOSE. (Actual names vary
between implementations. Consult your system administrator for the actual names.) If it is
desired to place multiple files on a single tape, it will be necessary to use DEFINE-DEVICE
configuration records to name the different options desired and use the names within the
RM/COBOL program appropriately.

All sequential record formats are supported on the tape: line, binary fixed, and binary
variable-length records. For transfer of information to other RM/COBOL programs, any
method may be used. For transferring information to other programs executing on other
equipment, fixed-length binary records are most compatible.

Tape files are read or written in 512-byte blocks by default. If the COBOL program specifies
a nonzero maximum block size in the BLOCK CONTAINS clause of the file description
entry for the file, that block size is used instead of 512. Variable-length blocks and unblocked
files are not supported on tape devices.

The destination for files named TAPE can be changed either by assigning an environment
variable TAPE, as explained in the discussion of file access names on UNIX (on page 22), or
by using a DEFINE-DEVICE configuration record (see page 319).

Named Pipe Support

Under UNIX, named pipes are treated as sequential devices. They are allowed to be opened
as INPUT, OUTPUT or EXTEND, but never I-O. Also, as with the other devices, OPEN
WITH LOCK does not guarantee exclusive access to the pipe.

Named pipes are special FIFO (first in first out) files that are created with an mknod
command that specifies the p option after the name. For example:

mknod MyNamedPipe01 p

Chapter 8: RM/COBOL Features

240 RM/COBOL User's Guide

makes a named pipe with the name MyNamedPipe01. Super-user privileges may be required
to run the mknod command, but not necessarily when the p option is specified. A named
pipe may be deleted with the rm command. Two run units running at the same time may
communicate through the pipe by each using a file access name that refers to the pipe by its
name (including the directory path, if necessary).

Relative Files
Relative files are ordered collections of records, each of which is directly addressable by use
of a relative record number; this number is a non-zero integer corresponding to the ordinal
position of a record within the file. A record within a relative file acquires its record number
when it is written to the file with a WRITE statement.

If the access mode of the file at the time the record is written is sequential, the record number
is assigned by the runtime system, and is one greater than the last record number assigned (or
1 if no records have been written to the file). If the access mode is random or dynamic,
specify the record number before execution of the WRITE statement. To do this, move (or
otherwise assign) the value to the data item declared to be the relative key for the file.

Record numbers do not necessarily correspond to actual records in a file. For instance, a
record number may never have been given a corresponding data record, or some numbers may
correspond to data records that have been deleted.

Relative files must be assigned to a disk device, since the records can be accessed randomly.

The maximum record length is 65280 bytes. Records can be variable length. No restrictions
are placed on the value of individual bytes within the record.

Records in a relative file are written to disk in a fixed-length area four bytes longer than the
length of the longest record declared for the file. Estimate the total disk space requirement by
multiplying the maximum record length plus four by the anticipated number of records.

RECORD Clause (Relative File Description Entry)

The RECORD clause specifies the minimum and maximum record lengths of records in a
relative file. The maximum record length is a fixed attribute of the file, and is validated
against the file size during an OPEN statement.

The minimum record length is not recorded with the file; however, a READ statement
encountering a record whose length is less than the minimum record length will receive an
error. A REWRITE statement may change the record length of a record in a relative file.

BLOCK CONTAINS Clause (Relative File Description Entry)

In a single-user environment, relative files are physically read and written in fixed-length
pieces called blocks. In a shared environment, relative files are read and written in blocks
only when the WITH LOCK phrase is specified. When the WITH LOCK phrase is omitted,
the records of the file are read or written individually (without blocking) from the operating
system.

The size of a block is determined by the BLOCK CONTAINS clause in the RM/COBOL
program. A larger block size causes more data to be transferred in a single request, requires
more time to affect the data transfer and requires more memory from the buffer pool. A
smaller block size allows more blocks in memory for a fixed amount of memory. Blocking
may increase performance; however, because blocking may defer the physical writing of a

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 241

block to disk until well after the WRITE statement that first places data in the block, errors
(including loss of data) caused by that physical write may not be reported until a subsequent
statement for the file is executed.

The file block size is not considered a fixed attribute of a relative file. Different programs
may specify different block sizes for the same file.

The runtime system uses the following algorithm to determine the block size when opening a
relative file:

1. If no BLOCK CONTAINS clause is present, the block size is typically 4096 characters if
the file is opened for DYNAMIC or SEQUENTIAL access. The default block size may
be changed with a RUN-REL-FILES configuration record (see page 348).

2. If a BLOCK CONTAINS nnn CHARACTERS clause is present, the block size is the
specified number of characters.

3. If a BLOCK CONTAINS nnn RECORDS clause is present, the block size is the specified
number of records multiplied by the sum of the maximum record size, plus four. The
maximum allowed block size on most systems is 65489 characters.

RESERVE Clause (Relative File Control Entry)

The RESERVE clause is ignored. Allocating buffer memory is automatically managed based
on the amount of activity of a particular file. See File Buffering (on page 233).

CODE-SET Clause (Relative File Control Entry or File Description
Entry)

The CODE-SET clause determines the character set used to represent the relative file on disk.
For example, if the CODE-SET is EBCDIC, all records written to the file will be translated
from ASCII to EBCDIC. The CODE-SET is not considered a fixed attribute of the relative
file. Different programs may specify different character sets for the same file.

WITH NO LOCK Phrase (READ Statement)

A READ statement with the NEXT phrase and without the WITH NO LOCK phrase that fails
because the record to which the file position indicator points is locked, does not modify the
file position indicator and the contents of the record area are undefined. The record is not
read and the program should not depend on the contents of the record area being unchanged.
A subsequent READ statement behaves as if the failing READ statement had never been
issued.

A READ statement with the WITH NO LOCK phrase may be used to read a record without
regard to the lock status of the record. If an OPEN INPUT statement opened the file, the
WITH NO LOCK phrase is assumed on all READ statements on the file.

If the file control entry does not contain a FILE STATUS clause or there is no USE
declarative procedure defined for a file, record lock status is not reported to the program.
Instead, the runtime system waits for the record to become unlocked. By using the FATAL-
RECORD-LOCK-TIMEOUT keyword (see page 338) in the RUN-FILES-ATTR
configuration record, the runtime system can be made to return a fatal error instead of waiting
indefinitely. If the record is locked using a different file descriptor in the same run unit, then
the runtime system never waits. Instead, to prevent a deadlock situation, it returns an error
indicating that the record is locked.

Chapter 8: RM/COBOL Features

242 RM/COBOL User's Guide

If the file control entry does contain a FILE STATUS clause and there is a USE declarative
procedure defined for a file, the record lock status is normally reported to the program
immediately by calling the USE procedure. By using the USE-PROCEDURE-RECORD-
LOCK-TIMEOUT keyword (see page 341) in the RUN-FILES-ATTR configuration record,
the runtime system can be told how long to wait before calling the USE procedure. If the
record is unlocked during this time, the USE procedure is not called.

Indexed Files
Indexed organization files contain data and one or more indexes or keys. These indexes are
used to locate data in the file by identifying the key value and the location in the file of the
corresponding record.

Every record in an indexed file contains a prime record key and may contain a number of
alternate record keys.

Data Compression

Each record of the file may be represented in a compressed or uncompressed data format.
Data record compression replaces multiple occurrences of space, zero and null or repeated
characters with a single compression character. Uncompressed data records contain the data
written by the program, with no compression characters. Data record compression usually
improves the performance of indexed files by reducing the file size and allowing more
information to be read in a single physical transfer. When an indexed file is created by the
runtime system, data record compression is enabled. This default may be changed as
described in the DATA-COMPRESSION keyword (on page 342) of the RUN-INDEX-FILES
configuration record. Whether data record compression is enabled for a particular file may be
established with the Define Indexed File (rmdefinx) utility (see page 594).

RM/COBOL indexed files allow index keys to be compressed or uncompressed. Key
compression replaces the leading characters of a key that equal the preceding key, and any
trailing space characters of a key, with compression characters. This usually reduces the
amount of disk space occupied by a file, especially a file in which many keys contain
trailing spaces (such as names and addresses). When an indexed file is created by the runtime
system, key compression is enabled. This default may be changed as described in the
KEY-COMPRESSION keyword (on page 343) of the RUN-INDEX-FILES configuration
record. Whether key compression is enabled for a particular file may be established with
the rmdefinx utility.

Data Recoverability

RM/COBOL provides a choice of data recovery strategies for indexed files. A data recovery
strategy is a tradeoff between deferring the writing of data to disk in order to improve the
performance of file modification operations, and forcing the writing of data to disk in order to
guarantee that the data is available for recovery if there is a system failure. The data recovery
strategy for a particular indexed file is established when the file is first created with an OPEN
statement that specifies the OUTPUT phrase (or the EXTEND phrase for an optional file that
is not present) or when the file is predefined with the Define Indexed File (rmdefinx) utility
(see page 594). The file may be predefined using the rmdefinx utility. If the file is not
predefined, the default recovery strategy is used by the runtime system. This default strategy
may be configured as described in the discussion of the RUN-INDEX-FILES configuration
record (on page 341). Unlike other attributes associated with an indexed file, the recovery
strategy for a file may be changed, thus allowing optimal performance when a file is being

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 243

built and switching to a higher level of data integrity when a file is updated. Use the
rmdefinx utility to change the recovery strategy for a file.

The following four options are available to provide the various levels of data recovery
strategy:

1. Force File Closed (FORCE-CLOSED keyword). The indexed file header contains a
count of the number of concurrent run units that have the file open for modification. If
the system fails while this count is non-zero, the file index structure must be rebuilt using
the Indexed File Recovery (recover1) utility (see page 599). Selecting this option causes
the runtime system to increment this count before each DELETE, REWRITE, or WRITE
operation and decrement the count at the end of each operation. Otherwise, the count
will be incremented when the OPEN statement is executed and decremented when the
CLOSE statement is executed.

Selecting this option causes two additional disk transfers for each modify operation, but
gives a high probability that a file rebuild will not be required if a system failure occurs.

Selecting this option causes the runtime system to act as if the following three options are
also set.

2. Force Disk (FORCE-DISK keyword). Your operating system maintains a system disk
buffer pool in its memory. Issuing an operating system write request, as described below
in the Force Data option, causes data to be written from the buffer maintained by the
runtime system to a buffer in this disk buffer pool. The data is not necessarily written to
the disk at that time. Thus, the selected data recovery strategy may be defeated.

Selecting this option causes the runtime system to attempt to force the operating system
to actually write its buffer to disk.

3. Force Data (FORCE-DATA keyword). Selecting this option causes the runtime system
to issue a write request to the operating system when a block containing a data record is
modified. Otherwise, such blocks remain in the block buffer pool maintained by the
runtime system for the file, and the write request to the operating system is not made until
the buffer containing the block is needed for a different block.

This option is available only when a file is in single-user mode; that is, when the runtime
system is in single-user mode or the file is opened WITH LOCK. This option is always
selected for files in a shared environment.

4. Force Index (FORCE-INDEX keyword). Selecting this option causes the runtime
system to issue a write request to the operating system when a block containing index
information is modified. Otherwise, such requests are issued only as buffer availability
in the block buffer pool maintained by the runtime system dictates. This option is always
selected for files in a shared environment.

RECORD Clause (Indexed File Description Entry)

The RECORD clause specifies the minimum and maximum length of records in an indexed
file. These record lengths are considered fixed attributes of the file. Any program using an
indexed file must specify the minimum and maximum length specified in the program that
created the file.

The following algorithm computes the maximum disk space required to represent a record:

1. Assume the record representation disk space is the maximum record size of the file.

2. If data record compression is enabled, increase the record representation space by the
ceiling of the maximum record size divided by 127.

Chapter 8: RM/COBOL Features

244 RM/COBOL User's Guide

3. Increase the record representation space by four times the number of alternate keys that
allow duplicates.

4. Add four to the record representation disk space.

RM/COBOL indexed files are restricted both in the maximum record size declared in the
program and in the maximum disk space required to represent a record. The maximum record
size allowed an indexed file is 65280. The maximum disk space required to represent a
record must not exceed 65527. The disk space limitation is the more restrictive, especially
when data record compression is enabled.

BLOCK CONTAINS Clause (Indexed File Description Entry)

RM/COBOL indexed files are physically read and written in fixed-length pieces called
blocks. The size of a block is determined by the BLOCK CONTAINS clause in the
RM/COBOL program, or with the Define Indexed File (rmdefinx) utility (see page 594). A
larger block size transfers more data in a single request, requires more time to affect the data
transfer, and requires more memory from the buffer pool. A smaller block size allows more
blocks in memory for a fixed amount of memory, but requires more time to randomly access a
record by increasing the depth of each index.

The file block size is considered a fixed attribute of the file. The BLOCK CONTAINS clause
in a program that uses a file must be identical to the BLOCK CONTAINS clause in the
program that created the file.

To access a block of an indexed file, the runtime system must use a piece of the buffer pool
memory that is at least as large as the file block size. The indexed file algorithms require that
a minimum of three pieces of buffer pool memory be available. If the file block size exceeds
32768, the buffer pool must be at least as large as the sum of 131072 and the block size. If
the file block size exceeds 16384, the buffer pool must be at least as large as the sum of 65536
and the block size.

The algorithm used to determine the block size of an indexed file is outlined in the following
paragraphs. The algorithm distinguishes specified block size from actual block size.
Specified block size is defined by the BLOCK CONTAINS clause, and may be a function of
the maximum disk space required to represent a record, defined previously in the RECORD
clause description. Actual block size is defined as a function of the specified block size.
When the term block size is used by itself elsewhere in this document in reference to an
indexed file, it means the computed actual block size.

1. If no BLOCK CONTAINS clause is present, and the file already exists, the current block
size is used as the block size.

2. If no BLOCK CONTAINS clause is present, and the file does not already exist, the block
size is 512 (under Windows) or the value of BUFSIZ, taken from the C include file
<stdio.h> (under UNIX). This default may be changed with a RUN-INDEX-FILES
configuration record (see page 341).

3. If a BLOCK CONTAINS nnn CHARACTERS clause is present, the specified block size
is the number of characters.

4. If a BLOCK CONTAINS nnn RECORDS clause is present, the specified block size is
eight characters more than the specified number of records multiplied by the maximum
disk space required to represent a record, as described above.

5. The minimum block size is the smallest value that meets all of the following criteria:

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 245

a. The minimum block size must be at least 256, or 266 if the file version level is
greater than 3. For more information on indexed file version numbers, see Indexed
File Version Levels (on page 253).

b. The minimum block size must be at least 292 (302 if the file version level is greater
than 3) if an enumerated CODE-SET or COLLATING SEQUENCE is specified.

c. The minimum block size must be sufficient to contain three index keys. This is
approximately the longest key length times 3 plus 46 (plus 10 if the file version level
is greater than 3).

d. The minimum block size must be sufficient to contain one data record. This
minimum is eight characters (18 characters if the file version level is greater than 3)
more than the maximum disk space required to represent a single record, as
described above.

e. The minimum block size must be at least the value of the MINIMUM-BLOCK-SIZE
keyword (see page 344) of the RUN-INDEX-FILES configuration record. If not
specified, the default of this parameter is 1024.

6. If the block size is rounded to a multiple of a “nice” block size, which is controlled by the
ROUND-TO-NICE-BLOCK-SIZE keyword (see page 344) of the RUN-INDEX-FILES
configuration record, the actual block size chosen is the greater of the minimum block
size and specified block size (or the default block size if no BLOCK CONTAINS clause
is present), rounded up to a multiple of 512 (under Windows) or the value of BUFSIZ,
taken from the C include file <stdio.h> (under UNIX). If the block size is not rounded to
a multiple of a “nice” block size, the actual block size chosen is the lowest multiple of the
specified block size (or the default block size if no BLOCK CONTAINS clause is
present) that is not less than the minimum block size.

7. If the computed actual block size does not meet all the following restrictions, the indexed
file description is invalid and the file cannot be opened:

a. The actual block size must not exceed 65489.

b. If key entries are compressed, the actual block size must not exceed 65499 less four
times the length of the longest key. If no alternate record key allows duplicates, the
limit is 65515 less four times the length of the longest key.

c. If key entries are uncompressed, the actual block size must not exceed 65526, less
the length of the longest key. If no alternate record key allows duplicates, the limit is
65530, less the length of the longest key.

RESERVE Clause (Indexed File Control Entry)

The RESERVE clause is ignored. Buffer memory is automatically managed based on the
amount of activity of a particular file. See File Buffering (on page 233).

CODE-SET Clause (Indexed File Control Entry or File Description
Entry)

The CODE-SET clause determines the character set used to represent the indexed file on disk.
For example, if the CODE-SET is EBCDIC, all records written to the file will be translated
from ASCII to EBCDIC. The CODE-SET specified when an indexed file is created is a
permanent attribute of the file, and will be used whenever the file is accessed by a program
not specifying a CODE-SET. However, a program may specify a different CODE-SET than
that used to create the file, and that code set will be used for the duration of the program.

Chapter 8: RM/COBOL Features

246 RM/COBOL User's Guide

COLLATING SEQUENCE Clause (Indexed File Control Entry)

The COLLATING SEQUENCE clause allows a program to determine the collating function
used when comparing keys in an indexed file (for example, whether uppercase and lowercase
letters are to be treated identically). The collating function specified when an indexed file
was created is a fixed attribute of the file. If a program opening an indexed file specifies a
COLLATING SEQUENCE clause, the specified collating function must be identical to that
specified when the file was created.

WITH NO LOCK Phrase (READ Statement)

A READ statement with the NEXT phrase and without the WITH NO LOCK phrase that fails
because the record is locked does not modify the file position indicator and the contents of the
record area are undefined. The record is not read and the program should not depend on the
contents of the record area being unchanged. A subsequent READ statement will behave as if
the failing READ statement had never been issued.

A READ statement with the WITH NO LOCK phrase may be used to read a record without
regard to the lock status of the record. If an OPEN INPUT statement opened the file, the
WITH NO LOCK phrase is assumed on all READ statements on the file.

If the file control entry does not contain a FILE STATUS clause or there is no USE
declarative procedure defined for a file, record lock status is not reported to the program.
Instead, the runtime system waits for the record to become unlocked. By using the FATAL-
RECORD-LOCK-TIMEOUT keyword (see page 338) in the RUN-FILES-ATTR
configuration record, the runtime system can be made to return a fatal error instead of waiting
indefinitely. If the record is locked using a different file descriptor in the same run unit, then
the runtime system never waits. Instead, to prevent a deadlock situation, it returns an error
indicating that the record is locked.

If the file control entry does contain a FILE STATUS clause and there is a USE declarative
procedure defined for a file, the record lock status is normally reported to the program
immediately by calling the USE procedure. By using the USE-PROCEDURE-RECORD-
LOCK-TIMEOUT keyword (see page 341) in the RUN-FILES-ATTR configuration record,
the runtime system can be told how long to wait before calling the USE procedure. If the
record is unlocked during this time, the USE procedure is not called.

File Allocation

As an indexed file grows in size, the runtime system allocates additional blocks to the file.
The number of blocks allocated is determined by the allocation increment. The default
allocation increment is eight blocks; a different allocation increment may be set with the
Define Indexed File (rmdefinx) utility (see page 594). A larger allocation increment may
improve performance when writing records to the file, by reducing the number of operating
system allocation requests. A smaller allocation increment may yield less wasted space.

Unused blocks in an indexed file are kept on the empty block list. The format of this list is
determined by the file version number. For more information, see Indexed File Version
Levels (on page 253). Beginning with file version number 2, a new list format and algorithm
are used to maintain the empty block list in order to increase performance when adding
records to the file. This new algorithm keeps track of the first unused empty block in the
file, which is followed only by other unused empty blocks, and avoids reading those blocks
from the disk when they are used. New files are created with a version number of 4, although
this default can be changed with the DEFAULT-FILE-VERSION-NUMBER keyword (see
page 342) of the RUN-INDEX-FILES configuration record. The version number can also be

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 247

changed on existing files or set when creating new files with the Define Indexed File
(rmdefinx) utility.

When a file version number is set to 2, the minimum write version number of the file is also
set to 2 in order to prevent previous versions of RM/COBOL from attempting to modify the
empty block list. The minimum read version number of the file is not changed. Files with a
version number of 2 can be read but not modified by versions of RM/COBOL prior to version
6. If an OPEN OUTPUT is performed on a file with version number of 2 by a runtime system
prior to version 6, the file version number and minimum write version number will be reset to
0, and the previous style of the empty block list will be used.

File Size Estimation

Use the following formulas to set upper and lower bounds on the number of characters that
are required to store the file, ignoring data and key compression. Of course, with record data
compression and key compression, the actual disk space required for records and keys varies
greatly with the contents of the records.

In these formulas, “ceiling” means rounding up and “floor” means rounding down.

For example:

7.145

has a ceiling of 8 and a floor of 7.

Variables - A = allocation increments in blocks
 B = block size in bytes
 Kn = length of nth key in bytes
 MaxL = maximum record size
 MinL = minimum record size
 N = number of keys
 Nd = number of keys that allow duplicates
 R = number of records

Subtotals - H = 1
 H = H + 2 if code-set is enumerated
 H = H + 1 if collating sequence is enumerated

 If N > floor ((B - 256)/36) then
 H = H+ceiling((N-((B-256)/36))/((B-6)/36))

 If records are compressed:
 MaxD = ceiling(R/(floor((B-8)/(MaxL+4+
 (4*Nd)+ceiling(MaxL/127)))))
 MinD = ceiling(R/(floor((B-8)/(ceiling
 (MinL/65)+4+(4*Nd)))))

 If records are uncompressed:
 MaxD = ceiling(R/(floor((B-8)/
 (MaxL+4+(4*Nd)))))
 MinD = ceiling(R/(floor((B-8)/
 MinL+4+(4*Nd)))))

 For each key n, 0 through N-1:
 TOn = 4
 TOn = TOn+4 if key n allows duplicates

Chapter 8: RM/COBOL Features

248 RM/COBOL User's Guide

 If key compression is enabled:
 TOn = TOn+2
 MaxTEn = floor((B-10)/TOn)
 MinTEn = floor((B-10)/(2*(TOn+Kn)))
 MaxLEn = floor((B-10)/(TOn+1))
 MinLEn = floor((B-10)/(2*(TOn+Kn+1)))

 If key compression is not enabled:
 MaxTEn = floor((B-10)/(TOn+Kn))
 MinTEn = ceiling(MaxTEn/2)
 MaxLEn = floor((B-10)/(TOn+Kn+1))
 MinLEn = ceiling(MaxLEn/2)

 For each key n:
 MaxLBn = ceiling(R/MinLEn)
 MinLBn = ceiling(R/MaxLEn)
 MaxTHn = ceiling(Log10(MaxLBn)/Log10(MinTEn))
 MinTHn = ceiling(Log10(MinLBn)/Log10(MaxTEn))
 MaxWn = ceiling(MaxLBn/(MinTEn**(MaxTHn-1)))
 MinWn = floor(MinLBn/(MaxTEn**(MinTHn-1)))
 MaxTBn = 1+MaxWn*(((MinTEn**
 (MaxTHn-1))-1)/(MinTEn-1))
 MinTBn = 1+MinWn*((MaxTEn**
 (MinTHn-1))-1)/(MaxTEn-1)

Totals - MaxFB = H+MaxD+Sum(MaxLBn+MaxTBn)
 MinFB = H+MinD+Sum(MinLBn+MinTBn)
 MaxSize = (A*ceiling(MaxFB/A))*B
 MinSize = (A*ceiling(MinFB/A))*B

For example, suppose a single key indexed file of 2000 records is written. Every record is
100 bytes long. The prime record key is 15 bytes. Assume a default block size of 512 bytes,
allocation increment of 8 blocks, the default compression state, and that key compression and
record compression are enabled. No code-set or collating sequence is specified.

Variables - A = 8
 B = 512
 K0 = 15
 MaxL = 100
 MinL = 100
 N = 1
 Nd = 0
 R = 2000

Subtotals - H = 1
 MaxD = ceiling(2000/(floor((512-8)/(100+
 4+(4*0)+ceiling(100/127)))))
 = 500

 MinD = ceiling(2000/(floor((512-8)/
 (ceiling(100/65)+4+4(4*0)))))
 = 24
 TO0 = 4
 TO0 = 4+2
 = 6
 MaxTE0 = floor((512-10)/6)
 = 83

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 249

 MinTE0 = floor((512-10)/(2*(6+15)))
 = 11

 MaxLE0 = floor((512-10)/(6+1))
 = 71
 MinLE0 = floor((512-10)/(2*(6+15+1)))
 = 11

 MaxLB0 = ceiling(2000/11)
 = 182
 MinLB0 = ceiling(2000/71)
 = 29

 MaxTH0 = ceiling(Log10(182)/Log10(11))
 = 3
 MinTH0 = ceiling(Log10(29)/Log10(83))
 = 1

 MaxW0 = ceiling(182/(11**(3-1)))
 = 2
 MinW0 = floor(29/(83**(1-1)))
 = 29

 MaxTB0 = 1+2*(((11**
 (3-1))-1)/(11-1))
 = 25
 MinTB0 = 1+29*((83**
 (1-1))-1)/(83-1)
 = 1
Totals - MaxFB 1+500+(182+25)
 = 708
 MinFB = 1+24+(29+1)
 = 55
 MaxSize = (8*ceiling(708/8))*512
 = 364544
 MinSize = (8*ceiling(55/8))*512
 = 28672

This file will require between 28672 and 364544 bytes, depending on the contents of the
records and the order in which the records are written. Since, in most cases, the key and data
compression will save much less than all the bytes in the keys and records, the actual file size
will probably be nearer to the maximum size than to the minimum size.

Temporary Files
The sort-merge facility of RM/COBOL makes use of temporary files for its intermediate sort
files. These files are given unique names and are placed in the current directory and the
current disk drive.

The choice of the directory in which to place the temporary files under Windows may be
changed by use of the environment variables TMP or TEMP. If both variables are set, the
value of TMP is used. Assign the environment variable a value before executing the
RM/COBOL program. Under Windows, a synonym may be set in the Windows registry
database. Under UNIX, the TMPDIR environment variable is used.

Chapter 8: RM/COBOL Features

250 RM/COBOL User's Guide

Indexed File Performance
RM/COBOL indexed files contain data records and indexes to these data records. The index
structure is based on B+ trees, described by D. E. Knuth and others. The index for each
record key is maintained as a separate tree in the file. Each tree consists of nodes that contain
key values and pointers to records or to other nodes. If an index node can contain N keys and
pointers, a file of N or fewer records can be indexed by a single node. A file containing N*N
records may be indexed by two levels of nodes, a root node of N entries pointing to N leaf
nodes, each leaf node containing N entries pointing to records. Each random access to an
indexed file requires that the entire index tree be traversed from the root node through any
intermediate nodes to the leaf node and finally to the desired data record. Write operations to
a file require adding the data record to the file, adding each key of the record to the
appropriate index tree, possibly creating new leaf and intermediate nodes, or even creating a
new root node and increasing the height of the index tree.

Since modifications to an indexed file require updating the index tree for each key added,
changed, or deleted, one way to improve performance is to reduce the number of record keys.
An application may use an index key to rapidly find a particular record. Some applications
use record keys simply to sort records for report generation. If a record key is used only to
access records in a particular order when generating a report, consider removing that record
key and sorting the records with the SORT verb when the report is generated. Not only will
this reduce the number of disk operations by using the more efficient sort algorithm, but it
will also perform the operations only when the report is requested. When an index key is
used to select a subset of the file’s records for a report, the same selection can be performed
with a SORT INPUT PROCEDURE.

The index tree manipulation algorithms are designed to keep each index node at least half full
of entries. When records are written in ascending order by key, the algorithms can completely
fill each index node with entries, reducing both the tree height and the size of the file. This
improves performance by reducing both the number of disk operations and the required arm
movement for the operations performed. If a file is infrequently modified, it should be built
in ascending order by the key most frequently used to access the records.

In-Memory Buffering
Disk operations can be reduced by keeping file fragments in memory as long as possible.
Subsequent accesses to the same information use the copy in memory instead of rereading the
information from disk. This technique of in-memory buffering of data is the single most
effective method of improving performance.

RM/COBOL files offer two levels of in-memory buffering of data: buffering by the operating
system and buffering by the runtime system. A combination of the two seems to yield the
best performance. Both UNIX and Windows provide buffering automatically. Additional
memory may be dedicated to the buffering of disk data by further increasing the number of
operating system buffers, or by increasing the size of the memory pool that the runtime
system uses for disk buffers. The size of the memory pool may be increased through use of
the BUFFER-POOL-SIZE keyword (see page 336) on the RUN-FILES-ATTR configuration
record.

Runtime system disk buffers, like the operating system buffers, are shared among all files
opened by an application. Runtime system buffering is especially useful in a network
environment. When a file is shared over a network, the operating system is unable to perform
any buffering. Every WRITE operation must be sent to the remote machine and every READ
operation must receive the data from the remote machine. With runtime system buffering of
index files, at the beginning of each operation the runtime system determines which buffers

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 251

still contain valid data and which contain data that may have been modified by an application
on another machine. This significantly reduces the number of remote READ operations
required (although all modified data must still be written to the remote machine).

Providing sufficient space in the buffer memory pool can supply the runtime system with
enough buffers to work efficiently.

The optimal number of buffers for a particular file depends on the operations being performed
and the height of each index tree. The height of the index trees for a particular indexed file
may be obtained with the Map Indexed File (rmmapinx) utility (see page 590). If a file is
being read randomly by only a single key, the minimal number of buffers that will improve
performance is the height of the particular key’s index tree, plus one. Fewer buffers than this
number require that all index nodes be read for each operation. Increasing the number of
buffers above this minimum increases the probability that needed nodes already will be in
memory. WRITE operations require that every key be updated. It is desirable that the
number of buffers available be greater than the sum of the heights of all trees. Short of this
number, buffers equal to the height of the tallest tree plus one should be available. Again,
increasing the number of buffers above the minimum increases the probability that required
nodes will already be in memory.

Once the desired number of buffers is known, the amount of space to allocate in the buffer
pool can be computed by using the following calculations:

N = Desired Number of Buffers
BSz = Size of Buffer1
NBSeg = Number of Buffers per Segment = INT(65496/BSz)
NSeg = Number of Segments = INT(N/NBSeg)
PSz = Pool Size = NSeg*65496 + (N – NSeg*NBSeg)*BSz

If more than one file is expected to be active at the same time, the computed Pool Size (PSz)
for the files usually can be added together, especially if the files have the same buffer size.
(In fact, if the files have the same buffer size, it is best to add the number of desired buffers
together and make the calculation using that number.) However, if the files have different
buffer sizes and the difference between the buffer size and the block size of the file having the
larger buffer size is greater than the buffer size of another active file, the amount of space
required will be less than the sum of the separate buffer pool size calculations for the two
files. (Recall that the buffer size is computed from the block size rounded to the next power
of two. Not all that space, however, is in use by the buffer; only the block size rounded up to
the next multiple of 512. The remainder is available for use by other buffers.)

Altering the Size of Indexed File Blocks
RM/COBOL indexed files are accessed in fixed-size fragments called blocks. The size of
these blocks is determined by the application with the BLOCK CONTAINS clause. The
default block size is the smallest multiple of the disk sector size sufficient to contain one
record or an index node. In general, this default block size is also the optimal choice.
Although larger block sizes allow more entries in an index node and thus reduce the height of
the index trees, this reduction in height is usually not sufficient to compensate for the reduced
number of buffers available. Doubling a file’s block size usually reduces the height of the
trees by much less than a factor of 2. This means that if the memory available for buffers is
just sufficient to contain the height of the tree at the smaller block size, it will no longer be
sufficient at the larger block size. If there is insufficient memory even with a block size of
only one sector for the desired minimal number of buffers discussed above (for example, the

1 The size of the buffer (BSz) is computed by rounding the block size up to the next power of two. If this is less than 512, use

512 instead.

Chapter 8: RM/COBOL Features

252 RM/COBOL User's Guide

sum of the heights of the index trees when write operations are performed), a larger block size
may improve performance. If the application does choose a block size greater than the
default, this block size should still be a multiple of the disk sector size; otherwise, whenever a
block is written, the operating system must read a sector of the disk, modify the block data in
the sector, and rewrite the sector to disk.

Controlling the Length of Record Keys
The length of record keys affects indexed file performance by affecting the height of the index
trees. Each index node consists of as many pairs of keys and pointers as fit in a block. A
longer key means fewer entries, and increases the number of disk operations. Key length is
especially significant if uncompressed keys are requested. When key compression is enabled
for a file, leading characters in an entry that duplicate the preceding entry and trailing space
characters are removed. This reduces the node entry to its significant characters, reducing an
entry whose key is equal to its preceding entry to only 10 bytes.

Whether a key allows or prohibits duplicates affects performance primarily as it affects the
tree height. Node entries that allow duplicates are four bytes longer than node entries that
prohibit duplicates. If the key length were very short, the height of the index tree may
increase. Each key that allows duplicates also increases the length of the data record
representation by four bytes. This is usually insignificant, but it may increase the size of the
file and degrade performance if the records are very short or if a large number of keys allow
duplicates. Of course, any file with a large number of keys may be expected to have poorer
performance than a file with a relatively small number of keys. If there are fewer buffers
available than the sum of the heights of the index trees, keys that prohibit duplicates degrade
performance more than keys that allow duplicates. When a write request is made, every key
that prohibits duplicates must be checked to see if the record to be written will create an
illegal duplicate key value. When insufficient disk buffers are available, this will cause some
additional disk operations.

Record length affects indexed file performance by placing a lower limit on the block size,
perhaps forcing the block size to be larger than one sector, increasing the transfer time and
reducing the number of buffers that will fit in available memory. Large record lengths also
affect indexed file performance by increasing the disk space required by the file.
RM/COBOL indexed files support variable-length records, using only sufficient disk space to
contain the actual record data. Converting fixed-length records to variable-length records,
however, is not necessary to improve performance. With data record compression enabled,
fixed-length records with trailing space filled fields are almost as small as variable-length
records. Of course, larger data records require more disk space. This can reduce the
effectiveness of the disk buffers by reducing the percentage of the file that can be kept in
memory and thus the probability that a desired file block will already be in memory.

Correct Data Recovery Strategy
RM/COBOL indexed files support several optional data recovery strategies that determine
when and how much data should be written to the operating system or disk when the
application executes a file modification statement. Enabling a data recovery strategy that
does not defer I/O operations degrades performance. This is especially true if index tree
modifications are written in addition to data record modifications, since a single record
operation may cause many index modifications. Of course, the user might consider disabling
a data recovery strategy to be a performance problem if the machine is turned off without
exiting the application and hours of data entry are lost.

Chapter 8: RM/COBOL Features

 RM/COBOL User's Guide 253

Using Key and Data Compression
RM/COBOL indexed files support key compression, in which leading characters of an index
node entry key that match the preceding entry and trailing space characters are removed from
the entry. This is usually a performance benefit, by increasing the number of entries in an
index node, decreasing the height of the tree, decreasing the size of the file, and decreasing
the number of disk operations. An exception occurs when sufficient buffers can be reserved
to contain all or almost all of a file’s index trees. This will make the file operations compute
bound instead of disk bound. Changing the file to have uncompressed keys may improve
performance. Typically, this occurs when running small benchmark programs with all of the
memory reserved for disk buffers. Key compression may also degrade performance when
numeric keys are used or when the key length is only 1 or 2, by unnecessarily adding two
compression overhead characters to keys, which, in fact, compress by fewer than three
characters.

RM/COBOL indexed files support data record compression, in which repeated characters in a
data record are replaced by a single compression character. Since the compression algorithm
operates on all repeated characters, not just repeated zeros and spaces, this compression
almost always results in less disk space for each data record, less disk space for the entire file,
less arm movement when reading the file, and fewer disk operations to access the file. It may
not be beneficial on very short data records, and data records that are artificially forced to be
incompressible. It also yields anomalous results when a file is initially created with records
that are almost all spaces, and these records are then rewritten with the actual data.

Using RM/COBOL Facilities
The WITH LOCK phrase on the OPEN statement may be used to improve the performance of
exclusively accessed files in a network environment. When files are shared, at the beginning
of each operation the runtime system must lock the file, read the header of the file to
determine which buffers no longer contain valid data, and lock the record being modified.
The file, and sometimes the record, is unlocked at the end of the operation. If a file should be
opened by only one user at a time, then opening the file WITH LOCK avoids the locking and
validation overhead on each operation. With a sufficient number of buffers, this can make the
difference between four network transactions and zero network transactions to perform an
operation.

Some applications may be written to delete and write a record when the record contents are
changed, instead of using a REWRITE statement. A REWRITE statement always yields
better performance than the DELETE and WRITE statements. This is because there is always
at least one key whose value has not been changed, the prime record key. The index trees for
unchanged keys need not be updated and, except for the prime record key, need not even be
accessed.

Indexed File Version Levels
Over time, the structure of RM/COBOL indexed files has changed in order to support new
features or improved performance. Each indexed file is marked with an indexed file version
level number that identifies the structure used for that file, which is established at the time the
file is created. The various indexed file version levels are individually described in the
following paragraphs. In addition, an explanation of how to change an indexed file from one
version level to another, either up or down, is provided.

Chapter 8: RM/COBOL Features

254 RM/COBOL User's Guide

File Version Level 0

Indexed files with a version level of 0 have the original RM/COBOL indexed file structure.

File Version Level 2

Indexed files with a version level of 2 have a modified structure that can improve
performance when adding records to the file. This feature is most noticeable when the file has
been opened WITH LOCK. Files with a version level of 2 can be read but not modified by
versions of RM/COBOL prior to version 6. Although by default, files are created with a
version level of 2, this can be changed by using the DEFAULT-FILE-VERSION-NUMBER
keyword (see page 342) of the RUN-INDEX-FILES configuration record.

File Version Level 3

Indexed files with a version level of 3 can grow to a larger size than those with a version level
of 0 or 2. When creating a file with a version level of 3, the LARGE-FILE-LOCK-LIMIT
keyword (see page 339) of the RUN-FILES-ATTR configuration record is used to determine
the largest address that can be locked in the file. This value is also stored in the file header,
allowing different files to have different lock limit values. Files with a version level of 3
cannot be read or written by prior versions of RM/COBOL. See the discussion on how to
change the default indexed file version number to 3 using the DEFAULT-FILE-VERSION-
NUMBER keyword (see page 342) of the RUN-INDEX-FILES configuration record.

File Version Level 4

Indexed files with a version level of 4 have new integrity features, including support for
atomic I/O. Files with a version level of 4 cannot be read or written by RM/COBOL versions
prior to version 7.5.

In addition, files with a version level of 4 may, like those with a version level of 3, grow to a
larger size than those with a version level of 0 or 2. However, when creating a file with a
version level of 4, the value of the USE-LARGE-FILE-LOCK-LIMIT keyword (on page 344)
of the RUN-INDEX-FILES configuration record determines whether the LARGE-FILE-
LOCK-LIMIT keyword (on page 339) or the FILE-LOCK-LIMIT keyword (on page 338) of
the RUN-FILES-ATTR configuration record is used to determine the largest address that can
be locked in the file. See the discussion on how to change the default indexed file version
number to 4 using the DEFAULT-FILE-VERSION-NUMBER keyword (on page 342) of the
RUN-INDEX-FILES configuration record.

Changing the File Version Level

The Define Indexed File (rmdefinx) utility (see page 594) can be used to change the version
level of an existing file or to change the lock limit stored in the indexed file header for
versions 3 and later. If the version level is changed, it may also be necessary to run the
Indexed File Recovery (recover1) utility (see page 599). The Define Indexed File (rmdefinx)
utility will indicate whether it is necessary to run the Indexed File Recovery (recover1)
utility. Generally, when changing the version level to or from level 0 or to or from level 4,
the Indexed File Recovery (recover1) utility must be run.

Chapter 9: Debugging

 RM/COBOL User's Guide 255

Chapter 9: Debugging

RM/COBOL provides an interactive debugging facility, the RM/COBOL Interactive
Debugger (called Debug).

This chapter describes the concepts, structure, and use of Debug along with each of the Debug
commands, as follows:

• Invoking a program for Debug (see the following topic)

• General Debug concepts (see page 257)

• Debug references (see page 260)

• Screen positions (see page 261)

• Data address development (see page 261)

• Regaining control (see page 265)

• Debug command prompt (see page 265)

• Debug error messages (see page 266)

Invoking a Program for Debug
In order to execute programs for debugging, enter the D Option (see page 194) in the
RM/COBOL Runtime Command. Any compiled RM/COBOL program is ready to be run
under control of Debug. In general, no special Compile Command options or compilation
steps are required. However, if data references are to be specified in the D (Display),
M (Modify), T (Trap), and U (Untrap) Debug Commands, you need to enter either the
A Option (see page 154) or Y Option (see page 159) of the RM/COBOL Compile Command
(you may need to enter both).

Any program within the run unit that was compiled with the Q Compile Command Option
will not contain any debugging information and will, therefore, appear “invisible” to Debug.

Table 31 summarizes the RM/COBOL Debug command options in alphabetical order for
quick reference. More detailed explanations of each command begin on page 271.

Chapter 9: Debugging

256 RM/COBOL User's Guide

Table 31: RM/COBOL Debug Command Options

Command Description

A (Address Stop)
(see page 271)

Sets a single-time breakpoint at a specific procedure division
statement, paragraph, or section, and resumes program execution
from the current location.

A [line [+ intraline] [, [prog-name] [, [count]]]]

B (Breakpoint)
(see page 272)

Sets a multi-time breakpoint at a specific procedure division
statement, paragraph, or section, or displays all currently active
breakpoints when the optional command operand is omitted.

B [line [+ intraline] [, [prog-name] [, [count]]]]

C (Clear)
(see page 273)

Clears an active breakpoint that has been set with the A or B
Commands or clears all active breakpoints when the optional
command operand is omitted.

C [line [+ intraline] [, [prog-name]]]

D (Display)
(see page 274)

Displays the value of a specified data item on the screen.

Identifier Format

D name-1 [{ IN | OF } name-2] … [script] [refmod]
 [, { type | { * | & } [type] }] [# alias]

Address-Size Format

D [base :] address [+ occur-size * occur-num] …, size ,
 [type] [# alias]

Alias Format

D # alias

E (End)
(see page 277)

Ends debugging and resumes program execution.

E

L (Line Display)
(see page 277)

Specifies a line on the monitor screen at which command input
echoes and Debug responses are to be displayed.

L [line-display]

M (Modify)
(see page 278)

Modifies the value of a specified data item.

Identifier Format

M name-1 [{ IN | OF } name-2] … [script] [refmod]
 [, { type | { * | & } [type] }] [# alias] , value

Address-Size Format

M [base :] address [+ occur-size * occur-num] …, size ,
 [type] [# alias] , value

Alias Format

M # alias , value

Q (Quit)
(see page 281)

Quits debugging and program execution; control is returned to the
operating system immediately as if a STOP RUN statement had been
executed.

Q

Chapter 9: Debugging

 RM/COBOL User's Guide 257

Table 31: RM/COBOL Debug Command Options

Command Description

R (Resume)
(see page 282)

Resumes program execution at the current location or at a specific
procedure division statement, paragraph, or section specified in
the command.

R [statement-address]

S (Step)
(see page 282)

Steps to the start of the next statement, paragraph, or section a
specified number of times while tracing execution at each statement
step. If P and S are omitted, a statement step is done. P specifies a
step to next paragraph. S specifies a step to next section. A single
step is done if count is omitted.

S [P | S][count]

T (Trap)
(see page 283)

Monitors the value of a specified data item, and suspends execution
whenever a change in that value occurs; that is, activates a data trap
or displays all activated data traps.

Identifier Format

T name-1 [{ IN | OF } name-2] … [script] [refmod]
 [, { type | { * | & } [type] }] [# alias]

Address-Size Format

T [base :] address [+ occur-size * occur-num] …, size ,
 [type] [# alias]

Alias Format

T # alias

Display All Traps Format

T

U (Untrap)
(see page 286)

Clears some or all currently activated data traps.

Identifier Format

U name-1 [{ IN | OF } name-2] … [script] [refmod]
 [, { type | { * | & } [type] }]

Address-Size Format

U [base :] address [+ occur-size * occur-num] …, size ,
 [type]

Alias Format

U # alias

Clear All Traps Format

U

General Debug Concepts
This section highlights some general concepts about Debug.

Chapter 9: Debugging

258 RM/COBOL User's Guide

Statements
Debug considers section-names, paragraph-names and procedural statements to be
statements for the purpose of setting breakpoints (see page 258), stepping (see page 258),
execution counts (seee page 258) or program area references (see page 260). Procedural
statements are those RM/COBOL statements that begin with a Procedure Division verb (for
example, IF, ADD, MOVE, READ, PERFORM, GO, STOP, and so forth).

Breakpoints
Breakpoints can be set for any statement. When the RM/COBOL runtime system encounters
a breakpoint, it stops before it executes the statement at which the breakpoint is set. At this
point, using the appropriate Debug commands, you can examine and modify the value of data
within the program. Note that line numbers are used to indicate breakpoints. Breakpoints
may be set for lines that have no statement (such as comment lines), but this does not cause a
stop in response to the breakpoint. Any number of breakpoints can be set.

Traps
Traps are used to compare the current value of a data item to its last known value, to see if a
change has occurred. Whereas breakpoints stop program execution before the statement at
which the breakpoint was set, traps wait until the statement has completed, then compare for a
change in value. If such a change occurs, program execution is suspended and the current
value of the data item appears. Any number of traps can be set.

Stepping
When you step through the program, you direct that execution halt before the next statement,
paragraph, or section is executed.

Execution Counts
You can specify the number of times a breakpoint is to be ignored before Debug halts the
program. For example, if you set a breakpoint at line 100 and specify an execution count of
15, upon resumption of execution the statement at line 100 will be executed 14 times. When
the statement is encountered the 15th time, Debug will halt the program before executing that
statement. If the statement is not executed the specified number of times before execution
ends, execution will not stop in response to the breakpoint.

The maximum value for an execution count is 65535.

Line and Intraline Numbers
References to statements are made by a line number, optionally modified by an intraline
value. For example:

150 MOVE A TO B, MOVE B TO C, MOVE C TO D1

Chapter 9: Debugging

 RM/COBOL User's Guide 259

There are three procedural statements here: the first—MOVE A TO B—is referenced only
by the line number 150. The second statement in the line—MOVE B TO C—is referenced
by the line number and the intraline number (or offset): in this case, 150 + 1. And the third
statement—MOVE C TO D—is referenced by the line number and its intraline number:
150 + 2.

Debug Values
All numeric values used by Debug (for instance, to specify an address) are entered and
displayed as decimal numbers. For more information, see Data Address Development (on
page 261).

Data Types
Certain Debug commands allow (and, in some cases, require) you to enter a value for type.
type indicates the type of data item. This makes Debug aware of the internal representation of
the data item specified. The value of type is generally the value shown for the data item in the
Debug column (see page 169) of the allocation map. However, other values may be specified
for type if you want the data item decoded according to a different representation.

The allowed values for type are listed in Table 32.

Table 32: Valid Data Type Indicators

Data Type Meaning Category (Usage)

ABS Alphabetic string Alphabetic (DISPLAY)

ABSE Alphabetic string edited Alphabetic edited (DISPLAY)

ANS Alphanumeric string Alphanumeric (DISPLAY)

ANSE Alphanumeric string edited Alphanumeric edited (DISPLAY)

GRP Group Group (DISPLAY)

HEX Hexadecimal (Override type and use hexadecimal string
for data item value)

IXN Index-name Index-name

NBS Numeric binary signed Numeric signed (BINARY, COMP-1, or
COMP-4)

NBU Numeric binary unsigned or index
data item

Numeric unsigned (BINARY, COMP-4,
or INDEX)

NBSN Numeric binary signed native Numeric signed (COMP-5)

NBUN Numeric binary unsigned native Numeric unsigned (COMP-5)

NCS Numeric computational signed Numeric signed (COMP, as unpacked-
decimal)

NCU Numeric computational unsigned Numeric unsigned (COMP, as unpacked-
decimal)

NLC Numeric leading combined signed Numeric signed, leading combined
(DISPLAY)

NLS Numeric leading separate signed Numeric signed, leading separate
(DISPLAY)

Chapter 9: Debugging

260 RM/COBOL User's Guide

Table 32: Valid Data Type Indicators

Data Type Meaning Category (Usage)

NPP Numeric packed-decimal positive Numeric unsigned (PACKED-DECIMAL
or COMP-3)

NPS Numeric packed-decimal signed Numeric signed (PACKED-DECIMAL or
COMP-3)

NPU Numeric packed-decimal unsigned Numeric unsigned (COMP-6)

NSE Numeric string edited Numeric edited (DISPLAY)

NSU Numeric string unsigned Numeric unsigned (DISPLAY)

NTC Numeric trailing combined signed Numeric signed, trailing combined
(DISPLAY)

NTS Numeric trailing separate signed Numeric signed, trailing separate
(DISPLAY)

PTR Pointer Data pointer (POINTER)

Note An NBS (Numeric Binary Signed) data item can be defined with COMP-1, COMP-4, or
BINARY usage. COMP-1 usage always defines an NBS data item. COMP-4 and BINARY
usage define an NBS data item when the PICTURE character-string contains the symbol S,
thus indicating the data item is signed; otherwise, COMP-4 and BINARY usage define an
NBU (Numeric Binary Unsigned) data item.

Debug References
There are a number of ways to refer to specific lines of code or to specific data items within
an RM/COBOL program.

Program Area References
You can refer to statements by the line number as it exists in your source program, by an
intraline number if more than one statement is on a source line, and by a program-name as it
appears in the PROGRAM-ID paragraph in the Identification Division.

Data Item References
A data item can be referred to by its address and size, plus the specific occurrence (subscript)
information if defined within an OCCURS clause, plus the argument number if defined within
the Linkage Section or the external number if defined with the external attribute. A data item
may be referred to by its symbolic name if the symbol table is included in the object program
(see the discussion of the Y Compile Command Option on page 159).

Chapter 9: Debugging

 RM/COBOL User's Guide 261

Screen Positions
You can request that Debug screen displays appear on a particular line. This feature is useful
when you are debugging interactive programs (those that accept and display information on
the screen) because it minimizes the risk of overwriting a program display with Debug
commands or messages. For instance, if your screen display uses lines 10 through 25, you
can direct that Debug commands and messages be displayed on line 6.

Data Address Development
Several Debug commands require you to specify particular data items, or specific occurrences
of specific data items. Debug provides three ways for you to enter this information:

1. Identifier Format (see page 261)

2. Address-Size Format (see page 263)

3. Alias Format (see page 265)

All three methods can be used during a single Debug session if the conditions required for
their use are satisfied. Only one method can be used for an individual Debug command.

Identifier Format
The identifier format is similar to the source format for identifier specification. This method
requires that you specify (or configure) the Y Compile Command Option (see page 159),
which outputs the symbol table to the object file for use by Debug. If the symbol table is
absent from the object file, this format cannot be used.

The syntax is as follows:

name-1 is a name declared as a constant-name, data-name, or index-name in the Data
Division of the current program or a constant-name, data-name, or index-name with the
global attribute in a program that contains the current program. name-2 is a qualifier for
name-1. References to alphabet-names, cd-names, class-names, condition-names, file-
names, mnemonic-names, paragraph-names, program-names, screen-names, section-
names and symbolic-characters are not allowed, except that a file-name or cd-name may
appear as the final qualifier of a data-name. The sequence of names must form a valid
qualified reference to a data item, according to the rules for source program data
references. A constant-name may be specified only in the D (Display) Command.

script is required if the data item referenced by name-1 is a table element. If it is not, do
not specify script. The format for script is as follows:

name-1 [{ IN | OF } name-2] … [script] [refmod]
 [, { type | { * | & } [type] }] [# alias]

(integer-1 [[,] integer-2] …)

Chapter 9: Debugging

262 RM/COBOL User's Guide

integer-n is a sequence of one or more decimal digits. Parentheses are required.
Either commas or spaces can separate the integers. The number of integers must
match the number of OCCURS clauses in the hierarchy of data description entries
for the data item referenced by name-1. The value of integer-n is interpreted as an
occurrence number in the same way as a literal subscript in the source program.

refmod selects a subfield of the data item in the same manner as a reference modification
in the source program. It has this format:

offset is a string of decimal digits whose value ranges from 1 to the length of the data
item referenced by name-1. The parentheses and the colon following offset are
required.

length is a string of decimal digits whose value ranges from 1 to the remaining length
of the data item referenced by name-1, after offset has been applied. Failure to
specify length requests the maximum length from offset to the end of the data item
referenced by name-1.

type specifies the type of data item referenced. If this parameter is omitted, type defaults
to the type of the named data item except when a type modifier is specified. (See the list
of valid data types in Table 32 on page 259.) The type value IXN may be used only with
index-names and, when the named data item is an index-name, the only permissible type
value is IXN. The type value PTR may be used only with pointer data items and, when
the named data item is a pointer data item, the only permissible type value is PTR, except
when a type modifier is specified.

The type modifiers * and & have the following effect:

• The * type modifier indicates an indirect reference; that is, a reference to the data
item referenced by a pointer data item value. The data item specified in the
command must be a pointer data item (data type PTR). In this case, type, if
specified, indicates the type of the data item referenced by the pointer data item
value. If type is not specified, the default is hexadecimal. If refmod is not specified,
the command refers to the entire effective memory area specified by the pointer data
item value. The effective memory area specified by a pointer data item value begins
with the effective address (pointer.address + pointer.offset) and ends just before the
effective limit address (pointer.address + pointer.length). If refmod is specified for
an indirect reference, refmod is applied to the indirect reference rather than the
pointer data item itself. Thus, refmod may be used to specify an offset and length
(subfield) within the current effective memory area of an indirect reference.

• The & type modifier indicates that the address of the data item specified is the data
item referenced by the command. In this case, the type of the operand will always be
a pointer and, if type is specified, type must be PTR. The D (Display) Command
may use the & type modifier for any data item type except index-names (data type
IXN). The & type modifier may not be used with a constant-name since a constant-
name does not name a data item. The & type modifier may be used in the M
(Modify), T (Trap), and U (Untrap) Commands only if the referenced data item is a
based linkage record because, otherwise, the address is not modifiable.

alias is a name you enter to serve as another name for the data operand specification that
precedes it. If present, alias must follow a pound sign (#). The characters that follow the
must form a valid COBOL word. Only the first three characters of this word are
significant. Once specified, alias can be used in later Debug commands that use the alias
format. For a complete discussion of this format, see Alias Format (on page 265). The

(offset : [length])

Chapter 9: Debugging

 RM/COBOL User's Guide 263

three-character alias must be unique. If you assign the same alias to a different data
operand, it will no longer refer to the earlier operand. When a command defines an alias
and specifies the * (indirect through pointer) type modifier, the indirection is resolved at
the time the alias is defined. In this case, the alias continues to refer to the data item that
that the pointer data item referenced when the alias was defined even if the pointer data
item value has subsequently been changed. When a command defines an alias and
specifies the & (address of data item) type modifier, the address of the data item is
resolved each time the alias is specified using an alias format command.

Address-Size Format
This method requires that you specify the A Compile Command Option (see page 154) to
produce an allocation map in the listing file. This map provides the information that must be
entered in a Debug command employing this method.

The syntax is as follows:

base specifies the base item for formal arguments, based linkage items, and external
items as follows:

• For a USING formal argument, base is specified as U arg-num, where arg-num
specifies the ordinal position of the argument in the USING list of the Procedure
Division header provided in the allocation map of the program listing.

• For a GIVING formal argument, base is specified as G, as shown in the allocation
map of the program listing.

• For a based linkage item, base is specified as B item-num, where item-num specifies
the compiler-assigned based linkage item number provided in the allocation map of
the program listing.

• For an external item, base is specified as X ext-num, where ext-num specifies the
compiler-assigned external number provided in the allocation map of the program
listing.

Note A Linkage Section data item, which is neither a formal argument item nor a based
linkage item, is shown as “Not addressable:” in the allocation map of the program listing.
Since such items have not been used in the source program, the compiler does not
allocate a base pointer item for them and Debug cannot access them.

address specifies the decimal data address of the data item to be displayed, modified or
monitored. The value is obtained from the data allocation map in the compiler listing.

occur-size specifies the size of data items that contain OCCURS clauses in their
definitions. If occur-size is present, the plus sign (+) must appear as well. When a
referenced data item contains an OCCURS clause in its definition, occur-size is equal to
the value of size (defined in this section).

occur-num is the occurrence number for data items with OCCURS clauses in their
definitions.

size specifies the size of the data item to be displayed, modified or monitored. (For IXN
items, size specifies the span of the data item indexed by the index-name.)

[base :] address [+ occur-size * occur-num] … , size ,
[type] [# alias]

Chapter 9: Debugging

264 RM/COBOL User's Guide

type specifies the data type of the data item to be displayed, as it appears in the Debug
column (see page 169) of the data allocation map (see page 167). (Complete details on
the types of data allowed with RM/COBOL are found in Chapter 4: Data Division of the
RM/COBOL Language Reference Manual, and a list of the data types appears in Table 32
on page 259.) If this parameter is omitted, type defaults to hexadecimal. The type
modifiers * (indirect through pointer) and & (address of data item) may not be specified
in the address-size format.

alias is the name you assign to the data item referenced by the preceding entry. For the
full description, see Alias Format (on page 265).

Note that the term:

+occur-size*occur-num

selects specific occurrences of data items in tables.

Look at the program listing and associated data allocation map in Figure 37. Then look at
Figure 38, which shows a developed reference to GRP-2(3).

The effect of this reference is the creation of a developed data address of 946, which appears
as the address on the first line of the data display. Subsequent references to GRP-2(3) may
appear as 946, 471 instead of 4 + 471*3, 471.

Note This developed data address is not the algebraic equivalent of the formula
4 + 471*3. It is the algebraic equivalent of 4 + (471*(3-1)) = 4 + (471*2) = 946.

Figure 37: Data Allocation Map

8

 9 DATA DIVISION.

10 WORKING-STORAGE SECTION.

11 01 GRP-1.

13 02 GRP-2 OCCURS 20.

14 03 FILLER PIC X(6).

 15 03 GRP-3 OCCURS 15.

16 04 FILLER PIC X(5).

 17 04 THE-ITEM PIC 9V9 OCCURS 12.

18 04 FILLER PIC X(2).

Working-Storage Section for program ALLOCMAP

Address Size Debug Order Type [Level] Name

 4 9420 GRP 0 Group 01 GRP-1

 4 471 GRP 1 Group 02 GRP-2

 10 31 GRP 2 Group 03 GRP-3

 15 2 NSU 3 Numeric unsigned 04 THE-ITEM

Chapter 9: Debugging

 RM/COBOL User's Guide 265

Figure 38: Developed Data Address

Alias Format
The alias format allows you to reference a data item or index that had been assigned an
alternate name. Once assigned, the alias applies to that data item until you use it to name
another data item or you end the Debug session.

The general format for referring to an item with an alias is as follows:

is required.

alias must be a valid COBOL word, only the first three characters of which are used.
The alias must be previously defined in an identifier or address-size format specification.

Regaining Control
Debug regains control under the following conditions:

• Breakpoint

• Runtime system error

• Step through a statement, paragraph or section

• Execution of a STOP RUN statement

• Trap

Debug Command Prompt
The Debug command prompt first appears at the lower-left corner (line 25) of the screen. It
looks like this:

address[+occur-size*occur-num],size

4714 4713+ * ,

The size of the data item to be inspected.

The occurrence number (occur-num).

The size of the first order element containing GRP-2 (occur-size).

The address of GRP-2, from the data allocation map.

alias

Chapter 9: Debugging

266 RM/COBOL User's Guide

condition is the name of a condition that has stopped program execution. It may be one
or more of the following:

• BP, which indicates a breakpoint is present.

• DT, which indicates a data trap has occurred.

• ER, which indicates a runtime system error has occurred.

• SR, which indicates the program has executed a STOP RUN statement.

• ST, which indicates program stepping is active.

line is the line on which the next statement to be executed begins. The string “Line?”
appears if the line number is not known.

intraline indicates the next statement to be executed when line contains more than one
statement.

name is the name of the currently executing program.

C?_ is the prompt and cursor.

Any Debug command may be entered when the prompt appears on the screen. If the last
Debug command was an S (Step) Command, you can repeat it by pressing Enter in response
to the prompt.

Debug Error Messages
This section lists and defines the error messages that may be generated during debugging.

Command Error

Indicates that you entered an invalid command character, or a command with inconsistent or
invalid parameter values. The Debug command prompt appears again.

This message is displayed if any errors occur in scanning a reference in address-size format.
Further, this message is displayed after any of the following specific errors are diagnosed.

Address too big

Indicates that the address value specified for a data item in a Debug address-size format is
not correct.

This means that the end of the data item, calculated by summing the address of the data item,
including any subscript calculations, and the length of the data item less one, exceeds the size
of the region containing the data item. If the item resides in the program, the end of the data
item must not exceed the sum of the lengths of the File Section and the Working-Storage
Section. If the item is a Linkage Section item that is, or is subordinate to, a formal argument,
the end of the data item must not exceed the length of the corresponding actual argument
item. If the item is a Linkage Section item that is, or is subordinate to, a based linkage
item, the end of the data item must not exceed the length of the area of memory addressed by

condition line [+ intraline] name C?_

Chapter 9: Debugging

 RM/COBOL User's Guide 267

the pointer value used to set the base address of the based linkage item. If the item is external,
the end of the data item must not exceed the length of the highest level containing the external
item.

Colon (:) expected

Indicates that the colon is misplaced or omitted in the reference modification specified with a
data item address in a Debug identifier format.

A reference modification specification consists of a left parenthesis, a non-zero integer
starting position, a colon, optionally a non-zero integer length, and a right parenthesis. This
message is displayed if the left parenthesis is not followed by a colon, there is no right
parenthesis, or the colon follows the right parenthesis. The reference modification
specification follows a subscript specification, if present.

Dword alignment

Indicates that the address specified for an index-name (Debug type IXN) is not a multiple
of four.

Extraneous characters

Indicates that the command entered to Debug contains characters that are not expected past
the data item specification or modification value.

The D (Display) and T Trap Commands accept an alias identifier of a data item or a data item
specification with an optional alias definition. The M (Modify) Command accepts the same
parameters as a D (Display) Command followed by a modification value. The U (Untrap)
Command accepts the data item specification or alias identifier of a data item with which a
trap is currently associated. No additional characters are accepted.

Identifier expected

Indicates that the first character of what should be an identifier is not alphabetic, numeric,
or hyphen.

An identifier is expected at the start of a Debug reference in an identifier format, following IN
or OF in identifier format, and following the pound sign (#), which identifies an alias.

Identifier not a data item

Indicates that the symbolic identifier specified is a user-defined word in the COBOL source,
but is not a data item.

The Debug commands, D (Display), M (Modify), and T (Trap), allow access to program data
items. The state of user-defined words, such as condition-names or switch-names, which are
not data items, cannot be examined. Examine the source or the allocation map to determine
the data item that contains the field to be accessed.

This error message also occurs if a symbolic identifier specifies a Linkage Section data item
that is neither a formal argument (USING or GIVING) nor a based linkage item. Since such
items have not been used in the source program, the compiler does not allocate a base pointer
item for them and Debug cannot access them.

Chapter 9: Debugging

268 RM/COBOL User's Guide

Identifier refers to constant

Indicates that in a command other than the D (Display) Command, the symbolic identifier
specified refers to a constant-name or is the constant address (& type modifier specified) for a
data item that is not a based linkage data item. Constant-names and constant addresses may
not be specified in the M (Modify), T (Trap), or U (Untrap) Commands.

IN or OF expected

Indicates that the symbolic identifier in a Debug identifier format specification of a data item
is followed by something other than a qualification specification.

If a symbolic name is not followed by the special characters left parenthesis, comma, or
pound sign, it must be followed by IN or OF and the symbolic name of a higher-level
data item.

Incorrect number of subscripts

Indicates that too few subscripts are provided with a data item in a Debug identifier format.

Index Error

Indicates that you requested the display of an index-name (Debug type IXN) and Debug
discovered an inconsistency in the internal representation of the index-name.

This message generally indicates that the address or size value of the index-name was
entered incorrectly.

Index-name inconsistency

Indicates that the symbolic identifier conflicts with the type value specified in the command.
One of the following conflicts has occurred:

• The symbolic identifier refers to an index-name, but a type value other than IXN was
specified. Index-names may not use a type value other than IXN.

• The symbolic identifier does not refer to an index-name, but the type value IXN was
specified. Only index-names may be specified with the type value IXN.

• The symbolic identifier refers to an index-name and a refmod field was specified.
Reference modification of an index-name is not allowed.

• The type modifier & (address of data item) was specified with a symbolic identifier that
refers to an index-name (data type IXN). The type modifier & may not be specified for
an index-name.

Left parenthesis expected

Indicates that the data item in a Debug identifier format refers to a table element and no
subscript identifying a particular element is entered.

Chapter 9: Debugging

 RM/COBOL User's Guide 269

Length too big

Indicates that the sum of the starting position value and the length, specified in the reference
modification of a data item in a Debug identifier format, exceeds the declared length of the
data item.

A reference modification specification consists of a left parenthesis, a non-zero integer
starting position, a colon, optionally a non-zero integer length, and a right parenthesis. The
ending position, that is, the sum of the starting position minus 1 and the length, must not
exceed the length of the symbolic data item. If the symbolic data item is a variable-length
group, the ending position must not exceed the maximum length of the group.

Name undefined

Indicates that a symbolic identifier entered in a Debug identifier format specification of a data
item does not exist in the COBOL program.

The name appears undefined when debugging a contained program if the name is defined in a
containing program but is not described with the GLOBAL attribute. When debugging a
containing program, names in contained programs appear undefined. This message also
appears if a name provided as a qualifier is not defined anywhere in the separately compiled
program.

No such based linkage item

Indicates based linkage item number for a data item in the Debug address-size format is
specified incorrectly. This means that the integer between the letter B and the following
colon does not correspond to a based linkage item.

No such external

Indicates an external number for a data item in the Debug address-size format is specified
incorrectly. This means that the integer between the letter X and the following colon does not
correspond to an external group item.

No such parameter

Indicates that a USING argument value for a data item in the Debug address-size format is
specified incorrectly.

This means that the integer between the letter U and the following colon does not correspond
to a Linkage Section data item included in the USING list of the Procedure Division or that
the calling program did not pass a value in the corresponding position of its CALL statement.

Non-zero integer expected

Indicates that a subscript, a reference modification starting position, or a reference
modification length in a Debug identifier format specification of a data item is either zero or
is not numeric.

Not enough free memory to continue

Indicates that Debug cannot allocate memory.

Chapter 9: Debugging

270 RM/COBOL User's Guide

Debug allocates memory to remember names associated with an alias and to contain the
symbol table of the current program.

Object symbol table version is not supported by this runtime

Indicates that the object symbol table for the currently executing COBOL program is a later
version than the one supported by the runtime system. Symbolic debugging will not be
supported for this program unless a later runtime system is obtained that supports the object
symbol table version in the program.

Offset too big

Indicates that the starting position value entered in a reference modification, specified with a
data item address in a Debug identifier format, exceeds the declared length of the data item.

Pointer inconsistency

Indicates that the symbolic identifier conflicts with the type value specified in the command.
One of the following conflicts has occurred:

• The symbolic identifier refers to a pointer data item, but a type value other than PTR
was specified without a type modifier. Pointer data items may not use a type value other
than PTR.

• The symbolic identifier does not refer to a pointer data item, but the type value PTR was
specified. Only pointer data items may be specified with the type value PTR.

• The symbolic identifier refers to a pointer data item without the type modifier * (indirect
through pointer) and a refmod field was specified. Reference modification of a pointer
data item is not allowed.

• The type modifier * (indirect through pointer) was specified with a symbolic identifier
that is not a pointer data item. The type modifier * may be used only with pointer data
items.

• The type modifier & (address of data item) was specified with a type value other than
PTR. The type modifier & always results in a pointer value and thus cannot specify a
type value other than PTR.

• The type modifier & (address of data item) was specified with a symbolic identifier
that refers to a constant-name. The type modifier & may not be specified with a
constant-name.

• For the M (Modify) Command for a type PTR data item, the = value modifier (not the
=& modifier) was specified with a symbolic identifier (name-3) that either does not refer
to a pointer data item or reference modification (refmod) was specified following the
symbolic identifier (name-3).For the M (Modify) Command, the = value modifier was
followed by a symbolic identifier that does not refer to a pointer data item or reference
modification was specified for the pointer.

Pointer memory access violation

Indicates that the * (indirect through pointer) type modifier was specified with a pointer data
item that has a null value or a value that points to memory that cannot be read by the program.
For the M (Modify) Command, this may mean that the program cannot write to the memory
area referenced by the pointer value.

Chapter 9: Debugging

 RM/COBOL User's Guide 271

Program not compiled with Y option

Indicates that a data item is entered in a Debug identifier format to a D (Display), M
(Modify), or T (Trap) Command, but no symbol table is available.

Qualifier undefined

Indicates that an alias identifier is undefined or that the symbolic qualifier provided after an
IN or OF in a Debug item address in an identifier format is not a higher-level data item of the
preceding identifier.

Check the qualification specification with the program source or the allocation map of the
compilation listing.

Qualification ambiguous

Indicates that the symbolic qualifiers provided after an IN or OF in a Debug item address in
an identifier format do not uniquely identify a data item.

Qualification allows unique specification of data items with the same name. The qualification
identifiers must be the names of lower-numbered group items or the name of the COBOL
filename if the data item is in the File Section. Check the qualification specification with the
program source or the allocation map of the compilation listing. Reenter the command with
additional qualification items to uniquely identify the desired data item.

Right parenthesis expected

Indicates that a subscript or reference modification field, specified with a data item address in
a Debug identifier format, is missing its closing right parenthesis or that too many subscripts
are provided.

Subscript value too big

Indicates that a subscript exceeds 65535 or that the offset corresponding to the specified
subscripts exceeds 232.

A (Address Stop) Command
Use the A Command to set a breakpoint and to resume program execution from the current
location. When the specified breakpoint is reached and Debug regains control, the breakpoint
is cleared and has no further effect.

The syntax for the A Command is as follows:

line indicates the line number containing the statement at which the breakpoint is to be
set. line always refers to the first statement of the line. If this parameter is omitted, no
breakpoint is set before execution is resumed.

A [line [+ intraline] [, [prog-name] [, [count]]]]

Chapter 9: Debugging

272 RM/COBOL User's Guide

intraline refers to a specific statement within the program line. For example, 1 indicates
the first intraline statement (or the second actual statement), 2 indicates the second
intraline statement, and so forth. If this parameter is omitted, the first statement on the
line is assumed.

prog-name provides for explicit program qualification during debugging. The value of
prog-name must be a program-name from the PROGRAM-ID paragraph of the
Identification Division. If this parameter is omitted, it is assumed the reference is to the
currently executing program. If this parameter is omitted and count is specified, there
must be two commas before count.

count is an execution count. Debug allows the statement to execute a number of times
equal to count minus one, then honors and clears the breakpoint immediately before the
next execution (which now equals count) of the statement. Debug then regains control.
The maximum value for count is 65535. If this parameter is omitted, count defaults to 1.

When you use the A Command, keep in mind that the specified breakpoint remains in effect
until it is honored. In other words, if execution halts and Debug regains control at a statement
other than that specified in the A Command, the breakpoint set by the A Command remains in
effect. It can be cleared by the C Command and displayed by the B Command.

B (Breakpoint) Command
Use the B Command to display all currently set breakpoints or to set breakpoints at specific
procedural statements. Note that—unlike the A Command—a breakpoint set by this
command is not cleared once the conditions have been satisfied. To clear breakpoints set with
a B Command, you must enter a C Command.

The command syntax is nearly identical to that used with the A Command:

line indicates the line number containing the statement at which the breakpoint is to be
set. line always refers to the first statement of the line. If this parameter is omitted, no
breakpoint is set. Instead, all currently set breakpoints are displayed.

intraline refers to a specific statement within the program line. For example, 1 indicates
the first intraline statement (or the second actual statement), 2 indicates the second
intraline statement, and so forth. If this parameter is omitted, the first statement on the
line is assumed.

prog-name provides for explicit program qualification during debugging. The value of
prog-name must be a program-name from the PROGRAM-ID paragraph of the
Identification Division. If this parameter is omitted, it is assumed the reference is to the
currently executing program. If this parameter is omitted and count is specified, there
must be two commas before count.

count is an execution count. Debug allows the statement to execute a number of times
equal to count minus one, then honors and clears the breakpoint immediately before the
next execution (which now equals count) of the statement. Debug then regains control.
The maximum value for count is 65535. If this parameter is omitted, count defaults to 1.
Because the B Command does not clear breakpoints after responding to them (as does the
A Command), it remains in effect for all subsequent occurrences.

B [line [+ intraline] [, [prog-name] [, [count]]]]

Chapter 9: Debugging

 RM/COBOL User's Guide 273

For example, entering:

B 150+2, PAY-TAX, 5

sets a breakpoint at the third statement (second intraline statement) at line 150 in the program
PAY-TAX. When execution resumes, the breakpoint is ignored four times and honored the
fifth time. Program control then returns to Debug.

The format of the breakpoint display (when line is omitted) is as follows for each active
breakpoint:

A count of zero is equivalent to a count of one.

C (Clear) Command
Use the C Command to clear any breakpoints that have been set with the A or B Commands.

The syntax for the C Command is as follows:

line is the line number containing the statement at which the breakpoint to be cleared is
set. If no line number is specified, all currently active breakpoints are removed.

intraline refers to a specific statement within the program line. For example, 1 indicates
the first intraline statement (or the second actual statement), 2 indicates the second
intraline statement, and so forth. If this parameter is omitted, the first statement on the
line is assumed.

prog-name provides for explicit program qualification during debugging. The value of
prog-name must be a program-name from the PROGRAM-ID paragraph of the
Identification Division. If this parameter is omitted, it is assumed the reference is to the
currently executing program.

For example, entering:

C 100+2

clears the breakpoint set at the second intraline statement of line 100 in the currently
executing program.

If the C Command specifies a line, intraline, and prog-name which do not specify a
previously set breakpoint location, a Command Error message is displayed and no breakpoint
is cleared.

line [+ intraline] prog-name count

C [line [+ intraline] [, [prog-name]]]

Chapter 9: Debugging

274 RM/COBOL User's Guide

D (Display) Command
Use the D Command to display on the screen the value of a specified data item.

Identifier Format

The syntax for the D Command with the identifier format (see page 261) is as follows:

name-1 is a name declared as a constant-name, data-name, or index-name for the literal
value, data item, or index to be displayed. name-2 is a qualifier for name-1.
Qualification is required if the name is not unique. The named data item or index must
be described in the Data Division of the current program or be described with the
GLOBAL attribute in a program that contains the current program.

script specifies subscripting and is required if the data item referenced by name-1 is a
table element. (See page 261 for a complete description.) If the data item is not a table
element, do not specify script. The format for script is as follows:

refmod specifies a subfield of the data item. (See page 262 for a complete description.)
It has this format:

type specifies the data type to be used for displaying the named data item or index. If this
parameter is omitted, type defaults to the type of the item specified except when a type
modifier is specified. The type value IXN may be used only with index-names and,
when the named data item is an index-name, the only permissible type value is IXN. The
type value PTR may be used only with pointer data items and, when the named data item
is a pointer data item, the only permissible type value is PTR, except when a type
modifier is specified.

The type modifiers * and & have the following effect:

• The * type modifier indicates that the data item to be displayed is the data item
determined by an indirect reference; that is, a reference to the data item referenced
by a pointer data item value. The data item specified in the command must be a
pointer data item (data type PTR). In this case, type, if specified, indicates the type
of the item referenced by the pointer data item value. If type is not specified, the
default is hexadecimal. If refmod is not specified for an indirect reference, the entire
effective memory area specified by the pointer data item value is displayed. The
effective memory area specified by a pointer data item value begins with the
effective address (pointer.address + pointer.offset) and ends just before the effective
limit address (pointer.address + pointer.length). If refmod is specified for an indirect
reference, refmod is applied to the indirect reference rather than the pointer data item

D name-1 [{ IN | OF } name-2] … [script] [refmod]
[, { type | { * | & } [type] }] [# alias]

(integer-1 [[,] integer-2] …)

(offset : [length])

Chapter 9: Debugging

 RM/COBOL User's Guide 275

itself. Thus, refmod may be used to display a subfield within the current effective
memory area of an indirect reference.

• The & type modifier indicates that the address of the data item specified is to be
displayed as a pointer value (data type PTR). Since the result type will always be a
pointer, if type is specified, type must be PTR. The & type modifier may be used
with a data item of any data type except an index-name (data type IXN). The & type
modifier may not be used with a constant-name since a constant-name does not name
a data item. The address of the data item will be displayed as three sets of sixteen
hexadecimal digits; the first set is the base address, the second set is the offset (SET
pointer UP/DOWN), and the third set is the length of the memory area covered by
the pointer.

alias is a name you enter to serve as another name for the data operand specification that
precedes it. For a complete description, see Alias Format. If present, alias must follow a
pound sign (#). The characters that follow the # must form a valid COBOL word. Only
the first three characters of this word are significant. When a command defines an alias
and specifies the * (indirect through pointer) type modifier, the indirection is resolved at
the time the alias is defined. In this case, the alias continues to refer to the data item that
the pointer data item referenced when the alias was defined even if the pointer data item
value has subsequently been changed. When a command defines an alias and specifies
the & (address of data item) type modifier, the address of the data item is resolved each
time the alias is specified using an alias format command.

For example, entering:

D MONTH-NAME(11)(1:3)

directs Debug to display the first three bytes of the 11th element in the table MONTH-NAME.
Debug then displays the following:

140 ANS NOV

This shows the data address of 140, the type of data as alphanumeric, and the value as NOV.

Address-Size Format

The syntax for the D Command with the address-size format (see page 263) is as follows:

base specifies the base item for formal arguments, based linkage items, and external
items as follows:

• For a USING formal argument, base is specified as U arg-num, where arg-num
specifies the ordinal position of the argument in the USING list of the Procedure
Division header provided in the allocation map of the program listing.

• For a GIVING formal argument, base is specified as G, as shown in the allocation
map of the program listing.

• For a based linkage item, base is specified as B item-num, where item-num specifies
the compiler-assigned based linkage item number provided in the allocation map of
the program listing.

D [base :] address [+ occur-size * occur-num] … , size ,
 [type] [# alias]

Chapter 9: Debugging

276 RM/COBOL User's Guide

• For an external item, base is specified as X ext-num, where ext-num specifies the
compiler-assigned external number provided in the allocation map of the program
listing.

Note A Linkage Section data item, which is neither a formal argument item nor a based
linkage item, is shown as “Not addressable:” in the allocation map of the program listing.
Since such items have not been used in the source program, the compiler does not
allocate a base pointer item for them and Debug cannot access them.

address specifies the address of the data item to be displayed. This is based on the value
obtained from the data allocation map. For more information on addresses used with
Debug, see Address-Size Format (on page 263).

occur-size specifies the size of data items that contain OCCURS clauses in their
definitions.

occur-num specifies the occurrence number for data items that contain OCCURS clauses
in their definitions.

size specifies the size of the data item to be displayed. If type is IXN, this is the value
that appears in the Span column of the data allocation map.

type specifies the data type of the data item to be displayed. If this parameter is omitted,
type defaults to hexadecimal. The type modifiers * (indirect through pointer) and &
(address of data item) may not be specified in the address-size format.

alias must form a valid COBOL word, only the first three characters of which are valid.
For a complete description, see Alias Format (on page 265). Once specified, the alias can
be used to refer to the operand to which it is assigned.

The specified data item appears in the following format:

address is the developed data address.

type is the type of data item to be displayed.

value is the value of the data in the format specified by type in the D Command.

For example, entering:

D 13 + 2*7,2,NSU

directs Debug to display the data item located at decimal data address 25.

Debug then displays:

25 NSU 15

This shows that at the developed data address of (decimal) 25 is a value of 15, of type
numeric string unsigned.

If the L (Line Display) Command (see page 277) is used to specify a line number on the
monitor, the display appears one line at a time, at the line specified in the L Command. If the
display does not fit on one line, press the Enter key to see the next line. To return to the
Debug command prompt after the last line of data appears, press Enter.

address type value …

Chapter 9: Debugging

 RM/COBOL User's Guide 277

If the L Command was not used, the display begins at the next line and scrolls when the
bottom of the screen is reached.

Alias Format

The syntax for the D Command with the alias format for specifying a data item or index
reference is as follows:

is required.

alias must form a valid COBOL word, only the first three characters of which are valid.
For a complete description, see Alias Format (on page 265). The alias must have been
previously defined in an identifier or address-size format specification.

E (End) Command
Use the E Command to leave Debug. The currently executing program runs until completion.

The syntax of the E Command is as follows:

L (Line Display) Command
Use the L Command to specify a line on the monitor screen at which command input echoes
and Debug responses are to be displayed.

The syntax of the L Command is as follows:

line-display designates a line number on the monitor and may be in the range 0 through
the number of lines on the screen.

This command is useful when you are debugging programs that have a variety of interactive
ACCEPT and DISPLAY statements. By selecting a specific line for Debug displays, you can
reduce or avoid conflicts between lines produced by Debug and lines produced by the
program.

If line-display is omitted from the command, or line-display equals 0, the screen resumes its
standard mode of operation (scrolling).

D # alias

E

L [line-display]

Chapter 9: Debugging

278 RM/COBOL User's Guide

M (Modify) Command
Use the M Command to change the value of a specified data item.

Identifier Format

The syntax for the M Command with the identifier format (see page 261) is as follows:

name-1 is a name declared as a data-name or index-name for the data item or index to be
modified. name-2 is a qualifier for name-1. Qualification is required if the name is not
unique. The named data item or index must be described in the Data Division of the
current program or be described with the GLOBAL attribute in a program that contains
the current program.

script specifies subscripting and is required if the data item referenced by name-1 is a
table element. (See page 261 for a complete description.) If the data item is not a table
element, do not specify script. The format for script is as follows:

refmod specifies a subfield of the data item. (See page 262 for a complete description.)
It has this format:

type specifies the data type of the item to be modified. If this parameter is omitted, type
defaults to the type of the item specified except when a type modifier is specified. The
type value IXN may be used only with index-names and, when the named data item is an
index-name, the only permissible type value is IXN. The type value PTR may be used
only with pointer data items and, when the named data item is a pointer data item, the
only permissible type value is PTR, except when a type modifier is specified.

The type modifiers * and & have the following effect:

• The * type modifier indicates that the data item to modify is determined by an
indirect reference; that is, a reference to the data item referenced by a pointer data
item value. The data item specified in the command must be a pointer data item
(data type PTR). In this case, type, if specified, indicates the type of the data item
referenced by the pointer data item value. If type is not specified, the default is
hexadecimal. If refmod is not specified for an indirect reference, the entire effective
memory area specified by the pointer data item value is modified. The effective
memory area specified by a pointer data item value begins with the effective address
(pointer.address + pointer.offset) and ends just before the effective limit address
(pointer.address + pointer.length). If refmod is specified for an indirect reference,
refmod is applied to the indirect reference rather than the pointer data item itself.

M name-1 [{ IN | OF } name-2] … [script] [refmod]
[, { type | { * | & } [type] }] [# alias] , value

(integer-1 [[,] integer-2] …)

(offset : [length])

Chapter 9: Debugging

 RM/COBOL User's Guide 279

Thus, refmod may be used to modify a subfield within the current effective memory
area of an indirect reference.

• The & type modifier indicates that the address of the data item specified is to be
modified. The data item referenced in the command must be a based linkage record
because, otherwise, the address is not modifiable. The data item referenced in the
command may be any data type except an index-name (data type IXN). When the
& type modifier is used, the value must be a pointer value and, if type is specified,
type must be PTR.

alias is a name you enter to serve as another name for the data operand specification that
precedes it. For a complete description, see Alias Format (on page 265). If present, alias
must follow a pound sign (#). The characters that follow the # must form a valid COBOL
word. Only the first three characters of this word are significant. When a command
defines an alias and specifies the * (indirect through pointer) type modifier, the
indirection is resolved at the time the alias is defined. In this case, the alias continues to
refer to the data item that the pointer data item referenced when the alias was defined
even if the pointer data item value has subsequently been changed. When a command
defines an alias and specifies the & (address of data item) type modifier, the address of
the data item is resolved each time the alias is specified using an alias format command.

value specifies the new value for the data item or index. The format for specifying the
value is described by type in the following section, Address-Size Format.

For example, entering:

M MONTH-NAME(12), DECEMBER

directs Debug to modify the 12th element of the table MONTH-NAME to have the value of
DECEMBER.

Address-Size Format

The syntax for the M Command with the address-size format (see page 263) is as follows:

base specifies the base item for formal arguments, based linkage items, and external
items as follows:

• For a USING formal argument, base is specified as U arg-num, where arg-num
specifies the ordinal position of the argument in the USING list of the Procedure
Division header provided in the allocation map of the program listing.

• For a GIVING formal argument, base is specified as G, as shown in the allocation
map of the program listing.

• For a based linkage item, base is specified as B item-num, where item-num specifies
the compiler-assigned based linkage item number provided in the allocation map of
the program listing.

• For an external item, base is specified as X ext-num, where ext-num specifies the
compiler-assigned external number provided in the allocation map of the program
listing.

M [base :] address [+ occur-size * occur-num] … , size ,
[type] [# alias] , value

Chapter 9: Debugging

280 RM/COBOL User's Guide

Note A Linkage Section data item, which is neither a formal argument item nor a based
linkage item, is shown as “Not addressable:” in the allocation map of the program listing.
Since such items have not been used in the source program, the compiler does not
allocate a base pointer item for them and Debug cannot access them.

address specifies the address of the data item to be modified. This is based on the value
obtained from the data allocation map. For more information on addresses used with
Debug, see Address-Size Format (on page 263).

occur-size specifies the size of data items that contain OCCURS clauses in their
definitions.

occur-num specifies the occurrence number for data items that contain OCCURS clauses
in their definitions.

size specifies the size of the data item to be modified. If type is IXN, this is the value that
appears in the Span column of the data allocation map.

type specifies the type of data item referenced. If this parameter is omitted, type defaults
to hexadecimal. The type modifiers * (indirect through pointer) and & (address of data
item) may not be specified in the address-size format.

alias is a name you enter to serve as another name for the data operand specification that
precedes it. For a complete description, see Alias Format (on page 265). If present, alias
must follow a pound sign (#). The characters that follow the # must form a valid COBOL
word. Only the first three characters of this word are significant.

value is the value of the data in the format specified by type in the M Command line.

If type is HEX—or omitted in the address-size format—value is entered as a string of
hexadecimal digits. This hex value is stored in the specified data item and is left justified
with zero fill or truncation on the right. The hexadecimal value must contain an even number
of digits.

If type is one of the nonnumeric types ANS, ANSE, ABS, ABSE, GRP, or NSE, value is
stored in the specified data item and is left justified with blank fill or truncation on the right.
Note that no editing is performed during this operation.

If type is one of the numeric types NBS, NBU, NBSN, NBUN, NCS, NCU, NLC, NLS,
NPP, NPS, NPU, NSU, NTC, or NTS, value is converted to a signed integer according to the
rules for a MOVE from a numeric edited sending item to a numeric destination item (see the
“MOVE Statement” section in Chapter 6: Procedure Division Statements of the RM/COBOL
Language Reference Manual for more information).

If type is IXN, value is converted to a signed integer occurrence number. This number is then
converted to the internal index-name representation based on the value of size.

If type is PTR, value must be a pointer value. The pointer value 0 is equivalent to NULL
(NULLS). For pointer values other than 0, a pointer value is forty-eight hex digits, where the
first sixteen digits specify the base address, the middle sixteen digits specify the offset from
the base address, and the last sixteen digits specify the length of the memory area. Embedded
spaces are allowed and ignored. Leading zeroes must be specified. If the program was
compiled with the Y Compile Command Option, then a pointer value may also be specified
with either of the value modifiers = or =& as follows:

{ = | =& } name-3 [{ IN | OF } name-4] … [script] [refmod]

If the = value modifier is specified (without the &), name-3 must refer to a pointer data item
and refmod is not allowed. The current value of the referenced pointer data item is used for
value. This is equivalent to the COBOL statement:

Chapter 9: Debugging

 RM/COBOL User's Guide 281

SET name-1 [OF name-2] … TO name-3 [OF name-4] …

If the =& value modifier is specified, value is composed from the address of the data item
named by name-3, an offset of zero, and the length of the data item named by name-3. This is
equivalent to the COBOL statement:

SET name-1 [OF name-2] … TO
 ADDRESS OF name-3 [OF name-4] …

Note Debug attempts to validate a pointer value when specified, but the validation results
may not be conclusive. It is the user’s responsibility to take care when modifying pointer data
items or based linkage base addresses to ensure correctness. One easy method of correctly
modifying a pointer value is to display the desired pointer value using the D Command and
then using copy/paste to paste the value into the value field of an M Command. Another
method is to use one of the = or =& value modifiers described above.

In all other cases, the resulting integer is stored in the data item as if the item had no assumed
decimal point. If conversion results in a noninteger, an error message is displayed and the
specified data item remains unaltered.

For example, entering:

M 13+2*7,2,NSU,0

directs Debug to modify the data item located at decimal data address 25. The NSU data item
will have a new value of 0.

Alias Format

The syntax for the M Command with the alias format for specifying a data item or index
reference is as follows:

is required.

alias must form a valid COBOL word, only the first three characters of which are valid.
For a complete description, see Alias Format (on page 265). The alias must have been
previously defined in an identifier or address-size format reference to the desired item
(for example, in a D (Display) Command).

value specifies the new value for the data item or index. The format for specifying the
value is described by type in the Address-Size Format section (see page 279).

Q (Quit) Command
Use the Q Command to stop program execution. This command terminates the program as if
a STOP RUN statement were executed.

The syntax of the Q Command is as follows:

M # alias , value

Chapter 9: Debugging

282 RM/COBOL User's Guide

When the Q Command is executed, open files are closed and control returns to the
operating system.

R (Resume) Command
Use the R Command to direct program execution to resume at the current location, or at
another location specified in the command.

The syntax of the R Command is as follows:

statement-address specifies the specific program address for the sentence at which
execution is to resume. If statement-address is not specified, execution resumes at the
current location. statement-address appears in the Debug column at the left of the
program listing, and should be entered as printed. statement-address is not a line
number.

An error condition or stop run condition (that is, the command prompt contains ER or SR)
forces the R Command to disallow statement-address. The R Command may be used in its
simple form (that is, without an accompanying statement-address) to allow Debug to trace
back through the program units of a run unit, but the run unit may not be restarted when an
error or stop run condition occurs.

Note The R Command used with a statement-address resets the program counter. If an
improper statement-address is specified, Debug displays an error. The program counter
remains invalid until another R Command with a valid statement-address is used. An R
Command with no statement-address at this time causes Debug to display an error.

S (Step) Command
Use the S Command to direct program execution to occur one step at a time. With Debug,
you can step through a statement, a paragraph, or an entire section.

The syntax of the S Command is as follows:

P specifies that paragraphs are to be stepped through.

S specifies that sections are to be stepped through. If neither P nor S is present,
statements are stepped through.

Q

R [statement-address]

S [P | S] [count]

Chapter 9: Debugging

 RM/COBOL User's Guide 283

count specifies the number of statements, paragraphs or sections that are to be executed
before execution suspends. The maximum value for count is 65535. A value of zero is
treated as 1. The default is 1.

Specifying count greater than 1 causes Debug to trace the statements, paragraphs or sections
executed while in stepping mode. The format of the trace message is as follows:

TR line [+intraline] name

line is the line number on which the statement begins.

intraline is the specific statement within a line.

name is the name of the program as it appears in the PROGRAM-ID paragraph of the
Identification Division.

For example, entering:

SS 10

directs Debug to execute 9 sections, produce 9 trace messages, and then halt before executing
the 10th.

T (Trap) Command
Use the T Command to monitor the value of a specified data item, and to suspend execution
whenever a change in that value occurs. The T Command can also be used to display all
currently set traps. If you enter only the command keyword T, all currently active data traps
appear.

A data trap set with the T Command can be removed with the U (Untrap) Command. A data
trap set on a Linkage Section data item is removed automatically when the program exits. A
data trap set on a File Section, Working-Storage Section or Screen Section data item is
removed automatically when the separately compiled program is canceled. A data trap set on
an external data item will continue until the run unit ends.

Identifier Format

The syntax for the T Command with the identifier format (see page 261) is as follows:

name-1 is a name declared as a data-name or index-name for the data item or index to be
monitored. name-2 is a qualifier for name-1. Qualification is required if the name is not
unique. The named data item or index must be described in the Data Division of the
current program or be described with the GLOBAL attribute in a program that contains
the current program.

script specifies subscripting and is required if the data item referenced by name-1 is a
table element. (See page 261 for a complete description.) If it is not a table element, do
not specify script. The format for script is as follows:

T name-1 [{ IN | OF } name-2] … [script] [refmod]
[, { type | { * | & } [type] }] [# alias]

Chapter 9: Debugging

284 RM/COBOL User's Guide

refmod specifies a subfield of the data item. (See page 262 for a complete description.)
It has this format:

type specifies the data type to be used in displaying the monitored data item or index
when a change in value occurs. If this parameter is omitted, type defaults to the type of
the item specified except when a type modifier is specified. The type value IXN may be
used only with index-names and, when the named data item is an index-name, the only
permissible type value is IXN. The type value PTR may be used only with pointer data
items and, when the named data item is a pointer data item, the only permissible type
value is PTR, except when a type modifier is specified.

The type modifiers * and & have the following effect:

• The * type modifier indicates that the data item to start monitoring is determined by
an indirect reference; that is, a reference to the data item referenced by a pointer data
item value. The data item specified in the command must be a pointer data item
(data type PTR). In this case, type, if specified, indicates the type of the item
referenced by the pointer data item value. If type is not specified, the default is
hexadecimal. If refmod is not specified for an indirect reference, the entire effective
memory area specified by the pointer data item value is monitored. The effective
memory area specified by a pointer data item value begins with the effective address
(pointer.address + pointer.offset) and ends just before the effective limit address
(pointer.address + pointer.length). If refmod is specified for an indirect reference,
refmod is applied to the indirect reference rather than the pointer data item itself.
Thus, refmod may be used to monitor a subfield within the current effective memory
area of an indirect reference. The indirect reference is resolved at the time the trap is
set with the T (Trap) Command and subsequent changes to the pointer data item
used to set the trap do not change the data item that is being monitored by the trap.
To monitor changes in the pointer data item itself, do not use the * type modifier.

• The & type modifier indicates that the base address of the data item specified is to be
monitored. The data item referenced in the command must be a based linkage record
because, otherwise, the address is not modifiable. The data item referenced in the
command may be any data type except an index-name (data type IXN). When the &
type modifier is used, the value to be monitored is a pointer value and, if type is
specified, type must be PTR. A trap set on a based linkage data item, without the &
type modifier, is resolved at the time the trap is set and subsequent changes to the
base address of the based linkage item do not change the data item that is being
monitored. To monitor changes in the base address of a based linkage item, use the
& type modifier with the based linkage record data-name.

alias is a name you enter to serve as another name for the data operand specification that
precedes it. For a complete description, see Alias Format. If present, alias must follow a
pound sign (#). The characters that follow the # must form a valid COBOL word. Only
the first three characters of this word are significant. When a command defines an alias
and specifies the * (indirect through pointer) type modifier, the indirection is resolved at
the time the alias is defined. In this case, the alias continues to refer to the data item that
the pointer data item referenced when the alias was defined even if the pointer data item
value has subsequently been changed. When a command defines an alias and specifies

(integer-1 [[,] integer-2] …)

(offset : [length])

Chapter 9: Debugging

 RM/COBOL User's Guide 285

the & (address of data item) type modifier, the address of the data item is resolved each
time the alias is specified using an alias format command.

For example, entering:

T MONTH-NAME(12)

directs Debug to suspend execution whenever the value of the 12th element in the table
MONTH-NAME changes.

Address-Size Format

The syntax for the T Command with the address-size format (see page 263) is as follows:

base specifies the base item for formal arguments, based linkage items, and external
items as follows:

• For a USING formal argument, base is specified as U arg-num, where arg-num
specifies the ordinal position of the argument in the USING list of the Procedure
Division header provided in the allocation map of the program listing.

• For a GIVING formal argument, base is specified as G, as shown in the allocation
map of the program listing.

• For a based linkage item, base is specified as B item-num, where item-num specifies
the compiler-assigned based linkage item number provided in the allocation map of
the program listing.

• For an external item, base is specified as X ext-num, where ext-num specifies the
compiler-assigned external number provided in the allocation map of the program
listing.

Note A Linkage Section data item, which is neither a formal argument item nor a based
linkage item, is shown as “Not addressable:” in the allocation map of the program listing.
Since such items have not been used in the source program, the compiler does not
allocate a base pointer item for them and Debug cannot access them.

address specifies the address of the data item to be monitored. This is based on the value
obtained from the data allocation map. For more information on addresses used with
Debug, see Address-Size Format (on page 263).

occur-size specifies the size of data items that contain OCCURS clauses in their
definitions.

occur-num specifies the occurrence number for data items that contain OCCURS clauses
in their definitions.

size specifies the size of the data item to be monitored.

type specifies the type of data item referenced. If this parameter is omitted, type defaults
to hexadecimal. The type modifiers * (indirect through pointer) and & (address of data
item) may not be specified in the address-size format.

alias is a name you enter to serve as another name for the data operand specification that
precedes it. For a complete description, see Alias Format (on page 265). If present, alias

T [base :] address [+ occur-size * occur-num] … , size ,
[type] [# alias]

Chapter 9: Debugging

286 RM/COBOL User's Guide

must follow a pound sign (#). The characters that follow the # must form a valid COBOL
word. Only the first three characters of this word are significant.

Before RM/COBOL executes a statement, it examines the contents of the specified data item
with the value the data item had at the point program execution last resumed. If a change has
not occurred, execution proceeds to the next statement. If a change has occurred, execution is
suspended and the contents of the data item appear according to the rules set down in the
discussion of the D (Display) Command (see page 274). The trap is updated, and remains in
effect until a U Command is executed.

Alias Format

The syntax for the T Command with the alias format for specifying a data item or index
reference is as follows:

is required.

alias must form a valid COBOL word, only the first three characters of which are valid.
For a complete description, see Alias Format (on page 265). The alias must have been
previously defined in an identifier or address-size format reference to the desired item
(for example, in a D (Display) Command).

U (Untrap) Command
Use the U Command to clear a single active data trap, or all currently active data traps.

Identifier Format

The syntax for the U Command with the identifier format (see page 261) is as follows:

name-1 is a name declared as a data-name or index-name for the data item or index
whose data trap is to be removed. name-2 is a qualifier for name-1. Qualification is
required if the name is not unique. The named data item or index must be described in
the Data Division of the current program or be described with the global attribute in a
program that contains the current program.

script specifies subscripting and is required if the data item referenced by name-1 is a
table element. (See page 261 for a complete description.) If it is not a table element, do
not specify script. The format for script is as follows:

T [# alias]

U name-1 [{ IN | OF } name-2] … [script] [refmod]
[, { type | { * | & } [type] }]

(integer-1 [[,] integer-2] …)

Chapter 9: Debugging

 RM/COBOL User's Guide 287

refmod specifies a subfield of the data item. (See page 262 for a complete description.)
It has this format:

type specifies the data type of the monitored data item that is to be removed from the
monitored item list. If this parameter is omitted, type defaults to the type of the item
specified except when a type modifier is specified. The type value IXN may be used
only with index-names and, when the named data item is an index-name, the only
permissible type value is IXN. The type value PTR may be used only with pointer data
items and, when the named data item is a pointer data item, the only permissible type
value is PTR, except when a type modifier is specified.

The type modifiers * and & have the following effect:

• The * type modifier indicates that the data item to discontinue monitoring is
determined by an indirect reference; that is, a reference to the data item referenced
by a pointer data item value. The data item specified in the command must be a
pointer data item (data type PTR). In this case, type, if specified, indicates the type
of the item referenced by the pointer data item value. If type is not specified, the
default is hexadecimal. If refmod is not specified for an indirect reference, the entire
effective memory area specified by the pointer data item value is the data reference
to discontinue monitoring. The effective memory area specified by a pointer data
item value begins with the effective address (pointer.address + pointer.offset) and
ends just before the effective limit address (pointer.address + pointer.length). If
refmod is specified for an indirect reference, refmod is applied to the indirect
reference rather than the pointer data item itself. Thus, refmod may be used to
discontinue monitoring a subfield within the current effective memory area of an
indirect reference.

• The & type modifier indicates that the data item to discontinue monitoring is the
address of the data item specified. The data item referenced in the command must be
a based linkage record because, otherwise, the address is not modifiable. The data
item referenced in the command may be any data type except an index-name (data
type IXN). When the & type modifier is used, the monitored item is a pointer data
item and, if type is specified, type must be PTR.

For example, entering:

U MONTH-NAME(12)

clears the trap on the 12th element in the table MONTH-NAME.

Address-Size Format

The syntax for the U Command with the address-size format (see page 263) is as follows:

base specifies the base item for formal arguments, based linkage items, and external
items as follows:

(offset : [length])

U [[base :] address [+ occur-size * occur-num] …]

Chapter 9: Debugging

288 RM/COBOL User's Guide

• For a USING formal argument, base is specified as U arg-num, where arg-num
specifies the ordinal position of the argument in the USING list of the Procedure
Division header provided in the allocation map of the program listing.

• For a GIVING formal argument, base is specified as G, as shown in the allocation
map of the program listing.

• For a based linkage item, base is specified as B item-num, where item-num specifies
the compiler-assigned based linkage item number provided in the allocation map of
the program listing.

• For an external item, base is specified as X ext-num, where ext-num specifies
the compiler-assigned external number provided in the allocation map of the
program listing.

Note A Linkage Section data item, which is neither a formal argument item nor a based
linkage item, is shown as “Not addressable:” in the allocation map of the program listing.
Since such items have not been used in the source program, the compiler does not
allocate a base pointer item for them and Debug cannot access them.

address specifies the address of the data item for which a trap is active. This is based on
the value obtained from the data allocation map. For more information on addresses used
with Debug, see Address-Size Format (on page 263). If address is not specified, all
currently active data traps are cleared.

occur-size specifies the size of data items that contain OCCURS clauses in their
definitions.

occur-num specifies the occurrence number for data items that contain OCCURS clauses
in their definitions.

For example:

U 13+2*7

clears the trap on the data item located at decimal data address 25.

If you enter only U, all currently activated traps are cleared.

If a specific data trap does not exist, the command is in error.

Alias Format

The syntax for the U Command with the alias format for specifying a data item or index
reference is as follows:

is required.

alias must form a valid COBOL word, only the first three characters of which are used.
For a complete description, see Alias Format (on page 265). The alias must have been
previously defined in an identifier or address-size format reference to the desired item
(for example, in the T (Trap) Command which set the trap).

U [# alias]

Chapter 10: Configuration

 RM/COBOL User's Guide 289

Chapter 10: Configuration

Configuration determines such actions as screen displays, indexed file characteristics, default
operational modes, the method by which the terminal is to be accessed, and general terminal
characteristics.

Configuration is altered by writing a specific set of configuration directives into a
configuration record. The complete set of configuration records is then written to a
configuration file.

This chapter discusses the configuration file structure, automatic configuration files,
command-line configuration files, configuration file processing, configuration error format,
configuration record types, and terminal configuration record types.

Configuration File Structure
Configuration directives are contained in the configuration file. The configuration file is a
line sequential file, and it can be created with any convenient text editor. The configuration
file can then be specified in the Compile Command by using the G Option (see page 152) and
H Option (see page 152), or in the Runtime Command by using the C Option (see page 192)
and X Option (see page 193).

Configuration records can appear in any order within the configuration file, except where
noted otherwise. The first field in each record identifies the type of record or value being
defined. The format of the remainder of the record depends on the type of record. Except for
specific character sequences, keywords and parameters in the records are case-insensitive;
uppercase and lowercase letters are equivalent.

The records are free field; that is, individual fields need not start in any predetermined
column. The general syntax is as follows:

record-type is the identifier of one of the configuration records detailed in this chapter.
For many of the record-type identifiers, singular and plural forms of the record-type
identifier are considered to define the same configuration record type. For example,
either RUN-OPTION or RUN-OPTIONS may be used to specify the runtime options
configuration. The alternative forms of the record-type identifiers are shown in
parentheses in Table 33 on page 292.

record-type keyword =value [,value]

Chapter 10: Configuration

290 RM/COBOL User's Guide

keyword is the name of the keyword specification being described. It must be followed
by an equal sign. Optional spaces following the equal sign are allowed.

value, depending on the keyword, may be either a string or a number. Value strings that
contain a space, equal sign, or comma must be quoted with either the double quote (") or
single quote (') character, and must use the same beginning and ending quote character.
Quoted strings that contain the quote character must use a pair of consecutive quote
characters to represent one quote character. For some keywords, the value may be either
a single-character string or a number. In such cases, if the single-character string is a
digit (0 – 9), it must be quoted or it will be considered to be a number. In all other cases,
strings may be specified without quotes. Value strings are limited to a maximum of 160
characters. Value numbers may be specified in decimal notation as a string of decimal
digits (0 – 9) or in hexadecimal notation as string of hexadecimal digits (0 – 9, A – F)
with a leading 0x or trailing h.

Configuration records may vary in length. Configuration records may be continued beyond
one record by placing an ampersand (&) character in column 1 of the second and subsequent
records. The ampersands are logically replaced with spaces and the records are logically
concatenated, ignoring trailing spaces. The maximum total length of a configuration record,
including all continued records, is 510 characters.

Comments may be included in the configuration file. Comment text begins with a slash and
an asterisk (/*) in columns 1 and 2. Lines that have /* in columns 1 and 2, as well as blank
lines, are ignored in their entirety. Lines may have a single tail comment at the end. A tail
comment, which begins with a forward slash and an asterisk (/*) and ends with an asterisk and
a forward slash (*/), must be the last non-blank item on the line. The tail comment is
removed and the rest of the line preceding the tail comment is processed normally. For
example:

RUN-OPTION K=SUPPRESS /* this is a tail comment */

Automatic Configuration Files
RM/COBOL for UNIX and Windows allows a configuration file to be located automatically
by the RM/COBOL runtime system, the compiler, and the recovery utility. If the Automatic
Configuration File module, librmconfig.so (on UNIX) or librmcfg.dll (on Windows), is
present in the execution directory for the RM/COBOL component being executed, the module
will be loaded and will attempt to locate an automatic configuration file. The execution
directory on UNIX is normally /usr/bin. The execution directory on Windows is normally
"C:\Program Files\RMCOBOL".

If a configuration file is to be loaded automatically, one of these files must be present in the
execution directory: runcobol.cfg (for the runtime system), rmcobol.cfg (for the compiler),
or recover1.cfg (for the recovery utility). If no file with the appropriate name is present, then
there is no automatic configuration file. If the appropriate file is present, the records in the
file will be used to configure the component being executed.

The automatic configuration file may be created and maintained with the editor of your
choice. Records in the file are identical to those of a non-automatic configuration file. For
additional information about the format of a configuration file, see Configuration File
Structure (on page 289).

If the RM_DYNAMIC_LIBRARY_TRACE environment variable is defined (or the V Option
on page 193 is specified on the Runtime Command or the V keyword on page 348 of the
RUN-OPTION configuration record, is set to the value DISPLAY) and the Automatic

Chapter 10: Configuration

 RM/COBOL User's Guide 291

Configuration File module is present in the execution directory, the load message produced by
the Automatic Configuration File module indicates whether or not a configuration file has
been automatically loaded. Furthermore, if the first line of the configuration file (for
example, runcobol.cfg) contains a slash and an asterisk (/*) in columns 1 and 2, the
remainder of the line will be included with the load message.

An automatic configuration file, when found, is processed prior to any configuration file
specified with a command-line option, as explained in Configuration Processing Order (on
page 291).

Command-Line Configuration Files
In addition to automatic configuration files, the Runtime and Compile Commands have
command-line options to specify configuration files when the command is run. Each
command has a pair of options: one to override any automatic configuration and another to
supplement the automatic or command-line-specified overriding configuration file. For more
information, see Configuration Compile Command Options (on page 151) and Configuration
Runtime Command Options (on page 192).

Configuration Processing Order
All configuration processing occurs after the command-line options have been processed.
Where a configurable option corresponds to a command-line option, if the option is specified
in both the command line and the configuration, the command-line specified option overrides
the configured option for that run of the command unless otherwise specified. For cumulative
options, for example, the L Runtime Command Option and the RUN-OPTION configuration
record keyword L, all occurrences of the option are accumulated, first from the command line
and then from the configuration.

If an overriding configuration file option is not specified on the command line, the automatic
configuration is processed first, as described in Automatic Configuration Files (on page 290).

If an overriding configuration file option is specified on the command line, any automatic
configuration file is ignored and the specified configuration file is processed after all the
command-line options have been processed.

After completing processing of the automatic or command-line-specified overriding
configuration file (only one of which is processed), if a supplemental configuration file is
specified in the command-line options, the specified configuration file is processed.

Other than cumulative configuration options, it is generally true that when an option is
specified more than once in the configuration, the last specified setting of the option takes
effect unless the option corresponds to a command-line option that has been specified, in
which case, the command-line option setting is used. Exceptions are noted in the
configuration option descriptions in this chapter. This means that, other than for exceptional
cases, the supplemental configuration file can be used to override configuration options
specified in the automatic or command-line-specified overriding configuration file.

Chapter 10: Configuration

292 RM/COBOL User's Guide

Configuration Errors
If your configuration file contains errors, you will see a message similar to one of the
following:

Configuration error code at record number in configuration file.

Configuration error code in configuration file.

code is the error number listed for configuration records, described in Configuration
Errors (on page 415) in Appendix A: Runtime Messages.

number is the logical record in the configuration file where the error occurred. When
using number to determine which record is in error, count lines combined with their
continuation lines as one record, and do not count comment lines or blank lines.

If the message is of the first format shown, the text of the configuration record in error will
follow the message.

For the compiler, the actual error message formats are described in Compiler Configuration
Errors (on page 185); for the runtime system and Indexed File Recovery (recover1) utility, the
error message formats can be found in Appendix A: Runtime Messages (on page 383).

Configuration Records
Table 33 lists and describes the types of configuration records. Configuration options that are
not used by the compiler, the runtime system, or the Indexed File Recovery (recover1) utility
are ignored. Therefore, the same configuration file may be used to configure the compiler,
the runtime system, and the Indexed File Recovery program, if appropriate.

Note Configuration is never necessary unless you want to change default option settings.

Table 33: Types of Configuration Records

Record Type Identifier

Description

Compiler

Runtime
System

Recover1

COMPILER-OPTIONS
(COMPILER-OPTION)
(see page 294)

Allows default
compiler options to
be changed.



DEFINE-DEVICE
(see page 319)

Associates the file
access name with a
physical filename of a
device or process.

 

EXTENSION-NAMES
(EXTENSION-NAME)
(see page 323)

Defines the character-
strings to be used for
filename extensions.

 

Chapter 10: Configuration

 RM/COBOL User's Guide 293

Table 33: Types of Configuration Records

Record Type Identifier

Description

Compiler

Runtime
System

Recover1

EXTERNAL-ACCESS-
METHOD
(see page 324)

Describes the access
to external file access
methods, such as
Btrieve, and
RM/InfoExpress,
from the RM/COBOL
file management
system.

 

INTERNATIONALIZATION
(see page 326)

Specifies information
necessary for
internationalization.

 

PRINT-ATTR
(see page 328)

Describes printer
characteristics.

 

RUN-ATTR
(see page 330)

Describes general
runtime characteristics.

 

RUN-FILES-ATTR
(RUN-FILE-ATTR)
(see page 335)

Describes the
characteristics
common to all file
organizations.

  

RUN-INDEX-FILES
(RUN-INDEX-FILE)
(see page 341)

Describes indexed file
characteristics.

 

RUN-OPTION
(RUN-OPTIONS)
(see page 344)

Describes default
runtime option values.

 

RUN-REL-FILES
(RUN-REL-FILE)
(see page 348)

Describes relative file
characteristics.

 

RUN-SEQ-FILES
(RUN-SEQ-FILE)
(see page 349)

Describes sequential
file characteristics.

  

RUN-SORT
(see page 350)

Describes SORT-
MERGE
characteristics.

 

TERM-ATTR 1
(see page 351)

Describes terminal
characteristics.

  

TERM-INPUT 1

(see page 356)
Defines incoming
character sequences.

  

TERM-INTERFACE 1
(see page 365)

Specifies the format
for the other terminal
configuration records,
as well as the
interface to be used
for screen I/O.

  

Chapter 10: Configuration

294 RM/COBOL User's Guide

Table 33: Types of Configuration Records

Record Type Identifier

Description

Compiler

Runtime
System

Recover1

TERM-UNIT 1(UNIX Only)
(see page 366)

Associates the unit
number of ACCEPT
and DISPLAY
statements with the
actual device on
the system.

 

1 Terminal configuration records are never necessary because terminal independence is
provided by terminfo and termcap. Terminal configuration is still provided, however, to allow
extensions to the basic capabilities provided by terminfo and termcap in a manner that will not
conflict with other applications on your system.

 Indicates that the configuration record is used.

COMPILER-OPTIONS Configuration Record
The COMPILER-OPTIONS configuration record identifier is followed by one or more
keywords. If the keyword is allowed to have a value, it is followed by an equal sign (=) and
the value. The COMPILER-OPTIONS record allows options to be configured. Configured
options can be overridden by options entered in the Compile Command line. See the
discussion of Compile Command options (on page 148).

Certain options require that another option be present before the compiler can proceed. For
example, it is not valid to specify a cross-reference if the program listing is not being
generated. Other options may conflict with each other. For instance, the option to treat
COMPUTATIONAL operands as binary is not valid if the program is being compiled in
RM/COBOL (74) version 2.n-compatible mode. These conditions are not checked when the
configuration file is processed. Rather, they are deferred until the command-line options have
also been processed.

The options in the COMPILER-OPTIONS record are processed in the order they appear
in the configuration file. New options are simply added to old options. If a LISTING-
PATHNAME or OBJECT-PATHNAME occurs more than once, the last occurrence of each is
used. The possible keywords for the COMPILER-OPTIONS record are as follows:

• ACCEPT-BEEP-DEFAULT • LISTING-LINE-LENGTH

• ACCEPT-SUPPRESS-CONVERSION • LISTING-PATHNAME

• ALLOW-DATE-TIME-OVERRIDE • LISTING-TIME-SEPARATOR

• BINARY-ALLOCATION • NO-DIAGNOSTIC

• BINARY-ALLOCATION-SIGNED • OBJECT-PATHNAME

• COBOL-74 • OBJECT-VERSION

• COMPUTATIONAL-AS-BINARY • POSTPONE-COPY-IN-PSEUDO-TEXT

• COMPUTATIONAL-TYPE • RESEQUENCE-LINE-NUMBERS

• COMPUTATIONAL-VERSION • RMCOBOL-2

• DEBUG • SEPARATE-SIGN

• DEBUG-TABLE-OUTPUT • SEQUENTIAL-FILE-TYPE

Chapter 10: Configuration

 RM/COBOL User's Guide 295

• DERESERVE • SOURCE-ON-INPUT-DEVICE

• DISPLAY-UPDATE-MESSAGES • SOURCE-PATTERN-EXCLUDE

• EXTERNAL-INDEX-NAMES • SOURCE-PATTERN-INCLUDE

• FLAGGING • SOURCE-RECORD-MAX-LENGTH

• INITIAL-MARGIN-R • STRICT-REFERENCE-MODIFICATION

• KEEP-TEMP-XML-SYMBOL-TABLE-FILE • SUBSCRIPT-CHECKING

• LINKAGE-ENTRY-SETTINGS • SUPPRESS-FILLER-IN-SYMBOL

• LISTING-ATTRIBUTES • SUPPRESS-LITERAL-BY-CONTENT

• LISTING-CONDITIONAL-EXCLUSION-INDICATOR • SUPPRESS-NUMERIC-OPTIMIZATION

• LISTING-CONDITIONAL-INCLUSION-INDICATOR • SUPPRESS-XML-SYMBOL-TABLE

• LISTING-DATE-FORMAT • SYMBOL-TABLE-OUTPUT

• LISTING-DATE-SEPARATOR • WHEN-COMPILED-FORMAT

• LISTING-DIAGNOSTIC-PREFIX • WORKSPACE-SIZE

• LISTING-ID-AREA-SEPARATOR

ACCEPT-BEEP-DEFAULT
This keyword specifies whether ACCEPT statements should BEEP by default or require the
BEEP phrase in order to cause a beep. If the value is set to NO or OFF, ACCEPT statements
do not beep by default; the BEEP phrase must be specified in each ACCEPT statement when
a beep is desired and the NO BEEP phrase causes a compilation warning because it is
redundant. If the value is set to YES or ON, the NO BEEP phrase must be specified in each
ACCEPT statement when a beep is not desired and the BEEP phrase causes a compilation
warning because it is redundant. The default value for this keyword is YES.

ACCEPT-SUPPRESS-CONVERSION
This keyword suppresses automatic input conversion for Format 1 and 3 ACCEPT statements
with numeric operands. If the value is set to YES, conversion is suppressed. If the value is
set to NO, conversion is performed. The default value for this keyword is NO.

The ACCEPT-SUPPRESS-CONVERSION keyword corresponds to the compiler M Option
(see page 157).

ALLOW-DATE-TIME-OVERRIDE
This keyword assists in testing for Year 2000 (Y2K) and other date/time problems by
allowing parts of an application to be tested without changing the actual date and time on the
computer. An initial date and time can be set prior to starting the RM/COBOL runtime
system. The value of ALLOW-DATE-TIME-OVERRIDE is set to YES, and the value of the
RM_Y2K environment variable is set with the desired date and time using the following
format:

RM_Y2K=YYYY,MM,DD,hh,mm,ss

Chapter 10: Configuration

296 RM/COBOL User's Guide

For example, RM_Y2K=1999,12,31,23,59,50 sets the initial runtime date and time to
December 31, 1999 at 23:59:50 (ten seconds before the year 2000 begins). The time and date
then advance normally from this initial value for the life of the runtime. The default value for
this keyword is NO.

The following points should be taken into consideration when using this keyword:

• If the main program does not allow date/time override or if there is any error in the
RM_Y2K environment variable value, no error message is generated and the runtime
system continues with the actual machine date and time.

• Only future time is allowed; the user cannot set time to the past.

• Only the main program’s option determines whether the RM_Y2K environment variable
is scanned.

• Once set at the beginning of the runtime, time advances normally for all programs called
by that runtime system.

• Any new runtime system that is invoked will begin at the date and time set in the
RM_Y2K environment variable at that instant. This could cause application errors. It is
best to test multiple runtime systems by changing the actual date and time on a test
machine.

• Writing records that contain future dates and times could damage production files. Users
should test copies of their application files when using this feature.

• This feature can also be used to test date and time events, for example, end-of-day, end-
of-month, end-of-quarter, end-of-year, and daylight-savings-time-change.

• Most systems do not understand time beyond 2038,1,18,21,14,7. Attempts to use an
override date and time close to or beyond this value may lead to unpredictable results
because the time cannot advance past this value.

For more information on obtaining composite date and time values, see Composite Date and
Time (on page 231).

BINARY-ALLOCATION
This keyword allows configuration of the allocation sizes allowed for a binary numeric data
item. The value may be specified in any of the following ways:

• BINARY-ALLOCATION=RM specifies the traditional RM/COBOL allocation scheme
of two, four, eight, or sixteen bytes. This is the default configuration.

• BINARY-ALLOCATION=RM1 specifies that one- and two-digit binary data items will
be allocated as a single byte. For three to thirty digits, traditional RM/COBOL allocation
of two, four, eight, or sixteen bytes will be used.

• BINARY-ALLOCATION=MF-RM specifies that the minimum number of bytes will be
allocated for binary numeric data items consistent with the PICTURE character-string.
This is the traditional Micro Focus Visual COBOL binary allocation when the
IBMCOMP directive is not specified, but modified to use the minimum number of bytes
needed for digit counts of nineteen through thirty. The number of bytes allocated is
described in Table 34.

Chapter 10: Configuration

 RM/COBOL User's Guide 297

Table 34: MF-RM Binary Allocation

Digits in PICTURE character-string Bytes of memory allocated

Signed: S9(n) Unsigned: 9(n)

1-2 1-2 1

3-4 3-4 2

5-6 5-7 3

7-9 8-9 4

10-11 10-12 5

12-14 13-14 6

15-16 15-16 7

17-18 17-19 8

19-21 20-21 9

22-23 22-24 10

24-26 25-26 11

27-28 27-28 12

29-30 29-30 13

• BINARY-ALLOCATION=CUSTOM=integer-list specifies a user-selected custom
binary allocation configuration, where integer-list is a comma-separated list of integers.
Each integer in integer-list is 1 through 16 and specifies an allowed allocation size in
bytes. Allocation sizes not listed in integer-list will not be used. For a custom
configuration, the compiler will allocate the minimum number of bytes allowed by the
custom configuration that supports the number of digits described in the PICTURE
character-string for a numeric binary data item. See Table 34 for the minimum number
of bytes necessary for a given number of digits.

The RM, RM1, and MF-RM values for the BINARY-ALLOCATION keyword have the
following relationships to the CUSTOM=integer-list value:

• BINARY-ALLOCATION=RM is equivalent to BINARY-
ALLOCATION=CUSTOM=2,4,8,16 when BINARY-ALLOCATION-SIGNED=YES.
When BINARY-ALLOCATION-SIGNED=NO (the default), the only difference is that
19-digit unsigned binary is allocated with 16 bytes of storage for RM mode and 8 bytes
of storage for the CUSTOM mode.

• BINARY-ALLOCATION=RM1 is equivalent to BINARY-
ALLOCATION=CUSTOM=1,2,4,8,16 when BINARY-ALLOCATION-SIGNED=YES.
When BINARY-ALLOCATION-SIGNED=NO (the default), the only difference is that
19-digit unsigned binary is allocated with 16 bytes of storage for RM mode and 8 bytes
of storage for the CUSTOM mode.

• BINARY-ALLOCATION=MF-RM is equivalent to BINARY-
ALLOCATION=CUSTOM=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. Note, however, that
since 30 digits only require 13 bytes of storage for signed or unsigned binary, no item
will be allocated with 14, 15, or 16 bytes of storage.

Some examples of custom binary allocation are:

• If BINARY-ALLOCATION=CUSTOM=16, all binary items will be 16-bytes long.

Chapter 10: Configuration

298 RM/COBOL User's Guide

• If BINARY-ALLOCATION=CUSTOM=1,4,16, then all one-digit and two-digit binary
items will be 1-byte long, any binary items greater than two digits and less than ten digits
will be 4-bytes long, and all remaining binary items will be 16-bytes long.

Use of the BINARY-ALLOCATION keyword will affect:

• File record structures that include binary data items.

• REDEFINES validity when the subject or object defines binary data items.

• Any LINAGE-COUNTER special registers.

• CALL statement arguments that are binary or are groups that contain binary data items.
This includes CALL statement arguments for the supplied subprogram library, for
example, arguments for C$CARG (see page 538) and C$SCRD (see page 564).

• Pop-up windows, because the Pop-Up Window Control Block (see page 222) is a group
that contains binary data items that must be allocated a specific number of bytes.

Thus, this configuration capability should be used with care. The binary allocation override
language feature of RM/COBOL (see the USAGE clause in the data description entry
discussion in Chapter 4: Data Division of the RM/COBOL Language Reference Manual) is
more appropriate in situations where the programmer wants to control the allocated sizes of
certain binary data items on a case by case basis. The binary allocation configuration
capability is intended mostly for easing conversion to RM/COBOL from other COBOL
dialects that use a different allocation scheme. When this configuration keyword is used, it
must be used consistently throughout a programming project, and, in some cases, the binary
allocation override language feature may need to be used to resolve conflicts (for example,
when defining argument data items for the RM/COBOL-supplied subprogram library).

BINARY-ALLOCATION-SIGNED
This keyword causes unsigned binary data items to be allocated as if they were signed, so that
signed and unsigned data items with the same number of digits will be allocated the same
number of bytes of storage. If the value is set to YES, unsigned binary data items are
allocated the same number of bytes of storage as if they were signed; only the allocation is
affected, the data item is not treated as signed for any other purpose. If the value is set to NO,
unsigned items are allocated the minimum number of bytes necessary to support the unsigned
precision specified by the PICTURE character-string, which for several cases is one less byte
of storage than for the corresponding signed precision. The default value for this keyword
is NO.

COBOL-74
This keyword allows programs created for ANSI COBOL 1974 to be compiled. If the value
is set to YES, ANSI COBOL 1974 semantics and I-O status values are assumed. If the value
is set to NO, ANSI COBOL 1985 semantics and I-O status values are assumed. The default
value for this keyword is NO.

The COBOL-74 keyword corresponds to the compiler 7 Option (see page 160).

Chapter 10: Configuration

 RM/COBOL User's Guide 299

COMPUTATIONAL-AS-BINARY
This keyword, when the value is set to YES, causes the compiler to treat data items described
in the source program as usage COMP or COMPUTATIONAL as if they had been described
as usage BINARY. If you set the value of this keyword to NO—and do not set a value for the
COMPUTATIONAL-TYPE keyword—usage COMP and COMPUTATIONAL retain their
usual format. For illustrations, see Unsigned Numeric COMPUTATIONAL-4 Data (NBU)
(on page 438) and Signed Numeric COMPUTATIONAL-4 Data (NBS) (on page 440). The
default value for this keyword is NO.

Note Setting COMPUTATIONAL-AS-BINARY=YES creates compatibility between COMP
data items and IBM OS/VS COMP data items. This can improve computational speed at
runtime and reduce the amount of storage occupied by a COMP data item.

When the value is set to YES, this keyword corresponds to the compiler U=B Option (see
page 153).

COMPUTATIONAL-AS-BINARY is an obsolete configuration capability retained for
compatibility with existing configuration files. COMPUTATIONAL-AS-BINARY=YES is
equivalent to COMPUTATIONAL-TYPE=BINARY.

COMPUTATIONAL-TYPE and COMPUTATIONAL-AS-BINARY should not be specified
together in the same configuration.

COMPUTATIONAL-TYPE
This keyword determines the data format used for data items described as
COMPUTATIONAL or COMP in their data description entry.

The COMPUTATIONAL-TYPE keyword may be assigned one of the following values:
BINARY, DISPLAY, UNPACKED-DECIMAL, or PACKED-DECIMAL. If the value is set
to BINARY, the format is the same as if BINARY had been specified in the USAGE clause in
the data description entry. If the value is set to DISPLAY, the format is the same as if
DISPLAY had been specified in the USAGE clause in the data description entry. If the value
is set to PACKED-DECIMAL, the format is the same as if PACKED-DECIMAL had been
specified in the USAGE clause in the data description entry. If the value is set to
UNPACKED-DECIMAL, the format is the default unpacked decimal format for
COMPUTATIONAL data items. For illustrations, see Unsigned Numeric
COMPUTATIONAL (NCU) (on page 433) and Signed Numeric COMPUTATIONAL (NCS)
(on page 434). The default data format for a COMPUTATIONAL or COMP data item is
UNPACKED-DECIMAL.

Setting COMPUTATIONAL-TYPE=BINARY corresponds to the compiler U=B Option.
Setting COMPUTATIONAL-TYPE=DISPLAY corresponds to the compiler U=D Option.
Setting COMPUTATIONAL-TYPE=PACKED-DECIMAL corresponds to the compiler
U=P Option (see page 153).

COMPUTATIONAL-TYPE and COMPUTATIONAL-AS-BINARY should not be specified
together in the same configuration.

COMPUTATIONAL-VERSION
This keyword modifies the data format of data items described as signed numeric
COMPUTATIONAL (COMP) and signed numeric COMPUTATIONAL-3 (COMP-3) in
their data description entry. This configuration option affects the value used for positive
sign representation.

Chapter 10: Configuration

300 RM/COBOL User's Guide

The COMPUTATIONAL-VERSION keyword may be assigned one of the following values:
RMCOBOL85, RMCOBOL2 or RMCOS. The RMCOBOL85 value represents the default
positive sign convention for RM/COBOL compilers and causes UNPACKED data items to
use the hexadecimal value 0C to indicate positive values, and PACKED-DECIMAL data
items to use the hexadecimal value C to indicate positive values. The RMCOBOL2 value
selects the positive sign convention for previous RM/COBOL (74) version 2 compilers and
causes UNPACKED data items to use the hexadecimal value 0B to indicate positive values,
and PACKED-DECIMAL data items to use the hexadecimal value F to indicate positive
values. The RMCOS value selects the positive sign convention for the RM/COBOL-74
compiler for the RM/COS operating system and causes UNPACKED data items to use the
hexadecimal value 0B to indicate positive values, and PACKED-DECIMAL data items to use
the hexadecimal value B to indicate positive values.

The RMCOBOL2 and RMCOS options allow applications to access files containing
COMPUTATIONAL and COMPUTATIONAL-3 data items that use previous sign
representations. The COMPUTATIONAL-VERSION keyword has no corresponding
Compile Command line option. The default value for this keyword is RMCOBOL85.

Notes

• The COMPUTATIONAL-VERSION keyword may be used in conjunction with the
COMPUTATIONAL-TYPE keyword or the compiler U Option (see page 153). For
example, by setting COMPUTATIONAL-TYPE=PACKED-DECIMAL (or the
compiler U=P Option in the Compile Command) and COMPUTATIONAL-
VERSION=RMCOBOL2, COMPUTATIONAL data items will be PACKED-DECIMAL
with the RM/COBOL (74) version 2 sign representation.

• When using the COMPUTATIONAL-VERSION keyword, you cannot specify an object
version level less than 7.

DEBUG
This keyword determines whether source programs are to be compiled as if the WITH
DEBUGGING MODE clause appeared in each program. If the value is set to YES, the
debugging mode is selected. If the value is set to NO, debugging mode is not selected. The
default value for this keyword is NO.

The DEBUG keyword corresponds to the compiler D Option (see page 160).

DEBUG-TABLE-OUTPUT
This keyword, when the value is set to YES, causes the compiler to include both the symbol
table and the debug line table in the object program. Furthermore, when the value is set to
ALL, the actual text of compiler-generated lines that do not appear in source or copy files is
also included in the object file and is available during debugging.

When the debug line table is included in the object program, CodeWatch can display the
program’s source at execution time. Setting YES is sufficient for most purposes. If ALL is
set, the displayed source has the appearance of a printed listing. Note that this may lead to
large object program files. After debugging is complete, this information may be removed by
the STRIP option in the Combine Program (rmpgmcom) utility (see page 585).

When the value of this keyword is set to NO, the line table is not included in the object file.
The default value for this keyword is NO.

Chapter 10: Configuration

 RM/COBOL User's Guide 301

Setting DEBUG-TABLE-OUTPUT=YES corresponds to the compiler Y=2 Option. Setting
DEBUG-TABLE-OUTPUT=ALL corresponds to the compiler Y=3 Option. (See the
description of these compiler options on page 159.) Both options imply SYMBOL-TABLE-
OUTPUT=YES (see page 314).

DERESERVE
This keyword directs the compiler to remove words (and their associated language features)
from the reserved words list. The value of the DERESERVE keyword is a comma-separated
list of those words to be removed from the reserved words list. All words specified must be
found in the compiler reserved words list. When a word is removed from the compiler
reserved words list, the word is considered to be a user-defined word wherever it occurs in a
source program. The context-sensitive words are contained in the compiler reserved words
list and may be removed by use of the DERESERVE keyword. When a context-sensitive
word is removed, it is considered a user-defined word even in the context in which it would
normally be reserved. By default, no words are removed from the reserved words list.

The DERESERVE keyword has no corresponding Compile Command line option.

DISPLAY-UPDATE-MESSAGES
This keyword controls which messages are displayed when the automatic update check
determines that there is an update message available for the RM/COBOL compiler. The
message is displayed at compiler termination. If the value of this keyword is set to ALL, then
all update messages are displayed. If the value of this keyword is set to URGENT-ONLY,
then only messages that Micro Focus RM/COBOL designates as urgent are displayed. The
default value of this keyword is ALL.

EXTERNAL-INDEX-NAMES
This keyword controls whether index-names declared within an external record area are
external or not external. If the value of this keyword is set to YES, then index-names are
external when declared within an external record area. If the value of this keyword is set to
NO, then index-names are never external. The default value of this keyword is YES.

Note The RM/COBOL implementation initially followed the definition given in the 1985
COBOL standard, which states that index-names declared in an external record area are
external themselves. A later official interpretation of the COBOL standard stated this was an
editorial error and that index-names are never external. Setting the value for this keyword to
YES (or using the default) results in the original behavior of RM/COBOL. Setting the value
of this keyword to NO provides compatibility with the later interpretation of how the COBOL
language should treat index-names with respect to the EXTERNAL clause. Setting the value
to NO is particularly useful when taking advantage of the new feature of qualified index-
names.

FLAGGING
This keyword flags specified elements of the COBOL language in the listing file. Multiple
values are separated by commas. One or more of the following values may be included in any
order:

Chapter 10: Configuration

302 RM/COBOL User's Guide

• COM1, which flags COM1 and COM2 elements of the language.

• COM2, which flags COM2 elements of the language.

• EXTENSION, which flags RM/COBOL extensions to ANSI COBOL 1985.

• HIGH, which flags HIGH elements of the language.

• INTERMEDIATE, which flags HIGH and INTERMEDIATE elements of
the language.

• OBSOLETE, which flags obsolete elements of the language.

• SEG1, which flags SEG1 and SEG2 elements of the language.

• SEG2, which flags SEG2 elements of the language.

By default, none of the occurrences of the preceding items is flagged.

The FLAGGING keyword corresponds to the compiler F Option (see page 160).

INITIAL-MARGIN-R
This keyword specifies the initial margin R position. The margin R position determines the
end of the program-text area and the beginning of the Identification area, if any. See the
explanation of fixed-form reference format in the RM/COBOL Language Reference Manual
for more information on margin R. The value for this keyword is a number specifying the
column after which margin R is located. The minimum value is 72 and the maximum value is
the same as the maximum source record length. If values outside this range are specified, the
values are adjusted; lower values are increased to 72 and higher values are reduced to the
maximum source record length. The default value is 72, matching traditional COBOL fixed
reference format. The maximum source record length can be set with the SOURCE-
RECORD-MAX-LENGTH keyword.

Margin R can also be changed at any time during the compilation with the RM/COBOL
implementer-defined directive IMP MARGIN-R.

KEEP-TEMP-XML-SYMBOL-TABLE-FILE
This keyword specifies whether the temporary file that contains the XML-format symbol
table before it is compressed into the object file should be kept or deleted. The default value
of empty indicates that the file should be deleted. A non-empty pathname can be specified to
keep the XML-format symbol table file in the specified folder or directory for use in XML
projects. The RM_KEEP_XML_SYMTAB_FILE environment variable, as described in
Environment Variables for UNIX (on page 43) and Environment Variables for Windows (on
page 116), can be used to specify this pathname instead of using this configuration keyword.
The configuration keyword overrides the environment variable if both are specified.

Note If the compiler is not licensed for XML Extensions, the KEEP-TEMP-XML-SYMBOL-
TABLE-FILE keyword and RM_KEEP_XML_SYMTAB_FILE environment variable have
no effect.

Chapter 10: Configuration

 RM/COBOL User's Guide 303

LINKAGE-ENTRY-SETTINGS
This keyword allows configuration of the treatment of based linkage items, including formal
arguments, upon entry to subprograms called during the run unit. The value assigned to the
keyword establishes the behavior for the program or programs compiled with that setting of
the keyword. The programs that are called in a run unit need not all be compiled with the
same value for this keyword.

This configuration keyword is intended to provide compatibility when porting existing
programs from another COBOL implementation. New RM/COBOL programs should be
designed to use the default behavior; that is, UNLINK-NONE, which is described in the
value descriptions (on page 304).

Much of the complexity of the following descriptions occurs only when a Format 5 or Format
6 SET statement explicitly modifies the base address of a formal argument (see the
RM/COBOL Language Reference Manual). It is recommended that such use be restricted to
those cases where it accomplishes a clear programming goal, such as setting a default value
for an argument that will commonly be omitted.

For a formal argument that corresponds to an existing actual argument, the actual argument
address is used during execution of the subprogram when references are made to the formal
argument, except that, if a Format 5 or 6 SET statement modifies the base address of the
formal argument, then that base address overrides the actual argument address until the
program exits. When a formal argument corresponds to an omitted actual argument, or to an
actual argument that has a null base address, the last setting of the based linkage base address
is used when references are made to the formal argument.

Note A pointer data item, whose value is NULL, does not have a null base address.

The last setting of the based linkage base address may have resulted from any one of
the following:

• The setting to NULL when the program was placed into its initial state.

• The setting established by an explicit Format 5 SET statement.

• The setting to NULL upon entry because of the UNLINK-ALL or
UNLINK-FORMAL-ARGUMENTS values for this keyword.

• The setting to the last passed actual argument base address because of the
LINK-FORMAL-ARGUMENTS value for this keyword.

In the value descriptions below, the word “link” is used to refer to setting the base address of
a based linkage item. This setting is as if a Format 5 SET statement were executed where the
sending item is the address of the item being linked and the receiving item is the address of
the based linkage item. Because of the way base addresses are evaluated for based linkage
items that are also formal arguments (as described above), this is equivalent to setting the base
address of the formal argument to itself. For example:

SET ADDRESS OF formal-argument-1 TO ADDRESS OF formal-argument-1.

The word “unlink” is used to refer to execution of a similar Format 5 SET statement, except
that the sending item is the figurative constant NULL. For example:

SET ADDRESS OF based-linkage-item-1 TO NULL.

Chapter 10: Configuration

304 RM/COBOL User's Guide

The value for LINKAGE-ENTRY-SETTINGS may be specified in any of the
following ways:

• UNLINK-ALL specifies that all based linkage items (including all formal arguments) be
reset to a base address value of NULL upon each entry to the subprogram. The address
for each existing actual argument corresponding to a formal argument will override this
setting during the execution of the subprogram until the subprogram exits. Specifying
this keyword causes behavior matching the Micro Focus Visual COBOL behavior for the
NOSTICKY-LINKAGE directive, which is the Micro Focus Visual COBOL default
behavior. The behavior is effectively as if, for the purposes of based linkage items only,
the program was canceled each time it exited; that is, as if it had the PROGRAM IS
INITIAL attribute specified.

• UNLINK-FORMAL-ARGUMENTS specifies that only based linkage items that are
also formal arguments be reset to a base address of NULL upon each entry to the
subprogram. The address for each existing actual argument corresponding to a formal
argument will override this setting during the execution of the subprogram until the
subprogram exits. Based linkage items that are not formal arguments will retain the base
address last established by a Format 5 SET statement or modified by a Format 6 SET
statement. Specifying this keyword causes behavior matching the Micro Focus Visual
COBOL behavior for the STICKY-LINKAGE“1” directive.

• UNLINK-NONE specifies that no based linkage items will be reset upon entry to the
subprogram. All based linkage items will retain the base address last established by a
Format 5 SET statement or modified by a Format 6 SET statement. The address for each
existing actual argument corresponding to a formal argument will override any such
setting during the execution of the subprogram until the subprogram exits. Where a
formal argument corresponds to an omitted actual argument, or to an actual argument that
has a null base address, the last set base address will be used. Only when the program is
placed into its initial state, either on the first CALL in the run unit or the first CALL after
the subprogram has been canceled, will the based linkage base addresses be set to a
NULL address value. For an initial program, that is, a program described with the
PROGRAM IS INITIAL clause in the PROGRAM-ID paragraph, the based linkage base
addresses will be set to a NULL address value for each entry because the program is
effectively canceled after it exits for each time it is called. The behavior for this keyword
is the default behavior for RM/COBOL and is more fully described in the description of
the “Linkage Section” topic in Chapter 4: Data Division of the RM/COBOL Language
Reference Manual. There is no corresponding Micro Focus Visual COBOL behavior.

• LINK-FORMAL-ARGUMENTS specifies the base address of each existing actual
argument corresponding to a formal argument is set as the base address of the formal
argument. This is as if a Format 5 SET statement was executed that specified the
ADDRESS OF the actual argument as the sending item and the ADDRESS OF the
formal argument as the receiving item. The base address for a formal argument is not
modified when the formal argument corresponds to an omitted actual argument, or to an
actual argument that has a null base address. Other than these implicit settings for formal
arguments, the behavior is the same as for UNLINK-NONE. With this specification,
when an actual argument is omitted in a subsequent call, the last previously passed actual
argument will be used by the subprogram except when the base address has been changed
by an explicit Format 5 or Format 6 SET statement execution. Specifying this keyword
causes behavior matching the Micro Focus Visual COBOL behavior for the STICKY-
LINKAGE“2” directive.

Chapter 10: Configuration

 RM/COBOL User's Guide 305

LISTING-ATTRIBUTES
This keyword determines which information is to be included in the program listing, and
where the program listing will be directed. One or more of the following values may be
included, in any order (note, however, that multiple values must be separated by commas):

• ALLOCATION-MAP generates an allocation map. When set to this value, the
LISTING-ATTRIBUTES keyword corresponds to the compiler A Option (see page 154).
By default, the allocation map is not generated.

• CROSS-REFERENCE generates a cross reference map. When set to this value, the
LISTING-ATTRIBUTES keyword corresponds to the compiler X Option (see page 157).
By default, the cross reference listing is not generated.

• ERROR-ONLY-LIST includes only erroneous source lines in the listing file. When
set to this value, the LISTING-ATTRIBUTES keyword corresponds to the compiler
E Option (see page 155). By default, the source program component of the listing is not
suppressed.

• KEEP-REPLACED-LINES causes replaced lines (lines deleted because of the
REPLACE statement, the REPLACING phrase of the COPY statement, or the
DATE-COMPILED paragraph) to be included in the listing file. When the
LISTING-ATTRIBUTES keyword includes this value, the default behavior of the
compiler C Option (see page 154), which is to suppress replaced lines in the listing
when no C Compile Command Option values are specified, is overridden. This value is
ignored and has no effect if the SUPPRESS-REPLACED-LINES value is also specified
or the C Compile Command Option is specified with a nonzero value.

Note Whether lines appear in the listing is further controlled by the ERROR-ONLY-
LIST value and also by the LISTING compiler directive (see Chapter 1: Language
Structure of the RM/COBOL Language Reference Manual). Prior to version 11, the
compiler included replaced lines in the listing by default, but they could be suppressed
with the C=2 Compile Command Option or the SUPPRESS-REPLACED-LINES value
of the LISTING-ATTRIBUTES keyword.

• LISTING-FILE writes a copy of the listing file to disk. When set to this value, the
LISTING-ATTRIBUTES keyword corresponds to the compiler L Option (see page 156).
By default, a copy of the listing file is not written to disk.

• NO-TERMINAL-DISPLAY suppresses the display of informational messages on the
screen. When set to this value, the LISTING-ATTRIBUTES keyword corresponds to the
compiler K Option (see page 152). By default, the informational messages are displayed.

• PRINT-LISTING prints a copy of the listing file. When set to this value, the LISTING-
ATTRIBUTES keyword corresponds to the compiler P Option (see page 156). By
default, the listing file is not printed.

• RENUMBER-SEQUENCE-AREA directs the compiler to generate a sequential line
number in the first six columns of source records as they appear on the listing. The
source file is not affected. When set to this value, the LISTING-ATTRIBUTES keyword
corresponds to the compiler R Option (see page 156).

Note This value of the LISTING-ATTRIBUTES keyword is a more consistent and
clearer alternative to the RESEQUENCE-LINE-NUMBERS keyword (see page 310),
which specifies a YES or NO value.

• SUPPRESS-COPIED-LINES directs that copied lines (text in copied files) not be
placed in the listing file. When set to this value, the LISTING-ATTRIBUTES keyword
corresponds to the compiler C or C=1 Option (see page 154). By default, copied lines are

Chapter 10: Configuration

306 RM/COBOL User's Guide

placed into the listing file. Use this alternative value to the SUPPRESS-COPY-FILES
value, described below, which remains for compatibility with existing configuration files.

Note Whether lines appear in the listing is further controlled by the ERROR-ONLY-
LIST value and also by the LISTING compiler directive.

• SUPPRESS-COPY-FILES directs that text in the copy files not be placed in the listing
file. When set to this value, the LISTING-ATTRIBUTES keyword corresponds to the
compiler C or C=1 Option (see page 154). By default, copy files are placed into the
listing file. Although this value remains for compatibility with existing configuration
files, the SUPPRESS-COPIED-LINES value, described above, is a more consistent and
clearer alternative to this value.

Note Whether lines appear in the listing is further controlled by the ERROR-ONLY-
LIST value and also by the LISTING compiler directive.

• SUPPRESS-COPY-STATEMENT-LINES suppresses COPY statements in the listing
file since COPY statements are logically replaced by the copied text. When set to this
value, the LISTING-ATTRIBUTES keyword corresponds to the compiler C Option (see
page 154) with a value of 8 through 15.

Note Whether lines appear in the listing is further controlled by the ERROR-ONLY-
LIST value and also by the LISTING compiler directive.

• SUPPRESS-REPLACED-LINES directs that the comment lines containing text, which
have been replaced as the result of the REPLACE statement, the REPLACING phrase of
the COPY statement, or the DATE-COMPILED paragraph, not be included in the listing
file. This corresponds to the compiler C=2 Option (see page 154). By default, replaced
lines are included as comments in the listing file.

Notes

− Specifying both of the values, SUPPRESS-COPIED-LINES (or its equivalent,
SUPPRESS-COPY-FILES) and SUPPRESS-REPLACED-LINES, in the LISTING-
ATTRIBUTES keyword is equivalent to the compiler C=3 Option.

− Whether lines appear in the listing is further controlled by the ERROR-ONLY-LIST
value and also by the LISTING compiler directive.

• SUPPRESS-REPLACEMENT-LINES suppresses the replacement lines in the listing
(lines inserted because of the REPLACE statement, the REPLACING phrase of the
COPY statement, or the DATE-COMPILED paragraph). When set to this value, the
LISTING-ATTRIBUTES keyword corresponds to the compiler C Option (see page 154)
with a value of 4, 5, 6, 7, 12, 13, 14, or 15.

Note Whether lines appear in the listing is further controlled by the ERROR-ONLY-
LIST value and also by the LISTING compiler directive.

• TERMINAL-LISTING displays a copy of the listing file on the screen. When set to
this value, the LISTING-ATTRIBUTES keyword corresponds to the compiler T Option
(see page 157). By default, a copy of the listing is not written to the standard output
device.

• WRAP-LONGNAMES directs the compiler to wrap long names in the compilation
listing. The default is to truncate names at the end of a print line. Wrapped long names
continue on the next line with a leading “&” character. The environment variable
RM_COMPILER_WRAP_LONGNAMES, as described in Environment Variables for
UNIX (on page 43) and Environment Variables for Windows (on page 116), can be set to
“Y” to force long name wrapping or to “N” to force long name truncation, regardless of
the configuration setting. There is no corresponding command line option for this
configuration feature. The option summary in the compilation listing indicates whether
WRAP-LONGNAMES was in effect for the compilation.

Chapter 10: Configuration

 RM/COBOL User's Guide 307

LISTING-CONDITIONAL-EXCLUSION-INDICATOR
This keyword specifies the character that should be shown in the indicator column of a source
line in the listing when that line has been conditionally excluded in the compiled source. The
value of this keyword must be a single-character string or a number from 0 to 255. The
default value for this keyword is “*” (42 or 0x2a). Specifying a value other than the default,
for example, “!”, helps in determining if a line was conditionally excluded from the
compilation by examining the listing file.

Note For additional information on conditionally excluding source lines during compilation,
see the SOURCE-PATTERN-EXCLUDE keyword (on page 311).

LISTING-CONDITIONAL-INCLUSION-INDICATOR
This keyword specifies the character that should be shown in the indicator column of a source
line in the listing when that line has been conditionally included in the compiled source. The
value of this keyword must be a single-character string or a number from 0 to 255. The
default value for this keyword is “ ” (32 or 0x20). Specifying a value other than the default,
for example, “+”, helps in determining if a line was conditionally excluded from the
compilation by examining the listing file.

Notes

• When a continuation line (hyphen in indicator area) is conditionally included, the
indicator column in the listing is not modified, regardless of the setting of this keyword.

• For additional information on conditionally including source lines during compilation,
see the SOURCE-PATTERN-INCLUDE keyword (on page 311).

LISTING-DATE-FORMAT
This keyword directs the compiler to use a specific format for the compilation date in the
header lines on listing pages. The value must be one of the following:

• MMDDYY specifies month-of-year, day-of-month, year-of-century.

• DDMMYY specifies day-of-month, month-of-year, year-of-century.

• YYMMDD specifies year-of-century, month-of-year, day-of-month.

• YYDDD specifies year-of-century, Julian day-of-year.

• MMDDYYYY specifies month-of-year, day-of-month, year-of-millennium.

• DDMMYYYY specifies day-of-month, month-of-year, year-of-millennium.

• YYYYMMDD specifies year-of-millennium, month-of-year, day-of-month.

• YYYYDDD specifies year-of-millennium, Julian day-of-year.

The default value for this keyword is MMDDYYYY. The LISTING-DATE-FORMAT
keyword has no corresponding Compile Command line option.

Note This keyword affects the date inserted for the DATE-COMPILED paragraph. The
same date format used in the listing header is inserted in the DATE-COMPILED paragraph.

Chapter 10: Configuration

308 RM/COBOL User's Guide

LISTING-DATE-SEPARATOR
This keyword directs the compiler to use a specific separator character for the compilation
date in the header lines on listing pages. The value of this keyword must be a single-character
string or a number from 0 to 255. The default value for this keyword is “/” (47 or 0x2f).

The LISTING-DATE-SEPARATOR keyword has no corresponding Compile Command line
option.

Note This keyword affects the date inserted for the DATE-COMPILED paragraph. The
same date format used in the listing header is inserted in the DATE-COMPILED paragraph.

LISTING-DIAGNOSTIC-PREFIX
This keyword specifies the prefix string (prefix-string) that precedes diagnostic messages in
the source listing. The default value is “>>>>>”. (Prior to version 11, the prefix string was
“*****”.) The prefix string has a maximum length of 15 characters. Longer prefix strings
are truncated to the first 15 characters.

LISTING-ID-AREA-SEPARATOR
This keyword specifies the Identification area separator character value (char). If char is 0,
then no Identification area separator character is printed in the listing source column header or
in source records printed in the listing, which matches the behavior of RM/COBOL compilers
prior to version 11. The default separator is “|” (or, equivalently, 0x7C).

LISTING-LINE-LENGTH
This keyword specifies the maximum length of listing lines in the listing file (n). The default
value is 132. The minimum value is 80 and the maximum value is 65535. Values outside this
range cause a configuration value error. When printing records to the listing or print file, the
compiler limits the line length to the specified value, truncating the record if necessary.
However, long user-defined words may be wrapped to a new listing line. See the WRAP-
LONGNAMES value (on page 306) of the LISTING-ATTRIBUTES keyword for information
on wrapping long user-defined words.

LISTING-PATHNAME
This keyword directs the compiler to write the program listing to the indicated directory.
When using this keyword, it is not necessary to set LISTING-ATTRIBUTES=LISTING-
FILE. The value must be a string that specifies the listing file pathname. The default value
for this keyword is not to produces a listing file.

The LISTING-PATHNAME keyword corresponds to the compiler L Option (see page 156).

LISTING-TIME-SEPARATOR
This keyword directs the compiler to use a specific separator character for the compilation
time in the header lines on listing pages. The value of this keyword must be a single-

Chapter 10: Configuration

 RM/COBOL User's Guide 309

character string or a number from 0 to 255. The default value for this keyword is “:” (58 or
0x3a).

The LISTING-TIME-SEPARATOR keyword has no corresponding Compile Command
line option.

NO-DIAGNOSTIC
This keyword directs the compiler to suppress specified diagnostic messages. The value of
this keyword must be a list (possibly with one entry) of numbers or certain named values.
The list specifies the diagnostic messages to be suppressed. The default value for this
keyword is an empty list; that is, no diagnostic messages are suppressed. A number in the
value list causes suppression of the correspondingly numbered diagnostic message as shown
in a compilation listing or as documented in Appendix B: Compiler Messages of the
Language Reference Manual. The named values that may be specified in the value list are as
follows:

• The value INFO specifies that all informational messages should be suppressed.
(Informational messages providing additional detail about a preceding summary
diagnostic message are not suppressed unless the associated summary diagnostic message
is also suppressed.)

• The value WARNINGS specifies that all warnings and informational messages should be
suppressed.

• The value MINOR-ERRORS specifies that all minor errors, warnings, and informational
messages should be suppressed. Minor errors are 94, 99, 319, 339, 361, 362, 363, 424,
and 432. These errors represent violations of COBOL language rules that have been
relaxed by other dialects of COBOL. RM/COBOL generally interprets these erroneous
constructions in the same manner as those other dialects.

• The value ERRORS specifies that all non-failure errors should be suppressed. Use of this
named classification is not recommended; it was provided for completeness only. Use of
this named classification can lead to confusing failure errors caused by suppressed non-
failure errors. Also, the execution behavior of the program may not be as desired in some
cases.

Failure errors, that is, errors for which reasonable code cannot be generated or for which the
compiler must skip scanning of some source in order to find valid COBOL syntax cannot be
suppressed, either by number or by use of the ERRORS named value. Also, message number
5, “Scan resumed.”, can be suppressed only by listing its number after any named message
classifications, because named message classifications always restore message number 5 for
output.

The NO-DIAGNOSTIC keyword has no corresponding Compile Command line option.

OBJECT-PATHNAME
This keyword directs the compiler to write the object file to the indicated directory. The value
must be a string that specifies the object directory pathname. The default value for this
keyword is to write the object file to the same directory as the source file.

The OBJECT-PATHNAME keyword corresponds to the compiler O Option (see page 158).

Chapter 10: Configuration

310 RM/COBOL User's Guide

OBJECT-VERSION
This keyword specifies the highest allowed object version level of code generated by the
compiler. The value must be an integer in the range 9 through 15. The default value for this
keyword is the current maximum object version number, 15.

The OBJECT-VERSION keyword corresponds to the compiler Z Option (see page 159).

POSTPONE-COPY-IN-PSEUDO-TEXT
This keyword specifies whether the compiler should postpone the processing of a COPY
statement included within the replacement pseudo-text of a REPLACE statement until the
replacement occurs. Prior to version 11, the compiler postponed processing the COPY
statement, but in version 11 and later, the compiler processes any such COPY statement while
scanning the REPLACE statement. Setting the value of this keyword to YES restores the
compiler behavior prior to version 11. Setting the value of this keyword to NO directs the
compiler to use the version 11 and later behavior. The default value is NO.

The POSTPONE-COPY-IN-PSEUDO-TEXT keyword has no corresponding Compile
Command line option.

RESEQUENCE-LINE-NUMBERS
This keyword directs the compiler to generate a sequential line number in the first six
columns of source records as they appear on the listing. The source file is not affected.

If the value is set to YES, this keyword numbers records beginning with 1 for each source or
copy input file. The number can be helpful when editing the source file. This line number
cannot be used with the RM/COBOL Interactive Debugger.

If the value is set to NO, the compiler will print the source record exactly as read, including
any commentary information present in columns 1 through 6.

The default value for this keyword is NO. The RESEQUENCE-LINE-NUMBERS keyword
corresponds to the compiler R Option (see page 156).

Note Although this configuration keyword remains for compatibility with existing
configuration files, the RENUMBER-SEQUENCE-AREA value (see page 305) of the
LISTING-ATTRIBUTES keyword is a more consistent and clearer alternative to this value.

RMCOBOL-2
This keyword allows programs created for the RM/COBOL (74) version 2.n compiler to be
compiled. If the value is set to YES, RM/COBOL (74) version 2.n programs are accepted. If
the value is set to NO, they are not. The default value for this keyword is NO.

The RMCOBOL-2 keyword corresponds to the compiler 2 Option (see page 161).

SEPARATE-SIGN
This keyword determines whether the compiler is to use a separate or a combined sign for a
signed numeric data item with DISPLAY specified in the USAGE clause when a SIGN clause
is not specified in the data description entry. If the value is set to YES, a separate sign is

Chapter 10: Configuration

 RM/COBOL User's Guide 311

assumed. If the value is set to NO, a combined sign is assumed. The default value for this
keyword is NO.

The SEPARATE-SIGN keyword corresponds to the compiler S Option (see page 152).

SEQUENTIAL-FILE-TYPE
This keyword determines the organization of sequential files not explicitly defined as binary
sequential or line sequential in their SELECT entries.

The SEQUENTIAL-FILE-TYPE keyword may be assigned one the following values: LINE
or BINARY. If the value is set to LINE, all files not defined as binary sequential are defined
as line sequential. If the value is set to BINARY, all files not defined as line sequential are
defined as binary sequential. If this keyword is not configured and no selection is made at
compile time, the decision on whether the file is BINARY or LINE is deferred to program
execution. The choice is then controlled by the configured DEFAULT-TYPE. The default
value for this keyword is to defer making the decision until runtime, where the decision is
based on the DEFAULT-TYPE keyword (see page 349) of the RUN-SEQ-FILES
configuration record.

Setting SEQUENTIAL-FILE-TYPE=BINARY corresponds to the compiler B Option (see
page 153). Setting SEQUENTIAL-FILE-TYPE=LINE corresponds to the compiler V Option
(see page 153).

SOURCE-ON-INPUT-DEVICE
This keyword, when its value is set to YES, directs the compiler to use the pre-version 11
method of using an INPUT device type for source input (where requiring a mass storage file
for the input source file causes an incompatibility with existing methods). When an INPUT
device is configured, the file manager adds trailing spaces to records shorter than the
maximum source record length and there is no information available about the actual record
length as read from the input device, even if it happens to be a disk. Thus, non-terminated
and continued nonnumeric literals will have spaces included up to and including the current
margin R column following the last non-space character on the continued line when source is
on an INPUT device. For further information on continuation of nonnumeric literals and the
treatment of trailing spaces in non-terminated continued nonnumeric literals, see the
discussion of “Continuation of Lines” in Chapter 1: Language Structure of the RM/COBOL
Language Reference Manual.

SOURCE-PATTERN-EXCLUDE
This keyword specifies one or more pattern strings for source records that are to be
conditionally excluded from the compilation by treating them as if they were comments,
whether they were or were not comments in the original source file. Multiple SOURCE-
PATTERN-EXCLUDE keywords may be specified to add additional patterns to the list. Each
pattern is matched, in the order they were specified in either the SOURCE-PATTERN-
EXCLUDE or SOURCE-PATTERN-INCLUDE keywords, to strings specified in the
Identification area of source records as they are read (see “Source Format” in Chapter 1:
Language Structure of the RM/COBOL Language Reference Manual). When an exclude
pattern case-sensitively matches a string in the Identification area, that record will be made a
comment and no further patterns will be considered, except that, if the matched string in the
Identification area is immediately preceded by an exclamation point (!) also in the
Identification area, the source record will be included by making it a normal record even if it

Chapter 10: Configuration

312 RM/COBOL User's Guide

was originally a comment line in the source file. An exclamation point in the pattern value is
simply part of the pattern to be matched.

Note See the LISTING-CONDITIONAL-EXCLUSION-INDICATOR keyword (on
page 307) for information on how to determine whether a source line was conditionally
excluded from the compilation.

SOURCE-PATTERN-INCLUDE
This keyword specifies one or more pattern strings for source records that are to be
conditionally included in the compilation by treating them as if they were normal lines,
whether they were or were not comments or debug lines in the original source file. Multiple
SOURCE-PATTERN-INCLUDE keywords may be specified to add additional patterns to the
list. Each pattern is matched, in the order they were specified in either the SOURCE-
PATTERN-EXCLUDE or SOURCE-PATTERN-INCLUDE keywords, to strings specified in
the Identification area of source records as they are read (see “Source Format” in Chapter 1:
Language Structure of the RM/COBOL Language Reference Manual). When an include
pattern case-sensitively matches a string in the Identification area, that record will be made a
normal record even if it was originally a comment line in the source file and no further
patterns will be considered, except that, if the matched string in the Identification area is
immediately preceded by an exclamation point (!) also in the Identification area, then the
source record will be excluded by making it a comment record. An exclamation point in the
pattern value is simply part of the pattern to be matched.

Note See the LISTING-CONDITIONAL-INCLUSION-INDICATOR keyword (on
page 307) for information on how to determine whether a source line was conditionally
included in the compilation.

SOURCE-RECORD-MAX-LENGTH
This keyword specifies the maximum source record length. The value is a number from 80 to
65000. The default is 1024. The maximum source record length is established at the
beginning of a compilation and cannot be changed during that compilation (see “Source
Format” in Chapter 1: Language Structure of the RM/COBOL Language Reference Manual).
Source records can vary in length from 0 characters up to the maximum source record length
specified. Longer records are truncated to the maximum source record length; when such
truncation occurs, the compiler reports at the end of compilation how many records were
truncated.

• If a value less than 80 is given for this keyword, the maximum source record length is set
to 80 with no warning or error diagnostic.

• If a value greater than 65000 is given for this keyword, a configuration value error
(E0009) occurs.

STRICT-REFERENCE-MODIFICATION
This keyword can be used to suppress the version 9 and later compiler default of relaxing the
reference modification rules. Starting in version 9, the compiler does not require that the
quantity offset plus length less one in reference modification be less than or equal to the
length of the data item being reference-modified. If the value of this keyword is set to YES,
then the strict, ISO 1989-1985-compliant rules prior to version 9 are enforced at compile-time
and runtime. The default value for this keyword is NO, which results in the compiler

Chapter 10: Configuration

 RM/COBOL User's Guide 313

allowing the relaxed rules for reference modification at compile-time and runtime. The
relaxed rules do not allow offsets less than 1 to be used in reference modification, and lengths
less than 1 may not be specified as literals. The relaxed rules treat a zero or negative length
reference modifier at runtime as giving a zero-length source or destination.

SUBSCRIPT-CHECKING
This keyword specifies subscript checking at runtime. The default value is NO, which means
that subscripts are checked only to the extent of insuring that data outside the program-
accessible memory is not accessed or modified; failure of this check results in program
termination with a data reference error 104 at runtime. A value of NO allows the possibility
of accessing or modifying data that is not part of the data item referenced, but does not allow
accessing or modifying data that belongs to another separately-compiled program in the run
unit or any other run unit.

The value YES may be specified for this keyword to check that the composite subscript for a
data reference does not exceed the maximum values possible for the data item referenced;
failure of this check results in program termination with a data reference error 109 at runtime.
A value of YES causes additional code to be generated for the subscript checking and requires
suppression of some optimizations that could otherwise be done at compile-time, thus
resulting in slightly larger programs that have lower performance at runtime.

SUPPRESS-FILLER-IN-SYMBOL-TABLE
This keyword can be used to suppress the version 7.5 and later compiler default of inserting
all FILLER data items into the symbol table. Prior to version 7.5, the compiler reduced
memory usage by not inserting all FILLER data items into the symbol table. Starting in
version 7.5, the compiler inserts all FILLER data items into the symbol table to support the
FILLER phrase of the INITIALIZE statement. If the value of this keyword is set to YES,
then FILLER data items, other than group items, items that are described with the OCCURS
clause or items that are conditional-variables for associated condition-names, are not inserted
into the symbol table. When this keyword is set to YES, the compiler produces a warning if
the FILLER phrase of the INITIALIZE statement is used, because the phrase is largely
ineffective in this case. The default value for this keyword is NO, which results in the
compiler inserting all FILLER data items into the symbol table.

SUPPRESS-LITERAL-BY-CONTENT
This keyword can be used to suppress the version 7.5 and later compiler default of passing
literals specified in the USING phrase of CALL statements as if the BY CONTENT phrase
applied. If the value is set to YES, then literals without an explicit BY CONTENT phrase
will be passed by reference as they were prior to version 7.5. The default value for this
keyword is NO, which causes literals to be passed by content, thus protecting the value of the
literal in the calling program from changes made to the corresponding linkage section data
item in the called program. The purpose of this keyword is only to provide strict backward
compatibility. Setting the value to YES should be done only to determine whether an
application was depending on changing a literal value passed in the USING phrase of a
CALL statement. Once this is determined, the program should be corrected to avoid such
a dangerous dependence. For additional information, see Argument Considerations (on
page 229).

Chapter 10: Configuration

314 RM/COBOL User's Guide

SUPPRESS-NUMERIC-OPTIMIZATION
This keyword allows suppression of optimization of code for certain numeric operations.
The optimized code that the compiler normally generates for numeric operations assumes
that all nonbinary numeric data items contain only standard digits and signs, as described in
Appendix C: Internal Data Formats (on page 425). Setting the value of the SUPPRESS-
NUMERIC-OPTIMIZATION keyword to a value of YES directs the compiler to generate
unoptimized code for all nonbinary numeric operations. The unoptimized code is more likely
to interpret correctly a nonbinary numeric field that contains nonstandard digits and signs. In
particular, it will treat space characters and binary zero characters as if they were display
zeros, and it will accept a wider range of representations of a positive sign. The unoptimized
code takes longer to execute than the optimized code. The difference will be noticeable in
programs that have a very high density of numeric operations. When the value of the
SUPPRESS-NUMERIC-OPTIMIZATION keyword is set to NO, the compiler generates the
normal, optimized code for numeric operations.

The default value for this keyword is NO. The SUPPRESS-NUMERIC-OPTIMIZATION
keyword has no corresponding Compile Command line option.

SUPPRESS-XML-SYMBOL-TABLE
This keyword, when its value is set to YES, causes the compiler not to include the XML
symbol table in the object program.

When the value of this keyword is set to NO, the XML symbol table is included in the object
program. When the XML symbol table is included in the object program, it enables the XML
features of the compiler. The default value for this keyword is NO. (For more information,
see “Typical Development Process Example” in Chapter 2: Getting Started with XML
Extensions and “Model Files” in Appendix D: slicexsy Utility Reference of the XML
Extensions User's Guide.)

Note If the compiler is not licensed for XML Extensions, the value of this keyword is
irrelevant. The XML symbol table will not be included in the object.

SYMBOL-TABLE-OUTPUT
This keyword, when its value is set to YES, causes the compiler to include the symbol table in
the object program. Note that this information may be removed by the STRIP option in the
Combine Program (rmpgmcom) utility (see page 585). When the symbol table is included in
the object program, source program data-names and index-names may be used in Debug
commands at execution time. See Chapter 9: Debugging (on page 255).

When the value of this keyword is set to NO, the symbol table is not included in the object
program. The default value for this keyword is NO.

Note Setting the keyword DEBUG-TABLE-OUTPUT=YES or ALL (see page 300)
overrides the default, SYMBOL-TABLE-OUTPUT=NO.

Selecting SYMBOL-TABLE-OUTPUT=YES corresponds to the compiler Y Option (see
page 159).

WHEN-COMPILED-FORMAT
This keyword specifies the format of the value for the WHEN-COMPILED special register.

Chapter 10: Configuration

 RM/COBOL User's Guide 315

When the value of this keyword is set to OSVS, the WHEN-COMPILED special register has
a 20-character string value with the format “%H.%M.%S%b %d, %Y”, where %H is replaced
with the hour (00 - 23), %M is replaced with the minutes (00 - 59), %S is replaced with the
seconds (00-61), %b is replaced with the month (Jan-Dec), %d is replaced with the day of
month (01 - 31), and %Y is replaced with the four-digit year of the compilation date and time;
for example, “15.21.39Apr 23, 2008”.

When the value of this keyword is set to VSC2, the WHEN-COMPILED special register has a
16-character string value with the format “%m/%d/%y%H.%M.%S”, where %m is replaced
with the month (01 - 12), %d is replaced with the day of month, %y is replaced with the two-
digit year, %H is replaced with the hour (00 - 23), %M is replaced with the minutes (00-59),
and %S is replaced with the seconds (00-61) of the compilation date and time; for example,
“04/23/0415.21.39”.

When the value of this keyword is a string other than OSVS or VSC2, it is interpreted as an
strftime (from the standard C library) format string. In this case, the format string may
generate a result that is up to 80 characters in length. If the format generates a string longer
than 80 characters, the WHEN-COMPILED register will have the value “Cfg error: WHEN-
COMPILED fmt > 80”. An strftime format string contains codes preceded by a “%”
character. Characters not preceded by a “%” character are copied unchanged to the output.

The default value for this keyword is OSVS. The WHEN-COMPILED-FORMAT keyword
has no corresponding Compile Command line option.

See the description of the supported codes for UNIX and Windows are described in Table 35.
On Windows, the UNIX-only codes produce no characters in the result string. On some
UNIX systems, the UNIX-only codes may produce no characters in the result string, may
reproduce the code in the result string (for example, “%F” yields “%F”), or may produce
another value than explained (for example, “%G” may be equivalent to “%Y”). Thus, use of
the UNIX-only codes makes the configuration file operating system dependent, but since the
WHEN-COMPILED special register is evaluated at compile time, the object program is still
portable to other systems.

Table 35: Date and Time Format Codes

Code Generated Result Description Typical Result Values
1 Operating System

%% A (single) percent sign. % UNIX and Windows

%a Abbreviated weekday name. Mon – Fri UNIX and Windows

%A Full weekday name. Monday – Friday UNIX and Windows

%b Abbreviated month name. Jan – Dec UNIX and Windows

%B Full month name. January – December UNIX and Windows

%c Date and time representation
appropriate for locale.

“08/20/08 16:01:52” UNIX and Windows

%C Century as a decimal number;
however, on some UNIX
systems, this code is
equivalent to %N, the default
date and time.

00 – 99 UNIX

%d Day of month as a decimal
number.

01 – 31 UNIX and Windows

%D Date as %m/%d/%y. “06/24/08” UNIX

Chapter 10: Configuration

316 RM/COBOL User's Guide

Table 35: Date and Time Format Codes

Code Generated Result Description Typical Result Values
1 Operating System

%e Day of month as a decimal
number; leading zeroes are
replaced by spaces.

1 – 31 UNIX

%F Date as %Y-%m-%d;
however, on HP-UX, this code
is equivalent to %B, the full
month name.

“2008-06-24” UNIX

%G Date in ISO 8601:1988 date
format.

“2008” UNIX

%h Abbreviated month name; this
code is equivalent to %b.

Jan – Dec UNIX

%H Hour of day as a decimal
number for a 24-hour clock.

00 – 23 UNIX and Windows

%I Hour of day as a decimal
number for a 12-hour clock.

01 – 12 UNIX and Windows

%j Day of year as a decimal
number.

001 – 366 UNIX and Windows

%k Hour as a decimal number for
a 24-hour clock; leading
zeroes are replaced by spaces.

0 – 23 UNIX

%l Hour as a decimal number for
a 12-hour clock; leading
zeroes are replaced by spaces.

1 – 12 UNIX

%m Month of year as a decimal
number.

01 – 12 UNIX and Windows

%M Minutes past hour as a
decimal number.

00 – 59 UNIX and Windows

%n New-line character. X’0A’ UNIX

%N Default date and time
representation; some UNIX
systems equate %C and %N,
producing either the default
date and time or the century
for both. The default date and
time value is as produced by
the system date command.

“Thu Jun 24
 13:04:30 CDT
 2008”

UNIX

%p Current locale’s A.M. or P.M.
indicator for a 12-hour clock
in upper case.

AM, PM UNIX and Windows

%P Current locale’s a.m. or p.m.
indicator for a 12-hour clock
in lower case.

am, pm LINUX

%r Time as %I:%M:%S %p
(12-hour clock time with A.M.
and P.M. indicator).

“11:05:32 AM” UNIX

%R Time as %H:%M. (24-hour
clock time with hours and
minutes).

“16:43” UNIX

Chapter 10: Configuration

 RM/COBOL User's Guide 317

Table 35: Date and Time Format Codes

Code Generated Result Description Typical Result Values
1 Operating System

%S Seconds past minute as a
decimal number; allows for
leap seconds.

00 – 61 UNIX and Windows

%t Tab character. X’09’ UNIX

%T Time as %H:%M:%S (24-
hour clock time with hours,
minutes and seconds).

“15:35:42” UNIX

%u Weekday as a decimal
number; Monday is 1.

1 – 7 UNIX

%U Week of year as a decimal
number, with Sunday as first
day of week 1.

00 – 53 UNIX and Windows

%V Week of year as a decimal
number per ISO 8601:1988,
where if the week containing
January 1st has four or more
days in the new year, it is
week 1; otherwise, it is week
53 of the preceding year.

01 – 53 UNIX

%w Weekday as a decimal
number; Sunday is 0.

0 – 6 UNIX and Windows

%W Week of year as a decimal
number, with Monday as first
day of week 1.

00 – 53 UNIX and Windows

%x Date representation for current
locale.

“08/20/08” UNIX and Windows

%X Time representation for
current locale.

“14:34:24” UNIX and Windows

%y Year without century as a
decimal number.

00 – 99 UNIX and Windows

%Y Year with century as a
decimal number.

2004 – 2050 UNIX and Windows

%z Time zone as an hour and
minute offset from GMT.
Windows and some UNIX
systems support %z as
equivalent to %Z (time zone
name or time zone
abbreviation). Some UNIX
systems, notably Linux, report
+0000 despite reporting a time
zone name other than GMT or
UTC for %Z.

“-0600” (for CST) or
“-0500” (for CDT)

Linux

“CST” or “CDT” Windows and some
UNIX

Chapter 10: Configuration

318 RM/COBOL User's Guide

Table 35: Date and Time Format Codes

Code Generated Result Description Typical Result Values
1 Operating System

%Z Either the time zone name or
time zone abbreviation (on
UNIX, it is determined by the
TZ environment variable,
TIMEZONE environment
variable, or locale; on
Windows, this depends on
registry settings).

“CST”, “CDT” UNIX and Windows

1 In the Typical Result Values column, quoted examples are a representative example, whereas
unquoted examples indicate a range of possible example values.

Notes

• On Windows, the “#” flag may precede any formatting code, but this flag is ignored for
the a, A, b, B, p, X, z, Z and % codes. For the c code, this flag causes the long date and
time representation to be used; for example, “Friday, April 23, 2008 17:32:45”. For the x
code, this flag cause the long date representation to be used; for example “Friday, April
23, 2008”. For the d, H, I, j, m, M, S, U, w, W, y, and Y codes, this flag causes leading
zeroes, if any, to be suppressed. The “#” flag is generally ignored on some UNIX
systems, but causes literal output of the code with or without the “%” on others and
affects letter case on Linux systems for codes a, A, b, B, h and Z.

• On UNIX, the flags “O” (letter “O”) and “E” may be used preceding certain codes. The
“O” flag causes use of the locale's alternate digit symbols (for example, roman numerals)
with the format codes d, e, H, I, m, M, S, U, V, w, W, and y. The “E” flag causes the use
of Era-specific values with the codes c, C, x, X, y, and Y. If the alternative format does
not exist in the current locale, the “O” and “E” flags are ignored. On some UNIX
systems, use of either flag causes the code to be unrecognized and to be output literally in
the result.

WORKSPACE-SIZE
This keyword allows the specification of the amount of workspace area that the compiler will
allocate for its internal tables. Specifying appropriate values for this keyword will allow large
programs to be compiled more quickly or memory to be conserved when compiling small
programs on a system with limited memory. This keyword’s value is a decimal number that
reserves memory in increments of 1024 (1 KB) bytes; for example, a value of 100 would
reserve 102400 bytes. The minimum value for this keyword is 32; the maximum value is
524288. The default value is 1024, which results in 1MB being reserved.

This keyword may be overridden using the compiler W Option (see page 152). See the
description of the W Option for information on appropriate values for WORKSPACE-SIZE.
The compiler listing includes information on the amount of memory used for a compilation
(see page 174) . Note the line that starts “Maximum compilation memory used …” in
Figure 34: Summary Listing (on page 173).

The compiler automatically grows its workspace size as necessary, but compilation is quicker
if the initial workspace size established is sufficient to compile the source program.

Chapter 10: Configuration

 RM/COBOL User's Guide 319

DEFINE-DEVICE Configuration Record
The DEFINE-DEVICE configuration record is used to associate a physical device or process
with a value for an RM/COBOL file access name. The primary use of DEFINE-DEVICE
records is to define printer devices, but they are also used to define tape devices, and, on
UNIX, pipes. For additional information about devices, see Device Support (on page 238).
Device support is highly operating system-dependent, and is so noted below in the
descriptions of the keywords of the DEFINE-DEVICE record.

When an RM/COBOL file access name, after it has been modified by any applicable
environment variable replacement, matches either of the values specified for the DEVICE or
PATH keywords, then that DEFINE-DEVICE configuration record controls the input-output
operations for the associated COBOL file.

• When it is the DEVICE value that is matched by the file access name, the file access
name is effectively mapped to the PATH value.

• When it is the PATH value that is matched by the file access name, the file access name
is unchanged, but the other options of that DEFINE-DEVICE record are applied. This
rule does not apply on Windows to the special printer PATH values of DEFAULT and
DYNAMIC, as described in the topic Windows Printers (on page 322).

The presence of a single DEFINE-DEVICE record overrides the automatic internal
configuration for printer and tape support, thus requiring provision of DEFINE-DEVICE
records for any printer or tape support desired. For more information, see Default
Configuration Files (on page 368) and, also, the discussions of printer support (on page 238)
and tape support (on page 239).

The keywords DEVICE and PATH must be present in each DEFINE-DEVICE record and
may be followed by one or more other keywords. No keyword may be repeated in a single
DEFINE-DEVICE record. If the keyword is allowed to have a value, it is followed by an
equal sign (=) and the value.

The possible keywords for the DEFINE-DEVICE record are as follows:

• DEVICE

• ERROR-ON-CANCEL

• ESCAPE-SEQUENCES

• NONBLOCKING-FIFO

• PATH

• PIPE

• REMOTE-PRINTER

• RAW

• TAPE

DEVICE
This keyword specifies the RM/COBOL file access name value that will be associated with
the operating system device. If the value of the DEVICE keyword is the same as the value
specified as the file access name, the value supplied in the PATH keyword will be used as the

Chapter 10: Configuration

320 RM/COBOL User's Guide

actual pathname and the attributes specified by the other keywords are applied to the file.
There is no default value; the DEVICE keyword is required for UNIX and Windows.

ERROR-ON-CANCEL
This keyword determines whether a Windows dynamic printer should treat cancellation of the
Windows Print dialog box as an error. If the value is set to YES, the RM/COBOL runtime
system will pass the cancellation of the dialog box back to the COBOL program as a 94,64
I/O error (pathname not available). If the value is set to NO, the runtime system will open the
default printer if the Windows Print dialog is canceled. Setting the ERROR-ON-CANCEL
keyword to YES is mutually exclusive with the PIPE=YES and TAPE=YES keyword
settings. See Windows System Print Jobs (on page 66) and Windows Printers (on page 322)
for additional information on dynamic printers. The default value for this keyword is NO.

Notes

• The ERROR-ON-CANCEL keyword is supported only under Windows. Under UNIX,
the keyword is allowed, but ignored (except for configuration syntax errors). For an
alternative way to obtain the cancellation status of the Windows Print dialog box, see the
P$GetDialog subprogram (on page 474). Calling the P$GetDialog routine instead of
using an OPEN statement can set the PD-ExtErrIsCancelled status in the PrintDialog
structure (PRINTDLG.CPY), which can then be tested after the CALL statement.

• If you are using WOW Thin Client to print to a Windows printer, you need to specify the
Windows-only configuration options in your UNIX configuration file to the WOW Thin
Client (that is running on a Windows machine).

ESCAPE-SEQUENCES
This keyword determines whether the Windows printer described by the value of the PATH
keyword allows embedded RM/COBOL-specific escape sequences (see page 530). If the
value is set to YES, the RM/COBOL runtime system will recognize the sequences. If the
value is set to NO, the runtime system will not recognize those escape sequences. Setting the
ESCAPE-SEQUENCES keyword to YES is mutually exclusive with any of the PIPE=YES,
TAPE=YES, and RAW=YES keyword settings. The default value for this keyword is NO.

Note The ESCAPE-SEQUENCES keyword is supported only under Windows. Under
UNIX, the keyword is allowed, but ignored (except for configuration syntax errors).

NONBLOCKING-FIFO
This keyword determines whether the FIFO (named pipe) specified by the value of the PATH
keyword should be opened in blocking or non-blocking mode. If the value is set to YES, the
RM/COBOL runtime system will open the FIFO with the O_NONBLOCK flag set. If the
value is set to NO, the runtime system will not set the O_NONBLOCK flag when opening the
FIFO. (Consult your UNIX system documentation for additional information about how the
O_NONBLOCK flag affects operations on an FIFO.) The default value for this keyword is
NO. The value of the keyword is ignored if the DEFINE-DEVICE configuration record does
not define an FIFO; that is, if PIPE=YES is not also specified for the device.

Note The NONBLOCKING-FIFO keyword is supported only under UNIX. Under
Windows, the keyword is allowed, but ignored (except for configuration syntax errors).

Chapter 10: Configuration

 RM/COBOL User's Guide 321

PATH
This keyword specifies the pathname to be used for the device. This value must be enclosed
in quotation marks if spaces are included in the pathname string. If it is necessary to place a
quotation mark in a quoted pathname, use a pair of consecutive quotation marks for each
quote contained within the pathname string. When the file access name specified in the
COBOL program matches the value of the PATH keyword (as opposed to matching the value
of the DEVICE keyword), the file access name is not changed but the attributes specified by
the other keywords in the DEFINE-DEVICE record are applied to the file. There is no default
value; the PATH keyword is required for UNIX and Windows.

PIPE
This keyword determines whether the value of the PATH keyword is a process to be spawned.
If the value is set to YES, the runtime system will start another program to simulate a device
sending (for an input file) or receiving (for an output file) the record by creating a pipe and
forking a child shell process using the value of the PATH keyword as the command string
passed to the shell. Thus, the value of the PATH keyword specifies the program or programs
to start. If you use quotation marks to enclose the command, any shell command may be
given along with any options. If the value is set to NO, the runtime system will use the PATH
value as the actual pathname. If the PATH value contains a leading pipe character ('|'), the
remainder of the path will be treated as a pipe destination regardless of the setting of the PIPE
keyword. The information (on page 23) regarding a file access name that contains an initial
pipe character is also applicable to pipes created with the YES setting of the PIPE keyword.
Setting the PIPE keyword to YES or supplying a PATH value with a leading pipe character is
mutually exclusive with the TAPE=YES keyword setting (see the description of that keyword
in this topic). The default value for this keyword is NO.

Pipes are normally opened in blocking mode. However, the NONBLOCKING-FIFO
keyword may be specified with a value of YES to cause pipes to be opened in non-blocking
mode.

Two or more files open at the same time in the same run unit will share pipes created with a
DEFINE-DEVICE configuration record when those files have a file access name that is
resolved through the same DEFINE-DEVICE configuration record. In contrast, pipes created
using the pipe character in the file access name and not resolved through a DEFINE-DEVICE
configuration record will not be shared.

Note The PIPE keyword is supported only under UNIX. Under Windows, the keyword is
allowed, but ignored (except for configuration syntax errors).

REMOTE-PRINTER
This keyword determines whether the Windows printer, described by the value of the PATH
keyword, is a local or remote (server) printer. If the value is set to YES, the RM/COBOL
runtime system will open a remote printer on the server. If the value is set to NO, the runtime
system will open a local printer on the client. Setting the REMOTE-PRINTER keyword to
YES is mutually exclusive with the PIPE=YES and TAPE=YES keyword settings. Setting
the value of this keyword to YES is meaningful only when using WOW Extensions Thin
Clients on Windows with a Windows or UNIX runtime server. The default value for this
keyword is NO.

Note The REMOTE-PRINTER keyword is supported only under Windows. Under UNIX,
the keyword is allowed, but ignored (except for configuration syntax errors).

Chapter 10: Configuration

322 RM/COBOL User's Guide

RAW
This keyword determines whether the Windows printer described by the value of the PATH
keyword is opened in raw mode. If the value is set to YES, the runtime system will open the
printer in raw mode. This allows certain networked printers on Windows servers to respond
to embedded escape sequences. (See the P$SetRawMode subprogram on page 500 for a more
complete description of raw mode. Note, however, that most P$ subprograms are not
available if raw mode is used.) If the value is set to NO, the runtime system will treat the
printer as a normal Windows printer (see page 322). Setting the RAW keyword to YES is
mutually exclusive with any of the PIPE=YES, TAPE=YES, and ESCAPE-
SEQUENCES=YES keyword settings. The default value for this keyword is NO.

Note The RAW keyword is supported only under Windows. Under UNIX, the keyword is
allowed, but ignored (except for configuration syntax errors).

TAPE
This keyword determines whether the value of the PATH keyword specifies a tape device. If
the value is set to YES, the path is assumed to represent a tape device. If the value is set to
NO, a non-tape device is assumed. Tape devices are read or written with blocks of 512
characters unless the COBOL program specifies a different nonzero block size, in which case
the specified block size is used. Setting the TAPE keyword to YES is mutually exclusive
with any of the PIPE=YES, RAW=YES, and ESCAPE-SEQUENCES=YES keyword
settings. The default value for this keyword is NO.

Windows Printers
The DEFINE-DEVICE record is used to associate a Windows printer device with an
RM/COBOL file access name and set certain characteristics for that printer. (Note that it is
possible to bypass the Windows printer drivers by using the RAW keyword, and if the
Windows printer driver is used, it is possible to send raw escape sequences to the printer using
the ESCAPE-SEQUENCES keyword). When using DEFINE-DEVICE to specify a Windows
printer, both the DEVICE and PATH keywords are required.

The PATH keyword specifies the Windows printer device to use. The syntax is as follows:

Device Name is the name of the printer. The name “DEFAULT” can be used to indicate
that the default Windows printer should be used. The name "DYNAMIC" can be used to
indicate that the Windows Print dialog should be displayed when the printer file is
opened. If a Device Name is specified, the Port is ignored. Neither of these special
PATH values, “DEFAULT” nor “DYNAMIC”, are matched to a file access name; when
the file access name is one of these values, a disk file of that name is opened unless the
file access name also occurs as the value of the DEVICE keyword in a DEFINE-DEVICE
record, in which case, that DEFINE-DEVICE record determines how the file access name
is treated.

Port specifies the port to which the printer is attached. Port must be defined on the
Details tab for a printer shown in the Printers folder or COBOL I/O error 35 will be
returned from the OPEN statement.

PATH=[[Device Name] [, [Port] [, [Font Name] [, [Size]]]]

Chapter 10: Configuration

 RM/COBOL User's Guide 323

Font Name specifies the font to use.

Size specifies the size of the font to use. It is specified in points.

Note If neither a Device Name nor a Port is specified, the default printer is used.

Examples of DEFINE-DEVICE records are as follows:

DEFINE-DEVICE DEVICE=PRINTER PATH=",LPT1"

DEFINE-DEVICE DEVICE=FOO PATH="HP LaserJet"

For compatibility with Windows, whenever a device name followed by the colon character is
encountered in either the DEVICE or PATH keywords, it is treated as if the colon were not
present. For example, the following configuration records:

DEFINE-DEVICE DEVICE=PRN: PATH=",LPT1"

DEFINE-DEVICE DEVICE=LPT2 PATH=",LPT2:"

would be treated as if they were:

DEFINE-DEVICE DEVICE=PRN PATH=",LPT1"

DEFINE-DEVICE DEVICE=LPT2 PATH=",LPT2"

To perform translation of “PRINTERx” names in the same way that the RM/COBOL for DOS
runtime system did, the following default DEFINE-DEVICE configuration is used on
Windows.

DEVICE=PRINTER PATH="DEFAULT"
DEVICE=PRINTER? PATH="DYNAMIC"
DEVICE=PRINTER1 PATH=",LPT1"
DEVICE=PRINTER2 PATH=",LPT2"
DEVICE=PRINTER3 PATH=",LPT3"
DEVICE=PRINTER4 PATH=",LPT4"
DEVICE=PRINTER5 PATH=",LPT5"
DEVICE=PRINTER6 PATH=",LPT6"
DEVICE=PRINTER7 PATH=",LPT7"
DEVICE=PRINTER8 PATH=",LPT8"
DEVICE=PRINTER9 PATH=",LPT9"

The “PRINTER?” DEVICE keyword value is provided to allow dynamic assignment of the
Windows printer at printer open time. See Windows System Print Jobs (on page 66) for more
information on the use of dynamic printers.

EXTENSION-NAMES Configuration Record
The EXTENSION-NAMES configuration record identifier is followed by one or more
keywords indicating file usages. Each keyword is allowed to have a value, and is followed by
an equal sign (=) and the value. More than one file usage keyword may be listed in one
EXTENSION-NAMES record. The extension value must be one to three characters in length.
The extension value may be specified as a single period to indicate that no extension is to be
used for files of the file usage indicated by the keyword. In all other cases, the characters

Chapter 10: Configuration

324 RM/COBOL User's Guide

specified for the extension value must be in the set of characters that are valid for a filename
extension under the current operating system.

The file usage keywords for the EXTENSTION-NAMES record as follows:

• COPY

• LISTING

• OBJECT

• SOURCE

COPY
This keyword specifies the extension to be used for files referenced by COPY statements in a
COBOL source program. The default extension for copy files is cbl.

LISTING
This keyword specifies the extension to be used for COBOL listing files. The default
extension for listing files is lst.

OBJECT
This keyword specifies the extension to be used for COBOL object program files. The
default extension for object files is cob.

SOURCE
This keyword specifies the extension to be used for COBOL source program files. The
default extension for source files is cbl.

EXTERNAL-ACCESS-METHOD Configuration Record
The EXTERNAL-ACCESS-METHOD configuration record is used to identify external file
access methods that should be applied. It can be repeated more than once to identify multiple
access methods and the order in which they are to be accessed. UNIX supports the following
external access methods: RMPLUSDB, RMINFOX, and USRMTACC. In addition, Linux
supports RMBTRV. Windows supports RMBTRV32 and RMTCP32. (For more information
about RMBTRV32 and RMBTRV, refer to Chapter 4: System Considerations for Btrieve on
page 119.)

Several important distinctions affect the use of this configuration record depending on the
operating system:

• For Windows, an EXTERNAL-ACCESS-METHOD configuration record is required if
you use any external access method. Furthermore, the NAME keyword on the
configuration record must specify the name of the DLL to load. The order of the

Chapter 10: Configuration

 RM/COBOL User's Guide 325

EXTERNAL-ACCESS-METHOD configuration records in the configuration file
specifies the order in which the external access methods will be accessed.

• For UNIX-based systems, the EXTERNAL-ACCESS-METHOD configuration record is
not required to use an external access method. If the external access method shared
object (support module) is found during runtime initialization in the execution directory,
then the runtime attempts to use the external access method. Specifying one or more
EXTERNAL-ACCESS-METHOD configuration records forces the runtime to use the
access methods in the order specified. If any EXTERNAL-ACCESS-METHOD
configuration record is specified, all external access methods desired must be specified.

It is possible to turn off the use of all external access methods on UNIX when the
appropriate support module (or support modules) are present by providing a single
EXTERNAL-ACCESS-METHOD configuration record with the value of the NAME
keyword specified as "None" (or any name not known to the runtime).

For Linux-based systems, if you are using the RM/COBOL installation directory as
your execution directory and you have Btrieve Adapter for Linux (on page 132) in use
on your system, the external access method for Btrieve from RM/COBOL will be used
automatically unless you specify an EXTERNAL-ACCESS-METHOD configuration
record.

The EXTERNAL-ACCESS-METHOD record identifier is followed by one or more
keywords. Each keyword is followed by an equal sign (=) and the value to be assigned to that
keyword. The possible keywords for the EXTERNAL-ACCESS-METHOD record are as
follows.

• CREATE-FILES

• NAME

• OPTIONS

CREATE-FILES
This keyword controls whether the external access method will be called to create new files.
If the value is set to YES, the external access method will be allowed to create files. If the
value is set to NO, and the file does not exist, the external access method will not be called to
create it. The default value for this keyword is YES.

NAME
This keyword is used to identify the name of the external access method. It is required and
has no default value. The external access method names currently identified are
RMPLUSDB, RMINFOX, and USRMTACC for UNIX, RMBTRV for Linux (only), and
RMBTRV32 and RMTCP32 for Windows.

OPTIONS
This keyword is used to pass options to the external access method interface. The options
must be enclosed in quotation marks. The possible values depend on the external access
method that is specified in the NAME keyword. If this keyword is not specified, no options
will be passed to the external access method interface.

Chapter 10: Configuration

326 RM/COBOL User's Guide

INTERNATIONALIZATION Configuration Record
The INTERNATIONALIZATION configuration record is used to specify information
regarding internationalization, including support for the euro symbol (€).

Notes

• On Windows, the keywords for euro symbol support need to be specified only if the
default behavior is not acceptable. The default behavior described for these keywords
should provide acceptable euro symbol support on Windows for almost all users.
Additional information is provided in Euro Support Considerations under Windows (see
page 327).

• On UNIX, euro support is available through normal terminal configuration. RM/COBOL
is ready to support the euro provided the UNIX operating system supports the euro. You
may need to make changes to your UNIX operating system, such as installing a character
set that supports the euro, before your system is euro-ready.

The INTERNATIONALIZATION record identifier is followed by one or more keywords. If
the keyword is allowed to have a value, it is followed by an equal sign (=) and the value. The
possible keywords are as follows:

• EURO-CODEPOINT-ANSI

• EURO-CODEPOINT-OEM

• EURO-SUPPORT-ENABLE

EURO-CODEPOINT-ANSI
This keyword specifies the code point value to be used for the euro symbol in the Windows
ANSI codepage (the codepage used to display and print ANSI encoded fonts). The value
must be a number between decimal 0 and 255 (hexadecimal 0x00 and 0xff). When specified,
the runtime system will use the given value when euro support is enabled and characters are
being converted between OEM and ANSI. There is no default value, but if euro support is
enabled and this keyword is not specified, then the runtime system will query Windows for
the correct code point to use. If the ANSI codepage does not include a euro symbol, the
runtime system will use code point 128 (0x80). This keyword is ignored if euro support is
disabled by use of the keyword EURO-SUPPORT-ENABLE=NO.

Note The EURO-CODEPOINT-ANSI keyword is supported only under Windows.

EURO-CODEPOINT-OEM
This keyword specifies the code point value to be used for the euro symbol in the Windows
OEM codepage (the codepage used for data in memory). The value must be a number
between decimal 0 and 255 (hexadecimal 0x00 and 0xff). When specified, the runtime
system will use the given value when euro support is enabled and characters are being
converted between OEM and ANSI. There is no default value, but if euro support is enabled
and this keyword is not specified, then the runtime system will query Windows for the correct
code point to use. If the OEM codepage does not include a euro symbol (as is true for most
OEM codepages other than 858), the runtime system will use code point 213 (0xD5). This
keyword is ignored if euro support is disabled by use of the keyword EURO-SUPPORT-
ENABLE=NO.

Chapter 10: Configuration

 RM/COBOL User's Guide 327

Note The EURO-CODEPOINT-OEM keyword is supported only under Windows.

EURO-SUPPORT-ENABLE
This keyword determines whether the runtime system on Windows maps the euro symbol
from OEM to ANSI when rendering characters for screen display or printing and maps the
euro symbol from ANSI to OEM when accepting characters from the keyboard. If the value
is set to YES, then the runtime system maps the euro symbol. Runtimes prior to version 7.5
did not map the euro symbol, so if this new behavior causes a problem, then the value can be
set to NO, in which case the old behavior is restored. The default value for this keyword is
YES.

Some Windows systems, such as Windows 2000, provide native support for the euro symbol
in OEM codepage 858. For systems with native euro support, specifying EURO-SUPPORT-
ENABLE=NO will not disable euro support, provided that both the OEM and the ANSI
codepages in use contain a euro symbol.

Note The EURO-SUPPORT-ENABLE keyword is supported only under Windows.

Euro Support Considerations Under Windows
In order to use the euro symbol, the font used must contain the euro character symbol (€). To
determine whether the font contains the euro symbol, open the Character Map in the Windows
System Tools utility. From the Character Map dialog box, you can display the maps of
different fonts. The euro symbol will usually be located in position 128. Some fonts that
contain the euro symbol are Courier New, Times New Roman, Arial, and Tahoma. (Note that
you may need to obtain new copies of these fonts.)

If the euro symbol displays correctly but does not print correctly, it is likely that the internal
printer font was used instead of the display font. The printer font may not contain the euro
symbol. Some printers offer a Font Substitutions Table from the Printer Properties dialog box
that allows you to enable printing of the euro symbol by downloading the printer font as
“Outline.” Not all printers have this capability, however, and you should refer to your printer
documentation for more details. For additional information on the euro symbol support in
Windows, see the web page at this location:

http://www.microsoft.com/typography/EuroSymbolFAQ.mspx.

To be able to enter a euro symbol from the keyboard when the euro symbol is in the range
0 to 31 or 127 to 255, the DATA-CHARACTERS keyword (see page 352) of the TERM-
ATTR configuration record must be specified to extend the range of text characters from the
default range of 32 to 126.

When entering characters from the keyboard using the Windows ALT+<number> technique,
the <number> should contain a leading '0' character (indicating an ANSI character) to enter a
euro symbol that is in the range 0128 to 0255 of the ANSI codepage. When the <number>
does not include a leading '0' character (indicating an OEM character) and the OEM codepage
does not include a euro symbol, the Windows keyboard driver may convert the character to an
ANSI character other than a euro symbol before the runtime system has a chance to map the
character according to the configured euro support.

http://www.microsoft.com/typography/EuroSymbolFAQ.mspx

Chapter 10: Configuration

328 RM/COBOL User's Guide

PRINT-ATTR Configuration Record
The PRINT-ATTR configuration record is used to describe the characteristics of the printer to
which printer files are assigned or on which printer files will eventually be printed. A printer
file is a line sequential file that has any or all of the following RM/COBOL source program
features:

• ASSIGN TO PRINT or ASSIGN TO PRINTER phrase in the file control entry
for the file

• LINAGE phrase in the file description entry for the file

• ADVANCING phrase in a WRITE statement for the file

The compiler listing is a printer file.

The PRINT-ATTR record identifier is followed by one or more keywords. If the keyword is
allowed to have a value, it is followed by an equal sign (=) and the value. The possible
keywords are as follows:

• AUTO-LINE-FEED

• COLUMNS

• FORM-FEED-AVAILABLE

• LINAGE-INITIAL-FORM-POSITION

• LINAGE-PAGES-PER-PHYSICAL-PAGE

• LINES

• TOP-OF-FORM-AT-CLOSE

• WRAP-COLUMN

• WRAP-MODE

AUTO-LINE-FEED
This keyword determines whether a line feed is needed after a carriage return to cause a single
line advance of the carriage. If the value is set to YES, a single line advance is automatic so
no line feed character will be written. If the value is set to NO, a single line advance is not
automatic, thus requiring a line feed character. The default value for this keyword is NO.

COLUMNS
This keyword determines the number of columns across a line, represented as a decimal
number in the range 1 through 65280. All records written to a printer file will be truncated to
this value. The default value for this keyword is not to truncate.

FORM-FEED-AVAILABLE
This keyword indicates whether the printer supports the form feed character, FF, to slew to
the top of a new page. If the value is set to NO, top-of-page will be reached by issuing an

Chapter 10: Configuration

 RM/COBOL User's Guide 329

appropriate number of line feeds; the LINES keyword should be used to describe the page
size. If the value is set to YES, top-of-page will be reached by writing a form feed character.
The default value for this keyword is YES.

Note This option determines only the method used by the runtime I-O system to position the
file to a new physical page. The runtime I-O system would normally print a form feed
character to accomplish a physical page break. If the user’s printer does not support
advancing to the next physical page when a form feed character is printed, the value of this
option can be set to NO to tell the runtime I-O system not to use a form feed character for this
purpose. Regardless of the setting of this option, files described with the LINAGE clause do
not normally use physical page breaks because the LINAGE clause describes logical rather
than physical pages. Files described with the LINAGE clause will be affected by this option
only if either of the PRINT-ATTR configuration record keywords, LINES or LINAGE-
PAGES-PER-PHYSICAL-PAGE, is set to a nonzero value.

LINAGE-INITIAL-FORM-POSITION
This keyword determines the assumed initial position of the form in the printer for a file
described with the LINAGE clause (sequential file description entry) on page 236. If set to
TOP-OF-FORM, the form is assumed to be positioned at the top of the page (that is, on the
first line of the top margin). In this case, the runtime writes the first line after advancing over
the top margin of the first page so as to reach the first line of the logical page body. The value
TOP-OF-FORM would normally be used for page printers that do not use continuous forms.
If set to PAGE-BODY-LINE-1, the form is assumed to be positioned at line one of the page
body and the runtime ignores the top margin specified for the first logical page. The value
PAGE-BODY-LINE-1 would normally be used with line printers that use continuous forms
that have been positioned by the operator to print the first line of the logical page body. The
default value for this keyword is PAGE-BODY-LINE-1.

LINAGE-PAGES-PER-PHYSICAL-PAGE
This keyword determines whether physical page breaks are generated for files described with
the LINAGE clause (see page 236). When this keyword is set to the value 0, the set of logical
pages is printed contiguously with no additional spacing provided between logical pages,
except as explained in the note regarding the PRINT-ATTR configuration record keyword
LINES. Form feed characters, in particular, are not normally used between pages. When this
keyword is set to a value from 1 to 255, the value indicates the number of logical pages that
fit on a physical page. Each time that many pages have been printed, a physical page break
will be generated. For example, a value of 1 causes a physical page break (see the note below
for additional details on physical page breaks) between each logical page. As another
example, if there are three logical pages (for example, checks) per physical page, a value of 3
could be used to cause a physical page break between each set of three logical pages. A
nonzero value is typically useful for page printers when the logical page, or a set of logical
pages, does not fill a physical page. A zero value is typically useful for line printers using
continuous forms. The default value for this keyword is 0.

Note This option instructs the runtime I-O system to insert a physical page break between
certain logical pages. The physical page break is normally a form feed character. However,
the PRINT-ATTR configuration record keyword settings FORM-FEED-AVAILABLE=NO
and LINES=n may be used together in those cases where a form feed character is either not
available or not desirable. In this case, a physical page break is accomplished by printing the
number of line feed characters necessary to ensure n lines per physical page.

Chapter 10: Configuration

330 RM/COBOL User's Guide

LINES
This keyword determines the number of lines on a page, represented as a decimal number in
the range 1 through 65535. Use this keyword when FORM-FEED-AVAILABLE=NO (see
page 328). This keyword may be used with FORM-FEED-AVAILABLE=YES to cause form
feed characters to be placed in the file after the specified number of lines have been written.
The default value for this keyword is not to have page size processing.

This keyword also determines the number of lines on a page of a compilation listing. If not
specified, the RM/COBOL compiler assumes 66 lines per page.

Note This option, when set to a nonzero value, will cause files described with the LINAGE
clause to advance to a new physical page whenever that number of lines has been printed.
This may result in unintended additional spacing between or within logical pages, depending
on the relationship between the value specified for LINES and the size(s) of logical pages.
For page printers, setting LINES to the size of the logical page may have the desired effect of
ejecting pages from the printer when a logical page is complete. However, the PRINT-ATTR
configuration record keyword LINAGE-PAGES-PER-PHYSICAL-PAGE, which affects only
files described with the LINAGE clause, is better suited to this purpose.

TOP-OF-FORM-AT-CLOSE
This keyword determines whether the printer file is positioned to top-of-form when closed. If
the value is set to YES, the printer file will be positioned to top-of-form with form feed or line
feed characters. If the value is set to NO, no additional control characters will be written
when the printer file is closed. The default value for this keyword is NO.

WRAP-COLUMN
This keyword determines the column number after which automatic line wrap-around occurs,
represented as a decimal number in the range 1 through 65535. The default value for this
keyword is to assume that the printer does not automatically wrap long lines.

WRAP-MODE
This keyword specifies whether automatic line wrapping occurs when the WRAP-COLUMN
character is written. If the value is set to EXACT, wrapping occurs when the WRAP-
COLUMN character is written. If the value is set to NEXT, wrapping occurs when the
character following the WRAP-COLUMN character is written. The default value for this
keyword is NEXT.

RUN-ATTR Configuration Record
The RUN-ATTR configuration record identifier is followed by one or more keywords. If the
keyword is allowed to have a value, it is followed by an equal sign (=) and the value. The
following descriptions include the default values that are used if the keyword is not modified
by a RUN-ATTR record.

Note For complete descriptions of the ACCEPT and DISPLAY statements, see Chapter 6:
Procedure Division Statements of the RM/COBOL Language Reference Manual.

Chapter 10: Configuration

 RM/COBOL User's Guide 331

The possible keywords for the RUN-ATTR record are as follows:

• ACCEPT-FIELD-FROM-SCREEN

• ACCEPT-INTENSITY

• ACCEPT-PROMPT-CHAR

• BEEP

• BLINK

• DISPLAY-INTENSITY

• EDIT-COMMA

• EDIT-CURRENCY-SYMBOL

• EDIT-DECIMAL

• EDIT-DOLLAR

• ERROR-MESSAGE-DESTINATION

• EXCEPTION-HANDLING

• REVERSE

• SCROLL-SCREEN-AT-TERMINATION

• STRIP-LIKE-PATTERN-TRAILING-SPACES

• TAB

• UNDERLINE

ACCEPT-FIELD-FROM-SCREEN
This keyword controls the behavior of ACCEPT statements that do not specify either the
PROMPT or the UPDATE phrase. If the value is set to YES, the field is initialized with the
current contents of the field on the display. If the value is set to NO, the field is initialized to
all blanks. The default value for this keyword is NO. In either case, the contents of the field
as displayed are unchanged.

Only fields that are output by the RM/COBOL runtime system can be reliably retrieved. The
contents of a field that appeared on the display prior to the invocation of the runtime are
considered undefined.

ACCEPT-INTENSITY
This keyword determines the default intensity level used within ACCEPT statements. If the
value is set to HIGH, high intensity is used. If the value is set to LOW, low intensity is used.
The default value for this keyword is HIGH.

ACCEPT-PROMPT-CHAR
This keyword enables the ACCEPT statements default prompt character to be overridden with
the character corresponding to the value of the keyword. Changing the default prompt
character does not affect ACCEPT statements that do not use the PROMPT phrase. The value

Chapter 10: Configuration

332 RM/COBOL User's Guide

of this keyword must be a single-character string or a number from 0 to 255. The default
value for this keyword is “_” (95 or 0x5F).

BEEP
This keyword determines whether the runtime system should override the beeps (BEEP) that
are coded in ACCEPT and DISPLAY statements. If the value is set to YES, the beeps that
are coded in the statements (including the default beeps on ACCEPT statements) cause the
terminal to beep. If the value is set to FORCED-ACCEPT, all Format 3 ACCEPT statements
cause the terminal to beep; all other ACCEPT and DISPLAY statements behave as if the
value were set to YES. If the value is set to NO, the beeps that are coded in the statements are
ignored. The default value for this keyword is YES.

BLINK
This keyword determines whether the runtime system should override blinking (BLINK)
coded in the ACCEPT and DISPLAY statements. If the value is set to YES, blinking is used
as directed by the statements. If the value is set to NO, blinking is not used. The default
value for this keyword is YES.

Note The blinking attribute is not available under Windows.

DISPLAY-INTENSITY
This keyword determines the default intensity level used within DISPLAY statements. If the
value is set to HIGH, high intensity is used. If the value is set to LOW, low intensity is used.
The default value for this keyword is HIGH.

EDIT-COMMA
This keyword enables the comma edit character (thousands separator) to be overridden with
the character corresponding to the value of the keyword. This configuration option is not
affected by the presence of the DECIMAL-POINT IS COMMA clause in the source program,
except for the default value. The value of this keyword must be a single-character string or a
number from 0 to 255. The default value for this keyword is “,” (44 or 0x2c), or, if
DECIMAL-POINT IS COMMA clause is specified in the source program, the default is “.”
(46 or 0x2e).

EDIT-CURRENCY-SYMBOL
This keyword enables the currency symbol edit character (cs) to be overridden with the
character corresponding to the value of the keyword. This keyword has effect only when a
CURRENCY SIGN IS clause is present in the Configuration Section of the program. This
configuration option does not affect the currency sign ($). See the EDIT-DOLLAR keyword
for overriding the currency sign value. The value must be a single-character string or a
number from 0 to 255. The default value for this keyword is “$” (36 or 0x24).

Chapter 10: Configuration

 RM/COBOL User's Guide 333

EDIT-DECIMAL
This keyword enables the decimal point edit character to be overridden with the character
corresponding to the value of the keyword. This configuration option is not affected by the
presence of the DECIMAL-POINT IS COMMA clause in the source program, except for the
default value. The value of this keyword must be a single-character string or a number from 0
to 255. The default value for this keyword is “.” (46 or 0x2e), or, if the DECIMAL-POINT IS
COMMA clause is specified in the source program, the default is “,” (44 or 0x2c).

EDIT-DOLLAR
This keyword enables the currency sign ($) to be overridden with the character corresponding
to the value of the keyword. This configuration option is not affected by the presence of the
CURRENCY SIGN clause in the source program, unless the program specifies CURRENCY
SIGN IS “$”. In that case, the “$” in that program is the currency symbol and the EDIT-
DOLLAR keyword has no effect. (See the EDIT-CURRENCY-SYMBOL keyword for
overriding the currency symbol value.) The value must be a single-character string or a
number from 0 to 255. The default value for this keyword is “$” (36 or 0x24).

ERROR-MESSAGE-DESTINATION
This keyword determines the destination to which the runtime system should direct error
messages, Interactive Debugger input and output, temporary STOP statement messages, and
STOP RUN messages. ACCEPT . . . FROM CONSOLE and DISPLAY . . . UPON
CONSOLE statements are not affected by this keyword. The two possible values are
STANDARD-ERROR and STANDARD-INPUT-OUTPUT. If the value is set to
STANDARD-ERROR, these messages are directed to the standard error device. If the value
is set to STANDARD-INPUT-OUTPUT, these messages are written to standard output and,
in the cases of Debug input and temporary STOP statement message operator responses, the
responses are read from standard input. The value STANDARD-ERROR does not allow
redirection of the messages; the value STANDARD-INPUT-OUTPUT does allow redirection
of the messages. The default value for this keyword is STANDARD-ERROR. For
information on the standard input, output, and error devices, see Redirection of Input and
Output (on page 40).

EXCEPTION-HANDLING
This keyword determines which kind of Windows exception handling is performed if a called
non-COBOL subprogram causes an exception. Three values may be set: TRY-FINALLY,
TRY-EXCEPT, and NONE. The default value is TRY-FINALLY.

When TRY-FINALLY is set and an exception occurs in a non-COBOL subprogram,
Windows displays its normal exception dialog box, which allows the operator to view details
about the exception. When that dialog box is closed, the runtime terminates gracefully with
the normal runtime informative traceback messages.

When TRY-EXCEPT is set and an exception occurs in a non-COBOL subprogram, no
Windows dialog box is displayed and the runtime immediately terminates with the normal
runtime informative traceback messages.

Chapter 10: Configuration

334 RM/COBOL User's Guide

When NONE is set and an exception occurs in a non-COBOL subprogram, Windows displays
its normal exception dialog box and the runtime is aborted without the chance to terminate
gracefully.

The behaviors, described above, assume that the Debugger item in the AeDebug registry entry
(HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\AeDebug\Debugger) on Windows is not set or is set to an empty value. If
the AeDebug Debugger value is set for Dr. Watson (“drwtsn32”), Visual Studio
(“vs?jit.exe”), or some other value, the specified debugger is invoked to handle the exception
in the manner it deems fitting and the runtime may or may not be allowed to terminate
gracefully. (The Dr. Watson program is installed by default in Windows XP. A Visual
Studio debugger is installed during a Microsoft Visual Studio product installation.)

REVERSE
This keyword determines whether the runtime system should override reverse video
(REVERSE) coded in the ACCEPT and DISPLAY statements. If the value is set to YES,
reverse video is used as directed by the statements. If the value is set to NO, reverse video is
not used. The default value for this keyword is YES.

SCROLL-SCREEN-AT-TERMINATION
This keyword determines whether the runtime system should scroll the screen by one line
before returning to the shell. If the value is set to NO, the screen is not scrolled. If the value
is set to YES, the screen is scrolled only if the COBOL program performed any screen I/O,
such as ACCEPT or DISPLAY statements. The default value for this keyword is YES.

STRIP-LIKE-PATTERN-TRAILING-SPACES
This keyword determines whether the runtime system should strip trailing spaces from a
pattern specified as an alphanumeric variable in a LIKE condition. If the value is set to NO,
trailing spaces are not stripped; that is, they are considered significant in the pattern. If the
value is set to YES, all trailing spaces are stripped from the pattern value. The default value
for this keyword is YES.

Note To match runtime behavior prior to version 9, the value NO must be configured.

When trailing spaces are stripped (STRIP-LIKE-PATTERN-TRAILING-SPACES=YES) and
the pattern needs to specify significant trailing spaces, it can do so by specifying a space
followed by a quantifier. For example, “Hello {1}” requires exactly one trailing space for a
match and “Hello +” requires one or more trailing spaces for a match.

This configuration keyword does not affect literal pattern values, where trailing spaces are
always considered significant, and it also does not affect a pattern specified as the first
argument to the C$CompilePattern library subprogram (see page 541), where trailing space
stripping is controlled by the second argument.

TAB
This keyword controls the default behavior of ACCEPT statements that do not have a TAB
phrase. If the value of the keyword is set to YES, ACCEPT statements are executed as if the
TAB phrase were present. If value is set to NO, ACCEPT statements are executed as if the

Chapter 10: Configuration

 RM/COBOL User's Guide 335

NO TAB keyword were present in the CONTROL phrase. The default value for this keyword
is NO.

UNDERLINE
This keyword determines whether the runtime system should override underlining
(UNDERLINE) coded in the Screen Section or the CONTROL phrase of ACCEPT and
DISPLAY statements. If the value is set to YES, underlining is used as directed by the
statements. If the value is set to NO, underlining is not used. The default value for this
keyword is YES.

RUN-FILES-ATTR Configuration Record
The RUN-FILES-ATTR configuration record identifier is followed by one or more keywords.
If the keyword is allowed to have a value, it is followed by an equal sign (=) and the value.
Some of the following keywords are allowed on both the RUN-FILES-ATTR record and on
the RUN-INDEX-FILES, RUN-REL-FILES, and RUN-SEQ-FILES records. For these
keywords, specifying a value on a RUN-FILES-ATTR record is equivalent to specifying the
same value on RUN-INDEX-FILES, RUN-REL-FILES, and RUN-SEQ-FILES records. If a
keyword exists on both a RUN-FILES-ATTR and on a RUN-xxx-FILES record, then the last
one in the configuration file will be used.

The possible keywords for the RUN-FILES-ATTR record are as follows:

• ALLOW-EXTENDED-CHARS-IN-FILENAMES

• BLOCK-SIZE

• BUFFER-POOL-SIZE

• DEFAULT-USE-PROCEDURE

• DISABLE-LOCAL-ACCESS-METHOD

• ENABLE-OLD-DOS-FILENAME-HANDLING

• EXPANDED-PATH-SEARCH

• FATAL-RECORD-LOCK-TIMEOUT

• FILE-LOCK-LIMIT

• FILE-PROCESS-COUNT

• FORCE-USER-MODE

• KEEP-FLOPPY-OPEN

• LARGE-FILE-LOCK-LIMIT

• RESOLVE-LEADING-NAME

• RESOLVE-SUBSEQUENT-NAMES

• SKIP-INITIAL-CWD-SEARCH

• USE-PROCEDURE-RECORD-LOCK-TIMEOUT

Chapter 10: Configuration

336 RM/COBOL User's Guide

ALLOW-EXTENDED-CHARS-IN-FILENAMES
This keyword controls whether extended characters in the range 128 through 255 (0x80
through 0xFF) are allowed in filenames. If this keyword is set to YES, these characters are
allowed in filenames. If this keyword is set NO, these characters are excluded from
filenames. If this keyword is set to ANSI, extended characters are allowed in filenames and
the Windows function, SetFileApisToANSI, is called to ensure that Windows interprets
filenames in all Windows filename functions as containing characters represented with code
points from the ANSI codepage. If this keyword is set to OEM, extended characters are
allowed in filenames and the Windows function, SetFileApisToOEM, is called to ensure that
Windows interprets filenames in all Windows filename functions as containing characters
represented with code points from the OEM codepage. The default value for this keyword
is NO.

Note The ALLOW-EXTENDED-CHARS-IN-FILENAMES keyword is supported only
under Windows. See the topic Character Set Considerations for Windows (on page 100) for
additional information on the ANSI and OEM codepages on Windows.

BLOCK-SIZE
This keyword determines the default disk block size for all file organizations except program
files, represented as a decimal number. It can be overridden by a configuration record for a
particular organization. A program can override this with the BLOCK CONTAINS clause in
the file description entry. The maximum value for this keyword is 65489; the minimum value
is 256. Under UNIX, the default value is BUFSIZ, taken from the C include file <stdio.h>.
Under Windows, the default value is the disk sector size. Program files always use 512-byte
blocks.

BUFFER-POOL-SIZE
This keyword determines the amount of memory that should be allocated in the disk buffer
pool, represented as a decimal number. The maximum value of this keyword is 10000000
(ten million); the minimum value is 1. A value of 1 will cause the minimum disk buffer pool
to be allocated. The default value is 20480 for the compiler and 256000 for the runtime
system.

DEFAULT-USE-PROCEDURE
This keyword can be used to set the runtime action to be taken when an I/O error occurs on a
file for which there is no applicable USE procedure. If the value is set to TERMINATE, the
runtime terminates with an appropriate error message. If the value is set to CONTINUE, the
runtime continues the program execution at the next executable statement following the I/O
statement that caused the error as if an empty USE procedure had been executed; that is, a
USE procedure that did nothing but exit. The default value for this keyword is TERMINATE.
For purposes of determining whether to wait on a record locked condition or return the record
locked I-O status value, specifying the value CONTINUE implies that there is an applicable
USE procedure.

WARNING Setting DEFAULT-USE-PROCEDURE=CONTINUE causes program
continuation even after serious errors. This can cause the program to behave in difficult to
understand ways when unexpected errors occur. When using this configuration setting, it is

Chapter 10: Configuration

 RM/COBOL User's Guide 337

the responsibility of the program to check for errors after each I/O operation for which an
applicable USE procedure is not provided.

DISABLE-LOCAL-ACCESS-METHOD
This keyword can be used to prevent the use of the local access method within the file
manager based on one or more specified conditions:

• If the value is set to UNQUALIFIED-NAMES, then the local access method will not be
called to create a file with an unqualified name. An unqualified name is one with no path
part; that is, just a simple file name, like FILE.EXT. Without this value, files with
unqualified names will be created in the current working directory. Use this value when
you want to create new files in the first directory in RUNPATH rather than in the current
working directory. This value has no effect on finding existing files, only on creating
new files.

• If the value is set to UNC-NAMES, then the local access method will not be called for
any UNC-style name. UNC-style names begin with either \\ (double backslash) or //
(double forward slash). UNC-style names then contain a server name, a directory path,
and a file name (for example, //IXSERVER/DATA/FILE.EXT). This value may be
useful when all files accessed via UNC-style names reside on an RM/InfoExpress server.
Typically, the RM/InfoExpress external access method is configured for the runtime
and directory names such as //IXSERVER/DATA are placed in the RUNPATH
environment variable.

The default value for this keyword is not to disable creation of files by the local access
method for any of the possible conditions.

ENABLE-OLD-DOS-FILENAME-HANDLING
This keyword controls whether filenames are processed in the way they were handled in
earlier DOS runtimes. If this keyword is set to YES, filenames are converted to uppercase, all
spaces are eliminated, and each node name (characters between separators) is truncated to an
8.3 format. For example, the filename “c:\long directory.name\long filename.extension”
would become “C:\LONGDIRE.NAM\LONGFILE.EXT”. If this keyword is set to NO,
filenames remain in mixed case, spaces are allowed, and long node names are allowed (that is,
no truncation). The default value for this keyword is NO.

Note The ENABLE-OLD-DOS-FILENAME-HANDLING keyword is supported only under
Windows.

EXPANDED-PATH-SEARCH
This keyword controls when the directory search sequence is used. If a filename is specified
with no directory path, the directory search sequence will always be used. If the filename
begins with a forward slash (/), a backward slash (\), or a tilde (~), the directory search
sequence will not be used. If the filename contains a directory path that does not begin with a
slash or tilde, the directory search sequence will be used only if this keyword is set to YES.
In this case, the entire name, including the directory path, will be appended to each entry in
the directory search sequence. The default value for this keyword is NO.

Chapter 10: Configuration

338 RM/COBOL User's Guide

FATAL-RECORD-LOCK-TIMEOUT
This keyword affects record locking. For file descriptors whose file control entry has no
FILE STATUS clause and file descriptors that have no USE declarative procedure defined,
this keyword determines how many seconds to wait when attempting to lock a record that is
locked by another run unit before returning a fatal error to the calling program. A value of 0,
the default value for this keyword, indicates an infinite wait. The minimum value is 0; the
maximum value is 65,535 seconds.

If the record is locked using a different file descriptor in the same run unit, the error will
always be returned immediately to prevent a deadlock situation.

FILE-LOCK-LIMIT
This keyword determines the limit for the location to apply locks to a file. This number can
vary depending on the system on which the file resides. The lock limit applies to all file
organizations. For record and file locks to perform correctly, all run units opening a file must
use the same file lock limit. The lock limit also limits the actual amount of data that can be
stored in a file. This data limit is dependent on the file organization. Sequential and relative
files can store slightly less than half this number. For indexed files, the data size limit varies
with the block size: a block size of 1024 will allow eighty percent of this number for data
storage; a block size of 4096 will allow over ninety percent. The maximum value for this
keyword is 07FFFFFFEh (approximately 2 gigabytes); the minimum value is 1. The default
value is 07FFFFFFEh.

For information on superseding the limit for the location to apply locks to a file that will be
accessed as a large file, see the description of the LARGE-FILE-LOCK-LIMIT keyword later
in this section.

FILE-PROCESS-COUNT
This keyword determines the maximum number of run units that can have a file open at the
same time. It applies to all file organizations. The maximum value for this keyword is
16384; the minimum value is 8. The default value is 1024.

WARNING For record and file locks to perform correctly, all run units opening a file must
use the same file process count. Thus, it is imperative that all file managers (RM/COBOL,
RM/InfoExpress, Relativity, Open File Manager, and so forth), use the same value for the file
process count configuration. For further information about changing the file process count,
contact Micro Focus Customer Care.

FORCE-USER-MODE
This keyword determines whether the runtime system should assume a single-user or a shared
environment. If the value is set to SINGLE, local files are locked and treated as if they were
unshared. If the value is set to MULTI, local files are treated as if they were shared, and locks
are applied as specified in OPEN statements or the applicable LOCK MODE clause. This
keyword does not affect remote files. Remote files are always assumed to be in a shared
environment. The default value for this keyword is MULTI.

Note The FORCE-USER-MODE keyword is supported only under Windows.

Chapter 10: Configuration

 RM/COBOL User's Guide 339

KEEP-FLOPPY-OPEN
This keyword determines whether the runtime system will open and close program files that
reside on a floppy drive every time it accesses them. If the value is set to NO, the
RM/COBOL file management system closes these files as often as possible in order to
prevent floppy corruption problems that can occur when swapping diskettes during a program
execution. If the value is set to YES, the RM/COBOL file management system will not
attempt to close floppy-based program files after every access. The default value for this
keyword is NO.

Note The KEEP-FLOPPY-OPEN keyword is supported only under Windows.

LARGE-FILE-LOCK-LIMIT
This keyword determines the limit for the location to apply locks to a file that will be accessed
as a large file, superseding the limit specified by the FILE-LOCK-LIMIT keyword. For
record and file locks to perform correctly, all run units opening a particular file must use the
same file lock limit. The lock limit also limits the actual amount of data that can be stored in
a file. (See the description of the FILE-LOCK-LIMIT keyword, described earlier in this
section, for details on this relationship.) The value assigned to this keyword is specified in
gigabytes (GB). The maximum value for this keyword is 1048576, which equates to 1
petabyte (250). The minimum value is 1. The default value is 64 for relative and sequential
files, and 512 for indexed files.

For an explanation of how to indicate that a relative file or a sequential file will be accessed as
a large file, see the description of the USE-LARGE-FILE-LOCK-LIMIT keyword of the
RUN-REL-FILES configuration record (on page 349) and RUN-SEQ-FILES configuration
record (on page 350). See also the descriptions of File Version Level 3 (on page 254) and the
DEFAULT-FILE-VERSION-NUMBER keyword (on page 342) of the RUN-INDEX-FILES
configuration record for information on using the LARGE-FILE-LOCK-LIMIT with indexed
files.

RESOLVE-LEADING-NAME
This keyword controls when the first directory name specified in a file access name is
resolved from the environment. The first directory name is defined as a name that is not
preceded by a slash character. Under Windows, the slashes that may appear in a volume
name are ignored. If the name is not found in the environment, no substitution will occur, and
the name will remain as specified (after the possible removal of the leading character). There
are several possible values for this keyword, including ALWAYS, NEVER, or one of these
seven leading characters: !, @, #, $, %, ^, or &.

If RESOLVE-LEADING-NAME is set to ALWAYS, and the directory name exists in the
environment, the value of the environment variable will replace the name. If RESOLVE-
LEADING-NAME is set to one of the seven leading characters, the directory name begins
with that character, and the directory name without that character exists in the environment,
then the value of that environment variable will replace the name. If the value is set to
NEVER, then the leading directory name will never be replaced. The default value for this
keyword is NEVER.

In the special case that the file access name does not contain any directory specifiers,
substitution will always be attempted.

For example, if the environment contains a variable name DIR with the value MYDIR, and
does not contain the variable D1, the following substitutions would occur.

Chapter 10: Configuration

340 RM/COBOL User's Guide

Name Specified RESOLVE-LEADING-NAME Value
 ALWAYS NEVER @
DIR/FILE MYDIR/FILE DIR/FILE DIR/FILE
@DIR/FILE @DIR/FILE @DIR/FILE MYDIR/FILE
@D1/FILE @D1/FILE @D1/FILE D1/FILE
DIR MYDIR MYDIR MYDIR
@DIR @DIR @DIR MYDIR

RESOLVE-SUBSEQUENT-NAMES
This keyword controls when directory names or the filename specified in a file access name
are resolved from the environment. It does not apply to the leading name (see RESOLVE-
LEADING-NAME keyword, described previously). If the name is not found in the
environment, no substitution will occur, and the name will remain as specified (after the
possible removal of the leading character). There are several possible values for this
keyword, including ALWAYS, NEVER, or one of these seven leading characters: !, @, #, $,
%, ^, or &.

If RESOLVE-SUBSEQUENT-NAMES is set to ALWAYS, and the directory or filename
exists in the environment, the value of the environment variable will replace the name. If
RESOLVE-SUBSEQUENT-NAMES is set to one of the seven leading characters, the
directory or filename begins with that character, and the directory or filename without that
character exists in the environment, then the value of that environment variable will replace
the name. If the value is set to NEVER, the directory or filename will never be replaced. The
default value for this keyword is NEVER.

For example, if the environment contains a variable name DIR with the value MYDIR, a
variable name FILE with the value MYFILE, and does not contain the variable D1, the
following substitutions would occur.

Name Specified RESOLVE-LEADING-NAME Value
 ALWAYS NEVER @
DIR/FILE DIR/MYFILE DIR/FILE DIR/FILE
/DIR/@FILE /MYDIR/@FILE DIR/@FILE /DIR/MYFILE
/@D1/FILE /@D1/MYFILE /@D1/FILE /D1/FILE

SKIP-INITIAL-CWD-SEARCH
This keyword controls whether the current working directory (CWD) is searched for a
filename when RM/COBOL is locating a file. The default value is NO, which specifies the
previous behavior of always looking in the CWD for filenames without a full directory path.
The two other values that may be specified, UNQUALIFIED-NAME and NOT-FULL-
PATHNAME, cause the initial CWD search to be skipped when a path search string (for
example, the value of RUNPATH) is also specified. This means that only a path search will
occur. If desired, you can place a period (.) in the path search string to look in the CWD at
the desired place in the search sequence.

• Specifying a value of UNQUALIFIED-NAME means that filenames containing neither a
forward slash (/) nor a backward slash (\) will skip the initial CWD search.

• Specifying a value of NOT-FULL-PATHNAME means that both unqualified names as
well as any pathname that does not begin with a forward slash or a backward slash or, on
Windows, a drive letter (c:) will skip the initial CWD search. The NOT-FULL-

Chapter 10: Configuration

 RM/COBOL User's Guide 341

PATHNAME value is more useful when the EXPANDED-PATH-SEARCH=YES
keyword (on page 337) is also specified.

For more information on how RM/COBOL locates files, see Locating RM/COBOL Files on
UNIX (on page 21) and Locating RM/COBOL Files on Windows (on page 62). These topics
describe how the CWD is searched first for unqualified file names. This new configuration
keyword modifies the search sequence described in those topics by skipping the initial CWD
search that they specify.

USE-PROCEDURE-RECORD-LOCK-TIMEOUT
This keyword affects record locking. For file descriptors whose file control entry has a FILE
STATUS clause and for which a USE declarative procedure is defined, it determines how
many seconds to wait when attempting to lock a record that is locked by another run unit
before returning an error to the calling program. A value of 0, the default value for this
keyword, indicates that the error should be returned immediately. The minimum value is 0;
the maximum value is 65,535 seconds.

If the record is locked using a different file descriptor in the same run unit, the error is always
returned immediately to prevent a deadlock situation.

RUN-INDEX-FILES Configuration Record
The RUN-INDEX-FILES configuration record identifier is followed by one or more
keywords. If the keyword is allowed to have a value, it is followed by an equal sign (=) and
the value.

The possible keywords for the RUN-INDEX-FILES record are as follows:

• ALLOCATION-INCREMENT

• BLOCK-SIZE

• DATA-COMPRESSION

• DEFAULT-FILE-VERSION-NUMBER

• ENABLE-ATOMIC-IO

• FORCE-CLOSED

• FORCE-DATA

• FORCE-DISK

• FORCE-INDEX

• KEY-COMPRESSION

• MINIMUM-BLOCK-SIZE

• ROUND-TO-NICE-BLOCK-SIZE

• USE-LARGE-FILE-LOCK-LIMIT

Chapter 10: Configuration

342 RM/COBOL User's Guide

ALLOCATION-INCREMENT
This keyword determines the allocation increment of indexed files created by the runtime
system. The value is the decimal number of blocks to be added to the file. The maximum
value for this keyword is 9999; the minimum value is 1. The default value is 8.

BLOCK-SIZE
This keyword determines the default disk block size for indexed files, represented as a
decimal number. A program can override this with the BLOCK CONTAINS clause (see
page 244) in the file description entry (see also the discussion of this clause in Chapter 4:
Data Division of the RM/COBOL Language Reference Manual). The maximum value for this
keyword is 65489; the minimum value is 256. Under UNIX, the default value is BUFSIZ,
taken from the C include file <stdio.h>. Under Windows, the default value is the disk sector
size. For additional information on computing the actual block size for indexed files, see also
the description of the MINIMUM-BLOCK-SIZE and ROUND-TO-NICE-BLOCK-SIZE
keywords of the RUN-INDEX-FILES configuration record (on page 341).

DATA-COMPRESSION
This keyword determines whether the indexed files created by the runtime system use data
compression. If the value is set to YES, data compression is used. If the value is set to NO,
data is stored in uncompressed form. The default value for this keyword is YES.

DEFAULT-FILE-VERSION-NUMBER
This keyword determines the default file version number for new files when an OPEN
OUTPUT is performed. The version number for existing files or files predefined with the
Define Indexed File (rmdefinx) utility (see page 594) will not be changed when an OPEN
OUTPUT is performed. Allowable values are 0, 2, 3, and 4. The default value is 4. For more
information, see Indexed File Version Levels (on page 253).

ENABLE-ATOMIC-IO
This keyword determines whether the indexed files created by the runtime system use atomic
I/O. If the value is set to YES, atomic I/O is enabled and if the default version number is less
than 4, the version number is set to 4. If the value is set to NO, atomic I/O is disabled. The
default value for this keyword is NO.

FORCE-CLOSED
This keyword determines whether an indexed file created by the runtime system is marked
closed on disk between file modification operations. If the value is set to YES, the file header
is marked open at the beginning of a DELETE, REWRITE, or WRITE operation and marked
closed at the end of the operation. This minimizes the risk that a power interruption would
necessitate a recovery of the indexed file. If the value is set to NO and the file is opened I-O,
OUTPUT, or EXTEND, any power interruption will require a recovery of the indexed file.
The default value for this keyword is NO.

Chapter 10: Configuration

 RM/COBOL User's Guide 343

FORCE-DATA
This keyword determines—for an indexed file created by the runtime system and opened
WITH LOCK—whether the runtime system forces data blocks to be given to the operating
system when modified. If the value is set to YES, data block write requests are issued to the
operating system whenever information is changed. If the value is set to NO, data block write
requests are made as dictated by buffer space. The default value for this keyword is NO.

FORCE-DISK
This keyword determines—for an indexed file created by the runtime system—whether the
runtime system forces disk blocks to be written to disk when modified. If the value is set to
YES, blocks written to the operating system are forced to be written to disk as well. If the
value is set to NO, blocks written to the operating system remain in the operating system
buffer pool. The default value for this keyword is NO.

FORCE-INDEX
This keyword determines—for an indexed file created by the runtime system and opened
WITH LOCK—whether the runtime system forces index blocks to be given to the operating
system when modified. If the value is set to YES, index block write requests are issued to the
operating system whenever the index block is changed. If the value is set to NO, index block
write requests are made as buffer space dictates. The default value for this keyword is NO.

IGNORE-BLOCK-CONTAINS
This keyword determines whether the runtime system ignores the BLOCK CONTAINS
clause specified in the COBOL source program when an indexed file is opened. If the value
is set to YES, the BLOCK CONTAINS clause is ignored instead of being checked as a fixed
file attribute of the indexed file. If the value is set to NO, the runtime validates the maximum
block size specified in the BLOCK CONTAINS clause of the source program, if any, as a
fixed file attribute of the indexed file and, if there is a mismatch, reports a 39, 05 error on the
open. The 39, 05 error can happen when the indexed file is opened for other than output, that
is, when an existing file is opened. The default value for this keyword is NO.

Visual COBOL always ignores a BLOCK CONTAINS clause. Thus, Visual COBOL does
not create a fixed file attribute for the maximum block size when creating an RM indexed file,
as if the program did not specify a BLOCK CONTAINS clause. When RM/COBOL is used
to open such an indexed file created by Visual COBOL and the source program has specified
a BLOCK CONTAINS clause, RM/COBOL will trigger a 39, 05 error for the open. A
configuration setting of IGNORE-BLOCK-CONTAINS=YES allows RM/COBOL and
Visual COBOL programs to inter-operate on the same RM indexed file without the need to
either remove the BLOCK CONTAINS clause in the source program or ensure that only
RM/COBOL creates the indexed file.

KEY-COMPRESSION
This keyword determines whether the indexed files created by the runtime system use key
compression. If the value is set to YES, key compression is used. If the value is set to NO,
keys are stored in uncompressed form. The default value for this keyword is YES.

Chapter 10: Configuration

344 RM/COBOL User's Guide

MINIMUM-BLOCK-SIZE
This keyword determines the minimum disk block size for the indexed files created by the
runtime system, represented as a decimal number. (See the discussion of the BLOCK
CONTAINS clause on page 244.) The maximum value for this keyword is 4096; the
minimum value is 256. The default value is 1024.

ROUND-TO-NICE-BLOCK-SIZE
This keyword determines whether the block size computed for the indexed files created by the
runtime system is forced to be a multiple of 512 (under Windows) or the value of BUFSIZ,
taken from the C include file <stdio.h> (under UNIX). The default value for this keyword is
YES.

USE-LARGE-FILE-LOCK-LIMIT
This keyword determines which value to use for the lock limit when creating a version 4
indexed file. If the value of this keyword is set to NO, the value of the FILE-LOCK-LIMIT
keyword (see page 338) of the RUN-FILES-ATTR configuration record is used. If the value
is set to YES, the value of the LARGE-FILE-LOCK-LIMIT keyword (see page 339) is used.
The default value for this keyword is NO.

Note The USE-LARGE-FILE-LOCK-LIMIT keyword affects only the lock limit placed into
the Key Information Block (KIB) for version 4 indexed files created by the runtime system;
existing version 4 indexed files always use the lock limit stored when the file was created.

RUN-OPTION Configuration Record
The RUN-OPTION configuration record identifier is followed by one or more keywords. If
the keyword is allowed to have a value, it is followed by an equal sign (=) and the value.

The possible keywords for the RUN-OPTION record are as follows:

• B

• DISPLAY-UPDATE-MESSAGES

• ENABLE-LOGGING

• FILL-CHARACTER

• K

• L

• LIBRARY-PATH

• LOG-PATH

• M

• MAIN-PROGRAM

• V

Chapter 10: Configuration

 RM/COBOL User's Guide 345

B
This keyword controls the default ACCEPT and DISPLAY buffer size and is represented as a
decimal number. The maximum value for this keyword is 65280; the minimum value is 1.
The default value is 264.

A value specified with this keyword may be overridden by the runtime B Option (see
page 194).

DISPLAY-UPDATE-MESSAGES
This keyword controls which messages are displayed when the automatic update check
determines that there is an update message available for the RM/COBOL runtime. The
message is displayed at runtime termination. If the value of this keyword is set to ALL, then
all update messages are displayed. If the value of this keyword is set to URGENT-ONLY,
then only messages that Micro Focus RM/COBOL designates as urgent are displayed. For a
runtime licensed as part of an RM/COBOL development system, the default value is ALL; for
a runtime licensed as part of an RM/COBOL runtime system, the default value is URGENT-
ONLY.

ENABLE-LOGGING
This keyword controls the generation of various error and information log files. The LOG-
PATH keyword (see page 347) must be included to specify the location of the directory for
the log file. By default, no logging is performed. Logging normally should be enabled only
when required to meet a particular need. If large amounts of data are logged, there will be
noticeable performance degradation in the runtime. Multiple keyword values are separated by
commas. One or more of the following values may be included:

• ENABLE-LOGGING=98-ERRORS turns on logging of 98,nn file structure errors.
Most of these errors indicate problems with indexed files. This logging option is
normally turned on only at the request of a Micro Focus support representative. The
log file generated is named RM98ERR.LOG.

• ENABLE-LOGGING=ALL turns on all logging.

• ENABLE-LOGGING=ATOMIC-IO turns on logging of possible problems with
indexed files that were created with atomic I/O enabled. This logging option is
normally turned on only at the request of a Micro Focus support representative. The
log file generated is named RMATOMIO.LOG.

• ENABLE-LOGGING=FILE-CLOSE turns on logging of CLOSE statements of
sequential, relative, and indexed files. The log file generated is named
RMOPNCLS.LOG. This logging option may be used to aid in understanding some
complex applications.

• ENABLE-LOGGING=FILE-OPEN turns on logging of successful OPEN statements
of sequential, relative, and indexed files. The log file generated is named
RMOPNCLS.LOG. This logging option may be used to aid in understanding some
complex applications and to help diagnose certain types of problems involving large
numbers of file opens.

• ENABLE-LOGGING=OTHER-OPEN turns on logging of successful opens of
program files. The log file generated is named RMOPNCLS.LOG. This logging

Chapter 10: Configuration

346 RM/COBOL User's Guide

option may be used to aid in understanding some complex applications and to help
diagnose certain types of problems.

• ENABLE-LOGGING=OTHER-CLOSE turns on logging of closes of program files.
The log file generated is named RMOPNCLS.LOG. This logging option may be
used to aid in understanding some complex applications.

• ENABLE-LOGGING=TERMINAL-INFO turns on informational logging of
terminfo and termcap processing. The log file generated is named
RMINSEQ.LOG. This option is available only for UNIX. This logging option is
intended to help solve problems encountered with the terminfo or termcap
configuration.

• ENABLE-LOGGING=TERMINATION turns on logging of termination errors,
including all traceback information. The log file generated is named
RMTERM.LOG. Termination logging is available or Windows and UNIX;
however, UNIX users also can redirect standard error (STDERR).

• ENABLE-LOGGING=PERM-OS-ERRORS turns on logging of detailed
information about errors encountered by the runtime when making operating system
(OS) calls. On UNIX, this option also enables logging of information to help
diagnose the cause of Procedure Errors 251 through 256 related to the terminfo or
termcap configuration. This logging option is normally turned on only at the request
of a Micro Focus support representative. The log file generated is named
RMOSERR.LOG.

• ENABLE-LOGGING=SUB-CALLS turns on logging of subprogram calls. The log
file generated is named RMCALLS.LOG. The logging information includes the
annotation “(RM_STOP)” at the end of the log entry line for a called non-COBOL
subprogram that returns an RM_STOP function return value.

FILL-CHARACTER
This keyword specifies the fill character to be used to initialize read-write memory allocated
for the run unit. The default value for this keyword is “ “ (space = 0x20 = 20h). Working-
Storage data items that do not specify a VALUE clause in their data description entry will be
filled with this character value at program load time.

The FILL-CHARACTER keyword corresponds to the runtime F Option (see page 194).

For consistency with the command line treatment of the F option value, a single-digit
character, 0 – 9, represents the corresponding single ASCII digit character; that is, “0” – “9”,
0x30 – 0x31 or decimal 48 – 57, whether or not it is quoted. Multi-digit decimal values
without quotes can be 00 – 255 and represent the corresponding numeric code point. Quoted
values must contain only one character and are never considered to be a numeric value; that
is, they always represent a single ASCII character value to be used as the fill character.

K
This keyword controls the suppression of the banner notice and the STOP RUN message. If
the value is set to SUPPRESS, the banner notice and STOP RUN message are suppressed.
If the value is set to DISPLAY, the suppression of the banner notice and the STOP RUN
message is controlled by the runtime K Option (see page 192). The default value for this
keyword is DISPLAY. If the K keyword specifies the value SUPPRESS, a later specification
of K=DISPLAY in the configuration is ignored.

Chapter 10: Configuration

 RM/COBOL User's Guide 347

L
This keyword specifies RM/COBOL object or non-COBOL subprogram libraries to be loaded
during run unit initialization. The value is a string specifying the pathname of the library file
to be loaded. This keyword may be specified multiple times to load multiple libraries.
Libraries are loaded in the left to right order of L keywords in the configuration file. The
default value for this keyword is not to add any libraries to the list of libraries to be loaded.

This keyword corresponds to the runtime L Option (see page 197). The same rules regarding
locating libraries for the L Option apply. Libraries specified with this keyword are loaded
after libraries specified with the L Option. Micro Focus recommends that multiple
RM/COBOL programs be combined into libraries using the Combine Program (rmpgmcom)
utility (see page 585) because doing so improves application startup time.

LIBRARY-PATH
This keyword specifies the location (directory) of a set of RM/COBOL object files, all of
which are to be loaded during run unit initialization. The value is a string specifying the
directory pathname. The specified directory must be locally accessible, although it may be
accessed through a network drive or UNC name; in particular, RM/InfoExpress cannot be
used to access the directory. This keyword may be specified multiple times to load from
multiple directories. The default value for this keyword is not to add any directories to the list
of directories from which to load COBOL programs.

Directories are processed in the left to right order of LIBRARY-PATH keywords in the
configuration file, but the order of loading from any one directory is operating system-
dependent. Libraries loaded because of this keyword are loaded after libraries loaded with
either the runtime L Option or the L keyword of the RUN-OPTION configuration record, but
before non-COBOL libraries loaded automatically from the rmcobolso (on UNIX) or
RmAutoLd (on Windows) subdirectories of the execution directory. All RM/COBOL object
files in the specified directory are loaded. A file is determined to be an RM/COBOL object
file solely by its having an extension matching the RM/COBOL object extension as specified
by the OBJECT keyword of the EXTENSION-NAMES configuration record (by default,
.cob). On UNIX, the test for this extension is case-sensitive. Micro Focus recommends that
multiple RM/COBOL programs be combined into libraries using the Combine Program
(rmpgmcom) utility (see page 585) because doing so improves application startup time.

LOG-PATH
This keyword specifies the location (directory) where the log file (as specified in the
ENABLE-LOGGING keyword described earlier in this section) will be written. The
directory must already exist before the runtime is started, and the user must have create and
write permission for the directory. The runtime will create the log file, if necessary, and the
file will be opened in append mode. The default for this keyword is to suppress all logging
regardless of the value specified for the ENABLE-LOGGING keyword (see page 345).

M
This keyword controls which level of ANSI semantics is used with ACCEPT and DISPLAY
statements. If the value is set to 2, ANSI level 2 semantics are used. If the value is set to 1,
the level of ANSI semantics is controlled by the runtime M Option (see page 195). The

Chapter 10: Configuration

348 RM/COBOL User's Guide

default value for this keyword is 1. If the M keyword specifies the value 2, a later
specification of M=1 in the configurations is ignored.

MAIN-PROGRAM
This keyword specifies the name of the main program to be executed. The value is a string
that specifies the program name or file name that is to be executed. The name overrides the
name specified on the command line. The first occurrence of this keyword encountered
during configuration processing is effective and later occurrences are ignored. The default
value for this keyword is to use the filename specified on the command line.

Note If a main program name is configured, the filename parameter may be omitted in the
Runtime Command. In this case, options can be specified in the Runtime Command only by
using a hyphen before each option.

V
This keyword controls the display of the list of the support modules (shared objects on UNIX
and dynamic link libraries on Windows) loaded by the RM/COBOL runtime system. If the
value is set to DISPLAY, the list will be displayed. If the value is set to SUPPRESS, the
runtime V Option (see page 193) or the setting of the RM_DYNAMIC_LIBRARY_TRACE
environment variable (see page 449) control the list display. The default value for this
keyword is SUPPRESS. If the V keyword specifies the value DISPLAY, a later specification
of V=SUPPRESS in the configuration is ignored.

RUN-REL-FILES Configuration Record
The RUN-REL-FILES configuration record identifier is followed by one or more keywords.
The keyword is followed by an equal sign (=) and a value.

The possible keywords for the RUN-REL-FILES record are as follows:

• BLOCK-SIZE

• USE-LARGE-FILE-LOCK-LIMIT

BLOCK-SIZE
This keyword determines the default block size, represented as a decimal number, for relative
files opened WITH LOCK. The maximum value for this keyword is 65489. The minimum
value is 0, which specifies that the default value is no blocking. The presence of a BLOCK
CONTAINS phrase in the file description entry of an unshared relative file forces that file to
be blocked, even if no blocking is specified by this keyword. The default value for this
keyword is BUFSIZ, taken from the C include file <stdio.h>, if the file is opened for
RANDOM access. Under UNIX, if the file is opened for DYNAMIC or SEQUENTIAL
access, the default value is BUFSIZ, taken from the C include file <stdio.h>, or 4096,
whichever is larger. Under Windows, the default value is the disk sector size or 4096,
whichever is larger.

Chapter 10: Configuration

 RM/COBOL User's Guide 349

USE-LARGE-FILE-LOCK-LIMIT
This keyword determines which value to use for the limit when applying locks to a relative
file. If the value of this keyword is set to NO, the value of the FILE-LOCK-LIMIT keyword
(see page 338) of the RUN-FILES-ATTR configuration record is used. If the value is set to
YES, the value of the LARGE-FILE-LOCK-LIMIT keyword (see page 339) is used. For
record and file locks to perform correctly, all run units opening a file must use the same file
lock limit. The default value for this keyword is NO.

RUN-SEQ-FILES Configuration Record
The RUN-SEQ-FILES configuration record identifier is followed by one or more keywords.
If the keyword is allowed to have a value, it is followed by an equal sign (=) and the value.

The possible keywords for the RUN-SEQ-FILES record are as follows:

• BLOCK-SIZE

• DEFAULT-TYPE

• DEVICE-SLEWING-RESERVE

• TAB-STOPS

• USE-LARGE-FILE-LOCK-LIMIT

BLOCK-SIZE
This keyword determines the default block size represented as a decimal number, for
sequential disk files opened WITH LOCK. The maximum value for this keyword is 65489.
The minimum value is 0, which specifies that the default value is no blocking. The presence
of a BLOCK CONTAINS phrase in the file description entry of an unshared sequential file
forces that file to be blocked, even if no blocking is specified by this keyword. Under UNIX,
the default value for this keyword is BUFSIZ, taken from the C include file <stdio.h>, or
4096, whichever is larger. Under Windows, the default value is the disk sector size or 4096,
whichever is larger.

DEFAULT-TYPE
This keyword determines whether unspecified sequential files are line sequential or binary
sequential. If the value is set to BINARY, unspecified sequential files are binary sequential.
If the value is set to LINE, unspecified sequential files are line sequential. The default value
for this keyword is BINARY.

DEVICE-SLEWING-RESERVE
This keyword determines the number of character positions to be reserved for form feed and
line feed characters. The value for this keyword is a decimal number. The maximum value
for this keyword is 999; the minimum value is 10. The default value is 255.

Chapter 10: Configuration

350 RM/COBOL User's Guide

This keyword applies to line sequential files written directly to a nontape device. It also
applies to line sequential files on disk that are not opened WITH LOCK or are not blocked.
The value required for this keyword is generally the maximum value specified by any
BEFORE/AFTER ADVANCING phrase in a WRITE statement in the program, plus 2. This
value is configurable for performance considerations only, since it enables the record—along
with the appropriate number of control characters—to be written in one write request. If the
value specified for this keyword is less than the maximum specified by the BEFORE/AFTER
ADVANCING phrase, the operation will be performed correctly, but will require more than
one write request to complete the operation.

TAB-STOPS
This keyword determines an ascending sequence of tab stop columns represented as decimal
numbers separated by commas. A tab stop column must be less than 256. Up to 25 tab stop
columns are allowed. TAB-STOPS=0 specifies that no tab stop columns exist. The default
TAB-STOPS sequence is 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, and 72.

USE-LARGE-FILE-LOCK-LIMIT
This keyword determines which value to use for the limit when applying locks to a sequential
file. If the value of this keyword is set to NO, the value of the FILE-LOCK-LIMIT keyword
(see page 338) of the RUN-FILES-ATTR configuration record is used. If the value is set to
YES, the value of the LARGE-FILE-LOCK-LIMIT keyword (see page 339) is used. For
record and file locks to perform correctly, all run units opening a file must use the same file
lock limit. The default value for this keyword is NO.

RUN-SORT Configuration Record
The RUN-SORT configuration record identifier is followed by one or more keywords. If the
keyword is allowed to have a value, it is followed by an equal sign (=) and the value.

The possible keywords for the RUN-SORT record are as follows:

• INTERMEDIATE-FILES

• MEMORY-SIZE

INTERMEDIATE-FILES
This keyword determines the number of intermediate sort files represented as a decimal
number. The maximum value for this keyword is 9; the minimum value is 3. The default
value is 5.

MEMORY-SIZE
This keyword determines the default sort memory size represented as a decimal number. The
maximum value for this keyword is available memory; the minimum value is 0. If
unspecified, the default sort memory size is 256000 bytes. The maximum allowed value is

Chapter 10: Configuration

 RM/COBOL User's Guide 351

2147483647 bytes. If the MERGE or SORT statements are used in the run unit, sort memory
size must be non-zero. This keyword corresponds to the runtime T Option (see page 195).

TERM-ATTR Configuration Record
The TERM-ATTR configuration record provides information about terminal attributes.

Note The TERM-INTERFACE configuration record (see page 365) must precede any
TERM-ATTR configuration record.

The TERM-ATTR record identifier is followed by one or more keywords. If the keyword is
allowed to have a value, it is followed by an equal sign (=) and the value.

The possible keywords for the TERM-ATTR record are as follows:

• ALWAYS-USE-CURSOR-POSITIONING

• BCOLOR

• CHARACTER-TIMEOUT

• COLUMNS

• DATA-CHARACTERS

• DBCS-CHARACTERS

• FCOLOR

• PASS-THRU-ESCAPE

• REDRAW-ON-CALL-SYSTEM

• ROWS

• SCREEN-CONTENT-OPTIMIZE

• SUPPRESS-NULLS

• USE-COLOR

ALWAYS-USE-CURSOR-POSITIONING
This keyword determines whether the absolute cursor positioning sequence is always used to
position the cursor on the screen. If the value is set to YES, the absolute cursor positioning
sequence is always used. If the value is set to NO, the runtime system attempts to optimize
cursor positioning. The default value for this keyword is NO. This keyword may be used in
those circumstances in which the optimized cursor position is sometimes incorrect.

Note The ALWAYS-USE-CURSOR-POSITIONING keyword is supported only under
UNIX.

BCOLOR
This keyword indicates the initial background color value to use for ACCEPT and DISPLAY
statements. The terminal will be restored to this color when the run unit ends. The default
color value for this keyword is BLACK.

Chapter 10: Configuration

352 RM/COBOL User's Guide

Note Under Windows, the default background color is determined by the system settings. In
particular, the default background color is the default “window background” color.

CHARACTER-TIMEOUT
This keyword sets the time-out period related to the inter-character timer used by the
RM/COBOL runtime system when processing input sequences. The timer is used to
determine whether a character is a final character in a sequence. The default wait time before
deciding that no more characters are pending is .5 seconds. The inter-character timer may
need to be increased on certain systems or in some cases when the user is logged in from a
network (rlogin). The value for the CHARACTER-TIMEOUT keyword is specified in tenths
of seconds.

Notes

• The CHARACTER-TIMEOUT keyword is supported only under UNIX.

• The value of the inter-character timer also affects the BEFORE TIME phrase of the
ACCEPT statement. For more information, see Time Phrase (on page 217).

COLUMNS
This keyword determines the number of columns the runtime system will display on the
terminal screen, represented as a decimal number between 1 and 255. The default value for
this keyword is 80.

Note The COLUMNS keyword is supported only under Windows.

DATA-CHARACTERS
This keyword has as its value a comma-separated pair of decimal integers. The first number
is the lower bound of characters to be interpreted as text characters. The second number is the
upper bound of characters to be interpreted as text characters. On input, characters not in this
range and not part of a TERM-INPUT sequence are illegal. The default range is 32 (20h) to
126 (7Eh). See TERM-INPUT Configuration Record (on page 356).

The first occurrence of a DATA-CHARACTERS keyword specification clears the default
range and any previously specified DBCS-CHARACTERS (as described in the next item of
this keyword list) or PASS-THRU-ESCAPE (see page 354) characters. Multiple disjoint
character ranges can be specified to be data characters by multiple specifications of the
DATA-CHARACTERS keyword. For UNIX, the decimal integers must specify code points
in the current locale’s set of text characters. For Windows, the decimal integers must specify
the character code points in the OEM codepage when the native character set uses the OEM
codepage, which is usually 437 in the U.S. and 850 in Western Europe, and must specify the
character code points in the ANSI codepage when the native character set uses the ANSI
codepage, which is usually 1252 in the U.S. and Western Europe. The following is an
example for specifying a disjoint range of text code points:

/* Set normal default range
TERM-ATTR DATA-CHARACTERS=32,126
/* Add euro symbol (as OEM code point 213)
TERM-ATTR DATA-CHARACTERS=213,213

Chapter 10: Configuration

 RM/COBOL User's Guide 353

Multiple DATA-CHARACTERS keyword specifications are also useful when converting the
period on the numeric keypad into a comma for numeric input in countries that use the
comma as the fractional separator rather than the period. This allows the user to enter
numbers using only the numeric keypad. An example of how this might be done is as
follows:

/* Specify the data characters, omitting the period (46)
TERM-ATTR DATA-CHARACTERS=32,45
TERM-ATTR DATA-CHARACTERS=47,126
/* Map the numeric keypad period to comma
TERM-INPUT DATA=44 NUL 110
/* Leave the keyboard (regular) period as period
TERM-INPUT DATA=46 NUL 190

DBCS-CHARACTERS
This keyword enables support for double-byte character set (DBCS) characters and specifies
the lead-byte character ranges.

In DBCS, a character is represented by either one or two bytes. Double-byte character set
characters have the following components:

• Lead byte. If the value of this byte falls into the lead-byte range, a DBCS character is
indicated.

• Trail byte. This byte further refines the selected character. The trail byte can have any
value except zero (0), but is typically restricted to a subset of all possible characters.

Double-byte character set characters occupy two, physically adjacent positions on the
screen and are usually displayed as a double-width character.

Double-byte character set characters, however, are not the same as “wide” characters. In a
wide-character set, such as Unicode, all characters are represented by two bytes, which
provides up to 65,536 characters. In DBCS, the value of the first byte determines whether the
second byte is considered part of the current character.

Values for this keyword are specified as a pair of numbers separated by a comma. The syntax
of this keyword is as follows:

TERM-ATTR DBCS-CHARACTERS=n1,n2

These numbers specify a range of characters to be considered as lead-byte characters.
Multiple ranges of characters can be specified by repeating the DBCS-CHARACTERS
keyword, but ranges must not overlap. These numbers must also be wholly contained within
the DATA-CHARACTERS range (see the previous item in the keyword list), which by
default, is 32 through 126. The default value for this keyword is that no characters are
considered to be lead-byte characters.

The DBCS-CHARACTERS keyword must be specified after the first occurrence of the
DATA-CHARACTERS keyword if both keywords are specified. The first occurrence of the
DATA-CHARACTERS keyword causes values specified in the preceding DBCS-
CHARACTERS keyword and the PASS-THRU-ESCAPE keyword to be discarded.

Note The DBCS-CHARACTERS keyword is supported only under UNIX.

Chapter 10: Configuration

354 RM/COBOL User's Guide

Restrictions

The following restrictions apply to double-byte character set characters in RM/COBOL:

• Because a DBCS character cannot be entered in a field where there is only one remaining
character position, DBCS characters cannot be any of the following:

− Entered into one-character ACCEPT fields.

− Typed into the last position of a field.

− Inserted into a field where only one position remains available.

− Typed over single-byte characters in a field where no positions remain available.

• A DBCS character cannot be displayed on a position that would physically or logically
separate the trail byte from the lead byte. DBCS characters, therefore, cannot be
displayed in the last column of a screen or window. In addition, when a new window is
opened, any lead bytes or trail bytes that would be orphaned by the window are blanked
and restored when the window is removed.

• If an ACCEPT field spans a window or screen row, RM/COBOL will permit the entry of
a DBCS character when the cursor is in the last column of the window or screen. The
cursor advances two character positions and the DBCS character is saved but not
displayed (two spaces are displayed instead). If characters are inserted or deleted from
the field such that the character no longer wraps across rows, it becomes visible. If
another DBCS character wraps as a result, it becomes invisible. All entered characters
will be returned to the RM/COBOL program when the ACCEPT is terminated.

• Such an invisible character cannot be retrieved with the ACCEPT-FIELD-FROM-
SCREEN keyword (see page 331) in the RUN-ATTR record or the C$SCRD subprogram
(see page 564). Instead, spaces are returned.

• DBCS characters must not be used as a character specified either in the PROMPT phrase
of an ACCEPT statement or in the GRAPHICS keyword of the CONTROL phrase of an
ACCEPT or DISPLAY statement.

• DBCS characters must not be used in filenames or pathnames.

FCOLOR
This keyword indicates the initial foreground color value to use for ACCEPT and DISPLAY
statements. The terminal will be restored to this color when the run unit ends. The default
color value for this keyword is WHITE.

Note Under Windows, the default foreground color is determined by the system settings. In
particular, the default foreground color will be the default “window text” color. The default
high-intensity foreground color is determined by the default “selected text” color.

PASS-THRU-ESCAPE
This keyword allows certain DISPLAY statements to write sequences directly to standard
output, bypassing screen optimization and buffering. If used, any DISPLAY statement that
begins with one of the specified characters will exhibit the PASS-THRU behavior. No cursor
positioning is performed. All attributes specified in the DISPLAY statement are ignored.
The characters are represented in ordinal form (for example, the ASCII ESC character is 27)

Chapter 10: Configuration

 RM/COBOL User's Guide 355

within a comma-separated list as both individual values and ranges (for example, 0-31,255).
The default value for this keyword is to have no PASS-THRU-ESCAPE characters.

The PASS-THRU-ESCAPE keyword must be specified after the first occurrence of the
DATA-CHARACTERS keyword (see page 352) if both keywords are specified. The first
occurrence of the DATA-CHARACTERS keyword causes values specified in the preceding
DBCS-CHARACTERS keyword (see page 353) and the PASS-THRU-ESCAPE keyword to
be discarded.

Note The PASS-THRU-ESCAPE keyword is supported only under UNIX.

REDRAW-ON-CALL-SYSTEM
This keyword sets a variable that is checked by the C language subprogram, SYSTEM, before
restoring the screen. The values for this keyword are YES and NO. The default value for this
keyword is YES. A value of YES causes the runtime system to redraw the screen in order to
maintain screen integrity. An additional argument, (PIC X) to CALL “SYSTEM”, gives
control of this feature on an individual call basis. For more information, see UNIX
Considerations (on page 580) and the “C Subprograms Performing Terminal I/O” topic in
Appendix H: Non-COBOL Subprogram Internals for UNIX of the CodeBridge User's Guide.

Note The REDRAW-ON-CALL-SYSTEM keyword is supported only under UNIX.

ROWS
This keyword determines the number of rows the runtime system will display on the terminal
screen, represented as a decimal number between 1 and 255. The default value for this
keyword is 25.

Note The ROWS keyword is supported only under Windows.

SCREEN-CONTENT-OPTIMIZE
This keyword determines whether the runtime system optimizes DISPLAY output based on
current screen contents. If the value is set to YES, the runtime system avoids displaying an
unnecessary character if the screen image already contains that character in the desired
location, thereby increasing terminal I/O efficiency. If the value is set to NO, the runtime
system forces every character to be written to the screen even if this results in duplicating the
existing screen contents. Because turning off screen content optimization clears the screen
image, repainting the screen will result in a blank display. The default value for this keyword
is YES.

Note The SCREEN-CONTENT-OPTIMIZE keyword is supported only under UNIX.

SUPPRESS-NULLS
This keyword controls whether the RM/COBOL runtime system sends NULL or LOW-
VALUE characters to the screen. Setting the value of this keyword to YES causes NULL
characters to be stripped from all displayed fields. The NULL characters will, however,
remain in the internal data storage. The default value for this keyword is NO.

Note The SUPPRESS-NULLS keyword is supported only under UNIX.

Chapter 10: Configuration

356 RM/COBOL User's Guide

USE-COLOR
Setting the value of this keyword to YES forces a COBOL program to perform all DISPLAY
and ACCEPT statements using either the default color values or the color values specified in a
CONTROL phrase. If the termcap or terminfo database contains color support and the
set_foreground and set_background strings are present, these strings are used to process the
request. Otherwise, the RM/COBOL runtime system will generate the seven-bit SGR (Set
Graphics Rendition) sequences assigned by the International Standards Organization for
color. These sequences are defined as follows:

 Control Sequence
Introducer

Parameter
Selection

Terminator

Foreground ESC [3 [0-7] m
Background ESC [4 [0-7] m

The color values associated with the parameter values zero through seven are as follows:

Color

Parameter
Second Digit

BLACK 0
RED 1
GREEN 2
YELLOW 3
BLUE 4
MAGENTA 5
CYAN 6
WHITE 7

If the value of the USE-COLOR keyword is set to NO, color sequences will not be used until
the first ACCEPT or DISPLAY that requests to use color and only if there is support for color
in the termcap or terminfo database. The default value for this keyword is NO.

If none of the color keywords is specified, color processing will be disabled until a
CONTROL phrase is encountered that specifies the use of a valid color. When a CONTROL
phrase is encountered, it is honored provided there is color support in the termcap or terminfo
database. When the run unit ends, the terminal will be restored to the values specified in the
FCOLOR and BCOLOR keywords in the TERM-ATTR configuration record.

Note The USE-COLOR keyword is supported only under UNIX.

TERM-INPUT Configuration Record
The TERM-INPUT configuration record associates field editing semantics, exception status
values, or a single data character with incoming character sequences. For more information
on defining keys under your operating system, see Defined Keys (on page 202). The TERM-
INPUT record also defines how Toolbar icon strings are interpreted, which is described in
Setting Toolbar Properties (on page 89).

Note Specification of a TERM-INPUT record in the configuration overrides the entire
TERM-INPUT configuration specified by the Default Configuration Files (on page 368).
That is, the default configuration is replaced, not supplemented, by the specifications in the
configuration file. Thus, if a single TERM-INPUT record is supplied, a complete

Chapter 10: Configuration

 RM/COBOL User's Guide 357

specification is necessary. Also, the TERM-INTERFACE configuration record (see
page 365) must precede any TERM-INPUT configuration record. The recommended method
of meeting these requirements is to create your configuration file by editing the default
configuration file to customize it for your needs.

The TERM-INPUT record identifier is followed by one or more optional keywords and
finally, by the character sequence specification (see page 358). If the keyword is allowed to
have a value, it is followed by an equal sign (=) and the value. The keywords may appear in
any order, but must precede the character sequence specification.

The possible keywords for the TERM-INPUT record are as follows:

• ACTION

• CODE

• DATA

• EXCEPTION

• PRECEDENCE

ACTION
This keyword specifies the field editing action or screen action to be performed for the given
character sequence specification. The allowed values, which are described in detail in
Character Sequence Specification for Field Editing Keys (on page 360), are as follows:

BACKSPACE LEFT-ARROW

CONTROL-BREAK REPAINT-SCREEN

COPY-TO-CLIPBOARD RESET-ANSI-INSERTION

DELETE-CHARACTER RIGHT ARROW

ENTER-DEBUGGER SCREEN-ESCAPE

ERASE-ENTIRE SCREEN-HOME

ERASE-REMAINDER SCREEN-PREVIOUS-FIELD

ESCAPE-TO-COMMAND SCREEN-TERMINATE

ESCAPE-TO-OS SET-ANSI-INSERTION

FIELD-END SET-RM-INSERTION

FIELD-HOME TOGGLE-ANSI-INSERTION

INSERT-CHARACTER

The default value for this keyword is not to associate a field editing action with the given
character sequence specification.

CODE
This keyword specifies the ACCEPT exception status value associated with the given
character sequence specification. The exception status value must be a numeric value in the
range 0 to 255. The values 0, 98, and 99 are reserved to indicate auto completion, input data
conversion rule violation, and input timed out, respectively, as described in ACCEPT
Exception Status Values (on page 217). The definition of an exception status value identifies

Chapter 10: Configuration

358 RM/COBOL User's Guide

a field termination key. Key sequences without exception status values do not terminate field
input unless one of the screen actions is defined for that key sequence (as described in the
ACTION keyword). The default value for this keyword is not to associate an exception status
value with the given character sequence specification.

DATA
This keyword specifies the data character or character equivalent to be returned to the
program when the given character sequence is received. For more information, see Character
Sequence Specification (on page 358). If a DATA keyword is provided, none of the
ACTION, CODE, and EXCEPTION keywords may be specified. The default value for this
keyword is not to associate a data character with the given character sequence specification.

EXCEPTION
This keyword specifies whether the given key sequence causes an exception. The
EXCEPTION keyword is legal only if the CODE keyword, described above, is also provided.
If a value of YES is specified, an exception occurs for the given key sequence. If a value of
NO is specified, an exception does not occur for the given key sequence. When an exception
occurs, the statement in the ON EXCEPTION phrase is executed and the statement in the
NOT ON EXCEPTION phrase is ignored. When an exception does not occur, the statement
in the ON EXCEPTION phrase is ignored and the statement in the NOT ON EXCEPTION
phrase is executed. The default value for this keyword is NO unless the CODE keyword is
specified, in which case the default value is YES. The EXCEPTION keyword is ignored
during an ACCEPT screen-name statement.

PRECEDENCE
This keyword assigns a precedence to the TERM-INPUT record. The value specified is a
decimal number from 0 to 14, with 0 considered to have the highest precedence. The
PRECEDENCE keyword is used only when a terminal generates the same input character
sequence for two different keys. The Left Arrow and Backspace keys form a typical example.
The PRECEDENCE keyword can specify which interpretation of the input sequence is to be
used. The TERM-INPUT record with the highest precedence replaces that with a lower one.
If two TERM-INPUT records have the same precedence, a procedure error occurs when the
unit is first accessed. The default value for this keyword is 0.

Note The PRECEDENCE keyword is supported only under UNIX.

Character Sequence Specification
Terminal configuration allows the specification of incoming character sequences. The syntax
of the sequences is one or more characters or character equivalents, separated by spaces. Any
single character delimited by spaces is interpreted as the represented ASCII character. More
than one character delimited by spaces is interpreted as a character equivalent. If the
characters are digits, they are interpreted as the decimal value of the ASCII code. The
recognized character equivalents may be one of those listed in Table 36, which lists the ASCII
equivalents. For a list of additional character equivalents under RM/COBOL for Windows,
see Table 13 (on page 108) in Chapter 3: Installation and System Considerations for
Microsoft Windows.

Chapter 10: Configuration

 RM/COBOL User's Guide 359

Table 36: ASCII Equivalents

ASCII Code Character Equivalent ASCII Code Character Equivalent

000 NUL 017 DC1

001 SOH 018 DC2

002 STX 019 DC3

003 ETX 020 DC4

004 EOT 021 NAK

005 ENQ 022 SYN

006 ACK 023 ETB

007 BEL 024 CAN

008 BS 025 EM

009 HT 026 SUB

010 LF 027 ESC

011 VT 028 FS

012 FF 029 GS

013 CR 030 RS

014 SO 031 US

015 SI 032 SP

016 DLE 127 DEL

Translation of TERM-INPUT Sequences on Windows

Input sequences are specified and translated on Windows as described in the topic Keyboard
Input Character Sequences (on page 107).

Translation of TERM-INPUT Sequences on UNIX

Input sequences are specified and translated on UNIX as shown in Table 3: Input Sequences
for Terminfo and Termcap (on page 32).

Character Sequence Specification for Input Data Character Keys

Input characters are defined by TERM-INPUT configuration records that specify the DATA
keyword (see page 358) with a given input character sequence. Input characters can also be
described with the DATA-CHARACTERS keyword (see page 352) of the TERM-ATTR
configuration record. Data characters described with the DATA-CHARACTERS keyword
take precedence over TERM-INPUT data character specifications. Thus, if a data character is
to be redefined with a TERM-INPUT configuration record, the character should be omitted
from the range of data characters described with the TERM-ATTR configuration record
or records.

Chapter 10: Configuration

360 RM/COBOL User's Guide

Example for Input Data Character Keys

Let's assume you want the F5 key to return the letter B as a field data character. This could be
described in a TERM-INPUT configuration record in the following ways.

For terminfo:

TERM-INPUT DATA="B" kf5

For termcap:

TERM-INPUT DATA="B" k5

For Windows:

TERM-INPUT DATA="B" NUL WF5

Note These examples are incomplete because a field termination key must be defined as well
as a terminal interface. Failure to define at least one field termination key might result in an
inability to terminate field input. This problem is most easily avoided by editing one of the
default configuration files provided with your system in order to customize the configuration
to your special needs.

Character Sequence Specification for Field Editing Keys

RM/COBOL ACCEPT statements define fields on the terminal in which the operator may
enter data. Depending on the phrases specified in the ACCEPT statement and the setting of
the ACCEPT-FIELD-FROM-SCREEN keyword of the RUN-ATTR configuration record (see
page 330), the initial contents of the screen field may be empty (all spaces), filled with
characters from the screen, filled with prompt characters or filled with the current value of the
associated ACCEPT operand. The operator may then modify the displayed contents of the
screen field; all positions of that screen field may continue to be modified until a field
termination key is entered. This modification of the displayed data is called field editing.

Data entry is processed in either insertion mode or replacement mode. In insertion mode,
incoming text characters are inserted at the current cursor position, and following characters
are moved to the right in the field. In replacement mode, incoming text characters replace the
characters at the current cursor position. The RM/COBOL terminal model defines three types
of insertion mode:

1. Single-character insertion mode reverts to replacement mode after one text character
is inserted.

2. RM insertion mode reverts to replacement mode when data entry in the field is
terminated or when a field editing key is entered.

3. ANSI insertion mode remains active across ACCEPT operations until reset by the
operator to RM insertion mode or replacement mode.

The RM/COBOL terminal interface provides the following field editing facilities that may be
made available to the operator. These facilities can be specified with the ACTION keyword
(see page 357) of the TERM-INPUT configuration record.

1. BACKSPACE. The BACKSPACE value accomplishes a destructive backspace by
moving the cursor left one position in the field, deleting the character at that position,

Chapter 10: Configuration

 RM/COBOL User's Guide 361

moving all following characters left one position, and inserting a prompt character at the
right end of the screen field. If entered in the leftmost position of the screen field, the key
sequence is treated as a field termination key or as an illegal keystroke depending on
whether an exception status value has been assigned to the key sequence.

2. CONTROL-BREAK. The CONTROL-BREAK value causes the run unit to be
terminated immediately, as if a STOP RUN statement were executed.

3. COPY-TO-CLIPBOARD. The COPY-TO-CLIPBOARD value causes the currently
selected text to be copied to the clipboard.

Note This value is supported only under Windows.

4. DELETE-CHARACTER. The DELETE-CHARACTER value deletes the character at
the current cursor position, moves all following characters left one position, and inserts a
prompt character at the right end of the screen field.

5. ENTER-DEBUGGER. The ENTER-DEBUGGER value causes the RM/COBOL
Interactive Debugger (called Debug) to be entered at the next statement executed after
the ACCEPT terminal I-O statement. This semantic action is the same as specifying the
D Runtime Command Option (see page 194) to enter the RM/COBOL Interactive
Debugger at program start, except that the program will stop in the debugger at the first
statement that would be executed following the ACCEPT operation instead of at the first
non-declarative section or paragraph of the program. The runtime D Option is not
required to have been specified to use this semantic action.

6. ERASE-ENTIRE. The ERASE-ENTIRE value replaces all character positions in the
screen field with prompt characters, and moves the cursor to the leftmost position of
the field.

7. ERASE-REMAINDER. The ERASE-REMAINDER value replaces characters from the
current position to the rightmost position of the screen field with prompt characters.

8. ESCAPE-TO-COMMAND. The ESCAPE-TO-COMMAND value causes the runtime
system to run a user-specified command whenever the configured key is pressed. The
screen is cleared and the terminal is returned to a shell state before the shell command is
run. After the shell or command terminates, the COBOL screen is restored. The SHELL
environment variable determines the shell that is used. If none is set, /bin/sh is used.
The RM_ESCAPE_TO_COMMAND environment variable determines the command
that is used. If none is set, /bin/sh is used.

Note This value is supported only under UNIX.

9. ESCAPE-TO-OS. The ESCAPE-TO-OS value causes the runtime system to bring up a
command shell whenever the configured key is pressed. This allows the user to press a
configured key to bring up a shell, execute OS commands, and then return to the COBOL
program without having to change the COBOL source code.

Note This value is supported only under UNIX.

10. FIELD-END. The FIELD-END value moves the cursor to the leftmost trailing blank or
prompt character position of the screen field. If there are no trailing blanks or prompt
characters, then the cursor moves to the rightmost position of the screen field. In other
words, it moves the cursor one position past the end of the text in the field but not beyond
the rightmost position of the field. Thus, if the field contains all blanks or all prompt
characters, then the cursor moves to the leftmost position of the field.

11. FIELD-HOME. The FIELD-HOME value moves the cursor to the leftmost position of
the screen field.

12. INSERT-CHARACTER. The INSERT-CHARACTER value inserts a single space
character at the current character position. When entered in replacement mode, this
causes the subsequent text character to appear to be inserted.

Chapter 10: Configuration

362 RM/COBOL User's Guide

13. LEFT-ARROW. The LEFT-ARROW value moves the cursor left one position in the
screen field. If entered in the leftmost position of the screen field, this value is treated as
a field termination key or as an illegal keystroke, depending on whether an exception
status value has been assigned to the key sequence.

14. REPAINT-SCREEN. The REPAINT-SCREEN value causes the runtime system to
reinitialize the terminal and redraw the screen from an in-memory image. This allows the
user to restore a terminal’s display after events such as a loss of power to the terminal.

Note This value is supported only under UNIX.

15. RESET-ANSI-INSERTION. The RESET-ANSI-INSERTION value changes the
handling of subsequent text characters to replacement mode.

16. RIGHT-ARROW. The RIGHT-ARROW value moves the cursor right one position in
the screen field. The key sequence is illegal if the character at the current character
position is a prompt character. If entered in the rightmost screen field position, the key
sequence is treated as a field termination key or as an illegal keystroke, depending on
whether an exception status value has been assigned to the key sequence.

17. SCREEN-ESCAPE. The SCREEN-ESCAPE value terminates an ACCEPT
screen-name statement. The current field is neither checked for errors nor moved to the
intermediate area for screen data items. If the current ACCEPT is not an ACCEPT
screen-name statement, no action is taken (unless the keyword CODE is defined for the
same key sequence).

18. SCREEN-HOME. The SCREEN-HOME value moves the cursor to the first input field
defined in the Screen Section for the current screen. The current field is checked for
errors. No semantic action is taken for ACCEPT identifier statements.

19. SCREEN-PREVIOUS-FIELD. The SCREEN-PREVIOUS-FIELD value moves the
cursor to the beginning of the previous field (as defined in the Screen Section) after the
current field is validated. No semantic action is taken for ACCEPT identifier statements.

20. SCREEN-TERMINATE. The SCREEN-TERMINATE value terminates an ACCEPT
screen-name statement, but, unlike the SCREEN-ESCAPE value, the current field is
validated and moved to the intermediate area. No semantic action is taken for ACCEPT
identifier statements.

21. SET-ANSI-INSERTION. The SET-ANSI-INSERTION value changes the handling of
subsequent text characters. Upon entry to the run unit, terminal handling is in
replacement mode. The SET-ANSI-INSERTION value causes later incoming text
characters to be handled in insertion mode. Insertion mode continues until a TOGGLE-
ANSI-INSERTION, RESET-ANSI-INSERTION or SET-RM-INSERTION value is
entered.

22. SET-RM-INSERTION. The SET-RM-INSERTION value changes the handling of
subsequent text characters. Upon entry to the run unit, terminal handling is in
replacement mode. The SET-RM-INSERTION value causes later incoming text
characters to be handled in insertion mode.

RM insertion mode is reset when any field editing key sequence is entered or when the
field input is terminated.

23. TOGGLE-ANSI-INSERTION. The TOGGLE-ANSI-INSERTION value changes the
handling of following text characters. If terminal handling is currently in replacement
mode, it is changed to ANSI insertion mode. If terminal handling is currently in RM or
ANSI insertion mode, it is changed to replacement mode.

If a key sequence assigned to an exception status value has also been assigned to any of the
field editing facilities (excluding BACKSPACE, LEFT-ARROW, and RIGHT-ARROW), the
editing action is performed and field editing will terminate.

Chapter 10: Configuration

 RM/COBOL User's Guide 363

Example for Field Editing Keys

Let’s assume you want the F5 key to position to the end of the ACCEPT field. This could be
described in a TERM-INPUT configuration record in the following ways.

For terminfo:

TERM-INPUT ACTION=FIELD-END kf5

For termcap:

TERM-INPUT ACTION=FIELD-END k5

For Windows:

TERM-INPUT ACTION=FIELD-END NUL WF5

Note These examples are incomplete because a field termination key must be defined as well
as a terminal interface. Failure to define at least one field termination key might result in an
inability to terminate field input. This problem is most easily avoided by editing one of the
default configuration files provided with your system in order to customize the configuration
to your special needs.

Character Sequence Specification for Field Termination Keys

Definition of field termination keys allows for terminating the input operation and returning
the data characters to the COBOL program. An exception status value, specified with the
CODE keyword, is required for a field termination key in order to provide additional
information to the COBOL program about how the field input was terminated. In some cases,
an editing action such as ERASE-REMAINDER, may also be specified with a field
termination key. Field termination keys specify, in addition to the required exception status
value, whether the statement in the ON EXCEPTION phrase of the ACCEPT statement
should be executed and the NOT ON EXCEPTION phrase ignored or visa versa; that is, a
definition of a field termination key can indicate whether it is a normal termination such as an
Enter (Return) key or an exceptional termination such as a function key.

Micro Focus recommends that all terminal configurations include field termination key
definitions to generate the RM/COBOL generic exception status values, which are shown in
Table 37.

Table 37: RM/COBOL Generic Exception Status Values

Generic Key Name Exception Status Generic Key Name Exception Status

Enter (Return) 13 Function 20 20

Function 1 01 Command 40

Function 2 02 Attention 41

Function 3 03 Print 49

Function 4 04 Up Arrow 52

Function 5 05 Down Arrow 53

Function 6 06 Home 54

Chapter 10: Configuration

364 RM/COBOL User's Guide

Table 37: RM/COBOL Generic Exception Status Values

Generic Key Name Exception Status Generic Key Name Exception Status

Function 7 07 New Line 55

Function 8 08 Tab Left 56

Function 9 09 Erase Right 57

Function 10 10 Tab Right 58

Function 11 11 Insert Line 59

Function 12 12 Delete Line 61

Function 13 13 Send 64

Function 14 14 Page Up 67

Function 15 15 Page Down 68

Function 16 16 End 82

Function 17 17 Help 83

Function 18 18 Redo 84

Function 19 19

Example for Field Termination Keys

Let's assume you have a keyboard with a Next page key (character sequence specification
knp in the terminfo database for UNIX, kN in the termcap database for UNIX, and NUL
WPGU for Windows) and you want that key to cause the statement in the ON EXCEPTION
branch of your ACCEPT statement to be taken with the exception status value 80 stored in the
ON EXCEPTION phrase variable (identifier-9). This could be described in a TERM-INPUT
configuration record in the following ways.

For terminfo:

TERM-INPUT CODE=80 EXCEPTION=YES knp

For termcap:

TERM-INPUT CODE=80 EXCEPTION=YES kN

For Windows:

TERM-INPUT CODE=80 EXCEPTION=YES NUL WPGU

The EXCEPTION=YES shown in these examples is documentary because YES is the default
value when the CODE keyword is also specified. If you do not want the statement in the ON
EXCEPTION phrase to be executed for the given character sequence, you must specify
EXCEPTION=NO. In either case, specification of the CODE keyword indicates a field
termination key.

Note These examples are incomplete because additional field termination keys and a field
editing key are normally necessary as well as a terminal interface. This is most easily
accomplished by editing one of the default configuration files provided with your system in
order to customize the configuration to your special needs.

Chapter 10: Configuration

 RM/COBOL User's Guide 365

TERM-INTERFACE Configuration Record
The terminal configuration records have different formats, depending on the type of terminal
interface the runtime system uses: termcap, terminfo, or graphical user interface (GUI). The
TERM-INTERFACE configuration record describes the format of records in this
configuration file. The runtime system will use this information to correctly process the
records and to ensure that it is the correct version of the runtime system (termcap, terminfo, or
GUI) to be using the information.

Note The TERM-INTERFACE record must precede all other terminal interface configuration
records except TERM-UNIT.

The TERM-INTERFACE record identifier is followed by one keyword that describes the
format. The possible keywords are as follows:

• GUI

• TERMCAP

• TERMINFO

• WINDOWS

GUI
The value of this keyword must be specified for use with RM/COBOL for Windows. It
indicates that the terminal interface is a graphical user interface (GUI).

TERMCAP
This keyword specifies that the runtime system is expected to process the termcap database
and handle all input and output to the terminal directly. TERM-INPUT configuration records
use the termcap input sequence.

TERMINFO
This keyword specifies that the runtime system is expected to use the terminfo database and
handle all input and output to the terminal directly. TERM-INPUT configuration records use
the terminfo input sequence.

WINDOWS
This value is identical to the value of GUI.

Note The default terminal interface is GUI (or WINDOWS, which is equivalent) for
Windows and is selected at installation for UNIX.

Chapter 10: Configuration

366 RM/COBOL User's Guide

TERM-UNIT Configuration Record
The TERM-UNIT configuration record is used to associate RM/COBOL units to stations
(devices). The TERM-UNIT record identifier is followed by one or more keywords. If the
keyword is allowed to have a value, it is followed by an equal sign (=) and the value.

Note The TERM-UNIT configuration record is supported only under UNIX.

The TERM-UNIT record must contain the PATH keyword if the UNIT keyword does not
specify the default unit. The possible keywords are as follows:

• BPS

• CHARACTER-WIDTH

• DEFINE-CONTROL-CHARACTERS

• MOVE-ATTR

• PARITY

• PATH

• STOP-BITS

• TYPE

• UNIT

BPS
This keyword specifies the Bits Per Second to which the communication port should be
initialized when the unit is first accessed by the RM/COBOL program. The default for this
keyword is the value to which the operating system has set the port. The valid values for this
keyword are 50, 75, 110, 134.5, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, EXT-A
and EXT-B (for external A and external B).

CHARACTER-WIDTH
This keyword specifies the character size, in bits, to which the communication port should be
initialized when the unit is first accessed by the RM/COBOL program. The default value for
this keyword is the value to which the operating system has set the port. The valid values for
this keyword are 5, 6, 7 and 8.

DEFINE-CONTROL-CHARACTERS
This keyword specifies whether the terminal control characters, Ctrl+A through Ctrl+Z, are to
be predefined in the unit’s input sequences to terminate input and generate exception status
values of 1 through 26. On the termcap and terminfo runtime systems, Ctrl+H, Ctrl+I, Ctrl+J,
and Ctrl+M are always predefined to be Backspace, Tab, New Line, and Carriage Return,
respectively.

If the DEFINE-CONTROL-CHARACTERS keyword has the value YES, the characters are
defined. If the DEFINE-CONTROL-CHARACTERS keyword has the value NO, they are
not defined. The default value for this keyword is YES.

Chapter 10: Configuration

 RM/COBOL User's Guide 367

MOVE-ATTR
This keyword specifies the handling of terminals with positional attributes. On such
terminals, attributes are implemented by placing special characters on the terminal screen.
These attribute characters take up screen positions and overwrite any data there.

If the MOVE-ATTR keyword has the value NO, it specifies that the attribute characters are
placed at the line and position requested by the RM/COBOL program and the actual start of
the field is moved to the right, accordingly.

If the MOVE-ATTR keyword has the value YES, it specifies that the field should be placed in
the line and position requested and the attributes moved to the left. The only time this will not
be done is when the termcap capability database indicates that the attributes set by the
attribute characters will not cross a line boundary or if the field starts in line 1, position 1 and
the database does not indicate that the attribute will wrap from the bottom to the top of the
screen.

The default value for this keyword is NO.

PARITY
This keyword specifies the parity to which the communication port should be initialized when
the unit is first accessed by the RM/COBOL program. The default value for this keyword is
the value to which the operating system has set the port. The valid values of this keyword are:
EVEN, ODD and NONE.

PATH
This keyword specifies the device pathname that will be used for this unit. This must be a tty
port that currently has no other processes attached to it and has read and write privileges for
the user who starts the run unit. This is a required field if the unit being described is not the
default unit. If the unit being described is the default unit, this keyword must not be present.

STOP-BITS
This keyword specifies the number of stop bits that the communication port should send
following transmitted characters. The default value for this keyword is the value to which the
operating system has set the port. The valid values of this keyword are 1 and 2.

TYPE
This keyword specifies the terminal type connected to the port. This is the name used when
searching the termcap or terminfo database. The default value for this keyword is the value of
the TERM environment variable.

UNIT
This keyword specifies the RM/COBOL unit number being described and is either a decimal
number between 0 and 255 or the value DEFAULT-UNIT. If the value is DEFAULT-UNIT,

Chapter 10: Configuration

368 RM/COBOL User's Guide

this TERM-UNIT record describes the unit that is used when no UNIT clause appears on the
ACCEPT or DISPLAY statement. If it is a number, this TERM-UNIT record describes a
particular UNIT number that will be used in an RM/COBOL ACCEPT or DISPLAY
statement. The default value for this keyword is DEFAULT-UNIT.

Default Configuration Files
The following topics illustrate samples of default configuration files for terminfo, termcap,
and Windows systems:

• Termcap Example (see page 368)

• Terminfo Example (see page 370)

• Windows Example (see page 372)

Termcap Example
The following records define the default configuration as provided by Micro Focus
RM/COBOL on systems that use termcap.

RUN-ATTR accept-intensity=high beep=yes blink=yes
&display-intensity=high reverse=yes
RUN-ATTR error-message-destination=standard-error
RUN-OPTION b=264 k=display m=1
RUN-INDEX-FILES allocation-increment=8
RUN-INDEX-FILES data-compression=yes force-closed=no force-data=no
&force-disk=no
RUN-INDEX-FILES force-index=no key-compression=yes
RUN-SEQ-FILES default-type=binary
RUN-SEQ-FILES device-slewing-reserve=255
RUN-SEQ-FILES tab-stops=8,12,16,20,24,28,32,36,40,44,48,52,
&56,60,64,68,72
RUN-SORT intermediate-files=5 memory-size=16000
TERM-UNIT move-attr=no define-control-characters=yes
TERM-INTERFACE TERMCAP
TERM-INPUT action=left-arrow kl
TERM-INPUT action=right-arrow kr
TERM-INPUT action=backspace precedence=1 kb
TERM-INPUT action=set-rm-insertion kI
TERM-INPUT action=delete-character kD
TERM-INPUT action=erase-entire kC
TERM-INPUT action=screen-terminate code=01 k1
TERM-INPUT action=screen-terminate code=02 k2
TERM-INPUT action=screen-terminate code=03 k3
TERM-INPUT action=screen-terminate code=04 k4
TERM-INPUT action=screen-terminate code=05 k5
TERM-INPUT action=screen-terminate code=06 k6
TERM-INPUT action=screen-terminate code=07 k7
TERM-INPUT action=screen-terminate code=08 k8
TERM-INPUT action=screen-terminate code=09 k9
TERM-INPUT action=screen-terminate code=10 k;
TERM-INPUT code=11 F1
TERM-INPUT code=12 F2

Chapter 10: Configuration

 RM/COBOL User's Guide 369

TERM-INPUT code=13 F3
TERM-INPUT code=14 F4
TERM-INPUT code=15 F5
TERM-INPUT code=16 F6
TERM-INPUT code=17 F7
TERM-INPUT code=18 F8
TERM-INPUT code=19 F9
TERM-INPUT code=20 FA
TERM-INPUT code=21 FB
TERM-INPUT code=22 FC
TERM-INPUT code=23 FD
TERM-INPUT code=24 FE
TERM-INPUT code=25 FF
TERM-INPUT code=26 FG
TERM-INPUT code=27 FH
TERM-INPUT code=28 FI
TERM-INPUT code=29 FJ
TERM-INPUT code=30 FK
TERM-INPUT code=31 FL
TERM-INPUT code=32 FM
TERM-INPUT code=33 FN
TERM-INPUT code=34 FO
TERM-INPUT code=35 FP
TERM-INPUT code=36 FQ
TERM-INPUT code=37 FR
TERM-INPUT code=38 FS
TERM-INPUT code=39 FT
TERM-INPUT code=40 FU
TERM-INPUT code=41 FV
TERM-INPUT code=42 FW
TERM-INPUT code=43 FX
TERM-INPUT code=44 FY
TERM-INPUT code=45 FZ
TERM-INPUT code=46 Fa
TERM-INPUT code=47 Fb
TERM-INPUT code=48 Fc
TERM-INPUT code=49 Fd
TERM-INPUT code=50 Fe
TERM-INPUT code=51 Ff
TERM-INPUT code=52 Fg
TERM-INPUT code=53 Fh
TERM-INPUT code=54 Fi
TERM-INPUT code=55 Fj
TERM-INPUT code=56 Fk
TERM-INPUT code=57 Fl
TERM-INPUT code=58 Fm
TERM-INPUT code=59 Fn
TERM-INPUT code=60 Fo
TERM-INPUT code=61 Fp
TERM-INPUT code=62 Fq
TERM-INPUT code=63 Fr
TERM-INPUT code=13 exception=no cr
TERM-INPUT code=40 k0
TERM-INPUT code=41 K3
TERM-INPUT code=49 l0
TERM-INPUT action=screen-previous-field code=52 ku
TERM-INPUT code=53 kd
TERM-INPUT action=screen-home code=54 kh

Chapter 10: Configuration

370 RM/COBOL User's Guide

TERM-INPUT code=55 nw
TERM-INPUT code=56 K4
TERM-INPUT action=erase-remainder code=57 kE
TERM-INPUT code=58 K5
TERM-INPUT code=59 kA
TERM-INPUT code=61 kL
TERM-INPUT code=64 K2
TERM-INPUT code=67 kP
TERM-INPUT code=68 kN
TERM-INPUT code=82 K1
TERM-INPUT code=83 precedence=1 %1
TERM-INPUT code=84 %0
PRINT-ATTR auto-line-feed=no
PRINT-ATTR form-feed-available=yes top-of-form-at-close=no
DEFINE-DEVICE device=PRINTER path="lp -s" pipe=yes
DEFINE-DEVICE device=PRINTER1 path="lp -s" pipe=yes
DEFINE-DEVICE device=TAPE path=/dev/rtp tape=yes

Note The actual path values for the DEFINE-DEVICE records are system-dependent and
may differ from the values shown in the example.

Terminfo Example
The following records define the default configuration as provided by Micro Focus
RM/COBOL on systems that use terminfo.

RUN-ATTR accept-intensity=high beep=yes blink=yes
&display-intensity=high reverse=yes
RUN-ATTR error-message-destination=standard-error
RUN-OPTION b=264 k=display m=1
RUN-INDEX-FILES allocation-increment=8
RUN-INDEX-FILES data-compression=yes force-closed=no force-data=no
&force-disk=no
RUN-INDEX-FILES force-index=no key-compression=yes
RUN-SEQ-FILES default-type=binary
RUN-SEQ-FILES device-slewing-reserve=255
RUN-SEQ-FILES tab-stops=8,12,16,20,24,28,32,36,40,44,48,52,
&56,60,64,68,72
RUN-SORT intermediate-files=5 memory-size=16000
TERM-UNIT move-attr=no define-control-characters=yes
TERM-INTERFACE TERMINFO
TERM-INPUT action=left-arrow kcub1
TERM-INPUT action=right-arrow kcuf1
TERM-INPUT action=backspace precedence=1 kbs
TERM-INPUT action=set-rm-insertion kich1
TERM-INPUT action=delete-character kdch1
TERM-INPUT action=erase-entire kclr
TERM-INPUT action=screen-terminate code=01 kf1
TERM-INPUT action=screen-terminate code=02 kf2
TERM-INPUT action=screen-terminate code=03 kf3
TERM-INPUT action=screen-terminate code=04 kf4
TERM-INPUT action=screen-terminate code=05 kf5
TERM-INPUT action=screen-terminate code=06 kf6
TERM-INPUT action=screen-terminate code=07 kf7
TERM-INPUT action=screen-terminate code=08 kf8
TERM-INPUT action=screen-terminate code=09 kf9

Chapter 10: Configuration

 RM/COBOL User's Guide 371

TERM-INPUT action=screen-terminate code=10 kf10
TERM-INPUT code=11 kf11
TERM-INPUT code=12 kf12
TERM-INPUT code=13 kf13
TERM-INPUT code=14 kf14
TERM-INPUT code=15 kf15
TERM-INPUT code=16 kf16
TERM-INPUT code=17 kf17
TERM-INPUT code=18 kf18
TERM-INPUT code=19 kf19
TERM-INPUT code=20 kf20
TERM-INPUT code=21 kf21
TERM-INPUT code=22 kf22
TERM-INPUT code=23 kf23
TERM-INPUT code=24 kf24
TERM-INPUT code=25 kf25
TERM-INPUT code=26 kf26
TERM-INPUT code=27 kf27
TERM-INPUT code=28 kf28
TERM-INPUT code=29 kf29
TERM-INPUT code=30 kf30
TERM-INPUT code=31 kf31
TERM-INPUT code=32 kf32
TERM-INPUT code=33 kf33
TERM-INPUT code=34 kf34
TERM-INPUT code=35 kf35
TERM-INPUT code=36 kf36
TERM-INPUT code=37 kf37
TERM-INPUT code=38 kf38
TERM-INPUT code=39 kf39
TERM-INPUT code=40 kf40
TERM-INPUT code=41 kf41
TERM-INPUT code=42 kf42
TERM-INPUT code=43 kf43
TERM-INPUT code=44 kf44
TERM-INPUT code=45 kf45
TERM-INPUT code=46 kf46
TERM-INPUT code=47 kf47
TERM-INPUT code=48 kf48
TERM-INPUT code=49 kf49
TERM-INPUT code=50 kf50
TERM-INPUT code=51 kf51
TERM-INPUT code=52 kf52
TERM-INPUT code=53 kf53
TERM-INPUT code=54 kf54
TERM-INPUT code=55 kf55
TERM-INPUT code=56 kf56
TERM-INPUT code=57 kf57
TERM-INPUT code=58 kf58
TERM-INPUT code=59 kf59
TERM-INPUT code=60 kf60
TERM-INPUT code=61 kf61
TERM-INPUT code=62 kf62
TERM-INPUT code=63 kf63
TERM-INPUT code=13 exception=no cr
TERM-INPUT code=40 kf0
TERM-INPUT code=41 ka3
TERM-INPUT code=49 lf0

Chapter 10: Configuration

372 RM/COBOL User's Guide

TERM-INPUT action=screen-previous-field code=52 kcuu1
TERM-INPUT code=53 kcud1
TERM-INPUT action=screen-home code=54 khome
TERM-INPUT code=55 nel
TERM-INPUT code=56 kc1
TERM-INPUT action=erase-remainder code=57 kel
TERM-INPUT code=58 kc3
TERM-INPUT code=59 kil1
TERM-INPUT code=61 kdl1
TERM-INPUT code=64 kb2
TERM-INPUT code=67 kpp
TERM-INPUT code=68 knp
TERM-INPUT code=82 ka1
TERM-INPUT code=83 precedence=1 khlp
TERM-INPUT code=84 krdo
PRINT-ATTR auto-line-feed=no
PRINT-ATTR form-feed-available=yes top-of-form-at-close=no
DEFINE-DEVICE device=PRINTER path="lp -s" pipe=yes
DEFINE-DEVICE device=PRINTER1 path="lp -s" pipe=yes
DEFINE-DEVICE device=TAPE path=/dev/rtp tape=yes

Note The actual path values for the DEFINE-DEVICE records are system-dependent and
may differ from the values shown in the example.

Windows Example
The following records define the default configuration provided by Micro Focus RM/COBOL
for the Windows operating system.

RUN-ATTR accept-intensity=high beep=yes blink=yes
&display-intensity=high reverse=yes
RUN-ATTR error-message-destination=standard-error
RUN-OPTION b=264 k=display m=1
RUN-INDEX-FILES allocation-increment=8
RUN-INDEX-FILES data-compression=yes force-closed=no force-data=no
&force-disk=no
RUN-INDEX-FILES force-index=no key-compression=yes
RUN-SEQ-FILES default-type=binary
RUN-SEQ-FILES device-slewing-reserve=255
RUN-SEQ-FILES tab-stops=8,12,16,20,24,28,32,36,40,44,48,52,
&56,60,64,68,72
RUN-SORT intermediate-files=5 memory-size=16000
PRINT-ATTR auto-line-feed=no
PRINT-ATTR form-feed-available=yes top-of-form-at-close=no
TERM-INTERFACE GUI
TERM-ATTR Data-Characters=32,126
TERM-INPUT Code=1 SOH
TERM-INPUT Code=2 STX
TERM-INPUT Action=Control-Break ETX
TERM-INPUT Code=4 EOT
TERM-INPUT Code=5 ENQ
TERM-INPUT Code=6 ACK
TERM-INPUT Code=7 BEL
TERM-INPUT Action=Backspace BS
TERM-INPUT Code=9 HT
TERM-INPUT Code=10 LF

Chapter 10: Configuration

 RM/COBOL User's Guide 373

TERM-INPUT Code=11 VT
TERM-INPUT Code=12 FF
TERM-INPUT Code=13 Exception=No CR
TERM-INPUT Code=14 SO
TERM-INPUT Code=15 SI
TERM-INPUT Code=16 DLE
TERM-INPUT Code=17 DC1
TERM-INPUT Code=18 DC2
TERM-INPUT Code=19 DC3
TERM-INPUT Code=20 DC4
TERM-INPUT Code=21 NAK
TERM-INPUT Code=22 SYN
TERM-INPUT Code=23 ETB
TERM-INPUT Code=24 CAN
TERM-INPUT Code=25 EM
TERM-INPUT Code=26 SUB
TERM-INPUT Action=Screen-Escape Code=27 ESC
TERM-INPUT Code=28 FS
TERM-INPUT Code=29 GS
TERM-INPUT Code=30 RS
TERM-INPUT Code=31 US
TERM-INPUT Code=27 WCNT [
TERM-INPUT Action=Control-Break NUL NUL
TERM-INPUT Action=Backspace NUL BS
TERM-INPUT Code=58 NUL HT
TERM-INPUT Code=56 NUL WSFT HT
TERM-INPUT Code=13 Exception=No NUL CR
TERM-INPUT Action=Erase-Remainder Code=57 WSFT WCNT E
TERM-INPUT Code=58 WSFT WCNT R
TERM-INPUT Code=59 WSFT WCNT I
TERM-INPUT Code=49 WSFT WCNT P
TERM-INPUT Code=41 WSFT WCNT A
TERM-INPUT Code=64 WSFT WCNT S
TERM-INPUT Code=61 WSFT WCNT D
TERM-INPUT Action=Erase-Remainder Code=13 Exception=No WSFT WCNT K
TERM-INPUT Code=40 WSFT WCNT C
TERM-INPUT Code=55 WSFT WCNT N
TERM-INPUT Action=Screen-Home Code=54 NUL WHOM
TERM-INPUT Action=Screen-Previous-Field Code=52 NUL WUP
TERM-INPUT Code=67 NUL WPGU
TERM-INPUT Action=Left-Arrow NUL WLFT
TERM-INPUT Action=Right-Arrow NUL WRGT
TERM-INPUT Code=82 NUL WEND
TERM-INPUT Code=53 NUL WDWN
TERM-INPUT Code=68 NUL WPGD
TERM-INPUT Action=Set-RM-Insertion NUL WINS
TERM-INPUT Action=Delete-Character NUL WDEL
TERM-INPUT Action=Screen-Terminate Code=1 NUL WF1
TERM-INPUT Action=Screen-Terminate Code=2 NUL WF2
TERM-INPUT Action=Screen-Terminate Code=3 NUL WF3
TERM-INPUT Action=Screen-Terminate Code=4 NUL WF4
TERM-INPUT Action=Screen-Terminate Code=5 NUL WF5
TERM-INPUT Action=Screen-Terminate Code=6 NUL WF6
TERM-INPUT Action=Screen-Terminate Code=7 NUL WF7
TERM-INPUT Action=Screen-Terminate Code=8 NUL WF8
TERM-INPUT Action=Screen-Terminate Code=9 NUL WF9
TERM-INPUT Action=Screen-Terminate Code=10 NUL WF10
TERM-INPUT Code=11 NUL WSFT WF1

Chapter 10: Configuration

374 RM/COBOL User's Guide

TERM-INPUT Code=12 NUL WSFT WF2
TERM-INPUT Code=13 NUL WSFT WF3
TERM-INPUT Code=14 NUL WSFT WF4
TERM-INPUT Code=15 NUL WSFT WF5
TERM-INPUT Code=16 NUL WSFT WF6
TERM-INPUT Code=17 NUL WSFT WF7
TERM-INPUT Code=18 NUL WSFT WF8
TERM-INPUT Code=19 NUL WSFT WF9
TERM-INPUT Code=20 NUL WSFT WF10
TERM-INPUT Code=21 NUL WCNT WF1
TERM-INPUT Code=22 NUL WCNT WF2
TERM-INPUT Code=23 NUL WCNT WF3
TERM-INPUT Code=24 NUL WCNT WF4
TERM-INPUT Code=25 NUL WCNT WF5
TERM-INPUT Code=26 NUL WCNT WF6
TERM-INPUT Code=27 NUL WCNT WF7
TERM-INPUT Code=28 NUL WCNT WF8
TERM-INPUT Code=29 NUL WCNT WF9
TERM-INPUT Code=30 NUL WCNT WF10
TERM-INPUT Code=31 NUL WSFT WCNT WF1
TERM-INPUT Code=32 NUL WSFT WCNT WF2
TERM-INPUT Code=33 NUL WSFT WCNT WF3
TERM-INPUT Code=34 NUL WSFT WCNT WF4
TERM-INPUT Code=35 NUL WSFT WCNT WF5
TERM-INPUT Code=36 NUL WSFT WCNT WF6
TERM-INPUT Code=37 NUL WSFT WCNT WF7
TERM-INPUT Code=38 NUL WSFT WCNT WF8
TERM-INPUT Code=39 NUL WSFT WCNT WF9
TERM-INPUT Code=40 NUL WSFT WCNT WF10
TERM-INPUT Code=65 NUL WCNT WLFT
TERM-INPUT Code=66 NUL WCNT WRGT
TERM-INPUT Code=83 NUL WCNT WEND
TERM-INPUT Code=70 NUL WCNT WPGD
TERM-INPUT Code=81 NUL WCNT WHOM
TERM-INPUT Code=71 WSFT WCNT 49
TERM-INPUT Code=72 WSFT WCNT 50
TERM-INPUT Code=73 WSFT WCNT 51
TERM-INPUT Code=74 WSFT WCNT 52
TERM-INPUT Code=75 WSFT WCNT 53
TERM-INPUT Code=76 WSFT WCNT 54
TERM-INPUT Code=77 WSFT WCNT 55
TERM-INPUT Code=78 WSFT WCNT 56
TERM-INPUT Code=79 WSFT WCNT 57
TERM-INPUT Code=80 WSFT WCNT 48
TERM-INPUT Code=85 WSFT WCNT -
TERM-INPUT Code=87 WSFT WCNT =
TERM-INPUT Code=69 NUL WCNT WPGU
TERM-INPUT Code=11 NUL WF11
TERM-INPUT Code=12 NUL WF12
DEFINE-DEVICE DEVICE=PRINTER PATH=DEFAULT
DEFINE-DEVICE DEVICE=PRINTER1 PATH=",LPT1"
DEFINE-DEVICE DEVICE=PRINTER2 PATH=",LPT2"
DEFINE-DEVICE DEVICE=PRINTER3 PATH=",LPT3"
DEFINE-DEVICE DEVICE=PRINTER4 PATH=",LPT4"
DEFINE-DEVICE DEVICE=PRINTER5 PATH=",LPT5"
DEFINE-DEVICE DEVICE=PRINTER6 PATH=",LPT6"
DEFINE-DEVICE DEVICE=PRINTER7 PATH=",LPT7"
DEFINE-DEVICE DEVICE=PRINTER8 PATH=",LPT8"

Chapter 10: Configuration

 RM/COBOL User's Guide 375

DEFINE-DEVICE DEVICE=PRINTER9 PATH=",LPT9"
DEFINE-DEVICE DEVICE=PRINTER? PATH=DYNAMIC

Chapter 11: Instrumentation

 RM/COBOL User's Guide 377

Chapter 11: Instrumentation

RM/COBOL provides a method for examining the performance of RM/COBOL programs at
the statement level. This facility—called Instrumentation—involves a two-step process.
First, program data must be gathered. Instrumentation provides the tools for data gathering.
Next, the gathered data must be analyzed in a manner consistent with your specific
requirements. The delivered RM/COBOL Instrumentation contains one example of a data
analysis program, called analysis. This program also can be used as a starting point for
creating your own data analysis program.

The data gathered by Instrumentation and reported by analysis can be used during program
development to optimize program flow, identify bugs caused by run-away loop control, and
improve program integrity by pinpointing unexecuted program code.

Invoking Instrumentation
Instrumentation is invoked when you enter the I Runtime Command Option (see page 194).
If you intend to use analysis as well, all programs in the run unit should be compiled with the
L Compile Command Option (see page 156).

Keep in mind that the runtime system needs additional memory when the I Runtime
Command Option is used. Furthermore, each program in the run unit requires additional
memory as it is loaded by the Runtime Command or by a CALL statement (see the “CALL
Statement” section in Chapter 6: Procedure Division Statements of the RM/COBOL
Language Reference Manual). The exact amount of required memory depends on the number
of lines in the PROCEDURE DIVISION, as described in the next section.

Data Collection
For each program in a run unit, a file is generated that contains the following information:

• PROGRAM-ID value

• Line number of the PROCEDURE DIVISION header

• Total number of source lines in the program

• Total number of statements executed in the program

• Number of times each statement was executed

Chapter 11: Instrumentation

378 RM/COBOL User's Guide

• Number of times each paragraph and section were executed

This information is gathered in a data structure that could be described by the RM/COBOL
record description, shown in Figure 39.

Figure 39: Sample Data Structures Description

01 PROGRAM-IDENTIFICATION.

 02 PROGRAM-ID-VALUE PIC X(30).

 02 PROCEDURE-DIVISION-LINE PIC 9(8) BINARY.

 02 SOURCE-LINE-COUNT PIC 9(8) BINARY.

 02 TOTAL-STATEMENTS-EXECUTED PIC 9(8) BINARY.

 02 TOTAL-STATEMENTS-PITCHED PIC 9(8) BINARY.

 02 PIC X(14).

 02 OCCURS 1 TO 65000

 DEPENDING ON number of procedure lines.

 03 OCCURS 2.

 02 PIC X(14).

 02 OCCURS 1 TO 65000

 DEPENDING ON number of procedure lines.

 03 OCCURS 2.

 04 STATEMENT-TYPE PIC X(1).

 88 NO-STATEMENT-OR-NOT-EXECUTED

 VALUE LOW-VALUE.

 88 SECTION-COUNT VALUE 'X'.

 88 PARAGRAPH-COUNT VALUE 'P'.

 88 STATEMENT-COUNT VALUE 'S'.

 04 COUNT-VALUE PIC 9(9) BINARY.

The size of the required structure may be calculated as follows:

n = source-line-count - procedure-division-line + 1
size (in bytes) = 60 + (n * 10)

The data structure for a program is allocated when the first statement in that program is
executed. The data structure remains allocated even when the associated program is canceled.

As with the RM/COBOL Interactive Debugger, Instrumentation treats section names,
paragraph names and procedural statements as statements for the purpose of data gathering.
For the definitions of statements and line and intraline numbers, see Statements (on page 258)
and Line and Intraline Numbers (on page 258) in Chapter 9: Debugging. Likewise, programs
within the run unit that were compiled with the Q Compile Command Option (see page 158)
are invisible to Instrumentation. No information will be gathered and no file will be created
for such programs.

As each statement is executed, Instrumentation adds 1 to the total number of statements
executed for that program (TOTAL-STATEMENTS-EXECUTED in the record description
above). If the executing statement is the first or second statement on a line, 1 is added to the
count of executions (COUNT-VALUE (line, intraline + 1) in the record descriptor above) and
the appropriate statement type (STATEMENT-TYPE (line, intraline + 1) in the record
descriptor above) is set to true for that statement. If the executing statement is the third or
subsequent statement on a line, 1 is added to a count of statements not counted individually
(TOTAL-STATEMENTS-PITCHED in the record description above).

When program execution completes—normally or abnormally—each data structure is written
to disk. The name of the disk file is constructed from the first eight characters of the
PROGRAM-ID value, concatenated to the file extension .CNT. If the program-name is less

Chapter 11: Instrumentation

 RM/COBOL User's Guide 379

than eight characters, the entire name is concatenated to the file extension. For example, for a
program named example, the data collection file would be named example.CNT. If the
name of the program was generates, the data collection file would be named generate.CNT.

The runtime directory search sequence is used when writing these files. For more details, see
Directory Search Sequences on UNIX (on page 21) and Directory Search Sequences on
Windows (on page 62). An existing file within the directories named in the RUNPATH
specification will be replaced by a data collection file with the same name. If no file with the
same name exists, a new data collection file will be created.

Instrumentation either replaces or creates new data collection files for each invocation of a
run unit. Historical information is not maintained from run unit to run unit. This is a function
of the analysis program, which processes the data collection files after each run unit.

Instrumentation writes messages to the screen as each data collection file is written. The form
of the message when no errors occur is the following:

where, name is derived from the first eight characters of the PROGRAM-ID, as described
above. Should an error occur during the opening, writing or closing of the file, an error
message, as described in Appendix A: Runtime Messages (on page 383), appears after
the name of the operation encountering the error. If Opening receives an error, Writing
and Closing are not attempted and will not be included in the message.

Data Analysis
The data analysis program—named analysis—that is provided with RM/COBOL
Instrumentation can be used as delivered or modified to fit your precise requirements. As
delivered, analysis provides the following:

• Statement count data from the .CNT file is added to the statement count data gathered
from earlier invocations of Instrumentation. This keeps a total count of the statements
executed.

• Statement count data from the total count file is merged with the listing file, creating a
new listing file showing execution counts for each statement.

• A summary of execution counts for each paragraph and section is appended to the new
listing file.

To use analysis as delivered, first compile the program with the RM/COBOL Compile
Command:

This creates a source listing, allocation map, and cross reference on a listing file named
analysis.lst in the directory containing analysis.cbl. An RM/COBOL object file,
analysis.cob, is also created in that directory. See Chapter 6: Compiling (on page 143) for
more information about the compilation options and parameters.

name.CNT Opening Writing Closing

rmcobol analysis A L X

Chapter 11: Instrumentation

380 RM/COBOL User's Guide

Next, execute the analysis program by entering the RM/COBOL Runtime Command:

The optional A=‘path’ may be used to supply a pathname of the directory where the merged
listing files created by analysis are to reside. If this parameter is omitted, the RUNPATH
specification is used. See Chapter 7: Running (on page 189) for more information about the
Runtime Command options and parameters.

The analysis program is listing-file driven; that is, the filenames of one or more listing files
are supplied by the user. These listing files are then processed by analysis, one at a time,
as follows:

1. The merged listing file is opened using the same filename as the listing file, with the
extension .HST.

2. The source listing section is scanned to find the PROGRAM-ID paragraph.

3. The program-name found in the PROGRAM-ID paragraph is used to construct the
filename of the .CNT file.

4. The .CNT file is opened.

5. The program-name used in the PROGRAM-ID paragraph is used to construct the
filename of the total count (.TOT) file.

6. The .TOT file is opened.

7. The .TOT file is updated (or created if it does not exist) by adding the statement counts
from the .CNT file to the corresponding statement counts in the .TOT file.

8. The source listing section is reformatted merging the statement counts from the .CNT or
.TOT file with the source listing.

9. Summary information about the program is written to the merged file.

10. All listing file information between the end of one program and the beginning of another
in the file or end of file is copied to the merged file.

11. If another program exists in the listing file, this process is repeated starting at Step 2.

12. If the name of another listing file is supplied by the user, this process is repeated starting
at Step 1.

13. analysis terminates.

When prompted to supply a listing filename, enter only the filename portion of the name. The
.lst extension is supplied automatically. To indicate there are no more listing files, press
Enter without typing a name. Use redirected input on the Runtime Command to automate the
entry of filenames where repeated runs are desired.

Figure 40 illustrates an excerpt from a merged listing, as it pertains to analysis.

Figure 40: Excerpt of a Merged Listing

Count1 Count2 LINE PG/LN A..B..2..3..4..5..6..7..ID...8 FPERF

 1 IDENTIFICATION DIVISION.

 2 PROGRAM-ID. FPERF.

 .

 .

 .

runcobol analysis [A='path']

Chapter 11: Instrumentation

 RM/COBOL User's Guide 381

205 77 PROCEDURE DIVISION.

 1 78 MAIN SECTION.

 .

 .

 .

 1 91 A.

 1 92 MOVE ZEROS TO COUNT-ER, ERROR-COUNT.

 1 93 MOVE SPACE TO PRINT-RECORD.

 1 1 94 MOVE "PATH" TO PATH. MOVE "A" TO P-R.

 1 95 PERFORM B.

 1 96 IF COUNT-ER = 1

 1 97 WRITE PRINT-RECORD FROM PASS-LINE

 98 ELSE

 99 WRITE PRINT-RECORD FROM FAIL-LINE

 100 ADD 1 TO ERROR-COUNT.

 1 101 MOVE "B" TO P-R.

 102

 8 8 103 B.WRITE PRINT RECORD FROM PASS-LINE.

 8 104 ADD 1 TO COUNT-ER.

Summary Statistics for FPERF

The program contains 242 lines, of which 166 are procedure division lines.

The procedure division has 92 lines which had COBOL verbs executed at least

once, and 26 lines which had procedure-names executed at least once.

There were 205 verb executions counted, of which 151 were COBOL statements

and 54 were procedures.

 .

 .

 .

Count % LineParagraph/Section

 8 14.81 103 B

 6 11.11 197 K

 .

 .

 .

 1 1.85 200 A

Count1, associated with the PROCEDURE DIVISION line, is the total number of statements
executed in this program. Count2, associated with the PROCEDURE DIVISION line, is the
total number of statements pitched (unattributed) in this program. For all other lines in the
Procedure Division, Count1 is the number of times the section, paragraph or statement was
executed. Count2 is the number of times the next statement on the line was executed. If there
are more than two statements on the line, the execution counts of the remaining statements are
not displayed.

If the line was not referenced or executed, Count1 and Count2 will be blank. This indicates
that the line did not contain a verb, or that it is code that was never executed.

Some parts of the merged listing file may be suppressed with the S Runtime Command
Option. In this case, the Runtime Command would be:

The values of x, p, n, u, and c have the following results:

runcobol analysis S=xpnuc [A='path']

Chapter 11: Instrumentation

382 RM/COBOL User's Guide

• x = 1 excludes all lines in the original listing file from the merged listing file; x = 0
includes these lines. x = 0 is the default.

• p = 1 excludes the paragraph and section execution counts from the summary
information; p = 0 includes these counts. p = 0 is the default.

• n = 1 excludes all lines from the merged listing file that are not contained in the
Procedure Division of the source listing portion; n = 0 includes such lines. n= 0 is
the default. n has no additional effect if x = 1.

• u = 1 suppresses the update of the total execution counts derived from the total count
file; u = 0 allows the update. u = 0 is the default.

• c = 1 produces the merged listing file from the .CNT file. c = 0 produces the merged
listing file from the .TOT file. c = 0 is the default. c has no effect if x = 1.

For example:

runcobol analysis S=10101

produces a merge listing file with only paragraph and section execution counts and some
summary information from the .CNT file but updates historical data for all statements.

Appendix A: Runtime Messages

 RM/COBOL User's Guide 383

Appendix A: Runtime Messages

This appendix presents the types of messages generated during program execution,
including those generated following normal termination as well as those generated when
an error occurs.

Error Message Types
Data Reference, Procedure, Input/Output, Sort-Merge, Message Control, Configuration,
and Initialization errors have error numbers along with the error messages to help pinpoint
the error being diagnosed. See the discussion of Error Message Format (on page 383).

A Traceback message traces back through one or more calling programs when an error
occurs within a called subprogram. The traceback traces the path from the statement causing
the error through all programs currently active in the run unit.

An Internal error message indicates that an inconsistency not normally caused by a flaw in
the source program has been detected. The numbers within the error message are needed by
Micro Focus Customer Care should an internal error occur.

An Operator-Requested Termination error occurs when an operator ends execution by
pressing the Ctrl and Break keys (Interrupt key under UNIX).

A COBOL Normal Termination message is displayed when program execution terminates
successfully.

Error Message Format

The different types of messages use the same general format:

type is one of the following types of messages:

• Data reference (see page 384) • Operator-requested termination

• Procedure (see page 387) • Sort-merge (see page 414)

• Input/output (see page 393) • Message control (see page 414)

COBOL type error code at line number in
 program prog-id compiled date time

Appendix A: Runtime Messages

384 RM/COBOL User's Guide

• Internal (see page 413) • Configuration (see page 415)

• Traceback • Initialization (see page 416)

code is as defined in the appropriate sections of this appendix. Following the code in a
procedure error, a parenthesized brief text description of the error is provided. This text
description is shown in the descriptions of the procedure errors (on page 387).

number identifies a particular line in the Procedure Division of the source program. It is
the line in which the statement being referred to starts, and it can be looked up in the
leftmost column (labeled “Line”) of the source listing produced by the compiler. If a
question mark is shown in this position, the following prog-id field refers to a machine
language subprogram, or indicates that a valid line number has not been established
following an Interactive Debug R (Resume) Command (see page 282).

If the program has been compiled with the Q Compile Command Option, line numbers
are not available. Instead, the statement address, which is shown under the “Debug”
heading in the listing, will be displayed. The statement address consists of a segment
number and a segment offset and can be distinguished from a line number since the
segment offset is always displayed as a six-digit number (with leading zeros, if
necessary). The segment number is not displayed if it is zero. If a segment number is
present, it precedes the segment offset and the two are separated by a slash (/) character.

Note The statement address in the error message may not match exactly any of the
statement addresses in the program listing. If the statement address in the error message
does match a statement address in the program listing, the error condition may have been
caused by the statement whose address is just prior to the error address.

prog-id identifies the program interrupted in order to produce this message. It has the
following format:

program-name is taken from the PROGRAM-ID paragraph of the source program.

pathname.ext is the fully qualified pathname of the object library in which the object
program resides.

date and time are the date and time the program was compiled. They correspond exactly
to the date and time printed on the program listing.

Notes

• Traceback and operator-requested termination messages do not include the “error code”
portion of this message.

• The format of configuration and initialization errors does not precisely conform to the
format shown above. See the discussion of configuration errors (on page 415).

Data Reference Errors
Data reference errors include invalid data types, improper data definitions, improper data
values and illegal subscripting.

program-name (pathname.ext)

Appendix A: Runtime Messages

 RM/COBOL User's Guide 385

Number Description

101 For one of the following reasons, no operand exists corresponding to the
referenced Linkage Section item:

1. There are more data items specified in the Procedure Division header
than are specified in the USING phrase of the CALL statement in the
calling program.

2. The Procedure Division header in the first (or main) program in the run
unit specifies more than one data item (see the discussion of the A
Runtime Command Option on page 195). This is just a special case of
reason 1 since the main program is called with only one argument.

3. The CALL statement in the calling program specified OMITTED for
the argument corresponding to the Procedure Division header argument
for the Linkage Section data item in the called program.

Note This error does not occur if the Linkage Section data item is
referenced in the ADDRESS OF special register or in an ADDRESS OF
phrase in a SET statement. Thus, this error can be prevented by first testing
IF ADDRESS OF identifier-1 NOT = NULL before attempting to reference
identifier-1 directly.

102 A reference to a variable-length group is illegal because the value in the
DEPENDING data item (data-name-1) is less than the minimum value
(integer-1) or greater than the maximum value (integer-2) in the OCCURS
clause.

103 An identifier or literal referenced in an INSPECT CONVERTING
statement is illegal for one of the following reasons:

1. The source translation template (identifier-6 or literal-4) contains
multiple occurrences of the same value.

2. The source translation template (identifier-6 or literal-4) does not have
the same length as the destination translation template (identifier-7 or
literal-5).

3. The destination translation template (literal-5) is figurative and its
length is not one.

104 A reference to a data item is illegal for one of the following reasons:

1. The computed composite subscript value for a subscripted reference
has a value that is negative, zero or exceeds the maximum value for the
referenced item.

2. There is a reference to a Linkage Section data item that is a formal
argument whose description specifies more characters than are present
in the corresponding operand in the USING or GIVING phrases of the
CALL statement that called the current called program.

3. There is a reference to a Linkage Section data item in the first (or main)
program in the run unit whose description specifies more characters
than are supplied by the A Runtime Command Option.

4. There is a reference to a Linkage Section data item that is a based
linkage record whose description specifies more characters than are
present in the area of memory covered by the pointer value that was
used to set the base address of the record.

Appendix A: Runtime Messages

386 RM/COBOL User's Guide

5. There is a reference to a Linkage Section data item that is a based
linkage record and the offset value for the base address has been set
outside the area of memory covered by the address and length fields of
the base address. That is, a Format 6 SET statement has set the pointer
offset value outside the area of memory covered by the pointer data
item. In this case, the error occurs not when the Format 6 SET
statement is executed, but when the resultant pointer value is used as
the base address of a based linkage record.

105 A subscript calculation overflowed or underflowed.

106 An index-name value indicates more than 65535 occurrences.

107 A reference modification is illegal for one of the following reasons:

1. A reference modification offset value is less than or equal to zero, or,
when strict reference modification is in effect, is greater than the length
of the data item being reference modified.

2. A reference modification length value is less than or equal to zero, or,
when strict reference modification is in effect, is greater than the
remaining length of the data item being reference modified after
application of the offset value.

Note Strict reference modification is in effect when the COMPILER-
OPTIONS configuration record specifies STRICT-REFERENCE-
MODIFICATION=YES at the time the program is compiled. See the
description of this keyword (on page 312) in Chapter 10: Configuration for
further information.

108 The referenced Linkage Section data item (which is other than one
associated with an argument listed in the USING or GIVING phrases of the
Procedure Division header), has a null base address because of one of the
following reasons:

1. The base address has never been set during this run unit.

2. The base address has been explicitly set to NULL or to a pointer data
item with a null value during this run unit.

Note This error does not occur if the Linkage Section data item is
referenced in the ADDRESS OF special register or in an ADDRESS OF
phrase in a SET statement. Thus, this error can be prevented by first testing
IF ADDRESS OF identifier-1 NOT = NULL before attempting to reference
identifier-1 directly.

109 A reference to a subscripted data item has a composite subscript value that
exceeds the maximum value possible for the data item referenced. Data
reference error 109 only happens for programs compiled with the
SUBSCRIPT-CHECKING keyword of the COMPILER-OPTIONS
configuration record set to the value YES. See the description of the
SUBSCRIPT-CHECKING keyword in Chapter 10: Configuration,
COMPILER-OPTIONS Configuration Record for additional information
regarding data reference error 109.

110 A reference to a data item is illegal because the base address for the data
item has been set to a pointer value, other than NULL, that does not point to
memory that the program may access. This error occurs when the based
linkage item is referenced after, but not at, the time the bad base address is
established in a Format 6 SET statement.

Appendix A: Runtime Messages

 RM/COBOL User's Guide 387

Procedure Errors
Procedure errors include improper program structure or invalid calls.

Number Description

201 (canceling active program) A CANCEL statement has attempted to cancel
a program that is still active. That is, a program that has called, directly or
indirectly, the program attempting the cancel.

202 (program-name equal spaces) The program-name on a CALL statement has
a value that is equal to spaces.

203 (calling library by file-name) The program-name on the Runtime
Command or CALL statement does not match any of the PROGRAM-ID
names in any library but does match a valid RM/COBOL library object
filename. The call-by-filename technique is valid only for single-program
object files.

204 (program not found) The program-name on the Runtime Command or
CALL statement does not match any of the PROGRAM-ID names in any
library and does not match a valid RM/COBOL object filename or non-
COBOL executable file. Note that an object program with a higher object
version number than that supported by the runtime system is not considered
a valid program; in this case, error message 233 will also be displayed. For
more information, see Appendix H: Object Versions (on page 619). When
error 204 terminates execution, error messages for any load errors on files
considered a candidate for loading because of the RM/COBOL extension
search are displayed along with the full pathname of the candidate file.

 Note The RM/COBOL extension search continues after a load error and, if
a successful load occurs for a given extension, no errors are displayed nor is
the ON EXCEPTION path taken for a CALL statement. In contrast, the
RM/COBOL directory search (of the current directory and the directories
specified in the RUNPATH environment variable value) for any given
extension stops at the first file found, if any, in the specified directory
search sequence. If the desired file could be found in a later directory in the
directory search sequence, the problem must be fixed by deleting the file
that will not load, replacing that file with a file that will load successfully,
or changing the directory search sequence such that the desired file is found
earlier in the sequence of directories. For further information on directory
search sequences, see Directory Search Sequences on UNIX (on page 21) or
Directory Search Sequences on Windows (on page 62).

204 (Cont.) Under Windows, if the CALL statement specified SYSTEM, this error can
occur when the external routine SYSTEM was successfully found and
loaded, but the command processor required by SYSTEM could not be
found. This can occur when the COMSPEC environment variable is not
defined or its value contains an invalid drive, path, or filename. This error
can also indicate that the length of the parameter passed to SYSTEM
exceeds the limits specified in the documentation of SYSTEM (on
page 579).

 Under Windows, if the CALL statement specified a DLL file that does not
export either of the special entry points RM_EntryPoints or
RM_EnumEntryPoints and does not contain a nonresident ordinal one
entry point, this error occurs. See “Preparing C Subprograms” in
Appendix G: Non-COBOL Subprogram Internals for Windows of the

Appendix A: Runtime Messages

388 RM/COBOL User's Guide

CodeBridge User's Guide for information about calling a non-COBOL
support module by filename, as opposed to loading it as a library of
program names.

 Under UNIX and Windows, if a non-COBOL support module specifies a
name in the EntryPointName entry of the subprogram name table that is
not an exported symbol for the support module, this error occurs. See “C
Program Name Table Structure” in Appendixes G (for Windows) and H (for
UNIX) of the CodeBridge User's Guide for additional information about the
program name table. When this is the cause of the error, a message is
displayed indicating the unknown symbol. Contact the supplier of the
support module for a corrected version of the module (all names are
checked on any load of the module, other than a “call-by-filename” load on
Windows, so this should not occur except during module development).

 For UNIX and Windows, this error can indicate problems finding or
searching a directory specified in the LIBRARY-PATH keyword (see
page 347) of the RUN-OPTION configuration record. In this case, the
pathname displayed contains a trailing directory separator character, which
is “\” (on Windows) or “/” (on UNIX). The trailing directory separator
character indicates that the directory pathname caused the problem. If this
error is caused because of an attempt to load a library found in the directory,
the full pathname of the library file itself is displayed, without a trailing
directory separator character.

 If the CALL statement specified the ON EXCEPTION or ON OVERFLOW
phrase, this procedure error is suppressed and execution continues with the
imperative statement in the ON EXCEPTION or ON OVERFLOW phrase.

205 (calling active program) A CALL statement has attempted to call a
program that is still active. An active program is one that has called,
directly or indirectly, the program attempting the call in error.

206 (object file not valid) The called filename is not a valid RM/COBOL object
file. The file may be corrupt or contain information that makes it invalid for
this run unit. A corrupt file could be caused by a system failure or
abnormal termination of the RM/COBOL compiler. The file also could be
invalid for this run unit if the registration information is not correct or if the
object was compiled with features that make it incompatible with the calling
program (for example, the computational versions may not match).

207 (insufficient memory for loading) There is not enough memory to load the
program from the Runtime Command or the CALL statement, or to build
the in-memory library structures indicated in the Runtime Command, or to
reserve memory for the ACCEPT and DISPLAY buffers. This may be
caused by memory fragmentation resulting from the dynamics of call and
cancel operations and file I/O, or it may mean the requested program is too
large for the available memory. More memory can be made available
during a SORT statement by using the T Runtime Command Option to
reduce the memory requested by sort. Additional memory can be made
available by reducing the amount of buffer pool memory through the use of
the BUFFER-POOL-SIZE keyword (see page 336) on the RUN-FILES-
ATTR configuration record. For details, see memory size requirements for
object programs (on page 174).

 Under Windows, if the CALL statement specified SYSTEM, this error can
occur when there is insufficient memory to load the command processor
required by SYSTEM.

Appendix A: Runtime Messages

 RM/COBOL User's Guide 389

 If the CALL statement specified the ON EXCEPTION or ON OVERFLOW
phrase, this procedure error is suppressed and execution continues with the
imperative-statement in the ON EXCEPTION or ON OVERFLOW phrase.

208 (compilation error in ALTER statement) The ALTER statement cannot be
executed because of an error in the source program. The compilation listing
provides the specific reason for the error; for example, an undefined
procedure-name, an ambiguous procedure-name reference, an attempt to
ALTER a procedure-name that is not alterable, a conflict with segmentation
rules, and so forth.

209 (unaltered GO TO statement) The GO TO statement cannot be executed
because it does not specify a default procedure-name and it was not altered
before attempting execution. The source program may have a compilation
error if no ALTER statement specifies the paragraph containing the GO TO
statement. However, the source program may compile without error if at
least one ALTER statement exists that specifies the paragraph containing
the GO TO statement. In the latter case, no such ALTER statement is
executed in the logical sequence of statements leading to the execution of
the GO TO statement.

210 (compilation error in GO TO or PERFORM statement) The GO TO or
PERFORM statement cannot be executed because of an error in the source
program. The compilation listing provides the specific reason for the error;
for example, an undefined procedure-name, an ambiguous procedure-name
reference, a conflict with segmentation rules, and so forth.

211 (general compilation error in source program) An “E” level compilation
error has been encountered.

212 (SORT/MERGE USE procedure error) The USE procedure cannot exit
because it was invoked by the execution of a SORT or MERGE statement,
and the sort-merge operation is either no longer active or the exit location
has been lost.

213 (library not found) The RM/COBOL object library file specified in the
Runtime Command cannot be found.

214 (library not valid) The RM/COBOL object library file specified in the
Runtime Command does not contain a valid object program.

215 (segmentation error for PERFORM statement) A PERFORM statement
in an independent segment has performed a section or paragraph in a fixed
segment that performed a section or paragraph in a different independent
segment.

216 (mismatched EXTERNAL data item) An external item with the same name
and type (data record, file connector or index name) as an existing external
item in the run unit has a different description than the existing external
item.

 For an external data record, the length of the record is different.

 For an index-name, the span of the table item associated with the index
name is different, or the index-name is associated with a different external
record.

 For a file connector, any of the file control clauses, file description clauses
or record description lengths are different. For a relative organization
external file connector, this error is caused if the new external does not
reference the same external data item for the relative key as is referenced by
the existing external file connector.

Appendix A: Runtime Messages

390 RM/COBOL User's Guide

 For additional details on the matching rules required for external objects
with the same name described in more than one program of a run unit, see
the discussion of External Objects (on page 230).

217 (mismatched EXTERNAL file) An external file connector is invalid since
it indicates a SAME AREA or MULTIPLE FILE TAPE association.
Typically, the compiler prevents this error from occurring by diagnosing the
problem at compile time.

218 (insufficient memory for EXTERNAL data item or file) There is not
enough memory to allocate the data structures necessary to support an
external item declared in the program currently being loaded.

219 (insufficient memory for USE GLOBAL procedure) There is not enough
memory to allocate the data structures necessary to support entry into a
USE GLOBAL procedure following the occurrence of an I/O error for
which the USE GLOBAL procedure is applicable. The program is
terminated as if no applicable USE procedure were found.

222 (“CALL SYSTEM” load failure) Under Windows, the SYSTEM routine
was called but the command processor required by SYSTEM could not be
loaded for some unexpected reason, such as, bad environment, access
denied, too many open files, or bad format for the command processor. If
the command processor could not be found, error 204 would occur instead
of this error. If there were insufficient memory, procedure error 207 would
occur instead of this error. If the operating system fails to load the
command processor for any other reasons, then this error occurs.

 If the CALL statement specified the ON EXCEPTION or ON OVERFLOW
phrase, this procedure error is suppressed and execution continues with the
imperative-statement in the ON EXCEPTION or ON OVERFLOW phrase.

223 (non-COBOL library load failure) Under Windows, an error occurred while
loading a DLL file. If the DLL file could not be found, error 204 would
occur instead of this error. If there were insufficient memory, procedure
error 207 would occur instead of this error. If the operating system fails to
load the DLL for any other reasons, then this error occurs. This error
generally indicates that the DLL was found, but has an invalid format for
the operating system being used. Some “system out of memory” conditions
may cause an error 223, since Windows returns an ambiguous error status in
some low memory situations.

 Under UNIX and Windows, an optional support module was unable to
complete initialization successfully. Contact the provider of the failing
support module if the information provided is not sufficient to resolve the
problem. See special entry point RM_AddOnInit in Appendices G (for
Windows) and H (for UNIX) of the CodeBridge User's Guide for additional
information regarding optional support module initialization.

 If the CALL statement specified either the ON EXCEPTION or ON
OVERFLOW phrase, this procedure error is suppressed and execution
continues with the imperative-statement in the ON EXCEPTION or ON
OVERFLOW phrase.

225 (RM/COBOL object header not valid) The object header record for an
RM/COBOL object program could not be successfully read or the contents
of the header record are not valid. This error can occur for the header
records of nested programs as well as separately compiled programs,
including second or later separately compiled programs in a library of
object programs. This error indicates that the file is not a valid

Appendix A: Runtime Messages

 RM/COBOL User's Guide 391

RM/COBOL object file. The file may be a valid non-COBOL file (DLL or
shared object), in which case this error will be ignored and the non-COBOL
file will be loaded. Other possibilities are that the object file was corrupted
or the load was attempted on a file that was never an object file, such as a
text file having a name that matches a filename that RM/COBOL uses in its
normal load search sequence. If the search sequence completes without
finding a valid loadable file, this error will precede the error indicating that
the search was unsuccessful, such as a procedure error 204 or 214.

226 (incorrect program descriptor size) The object header record for an
RM/COBOL object program specifies a program descriptor size that is not
valid for the object version specified in the header record. This error is a
special case of error 225 in that it indicates the header record is not valid,
but provides the specific reason to aid in determining the cause of the
problem.

227 (expired object) The RM/COBOL object program was produced by a
compiler that has expired. The source program needs to be re-compiled
with a non-expired compiler. (Currently, objects expire only when they are
produced by compilers licensed for evaluation or educational purposes. If
the evaluation or educational license is updated to a normal license, re-
compiling objects previously produced by the evaluation compiler is
necessary.)

228 (runtime license ID mismatch) The RM/COBOL object program was
produced by a compiler licensed for evaluation or educational purposes and
is being run with a runtime also licensed for evaluation or educational
purposes, but with a different license identifier. Evaluation or educational
runtimes can run evaluation or educational objects only when the same
development system (matching license identifier) is used.

 Notes

• Evaluation runtimes can run any non-evaluation object (such as the
utility program objects shipped in an evaluation licensed system).
Also, un-expired evaluation objects can be run by any non-evaluation
runtimes.

• Educational runtimes can run any non-educational object (such as the
utility program objects shipped in an educational licensed system).
However, un-expired educational objects can be run only by the
matching license ID educational runtime.

229 (library defines no valid program-names) A non-COBOL library does not
specify any valid program-names that can be called from COBOL. Thus,
the library is essentially empty and should not be specified as part of a
run unit.

230 (program size is zero) The RM/COBOL object program has zero size and
thus cannot be a valid RM/COBOL object program. This error is a special
case of error 225 in that it indicates the object header record is not valid, but
provides the specific reason to aid in determining the cause of the problem.

231 (library TOC not valid) The table of contents for an RM/COBOL object
library could not be successfully read or is logically inconsistent. The file
may be corrupted or may not be an RM/COBOL object library (see error
225 for further information).

232 (unknown load entry type) The RM/COBOL object program has a load
entry type that is not supported by the runtime being used to run the
program. This error is a special case of error 225 in that it indicates the

Appendix A: Runtime Messages

392 RM/COBOL User's Guide

object header record is not valid, but provides the specific reason to aid in
determining the cause of the problem.

233 (unsupported object version) An RM/COBOL object program being loaded
has an object version or object flags that are not supported by the runtime
being used to run the program. This normally means that the runtime is not
a recent enough version to run the specific program file indicated in the
pathname displayed with this message. However, it could also indicate that
the object file has been corrupted, although this is unlikely since the file has
already passed several other tests that would have produced a different
error, such as procedure error 225.

 Note Non-educational runtimes produce error 233 if an attempt is made to
run an educational object program.

234 (no object file found) The main program or a called subprogram name
could not be found in any loaded library. The RM/COBOL runtime system,
therefore, searched for an object file to satisfy the request. This search for
an object file did not find any candidate files for loading. For further
information on the search for an object file, see Subprogram Loading (on
page 227).

235 (restricted object) An attempt to load an RM/COBOL object file failed
because the object is restricted to running with a particular type of runtime
or runtime license. For example, an object file compiled with a compiler
licensed only for producing BIS object files cannot be run with a non-BIS
runtime and an attempt to run that object with a non-BIS runtime will fail
with this message.

251 (termcap entry syntax) Under UNIX, a syntax error was detected while
scanning the termcap entry for a terminal type.

252 (terminal type name unknown) Under UNIX, the terminal type name
specified by the TERM environment variable or by the termcap entry tc
cannot be located.

253 (terminal entry table overflow) Under UNIX, an internal table overflowed
while processing a termcap or terminfo entry. The entry is too complex and
its size should be reduced.

254 (duplicate terminal input sequences) Under UNIX, two termcap or terminfo
entries have identical input sequences for this terminal. To indicate that one
entry takes precedence over another, use the PRECEDENCE keyword (see
page 358).

255 (terminal does not support positioning) Under UNIX, the terminal
described in the termcap or terminfo entry has no cursor positioning
sequence, or the rows or columns for the terminal are zero.

256 (terminal unit undefined) Under UNIX, the unit number specified in an
ACCEPT or DISPLAY statement has not been defined using a TERM-
UNIT configuration record.

257 (non-COBOL dynamic load not supported by OS) Under UNIX, an
attempted dynamic load of a machine language subprogram or library failed
because dynamic load is not supported by your operating system.

258 (insufficient memory for pattern matching) There is not enough memory to
match the pattern regular expression in a LIKE condition to the subject
string. This occurs because there are too many possible match states to
consider. For example, the pattern “((a{1,10}){1,10}){1,10}” when
matching a string of 30 consecutive “a” characters will cause this error.

Appendix A: Runtime Messages

 RM/COBOL User's Guide 393

299 (instrumentation) An attempt to use Instrumentation on a run unit failed
because a program in the run unit contains more than 65535 source lines or
there was insufficient memory to allocate the data collection structure for a
program in the run unit. See Data Collection (on page 377) for additional
information on the memory requirements of Instrumentation.

Input/Output Errors
Input/output errors include all errors that can occur during file access. The format is as
follows:

The numerically ordered list presented below shows the values that can be displayed as
number in the I/O error messages, and a description of each error. The list is presented in
numerical order. The I/O error number has the form:

mm is a two-digit decimal number indicating the general class of error that occurred. It is
also the value stored into the file status data item if such an item has been specified for
the associated file. Thus, this value is available to the program.

nn is a two-digit code that provides more specific information on the nature of the error.
This value is available to the program only if you call the subprogram C$RERR (see
page 562).

When the I/O error is 30, the I/O error number has the form:

OS is the operating system that generated the error and indicates how the nnnnn code
should be interpreted.

nnnnn is the operating system error code that was returned when the error occurred. This
value is available to the program only if you call the subprogram C$RERR (see page 562).

The phrase “1985 mode” indicates that the error message description applies only to ANSI
COBOL 1985. The phrase “1974 mode” indicates that the error message description applies
only to ANSI COBOL 1974. Messages not marked with either phrase indicate that the
description applies to both ANSI COBOL 1985 and 1974.

Number Description

00 The operation was successful.

COBOL I/O error number on COBOL-filename
file file-access-name

mm, nn

30, OS error nnnnn

Appendix A: Runtime Messages

394 RM/COBOL User's Guide

02 The operation was successful but a duplicate key was detected. For a
READ statement, the key value for the current key of reference is equal to
the value of that same key in the next logical record within the current key
of reference. For a REWRITE or WRITE statement, the record just written
created a duplicate key value for at least one alternate record key for which
duplicates are allowed.

04, 05 The record read from the file is shorter than the minimum record length.
(1985 mode)

04, 06 The record read from the file is longer than the record area. (1985 mode)

05 The operation was successful but the file was not present at the time the
statement began. For a DELETE FILE statement, the file was not found.
For an OPEN statement, the optional file was not found. If the open mode
is I-O or EXTEND, the file has been created. (1985 mode)

07 The operation was successful. If the operation was a CLOSE statement
with a NO REWIND, REEL, UNIT or FOR REMOVAL clause, or if the
operation was an OPEN statement with the NO REWIND clause, the file is
not on a unit or reel medium. (1985 mode)

10 A sequential READ statement was attempted and no next (or previous)
logical record exists in the file because the end (or beginning) of file was
reached, or a sequential READ statement was attempted for the first time on
an optional input file that is not present.

14 A sequential READ statement was attempted for a relative file and the
number of significant digits in the relative record number is larger than the
size of the relative key data item. (1985 mode)

21 A sequence error exists for a sequentially or dynamically accessed indexed
file using duplicate prime keys. For a REWRITE statement, the prime
record key was changed by the program between the execution of the
preceding READ statement for the file and the execution of the REWRITE
statement. Or, for a WRITE statement, the ascending sequence
requirements for successive record key values were violated.

22 For an indexed file, the new record value attempts to duplicate an indexed
file key that prohibits duplicates. For a relative file, the relative key data
item duplicates a relative record number that already exists.

23 An attempt was made to randomly access a record that does not exist in the
file, or a START or random READ statement was attempted on an optional
input file that is not present. For a relative file, this means the relative key
data item contains a value that is less than one, refers to a deleted record, or
is greater than the highest relative record number existing in the file. For an
indexed file, this means the specified value of the record or alternate record
key does not refer to a record existing in the file.

23, 01 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern class character range cannot include a multi-
character escape. This value corresponds to compiler message 682, which
is described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23, 02 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern class character range cannot be a hyphen '-' except
at the beginning or end of a positive character group. This value

Appendix A: Runtime Messages

 RM/COBOL User's Guide 395

corresponds to compiler message 683, which is described in Appendix B:
Compiler Messages of the RM/COBOL Language Reference Manual.

23, 03 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern class character range cannot be an opening bracket
'['. This value corresponds to compiler message 684, which is described in
Appendix B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23, 04 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern class character range cannot specify a decreasing
range. This value corresponds to compiler message 685, which is described
in Appendix B: Compiler Messages of the RM/COBOL Language
Reference Manual.

23, 05 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern character class subtraction cannot be followed by an
additional class specification. This value corresponds to compiler message
686, which is described in Appendix B: Compiler Messages of the
RM/COBOL Language Reference Manual.

23, 06 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern escape sequence (initiated by '\') is not valid. This
value corresponds to compiler message 687, which is described in
Appendix B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23, 07 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value that
requires more memory than is available for pattern compilation. This value
corresponds to compiler message 688, which is described in Appendix B:
Compiler Messages of the RM/COBOL Language Reference Manual.

23, 08 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern quantifier opened with an opening brace '{' is
missing the closing brace '}'. This value corresponds to compiler message
689, which is described in Appendix B: Compiler Messages of the
RM/COBOL Language Reference Manual.

23, 09 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern character class expression is missing the closing
bracket ']'. This value corresponds to compiler message 690, which is
described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23, 10 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern parenthesized subexpression is missing the closing
parenthesis ')'. This value corresponds to compiler message 691, which is
described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23, 11 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a

Appendix A: Runtime Messages

396 RM/COBOL User's Guide

syntax error: A pattern category escape '\p{' or '\P{' is missing the closing
brace '}'. This value corresponds to compiler message 692, which is
described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23, 12 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern category escape '\p{' or '\P{' is missing the opening
brace '{'. This value corresponds to compiler message 693, which is
described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23, 13 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern category escape '\p{' or '\P{' contains an unknown
category specification. This value corresponds to compiler message 694,
which is described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23, 14 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern quantifier maximum count is less than the minimum
count. This value corresponds to compiler message 695, which is described
in Appendix B: Compiler Messages of the RM/COBOL Language
Reference Manual.

23, 15 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern quantifier maximum count is missing; at least one
decimal digit was expected. This value corresponds to compiler message
696, which is described in Appendix B: Compiler Messages of the
RM/COBOL Language Reference Manual.

23, 16 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern quantifier maximum count is too large (> 65535).
This value corresponds to compiler message 697, which is described in
Appendix B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23, 17 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern quantifier minimum count is missing; at least one
decimal digit was expected. This value corresponds to compiler message
698, which is described in Appendix B: Compiler Messages of the
RM/COBOL Language Reference Manual.

23, 18 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: A pattern quantifier minimum count is too large (> 65535).
This value corresponds to compiler message 699, which is described in
Appendix B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23, 19 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: The pattern contains an unexpected closing brace '}'. This
value corresponds to compiler message 700, which is described in
Appendix B: Compiler Messages of the RM/COBOL Language Reference
Manual.

Appendix A: Runtime Messages

 RM/COBOL User's Guide 397

23, 20 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: The pattern contains an unexpected closing bracket ']'. This
value corresponds to compiler message 701, which is described in
Appendix B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23, 21 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: The pattern contains an unexpected closing parenthesis ')'.
This value corresponds to compiler message 702, which is described in
Appendix B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23, 22 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: The pattern contains an unexpected quantifier '*' that is not
preceded by a valid atom. This value corresponds to compiler message 703,
which is described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23, 23 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: The pattern contains an unexpected quantifier '+' that is not
preceded by a valid atom. This value corresponds to compiler message 704,
which is described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23, 24 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: The pattern contains an unexpected quantifier '?' that is not
preceded by a valid atom. This value corresponds to compiler message 705,
which is described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23, 25 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: The pattern contains an unexpected quantifier '{' that is not
preceded by a valid atom. This value corresponds to compiler message 706,
which is described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23, 26 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern data item that has a value with a
syntax error: The pattern is too large or complex to compile. This value
corresponds to compiler message 707, which is described in Appendix B:
Compiler Messages of the RM/COBOL Language Reference Manual.

23, 27 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a pattern pointer data item that does not
point to a valid compiled pattern.

23, 28 An attempt was made to execute a START statement with a WHILE phrase
and the LIKE condition specifies a compiled pattern that contains an
unrecognized pattern matching instruction code; the compiled pattern is not
valid. This can mean that the compiled pattern data item was not properly
initialized or was corrupted by an unintended store into the pattern data item
after initialization.

Appendix A: Runtime Messages

398 RM/COBOL User's Guide

24 There is insufficient disk space for the operation on a relative or
indexed file.

24, 01 A sequential WRITE statement was attempted for a relative file and the
number of significant digits in the relative record number is larger than the
size of the relative key data item, or for a random WRITE statement the
relative key data item contains a value that is less than one. (1985 mode)

24, 02 There is insufficient room left in the file for the operation. For more
details, see the descriptions of the FILE-LOCK-LIMIT (on page 338) and
FILE-PROCESS-COUNT (on page 338) keywords of the RUN-FILES-
ATTR configuration record.

 This error may occur when attempting to delete a record from an indexed
file if enough free blocks cannot be made available to split an index block.
Running the Indexed File Recovery (recover1) utility (see page 599) on
the file could consolidate enough index blocks to allow continued use of
the file.

 This error may occur on UNIX systems if the file’s size exceeds the user’s
ulimit.

24, 03 An attempt was made to add the 4294967296th record to an indexed file.
The maximum number or records allowed in an indexed file in
4294967295.

24, 04 An attempt was made to add a record to a shared relative file that is so far
beyond the current EOF that the entire intervening region exceeds the
maximum size of a file region lock.

30, OS
error
code

RM/COBOL returned a permanent error in this 30, OS error code
format. OS indicates the operating system that is the source of the error
code. If OS is Btrieve, code is defined in Table 38 on page 410. If OS
is UNIX, code is defined in the errno.h include file. If OS is Windows,
refer to the file WINERROR.TXT, which is distributed with the media.
If OS is C Library, code is defined in Table 39 on page 412. If OS is
File Manager Detected, code is defined in Table 40 on page 413. If OS
is any other value, then code and its meaning are system-dependent.
Please refer to the documentation provided with your operating system
for more information.

Using the eleven-character data item on the C$RERR subprogram will
allow permanent errors to include the OS error code. For example,
30,06,00058 is Btrieve error 58. See C$RERR (on page 562).

A Procedure Division statement that explicitly or implicitly causes an
overlay segment to be loaded may receive this error if the RM/COBOL
object file cannot be read when the statement is executed. Appendix K:
Troubleshooting RM/COBOL (on page 657) describes more information
on 30 errors.

30, 25 This permanent error may be returned for Btrieve files. It indicates that an
error occurred during the creation of the file. It may also mean that the file
was already opened during the creation. If the file did not exist at the time
the Btrieve Adapter program checked for the existence of the file but did
exist at the time of the attempt to create it, then the Btrieve Adapter
program will misinterpret the error as an I/O error and return the permanent
error code.

30, 58 The Btrieve compression size is too small. Use the appropriate Btrieve
Setup utility to increase the size for the Largest Compressed Record Size

Appendix A: Runtime Messages

 RM/COBOL User's Guide 399

setting (see the appropriate Btrieve installation and operation manual for
more details). The Btrieve MicroKernel Database Engine (MKDE) must be
restarted before the increase will take effect.

30, 64 End of file occurred when ACCEPTing from a redirected input file.

30, 97 The Btrieve requester’s data message length is too small. Reconfigure the
requester and specify a higher value. Be certain also to ensure that the
maximum record length (Communication Buffer Size), configured on
server-based Btrieve, is at least as large as the requester’s value (see the
appropriate Btrieve installation and operation manual for more details).

34 There is insufficient disk space for the operation on a sequential file.

34, 02 There is insufficient room left in the file for the operation. For more
details, see the descriptions of the FILE-LOCK-LIMIT (on page 338) and
FILE-PROCESS-COUNT (on page 338) keywords of the RUN-FILES-
ATTR configuration record.

35 The file is not available because the file identified by the resultant file
access name could not be found. The pathname or filename may be
misspelled or may not be valid for the operating system. Specifying a
pathname or filename that is not a valid name or that is longer than allowed
also results in this error. The directory search sequence specified by the
RUNPATH environment variable may be incorrect. For information on the
resultant file access name, see Locating RM/COBOL Files on UNIX (on
page 21) or Locating RM/COBOL Files on Windows (on page 62).
(1985 mode)

37, 01 The file must be mass storage. The device-name specified for the file was
DISC, DISK or RANDOM, but the resultant file access name identifies a
file that does not reside on a disk. (1985 mode)

37, 07 The requested operation conflicts with the permissions allowed to the run
unit for the file. This error can occur under any of the following conditions:
a DELETE FILE statement failed because the run unit did not have write
permission for the directory containing the file; an OPEN statement with the
OUTPUT or EXTEND phrase failed because the run unit does not have
write permission for the file; an OPEN statement with the INPUT phrase
failed because the run unit does not have read permission for the file; an
OPEN statement with the I-O phrase failed because the run unit does not
have read and write permissions for the file; or, for an indexed file, an
OPEN I-O failed due to future file version attributes that allow the file to be
read but not written. (1985 mode)

38 An OPEN or DELETE FILE operation failed because the filename was
previously closed WITH LOCK. (1985 mode)

39, 01 The file organization specified for the filename does not match the actual
file organization of the physical file. (1985 mode)

 This message may not occur if the file is actually a Btrieve file. The
Btrieve MicroKernel Database Engine (MKDE) always opens its files with
lock, and the OPEN WITH LOCK error condition is encountered by the
RM/COBOL file management system, preventing it from determining the
organization of the file.

39, 02 The minimum record length specified in the RECORD CONTAINS clause
or implied by the record descriptions of the filename does not match the
actual minimum record length of the physical file. (1985 mode)

Appendix A: Runtime Messages

400 RM/COBOL User's Guide

 For Btrieve files, if the minimum record length of the file is less than four
bytes, the file will be implemented using four-byte records. In this
situation, the Btrieve Adapter program cannot detect the initial minimum
record length and will fail to diagnose the mismatched minimum record
length error condition.

39, 03 The maximum record length specified in the RECORD CONTAINS clause
or implied by the record descriptions of the filename does not match the
actual maximum record length of the physical file. (1985 mode)

 This error can occur when reopening a print file closed WITH NO
REWIND if the OPEN statement specifies a different record length than
was used on the previous OPEN statement.

 This error does not occur with variable-length record Btrieve files. Btrieve
files do not support a mechanism to record this information and, thus, it
cannot be verified.

39, 04 The minimum block length specified in the BLOCK CONTAINS clause for
the filename does not match the actual minimum block length of the
physical file. (1985 mode)

 This error does not happen in RM/COBOL because RM/COBOL only
stores the maximum block size and then only for indexed organization files.
The minimum block length for an indexed file is not enforced as a fixed file
attribute of the file for RM/COBOL.

39, 05 The maximum block length specified in the BLOCK CONTAINS clause for
the filename does not match the actual maximum block size of the physical
file. This includes the case where no maximum block size was specified
when the file was created, but another open does specify a maximum block
size. (1985 mode)

 This error is only for indexed files. Other file organizations do not record
the maximum block size as a fixed file attribute.

 This error does not occur with variable-length record Btrieve files. Btrieve
files do not support a mechanism to record this information and, thus, it
cannot be verified.

 Visual COBOL ignores the BLOCK CONTAINS clause and, when creating
indexed files, creates indexed files as if the COBOL program did not
specify the BLOCK CONTAINS clause. Inter-operation of RM/COBOL
and Visual COBOL on the same RM indexed files can cause this error
unless the there is a RUN-INDEXED-FILES configuration record that
specifies the keyword=value: IGNORE-BLOCK-CONTAINS=YES.

39, 06 The record delimiting technique, LINE-SEQUENTIAL or BINARY-
SEQUENTIAL, specified for the filename does not match the actual record
delimiting technique of the physical file. (1985 mode)

39, 07 The code-set specified in the CODE-SET clause for the filename does not
match the actual character code of the physical file. (1985 mode)

39, 08 The collating sequence specified in the COLLATING SEQUENCE clause
for the indexed file does not match the actual collating sequence of the
physical file. (1985 mode)

39, 09 The record type attribute, fixed or variable, specified in the RECORD
CONTAINS clause or implied by the record descriptions of the filename
does not match the record type attribute of the physical file. (1985 mode)

Appendix A: Runtime Messages

 RM/COBOL User's Guide 401

39, 0A The character specified in the PADDING CHARACTER clause for the
filename does not match the actual padding character of the file on the
external medium. (1985 mode)

39, 30
through
39, 3E

The key duplicates allowed flag specified for keys 0 through 14 does not
match the corresponding key duplicates allowed flag of the physical file.
The prime record key is 0. Alternate record keys are numbered in
ascending order of key offset, starting with 1. (1985 mode)

For Btrieve files, this error also indicates that in the physical file, a key
attribute other than duplicate, modifiable, binary, null, alternate collating
sequence, or extended type was specified for the Btrieve key that
corresponds with the COBOL key defined for the key offset. (For
example, descending, supplemental, and manual key attributes may not
be used for RM/COBOL keys.) In addition, the primary key may not
have a null attribute.

Btrieve allows multiple keys to be defined at the same key offset, but
only the first is considered by the Btrieve Adapter program.

39, 3F The key duplicates allowed flag specified for an alternate record key 15
through 254 does not match the corresponding key duplicates allowed flag
of the physical file. (1985 mode)

 For Btrieve files, this error also indicates that in the physical file, a key
attribute other than duplicate, modifiable, binary, null, alternate collating
sequence or extended type was specified for the Btrieve key that
corresponds with the COBOL key defined for the key offset. (For example,
descending, supplemental and manual key attributes may not be used for
RM/COBOL keys.)

 Btrieve allows multiple keys to be defined at the same key offset, but only
the first is considered by the Btrieve Adapter program.

39, 40
through
39, 4E

The offset from the start of the record area to the start of the key area for
keys 0 through 14 does not match the corresponding key offset of the
physical file. The prime record key is 0. Alternate record keys are
numbered in ascending order of key offset, starting with 1. (1985 mode)

39, 4F The offset from the start of the record area to the start of the key area for an
alternate key 15 through 254 does not match the corresponding key offset of
the physical file. (1985 mode)

39, 50
through
39, 5E

The length of the key area for keys 0 through 14 does not match the
corresponding key length of the physical file. The prime record key is
key 0. Alternate record keys are numbered in ascending order of key
offset, starting with 1. (1985 mode)

This error also occurs if the number of keys specified does not match the
actual number of keys in the physical file. The key number 1 through E,
if greater than the number of keys in the file description, indicates that
the file contains more keys than the program describes. The key number
1 through E, if less than or equal to the number of keys in the file
description, provides a value one greater than the number of keys
contained in the file. (1985 mode)

39, 5F The length of the key area for an alternate key 15 through 254 does not
match the corresponding key offset of the physical file. (1985 mode)

 This error also occurs if the number of keys specified does not match the
actual number of keys in the physical file. (1985 mode)

Appendix A: Runtime Messages

402 RM/COBOL User's Guide

39, 60
through
39, 6E

The number of segments for keys 0 through 14 does not match the
corresponding key number of segments of the physical file. The prime
record key is 0. Alternate record keys are numbered in ascending order
of key offset, starting with 1. (1985 mode)

39, 6F The number of segments for an alternate key 15 through 254 does not match
the corresponding key number of segments of the physical file.
(1985 mode)

41, 01 A duplicate open was rejected by a system that does not allow the physical
file to be opened twice. (1985 mode)

41, 02 A duplicate open was rejected by a system that does not allow the COBOL
filename to be opened twice. (1985 mode)

41, 03 A DELETE FILE was rejected because the file was open. (1985 mode)

42 A CLOSE or UNLOCK operation was attempted on an unopened file.
(1985 mode)

43 A DELETE or REWRITE operation was attempted on a file declared to be
ACCESS MODE SEQUENTIAL or on an indexed file declared to be
ACCESS MODE DYNAMIC that specifies a prime key that allows
duplicate values, and the last operation on the file was not a successful
READ operation. (1985 mode)

44, 03 The length of the record area specified in the WRITE, REWRITE or
RELEASE statement is less than the minimum record length of the file.
(1985 mode)

44, 04 The length of the record area specified in the WRITE, REWRITE, or
RELEASE statement is greater than the maximum record length of the file.
(1985 mode)

44, 07 A REWRITE statement attempted to change the length of a record in a
sequential organization file. (1985 mode)

46 No file position is currently defined. A sequential READ operation was
attempted, but the last READ or START operation was unsuccessful or
returned an at end condition. (1985 mode)

46, 02 The position was lost. (1985 mode)

 For Btrieve files, A READ NEXT operation was attempted and could not be
completed because the Btrieve MicroKernel Database Engine (MKDE)
position was lost due to the current record (and surrounding records) being
deleted by programs at other computers. See Current Record Position
Limitations (on page 134).

47, 01 The requested operation conflicts with the open mode of the file. A START
or READ operation was attempted on a file that is not open in the INPUT or
I-O mode. (1985 mode)

47, 02 A READ or START operation was attempted on an unopened file.
(1985 mode)

48, 01 The requested operation conflicts with the open mode of the file. This error
can occur under the following conditions: a WRITE operation was
attempted on a file that is not open in the EXTEND, I-O, or OUTPUT
mode; or, a WRITE operation was attempted on a file in the sequential
access mode that is open in the I-O mode. (1985 mode)

48, 02 A WRITE operation was attempted on an unopened file. (1985 mode)

Appendix A: Runtime Messages

 RM/COBOL User's Guide 403

49, 01 The requested operation conflicts with the open mode of the file. A
DELETE or REWRITE operation was attempted on a file that is not open in
the I-O mode. (1985 mode)

49, 02 A DELETE or REWRITE operation was attempted on an unopened file.
(1985 mode)

90 An unrecognizable message has been received by the Btrieve Adapter
program from the RM/COBOL file management system.

 This error also indicates that an invalid request has been made to the
RM/COBOL file management system or some other external access
method. This may be caused by an internal error or when communicating
to an earlier version of RM/InfoExpress.

90, 01 The requested operation conflicts with the open mode of the file. This error
can occur under the following conditions: a READ or START operation
was attempted on a file that is not open in the INPUT or I-O mode; a
WRITE operation was attempted on a file that is not open in the EXTEND,
I-O, or OUTPUT mode or a WRITE operation was attempted on a file in
the sequential access mode that is open in the I-O mode; or, a DELETE or
REWRITE operation was attempted on a file that is not open in the I-O
mode. (1974 mode)

90, 02 A DELETE or REWRITE operation was attempted on a file declared to be
ACCESS MODE SEQUENTIAL, and the last operation on the file was not
a successful READ operation. (1974 mode)

90, 03 The requested operation conflicts with the media type. This error can occur
under the following conditions: a READ or OPEN INPUT operation was
attempted on a file with a device-name of OUTPUT, PRINT or PRINTER;
a WRITE, OPEN OUTPUT or EXTEND operation was attempted on a file
with a device-name of CARD-READER or INPUT; or a DELETE,
REWRITE, START or OPEN I-O operation was attempted on a file with a
device-name other than DISC, DISK or RANDOM.

90, 04 The requested operation conflicts with the defined organization. A
DELETE or START operation was attempted on an ORGANIZATION
SEQUENTIAL file.

90, 05 A file truncate operation conflicts with other users. An OPEN OUTPUT
operation was attempted on a physical file that is currently in an open mode
for another file connector of this run unit or a file connector of another run
unit that shares the file.

 On Btrieve files, Error 90, 05 also indicates that an I/O error occurred on
the creation of the file. (If the file already existed and the Btrieve
MicroKernel Database Engine (MKDE) returned a Create I/O Error, 25,
then the Btrieve Adapter program will misinterpret the error as truncation
conflict because the Btrieve MKDE uses this error for both conditions.)

90, 06 The file access name specified in the OPEN statement indicates that the file
is accessed through an external access method and the external access
method refused to accept the request by the RM/COBOL file management
system to establish a session.

 This error also indicates that the RM/COBOL file management system
refused one of the configuration parameters passed to it. The runtime
system validates all the configuration parameters of the RM/COBOL file
management system; however, if there is insufficient memory to create a

Appendix A: Runtime Messages

404 RM/COBOL User's Guide

buffer pool of the requested size, this will not be detected until later.
Reducing the size of the buffer pool may resolve the problem.

90, 07 The requested operation conflicts with the permissions allowed to the run
unit for the file. This error can occur under the following conditions: a
DELETE FILE statement failed because the run unit did not have write
permission for the directory containing the file; an OPEN statement with the
OUTPUT or EXTEND phrase failed because the run unit does not have
write permission for the file; or, an OPEN statement with the INPUT or I-O
phrase failed because the run unit does not have read permission for the file.
(1974 mode)

 For Btrieve files, this error code may also indicate that a DELETE, WRITE,
or REWRITE operation was performed on a file that has been opened for
read-only access using a Btrieve Adapter program mode option of M=R
(read-only). For more information about this option, see M (Mode) Option
(on page 129). (1974 and 1985 mode)

90, 08 The requested operation is not supported by the external access method. A
COBOL I/O statement was attempted to a non-RM/COBOL file and the
access method for the file does not support the statement.

91 A CLOSE or UNLOCK operation was attempted on an unopened file.
(1974 mode)

91, 02 A READ, START, WRITE, DELETE or REWRITE operation was
attempted on an unopened file. (1974 mode)

92, 01 A duplicate open operation was rejected by a system that does not allow the
physical file to be opened twice. (1974 mode)

92, 02 A duplicate open operation was rejected by a system that does not allow the
COBOL filename to be opened twice. (1974 mode)

92, 03 A DELETE FILE operation was rejected because the file was in an open
mode. (1974 mode)

93, 02 An operation was rejected because file lock conflicts with another user.

 An OPEN WITH LOCK operation was attempted on a file that is already
open, or an OPEN without lock was attempted and the file is already open
WITH LOCK.

 A DELETE FILE operation was attempted on a file that is currently open.

 This message may occur in cases with Btrieve files when it would not occur
with RM/COBOL indexed files, because the Btrieve MicroKernel Database
Engine (MKDE) always opens its files WITH LOCK. For more
information, see error messages 39, 01 and 94, 01.

 For Btrieve files, this error code may also indicate either of the following
conditions:

• Another computer has a transaction in progress on this file.

• Or, an attempt was made to open a file that another computer had
opened already with a conflicting Btrieve Adapter program mode
option. For more information about the mode option, see M (Mode)
Option (on page 129). For example, if the first computer opens a file
with a value of A (accelerated) for the mode option, then the
accelerated mode option must be specified by all other computers that
subsequently open the file. Conversely, if the first computer opens a
file and does not specify the accelerated mode option, then no other

Appendix A: Runtime Messages

 RM/COBOL User's Guide 405

computers that subsequently open the file can specify the accelerated
mode option either. These restrictions remain in effect until all
computers have closed the file.

93, 03 An OPEN or DELETE FILE operation failed because the filename was
previously closed WITH LOCK. (1974 mode)

93, 04 The file could not be opened because another file in the same SAME AREA
clause is currently open.

93, 05 The file could not be opened because another file in the same MULTIPLE
FILE TAPE clause is already open.

93, 06 The file could not be created because a file with the same name already
exists.

93, 07 The file could not be opened because a lock table for the requested open
mode was full. For more information, see the FILE-PROCESS-COUNT
keyword (on page 338) of the RUN-FILES-ATTR configuration record.

94, 01 The file organization specified for the filename does not match the actual
file organization of the physical file. (1974 mode)

 This message may not occur if the file is actually a Btrieve file. The
Btrieve MicroKernel Database Engine (MKDE) always opens its files
WITH LOCK, and the OPEN WITH LOCK error condition will be
encountered by the RM/COBOL file management system, preventing it
from determining the organization of the file.

94, 02 The minimum record length specified in the RECORD CONTAINS clause
or implied by the record descriptions of the filename does not match the
actual minimum record length of the physical file. (1974 mode)

 For Btrieve files, if the minimum record length of the file is less than four
bytes, the file will be implemented using four-byte records. In this
situation, the Btrieve Adapter program cannot detect the initial minimum
record length and will fail to diagnose the mismatched minimum record
length error condition.

94, 03 The maximum record length specified in the RECORD CONTAINS clause
or implied by the record descriptions of the filename does not match the
actual maximum record length of the physical file. (1974 mode)

 This error can occur when reopening a print file closed WITH NO
REWIND if the OPEN statement specifies a different record length than
was used on the previous OPEN statement.

 This error will not occur with variable-length record Btrieve files. Btrieve
files do not support a mechanism to record this information and, thus, it
cannot be verified.

94, 04 The minimum block length specified in the BLOCK CONTAINS clause for
the filename does not match the actual minimum block size of the physical
file. (1974 mode)

94, 05 The maximum block length specified in the BLOCK CONTAINS clause for
the filename does not match the actual maximum block size of the physical
file. (1974 mode)

 This error will not occur with variable-length record Btrieve files. Btrieve
files do not support a mechanism to record this information and, thus, it
cannot be verified.

Appendix A: Runtime Messages

406 RM/COBOL User's Guide

94, 06 The record delimiting technique, LINE-SEQUENTIAL or BINARY-
SEQUENTIAL, specified for the filename does not match the actual record
delimiting technique of the physical file. (1974 mode)

94, 07 The code-set specified in the CODE-SET clause for the filename does not
match the actual character code of the physical file. (1974 mode)

94, 08 The collating sequence specified in the COLLATING SEQUENCE clause
for the indexed file does not match the actual collating sequence of the
physical file. (1974 mode)

94, 09 The record type attribute, fixed or variable, specified in the RECORD
CONTAINS clause or implied by the record descriptions of the filename
does not match the record type attribute of the physical file. (1974 mode)

94, 20 The file is not available because the file identified by the resultant file
access name could not be found. The pathname or filename may be
misspelled or may not be valid for the operating system. Specifying a
pathname or filename that is not a valid name or that is longer than allowed
also results in this error. The directory search sequence specified by the
RUNPATH environment variable may be incorrect. For information on the
resultant file access name, see Locating RM/COBOL Files on UNIX (on
page 21) or Locating RM/COBOL Files on Windows (on page 62).
(1974 mode)

94, 21 The file organization specified is invalid or unsupported, or the requested
open operation is illegal on the specified organization.

94, 22 The minimum record length is invalid. The minimum record length
specified in the RECORD CONTAINS clause for the filename exceeds the
maximum record length.

94, 23 The maximum record length is invalid. The maximum record length
specified in the RECORD CONTAINS clause of the filename exceeds
65280, or the indexed records are not compressed and the maximum record
length exceeds the block size.

94, 24 The minimum block size is invalid. The minimum block size specified in
the BLOCK CONTAINS clause of the filename exceeds the maximum
block size.

94, 25 The maximum block size is invalid. The maximum block size specified
in the BLOCK CONTAINS clause of the filename is too large. The
method of computing the block size and the limitations on the block size
for each organization are described in sequential files (on page 234),
relative files (on page 240), and indexed files (on page 242).

 For indexed organization files, the computed block size is also a function
of the maximum record size. In general, if the BLOCK CONTAINS
clause is omitted, the runtime system defaults to the valid block size that is
a multiple of the disk sector size. For files with a very large record size,
specifying BLOCK CONTAINS 1 RECORDS yields the minimum possible
block size.

94, 26 The record delimiter is invalid. A record delimiting technique other than
LINE-SEQUENTIAL or BINARY-SEQUENTIAL was specified.

94, 27 The code-set specified in the CODE-SET clause is invalid or unsupported.

94, 28 The collating sequence specified in the COLLATING SEQUENCE clause
for an indexed file is invalid or unsupported.

Appendix A: Runtime Messages

 RM/COBOL User's Guide 407

94, 29 The record type attribute, fixed or variable, specified for the filename
is unsupported.

94, 30
through
94, 3E

The key duplicates allowed flag specified for keys 0 through 14 is
invalid (1974 and 1985 modes) or does not match the corresponding key
duplicates allowed flag of the physical file (1974 mode). The prime
record key is 0. Alternate record keys are numbered in ascending order
of key offset, starting with 1.

For Btrieve files, this error also indicates a key attribute other than
duplicate, modifiable, binary, null, alternate collating sequence, or
extended type was specified for the Btrieve key that corresponds with
the COBOL key defined for the key offset. (For example, descending,
supplemental, and manual key attributes may not be used for
RM/COBOL keys.) In addition, the primary key may not have a null
attribute.

Btrieve allows multiple keys to be defined at the same key offset, but
only the first key is considered by the Btrieve Adapter program.

94, 3F The key duplicates allowed flag specified for an alternate record key 15
through 254 is invalid (1974 and 1985 modes) or does not match the
corresponding key duplicates allowed flag of the physical file. (1974 mode)

 For Btrieve files, this error also indicates that in the physical file, a key
attribute other than duplicate, modifiable, binary, null, alternate collating
sequence or extended type was specified for the Btrieve key that
corresponds with the COBOL key defined for the key offset. (For example,
descending, supplemental and manual key attributes may not be used for
RM/COBOL keys.)

 Btrieve allows multiple keys to be defined at the same key offset, but only
the first key is considered by the Btrieve Adapter program.

94, 40
through
94, 4E

The offset from the start of the record area to the start of the key area for
keys 0 through 14 is invalid (1974 and 1985 modes) or does not match
the corresponding key offset of the physical file (1974 mode). The
prime record key is 0. Alternate record keys are numbered in ascending
order of key offset, starting with 1.

Error 94, 40 also occurs if more than 254 alternate record keys are
specified.

For Btrieve files, this error also indicates that the key extends into the
variable portion of a Btrieve file record.

94, 4F The offset from the start of the record area to the start of the key area for an
alternate key 15 through 254 is invalid (1974 and 1985 modes) or does not
match the corresponding key offset of the physical file. (1974 mode)

 For Btrieve files, this error also indicates that the key extends into the
variable portion of a Btrieve file record.

94, 50
through
94, 5E

The length of the key area for keys 0 through 14 is invalid (1974 and 1985
modes) or does not match the corresponding key length of the physical file
(1974 mode). The prime record key is key 0. Alternate record keys are
numbered in ascending order of key offset, starting with 1.

Appendix A: Runtime Messages

408 RM/COBOL User's Guide

This error also occurs if the number of specified keys does not match the
actual number of keys in the physical file. The key number 1 through E, if
greater than the number of keys in the file description, indicates that the file
contains more keys than the program describes. The key number 1 through
E, if less than or equal to the number of keys in the file description,
provides a value one greater than the number of keys contained in the file.
(1974 mode)

A Btrieve file is allowed to have more keys defined in it than in the COBOL
description of the file, but not less.

94, 5F The length of the key area for an alternate key 15 through 254 is invalid
(1974 and 1985 modes) or does not match the corresponding key offset of
the physical file. (1974 mode)

 This error also occurs if the number of keys specified does not match the
actual number of keys in the physical file (see error messages 94, 50
through 94, 5E). (1974 mode)

94, 60 There is insufficient memory to open a file. The amount of memory
required to open a file can be reduced by specifying a smaller maximum
block size in the BLOCK CONTAINS clause. Additional memory can be
made available by decreasing the amount of buffer pool memory by using
the BUFFER-POOL-SIZE keyword (see page 336) on the RUN-FILES-
ATTR configuration record.

94, 61 There is insufficient disk space to create a file.

94, 62 The LINAGE parameters are invalid for an OPEN statement. One or more
LINAGE parameters are negative or greater than 32767, LINAGE equals
zero, FOOTING equals zero, or FOOTING is greater than LINAGE.

94, 63 An OPEN WITH LOCK operation was attempted on a system that does not
support WITH LOCK.

94, 64 The filename specified is invalid. This error can occur if the filename is set
to spaces.

94, 65 An OPEN operation was attempted on the controlling console device.

94, 66 There are no more file handles available. An OPEN operation was rejected
because an operating system limit on the number of files was reached.

94, 67 The file is too large. An attempt was made to open a file that is too large
for this system. The file was probably created on another system using the
LARGE-FILE-LOCK-LIMIT configuration keyword or is a version 3
indexed file, or an attempt was made to use a LARGE-FILE-LOCK-LIMIT
value on a system that does not support files larger than 2 GB. For more
information, see the description of the LARGE-FILE-LOCK-LIMIT
keyword (on page 339) in the RUN-FILES-ATTR configuration record or
the description of File Version Level 3 (on page 254) files.

94, 68 An attempt was made to open an indexed file that has a future file version
number. The indexed file may have been created by a later version of
RM/COBOL or the indexed file may be corrupt.

94, 69 The specified large file lock limit is too large for either the operating system
on which the runtime is running, or the file system on which the file would
reside. For example, files on a Windows 9x-class operating system do not
support a large file lock limit greater than four gigabytes (4 GB).

Appendix A: Runtime Messages

 RM/COBOL User's Guide 409

94, 70 A DEFINE-DEVICE configuration record with a value NONBLOCKING-
FIFO=YES was specified and the OPEN would have to block because there
is no process waiting on the “other end” of the FIFO (that is, if OPEN
OUTPUT, no other process has the FIFO open for reading; if OPEN
INPUT, no other process has the FIFO open for writing).

94, 71 A DEFINE-DEVICE configuration record with a value NONBLOCKING-
FIFO=YES was specified, but the filename specified by the PATH keyword
is not an existing FIFO.

95, 01 The file must be mass storage. The device-name specified for the file was
DISC, DISK or RANDOM, but the resultant file access name identifies a
file that does not reside on disk. (1974 mode)

96 No file position is currently defined. A sequential READ operation was
attempted, but the last READ or START operation was unsuccessful or
returned an at end condition. (1974 mode)

96, 02 The position was lost. (1974 mode)

 For Btrieve files, A READ NEXT operation was attempted and could not be
completed because the Btrieve MicroKernel Database Engine (MKDE)
position was lost due to the current record (and surrounding records) being
deleted by programs at other computers. See Current Record Position
Limitations (on page 134).

97, 01 One or more characters in the record are illegal in a line sequential file.

97, 02 One or more characters could not be translated from the native character set
to the external code-set.

97, 03 The length of the record area specified in the WRITE, REWRITE or
RELEASE statement is less than the minimum record length of the file.
(1974 mode)

97, 04 The length of the record area specified in the WRITE, REWRITE, or
RELEASE statement is greater than the maximum record length of the file.
(1974 mode)

97, 05 The record read from the file is shorter than the minimum record length.

97, 06 The record read from the file is longer than the record area.

97, 07 A REWRITE statement attempted to change the length of a record in a
sequential organization file. (1974 mode)

97, 08 The LINAGE parameters are invalid for a WRITE statement. One or more
LINAGE parameters are negative or greater than 32767, LINAGE equals
zero, FOOTING equals zero, or FOOTING is greater than LINAGE.

97, 09 The TO LINE value specified in a WRITE statement for a file described
with the LINAGE clause is not an allowed value. The value is either zero,
greater than the number of lines in the current logical page body, or, when
the NEXT PAGE option has not been specified, greater than the current line
number within the logical page body.

98, 01 The indexed file structure includes a count of the number of times the file is
currently open for modification. The count should be zero whenever a file
in a single-user environment is opened or a file in a shared environment is
opened WITH LOCK. If the count is non-zero when the file is opened
WITH LOCK, a 98, 01 error is returned. The conditions that determine
whether the runtime system assumes a single-user or shared environment
are described in File Types and Structure (on page 234) and in the

Appendix A: Runtime Messages

410 RM/COBOL User's Guide

explanation of the FORCE-USER-MODE keyword (on page 338) of the
RUN-FILES-ATTR configuration record.

 The count is incremented when a program opens the file I-O, OUTPUT, or
EXTEND and decremented when the program closes the file. If the count
is non-zero when the file is opened in a single-user environment or opened
WITH LOCK in a shared environment, then the system must have
terminated without closing the file. This error can also occur when a file
with a non-zero count is moved from a shared environment to a single-user
environment. The indexed file will be inconsistent if all the modifications
to it were not written to disk. Use the Indexed File Recovery (recover1)
utility (see page 599) to rebuild or recover disk information.

 You can reduce the likelihood of encountering this error by changing the
Indexed File Recovery utility strategy to “Force File Closed”, as described
in Data Recoverability (on page 242). This causes the count to be changed
around every write operation instead of during open and close. Use the
Define Indexed File (rmdefinx) utility (see page 594) to change the
recovery strategy of an existing indexed file.

98, 02 A fatal error occurred during a DELETE, REWRITE, or WRITE statement
when the file was last open. The index structure is inconsistent and must be
rebuilt. Use the Indexed File Recovery (recover1) utility (see page 599) to
rebuild or recover disk information.

98, nn Invalid file structure. The nn subcode may be useful in determining which
runtime system procedure detected the error.

 For an indexed organization file, an inconsistency in the file structure was
detected. If the error occurs when the file is being read, it may be a disk
read error, which may go away when the operation is retried. If the error
occurs during a DELETE, REWRITE, or WRITE statement, a later OPEN
statement will probably receive a 98, 02 error. It may be possible to correct
the file structure inconsistency by rebuilding the index structure. Use the
Indexed File Recovery (recover1) utility (see page 599) to rebuild or
recover disk information.

 For a sequential or relative organization file, this error usually indicates the
file description does not match the organization of the file, record type,
record delimiting technique, or record length. It may also indicate that the
file data was not written or read correctly.

 Appendix K: Troubleshooting RM/COBOL (on page 657) describes more
information on 98 errors.

99 A DELETE, READ, or REWRITE statement failed because the record is
locked by another user.

Table 38: Btrieve Status Codes and Messages 1

Code Message Code Message

 1 Invalid operation 36 Transaction error

 2 I/O error 37 Transaction is active

 3 File not open 38 Transaction control I/O error

 4 Key value not found 39 End/abort transaction error

 5 Duplicate key value 40 Transaction max files

 6 Invalid key number 41 Operation not allowed

Appendix A: Runtime Messages

 RM/COBOL User's Guide 411

Table 38: Btrieve Status Codes and Messages 1

Code Message Code Message

 7 Different key number 42 Incomplete accelerated access

 8 Invalid positioning 43 Invalid record address

 9 End-of-file 44 Null key path

 10 Modifiable key value error 45 Inconsistent key flags

 11 Invalid filename 46 Access to file denied

 12 File not found 47 Maximum open files

 13 Extended file error 48 Invalid alternate sequence
definition

 14 Pre-image open error 49 Key type error

 15 Pre-image I/O error 50 Owner already set

 16 Expansion error 51 Invalid owner

 17 Close error 52 Error writing cache

 18 Disk full 53 Invalid interface

 19 Unrecoverable error 54 Variable page error

 20 Record manager inactive 55 Auto-increment error

 21 Key buffer too short 56 Incomplete index

 22 Data buffer length 57 Expanded memory error

 23 Position block length 58 Compression buffer too short (see
page 398) for resolution suggestion

 24 Page size error 59 File already exists

 25 Create I/O error 60 Reject count reached

 26 Number of keys 61 Work space too small

 27 Invalid key position 62 Incorrect descriptor

 28 Invalid record length 63 Invalid extended insert buffer

 29 Invalid key length 64 Filter limit reached

 30 Not a Btrieve file 65 Incorrect field offset

 31 File already extended 74 Transaction rolled back

 32 Extend I/O error 75 Server routing list too small

 34 Invalid extension name 76 File server list too small

 35 Directory error 77 VAP wait error

 78 Deadlock detected 130 MKDE out of system locks

 79 Programming error 132 File full

 80 Conflict 133 More than 5 concurrent engines
accessing same file

 81 Lock error 1001 Lock parameter is invalid

 82 Lost position 1002 Memory allocation error

 83 Read outside transaction 1003 Invalid memory size parameter

Appendix A: Runtime Messages

412 RM/COBOL User's Guide

Table 38: Btrieve Status Codes and Messages 1

Code Message Code Message

 84 Record in use 1004 Page size error

 85 File in use 1005 Preimage drive parameter invalid

 86 File table full 1006 Preimage buffer parameter invalid

 87 Handle table full 1007 Files parameter invalid

 88 Incompatible mode error 1008 Initialization parameter invalid

 90 Redirected device table full 1009 Transaction filename parameter
invalid

 91 Server error 1010 Transaction control file error

 92 Transaction table full 1011 Compression buffer parameter
invalid

 93 Incompatible lock type 1012 Invalid /n option (pre-v6.0)

 94 Permission error 1013 Task list full

 95 Session no longer valid 1014 Stop warning. Files still active

 96 Communications environment
error

1015 Pointer parameter invalid

 97 Data message too small (see
page 399) for resolution suggestion

1016 MKDE already initialized

 98 Internal transaction error 1017 Requester cannot locate
wbtrvres.dll

 99 Requester cannot access NetWare
Runtime server

1018 MKDE called from callback

 100 No cache buffers 1019 Operation canceled by callback

 101 Insufficient OS memory 1020 Requester communications error

 102 Insufficient stack space 2001 Memory allocation insufficient

 103 Chunk offset too big 2002 Requester option invalid

 104 Unknown locale 2003 Requester cannot access local file

 105 Cannot create VAT file 2004 SPX not installed

 106 Cannot get next chunk 2005 Incorrect SPX version

 107 Chunk operation on pre-v6.0 file 2006 No available SPX connection

 109 Unknown error creating or
accessing semaphore

2007 Pointer parameter invalid

1 This list of Btrieve status codes and messages is provided for convenience only, and is not
intended to supply complete information. For a full list of codes and messages with descriptions,
refer to the appropriate Btrieve installation and operation manual.

Table 39: C Library Error Codes 1

Code Message Code Message

 1 No such file or directory 21 I/O error

 2 Arg list too big 22 Is a directory

Appendix A: Runtime Messages

 RM/COBOL User's Guide 413

Table 39: C Library Error Codes 1

Code Message Code Message

 3 Exec format error 23 Not a directory

 4 Bad file number 24 Too many links

 5 Not enough memory 25 Block device required

 6 Permission denied 26 Not a character device

 7 File exists 27 No such device or address

 8 Cross-device link 28 Not owner

 9 Invalid argument 29 Broken pipe

10 File table overflow 30 Read-only file system

11 Too many open files 31 Illegal seek

12 No space left on device 32 No such process

13 Argument too large 33 Text file busy

14 Result too large 34 Bad address

15 Resource deadlock would occur 35 Name too long

16 Interrupt 36 No such device

17 Child does not exist 37 No locks available in system

18 Resource unavailable, try again 38 Unknown system call

19 Device or resource busy 39 Directory not empty

20 File too large
1 This list of C library error codes and meanings is provided for convenience only, and is not

intended to supply complete information.

Table 40: File Manager Detected Error Codes

Code Message

1 Memory management failure

2 Operator requested termination

3 Locks lost

Internal Errors
In general, internal errors are caused when the object file has been corrupted. If the
corruption was caused by an undetected data error reading the object file from disk or over a
network, the failure should disappear or change when the program is run again. If the object
file on disk is corrupted, compiling the program to generate correct object should fix the
problem.

Appendix A: Runtime Messages

414 RM/COBOL User's Guide

Sort-Merge Errors
Sort-merge errors include errors processing a SORT or MERGE statement.

Number Description

301 There was insufficient memory available to initiate a sort or merge process.
The default or specified sort memory size was insufficient to hold ten
records of the record length to be sorted, or the specified sort memory size
is not available. Use the T Runtime Command Option to increase the
memory requested by the SORT statement.

302 Fewer than three intermediate files were available to begin a SORT
statement. The sort procedure cannot begin unless it is able to create at
least three intermediate files.

303 A record read from a MERGE file or SORT USING file was not long
enough to include all the keys.

304 Too many out-of-sequence records were passed to the sort process. Use the
T Runtime Command Option to increase the memory available to sort. Or,
divide the records to be sorted into several files, sort the several files, and
merge the resulting files.

305 A SORT or MERGE statement was attempted while a sort or merge process
was already active.

306 A RELEASE or RETURN statement was attempted and no sort or merge
process was active.

307 A RELEASE or RETURN statement was attempted for a sort or merge
description other than the one currently being sorted or merged.

308 A RELEASE statement was attempted in an OUTPUT PROCEDURE, or a
RETURN statement was attempted in an INPUT PROCEDURE.

309 A RETURN statement was attempted in an OUTPUT PROCEDURE after
the at end condition was returned on the sort or merge file.

310 An application I/O statement was attempted on a file currently opened as a
sort or merge USING or GIVING file.

Message Control Errors
Message control errors include errors that occur when using the Message Control System
(MCS).

Number Description

351 An ENABLE, DISABLE, SEND, RECEIVE or ACCEPT . . . FROM
MESSAGE COUNT statement was encountered and no MCS was present.

Appendix A: Runtime Messages

 RM/COBOL User's Guide 415

Configuration Errors
Configuration errors include all errors that occur because of an error in the configuration. The
formats are as follows:

code is the error number listed below.

number identifies the logical record in the configuration file (location) at which the error
was found. Each logical record is identified with a configuration record type. In other
words, when you are using the record number provided in the message to determine the
erroneous record, count the lines combined with their corresponding continuation lines as
one line, and do not count the comment lines and blank lines.

location identifies the configuration file containing the error. The possible values are as
follows:

• Automatic configuration file

• Overriding configuration file

• Supplemental configuration file

Automatic configuration file refers to configuration files located automatically by the
Automatic Configuration Support module on UNIX or Windows. For more details, see
Automatic Configuration Files (on page 290). Overriding configuration file refers to a
configuration file specified by the C Runtime Command Option. Supplemental
configuration file refers to a configuration file specified by the X Runtime Command
Option. For an explanation of the Runtime Command Options, see Chapter 7: Running
(on page 189).

The first format is used if an error is detected during the processing of a configuration record.
The error message will be followed by a line containing the portion of the record being
processed when the error occurred and another line placing a currency symbol underneath the
item being processed when the error occurred.

The second format is used if an error is detected after all configuration records have been
processed or if an error is detected with which a record is not associated.

Number Description

401 A character has been defined as a data character in a TERM-ATTR record
as well as the beginning character of an input sequence in a TERM-INPUT
record.

402 An invalid delimiter was found.

403 The input sequence in the current TERM-INPUT configuration record has
been defined in a previous TERM-INPUT configuration record.

404 A keyword has not been provided where expected or the keyword is invalid.

COBOL configuration error code at record
 number in location.

COBOL configuration error code. Error
 processing configuration.

Appendix A: Runtime Messages

416 RM/COBOL User's Guide

405 The resulting terminal input configuration table (used by the runtime system
during ACCEPT statements) is too large or is out of memory.

406 An attempt has been made to redefine the terminal interface.

407 Syntax error.

408 An attempt has been made to describe a terminal characteristic and either a
terminal interface has not been defined via a TERMINAL-INTERFACE
record, or the terminal characteristic is not valid with the defined terminal
interface.

409 A value has not been provided where expected or the value is invalid.

410 The configuration file requested in the Runtime Command was not found.

411 A logical configuration record exceeds the maximum length.

Runtime System Initialization Messages
During its initialization, the runtime system may issue several messages, some of which are
error diagnostics and some of which are informational.

Initialization Errors
If the runtime system receives an error from the operating system during initialization, the
following message is displayed:

RM/COBOL: Operating System Initialization Error. OS Error Code: code

code depends on the operating system on which the file resides. See the description of the
30, OS error code (on page 398) for more information.

Support Module Initialization Errors
During initialization, the runtime system attempts to initialize each optional support module
that has defined an initialization entry point (RM_AddOnInit). If the support module
determines that successful initialization is not possible, the runtime system produces the
following message:

RM/COBOL: Add-on software failed to initialize - module-name.

Other messages should indicate the reason why the support module could not complete
initialization. Contact the provider of the failing support module if the information provided
is not sufficient to resolve the problem.

Support Module Version Errors
During initialization, the runtime system locates and loads various support modules, including
either the terminfo or the termcap Terminal Interface support module. Also, at initialization,

Appendix A: Runtime Messages

 RM/COBOL User's Guide 417

the runtime system verifies that each support module is the correct version for the runtime
system. If a support module is not the correct version, the following message is displayed:

RM/COBOL: module-name version mismatch, expected 12.0n.nn,
 found n.nn.nn.

The runtime system may issue one of the following messages if a support module indicates
either that it does not support any of the interface versions supported by the runtime system or
that it cannot run with this version of the runtime system:

RM/COBOL: module-name bad interface version: nn; must be nn to nn.

RM/COBOL: module-name version check failed.

When any of the previous messages are displayed, the runtime system terminates with the
following message:

Error invoking mismatched runtime and support module.

Option Processing Errors
If the runtime system detects an unknown option letter, a known option letter in error or an
option not terminated with a space or comma, the following message is displayed:

letter option not valid.

where, letter is the erroneous option letter.

Further processing is done for libraries (as specified by the L Runtime Command Option)
during which control structures are built for use later in the run unit. If errors are encountered
during this processing, the following message is displayed:

COBOL procedure error code. Error processing library
 library-name.

where, code is as defined in Procedure Errors (see page 387).

library-name is the name of the library being loaded.

Main Program Loading Errors
If errors are encountered during the load and initialization of the main program, the following
message is displayed:

COBOL procedure error code (description). Error loading main
 program prog-name.

where, code is as defined in Procedure Errors (see page 387).

prog-name is the name of the program being loaded (or the pathname of the file being
loaded, as described in the note below).

Note In some cases, this will be a procedure error 204 indicating that the application main
program could not be found. If one or more program object files were found, but could not be

Appendix A: Runtime Messages

418 RM/COBOL User's Guide

successfully loaded, the 204 error will be preceded by one or more messages in the preceding
format indicating the specific reason that the load failed along with the pathname of the file
that could not be loaded in place of prog-name. Multiple files may be attempted because of
the extension search the runtime performs. When the search completes without successfully
loading a program, the 204 error is displayed after any of the load errors as follows:

COBOL procedure error 204 (program not found). Error starting
 application prog-name.

where, 204 is the procedure error code as defined in Procedure Errors (see page 387).

prog-name is the name of the program as specified in the runtime command line.

If the extension search does not find any matching file names, then only the error below is
displayed:

COBOL procedure error 204 (program not found). Error loading
 main program prog-name.

where, 204 is the procedure error code as defined in Procedure Errors (see page 387).

prog-name is the name of the program as specified in the runtime command line.

Runcobol Banner Message
The banner message is displayed when you first invoke RM/COBOL. This message may be
suppressed with the K Runtime Command Option:

RM/COBOL Runtime - Version 12.14 for operating system.
Copyright(c) 1985-2017 by Micro Focus. All rights reserved.
Registration Number: xx-nnnn-nnnnn-nnnn

A verbose banner has additional information about the product and the environment in which
it is running. The verbose banner is obtained for the runtime by using the V Runtime
Command Option or by setting the environment variable RM_VERBOSE_BANNER to a
value that begins with “Y” or “y”. The verbose banner adds the following lines to the banner:

RM/COBOL: User user-name running on machine machine-name (system-name)
RM/COBOL: Native character set: ncs (Codepage: cp-number)

A verbose banner also includes the support module list as explained in the description of the
V Runtime Command Option. The lines in the verbose banner are not suppressed by the K
Runtime Command Option.

Runcobol Usage Message
The following message is displayed in response to entering a Runtime Command without
parameters:

Usage: RUNCOBOL name [options]

Options: [A=arguments] [B=buffersize] [C=cfgfile1] [D]
 [F=fillchar] [I] [K] [L=libname] [M] [Q=mcssym]
 [S=switches] [T=sortsize] [V] [X=cfgfile2]

Appendix A: Runtime Messages

 RM/COBOL User's Guide 419

Registration Error Messages
Attempting to execute more runtime systems than are authorized causes the following
message to be displayed:

Error invoking unauthorized copy of runtime.

COBOL Normal Termination Messages
When the runtime system encounters a STOP RUN statement or a GOBACK statement in the
main program of a run unit, the following message is displayed:

COBOL STOP RUN at line number in program prog-id

This message may be suppressed with the K Runtime Command Option (see page 192).

When the runtime system encounters a temporary STOP statement, the following message is
displayed:

"message" at line number in program prog-id. Continue (Y/N)?

where, message is the value of literal-1 or the contents of the data referenced by
identifier-2, specified in the temporary STOP statement.

Program execution is then suspended until an operator response is entered. If you enter Y or
y in response to a temporary STOP statement message, execution continues with the next
executable statement. If you enter N or n, execution ends as if a STOP RUN statement had
been encountered.

Appendix B: Limits and Ranges

 RM/COBOL User's Guide 421

Appendix B: Limits and Ranges

This appendix describes RM/COBOL limits and ranges and file locking limitations.

Note See also Chapter 4: System Considerations for Btrieve (on page 119) for a description
of the limitations of the Btrieve MicroKernel Database Engine (MKDE), and the way in
which these limitations affect RM/COBOL indexed files. Although these two systems
perform the same functions, they do not operate in the same manner.

RM/COBOL Limits and Ranges
For the most part, RM/COBOL is designed for 32-bit computers. Thus, the limit on the total
memory footprint of a program is four gigabytes. In the following limit descriptions, some
items are said to have a limit of four gigabytes. This is a theoretical limit since if any one
such item was four gigabytes there would be no memory left for any other item in the
program.

No more than 1,200,000 unique names, that is, user-defined words (alphabet-names,
cd-names, class-names, condition-names, data-names, file-names, index-names, key-names,
mnemonic-names, paragraph-names, section-names, and symbolic-characters), where each
name is 30 characters in length, may be defined in a single source program. When names
average less than 30 characters in length, more unique user-defined words are allowed. For
example, names averaging 12 characters in length double the limit to 2,400,000 unique
user-defined words. The COBOL user-defined word categories level-number, library-name,
program-name, segment-number and text-name do not count towards this limit. The compiler
allows 8,400,000 words for names. Each name contains one count word and a word for every
six characters of the name or part thereof. The “Program Summary Statistics” section in the
compilation listing indicates the number and percentage of this name-space limit used for a
source program.

No more than 840,000 identifiers may be defined in a single source program, including any of
its nested source programs. The “Program Summary Statistics” section in the compilation
listing (see page 173) indicates the number and percentage of this identifier limit used for a
source program. Note that the compiler implicitly defines identifier entries, reducing the
number that can be explicitly defined, as follows:

• one for each LINAGE-COUNTER associated with any files described with the
LINAGE clause;

• one for each variable-length record file that has multiple record descriptions, none of
which is a group having the maximum record length;

Appendix B: Limits and Ranges

422 RM/COBOL User's Guide

• one for each indexed file with a CODE-SET or COLLATING-SEQUENCE clause
requiring that an external collating sequence be provided; that is, when the specified or
implicit code-set for the file requires a mapping other than identity to obtain the specified
or implicit collating sequence used for record keys of the file;

• one for each RERUN clause;

• one for a RETURN-CODE special register item if the program contains an explicit
reference to RETURN-CODE or contains a STOP RUN statement that specifies
identifier-1 or integer-1;

• one for each temporary index needed for any INITIALIZE, INSPECT, MOVE, STRING
or UNSTRING statements that reference one or more subscripted data items (the
compiler reuses these for each statement, thus defining only the maximum needed for any
one such statement); and

• five for control information if one or more simple (COBOL nucleus level 1) INSPECT
statements are contained in the source program.

The maximum length of a single elementary data item is 65280 characters. A group data item
has a length limit of four gigabytes. For RM/COBOL version 12 and later, elementary data
items may also be up to four gigabytes in length.

The maximum length of an element of a table is 65280 characters for object versions less
than 13 (that is, data items subordinate to an OCCURS clause cannot exceed 65280 characters
in length). For object versions 13 (product version 10) and later, the limit has been expanded
to four gigabytes. (Note that prior to version 10, the size of the fixed-size header portion of a
variable size group was limited to 65280 characters; for version 10 and later, the fixed-size
header portion of a variable-size group is limited to four gigabytes. The fixed-size header
portion of a variable-size group is that portion of the group defined prior to the data item
described with the OCCURS clause that specifies the DEPENDING ON phrase.)

The maximum number of occurrences of a table element is 65535. That is, in an OCCURS
clause, the value of integer-2 must be less than or equal to 65535. For RM/COBOL version
12 and later, the value of integer-2 must be less than or equal to 4294967295.

Data items greater than 65280 characters in length may be referenced in a MOVE statement
or the USING phrase of a CALL statement, but may not be referred to in any other context.
For object version 15 (introduced in RM/COBOL version 12), data items greater than 65280
characters in length may be referenced in any statement.

Data items greater than 65280 characters in length may not be reference modified. This limit
has been removed for RM/COBOL version 12 and later.

The maximum guaranteed precision for mathematical calculations is 36 decimal digits. This
limit applies to all mathematical operations except exponentiation, where the maximum
guaranteed precision is 18 decimal digits.

A record key of an indexed file may not exceed 254 characters in length.

A maximum of 255 keys may be declared for an indexed file (one prime key and up to 254
alternate keys).

A record of a file may not exceed 65280 characters in length.

A maximum of 64 statements may be coded on a single source line. When more than 64
statements are coded, the remaining statements are compiled, but are treated as if they were
part of the 64th statement for purposes of debugging and instrumentation. In this case,
warning message 774 is issued by the compiler (see Appendix B: Compiler Messages in the
RMCOBOL Language Reference Manual).

A single paragraph cannot exceed 32512 bytes of generated object code.

Appendix B: Limits and Ranges

 RM/COBOL User's Guide 423

The maximum number of procedures (paragraphs or sections) defined in all the fixed
permanent and fixed overlayable segments of a separately compiled program, including any
of the programs contained in the separately compiled program, is 8191. The maximum
number of procedures in any one independent overlayable segment is also 8191.

The maximum number of USING items in a CALL statement or a Procedure Division header
is 2047.

The maximum length of a single literal value is 65535 characters. The maximum length of
literals generated for any one segment type within a program may not exceed four gigabytes.
Segment type refers to fixed permanent, fixed overlayable, and independent. Segmentation
can greatly increase the number of literals a program may have, since literals are overlaid for
each segment.

The maximum length of the message, specified with literal-1 or identifier-2, for a STOP
{literal/identifier} statement is 80 characters.

The maximum number of external items in a single, separately compiled program—including
any of its contained programs—is limited to 2046.

Note For additional compilation limits, refer to Table 17: Abnormal Termination Messages
(on page 179).

The maximum length of an operand to be accepted (ACCEPT statement) or displayed
(DISPLAY statement) is limited by the size of the ACCEPT and DISPLAY buffer. The
default size for the ACCEPT and DISPLAY buffer is 264 characters. However, the
B Runtime Command Option (see page 153), or its equivalent B keyword (see page 345) in
the RUN-OPTION configuration record, may be specified to change the size of this buffer up
to a maximum of 65280 characters. Operands with a length larger than the buffer size are
space padded on the right when accepted (the input field size is limited to the buffer size) and
are truncated on the right when displayed.

File Locking
When this user’s guide was produced, RM/COBOL for Windows and UNIX had the
following file locking limitations:

• RM/COBOL implements file and record locks through region locks. The algorithm for
computing the region to be locked is unique to RM/COBOL. This means that the OPEN
and READ statements lock out only other RM/COBOL applications; an application not
using the RM/COBOL file system can still access data in locked files. This may cause
inconsistent data when a file is shared between RM/COBOL applications and other
applications.

• RM/COBOL implements the WITH LOCK phrase of the OPEN statement and the WITH
NO LOCK phrase of the READ statement by applying region locks to segments of the
file. To ensure consistent results and to improve performance when the WITH LOCK
phrase is specified, the runtime system must recognize when two distinct filenames
identify the same file. This is accomplished under Windows by resolving the user
filename into a fully specified filename, including the remote machine name when the
file is remote. If a remote file resides on a UNIX server accessed by Network File
System (NFS), however, two very different filenames can be associated with a single file
through the ln command. This can cause a Windows client program to read invalid data
from the file or to diagnose file integrity errors.

Appendix C: Internal Data Formats

 RM/COBOL User's Guide 425

Appendix C: Internal Data
Formats

This appendix describes and illustrates the internal representations of the elementary
data types.

Internal Data Formats
The particular format in which the RM/COBOL compiler stores data is determined by the
specification of any of the following clauses in the data description entry for the data item:

1. PICTURE clause. This clause classifies a data item as signed or unsigned numeric or
as nonnumeric.

2. USAGE clause. This clause modifies the format of a numeric data item. All
nonnumeric data items are always considered to be DISPLAY usage.

3. SIGN clause. This clause determines the format and the position (separate leading,
combined leading, separate trailing, or combined trailing) of the operational sign for
signed numeric DISPLAY data items. The SIGN clause cannot be used for any other
type of data item.

The following formats are described:

• Nonnumeric data

− Alphanumeric string (ANS)

− Alphanumeric string edited (ANSE)

− Alphabetic string (ABS)

− Alphabetic string edited (ABSE)

− Numeric string edited (NSE)

• Numeric data

− Unsigned numeric DISPLAY (NSU)

− Signed numeric DISPLAY, TRAILING SEPARATE (NTS)

− Signed numeric DISPLAY, LEADING SEPARATE (NLS)

Appendix C: Internal Data Formats

426 RM/COBOL User's Guide

− Signed numeric DISPLAY, TRAILING (NTC)

− Signed numeric DISPLAY, LEADING (NLC)

− Unsigned numeric COMPUTATIONAL (NCU)

− Signed numeric COMPUTATIONAL (NCS)

− Signed numeric COMPUTATIONAL-1 (NBS)

− Unsigned numeric COMPUTATIONAL-3 or PACKED-DECIMAL (NPP)

− Signed numeric COMPUTATIONAL-3 or PACKED-DECIMAL (NPS)

− Unsigned numeric COMPUTATIONAL-4 or BINARY (NBU)

− Signed numeric COMPUTATIONAL-4 (NBS)

− Unsigned numeric COMPUTATIONAL-5 (NBUN)

− Signed numeric COMPUTATIONAL-5 (NBSN)

− Unsigned numeric COMPUTATIONAL-6 (NPU)

Note An NBS (Numeric Binary Signed) data item can be defined with COMP-1,
COMP-4, or BINARY usage. COMP-1 usage always defines an NBS data item.
COMP-4 and BINARY usage define an NBS data item when the PICTURE character-
string contains the symbol S, thus indicating the data item is signed; otherwise, COMP-4
and BINARY usage define an NBU (Numeric Binary Unsigned) data item.

• Pointer data

− Data pointer (PTR)

Illustrations of the data storage for the various formats are presented as follows:

 01 EXAMPLE PIC S9(3)V9(2) VALUE +514.72
 DISPLAY SIGN LEADING SEPARATE.

0 1 2 3 4 5

2B 35 31 34 37 32

The line of source code shows the RM/COBOL data description entry. The values inside the
box show the hexadecimal data values in bytes, as stored in memory. The numbers above the
box show the hexadecimal relative byte address.

The ASCII code-set is used to represent all data items whose usage is DISPLAY.

Nonnumeric Data
Nonnumeric data items are formatted one character per byte. The leftmost character starts at
the lowest address. Edited nonnumeric data items have an associated editing PICTURE
character-string that is used only when the data item is a receiving operand. Nonnumeric data
items always have DISPLAY usage.

The SIGN clause does not apply to nonnumeric data items. The BLANK WHEN ZERO
clause—when associated with a numeric PICTURE character-string—causes the data item to
be treated as numeric edited.

Appendix C: Internal Data Formats

 RM/COBOL User's Guide 427

Table 41 lists the types of nonnumeric data, the compiler designation for each type, and the
valid picture symbols for each type.

Table 41: Nonnumeric Data

Data Type Compiler Designation Picture Symbols

Alphanumeric ANS (alphanumeric string) A X 9

Alphanumeric Edited ANSE (alphanumeric string edited) A B X 0 9 /

Alphabetic ABS (alphabetic string) A

Alphabetic Edited ABSE (alphabetic string edited) A B

Numeric Edited NSE (numeric string edited) B P V Z 0 9 / , . $ +
– * CR DB

When the CURRENCY SIGN clause is specified in the SPECIAL-NAMES paragraph, the
character specified in that clause is also a permissible picture symbol for numeric edited
data items.

Alphanumeric (ANS)
The full ASCII code-set is stored as follows:

 01 ANS1 PIC X(95) VALUE
 " !""#$%&'()*+,-./0123456789:;<=>?
 - "@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
 - "`abcdefghijklmnopqrstuvwxyz{|}~"
 DISPLAY.

ASCII code set
 0 1 2 3 4 5 6 7

 00: 20 21 22 23 24 25 26 27

 08: 28 29 2A 2B 2C 2D 2E 2F

 10: 30 31 32 33 34 35 36 37

 18: 38 39 3A 3B 3C 3D 3E 3F

 20: 40 41 42 43 44 45 46 47

 28: 48 49 4A 4B 4C 4D 4E 4F

 30: 50 51 52 53 54 55 56 57

 38: 58 59 5A 5B 5C 5D 5E 5F

 40: 60 61 62 63 64 65 66 67

 48: 68 69 6A 6B 6C 6D 6E 6F

 50: 70 71 72 73 74 75 76 77

 58: 78 79 7A 7B 7C 7D 7E

Extended characters, that is, characters with code points 128 to 255 (80 – FF in hexadecimal),
may also be in the value of a nonnumeric data item. The interpretation of extended characters

Appendix C: Internal Data Formats

428 RM/COBOL User's Guide

depends on the locale (for UNIX) or code-page (for Windows). Further, on Windows, the
interpretation depends on whether the ANSI code-page or OEM code-page is being used by
the runtime system (for more information on the ANSI and OEM code-pages, see Character
Set Considerations for Windows on page 100). Other considerations may also apply, such as
the particular printer being used or the availability of a font that supports the desired
interpretation of the extended character code point.

Alphanumeric Edited (ANSE)

 01 ANSE1 PIC XX/9900/AABB VALUE "**/1200/QR " DISPLAY.

0 1 2 3 4 5 6 7 8 9 a b

2A 2A 2F 31 32 30 30 2F 51 52 20 20

Alphabetic (ABS)

 01 ABS1 PIC A(12) VALUE "STOCK NUMBER" DISPLAY.

0 1 2 3 4 5 6 7 8 9 a b

53 54 4F 43 4B 20 4E 55 4D 42 45 52

Alphabetic Edited (ABSE)

 01 ABSE1 PIC AABAABAA VALUE "XX YY ZZ" DISPLAY.

0 1 2 3 4 5 6 7

58 58 20 59 59 20 5A 5A

Numeric Edited (NSE)

 01 NSE1 PIC $*(5).**CR VALUE "$***24.13 " DISPLAY.

0 1 2 3 4 5 6 7 8 9 a

24 2A 2A 2A 32 34 2E 31 33 20 20

 01 NSE2 PIC $(6).99+ VALUE 4913.78 DISPLAY.

0 1 2 3 4 5 6 7 8 9

20 24 34 39 31 33 2E 37 38 2B

Numeric Data
Any numeric data item, regardless of usage, must contain at least one digit position and may
contain as many as thirty digit positions.

Appendix C: Internal Data Formats

 RM/COBOL User's Guide 429

A numeric data item may vary in size from 1 to 31 bytes. Storage requirements for a numeric
data item depend on the usage, the number of digits, and the presence of an operational sign.

Numeric DISPLAY data items are formatted one digit character per byte. The number is
formatted as an integer aligned with the most significant digit at the lowest address and the
least significant digit at the highest address. The position of the implied decimal point is
maintained in a separate data descriptor. The format descriptions of the numeric DISPLAY
data items begin in the following topic.

Numeric computational data items are formatted in a variety of ways depending on the
specific USAGE applied to the data item and whether the data item is unsigned or signed.
The various numeric computational data item formats are described beginning with Unsigned
Numeric Computational (NCU) on page 433.

Unsigned Numeric DISPLAY (NSU)
No storage is allocated for an operational sign.

Unsigned numeric DISPLAY data (TRAILING SEPARATE) is designated as NSU, numeric
string unsigned.

Valid picture symbols are 9, V and P. Usage is always DISPLAY.

NSU Format Illustrations

 01 NSU1 PIC 9(3)V9(2) VALUE 731.24 DISPLAY.

0 1 2 3 4

37 33 31 32 34

 01 NSU2 PIC 9(6)V9(6) VALUE 3456.7 DISPLAY.

0 1 2 3 4 5 6 7 8 9 a b

30 30 33 34 35 36 37 30 30 30 30 30

 01 NSU3 PIC 9(5)PP VALUE 5712300 DISPLAY.

0 1 2 3 4

35 37 31 32 33

 01 NSU4 PIC P9(7) VALUE 0.09431726 DISPLAY.

0 1 2 3 4 5 6

39 34 33 31 37 32 36

Signed Numeric DISPLAY, TRAILING SEPARATE (NTS)
Signed numeric DISPLAY data items described with the SIGN IS TRAILING SEPARATE
clause are formatted with an additional byte for the operational sign. This sign occupies a
separate byte following the least significant digit byte. A positive sign is represented by a
value of 2Bh. A negative sign is represented by a value of 2Dh.

Appendix C: Internal Data Formats

430 RM/COBOL User's Guide

If the S (separate sign) Compile Command Option is specified, the compiler assumes the
presence of the SIGN IS TRAILING SEPARATE clause for all signed numeric DISPLAY
data items for which the SIGN clause is not explicitly stated.

Signed numeric DISPLAY data (TRAILING SEPARATE) is designated as NTS, numeric
trailing separate (sign).

The valid picture symbols are S, 9, V and P. Usage is always DISPLAY. The sign is always
TRAILING SEPARATE (or possibly omitted when the S Compile Command Option is
specified or configured).

NTS Format Illustrations

 01 NTS1 PIC S9(3)V9(2) VALUE -731.24
 SIGN TRAILING SEPARATE DISPLAY.

0 1 2 3 4 5

37 33 31 32 34 2D

 01 NTS2 PIC S9(4)V9(7) VALUE -34.567
 SIGN TRAILING SEPARATE DISPLAY.

0 1 2 3 4 5 6 7 8 9 a b

30 30 33 34 35 36 37 30 30 30 30 2D

 01 NTS3 PIC S9(5)PP VALUE +5712300
 SIGN TRAILING SEPARATE DISPLAY.

0 1 2 3 4 5

35 37 31 32 33 2B

 01 NTS4 PIC SP9(7) VALUE -.09431726
 SIGN TRAILING SEPARATE DISPLAY.

0 1 2 3 4 5 6 7

39 34 33 31 37 32 36 2D

Signed Numeric DISPLAY, LEADING SEPARATE (NLS)
Signed numeric DISPLAY data items described with the SIGN IS LEADING SEPARATE
clause are formatted with an additional byte for the operational sign. The operational sign
occupies a separate byte preceding the most significant digit byte. A positive sign is
represented by a value of 2Bh. A negative sign is represented by a value of 2Dh.

Signed numeric DISPLAY data (LEADING SEPARATE) is designated as NLS, numeric
leading separate (sign).

The valid picture symbols are S, 9, V and P. Usage is always DISPLAY. The sign is always
LEADING SEPARATE.

Appendix C: Internal Data Formats

 RM/COBOL User's Guide 431

NLS Format Illustrations

 01 NLS1 PIC S9(3)V9(2) VALUE +731.24
 SIGN LEADING SEPARATE DISPLAY.

0 1 2 3 4 5

2B 37 33 31 32 34

 01 NLS2 PIC S9(2)V9(7) VALUE -7.6543
 SIGN LEADING SEPARATE DISPLAY.

0 1 2 3 4 5 6 7 8 9

2D 30 37 36 35 34 33 30 30 30

 01 NLS3 PIC S9(5)PP VALUE +5712300
 SIGN LEADING SEPARATE DISPLAY.

0 1 2 3 4 5

2B 35 37 31 32 33

 01 NLS4 PIC SP9(7) VALUE +.09431726
 SIGN LEADING SEPARATE DISPLAY.

0 1 2 3 4 5 6 7

2B 39 34 33 31 37 32 36

Signed Numeric DISPLAY, TRAILING (NTC)
Signed numeric DISPLAY data items described with the SIGN IS TRAILING clause are
formatted with the highest addressed byte containing the operational sign combined with the
low-order digit. Numeric signed trailing combined data is designated as NTC.

Because of the combined digit and sign, this format is sometimes called trailing combined
sign. It is also sometimes called trailing zoned sign because the sign is represented in a
manner consistent with a sign zone punch and digit punch on Hollerith punch cards.

The hexadecimal values that result from this combination are shown in Table 42.

Table 42: Combined Digit and Sign

Digit Positive Negative

0 7B 7D

1 41 4A

2 42 4B

3 43 4C

4 44 4D

5 45 4E

6 46 4F

7 47 50

8 48 51

Appendix C: Internal Data Formats

432 RM/COBOL User's Guide

Table 42: Combined Digit and Sign

Digit Positive Negative

9 49 52

This format is the default for all signed numeric DISPLAY data items when the SIGN clause
is not specified, unless the S (separate sign) Compile Command Option is specified.

Signed numeric DISPLAY data (TRAILING) is designated as NTC, numeric trailing
combined (sign).

The valid picture symbols are S, 9, V and P. Usage is always DISPLAY. The sign is always
TRAILING (or omitted when the S Compile Command Option is not specified or
configured).

Note If an NTC data item is sent directly to a printer or display device, the position that
contains the combined sign and digit appears as a special character or letter. A positive zero
value appears as {. A negative zero value appears as }. Positive 1 through 9 values appear as
A through I. Negative 1 through 9 values appear as J through R.

NTC Format Illustrations

 01 NTC1 PIC S9(3)V9(2) VALUE -731.24
 SIGN TRAILING DISPLAY.

0 1 2 3 4

37 33 31 32 4D

 01 NTC2 PIC S9(2)V9(7) VALUE -3.14159
 SIGN TRAILING DISPLAY.

0 1 2 3 4 5 6 7 8

30 33 31 34 31 35 39 30 7D

 01 NTC3 PIC S9(5)PP VALUE +5712300
 SIGN TRAILING DISPLAY.

0 1 2 3 4

35 37 31 32 43

 01 NTC4 PIC SP9(7) VALUE -.09431726
 SIGN TRAILING DISPLAY.

0 1 2 3 4 5 6

39 34 33 31 37 32 4F

Signed Numeric DISPLAY, LEADING (NLC)
Signed numeric DISPLAY data items described with the SIGN IS LEADING clause are
formatted with the lowest addressed byte containing the operational sign combined with the
high-order digit. The hexadecimal values that result from this combination are listed in
Table 42 on page 431.

Appendix C: Internal Data Formats

 RM/COBOL User's Guide 433

Because of the combined digit and sign, this format is sometimes called leading combined
sign. It is also sometimes called leading zoned sign because the sign is represented in a
manner consistent with a sign zone punch and digit punch on Hollerith punch cards.

Signed numeric DISPLAY data (LEADING) is designated as NLC, numeric leading
combined (sign).

The valid picture symbols are S, 9, V and P. Usage is always DISPLAY. The sign is always
LEADING.

Note If an NLC data item is sent directly to a printer or display device, the position that
contains the combined sign and digit appears as a special character or letter. A positive zero
value appears as {. A negative zero value appears as }. Positive 1 through 9 values appear as
A through I. Negative 1 through 9 values appear as J through R.

NLC Format Illustrations

 01 NLC1 PIC S9(3)V9(2) VALUE -731.24
 SIGN LEADING DISPLAY.

0 1 2 3 4

50 33 31 32 34

 01 NLC2 PIC S9V9(7) VALUE -2.9876
 SIGN LEADING DISPLAY.

0 1 2 3 4 5 6 7

4B 39 38 37 36 30 30 30

 01 NLC3 PIC S9(5)PP VALUE +5712300
 SIGN LEADING DISPLAY.

0 1 2 3 4

45 37 31 32 33

 01 NLC4 PIC SP9(7) VALUE +.09431726
 SIGN LEADING DISPLAY.

0 1 2 3 4 5 6

49 34 33 31 37 32 36

Unsigned Numeric COMPUTATIONAL (NCU)
For the default configuration, COMPUTATIONAL (or COMP) data items are formatted as
one binary coded decimal digit per byte.

Note The compiler can be configured to treat data items described as COMPUTATIONAL
(or COMP) as having been described as BINARY, PACKED-DECIMAL, or DISPLAY using
the COMPUTATIONAL-TYPE keyword of the COMPILER-OPTIONS configuration record.
In those cases, the default format for COMPUTATIONAL data items described here does not
apply; please refer to the corresponding section of this appendix if you have configured one of
the other formats for COMPUTATIONAL data.

Appendix C: Internal Data Formats

434 RM/COBOL User's Guide

The number is formatted as an integer aligned with the most significant digit at the lowest
address and the least significant digit at the highest address. The position of the implied
decimal point is maintained in a separate data descriptor.

No storage is allocated for an operational sign.

Unsigned numeric COMPUTATIONAL data is designated as NCU, numeric computational
(unpacked) unsigned.

The valid picture symbols are 9, V and P. Usage is always COMPUTATIONAL or COMP.

NCU Format Illustrations

 01 NCU1 PIC 9(3)V9(2) VALUE 731.24
 COMPUTATIONAL.

0 1 2 3 4

07 03 01 02 04

 01 NCU2 PIC 9(3)V9(4) VALUE 23.45
 COMPUTATIONAL.

0 1 2 3 4 5 6

00 02 03 04 05 00 00

 01 NCU3 PIC 9(5)PP VALUE 5712300
 COMPUTATIONAL.

0 1 2 3 4

05 07 01 02 03

 01 NCU4 PIC P9(7) VALUE .09431726
 COMPUTATIONAL.

0 1 2 3 4 5 6

09 04 03 01 07 02 06

Signed Numeric COMPUTATIONAL (NCS)
For the default configuration, signed numeric COMPUTATIONAL (or COMP) data items are
formatted as one binary coded decimal digit per byte.

Note The compiler can be configured to treat data items described as COMPUTATIONAL
(or COMP) as having been described as BINARY, PACKED-DECIMAL, or DISPLAY using
the COMPUTATIONAL-TYPE keyword of the COMPILER-OPTIONS configuration record.
In those cases, the default format for signed numeric COMPUTATIONAL data items
described here does not apply; please refer to the corresponding section of this appendix if
you have configured one of the other formats for COMPUTATIONAL data.

The number is formatted as an integer aligned with the most significant digit at the lowest
address and the least significant digit at the highest address. The position of the implied
decimal point is maintained in a separate data descriptor.

Appendix C: Internal Data Formats

 RM/COBOL User's Guide 435

The operational sign occupies a separate byte following the least significant digit. A negative
sign is represented by the value 0Dh. A positive sign is normally represented by a value of
0Ch. The COMPUTATIONAL-VERSION keyword of the COMPILER-OPTIONS
configuration record may alter the positive sign representation. Selecting a value of
RMCOBOL2 or RMCOS for COMPUTATIONAL-VERSION will cause the positive sign
to be represented by a value of 0Bh.

Signed COMPUTATIONAL data is designated as NCS, numeric computational (unpacked)
signed.

The valid picture symbols are S, 9, V and P. Usage is always COMPUTATIONAL
or COMP.

NCS Format Illustrations

 01 NCS1 PIC S9(3)V9(2) VALUE -731.24
 COMPUTATIONAL.

0 1 2 3 4 5

07 03 01 02 04 0D

 01 NCS2 PIC S9(3)V9(4) VALUE 123.4567
 COMPUTATIONAL.

0 1 2 3 4 5 6 7

01 02 03 04 05 06 07 0C

 01 NCS3 PIC S9(5)PP VALUE +5712300
 COMPUTATIONAL.

0 1 2 3 4 5

05 07 01 02 03 0C

 01 NCS4 PIC SP9(7) VALUE -.09431726
 COMPUTATIONAL.

0 1 2 3 4 5 6 7

09 04 03 01 07 02 06 0D

Signed Numeric COMPUTATIONAL-1 (NBS)
Signed numeric COMPUTATIONAL-1 (or COMP-1) data items are formatted as 2’s
complement binary words. The number of 9’s in the PICTURE character-string does not
affect the allocation size for COMPUTATIONAL-1 data items. Such data items are always
considered signed without regard to the presence or absence of an S in the associated
PICTURE character-string. COMP-1 usage is restricted to integer data items without “P”
scaling.

The number is formatted as a 2’s complement binary word with the most significant byte at
the lowest address and the least significant byte at the highest address.

The operational sign is indicated by the 2’s complement format. If the most significant bit is
zero, the number is positive. If this bit is one, the number is negative.

Appendix C: Internal Data Formats

436 RM/COBOL User's Guide

Signed numeric COMPUTATIONAL-1 data is designated as NBS, numeric binary signed.

The valid picture symbols are S, 9 and V. Usage is always COMPUTATIONAL-1 or
COMP-1.

NBS Format Illustrations

 01 NBS1-COMP-1 PIC S9(4) VALUE +1000
 COMPUTATIONAL-1.

0 1

03 E8

 01 NBS2-COMP-1 PIC S9(4) VALUE -1000
 COMPUTATIONAL-1.

0 1

FC 18

 01 NBS3-COMP-1 PIC S9(5) VALUE -32768
 COMPUTATIONAL-1.

0 1

80 00

 01 NBS4-COMP-1 PIC S9(5) VALUE +32767
 COMPUTATIONAL-1.

0 1

7F FF

Unsigned Numeric COMPUTATIONAL-3 (NPP)
Unsigned numeric COMPUTATIONAL-3 (or COMP-3) and PACKED DECIMAL data
items are formatted as two binary coded decimal digits per byte, except for the highest
addressed byte, which contains one digit followed by an operational sign. If the associated
PICTURE character-string contains an even number of 9’s, an additional high-order digit
is included in the storage allocated for the data item so as to complete an integral number
of bytes.

The number is formatted as an integer aligned with the most significant digit at the lowest
address and the least significant digit at the highest address. The position of the implied
decimal point is maintained in a separate data descriptor.

The operational sign is concatenated with the least significant digit in the highest addressed
byte. The high-order four bits of the byte is the least significant digit and the low-order four
bits of the byte is the operational sign. The sign is always Fh, denoting a positive (unsigned)
value.

Unsigned numeric COMPUTATIONAL-3 data is designated as NPP, numeric packed
(unsigned) positive.

Appendix C: Internal Data Formats

 RM/COBOL User's Guide 437

The valid picture symbols are 9, V and P. Usage is COMPUTATIONAL-3, COMP-3, or
PACKED-DECIMAL.

NPP Format Illustrations

 01 NPP1 PIC 9(3)V9(3) VALUE 731.246
 PACKED-DECIMAL.

0 1 2 3

07 31 24 6F

 01 NPP2 PIC 9(8)V9(7) VALUE 123456.789
 PACKED-DECIMAL.

0 1 2 3 4 5 6 7

00 12 34 56 78 90 00 0F

 01 NPP3 PIC 9(5)PP VALUE 5712300
 PACKED-DECIMAL.

0 1 2

57 12 3F

 01 NPP4 PIC P9(7) VALUE .09431726
 PACKED-DECIMAL.

0 1 2 3

94 31 72 6F

Signed Numeric COMPUTATIONAL-3 (NPS)
Signed numeric COMPUTATIONAL-3 (or COMP-3) and PACKED DECIMAL data items
are formatted as two binary coded decimal digits per byte, except for the highest addressed
byte, which contains one digit followed by an operational sign. If the associated PICTURE
character-string contains an even number of 9’s, an additional high-order digit is included in
the storage allocated for the data item so as to complete an integral number of bytes.

The number is formatted as an integer aligned with the most significant digit at the lowest
address and the least significant digit at the highest address. The position of the implied
decimal point is maintained in a separate data descriptor.

The operational sign is concatenated with the least significant digit in the highest addressed
byte. The high-order four bits of the byte is the least significant digit and the low-order four
bits of the byte is the operational sign. A negative sign is represented by the value Dh. A
positive sign is normally represented by a value of Ch. The COMPUTATIONAL-VERSION
keyword of the COMPILER-OPTIONS configuration record may alter the positive sign
representation. Selecting a value of RMCOBOL2 for COMPUTATIONAL-VERSION
causes the positive sign to be represented by a value of Fh. Selecting a value of RMCOS for
COMPUTATIONAL-VERSION causes the positive sign to be represented by a value of Bh.

Signed numeric COMPUTATIONAL-3 data is designated as NPS, numeric packed signed.

Appendix C: Internal Data Formats

438 RM/COBOL User's Guide

The valid picture symbols are S, 9, V and P. Usage is COMPUTATIONAL-3, COMP-3 or
PACKED-DECIMAL.

NPS Format Illustrations

 01 NPS1 PIC S9(3)V9(3) VALUE -731.246
 PACKED-DECIMAL.

0 1 2 3

07 31 24 6D

 01 NPS2 PIC S9(8)V9(7) VALUE 123456.789
 PACKED-DECIMAL.

0 1 2 3 4 5 6 7

00 12 34 56 78 90 00 0C

 01 NPS3 PIC S9(5)PP VALUE -5712300
 PACKED-DECIMAL.

0 1 2

57 12 3D

 01 NPS4 PIC SP9(7) VALUE -.09431726
 PACKED-DECIMAL.

0 1 2 3

94 31 72 6D

Unsigned Numeric COMPUTATIONAL-4 (NBU)
Unsigned numeric COMPUTATIONAL-4 (or COMP-4) and BINARY data items are
formatted as binary bytes. If the USAGE clause specified a binary allocation override, the
number of bytes allocated is the number specified in the binary allocation override.
Otherwise, the number of bytes depends on the number of 9’s in the associated PICTURE
character-string and the setting of the BINARY-ALLOCATION and BINARY-
ALLOCATION-SIGNED keywords of the COMPILER-OPTIONS configuration record
according to Table 43 (on page 439).

Note When BINARY-ALLOCATION=CUSTOM=integer-list is configured for the
compiler, then the compiler allocates the smallest number of bytes that supports the decimal
precision indicated by the PICTURE character-string and that is an allowed size in
integer-list. See Table 43 under BINARY-ALLOCATION=MF-RM for the smallest number
of bytes needed for an unsigned binary numeric data item of a given decimal precision.
However, if BINARY-ALLOCATION-SIGNED=YES is also configured for the compiler,
the number of byes allocated will be according to Table 44 (on page Error! Bookmark not
defined.) instead of Table 43. If integer-list does not include a size large enough to support
the decimal precision, the compiler produces a warning and uses the default allocation sizes
shown for BINARY-ALLOCATION=RM.

Appendix C: Internal Data Formats

 RM/COBOL User's Guide 439

The number is formatted as a binary integer with the most significant byte at the lowest
address and the least significant byte at the highest address. The position of the decimal point
is maintained in a separate data descriptor.

For unsigned binary items, there is no operational sign. In particular, the most significant bit
is not indicative of the sign. The value is always interpreted as a positive number.

Unsigned numeric COMPUTATIONAL-4 data is designated as NBU, numeric binary
unsigned.

The valid picture symbols are 9, V and P. Usage is COMPUTATIONAL-4, COMP-4,
or BINARY.

Table 43: Bytes Allocated for an Unsigned Binary Numeric Data Item

BINARY-ALLOCATION=RM (Default)

Number of 9's in PICTURE character-string Bytes Allocated

1-4 2

5-9 4

10-18 8

19-30 16

Table 43: Bytes Allocated for an Unsigned Binary Numeric Data Item

BINARY-ALLOCATION=RM1

Number of 9's in PICTURE character-string Bytes Allocated

1-2 1

3-4 2

5-9 4

10-18 8

19-30 16

Table 43: Bytes Allocated for an Unsigned Binary Numeric Data Item

BINARY-ALLOCATION=MF-RM

Number of 9's in PICTURE character-string Bytes Allocated

1-2 1

3-4 2

5-7 3

8-9 4

10-12 5

13-14 6

15-16 7

17-19 8

20-21 9

22-24 10

Appendix C: Internal Data Formats

440 RM/COBOL User's Guide

Table 43: Bytes Allocated for an Unsigned Binary Numeric Data Item

BINARY-ALLOCATION=MF-RM

Number of 9's in PICTURE character-string Bytes Allocated

25-26 11

27-28 12

29-30 13

NBU Format Illustrations

 01 NBU1 PIC 9(3)V9 VALUE 123.4
 BINARY.

0 1

04 D2

 01 NBU2 PIC 9(5)PP VALUE 5712300
 BINARY.

0 1 2 3

00 00 DF 23

 01 NBU3 PIC 9(18) VALUE 141824562226
 BINARY.

0 1 2 3 4 5 6 7

00 00 00 21 05 67 14 32

 01 NBU4 PIC P9(7) VALUE .09431726
 BINARY.

0 1 2 3

00 8F EA AE

 01 NBU5 PIC 9(5) VALUE 42034
 BINARY(2).

0 1

A4 32

Signed Numeric COMPUTATIONAL-4 (NBS)
Signed numeric COMPUTATIONAL-4 (or COMP-4) and BINARY data items are formatted
as 2’s complement binary bytes. If the USAGE clause specified a binary allocation override,
the number of bytes allocated is the number specified in the binary allocation override.
Otherwise, the number of bytes depends on the number of 9’s in the associated PICTURE
character-string and the setting of the BINARY-ALLOCATION keyword of the COMPILER-
OPTIONS configuration record according to Table 44 (on page Error! Bookmark not
defined.).

Appendix C: Internal Data Formats

 RM/COBOL User's Guide 441

Note When BINARY-ALLOCATION=CUSTOM=integer-list is configured for the
compiler, then the compiler allocates the smallest number of bytes that supports the decimal
precision indicated by the PICTURE character-string and that is an allowed size in
integer-list. See Table 44 under BINARY-ALLOCATION=MF-RM for the smallest number
of bytes needed for a signed binary numeric data item of a given decimal precision. If
integer-list does not include a size large enough to support the decimal precision, the compiler
produces a warning and uses the default allocation sizes shown for BINARY-
ALLOCATION=RM.

The number is formatted as a binary integer with the most significant byte at the lowest
address and the least significant byte at the highest address. The position of the decimal point
is maintained in a separate data descriptor.

The operational sign is indicated by the 2’s complement format. If the most significant bit is
zero, the number is positive. If this bit is one, the number is negative.

Signed numeric COMPUTATIONAL-4 data is designated as NBS, numeric binary signed.

The valid picture symbols are S, 9, V and P. Usage is COMPUTATIONAL-4, COMP-4, or
BINARY.

Table 44: Bytes Allocated for a Signed Binary Numeric Data Item

BINARY-ALLOCATION=RM (Default)

Number of 9's in PICTURE character-string Bytes Allocated

1-4 2

5-9 4

10-18 8

19-30 16

Table 44: Bytes Allocated for a Signed Binary Numeric Data Item

BINARY-ALLOCATION=RM1

Number of 9's in PICTURE character-string Bytes Allocated

1-2 1

3-4 2

5-9 4

10-18 8

19-30 16

Table 44: Bytes Allocated for a Signed Binary Numeric Data Item

BINARY-ALLOCATION=MF-RM

Number of 9's in PICTURE character-string Bytes Allocated

1-2 1

3-4 2

5-6 3

7-9 4

10-11 5

Appendix C: Internal Data Formats

442 RM/COBOL User's Guide

Table 44: Bytes Allocated for a Signed Binary Numeric Data Item

BINARY-ALLOCATION=MF-RM

Number of 9's in PICTURE character-string Bytes Allocated

12-14 6

15-16 7

17-18 8

19-21 9

22-23 10

24-26 11

27-28 12

29-30 13

NBS Format Illustrations

 01 NBS1 PIC S9(3)V9 VALUE -123.4
 BINARY.

0 1

FB 2E

 01 NBS2 PIC S9(5)PP VALUE -5712300
 BINARY.

0 1 2 3

FF FF 20 DD

 01 NBS3 PIC S9(18) VALUE -141824562226
 BINARY.

0 1 2 3 4 5 6 7

FF FF FF DE FA 98 EB CE

 01 NBS4 PIC SP9(7) VALUE -.09431726
 BINARY.

0 1 2 3

FF 70 15 52

 01 NBS5 PIC S9(3) VALUE 95
 BINARY(1).

0

5F

Appendix C: Internal Data Formats

 RM/COBOL User's Guide 443

Unsigned Numeric COMPUTATIONAL-5 (NBUN)
Unsigned numeric COMPUTATIONAL-5 (or COMP-5) data items are formatted as binary
bytes. If the USAGE clause specified a binary allocation override, the number of bytes
allocated is the number specified in the binary allocation override. Otherwise, the number of
bytes depends on the number of 9’s in the associated PICTURE character-string and the
setting of the BINARY-ALLOCATION and BINARY-ALLOCATION-SIGNED keywords
of the COMPILER-OPTIONS configuration record according to Table 43 (on page 439).

Note When BINARY-ALLOCATION=CUSTOM=integer-list is configured for the
compiler, then the compiler allocates the smallest number of bytes that supports the decimal
precision indicated by the PICTURE character-string and that is an allowed size in
integer-list. See Table 43 under BINARY-ALLOCATION=MF-RM for the smallest number
of bytes needed for an unsigned binary numeric data item of a given decimal precision.
However, if BINARY-ALLOCATION-SIGNED=YES is also configured for the compiler,
the number of byes allocated will be according to Table 44 (on page Error! Bookmark not
defined.) instead of Table 43. If integer-list does not include a size large enough to support
the decimal precision, the compiler produces a warning and uses the default allocation sizes
shown for BINARY-ALLOCATION=RM.

The number is formatted as a binary integer with machine native byte ordering as follows:

• On “little-endian” machines, the format is the least significant byte at the lowest address
and the most significant byte at the highest address; that is, reversed byte ordering from
COMPUTATIONAL-4 (COMP-4, BINARY). The position of the decimal point is
maintained in a separate data descriptor.

• On “big endian” machines, the format is the same as COMPUTATIONAL-4 (COMP-4,
BINARY), with the most significant byte at the lowest address and the least significant
byte at the highest address.

For unsigned binary items, there is no operational sign. In particular, the most significant bit
is not indicative of the sign. The value is always interpreted as a positive number.

Unsigned numeric COMPUTATIONAL-5 data is designated as NBUN, numeric binary
unsigned native.

The valid picture symbols are 9, V and P. Usage is COMPUTATIONAL-5 or COMP-5.

Note COMPUTATIONAL-5 data is intended only for interfacing with non-COBOL
programs. The data items are not portable between differing machine memory architectures
and thus should not be used in data description entries subordinate to a file description entry;
that is, they should only be specified in the Working-Storage and Linkage Sections of a
COBOL program.

Format Illustrations

Because the format is machine-dependent, format illustrations are not provided for
COMPUTATIONAL-5 (COMP-5) data items. On “big-endian” machines, the illustrations
given for unsigned COMPUTATIONAL-4 (COMP-4, BINARY) apply, since the format is
the same. On “little-endian” machines, the illustrations given for unsigned
COMPUTATIONAL-4 (COMP-4, BINARY) apply except that the bytes would appear in the
reverse order; that is, the format illustration addressing should be numbered starting with zero
on the right and ascending to the left.

Appendix C: Internal Data Formats

444 RM/COBOL User's Guide

Signed Numeric COMPUTATIONAL-5 (NBSN)
Signed numeric COMPUTATIONAL-5 (or COMP-5) data items are formatted as 2’s
complement binary bytes. If the USAGE clause specified a binary allocation override, the
number of bytes allocated is the number specified in the binary allocation override.
Otherwise, the number of bytes depends on the number of 9’s in the associated PICTURE
character-string and the setting of the BINARY-ALLOCATION keyword of the COMPILER-
OPTIONS configuration record according to Table 44 (on page Error! Bookmark not
defined.).

Note When BINARY-ALLOCATION=CUSTOM=integer-list is configured for the
compiler, then the compiler allocates the smallest number of bytes that supports the decimal
precision indicated by the PICTURE character-string and that is an allowed size in
integer-list. See Table 44 under BINARY-ALLOCATION=MF-RM for the smallest number
of bytes needed for a signed binary numeric data item of a given decimal precision. If
integer-list does not include a size large enough to support the decimal precision, the compiler
produces a warning and uses the default allocation sizes shown for BINARY-
ALLOCATION=RM.

The number is formatted as a binary integer with machine native byte ordering as follows:

• On “little-endian” machines, the format is the least significant byte at the lowest address
and the most significant byte at the highest address; that is, reversed byte ordering from
COMPUTATIONAL-4 (COMP-4, BINARY). The position of the decimal point is
maintained in a separate data descriptor.

• On “big-endian” machines, the format is the same as COMPUTATIONAL-4 (COMP-4,
BINARY), with the most significant byte at the lowest address and the least significant
byte at the highest address.

The operational sign is indicated by the 2’s complement format. If the most significant bit is
zero, the number is positive. If this bit is one, the number is negative.

Signed numeric COMPUTATIONAL-5 data is designated as NBSN, numeric binary signed
native.

The valid picture symbols are S, 9, V and P. Usage is COMPUTATIONAL-5 or COMP-5.

Note COMPUTATIONAL-5 data is intended only for interfacing with non-COBOL
programs. The data items are not portable between differing machine memory architectures
and thus should not be used in data descriptions entries subordinate to a file description entry;
that is, they should be specified only in the Working-Storage and Linkage Sections of a
COBOL program.

Format Illustrations

Because the format is machine-dependent, format illustrations are not provided for
COMPUTATIONAL-5 (COMP-5) data items. On “big-endian” machines, the illustrations
given for signed COMPUTATIONAL-4 (COMP-4, BINARY) apply, since the format is the
same. On “little-endian” machines, the illustrations given for signed COMPUTATIONAL-4
(COMP-4, BINARY) apply except that the bytes would appear in the reverse order; that is,
the format illustration addressing should be numbered starting with zero on the right and
ascending to the left.

Appendix C: Internal Data Formats

 RM/COBOL User's Guide 445

Unsigned Numeric COMPUTATIONAL-6 (NPU)
Unsigned numeric COMPUTATIONAL-6 (COMP-6) data items are formatted as two binary
coded decimal digits per byte. If the picture contains an odd number of 9’s, an additional
high-order digit is included in the storage allocated for the item.

The number is formatted as an integer aligned with the most significant digit at the lowest
address and the least significant digit at the highest address. The position of the implied
decimal point is maintained in a separate data descriptor.

No storage is allocated for an operational sign.

Unsigned numeric COMPUTATIONAL-6 data is designated as NPU, numeric packed
unsigned.

The valid picture symbols are 9, V and P. Usage is COMPUTATIONAL-6 or COMP-6.

NPU Format Illustrations

 01 NPU1 PIC 9(3)V9(2) VALUE 731.24
 COMPUTATIONAL-6.

0 1 2

07 31 24

 01 NPU2 PIC 9(8)V9(8) VALUE 123456.789
 COMPUTATIONAL-6.

0 1 2 3 4 5 6 7

00 12 34 56 78 90 00 00

 01 NPU3 PIC 9(5)PP VALUE 5712300
 COMPUTATIONAL-6.

0 1 2

05 71 23

 01 NPU4 PIC P9(6) VALUE .0943172
 COMPUTATIONAL-6.

0 1 2

94 31 72

Pointer Data
Pointer data items have USAGE POINTER specified in their data description entry and are
not described with a PICTURE clause. The format of pointer data items may change in future
releases of the RM/COBOL product, so programs that depend on the information provided
here may be tied to a particular version of RM/COBOL. This information is provided for
clarification only. Programs should depend only on the characteristics of pointers described
in the RM/COBOL Language Reference Manual.

Pointer data is designated as PTR.

An RM/COBOL pointer data item is an array of three 64-bit quantities as follows:

Appendix C: Internal Data Formats

446 RM/COBOL User's Guide

1. The base address of the memory area to which the pointer refers.

2. The current offset from the base address as set by SET pointer UP/DOWN statements.

3. The length of the memory area to which the base address points.

All three quantities are stored from most significant byte in the lowest address to least
significant byte at the highest address, regardless of the machine memory architecture.

Programs that modify any of the three values of a pointer data item directly, for example, by
redefinition as numeric quantities and use of arithmetic statements, may result in program
failures that are difficult to explain. In COBOL, pointer data items should be manipulated
only with Formats 5 and 6 of the SET statement, as described in the RM/COBOL Language
Reference Manual, or by use of the subprograms C$MemoryAllocate (see page 557),
C$MemoryDeallocate (see page 558), and C$CompilePattern (see page 541), as described in
Appendix F: Subprogram Library. In non-COBOL subprograms, CodeBridge library
routines should be used to access or modify pointer data items passed as arguments to the
non-COBOL subprogram (see the CodeBridge User's Guide).

Appendix D: Support Modules (Non-COBOL Add-Ons)

 RM/COBOL User's Guide 447

Appendix D: Support Modules
(Non-COBOL Add-Ons)

This appendix introduces you to the optional support modules that are included with
RM/COBOL and other support modules from several add-on packages available from Micro
Focus. This appendix also describes which support modules are used with the runtime
system, the compiler, and the Indexed File Recovery (recover1) utility components. Also
provided are details about how RM/COBOL locates support modules and information on how
to build a COBOL-callable, non-COBOL subprogram library support module or a Message
Control System (MCS) support module of your own.

Introduction
RM/COBOL provides a simple, flexible system for supporting optional support modules on
both Windows and UNIX. Under Windows, optional support modules are supported as
dynamic link libraries, whereas under UNIX, they are supported as shared objects.
RM/COBOL’s CodeBridge cross-language call system can be used to build custom add-on,
non-COBOL library optional support modules.

Note Under UNIX, RM/COBOL uses separate support modules to support the two terminal
interfaces so that only a single runtime and recovery utility are present on the distribution
media. The terminal interface is still selected at installation.

Overview of Optional Support Modules
The optional support modules are implemented as shared objects on UNIX and as dynamic
link libraries on Windows. Shared objects (with an extension of .so) and dynamic link
libraries (with an extension of .dll) allow an executable program to load additional code at
execution time rather than at link time. Shared objects are sometimes called dynamic libraries
because they are dynamically loaded. RM/COBOL uses several support modules to add
additional features and allows developers to write their own support modules to add COBOL-
callable, non-COBOL subprograms to the runtime system.

Installation for the support modules that are distributed as part of the RM/COBOL system
occurs as part of the normal product installation, as described in System Installation for UNIX
(on page 14) and System Installation for Windows (on page 46). Other support modules are
installed according to the directions associated with particular add-on packages. Normally,

Appendix D: Support Modules (Non-COBOL Add-Ons)

448 RM/COBOL User's Guide

the installation is as easy as copying the support module into either the execution directory
(typically, /usr/bin on UNIX, C:\Program Files\Micro Focus\RM\RMCOBOLv12-64 or
C:\Program Files (x86)\Micro Focus\RM\RMCOBOLv12 on Windows 64-Bit or
C:\Program Files\Micro Focus\RM\RMCOBOLv12 on Windows 32-Bit, but selectable
during product installation) or the rmcobolso subdirectory of the UNIX execution directory
or the RmAutoLd subdirectory of the Windows execution directory. A user-written support
module (see page 455) should be installed in the rmcobolso subdirectory of the UNIX
execution directory or the RmAutoLd subdirectory of the Windows execution directory. For
information on how the RM/COBOL runtime, the RM/COBOL compiler, and the Indexed
File Recovery utility locate optional support modules, see Locating Optional Support
Modules (on page 449).

Note Versions of the RM/COBOL runtime system prior to 7.1 allowed the Pop-Up Window
Manager to be included or excluded when relinking the runtime. In this version of
RM/COBOL, the Pop-Up Window Manager is always present and cannot be removed.

Not all support modules can be used with all RM/COBOL components. While all of the
support modules are designed to be used with the runtime system, only a subset of the
support modules may be used with either the compiler and/or the Indexed File Recovery
utility. Table 45 (for UNIX) and Table 46 (for Windows) list the support modules (and the
dynamic library filenames) that can be used with each of the RM/COBOL components.

Table 45: Optional Support Modules Used by RM/COBOL Components on UNIX

Support Module Filename Runtime Compiler Recover1

Terminal Interface librmterm.so  

Automatic Configuration File librmconfig.so   

RM/InfoExpress Client librminfox.so  

FlexGen libflexgen.so 

Cobol-RPC (Remote Procedure
Calls) Server

libetsrpc.so 

Cobol-CGIX Server libetscgix.so 

User-Written *.so 

Message Control System librmmcs.so 

Table 46: Optional Support Modules Used by RM/COBOL Components on Windows

Support Module Filename Runtime Compiler Recover1

Automatic Configuration File librmcfg.dll   

User-Written *.dll 

Message Control System librmmcs.dll 

The support modules available for an RM/COBOL system are described in more detail
beginning on page 452.

Appendix D: Support Modules (Non-COBOL Add-Ons)

 RM/COBOL User's Guide 449

Locating Optional Support Modules
In general, support modules are located automatically by the RM/COBOL runtime, the
RM/COBOL compiler, and the Indexed File Recovery utility. Some of the support modules
are located in the execution directory (that is, the directory from which the RM/COBOL
component is executed) and some of the support modules are located in a subdirectory of the
execution directory; this subdirectory is named rmcobolso on UNIX and RmAutoLd on
Windows. Because support modules are designed to be loaded automatically rather than by
using the L (Library) Option on the Runtime Command, it is not necessary to know about the
other possible locations for support modules for normal “production” mode (see the following
topic). However, for developers creating and testing their own support modules, there is
considerable flexibility in locating support modules while in “test” mode. See In Test Mode
(on page 450). Normally, this flexibility is not needed when running your application in
production mode. You may elect to use any of these techniques whenever appropriate.

Filenames of optional support modules must be unique even if the modules are located in
different directories. The runtime system assumes that support modules with the same name
are the same and, therefore, ignores all subsequent support modules with the same name as
one already loaded. You may use the V Option on the Runtime Command, set V=DISPLAY
in the RUN-OPTION configuration record, or define the environment variable,
RM_DYNAMIC_LIBRARY_TRACE, to determine the exact load location for each
support module.

Each of the support modules distributed as part of RM/COBOL or available from an add-on
package is discussed in detail in Support Modules Available for RM/COBOL (on page 452).
For information on building user-written support modules using CodeBridge or an alternative
method, see Building Your Own Support Module (on page 455). Details on building a
Message Control System support module are provided in Building a Message Control System
(MCS) on page 456.

In Production Mode
Only certain, special support modules are loaded from the execution directory. These support
modules include the following:

• Terminal Interface (librmterm.so)

• Automatic Configuration File (librmconfig.so or librmcfg.dll)

• RM/InfoExpress Client (librminfox.so)

• Cobol-RPC (Remote Procedure Calls) Server support module (libetsrpc.so)

• Application-specific Message Control System (librmmcs.so or librmmcs.dll)

For UNIX, only the Terminal Interface support module is required. For UNIX and Windows,
other support modules may or may not be present depending upon the RM/COBOL
installation options chosen or the presence of the various add-on packages.

Note Users should not add user-written support modules to the execution directory
unless they plan to specify the L (Library) Option on the Runtime Command to load the
support module.

All other support modules are automatically loaded from the rmcobolso subdirectory of the
UNIX execution directory or the RmAutoLd subdirectory of the Windows execution
directory. These support modules include the following:

Appendix D: Support Modules (Non-COBOL Add-Ons)

450 RM/COBOL User's Guide

• FlexGen (libflexgen.so)

• Cobol-CGIX Server (libetscgix.so)

• User-written support modules (*.so on UNIX; *.dll on Windows)

None of these support modules is required by the RM/COBOL runtime system. Only the
FlexGen support module is included on the RM/COBOL release, and it is included only for
UNIX platforms. All other support modules are included in various add-on packages or must
be written by the RM/COBOL developer.

Note Only support modules with the .so extension will be loaded from the rmcobolso
subdirectory on UNIX. Only support modules with the .dll extension will be loaded from the
RmAutoLd subdirectory on Windows.

In Test Mode
When you are developing a new support module, there are some additional options available
for ensuring that your new support module is not available to others until the completion of
the testing process.

Using a Different Execution Directory

You may create a new execution directory by copying the RM/COBOL runtime and other
necessary files, including support modules, to a directory other than the “production”
execution directory (normally /usr/bin on UNIX, C:\Program Files\Micro
Focus\RM\RMCOBOLv12-64 or C:\Program Files (x86)\Micro
Focus\RM\RMCOBOL\v12 on Windows 64-Bit and C:\Program Files\Micro
Focus\RM\RMCOBOL\v12 on Windows 32-Bit). During testing, you will need to ensure
that the new directory is included in your load path before the normal execution directory and,
on Windows, you must register the new location of the runtime, as described in Runtime
Registration (on page 56). When you execute the runcobol command from this new
directory, you will establish it as the execution directory. Support modules will be loaded
from this execution directory or from the rmcobolso (on UNIX) or RmAutoLd (on
Windows) subdirectory of this directory. Any support modules you are testing should be
placed in the rmcobolso or RmAutoLd subdirectory, for UNIX or Windows, respectively.
Other support modules required for your application should also be placed in this subdirectory
of the execution directory. These support modules will be available only to programs using
the runcobol command in this new execution directory.

Using a Different Subdirectory

It is also possible to use a subdirectory other than the default subdirectory (rmcobolso on
UNIX and RmAutoLd on Windows) of the execution directory by defining the
RM_LIBRARY_SUBDIR environment variable with the value of the test subdirectory. For
example, specifying a value of rmlibtest for the environment variable will allow you to put
your test support module in subdirectory rmlibtest of the normal execution directory. The
environment variable, RM_LIBRARY_SUBDIR, does not specify a complete pathname, but
rather a “synonym” (replacement) for the name of the subdirectory and the named
subdirectory must exist within the execution directory.

Other support modules required for your application should also be placed in the specified
subdirectory of the execution directory. It is not possible to use the environment variable to

Appendix D: Support Modules (Non-COBOL Add-Ons)

 RM/COBOL User's Guide 451

cause support modules to be loaded from a directory other than a directory subordinate to the
execution directory, but the directory need not be directly subordinate (for example, the
environment variable value may be rmcobolso/test or RmAutoLd\test). Your test support
module will be available only to users with the environment variable defined with the correct
value. When RM_LIBRARY_SUBDIR specifies a value, only the indicated subdirectory is
automatically searched; the default subdirectory is not searched in this case.

Using the L Option

The methods previously described for isolating support modules during testing both involved
altering the automatic loading mechanism for support modules. It is also possible to use the
L (Library) Option (on page 197) on the Runtime Command to specify a test support module.
The L Option may specify a relative filename (starting with either “.”or “..” to indicate the
current working directory or its parent directory) or a complete filename (one or more
directory separators present), or a “simple” filename (one which is neither relative nor
complete). The following sections explain these procedures on both UNIX and Windows.

On UNIX:

• If a relative or complete filename is specified on the L Runtime Command Option (for
example, L=./libusr.so or L= /home/user/libusr.so), the runtime system looks for the
support module only in the location specified.

• If a simple filename is specified on the L Option (for example, L=libusr.so), the runtime
system looks for the support module first in the execution directory, then in the current
working directory, then the runtime allows the UNIX dynamic-load open library call
(dlopen on many UNIX systems) to load the support module, and, finally, the runtime
system looks for the support module in any of the directories specified by the RUNPATH
environment variable.

• The behavior of the dynamic-load open library call may—on some UNIX systems—be
modified by defining a UNIX-specific environment variable to indicate the load location
that the dynamic-load open library call should use. On some platforms, this environment
variable may be named LD_LIBRARY_PATH. For additional information about this
environment variable, you should consult the man pages for dlopen (or other dynamic-
load open library call). Given the wide range of choices for locating your support module
while testing and in production mode, you should not need to use this capability.

• It is not necessary to specify the .so extension for the support module when using the L
Option. For example, if the actual support module filename is libusr.so, the L Option
may specify the filename without the .so extension and the runtime system will still be
able to load the support module. However, when the .so extension is omitted, care must
be taken that there is not a COBOL program library file of the same name (ignoring the
.cob or other configured object extension from the EXTENSION-NAMES configuration
record) in the search sequence since COBOL program library files take precedence in this
search. For further information about the search used by the L Option, see Subprogram
Loading (on page 227).

On Windows:

• If a relative or complete filename is specified on the L Runtime Command Option (for
example L=.\libusr.dll or L=C:\rmtest\libusr.dll), the runtime system looks for the
support module only in the location specified.

Appendix D: Support Modules (Non-COBOL Add-Ons)

452 RM/COBOL User's Guide

• If a simple filename is specified on the L Option (for example, L=libusr.dll), the runtime
system looks for the support module first in the execution directory, then in the directory
of the runtime library module, rmlibrun.dll, then the runtime uses the Windows
LoadLibrary function to search for the support module, and, finally, the runtime system
looks for the support module in any of the directories specified by the RUNPATH
environment variable.

Note The Windows LoadLibrary function searches in the following order: the
executable directory, the current directory, the Windows 32-bit system directory
(typically, C:\Windows\System32—this step occurs only on Windows NT-class
operating systems), the Windows system directory (typically, C:\Windows\System), the
Windows directory (typically, C:\Windows), and the directories specified by the PATH
environment variable.

• It is not necessary to specify the .dll extension for the support module when using the L
Option. For example, if the actual support module filename is libusr.dll, the L Option
may specify the filename without the .dll extension and the runtime system will still be
able to load the support module. However, in this case, care must be taken that there is
not a COBOL program library file of the same name (ignoring the .cob or other
configured object extension from the EXTENSION-NAMES configuration record) in the
search sequence since COBOL program library files take precedence in this search. For
further information about the search used for the L Option, see Subprogram Loading (on
page 227).

Support Modules Available for RM/COBOL
The following support modules are available with the RM/COBOL system you purchased or
are available from add-on packages obtained from Micro Focus.

Terminal Interface Support Modules on UNIX
The RM/COBOL system can support either the terminfo or the termcap terminal interface.
The terminal interface for your system is selected at installation time. If you wish to change
your terminal interface, you need only run the installation command again and respond
appropriately to the prompts. Additional information about the terminfo and termcap terminal
interfaces may be found in Terminal Interfaces (see page 28).

Both the terminfo terminal support module, librmti.so, and the termcap terminal support
module, librmtc.so, are present on the RM/COBOL distribution media and in the installation
directory (normally /usr/rmcobol). At installation time, one of these is chosen to be the
Terminal Interface support module and is first copied to librmterm.so in the installation
directory, and then copied to the execution directory specified by the user. The runtime
system and the recovery utility look only for librmterm.so. It is not possible to execute the
runtime system from the installation directory without first installing RM/COBOL. The
librmti.so and librmtc.so files should not be placed in the execution directory since the
runtime and recovery utility will not use them.

While support modules are generally optional, the librmterm.so file must be present for the
RM/COBOL runtime system or recovery utility to run. The only optional aspect of the
Terminal Interface support modules is the choice of the terminfo interface or the termcap
interface.

Appendix D: Support Modules (Non-COBOL Add-Ons)

 RM/COBOL User's Guide 453

Note On Windows, the RM/COBOL runtime system supports only the Windows graphical
user interface (GUI) as a terminal interface. This is supported by rmguife.dll, but this file is
considered part of the RM/COBOL system for Windows rather than a support module.

Automatic Configuration File Support Module
The RM/COBOL runtime, compiler, and recovery utility all allow a configuration file to be
automatically located (that is, without the need to specify the configuration file on the
command line). UNIX versions of RM/COBOL prior to 7.1 allowed a configuration file to be
linked in the runtime, compiler, or recovery utility by modifying source file oscnfg.c and
using a Makefile generated by the customiz script. Additional information about how to use
automatic configuration files may be found in Automatic Configuration File (see page 688).

In order to be able to use automatic configuration files for the runtime, the compiler, or the
recovery utility, you need to install the Automatic Configuration File support module during
the RM/COBOL installation procedure. When automatic configuration support is installed on
UNIX, the librmconfig.so file will be copied to the execution directory. When automatic
configuration support is installed on Windows, the librmcfg.dll file will be copied to the
execution directory. The automatic configuration support module does not contain the
configuration file; it only enables automatic configuration file support by adding the code that
searches for and, if found, reads the appropriately named configuration file during component
initialization. If the support module is not present, the RM/COBOL component will not look
for the automatic configuration file. If the support module is present, but does not find an
appropriately named configuration file during component initialization, no automatic
configuration occurs.

If you later decide that you do not want the Automatic Configuration File support module,
you may remove the automatic configuration support module from the execution directory.
On UNIX, the RM/COBOL rmuninstall command, described in System Removal for UNIX
(on page 20), can be used in “selective (prompted) mode” to remove the automatic
configuration support module. On Windows, the automatic configuration support module,
librmcfg.dll, may be deleted or moved out of the execution directory.

RM/InfoExpress Client Support Module on UNIX
The RM/COBOL system supports optimized access to remote RM/COBOL files on various
local area networks (LANs) and wide area networks (WANs) via the RM/InfoExpress Server
product. RM/InfoExpress allows significantly faster access to sequential, relative, and
indexed files than conventional network access methods allow.

For the RM/COBOL compiler and runtime system to have access to remote files using the
RM/InfoExpress Server, you need to install the RM/InfoExpress Client support module
during the RM/COBOL installation procedure. The librminfox.so file will be copied to the
execution directory.

If you later decide that you do not want the RM/InfoExpress Client support module, the
rmuninstall command, as described in System Removal for UNIX (on page 20), can be used
in “selective (prompted) mode” to remove the support module.

FlexGen Support Module on UNIX
The FlexGen support module may be installed to add C language subprograms needed for
Transoft Inc.’s FlexGen product. Prior to version 7.1 of the RM/COBOL runtime, support for

Appendix D: Support Modules (Non-COBOL Add-Ons)

454 RM/COBOL User's Guide

the FlexGen C subprograms required a special version of the runtime. With the release of
RM/COBOL version 7.1, the FlexGen support module is always present on the RM/COBOL
distribution media and in the installation directory (normally /usr/rmcobol). It is no longer
necessary to order a special FlexGen version of the runtime system.

For the RM/COBOL runtime system to have access to the FlexGen C subprograms, you need
to install the FlexGen support module during the RM/COBOL installation procedure. The
libflexgen.so file will be copied to the rmcobolso subdirectory of the execution directory.

If you later decide that you do not want the FlexGen support module, the rmuninstall
command, as described in System Removal for UNIX (on page 20), can be used in “selective
(prompted) mode” to remove the support module.

Cobol-RPC Server Support Module on UNIX
The add-on product, Cobol-RPC (Remote Procedure Calls), is designed to allow you to
distribute your RM/COBOL application across multiple systems, with different operating
systems, as easily as it can execute alone. Cobol-RPC allows you to access data, devices, or
centralized business logic on remote server systems.

The Cobol-RPC Server support module may be added to the RM/COBOL runtime to allow an
RPC Client to run RM/COBOL programs on UNIX. The Cobol-RPC Server support module
is not included with the RM/COBOL system. Cobol-RPC must be purchased separately.

In order to enable Cobol-RPC access to RM/COBOL on UNIX, you need to install the Cobol-
RPC Server support module. The libetsrpc.so file will be copied to the execution directory.
The Cobol-RPC Server support module must have this name and extension, and must be
placed in the execution directory in order for the RM/COBOL runtime to find it.

If you later decide that you do not want the Cobol-RPC Server support module, remove the
libetsrpc.so file from the execution directory.

Cobol-CGIX Server Support Module on UNIX
The add-on product, Cobol-CGIX, extends the World Wide Web’s CGI interface and turns
RM/COBOL into a web programming language. Cobol-CGIX allows you to develop web
applications using an HTML editor and a few simple calls. It makes HTML work like a user
interface tool designed for RM/COBOL and allows use of standard HTML design tools for
creating and maintaining the presentation.

The Cobol-CGIX Server support module may be added to the RM/COBOL runtime to enable
the special Cobol-CGIX functions. The Cobol-CGIX Server support module is not included
with the RM/COBOL system. Cobol-CGIX must be purchased separately.

In order to enable Cobol-CGIX access to RM/COBOL on UNIX, you need to install the
Cobol-CGIX Server support module. The libetscgix.so file will be copied to the rmcobolso
subdirectory of the execution directory. The Cobol-CGIX Server support module should have
this name and extension, and must be placed in the rmcobolso subdirectory of the execution
directory in order for the RM/COBOL runtime to find it.

If you later decide that you do not want the Cobol-CGIX Server support module, remove the
libetscgix.so file from the rmcobolso subdirectory of the execution directory.

Appendix D: Support Modules (Non-COBOL Add-Ons)

 RM/COBOL User's Guide 455

Building Your Own Support Module
A user-written optional support module may be built using CodeBridge, RM/COBOL’s cross-
language call system, or it may be built using the method described in Appendix G: Non-
COBOL Subprogram Internals for Windows and Appendix H: Non-COBOL Subprogram
Internals for UNIX in the CodeBridge User's Guide. These appendices document the
interface specification for RM/COBOL runtime calls to non-COBOL subprograms and
provide information useful for developing a support module without using CodeBridge
(described as the “old way”).

User-Written Support Module
The RM/COBOL runtime allows for calls from RM/COBOL to non-COBOL subprogram
libraries in the form of support modules. The CodeBridge Builder can produce a support
module and is the preferred means of doing so. The alternate method, described in
Appendices G and H of the CodeBridge User's Guide, however, may be more convenient for
developers who provided a non-COBOL subprogram library for use with previous versions of
RM/COBOL. Either method, however, may be used.

It is not necessary to put all of your non-COBOL subprograms into a single support module.
You may build as many (or as few) separate support modules as you think necessary. Since
user-written support modules do not need to be listed on the runtime command line (although
they may be listed for testing or other reasons), you need not worry about changing shell or
batch scripts. Each support module defines only those COBOL-callable functions defined in
that support module using either the RM_EntryPoints symbol declaration or the
RM_EnumEntryPoints entry point. Each user-written support module must include one of
these two mechanisms to allow the runtime to determine which COBOL-callable functions
are included in the support module (or, on Windows, include an .EDATA section).
Information about all of the special entry points for support modules may be found in the
“Special Entry Points for Support Modules” sections in Appendices G and H of the
CodeBridge User's Guide.

The source file usrsub.c and the various header files that it needs (all present on the
RM/COBOL for UNIX distribution media and in the installation directory) provide a starting
point for an application designer to build an application-specific support module. All of the
special entry points for support modules are illustrated in the source file usrsub.c. As shipped
with the RM/COBOL release, the source module usrsub.c merely produces trace messages
when the COBOL-callable subprograms are called by the RM/COBOL runtime.

Windows versions of RM/COBOL include an enhanced msgbox.c example, which illustrates
the special entry points for support modules.

On UNIX, the makefile (provided with the RM/COBOL release) provides a target to build the
user-written support module, libusr.so. Although it is unnecessary to name your support
module libusr.so, the name chosen must have an extension of .so.

In order to enable the completed support module for use, you should place the file in the
rmcobolso subdirectory of the execution directory on UNIX or the RmAutoLd subdirectory
of the execution directory on Windows. If you later decide that you do not want your support
module, you should remove the file from the rmcobolso or RmAutoLd subdirectory of the
execution directory. For additional information on how support modules are located, see
Locating Optional Support Modules (on page 449).

Appendix D: Support Modules (Non-COBOL Add-Ons)

456 RM/COBOL User's Guide

User-Written Support Module from Old sub.c or sub.o
The section “Creating a Support Module from a C Object (No Source)” in Appendix H of the
CodeBridge User's Guide describes how one might use usrsub.c as a “wrapper” module to
surround an existing sub.o object from an older release of RM/COBOL in order to build a
support module with the same non-COBOL subprograms as were previously available. This
technique is most useful when the sub.c source module cannot be located.

Note It is not necessary to include all of the previously available non-COBOL subprograms
in the RM_EntryPoints table. In particular, you should not include SYSTEM, DELETE, or
RENAME unless you intend to provide your own subprograms for these functions. Even
though these functions are now provided in the RM/COBOL runtime, as described in
Appendix F: Subprogram Library (on page 533), including them in a user-written support
module that is loaded at runtime will cause the user-written routines to be executed instead.

The same “wrapper” technique may be used to wrap an existing sub.c source so that no
change need be made to the existing source in order to build a support module with the same
non-COBOL subprograms as were previously available.

Building a Message Control System (MCS)
The RM/COBOL runtime provides an open Message Control System (MCS) interface with
which an application designer can design and include an MCS. A Message Control System is
required for correct operation of the Communications Module statements: ACCEPT
MESSAGE COUNT, DISABLE, ENABLE, PURGE, RECEIVE, and SEND. In order to use
these Communications Module statements, the application designer must produce a Message
Control System support module. This section will explain how to design, build, and use a
Message Control System.

Message Control System (MCS) Support Module
No Message Control System is provided with the RM/COBOL system. However, source file
usrmcs.c, header file rtccd.h, and other necessary header files (all present on the
RM/COBOL distribution media and in the installation directory) provide a starting point for
an application designer to build an application-specific MCS. The makefile (provided with
the RM/COBOL for UNIX release) provides a target to build the MCS support module,
librmmcs.so. As shipped with the RM/COBOL release, source module usrmcs.c merely
produces trace messages when the MCS entry points are called by the RM/COBOL runtime.

Note The Message Control System support module differs from most other support modules
developed by users in that it does not necessarily contain any COBOL-callable subprograms.
The only required entry points in the MCS support module are OSMCSINITIALIZE, used by
the runtime to initialize the MCS, and OSMCS, used by the runtime to perform all other MCS
operations. Other special support module entry points, described in Appendices G and H of
the CodeBridge User's Guide, may be added as desired. COBOL callable entry points may be
added by defining the RM_EnumEntryPoints special entry point or the RM_EntryPoints
table, although this is not typical. The MCS is typically entered from COBOL only because
of execution of the Communications Module statements, which are ACCEPT … FROM
MESSAGE COUNT, DISABLE, ENABLE, PURGE, RECEIVE, and SEND. Nevertheless,
in some cases it may be desirable to extend the MCS with additional capabilities through
COBOL callable functions. For example, setting MCS configuration options might be
handled in this way since the COBOL Communications Module statements do not provide
this capability.

Appendix D: Support Modules (Non-COBOL Add-Ons)

 RM/COBOL User's Guide 457

To enable the Message Control System support module, you should place the librmmcs.so
file in the execution directory on UNIX or the librmmcs.dll file in the execution directory on
Windows. The MCS support module must have the indicated name and extension, and must
be placed in the execution directory in order for the RM/COBOL runtime to find it. The auto
load directories (the rmcobolso subdirectory of the UNIX execution directory or the
RmAutoLd subdirectory of the Windows execution directory) is not used to find the Message
Control System support module. The execution directory (EXEDIR) is the directory where
the runtime executables are found.

If you later decide that you do not want your Message Control System support module,
remove the librmmcs.so (on UNIX) or librmmcs.dll (on Windows) file from the execution
directory.

Initializing the MCS
The routine OSMCSINITIALIZE in the user-written MCS is called at runtime initialization to
initialize the MCS interface. If the interface is present and initialization completes properly,
OSMCSINITIALIZE should return TRUE (non-zero). Otherwise, it should return
FALSE (zero).

Message Control System Data Structures
The MCS uses two data structures to communicate with the COBOL program. The first
structure is the McsPointerArea, described below. The second structure is the
communications descriptor map (CCD), which is described in the following section and
illustrated in Figure 41 on page 459. Both data structures are defined in the rtccd.h header
file, which is provided with RM/COBOL systems.

The McsPointerArea is described with the following C data structure:

typedef struct CCDPStruct
{
 CCD *HostBlockAddress;
 BYTE *CdAddress;
 BYTE *MessageAreaAddress;
 BYTE *McsPointer[10];
} CCDPB;

This data structure is defined in C and contains only pointers (addresses). The size of the
structure (in bytes) depends on the size of pointers for a given system. The structure is
aligned so that pointers may be referenced directly.

The HostBlockAddress contains the address of the CCD.

The CdAddress contains a pointer to the record area implicitly associated with the CD.

The MessageAreaAddress contains a pointer to the message area for a SEND or RECEIVE
operation, or the key (password) value for an ENABLE or DISABLE operation.

The McsPointer array is reserved for use by the user-written MCS function in any way desired
(for example, to preserve state across runtime calls to the MCS function). The first nine
entries in the array are zero at program load, but the last entry may be nonzero (without any
meaning). Thus, OSMCSINITIALIZE function should initialize the last entry in the array if it
is used by the OSMCS function. The contents of the McsPointer array are not modified or
inspected by the RM/COBOL runtime system in any way other than the initial zeroing of the

Appendix D: Support Modules (Non-COBOL Add-Ons)

458 RM/COBOL User's Guide

first nine entries prior to calling OSMCSINITIALIZE. Version 12 and later of the
RM/COBOL runtime system correctly zeroes the entire array before calling
OSMCSINITIALIZE.

The MCS functions have prototypes defined as follows:

ERRCODE OSMCSINITIALIZE(void);

and

ERRCODE OSMCS(long McsFunction, CCDPB *McsPointerArea);

The valid McsFunction codes are as follows:

1 ACCEPT MESSAGE COUNT
2 DISABLE
3 ENABLE
4 RECEIVE
5 SEND
6 PURGE
7 Terminate CCD (see below)
8 Terminate MCS (see below)

The parameter McsPointerArea contains a pointer to the C data structure described
previously.

Upon exit, the MCS must return a completion code as defined in Table 47.

Table 47: MCS Completion Codes

Code Description

0 Function processed. No error.

1 RECEIVE . . . NO DATA processed. No data.

2 – 1499 Error. Terminate run unit with MCS error. The displayed error code
will be the value plus 350.

The MCS is notified when a program containing one or more CCDs is terminated due to the
execution of a CANCEL statement or to run unit termination. In this case, upon entry to the
MCS, McsFunction will be 7 and the McsPointerArea will contain a pointer to the CCD to be
terminated. The MCS must then determine the action to be taken for the CCD solely from the
CD Type (byte offset 2) field and the area reserved for the MCS. The MCS will be called
once for each communications description defined in the program being terminated.

The MCS is explicitly notified of run unit termination after all CCDs have been terminated.
When this happens, upon entry to the MCS, McsFunction will be 8 and the McsPointerArea
pointer value will be NULL.

No error codes are anticipated or processed when the MCS is called with McsFunction 7 or 8.

RM/COBOL Communications Descriptor (CCD)
The RM/COBOL communications descriptor (CCD) contains values derived from the CD
description in the Data Division as well as from the Procedure Division statement that caused
the request. (The C layout of a CCD is provided in the header file, rtccd.h.) Figure 41
illustrates a map of the CCD.

Appendix D: Support Modules (Non-COBOL Add-Ons)

 RM/COBOL User's Guide 459

Figure 41: Communications Descriptor Map (CCD)

BYTE
OFFSET

0
1

Reserved - do not modify

2 CD Type

3 Options

4
5

Destination Table Occurrences

6
.
.
.
11

Reserved - do not modify

12
.
.
.
19

Reserved for use by MCS

20
21

Message Area Length

22 Reserved - do not modify

23 Message Indicator

24 Advancing Flags

25 Reserved - do not modify

26
27

Advancing Count

28
.
.
.
79

Reserved for use by MCS

CD Type has:

Bit 0 (0x01) is set if CD . . .FOR INPUT.

Bit 1 (0x02) is set if CD . . .FOR OUTPUT.

Both bits are set if CD . . .FOR I-O.

Options has:

Bit 0 (0x01) is set if RECEIVE . . .MESSAGE.

Bit 1 (0x02) is set if RECEIVE . . .SEGMENT.

Bit 2 (0x04) is set if RECEIVE . . .NO DATA.

Bit 3 (0x08) is set if ENABLE INPUT TERMINAL or DISABLE INPUT TERMINAL.

Destination Table Occurrences contains the value specified in the DESTINATION TABLE
OCCURS clause, most-significant-byte first. Zero indicates that there is no DESTINATION
TABLE OCCURS clause.

Appendix D: Support Modules (Non-COBOL Add-Ons)

460 RM/COBOL User's Guide

Message Area Length contains the length of the message area for a SEND or RECEIVE
operation, and of the key (password) for an ENABLE or DISABLE operation. Zero indicates
no message area (no FROM phrase in a SEND statement), or no key value (no KEY phrase in
a DISABLE or ENABLE statement). The length is stored as a two-byte binary integer with
the most significant byte at the lowest address. The LD_BIT16 macro should be used to fetch
this length value.

Message Indicator contains the binary value of the message indicator specified by the WITH
phrase of the SEND statement. 0=no indicator, 1=ESI, 2=EMI, and 3=EGI. The value is
incremented by 16 if the REPLACING LINE phrase was specified in the SEND statement.

Advancing Flags contains information about the ADVANCING phrase of the SEND
statement. Bit 7 (0x80) is set if the BEFORE phrase was specified, and is cleared if the
AFTER phrase was specified. Bit 6 (0x40) is set if mnemonic-name was specified. Bits 0-3
(0x0F) contain the channel number associated with mnemonic-name in this case. If bit 6 is
clear, bit 3 (0x08) is set to indicate the PAGE phrase was specified, or bit 0 (0x01) is set to
indicate the LINE(S) phrase was specified.

Advancing Count contains the binary value of the literal or identifier specified in the
LINE(S) clause of the ADVANCING LINE(S) phrase of the SEND statement. The count is
stored as a two-byte binary integer with the most significant byte at the lowest address. The
LD_BIT16 macro should be used to fetch this count value.

The remaining area is set to zero by the RM/COBOL compiler, and may be used by the
MCS, as required.

Appendix E: Windows Printing

 RM/COBOL User's Guide 461

Appendix E: Windows Printing

The RM/COBOL for Windows runtime system supplies a P$ subprogram library that allows
access to Windows printing features. This appendix describes the required RM/COBOL
calling sequence and the USING list parameters for each P$ subprogram. Note that failure to
comply with the USING list requirements will halt the run unit with a STOP RUN indication
at the line containing the incorrect CALL statement.

To facilitate Windows printing program development, COBOL copy files are supplied with
the RM/COBOL development system. These are described in Copy Files (see page 500).
Common uses for the P$ subprograms are illustrated in Example Code Fragments (see
page 521).

In addition to the Windows printing subprogram library, this appendix also describes an
alternative means of printing under Windows using a set of RM/COBOL-specific escape
sequences (see page 530).

P$ Subprogram Library
Note P$ subprogram names are case-insensitive. For readability, mixed case is used in this
document.

The P$ subprograms can be logically grouped into the following categories that control:

• The standard Windows Print dialog box

• Drawing activities

• Text manipulation

• Activities common to both drawing and text manipulation

• Printer control activities

Table 48 lists the subprograms alphabetically within each of these categories.

Table 48: RM/COBOL Windows Printing Subprogram Library

Windows Print Dialog Box
Subprograms

Function

P$ClearDialog
(see page 473)

Clears the standard Windows Print dialog box values
back to their default (unset) state.

P$DisableDialog
(see page 473)

Causes the Windows Print dialog box not to display the
next time a dynamic printer is opened.

Appendix E: Windows Printing

462 RM/COBOL User's Guide

Table 48: RM/COBOL Windows Printing Subprogram Library

Windows Print Dialog Box
Subprograms

Function

P$DisplayDialog
(see page 473)

Invokes the standard Windows Print dialog box.

P$EnableDialog
(see page 474)

Causes the standard Windows Print dialog box to
display automatically the next time the predefined
dynamic printer device is opened.

P$GetDialog
(see page 474)

Retrieves values from the standard Windows Print
dialog box.

P$SetDialog
(see page 475)

Sets values for the standard Windows Print dialog box.

Table 48: RM/COBOL Windows Printing Subprogram Library

Drawing Subprograms Function

P$DrawBitmap
(see page 476)

Prints a bitmap file (.bmp).

P$DrawBox
(see page 477)

Draws a box.

P$DrawLine
(see page 477)

Draws a line.

P$GetPosition
(see page 478)

Retrieves the ending position of the last print operation.

P$LineTo
(see page 478)

Draws a line starting at the current position.

P$MoveTo
(see page 478)

Repositions the line-draw pen without drawing a line.

P$SetBoxShade
(see page 479)

Sets shading color and percentage for a box.

P$SetPen
(see page 479)

Sets the style, width, and color of the pen tool for a box
or a line.

P$SetPosition
(see page 480)

Sets a new position for the next print operation.

Table 48: RM/COBOL Windows Printing Subprogram Library

Text Manipulation Subprograms Function

P$ClearFont
(see page 480)

Clears font description values back to their default
(unset) state.

P$GetFont
(see page 481)

Retrieves the characteristics of the current font to match
the values used by the P$SetFont subprogram.

P$GetTextExtent
(see page 482)

Retrieves the bounding rectangle size for the text passed to
the function, calculated using the current font size. The
returned values can be used to draw boxes around text.

P$GetTextMetrics
(see page 482)

Retrieves the characteristics of the current font.

P$GetTextPosition
(see page 484)

Retrieves the ending position of the last print operation
adjusted to the top or bottom of the current font.

Appendix E: Windows Printing

 RM/COBOL User's Guide 463

Table 48: RM/COBOL Windows Printing Subprogram Library

Text Manipulation Subprograms Function

P$SetDefaultAlignment
(see page 484)

Sets default alignment used in text positioning.

P$SetFont
(see page 485)

Changes fonts for subsequent text print operations.

P$SetLineExtendMode
(see page 487)

Concatenates output from two COBOL WRITE
statements on the same line.

P$SetLineSpacing
(see page 487)

Sets the number of lines per inch.

P$SetPitch
(see page 488)

Sets normal, compressed, or expanded font pitch.

P$SetTabStops
(see page 488)

Sets the tab stop increment.

P$SetTextColor
(see page 488)

Sets the color for text output.

P$SetTextPosition
(see page 489)

Sets a new position for the next print operation adjusted
from the top or bottom of the current font.

P$TextOut
(see page 489)

Allows the program to control the position of the text.
This provides an alternative to using the COBOL
WRITE statement to print text.

Table 48: RM/COBOL Windows Printing Subprogram Library

Common Drawing and Text
Manipulation Subprograms

Function

P$SetDefaultMode
(see page 491)

Sets default mode used in positioning and sizing
parameters.

P$SetDefaultUnits
(see page 491)

Sets default unit of measurement in positioning and
sizing parameters.

P$SetLeftMargin
(see page 491)

Sets left margin for subsequent printer output.

P$SetTopMargin
(see page 492)

Sets the top margin for subsequent printer output.

Table 48: RM/COBOL Windows Printing Subprogram Library

Printer Control Subprograms Function

P$ChangeDeviceModes
(see page 492)

Changes device mode (DEVMODE) values for the
standard Windows Print dialog box. Values take effect
beginning with the next page.

P$EnableEscapeSequences
(see page 493)

Enables RM/COBOL-specific escape sequences.

P$EnumPrinterInfo
(see page 493)

Retrieves detailed information about all of the printers
on a system.

P$GetDefineDeviceInfo
(see page 494)

Retrieves the define device information as specified in
the DEFINE-DEVICE configuration record of the
runtime configuration file for the current P$ printer.

Appendix E: Windows Printing

464 RM/COBOL User's Guide

Table 48: RM/COBOL Windows Printing Subprogram Library

Printer Control Subprograms Function

P$GetDeviceCapabilities
(see page 495)

Retrieves the device capabilities of a P$ printer.

P$GetHandle
(on page 496)

Retrieves the handle of the current P$ printer.
Optionally, can be used to retrieve the true Windows
printer handle.

P$GetPrinterInfo
(see page 497)

Retrieves detailed information about a P$ printer.

P$NewPage
(see page 498)

Forces the next printer output to a new page.

P$ResetPrinter
(see page 499)

Resets the P$ printer.

P$SetDocumentName
(see page 499)

Sets the name of the document as it is displayed in the
Windows printer status window.

P$SetHandle
(see page 499)

Changes the current P$ printer.

P$SetRawMode
(see page 500)

Bypasses Windows printer drivers, enabling printing
with escape sequences to a remote printer on a Windows
server.

Overview
RM/COBOL provides numerous capabilities and flexibility when printing under Windows.

The RM/COBOL runtime allows the configuration of a predefined dynamic printer device, as
discussed in Windows Printers (on page 322). When this device is opened, a standard
Windows Print dialog box, as shown in Figure 42, is presented to the user to allow dynamic
selection of the Windows printer.

Appendix E: Windows Printing

 RM/COBOL User's Guide 465

Figure 42: Standard Windows Print Dialog Box

The RM/COBOL runtime also contains a broad range of COBOL-callable subprograms (P$)
to allow printer control, font control, drawing of bitmaps, lines, and boxes, color control,
positioning of printed objects, and other print-related functions.

Note Throughout this appendix, the term “P$ printer” is used to refer to a printer that is
manipulated using the RM/COBOL printing functions for Windows printers. Normally, a P$
printer is a dynamic printer (file access name of PRINTER? in the default configuration), but
the Windows default printer (file access name PRINTER in the default configuration) may
also be a P$ printer.

These functions can be applied to a single printer, or, if the application uses multiple printers,
a printer “handle” is available to allow selection of an open printer on which subsequent P$
subprograms will operate. The printer handle can be ignored by the application if it opens
only one printer at a time. The true Windows handle of the printer is available so that non-
COBOL subprograms can further enhance the information on the page. This allows the use of
special graphics and bar codes. This Windows handle can be ignored by the application if
there is no need for non-COBOL programs to write to the printer.

C$SetDevelopmentMode (see page 571) may be used to enable expanded error information
reporting (known as “development mode”) for the P$ subprograms. This may be useful
during program development. Development mode may also be used to bracket particular P$
calls by using both C$SetDevelopmentMode and C$ClearDevelopmentMode (see page 540).

Note Some of the more advanced printer functions require knowledge of Windows printing
structures. Only limited documentation is given here because it is assumed that the developer
who requires advanced functions has access to the appropriate Windows documentation.

WARNING Due to differences among printers and printer drivers, output produced using
P$ subprograms can vary from printer to printer. To avoid surprises after application
deployment, test your application on printers that you plan to support.

Appendix E: Windows Printing

466 RM/COBOL User's Guide

Using Windows Printing Functions
The basic steps for using the Windows printing functions are as follows:

1. Open a printer that selects a dynamic printer device using the standard COBOL OPEN
statement. In the default configuration, this is a printer with a file access name of
“PRINTER?”.

Opening a dynamic printer allows the end-user to choose the desired Windows printer by
displaying the Windows Print dialog when the OPEN statement is executed. See
Windows Printers (on page 322) for more information on Windows printers and
configuration of Windows printers. If the Windows default printer is the desired printer,
a printer defined with the PATH=DEFAULT,… keyword in the DEFINE-DEVICE
configuration record may be used instead or the Windows Print dialog can be disabled
with P$DisableDialog (see page 473) or with the Printer Dialog Never property (see
page 80).

2. Optionally retrieve the printer handle by calling P$GetHandle (see page 496).

Disregard this step if the application does not open more than one printer at a time.

3. Call various P$ subprograms to control the font, orientation, color, position, and so on,
of printed text or drawing objects.

If more than one printer is opened at one time, call P$SetHandle (see page 499) to switch
between them.

4. Intermix P$ subprogram calls with standard COBOL WRITE statements to the printer to
produce the desired output.

5. Close the COBOL printer file.

Returning to a "Normal" Font
In order to implement the concept of returning to a “normal” font (after using the
RM/COBOL-specific escape sequences, Shift In or Shift Out, to specify expanded or
compressed fonts), the RM/COBOL runtime keeps a copy of the normal font for each printer.
That normal font is updated whenever P$SetFont (see page 485) or the Print Pitch or Font
Height escape sequences, as described in the example Setting Text Position (see page 529),
are used.

Common P$ Subprogram Arguments
Many of the P$ subprograms use similar arguments to control positioning, size, color, and
other common values. The arguments are described using the following terms: Position,
Size, Point, Amount, and Increment, Mode, Units, Yes/No, and Color. The descriptions of
these types of arguments are given below, but are omitted from the individual subprogram
argument descriptions.

• Position. XPosition, YPosition, XPoint, and YPoint arguments can be any COBOL
numeric data type. The default value for these arguments is the current position. An
XPosition or XPoint argument must have a corresponding YPosition or YPoint argument,
respectively.

Notes

Appendix E: Windows Printing

 RM/COBOL User's Guide 467

− For any of the P$Get subprograms receiving a Position argument, the format of the
receiving field’s PICTURE clause varies, depending on the type of Units (see
page 467) being used. If Units is “Device Units”, the format of the PICTURE clause
must be PIC S9(10). If Units is “Characters”, the format of the PICTURE clause
must be PIC S9(3). If Units is “Inches” or “Metric”, the format of the PICTURE
clause must be PIC S99v99.

− Position 0,0 is the upper-left corner of the printable area of the page.

• Alignment. Alignment arguments can be any alphabetic or alphanumeric COBOL data
type. Alignment arguments allow the application to specify “Top” alignment or
“Bottom” alignment of text positioning. The default mode is “Top” unless changed by
the P$SetDefaultAlignment (see page 484) call. Only the first letter of the value is
relevant, and it is case-insensitive. Possible values are contained in the copy file
WINDEFS.CPY (see page 519).

• Size. Size arguments can be any COBOL numeric data type. Size arguments are used to
specify the width (SizeWidth) and height (SizeHeight) of objects. Except when used with
P$DrawBitmap (see page 476), Size arguments have default values of 1 for width and 1
for height.

Note For any of the P$Get subprograms receiving a Size argument, the format of the
receiving field’s PICTURE clause varies, depending on the type of Units (see below)
being used. If Units is “Device Units”, the format of the PICTURE clause must be PIC
9(10). If Units is “Characters”, the format of the PICTURE clause must be PIC 9(3). If
Units is “Inches” or “Metric”, the format of the PICTURE clause must be PIC 99v99.

• Amount and Increment. Amount and Increment arguments can be any COBOL numeric
data type. These arguments specify the value of an argument used in subprogram calls.

• Mode. Mode arguments can be any alphabetic or alphanumeric COBOL data type. Mode
arguments allow the application to specify “Absolute” positioning (with 0,0 being the
upper-left corner of the page) or “Relative” positioning (relative to the last printed object
or text). The default mode is “Absolute” unless changed by the call to
P$SetDefaultMode (see page 491). Only the first letter of the value is relevant, and it is
case-insensitive. Possible values are contained in the copy file WINDEFS.CPY (see
page 519).

• Units. Units arguments can be any alphabetic or alphanumeric COBOL data type. Units
arguments allow the application to select one of four units of measurement: “Inches”,
“Metric”, “Characters”, and “Device Units”. “Inches” are expressed in inches with 2.5
meaning 2½ inches and have precision to 1/1000th of an inch. “Metric” is expressed in
centimeters and has precision to 1/1000th of a centimeter. “Characters” are expressed in
character cell row/column position (computed using the current font). “Device Units” are
expressed in the low-level Windows device unit measurement. The default value for
Units is “Inches” unless changed by the call to P$SetDefaultUnits (see page 491). Only
the first letter of the value is relevant, and it is case-insensitive. Possible values are
contained in the copy file WINDEFS.CPY (see page 519).

• Yes/No. Yes/No arguments can be any alphabetic or alphanumeric COBOL data type.
Only the first letter of the value is relevant, and it is case-insensitive. The default value is
N (No). For possible values to make the COBOL statement more readable, see the copy
file WINDEFS.CPY (see page 519).

• Color. Color arguments may be specified by one of following methods:

− Color-name/Percentage method. Any COBOL alphabetic or alphanumeric variable
specifying the color-name. For possible values, see Table 49 and the copy file
WINDEFS.CPY (on page 519). A second optional argument indicates the

Appendix E: Windows Printing

468 RM/COBOL User's Guide

percentage (intensity) to apply to the color value. For example, the following code
fragment sets the box shading color to 30 percent red:

CALL "P$SetBoxShade" USING ColorRed 30.

− RGB (Red, Green, Blue) triplet method. These values may be any COBOL numeric
data items. Possible values for each data item are 0 through 255. See Table 49 for a
list of default colors to use with RM/COBOL. Note that if you use the RGB triplet
method, you must specify a value for all three colors.

Table 49: Default Colors Used With RM/COBOL

String 78-Level Value Red, Green, Blue Values

ColorBlack “Black” 000,000,000

ColorDarkBlue “Dark Blue” 000,000,127

ColorDarkGreen “Dark Green” 000,127,000

ColorDarkCyan “Dark Cyan” 000,127,127

ColorDarkRed “Dark Red” 127,000,000

ColorDarkMagenta “Dark Magenta” 127,000,127

ColorBrown “Brown” 127,127,000

ColorDarkGray “Dark Gray” 085,085,085

ColorLightGray “Light Gray” 192,192,192

ColorBlue “Blue” 000,000,255

ColorGreen “Green” 000,255,000

ColorCyan “Cyan” 000,255,255

ColorRed “Red” 255,000,000

ColorMagenta “Magenta” 255,000,255

ColorYellow “Yellow” 255,255,000

ColorWhite “White” (will not print) 255,255,255

Omitting P$ Subprogram Arguments
The COBOL CALL statement in RM/COBOL supports the OMITTED keyword to explicitly
omit an argument in the USING list. For more information, see the “CALL Statement” topic
in the RM/COBOL Language Reference Manual.

The calling COBOL program may omit arguments by passing fewer arguments than expected
or passing the reserved word, OMITTED, for one or more arguments. The following example
illustrates how the OMITTED keyword may be used with P$ subprograms.

CALL "P$SetPosition" USING 5, 3, OMITTED, "Inches"

This example causes the next drawn object to be displayed at the specified coordinates. The
Mode argument (see page 467) has been omitted, which causes the RM/COBOL runtime to
use the default value for Mode.

Appendix E: Windows Printing

 RM/COBOL User's Guide 469

Windows Print Dialog Box Subprograms
The following subprograms control the configuration of the standard Windows Print dialog
box (as illustrated in Figure 42 on page 465):

• P$ClearDialog (see page 473)

• P$DisplayDialog (see page 473)

• P$EnableDialog (see page 474)

• P$GetDialog (see page 474)

• P$SetDialog (see page 475)

Notes

• P$GetDialog and P$SetDialog use the printer dialog/device mode parameters listed in
Table 50. In this table, the fields listed in the “Parameter Name” column represent the
string that must be passed to the P$ subprograms that use the ParameterName/Value
pairs calling sequence, which allows parameters to be set or changed individually.
Possible values are provided in the 78-level entries in the copy file PRINTDLG.CPY
(see page 506).

The description in the “PICTURE Clause” column indicates whether the field is numeric
or alphanumeric and its required number of digits or characters. When setting values
using P$SetDialog with the ParameterName/Value pairs calling sequence, there is no
minimum requirement on the number of digits or characters. When retrieving values
using P$GetDialog with the ParameterName/Value pairs calling sequence, the PICTURE
must specify at least the number of digits or characters shown.

• Some user selections in the Windows Print dialog box must be acted on by the COBOL
application, while the device driver will handle others automatically. Still other user
selections will vary from driver to driver. For more information, see Printing Multiple
Copies (on page 471) and Printing Partial Reports (on page 472).

Table 50: Printer Dialog/Device Mode Parameters

Parameter Name PICTURE Clause Description

Return PIC X Standard Windows Print dialog box status:
Y = OK and N = An error occurred (see
Extended Error below).

Extended Error PIC 9(5) Extended error code. See PD-
ExtendedErrorValue in PRINTDLG.CPY
(see page 506) for details.

All Pages Flag PIC X “All” option button is selected.

Selection Flag PIC X “Selection” option button is selected. See
Printing Partial Reports (on page 472).

Page Numbers Flag PIC X “Pages” option button is selected.

No Selection Flag PIC X Disables the “Selection” option button.

No Page Numbers Flag PIC X Disables the “Pages” option button.

Collate Flag PIC X “Collate” check box is selected.

Appendix E: Windows Printing

470 RM/COBOL User's Guide

Table 50: Printer Dialog/Device Mode Parameters

Parameter Name PICTURE Clause Description

Print Setup Flag PIC X Displays the Print Setup dialog box rather
than the Print dialog box. The Print dialog
box has Print Range and Copies features
that are replaced by Paper and Orientation
features in the Print Setup dialog box.

Print to File Flag PIC X “Print to File” check box is selected.

No Warning Flag PIC X Prevents the warning message from being
displayed when there is no default printer.

Use Device Mode
Copies Flag

PIC X Indicates whether your application supports
multiple copies and collation. See Printing
Multiple Copies (on page 471).

Disable Print to File Flag PIC X Disables the “Print to File” check box.

Hide Print to File Flag PIC X Hides the “Print to File” check box.

No Network Button Flag PIC X Hides and disables the “Network” button.

From Page PIC 9(5) First page to print.

To Page PIC 9(5) Last page to print.

Min Page PIC 9(5) Minimum value for From Page and To Page.
If Min Page equals Max Page, the “Pages”
option button and the starting and ending
page edit controls are disabled. See Printing
Partial Reports (on page 472).

Max Page PIC 9(5) Maximum value for From Page and To
Page. See Printing Partial Reports (on
page 472).

Print Dialog Copies PIC 9(5) Initial number of copies for the “Copies”
edit control. If a value is specified for
Device Name (or any of the parameters
following Device Name in this table), the
value specified for Device Mode Copies
overrides the value specified for Print
Dialog Copies. See Printing Multiple
Copies (on page 471).

Device Name PIC X(80) Name of the printer selected by the user.

Fields Group Note This parameter is not available when
using the ParameterName/Value pairs
calling sequence because the pairs calling
sequence automatically sets the appropriate
Fields bits when setting Device Mode fields.
The Fields parameter is available when
using the PrinterDialogDescription group
data item calling sequence. The developer
is responsible for setting the appropriate
Fields bits.

Orientation PIC 9(5) Portrait versus landscape.

Paper Size PIC 9(5) The size of the paper.

Paper Length PIC 9(5) Length of the paper (overrides Paper Size).

Paper Width PIC 9(5) Width of the paper (overrides Paper Size).

Appendix E: Windows Printing

 RM/COBOL User's Guide 471

Table 50: Printer Dialog/Device Mode Parameters

Parameter Name PICTURE Clause Description

Scale PIC 9(5) Scale factor applied while printing,
expressed as a percentage. For example, 50
would print text and graphics at 50% of their
specified height and width.

Device Mode Copies PIC 9(5) The number of copies to print (overrides
Print Dialog Copies). See Printing Multiple
Copies (on page 471).

Default Source PIC 9(5) The default paper bin.

Print Quality PIC S9(5) High, medium, low, or draft.

Color PIC 9(5) Color versus monochrome.

Duplex PIC 9(5) One-sided versus two-sided printing.

Y Resolution PIC 9(5) Y-resolution of the printer specified in dots-
per-inch. If this parameter is set, Print
Quality specifies the X-resolution of the
printer in dots-per-inch.

True Type Option PIC 9(5) TrueType® font rendering options.

Collate PIC X True or False. See Printing Multiple Copies
(on page 471).

ICM Method PIC 9(10) System-specific. See Microsoft
documentation.

ICM Intent PIC 9(10) System-specific. See Microsoft
documentation.

Media Type PIC 9(10) System-specific. See Microsoft
documentation.

Dither Type PIC 9(10) System-specific. See Microsoft
documentation.

Printing Multiple Copies
Creating multiple copies generally requires that the printer driver support printing multiple
copies. If the COBOL application is not prepared to generate multiple copies of each page,
the PD-UseDevModeCopiesFlag should be set to TRUE to indicate that the application is
depending on the printer driver to print multiple copies. For more information, see the
definitions in the copy file PRINTDLG.CPY (on page 506).

Not all printers, however, can print multiple copies. If the printer driver does not support
printing multiple copies, the “Copies” edit control on the standard Windows Print dialog
box (see Figure 42 on page 465) will be disabled. Similarly, if the printer driver does not
support collation, the “Collate” check box will be disabled. After the printer is opened or the
standard Windows Print dialog box is displayed, the application may use P$GetDialog (see
page 474) to retrieve values set by the user in the Windows Print dialog box. The application
developer should first check the return information provided by P$DisplayDialog (see
page 473) or by P$GetDialog to determine whether the user canceled the Print dialog box. If
the application sets PD-UseDevModeCopiesFlag to TRUE, P$GetDialog will return PD-
Copies with a value of one and PD-CollateFlag set to FALSE.

Appendix E: Windows Printing

472 RM/COBOL User's Guide

If the application is prepared to generate multiple copies of each page, the
PD-UseDevModeCopiesFlag should be set to FALSE to indicate that the application will
handle multiple copies if requested by the user. Similarly, if the PD-UseDevModeCopiesFlag
is set to FALSE, the application is responsible for collating multiple copies.

Regardless of how the PD-UseDevModeCopiesFlag is set, an application can determine from
PD-Copies and PD-CollateFlag (obtained from P$GetDialog) how many copies to generate
and whether to simulate collation by generating the complete report multiple times.

To preset the number of copies in the Windows Print dialog box to a number other than one,
the application should set DM-Copies to the desired number and, if not using the
ParameterName/Value pairs method, set DM-CopiesField to TRUE.

After the printer is opened or the Windows Print dialog box is displayed, the DM-Copies and
DM-CollateValue data items (obtained from P$GetDialog) contain the copies and collate
information used by the printer driver. If the PD-UseDevModeCopiesFlag is set to FALSE,
DM-Copies will contain the number of copies the printer will print, and DM-CollateValue
will be zero (FALSE). If the PD-UseDevModeCopiesFlag is set to TRUE and the printer
driver supports multiple copies, DM-Copies will contain the number of copies requested by
the user and, if the printer driver supports collation, DM-CollateValue will indicate whether
the user wants collation.

Remember, fields in the DEVMODE portion of the PRINTDLG.CPY copy file (that is,
those fields that begin with the DM- prefix) are meaningful only if the associated item in
DM-Fields is set to TRUE. Therefore, it is necessary to set the appropriate item in DM-Fields
in addition to setting such values as DM-Copies. Similarly, the application should check the
appropriate item in DM-Fields before referencing the associated item after calling
P$GetDialog. When using the ParameterName/Value pairs method, although it is not
necessary to set DM-Fields before using P$SetDialog (see page 475), it is necessary to check
the Validity-Flag when using P$GetDialog.

The example code fragment, Presetting the Print Dialog Box (see page 524), illustrates the
proper way to set fields before calling P$SetDialog.

Printing Partial Reports
It is possible to print less than a full report, but in order to do this, the application must do all
the work. Neither the printer driver nor the RM/COBOL runtime will print partial reports.
The COBOL application must generate only the pages selected by the user.

If the application does not support generating partial reports, the PD-NoPageNumbersFlag
should be set to TRUE to disable the “Pages” option button and the associated edit controls on
the Windows Print dialog box. See the definitions in the copy file PRINTDLG.CPY (see
page 506). Similarly, the PD-NoSelectionFlag may be set to TRUE to disable the “Selection”
option button.

If the application does support generating partial reports (that is, the PD-NoPageNumbersFlag
is set to FALSE), the application should set PD-MinPage and PD-MaxPage to specify the
minimum and maximum values, respectively, allowed for the page range specified in the
“From Page” and “To Page” edit controls. If PD-MinPage and PD-MaxPage have the same
value, the “Pages” option button and the starting and ending page edit controls are disabled.
The application may specify the initial starting and ending pages with PD-FromPage and
PD-ToPage. These values must be within the range of PD-MinPage and PD-MaxPage. If the
user selects the “Pages” option button, then the PD-PageNumberFlag will be set to TRUE
when the application calls P$GetDialog to determine what the user selected. Remember
to first check the return information provided by P$DisplayDialog (see page 473) or by
P$GetDialog (see page 474) to determine whether the user canceled the Print dialog box. If
the user selected a range of pages to print, the range will be returned by P$GetDialog in the

Appendix E: Windows Printing

 RM/COBOL User's Guide 473

PD-FromPage and PD-ToPage fields. It is then the application’s responsibility to generate
only those pages.

P$ClearDialog
P$ClearDialog is used to clear the standard Windows Print dialog box values back to their
default (unset) state.

For an example that includes P$ClearDialog, see Presetting the Print Dialog Box (on
page 524).

Calling Sequence

P$DisableDialog
P$DisableDialog is used to control the automatic invoking of the standard Windows Print
dialog box when opening a dynamic printer device. Normally, the Windows Print dialog box
is presented the first time a dynamic printer is opened. Calling P$DisableDialog causes the
Print dialog box not to be displayed the next time a dynamic printer device is opened. This
feature can be quite useful when P$SetDialog (see page 475) has been called to preset the
desired printer, obtained from P$EnumPrinterInfo (see page 493) or by other methods, and
the application does not want the Print dialog box to be displayed.

Calling Sequence

P$DisplayDialog
P$DisplayDialog is used to invoke the standard Windows Print dialog box. After choosing a
printer with this dialog box, the next open of a dynamic printer device will use the selected
printer (and no dialog box will be displayed at that time). See also the discussion of dynamic
printers in Windows Printers (on page 322).

For an example that includes P$DisplayDialog, see Checking the Exit Code after Displaying
the Print Dialog Box (on page 525).

CALL "P$ClearDialog"

CALL "P$DisableDialog"

Appendix E: Windows Printing

474 RM/COBOL User's Guide

Calling Sequence

DialogReturn is a COBOL data item that receives the results of the Windows Print dialog
box return value. This allows the application to determine whether the dialog was
dismissed using the OK or Cancel button, or by an error condition. Possible values are
contained in the 78-level entries in the copy file PRINTDLG.CPY (see page 506) under
the heading, “P$DisplayDialog Return Values.”

P$EnableDialog
P$EnableDialog is used to control the automatic invoking of the standard Windows Print
dialog box when opening a dynamic printer device. Normally, the Print dialog box is
presented only the first time a dynamic printer is opened. Calling P$EnableDialog causes the
Print dialog box to be displayed the next time a dynamic printer device is opened. See also
the discussion of dynamic printers in Windows Printers (on page 322).

For an example that includes P$EnableDialog, see Opening and Writing to Separate Printers
(on page 527).

Calling Sequence

P$GetDialog
P$GetDialog retrieves fields from the standard Windows Print dialog box.

The two calling sequences for this subprogram allow parameters to be retrieved either
individually or collectively. You can retrieve parameters individually by using
ParameterName/Value/Validity-Flag triplets. Retrieve parameters collectively using the
PrinterDialogDescription group data item.

Calling Sequences

CALL "P$DisplayDialog" GIVING DialogReturn

CALL "P$EnabledDialog"

CALL "P$GetDialog" USING PrinterDialogDescription

CALL "P$GetDialog" USING ParameterName-1 Value-1
 Validity-Flag-1 [ParameterName-n Value-n
 Validity-Flag-n...]

Appendix E: Windows Printing

 RM/COBOL User's Guide 475

PrinterDialogDescription is a group data item, as defined in the copy file
PRINTDLG.CPY (on page 506).

ParameterName is an alphanumeric data item that contains the name of the printer dialog
or device mode parameter to get (see Table 50 on page 469).

Value is a COBOL data item used to get the value of the parameter named by
ParameterName. Possible values are contained in the 78-level entries in the copy file,
PRINTDLG.CPY.

Validity-Flag is a returned numeric data item that indicates the validity of the returned
parameter value. A non-zero value indicates a valid parameter.

Note For a more complete discussion of printer dialog and device mode parameters, see the
Microsoft Windows documentation for the PRINTDLG and DEVMODE structures. For web
site information, see page 506.

P$SetDialog
P$SetDialog initializes fields for the standard Windows Print dialog box.

The two calling sequences for this subprogram allow parameters to be set either individually
or collectively. Setting parameters individually using ParameterName/Value pairs allows
multiple calls to the subprogram to accumulate values for the standard Windows Print dialog
box. Setting parameters collectively, using the PrinterDialogDescription group data item,
sets all values, after which the ParameterName/Value method can be used to modify values.

For examples that include P$SetDialog, see Presetting the Print Dialog Box (on page 524) and
Checking the Exit Code after Displaying the Print Dialog Box (on page 525).

Calling Sequences

PrinterDialogDescription is a group data item, as defined in the copy file
PRINTDLG.CPY.

ParameterName is an alphanumeric data item that contains the name of the printer dialog
or device mode parameter to set (see Table 50 on page 469).

Value is a COBOL data item used to set the value of the parameter named by
ParameterName. Possible values are contained in the 78-level entries in the copy file,
PRINTDLG.CPY.

Notes

• If the DM-DeviceName of the group call or the “Device Name” ParameterName of the
pairs call is more than 31 characters, the pre-selected printer in the Windows Print dialog
box will not reflect the printer name set in the P$SetDialog call. If the Print dialog box is
not displayed (for example, by using the P$DisableDialog call), the correct printer will be

CALL "P$SetDialog" USING PrinterDialogDescription

CALL "P$SetDialog" USING ParameterName-1 Value-1
 [ParameterName-n Value-n...]

Appendix E: Windows Printing

476 RM/COBOL User's Guide

displayed. If the printer name is more than 80 characters, then the second form of the
function calling sequence must be used.

• For a more complete discussion of printer dialog and device mode parameters, see the
Microsoft Windows documentation for the PRINTDLG and DEVMODE structures. For
web site information, see page 506.

Drawing Subprograms
The following subprograms control the drawing of objects on a printed page:

• P$DrawBitmap (see page 476) • P$MoveTo (see page 478)

• P$DrawBox (see page 477) • P$SetBoxShade (see page 479)

• P$DrawLine (see page 477) • P$SetPen (see page 479)

• P$GetPosition (see page 478) • P$SetPosition (see page 480)

• P$LineTo (see page 478)

P$DrawBitmap
P$DrawBitmap is used to print a bitmap file from an existing Windows bitmap file.

For an example that includes this subprogram, see Printing a Bitmap (on page 526).

Calling Sequence

Filename can be any alphabetic or alphanumeric COBOL data type. It specifies the
pathname of the Windows bitmap file to draw.

XPosition/YPosition. See Position in Common P$ Subprogram Arguments (on
page 466).

PositionMode. See Mode in Common P$ Subprogram Arguments.

PositionUnits/SizeUnits. See Units in Common P$ Subprogram Arguments.

SizeWidth and SizeHeight are the values used to determine the size of the bitmap. If you
specify a value for SizeWidth, you must also specify a value for SizeHeight. A value of
0,0 indicates that the new bitmap should be the same size as the original bitmap. A value
of 0 in one position but not in the other indicates that the new bitmap should be scaled to
match the proportions of the original bitmap. For example, a non-zero SizeWidth value
specifies the width and requests that SizeHeight be determined by the original
width/height ratio.

CALL "P$DrawBitmap" USING Filename [XPosition
 YPosition] [PositionMode] [PositionUnits]
 [SizeWidth SizeHeight] [SizeUnits]
 [GIVING ReturnCode]

Appendix E: Windows Printing

 RM/COBOL User's Guide 477

ReturnCode is a COBOL numeric data item that indicates the success or failure of the
P$DrawBitmap call. A value of “0” indicates a failure; “1” indicates success. Failure
will be returned if the bitmap file cannot be found or is not a valid bitmap.

P$DrawBox
P$DrawBox is used to draw a box. For examples that include P$DrawBox, see Drawing
Shaded Boxes with Colors (on page 522) and Drawing a Box around Text (on page 523).

Calling Sequence

XPosition/YPosition. See Position in Common P$ Subprogram Arguments (on
page 466).

PositionMode. See Mode in Common P$ Subprogram Arguments.

PositionUnits/SizeUnits. See Units in Common P$ Subprogram Arguments.

SizeWidth/SizeHeight. See Size in Common P$ Subprogram Arguments.

ShadeYesNo is an alphanumeric data item that specifies a yes/no value (see Yes/No in
Common P$ Subprogram Arguments). It specifies whether to shade the interior of the
box using the current box shading color, set with P$SetBoxShade (see page 479).

P$DrawLine
P$DrawLine is used to draw a line.

For an example that includes P$DrawLine, see Drawing a Ruler (on page 523).

Calling Sequence

XnPoint/YnPoint. See Position in Common P$ Subprogram Arguments (on page 466).

PointnMode. See Mode in Common P$ Subprogram Arguments.

PointnUnits. See Units in Common P$ Subprogram Arguments.

CALL "P$DrawBox" USING [XPosition YPosition]
 [PositionMode] [PositionUnits] [SizeWidth
 SizeHeight] [SizeUnits] [ShadeYesNo]

CALL "P$DrawLine" USING [X1Point Y1Point]
 [Point1Mode] [Point1Units] [X2Point
 Y2Point] [Point2Mode] [Point2Units]

Appendix E: Windows Printing

478 RM/COBOL User's Guide

P$GetPosition
P$GetPosition is used to retrieve the ending position of the last print operation. For instance,
P$GetPosition could be used to return to a previous position after printing a bitmap elsewhere
on the page.

For an example that includes P$GetPosition, see Setting Text Position (on page 529).

Calling Sequence

XPosition/YPosition. See Position in Common P$ Subprogram Arguments (on
page 466).

Units. See Units in Common P$ Subprogram Arguments.

P$LineTo
P$LineTo is used to draw a line starting at the current position.

For an example that includes P$LineTo, see Drawing a Ruler (on page 523).

Calling Sequence

XPoint/YPoint. See Position in Common P$ Subprogram Arguments (on page 466).

Mode. See Mode in Common P$ Subprogram Arguments.

Units. See Units in Common P$ Subprogram Arguments.

P$MoveTo
P$MoveTo is used to reposition the line-draw pen without drawing a line.

For an example that includes P$MoveTo, see Drawing a Ruler (on page 523).

Calling Sequence

CALL "P$GetPosition" USING XPosition YPosition [Units]

CALL "P$LineTo" USING [XPoint YPoint] [Mode] [Units]

CALL "P$MoveTo" USING [XPoint YPoint] [Mode] [Units]

Appendix E: Windows Printing

 RM/COBOL User's Guide 479

XPoint/YPoint. See Position in Common P$ Subprogram Arguments (on page 466).

Mode. See Mode in Common P$ Subprogram Arguments.

Units. See Units in Common P$ Subprogram Arguments.

P$SetBoxShade
P$SetBoxShade is used to set color and density of the color used in P$DrawBox (on
page 477) calls.

For an example that includes P$SetBoxShade, see Drawing Shaded Boxes with Colors (on
page 522).

Calling Sequence

Color. See Color in Common P$ Subprogram Arguments (on page 466).

P$SetPen
P$SetPen is used to set the style, width, and color of the pen used in P$DrawBox (on
page 477), P$DrawLine (on page 477), and P$LineTo (on page 478) calls.

For an example that includes P$SetPen, see Drawing Shaded Boxes with Colors (on
page 522).

Calling Sequence

Style can be any COBOL numeric data type. It specifies the style of the pen. Possible
values are contained in the copy file WINDEFS.CPY (on page 519).

Width can be any COBOL numeric data type. It specifies the pen width in logical units.
If Width is zero, the pen is a single pixel wide. The default value is 1.

Note If you specify a Width value greater than 1 for the pen styles, Dash, Dot, DashDot,
or DashDotDot, Windows will force Style to a value of Solid.

Color. See Color in Common P$ Subprogram Arguments (on page 466).

CALL "P$SetBoxShade" USING [Color]

CALL "P$SetPen" USING Style [Width] [Color]

Appendix E: Windows Printing

480 RM/COBOL User's Guide

P$SetPosition
P$SetPosition is used to set a position for the next print operation.

For examples that include P$SetPosition, see Drawing a Box around Text (on page 523) and
Setting Text Position (on page 529).

Calling Sequence

XPosition/YPosition. See Position in Common P$ Subprogram Arguments (on
page 466).

Mode. See Mode in Common P$ Subprogram Arguments.

Units. See Units in Common P$ Subprogram Arguments.

Text Manipulation Subprograms
The following subprograms control the manipulation of text on a printed page:

• P$ClearFont (see page 480) • P$SetLineExtendMode (see page 487)

• P$GetFont (see page 481) • P$SetPitch (see page 488)

• P$GetTextExtent (see page 482) • P$SetTabStops (see page 488)

• P$GetTextMetrics (see page 482) • P$SetTextColor (see page 488)

• P$GetTextPosition (see page 484) • P$SetTextPosition (see page 489)

• P$SetDefaultAlignment (see page 484) • P$TextOut (see page 489)

• P$SetFont (see page 485)

P$ClearFont
P$ClearFont clears the font description values that were set using P$SetFont (see page 485)
and returns them to their default (unset) state. This subprogram can be used to clear previous
values before calling P$SetFont using the ParameterName/Value method to set information
for a new font.

Calling Sequence

CALL "P$SetPosition" USING [XPosition YPosition]
 [Mode] [Units]

CALL "P$ClearFont"

Appendix E: Windows Printing

 RM/COBOL User's Guide 481

P$GetFont
P$GetFont is used to retrieve the characteristics (or values) of the current font. The format of
these values matches those used by P$SetFont (see page 485) instead of the format used by
P$GetTextMetrics. The P$GetFont subprogram may be used only after the printer is opened.

The two calling sequences for this subprogram allow parameters to be retrieved either
collectively or individually.

The P$GetFont subprogram may be used after calling the P$SetFont subprogram to determine
whether the font attributes for the font chosen by Windows are acceptable. This is
particularly important when multiple calls to P$SetFont are made using the
ParameterName/Value method to change font attributes.

WARNING If no DEFINE-DEVICE configuration record is specified for a printer, calling
P$GetFont after opening a printer but before using P$SetFont to select a font may return a
Face Name value of “System”, a Height of 16, and a Width of 7. Such information is not
useful to the COBOL application. Attempts to use this information as values for the
P$SetFont subprogram will produce undesirable results, including, possibly, text that is too
small to read or an incorrect font. To avoid this problem, use either the PATH keyword of the
DEFINE-DEVICE configuration record (see page 319) to specify a font name and size or
P$SetFont to select a font before calling P$GetFont. If you use P$SetFont to select the font,
you should first use the INITIALIZE statement or P$ClearFont (see page 480) to set a known
initial state before setting values for the new font.

Calling Sequence

LogicalFontDescription is a group data item as defined in the copy file LOGFONT.CPY
(see page 503).

ParameterName is an alphanumeric data item that contains the name of the font
parameter to get (see Table 52 on page 486).

Value is the COBOL data item used to receive the value of the parameter named by
ParameterName. Possible values are contained in the 78-level entries in the copy file
named LOGFONT.CPY.

Notes

• The COBOL data types for the Value data items are listed in Table 48 on page 461. The
numeric fields must be integer, no decimal places are allowed, and the minimum required
field size is five (PIC 9(5)). For the alphabetic/alphanumeric fields, the minimum field
size is one except for “Face Name”, which must be at least 31 characters.

• For a more complete discussion of font attribute parameters, see the Microsoft Windows
documentation for the LOGFONT structure. For web site information, see page 503.

CALL "P$GetFont" USING LogicalFontDescription

CALL "P$GetFont" USING ParameterName-1 Value-1
 [ParameterName-n Value-n...]

Appendix E: Windows Printing

482 RM/COBOL User's Guide

P$GetTextExtent
P$GetTextExtent is used to retrieve the bounding rectangle size for text passed to the
subprogram, calculated using the current font size. The returned values can be used to draw
boxes around text or determine whether the text will fit within a desired region (such as the
current line).

For examples that include P$GetTextExtent, see the following:

• Drawing a Box around Text (on page 523)

• Printing Text at the Top of a Page (on page 528)

• Printing Text at the Corners of a Page (on page 528)

Calling Sequence

Text may be any alphabetic or alphanumeric data item or nonnumeric literal of
nonzero length.

SizeWidth/SizeHeight. See Size in Common P$ Subprogram Arguments (on page 466).

Units. See Units in Common P$ Subprogram Arguments.

P$GetTextMetrics
P$GetTextMetrics is used to retrieve the characteristics of the current font. Figure 43
illustrates some of these characteristics.

Figure 43: Text Metrics

For examples that include P$GetTextMetrics, see Drawing a Box around Text (on page 523)
and Setting the Point Size for a Font (on page 529).

The two calling sequences for this subprogram allow parameters to be retrieved either
individually or collectively. You can retrieve parameters individually by using
ParameterName/Value pairs. Retrieve parameters collectively using the
TextMetricDescription group data item.

Note The values retrieved by P$GetTextMetrics are available after opening a P$ printer. All
values returned by P$GetTextMetrics are in device units.

 CALL "P$GetTextExtent" USING Text, SizeWidth,
 SizeHeight [Units]

Appendix E: Windows Printing

 RM/COBOL User's Guide 483

Calling Sequences

TextMetricDescription is a group data item as defined in the copy file TXTMTRIC.CPY
(on page 516).

ParameterName is an alphanumeric data item that contains the name of the font
parameter to get (see Table 51).

Value is a COBOL data item used to receive the value of the parameter named by
ParameterName. Possible values are contained in the 78-level entries in the copy file,
TXTMTRIC.CPY.

Validity-Flag is a returned numeric data item that indicates the validity of the returned
parameter values. A non-zero value indicates valid value(s). This argument is optional.

Note For a more complete discussion of text metric parameters, see the Microsoft Windows
documentation for the TEXTMETRIC structure. For web site information, see page 516.

Table 51: Text Metric Parameters

Parameter Name PICTURE Clause Description

Height PIC 9(10) Ascender line to descender line.

Ascent PIC 9(10) Ascender line to baseline.

Descent PIC 9(10) Baseline to descender line.

Internal Leading PIC 9(10) Point size of a font minus the physical size of
the font.

External Leading PIC 9(10) Extra space to be added between lines.

Average Character
Width

PIC 9(10) Average character width for a font.

Maximum Character
Width

PIC 9(10) Width of the widest character.

Weight PIC 9(10) Font weight.

Overhang PIC 9(10) Extra width added to some synthesized fonts.

Digitized Aspect X PIC 9(10) Horizontal aspect of the device for which the
font was designed.

Digitized Aspect Y PIC 9(10) Vertical aspect of the device for which the font
was designed. The ratio of Digitized Aspect X
and Digitized Aspect Y is the aspect ratio of the
device for which the font was designed.

First Character PIC X First character defined in the font.

Last Character PIC X Last character defined in the font.

CALL "P$GetTextMetrics" USING TextMetricDescription
 GIVING Validity-Flag

CALL "P$GetTextMetrics" USING ParameterName-1 Value-1
 [ParameterName-n Value-n...] GIVING Validity-Flag

Appendix E: Windows Printing

484 RM/COBOL User's Guide

Table 51: Text Metric Parameters

Parameter Name PICTURE Clause Description

Default Character PIC X Character that will be substituted for characters
that are not in the font.

Break Character PIC X Character that will be used for word breaks in
text justification.

Italic PIC X ‘Y’ if italic font; ‘N’ otherwise.

Underlined PIC X ‘Y’ if underlined font; ‘N’ otherwise.

Struck Out PIC X ‘Y’ if “struck-out” font; ‘N’ otherwise.

Pitch PIC 9(10) Pitch of the font.

Family PIC 9(10) Family of the font.

Character Set PIC 9(10) Character set of the font.

P$GetTextPosition
P$GetTextPosition is used to retrieve the ending position the last print operation adjusted to
the top or bottom of the current font.

For examples that include P$GetTextPosition, see Drawing a Box around Text (on page 523)
and Setting Text Position (on page 529).

Calling Sequence

XPosition/YPosition. See Position in Common P$ Subprogram Arguments (on
page 466).

Alignment. See Alignment in Common P$ Subprogram Arguments.

Units. See Units in Common P$ Subprogram Arguments.

Note P$GetPosition (on page 478) returns the ending “baseline” position. P$GetTextPosition
should be used when you need the ascender line (top) or descender line (bottom) position of
the current font.

P$SetDefaultAlignment
P$SetDefaultAlignment is used to set default alignment used in text positioning. Possible
values are “Top” and “Bottom”. The initial value is “Top”.

CALL "P$GetTextPosition" USING XPosition YPosition
 [Alignment] [Units]

Appendix E: Windows Printing

 RM/COBOL User's Guide 485

Calling Sequence

Alignment. See Alignment in Common P$ Subprogram Arguments (on page 466).

P$SetFont
P$SetFont is used to change fonts. Selecting a font with this subprogram call causes the next
write operation on a P$ printer to use that newly selected font. The P$SetFont subprogram
may be used only after the printer is opened.

The two calling sequences for this subprogram allow parameters to be set either individually
or collectively. Setting parameters individually, using ParameterName/Value pairs, allows
multiple calls to the subprogram to accumulate values for the desired font. Setting parameters
collectively, using the LogicalFontDescription group data item, sets all values, after which the
ParameterName/Value method can be used to modify values.

The application should use the INITIALIZE statement to set the LogicalFontDescription to
zeroes and spaces before starting to set values for a P$SetFont call using the entire
LogicalFontDescription group. Failure to use the INITIALIZE statement may result in
undesirable and unpredictable results.

Similarly, the application should use P$ClearFont (see page 480) to set an initial known state for
the font before making a P$SetFont call using the ParameterName/Value method. Alternatively,
if not running on a Windows, the application may call P$GetFont (see page 481) to retrieve
information about the current font.

WARNING Because each separate call to P$SetFont results in a call to a Windows API to
set the new font information, applications should be coded to call P$SetFont with either the
entire LogicalFontDescription group or to make a single call to P$SetFont using as many
ParameterName/Value pairs as desired. Making multiple calls to P$SetFont using the pairs
method may result in unpredictable results because Windows must choose an acceptable font
after every P$SetFont call.

The P$GetFont subprogram may be used after calling the P$SetFont subprogram to determine
whether the font attributes for the font chosen by Windows are acceptable. This is
particularly important when multiple calls to P$SetFont are made using the
ParameterName/Value method to change font attributes.

For examples that include this subprogram, see the following:

• Printing a Watermark (on page 522)

• Changing a Font While Printing (on page 526)

• Using the COBOL WRITE Statement to Print Multiple Text Outputs on the Same Line
(on page 526)

• Setting the Point Size for a Font (on page 529)

• Setting Text Position (on page 529)

Note The values set by P$SetFont are available to P$GetTextMetrics (see page 482) after the
open operation for the printer. You can use P$ClearFont (see page 480) to clear the existing

CALL "P$SetDefaultAlignment" USING Alignment

Appendix E: Windows Printing

486 RM/COBOL User's Guide

font description before calling P$SetFont using the ParameterName/Value method to set
information for a new font.

Calling Sequences

LogicalFontDescription is a group data item as defined in the copy file LOGFONT.CPY
(on page 503).

ParameterName is an alphanumeric data item that contains the name of the font
parameter to set (see Table 52).

Value is the COBOL data item used to set the value of the parameter named by
ParameterName. Possible values are contained in the 78-level entries in the copy file,
LOGFONT.CPY.

Note For a more complete discussion of font attribute parameters, see the Microsoft
Windows documentation for the LOGFONT structure. For web site information, see
page 503.

Table 52: Font Parameters

Parameter Name COBOL Data Type Description

Height Any signed numeric Font height in logical units.

Width Any numeric Average font width in logical units.

Escapement Any numeric Angle, in tenths of degrees, for a string of
characters (relative to the X-axis of the
device).

Orientation Any numeric Angle, in tenths of degrees, for individual
characters (relative to the X-axis of the
device).

Weight Any numeric Font weight in the range 0 through 1000. For
example, 400 is normal and 700 is bold. If
this value is zero, a default weight is used.

Italic Any alphabetic or
alphanumeric

‘Y’ if italic font; ‘N’ otherwise.

Underline Any alphabetic or
alphanumeric

‘Y’ if underlined font; ‘N’ otherwise.

Strike Out Any alphabetic or
alphanumeric

‘Y’ if “struck-out” font; ‘N’ otherwise.

Char Set Any numeric Specifies the character set.

Out Precision Any numeric Specifies the output precision for font
matching.

Clip Precision Any numeric Specifies the clipping precision for font
matching.

CALL "P$SetFont" USING LogicalFontDescription

CALL "P$SetFont" USING ParameterName-1 Value-1
 [ParameterName-n Value-n...]

Appendix E: Windows Printing

 RM/COBOL User's Guide 487

Table 52: Font Parameters

Parameter Name COBOL Data Type Description

Quality Any numeric Specifies the output quality for font matching.

Pitch Any numeric Pitch of the font.

Family Any numeric Family of the font.

Face Name Any alphabetic or
alphanumeric

Windows typeface name.

P$SetLineExtendMode
P$SetLineExtendMode is used to concatenate output from two COBOL WRITE statements
on the same line. This is useful for mixing fonts or styles. Specifically, by using the COBOL
WRITE statement, then calling P$SetLineExtendMode, and using another WRITE statement
with the ADVANCING phrase specifying 0 lines, the output from the second WRITE
statement will display on the same line as the output from the first WRITE statement.

For an example that includes P$SetLineExtendMode, see Using the COBOL WRITE
Statement to Print Multiple Text Outputs on the Same Line (on page 526).

Calling Sequence

SpaceAmount can be any COBOL numeric data type. It specifies the amount of space to
leave between the two sets of output. The default value is 0.

Units. See Units in Common P$ Subprogram Arguments (on page 466).

P$SetLineSpacing
P$SetLineSpacing is used to reset the number of lines per inch.

For an example that includes P$SetLineSpacing, see Changing Orientation, Pitch, and Line
Spacing (on page 527).

Calling Sequence

Value can be any numeric COBOL data type. It specifies the number of lines per inch.

CALL "P$SetLineExtendMode" USING SpaceAmount [Units]

CALL "P$SetLineSpacing" USING Value

Appendix E: Windows Printing

488 RM/COBOL User's Guide

P$SetPitch
P$SetPitch is used to set normal, compressed, or expanded font pitch.

For an example that includes P$SetPitch, see Changing Orientation, Pitch, and Line Spacing
(on page 527).

Calling Sequence

Type can be any alphabetic or alphanumeric COBOL data type. It specifies a font pitch
value of “Normal”, “Expanded”, or “Compressed”. Only the first letter of the value is
relevant, and it is case-insensitive. Possible values are contained in the 78-level entries in
the copy file WINDEFS.CPY (on page 519).

Factor can be any numeric COBOL data type. It specifies the compression and/or
expansion ratio to apply to the current font pitch. For a Type value of “Compressed”, the
default compression ratio is 1.65, which specifies 1.65 times as many characters per inch.
For a Type value of “Expanded”, the default expansion ratio is 2.00, which specifies
double-size characters (that is, half as many characters per inch). For a Type value of
“Normal”, the Factor argument is not allowed (that is, “Normal” is the normal pitch of
the current font).

P$SetTabStops
P$SetTabStops sets the increment used for computing the next tab stop location. Tabs are
sent using the Horizontal Tab escape sequence (see Table 56 on page 530).

Calling Sequence

Increment. See Increment in Common P$ Subprogram Arguments (on page 466).

Units. See Units in Common P$ Subprogram Arguments.

P$SetTextColor
P$SetTextColor is used to set the color of text for subsequent P$TextOut (on page 489) and
COBOL WRITE statements.

For an example that includes P$SetTextColor, see Printing a Watermark (on page 522).

CALL "P$SetPitch" USING Type [Factor]

CALL "P$SetTabStops" USING Increment [Units]

Appendix E: Windows Printing

 RM/COBOL User's Guide 489

Calling Sequence

Color. See Color in Common P$ Subprogram Arguments (on page 466).

P$SetTextPosition
P$SetTextPosition is used to set a new position for the next print operation adjusted from the
top or bottom of the current font.

For examples that include P$SetTextPosition, see the following:

• Printing Text at the Top of a Page (on page 528)

• Printing Text at the Corners of a Page (on page 528)

• Setting Text Position (on page 529)

Calling Sequence

XPosition/YPosition. See Position in Common P$ Subprogram Arguments (on
page 466).

Alignment. See Alignment in Common P$ Subprogram Arguments.

Mode. See Mode in Common P$ Subprogram Arguments.

Units. See Units in Common P$ Subprogram Arguments.

Notes

• P$SetPosition (see page 480) should be used to set the “baseline” for the next text print
operation.

• To print a line of text in the top left corner of a page, without cutting off the top of the
characters, call P$SetTextPosition specifying a value of “Top” for Alignment. To print a
line of text in the bottom left corner of a page without cutting off the bottom of the
characters, call P$SetTextPosition specifying a value of “Bottom” for Alignment.

P$TextOut
P$TextOut is an alternative to using the COBOL WRITE statement to print text. It allows the
program to control the position of the text. The COBOL WRITE statement has no positioning
capabilities.

CALL "P$SetTextColor" USING Color

CALL "P$SetTextPosition" USING XPosition YPosition
 [Alignment] [Mode] [Units]

Appendix E: Windows Printing

490 RM/COBOL User's Guide

For examples that include P$TextOut, see the following:

• Drawing a Box around Text (on page 523)

• Changing a Font While Printing (on page 526)

• Changing Orientation, Pitch, and Line Spacing (on page 527)

• Opening and Writing to Separate Printers (on page 527)

• Printing Text at the Top of a Page (on page 528)

• Printing Text at the Corners of a Page (on page 528)

• Setting Text Position (on page 529)

Calling Sequence

Text can be any COBOL alphanumeric data item. It specifies the text to be printed.

XPosition/YPosition. See Position in Common P$ Subprogram Arguments (on
page 466).

Mode. See Mode in Common P$ Subprogram Arguments.

Units. See Units in Common P$ Subprogram Arguments.

BoxYesNo can be any COBOL alphanumeric data item that specifies a yes/no value (see
Yes/No in Common P$ Subprogram Arguments). It specifies whether to draw a box
around the text.

ShadeYesNo can be any COBOL alphanumeric data item that specifies a yes/no value
(see Yes/No in Common P$ Subprogram Arguments). It specifies whether to shade the
interior of the box using the current box shading color, which is set with P$SetBoxShade
(see page 479).

Common Drawing and Text Manipulation
Subprograms

The following subprograms are common to both drawing and text manipulation activities:

• P$SetDefaultMode (see page 491)

• P$SetDefaultUnits (see page 491)

• P$SetLeftMargin (see page 491)

• P$SetTopMargin (see page 492)

CALL "P$TextOut" USING Text [XPosition YPosition]
 [Mode] [Units] [BoxYesNo] [ShadeYesNo]

Appendix E: Windows Printing

 RM/COBOL User's Guide 491

P$SetDefaultMode
P$SetDefaultMode is used to control the default mode used in positioning and sizing
parameters. Possible values are “Relative” and “Absolute”. The initial value is “Absolute”.

Calling Sequence

Mode. See Mode in Common P$ Subprogram Arguments (on page 466).

P$SetDefaultUnits
P$SetDefaultUnits is used to control the default unit of measurement in position and sizing
parameters. Possible values are “Inches”, “Metric”, “Characters”, and “Device Units”. The
initial value is “Inches”.

For an example that includes P$SetDefaultUnits, see Drawing a Ruler (on page 523).

Calling Sequence

Units. See Units in Common P$ Subprogram Arguments (on page 466).

P$SetLeftMargin
P$SetLeftMargin is used to set a left margin (offset from left side of paper) for subsequent
COBOL WRITE statements. This margin will be cleared to zero at the next page boundary.
This subprogram is useful for generating columns of text.

Calling Sequence

SizeWidth. See Size in Common P$ Subprogram Arguments (on page 466).

Units. See Units in Common P$ Subprogram Arguments.

CALL "P$SetDefaultMode" USING Mode

CALL "P$SetDefaultUnits" USING Units

CALL "P$SetLeftMargin" USING SizeWidth [Units]

Appendix E: Windows Printing

492 RM/COBOL User's Guide

P$SetTopMargin
P$SetTopMargin is used to set a top margin (offset from top edge of paper) for subsequent
pages.

Calling Sequence

SizeHeight. See Size in Common P$ Subprogram Arguments (on page 466).

Units. See Units in Common P$ Subprogram Arguments.

Printer Control Subprograms
The following subprograms are used to control various properties of a P$ printer:

• P$ChangeDeviceModes (see page 492) • P$GetPrinterInfo (see page 497)

• P$EnableEscapeSequences (see page 493) • P$NewPage (see page 498)

• P$GetDefineDeviceInfo (see page 494) • P$SetDocumentName (see page 499)

• P$GetDeviceCapabilities (see page 495) • P$SetHandle (see page 499)

• P$GetHandle (see page 496) • P$SetRawMode (see page 500)

P$ChangeDeviceModes
P$ChangeDeviceModes changes the device mode (DEVMODE) values for the standard
Windows Print dialog box. The new values take effect beginning with the next page. This
subprogram is used for such tasks as changing the paper source or the orientation of paper.

The two calling sequences for this subprogram allow parameters to be set either individually
or collectively. Setting parameters individually using ParameterName/Value pairs allows
multiple calls to the subprogram to accumulate values for the standard Windows Print dialog
box, illustrated in Figure 42 on page 465. Setting parameters collectively, using the
PrinterDialogDescription group data item, sets all values, after which the
ParameterName/Value method can be used to modify values.

Note Only DEVMODE fields of the PrinterDialogDescription can be changed by this
subprogram. These fields are defined in the PRINTDLG.CPY copy file and have a
DM- prefix.

For an example that includes P$ChangeDeviceModes, see Changing Orientation, Pitch, and
Line Spacing (on page 527).

CALL "P$SetTopMargin" USING SizeHeight [Units]

Appendix E: Windows Printing

 RM/COBOL User's Guide 493

Calling Sequences

PrinterDialogDescription is a group data item, as defined in the copy file
PRINTDLG.CPY (on page 506).

ParameterName is an alphanumeric data item that contains the name of the device mode
parameter to set (see Table 50 on page 469 starting with the Device Name parameter).

Value is the COBOL data item used to set the value of the parameter named by
ParameterName. Possible values are contained in the 78-level entries in the copy file,
PRINTDLG.CPY.

Note For a more complete discussion of device mode parameters, see the Microsoft Windows
documentation for the DEVMODE structure. For web site information, see page 506.

P$EnableEscapeSequences
P$EnableEscapeSequences is used to enable RM/COBOL-specific escape sequences (see
page 530) for the current P$ printer. When there is more than one P$ printer open at the
same time, the current P$ printer is determined by P$SetHandle (see page 499). The escape
sequences are enabled until the printer is closed. The ESCAPE-SEQUENCES keyword (see
page 320) of the DEFINE-DEVICE configuration record or the Printer Enable Escape
Sequences property (see page 81) may also be used to enable these escape sequences.

Calling Sequence

P$EnumPrinterInfo
P$EnumPrinterInfo is used to retrieve detailed information about all of the printers on a
system. It is not necessary to open a printer to obtain this information.

Each call to P$EnumPrinterInfo obtains information about a single printer determined by the
PrinterIndex parameter. If you want to obtain information about all of the available printers,
continue to call P$EnumPrinterInfo, advancing PrinterIndex until the ReturnCode is zero.

The two calling sequences for this subprogram allow parameters to be retrieved either
individually or collectively. You can retrieve parameters individually using
ParameterName/Value pairs. Retrieve parameters collectively using the
PrinterInfoDescription group data item.

CALL "P$ChangeDeviceModes" USING PrinterDialogDescription

CALL "P$ChangeDeviceModes" USING ParameterName-1 Value-1
 [ParameterName-n Value-n...]

CALL "P$EnableEscapeSequences"

Appendix E: Windows Printing

494 RM/COBOL User's Guide

Calling Sequences

PrinterIndex is a numeric data item (1 relative) that specifies the index of the printer for
which the information is requested.

PrinterInfoDescription is a group data item, as defined in the copy file PRINTINF.CPY
(on page 514).

ParameterName is an alphanumeric data item that contains the name of the device
capability parameter to retrieve. See Table 54 on page 497, which is associated with the
description of P$GetPrinterInfo (see page 497).

Value is the COBOL data item used to receive the value of the parameter named by
ParameterName. Possible values are contained in the 78-level entries in the copy file,
PRINTINF.CPY.

ReturnCode is a COBOL numeric data item that indicates whether the current
PrinterIndex parameter corresponds to an available printer. A value of “1” indicates that
PrinterIndex is valid and printer information data has been returned. A value of “0”
indicates that PrinterIndex is invalid and no data has been returned.

P$GetDefineDeviceInfo
P$GetDefineDeviceInfo is used to retrieve the define device information as specified in the
DEFINE-DEVICE configuration record (see page 319) for the current P$ printer. When there
is more than one P$ printer open at the same time, the current P$ printer is determined by
P$SetHandle (see page 499).

The one calling sequence for this subprogram allows parameters to be retrieved collectively.
No method is provided to retrieve the parameters individually. Retrieve parameters
collectively using the DefineDeviceDescription group data item.

Note The values retrieved by P$GetDefineDeviceInfo are available only after opening a
P$ printer.

Calling Sequence

DefineDeviceDescription is a group data item, as defined in the copy file DEFDEV.CPY
(on page 501).

CALL "P$EnumPrinterInfo" USING PrinterIndex
 PrinterInfoDescription
 GIVING ReturnCode

CALL "P$EnumPrinterInfo" USING PrinterIndex
 ParameterName-1 Value-1 [ParameterName-n Value-n...]
 GIVING ReturnCode

CALL "P$GetDefineDeviceInfo" USING DefineDeviceDescription
 GIVING Validity-Flag

Appendix E: Windows Printing

 RM/COBOL User's Guide 495

Validity-Flag is a returned numeric data item that indicates the validity of the returned
DefineDeviceDescription. A non-zero value indicates that a DEFINE-DEVICE
configuration record exists for the current P$ printer. This argument is optional.

P$GetDeviceCapabilities
P$GetDeviceCapabilities is used to retrieve the device capabilities of a P$ printer. This
subprogram can be used to compute the printable area of the page to be printed.

The two calling sequences for this subprogram allow parameters to be retrieved either
individually or collectively. You can retrieve parameters individually using
ParameterName/Value pairs. Retrieve parameters collectively using the
DeviceCapabilitesDescription group data item.

Note The values retrieved by P$GetDeviceCapabilities are available after opening a
P$ printer.

For examples that include P$GetDeviceCapabilities, see the following:

• Setting the Point Size for a Font (on page 529)

• Printing Text at the Top of a Page (on page 528)

• Printing Text at the Corners of a Page (on page 528)

Calling Sequences

DeviceCapabilitesDescription is a group data item, as defined in the copy file
DEVCAPS.CPY (on page 501).

ParameterName is an alphanumeric data item that contains the name of the device
capability parameter (see Table 53).

Value is the COBOL data item used to receive the value of the parameter named by
ParameterName. Possible values are contained in the 78-level entries in the copy file,
DEVCAPS.CPY.

Note For a more complete discussion of device capability parameters, see the Microsoft
Windows documentation for the GetDeviceCaps function. For web site information, see
page 501.

Table 53: Device Capability Parameters

Parameter Name PICTURE Clause Description

Driver Version PIC 9(10) Device driver version.

Technology PIC 9(10) Device technology.

Horizontal Size PIC 9(10) Width of printable area, in millimeters.

CALL "P$GetDeviceCapabilities" USING TextMetricDescription

CALL "P$GetDeviceCapabilities" USING ParameterName-1
 Value-1 [ParameterName-n Value-n...]

Appendix E: Windows Printing

496 RM/COBOL User's Guide

Table 53: Device Capability Parameters

Parameter Name PICTURE Clause Description

Vertical Size PIC 9(10) Height of printable area, in millimeters.

Horizontal Resolution PIC 9(10) Width of printable area, in dots.

Vertical Resolution PIC 9(10) Height of printable area, in dots.

Logical Pixels X PIC 9(10) Horizontal dots-per-inch.

Logical Pixels Y PIC 9(10) Vertical dots-per-inch.

Aspect X PIC 9(10) Length of horizontal sides of a square.

Aspect Y PIC 9(10) Length of vertical sides of the same square.

Aspect XY PIC 9(10) Length of diagonal lines connecting
opposite vertices of the same square.

Physical Width PIC 9(10) Width of the printable area, in device units.

Physical Height PIC 9(10) Height of the printable area, in device units.

Physical Offset X PIC 9(10) Width of unprintable area (left and right
edges) in device units.

Physical Offset Y PIC 9(10) Height of unprintable area (top and bottom
edges) in device units.

Scaling Factor X PIC 9(10) X-axis scale factor.

Scaling Factor Y PIC 9(10) Y-axis scale factor.

P$GetHandle
P$GetHandle is used to retrieve the handle of the current P$ printer. This allows the
developer to use P$SetHandle (see page 499) to change the printer for subsequent P$ print
operations. These calls are not needed unless multiple printer devices are open at the same
time. See also the discussion of printer devices in Windows Printers (on page 322). When
the P$SetHandle function has not been used, the current P$ printer is the most recently
opened printer; thus, P$GetHandle should be called immediately after opening each of the
multiple printers.

Optionally, P$GetHandle can be used to retrieve the true Windows printer handle. The
Windows handle can be used by a non-COBOL subprogram to add information (such as
special graphics or a bar code) to a page printed on P$ printer. If you do not plan to use a
non-COBOL subprogram to enhance the printed output, the Windows handle is not required.

For an example that includes P$GetHandle, see Opening and Writing to Separate Printers (on
page 527).

Calling Sequence

CALL "P$GetHandle" USING Handle [Win-Handle]

Appendix E: Windows Printing

 RM/COBOL User's Guide 497

Handle is a PICTURE 9(2) numeric data item. It specifies the variable to receive the
handle of the current P$ printer.

Win-Handle is a PICTURE 9(10) numeric data item. This argument is optional. If
present, this argument specifies the variable to receive the true Windows handle of the
current P$ printer. The Windows printer handle can be passed to a developer-written
non-COBOL subprogram to allow the program to perform GDI (Graphics Device
Interface) calls to the printer. The Windows printer handle must not be passed to
P$SetHandle.

P$GetPrinterInfo
P$GetPrinterInfo is used to retrieve detailed information about a P$ printer.

The two calling sequences for this subprogram allow parameters to be retrieved either
individually or collectively. You can retrieve parameters individually using
ParameterName/Value pairs. Retrieve parameters collectively using the
PrinterInfoDescription group data item.

Calling Sequences

PrinterInfoDescription is a group data item, as defined in the copy file PRINTINF.CPY
(on page 514).

ParameterName is an alphanumeric data item that contains the name of the device
capability parameter to get (see Table 54).

Value is the COBOL data item used to receive the value of the parameter named by
ParameterName. Possible values are contained in the 78-level entries in the copy file,
PRINTINF.CPY.

Note For a more complete discussion of printer information parameters, see the Microsoft
Windows documentation for the PRINTER_INFO_2 structure. For web site information,
see page 506.

Table 54: Printer Information Parameters

Parameter Name PICTURE Clause Description

Server Name PIC X(80) Name of the server that controls the printer.

Printer Name PIC X(80) Name of the printer.

Share Name PIC X(80) Shared name of the printer

Port Name PIC X(80) Port(s) used to transmit data to the printer.

Driver Name PIC X(80) Name of the printer driver.

Comment PIC X(80) A brief description of the printer.

CALL "P$GetPrinterInfo" USING PrinterInfoDescription

CALL "P$GetPrinterInfo" USING ParameterName-1
 Value-1 [ParameterName-n Value-n...]

Appendix E: Windows Printing

498 RM/COBOL User's Guide

Table 54: Printer Information Parameters

Parameter Name PICTURE Clause Description

Location PIC X(80) Physical location of the printer.

Sep File PIC X(80) Name of file used to create the separator page.

Print Processor PIC X(80) Name of the print processor used by the printer.

Data Type PIC X(80) Data type used to record the print job.

Parameters PIC X(80) Default print-processor parameters.

Attributes Group Note This parameter is not available when
using the ParameterName/Value pairs calling
sequence. It is available only when using the
PrinterInfoDescription group data item calling
sequence.

Priority PIC 9(10) Print spooler priority.

Default Priority PIC 9(10) Default spooler priority.

Start Time PIC 9(10) Earliest allowed print time, in minutes, after
midnight GMT.

Until Time PIC 9(10) Latest allowed print time, in minutes, after
midnight GMT.

Status Group Note This parameter is not available when
using the ParameterName/Value pairs calling
sequence. It is available only when using the
PrinterInfoDescription group data item calling
sequence.

Jobs PIC 9(10) Number of jobs in the print queue.

Average PPM PIC 9(10) Average print speed in pages-per-minute.

P$NewPage
P$NewPage is used to force the next printer output to a new page and, if desired, change the
page orientation. The P$NewPage subprogram may be used only after the printer is opened.

Calling Sequence

Orientation can be any alphabetic or alphanumeric COBOL data type. It specifies
“Portrait” or “Landscape” page orientation. Only the first letter of the value is relevant,
and it is case-insensitive. Possible values are contained in the 78-level entries in the copy
file WINDEFS.CPY (see page 519).

CALL "P$NewPage" [USING Orientation]

Appendix E: Windows Printing

 RM/COBOL User's Guide 499

P$ResetPrinter
P$ResetPrinter is used to perform the same functions to control printing as the Reset escape
sequence (see Table 56 on page 530); that is, clear the margins, clear line spacing, clear line
extend mode, reset text length, set page orientation back to portrait, set paper source back to
DMBIN_ONLYONE, and set the font back to normal font.

Calling Sequence

P$SetDocumentName
P$SetDocumentName is used to set the name of the document as it is displayed in the
Windows printer status window. The P$SetDocumentName subprogram must be called
before opening the printer for which you want to set the document name.

The default document name is “RM/COBOL”. The name set by P$SetDocumentName
remains in effect until P$SetDocumentName is called without an argument. The name will
then revert to “RM/COBOL”.

Calling Sequence

DocumentName is an alphanumeric data item that contains the desired name of the
print document.

P$SetHandle
P$SetHandle is used to change the current P$ printer. This call is not needed unless multiple
printer devices are open at the same time. See also the discussion of printers in Windows
Printers (on page 322).

For an example that includes P$SetHandle, see Opening and Writing to Separate Printers (on
page 527).

CALL "P$ResetPrinter"

CALL "P$SetDocumentName" [USING DocumentName]

Appendix E: Windows Printing

500 RM/COBOL User's Guide

Calling Sequence

Handle can be any COBOL numeric data item. It specifies the variable that contains the
handle of the printer to use in subsequent P$ calls.

P$SetRawMode
P$SetRawMode is used to set a raw mode output when the next printer is opened. This
subprogram allows completely raw byte-stream I/O in applications that require it. It is
intended to be used when a user is having problems sending escape sequences to networked
printers on a Windows server. The RAW keyword (see page 322) of the DEFINE-DEVICE
configuration record or the Printer Enable Raw Mode property (see page 81) may also be used
to set raw mode output for a printer.

Only the following P$ subprograms can be used for a raw mode printer:

• P$ClearDialog (see page 473) • P$SetDialog (see page 475)

• P$DisableDialog (see page 473) • P$GetDeviceCapabilities (see page 495)

• P$DisplayDialog (see page 473) • P$GetHandle (see page 496)

• P$EnableDialog (see page 474) • P$GetPrinterInfo (see page 497)

• P$EnumPrinterInfo (see page 493) • P$SetHandle (see page 499)

• P$GetDialog (see page 474)

Calling Sequence

Copy Files
The RM/COBOL development system supplies COBOL copy files to facilitate Windows
printing program development using P$ subprograms.

The following copy files are supplied:

• DEFDEV.CPY (on page 501) is associated with P$GetDefineDeviceInfo (on page 494).

• DEVCAPS.CPY (on page 501) is associated with P$GetDeviceCapabilities (on page 495).

• LOGFONT.CPY (on page 503) is associated with P$SetFont (on page 485).

CALL "P$SetHandle" USING Handle

CALL "P$SetRawMode"

Appendix E: Windows Printing

 RM/COBOL User's Guide 501

• PRINTDLG.CPY (on page 506) is associated with the following subprograms:

− P$ChangeDeviceModes (on page 492)

− P$GetDialog (on page 474)

− P$SetDialog (on page 475)

• PRINTINF.CPY (on page 514) is associated with P$GetPrinterInfo (on page 497).

• TXTMTRIC.CPY (on page 516) is associated with P$GetTextMetrics (on page 482).

• WINDEFS.CPY (on page 519) contains miscellaneous items used by several P$
subprograms. This copy file is also used with C$PlaySound (on page 560).

WARNING We strongly recommend that you do not change these RM/COBOL-supplied
copy files, as unpredictable results may occur if the copy files are changed incorrectly. If you
must alter the files, please be aware that the names of the data items are the only thing that
can be changed. Do not alter the pictures, types, sizes, or order of the data items.

DEFDEV.CPY
DEFDEV.CPY contains the following definitions.

*

* Define Device Information Definitions

*

 01 DefineDeviceInformation.

 02 DDI-DeviceName Picture X(80).

 02 DDI-PortName Picture X(10).

 02 DDI-FontName Picture X(80).

 02 DDI-PointSize Picture 9(5) Binary(2).

 02 DDI-RawModeValue Picture X.

 88 DDI-RawMode Value 'Y' When False 'N'.

 02 DDI-EscapeModeValue Picture X.

 88 DDI-EscapeMode Value 'Y' When False 'N'.

DEVCAPS.CPY
Information regarding the Microsoft Windows GetDeviceCaps function can be found on
the Internet at http://msdn.microsoft.com/library/. Periodically, Microsoft reorganizes the
MSDN information on the web site. Use the search capability to find information on the
requested topic.

DEVCAPS.CPY contains the following definitions.

*

* Device Capabilities Definitions

*

 01 DeviceCapabilities.

 02 DC-DriverVersion Picture 9(10) Binary(4).

 02 DC-TechnologyValue Picture 9 Binary(4).

 88 DC-TechnologyIsPlotter Value 0.

 88 DC-TechnologyIsRASDisplay Value 1.

http://msdn.microsoft.com/library/

Appendix E: Windows Printing

502 RM/COBOL User's Guide

 88 DC-TechnologyIsRASPrinter Value 2.

 88 DC-TechnologyIsRASCamera Value 3.

 88 DC-TechnologyIsCharStream Value 4.

 88 DC-TechnologyIsRASMetafile Value 5.

 88 DC-TechnologyIsRASDispfile Value 6.

 02 DC-HorzSize Picture 9(10) Binary(4).

 02 DC-VertSize Picture 9(10) Binary(4).

 02 DC-HorzRes Picture 9(10) Binary(4).

 02 DC-VertRes Picture 9(10) Binary(4).

 02 DC-LogPixelsX Picture 9(10) Binary(4).

 02 DC-LogPixelsY Picture 9(10) Binary(4).

 02 DC-AspectX Picture 9(10) Binary(4).

 02 DC-AspectY Picture 9(10) Binary(4).

 02 DC-AspectXY Picture 9(10) Binary(4).

 02 DC-PhysicalWidth Picture 9(10) Binary(4).

 02 DC-PhysicalHeight Picture 9(10) Binary(4).

 02 DC-PhysicalOffsetX Picture 9(10) Binary(4).

 02 DC-PhysicalOffsetY Picture 9(10) Binary(4).

 02 DC-ScalingFactorX Picture 9(10) Binary(4).

 02 DC-ScalingFactorY Picture 9(10) Binary(4).

*

* Technology Values

*

 78 DC-TechnologyPlotter Value 0.

 78 DC-TechnologyRASDisplay Value 1.

 78 DC-TechnologyRASPrinter Value 2.

 78 DC-TechnologyRASCamera Value 3.

 78 DC-TechnologyCharStream Value 4.

 78 DC-TechnologyRASMetafile Value 5.

 78 DC-TechnologyRASDispfile Value 6.

*

* Parameter Name Values

*

 78 DC-DriverVersionParam Value "Driver Version".

 78 DC-TechnologyParam Value "Technology".

 78 DC-HorizontalSizeParam Value "Horizontal Size".

 78 DC-VerticalSizeParam Value "Vertical Size".

 78 DC-HorizontalResolutionParam Value "Horizontal Resolution".

 78 DC-VerticalResolutionParam Value "Vertical Resolution".

 78 DC-LogicalPixelsXParam Value "Logical Pixels X".

 78 DC-LogicalPixelsYParam Value "Logical Pixels Y".

 78 DC-AspectXParam Value "Aspect X".

 78 DC-AspectYParam Value "Aspect Y".

 78 DC-AspectXYParam Value "Aspect XY".

 78 DC-PhysicalWidthParam Value "Physical Width".

 78 DC-PhysicalHeightParam Value "Physical Height".

 78 DC-PhysicalOffsetXParam Value "Physical Offset X".

 78 DC-PhysicalOffsetYParam Value "Physical Offset Y".

 78 DC-ScalingFactorXParam Value "Scaling Factor X".

 78 DC-ScalingFactorYParam Value "Scaling Factor Y".

Appendix E: Windows Printing

 RM/COBOL User's Guide 503

LOGFONT.CPY
Information regarding the Microsoft Windows LOGFONT structure can be found on the
Internet at http://msdn.microsoft.com/library/. Periodically, Microsoft reorganizes the MSDN
information on the web site. Use the search capability to find information on the requested
topic.

LOGFONT.CPY contains the following definitions.

*

* Logical Font Definitions

*

 01 LogicalFont.

 02 LF-Height Picture S9(5) Binary(2).

 02 LF-Width Picture 9(5) Binary(2).

 02 LF-Escapement Picture 9(5) Binary(2).

 02 LF-Orientation Picture 9(5) Binary(2).

 02 LF-WeightValue Picture 9(3) Binary(2).

 88 LF-WeightIsDontCare Value 0.

 88 LF-WeightIsThin Value 100.

 88 LF-WeightIsExtraLight Value 200.

 88 LF-WeightIsUltraLight Value 200.

 88 LF-WeightIsLight Value 300.

 88 LF-WeightIsNormal Value 400.

 88 LF-WeightIsRegular Value 400.

 88 LF-WeightIsMedium Value 500.

 88 LF-WeightIsSemiBold Value 600.

 88 LF-WeightIsDemiBold Value 600.

 88 LF-WeightIsBold Value 700.

 88 LF-WeightIsExtraBold Value 800.

 88 LF-WeightIsUltraBold Value 800.

 88 LF-WeightIsHeavy Value 900.

 88 LF-WeightIsBlack Value 900.

 02 LF-ItalicValue Picture X.

 88 LF-Italic Value 'Y' When False 'N'.

 02 LF-UnderlineValue Picture X.

 88 LF-Underline Value 'Y' When False 'N'.

 02 LF-StrikeoutValue Picture X.

 88 LF-Strikeout Value 'Y' When False 'N'.

 02 LF-CharSetValue Picture 9(3) Binary(2).

 88 LF-CharSetIsANSI Value 0.

 88 LF-CharSetIsDefault Value 1.

 88 LF-CharSetIsSymbol Value 2.

 88 LF-CharSetIsMAC Value 77.

 88 LF-CharSetIsShiftJIS Value 128.

 88 LF-CharSetIsHangeul Value 129.

 88 LF-CharSetIsJohab Value 130.

 88 LF-CharSetIsChineseBig5 Value 136.

 88 LF-CharSetIsGreek Value 161.

 88 LF-CharSetIsTurkish Value 162.

 88 LF-CharSetIsHebrew Value 177.

 88 LF-CharSetIsArabic Value 178.

 88 LF-CharSetIsBaltic Value 186.

http://msdn.microsoft.com/library/

Appendix E: Windows Printing

504 RM/COBOL User's Guide

 88 LF-CharSetIsRussian Value 204.

 88 LF-CharSetIsThai Value 222.

 88 LF-CharSetIsEastEurope Value 238.

 88 LF-CharSetIsOEM Value 255.

 02 LF-OutPrecisValue Picture 9 Binary(2).

 88 LF-OutPrecisIsDefault Value 0.

 88 LF-OutPrecisIsString Value 1.

 88 LF-OutPrecisIsStroke Value 3.

 88 LF-OutPrecisIsTrueType Value 4.

 88 LF-OutPrecisIsDevice Value 5.

 88 LF-OutPrecisIsRaster Value 6.

 88 LF-OutPrecisIsTruTypeOnly Value 7.

 88 LF-OutPrecisIsOutline Value 8.

 02 LF-ClipPrecisValue Picture 9(3) Binary(2).

 88 LF-ClipPrecisIsDefault Value 0.

 88 LF-ClipPrecisIsStroke Value 2.

 88 LF-ClipPrecisIsLHAngles Value 16.

 88 LF-ClipPrecisIsEmbedded Value 128.

 02 LF-QualityValue Picture 9 Binary(2).

 88 LF-QualityIsDefault Value 0.

 88 LF-QualityIsDraft Value 1.

 88 LF-QualityIsProof Value 2.

 02 LF-PitchValue Picture 9 Binary(2).

 88 LF-PitchIsDefault Value 0.

 88 LF-PitchIsFixed Value 1.

 88 LF-PitchIsVariable Value 2.

 02 LF-FamilyValue Picture 9 Binary(2).

 88 LF-FamilyIsDontCare Value 0.

 88 LF-FamilyIsRoman Value 1.

 88 LF-FamilyIsSwiss Value 2.

 88 LF-FamilyIsModern Value 3.

 88 LF-FamilyIsScript Value 4.

 88 LF-FamilyIsDecorative Value 5.

 02 LF-FaceName Picture X(31).

*

* Font Weight Values

*

 78 LF-WeightDontCare Value 0.

 78 LF-WeightThin Value 100.

 78 LF-WeightExtraLight Value 200.

 78 LF-WeightUltraLight Value 200.

 78 LF-WeightLight Value 300.

 78 LF-WeightNormal Value 400.

 78 LF-WeightRegular Value 400.

 78 LF-WeightMedium Value 500.

 78 LF-WeightSemiBold Value 600.

 78 LF-WeightDemiBold Value 600.

 78 LF-WeightBold Value 700.

 78 LF-WeightExtraBold Value 800.

 78 LF-WeightUltraBold Value 800.

 78 LF-WeightHeavy Value 900.

 78 LF-WeightBlack Value 900.

*

* Font Character Set Values

Appendix E: Windows Printing

 RM/COBOL User's Guide 505

*

 78 LF-CharSetANSI Value 0.

 78 LF-CharSetDefault Value 1.

 78 LF-CharSetSymbol Value 2.

 78 LF-CharSetMAC Value 77.

 78 LF-CharSetShiftJIS Value 128.

 78 LF-CharSetHangeul Value 129.

 78 LF-CharSetJohab Value 130.

 78 LF-CharSetChineseBig5 Value 136.

 78 LF-CharSetGreek Value 161.

 78 LF-CharSetTurkish Value 162.

 78 LF-CharSetHebrew Value 177.

 78 LF-CharSetArabic Value 178.

 78 LF-CharSetBaltic Value 186.

 78 LF-CharSetRussian Value 204.

 78 LF-CharSetThai Value 222.

 78 LF-CharSetEastEurope Value 238.

 78 LF-CharSetOEM Value 255.

*

* Font Output Precision Values

*

 78 LF-OutPrecisDefault Value 0.

 78 LF-OutPrecisString Value 1.

 78 LF-OutPrecisStroke Value 3.

 78 LF-OutPrecisTrueType Value 4.

 78 LF-OutPrecisDevice Value 5.

 78 LF-OutPrecisRaster Value 6.

 78 LF-OutPrecisTruTypeOnly Value 7.

 78 LF-OutPrecisOutline Value 8.

*

* Font Clipping Precision Values

*

 78 LF-ClipPrecisDefault Value 0.

 78 LF-ClipPrecisStroke Value 2.

 78 LF-ClipPrecisLHAngles Value 16.

 78 LF-ClipPrecisEmbedded Value 128.

*

* Font Quality Values

*

 78 LF-QualityDefault Value 0.

 78 LF-QualityDraft Value 1.

 78 LF-QualityProof Value 2.

*

* Font Pitch Values

*

 78 LF-PitchDefault Value 0.

 78 LF-PitchFixed Value 1.

 78 LF-PitchVariable Value 2.

*

* Font Family Values

*

 78 LF-FamilyDontCare Value 0.

 78 LF-FamilyRoman Value 1.

 78 LF-FamilySwiss Value 2.

Appendix E: Windows Printing

506 RM/COBOL User's Guide

 78 LF-FamilyModern Value 3.

 78 LF-FamilyScript Value 4.

 78 LF-FamilyDecorative Value 5.

*

* Parameter Name Values

*

 78 LF-HeightParam Value "Height".

 78 LF-WidthParam Value "Width".

 78 LF-EscapementParam Value "Escapement".

 78 LF-OrientationParam Value "Orientation".

 78 LF-WeightParam Value "Weight".

 78 LF-ItalicParam Value "Italic".

 78 LF-UnderlineParam Value "Underline".

 78 LF-StrikeOutParam Value "Strike Out".

 78 LF-CharSetParam Value "Char Set".

 78 LF-OutPrecisionParam Value "Out Precision".

 78 LF-ClipPrecisionParam Value "Clip Precision".

 78 LF-QualityParam Value "Quality".

 78 LF-PitchParam Value "Pitch".

 78 LF-FamilyParam Value "Family".

 78 LF-FaceNameParam Value "Face Name".

PRINTDLG.CPY
Information regarding the Microsoft Windows PRINTDLG and DEVMODE structures can be
found on the Internet at http://msdn.microsoft.com/library/. Periodically, Microsoft
reorganizes the MSDN information on the web site. Use the search capability to find
information on the requested topic.

PRINTDLG.CPY contains the following definitions.

*

* Print Dialog Definitions

*

 01 PrintDialog.

 02 PD-ReturnValue Picture X.

 88 PD-OKReturn Value 'Y' When False 'N'.

 02 PD-ExtendedErrorValue Picture 9(5) Binary(2).

 88 PD-ExtErrIsCanceled Value 0.

 88 PD-ExtErrIsStructSize Value 1.

 88 PD-ExtErrIsInitialization Value 2.

 88 PD-ExtErrIsNoTemplate Value 3.

 88 PD-ExtErrIsNoHInstance Value 4.

 88 PD-ExtErrIsLoadStrFailure Value 5.

 88 PD-ExtErrIsFindResFailure Value 6.

 88 PD-ExtErrIsLoadResFailure Value 7.

 88 PD-ExtErrIsLockResFailure Value 8.

 88 PD-ExtErrIsMemAllocFailure Value 9.

 88 PD-ExtErrIsMemLockFailure Value 10.

 88 PD-ExtErrIsNoHook Value 11.

 88 PD-ExtErrIsRegisterMsgFail Value 12.

 88 PD-ExtErrIsSetupFailure Value 4097.

http://msdn.microsoft.com/library/

Appendix E: Windows Printing

 RM/COBOL User's Guide 507

 88 PD-ExtErrIsParseFailure Value 4098.

 88 PD-ExtErrIsRetDefFailure Value 4099.

 88 PD-ExtErrIsLoadDrvFailure Value 4100.

 88 PD-ExtErrIsGetDevModeFail Value 4101.

 88 PD-ExtErrIsInitFailure Value 4102.

 88 PD-ExtErrIsNoDevices Value 4103.

 88 PD-ExtErrIsNoDefaultPrn Value 4104.

 88 PD-ExtErrIsDNDMMismatch Value 4105.

 88 PD-ExtErrIsCreateICFailure Value 4106.

 88 PD-ExtErrIsPrinterNotFound Value 4107.

 88 PD-ExtErrIsDefaultDifferent Value 4108.

 88 PD-ExtErrIsDialogFailure Value 65535.

 02 PD-Flags.

 03 PD-AllPagesFlagValue Picture X.

 88 PD-AllPagesFlag Value 'Y' When False 'N'.

 03 PD-SelectionFlagValue Picture X.

 88 PD-SelectionFlag Value 'Y' When False 'N'.

 03 PD-PageNumbersFlagValue Picture X.

 88 PD-PageNumbersFlag Value 'Y' When False 'N'.

 03 PD-NoSelectionFlagValue Picture X.

 88 PD-NoSelectionFlag Value 'Y' When False 'N'.

 03 PD-NoPageNumbersFlagValue Picture X.

 88 PD-NoPageNumbersFlag Value 'Y' When False 'N'.

 03 PD-CollateFlagValue Picture X.

 88 PD-CollateFlag Value 'Y' When False 'N'.

 03 PD-PrintSetupFlagValue Picture X.

 88 PD-PrintSetupFlag Value 'Y' When False 'N'.

 03 PD-PrintToFileFlagValue Picture X.

 88 PD-PrintToFileFlag Value 'Y' When False 'N'.

 03 PD-NoWarningFlagValue Picture X.

 88 PD-NoWarningFlag Value 'Y' When False 'N'.

 03 PD-UseDevModeCopiesFlagValue Picture X.

 88 PD-UseDevModeCopiesFlag Value 'Y' When False 'N'.

 03 PD-DisablePrintToFileFlagValue Picture X.

 88 PD-DisablePrintToFileFlag Value 'Y' When False 'N'.

 03 PD-HidePrintToFileFlagValue Picture X.

 88 PD-HidePrintToFileFlag Value 'Y' When False 'N'.

 03 PD-NoNetworkButtonFlagValue Picture X.

 88 PD-NoNetworkButtonFlag Value 'Y' When False 'N'.

 02 PD-FromPage Picture 9(5) Binary(2).

 02 PD-ToPage Picture 9(5) Binary(2).

 02 PD-MinPage Picture 9(5) Binary(2).

 02 PD-MaxPage Picture 9(5) Binary(2).

 02 PD-Copies Picture 9(5) Binary(2).

 02 DM-DeviceName Picture X(80).

 02 DM-Fields.

 03 DM-OrientationFieldValue Picture X.

 88 DM-OrientationField Value 'Y' When False 'N'.

 03 DM-PaperSizeFieldValue Picture X.

 88 DM-PaperSizeField Value 'Y' When False 'N'.

 03 DM-PaperLengthFieldValue Picture X.

 88 DM-PaperLengthField Value 'Y' When False 'N'.

 03 DM-PaperWidthFieldValue Picture X.

 88 DM-PaperWidthField Value 'Y' When False 'N'.

Appendix E: Windows Printing

508 RM/COBOL User's Guide

 03 DM-ScaleFieldValue Picture X.

 88 DM-ScaleField Value 'Y' When False 'N'.

 03 DM-CopiesFieldValue Picture X.

 88 DM-CopiesField Value 'Y' When False 'N'.

 03 DM-PaperSourceFieldValue Picture X.

 88 DM-PaperSourceField Value 'Y' When False 'N'.

 03 DM-PrintQualityFieldValue Picture X.

 88 DM-PrintQualityField Value 'Y' When False 'N'.

 03 DM-ColorFieldValue Picture X.

 88 DM-ColorField Value 'Y' When False 'N'.

 03 DM-DuplexFieldValue Picture X.

 88 DM-DuplexField Value 'Y' When False 'N'.

 03 DM-YresolutionFieldValue Picture X.

 88 DM-YresolutionField Value 'Y' When False 'N'.

 03 DM-TrueTypeOptionFieldValue Picture X.

 88 DM-TrueTypeOptionField Value 'Y' When False 'N'.

 03 DM-CollateFieldValue Picture X.

 88 DM-CollateField Value 'Y' When False 'N'.

 03 DM-ICMMethodFieldValue Picture X.

 88 DM-ICMMethodField Value 'Y' When False 'N'.

 03 DM-ICMIntentFieldValue Picture X.

 88 DM-ICMIntentField Value 'Y' When False 'N'.

 03 DM-MediaTypeFieldValue Picture X.

 88 DM-MediaTypeField Value 'Y' When False 'N'.

 03 DM-DitherTypeFieldValue Picture X.

 88 DM-DitherTypeField Value 'Y' When False 'N'.

 02 DM-OrientationValue Picture 9 Binary(2).

 88 DM-OrientationIsPortrait Value 1.

 88 DM-OrientationIsLandscape Value 2.

 02 DM-PaperSizeValue Picture 9(2) Binary(2).

 88 DM-PaperSizeIsLetter Value 1.

 88 DM-PaperSizeIsLetterSmall Value 2.

 88 DM-PaperSizeIsTabloid Value 3.

 88 DM-PaperSizeIsLedger Value 4.

 88 DM-PaperSizeIsLegal Value 5.

 88 DM-PaperSizeIsStatement Value 6.

 88 DM-PaperSizeIsExecutive Value 7.

 88 DM-PaperSizeIsA3 Value 8.

 88 DM-PaperSizeIsA4 Value 9.

 88 DM-PaperSizeIsA4Small Value 10.

 88 DM-PaperSizeIsA5 Value 11.

 88 DM-PaperSizeIsB4 Value 12.

 88 DM-PaperSizeIsB5 Value 13.

 88 DM-PaperSizeIsFolio Value 14.

 88 DM-PaperSizeIsQuarto Value 15.

 88 DM-PaperSizeIs10x14 Value 16.

 88 DM-PaperSizeIs11x17 Value 17.

 88 DM-PaperSizeIsNote Value 18.

 88 DM-PaperSizeIsEnv9 Value 19.

 88 DM-PaperSizeIsEnv10 Value 20.

 88 DM-PaperSizeIsEnv11 Value 21.

 88 DM-PaperSizeIsEnv12 Value 22.

 88 DM-PaperSizeIsEnv14 Value 23.

 88 DM-PaperSizeIsCSheet Value 24.

Appendix E: Windows Printing

 RM/COBOL User's Guide 509

 88 DM-PaperSizeIsDSheet Value 25.

 88 DM-PaperSizeIsESheet Value 26.

 88 DM-PaperSizeIsEnvDl Value 27.

 88 DM-PaperSizeIsEnvC5 Value 28.

 88 DM-PaperSizeIsEnvC3 Value 29.

 88 DM-PaperSizeIsEnvC4 Value 30.

 88 DM-PaperSizeIsEnvC6 Value 31.

 88 DM-PaperSizeIsEnvC65 Value 32.

 88 DM-PaperSizeIsEnvB4 Value 33.

 88 DM-PaperSizeIsEnvB5 Value 34.

 88 DM-PaperSizeIsEnvB6 Value 35.

 88 DM-PaperSizeIsEnvItaly Value 36.

 88 DM-PaperSizeIsEnvMonarch Value 37.

 88 DM-PaperSizeIsEnvPersonal Value 38.

 88 DM-PaperSizeIsFanFoldUS Value 39.

 88 DM-PaperSizeIsFanFoldStdGerman Value 40.

 88 DM-PaperSizeIsFanFoldLglGerman Value 41.

 02 DM-PaperLength Picture 9(5) Binary(2).

 02 DM-PaperWidth Picture 9(5) Binary(2).

 02 DM-Scale Picture 9(5) Binary(2).

 02 DM-Copies Picture 9(5) Binary(2).

 02 DM-PaperSourceValue Picture 9(2) Binary(2).

 88 DM-PaperSourceIsUpper Value 1.

 88 DM-PaperSourceIsOnlyOne Value 1.

 88 DM-PaperSourceIsLower Value 2.

 88 DM-PaperSourceIsMiddle Value 3.

 88 DM-PaperSourceIsManual Value 4.

 88 DM-PaperSourceIsEnvelope Value 5.

 88 DM-PaperSourceIsEnvManual Value 6.

 88 DM-PaperSourceIsAuto Value 7.

 88 DM-PaperSourceIsTractor Value 8.

 88 DM-PaperSourceIsSmallFmt Value 9.

 88 DM-PaperSourceIsLargeFmt Value 10.

 88 DM-PaperSourceIsLargeCapacity Value 11.

 88 DM-PaperSourceIsCassette Value 14.

 88 DM-PaperSourceIsFormSource Value 15.

 02 DM-ResolutionValue Picture S9 Binary(2).

 88 DM-ResolutionIsDraft Value -1.

 88 DM-ResolutionIsLow Value -2.

 88 DM-ResolutionIsMedium Value -3.

 88 DM-ResolutionIsHigh Value -4.

 02 DM-ColorValue Picture 9 Binary(2).

 88 DM-ColorIsMonochrome Value 1.

 88 DM-ColorIsColor Value 2.

 02 DM-DuplexValue Picture 9 Binary(2).

 88 DM-DuplexIsSimplex Value 1.

 88 DM-DuplexIsVertical Value 2.

 88 DM-DuplexIsHorizontal Value 3.

 02 DM-Yresolution Picture 9(5) Binary(2).

 02 DM-TrueTypeValue Picture 9 Binary(2).

 88 DM-TrueTypeIsBitmap Value 1.

 88 DM-TrueTypeIsDownload Value 2.

 88 DM-TrueTypeIsSubDev Value 3.

 02 DM-CollateValue Picture 9 Binary(2).

Appendix E: Windows Printing

510 RM/COBOL User's Guide

 88 DM-CollateIsFalse Value 0.

 88 DM-CollateIsTrue Value 1.

 02 DM-ICMMethodValue Picture 9 Binary(4).

 88 DM-ICMMethodIsNone Value 1.

 88 DM-ICMMethodIsSystem Value 2.

 88 DM-ICMMethodIsDriver Value 3.

 88 DM-ICMMethodIsDevice Value 4.

 02 DM-ICMIntentValue Picture 9 Binary(4).

 88 DM-ICMIntentIsSaturate Value 1.

 88 DM-ICMIntentIsContrast Value 2.

 88 DM-ICMIntentIsColorMetric Value 3.

 02 DM-MediaTypeValue Picture 9 Binary(4).

 88 DM-MediaTypeIsStandard Value 1.

 88 DM-MediaTypeIsTransparency Value 2.

 88 DM-MediaTypeIsGlossy Value 3.

 02 DM-DitherTypeValue Picture 99 Binary(4).

 88 DM-DitherTypeIsNone Value 1.

 88 DM-DitherTypeIsCoarse Value 2.

 88 DM-DitherTypeIsFine Value 3.

 88 DM-DitherTypeIsLineArt Value 4.

 88 DM-DitherTypeIsErrorDiffusion Value 5.

 88 DM-DitherTypeIsGrayScale Value 10.

*

• Print Dialog Extended Error Values

*

 78 PD-ExtErrCanceled Value 0.

 78 PD-ExtErrStructSize Value 1.

 78 PD-ExtErrInitialization Value 2.

 78 PD-ExtErrNoTemplate Value 3.

 78 PD-ExtErrNoHInstance Value 4.

 78 PD-ExtErrLoadStrFailure Value 5.

 78 PD-ExtErrFindResFailure Value 6.

 78 PD-ExtErrLoadResFailure Value 7.

 78 PD-ExtErrLockResFailure Value 8.

 78 PD-ExtErrMemAllocFailure Value 9.

 78 PD-ExtErrMemLockFailure Value 10.

 78 PD-ExtErrNoHook Value 11.

 78 PD-ExtErrRegisterMsgFail Value 12.

 78 PD-ExtErrSetupFailure Value 4097.

 78 PD-ExtErrParseFailure Value 4098.

 78 PD-ExtErrRetDefFailure Value 4099.

 78 PD-ExtErrLoadDrvFailure Value 4100.

 78 PD-ExtErrGetDevModeFail Value 4101.

 78 PD-ExtErrInitFailure Value 4102.

 78 PD-ExtErrNoDevices Value 4103.

 78 PD-ExtErrNoDefaultPrn Value 4104.

 78 PD-ExtErrDNDMMismatch Value 4105.

 78 PD-ExtErrCreateICFailure Value 4106.

 78 PD-ExtErrPrinterNotFound Value 4107.

 78 PD-ExtErrDefaultDifferent Value 4108.

 78 PD-ExtErrDialogFailure Value 65535.

*

• Device Mode Orientation Values

*

Appendix E: Windows Printing

 RM/COBOL User's Guide 511

 78 DM-OrientationPortrait Value 1.

 78 DM-OrientationLandscape Value 2.

*

• Device Mode Paper Size Values

*

 78 DM-PaperSizeLetter Value 1.

 78 DM-PaperSizeLetterSmall Value 2.

 78 DM-PaperSizeTabloid Value 3.

 78 DM-PaperSizeLedger Value 4.

 78 DM-PaperSizeLegal Value 5.

 78 DM-PaperSizeStatement Value 6.

 78 DM-PaperSizeExecutive Value 7.

 78 DM-PaperSizeA3 Value 8.

 78 DM-PaperSizeA4 Value 9.

 78 DM-PaperSizeA4Small Value 10.

 78 DM-PaperSizeA5 Value 11.

 78 DM-PaperSizeB4 Value 12.

 78 DM-PaperSizeB5 Value 13.

 78 DM-PaperSizeFolio Value 14.

 78 DM-PaperSizeQuarto Value 15.

 78 DM-PaperSize10x14 Value 16.

 78 DM-PaperSize11x17 Value 17.

 78 DM-PaperSizeNote Value 18.

 78 DM-PaperSizeEnv9 Value 19.

 78 DM-PaperSizeEnv10 Value 20.

 78 DM-PaperSizeEnv11 Value 21.

 78 DM-PaperSizeEnv12 Value 22.

 78 DM-PaperSizeEnv14 Value 23.

 78 DM-PaperSizeCSheet Value 24.

 78 DM-PaperSizeDSheet Value 25.

 78 DM-PaperSizeESheet Value 26.

 78 DM-PaperSizeEnvDl Value 27.

 78 DM-PaperSizeEnvC5 Value 28.

 78 DM-PaperSizeEnvC3 Value 29.

 78 DM-PaperSizeEnvC4 Value 30.

 78 DM-PaperSizeEnvC6 Value 31.

 78 DM-PaperSizeEnvC65 Value 32.

 78 DM-PaperSizeEnvB4 Value 33.

 78 DM-PaperSizeEnvB5 Value 34.

 78 DM-PaperSizeEnvB6 Value 35.

 78 DM-PaperSizeEnvItaly Value 36.

 78 DM-PaperSizeEnvMonarch Value 37.

 78 DM-PaperSizeEnvPersonal Value 38.

 78 DM-PaperSizeFanFoldUS Value 39.

 78 DM-PaperSizeFanFoldStdGerman Value 40.

 78 DM-PaperSizeFanFoldLglGerman Value 41.

*

• Device Mode Paper Source Values

*

 78 DM-PaperSourceUpper Value 1.

 78 DM-PaperSourceOnlyOne Value 1.

 78 DM-PaperSourceLower Value 2.

 78 DM-PaperSourceMiddle Value 3.

 78 DM-PaperSourceManual Value 4.

Appendix E: Windows Printing

512 RM/COBOL User's Guide

 78 DM-PaperSourceEnvelope Value 5.

 78 DM-PaperSourceEnvManual Value 6.

 78 DM-PaperSourceAuto Value 7.

 78 DM-PaperSourceTractor Value 8.

 78 DM-PaperSourceSmallFmt Value 9.

 78 DM-PaperSourceLargeFmt Value 10.

 78 DM-PaperSourceLargeCapacity Value 11.

 78 DM-PaperSourceCassette Value 14.

 78 DM-PaperSourceFormSource Value 15.

*

• Device Mode Resolution Values

*

 78 DM-ResolutionDraft Value -1.

 78 DM-ResolutionLow Value -2.

 78 DM-ResolutionMedium Value -3.

 78 DM-ResolutionHigh Value -4.

*

• Device Mode Color Values

*

 78 DM-ColorMonochrome Value 1.

 78 DM-ColorColor Value 2.

*

• Device Mode Duplex Values

*

 78 DM-DuplexSimplex Value 1.

 78 DM-DuplexVertical Value 2.

 78 DM-DuplexHorizontal Value 3.

*

• Device Mode True Type Values

*

 78 DM-TrueTypeBitmap Value 1.

 78 DM-TrueTypeDownload Value 2.

 78 DM-TrueTypeSubDev Value 3.

*

• Device Mode Collate Values

*

 78 DM-CollateFalse Value 0.

 78 DM-CollateTrue Value 1.

*

• Device ICM Method Values

*

 78 DM-ICMMethodNone Value 1.

 78 DM-ICMMethodSystem Value 2.

 78 DM-ICMMethodDriver Value 3.

 78 DM-ICMMethodDevice Value 4.

*

• Device ICM Type Values

*

 78 DM-ICMTypeSaturate Value 1.

 78 DM-ICMTypeContrast Value 2.

 78 DM-ICMTypeColorMetric Value 3.

*

• Device Mode Media Type Values

*

Appendix E: Windows Printing

 RM/COBOL User's Guide 513

 78 DM-MediaTypeStandard Value 1.

 78 DM-MediaTypeTransparency Value 2.

 78 DM-MediaTypeGlossy Value 3.

*

• Device Mode Dither Type Values

*

 78 DM-DitherTypeNone Value 1.

 78 DM-DitherTypeCoarse Value 2.

 78 DM-DitherTypeFine Value 3.

 78 DM-DitherTypeLineArt Value 4.

 78 DM-DitherTypeErrorDiffusion Value 5.

 78 DM-DitherTypeGrayScale Value 10.

*

• P$DisplayDialog Return Values

*

 78 PD-ReturnParam Value 0.

 78 PD-ReturnCancelled Value 1.

 78 PD-ReturnError Value 2.

*

• Parameter Name Values

*

 78 PD-ReturnParam Value "Return".

 78 PD-ExtendedErrorParam Value "Extended Error".

 78 PD-AllPagesFlagParam Value "All Pages Flag".

 78 PD-SelectionFlagParam Value "Selection Flag".

 78 PD-PageNumbersFlagParam Value "Page Numbers Flag".

 78 PD-NoSelectionFlagParam Value "No Selection Flag".

 78 PD-NoPageNumbersFlagParam Value "No Page Numbers Flag".

 78 PD-CollateFlagParam Value "Collate Flag".

 78 PD-PrintSetupFlagParam Value "Print Setup Flag".

 78 PD-PrintToFileFlagParam Value "Print To File Flag".

 78 PD-NoWarningFlagParam Value "No Warning Flag".

 78 PD-UseDevModeCopiesFlagParam Value

 "Use Device Mode Copies Flag".

 78 PD-DisablePrintToFileFlagParam Value

 "Disable Print To File Flag".

 78 PD-HidePrintToFileFlagParam Value

 "Hide Print To File Flag".

 78 PD-NoNetworkButtonFlagParam Value "No Network Button Flag".

 78 PD-FromPageParam Value "From Page".

 78 PD-ToPageParam Value "To Page".

 78 PD-MinPageParam Value "Min Page".

 78 PD-MaxPageParam Value "Max Page".

 78 PD-PrintDialogCopiesParam Value "Print Dialog Copies".

 78 DM-DeviceNameParam Value "Device Name".

 78 DM-OrientationParam Value "Orientation".

 78 DM-PaperSizeParam Value "Paper Size".

 78 DM-PaperLengthParam Value "Paper Length".

 78 DM-PaperWidthParam Value "Paper Width".

 78 DM-ScaleParam Value "Scale".

 78 DM-DeviceModeCopiesParam Value "Device Mode Copies".

 78 DM-DefaultSourceParam Value "Default Source".

 78 DM-PrintQualityParam Value "Print Quality".

 78 DM-ColorParam Value "Color".

Appendix E: Windows Printing

514 RM/COBOL User's Guide

 78 DM-DuplexParam Value "Duplex".

 78 DM-YResolutionParam Value "Y Resolution".

 78 DM-TrueTypeOptionParam Value "True Type Option".

 78 DM-CollateParam Value "Collate".

 78 DM-ICMMethodParam Value "ICM Method".

 78 DM-ICMIntentParam Value "ICM Intent".

 78 DM-MediaTypeParam Value "Media Type".

 78 DM-DitherTypeParam Value "Dither Type".

PRINTINF.CPY
Information regarding the Microsoft Windows PRINTER_INFO_2 structure can be found on
the Internet at http://msdn.microsoft.com/library/. Periodically, Microsoft reorganizes the
MSDN information on the web site. Use the search capability to find information on the
requested topic.

PRINTINF.CPY contains the following definitions.

*

• Printer Information Definitions

*

01 PrinterInformation.

 02 PI-ServerName Picture X(80).

 02 PI-PrinterName Picture X(80).

 02 PI-ShareName Picture X(80).

 02 PI-PortName Picture X(80).

 02 PI-DriverName Picture X(80).

 02 PI-Comment Picture X(80).

 02 PI-Location Picture X(80).

 02 PI-SepFile Picture X(80).

 02 PI-PrintProcessor Picture X(80).

 02 PI-DataType Picture X(80).

 02 PI-Parameters Picture X(80).

 02 PI-Attribute.

 03 PI-QueuedAttributeValue Picture X.

 88 PI-QueuedAttribute Value 'Y' When False 'N'.

 03 PI-DirectAttributeValue Picture X.

 88 PI-DirectAttribute Value 'Y' When False 'N'.

 03 PI-DefaultAttributeValue Picture X.

 88 PI-DefaultAttribute Value 'Y' When False 'N'.

 03 PI-SharedAttributeValue Picture X.

 88 PI-SharedAttribute Value 'Y' When False 'N'.

 03 PI-NetworkAttributeValue Picture X.

 88 PI-NetworkAttribute Value 'Y' When False 'N'.

 03 PI-HiddenAttributeValue Picture X.

 88 PI-HiddenAttribute Value 'Y' When False 'N'.

 03 PI-LocalAttributeValue Picture X.

 88 PI-LocalAttribute Value 'Y' When False 'N'.

 03 PI-EnableDEVQAttributeValue Picture X.

 88 PI-EnableDEVQAttribute Value 'Y' When False 'N'.

 03 PI-KeepPrintedAttributeValue Picture X.

 88 PI-KeepPrintedJobsAttribute Value 'Y' When False 'N'.

http://msdn.microsoft.com/library/

Appendix E: Windows Printing

 RM/COBOL User's Guide 515

 03 PI-DoComplete1stAttributeValue Picture X.

 88 PI-DoCompleteFirstAttribute Value 'Y' When False 'N'.

 03 PI-WorkOfflineAttributeValue Picture X.

 88 PI-WorkOfflineAttribute Value 'Y' When False 'N'.

 03 PI-EnableBIDIAttributeValue Picture X.

 88 PI-EnableBIDIAttribute Value 'Y' When False 'N'.

 02 PI-Priority Picture 9(10) Binary(4).

 02 PI-DefaultPriority Picture 9(10) Binary(4).

 02 PI-StartTime Picture 9(10) Binary(4).

 02 PI-UntilTime Picture 9(10) Binary(4).

 02 PI-Status.

 03 PI-PausedStatusValue Picture X.

 88 PI-PausedStatus Value 'Y' When False 'N'.

 03 PI-ErrorStatusValue Picture X.

 88 PI-ErrorStatus Value 'Y' When False 'N'.

 03 PI-PendingDeletionStatusValue Picture X.

 88 PI-PendingDeletionStatus Value 'Y' When False 'N'.

 03 PI-PaperJamStatusValue Picture X.

 88 PI-PaperJamStatus Value 'Y' When False 'N'.

 03 PI-PaperOutStatusValue Picture X.

 88 PI-PaperOutStatus Value 'Y' When False 'N'.

 03 PI-ManualFeedStatusValue Picture X.

 88 PI-ManualFeedStatus Value 'Y' When False 'N'.

 03 PI-PaperProblemStatusValue Picture X.

 88 PI-PaperProblemStatus Value 'Y' When False 'N'.

 03 PI-OfflineStatusValue Picture X.

 88 PI-OfflineStatus Value 'Y' When False 'N'.

 03 PI-IOActiveStatusValue Picture X.

 88 PI-IOActiveStatus Value 'Y' When False 'N'.

 03 PI-BusyStatusValue Picture X.

 88 PI-BusyStatus Value 'Y' When False 'N'.

 03 PI-PrintingStatusValue Picture X.

 88 PI-PrintingStatus Value 'Y' When False 'N'.

 03 PI-OutputBinFullStatusValue Picture X.

 88 PI-OutputBinFullStatus Value 'Y' When False 'N'.

 03 PI-NotAvailableStatusValue Picture X.

 88 PI-NotAvailableStatus Value 'Y' When False 'N'.

 03 PI-WaitingStatusValue Picture X.

 88 PI-WaitingStatus Value 'Y' When False 'N'.

 03 PI-ProcessingStatusValue Picture X.

 88 PI-ProcessingStatus Value 'Y' When False 'N'.

 03 PI-IntializingStatusValue Picture X.

 88 PI-InitializingStatus Value 'Y' When False 'N'.

 03 PI-WarmingUpStatusValue Picture X.

 88 PI-WarmingUpStatus Value 'Y' When False 'N'.

 03 PI-ToneLowStatusValue Picture X.

 88 PI-TonerLowStatus Value 'Y' When False 'N'.

 03 PI-NoTonerStatusValue Picture X.

 88 PI-NoTonerStatus Value 'Y' When False 'N'.

 03 PI-PagePuntStatusValue Picture X.

 88 PI-PagePuntStatus Value 'Y' When False 'N'.

 03 PI-UserInterventionStatusValue Picture X.

 88 PI-UserInterventionStatus Value 'Y' When False 'N'.

 03 PI-OutOfMemoryStatusValue Picture X.

Appendix E: Windows Printing

516 RM/COBOL User's Guide

 88 PI-OutOfMemoryStatus Value 'Y' When False 'N'.

 03 PI-DoorOpenStatusValue Picture X.

 88 PI-DoorOpenStatus Value 'Y' When False 'N'.

 03 PI-ServerUnknownStatusValue Picture X.

 88 PI-ServerUnknownStatus Value 'Y' When False 'N'.

 03 PI-PowerSaveStatusValue Picture X.

 88 PI-PowerSaveStatus Value 'Y' When False 'N'.

 02 PI-Jobs Picture 9(10) Binary(4).

 02 PI-AveragePPM Picture 9(10) Binary(4).

*

• Parameter Name Values

*

 78 PI-ServerNameParam Value "Server Name”.

 78 PI-PrinterNameParam Value "Printer Name”.

 78 PI-ShareNameParam Value "Share Name”.

 78 PI-PortNameParam Value "Port Name”.

 78 PI-DriverNameParam Value "Driver Name”.

 78 PI-CommentParam Value "Comment”.

 78 PI-LocationParam Value "Location”.

 78 PI-SepFileParam Value "Sep File”.

 78 PI-PrintProcessorParam Value "Print Processor".

 78 PI-DataTypeParam Value "Data Type".

 78 PI-ParametersParam Value "Parameters".

 78 PI-PriorityParam Value "Priority".

 78 PI-DefaultPriorityParam Value "Default Priority".

 78 PI-StartTimeParam Value "Start Time".

 78 PI-UntilTimeParam Value "Until Time".

 78 PI-JobsParam Value "Jobs".

 78 PI-AveragePPMParam Value "Average PPM".

TXTMTRIC.CPY
Information regarding the Microsoft Windows TEXTMETRIC structure can be found on
the Internet at http://msdn.microsoft.com/library/. Periodically, Microsoft reorganizes the
MSDN information on the web site. Use the search capability to find information on the
requested topic.

TXTMTRIC.CPY contains the following definitions.

*

• Text Metric Definitions

*

01 TextMetrics.

 02 TM-Height Picture 9(10) Binary(4).

 02 TM-Ascent Picture 9(10) Binary(4).

 02 TM-Descent Picture 9(10) Binary(4).

 02 TM-InternalLeading Picture 9(10) Binary(4).

 02 TM-ExternalLeading Picture 9(10) Binary(4).

 02 TM-AveCharWidth Picture 9(10) Binary(4).

 02 TM-MaxCharWidth Picture 9(10) Binary(4).

 02 TM-WeightValue Picture 9(3) Binary(4).

 88 TM-WeightIsDontCare Value 0.

http://msdn.microsoft.com/library/

Appendix E: Windows Printing

 RM/COBOL User's Guide 517

 88 TM-WeightIsThin Value 100.

 88 TM-WeightIsExtraLight Value 200.

 88 TM-WeightIsUltraLight Value 200.

 88 TM-WeightIsLight Value 300.

 88 TM-WeightIsNormal Value 400.

 88 TM-WeightIsRegular Value 400.

 88 TM-WeightIsMedium Value 500.

 88 TM-WeightIsSemiBold Value 600.

 88 TM-WeightIsDemiBold Value 600.

 88 TM-WeightIsBold Value 700.

 88 TM-WeightIsExtraBold Value 800.

 88 TM-WeightIsUltraBold Value 800.

 88 TM-WeightIsHeavy Value 900.

 88 TM-WeightIsBlack Value 900.

 02 TM-Overhang Picture 9(10) Binary(4).

 02 TM-DigitizedAspectX Picture 9(10) Binary(4).

 02 TM-DigitizedAspectY Picture 9(10) Binary(4).

 02 TM-ItalicValue Picture X.

 88 TM-Italic Value 'Y' When False 'N'.

 02 TM-UnderlinedValue Picture X.

 88 TM-Underlined Value 'Y' When False 'N'.

 02 TM-StruckOutValue Picture X.

 88 TM-StruckOut Value 'Y' When False 'N'.

 02 TM-FirstChar Picture X.

 02 TM-LastChar Picture X.

 02 TM-DefaultChar Picture X.

 02 TM-BreakChar Picture X.

 02 TM-PitchValue Picture 9 Binary(2).

 88 TM-PitchIsFixedPitch Value 1.

 88 TM-PitchIsVector Value 2.

 88 TM-PitchIsTrueType Value 4.

 88 TM-PitchIsDevice Value 8.

 02 TM-FamilyValue Picture 9 Binary(2).

 88 TM-FamilyIsDontCare Value 0.

 88 TM-FamilyIsRoman Value 1.

 88 TM-FamilyIsSwiss Value 2.

 88 TM-FamilyIsModern Value 3.

 88 TM-FamilyIsScript Value 4.

 88 TM-FamilyIsDecorative Value 5.

 02 TM-CharSetValue Picture 9(3) Binary(2).

 88 TM-CharSetIsANSI Value 0.

 88 TM-CharSetIsDefault Value 1.

 88 TM-CharSetIsSymbol Value 2.

 88 TM-CharSetIsMAC Value 77.

 88 TM-CharSetIsShiftJIS Value 128.

 88 TM-CharSetIsHangeul Value 129.

 88 TM-CharSetIsJohab Value 130.

 88 TM-CharSetIsChineseBig5 Value 136.

 88 TM-CharSetIsGreek Value 161.

 88 TM-CharSetIsTurkish Value 162.

 88 TM-CharSetIsHebrew Value 177.

 88 TM-CharSetIsArabic Value 178.

 88 TM-CharSetIsBaltic Value 186.

 88 TM-CharSetIsRussian Value 204.

Appendix E: Windows Printing

518 RM/COBOL User's Guide

 88 TM-CharSetIsThai Value 222.

 88 TM-CharSetIsEastEurope Value 238.

 88 TM-CharSetIsOEM Value 255.

*

• Weight Values

*

 78 TM-WeightDontCare Value 0.

 78 TM-WeightThin Value 100.

 78 TM-WeightExtraLight Value 200.

 78 TM-WeightUltraLight Value 200.

 78 TM-WeightLight Value 300.

 78 TM-WeightNormal Value 400.

 78 TM-WeightRegular Value 400.

 78 TM-WeightMedium Value 500.

 78 TM-WeightSemiBold Value 600.

 78 TM-WeightDemiBold Value 600.

 78 TM-WeightBold Value 700.

 78 TM-WeightExtraBold Value 800.

 78 TM-WeightUltraBold Value 800.

 78 TM-WeightHeavy Value 900.

 78 TM-WeightBlack Value 900.

*

• Pitch Values

*

 78 TM-PitchFixedPitch Value 1.

 78 TM-PitchVector Value 2.

 78 TM-PitchTrueType Value 4.

 78 TM-PitchDevice Value 8.

*

• Family Values

*

 78 TM-FamilyDontCare Value 0.

 78 TM-FamilyRoman Value 1.

 78 TM-FamilySwiss Value 2.

 78 TM-FamilyModern Value 3.

 78 TM-FamilyScript Value 4.

 78 TM-FamilyDecorative Value 5.

*

• Character Set Values

*

 78 TM-CharSetANSI Value 0.

 78 TM-CharSetDefault Value 1.

 78 TM-CharSetSymbol Value 2.

 78 TM-CharSetMAC Value 77.

 78 TM-CharSetShiftJIS Value 128.

 78 TM-CharSetHangeul Value 129.

 78 TM-CharSetJohab Value 130.

 78 TM-CharSetChineseBig5 Value 136.

 78 TM-CharSetGreek Value 161.

 78 TM-CharSetTurkish Value 162.

 78 TM-CharSetHebrew Value 177.

 78 TM-CharSetArabic Value 178.

 78 TM-CharSetBaltic Value 186.

 78 TM-CharSetRussian Value 204.

Appendix E: Windows Printing

 RM/COBOL User's Guide 519

 78 TM-CharSetThai Value 222.

 78 TM-CharSetEastEurope Value 238.

 78 TM-CharSetOEM Value 255.

*

• Parameter Name Values

*

 78 TM-HeightParam Value "Height".

 78 TM-AscentParam Value "Ascent".

 78 TM-DescentParam Value "Descent".

 78 TM-InternalLeadingParam Value "Internal Leading".

 78 TM-ExternalLeadingParam Value "External Leading".

 78 TM-AverageCharacterWidthParam Value "Average Character Width".

 78 TM-MaximumCharacterWidthParam Value "Maximum Character Width".

 78 TM-WeightParam Value "Weight".

 78 TM-OverhangParam Value "Overhang".

 78 TM-DigitizedAspectXParam Value "Digitized Aspect X".

 78 TM-DigitizedAspectYParam Value "Digitized Aspect Y".

 78 TM-FirstCharacterParam Value "First Character".

 78 TM-LastCharacterParam Value "Last Character".

 78 TM-DefaultCharacterParam Value "Default Character".

 78 TM-BreakCharacterParam Value "Break Character".

 78 TM-ItalicParam Value "Italic".

 78 TM-UnderlinedParam Value "Underlined".

 78 TM-StruckOutParam Value "Struck Out".

 78 TM-PitchParam Value "Pitch".

 78 TM-FamilyParam Value "Family".

 78 TM-CharacterSetParam Value "Character Set".

WINDEFS.CPY
Information regarding the Microsoft Windows PlaySound function and LOGPEN structure
can be found on the Internet at http://msdn.microsoft.com/library/. Periodically, Microsoft
reorganizes the MSDN information on the web site. Use the search capability to find
information on the requested topic.

WINDEFS.CPY contains the following definitions.

*

• Miscellaneous Windows Definitions

*

*

• C$PlaySound Options

*

 78 SoundSync Value 0.

 78 SoundAsync Value 2 ** 0.

 78 SoundNoDefault Value 2 ** 1.

 78 SoundNoStop Value 2 ** 4.

 78 SoundPurge Value 2 ** 6.

 78 SoundApplication Value 2 ** 7.

 78 SoundNoWait Value 2 ** 13.

 78 SoundAlias Value 2 ** 16.

 78 SoundFilename Value 2 ** 17.

http://msdn.microsoft.com/library/

Appendix E: Windows Printing

520 RM/COBOL User's Guide

 78 SoundAliasId Value (2 ** 16) + (2 ** 20).

*

• Pen Style Values

*

 78 PenStyleSolid Value 0.

 78 PenStyleDash Value 1.

 78 PenStyleDot Value 2.

 78 PenStyleDashDot Value 3.

 78 PenStyleDashDotDot Value 4.

 78 PenStyleNull Value 5.

*

• Position Alignment Argument Values

*

 78 PositionIsTop Value "Top".

 78 PositionIsBottom Value "Bottom".

*

• Position Mode Argument Values

*

 78 ModeIsAbsolute Value "Absolute".

 78 ModeIsRelative Value "Relative".

*

• Position Unit Argument Values

*

 78 UnitsAreInches Value "Inches".

 78 UnitsAreMetric Value "Metric".

 78 UnitsAreCharacters Value "Characters".

 78 UnitsAreDeviceUnits Value "Device Units".

*

• Yes/No Argument Values

*

 78 DrawBoxWithShading Value "Yes".

 78 DrawBoxWithoutShading Value "No".

 78 DrawBoxNoShading Value "No".

 78 TextOutWithBox Value "Yes".

 78 TextOutWithoutBox Value "No".

 78 TextOutNoBox Value "No".

 78 TextOutWithShading Value "Yes".

 78 TextOutWithoutShading Value "No".

 78 TextOutNoShading Value "No".

 78 WithBox Value "Yes".

 78 WithoutBox Value "No".

 78 NoBox Value "No".

 78 WithShading Value "Yes".

 78 WithoutShading Value "No".

 78 NoShading Value "No".

*

• Color Argument Values

*

 78 ColorBlack Value "Black".

 78 ColorDarkBlue Value "Dark Blue".

 78 ColorDarkGreen Value "Dark Green".

 78 ColorDarkCyan Value "Dark Cyan".

 78 ColorDarkRed Value "Dark Red".

 78 ColorDarkMagenta Value "Dark Magenta".

Appendix E: Windows Printing

 RM/COBOL User's Guide 521

 78 ColorBrown Value "Brown".

 78 ColorDarkGray Value "Dark Gray".

 78 ColorLightGray Value "Light Gray".

 78 ColorBlue Value "Blue".

 78 ColorGreen Value "Green".

 78 ColorCyan Value "Cyan".

 78 ColorRed Value "Red".

 78 ColorMagenta Value "Magenta".

 78 ColorYellow Value "Yellow".

 78 ColorWhite Value "White".

*

• Pitch Name Values

*

 78 PitchNormal Value "Normal".

 78 PitchExpanded Value "Expanded".

 78 PitchCompressed Value "Compressed".

*

• Page Orientation Values

*

 78 OrientationPortrait Value "Portrait".

 78 OrientationLandscape Value "Landscape".

Example Code Fragments
The code fragments in this section illustrate the use of P$ subprograms to facilitate Windows
printing program development. Table 55 provides a quick reference for the tasks performed
in the code fragment examples. These code fragments can be found in pexample.cbl in the
Samples directory.

Note Additional comprehensive examples using P$ subprograms can be found in the Samples
directory. These samples may clarify any remaining questions you might have about using
the P$ subprogram library.

Table 55: Task Reference List

To See Example

Change a font while printing. Changing a Font While Printing (on page 526).

Change the print orientation. Presetting the Print Dialog Box (on page 524) and
Changing Orientation, Pitch, and Line Spacing (on
page 527).

Change the pitch of a font. Changing Orientation, Pitch, and Line Spacing (on
page 527).

Change the print resolution. Presetting the Print Dialog Box (on page 524).

Check the exit code value. Checking the Exit Code after Displaying the Print Dialog
Box (on page 525).

Draw a box around text. Drawing a Box around Text (on page 523).

Draw a shaded box with colors. Drawing Shaded Boxes with Colors (on page 522).

Draw a box using “relative”
positioning.

Drawing Shaded Boxes with Colors (on page 522).

Appendix E: Windows Printing

522 RM/COBOL User's Guide

Table 55: Task Reference List

To See Example

Draw a ruler. Drawing a Ruler (on page 523).

Open three separate printers and
write to each one.

Opening and Writing to Separate Printers (on page 527).

Print text at corners of a page. Printing Text at the Corners of a Page (on page 528).

Print text at the top of a page. Printing Text at the Top of a Page (on page 528).

Print a bitmap file. Printing a Bitmap (on page 526).

Print multiple copies. Presetting the Print Dialog Box (on page 524).

Print multiple text outputs on the
same line.

Using the COBOL WRITE Statement to Print Multiple
Text Outputs on the Same Line (on page 526).

Print a word in italics. Using the COBOL WRITE Statement to Print Multiple
Text Outputs on the Same Line (on page 526).

Print a word in boldface type. Using the COBOL WRITE Statement to Print Multiple
Text Outputs on the Same Line (on page 526).

Print a word underlined. Using the COBOL WRITE Statement to Print Multiple
Text Outputs on the Same Line (on page 526).

Print a watermark. Printing a Watermark (on page 522).

Set the point size for a font. Setting the Point Size for a Font (on page 529).

Set text position. Setting Text Position (on page 529).

Printing a Watermark
The following code fragment illustrates printing a watermark diagonally across a page. The
font is set to a large point size with a 45-degree angle (Escapement). The color is set to a light
gray, and the text is positioned with metric measurements.

CALL "P$SetFont" USING LF-HeightParam 500, LF-EscapementParam, 450.
CALL "P$SetTextColor" USING ColorLightGray.
CALL "P$TextOut" USING "Example", 5.08, 17.78, "Absolute", "Metric".

Drawing Shaded Boxes with Colors
The following code fragment illustrates drawing two boxes. The first box is drawn with a
thick pen, shaded with ten-percent gray, positioned at 2,2 inches on the page, and is one-inch
square. The second box is positioned using “relative” positioning so that the lower-right
corner of the first box is connected to the upper-left corner of the second box. It is drawn
with a thin, dashed red line, no shading, and is 1.5-inches square.

CALL "P$SetPen" USING PenStyleSolid, 5.
CALL "P$SetBoxShade" USING ColorBlack, 10.
CALL "P$DrawBox" USING 2.00, 2.00, "Absolute", "Inches", 1.00, 1.00,
 "Inches", WithShading.
CALL "P$SetPen" USING PenStyleDash, 1, ColorRed.
CALL "P$DrawBox" USING 0, 0, "Relative", "Inches", 1.50, 1.50,
 "Inches".

Appendix E: Windows Printing

 RM/COBOL User's Guide 523

Drawing a Box around Text
The following code fragment illustrates drawing a box centered around a line of text. The box
allows one-half the average character width of the current font before and after the text. The
top of the box is positioned at the top alignment of the current font. The height of the box is
the height of the current font plus external leading.

CALL "P$GetTextMetrics" USING TextMetrics.
CALL "P$SetPosition" USING 0.5, 5.50, "Absolute", "Inches".
CALL "P$GetTextPosition" USING X-POS, Y-POS, "Top", "Device Units".
CALL "P$GetTextExtent" USING "AAaaGGggYYyyTTttH", WIDTH, HEIGHT,
 "Device Units".
COMPUTE X-POS = X-POS - (TM-AveCharWidth / 2).
COMPUTE WIDTH = WIDTH + TM-AveCharWidth.
COMPUTE HEIGHT = TM-ExternalLeading + TM-Height.
CALL "P$DrawBox" USING X-POS, Y-POS, "Absolute", "Device Units",
 WIDTH, HEIGHT, "Device Units".
CALL "P$TextOut" USING "AAaaGGggYYyyTTttH", 0.5, 5.50,
 "Absolute", "Inches".

The following code fragment performs the same task as the previous part of this example, but
allows the runtime to compute the size and position of the box as well as draw the box. For
top, bottom, left, and right margins, the box allows one-quarter the average character width of
the current font.

CALL "P$TextOut" USING "AAaaGGggYYyyTTttH", 0.5, 6.00,
 "Absolute", "Inches", WithBox.

Drawing a Ruler
The following code fragment draws a 5-centimeter ruler.

Centimeter-Ruler.
 MOVE 0.0 TO WS-X, WS-Y, WS-Y2.
 MOVE 5.0 TO WS-X2.
 MOVE 0 to WS-CENT-COUNT.
 CALL "P$SetDefaultUnits" USING "Metric".

*Draw a Line 5 Centimeters Long.
 CALL "P$DrawLine" USING WS-X, WS-Y, "Absolute", "Metric",
 WS-X2, WS-Y2.
 PERFORM VARYING WS-X FROM 0 BY 0.1 UNTIL WS-X > 5
 EVALUATE TRUE
 WHEN WS-CENT-COUNT = 5
 MOVE .4 TO WS-Y
 WHEN WS-CENT-COUNT = 10 OR 0
 MOVE .7 TO WS-y
 WHEN OTHER
 MOVE .2 TO WS-Y
 END-EVALUATE
 CALL "P$MoveTo" USING WS-X, WS-Y
 CALL "P$LineTo" USING WS-X, WS-Y2
 IF WS-CENT-COUNT = 10
 MOVE 1 TO WS-CENT-COUNT
 ELSE

Appendix E: Windows Printing

524 RM/COBOL User's Guide

 ADD 1 TO WS-CENT-COUNT
 END-IF

 END-PERFORM.

Presetting the Print Dialog Box
The following code fragment causes two copies of the output to be printed with high
resolution. The orientation of the print will be in landscape mode. When the Windows Print
dialog box is displayed, the All Pages option button will be selected, the Page Numbers option
button and associated edit control will be disabled, the Selection button will be disabled, and
the Print to File check box will be hidden.

Note The example code fragment shown below sets the collate flag to false; that is, printed
pages will not be collated. Some printers do not support printing multiple copies with the
pages collated. For more information, see Printing Multiple Copies (on page 471).

INITIALIZE PrintDialog.
CALL "P$ClearDialog".
SET PD-AllPagesFlag TO TRUE. *>Sets All Pages
 *>option on
SET PD-NoPageNumbersFlag TO TRUE. *>Disable Pages
 *>option button and
 *>associated edit
 *>controls
SET PD-NoSelectionFlag TO TRUE. *>Disables Selection
 *>button
SET PD-CollateFlag TO FALSE. *>Don't check Collate
 *>check box
SET PD-HidePrintToFileFlag TO TRUE. *>Hides Print To File
 *>checkbox
SET DM-CopiesField TO TRUE.
MOVE 2 TO DM-Copies.
SET DM-OrientationField TO TRUE.
SET DM-OrientationIsLandscape TO TRUE.
SET DM-PrintQualityField TO TRUE.
SET DM-ResolutionIsHigh TO TRUE.
CALL "P$SetDialog" USING PrintDialog.
OPEN OUTPUT PFILE.
WRITE FD-RECORD FROM
 "Example 5: Presetting the Printer Dialog Box Page 1"
 AFTER PAGE.
WRITE FD-RECORD FROM
 "Example 5: Text After CALLING P$SetDialog".
WRITE FD-RECORD FROM
 "Example 5: This should be printed in landscape mode.".
WRITE FD-RECORD FROM
 "Example 5: There should be two copies printed.".
CLOSE PFILE.

Appendix E: Windows Printing

 RM/COBOL User's Guide 525

Checking the Exit Code after Displaying the Print Dialog
Box
The following code fragment will set the printer device, display the Windows Print dialog
box, and check the exit code value. If the value is zero, the user pressed the OK button. If the
value is 1, the user pressed the Cancel button or closed the dialog box. If the value is 2, an
error occurred while displaying the dialog box and the error code is checked by making a call
to P$GetDialog (see page 474).

Note For considerations related to WOW Thin Client printing, see the ERROR-ON-
CANCEL keyword (on page 320) in the DEFINE-DEVICE configuration record.

Set PD-NoWarningFlag To True.
CALL "P$SetDialog" USING DM-DeviceNameParam, DM-DeviceName.
CALL "P$DisplayDialog" GIVING Dialog-Return.

Evaluate True
 When Dialog-OK *> Value zero
 Display "OK Button Pressed" Line 13 Col 1
 Perform Open-Printer-Para
 When Dialog-Cancel *> Value one
 Display "Cancel Button Pressed" Line 13 Col 1
 Perform Printer-Canceled-Para
 When Dialog-Error *> Value two
 Display "Error in Dialog" Line 13 Col 1
 Perform Printer-Error-Para
 When Other *> Value other
 Display "Invalid Value: " Line 13 Col 1 Dialog-Return
 End-Evaluate.
STOP RUN.

Open-Printer-Para.
 Open Output Printer-File.
 Write Fd-Record From
 "Checking the Printer Dialog Box " After Page.
 Close Pfile.

Printer-Canceled-Para.
 Display "Printer Dialog Canceled" Line 22 Col 3 Reverse
 Erase Eol.

Printer-Error-Para.
 CALL "P$GetDialog" USING PD-ExtendedErrorParam,
 PD-ExtendedErrorValue,
 Validity-Flag.

If PD-ExtErrIsPrinterNotFound
 Display "Printer Not Found!" Line 22 Col 3 Reverse
 Erase Eol
Else
 Display "Printer Dialog Had Error" Line 22 Col 3 Reverse
 PD-ExtendedErrorValue Convert
 Erase Eol

End-If.

Appendix E: Windows Printing

526 RM/COBOL User's Guide

Printing a Bitmap
The following code fragment prints a bitmap at location 2,2 (inches). The bitmap will be two
inches wide, and the height will be scaled to match the original width/height ratio.

CALL "P$DrawBitmap" USING "rmlogo.bmp", 2, 2, "Absolute",
 "Inches", 2, 0, "Inches"
 GIVING Bitmap-Return.

Changing a Font While Printing
The following code fragment prints the text, “Original FONT” in the current font, then
switches to Monotype Corsiva and prints the text, “Monotype Corsiva FONT Italic”.

CALL "P$TextOut" USING "Original FONT", 0.5, 3.50, "Absolute",
 "Inches".
CALL "P$SetFont" USING LF-FaceNameParam, "Monotype Corsiva",
 LF-ItalicParam, "Y".
CALL "P$TextOut" USING "Monotype Corsiva FONT Italic", 0.5, 4.50,
 "Absolute", "Inches".

Using the COBOL WRITE Statement to Print Multiple
Text Outputs on the Same Line
The following code fragment causes multiple outputs to be displayed on a single line. The
COBOL WRITE statement is used with the ADVANCING phrase and
P$SetLineExtendMode (see page 487) to produce the following line of text:

Printing a word in Italic, Underline, or Bold on the same line is no problem with RM/COBOL.

INITIALIZE LogicalFont.
CALL "P$SetFont" USING LF-HeightParam 50,
 LF-WeightParam 10,
 LF-FaceNameParam "Arial".
WRITE PRINT-RECORD FROM "Printing a word in".
CALL "P$SetLineExtendMode" USING 1, "Characters".
CALL "P$SetFont" USING LF-ItalicParam, "Y".
WRITE PRINT-RECORD FROM "Italic", AFTER ADVANCING ZERO.
CALL "P$SetLineExtendMode" USING 1, "Characters".
CALL "P$SetFont" USING LF-ItalicParam, "N", LF-UnderlineParam, "Y".
WRITE FD-RECORD FROM "Underline," AFTER ADVANCING ZERO.
CALL "P$SetLineExtendMode" USING 1, "Characters".
CALL "P$SetFont" USING LF-WeightParam, LF-WeightBold,
 LF-UnderlineParam, "N".
WRITE PRINT-RECORD FROM "or Bold" AFTER ADVANCING ZERO.
CALL "P$SetLineExtendMode" USING 1, "Characters".
CALL "P$SetFont" USING LF-WeightParam, LF-WeightNormal.
WRITE PRINT-RECORD FROM
 "on the same line is no problem with RM/COBOL."
 AFTER ADVANCING ZERO.

Appendix E: Windows Printing

 RM/COBOL User's Guide 527

Changing Orientation, Pitch, and Line Spacing
The following code fragment demonstrates how to change the print orientation from portrait
to landscape, how to change the font pitch from normal to compressed, and how to change the
line spacing to 8 lines-per-inch.

CALL "P$TextOut" USING "This is Orientation Portrait Normal
 Pitch" 0, 1.50, "Absolute", "Inches".
CALL "P$SetPitch" USING PitchCompressed.
CALL "P$SetLineSpacing" USING 8.
CALL "P$ChangeDeviceModes" USING DM-OrientationParam,
 DM-OrientationLandscape.
WRITE FD-RECORD FROM SPACES AFTER PAGE.
CALL "P$TextOut" USING
 "This is printed with the Orientation
 "Landscape with a Compressed Type Size",
 0, 1.50, "Absolute", "Inches".
CALL "P$SetPitch" USING PitchNormal.

CALL "P$ChangeDeviceModes" USING DM-OrientationParam,
 DM-OrientationPortrait.
WRITE FD-RECORD FROM SPACES AFTER PAGE.
CALL "P$TextOut" USING
 "This is back to Portrait using the Normal Pitch Size",
 0, 1.50, "Absolute", "Inches".

Opening and Writing to Separate Printers
The following code fragment demonstrates how to open three separate printers and write to
each one.

OPEN OUTPUT PFILE1.
CALL "P$GetHandle" USING HANDLE-1.

CALL "P$EnableDialog".
OPEN OUTPUT PFILE2.
CALL "P$GetHandle" USING HANDLE-2.

CALL "P$EnableDialog".
OPEN OUTPUT PFILE3.
CALL "P$GetHandle" USING HANDLE-3.

CALL "P$SetHandle" USING HANDLE-3.
CALL "P$TextOut" USING "Text written to PRINTER 3".

CALL "P$SetHandle" USING HANDLE-2.
CALL "P$TextOut" USING "Text written to PRINTER 2".

CALL "P$SetHandle" USING HANDLE-1.
CALL "P$TextOut" USING "Text written to PRINTER 1".

CLOSE PFILE1, PFILE2, PFILE3.

Appendix E: Windows Printing

528 RM/COBOL User's Guide

Printing Text at the Top of a Page
The following code fragment demonstrates how to position and print text at the top center of
the page.

 CALL "P$GetDeviceCapabilities" USING DC-HorizontalSizeParam,
 DC-HorzSize.
 CALL "P$GetTextExtent" USING "Top Center",
 Ws-Text-Width,
 Ws-Text-Height,
 UnitsAreMetric.
* Divide by 10 to convert millimeters to centimeters.
 Compute Ws-X-M = ((DC-HorzSize / 10) / 2) - (Ws-Text-Width / 2).
 Move Zero to Ws-Y-M.
 CALL "P$SetTextPosition" USING Ws-X-M, Ws-Y-M,
 PositionIsTop,
 ModeIsAbsolute,
 UnitsAreMetric.
 CALL "P$TextOut" USING "Top Center".

Printing Text at the Corners of a Page
The following code fragment demonstrates how to position and print text at the top left corner
and bottom right corner of the page.

* Position Text Top Left.
 CALL "P$SetTextPosition" USING 0, 0,
 PositionIsTop,
 ModeIsAbsolute,
 UnitsAreDeviceUnits.

 CALL "P$TextOut" USING "Top Left".

* Position Text Bottom Right.
 CALL "P$GetTextExtent" USING "Bottom Right",
 Ws-Text-Width,
 Ws-Text-Height,
 UnitsAreMetric.

 CALL "P$GetDeviceCapabilities" USING DC-HorizontalSizeParam,
 DC-HorzSize,
 DC-VerticalSizeParam,
 DC-VertSize.

* Divide by 10 to convert millimeters to centimeters.
 Compute Ws-X-M = (DC-HorzSize / 10) - Ws-Text-Width.
 Compute Ws-Y-M = (DC-VertSize / 10).
 CALL "P$SetTextPosition" USING Ws-X-M, Ws-Y-M,
 PositionIsBottom,
 ModeIsAbsolute,
 UnitsAreMetric.

 CALL "P$TextOut" USING "Bottom Right".

Appendix E: Windows Printing

 RM/COBOL User's Guide 529

Setting the Point Size for a Font
The following code fragment demonstrates how to set the point size for a specified font.

 Open Output PrintFile.
 CALL "P$GetDeviceCapabilities" USING DC-LogicalPixelsYParam,
 DC-LogPixelsY.

* Compute Font Height for desired Point-Size.
* If Point-Size is 72, this produces a 1-inch high font, including
* Internal Leading.
 Compute LF-Height Rounded = -((Point-Size * Dc-LogPixelsY) / 72).

 Move "Times New Roman" To LF-FaceName.
 CALL "P$SetFont" USING LF-FaceNameParam, LF-FaceName,
 LF-HeightParam, LF-Height.
 CALL "P$GetTextMetrics" USING TextMetrics.

* Add bias for Internal Leading.
* If Point-Size is 72, this adjustment produces a 1-inch high font
* excluding Internal Leading.
 Compute LF-Height = (LF-Height * TM-Height) /
 (TM-Height - TM-InternalLeading).

* Set Font with computed LF-Height
 CALL "P$SetFont" USING LF-HeightParam, LF-Height.
 Write Printer-Record from "Greetings" After Advancing 1.

Setting Text Position
The following code fragment will print large "Greetings" followed by three smaller
“Greetings” positioned by top alignment, base line alignment and bottom alignment.

* Print initial Greetings in a Large Font Size.
 CALL "P$SetFont" USING LF-HeightParam, 330.
 CALL "P$TextOut" USING "Greetings", 0.25, 2, ModeIsAbsolute,
 UnitsAreInches.
* Get the Top Text Position.
 CALL "P$GetTextPosition" USING Ws-X-D, Ws-Top, PositionIsTop,
 UnitsAreDeviceUnits.
* Get the Bottom Text Position.
 CALL "P$GetTextPosition" USING Ws-XB-D, Ws-Bottom,
 PositionIsBottom,
 UnitsAreDeviceUnits.
* Get the Base Line Position.
 CALL "P$GetPosition" USING Ws-XP-D, Ws-Base,
 UnitsAreDeviceUnits.
 CALL "P$SetFont" USING LF-HeightParam, 50.
* Set the Top Text Position and print, get next X Position.
 CALL "P$SetTextPosition" USING Ws-X-D, Ws-Top, PositionIsTop,
 ModeIsAbsolute, UnitsAreDeviceUnits.
 CALL "P$TextOut" USING "Greetings".
 CALL "P$GetPosition" USING Ws-X-D, Ws-Dummy,
 UnitsAreDeviceUnits.
* Set the Base Line Position and print, get next X Position.

Appendix E: Windows Printing

530 RM/COBOL User's Guide

 CALL "P$SetPosition" USING Ws-X-D, Ws-Base, ModeIsAbsolute,
 UnitsAreDeviceUnits.
 CALL "P$TextOut" USING "Greetings".
 CALL "P$GetPosition" USING Ws-X-D, Ws-Dummy,
 UnitsAreDeviceUnits.
* Set the Bottom Position and print.
 CALL "P$SetTextPosition" USING Ws-X-D, Ws-Bottom,
 PositionIsBottom,
 ModeIsAbsolute, UnitsAreDeviceUnits.
 CALL "P$TextOut" USING "Greetings".

RM/COBOL-Specific Escape Sequences
The typical COBOL application written for Windows makes use of the various Windows
printer drivers to control printing functions. Many legacy COBOL programs, however,
contain embedded or programmatic escape sequences and thus cannot take advantage of
Windows printer drivers. To accommodate these programs, the RM/COBOL runtime has
been enhanced to implement a set of RM/COBOL-specific escape sequences to control
printing. These escape sequences, which are similar to the Hewlett Packard PCL (Print
Command Language) commands, are then mapped by the runtime to the correct printer driver
GDI (Graphics Device Interface) calls to accomplish the desired function. Note that some
escape sequences will not affect the print output until the next page. For example, changing
the print orientation will not affect the current page.

The escape sequences—when enabled—are supported only on Windows. Recognition of the
escape sequences can be enabled in one of three ways:

• Set the value of the Printer Enable Escape Sequences property (see page 81) to True.

• Set the ESCAPE-SEQUENCES keyword (see page 320) of the DEFINE-DEVICE
configuration record for the printer to YES.

• Call the P$EnableEscapeSequences (see page 493) printer control subprogram after the
printer is opened.

Table 56 lists the available printing functions and their escape sequences and options. The
“Options” column of the table describes the permissible values for certain variables in an
escape sequence that is represented by the characters #, ##, or ###. These variables are
always binary values; that is, they are not ASCII characters representing the values.

Table 56: RM/COBOL-Specific Escape Sequences

Function ASCII Decimal Hex Options (#, ##, or ###)

Reset <Esc>E 027 069 1B 45 Clears the margins, clears line
spacing, clears line extend mode,
resets text length, sets page
orientation back to portrait, sets
paper source back to
DMBIN_ONLYONE, and sets
the font back to normal font.

Left Margin <Esc>&a#L 027 038 097 ### 076 1B 26 61 ## 4C Size of left margin, in characters
(calculated using current font).

Appendix E: Windows Printing

 RM/COBOL User's Guide 531

Table 56: RM/COBOL-Specific Escape Sequences

Function ASCII Decimal Hex Options (#, ##, or ###)

Set Tab Stops <Esc>&k#H 027 038 107 ### 072 1B 26 6B ## 48 Horizontal increment in
characters (calculated using
current font).

Line Spacing <Esc>&l#D 027 038 108 ### 068 1B 26 6C ## 44 Lines per inch.

Top Margin <Esc>&l#E 027 038 108 ### 069 1B 26 6C ## 45 Size of top margin, in lines
(calculated using current font).

Text Length <Esc>&l#F 027 038 108 ### 070 1B 26 6C ## 46 Length of page, in lines
(calculated using current font).

Paper Source <Esc>&l#H 027 038 108 ### 072 1B 26 6C ## 48 1 - DMBIN_ONLYONE
2 - DMBIN_LOWER
3 - DMBIN_MIDDLE
4 - DMBIN_MANUAL
5 - DMBIN_ENVELOPE
6 - DMBIN_ENVMANUAL
7 - DMBIN_AUTO
8 - DMBIN_TRACTOR
9 - DMBIN_SMALLFMT
10 - DMBIN_LARGEFMT
11 - DMBIN_LARGECAPACITY
14 - DMBIN_CASSETTE
15 - DMBIN_FORMSOURCE

Orientation <Esc>&l#O 027 038 108 ### 079 1B 26 6c ## 4F 0 – Portrait
1 - Landscape

Print Pitch <Esc>(s#H 027 040 115 ### 072 1B 28 73 ## 48 Characters per horizontal inch.

Style <Esc>(s#S 027 040 115 ### 083 1B 28 73 ## 53 0 – Normal
1 – Italic
2 – Bold
4 – Underline
8 – Compressed
16 - Expanded

Font Height <Esc>(s#V 027 040 115 ### 086 1B 28 73 ## 56 Characters per vertical inch.

Clear Margins <Esc>9 027 057 1B 39 Clear left and top margin.

Null <NUL> 000 00 See the Note following this table.

Horizontal Tab <HT> 009 09 Position to next tab stop.

Shift Out <SO> 014 0E Shifts normal font to expanded
font. Shifts compressed font to
normal. Stays in effect until start
of new line.

Shift In <SI> 015 0F Shifts normal font to compressed
font. Shifts expanded font to
normal font. Stays in effect until
start of new line.

Appendix E: Windows Printing

532 RM/COBOL User's Guide

Note RM/COBOL normally changes nulls to spaces before sending them to the printer.
This behavior may be changed by setting the value of the Printer Enable Null Esc. Seq.
property (see page 81) to True.

Appendix F: Subprogram Library

 RM/COBOL User's Guide 533

Appendix F: Subprogram
Library

This appendix describes the subprograms that are supplied with the RM/COBOL runtime
system. It also describes the required RM/COBOL calling sequence and the USING list
parameters. Failure to comply with the USING list requirements will halt the run unit with a
STOP RUN indication at the line containing the incorrect CALL statement.

Note Subprogram names are case-insensitive. For readability, mixed case is used in this
document when subprogram names are lengthy. Uppercase letters are used for short
subprogram names, in calling sequences, and in code fragments.

Subprogram Library
Table 57 lists the subprograms alphabetically and gives a brief description.

Table 57: RM/COBOL Subprogram Library

Subprogram Function

C$Bitmap
(see page 536)

Sets the name of a bitmap file for a program.

C$BTRV
(see page 536)

Calls Btrieve directly from an RM/COBOL program.

C$CARG
(see page 538)

Returns information about a passed argument, given the
argument name.

C$Century
(see page 540)

Facilitates updating RM/COBOL programs to handle the
year 2000.

C$ClearDevelopmentMode
(see page 540)

Disables expanded error information reporting (known as
“development mode”) for many of the C$ and P$ subprograms.

C$CompilePattern
(see page 541)

Compiles a runtime-specified pattern regular expression into a
compiled pattern buffer.

C$ConvertAnsiToOem
(see page 542)

Converts ANSI characters to OEM characters.

C$ConvertOemToAnsi
(on page 542)

Converts OEM characters to ANSI characters.

Appendix F: Subprogram Library

534 RM/COBOL User's Guide

Table 57: RM/COBOL Subprogram Library

Subprogram Function

C$DARG
(see page 543)

Returns information about a passed argument, given the
argument number.

C$Delay
(see page 545)

Relinquishes the CPU for a specified length of time.

C$Forget
(see page 545)

Marks an area of the runtime system’s in-memory screen
image as unknown.

C$GetEnv
(see page 546)

Retrieves the value of an environment variable.

C$GetLastFileName
(see page 546)

Retrieves the last file used in a COBOL I/O statement.

C$GetLastFileOp
(see page 547)

Retrieves information about the last COBOL I/O operation.

C$GetNativeCharset
(see page 547)

Retrieves information about the native character set in effect
for the current run unit.

C$GetRMInfo
(on page 548)

Retrieves RM/COBOL runtime system information.

C$GetSyn
(see page 550)

Retrieves the value of an RM/COBOL synonym from the
UNIX resource file or from the Windows registry.

C$GetSysInfo
(see page 551)

Retrieves operating system information.

C$GUICFG
(see page 552)

Changes the RM/COBOL graphical user interface (GUI)
properties.

C$LogicalAnd
(see page 553)

Performs a bitwise logical AND operation on two or more
nonnumeric or numeric operands.

C$LogicalComplement
(see page 554)

Performs a bitwise logical one’s complement operation on a
nonnumeric or numeric operand.

C$LogicalOr
(see page 554)

Performs a bitwise logical inclusive OR operation on two or
more nonnumeric or numeric operands.

C$LogicalShiftLeft
(see page 555)

Performs a logical shift left operation on a nonnumeric or
numeric operand.

C$LogicalShiftRight
(see page 555)

Performs a logical shift right operation on a nonnumeric or
numeric operand.

C$LogicalXor
(see page 556)

Performs a bitwise logical exclusive OR operation on two or
more nonnumeric or numeric operands.

C$MBar
(see page 557)

Sets the menu bar for a program.

C$MemoryAllocate
(see page 557)

Allocates dynamic memory.

C$MemoryDeallocate
(see page 558)

Deallocates (frees) dynamic memory.

C$NARG
(see page 559)

Returns the number of arguments passed to the called
subprogram.

C$OSLockInfo
(see page 559)

Returns the process ID of the process that performed the last
lock operation.

Appendix F: Subprogram Library

 RM/COBOL User's Guide 535

Table 57: RM/COBOL Subprogram Library

Subprogram Function

C$PARG
(see page 560)

Returns a pointer to the nth actual argument passed from the
calling program.

C$PlaySound
(see page 560)

Plays Windows predefined sound events or sound files.

C$RBMenu
(see page 561)

Sets the pop-up menu for a program that is displayed when
the right mouse button is pressed.

C$RERR
(see page 562)

Returns expanded completion status for the last I/O operation.

C$SBar
(see page 564)

Sets the status bar for a program.

C$SCRD
(see page 564)

Allows the contents of the screen to be read into an
alphanumeric data item.

C$SCWR
(see page 565)

Allows the quick display of a large amount of screen data
containing various attributes.

C$SecureHash
(see page 570)

Produces a 20-byte message digest from an input text string
using the secure hash algorithm, SHA-1.

C$SetDevelopmentMode
(see page 571)

Enables expanded error information reporting (known as
“development mode”) for many of the C$ and P$ subprograms.

C$SetEnv
(see page 572)

Sets the value of an environment variable.

C$SetSyn
(see page 572)

Sets the value of an RM/COBOL synonym in the UNIX
resource file or in the Windows registry.

C$Show
(see page 573)

Sets the show state of the main RM/COBOL window.

C$ShowArgs
(see page 574)

Displays the list of arguments used to call C$ShowArgs.

C$TBar
(see page 575)

Sets the toolbar for a program.

C$TBarEn
(see page 576)

Enables and disables buttons on the toolbar.

C$TBarSeq
(see page 576)

Sets the bitmap sequence of buttons on the toolbar.

C$Title
(see page 577)

Sets the title displayed for the RM/COBOL window.

C$WRU
(see page 577)

Returns the location from which a subprogram was called.

DELETE
(see page 578)

Deletes a file.

RENAME
(see page 579)

Renames a file.

SYSTEM
(see page 579)

Allows an arbitrary operating system command to be
executed.

Appendix F: Subprogram Library

536 RM/COBOL User's Guide

C$Bitmap
C$Bitmap is used to display a bitmap file on the RM/COBOL window.

To use this subprogram, the runtime system must be able to locate the c$bitmap.dll file.
The following example illustrates how to add this DLL to the Runtime Command line with
the L Option:

runcobol program-name L=C$Bitmap.DLL

Other Runtime Command Options can be used. See Chapter 7: Running (on page 189).

Note This subprogram is supported only on Windows.

Calling Sequence

filename is an alphanumeric data item that contains the name of an existing Windows
bitmap (.bmp) file. The file will be located using the runtime system search path.

C$BTRV
C$BTRV is used to call Btrieve directly from an RM/COBOL program.

To use this subprogram, the runtime system must be able to locate the c$btrv.dll file. In
addition, Btrieve, available from Pervasive Software, must be installed on the computer.

Note This subprogram is supported only on Windows.

Calling Sequence

opcode is any unsigned numeric data item that contains the desired Btrieve operation
code value.

status is any signed numeric data item that receives the Btrieve status code result of the
operation.

position-block is a 128-byte alphanumeric data item that is used by many of the Btrieve
operations and should not be modified by the COBOL program.

data-buffer is an alphanumeric data item that contains the data associated with the
Btrieve operation. The contents may be input and/or output, depending upon the given
Btrieve operation.

CALL "C$Bitmap" USING filename

 CALL "C$BTRV" USING opcode, status, position-block,

 data-buffer, buffer-length, key-buffer, key-number

Appendix F: Subprogram Library

 RM/COBOL User's Guide 537

buffer-length is any unsigned numeric data item that contains the length of the data in the
data buffer. This value may be input and/or output, depending upon the given Btrieve
operation.

key-buffer is a 256-byte alphanumeric data item that contains the key value associated
with the Btrieve operation. The contents may be input and/or output, depending upon the
given Btrieve operation.

key-number is any signed numeric data item into which the key number or special option
value is stored, depending upon the given Btrieve operation.

Note This subprogram uses the CodeBridge parameter conversion facility for the four
numeric arguments to allow maximum flexibility in their definition. See the CodeBridge
User's Guide for more details.

Examples

The following is a typical DATA DIVISION description of the arguments (the data buffer
item can be any size that is appropriate for the operation being performed):

01 B-OPCODE PIC 9(5).
01 B-STATUS PIC S9(5).
01 B-POSITION-BLOCK PIC X(128).
01 B-DATA-BUFFER PIC X(10000).
01 B-BUFFER-LENGTH PIC 9(5).
01 B-KEY-BUFFER PIC X(256).
01 B-KEY-NUMBER PIC S9(3).

The following is a typical PROCEDURE DIVISION call of C$BTRV using the arguments
described above:

CALL "C$BTRV" USING B-OPCODE, B-STATUS, B-POSITION-BLOCK,
 B-DATA-BUFFER, B-BUFFER-LENGTH,
 B-KEY-BUFFER, B-KEY-NUMBER.

Refer to your Btrieve Programmer’s Guide for a complete description of the parameters sent
from and returned to the application for each Btrieve operation.

The following specific example, using the Btrieve Version (26) operation, also will work:

01 B-OP-VERSION PIC 99 VALUE 26.
01 B-STATUS PIC S9(5) SIGN LEADING SEPARATE.
01 B-POSITION-BLOCK PIC X(128).
01 B-VERSION-BUFFER PIC X(30).
01 B-VER-BUF-LEN PIC 99 VALUE 30.
01 B-KEY-BUFFER PIC X(256)
 VALUE "\\RM1\VOL2\USERS\BTRV.FIL".
01 B-KEY-NUMBER PIC S9 VALUE 0.

CALL "C$BTRV" USING B-OP-VERSION, B-STATUS, B-POSITION-BLOCK,
 B-VERSION-BUFFER, B-VER-BUF-LEN,
 B-KEY-BUFFER, B-KEY-NUMBER.

Appendix F: Subprogram Library

538 RM/COBOL User's Guide

C$CARG
C$CARG returns information about the actual parameter that corresponds to a formal
parameter in the USING or GIVING phrases in the Procedure Division header of a
subprogram. This information identifies the type and length of the argument and, when the
argument is numeric or numeric edited, the number of digits and scale factor for the argument.

Calling Sequence

okay is a one-character alphanumeric data item into which the ASCII character Y is
stored if C$CARG successfully identifies the argument named by argument-name;
otherwise, the ASCII character N is stored in the data item.

argument-name is the name of a Linkage Section data item named in the Procedure
Division header USING list.

argument-description is a ten-character group data item into which the desired
information about the argument specified by argument-name is stored. A typical data
description for argument-description is as follows:

 01 ARGUMENT-DESCRIPTION.
 02 ARGUMENT-TYPE PIC 9(2) BINARY(2).
 02 ARGUMENT-LENGTH PIC 9(8) BINARY(4).
 02 ARGUMENT-DIGIT-COUNT PIC 9(2) BINARY(2).
 02 ARGUMENT-SCALE PIC S9(2) BINARY(2).
 02 ARGUMENT-POINTER POINTER.
 02 ARGUMENT-PICTURE POINTER.

Note The argument-description group item will have the correct length only if
ARGUMENT-TYPE, ARGUMENT-DIGIT-COUNT, and ARGUMENT-SCALE are
allocated as two-byte binary and ARGUMENT-LENGTH is allocated as four-byte
binary. Use of the BINARY-ALLOCATION keyword (see page 296) of the
COMPILER-OPTIONS configuration record can change the allocation of binary numeric
data items such that this requirement is not met. For example, if BINARY-
ALLOCATION=RM1, the default allocation for a data item described with PIC 9(2) is
one byte. The example shown specifies a binary allocation override for each binary item
to guarantee the right allocation regardless of the configured binary allocation scheme.
The binary allocation override is not necessary if BINARY-ALLOCATION=RM. The
binary allocation override would also not be necessary for binary allocation schemes
RM1 and MF-RM if all three 9(2) entries were changed to 9(3) entries.

The fields in ARGUMENT-DESCRIPTION have the following meanings:

• ARGUMENT-TYPE returns a number indicating the type of the argument data item.
The values and meanings for data type numbers returned in this field are shown in
Table 58 (on page 539).

• ARGUMENT-LENGTH returns the number of character positions occupied by the
argument data item.

 CALL "C$CARG" USING okay, argument-name,
 argument-description

Appendix F: Subprogram Library

 RM/COBOL User's Guide 539

• ARGUMENT-DIGIT-COUNT returns the number of digits defined in the PICTURE
character-string for an argument that is a numeric or numeric edited data item as
indicated by the ARGUMENT-TYPE field value; otherwise, the value zero is
returned for nonnumeric data items. The digit count for a numeric or numeric edited
data item does not include any positions defined by the PICTURE symbol P, which
represents a scaling position.

• ARGUMENT-SCALE returns the power of 10 scale factor (that is, the position of
the implied or actual decimal point) for an argument that is a numeric or numeric
edited data item as indicated by the ARGUMENT-TYPE field value; otherwise, the
value zero is returned for nonnumeric data items. If the PICTURE symbol P was
used in the description of the data item, the absolute value of the ARGUMENT-
SCALE value will exceed the ARGUMENT-DIGIT-COUNT value; in this case, a
positive scale value indicates an integer with P scaling positions on the right of the
PICTURE character-string and a negative scale value indicates a fraction with P
scaling positions on the left of the PICTURE character-string.

• ARGUMENT-POINTER returns a pointer to the argument data item. This field is
optional within ARGUMENT-DESCRIPTION unless the ARGUMENT-PICTURE
field is also specified. The value of this field is NULL if the ARGUMENT-TYPE
field value indicates an omitted argument.

• ARGUMENT-PICTURE returns a pointer to the encoded PICTURE editing string
for edited argument data items. The value of this field is NULL if the
ARGUMENT-TYPE field value indicates a non-edited data item, including an
omitted argument. This field is optional within ARGUMENT-DESCRIPTION.
The encoded PICTURE editing string is not the same as the original PICTURE
character-string specified in the source and is rarely useful in a COBOL program.
No tools are provided for decoding or using the encoded PICTURE editing string
and its internal format is undocumented and subject to change at any time.

Note If a calling program passes a called program two or more arguments that begin at
the same location (either through redefinition, with reference modification, or because
one is a group that contains the other), when the called program asks C$CARG for the
parameter descriptions, it always receives that of the first actual argument passed that has
the same location, regardless of the name specified in argument-name. In such cases, the
C$DARG subprogram (see page 543) may be used to obtain the distinct descriptions by
using argument-number.

Table 58: RM/COBOL Data Types as Numbers

Type Number RM/COBOL Data Type Type Number RM/COBOL Data Type

0 NSE 16 ANS

1 NSU 17 ANS (justified right)

2 NTS 18 ABS

3 NTC 19 ABS (justified right)

4 NLS 20 ANSE

5 NLC 21 ABSE

6 NCS 22 GRP (fixed length)

7 NCU 23 GRPV (variable length)

8 NPP 25 PTR

9 NPS 26 NBSN

Appendix F: Subprogram Library

540 RM/COBOL User's Guide

Table 58: RM/COBOL Data Types as Numbers

Type Number RM/COBOL Data Type Type Number RM/COBOL Data Type

10 NPU 27 NBUN

11 NBS 32 OMITTED

12 NBU

Notes

• For an explanation of the data type abbreviations and a description of the RM/COBOL
data types listed in the table above, see Table 32: Valid Data Type Indicators (on
page 259) and Appendix C: Internal Data Formats (on page 425).

• The data type GRPV (23) does not occur when C$CARG is called with the formal
argument name or when C$DARG is called with an actual argument number that
corresponds to an argument that is a variable-length group. In all cases, RM/COBOL
passes variable-length group actual arguments as if they were a fixed-length group of the
maximum length.

C$Century
C$Century facilitates updating RM/COBOL programs to handle the year 2000 issue. It
retrieves the first two digits of the current year. For example, for the year 1999, it will return
19; for the year 2000, it will return 20. For more information on obtaining composite date and
time values, see Composite Date and Time (on page 231).

Note A number of changes have been made to the Format 2 ACCEPT statement related to
improving the way dates and times are handled. These changes provide additional ways of
writing Y2K-compliant COBOL. New phrases include CENTURY-DATE, CENTURY-
DAY, DATE-AND-TIME, and DAY-AND-TIME. See the RM/COBOL Language Reference
Manual for more information.

Calling Sequence

value-buffer is a two-byte data item with a format of either unsigned numeric display
(NSU) or alphanumeric display (ANS).

C$ClearDevelopmentMode
C$ClearDevelopmentMode is used to disable expanded error information reporting (known as
“development mode”) for many of the C$ and P$ subprograms. The P$ subprograms are
discussed in Appendix E: Windows Printing (on page 461). When development mode is
enabled, as described in C$SetDevelopmentMode (on page 571), more verbose error reporting
is performed to assist the COBOL developer in implementing these subprogram calls.

CALL "C$Century" USING value-buffer

Appendix F: Subprogram Library

 RM/COBOL User's Guide 541

Calling Sequence

C$CompilePattern
C$CompilePattern compiles a runtime-specified pattern regular expression into a compiled
pattern buffer. The use of C$CompilePattern enhances performance when a variable pattern
is used multiple times, since the effort to compile the regular expression is significant. It is
not necessary to use C$CompilePattern for literal patterns because the RM/COBOL compiler
automatically compiles literal patterns used in the LIKE condition when the source program is
compiled.

Calling Sequence

PatternString (input) must refer to an alphanumeric data item, the value of which is the
regular expression to be compiled. The RM/COBOL Language Reference Manual, in the
discussion of the LIKE condition, specifies how pattern regular expressions are written.

PatternStripSpaces (input) must refer to a numeric integer data item. When the value of
this argument is non-zero, trailing spaces in the value of PatternString are stripped before
the regular expression is compiled. The value of this data item should be zero if the
regular expression contains trailing spaces that are part of the pattern to be matched.

PatternErrCode (output) must refer to a numeric integer data item. This argument is
optional, but the placeholder OMITTED must be specified if the argument is omitted
when either PatternErrPos or PatternErrSyntaxPos are specified. When the argument is
provided, the status of the pattern compilation is stored in the referenced data item. The
value 0 indicates success. The values 1 through 26 correspond to RM/COBOL compiler
error messages 682 through 707 and have the same meanings, respectively.

PatternErrPos (output) must refer to a numeric integer data item. This argument is
optional, but the placeholder OMITTED must be specified if the argument is omitted
when PatternErrSyntaxPos is specified. When the argument is provided, the character
position (one-relative) within the pattern where an error was detected is stored in the
referenced data item. The value zero is stored if no error occurred.

PatternErrSyntaxPos (output) must refer to a numeric integer data item. This argument
is optional. When the argument is provided, the character position (one-relative) of the
syntax structure within the pattern that is associated with the error is stored in the
referenced data item. The value zero is stored if no error occurred. For many errors, this
argument will have the same value as PatternErrPos. The value is different when the
error is associated with the syntax of an escape sequence, character class expression,
character range, class subtraction, quantifier, or parenthesized subexpression. For
example, in the case of a missing closing parenthesis, this argument would indicate the

CALL "C$ClearDevelopmentMode"

 CALL "C$CompilePattern" [USING PatternString, PatternStripSpaces,
 [, PatternErrCode [, PatternErrPos [, PatternErrsyntaxPos]]]
 GIVING PatternPointer

Appendix F: Subprogram Library

542 RM/COBOL User's Guide

offset of the corresponding opening parenthesis and PatternErrPos would indicate where
the missing parenthesis was detected (in this case, the end of the pattern).

PatternPointer must refer to a pointer data item. The C$CompilePattern subprogram
returns the pointer to the successfully compiled pattern in this data item. This data item
may then be used as a pattern specifier for the LIKE condition. If the memory allocation
fails because of insufficient memory then a null pointer is returned. If the pattern
compilation fails because of a syntax error, the allocated memory is deallocated and a
null pointer is returned.

Each call to C$CompilePattern allocates a memory buffer to contain the compiled pattern as if
C$MemoryAllocate (see page 557) were called. The pointer to this allocated buffer is stored
in PatternPointer without regard to the previous value of PatternPointer. When the compiled
pattern is no longer needed, the program should call C$MemoryDeallocate (see page 558)
using PatternPointer to deallocate this buffer. In particular, if multiple patterns are compiled
using this routine and the same pointer data item for PatternPointer, the previously allocated
pattern buffer should be deallocated prior to compiling a second or later pattern since the
existing compiled pattern buffer will no longer be accessible by the COBOL program unless
the pointer value has been copied to another pointer data item. Regardless of the advisability
of deallocating no longer needed compiled pattern buffers, the runtime will free any such
buffers upon termination of the run unit when these buffers are not explicitly deallocated by
the COBOL program.

C$ConvertAnsiToOem
C$ConvertAnsiToOem is used to convert a buffer containing ANSI characters to a buffer
containing the corresponding OEM characters. The runtime’s euro character processing is
used. See the information on euro support in INTERNATIONALIZATION configuration
record (on page 326).

Note This subprogram is supported only on Windows.

Calling Sequence

ansi-buffer is an alphanumeric data item that contains the ANSI characters to be
converted to OEM characters.

oem-buffer is an alphanumeric data item into which the OEM characters will be stored.

char-count is an optional numeric data item that contains the number of characters to
be converted. If omitted or if the value is invalid, the actual size of the shorter of
ansi-buffer and oem-buffer is used.

C$ConvertOemToAnsi
C$ConvertOemToAnsi is used to convert a buffer containing OEM characters to a buffer
containing the corresponding ANSI characters. The runtime’s euro character processing is

CALL "C$ConvertAnsiToOem" USING ansi-buffer, oem-buffer
 [, char-count]

Appendix F: Subprogram Library

 RM/COBOL User's Guide 543

used. See the information on euro support in INTERNATIONALIZATION configuration
record (on page 326).

Note This subprogram is supported only on Windows.

Calling Sequence

oem-buffer is an alphanumeric data item that contains the OEM characters to be
converted to ANSI characters.

ansi-buffer is an alphanumeric data item into which the ANSI characters will be stored.

char-count is an optional numeric data item that contains the number of characters
to be converted. If omitted or if the value is invalid, the actual size of the shorter of
oem-buffer and ansi-buffer is used.

C$DARG
C$DARG returns information about an actual parameter passed in the USING or GIVING
phrases in the CALL statement that called a subprogram. This information identifies the type
and length of the argument and, when the argument is numeric or numeric edited, the number
of digits and scale factor for the argument.

Calling Sequence

argument-number is the one-relative ordinal position of the actual argument in the
USING phrase of the CALL statement used to call the subprogram that calls C$DARG.
The value zero obtains the description of the actual argument in the GIVING phrase of
that CALL statement. If the value specified is less than zero or greater than the number
of actual arguments passed, an argument-description for an omitted argument will be
returned (ARGUMENT-TYPE = 32). The actual number of arguments passed can be
obtained with the C$NARG subprogram (see page 559). The actual number of
arguments may exceed the number of formal arguments declared in the Procedure
Division header of the program that calls C$DARG. All of the actual arguments can be
accessed using C$DARG even though there is no formal argument name available for
accessing the actual arguments beyond the number of formal arguments.

argument-description is a ten-character group data item into which the desired
information about the argument specified by argument-number is stored. A typical data
description entry for argument-description is as follows:

 01 ARGUMENT-DESCRIPTION.
 02 ARGUMENT-TYPE PIC 9(2) BINARY(2).
 02 ARGUMENT-LENGTH PIC 9(8) BINARY(4).

CALL "C$ConvertOemToAnsi" USING oem-buffer, ansi-buffer
 [, char-count]

 CALL "C$DARG" USING argument-number,
 argument-description

Appendix F: Subprogram Library

544 RM/COBOL User's Guide

 02 ARGUMENT-DIGIT-COUNT PIC 9(2) BINARY(2).
 02 ARGUMENT-SCALE PIC S9(2) BINARY(2).
 02 ARGUMENT-POINTER POINTER.
 02 ARGUMENT-PICTURE POINTER.

Note The argument-description group item will have the correct length only if
ARGUMENT-TYPE, ARGUMENT-DIGIT-COUNT, and ARGUMENT-SCALE are
allocated as two-byte binary and ARGUMENT-LENGTH is allocated as four-byte
binary. Use of the BINARY-ALLOCATION keyword (see page 296) of the
COMPILER-OPTIONS configuration record can change the allocation of binary numeric
data items such that this requirement is not met. For example, if BINARY-
ALLOCATION=RM1, the default allocation for a data item described with PIC 9(2) is
one byte. The example shown specifies a binary allocation override for each binary item
to guarantee the right allocation regardless of the configured binary allocation scheme.
The binary allocation override is not necessary if BINARY-ALLOCATION=RM. The
binary allocation override would also not be necessary for binary allocation schemes
RM1 and MF-RM if all three 9(2) entries were changed to 9(3) entries.

The fields in ARGUMENT-DESCRIPTION have the following meanings:

• ARGUMENT-TYPE returns a number indicating the type of the argument data item.
The values and meanings for data type numbers returned in this field are shown in
Table 58 (on page 539).

• ARGUMENT-LENGTH returns the number of character positions occupied by the
argument data item.

• ARGUMENT-DIGIT-COUNT returns the number of digits defined in the PICTURE
character-string for an argument that is a numeric or numeric edited data item as
indicated by the ARGUMENT-TYPE field value; otherwise, the value zero is
returned for nonnumeric data items. The digit count for a numeric or numeric edited
data item does not include any positions defined by the PICTURE symbol P, which
represents a scaling position.

• ARGUMENT-SCALE returns the power of 10 scale factor (that is, the position of
the implied or actual decimal point) for an argument that is a numeric or numeric
edited data item as indicated by the ARGUMENT-TYPE field value; otherwise, the
value zero is returned for nonnumeric data items. If the PICTURE symbol P was
used in the description of the data item, the absolute value of the ARGUMENT-
SCALE value will exceed the ARGUMENT-DIGIT-COUNT value; in this case, a
positive scale value indicates an integer with P scaling positions on the right of the
PICTURE character-string and a negative scale value indicates a fraction with P
scaling positions on the left of the PICTURE character-string.

• ARGUMENT-POINTER returns a pointer to the argument data item. This field is
optional within ARGUMENT-DESCRIPTION unless the ARGUMENT-PICTURE
field is also specified. The value of this field is NULL if the ARGUMENT-TYPE
field value indicates an omitted argument.

• ARGUMENT-PICTURE returns a pointer to the encoded PICTURE editing string
for edited argument data items. The value of this field is NULL if the
ARGUMENT-TYPE field value indicates a non-edited data item, including an
omitted argument. This field is optional within ARGUMENT-DESCRIPTION.
The encoded PICTURE editing string is not the same as the original PICTURE
character-string specified in the source and is rarely useful in a COBOL program.
No tools are provided for decoding or using the encoded PICTURE editing string
and its internal format is undocumented and subject to change at any time.

Appendix F: Subprogram Library

 RM/COBOL User's Guide 545

Note The C$PARG subprogram (see page 560) can be used to get the argument-pointer if
that value is all that is needed; for example, when it is known that all the arguments accessed
in this way are nonnumeric string data items.

C$Delay
C$Delay is used to relinquish the CPU for a length of time specified in seconds. Calling
C$Delay will allow other programs to run while the original program waits. The amount of
delay is not exact. It depends upon the particular machine configuration and the load on the
machine.

Calling Sequence

seconds is a PICTURE 9(n)V999 BINARY, where n can be a digit from 1 to 7. It
specifies the length of time, in seconds, to delay. Delays longer than one day are not
normally meaningful and should not be used. Delays can specify a fractional number of
seconds. Thus, calling C$DELAY with a value of 1.5 would attempt to delay for one and
a half seconds. The minimum allowed value is .001 seconds, which is one millisecond
(ms), but trying to delay for only 1 ms may not actually be meaningful on most systems.
Many systems have a clock resolution of 20 ms or more for application programs. Also,
the system may be busy. Consequently, calling C$DELAY with .001 might delay 1 ms,
20 ms, 50 ms, or any number in between or longer, depending on your system and its
current CPU load.

C$Forget
C$Forget marks an area of the runtime system’s in-memory screen image as unknown.
The next COBOL output to the unknown area will not be optimized based on the screen
contents. This allows COBOL output to be displayed correctly over output produced by a
C subprogram in an optional support module. Output from C subprograms is not stored in
the in-memory screen image.

Note This subprogram is supported only on UNIX.

Calling Sequence

upper-left-line and upper-left-position are optional, three-digit, COMP-4 (BINARY) data
items that describe the upper-left corner of the area of the screen to be marked as
unknown. Valid values range from 0 to the limit of the screen line or position.

CALL "C$Delay" USING seconds

 CALL "C$Forget" [USING upper-left-line, upper-left-position,
 lower-right-line, lower-right-position]

Appendix F: Subprogram Library

546 RM/COBOL User's Guide

lower-right-line and lower-right-position are optional, three-digit, COMP-4 (BINARY)
data items that describe the lower-right corner of the area of the screen to be marked as
unknown. Valid values range from 0 to the limit of the screen line or position.

If you call C$Forget with no parameters, the entire screen is marked as unknown. The same
result can be achieved by passing parameters with a value of 0. When a pop-up window is
displayed and then removed over an unknown area, the original screen contents are replaced
with spaces, except for the pop-up window borders and titles, which are not stored in the
in-memory screen image.

C subprograms contained in optional support modules also can use C$Forget by calling
RmForget() with four int parameters specifying the area to be marked as unknown. (See
“Runtime Functions for Support Modules” in Appendix H: Non-COBOL Subprogram
Internals for UNIX of the CodeBridge User's Guide.)

C$GetEnv
C$GetEnv is used to retrieve the value of an environment variable. On UNIX, environment
variable names are case-sensitive. On Windows, environment variable names are not
case-sensitive.

Calling Sequence

name is an alphanumeric data item that contains the name of the environment variable
to retrieve.

value is an alphanumeric data item that contains the value of the environment variable
upon return from the call.

return is a PICTURE 9(n) BINARY, where n can be a digit from 1 to 9. The value
returned is zero for success and non-zero for failure.

C$GetLastFileName
C$GetLastFileName is used to retrieve the last file-name and pathname used in a COBOL
I-O statement (including OPEN and CLOSE).

Calling Sequence

CALL "C$GetEnv" USING name, value [, return]

CALL "C$GetLastFilename" USING filename [, pathname]

Appendix F: Subprogram Library

 RM/COBOL User's Guide 547

filename is an alphanumeric data item that will contain the COBOL file-name specified
in the most recently executed I-O statement. For REWRITE and WRITE statements, the
COBOL file-name associated with the specified file record-name is provided. The
alphanumeric data item should be 30 characters long. If the COBOL file-name is longer
than the length of the data item, it will be truncated on the right.

pathname is an alphanumeric data item that will contain the name of the last used
pathname (complete file-name). The value SPACES indicates that no name is available
(the last file used in an I/O operation was probably closed or no file has been opened).
The alphanumeric data item should be at least 64 characters long. If the complete file
access name is longer than the length of the data item, it will be truncated on the right.

C$GetNativeCharset
C$GetNativeCharset is used to retrieve information about the native character set in effect for
the current run unit. The native character set specifies how nonnumeric data is encoded in
memory and on data files.

The native character set for a run unit on Windows can be either ANSI or OEM. Codepages
on Windows (see page 100) explains how this affects the run unit.

The native character set for a run unit on UNIX is determined by the locale settings for the
system. Since the runtime system does no implied conversions on UNIX, these settings are
not currently needed by an RM/COBOL program. However, the C$GetNativeCharset
subprogram may be called on UNIX with the results as described for its calling sequence as
shown below.

Calling Sequence

charset-name must refer to an alphanumeric data item. The specified data item will
contain the name of the character set in use for the current run unit after the call. For
Windows, the name will have a value of “ANSI” or “OEM”. On UNIX, the value will be
“NONE”.

codepage-number, if specified, must refer to a numeric data item. If specified, the
referenced data item will contain the codepage number of the character set in use for the
current run unit after the call. For Windows, the codepage number will be the system
ANSI codepage number if charset-name contains “ANSI” and will be the system OEM
codepage number if charset-name contains “OEM”. On UNIX, the value will be 0.

C$GetLastFileOp
C$GetLastFileOp is used to retrieve information about the last COBOL I/O operation
performed. The function returns the COBOL operation performed, and the line number
and the intraline number where the operation was done. The intended use of this library
subprogram is within a declarative procedure after an I/O error has occurred.

CALL "C$GetNativeCharset" USING charset-name [, codepage-number]

Appendix F: Subprogram Library

548 RM/COBOL User's Guide

Calling Sequence

operation is an alphanumeric data item that will contain the name of the last COBOL
I/O operation performed (see the list below for possible values). The value SPACES
indicates that no operation is available (the file was probably never opened). The
alphanumeric data item should be 20 characters long. If the operation value is longer
than the length of the data item, it will be truncated on the right.

• “Close” • “ReadRandom”

• “CloseUnit” • “Rewrite”

• “Delete” • “RewriteRandom”

• “DeleteFile” • “Start”

• “DeleteRandom” • “Unlock”

• “Open” • “Write”

• “ReadNext” • “WriteRandom”

• “ReadPrevious”

prog-line is a BINARY data item with the picture PIC 9(6), which will contain the line
number of the most recent COBOL I/O operation. If the program that contains the I/O
operation was compiled with the Q Compile Command Option (see page 158), the value
stored in prog-line is the segment offset of the statement. Use the values from the Debug
heading of the program listing to locate the statement.

prog-intraline is a BINARY data item with the picture PIC 9(2), which will contain the
intraline number of the I/O operation. For more information, see Debug Values (on
page 259) and Line and Intraline Numbers (on page 258). If the program that contains
the I/O operation was compiled with the Q Option, the value stored in prog-intraline
is zero.

Note The PROGRAM-ID special register may be used to obtain the program-name of the
COBOL program that performed the COBOL I/O operation. For more information about the
PROGRAM-ID special register, see Chapter 1: Language Structure of the RM/COBOL
Language Reference Manual.

C$GetRMInfo
C$GetRMInfo is used to retrieve information about the RM/COBOL runtime system.

Calling Sequence

CALL "C$GetLastFileOp" USING operation
 [, prog-line [, prog-intraline]]

CALL "C$GetRMInfo" USING RMInfoGroup

Appendix F: Subprogram Library

 RM/COBOL User's Guide 549

RMInfoGroup is a group data item as defined in the following copy file, RMINFO.CPY.
The RMINFO.CPY copy file is supplied with an RM/COBOL development system.

 *

 * RM/COBOL Information Definitions

 *

 01 RMInformation.

 02 RM-BinaryVersionNumber.

 03 RM-MajorVersion Picture 9(5) Binary(2).

 03 RM-MinorVersion Picture 9(5) Binary(2).

 03 RM-PointVersion Picture 9(5) Binary(2).

 02 RM-VersionNumber Picture X(8).

 02 RM-RegistrationNumber.

 03 RM-ProductCode Picture XX.

 03 RM-Filler Picture X.

 03 RM-ADRNumber Picture 9(4).

 03 RM-Filler Picture X.

 03 RM-SerialNumber Picture 9(5).

 03 RM-Filler Picture X.

 03 RM-UseCount Picture 9(4).

 02 RM-UseCountLimit Picture 9(5) Binary(2).

 02 RM-UseCountInUse Picture 9(5) Binary(2).

 02 RM-MainProgramName Picture X(30).

 02 RM-ApplRegistrationNumber Picture X(16).

 02 RM-BuildPlatform Picture X(80).

 02 RM-InterfaceValue Picture 9 Binary(2).

 88 RM-InterfaceIsTermcap Value 1.

 88 RM-InterfaceIsTerminfo Value 2.

 88 RM-InterfaceIsVMS Value 3.

 88 RM-InterfaceIsDOS Value 4.

 88 RM-InterfaceIsBIOS Value 5.

 88 RM-InterfaceIsRAM Value 6.

 88 RM-InterfaceIsJBIOS Value 7.

 88 RM-InterfaceIsJRAM Value 8.

 88 RM-InterfaceIsGUI Value 9.

 02 RM-TerminalInterface Picture X(10).

 02 RM-ConfigurationValue Picture X.

 88 RM-ConfigurationIsBuiltIn Value 'Y'

 When False 'N'.

 02 RM-WindowMangerValue Picture X.

 88 RM-WindowManagerIsPresent Value 'Y'

 When False 'N'.

 02 RM-EnterpriseCodeBnchValue Picture X.

 88 RM-EnterpriseCodeBnchIsPresent Value 'Y'

 When False 'N'.

 02 RM-VGIBValue Picture X.

 88 RM-VGIBIsPresent Value 'Y'

 When False 'N'.

 02 RM-INFOXValue Picture X.

 88 RM-INFOXIsPresent Value 'Y'

 When False 'N'.

 02 RM-plusDBValue Picture X.

 88 RM-plusDBIsPresent Value 'Y'

 When False 'N'.

Appendix F: Subprogram Library

550 RM/COBOL User's Guide

 02 RM-MCBAValue Picture X.

 88 RM-MCBAIsPresent Value 'Y'

 When False 'N'.

 02 RM-FlexGenValue Picture X.

 88 RM-FlexGenIsPresent Value 'Y'

 When False 'N'.

 02 RM-RPCValue Picture X.

 88 RM-RPCIsPresent Value 'Y'

 When False 'N'.

 02 RM-CGIXValue Picture X.

 88 RM-CGIXIsPresent Value 'Y'

 When False 'N'.

 02 RM-OFMValue Picture X.

 88 RM-OFMIsPresent Value 'Y'

 When False 'N'.

 02 RM-BISValue Picture X.

 88 RM-BISIsPresent Value 'Y'

 When False 'N'.

 02 RM-ThinClientValue Picture X.

 88 RM-ThinClientIsPresent Value 'Y'

 When False 'N'.

 02 RM-Bitness Picture 999 Binary(1).

 88 RM-COBOL-32-BIT Value 32.

 88 RM-COBOL-64-BIT Value 64.

 02 RM-Reserved Picture X(18).

 02 RM-LicenseProduct Picture X(80).

 02 RM-LicenseIssuedBy Picture X(80).

 02 RM-LicenseIssuedTo Picture X(80).

 02 RM-LicenseType Picture X(20).

 02 RM-LicenseValidThru Picture X(20).

C$GetSyn
C$GetSyn is used to retrieve a value of an RM/COBOL synonym from the UNIX resource
file (see page 25) or from the Windows registry (see page 67).

Calling Sequence

name is an alphanumeric data item that contains the name of the synonym to retrieve.

value is an alphanumeric data item that contains the value of the synonym upon return
from the call.

program is an alphanumeric data item that indicates the name of the program whose
synonym properties are being retrieved. A value of SPACES indicates the “Default
Properties” in the Windows registry or the [Default Synonyms] section in the UNIX
resource file.

CALL "C$GetSyn" USING name, value, program

Appendix F: Subprogram Library

 RM/COBOL User's Guide 551

C$GetSysInfo
C$GetSysInfo is used to retrieve information about the operating system on which the
RM/COBOL runtime system is running. On UNIX, this information is retrieved directly from
the operating system. On Windows, information that is not available from the operating
system is instead retrieved from the environment.

Calling Sequence

SystemInfoGroup is a group data item as defined in the following copy file,
SYSINFO.CPY. The SYSINFO.CPY is supplied with an RM/COBOL
development system.

SYSINFO.CPY contains the following definitions.

 *

 * System Information Definitions

 *

 01 SystemInformation.

 02 Sys-Name Picture X(20).

 02 Sys-Version.

 03 Sys-MajorVersion Picture 9(5) Binary(2).

 03 Sys-MinorVersion Picture 9(5) Binary(2).

 02 Sys-NodeName Picture X(20).

 02 Sys-Machine Picture X(20).

 02 Sys-UserName Picture X(20).

 02 Sys-UserID Picture 9(10) Binary(4).

 02 Sys-GroupName Picture X(20).

 02 Sys-GroupID Picture 9(10) Binary(4).

 02 Sys-StationName Picture X(20).

 02 Sys-ProcessID Picture 9(10) Binary(4).

 02 Sys-IsMultiUserValue Picture X.

 88 Sys-IsMultiUser Value 'Y' When False 'N'.

 02 Sys-Reserved Picture X(23).

Value Meaning

Sys-Name Contains the name of the operating system. On Windows, it may
be “Windows 2000”, “Windows XP”, “Windows Server 2003”,
“Windows Vista”, “Windows Server 2008”, or “Windows
Unknown”. On UNIX, it is the name of the operating system.

Sys-Version Contains the major and minor version number of the operating
system.

Sys-NodeName Contains the NETBIOS computer name established at system
startup.

Sys-Machine Contains the identity of the processor.

CALL "C$GetSysInfo" USING SystemInfoGroup

Appendix F: Subprogram Library

552 RM/COBOL User's Guide

Sys-UserName Contains the name of the user. This is obtained by querying the
following three sources, in the following order:
1. The name of the currently logged-in user.
2. The NAME environment variable.
3. The USER environment variable.
If none of the above is set, the field is set to “USER”.

Sys-UserID Contains the numeric ID assigned to this user. On Windows, this
item is set to the numeric contents of the USERID environment
variable, or 0 if this variable is not set or is nonnumeric.

Sys-GroupName Contains the name of the group to which the user belongs. On
Windows, this item is set to the contents of the GROUP
environment variable, or “GROUP” if this variable is not set.

Sys-GroupID Contains the numeric ID assigned to the group to which this user
belongs. On Windows, this item is set to the numeric contents of
the GROUPID environment variable, or 0 if this variable is not
set or is nonnumeric.

Sys-StationName Contains the name of the terminal. On Windows, this item is set
to the contents of the STATION environment variable, or “CON”
if not set. On UNIX, this item is set to the name of the current
tty.

Sys-ProcessID Contains the numeric ID of the current process.

Sys-IsMultiUserValue Indicates if this runtime is running in single- or in multi-user
mode. This will normally be multi-user mode unless the FORCE-
USER-MODE configuration option has been specified.

Sys-Reserved Reserved for future expansion.

C$GUICFG
C$GUICFG is used to dynamically manipulate certain graphical user interface (GUI) settings.
The settings changes are temporary until the next access of the Windows registry file. The
registry entries remain unchanged. To use this subprogram, the runtime system must be able
to locate the c$guicfg.dll file.

Note This subprogram is supported only on Windows.

Calling Sequence

settingstr is an alphanumeric data item that contains the settings modification
information. The settings are in the form of item=value where item is one of the
properties listed below. The descriptions of the items and values are described in Setting
Control Properties (on page 72).

• Auto Paste • Printer Dialog Never

CALL "C$GUICFG" USING settingstr [, settingstr
 ...], exit-code

Appendix F: Subprogram Library

 RM/COBOL User's Guide 553

• Auto Scale • Remove Trailing Blanks

• Enable Close • Screen Read Line Draw

• Enable Properties Dialog • Sizing Priority

• Full OEM To ANSI Conversions • Status Bar

• Icon File • SYSTEM Window Type

• Mark Alphanumeric • Toolbar

• Paste Termination • Toolbar Prompt

• Persistent • Update Timeout

• Printer Dialog Always

In settingstr, the item identifiers from the above list may include or exclude the spaces
between words and case is not significant. If the value is misspelled, ignoring case, a
default value is used. For example, for True/False values, anything other than True is
considered to be False.

exit-code must refer to a data item described as PICTURE 9(n) BINARY, where n can be
a digit from 1 to 9 such that a two- or four-byte binary data item is referenced. The value
returned in exit-code is zero for success and non-zero for failure.

C$LogicalAnd
C$LogicalAnd is used to perform a bitwise logical AND operation on two or more
nonnumeric or numeric operands.

Calling Sequence

Result, if specified, must be an identifier that references a numeric data item.

Operand1 may reference a nonnumeric or numeric data item. If nonnumeric, all the
USING operands must reference nonnumeric data items. If numeric, all the USING
operands must reference numeric data items.

Operand2 must be nonnumeric if Operand1 is nonnumeric and numeric otherwise. This
is true for all iterations of Operand2, if any. If any nonnumeric Operand2 is shorter than
Operand1, it is assumed to be padded on the right with binary zeroes.

For nonnumeric USING operands, the bitwise logical AND of all the operands replaces the
value of Operand1. The value of Result is set to a nonzero value if any character of
Operand1 is nonzero after the operation completes and zero otherwise.

For numeric USING operands, each operand is converted, if necessary, to a 32-bit binary
integer. These 32-bit binary values are logically ANDed together. If the GIVING phrase
is specified, the result of this operation is stored in Result and the value of Operand1 is

CALL "C$LogicalAnd"
 [GIVING Result]
 USING Operand1 {Operand2} ...

Appendix F: Subprogram Library

554 RM/COBOL User's Guide

not modified. If the GIVING phrase is not specified, the result of this operation is stored
in Operand1.

C$LogicalComplement
C$LogicalComplement is used to perform a bitwise logical one’s complement operation on a
nonnumeric or numeric operand.

Calling Sequence

Result, if specified, must be an identifier that references a numeric data item.

Operand may reference a nonnumeric or numeric data item.

If Operand refers to a nonnumeric data item, the bitwise logical one’s complement of
the value of Operand replaces the value of Operand. The value of Result is set to a
nonzero value if any character of Operand is nonzero after the operation completes and
zero otherwise.

If Operand refers to a numeric data item, the operand is converted, if necessary, to a 32-bit
binary integer. The 32-bit binary value is logically one’s complemented. If the GIVING
phrase is specified, the result of this operation is stored in Result and the value of Operand
is not modified. If the GIVING phrase is not specified, the result of this operation is stored
in Operand.

C$LogicalOr
C$LogicalOr is used to perform a bitwise logical inclusive OR operation on two or more
nonnumeric or numeric operands.

Calling Sequence

Result, if specified, must be an identifier that references a numeric data item.

Operand1 may reference a nonnumeric or numeric data item. If nonnumeric, all the
USING operands must reference nonnumeric data items. If numeric, all the USING
operands must reference numeric data items.

CALL "C$LogicalComplement"
 [GIVING Result]
 USING Operand

CALL "C$LogicalOr"
 [GIVING Result]
 USING Operand1 {Operand2} ...

Appendix F: Subprogram Library

 RM/COBOL User's Guide 555

Operand2 must be nonnumeric if Operand1 is nonnumeric and numeric otherwise. This
is true for all iterations of Operand2, if any. If any nonnumeric Operand2 is shorter than
Operand1, it is assumed to be padded on the right with binary zeroes.

For nonnumeric USING operands, the bitwise logical inclusive OR of all the operands
replaces the value of Operand1. The value of Result is set to a nonzero value if any character
of Operand1 is nonzero after the operation completes and zero otherwise.

For numeric USING operands, each operand is converted, if necessary, to a 32-bit binary
integer. These 32-bit binary values are logically inclusive ORed together. If the GIVING
phrase is specified, the result of this operation is stored in Result and the value of Operand1
is not modified. If the GIVING phrase is not specified, the result of this operation is stored
in Operand1.

C$LogicalShiftLeft
C$LogicalShiftLeft is used to perform a logical shift left operation on a nonnumeric or
numeric operand.

Calling Sequence

Result, if specified, must be an identifier that references a numeric data item.

Operand may reference a nonnumeric or numeric data item.

ShiftCount, if specified, must be an identifier that references a numeric data item. If
ShiftCount is not specified, a shift count of 1 is assumed.

If Operand refers to a nonnumeric data item, the value of the data item is shifted left by the
number of bit positions specified by ShiftCount. Any bits shifted off the left end are lost and
zero-valued bits are shifted into the right end. The value of Result is set to a nonzero value if
any character of Operand is nonzero after the operation completes and zero otherwise.

If Operand refers to a numeric data item, the operand is converted, if necessary, to a 32-bit
binary integer. The 32-bit binary value is logically shifted left by the number of bit positions
specified by ShiftCount. If the GIVING phrase is specified, the result of this operation is
stored in Result and the value of Operand is not modified. If the GIVING phrase is not
specified, the result of this operation is stored in Operand.

C$LogicalShiftRight
C$LogicalShiftRight is used to perform a logical shift right operation on a nonnumeric or
numeric operand.

CALL "C$LogicalShiftLeft"
 [GIVING Result]
 USING Operand [ShiftCount]

Appendix F: Subprogram Library

556 RM/COBOL User's Guide

Calling Sequence

Result, if specified, must be an identifier that references a numeric data item.

Operand may reference a nonnumeric or numeric data item.

ShiftCount, if specified, must be an identifier that references a numeric data item. If
ShiftCount is not specified, a shift count of 1 is assumed.

If Operand refers to a nonnumeric data item, the value of the data item is shifted right by the
number of bit positions specified by ShiftCount. Any bits shifted off the right end are lost and
zero-valued bits are shifted into the left end. The value of Result is set to a nonzero value if
any character of Operand is nonzero after the operation completes and zero otherwise.

If Operand refers to a numeric data item, the operand is converted, if necessary, to a 32-bit
binary integer. The 32-bit binary value is logically shifted right by the number of bit positions
specified by ShiftCount. If the GIVING phrase is specified, the result of this operation is
stored in Result and the value of Operand is not modified. If the GIVING phrase is not
specified, the result of this operation is stored in Operand.

C$LogicalXor
C$LogicalXor is used to perform a bitwise logical exclusive OR operation on two or more
nonnumeric or numeric operands.

Calling Sequence

Result, if specified, must be an identifier that references a numeric data item.

Operand1 may reference a nonnumeric or numeric data item. If nonnumeric, all the
USING operands must reference nonnumeric data items. If numeric, all the USING
operands must reference numeric data items.

Operand2 must be nonnumeric if Operand1 is nonnumeric and numeric otherwise. This
is true for all iterations of Operand2, if any. If any nonnumeric Operand2 is shorter than
Operand1, it is assumed to be padded on the right with binary zeroes.

For nonnumeric USING operands, the bitwise logical exclusive OR of all the operands
replaces the value of Operand1. The value of Result is set to a nonzero value if any character
of Operand1 is nonzero after the operation completes and zero otherwise.

For numeric USING operands, each operand is converted, if necessary, to a 32-bit binary
integer. These 32-bit binary values are logically exclusive ORed together. If the GIVING

CALL "C$LogicalShiftRight"
 [GIVING Result]
 USING Operand [ShiftCount]

CALL "C$LogicalXor"
 [GIVING Result]
 USING Operand1 {Operand2} ...

Appendix F: Subprogram Library

 RM/COBOL User's Guide 557

phrase is specified, the result of this operation is stored in Result and the value of Operand1 is
not modified. If the GIVING phrase is not specified, the result of this operation is stored
in Operand1.

C$MBar
C$MBar is used to display a menu bar in the RM/COBOL window.

To use this subprogram, the runtime system must be able to locate the rmbars.dll file. The
following example illustrates how to add this DLL to the Runtime Command line with the
L Option:

runcobol program-name L=RMBARS.DLL

Other Runtime Command Options can be used. See Chapter 7: Running (on page 189).

Note This subprogram is supported only on Windows.

Calling Sequence

menustring is an alphanumeric data item that contains the menu text, as described in
Setting Menu Bar Properties (on page 93).

exit-code is a PICTURE 9(n) BINARY, where n can be a digit from 1 to 9. The
exit-code parameter must be two- or four-byte binary and the value returned is zero for
success and non-zero for failure.

Note Calling C$MBar with no arguments turns off the menu bar.

C$MemoryAllocate
C$MemoryAllocate is used to allocate dynamic memory.

Calling Sequence

memory-pointer must be a pointer data item (USAGE POINTER) that will contain the
address of the allocated memory area upon successful completion of the call. A null
pointer value is returned if the call is not successful.

memory-size must be a numeric data item that specifies the size of the area to allocate in
bytes. The maximum value for memory-size is approximately 2,147,483,611, depending

 CALL "C$MBar" [USING menustring [, menustring
 ...], exit-code]

 CALL "C$MemoryAllocate" USING memory-pointer,
 memory-size

Appendix F: Subprogram Library

558 RM/COBOL User's Guide

on the size of overhead structures. If the maximum value is exceeded, the allocation
request will be unsuccessful and a null pointer will be returned. A null pointer will likely
be returned for much smaller values since the operating system will be unable to satisfy
the request. If the COBOL data item used to specify memory-size supports 10 or more
decimal digits, a large value in memory-size may be truncated upon conversion internal to
C$MemoryAllocate. In this case, an area may be allocated that is smaller than the
requested size or the run unit terminated with an error in C$MemoryAllocate.

If the memory allocation is successful, the allocated memory is initialized to spaces.

The allocated memory belongs to the run unit and may be accessed by any program in the run
unit that has access to the pointer data item memory-pointer or a copy of that pointer data
item. Upon termination of the run unit, all dynamically allocated memory will be freed.

The pointer returned by C$MemoryAllocate may be used to set the base address of a based
linkage item in a Format 5 SET statement. The memory area may then be accessed by
references to the based linkage item or data items subordinate to the based linkage item.
References to based linkage items are slower than references to Working-Storage items, so if
the program makes frequent references to the based linkage item (for example, in a
PERFORM loop), it is a good idea to move the based linkage item to a Working-Storage item.

C$MemoryDeallocate
C$MemoryDeallocate is used to deallocate (free) dynamic memory allocated by a previous
call to C$MemoryAllocate.

Calling Sequence

memory-pointer must be a pointer data item (USAGE POINTER) that points to a
memory area previously allocated by a call to C$MemoryAllocate. If the pointer does
not point to such a memory area, the call does nothing. If the pointer does point to such a
memory area and the memory is successfully freed, then the value of memory-pointer is
set to a null pointer value.

After memory has been deallocated, the program should not make any references to based
linkage items whose base address was set to the area of memory that was deallocated until
those based linkage items are reassigned to a new valid base address in a Format 5 SET
statement. If the program does reference the deallocated memory, an error may occur or
undefined data may be accessed, either from the original memory area while it is still on the
free memory list or after the memory has been reallocated for a different use. It is the
programmer’s responsibility to manage pointer data items and the setting of based linkage
base addresses to avoid such conditions.

It is not necessary to call C$MemoryDeallocate. The runtime will free any dynamically
allocated memory upon termination of the run unit.

 CALL "C$MemoryDeallocate" USING memory-pointer

Appendix F: Subprogram Library

 RM/COBOL User's Guide 559

C$NARG
C$NARG returns the number of parameters passed in the CALL statement USING list to the
subprogram that contains the call to C$NARG. The GIVING argument is not included in the
count. Arguments specified explicitly as OMITTED in the USING list of the CALL
statement are included in the count. An RM/COBOL subprogram may be called with a
variable number of actual parameters if it does not attempt, during its execution, to reference
formal parameters for which no actual parameters exist.

Calling Sequence

parameter-count is a BINARY, COMPUTATIONAL-4 or COMPUTATIONAL-1 data
item with the PICTURE 9(3) into which is stored the number of parameters in the
USING list on the CALL statement that called the subprogram that called C$NARG.

Note The restriction on a reference to a formal argument for which no corresponding actual
argument exists does not apply to a reference in an ADDRESS OF identifier-1 special
register. Thus, the calling program’s omission of the GIVING argument or omission of an
embedded USING argument (by use of the OMITTED keyword) can be detected by using
IF ADDRESS OF identifier-1 IS EQUAL TO NULL, where identifier-1 refers to the
appropriate formal argument. The restriction also does not apply to Linkage Section 01 or 77
data items specified in the USING or GIVING phrase of a CALL statement.

C$OSLockInfo
C$OSLockInfo returns the process ID of the process that has the record locked when a lock
request fails. This subprogram should be called immediately after a lock request has failed.

Note This subprogram is available only on UNIX.

Calling Sequence

processid is a four-byte, unsigned COMP-4 numeric item. The data item should be
described as PIC 9(10) BINARY(4) to guarantee that a 32-bit value can be represented. If
the process ID of the process holding the lock cannot be represented by the COBOL data
item specified by the processid argument, RM/COBOL will return a value of zero.

Note Earlier versions of RM/COBOL would truncate the value to fit the specified data
item. Beginning with version 12.12, the value zero is stored instead of truncating the
value when it doesn’t fit.

CALL "C$NARG" USING parameter-count

CALL "C$OSLockinfo" USING processid

Appendix F: Subprogram Library

560 RM/COBOL User's Guide

C$PARG
C$PARG returns a pointer to an actual parameter passed in the USING or GIVING phrases in
the CALL statement that called a subprogram.

Calling Sequence

argument-number is the one-relative ordinal position of the actual argument in the
USING phrase of the CALL statement used to call the subprogram that calls C$PARG.
The value zero obtains a pointer to the actual argument in the GIVING phrase of that
CALL statement. If the value specified is less than zero or greater than the number of
actual arguments passed, a null pointer will be returned. The actual number of arguments
passed can be obtained with the C$NARG subprogram (see page 559). The actual
number of arguments may exceed the number of formal arguments declared in the
Procedure Division header of the program that calls C$PARG. All of the actual
arguments can be accessed using C$PARG even though there is no formal argument
name available for accessing the actual arguments beyond the number of formal
arguments.

argument-pointer must be a pointer data item (USAGE POINTER) that will contain the
address of the actual argument upon successful completion of the call. A null pointer
value is returned if the call is not successful. If there is a corresponding formal argument
and that argument’s base address has been changed with format 5 or 6 of the SET
statement, then the modified address is returned.

Note The C$DARG subprogram (see page 543) can be used to get the description of the
argument as well as the argument-pointer in a single call.

C$PlaySound
C$PlaySound is used to play Windows predefined sound events or sound files; that is, files
with the .wav extension.

Note This subprogram is supported only on Windows.

Calling Sequence

sound is an alphanumeric data item that contains the name of a Windows sound event or
.wav sound file to play.

CALL "C$PARG" USING argument-number,
 argument-pointer

CALL "C$PlaySound" USING sound [, flags]

Appendix F: Subprogram Library

 RM/COBOL User's Guide 561

flags is a numeric data item that contains flags to use when playing the sound.
The possible values are provided below and in the 78-level entries in the copy file
WINDEFS.CPY (on page 519), and may be combined by adding them together. If the
flags parameter is omitted, the flag SoundSync is assumed.

Value Meaning

SoundSync Synchronous playback of a sound event.

SoundAsync Sound is played asynchronously.

SoundNoDefault No default sound event is used.

SoundNoStop The specified sound event will yield to another sound event that
is already playing.

SoundPurge Sounds are to be stopped for the calling task.

SoundApplication The sound is played using an application-specific association.

SoundNoWait If the driver is busy, return immediately without playing the
sound.

SoundAlias sound is a system-event alias in the Windows registry file or the
win.ini file.

SoundFilename sound is a filename.

SoundAliasId sound is a predefined sound identifier.

Example

The following code fragment plays chimes.wav:

CALL "C$PlaySound" USING "Chimes.wav".

C$RBMenu
C$RBMenu is used to display a pop-up menu in the RM/COBOL window when the right
mouse button is pressed.

To use this subprogram, the runtime system must be able to locate the rmbars.dll file. The
following example illustrates how to add this DLL to the Runtime Command line with the
L Option:

runcobol program-name L=RMBARS.DLL

Other Runtime Command Options can be used. See Chapter 7: Running (on page 189).

Note This subprogram is supported only on Windows.

Calling Sequence

 CALL "C$RBMenu" [USING menustring [, menustring
 ...], exit-code]

Appendix F: Subprogram Library

562 RM/COBOL User's Guide

menustring is an alphanumeric data item that contains the menu text, as described in
Setting Pop-up Menu Properties (on page 95).

exit-code is a PICTURE 9(n) BINARY, where n can be a digit from 1 to 9. The
exit-code parameter must be two- or four-byte binary and the value returned is zero for
success and non-zero for failure.

Note Calling C$RBMenu with no arguments turns off the pop-up menu.

C$RERR
C$RERR returns the expanded I-O completion status, as shown in Input/Output Errors (on
page 393). It returns either a four-character or an eleven-character extended status code,
depending upon the length of the data item specified in the USING phrase. This status is for
the last attempted I/O operation. When the COBOL I-O status for the last operation is
represented differently under ANSI COBOL 1985 and 1974, the value returned conforms to
ANSI COBOL 1974 when the calling program is compiled in 1974 mode (that is, when the 7
Compile Command Option on page 160 is specified). The value returned conforms to ANSI
COBOL 1985 when the calling program is compiled in 1985 mode.

Calling Sequence

extended-status is either a four-character or an eleven-character alphanumeric data item
into which the expanded I/O completion status is stored in ASCII characters.

If extended-status is four characters in length, the first two character positions contain the
same digits as would the file status data item on completion of the I/O operation. The last two
character positions provide additional information about the file status. In cases where
Appendix A: Error Messages shows only two digits for a status, the last two character
positions will contain ASCII zeroes. Although most statuses contain only the decimal digits
0 through 9, note that the hexadecimal digits A through F are possible in some character
positions (for example, 39,3A through 39,3F on page 401, as shown).

If extended-status is eleven characters in length, the first two character positions (positions
one and two) contain the same digits as would the file status data item on completion of the
I/O operation. In cases where Appendix A shows only two digits for a status, the remaining
nine character positions contain ASCII blanks. In cases where Appendix A shows four digits
for a status, character position three contains an ASCII comma, character positions four and
five contain the last two digits of the status, and the remaining six character positions contain
ASCII blanks. For permanent errors, that is, when the first two digits are 30 as shown in
Input/Output Errors (on page 393) and in the discussion of the 30, OS error code (on
page 398), character position three contains an ASCII comma, character positions four and
five contain a two-digit OS code (see Table 59), character position six contains an ASCII
comma, and character positions seven through eleven contain a five-digit, OS-specific error
code. Although most statuses contain only the decimal digits 0 through 9, note that the
hexadecimal digits A through F are possible in some character positions (for example, 39,3A
through 39,3F on page 401, as shown).

CALL "C$RERR" USING extended-status

Appendix F: Subprogram Library

 RM/COBOL User's Guide 563

Table 59: Two-Digit OS Codes

Code Description

00 Unknown OS error.

01 File Manager Detected error.

02 MS-DOS error.

03 OS/2 error.

04 UNIX error.

05 RM/COS error.

06 Btrieve error.

07 Informix error.

08 Oracle error.

09 AmigaDos error.

10 Open File Manager error.

11 C Library error.

12 MS-Windows error.

13 NetWare error.

14 VMS error.

15 RM/InfoExpress Server error.

16 RM/InfoExpress Client error.

17 RM/InfoExpress TLI error.

18 RM/InfoExpress TLISYS error.

19 RM/InfoExpress NetBIOS error.

20 RM/InfoExpress SPX error.

21 RM/InfoExpress WinSock error.

Examples

The following examples illustrate the difference between four-character and eleven-character
expanded I-O completion status codes.

Four-character Eleven-character Meaning

0000 00 Successful.

1000 10 At end.

0405 04,05 Record read shorter than minimum.

395A 39,5A Key length mismatch (alt. key #10).

3010 30,06,01002 Btrieve error 1002 (memory).

3010 30,21,10054 Windows Sockets error 10054 (reset).

Appendix F: Subprogram Library

564 RM/COBOL User's Guide

C$SBar
C$SBar is used to display a status bar in the RM/COBOL window.

To use this subprogram, the runtime system must be able to locate the rmbars.dll file. The
following example illustrates how to add this DLL to the Runtime Command line with the
L Option:

runcobol program-name L=RMBARS.DLL

Other Runtime Command Options can be used. See Chapter 7: Running (on page 189).

Note This subprogram is supported only on Windows.

Calling Sequence

status-text is an alphanumeric data item that contains the text to be displayed on the status
line. For more information, see Status Bar Text property (on page 83).

exit-code is a PICTURE 9(n) BINARY, where n can be a digit from 1 to 9. The
exit-code parameter must be two- or four-byte binary and the value returned is zero for
success and non-zero for failure.

Note Calling C$SBar with no arguments turns off the status bar.

C$SCRD
C$SCRD allows the contents of the screen to be read into an alphanumeric data item.

Calling Sequence

screen-buffer is an alphanumeric data item that will receive the characters read from the
terminal display screen.

buffer-size is an optional COMP-1 data item that specifies the number of characters to be
read. If the value is 0 or the parameter is omitted, the actual size of screen-buffer is used.

screen-line is a COMP-1 data item that specifies the line where the cursor is to be placed
prior to the screen read. If omitted, a value of 1 is used. If a pop-up window is active,
screen-line is window-relative, not screen-relative.

CALL "C$SBar" [USING status-text, exit-code]

CALL "C$SCRD" USING screen-buffer [, buffer-size [,
 screen-line [, screen-position]]]

Appendix F: Subprogram Library

 RM/COBOL User's Guide 565

screen-position is a COMP-1 data item that specifies the position where the cursor is to
be placed prior to the screen read. If omitted, a value of 1 is used. If a pop-up window is
active, screen-position is window-relative, not screen-relative.

Note The three optional arguments, buffer-size, screen-line, and screen-position, may be
explicitly omitted by specifying the keyword OMITTED in the corresponding position in
the USING list.

The cursor position after the call obeys the rules for the ACCEPT and DISPLAY statements.
No errors are returned.

If this function is requested to read characters past the end of the screen or window, as many
actual characters as possible are returned. The remainder of the buffer is set to spaces.

It is not possible to retrieve attribute information from the display. Only the actual character
values are returned.

If line draw graphic characters have been written to the display using the GRAPHICS
keyword of the CONTROL phrase of the ACCEPT and DISPLAY statements, and this call is
used to read such characters, the characters returned are plus, hyphen, and vertical bar unless,
on Windows, the Screen Read Line Draw property is set to True, in which case the characters
returned are DOS line draw characters (for example, $D9, “”, for lower-right corner). For
more information, see the description of the GRAPHICS keyword (on page 211) of the
CONTROL phrase and the line draw characters in Table 26: System-Specific Line Draw
Characters (on page 211).

C$SCWR
C$SCWR allows a COBOL program to display quickly a large amount of information
containing multiple display attributes.

Calling Sequence

display-description is a required, 8- to 14-character group data item into which the
location and size of the display are stored. The COBOL description is as follows:

 01 DISPLAY-DESCRIPTION USAGE BINARY (2).
 03 DISPLAY-VERSION PIC 9(4) VALUE 0.
 03 DISPLAY-UNIT PIC 9(4) VALUE 0.
 03 DISPLAY-LINE PIC 9(4).
 03 DISPLAY-POSITION PIC 9(4).
 03 DISPLAY-LENGTH PIC 9(4).
 03 DISPLAY-EXCEPTION-CODE PIC 9(4).
 03 DISPLAY-EXCEPTION-VALUE PIC 9(4).

Note display-description will have the correct length only if four-digit binary data items
are allocated with two bytes of storage. The example shown specifies a binary allocation
override to guarantee the right allocation regardless of the configured binary allocation

CALL "C$SCWR" USING display-description, text-characters
 [, attribute-codes, palette-table]

Appendix F: Subprogram Library

566 RM/COBOL User's Guide

scheme. The binary allocation override is not necessary if BINARY-
ALLOCATION=RM, RM1, or MF-RM.

The fields in DISPLAY-DESCRIPTION have the following meanings:

• DISPLAY-VERSION (required, input) is reserved for future use and must be set to a
value of 0.

• DISPLAY-UNIT (required, input) is the unit number of the terminal to which the
display is directed. On UNIX, specifying a value of 0 causes output to be written to
the terminal from which the runtime system was started. On Windows, this value
must be set to 0.

• DISPLAY-LINE (required, input) is the one-relative line number in the current
window where the text is to be displayed. If set to a value of 0, the display begins on
the current line (as described in the “Determining Line and Position” section of the
DISPLAY statement in Chapter 6: Procedure Division Statements of the
RM/COBOL Language Reference Manual).

• DISPLAY-POSITION (required, input) is the one-relative column number in the
current window where the text is to be displayed. If set to a value of 0, the display
begins at the current column (as described in the “Determining Line and Position” of
the DISPLAY statement in Chapter 6: Procedure Division Statements of the
RM/COBOL Language Reference Manual).

• DISPLAY-LENGTH (optional, input) is the number of characters of text to display.
If set to a value of 0 or omitted, the actual length of text-characters is used (see
text-characters below).

• DISPLAY-EXCEPTION-CODE (optional, output) is set to a value of 0 if this
function succeeds. Otherwise, one of the exception codes (see page 569) is returned.
Notice that some exception codes are merely warnings.

• DISPLAY-EXCEPTION-VALUE (optional, output) is set to a value of 0 if this
function succeeds. Otherwise, it contains a value that provides more details on the
exception that occurred. For more information, see Exception Codes (on page 569).

text-characters is a required alphanumeric data item that contains the characters to be
displayed. The number of characters to be displayed is controlled by DISPLAY-
LENGTH. If DISPLAY-LENGTH is set to a value of 0, all of text-characters is
displayed. If DISPLAY-LENGTH is less than the length of text-characters, the first
DISPLAY-LENGTH characters are displayed. Otherwise, text-characters is displayed
padded with spaces to DISPLAY-LENGTH characters.

attribute-codes is an optional alphanumeric data item that contains the attribute codes
used to display text-characters. Each attribute code occupies a single character and
controls the character at the same relative position in text-characters. The value of each
attribute code is a one-relative indicator of an entry in palette-table (described below).
An attribute code of X‘00’ causes the preceding code in attribute-codes to be used again.
If there is no preceding code, the colors currently in effect (set by the preceding
ACCEPT, DISPLAY, or C$SCWR) are used with all PALETTE-ATTRIBUTE-
VALUES set to off.

If attribute-codes is omitted, or the length of attribute-codes is less than the actual
DISPLAY-LENGTH (as described previously), attribute-codes is internally padded with
X‘00’. If attribute-codes is longer than the actual DISPLAY-LENGTH, the excess
attribute codes are ignored.

If attribute-codes is specified, palette-table must also be specified.

Appendix F: Subprogram Library

 RM/COBOL User's Guide 567

palette-table is an optional group data item that is used to interpret attribute-codes. The
table consists of 1 to 255 entries. Each palette-table entry describes a combination of
colors and attributes.

Here are two possible COBOL descriptions for palette-table:

 01 PALETTE-TABLE-1.
 03 PALETTE-TABLE-ENTRIES.
 05 PALETTE-TABLE-ENTRY-1.
 07 FOREGROUND-COLOR-1 PIC X.
 07 BACKGROUND-COLOR-1 PIC X.
 07 ATTRIBUTE-VALUE-1 PIC 9(4) BINARY(2).
 07 FILL-CHARACTER-1 PIC X.
 05 PALETTE-TABLE-ENTRY-2.
 07 FOREGROUND-COLOR-2 PIC X.
 07 BACKGROUND-COLOR-2 PIC X.
 07 ATTRIBUTE-VALUE-2 PIC 9(4) BINARY(2).
 07 FILL-CHARACTER-2 PIC X.
 .
 .
 .
 05 PALETTE-TABLE-ENTRY-255.
 07 FOREGROUND-COLOR-255 PIC X.
 07 BACKGROUND-COLOR-255 PIC X.
 07 ATTRIBUTE-VALUE-255 PIC 9(4) BINARY(2).
 07 FILL-CHARACTER-255 PIC X.

 01 PALETTE-TABLE-2.
 03 PALETTE-TABLE-ENTRIES.
 05 PALETTE-TABLE-ENTRY OCCURS 255 TIMES.
 07 FOREGROUND-COLOR-VALUE PIC X.
 07 BACKGROUND-COLOR-VALUE PIC X.
 07 ATTRIBUTE-VALUE PIC 9(4) BINARY(2).
 07 FILL-CHARACTER PIC X.

In the following description of color values, FOREGROUND-COLOR-VALUE contains
a value from PALETTE-COLOR-VALUES that indicates the text color;
BACKGROUND-COLOR-VALUE contains a value from PALETTE-COLOR-VALUES
that indicates the background color. Both FOREGROUND-COLOR-VALUE and
BACKGROUND-COLOR-VALUE are ignored with a warning unless a color monitor is
being used or the USE-COLOR keyword (see page 356) of the TERM-ATTR
configuration record is set to YES.

The permitted color values are listed below. Using a value not included in this list results
in undefined behavior.

 01 PALETTE-COLOR-VALUES USAGE DISPLAY.
 03 PALETTE-UNSPECIFIED-1 PIC X VALUE SPACE.
 03 PALETTE-UNSPECIFIED-2 PIC X VALUE X"00".
 03 PALETTE-BLACK PIC X VALUE "0".
 03 PALETTE-RED PIC X VALUE "1".
 03 PALETTE-GREEN PIC X VALUE "2".
 03 PALETTE-YELLOW PIC X VALUE "3".
 03 PALETTE-BLUE PIC X VALUE "4".
 03 PALETTE-MAGENTA PIC X VALUE "5".
 03 PALETTE-CYAN PIC X VALUE "6".
 03 PALETTE-WHITE PIC X VALUE "7".

PALETTE-UNSPECIFIED-1 or PALETTE-UNSPECIFIED-2 cause the last color
output to be used.

Appendix F: Subprogram Library

568 RM/COBOL User's Guide

ATTRIBUTE-VALUE contains a value that specifies what attributes are to be applied.
The value is produced by summing together the desired values from PALETTE-
ATTRIBUTE-VALUES, listed below. Values omitted from the following table are
reserved and must not be set.

 01 PALETTE-ATTRIBUTE-VALUES USAGE BINARY(2).
 03 INTENSITY-HIGH PIC 9(4) VALUE 1.
 03 BLINK-ON PIC 9(4) VALUE 2.
 03 REVERSE-ON PIC 9(4) VALUE 4.
 03 UNDERLINE-ON PIC 9(4) VALUE 8.
 03 GRAPHICS-ON PIC 9(4) VALUE 16.
 03 FILL-CHARACTER-ON PIC 9(4) VALUE 32.

With the exception of FILL-CHARACTER-ON, the meaning of each attribute is the
same as if the attribute were specified in the CONTROL phrase of a DISPLAY
statement. To combine multiple attributes, sum the values together. The FILL-
CHARACTER-ON attribute specifies a character to be used instead of the character
specified in the text-characters.

FILL-CHARACTER contains a character to be displayed if PALETTE-
ATTRIBUTE-VALUES indicates FILL-CHARACTER-ON. The value in FILL-
CHARACTER is ignored unless the FILL-CHARACTER-ON attribute has been set.

Because the palette-table contains both alphanumeric and numeric fields, use the
INITIALIZE statement to remove all colors and attributes from the table. To reset
the example palette tables, enter:

INITIALIZE PALETTE-TABLE-1, PALETTE-TABLE-2.

Usage Notes
If this function is requested to write characters past the end of the screen (or window, if
pop-up windows are active), the screen or window is scrolled.

The current line and current position after the call obey the rules for the ACCEPT and
DISPLAY statements.

Colors set by this function also affect subsequent ACCEPT and DISPLAY operations if
those operations do not specify an FCOLOR or BCOLOR keyword, as described in the
CONTROL phrase (on page 209).

Fatal Errors
The runtime system terminates if the C$SCWR function is called with any of the following
four conditions:

1. C$SCWR is called with other than two or four parameters, or any one of the parameters
is a simple numeric parameter.

2. The length of DISPLAY-DESCRIPTION is less than eight characters.

3. The length of text-characters is zero.

4. The size of any passed data item exceeds 65535 bytes.

Appendix F: Subprogram Library

 RM/COBOL User's Guide 569

Exception Codes
The following exception codes are stored in the DISPLAY-EXCEPTION-CODE variable.
The C$SCWR function reports three types of exception codes: error, warning, and
informational. Lower-numbered exception codes are reported before higher-numbered
exception codes. These codes and their associated definitions are listed in Table 60.

Note Error codes take precedence over warning and informational codes. If multiple
exceptions occur, the first occurring exception at a given level is returned. If warnings are
returned, the display is performed, but the results may not be as expected.

Table 60: C$SCWR Exception Codes

Code Type Description

0 No error detected.

1 Error An invalid DISPLAY-VERSION was specified. This
data item must be set to a value of 0.

2 Error An I/O error occurred while the write operation was
being performed. DISPLAY-EXCEPTION-VALUE
contains the RM/COBOL I/O error code.

3 Error DISPLAY-LINE is greater than the number of lines on
the window or screen. The display was not performed.
DISPLAY-EXCEPTION-VALUE contains the number
of lines on the window or on the screen. An out-of-
range line specification is diagnosed before an out-of-
range position specification.

4 Error DISPLAY-POSITION is greater than the number of
columns on the screen. The display was not performed.
DISPLAY-EXCEPTION-VALUE contains the number
of columns on the window or on the screen.

5 Error The specified palette is invalid. DISPLAY-
EXCEPTION-VALUE indicates either (a) the palette
table does not contain complete palette entries, or (b) the
table contains more than 255 entries.

6 Error An invalid UNIT was specified. This data item must be
set to a value of 0.

20 Warning An out-of-range palette index was specified. DISPLAY-
EXCEPTION-VALUE contains the offending palette
index. The palette specification is ignored and treated as
if unspecified.

21 Warning The palette contains an invalid foreground color
specification. DISPLAY-EXCEPTION-VALUE
contains the offending palette index. The color is
ignored and treated as if unspecified.

22 Warning The palette contains an invalid background color
specification. DISPLAY-EXCEPTION-VALUE
contains the offending palette index. The color is
ignored and treated as if unspecified.

23 Warning The palette contains an invalid foreground and
background color specification. DISPLAY-
EXCEPTION-VALUE contains the offending palette
index. The color is ignored and treated as if unspecified.

Appendix F: Subprogram Library

570 RM/COBOL User's Guide

Table 60: C$SCWR Exception Codes

Code Type Description

24 Warning The palette contains an invalid attribute value.
DISPLAY-EXCEPTION-VALUE contains the
offending palette index. The entire attribute code is
ignored and treated as if unspecified.

40 Informational A monochrome display is in use, or USE-COLOR=N
was configured. The specified foreground and
background colors are not validated and are ignored.
This condition cannot be detected under all
circumstances. However, in all cases, DISPLAY-
EXCEPTION-VALUE contains the palette index of the
offending attribute.

C$SecureHash
C$SecureHash is used to produce a 20-byte message digest from an input text string using the
secure hash algorithm (SHA-1).

Calling Sequence

MessageText must be an identifier that references a nonnumeric data item. Its value is
the input text string to the secure hash algorithm. While the secure hash algorithm
supports messages of length 2**64 or less bits (2**61 or less bytes), this implementation
is limited to messages of length 2**32 or less bits (2**29 or less bytes).

MessageLength, if specified, must reference a numeric integer data item. Its value
specifies the number of bytes of MessageText to be considered when producing the
message digest. Thus, the value must be less than or equal to the length of data item
referenced by MessageText. If MessageLength is omitted, the entire value of the data
item referenced by MessageText is used, as if LENGTH OF MessageText had been
specified for MessageLength.

MessageDigest must be an identifier that references a nonnumeric data item of exactly 20
bytes in length. The message digest result from the secure hash algorithm is returned in
the referenced data item. The message digest value is stored in the form most significant
byte at lowest address to least significant byte at highest address regardless of the
memory architecture of the machine on which C$SecureHash is called. When there is
insufficient memory for C$SecureHash to do its work, the contents of MessageDigest are
set to all binary zeroes. This only occurs when a memory area slightly larger than the
size of the message text cannot be allocated.

The secure hash algorithm used by C$SecureHash, other than the length limitation, is the one
defined as the secure hash standard by Federal Information Processing Standard (FIPS)
Publication 180-1, which is often referred to as SHA-1. More information on SHA-1 can be
obtained by reading FIPS Pub 180-1, which is available at:

CALL "C$SecureHash"
 USING MessageText [MessageLength]
 GIVING MessageDigest

Appendix F: Subprogram Library

 RM/COBOL User's Guide 571

http://www.itl.nist.gov/fipspubs/fip180-1.htm

One example of the usefulness of a message digest is storing a password in a secure form.
Since the message digest is produced using a one-way hash of the password, it is
computationally infeasible to recover the password from the message digest value. (However,
if the password is easy to guess or find in a dictionary, a computer program can be used to
search for a password that hashes to a given message digest value.)

Note The input text string “abc” (length = 3 bytes) produces the hash value:

x"A9993E364706816ABA3E25717850C26C9CD0D89D"

Since this is a well-known test result for the secure hash algorithm (documented in FIPS Pub
180-1), “abc” is not recommended as a password value.

Message digests are also often used to verify that a message has not been changed from its
original value. This involves computing the message digest of the original message text and
transmitting the message digest in a secure manner, either on a separate secure channel or by
using encryption of the message digest to guarantee that the message digest is not modified
during transmission. The receiver of the message can then compute the message digest from
the received message text and verify that the resulting message digest matches the supplied
message digest. If the message digests match, it is extremely unlikely that the message text
has been modified during transmission.

C$SetDevelopmentMode
C$SetDevelopmentMode is used to enable expanded error information reporting (known as
“development mode”) for many of the C$ and P$ subprograms. The P$ subprograms are
discussed in Appendix E: Windows Printing (on page 461). When development mode is
enabled, more verbose error reporting is performed to assist the COBOL developer in
implementing these subprogram calls. See also C$ClearDevelopmentMode (on page 540).

Calling Sequence

Development mode also may be set at program startup with the
RM_DEVELOPMENT_MODE environment variable:

RM_DEVELOPMENT_MODE=[Y|y|N|n]

Specify Y or y to enable development mode. Specify N or n, or omit the variable, to disable
development mode. All other values are undefined.

CALL "C$SetDevelopmentMode"

http://www.itl.nist.gov/fipspubs/fip180-1.htm

Appendix F: Subprogram Library

572 RM/COBOL User's Guide

C$SetEnv
C$SetEnv is used to set or clear the value of an environment variable. On UNIX,
environment variable names are case-sensitive. On Windows, environment variable names
are not case-sensitive.

Setting the value of an environment variable with C$SetEnv updates the corresponding
environment variable immediately in the process space of the current run unit. Thus, when
the RM/COBOL runtime system uses environment variables for such actions as file access
name resolution, the call to C$SetEnv will have an immediate effect on that run unit.
However, to affect a different run unit, C$SetSyn (see page 572) should be used instead of, or
together with, C$SetEnv.

Calling Sequence

name is an alphanumeric data item that contains the name of the environment variable to
set or clear.

value is an alphanumeric data item that contains the value to which the environment
variable is set. A value of SPACES indicates that the environment variable should be
deleted.

return is a PICTURE 9(n) BINARY, where n can be a digit from 1 to 9. The value
returned is zero for success and non-zero for failure.

C$SetSyn
C$SetSyn is used to set the value of an RM/COBOL synonym in the UNIX resource file (see
page 25) or in the Windows registry (see page 67).

Setting the value of a synonym with C$SetSyn does not update the corresponding
environment variable until the next time the RM/COBOL runtime system is started, or the
registry or resource file is scanned. Thus, when the runtime system uses environment
variables for such actions as file access name resolution, the call to C$SetSyn will not have an
immediate effect on the run unit. When an immediate effect on the run unit is desired, an
additional call to C$SetEnv (see page 572) is required to update the corresponding
environment variable.

Calling Sequence

name is an alphanumeric data item that contains the name of the synonym to set or clear.

CALL "C$SetEnv" USING name, value [, return]

CALL "C$SetSyn" USING name, value, program

Appendix F: Subprogram Library

 RM/COBOL User's Guide 573

value is an alphanumeric data item that contains the value to which the synonym is set. A
value of SPACES indicates that the synonym should be deleted.

program is an alphanumeric data item that indicates the name of the program whose
synonym properties are being changed. A value of SPACES indicates the “Defaults
Properties” in the Windows registry or the [Default Synonyms] section in the UNIX
resource file.

C$Show
C$Show is used to set the show state of the main RM/COBOL window.

Note This subprogram is supported only on Windows.

Calling Sequence

flag is a numeric data item that contains one of the values described below:

 01 WIN-SHOW-STYLES.
 03 SW-HIDE PIC 9(4) BINARY VALUE 0.
 03 SW-MINIMIZE PIC 9(4) BINARY VALUE 6.
 03 SW-RESTORE PIC 9(4) BINARY VALUE 9.
 03 SW-SHOW PIC 9(4) BINARY VALUE 5.
 03 SW-SHOWMAXIMIZED PIC 9(4) BINARY VALUE 3.
 03 SW-SHOWMINIMIZED PIC 9(4) BINARY VALUE 2.
 03 SW-SHOWMINNOACTIVE PIC 9(4) BINARY VALUE 7.
 03 SW-SHOWNA PIC 9(4) BINARY VALUE 8.
 03 SW-SHOWNOACTIVATE PIC 9(4) BINARY VALUE 4.
 03 SW-SHOWNORMAL PIC 9(4) BINARY VALUE 1.

Value Meaning

SW-HIDE Hides the window and passes activation to another window.

SW-MINIMIZE Minimizes the specified window and activates the top-level
window in the system’s list.

SW-RESTORE Activates and displays a window. If the window is minimized
or maximized, Windows restores it to its original size and
position (same as SW-SHOWNORMAL).

SW-SHOW Activates a window and displays it in its current size and
position.

SW-SHOWMAXIMIZED Activates a window and displays it as a maximized window.

SW-SHOWMINIMIZED Activates a window and displays it as an icon.

SW-SHOWMINNOACTIVE Displays a window as an icon. The window that is currently
active remains active.

SW-SHOWNA Displays a window in its current state. The window that is
currently active remains active.

CALL "C$Show" USING flag

Appendix F: Subprogram Library

574 RM/COBOL User's Guide

Value Meaning

SW-SHOWNOACTIVATE Displays a window in its most recent size and position. The
window that is currently active remains active.

SW-SHOWNORMAL Activates and displays a window. If the window is minimized
or maximized, Windows restores it to its original size and
position (same as SW-RESTORE).

Examples

The following code fragment hides the main window:

 CALL "C$SHOW" USING SW-HIDE.

The following code fragment shows the main window:

 CALL "C$SHOW" USING SW-SHOW.

C$ShowArgs
C$ShowArgs displays the list of arguments that were used to call C$ShowArgs. This facility
is useful during development of non-COBOL subprograms.

Note On UNIX, the argument information is written to stdout. On Windows, the argument
information is appended to the file showargs.log in the current directory.

Calling Sequence

argument is any data item. C$ShowArgs will print its own name, the number of
arguments, and the initial state flag. Then, for each argument, C$ShowArgs prints the
address of the argument using hexadecimal notation, the size of the argument, the
numeric type of the argument, three or four character-strings indicating the type of the
argument, and finally, the number of digits and the scale of the argument.

Note This subprogram is most useful when it is used to replace another subprogram
temporarily, thereby allowing the actual arguments that are being passed to be inspected.

Example

Name="C$SHOWARGS", Args= 1, Initial=0
 Giving OMITTED
 Arg # 1 Ptr=0041DBA8 Size=12 Type=16 ANS Digits= 0 Scale= 0
Name="C$SHOWARGS", Args= 3, Initial=65535
 Giving Ptr=0041DBBE Size= 4 Type=11 NBS Digits= 8 Scale= 0
 Arg # 1 Ptr=0041DBA8 Size=12 Type=16 ANS Digits= 0 Scale= 0

CALL "C$ShowArgs" [USING argument [, argument [, ...]]]

Appendix F: Subprogram Library

 RM/COBOL User's Guide 575

 Arg # 2 Ptr=0041DBB4 Size=10 Type= 3 NTC Digits= 10 Scale= -2
 Arg # 3 Ptr=0041DBBE Size= 4 Type=11 NBS Digits= 8 Scale= 0

C$TBar
C$TBar is used to display a toolbar in the RM/COBOL window.

To use this subprogram, the runtime system must be able to locate the rmbars.dll file. The
following example illustrates how to add this DLL to the Runtime Command line with the
L Option:

runcobol program-name L=RMBARS.DLL

Other Runtime Command Options can be used. See Chapter 7: Running (on page 189).

Note This subprogram is supported only on Windows.

Calling Sequence

buttonstr is an alphanumeric data item that contains the button definition. The syntax is
as follows:

buttonname["prompt"]=string

buttonname is the name of the icon stored in the filename specified by the Icon File
property (see page 77).

prompt is an optional text string that is displayed when the mouse cursor is placed
over the toolbar icon that is specified by buttonname. The setting of the Toolbar
Prompt property (see page 84) determines how the text string is displayed. The text
may be displayed in the status bar if the status bar is on, as described in C$SBar (on
page 564) and Status Bar property (on page 83). The text may also or alternatively
be displayed as a tooltip. The text string may contain one of the separator characters
newline (x'0a'), colon (“:”), or vertical bar (“|”) to divide it into separate status bar
and tooltip text. The appropriate separator character is determined by the Toolbar
Prompt property.

string is an ASCII text string. However, it also can contain special characters for the
Return, Tab, Escape, or Function keys. If the first character is a greater than
character (>), then the characters that follow are executed as a command. The
special characters are described in Table 11: Special Characters for the Button
Character-String (on page 91) in the topic, Setting Toolbar Properties. These
characters are interpreted by the COBOL ACCEPT statement, as described in
Table 24: Keys that Terminate Field Input (on page 205).

exit-code is a PICTURE 9(n) BINARY, where n can be a digit from 1 to 9. The
exit-code parameter must be two- or four-byte binary and the value returned is zero for
success and non-zero for failure.

Note Calling C$TBar with no arguments turns off the toolbar.

CALL "C$TBar" [USING buttonstr [, buttonstr ...], exit-code]

Appendix F: Subprogram Library

576 RM/COBOL User's Guide

For additional information on toolbars, see Setting Toolbar Properties (on page 89) and
Toolbar Editor (on page 97).

C$TBarEn
C$TBarEn is used to enable and disable buttons on the toolbar.

To use this subprogram, the runtime system must be able to locate the rmbars.dll file. The
following example illustrates how to add this DLL to the Runtime Command line with the
L Option:

runcobol program-name L=RMBARS.DLL

Other Runtime Command Options can be used. See Chapter 7: Running (on page 189).

If the toolbar button bitmap contains three frames instead of the normal two, the third bitmap
will be displayed while the button is disabled.

Note This subprogram is supported only on Windows.

Calling Sequence

buttonname is the name of the icon stored in the filename specified by the Icon File
property (see page 77). If an equal sign is contained in the value of buttonname, the
equal sign and any text following the equal sign is removed before the value of
buttonname is used. Therefore, the same value as was used for the buttonstr argument to
C$TBar (see page 575) may be used as long as a prompt value was not specified.

flag is a numeric data item with the value of 1 for enable and 0 for disable.

For additional information on toolbars, see Setting Toolbar Properties (on page 89) and
Toolbar Editor (on page 97).

C$TBarSeq
C$TBarSeq is used to set the bitmap sequence to use for buttons on the toolbar.

To use this subprogram, the runtime system must be able to locate the rmbars.dll file. The
following example illustrates how to add this DLL to the Runtime Command line with the
L Option:

runcobol program-name L=RMBARS.DLL

Other Runtime Command Options can be used. See Chapter 7: Running (on page 189).

Note This subprogram is supported only on Windows.

CALL "C$TBarEn" USING buttonname, flag,
 buttonname, flag, ...

Appendix F: Subprogram Library

 RM/COBOL User's Guide 577

Calling Sequence

buttonname is the name of the icon stored in the filename specified by the Icon File
property (see page 77). If an equal sign is contained in the value of buttonname, the
equal sign and any text following the equal sign is removed before the value of
buttonname is used. Therefore, the same value as was used for the buttonstr argument to
C$TBar (see page 575) may be used as long as a prompt value was not specified.

seq is a numeric data item that contains a value of 0 through 9 indicating the sequence
number to use for displaying the named button.

For more information, see Setting Toolbar Properties (on page 89) and Toolbar Editor (on
page 97).

C$Title
C$Title is used to set the window title for the RM/COBOL window.

To use this subprogram, the runtime system must be able to locate the c$title.dll file. The
following example illustrates how to add this DLL to the Runtime Command line with the
L Option:

runcobol program-name L=C$Title.DLL

Other Runtime Command Options can be used. See Chapter 7: Running (on page 189).

Note This subprogram is supported only on Windows.

Calling Sequence

string is the text to be placed in the window title.

Note The Title Text property (see page 84) also can be used to set the text of the title for the
RM/COBOL window.

C$WRU
C$WRU returns the program identification, line number, and intraline number of the CALL
statement that called the subprogram containing the call to C$WRU.

CALL "C$TBarSeq" USING buttonname, seq,
 buttonname, seq, ...

CALL "C$Title" USING string

Appendix F: Subprogram Library

578 RM/COBOL User's Guide

Calling Sequence

program-name is a 30-character alphanumeric data item into which the program-id of the
calling subprogram is stored. If the first subprogram of the run unit (that is, the main
program) calls C$WRU, the value “RUNCOBOL” will be stored in PROGRAM-NAME,
and zeroes are stored in prog-line and prog-intraline.

prog-line is a BINARY data item with the picture PIC 9(6) into which the line number
containing the CALL statement is stored. If the program that contains the call to the
subprogram that called “C$WRU” was compiled with the Q Compile Command Option
(see page 158), the value stored in prog-line is the segment offset of the original CALL
statement. Use the values from the Debug heading of the program listing to locate the
statement.

prog-intraline is a BINARY data item with the picture PIC 9(2) into which the intraline
number of the CALL statement is stored. For more information, see Debug Values (on
page 259) and Line and Intraline Numbers (on page 258). If the program that contains
the call to the subprogram that called “C$WRU” was compiled with the Q Option, the
value stored in prog-intraline is zero.

DELETE
DELETE deletes a file.

Calling Sequence

file-name is the full or relative pathname of the file to be deleted. The name may be
quoted with double quotes (") or single quotes ('). When the name is quoted, the quotes
are removed, but the name is not otherwise modified. If the name is not quoted, the first
control character terminates the name on Windows and the first white space character
terminates the name on UNIX. On Windows, trailing spaces are removed from unquoted
names. The file-name data item must be less than 1024 characters in length.

exit-code is an optional numeric data item that contains the exit code of the command
upon return from the operating system. exit-code must be declared as PIC S9(4)
BINARY. The value returned in exit-code is dependent on the underlying operating
system. A value of 0, however, indicates success and a non-zero value indicates an error.

Note The values ANSI and OEM specified in the ALLOW-EXTENDED-CHARS-IN-
FILENAMES keyword (see page 336) of the RUN-FILES-ATTR configuration record will
affect the filenames passed to this subprogram.

CALL "C$WRU" USING program-name, prog-line,
 prog-intraline

CALL "DELETE" USING file-name [exit-code]

Appendix F: Subprogram Library

 RM/COBOL User's Guide 579

RENAME
RENAME renames a file.

Calling Sequence

old-name is the source (old) filename. The name may be quoted with double quotes (")
or single quotes ('). When the name is quoted, the quotes are removed, but the name is
not otherwise modified. If the name is not quoted, the first control character terminates
the name on Windows and the first white space character terminates the name on UNIX.
On Windows, trailing spaces are removed from unquoted names. The old-name data
item must be less than 1024 characters in length.

new-name is the target (new) filename. The name may be quoted with double quotes (")
or single quotes ('). When the name is quoted, the quotes are removed, but the name is
not otherwise modified. If the name is not quoted, the first control character terminates
the name on Windows and the first white space character terminates the name on UNIX.
The new-name data item must be less than 1024 characters in length.

exit-code is an optional numeric data item that contains the exit code of the command
upon return from the operating system. exit-code must be declared as PIC S9(4)
BINARY. The value returned in exit-code is dependent on the underlying operating
system. A value of 0, however, indicates success and a non-zero value indicates an error.

Note The values ANSI and OEM specified in the ALLOW-EXTENDED-CHARS-IN-
FILENAMES keyword (see page 336) of the RUN-FILES-ATTR configuration record will
affect the filenames passed to this subprogram.

SYSTEM
SYSTEM allows an arbitrary operating system command to be executed.

Calling Sequence

command-line is an alphanumeric data item that contains the command line to be passed
to the operating system. The command line is restricted to 4096 characters.

repaint-screen is an optional, one-byte, alphanumeric data item that controls whether the
screen is redrawn after execution of the command. A value of Y or y causes the screen to
be redrawn. A value of N or n does not redraw the screen. A blank or any other value

CALL "RENAME" USING old-name new-name [exit-code]

CALL "SYSTEM" USING command-line [repaint-screen]
 [exit-code]

Appendix F: Subprogram Library

580 RM/COBOL User's Guide

defaults to the TERM-ATTR configuration record REDRAW-ON-CALL-SYSTEM
value (see page 355).

Note This parameter is ignored on Windows.

exit-code is an optional numeric data item that contains the exit code of the command
upon return from the operating system. exit-code must be declared as PIC S9(4)
BINARY. The value returned in exit-code is dependent on the underlying operating
system. A value of 0, however, indicates success and a non-zero value indicates an error.

If the argument count is incorrect or the arguments are of the wrong type, the run unit is
stopped with the message “COBOL STOP RUN at line ? in SYSTEM ...”.

UNIX Considerations
A command-line that contains either a single NULL character or all blanks starts a new
instance of the shell.

The command is executed with the system() library function call. For a null or all space
command-line, the environment variable SHELL is used to locate the shell processor. To
return to the calling COBOL program, type:

exit or ctrl+d

The runtime system automatically calls resetunit() before executing the command to place
the terminal in a “normal state” (the state before the runtime system was executed).
Following the execution of the command, the runtime system automatically calls setunit() to
return the terminal to the state that it requires for terminal I/O, and also causes the terminal
screen to be redrawn. However, redrawing the screen may not always be desirable.

For example, the command executed might not change the screen. If all of the calls to
SYSTEM in a COBOL program do not change the screen, the REDRAW-ON-CALL-
SYSTEM keyword (see page 355) of the TERM-ATTR configuration record may be set to
NO and the runtime system will not redraw the screen after every call to SYSTEM. If some
of the calls to SYSTEM in a COBOL program change the screen contents, the redrawing of
the screen can be controlled through the use of the optional second argument, repaint-screen.

Note If the value of the second argument is N, or the REDRAW-ON-CALL-SYSTEM
configuration keyword value is NO, and the called program changes the screen contents,
unpredictable results may occur on the next DISPLAY statement because of the changed
cursor position. CALL “SYSTEM” output is not stored in the runtime system’s in-memory
screen image.

See program subtest.cbl (included with the RM/COBOL development system) for examples
of how to use the SYSTEM subprogram.

Windows Considerations
A command-line that contains either a single NULL character or all blanks starts a new
instance of the command processor.

The command-line parameter may be used to specify either a DOS or Windows program. The
execution of the calling COBOL program is suspended until the called program terminates.
For a null or all space command-line, the environment variable COMSPEC is used to locate
the command processor. To return to the calling COBOL program, type:

Appendix F: Subprogram Library

 RM/COBOL User's Guide 581

EXIT

The style of the window used for Windows programs is controlled with the SYSTEM
Window Type property (see page 84). The SYSTEM Window Type property also can be set
with the C$GUICFG (see page 552) non-COBOL subprogram.

In order to execute a DOS internal command, it is necessary to specify completely the
command processor on the command line. For example, to execute a dir command on
Windows, enter the following:

CMD.EXE /C DIR

This example assumes that the command processor can be located through the PATH
environment variable.

You can configure whether a DOS program runs in a full screen or in a window by modifying
the properties of the Command Prompt. This can be done by right-clicking the Command
Prompt icon and selecting Properties from the pop-up menu.

Notes

• When DOS internal commands such as dir, mkdir, copy, or type are executed via
command.com, the returned exit-code is always zero. This is a DOS limitation. If a
non-zero status is needed on failure, use an equivalent external command if one exists,
such as xcopy instead of copy, or use CodeBridge to generate a COBOL-callable
subprogram that executes an equivalent Windows or C library function. For example,
CodeBridge samples include an example showing how to call the Win32 function
CreateDirectory or the C library function _mkdir from a COBOL program and obtain
any resulting error code by building a DLL from a CodeBridge template file.

• The values ANSI and OEM, if specified in the ALLOW-EXTENDED-CHARS-IN-
FILENAMES keyword (see page 336) of the RUN-FILES-ATTR configuration record,
will affect filenames passed to this subprogram in command-line. For example, CALL
“SYSTEM” USING “c:\command.com /c mkdir dir-name”, will interpret any extended
characters contained in dir-name as ANSI or OEM based on the specified configuration
option value.

Appendix G: Utilities

 RM/COBOL User's Guide 583

Appendix G: Utilities

RM/COBOL provides a wide range of file conversion, management, and manipulation
facilities. The majority of these utilities allow you to specify the required parameters either in
the initial invocation command line or interactively during the course of execution.

This appendix describes the set of utilities provided for file conversion, management, and
manipulation.

Organization
The utilities described in this appendix are as follows:

1. The Combine Program (rmpgmcom) utility (see page 585) creates a program file by
combining other program files and eliminating duplicate programs. It is used to create
object program libraries.

2. The Map Program File (rmmappgm) utility (see page 588) produces a report describing
the contents of an object program file created by the RM/COBOL compiler or the
rmpgmcom utility.

3. The Map Indexed File (rmmapinx) utility (see page 590) produces a report describing the
structure of an indexed file created by an RM/COBOL program or by the rmdefinx
utility (described in the next item).

4. The Define Indexed File (rmdefinx) utility (see page 594) pre-creates an indexed file for
use by RM/COBOL programs, or modifies some of the characteristics of an existing
indexed file.

5. The Indexed File Recovery (recover1) utility (see page 599) is used to recover the data in
an indexed file.

Note The Indexed File Unload (recover2) utility is used to unload an indexed file to a
sequential file. This utility is no longer needed to recover indexed files.

6. The Initialization File to Windows Registry Conversion (ini2reg) utility (see page 613),
available only on Windows, converts an RM/COBOL for Windows initialization file and
places its contents into the Windows registry database.

7. The RM/COBOL Configuration (rmconfig) utility (see page 614), available only on
Windows, is used to modify the configuration options for one or more RM/COBOL
programs.

Appendix G: Utilities

584 RM/COBOL User's Guide

Utilities Delivered on Media
The programs and files required to execute the utilities described in this appendix are
provided with your RM/COBOL product. The actual number of files and programs depends
on the specific version of the product you purchased and whether you purchased a
development or a runtime system. The delivered media contains one or more README files
that list the actual files and programs delivered. Please check these README files after you
have installed the product to make sure that you have received all of the appropriate files and
programs.

The utility programs and files may be placed in one directory. Be sure that the compiler and
runtime system directory search sequences include the directory in which these files are
placed. For more information, see Directory Search Sequences on UNIX (on page 21) and
Directory Search Sequences on Windows (on page 62).

General Considerations
Files with an extension of .cob were created with the RM/COBOL compiler and are executed
with the RM/COBOL Runtime Command.

The programs rmmapinx, rmmappgm, rmpgmcom, and recover1 generate reports that are
written to a file named PRINTER. On UNIX, the line printer spooler is used. On Windows,
the Windows default printer is used.

On UNIX, if you want to discard the report, set the PRINTER environment variable to the
value /dev/null with a resource file synonym or by using the following commands:

PRINTER=/dev/null ; export PRINTER

On Windows, if you want to discard the report, set the PRINTER environment variable to the
value NUL (with a synonym or other means) as follows:

PRINTER=NUL

On UNIX, if you want the report to go to a disk file, set the PRINTER environment variable
to the value of the filename with a resource file synonym or by using the following
commands:

PRINTER=filename ; export filename

On Windows, if you want the report to go to a disk file, set the PRINTER environment
variable to the value of the filename (with a synonym or other means) as follows:

PRINTER=filename

On UNIX, if you want the report to go to the console, set the PRINTER environment variable
to the value /dev/tty with a resource file synonym or by using the following commands:

PRINTER=/dev/tty ; export PRINTER

Appendix G: Utilities

 RM/COBOL User's Guide 585

On Windows, if you want the report to go to the console, set the PRINTER environment
variable to the value CON (with a synonym or other means) as follows:

PRINTER=CON

Installing the Utility Programs
The RM/COBOL installation sections of this user’s guide contain complete instructions on
installing the utility programs. If you did not install the utilities when you installed
RM/COBOL, refer to these instructions. For the appropriate installation and system
considerations information for your specific operating system, see either Chapter 2:
Installation and System Considerations for UNIX (on page 13) or Chapter 3: Installation and
System Considerations for Microsoft Windows (on page 45).

Combine Program (rmpgmcom) Utility
The rmpgmcom utility combines multiple RM/COBOL object files into a single program file
library. RM/COBOL allows programs to be placed in the same file. This simplifies software
distribution and provides a more consistent and logical representation of software. The
rmpgmcom utility builds a Table of Contents (TOC) at the end of the output program file
library. A Table of Contents speeds up runcobol library initialization while very slightly
increasing the size of the library file.

The compiler allows several source programs to be contained in the same file. The program
file generated has as many object files as the source file defines. rmpgmcom, on the other
hand, allows source modules to be contained in separate files, and the contents of the resulting
object files to be combined into one file.

rmpgmcom.cob is required to use this utility. This file is delivered in object form.

Using the Utility
The Combine Program utility is executed with this command:

PRINTER, if present, requests a copy of the report to be written to the printer specified
with the environment variable, PRINTER.

STRIP, if present, removes COBOL symbol table and debug line table information,
produced by the compiler Y Option, from object files. This is useful to reduce the size of
a program library after debugging is complete.

out-file is the name of the new program file being created. If a filename extension is not
specified, .cob is used.

file-1, file-2, . . ., file-n are the names of the program files being combined to form out-
file. For each name, if a filename extension is not specified, .cob is used. If the file does
not exist with a filename extension of .cob, the name is used with no filename extension.

runcobol rmpgmcom [A='[PRINTER,] [STRIP,] out-file,
 file-1 [, file-2, ... , file-n]']

Appendix G: Utilities

586 RM/COBOL User's Guide

Note The argument list may use commas or semicolons to separate the list elements. Any
number of spaces following a comma or semicolon is ignored.

If the argument list is not specified, rmpgmcom prompts first for whether or not to copy the
report to the PRINTER, second for the STRIP option, third for the output filename, and then
for the input filenames. rmpgmcom adds the programs in each input file to the output file,
and then prompts for another input file. To terminate the program, press Enter without typing
a name when prompted for an input file.

If the filenames are specified through the command line, the command line argument is
limited to no more than 2048 characters. Combining more than 2048 characters of filenames
requires direct operator input, use of input redirection, or multiple executions of the program.

As a precaution, if the output file exists before execution, rmpgmcom terminates, preventing
accidental erasure of a good program file.

In most cases, an error does not terminate the program. If the program terminates abnormally,
assume that the output file is not in a valid state and cannot be used to execute programs.

The same program-name can occur in more than one input program file. If this is the case,
rmpgmcom uses the first one encountered and ignores subsequent programs with the same
names. This can be very useful when you want to replace one program in a program file with
a new version. Instead of having to recreate the file, you could use commands similar to the
following.

Note rmpgmcom can combine more than 500 programs, but only the first 500 are
guaranteed to have unique names. You may want to limit your program libraries to no more
than 500 programs for this reason.

For UNIX, enter:

mv rmutil.lib, rmutil.bak

For Windows, use Windows Explorer or open a Command Prompt window and enter:

RENAME rmutil.lib rmutil.bak

For all operating systems, enter:

runcobol rmpgmcom A='rmutil.lib, rmmappgm.cob, rmutil.bak'

rmutil.bak is the name of a program file containing multiple programs (including
rmmappgm.cob).

rmmappgm.cob is the name of the program file containing the program to be updated.

rmmappgm.cob is loaded into rmutil.lib, after which the programs in rmutil.bak (which is the
previous version of rmutil.lib) are loaded into rmutil.lib. The previous version of
rmmappgm.cob in rmutil.bak is ignored.

Execution of Programs within Libraries
To execute programs within the created library, the L Runtime Command Option is used. For
example:

runcobol rmmappgm L=rmutil.lib

Refer to Chapter 7: Running (on page 189) for additional information.

Appendix G: Utilities

 RM/COBOL User's Guide 587

Examples

Here is sample input to rmpgmcom:

Copy to PRINTER (y/n)? Y
Output File: rmutil.lib
Input File: rmmappgm

The following programs are copied from rmmappgm.cob:

 MAP-PGM 2008/03/21 14:42:05

Input File: rmpgmcom

The following programs are copied from rmpgmcom.cob:

 PGM-COM 2008/03/21 14:37:15

Input File: rmmapinx

The following programs are copied from rmmapinx.cob:

 MAP-INX 2008/03/21 14:40:26

Input File: rmdefinx

The following programs are copied from rmdefinx.cob:

 DEF-INX 2008/03/21 14:39:36

Input File: (press ENTER)

Here is sample output from rmpgmcom.

The following programs are copied from rmmappgm.cob:

 MAP-PGM 2008/03/21 14:42:05

The following programs are copied from rmpgmcom.cob:

 PGM-COM 2008/03/21 14:37:15

The following programs are copied from rmmapinx.cob:

 MAP-INX 2008/03/21 14:40:26

The following programs are copied from rmdefinx.cob:

 DEF-INX 2008/03/21 14:39:36

The rmpgmcom utility allows for redirected input on UNIX. To redirect the input, follow
these steps:

1. At the command line on UNIX, enter:

ls *.cob > file.txt

where file.txt is a valid file access name.

2. Edit file.txt using any text editor and enter Y (Yes) or N (No) as the first line of the file.
(A response of Y requests a copy of the report to be written to the PRINTER.)

a. Enter Y (Yes) or N (No) as the second line of the file. (A response of Y requests that
symbol table and debug line table information be removed.)

Appendix G: Utilities

588 RM/COBOL User's Guide

b. Add the library name as the third line of the file.

3. At the command line prompt, enter:

runcobol rmpgmcom < file.txt

Map Program File (rmmappgm) Utility
The rmmappgm utility reports information related to the object file created by the
RM/COBOL compiler and the program library created by the rmpgmcom utility. This utility
reports on all unnested programs contained in an object file and reports when a program
library Table of Contents (TOC) is present. It also reports when an object program is a
demonstration version (RM/DEMOV), an evaluation version (RM/EVALV), or an
educational version (RM/EDUCV) object.

rmmappgm.cob is required to use the mapping utility. The file is delivered in object form.

Using the Utility
The Map Program File utility is executed with this command:

file-name is the name of the program file to be processed. If no filename extension is
specified, .cob is used. If the file does not exist with a filename extension of .cob, the
name is used with no filename extension.

option may be chosen from the following selections:

• PRINTER, if present, requests a copy of the report to be written to the printer
specified with the environment variable, PRINTER. NOPRINTER can be specified
to suppress a printed report. The default is NOPRINTER.

• SCREEN, if present, requests a screen display of the report. NOSCREEN can be
specified to suppress screen display of the report. The default is SCREEN.

• DETAILS, if present, requests a detailed report for each program instead of just a
summary line for each program. NODETAILS can be specified to suppress details
and produce the summary line report instead. The default is NODETAILS.

Note The argument list may use commas or semicolons to separate the list elements. Zero to
three spaces following a comma or semicolon are ignored.

If the argument list is not specified, rmmappgm prompts first for the name of a file to be
processed and then prompts for whether or not to copy the report to the printer. This
continues after each report until you press Enter without typing a name.

The report generated by this program is always written to the screen and is also written to the
printer only if the PRINTER option is specified. The information in the report is as follows:

PROGRAM NAME Corresponds to the PROGRAM-ID value of the program.

runcobol rmmappgm [A='file-name [,option]…']

Appendix G: Utilities

 RM/COBOL User's Guide 589

SIZES Indicates the size in bytes of the memory needed for the
fixed procedure area, the data area, and the overlay area, as
well as the total of these three.

ARG Indicates the number of arguments required by the program.

FILE Indicates the number of data files defined in the program,
including any nested programs.

COMPILED Indicates the date and time the program was compiled, the
compiler options chosen, as well as the version of the
compiler used and the operating system under which the
program was compiled.

OBJ VERS Indicates the object version of the program. For more
details, see Appendix H: Object Versions (on page 619).

Examples

Here is sample input to rmmappgm.

Object File: rmmappgm.cob
Copy to PRINTER (y/n)? Y
Object File: (press ENTER)

Here is an example of a summary line report from the rmmappgm utility.

 -----------SIZES----------- # # --------------------COMPILED---------------------------OBJ

 PROGRAM NAME PROCEDURE DATA OVLY TOTAL ARG FILE DATE TIME VERSION SYSTEM OPTS VERS

File: rmmappgm.cob

RMMAPPGM 2170 1778 0 3948 1 2 2008/03/21 12:10:15 RM/COBOL 12.0n.00 UNIX E 6

Here is an example of a detailed report from the rmmappgm utility.

Map RM/COBOL object files - Version 12.00
File: rmmappgm.COB
Details for program-name: rmmappgm
 Object sizes: Procedure = 9416, Data = 4538,
 Overlay = 0, Total = 13954
 Arguments accepted: 1; Files used: 2; CDs used: 0
 Items with external attribute: 0
 Low value: X"00"
 High value: X"FF"
 Compilation date & time: 2008/08/27 11:03:16
 Compilation system: 32-Bit Windows
 Compilation options:
 A - Allocation map listing
 Compiler version: RM/COBOL 12.00.00
 Object version: 9
 Program code-set: ASCII
 Features flags:
 ACCEPT/DISPLAY (low volume IO)
 CALL
 INSPECT
 STRING
 UNSTRING
 Sequential I/O

Appendix G: Utilities

590 RM/COBOL User's Guide

 LINAGE
 Native character set: Windows OEM

Map Indexed File (rmmapinx) Utility
The rmmapinx utility reports information related to an indexed file.

Note In order to report information related to a Btrieve file, use the Btrieve File Manager
(either the Windows interactive version, wbmanage.exe, or the command line version,
butil.exe). Refer to the appropriate Btrieve installation and operation manual for complete
information about the utility.

Using the Utility
The Map Indexed File utility is executed with the following command:

file-name is the name of the file to be mapped.

DETAIL, if present, requests a more detailed report.

PRINTER, if present, requests a copy of the report to be written to the printer specified
with the environment variable, PRINTER.

Note The argument list may use commas or semicolons to separate the list elements. Zero to
three spaces following a comma or semicolon are ignored.

If the optional information is not specified, you are prompted for file-name, DETAIL, and
PRINTER, as follows:

Indexed File:
Detail Information (y/n)?
Copy to PRINTER (y/n)?

Enter the name of the file to be used in response to the first prompt line. A response of Y to
the second prompt requests detailed information for the file, as described in Detailed
Information Report (on page 592). A response of N requests only the basic information (see
the following topic). When in prompt mode, the user is prompted again after each file report
is processed. To exit the program when in prompt mode, press Enter without typing a name
when prompted for a filename. A response of Y to the third prompt requests a copy of the
report to be written to the printer.

Basic File Information Display
Basic file information is always reported for each existing file entered, without respect to the
presence or absence of the DETAIL option.

 runcobol rmmapinx [A='file-name [,DETAIL][,PRINTER]']

Appendix G: Utilities

 RM/COBOL User's Guide 591

• File status. If the file was created by the Define Indexed File (rmdefinx) utility (see
page 594) and has never been opened for output, a file status line indicating this fact
appears. Also, if this status is indicated, only the disk block size and data and key
compression status (with compression characters) appear. Detail information, described
in the next section, is reported if the detailed report is requested.

• Record length. Record length is reported in one of two formats. For fixed-length
records, it is shown as a specific value:

Records are fixed length = size

size is the actual record size. If variable-length records are defined for the file, this is
shown as a range of values:

Records vary in length from min to max bytes

min and max are the minimum and maximum record lengths.

• Disk block size. Disk block size is the number of bytes actually allocated to one block
on disk.

• User block size. User block size is the number of records or bytes specified by the user
in the FD statement used when creating this file.

• Data compression status. Data compression status may be either compressed or
uncompressed. If compressed, the data space and zero characters also appear.

• Key compression status. Key compression status may be either compressed or
uncompressed. If compressed, the key space character also appears.

• Number of keys. This is the actual number of keys (including the prime key) defined for
the file.

• Number of segments. This is the total number of segments in all keys defined for the
file. If the file has no split keys, the number of segments is equal to the number of keys.

• Number of records. This is the actual number of data records contained in the file.

• Number of blocks. This is the actual number of logical blocks allocated to the file.

• Number of empty blocks. This is the number of unused blocks allocated to the file.

• Number of blocks required for a rewrite. This is the maximum number of empty
blocks required if a rewrite were to relocate the modified record in the file.

• Atomic I/O log. If the file is a version 4 indexed file with atomic I/O enabled, then the
number of atomic I/O log blocks and the atomic I/O log state are reported.

• Key information. See Key Descriptor Information Display (on page 592).

• Last error. This is the last error received when accessing the file. It includes the date
and time the error occurred. Only errors with class of 30, or a class of 98 with a suberror
greater than 2, are remembered.

• Open For Modify Count. This is a count, held in the file, of the number of times the file
is currently open. If this count is not zero, and there are actually no current opens, it is an
indication that the file may be corrupted because of an incomplete close operation.

Appendix G: Utilities

592 RM/COBOL User's Guide

Detailed Information Report
The following information is reported when the detailed report is requested, either by
specifying DETAIL in the command line when invoking the utility, or by responding Y to the
detailed report prompt.

• File version information. The file version number indicates any advanced features used
in the file. The minimum read version number and the minimum write version number
are used to prevent previous versions of RM/COBOL from reading or modifying files
with features unavailable to them. For more information on indexed file version
numbers, see Indexed File Version Levels (on page 253).

• First unused empty block. The first unused empty block will be displayed only for files
with a version number of 2 or greater. It is the block number of an empty block that has
never been used and that is followed only by other unused empty blocks.

• File lock limit. The largest address where a lock may be applied to this file is displayed
only for files with a version number of 3 or greater. See the description of the LARGE-
FILE-LOCK-LIMIT keyword (on page 339) of the RUN-FILES-ATTR configuration
record for more information.

• Disk block increment. Disk block increment is the difference in the disk addresses of
consecutive blocks of the file. It is always greater than or equal to the disk block size.

• Allocation increment. Allocation increment is the number of disk blocks that are
allocated when the file is first created and whenever the file increases in its physically
allocated size.

• Version 4 information. If the file is a version 4 indexed file, then the number of KIB
blocks and duplicate KIB blocks are reported. If the version 4 indexed file has atomic
I/O enabled, then various information related to the atomic I/O log are reported. This
information is generally not useful to the user unless contacting Micro Focus Customer
Care.

• Recoverability/Performance Strategy summary. This is a summary of the
recoverability and performance strategy options, either set by the runtime system when
the file was created, or set when the file was created or modified by the Define Indexed
File (rmdefinx) utility (see page 594).

• Recover1 last run time. If the recover1 utility has ever been run on this file, then the
time and date of the most recent recover1 run are reported.

Key Descriptor Information Display
If the file has been opened for output, the attributes of each key are reported one key segment
per line. The information reported is as follows:

• Key number. The first key is labeled prime, with alternate keys numbered starting
with 1.

• Segment number. The segment number within the key. The first segment of a key is
number 1.

• Starting position. This is the position in the record where the key segment starts. The
leftmost position in a record is position 1.

• Segment length. This is the number of bytes that the key segment occupies in the
record.

Appendix G: Utilities

 RM/COBOL User's Guide 593

• Key length. This is the total number of bytes that the entire key occupies in the record.
It is the sum of the segment lengths of all of the segments of the key. This value is
shown only on the final segment line of a split key since it applies to the entire key.

• Tree height. This is the maximum number of disk accesses that could be required to
locate a record containing the key. Additional disk accesses may be required to read or
modify the record. This value is shown only on the final segment line of a split key since
it applies to the entire key.

• Duplicates permitted. This value is either yes or no. Yes indicates that the key allows
duplicate key values to be present. This value is shown only on the final segment line of
a split key since it applies to the entire key.

Additionally, a blank line is displayed between keys when any of the keys of the file is a split
key. If the file has no split keys, there is one line per key with no intervening blank lines.

Example

Here is sample input to rmmapinx.

Indexed File: file1
Detail Information (y/n)? y
Copy to PRINTER (y/n)? Y
Indexed File: (press ENTER)

Here are the file control entry and file description entry for file1.

SELECT file1 ASSIGN TO DISK "file1"
 ORGANIZATION IS INDEXED
 RECORD KEY f1-prime-key = f1-pkey-s1, f1-pkey-s2
 ALTERNATE RECORD KEY f1-alt-key1 = f1-akey1-s1
 ALTERNATE RECORD KEY f1-alt-key2 = f1-akey2-s1,
 f1-akey2-s2, f1-akey2-s3 WITH DUPLICATES.

FD file1 RECORD CONTAINS 134 CHARACTERS.
01 f1-rec.
 02 f1-pkey-s1 PIC X(30).
 02 f1-akey1-s1 PIC X(3).
 02 f1-akey2-s1 PIC X(10).
 02 data1 PIC X(40).
 02 f1-akey2-s2 PIC X(6).
 02 f1-pkey-s2 PIC X(5).
 02 f1-akey2-s3 PIC X(20).
 02 data2 PIC X(20).

Here is sample output from rmmapinx.

RM/COBOL Map Key Utility - 8.00 03/20/2008 12:59:17 Page 1
File Information:
 file1 is an Indexed File.
 Records are fixed length = 134 Bytes.
 Disk Block Size = 1024 Bytes, User Block Size = not specified.
 Data Records are compressed, Keys are compressed.
 Data Block Space Character Value = 32.
 Data Block Zero Character Value = 48.

Appendix G: Utilities

594 RM/COBOL User's Guide

 Key Block Space Character Value = 32.
 File has 3 Keys and 6 Segments.
 File contains 1 Record and occupies 128 Blocks.
 There are 12 empty Blocks.
 7 empty Blocks may be needed for a Write operation.
 There are 110 Atomic I/O Log Blocks.
 The Atomic I/O log state is 1 (inactive).
 Open For Modify Count = 0.

Detail Information:
 File version number = 4.
 Minimum read version number = 4.
 Minimum write version number = 4.
 First unused empty block = 116.
 File Lock Limit = 2 GB.
 Disk Block Increment Size = 1024 Bytes.
 Allocation Increment = 8 Blocks.
 There is 1 KIB block and 1 duplicate KIB block.
 There is 1 Log Map block and 109 Log Area blocks.
 Atomic I/O Log Overhead Blocks:
 First map = 1, First log = 2,
 First used = 2, Next available = 2,
 First duplicate KIB = 111.
 Log blocks per operation = 93.
 Log Operation Numbers: First = 1, Next = 1.
 Recoverability/Performance Strategy:
 Data and Index blocks are logged and forced to disk during
 each update.
 Force Write Data Blocks = No.
 Force Write Index Blocks = No.
 Force to Disk = No.
 Force File Closed = No.
 Atomic I/O Enabled = Yes.
 Recover1 was last run on this file at 17:34:45 on 03/20/2008.

Key Information:
 Key Segment Starting Segment Key Tree Duplicates
 Number Number Position Length Length Height Permitted?
 Prime 1 1 30
 Prime 2 90 5 35 1 No

 1 1 31 3 3 1 No

 2 1 34 10
 2 2 84 6
 2 3 95 20 36 1 Yes

Define Indexed File (rmdefinx) Utility
The rmdefinx utility pre-creates an indexed file in order to alter the default characteristics
assigned by RM/COBOL programs. The utility also can modify some of those characteristics
on files created by RM/COBOL programs.

rmdefinx.cob is required to use the Define Indexed File utility. The file is delivered in
object form.

Appendix G: Utilities

 RM/COBOL User's Guide 595

Note In order to pre-create a Btrieve file, use the Btrieve File Manager (either the Windows
interactive version, wbmanage.exe, or the command line version, butil.exe). Refer to the
appropriate Btrieve installation and operation manual for complete information about the
utility.

Using the Utility
The Define Indexed File utility is executed by issuing the following command:

file-name is the name of the file to be defined or altered.

CONVERT4, if present, requests that rmdefinx be run in batch mode (that is, no
interactive questions) to convert file-name to indexed file version 4. For more
information, see File Version Level 4 (on page 254).

ATOMICIO, if present, requests that rmdefinx be run in batch mode to enable atomic
I/O on file-name. ATOMICIO implies CONVERT4 if the indexed file is currently less
than file version 4. Specifying CONVERT4 without specifying ATOMICIO disables
atomic I/O.

RECOVER1, if present, requests that recover1 be run on the indexed file after rmdefinx
has altered it. This is the default behavior if rmdefinx is run in batch mode (that is, if
CONVERT4 or ATOMICIO is specified).

NORECOVER1, if present, requests that recover1 not be run on the indexed file after
rmdefinx has altered it. This might be used with CONVERT4 or ATOMICIO if the user
wants to run recover1 a special way or wants to run recover1 to do the conversion after
all of the files have been marked for conversion by rmdefinx.

Note The argument list may use commas or semicolons to separate the list elements. Zero to
three spaces following a comma or semicolon are ignored.

You may omit the argument list. In this case, the program prompts for file-name in the
following manner:

Indexed File:

The name of the file to be used is supplied in response to this prompt.

You may wish to run rmdefinx in batch mode (by specifying CONVERT4 and/or
ATOMICIO) in order to convert a large number of indexed files to file version 4. To do so,
you must construct a batch stream or command script that runs rmdefinx on each file to be
converted. Be certain that you have a current backup of all files being converted. The
rmdefinx utility automatically runs the recover1 utility and terminates with exit code 1 if any
error occurs. Also, note that the recover1 utility, as well as runcobol and rmdefinx, must be
specified in your PATH environment variable. The following general example could be used
on Windows via the Command Prompt (that is, MS-DOS Prompt) box:

start /w runcobol rmdefinx a="d:\dat\file1,convert4"
if errorlevel 1 echo "error on file1" >>errlog
start /w runcobol rmdefinx a="d:\dat\file2,convert4"
if errorlevel 1 echo "error on file2" >>errlog

runcobol rmdefinx [A='file-name [,CONVERT4] [,ATOMICIO]
 [,[NO]RECOVER1]']

Appendix G: Utilities

596 RM/COBOL User's Guide

start /w runcobol rmdefinx a="d:\dat\file3,convert4"
if errorlevel 1 echo "error on file3" >>errlog
 . . .
start /w runcobol rmdefinx a="d:\dat\file<n>,convert4"
if errorlevel 1 echo "error on file<n>" >>errlog

File Pre-creation

The following prompts are issued when a file is being pre-created:

Disk Block Size (in bytes):
Disk Block Increment (in bytes):
Allocation Increment (in blocks):

These queries deal with the manner in which space is allocated and used in the file. Disk
block size is the actual number of bytes used in each physical block. A physical block size is
indicated by the disk block increment size. These two sizes should be identical. The number
of blocks allocated each time more space is required in the file is controlled by the allocation
increment.

The next prompt is as follows:

Data Compression (y/n)?

This controls the amount of space taken up by logical records in the file. If you want logical
records to be stored without compression, enter N. Otherwise, enter Y, and then respond to
the following two prompts:

Space Character Value:
Zero Character Value:

These control the manner in which data compression takes place. Respond with the decimal
value of the characters to be interpreted by the compression algorithm as a space and a zero.
For example, the ASCII space and zero have decimal values of 32 and 48, respectively; the
EBCDIC space and zero have decimal values of 64 and 240, respectively.

The next two prompts are as follows:

Key Compression (y/n)?
Space Character Value:

These queries control key compression in a manner similar to data compression, except that
only trailing spaces are compressed.

The next prompts are as follows:

Force Write Data Blocks (y/n)?
Force Write Index Blocks (y/n)?
Force to Disk (y/n)?
Force File Closed (y/n)?

These prompts determine recoverability/performance strategies for the file being processed.
To select a strategy option, enter Y in response to the appropriate prompt. To omit a strategy
option, enter N. See the discussion of data recoverability (on page 242) of indexed files in
Chapter 8: RM/COBOL Features.

Appendix G: Utilities

 RM/COBOL User's Guide 597

The next prompt is as follows:

Version number (0, 2, 3, or 4)? 4

This prompt sets the version number of the file. Valid version numbers are shown in the
following chart.

Feature

Version
Number 0

Version
Number 2

Version
Number 3

Version
Number 4

Improved Empty Block List
Algorithm

  

Use LARGE-FILE-LOCK-LIMIT

 

Block underfoot, duplicate KIB,
atomic I/O



The next prompt is as follows:

Enable Atomic I/O (y/n)?

This prompt is shown only if the file version number has been set to 4. The default (Y)
allows support for the atomic I/O capability, which provides for more reliable indexed files.

The next prompt is as follows:

File Lock Limit (in GB)?

This prompt is shown only if the file version number has been set to 3 or 4. It allows you to
specify the location of the largest lock to be placed on this file. For more information, see the
descriptions of the LARGE-FILE-LOCK-LIMIT keyword (on page 339) of the RUN-FILES-
ATTR configuration record and the DEFAULT-FILE-VERSION-NUMBER (on page 342)
keyword of the RUN-INDEX-FILES configuration record.

File Modification

When the file specified already exists, the utility allows you to change the allocation
increment, described previously, and offers you the option to alter the key compression, the
recoverability/performance strategy, the file version number, and the file lock limit.

The prompt to change the key compression is as follows:

Change key compression (y/n)?

If you enter Y, you are prompted for whether the key compression should be enabled and for
the value of the key compression space character, as described on the previous page. If the
key compression or the key compression space character is changed, the file is marked as
needing recovery. After you run the Indexed File Recovery (recover1) utility (see page 599),
the indexed trees are built with the requested key compression. If the current key
compression and key compression space character are unchanged, you are not forced to
recover the index structure.

The prompt to change the recoverability or performance strategy is as follows:

Change Recoverability/Performance Strategy (y/n)?

Appendix G: Utilities

598 RM/COBOL User's Guide

If you enter Y, you are prompted for the four options discussed previously. If you enter N,
the strategy is unchanged.

The prompt to change the file version number is as follows:

Change file version number (y/n)?

If you enter Y, you are prompted for the file version number discussed on page 597. If you
specify the file version number as 3, you are prompted for the file lock limit. If you specify
the file version as 4, you are prompted for whether to enable atomic I/O and then for the file
lock limit. If the version number is changed from 0 to another version, or changed from
another version to 0, the file is marked as needing recovery, and the Indexed File Recovery
(recover1) utility must be run before the file can be used. After you run the Indexed File
Recovery (recover1) utility, the empty block list is built with the correct algorithm. If the file
version number is unchanged, you are not forced to recover the empty block list.

Similarly, if you change the version number to 4 from another version or from 4 to another
version, the file is marked as needing recovery, and the Indexed File Recovery (recover1)
utility must be run before the file can be used.

If you attempt to change the file version number to 0 of a file that contains split keys or
duplicate prime keys, a message is displayed indicating that you cannot do so; files using
these features cannot be converted to version number 0 files. Also, files with a version
number of 3 may have grown too large to be changed back to version 0 or 2. For more
information on indexed file version numbers, see Indexed File Version Levels (on page 253).

After all questions have been answered, the following prompt appears:

OK (y/n)?

If you enter Y, the file is updated and the program either terminates (if a filename was
specified on the command line) or prompts you for another filename.

When the file specified already exists, the utility attempts to lock the file at the file’s currently
set File Lock Limit value. If this lock attempt fails, the following message and prompt are
displayed:

File lock attempt at n GB failed, possibly because
 this limit is too large for this system.
If you want to continue with the file NOT LOCKED,
 make certain nobody else has it open!
Continue (y/n)?

If you enter Y, the utility displays the normal file modification prompts. You should enter a
new File Lock Limit value, as described above, that is valid for the system on which you are
running. If you enter N, the utility terminates with a “Lock Error 30” error message.

After rmdefinx has successfully altered the file, you are prompted to run recover1 now if any
changes you made require recover1 to be run. The prompt is as follows:

Do you want to run recover1 now (y/n)?

If you enter Y, rmdefinx runs recover1 and then displays a success or failure message. The
recover1 drop file argument is specified as r1-drop, which will be created in the current
directory. The rmdefinx utility terminates with exit code 1 if the recover1 utility fails. You
must not run rmdefinx a second time on a file that rmdefinx told you to run recover1 on
without running the intervening recover1.

Appendix G: Utilities

 RM/COBOL User's Guide 599

Note The rmdefinx utility does not cause the file to “exist” in the COBOL sense. An OPEN
OUTPUT (or OPEN I-O or EXTEND if SELECT OPTIONAL is used) must be successfully
executed before other open modes become valid.

Example

Here is sample input to rmdefinx.

Indexed File: file1
New File.
Disk Block Size (in bytes): 1024
Disk Block Increment (in bytes): 1024
Allocation Increment (in blocks): 10
Data Compression (y/n)? n
Key Compression (y/n)? n
Define Recoverability/Performance Strategy
 Force Write Data Blocks (y/n)? y
 Force Write Index Blocks (y/n)? y
 Force to Disk (y/n)? y
 Force File Closed (y/n)? y
Set file version number
 Version number (0,2,3, or 4)? 4
 Enable Atomic I/O (y/n)? y
 File Lock Limit (in GB)? 2
OK (y/n)? y

Indexed File Recovery (recover1) Utility
The recover1 utility recovers data stored in an RM/COBOL indexed file . It is a standalone
program; that is, it does not require use of the Runtime Command (runcobol) to be executed.
The recover1 utility is also used by (or run after) the rmdefinx utility to convert an indexed
file between some file versions or to change other fixed file attributes.

Notes

• In order to recover data stored in a Btrieve file, use the Btrieve File Manager (either the
Windows interactive version, wbmanage.exe, or the command line version, butil.exe).
Refer to the appropriate Btrieve installation and operation manual for complete
information about the utility.

• Unless specifically stated otherwise, the name recover1 refers to both the UNIX
(recover1) and Windows (recover1.exe) versions of the recover1 program.

• If the output window of the Windows version of the recover1 program disappears upon
successful completion and you want that window to remain visible, set the Persistent
property (see page 79) to True for the recover1.exe program.

• The recover1 utility does not use the environment variable RUNPATH to locate files.
For more information, see Locating RM/COBOL Files on UNIX (on page 21) and
Locating RM/COBOL Files on Windows (on page 62).

Appendix G: Utilities

600 RM/COBOL User's Guide

Recovery Command
The Indexed File Recovery (recover1) utility is executed by issuing the following command:

indexed-file is the filename of the indexed file to be recovered. The name is not resolved
through any environment variables.

drop-file is the name of the file where recover1 places any unrecoverable records found
in the indexed file, as discussed in Recovery Process Description (on page 603). If
drop-file specifies an environment variable name, the environment variable value will
be resolved before opening the dropped record file.

option is zero or more command line options, as described in the following section.
Options are specified with letters that must be preceded with a hyphen (-) or a slash (/).
Option letters may be specified in uppercase or lowercase. Certain option letters allow an
optional pathname as part of the option format. The presence or absence of the pathname
is determined by whether or not the next non-white space character following the option
letter is a hyphen or slash, whichever one was used preceding the option letter.

Note The option introducer character slash is supported for Windows compatibility and
should not be used on UNIX, where it can be confused with an absolute pathname; that
is, a pathname that begins with a slash. Nevertheless, either the hyphen or the slash may
be used to introduce option letters on Windows and UNIX. In the option formats given
in this document, only the hyphen is shown, but the hyphen may be replaced with a slash.

WARNING Because of several changes introduced in the RM/COBOL 7.5 runtime system,
it is possible that an indexed file created by performing an OPEN OUTPUT in a COBOL
program using the RM/COBOL 7.5 or later runtime system may have a different block size
than a file you are attempting to recover. This may happen even though you specify the same
file control entry and file description entry for the template file as when you initially created
the file with an earlier version of RM/COBOL. Attempting to use this new file with a
different block size as a template file may result in a loss of a large percentage of the
recoverable records. You should verify that the block size of your template file is correct by
using the Map Indexed File (rmmapinx) utility (see page 590). You can also avoid this
problem by creating the template file with a version of RM/COBOL prior to 7.5 or by using a
backup copy of the undamaged file. The MINIMUM-BLOCK-SIZE keyword (see page 344)
and ROUND-TO-NICE-BLOCK-SIZE keyword (see page 344) of the RUN-INDEX-FILES
configuration record may also be used to cause the runtime to create a file with a block size
that matches releases prior to 7.5.

Recovery Command Options

Recovery Command options can be specified in either of the following two ways:

1. Depending on the operating system, they can be placed into the Windows registry (see
page 67) or the UNIX resource file (see page 25).

• In the Windows registry, the Command Line Options property (see page 74)
provides command line options for the Indexed File Recovery utility when Recovery
is selected on the Select File tab of the RM/COBOL Properties dialog box.

recover1 indexed-file drop-file [options] ...

Appendix G: Utilities

 RM/COBOL User's Guide 601

• In the UNIX resource file, the Options keyword, described in Command Line
Options (on page 26), provides command line options for the Indexed File Recovery
utility in the global resource file /etc/default/recover1rc and the local resource file
~/.recover1rc.

2. They can be specified in the Recovery Command itself.

The following options may be specified to modify the behavior of the Indexed File Recovery
(recover1) utility.

I Use the I option to cause recover1 to test only the file integrity and then stop.
The file will not be modified in any way. Specifying the I option causes both
the T and Z options to be ignored. If no problems are discovered, the exit code
is set to 0. If a problem is discovered, the exit code is set to 1. The I option has
the following format:

-I

The default is for recover1 to do a complete recovery of the indexed file if the file is
marked as needing recovery. See the Y and Z options in this topic for additional
options that modify the behavior of the Indexed File Recovery utility.

Note The integrity scan is a quick test of the file and is not comprehensive. Some
problems, such as records with invalid duplicate keys, will not be detected. Indexed
files with no errors detected by the integrity scan may still receive “98” errors or
other I/O errors.

K Use the K option to indicate that the Key Information Block (KIB) should be
assumed to be invalid and, optionally, to specify a template file for recovering
the KIB. The K option has the following format:

-K [template-file]

If no template-file is specified, the user will be prompted either for a template file or
for enough information to rebuild the KIB. If template-file is specified, it should be
the name of a valid indexed file with the same format as the file being recovered.
This file will be used as a template. The required KIB information is read from the
KIB of the template file. The template file can be a backup copy of the file being
recovered, if the backup occurred before the file was damaged, or, it can be a file
created by performing an OPEN OUTPUT in a COBOL program with the proper file
control entry and file description entry for the file being recovered. An OPEN
OUTPUT must have been performed on the template file, but it need not contain any
records. A template file must be specified if the KIB is corrupt and the file uses
either an enumerated code set or an enumerated collating sequence. The default is to
check the KIB for validity and, if it is found to be invalid, prompt for either a
template file or information to rebuild the KIB. The name of the template file is not
resolved through any environment variables.

WARNING A template file with the wrong block size can cause the loss of a large
percentage of the recoverable records in your file. This can happen because of
changes introduced in RM/COBOL version 7.5 in the method used by the runtime
system for calculating the block size. For additional information, see the warning
that is noted in Recovery Command (on page 600).

L Use the L option to write information about errors encountered while recovering
the file to a log file. The L option has the following format:

Appendix G: Utilities

602 RM/COBOL User's Guide

-L [log-file]

Only the first 100 errors will be logged. In addition to errors, a number of
informational lines about the indexed file and its recovery are written to the log file,
including information about sort memory (see the M option regarding sort memory).
If log-file specifies an environment variable name, the environment variable value
will be resolved before opening the log file; this allows the use of the name
PRINTER to send the log information to the print device. If log-file is omitted in the
L option, the default value of log-file is PRINTER. If the L option is not specified,
the default is not to write a log file.

Note Environment variables can be set using synonyms set in the Windows registry
(see page 67) or the UNIX resource file (see page 25).

M Use the M option to specify the number of megabytes of memory to allocate to
the sort algorithm used in phase 4, build node blocks (see page 604). The M
option has the following format:

-M [MB-of-memory]

where MB-of memory is a number in the range 0 to 2000. Allocating more memory
generally results in faster execution of recover1 and causes fewer node blocks to be
built. If this option is not specified, a suitable number will be computed; in this case,
sort memory is limited to no more than 40 million bytes. When a log file is written
(see the L option), a line is written into the log file to show the maximum effective

sort-memory size. If the M option is specified without a number of megabytes, the
default value of 50 is used.

Note Specifying a number for MB-of-memory that is too large for your system may
result in very poor system performance.

P Use the P Option to specify the Persistent property on Windows. The Persistent
property controls whether the recover1 window persists after recover1
terminates. The topic Persistent Property (see page 79) has additional
information about the property meaning.

The P Option for recover1 has the following format:

-P

Unlike the Runtime Command Option P, the recover1 P option may not specify a
value. For recover1, the P option is used to turn on the Persistent property
temporarily for the invocation of recover1 that specifies the option. The P option is
for Windows only; for the Unix recover1 the P option is neither valid nor
meaningful.

The Persistent property value stored in the registry for RM/COBOL on Windows can
be changed with the RMCONFIG utility (see page 614). The P Option allows a
convenient way to temporarily set the Persistent property to True without the need to
run the utility. It is usually important to the user to view the results displayed on the
final recover1 screen; thus, specifying the P option for recover1 on Windows or
setting recover1’s Persistent property value to True with RMCONFIG is highly
recommended.

Q Use the Q option to cause recover1 to perform its work without displaying
information or asking the operator questions. The Q option has the following
format:

Appendix G: Utilities

 RM/COBOL User's Guide 603

-Q

If the file is marked as needing recovery, or has a non-zero Open For Modify Count,
as discussed in Basic File Information Display (on page 590), then it will be
recovered. Otherwise, no action occurs. This behavior can be modified by using the
Y option. The default is to display information and ask questions, which must be
answered by the operator.

T Use the T option to indicate that unused space should be truncated and returned
to the operating system. The T option has the following format:

-T

Specifying the T option will result in a minimal size indexed file, but may reduce
performance if records are subsequently added to the indexed file. The default is not
to truncate the file. When the file is not truncated, any empty blocks remain part of
the file and are available for use in adding new records to the file.

Note Some versions of UNIX do not support the operating system call required to
truncate a file.

Y Use the Y option to cause recover1 to assume that the operator wants to answer
“y” to all possible questions and therefore not stop to wait for a response. The Y
option has the following format:

-Y

Using the Y option will cause a file to be recovered even if it is not marked for
recovery, including the case of when the Q option is also specified. The default is to
wait for a response from the operator after a question is displayed.

Z Use the Z option to reset the Open For Modify Count to zero, as discussed in
Basic File Information Display (on page 590), without performing a full
recovery. The Z option has the following format:

-Z

If the file is marked as needing recovery, the Z option is ignored. The default is to
treat a non-zero Open For Modify Count as indicating that the file needs recovery.

Note Use the Z option with caution. Resetting the Open For Modify Count to zero
without performing a full recovery may leave the file in a corrupted state.

Recovery Process Description
If the recover1 program is successful, the exit code is set to 0. If the recover1 program is
canceled by the operator, the exit code is set to 2. Otherwise, the exit code is set to 1.

You may produce a list of the support modules loaded by the recover1 program by defining
the environment variable RM_DYNAMIC_LIBRARY_TRACE. The listing will indicate
which Terminal Interface support module is used and whether the Automatic Configuration
File (see page 290) module is present. This information is most helpful when attempting to
diagnose a problem with support modules.

Appendix G: Utilities

604 RM/COBOL User's Guide

Note The information will be visible only if you enter the recover1 command without any
parameters. In this case, recover1 will show the proper form for the command and the list of
support modules.

The recover1 program attempts to recover the indexed file in place; that is, the program
rebuilds the internal file structure in the actual file being recovered. If necessary, the Key
Information Block (KIB) is rebuilt and any corrupted data blocks are repaired. Corrupt data
blocks may result in loss of some data records. Because of this feature, it is strongly
recommended that you either backup the file or copy the indexed file to be recovered to some
other directory or pathname as additional security. Any records that cannot be successfully
reindexed into the file due to invalid duplicate key values, or invalid record sizes, are
decompressed (if compression is selected for the file), converted to the native code set, and
then written to drop-file. recover1 should be able to handle most kinds of indexed file
corruption problems, but some fatal errors may still cause the recovery to fail. Any fatal error
is displayed and causes the program to terminate. Broken hardware should be suspected in
many of these cases.

drop-file can be in fixed- or variable-length format; this is set by recover1 based on whether
indexed-file is fixed- or variable-length format. Records placed in drop-file were those
undergoing change at the time of the system failure that required recovery or have invalid
record sizes. Investigate any records appearing in drop-file and make the appropriate
corrections to indexed-file.

The recover1 program’s processing consists of up to four separate phases, which are run in
the following order:

1. Integrity Scan. If the Q option or Y option is specified, the Integrity Scan phase is
disregarded unless it is forced to occur by the specification of the I option or L option.
This phase reads the entire file in a forward direction checking for simple errors, and
produces a summary report showing the state of the file and an estimate of the number of
records recover1 can recover. The indexed file is not modified during this phase.

2. Repair Blocks. The Repair Blocks phase, which is always run, reads and writes the file
in a backward direction repairing corrupt data blocks, converting non-data blocks to
empty blocks, and rebuilding some internal file structures.

3. Move Data Blocks. The Move Data Blocks phase is run only when the truncate file
option (T) is specified. This phase reads and writes parts of the file moving high-
numbered data blocks (near the end of the file) to lower-numbered available blocks to
maximize the amount of space at the end of the file that can be truncated and returned to
the operating system when recover1 finishes.

4. Build Node Blocks. The Build Node Blocks phase, which is always run, reads data
blocks and writes node blocks in the file in a forward direction, rebuilding the entire node
structure for each key of the file.

Notes

• After the Integrity Scan phase, if the Estimated Recoverable records value is zero or very
low, and the number of corrupt data blocks is very close to the total number of data
blocks found, the number of keys that allow duplicates may be incorrect, either because
the KIB is corrupt or the user provided incorrect key information to recover1.

• After the Integrity Scan phase, if most of the blocks are invalid, the Disk Block Size or
the Disk Block Increment may have been incorrectly specified or the KIB may be
corrupt.

• During the Repair Blocks phase, a count of blocks that could be read but not written may
be displayed. This count may indicate the presence of a hardware problem with your
disk.

Appendix G: Utilities

 RM/COBOL User's Guide 605

Recovery Support Module Version Errors
During initialization, the recovery utility locates and loads various support modules, including
the Automatic Configuration File module, and, on UNIX, either the terminfo or the termcap
Terminal Interface support module. Also, at initialization, the recovery utility verifies that
each support module is the correct version for the recovery utility. If a support module is not
the correct version, the following message is displayed:

RM/COBOL: module-name version mismatch, expected 12.0n.nn,
 found n.nn.nn.

When the previous message is displayed, the recovery utility terminates with the following
message:

Recover1: Error invoking mismatched recover1 and support module.

Recovery Example
An example run through the Indexed File Recovery utility is described in Figure 44 through
Figure 47. The recovery session is started in this example by the following command:

recover1 master.inx dropout1

Figure 44 shows information about the file master.inx.

Under the name of the file to be recovered, a description of the state of the file is displayed.
Any of the following messages may appear:

• This file has not been marked as needing recovery!

• The Open For Modify Count for this file is not zero: count

• File has been marked as corrupted due to a previous error.

• KIB is corrupt. Using template file: template-file

• KIB is corrupt. Enter a template filename (press Enter for manual entry).

WARNING Because of several changes introduced in the RM/COBOL 7.5 runtime system,
it is possible that an indexed file created by performing an OPEN OUTPUT in a COBOL
program using the RM/COBOL 7.5 or later runtime system may have a different block size
than a file you are attempting to recover. This may happen even though you specify the same
file control entry and file description entry for the template file as when you initially created
the file with an earlier version of RM/COBOL. Attempting to use this new file with a
different block size as a template file may result in a loss of a large percentage of the
recoverable records. You should verify that the block size of your template file is correct by
using the Map Indexed File (rmmapinx) utility (see page 590). You can also avoid this
problem by creating the template file with a version of RM/COBOL prior to 7.5 or by using a
backup copy of the undamaged file. The MINIMUM-BLOCK-SIZE keyword (see page 344)
and ROUND-TO-NICE-BLOCK-SIZE keyword (see page 344) of the RUN-INDEX-FILES
configuration record may also be used to cause the runtime to create a file with a block size
that matches releases prior to 7.5.

If the KIB is corrupt, and a template filename is not entered, recover1 will prompt the user
for the required KIB information before continuing.

Appendix G: Utilities

606 RM/COBOL User's Guide

If more keys exist than can appear on this screen, as many as possible appear, after which you
are asked if you want to see the remaining key descriptors. This continues until all keys are
shown. You are then asked to verify that this is the file you want to recover. Entering N
terminates the program. Entering Y continues the program.

Figure 44: Indexed File Recovery Utility: File Recovery Verification

Indexed File Recovery Utility
Recover1 Version 12.0n.00

Indexed File: master.inx
This file has not been marked as needing recovery!

Disk Block Size: 1024 Minimum Record Length: 80
Disk Block Increment: 1024 Maximum Record Length: 80
Number of Index Blocks: 170 Number of Records: 150

 Key Position Size Remarks
 PRIME 1 8
 1 9 8
 2 17 8 duplicates allowed

Is this the file you wish to recover (y/n)?

Figure 45 shows a summary of the information that is gathered during the file integrity scan.
You are then asked if you would like to proceed with the recovery process. Entering N
terminates the program. Entering Y continues the program.

The “Average record length” is computed by adding the length of all the records in the file
and dividing by the number of records. The “Average data size” is computed by adding the
size that the record actually occupies in the file and dividing by the number of records. This
size allows you to determine how much your data can be compressed.

Appendix G: Utilities

 RM/COBOL User's Guide 607

Figure 45: Indexed File Recovery Utility: recover1 Summary

Indexed File Recovery Utility
Recover1 Version 12.0n.00

Indexed File: master.inx
Drop File: dropout1
This file has not been marked as needing recovery!

Disk Block Size: 1024 Minimum Record Length: 80
Disk Block Increment: 1024 Maximum Record Length: 80
Number of Index Blocks: 170 Number of Records: 150
Phase: Integrity Scan Estimated Recoverable: 150

 | Total | Total | First | Last |
Block Type | Found | Corrupt | Corrupt | Corrupt |
 KIB | 1 | 0 | | |
 Data | 102 | 0 | | |
 Node | 61 | 0 | | |
 Empty | 6 | 0 | | |
 Invalid | 0 | 0 | | |
 Unreadable | 0 | 0 | | |

Average data size: 14, Average record length: 80

Do you wish to proceed with recovery (y/n)?

Figure 46 shows the information that is displayed while recover1 is rebuilding the node
blocks for the prime key.

Figure 46: Indexed File Recovery Utility: recover1 Statistics

Indexed File Recovery Utility
Recover1 Version 12.0n.00

Indexed File: master.inx
Drop File: dropout1
This file has not been marked as needing recovery!

Disk Block Size: 1024 Minimum Record Length: 80
Disk Block Increment: 1024 Maximum Record Length: 80
Number of Index Blocks: 170 Number of Records: 150
Phase: Build Node Blocks Estimated Recoverable: 150

Key being processed: PRIME
Records recovered: 100
Records written to drop file:
Block being processed: 13
Number of data blocks moved (for truncate): 5

Figure 47 shows the information that is displayed after recover1 terminates successfully. The
two lines regarding truncation are shown only when the T option is specified.

Appendix G: Utilities

608 RM/COBOL User's Guide

Figure 47: Indexed File Recovery Utility: recover1 Finished Successfully

Indexed File Recovery Utility
Recover1 Version 12.0n.00

Indexed File: master.inx
Drop File: dropped
This file has not been marked as needing recovery!

Disk Block Size: 1024 Minimum Record Length: 126
Disk Block Increment: 1024 Maximum Record Length: 126
Number of Index Blocks: 120 Number of Records: 100
Phase: Build Node Blocks Estimated Recoverable: 100

Key being processed: PRIME
Records recovered: 100
Records written to drop file:
Block being processed: 120
Truncate option specified - number of data blocks moved: 4
Truncate action successful - new Number of Index Blocks: 112

Recovery successful.

In the example shown in Figure 48, the KIB of the file has been corrupted, and key
information must be entered for the file to be recovered. Key information can be obtained
from the output of the Map Indexed File (rmmapinx) utility (see page 590). Underlined
characters have been entered by the user.

The recovery session is started by the following command:

recover1 master.inx dropout1 -k

Note Entering incorrect information about how many keys, or which keys, can have duplicate
values may cause unpredictable results.

Figure 48: Indexed File Recovery Utility: Entering Key Information

Indexed File Recovery Utility
Recover1 Version 12.0n.00

Indexed File: master.inx

Last error was 98,38 at 9:29 on 03-21-2008

Are any of the keys in this file segmented (split) (y/n)? y
Key #: PRIME Segment #: 2 Starting Position? 10 Length? 5
 Another Segment (y/n)? n
 Total Key Length = 13 Duplicates Permitted (y/n)? n
Another Key (y/n)? n

Figure 49 shows an example of entering the remainder of the KIB information. Underlined
characters have been entered by the user.

Appendix G: Utilities

 RM/COBOL User's Guide 609

Figure 49: Indexed File Recovery Utility: Entering KIB Information

Indexed File Recovery Utility

Recover1 Version 12.0n.00
Indexed File: master.inx

Last error was 98,38 at 9:29 on 03-21-2008
Minimum Record Length (in bytes)? 80

Maximum Record Length (in bytes)? 80

Disk Block Size (in bytes)? 1024

User Block Size (1=none/2=in bytes/3=in records)? 1
Data Compression (y/n)? y Space Character Value? 32 Zero Character Value? 48

Key Compression (y/n)? y Space Character Value? 32

File Version Number (0/2/3/4)? 4 Atomic I/O Enabled (y/n) y

File Lock Limit (in GB)? 2
Disk Block Increment (in bytes)? 1024

Allocation Increment (in blocks)? 8

Force Write Data Blocks (y/n)? n Force Write Index Blocks (y/n)? n

Force to Disk (y/n)? n Force File Closed (y/n)? n
Code Set (1=none/2=ASCII/3=EBCDIC)? 1

Collating Sequence (1=none/2=ASCII/3=EBCDIC)? 1

Is this information correct (proceed with recovery) (y/n)? y

After the key and KIB information has been successfully entered, the recovery process
proceeds the same as before, beginning with Figure 44, as illustrated on page 606. If a
template file had been specified on the command line or a template filename had been entered
when prompted, the screens prompting for the key and KIB information would not have been
displayed. A template file must be specified if the KIB is corrupt and the file uses either an
enumerated code set or an enumerated collating sequence.

Recovery Program Error Messages

Error status initializing file manager
recover1 was unable to initialize the RM/COBOL file management system for the reason
indicated by status. The usual cause for this error is that a buffer pool has been configured
that is too large to be allocated. See the BUFFER-POOL-SIZE keyword (on page 336) of the
RUN-FILES-ATTR configuration record for instructions on changing the buffer pool size.

Truncate option not supported
recover1 detected that the truncated function was not supported on the system when the user
requested file truncation. Truncation of the file is not possible.

recovery terminating - no records recoverable!
recover1 detected corruption in the indexed file and no records could be recovered. In this
case, recover1 terminates at the end of the integrity scan to protect the user from erroneously
deleting all the records from the file. This error may indicate that the block size, the block
size increment, or the number of keys that allow duplicates has been incorrectly specified, or
the KIB may be corrupt.

Appendix G: Utilities

610 RM/COBOL User's Guide

Error status on template file
recover 1 detected an error in the KIB of the template file specified by the user. The user
may enter another template file, may enter the KIB information manually, or may enter a Ctrl-
C to terminate recover 1.

Cannot write near end of file - check "ulimit"
recover1 detected that blocks near the end of the file can be read but not written, but other
blocks of the file may be both read and written. This error may indicate that the operating
system file size limit (ulimit) may be smaller than the size of the file. Set the file size limit
correctly or use an account with sufficient privileges and run recover1 again.

Standalone Use of the Recover2 Program
The recover2 utility program can be used to unload an indexed file to a sequential file. The
recover2 program is no longer needed to recover indexed files. It is invoked by entering the
command:

file-1 is the filename of the indexed file to be unloaded. recover2 does not use the
directory search sequence to locate file-1.

file-2 is the filename of the sequential file into which recover2 unloads the indexed file
records. This file is called the unload file.

option can be either SUB or NOSUB, depending on whether or not you want recover2 to
trust the overhead information in the file. NOSUB indicates that the overhead
information in the indexed file (record size, block size, and so forth) is correct and can be
used to unload the file. SUB indicates that the overhead information may not be correct
and needs to be verified and possibly altered. The overhead information appears and you
are given the opportunity to alter the information before the processing of the file begins.
You must enter the value for the “Number of Keys that allow Duplicates”, as described in
Basic File Information Display (on page 590).

file-1, file-2 and option can be omitted, and recover2 prompts you for a value.

For example, entering the command:

runcobol recover2 K A='file-1, option'

causes recover2 to prompt you for the file-2 filename. Entering the command:

runcobol recover2 K A='file-1, file-2'

causes recover2 to prompt you for the option to use.

recover2 also produces a log duplicating the overhead information appearing on the screen to
the printer specified with the environment variable, PRINTER.

If an error occurs, recover2 displays a message, then continues to attempt to recover the file.
The exit code is set to 1.

 runcobol recover2 K [A='file-1 [,[file-2] [,option]']

Appendix G: Utilities

 RM/COBOL User's Guide 611

If no errors occur, the recovery is successful and the exit code is set to 0.

Figure 50 shows the main screen associated with the data unload program (recover2). In the
first attempt, the NOSUB option is specified and all of the fields shown are filled in by the
program. If the file cannot be unloaded with the NOSUB option, an error message is
displayed and a second attempt is made with the SUB option specified, causing recover2 to
prompt you for the values by first displaying what is in the file. To select the displayed value,
press Enter or Tab. Otherwise, type a new value and press Enter.

Note When using the SUB option, the value for the number of keys that allow duplicates
must be entered by the user since there is no default.

Figure 50: Indexed File Recovery Utility: recover2 Main Screen

Copy all data records to dropped record file

Indexed File: master.inx
 Drop File: drop
 Option: nosub

 Disk Block Size: 498 Maximum Record Length: 80
Disk Block Increment: 498 Minimum Record Length: 80
 Number of Keys that allow Duplicates: 1
Data Record Compression (y/n)? Y
 SPACE Character Value: 32
 ZERO Character Value: 48
Records Written to Drop File:
 Block being Processed: 8

Figure 51 shows the OK prompt you see during the second attempt. Responding N to this
prompt causes the program to restart the prompts for file information. Responding Y
indicates that secondary data recovery should start.

Appendix G: Utilities

612 RM/COBOL User's Guide

Figure 51: Indexed File Recovery Utility: Secondary Recovery

Copy all data records to dropped record file

Indexed File: master.inx
 Drop File: drop
 Option: sub

 Disk Block Size: 498 Maximum Record Length: 80
Disk Block Increment: 498 Minimum Record Length: 80
 Number of Keys that allow Duplicates: 1
Data Record Compression (y/n)? Y
 SPACE Character Value: 32
 ZERO Character Value: 48
Record Written to Drop File:
 Block being Processed:
OK (y/n)?

Recover2 Program Error Messages

File: index-filename - Open Error status.
recover2 was unable to open the indexed file for the reason indicated by status. The
execution of recover2 terminates.

File: index-filename - Input Error status.
recover2 encountered the error indicated by status while reading the indexed file. If the
NOSUB option was chosen, execution terminates. If the SUB option was chosen, the
operator is given the option to continue execution.

File: index-filename - Premature end of file encountered.
recover2 encountered the end of file in an unexpected place while reading the indexed file,
and recover2 may reasonably recover. If the SUB option was chosen, the operator may be
given the option to continue. Otherwise, execution terminates.

File: index-filename - File has never been opened for output.
The indexed file has never been opened for output and therefore cannot contain any data
records.

File: index-filename - may not be an Indexed file.
The overhead structures in the indexed file are not consistent. If the NOSUB option was
chosen, execution terminates. If the SUB option was chosen, the operator may continue
execution. Values that appear for block size and record size should be carefully verified.

File: index-filename - Block Size is too big for recover2 program.
The block size specified is larger than 65280 bytes, which is the largest block size supported
by recover2. Execution terminates.

Appendix G: Utilities

 RM/COBOL User's Guide 613

File: index-filename - Invalid compressed data
in block/record block number/record-label.

recover2 has encountered a compressed data record that is inconsistent with the version of
recover2 being executed or with the compressed data record length. The indicated record and
subsequent records in the block are not written to the unload file. Processing continues with
the next block.

File: index-filename - Record length mismatch.
The minimum record size is greater than the maximum record size or the block size is too
small for the worst-case record size (due to data compression). It is checked when the
NOSUB option is chosen. Execution terminates.

File: index-filename - Bad block overhead in block block number.
recover2 has encountered a data block with inconsistent overhead structures. No records
from the block are written to the unload file. Processing continues with the next block.

File: index-filename - Bad record overhead
after block/record block number/record label.

recover2 has encountered a data record with inconsistent overhead structures. Any records in
the block subsequent to the indicated record are not written to the unload file. Processing
continues with the next block.

File: index-filename - Record size {< minimum | > maximum}
for block/record block number/record label.

recover2 has encountered a data record that does not conform to the constraints of minimum
or maximum record length but is otherwise consistent. The indicated record is written to the
unload file. Processing continues with the next record.

File: unload-filename - Record Size is too big for recovery program.
The maximum record length specified is too large for recover2. The maximum record length
is 65280 bytes. Execution terminates.

File: unload-filename Error: status.
The indicated error was encountered during an I/O operation on the unload file. Execution
terminates.

Initialization File to Windows Registry Conversion
(ini2reg) Utility

The Initialization File to Windows Registry Conversion (ini2reg) utility converts an
RM/COBOL Windows initialization file (.ini) and places its contents into the Windows
registry database.

Note When using this utility, several Windows registry issues must be considered if the
RM/COBOL for Windows runtime executable has been renamed. For more details, see
Windows Registry Considerations (on page 67).

Appendix G: Utilities

614 RM/COBOL User's Guide

With the ini2reg utility, .ini files can be converted and current initialization information can
be distributed to end-users by using a text file (with the .reg extension) that can be exported
from the Windows registry database.

Note This utility is available only on Windows.

Using the Utility
The Initialization File to Windows Registry Conversion utility is executed by clicking on the
INI to Registry icon or typing the command:

By default, the ini2reg utility program converts text in the initialization file from the
OEM character set to the ANSI character set. If the initialization file is already used an
ANSI character set, use the Q option to disable this conversion. Options are specified
with letters that must be preceded with a hyphen (-) or a slash (/). Option letters may be
specified in uppercase or lowercase.

By default, the ini2reg utility program does configuration for “All Users.” In order to
configure for “This User”, that is, the user account currently active when the utility
program is executed, you can specify the T option. Administrator privileges are not
required when the T option is specified. For the default behavior when the T option is
not specified, you must have Administrator privileges when you run the utility program.
Furthermore, on Windows Vista, the ini2reg utility program must be running as
Administrator to affect all users; otherwise, even without the T option, only the current
user will be affected; in this case, the resulting settings will override, for the current user,
any later changes for “All Users” made when running as Administrator. For a complete
discussion of these settings, see Selecting a File to Configure (on page 69).

file-name is the name of the initialization file to be merged into the Windows registry
database. If no file is specified, a File Open dialog box appears in order to browse the
file system for the proper file. file-name must be specified with a proper path. This
utility does not search the PATH or RUNPATH environment variables.

RM/COBOL Configuration (rmconfig) Utility
The RM/COBOL Configuration (rmconfig) utility provides a way to modify the
configuration options for one or more COBOL programs. These options are specific to the
RM/COBOL system running on Windows.

Beginning with RM/COBOL version 11 for Windows, the rmconfig utility allows specifying
the scope of its configuration settings to “This User” (that is, the current user) or “All Users”,
as illustrated in the Select File tab in Figure 52 on page 616. In prior versions of
RM/COBOL, the scope of RMCONFIG settings was all users by default and could not be
changed. For complete details, see Selecting a File to Configure (on page 69).

Beginning with RM/COBOL version 12, the RM Properties Dialog has been changed such
that you must be running elevated in order to modify properties for all users. If you are not
running elevated then the "All Users" button in the "Scope" box on the "Select File" tab will
be disabled (grayed out). In this case the "This User" button will always be selected and the

ini2reg [-q] [-t] [file-name]

Appendix G: Utilities

 RM/COBOL User's Guide 615

user can only modify his own properties stored in HKEY_CURRENT_USER in the Windows
Registry. If you are running elevated then the "All Users" button will be available and the
user may modify the properties for all users that are stored in HKEY_LOCAL_MACHINE in
the Windows Registry. RMCONFIG.EXE has been changed to include a manifest to request
execution at the "highestAvailable" level. If your account is a member of the Administrators
group or you right-click on the Configuration shortcut and select "Run As Administrator" then
the "All Users" button will be available. This change to RM/COBOL was required because of
a Windows 8 and Windows Server 2012 behavior change regarding User Access Control
(UAC).

A modified version of the rmconfig property sheet can be displayed for a single COBOL
program by right-clicking the program icon, Registry Configuration, and choosing Properties.

Note This utility is available only on Windows.

Using the Utility
The RM/COBOL Configuration utility is executed by clicking on the Registry Configuration
icon or typing the command:

Options are specified with letters that must be preceded with a hyphen (-) or a slash (/).
Option letters may be specified in uppercase or lowercase.

R indicates that you initially will be configuring properties to be used while running
programs. This is the default if none of the options (R, C, or Y) is specified.

C indicates that you initially will be configuring properties to be used while compiling
programs.

Y indicates that you initially will be configuring properties to be used while recovering
data files with the Indexed File Recovery (recover1) utility (see page 599), recover1.exe.
For backward compatibility, the decimal digit 1 is also accepted as an alternative to the
Y option.

Note Only one of the R, C, or Y options should be specified. If more than one is
specified, the rightmost option is effective. These options set the initial selection of the
“Configure for” options on the Select File tab of the Properties dialog box. The initial
selection can be changed at any time by selecting a different “Configure for” option
button.

K key sets a custom key for the Windows registry. Setting a custom registry key is
normally required only if you renamed the compiler, runtime system, or recovery utility.
A description of how the key is selected if this option is not specified is given below.
The K key option sets the initial selection of the “Key” option buttons on the Select File
tab of the Properties dialog box. The initial selection can be changed at any time by
selecting a different “Key” option button.

Note Several Windows registry issues must be considered if the RM/COBOL for
Windows runtime executable has been renamed. For more details, see Windows Registry
Considerations (on page 67).

file is the optional name of the file that you initially wish to configure. If file is not
specified, the “Default Properties” option will be selected initially in the “Configure”

rmconfig [-r|-c|-y] [-k key] [file]

Appendix G: Utilities

616 RM/COBOL User's Guide

area on the Select File tab of the Properties dialog box. The initial selection can be
changed at any time by selecting the “Default Properties” or “Individual File” option.

If a custom key is not specified by the K option, the name of the program that is stored in the
following location in the registry is used as the default key. The keys listed below are created
during installation and are used to determine the default action that occurs when you double-
click on a COBOL program or source file in Windows Explorer:

• R: HKEY_CLASSES_ROOT\RMCOBOL.Object\shell\open\command

• C: HKEY_CLASSES_ROOT\RMCOBOL.Source\shell\open\command

• Y: The default key is recover1; that is, the default key is not obtained from the registry
in this case.

• H or ?: Display a usage message. H, h, or ? are equivalent.

Note For a default installation, the default key for R is runcobol and for C is rmcobol.

Figure 52 shows the Select File tab of the Properties dialog box. The Select File tab allows
the specification of configuration options for a selected COBOL program (Individual File
option) or for all programs (Default Properties option). Changes made on the other Properties
tabs will affect the configuration of the program selected here. For descriptions of the other
Properties tabs, see Setting Properties (on page 68).

Figure 52: Select File Tab

Appendix G: Utilities

 RM/COBOL User's Guide 617

Note

• The All Users option button in the Scope area, when selected, specifies that options being
modified through the rmconfig utility will apply to all users. To use this setting, you
must have Administrator privileges and, on Windows Vista, the rmconfig utility must be
running as Administrator. Furthermore, on Windows Vista, if the rmconfig utility is not
running as Administrator, the All Users setting will appear to work, but will actually
affect only the current user; in this case, the resulting settings will override, for the
current user, any later changes for All Users made when running as Administrator.

As explained in the introduction to this utility, the All Users option button is disabled
(grayed out) if the utility is not running elevated when User Access Control is enabled in
Windows. In this case the This User button will be automatically selected.

• The This User option button, when selected, specifies that options being modified
through the rmconfig utility will affect only the current user.

Appendix H: Object Versions

 RM/COBOL User's Guide 619

Appendix H: Object Versions

This appendix describes the new object features that are incompatible with earlier releases of
RM/COBOL-8X and RM/COBOL.

Level Numbers
The object version level number in a RM/COBOL object file identifies the earliest release of
the RM/COBOL product that supports the features required by the program. The set of
features available in the first release of the product, RM/COBOL-8X, has been assigned
object version 1. When new features have been added in subsequent releases of RM/COBOL,
these have been assigned successive object version numbers. The RM/COBOL compiler
marks each object file with the object version number of the latest features actually used in
the source program, but not less than version 7.

Every release of the RM/COBOL runtime system supports features up to some object version
level. Object files with a higher object version level number cannot be run. When a program
is named in the Runtime Command or in a CALL statement, the runtime system searches for
an object file containing a program with the specified name. If during this search, the runtime
system finds an object program that has an object version level number which exceeds that
accepted by the runtime system, that object program is not considered valid and the runtime
system continues its search. If no valid program with the specified name is found, the ON
EXCEPTION phrase of the CALL statement is taken or the Runtime Command fails.

The RM/COBOL compiler has an object version level option to control the object version
level number placed in the object file. When the option is specified, any language features
used in the source program requiring a higher object version cause a source diagnostic, and
the program is not compiled. The object version level number placed in the resulting object
file is no higher than the value specified in the compiler option. If the object version level
option is not specified, the default value is the highest value accepted by the compiler, thus
allowing all features supported by the compiler. Since the compiler marks the object program
with the value of the latest feature actually used in the source program, the resulting object
program may still be executable on earlier releases of the runtime system.

Table 61 enumerates past RM/COBOL product releases and the highest object version level
number they accept.

Table 61: Object Version Numbers by Product

Product

Platform

Release

Object
Level Number

RM/COBOL-8X DOS 1.nn 1

Appendix H: Object Versions

620 RM/COBOL User's Guide

Table 61: Object Version Numbers by Product

Product

Platform

Release

Object
Level Number

RM/COBOL
DOS 2.nn 2

UNIX 2.0n 2

RM/COBOL AS/400 3

RM/COBOL
DOS 4.nn 4

UNIX 4.0n 4

RM/COBOL
DOS 5.nn 5

UNIX 5.nn 5

RM/COBOL
DOS 5.2n 6

UNIX 5.2n 6

RM/COBOL

DOS 6.nn 7

UNIX 6.nn 7

Windows 6.nn 7

RM/COBOL
UNIX 7.nn 8

Windows 7.nn 8

RM/COBOL
UNIX 7.5n 9

Windows 7.5n 9

RM/COBOL
UNIX 7.50.01n 10

Windows 7.50.01n 10

RM/COBOL
UNIX 8.0n 11

Windows 8.0n 11

RM/COBOL
UNIX 9.0n 12

Windows 9.0n 12

RM/COBOL
UNIX 10.0n 13

Windows 10.0n 13

RM/COBOL
UNIX 11.0n 14

Windows 11.0n 14

RM/COBOL
UNIX 12.0n 15

Windows 12.0n 15

In most cases, the object version is of no concern to the user. However, when compiling
programs intended for distribution to other users, the object version may be of concern. If
these other users do not have the current release of the runtime system, the Z Compile
Command Option (see page 159) should be specified to restrict the object version level. The
object version level number specified to the compiler should be the highest value that does not
exceed the level accepted by any of the runtime systems used by the intended recipients.
When the object version level number is limited by use of the Z Option, the compiler
suppresses any optimizations and diagnoses all source language features not supported by
earlier runtime systems.

Appendix H: Object Versions

 RM/COBOL User's Guide 621

The features associated with each object version are described in the following sections.

Object Version 1
The RM/COBOL-8X compiler and runtime system versions 1.nn support features in object
version 1. These product releases implement the high subset of ANSI COBOL 1974.

If the object version level number is limited to 1 by use of the Z Compile Command Option,
the resulting object program is executable on any released RM/COBOL-8X or RM/COBOL
runtime system.

Object Version 2
The RM/COBOL compiler and runtime system versions 2.nn support object version 2. These
product releases implement the intermediate subset of ANSI COBOL 1985. The RM/COBOL
version 2.nn runtime systems support the language features of both object version 1 and
object version 2.

Several new language features were added in object version 2 that are not supported by
previous versions. Unless the object version is limited to 1 by the Z Compile Command
Option, programs with the following features will not execute on runtime systems with a
version number less than 2:

1. A source program with a simple INSPECT statement.

A simple INSPECT statement is one with single-character control operands and only a
single CHARACTERS, ALL, LEADING or FIRST phrase per TALLYING or
REPLACING phrase. A simple INSPECT statement may have both a TALLYING and
REPLACING phrase and both a BEFORE and AFTER INITIAL phrase.

The RM/COBOL version 2.nn and later compilers generate optimized code for simple
INSPECT statements. The optimized code is not supported by earlier runtime systems.
If the Compile Command options specify object version 1, the previous unoptimized
code is generated for a simple INSPECT statement.

2. A source program with a NUMERIC class condition that has an unsigned numeric
display operand.

The RM/COBOL version 2.nn and later compilers generate optimized code for a
NUMERIC class condition the operand of which is an unsigned numeric display data
item. The optimized code is not supported by earlier runtime systems. If the Compile
Command options specify object version 1, the previous unoptimized code is generated
for such a class condition.

3. In COBOL-85 compatibility mode, FILE STATUS clauses imply that ANSI COBOL
1985 I-O status values are expected. RM/COBOL-8X version 1.nn runtime systems
never produce ANSI COBOL 1985 I-O status values.

If the Compile Command options specify object version 1 and do not specify ANSI
COBOL 1974 compatibility mode, FILE STATUS clauses are diagnosed as an object
version incompatibility and are ignored.

4. The following RM/COBOL new language features require new runtime system
support for their implementation. If the Compile Command options specify object

Appendix H: Object Versions

622 RM/COBOL User's Guide

version 1, these language features are diagnosed as an object version incompatibility
and are compiled:

a. Reference modification.

b. The PADDING CHARACTER clause.

c. The RECORD DELIMITER clause.

d. The VALUE clause with or subordinate to OCCURS clauses.

e. A class-name, ALPHABETIC-LOWER, or ALPHABETIC-UPPER
class condition.

f. A CD FOR I-O referenced in a DISABLE, ENABLE, RECEIVE or
SEND statement.

g. An ACCEPT . . . FROM DAY-OF-WEEK phrase.

h. A CALL . . . USING phrase that references a subscripted identifier.

i. A DISPLAY . . . WITH NO ADVANCING phrase.

j. An INSPECT . . . CONVERTING phrase.

k. A MERGE . . . GIVING phrase that specifies two or more files.

l. An OPEN EXTEND phrase that references a relative or indexed
organization file.

m. The PURGE statement.

n. A SEND . . . REPLACING LINE phrase.

o. A SORT . . . WITH DUPLICATES IN ORDER phrase.

p. A SORT . . . GIVING phrase that specifies two or more files.

Note Several important language features added in the version 2.0n releases of RM/COBOL
do not generate object version 2 code for their implementation. Examples of such features are
EVALUATE, INITIALIZE and the NOT conditional phrases (NOT AT END, NOT ON SIZE
ERROR, and so forth). These new language features may be used whether or not the object
version is restricted to object version 1 without affecting the object version of the resulting
object program.

Object Version 3
The RM/COBOL compiler and runtime system versions 3.nn support object version 3.
These product releases implement the high subset of ANSI COBOL 1985. The RM/COBOL
version 3.nn runtime systems support the language features of object versions 1, 2, and 3.

Two language features were added in object version 3 that are not supported by the earlier
versions. These are as follows:

1. The EXTERNAL clause in file-description-entries and Working-Storage Section record-
description entries.

2. Nested programs, including the PROGRAM IS COMMON clause, the GLOBAL file
description entry clause, the GLOBAL data description entry clause and the GLOBAL
phrase of the USE statement.

Appendix H: Object Versions

 RM/COBOL User's Guide 623

Note Programs with either of these two features will not execute on runtime version 1.nn or
2.nn systems. Since these features required new runtime system support, you cannot compile
them if the object version level is restricted to 1 or 2 with the Z Compile Command Option.
If the object version level is restricted to 1 or 2, the RM/COBOL compiler diagnoses these
features as an object version incompatibility.

The new language feature CALL . . . USING BY CONTENT does not generate new object
code. Programs using this feature can be compiled when the object version level is restricted
to 1 or 2 on the Z Compile Command Option.

When compiling a sequence of programs not separated by END PROGRAM headers, you
must restrict the object version level to 1 or 2. Versions 3.00 and later of the RM/COBOL
compiler interpret such a sequence as nested programs.

Object Version 4
The RM/COBOL compiler and runtime system versions 4.nn support object version 4.
These product releases extend the high subset of ANSI COBOL 1985 with the X/Open Screen
Section. The RM/COBOL version 4.nn runtime systems support the language features of
object versions 1 through 4.

Four language features were added in object version 4 that are not supported by the earlier
versions. These are as follows:

1. ACCEPT or DISPLAY statements that reference screen-names defined in the new Screen
Section of the Data Division.

2. ACCEPT statements that specify the FROM ESCAPE KEY or the FROM EXCEPTION
STATUS phrase.

3. CALL PROGRAM statement.

4. DELETE FILE statement.

Note Programs with any of these four features will not execute on runtime version 3.nn or
earlier systems. Since these features required new runtime system support, you cannot
compile them if the object version level is restricted to 3 or less with the Z Compile
Command Option. If the object version level is restricted to 3 or less, the RM/COBOL
compiler diagnoses these features as an object version incompatibility.

Object Version 5
The RM/COBOL compiler and runtime system versions 5.nn support object version 5.
The RM/COBOL version 5.nn runtime systems support the language features of object
versions 1 through 5.

Two language features were added in object version 5 that are not supported by the earlier
versions. These are as follows:

1. A READ statement that specifies the PREVIOUS phrase for a relative or indexed
organization file.

2. A START statement that specifies a KEY IS LESS, a KEY IS NOT GREATER, or a
KEY IS LESS OR EQUAL relation.

Appendix H: Object Versions

624 RM/COBOL User's Guide

Note Programs with either of these two features will not execute on runtime version 4.nn or
earlier systems. Since these features required new runtime system support, you cannot
compile them if the object version level is restricted to 4 or less with the Z Compile
Command Option. If the object version level is restricted to 4 or less, the RM/COBOL
compiler diagnoses these features as an object version incompatibility.

Object Version 6
The RM/COBOL compiler and runtime system versions 5.2n support object version 6.
The RM/COBOL version 5.2n runtime systems support the language features of object
versions 1 through 6.

Two language features were added in object version 6 that are not supported by earlier
versions. These are as follows:

1. An ACCEPT statement that specifies the TIME phrase.

2. A START statement that specifies an identifier in the SIZE phrase. Even though the
SIZE phrase is supported only by the 5.2n compiler, a literal specified in the SIZE phrase
of the START statement is supported by all RM/COBOL runtime systems.

Note Programs with either of these two features will not execute on runtime version 5.1n or
earlier systems. Since these features require new runtime system support, you cannot compile
them if the object version level is restricted to 5 or less with the Z Compile Command Option.
If the object version level is restricted to 5 or less, the RM/COBOL compiler diagnoses these
features as an object version incompatibility.

In addition, performance enhancements for certain existing language features require runtime
systems that support object version 6. Most programs compiled with the version 5.2n
compiler result in object files that require object version 6 support unless the object version is
restricted to 5 or less. The performance enhancements requiring object version 6 include the
following:

• Adding a literal value in the range –128 to +127 to an integer binary data item that is
within the first 65280 bytes of the program local data area. The addition can be the result
of an ADD statement, an INSPECT statement TALLYING phrase, a PERFORM
statement VARYING or AFTER phrase, a SEARCH statement VARYING phrase or an
UNSTRING statement TALLYING phrase.

• Subtracting a literal value in the range –127 to +128 from an integer binary data item that
is within the first 65280 bytes of the program local data area. The subtraction can be the
result of a SUBTRACT statement or a PERFORM statement VARYING or AFTER
phrase.

• PERFORM statement with the TIMES phrase when the local data area for the program,
including compiler-generated temporary data items, is less than 65280 bytes in length.

• Subscripted operands 255 characters or less in length that are elements of tables within
the first 65280 bytes of the program local data area that are specified in INITIALIZE,
MOVE, READ, RELEASE, RETURN, REWRITE, SET or WRITE statements.

• Operands, subscripted or not, 255 characters or less in length that are within the first
65280 bytes of the program local data area specified in ACCEPT, CALL, CALL
PROGRAM, CANCEL, DISABLE, DISPLAY, ENABLE, INITIALIZE, INSPECT,
MOVE, READ, RECEIVE, RELEASE, RETURN, REWRITE, SEND, SET, START,
STOP, STRING, UNSTRING and WRITE statements or in class or relation conditions.

Appendix H: Object Versions

 RM/COBOL User's Guide 625

• Nonnumeric relations where the subject and object operands are different length data
items, neither operand is subscripted or reference modified other than by literals, both
operands are 255 characters or less in length, and both operands are within the first 65280
bytes of the program local data area.

• GO TO statements in the fixed permanent segments of a program that generates between
32512 and 65280 bytes of object code for the fixed permanent segments.

Note The program local data area is the area of storage reserved for File Section, Working-
Storage, Communication, and Screen Section data items not described with the external
attribute. Linkage Section data items and data items described with the EXTERNAL clause
are not part of the program local data area.

Object Version 7
The RM/COBOL compiler and runtime system versions 6.nn support object version 7.
The RM/COBOL version 6.nn runtime systems support the language features of object
versions 1 through 7.

New language features were added in object version 7 that are not supported by earlier
versions. These are as follows:

1. A compiler option allows for computational sign representations that are compatible with
COBOL-74 data types.

2. Thirty digits of precision are available for numeric data items.

3. The compiler and runtime system provide support for the START statement to specify
the FIRST or LAST KEY phrase. For example, START file-name KEY IS FIRST
key-name.

4. The compiler and runtime system provide support for duplicate prime record keys (WITH
DUPLICATES may be specified for the RECORD KEY phrase).

5. The compiler and runtime system provide support for split keys. The RECORD KEY
phrase and the ALTERNATE RECORD KEY phrase may define split keys.

6. The compiler and runtime system provide support for multiple record locks in the same
file. The LOCK MODE clause of the file control entry may now specify the LOCK ON
MULTIPLE RECORDS phrase.

Note Programs that use any of these features will not execute on runtime versions 5.n or
earlier systems. Since these features require new runtime system support, you cannot compile
them if the object version level is restricted to 6 or less with the Z Compile Command Option.
If the object version level is restricted to 6 or less, the RM/COBOL compiler diagnoses these
features as an object version incompatibility.

Object Version 8
The RM/COBOL compiler and runtime system versions 7.nn support object version 8.
The RM/COBOL version 7.nn runtime systems support the language features of object
versions 1 through 8.

New language features were added in object version 8 that are not supported by earlier
versions. These are as follows:

Appendix H: Object Versions

626 RM/COBOL User's Guide

1. BINARY, COMPUTATIONAL-4 and COMP-4 usage data items allocated as other than
two- four-, eight-, or sixteen-bytes as a result of the BINARY-ALLOCATION keyword
specification in the COMPILER-OPTIONS configuration record or the binary allocation
override specification in the source. If a binary data item is allocated as sixteen bytes
because of these new features, object version 7 will be required and generated since it
was the first object version that supported sixteen-byte binary.

2. Pointer data items (USAGE POINTER), the figurative constant NULL (NULLS), the
ADDRESS special register, and Formats 5 and 6 of the SET statement for manipulating
pointer data items.

3. The GIVING or RETURNING phrase in the Procedure Division header or in a
CALL statement.

4. The CENTURY-DATE, CENTURY-DAY, DATE-AND-TIME, or DAY-AND-TIME
options in the ACCEPT statement.

5. The OMITTED option for an argument in the USING phrase of a CALL statement.

6. A source program that refers to linkage records (01 or 77 level data items defined in the
Linkage Section) in the USING phrase of a CALL statement or with reference
modification.

The RM/COBOL version 7.00 and later compilers generate code to reference the data
item on which the linkage record is based; that is, the actual argument passed by the
calling program or the area of memory referenced by a SET ADDRESS OF statement.
This new code is not supported by earlier runtime systems. If the Compile Command
options specify object version 7 or lower, then the previous code is generated that uses
the description of the data item in the linkage section of the called program.

7. A source program may now use more than 64K of name space (unique spellings of
user-defined words), but object versions less than 8 support a maximum of 64K of name
space for the object symbol table. If the Y Compile Command Option (see page 159) is
specified to place the symbol table in the object file for debugging purposes and more
than 64K of name space has been used, object version 8 is required and will be generated
regardless of the maximum object version setting specified in the Z Compile Command
Option. The compiler generates a diagnostic message in this event.

Notes

• Programs that use any of these features will not execute on runtime versions 6.n or earlier
systems. Since these features require new runtime system support, you cannot compile
them if the object version level is restricted to 7 or less with the Z Compile Command
Option. If the object version level is restricted to 7 or less, the RM/COBOL compiler
diagnoses these features as an object version incompatibility.

• Several important language features added in the version 7.0 release of RM/COBOL do
not generate object version 8 code for their implementation. These include the following:

− Level-number 78 constant-name declarations.

− Constant-name references.

− The DATE-COMPILED option in the ACCEPT statement.

− In-line comments.

− A numeric literal specified in the VALUE clause for a numeric edited data item.

− The COUNT, COUNT-MAX, COUNT-MIN, LENGTH, and PROGRAM-ID special
registers.

Appendix H: Object Versions

 RM/COBOL User's Guide 627

− A binary allocation override that specifies two-, four-, or eight-byte allocation may
be used for any object version. A binary allocation override that specifies sixteen-
byte allocation may be used for object version 7.

Object Version 9
The RM/COBOL compiler and runtime system versions 7.5n support object version 9.
The RM/COBOL version 7.5n runtime systems support the language features of object
versions 1 through 9.

New language features were added in object version 9 that are not supported by earlier
versions. These are as follows:

1. The LIKE condition.

2. Operators, other than the equal operator, in format 3 VALUE clauses when the symbol
table is being generated into the object (that is, when the Y Compile Command Option,
which is discussed on page 159, is specified).

Notes

• Programs that use any of these features will not execute on runtime versions prior to
version 7.5. Since these features require new runtime support, you cannot compile them
if the object version level is restricted to 8 or less with the Z Compile Command Option.
If the object version level is restricted to 8 or less, the RM/COBOL compiler diagnoses
these features as an object version incompatibility.

• Several language features added in the version 7.5 release of RM/COBOL do not
generate object version 9 code for their implementation. These include the following:

− The four-digit year formats for the ACCEPT statement (these formats do, however,
require object version 8).

− The NOT OPTIONAL phrase in the SELECT clause.

− The new formats of the EXIT statement.

− The enhancements to the INITIALIZE statement.

− The OPEN mode series in the USE statement.

Object Version 10
The RM/COBOL compiler and runtime system versions 7.50.01 and later support object
version 10. The RM/COBOL version 7.50.01 runtime systems support the language features
of object versions 1 through 10.

One new language feature was added in object version 10 that is not supported by earlier
versions:

1. Specification of a variable (non-literal) reference modifier for the pattern of a
LIKE condition.

Appendix H: Object Versions

628 RM/COBOL User's Guide

Object Version 11
The RM/COBOL compiler and runtime system versions 8.0n support object version 11.
The RM/COBOL version 8.0n runtime systems support the language features of object
versions 1 through 11.

New language features were added in object version 11 that are not supported by earlier
versions. These are as follows:

1. COMPUTATIONAL-5 and COMP-5 usage; that is, machine native binary data format.

2. Empty groups declared when the object symbol table is produced (see the discussion of
the Y Compile Command Option on page 159) or use of empty groups in the Procedure
Division in cases where the compiler does not eliminate them. The compiler eliminates
references to empty groups when used as the receiving operand in a MOVE statement.

Object Version 12
The RM/COBOL compiler and runtime system versions 9.0n support object version 12.
The RM/COBOL version 9.0n runtime systems support the language features of object
versions 1 through 12.

New language features were added in object version 12 that are not supported by earlier
versions. These are as follows:

1. A source program with more than 65535 lines of Procedure Division or a Procedure
Division header with a line number greater than 65535 now produces object version 12
with 32-bit debugging line numbers where needed. Previously, debugging line numbers
after 65535 lines of Procedure Division were modulo 65536 (debugging line numbers in
the object were a 16-bit offset from the Procedure Division header line number) and the
Procedure Division header line number was modulo 65536 in the object. Runtimes (and
thus, CodeWatch) prior to version 9 did not support the new code for line numbers with
an offset greater than 65535 from the Procedure Division header line or a Procedure
Division header line number greater than 65535. This does not apply if the Q Compile
Command Option (see page 158) is specified or configured, since debugging line
numbers are not generated in this case. If the Z Compile Command Option is specified
or configured to restrict the object version to less than 12, more than 65535 lines of
Procedure Division or a Procedure Division header line number greater than 65535
causes an object version conflict error followed by a program overflow termination.

2. The CURSOR IS clause in the Special-Names paragraph.

3. The SECURE phrase in a Format 3 ACCEPT statement is interpreted the same as the
SECURE clause in a screen section data description entry; that is, input characters are
displayed as asterisks for object version 12. If the object version is restricted to less than
12, the prior interpretation of SECURE in a Format 3 ACCEPT statement as a synonym
of OFF is provided; that is, input characters are not displayed. The old interpretation of
SECURE as OFF makes it an intensity specification, of which there may only be one.
The new interpretation allows intensity and SECURE as independent options.

4. Support has been added for an extremely large number of file parameters (FILE
STATUS, RELATIVE KEY, PADDING CHARACTER, LINAGE, and so forth.). The
new limit is about four times what was supported in prior object versions. When the
compiler detects that the old limit has been exceeded, object version 12 is generated. If
the object version is restricted to less than 12, a program overflow occurs if the old limit
is exceeded.

Appendix H: Object Versions

 RM/COBOL User's Guide 629

5. Relaxed reference modification at runtime will occur only for runtimes that support
object version 12 and later, since prior runtimes enforced the strict reference modification
rules; there is no compiler diagnostic for this runtime dependency issue. Compile time
reference modification (that is, with literals) can be relaxed or strict per the configuration
with no effect on the object version.

Note Several language features added in the version 9 release of RM/COBOL do not
generate object version 12 code for their implementation. These include the following:

• SUPPRESS phrase in the COPY statement.

• WHEN-COMPILED special register.

• CONSOLE IS CRT and CRT STATUS clauses in the Special-Names paragraph.

• User-defined words longer than 30 characters.

• The ACCEPT and DISPLAY statement syntax enhancements.

Object Version 13
The RM/COBOL compiler and runtime system versions 10.0n support object version 13.
The RM/COBOL version 10.0n runtime systems support the language features of object
versions 1 through 13.

One new language feature was added in object version 13 that is not supported by earlier
versions:

1. The total size of a data element subordinate to an OCCURS clause has been expanded
from 65280 to four gigabytes. When the total size of a data element subordinate to an
OCCURS clause exceeds 65535, object version 13 or later is required.

Note Some language features added in the version 10 release of RM/COBOL do not generate
object version 13 code for their implementation. These include the following:

• The expansion of the limit on total literal size.

• The expansion of the limit on the fixed-size portion of a variable-length group.

• The ACCEPT and DISPLAY statement syntax enhancements to the AT phrase.

Object Version 14
The RM/COBOL compiler and runtime system versions 11.0n support object version 14.
The RM/COBOL version 11.0n runtime systems support the language features of object
versions 1 through 14.

One new language feature was added in object version 14 that is not supported by earlier
versions:

1. The WHILE phrase of the START statement.

Note Some language features added in the version 11 release of RM/COBOL do not generate
object version 14 code for their implementation. These include the following:

Appendix H: Object Versions

630 RM/COBOL User's Guide

• The implicit qualification of the key data-name in the KEY phrase of a READ or START
statement for an indexed file.

• The use of the first key segment of a split key in the KEY phrase of a START statement
for an indexed file.

Object Version 15
The RM/COBOL compiler and runtime system versions 12.0n support object version 15.
The RM/COBOL version 12.0n runtime systems support the language features of object
versions 1 through 15.

New language features were added in object version 15 that are not supported by earlier
versions:

1. The TRAILING adjective in the INSPECT statement.

2. The ability to have more than 65534 identifiers in a program when the Y Compile
Command Option (see page 159) is used.

3. A subscripted reference to a variable-length group.

4. A reference to a data item with a length greater than 65280 characters, other than in a
MOVE statement.

5. A SEARCH ALL statement that references a table with more than 65535 elements.

6. The JUSTIFIED phrase in reference modification.

Note Some language features added in the version 12 release of RM/COBOL do not generate
object version 15 code for their implementation. These include the following:

• The use of the BEEP phrase on ACCEPT statements when ACCEPT-BEEP-
DEFAULT=NO is configured.

• The relaxation of the rules for the OCCURS DEPENDING ON clause, except as noted
above when a variable-length group requires subscripting for uniqueness of reference.

• Conditional compilation using strings in the Identification area.

• The SAME AS clause in data description entries.

• The increase in the number and size of user-defined words in a program.

• The increase in the number of identifiers allowed in a program when the Y Compile
Command Option is not used.

• The increase in the maximum number of occurrences for a table item.

• The new special registers HIGHEST-VALUE, INITIAL-VALUE, LOWEST-VALUE,
MAX-VALUE and MIN-VALUE.

Appendix I: Extension, Obsolete, and Subset Language Elements

 RM/COBOL User's Guide 631

Appendix I: Extension,
Obsolete, and Subset Language
Elements

RM/COBOL supports the extension, obsolete, and subset language elements discussed in this
appendix. Each language element is only briefly described in order to identify it. For further
information on each language element, refer to the RM/COBOL Language Reference Manual.

The extension language elements are RM/COBOL extensions to the American National
Standard COBOL X3.23-1985. Extensions such as the ACCEPT and DISPLAY screen
control syntax simplify the use of COBOL in an interactive environment. Other extensions
relax some of the rules of COBOL to simplify program writing.

The obsolete language elements are language features declared obsolete in ANSI COBOL
1985. The standard has declared certain features as obsolete to indicate that they will be
removed in the next full revision of COBOL. The features declared obsolete, such as the
ALTER statement, are ones that have been identified as contributing to poor programming
practices. Obsolete features should be avoided in new programs and removed from existing
programs when they are revised.

The subset language elements are language features that are required only when more than the
minimum COBOL language is implemented. Above minimum COBOL, there are two
additional subsets defined by the standard: intermediate and high. In addition, RM/COBOL
supports two standard optional modules: segmentation and communication. Each of these
optional modules is further divided into level 1 and level 2 subsets, where the level 2 subset
includes the level 1 subset.

The F Compile Command Option contains a flagging option to cause flagging of the
occurrence of any of the items in the following lists. Each of the lists is preceded by an
explanation of the flagging message produced for items on that list.

Extension Elements
The warning message:

W 69: FIPS NONCONFORMING NONSTANDARD

Appendix I: Extension, Obsolete, and Subset Language Elements

632 RM/COBOL User's Guide

is produced for each of the following language elements if they appear in a source program
compiled with the F=EXTENSION Compile Command Option (see page 160). Each item on
the list is an RM/COBOL extension to the American National Standard COBOL X3.23-1985
language features and may, therefore, not be available in other COBOL implementations.

Many extensions noted for RM/COBOL-8X do not appear below. These extensions have not
been deleted, but have been incorporated as standard features in the American National
Standard COBOL X3.23-1985.

The extensions are as follows:

1. User-defined word with more than 30 characters.

2. More than seven subscripts.

3. In-line comments (*>comment-entry).

4. integer-1 + integer-2 as a subscript (literal subscript with relative offset) or zero used for
relative offset in a subscript.

5. Numeric literals with more than 18 digits.

6. Numeric data items with more than 18 digits of precision.

7. Nonnumeric literals greater than 160 characters in length.

8. Text-names and library-names specified as nonnumeric literals.

9. COPY statement within a copied file.

10. COPY statement with the SUPPRESS PRINTING phrase.

11. User-defined word ending in a hyphen.

12. Reserved words used as system-names (the ASSIGN clause in the file control entry, the
VALUE OF clause in the file description entry, and the ENTER statement).

13. Use of an index-name in subscripting a table other than the one with which it is
associated.

14. Apostrophe used as a delimiter for nonnumeric literals.

15. ALL [ALL] . . . literal form of a figurative constant.

16. Procedure-name that is the same as a data-name or index-name.

17. NULL or NULLS figurative constants.

18. Hexadecimal literal.

19. ADDRESS special register.

20. COUNT, COUNT-MAX, and COUNT-MIN special registers.

21. HIGHEST-VALUE and LOWEST-VALUE special registers.

22. INITIAL-VALUE special register.

23. LENGTH special register.

24. MAX-VALUE and MIN-VALUE special registers.

25. PROGRAM-ID special register.

26. WHEN-COMPILED special register.

27. constant-name reference (a constant-name is defined in a level-number 78 data
description entry).

28. RETURN-CODE special register.

Appendix I: Extension, Obsolete, and Subset Language Elements

 RM/COBOL User's Guide 633

29. ID abbreviation for IDENTIFICATION.

30. Identification Division paragraphs out of order.

31. Program-name specified as a nonnumeric literal in the PROGRAM-ID paragraph.

32. REMARKS paragraph in the Identification Division.

33. OBJECT-COMPUTER paragraph optional clauses out of order.

34. Special-Names paragraph clauses out of order.

35. Three or more ON or OFF STATUS phrases for a switch clause in the Special-Names
paragraph after two non-duplicating ON or OFF phrases.

36. ALPHABET keyword missing in the SPECIAL-NAMES paragraph when an
alphabet-name appears.

37. Repeated character in an ALPHABET literal.

38. ALPHABET literal THRU phrase on ALSO phrase.

39. ALPHABET literal ALSO phrase on THRU phrase.

40. SYMBOLIC CHARACTERS clause specified as SYMBOLIC CHARACTER; that is,
CHARACTER used as a synonym for CHARACTERS.

41. CURRENCY SIGN literal specified as a figurative constant.

42. NUMERIC SIGN clause in the Special-Names paragraph.

43. CONSOLE IS CRT clause in the Special-Names paragraph.

44. CRT STATUS clause in the Special-Names paragraph.

45. CURSOR clause in the Special-Names paragraph.

46. ALTERNATE RECORD KEY clause that specifies that split-key-name option.

47. ASSIGN TO clause with data-name specified for file-access-name.

48. CODE-SET clause in the file control entry.

49. CODE-SET clause that refers to an alphabet-name defined with the literal phrase.

50. CODE-SET clause specified for a relative or indexed file.

51. COLLATING SEQUENCE clause in the file control entry.

52. LOCK MODE clause in the file control entry.

53. ORGANIZATION clause that specifies LINE or BINARY.

54. RESERVE clause that specifies NO or ALTERNATE.

55. RECORD KEY clause that specifies the DUPLICATES phrase.

56. RECORD KEY clause that specifies the split-key-name option.

57. SELECT clause that contains the NOT OPTIONAL phrase.

58. Optional word IS in POSITION phrase of MULTIPLE FILE TAPE clause.

59. SCREEN SECTION in the Data Division.

60. LINAGE clause integer operand with a positive sign explicitly specified.

61. Qualification of the data-name in the RECORD IS VARYING DEPENDING
ON clause.

62. Level-number with three or more digits.

Appendix I: Extension, Obsolete, and Subset Language Elements

634 RM/COBOL User's Guide

63. Level-number 78 data description entry.

64. Declaration of an empty group.

65. OCCURS clause specified in an 01 or 77 level-number data description entry in the
Working-Storage Section.

66. DEPENDING phrase specified in OCCURS clause that omits [TO integer-2].

67. More than 30 characters in a PICTURE character-string.

68. PICTURE clause omitted and thus implied in an elementary data description entry with a
VALUE clause (the flag occurs on the following level-number or header since that is
what makes the data item elementary in the absence of a PICTURE clause).

69. PICTURE character-string that ends in a comma or period and is not immediately
followed by a period space separator.

70. REDEFINES of last name on same level, even though it is also a REDEFINES.

71. REDEFINES not first clause in a data description entry.

72. SYNCHRONIZED clause specified with USAGE INDEX in a data description entry.

73. USAGE COMP-1, COMP-3, COMP-4, COMP-5, COMP-6, COMPUTATIONAL-1,
COMPUTATIONAL-3, COMPUTATIONAL-4, COMPUTATIONAL-5, and
COMPUTATIONAL-6.

74. USAGE POINTER.

75. USAGE clause that specifies a binary allocation override (integer-3).

76. VALUE clause in a data description entry that specifies a relational operator when
defining a condition-name.

77. VALUE clause in a data description entry that specifies the WHEN SET TO FALSE
phrase.

78. VALUE clause in a data item data description entry in the File Section or Linkage
Section or in other than the first record description entry subordinate to a communication
description entry in the Communication Section.

79. VALUE clause in a data item data description entry in an external record in the
Working-Storage Section record.

80. VALUE clause that specifies a numeric literal for a numeric edited data item.

81. Procedure Division header that specifies the GIVING or RETURNING phrase.

82. END PROGRAM specified without a program-name.

83. END PROGRAM header that specifies a nonnumeric literal for the program-name.

84. Segment-numbers greater than 99.

85. Optional word THEN used as a statement connective.

86. Both operands of a relation being literals.

87. An index-name as one operand in a relation and an arithmetic expression as the other
operand.

88. Pointer data item used in a relation condition.

89. LIKE condition.

90. Literal specified in a class condition.

91. Literal specified in a sign condition.

Appendix I: Extension, Obsolete, and Subset Language Elements

 RM/COBOL User's Guide 635

92. Nondisplay data item specified in a NUMERIC class condition.

93. ACCEPT . . . FROM CONSOLE when CONSOLE is not defined as a mnemonic-name in
the SPECIAL-NAMES paragraph.

94. ACCEPT . . . FROM SYSIN when SYSIN is not defined as a mnemonic-name in the
SPECIAL-NAMES paragraph.

95. ACCEPT … FROM CENTURY-DATE or ACCEPT … FROM DATE YYYYMMDD.

96. ACCEPT … FROM CENTURY-DAY or ACCEPT … FROM DAY YYYYDDD.

97. ACCEPT … FROM DATE-AND-TIME.

98. ACCEPT … FROM DATE-COMPILED.

99. ACCEPT … FROM DAY-AND-TIME.

100. ACCEPT . . . FROM ESCAPE KEY statement.

101. ACCEPT . . . FROM EXCEPTION STATUS statement.

102. ACCEPT operand series.

103. ACCEPT statement that specifies a screen-name.

104. ACCEPT with screen control (LINE, POSITION, SIZE, CURSOR, CONTROL, ERASE,
TAB, UNIT, PROMPT, UPDATE, ECHO, BLINK, REVERSE, HIGH, LOW, OFF,
CONVERT, NO BEEP, ON EXCEPTION, NOT ON EXCEPTION, END-ACCEPT,
BEFORE TIME).

105. CALL PROGRAM statement.

106. CALL . . . USING literal.

107. CALL … USING pointer data item.

108. CALL … USING OMITTED.

109. CALL … GIVING/RETURNING phrase.

110. CLOSE statement that specifies the NO REWIND phrase with either the REEL or UNIT
phrase.

111. DELETE FILE statement.

112. DISABLE statement without INPUT, OUTPUT or I-O phrase.

113. DISPLAY . . . UPON CONSOLE when CONSOLE is not defined as a mnemonic-name
in the SPECIAL-NAMES paragraph.

114. DISPLAY . . . UPON SYSOUT when SYSOUT is not defined as a mnemonic-name in
the SPECIAL-NAMES paragraph.

115. DISPLAY statement that specifies a screen-name.

116. DISPLAY with screen control (LINE, POSITION, SIZE, CONTROL, ERASE, UNIT,
BLINK, REVERSE, HIGH, LOW, CONVERT, BEEP).

117. ENABLE statement without INPUT, OUTPUT or I-O phrase.

118. ENTER statement not ended by a period.

119. EVALUATE statement that specifies an index-name or index data item as a selection
subject or selection object.

120. EXIT statement that contains the PARAGRAPH, SECTION, or PERFORM phrases.

121. GOBACK statement.

Appendix I: Extension, Obsolete, and Subset Language Elements

636 RM/COBOL User's Guide

122. IF statement that specifies END-IF and NEXT SENTENCE.

123. INITIALIZE statement that specifies the FILLER, VALUE, or DEFAULT phrases, the
word THEN in the REPLACING phrase, multiple categories in the category-name of the
REPLACING phrase, or the DATA-POINTER category in the REPLACING phrase.

124. INITIALIZE statement for which any identifier-1 refers to a variable-occurrence data
item or to a group than contains a variable-occurrence data item.

125. INSPECT . . . TALLYING . . . FOR FIRST phrase.

126. INSPECT statement that refers to an ALL literal as a control operand.

127. INSPECT statement that refers to a group data item as a control operand.

128. MOVE CORRESPONDING statement with a receiving operand series.

129. OPEN EXCLUSIVE phrase.

130. OPEN EXTEND statement that refers to a file described with the LINAGE clause.

131. OPEN . . . WITH LOCK phrase.

132. PERFORM integer-1 TIMES statement where integer-1 is zero or signed.

133. In-line PERFORM VARYING statement with AFTER phrases.

134. READ . . . PREVIOUS phrase.

135. READ statement that specifies the WITH NO LOCK or WITH LOCK phrase.

136. RELEASE . . . FROM literal.

137. REWRITE . . . FROM literal.

138. SEARCH statement that specifies END-SEARCH and NEXT SENTENCE.

139. SEND . . . FROM literal.

140. SET statement (Format 1) that specifies more than one TO phrase.

141. SET statement (Format 2) that specifies more than one UP/DOWN BY phrase.

142. SET {condition-name} . . . TO FALSE statement.

143. SET statement that specifies more than one instance of the TO TRUE phrase.

144. SET statement (Formats 5 and 6) that refers to a pointer data item.

145. START statement with LESS THAN, LESS THAN OR EQUAL, or equivalent relations.

146. START statement that specifies the SIZE phrase.

147. START statement in which the FIRST or LAST option is specified in the KEY phrase.

148. START statement that specifies the WHILE phrase.

149. Temporary STOP statement that specifies identifier-2 instead of literal-1.

150. STOP RUN statement with RETURN-CODE specified.

151. UNLOCK statement.

152. USE statement that specifies more than one OPEN mode or specifies an OPEN mode and
one or more file-names.

153. WRITE . . . FROM literal.

154. WRITE . . . ADVANCING TO LINE phrase.

Appendix I: Extension, Obsolete, and Subset Language Elements

 RM/COBOL User's Guide 637

Obsolete Elements
The warning message:

W 71: FIPS OBSOLETE

is produced for each of the following language elements if they appear in a source program
compiled with the F=OBSOLETE Compile Command Option (see page 160). Each item on
the list is identified in the American National Standard COBOL X3.23-1985 as being an
obsolete language element that will be deleted from the next full revision of the COBOL
standard.

1. ALL instances of literal, where literal has a length greater than 1 if associated with a
numeric or numeric edited data item.

2. AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED and SECURITY
paragraphs.

3. MEMORY SIZE clause.

4. RERUN clause.

5. MULTIPLE FILE TAPE clause.

6. LABEL RECORDS clause.

7. VALUE OF clause.

8. DATA RECORDS clause.

9. ALTER statement.

10. KEY phrase of the DISABLE statement.

11. KEY phrase of the ENABLE statement.

12. ENTER statement.

13. GO TO statement with omitted procedure-name-1.

14. REVERSED phrase of the OPEN statement.

15. Temporary STOP statement (STOP literal-1).

16. Segment-numbers and the SEGMENT-LIMIT clause.

Subset Elements
The warning message:

W 70: FIPS NONCONFORMING STANDARD

is produced for each of the following language elements if they appear in a source program
compiled with the appropriate F Compile Command Option (see page 160). The keyword
that causes the language element to be flagged is shown in parentheses after each element
description. Note that HIGH elements will be flagged if F=INTERMEDIATE or F=HIGH is
specified, COM2 elements will be flagged if F=COM1 or F=COM2 is specified, and SEG2
elements will be flagged if F=SEG1 or F=SEG2 is specified.

Appendix I: Extension, Obsolete, and Subset Language Elements

638 RM/COBOL User's Guide

If obsolete element flagging is also enabled, any obsolete element from the following list will
only be flagged as obsolete even when the other keyword is also specified in the F Compile
Command Option. That is, obsolete flagging takes precedence over subset flagging.

1. Segment-number (SEG1, OBSOLETE).

2. Noncontiguous segments with same segment-number (SEG2, OBSOLETE).

3. Symbolic-character (HIGH).

4. ALL literal figurative constant (HIGH).

5. LINAGE-COUNTER special register (HIGH).

6. Qualification (HIGH).

7. More than three subscripts (HIGH).

8. Reference modification (HIGH).

9. Continuation of a COBOL word, numeric literal or PICTURE character-string (HIGH).

10. IDENTIFICATION DIVISION header of a contained program (HIGH).

11. END PROGRAM header (HIGH).

12. COMMON clause in PROGRAM-ID paragraph (HIGH).

13. INITIAL clause in PROGRAM-ID paragraph (HIGH).

14. DATE-COMPILED paragraph (HIGH, OBSOLETE).

15. COPY statement (INTERMEDIATE).

16. COPY . . . OF/IN library-name (HIGH).

17. COPY . . . REPLACING phrase (HIGH).

18. REPLACE statement (HIGH).

19. SEGMENT-LIMIT clause (SEG2, OBSOLETE).

20. ALPHABET clause literal phrase (HIGH).

21. SYMBOLIC CHARACTERS clause (HIGH).

22. OPTIONAL phrase in file control entry (HIGH).

23. ACCESS MODE RANDOM clause (INTERMEDIATE).

24. ACCESS MODE DYNAMIC clause (HIGH).

25. RELATIVE KEY phrase (INTERMEDIATE).

26. ALTERNATE RECORD KEY clause (HIGH).

27. ORGANIZATION RELATIVE clause (INTERMEDIATE).

28. ORGANIZATION INDEXED clause (INTERMEDIATE).

29. PADDING CHARACTER clause (HIGH).

30. RECORD DELIMITER clause (HIGH).

31. RECORD KEY clause (INTERMEDIATE).

32. RESERVE AREA clause (HIGH).

33. MULTIPLE FILE TAPE clause (HIGH, OBSOLETE).

34. SAME RECORD AREA clause (HIGH).

35. SAME SORT/SORT-MERGE AREA clause (INTERMEDIATE).

Appendix I: Extension, Obsolete, and Subset Language Elements

 RM/COBOL User's Guide 639

36. SD level indicator (INTERMEDIATE).

37. BLOCK CONTAINS integer-1 TO integer-2 RECORDS/CHARACTERS (HIGH).

38. LINAGE clause (HIGH).

39. RECORD VARYING IN SIZE clause (HIGH).

40. VALUE OF clause that specifies a data-name (HIGH, OBSOLETE).

41. COMMUNICATION SECTION header (COM1).

42. CD level indicator (COM1).

43. INITIAL clause in a CD entry (COM2).

44. SYMBOLIC SUB-QUEUE-1, SUB-QUEUE-2 and SUB-QUEUE-3 clauses in a CD
entry (COM2).

45. Data-name series in a CD entry (COM2).

46. DESTINATION TABLE clause in a CD entry (COM2).

47. Level-number 66 data description entry (HIGH).

48. Level-number 88 data description entry (HIGH).

49. EXTERNAL clause (HIGH).

50. GLOBAL clause (HIGH).

51. OCCURS clause ASCENDING/DESCENDING KEY phrase (HIGH).

52. OCCURS clause integer-1 TO integer-2 TIMES DEPENDING ON phrase (HIGH).

53. REDEFINES clauses nested (HIGH).

54. REDEFINES clause that refers to a table item (HIGH).

55. RENAMES clause (HIGH).

56. Procedure Division header USING phrase with more than five operands (HIGH).

57. Condition-name condition (HIGH).

58. Sign condition (HIGH).

59. Logical operators AND, OR, NOT (HIGH).

60. Arithmetic expression operators + – * / ** (HIGH).

61. ACCEPT statement FROM phrase (HIGH).

62. ACCEPT MESSAGE COUNT statement (COM1).

63. ADD statement CORRESPONDING phrase (HIGH).

64. ALTER statement procedure-name series (HIGH, OBSOLETE).

65. CALL statement with identifier-1 (HIGH).

66. CALL statement USING phrase with more than five operands (HIGH).

67. CALL statement USING BY CONTENT or BY REFERENCE phrase (HIGH).

68. CALL statement ON OVERFLOW phrase (HIGH).

69. CALL statement ON EXCEPTION phrase (HIGH).

70. CALL statement NOT ON EXCEPTION phrase (HIGH).

71. CANCEL statement (HIGH).

Appendix I: Extension, Obsolete, and Subset Language Elements

640 RM/COBOL User's Guide

72. CLOSE statement FOR REMOVAL phrase (HIGH).

73. CLOSE statement WITH NO REWIND phrase (HIGH).

74. CLOSE statement WITH LOCK phrase (HIGH).

75. COMPUTE statement (HIGH).

76. DELETE statement (INTERMEDIATE).

77. DISABLE statement (COM2).

78. DISPLAY statement UPON phrase (HIGH).

79. DISPLAY statement WITH NO ADVANCING phrase (HIGH).

80. DIVIDE statement REMAINDER phrase (HIGH).

81. ENABLE statement (COM2).

82. EVALUATE statement (HIGH).

83. GO TO statement with omitted procedure-name (HIGH, (OBSOLETE).

84. IF statement that contains a conditional statement (HIGH).

85. INITIALIZE statement (HIGH).

86. INSPECT statement with multi-character data item (HIGH).

87. INSPECT statement BEFORE/AFTER phrase series (HIGH).

88. INSPECT statement TALLYING phrase series (HIGH).

89. INSPECT statement REPLACING phrase series (HIGH).

90. INSPECT statement CONVERTING phrase (HIGH).

91. MERGE statement (INTERMEDIATE).

92. MOVE statement CORRESPONDING phrase (HIGH).

93. MOVE statement de-editing of numeric edited items (HIGH).

94. OPEN statement WITH NO REWIND phrase (HIGH).

95. OPEN statement REVERSED phrase (HIGH, OBSOLETE).

96. OPEN statement EXTEND phrase (HIGH).

97. PERFORM statement TEST BEFORE/AFTER phrase (HIGH).

98. PERFORM statement VARYING phrase (HIGH).

99. PURGE statement (COM2).

100. READ statement NEXT phrase (HIGH).

101. READ statement KEY phrase (HIGH).

102. READ statement INVALID KEY phrase (INTERMEDIATE).

103. READ statement NOT INVALID KEY phrase (INTERMEDIATE).

104. RECEIVE statement (COM1).

105. RECEIVE statement SEGMENT phrase (COM2).

106. RELEASE statement (INTERMEDIATE).

107. RETURN statement (INTERMEDIATE).

108. REWRITE statement INVALID KEY phrase (INTERMEDIATE).

Appendix I: Extension, Obsolete, and Subset Language Elements

 RM/COBOL User's Guide 641

109. REWRITE statement NOT INVALID KEY phrase (INTERMEDIATE).

110. SEARCH statement (HIGH).

111. SEND statement (COM1).

112. SEND statement Format 1 (COM2).

113. SEND statement WITH identifier phrase (COM2).

114. SEND statement WITH ESI phrase (COM2).

115. SEND statement BEFORE/AFTER ADVANCING mnemonic-name phrase (COM2).

116. SEND statement REPLACING LINE phrase (COM2).

117. SET statement condition-name TO TRUE (HIGH).

118. SORT statement (INTERMEDIATE).

119. START statement (HIGH).

120. STRING statement (HIGH).

121. SUBTRACT statement CORRESPONDING phrase (HIGH).

122. UNSTRING statement (HIGH).

123. USE statement GLOBAL phrase (HIGH).

124. USE statement ON file-name series (HIGH).

125. USE statement ON EXTEND (HIGH).

126. WRITE statement BEFORE/AFTER ADVANCING mnemonic-name phrase (HIGH).

127. WRITE statement AT END-OF-PAGE/EOP phrase (HIGH).

128. WRITE statement NOT AT END-OF-PAGE/EOP phrase (HIGH).

129. WRITE statement INVALID KEY phrase (INTERMEDIATE).

130. WRITE statement NOT INVALID KEY phrase (INTERMEDIATE).

Appendix J: Code-Set Translation Tables

 RM/COBOL User's Guide 643

Appendix J: Code-Set
Translation Tables

Table 62 (see below) and Table 63 (starting on page 647) describe the translation between
ASCII and EBCDIC character sets. The ASCII to EBCDIC translation is identical to that
described by IBM in the document, Systems Network Architecture Format and Protocol
Reference Manual: Architecture Logic (SC30-3112-0). The EBCDIC to ASCII translation is
the inverse of the ASCII to EBCDIC mapping, with the addition that EBCDIC characters with
no ASCII equivalent are assigned values in the range X‘80’ to X‘FF’.

Character abbreviations are defined in Table 64 beginning on page 654.

Table 62: ASCII to EBCDIC Conversion

ASCII Code
(Decimal)

ASCII Code
(Hexadecimal)

U.S. Character

EBCDIC Code
(Hexadecimal)

U.S. Character

0 00 NUL 00 NUL

1 01 SOH 01 SOH

2 02 STX 02 STX

3 03 ETX 03 ETX

4 04 EOT 37 EOT

5 05 ENQ 2D ENQ

6 06 ACK 2E ACK

7 07 BEL 2F BEL

8 08 BS 16 BS

9 09 HT 05 HT

10 0A LF 25 LF

11 0B VT 0B VT

12 0C FF 0C FF

13 0D CR 0D CR

14 0E SO 0E SO

15 0F SI 0F SI

16 10 DLE 10 DLE

Appendix J: Code-Set Translation Tables

644 RM/COBOL User's Guide

Table 62: ASCII to EBCDIC Conversion

ASCII Code
(Decimal)

ASCII Code
(Hexadecimal)

U.S. Character

EBCDIC Code
(Hexadecimal)

U.S. Character

17 11 DC1 14 ENP

18 12 DC2 24 INP

19 13 DC3 04 SEL

20 14 DC4 15 NL

21 15 NAK 3D NAK

22 16 SYN 32 SYN

23 17 ETB 26 ETB

24 18 CAN 18 CAN

25 19 EM 19 EM

26 1A SUB 3F SUB

27 1B ESC 27 ESC

28 1C FS 1C IFS

29 1D GS 1D IGS

30 1E RS 1E IRS

31 1F US 1F IUS

32 20 Space 40 Space

33 21 ! 4F |

34 22 ” 7F ”

35 23 # 7B #

36 24 $ 5B $

37 25 % 6C %

38 26 & 50 &

39 27 ’ 7D ’

40 28 (4D (

41 29) 5D)

42 2A * 5C *

43 2B + 4E +

44 2C , 6B ,

45 2D - 60 -

46 2E . 4B .

47 2F / 61 /

48 30 0 F0 0

49 31 1 F1 1

50 32 2 F2 2

51 33 3 F3 3

Appendix J: Code-Set Translation Tables

 RM/COBOL User's Guide 645

Table 62: ASCII to EBCDIC Conversion

ASCII Code
(Decimal)

ASCII Code
(Hexadecimal)

U.S. Character

EBCDIC Code
(Hexadecimal)

U.S. Character

52 34 4 F4 4

53 35 5 F5 5

54 36 6 F6 6

55 37 7 F7 7

56 38 8 F8 8

57 39 9 F9 9

58 3A : 7A :

59 3B ; 5E ;

60 3C < 4C <

61 3D = 7E =

62 3E > 6E >

63 3F ? 6F ?

64 40 @ 7C @

65 41 A C1 A

66 42 B C2 B

67 43 C C3 C

68 44 D C4 D

69 45 E C5 E

70 46 F C6 F

71 47 G C7 G

72 48 H C8 H

73 49 I C9 I

74 4A J D1 J

75 4B K D2 K

77 4D M D4 M

78 4E N D5 N

79 4F O D6 O

80 50 P D7 P

81 51 Q D8 Q

82 52 R D9 R

83 53 S E2 S

84 54 T E3 T

85 55 U E4 U

86 56 V E5 V

87 57 W E6 W

Appendix J: Code-Set Translation Tables

646 RM/COBOL User's Guide

Table 62: ASCII to EBCDIC Conversion

ASCII Code
(Decimal)

ASCII Code
(Hexadecimal)

U.S. Character

EBCDIC Code
(Hexadecimal)

U.S. Character

88 58 X E7 X

89 59 Y E8 Y

90 5A Z E9 Z

91 5B [4A ¢

92 5C \ E0 \

93 5D] 5A !

94 5E ^ 5F ¬

95 5F _ 6D _

96 60 ‘ 79 ‘

97 61 a 81 a

98 62 b 82 b

99 63 c 83 c

100 64 d 84 d

101 65 e 85 e

102 66 f 86 f

103 67 g 87 g

104 68 h 88 h

105 69 i 89 i

106 6A j 91 j

107 6B k 92 k

108 6C l 93 l

109 6D m 94 m

110 6E n 95 n

111 6F o 96 o

112 70 p 97 p

113 71 q 98 q

114 72 r 99 r

115 73 s A2 s

116 74 t A3 t

117 75 u A4 u

118 76 v A5 v

119 77 w A6 w

120 78 x A7 x

121 79 y A8 y

122 7A z A9 z

Appendix J: Code-Set Translation Tables

 RM/COBOL User's Guide 647

Table 62: ASCII to EBCDIC Conversion

ASCII Code
(Decimal)

ASCII Code
(Hexadecimal)

U.S. Character

EBCDIC Code
(Hexadecimal)

U.S. Character

123 7B { C0 {

124 7C | 6A |

125 7D } D0 }

126 7E ~ A1 ~

127 7F DEL 07 DEL

Table 63: EBCDIC to ASCII Conversion

EBCDIC Code
(Decimal)

EBCDIC Code
(Hexadecimal)

U.S. Character

ASCII Code
(Hexadecimal)

U.S. Character

0 00 NUL 00 NUL

1 01 SOH 01 SOH

2 02 STX 02 STX

3 03 ETX 03 ETX

4 04 SEL 13 DC3

5 05 HT 09 HT

6 06 80

7 07 DEL 7F DEL

8 08 81

9 09 82

10 0A 83

11 0B VT 0B VT

12 0C FF 0C FF

13 0D CR 0D CR

14 0E SO 0E SO

15 0F SI 0F SI

16 10 DLE 10 DLE

17 11 84

18 12 85

19 13 86

20 14 ENP 11 DC1

21 15 NL 14 DC4

22 16 BS 08 BS

23 17 87

24 18 CAN 18 CAN

25 19 EM 19 EM

Appendix J: Code-Set Translation Tables

648 RM/COBOL User's Guide

Table 63: EBCDIC to ASCII Conversion

EBCDIC Code
(Decimal)

EBCDIC Code
(Hexadecimal)

U.S. Character

ASCII Code
(Hexadecimal)

U.S. Character

26 1A 88

27 1B 89

28 1C IFS 1C FS

29 1D IGS 1D GS

30 1E IRS 1E RS

31 1F IUS 1F US

32 20 8A

33 21 8B

34 22 8C

35 23 8D

36 24 INP 12 DC2

37 25 LF 0A LF

38 26 ETB 17 ETB

39 27 ESC 1B ESC

40 28 8E

41 29 8F

42 2A 90

43 2B 91

44 2C 92

45 2D ENQ 05 ENQ

46 2E ACK 06 ACK

47 2F BEL 07 BEL

48 30 93

49 31 94

50 32 SYN 16 SYN

51 33 95

52 34 96

53 35 97

54 36 98

55 37 EOT 04 EOT

56 38 99

57 39 9A

58 3A 9B

59 3B 9C

60 3C 9D

Appendix J: Code-Set Translation Tables

 RM/COBOL User's Guide 649

Table 63: EBCDIC to ASCII Conversion

EBCDIC Code
(Decimal)

EBCDIC Code
(Hexadecimal)

U.S. Character

ASCII Code
(Hexadecimal)

U.S. Character

61 3D NAK 15 NAK

62 3E 9E

63 3F SUB 1A SUB

64 40 Space 20 Space

65 41 9F

66 42 A0

67 43 A1

68 44 A2

69 45 A3

70 46 A4

71 47 A5

72 48 A6

73 49 A7

74 4A ¢ 5B [

75 4B . 2E .

76 4C < 3C <

77 4D (28 (

78 4E + 2B +

79 4F | 21 !

80 50 & 26 &

81 51 A8

82 52 A9

83 53 AA

84 54 AB

85 55 AC

86 56 AD

87 57 AE

88 58 AF

89 59 B0

90 5A ! 5D]

91 5B $ 24 $

92 5C * 2A *

93 5D) 29)

94 5E ; 3B ;

95 5F ¬ 5E ^

Appendix J: Code-Set Translation Tables

650 RM/COBOL User's Guide

Table 63: EBCDIC to ASCII Conversion

EBCDIC Code
(Decimal)

EBCDIC Code
(Hexadecimal)

U.S. Character

ASCII Code
(Hexadecimal)

U.S. Character

96 60 - 2D -

97 61 / 2F /

98 62 B1

99 63 B2

100 64 B3

101 65 B4

102 66 B5

103 67 B6

104 68 B7

105 69 B8

106 6A 7C

107 6B , 2C ,

108 6C % 25 %

109 6D _ 5F _

110 6E > 3E >

111 6F ? 3F ?

112 70 B9

113 71 BA

114 72 BB

115 73 BC

116 74 BD

117 75 BE

118 76 BF

119 77 C0

120 78 C1

121 79 ‘ 60 ‘

122 7A : 3A :

123 7B # 23 #

124 7C @ 40 @

125 7D ’ 27 ’

126 7E = 3D =

127 7F ” 22 ”

128 80 C2

129 81 a 61 a

130 82 b 62 b

Appendix J: Code-Set Translation Tables

 RM/COBOL User's Guide 651

Table 63: EBCDIC to ASCII Conversion

EBCDIC Code
(Decimal)

EBCDIC Code
(Hexadecimal)

U.S. Character

ASCII Code
(Hexadecimal)

U.S. Character

131 83 c 63 c

132 84 d 64 d

133 85 e 65 e

134 86 f 66 f

135 87 g 67 g

136 88 h 68 h

137 89 i 69 i

138 8A C3

139 8B C4

140 8C C5

141 8D C6

142 8E C7

143 8F C8

144 90 C9

145 91 j 6A j

146 92 k 6B k

147 93 l 6C l

148 94 m 6D m

149 95 n 6E n

150 96 o 6F o

151 97 p 70 p

152 98 q 71 q

153 99 r 72 r

154 9A CA

155 9B CB

156 9C CC

157 9D CD

158 9E CE

159 9F CF

160 A0 D0

161 A1 ~ 7E ~

162 A2 s 73 s

163 A3 t 74 t

164 A4 u 75 u

165 A5 v 76 v

Appendix J: Code-Set Translation Tables

652 RM/COBOL User's Guide

Table 63: EBCDIC to ASCII Conversion

EBCDIC Code
(Decimal)

EBCDIC Code
(Hexadecimal)

U.S. Character

ASCII Code
(Hexadecimal)

U.S. Character

166 A6 w 77 w

167 A7 x 78 x

168 A8 y 79 y

169 A9 z 7A z

170 AA D1

171 AB D2

172 AC D3

173 AD D4

174 AE D5

175 AF D6

176 B0 D7

177 B1 D8

178 B2 D9

179 B3 DA

180 B4 DB

181 B5 DC

182 B6 DD

183 B7 DE

184 B8 DF

185 B9 E0

186 BA E1

187 BB E2

188 BC E3

189 BD E4

190 BE E5

191 BF E6

192 C0 { 7B {

193 C1 A 41 A

194 C2 B 42 B

195 C3 C 43 C

196 C4 D 44 D

197 C5 E 45 E

198 C6 F 46 F

199 C7 G 47 G

200 C8 H 48 H

Appendix J: Code-Set Translation Tables

 RM/COBOL User's Guide 653

Table 63: EBCDIC to ASCII Conversion

EBCDIC Code
(Decimal)

EBCDIC Code
(Hexadecimal)

U.S. Character

ASCII Code
(Hexadecimal)

U.S. Character

201 C9 I 49 I

202 CA E7

203 CB E8

204 CC E9

205 CD EA

206 CE EB

207 CF EC

208 D0 } 7D }

209 D1 J 4A J

210 D2 K 4B K

211 D3 L 4C L

212 D4 M 4D M

213 D5 N 4E N

214 D6 O 4F O

215 D7 P 50 P

216 D8 Q 51 Q

217 D9 R 52 R

218 DA ED

219 DB EE

220 DC EF

221 DD F0

222 DE F1

223 DF F2

224 E0 \ 5C \

225 E1 F3

226 E2 S 53 S

227 E3 T 54 T

228 E4 U 55 U

229 E5 V 56 V

230 E6 W 57 W

231 E7 X 58 X

232 E8 Y 59 Y

233 E9 Z 5A Z

234 EA F4

235 EB F5

Appendix J: Code-Set Translation Tables

654 RM/COBOL User's Guide

Table 63: EBCDIC to ASCII Conversion

EBCDIC Code
(Decimal)

EBCDIC Code
(Hexadecimal)

U.S. Character

ASCII Code
(Hexadecimal)

U.S. Character

236 EC F6

237 ED F7

238 EE F8

239 EF F9

240 F0 0 30 0

241 F1 1 31 1

242 F2 2 32 2

243 F3 3 33 3

244 F4 4 34 4

245 F5 5 35 5

246 F6 6 36 6

247 F7 7 37 7

248 F8 8 38 8

249 F9 9 39 9

250 FA FA

251 FB FB

252 FC FC

253 FD FD

254 FE FE

255 FF FF

Character abbreviations are defined in Table 64.

Table 64: Character Abbreviations

Abbreviation Meaning

ACK Acknowledgment

BEL Bell

BS Backspace

CAN Cancel

CR Carriage Return

DC1 Device Control 1

DC2 Device Control 2

DC3 Device Control 3

DC4 Device Control 4

DEL Delete

DLE Data Link Escape

Appendix J: Code-Set Translation Tables

 RM/COBOL User's Guide 655

Table 64: Character Abbreviations

Abbreviation Meaning

EM End of Medium

ENP Enable Presentation

ENQ Enquiry

EOT End of Transmission

ESC Escape

ETB End of Transmission Block

ETX End of Text

FF Form Feed

FS File Separator

GS Group Separator

HT Horizontal Tab

IFS Interchange File Separator

IGS Interchange Group Separator

INP Inhibit Presentation

IRS Interchange Record Separator

IUS Interchange Unit Separator

LF Line Feed

NAK Negative Acknowledgment

NL New Line

NUL Null

RS Record Separator

SEL Select

SI Shift In

SO Shift Out

SOH Start of Heading

STX Start of Text

SUB Substitute

SYN Synchronous Idle

US Unit Separator

VT Vertical Tab

Appendix K: Troubleshooting RM/COBOL

 RM/COBOL User's Guide 657

Appendix K: Troubleshooting
RM/COBOL

You may encounter some common problems when running RM/COBOL on different
operating environments. This appendix presents solutions or workarounds for these problems.

Note Beginning with RM/COBOL version 11, RM/COBOL no longer supports earlier
Microsoft Windows operating systems, including Windows 98, Windows 98 SE, Windows
Me, and Windows NT 4.0. Any references to these versions, or to the shorthand notation
“Windows 9x-class” or “Windows NT-class” referring to these operating systems, are
included for historical purposes only.

RM/COBOL for Windows Running in a Microsoft
Windows or Novell Network Environment

Micro Focus Customer Care have received several reports of the RM/COBOL for Windows
runtime system returning 30,xx and 98,xx, or other errors when used with Windows clients
connected to Microsoft Windows or Novell NetWare Servers. The following sections identify
those problems and provide basic instructions for resolving them. Generally, the types of
error codes that are returned to the RM/COBOL application are 30 and 98 errors. Systems
experiencing any unusual frequency of 30 or 98 errors, or any other errors, should consider
making the changes suggested below. The following table summarizes the problems and
describes the platforms on which they occur.

This problem Applies to

Old vredir.vxd file Windows 95 clients

Network redirector file caching Windows NT-class Servers and
Windows NT-class Workstations

Opportunistic locking Windows NT-class Servers

Virus protection software All Windows environments

Novell NetWare Client32 version Windows 95

Printing to a Novell Print queue
using Novell NetWare Client32

Novell NetWare Client for Windows NT-class Servers

File and printer sharing for
NetWare networks service

Windows 9x-class clients in a peer-to-peer network

Appendix K: Troubleshooting RM/COBOL

658 RM/COBOL User's Guide

Note The RM/COBOL for Windows installation procedure has been enhanced to check the
system configuration automatically for compatibility with running on Windows NT-class
machines and make corrections, if necessary. See Installation Notes for Windows (on
page 52).

Old vredir.vxd File
Platform: This problem applies only to Microsoft Windows 95 clients.

When the Microsoft Client for Microsoft Networks is used, files that reside on a server (such
as a Microsoft Windows NT-class Server) may become damaged or may contain invalid data
if multiple workstations access the file at the same time.

This problem occurs because the network redirector (vredir.vxd) caches data locally for
files it accesses on the server. If the last modified time or file size does not change within a
two-second interval, the redirector reads file data from the local cache rather than from the
actual file on the server.

To resolve this issue, Micro Focus recommends that you ensure that each Windows 95
machine has version 4.00.1112 (dated 2/11/97) or later of the file vredir.vxd.

For more information about this problem, see the following Microsoft Knowledge Base article
located at:

• http://support.microsoft.com/?kbid=148367

Note Periodically, Microsoft reorganizes the information on its web site. If necessary, use
the search capability to find information on a particular topic.

Network Redirector File Caching
Platforms: This problem applies only to a Microsoft Windows NT-class Server and a
Windows NT-class Workstation.

By default, when the Windows NT-class redirector opens a file for read or read/write access,
the redirector uses the Windows NT-class system cache. As a result, when data is written to
the file, it is written to the cache and not immediately flushed to the redirector. The cache
manager flushes the data at a later time. If an unrecoverable network error occurs while the
data is being transferred to the remote server, it may cause the cache write request to fail, thus
possibly leaving the file in a corrupted state.

Note Microsoft warns that this change will slow down network I/O. In addition, improper
Windows registry changes can disable your network server. Micro Focus recommends that
only a qualified technician make these changes to your system.

For more information about disabling redirector file caching, see the Microsoft Knowledge
Base article located at:

• http://support.microsoft.com/?kbid=163401

Note Periodically, Microsoft reorganizes the information on its web site. If necessary, use
the search capability to find information on a particular topic.

http://support.microsoft.com/?kbid=148367
http://support.microsoft.com/?kbid=163401

Appendix K: Troubleshooting RM/COBOL

 RM/COBOL User's Guide 659

Opportunistic Locking
Platform: This problem applies only to a Microsoft Windows NT-class Server.

With opportunistic locking, if a file is opened in a non-exclusive mode, the network redirector
requests an opportunistic lock of the entire file. As long as no other process has the file open,
the server will grant this oplock, giving the redirector exclusive access to the specified file.
This action will allow the redirector to perform read-ahead, write-behind, and lock caching, as
long as no other process tries to open the file.

Micro Focus recommends that opportunistic locking feature on a Windows NT-class Server
be disabled.

For more information about disabling opportunistic locking on Windows NT Servers, see the
following Microsoft Knowledge Base article located at:

• http://support.microsoft.com/?kbid=129202

For more information about disabling opportunistic locking on Windows 2000 Servers, see
the following Microsoft Knowledge Base article located at:

• http://support.microsoft.com/support/kb/articles/q296/2/64.asp

Note Periodically, Microsoft reorganizes the information on its web site. If necessary, use
the search capability to find information on a particular topic.

Virus Protection Software
Platforms: This problem applies to all Microsoft Windows environments.

There have been a few reports of certain virus protection programs interfering with
RM/COBOL data files. This can result in file corruption or invalid error messages. If you are
experiencing either of these problems, and have virus protection software enabled on either
the client or the server, Micro Focus recommends adjusting the parameters that control the
behavior of the virus protection software.

If possible, configure the virus protection software so that it does not scan the COBOL
data files after every modification. If necessary, completely disable scanning of COBOL
data files.

Novell NetWare Client32 Version
Platforms: This problem applies to those Windows 95 users who choose to use Novell’s
NetWare Client32 package for access to NetWare rather than Microsoft’s Client for NetWare
Networks.

RM/COBOL version 6.5 or higher for Windows 95 requires version 2.11 (or later) of
NetWare Client32 for Windows 95 (dated 8/21/96, file size 461,359 bytes). Record locking
does not work properly and file corruption may occur with earlier versions of Client32.
Additionally, there may be open errors (94,xx) or other permanent errors (30,xx) with older
versions of Client32. Receiving error 30, MS-Windows error 1 (30,12,00001 from C$RERR)
may indicate a defective version of Client32.

Other reported errors include:

• 30,05 (Access Denied)

http://support.microsoft.com/?kbid=129202
http://support.microsoft.com/support/kb/articles/q296/2/64.asp

Appendix K: Troubleshooting RM/COBOL

660 RM/COBOL User's Guide

• “Error invoking unauthorized copy of runtime” error messages

Printing to a Novell Print Queue Using Novell NetWare
Client32
Platform: This problem applies to a Microsoft Windows NT-class Server.

When using the Novell NetWare Client for a Windows NT-class Server, the runtime can hang
on the open of a print file. There are two known workarounds for this problem:

• Specify “PRINTER?” as the file access name in the ASSIGN clause of the file control
entry (for the default configuration, where PRINTER? maps to a dynamic printer; any file
access name that maps to a dynamic printer as specified by a DEFINE-DEVICE
configuration record may also be used). When the RM/COBOL for Windows runtime
encounters the open operation for that printer file, it displays the standard Windows Print
dialog box, which allows the user to select the correct printer and print the file. (In this
case, do not use the Printer Dialog Never property or the P$DisableDialog function,
either of which would prevent display of the Windows Print dialog box.)

• When configuring your printer, select “LPTn:” (a local printer), not a network printer.
Then use the Novell Capture command to redirect output to a Novell print queue.

File and Printer Sharing for NetWare Networks Service
Platform: This problem applies only to Windows 9x-class machines used in a peer-to-peer
network with files larger than 2 gigabytes (GB).

The NetWare file-sharing service can handle files only up to 2 GB. If a COBOL program
tries to write a remote large file, the write operation will fail near the 2 GB boundary with
error “30, MS-Windows error 5.” If a remote large file already exists and is larger than 2 GB,
the open operation will fail with a 37, 07 error. For information useful in understanding this
problem, see Large File Locking Issues (on page 115).

In order to support remote large files up to 4 GB, you must install the “File and printer sharing
for Microsoft Networks” service on the server machine (that is, the machine on which the
large file resides). Note that only one File and printer-sharing service may be installed.

Note The NetWare file-sharing service referred to in this section is not the “Client for
NetWare Networks” network component (a Microsoft product) or the “Novell NetWare Client
32” network component (a Novell product). Do not modify these network components.
Micro Focus recommends that only a qualified technician make these changes to your system.

To check for, or install, the service:

1. In Windows, click Start, and then point to Settings.

2. Click Control Panel.

3. Double-click the Network icon.

In the Network dialog box, the Configuration tab lists the network components, including
file-sharing services (if any), which are installed on your computer.

4. If you have “File and printer sharing for NetWare Networks” installed, select it and then
click Remove.

5. To add the Microsoft file-sharing service, click Add.

The Select Network Component Type dialog box opens.

Appendix K: Troubleshooting RM/COBOL

 RM/COBOL User's Guide 661

6. Select Service, and then click Add.

The Select Network Service dialog opens.

7. Select “File and printer sharing for Microsoft Networks” and click OK. Continue to click
OK on all the dialog boxes that appear.

8. After the service is installed, shut down and restart your computer.

RM/COBOL for UNIX

Number of Available SEMUNDO Structures
The following describes the circumstances under which you might receive the following error
message and one of the submessages:

Error invoking unauthorized copy of ...

"Semaphore function error (Loc 808)"

or

"Semaphore function error (Loc 809)"

On UNIX, the RM/COBOL runtime system and compiler use one SEMUNDO structure
per invocation. On some systems, such as SCO OpenServer 5, a small number (for
example, 30) of SEMUNDO structures are available via the default configuration of the
operating system. In order to run more than 27 or 28 runtimes simultaneously, a larger
number of SEMUNDO structures must be made available. This is done by the UNIX System
Administrator configuring a larger number. In order for that larger number to become
effective, a relink and reboot of the operating system may be required.

Consult your specific operating system documentation for information on increasing the
number of SEMUNDO structures.

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 663

Appendix L: Summary of
Enhancements

This appendix provides a summary of the new features and changes in the various releases
of RM/COBOL. It also tells you where to look for more information about them. The
RM/COBOL Language Reference Manual and this user’s guide primarily contain the details
regarding these features.

Deficiencies that are version-specific or are discovered after printing are described in the
README files contained on the delivered media. For further information, see also
Appendix B: Limits and Ranges (on page 421).

Notes

• The enhancements and changes for the most recent release described by this document
are listed first.

• The information in this appendix is historical. It was accurate at the time written for the
specific version being described. Various features may have changed in later releases,
and, possibly, some features may have been removed. Appendix H: Object Versions
(see page 619) describes the new compiler and language features that are incompatible
with earlier releases. You may find the material in Appendix H, in conjunction with this
historical enhancement list, particularly helpful if you develop on one version of
RM/COBOL and deploy on other versions.

Version 12 Enhancements

Version 12 Runtime System Features
The RM/COBOL version 12 for Windows and UNIX runtime system has been modified with
the following new features:

• New Object Version Level. Object version 15 (see page 630) has been introduced to
support the following:

− the TRAILING adjective in the INSPECT statement,

− the ability to have more than 65,534 identifiers in a program when the Y (Debug
Symbol Table) Compile Command Option is used,

Appendix L: Summary of Enhancements

664 RM/COBOL User's Guide

− a subscripted reference to a variable-length group,

− a reference to a data item with a length greater than 65,280 characters, other than
in a MOVE statement,

− a SEARCH ALL statement that references a table with more than 65,535 elements,
and

− the JUSTIFIED phrase in reference modification.

• Numerous corrections in RM/COBOL 12 improved compatibility with Microsoft
Windows Server 2008 and Windows Vista.

• The maximum total length of the runtime command line options has been increased to
4095 characters. See Command Line Options (on page 26) in Chapter 2: Installation
and System Considerations for UNIX and Command Line Options Property (on page 74)
in Chapter 3: Installation and System Considerations for Microsoft Windows. This
modification allows for a longer main program argument value in the A Runtime
Command Option and more or longer pathname values in L Runtime Command Option
specifications.

• A new value has been added for the ACTION keyword of the TERM-INPUT
configuration record. The ENTER-DEBUGGER value (see page 361) causes the
RM/COBOL Interactive Debugger to be entered at the next statement executed after an
ACCEPT statement.

• The rmattach utility, used to attach configuration files for the runtime and compiler
on Windows, has been removed. Use of an Automatic Configuration File module (see
page 290) is recommended as a replacement for attached configurations.

Version 12 Compiler Features
The RM/COBOL version 12 for Windows and UNIX compiler has been enhanced with the
following new features:

• The maximum number of identifiers that can be described in a single separately compiled
program has been increased from 65,534 to 840,000. If the Y Compile Command
Option, that is, debugging symbol table (see page 159), is specified, declaration of more
than 65,534 identifiers requires object version 15. In order to allow faster compilation of
such large programs, the maximum workspace size, that is, the value for the W Compiler
Command Option (see page 152) or the WORKSPACE-SIZE configuration keyword (see
page 318), has been increased from 16384 to 524288.

• Working-Storage and Linkage Section elementary data items can now be greater than
65,280 characters in length. Also, group and elementary data items greater than 65,280
characters in length can now be referenced in statements other than the just the MOVE
statement. File records are still limited to a maximum of 65,280 characters due to file
system limitations. References to data items longer than 65,280 characters in length
other than in MOVE statements requires object version 15.

• Reference modification now allows data items greater than 65,280 characters in length to
be reference modified.

• The OCCURS clause now allows more than 64K occurrences. When a table with more
than 64K occurrences is referenced in a SEARCH ALL statement, object version 15
is required.

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 665

• The SAME AS clause has been added as a new data description clause. This clause
allows declaring another data item that has the same data description as a preceding
data item.

• The INSPECT statement has been enhanced with a TRAILING adjective for tallying or
replacement of trailing characters in the value of a data item. Use of this feature requires
object version 15. This new capability is particularly useful in counting the number of
spaces at the end of a nonnumeric data item.

• Reference modification has been enhanced with a JUSTIFIED phrase that allows easy
removal of trailing spaces in a sending data item or right justification in a receiving data
item. Use of this feature requires object version 15.

• Index-names no longer need to be unique. Qualification of index-names is allowed and
must be used to achieve uniqueness of reference when non-unique index-names are
defined in a program. As a result of this change, the compiler listing allocation map no
longer lists index-names separately, but instead shows where they occur in their hierarchy
of possible qualification.

• Elements of a table declared at level-number 01 or 77 are no longer implicitly
synchronized. The ability to define tables at level-numbers 01 and 77 was introduced in
version 8, but the elements were implicitly synchronized because they inherited the
implicit synchronization of level-number 01 and 77 data items. This implicit
synchronization of the elements of the table caused unexpected results for users when
redefining a set of odd length values as a table. If synchronization of the elements is
desired, an explicit SYNCHRONIZED clause is required.

• The ACCEPT statement has been enhanced to allow the BEEP phrase not to be the
default by using configuration to specify the default behavior. When NO BEEP is
configured to be the default, the BEEP phrase may be specified on those ACCEPT
statements where a beep is desired.

• END-COPY and END-REPLACE scope terminators have been added to the COPY and
REPLACE statements, respectively. These scope terminators are more visible than the
period space separator required in standard COBOL at the end of COPY and REPLACE
statements and are clearer specification of structure when the COPY or REPLACE
statements are used within other structured statements. Use of these scope terminators is
recommended to make error analysis easier for the program author when the scope of a
COPY or REPLACE statement is not properly terminated, which is not always obvious,
for example, when a lengthy REPLACING phrase is specified in a COPY statement.
Various scanning improvements were also made to improve error recovery following a
COPY or REPLACE statement syntax error. (See the “Delimited Scope Statements”,
“COPY Statement”, and “REPLACE Statement” topics in Chapter 1: Language
Structure of the RM/COBOL Language Reference Manual.)

• A period within pseudo-text that is immediately followed by the closing pseudo-text
delimiter is now treated as a period space separator in order to match the treatment of a
period just before the right margin of a source record. This eliminates a warning that a
period space separator was expected that sometimes occurred for pseudo-text in what
were otherwise valid COBOL programs.

• Conditional source compilation through the use of strings in the Identification area of
source records has been added. The string patterns to include or exclude are specified in
the configuration file. Conditionally included lines are forced to not be comment lines
and conditionally excluded lines are forced to be comment lines. Configuration of how
conditionally included or excluded lines are indicated in the program listing has also been
added as part of this feature.

• The rules for the OCCURS clause with the DEPENDING ON phrase were relaxed to
allow multiple specifications of variable occurrence data items within a single data

Appendix L: Summary of Enhancements

666 RM/COBOL User's Guide

record. When this feature is used in such a way that a variable-length group is
subscripted, object version 15 is required.

• The REDEFINES and RENAMES clauses (in the data description entry) allow
redefinition or renaming, respectively, of variable-length groups. See Chapter 4: Data
Division of the RM/COBOL Language Reference Manual.

• The compiler now supports the following new special registers (for detailed information,
see Chapter 1: Language Structure of the RM/COBOL Language Reference Manual):

− HIGHEST-VALUE and LOWEST-VALUE. These special registers return the
highest and lowest values, respectively, for the data item referenced by identifier-1.
They may be used wherever a literal of the resulting type may be used in the
Procedure Division. These special registers are particularly useful when the data
item is numeric, in which case, the highest and lowest numeric values are determined
by the decimal precision and scale specified in the PICTURE character-string.

− INITIAL-VALUE. This special register returns the initial value of the data item
referenced by data-name-1. It may be used wherever a literal of the resulting type
may be used in the Procedure Division. The initial value is defined as the value that
would be placed in the data item referenced by data-name-1 if it were initialized
using the INITIALIZE statement with the VALUE and DEFAULT phrases specified.

− MAX-VALUE and MIN-VALUE. These special registers return the maximum or
minimum values, respectively, for the data item referenced by identifier-1. They
may be used wherever a literal of the resulting type may be used in the Procedure
Division. These special registers are particularly useful when the data item is
numeric, in which case, the maximum and minimum numeric values are determined
by the storage format (from the combination of the USAGE and PICTURE clauses)
for the data item. (Differences between the maximum and minimum values versus
the highest and lowest values, respectively, are the result of issues with BINARY
and PACKED-DECIMAL storage for decimally-defined numeric data items.)

− PROCEDURE-NAME. This special register exists for any paragraph or section in
the Procedure Division of a program. The value is a nonnumeric literal determined
as follows: if PARAGRAPH is specified, this special register returns the name of
the paragraph in which it is specified; if PROCEDURE is specified, this special
register returns the qualified name of the current paragraph in which it is specified;
if SECTION is specified, this special register returns the name of the section in
which it is specified.

• The COMPILER-OPTIONS configuration record (see page 294) now supports the
following new keywords:

Note Two additional keywords, used specifically with XML Extensions, are described in
Features Added to Support XML Extensions (on page 667).

− ACCEPT-BEEP-DEFAULT. This keyword can be set to a value of NO (or OFF)
to reverse the RM/COBOL default behavior for ACCEPT statements to match the
Micro Focus Visual COBOL default for ACCEPT statements.

− EXTERNAL-INDEX-NAMES. This keyword controls whether index-names
declared within an external record area are external or not external. If the value of
this keyword is set to YES, then index-names are external when declared within an
external record area. If the value of this keyword is set to NO, then index-names are
never external. The default value of this keyword is YES to match prior
RM/COBOL behavior. (The COBOL language was changed to not have external
index-names after RM/COBOL was implemented. Thus the NO setting matches this
later definition of COBOL.) The NO setting is recommended when using the new

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 667

qualified index-names feature in version 12 because external items do not support
qualification.

− LISTING-CONDITIONAL-INCLUSION-INDICATOR and LISTING-
CONDITIONAL-EXCLUSION-INDICATOR. These keywords allow the
configuration of the indicator column value in the listing for conditionally included
or excluded source lines. This configuration applies to the new conditional
compilation feature in version 12 based on strings in the Identification area of source
records.

− SOURCE-PATTERN-INCLUDE and SOURCE-PATTERN-EXCLUDE. These
keywords specify a list of pattern strings to be matched against strings in the
Identification area of source records for the purpose of conditionally including or
excluding a source record in the compilation. The patterns are simple strings (not
regular expressions).

• The compiler listing allocation map now indicates table data items in the Order column
with an “*” for a fixed-occurrence table and a “#” for a variable-occurrence table.

• The compiler listing allocation map now includes the level-number for data-names and
the level indicator FD, SD or CD for file-names, sort-merge-file-names and cd-names,
respectively.

• The figurative constant ZERO (ZEROS, ZEROES) may now be used with its nonnumeric
meaning in literal concatenation expressions. Prior to this change, this figurative constant
was disallowed in concatenation expressions because concatenation of numeric literals is
not supported and the figurative constant was treated as numeric in this context.

• CodeWatch now has the ability to debug Xcentrisity Business Information Server (BIS)
service programs, running under Internet Information Server on a Microsoft Windows
host. A new option in the New Workspace Wizard allows you to select the type of
program that you are working on—either a traditional COBOL program or a BIS service
program. If you choose the latter, additional options allow you to specify the URL of the
starting page of your BIS application (useful for browser-driven applications) or the URL
of the virtual BIS directory for web services debugging.

In addition, CodeWatch stores relative paths in a saved workspace file (.CWF) wherever
possible, making it much easier to move saved workspace files between machines. Since
the paths are relative to the location of the .cwf file itself, Micro Focus recommends that
a workspace file be stored in a directory that encompasses your working directory and
source directories. Storing the .cwf file in the previous default location (“My
Documents”) is still possible if your entire source tree is located here.

This release also corrected numerous minor problems and improved compatibility with
Windows Vista and Windows Server 2008.

Features Added to Support XML Extensions
Version 12 of XML Extensions includes an XML Extensions-enabled RM/COBOL compiler
that will generate and embed an XML-format symbol table in the COBOL object file. This
feature eliminates the need to run a separate utility after compilation to create an XML
Extensions model file. When the XML-format symbol table exists in the object, XML
Extensions can use that symbol table at runtime and the symbol table is guaranteed to match
the currently-running program. Several enhancements have been made to the RM/COBOL
compiler to support this feature:

• The COMPILER-OPTIONS configuration record (see page 294) supports the following
new keywords:

Appendix L: Summary of Enhancements

668 RM/COBOL User's Guide

− KEEP-TEMP-XML-SYMBOL-TABLE-FILE. This keyword specifies a path
where the temporary file that contains the XML-format symbol table should be kept.
By default, the temporary file is deleted after compression into the object file.

− SUPPRESS-XML-SYMBOL-TABLE. With the value YES, this keyword
specifies that the XML-format symbol table is not to be created; with the value NO,
the keyword specifies that the XML-format symbol table is to be created. The
default value is NO.

• The compiler supports two new environment variables:

− RM_ENCODING. This environment variable, available only on UNIX, specifies
the encoding of characters in the source for purposes of translating them to Unicode
in the XML symbol table. See Environment Variables for UNIX (on page 43) and
the “UNIX Character Encoding” topic in the XML Extensions User’s Guide.

− RM_KEEP_XML_SYMTAB_FILE. This environment variable, available on both
UNIX and Windows, specifies the path of the directory where the temporary XML-
format symbol table file from the compiler should be preserved. (For further
information, see Environment Variables for UNIX on page 43 and Environment
Variables for Windows on page 116.) This environment variable provides an
alternative to using the KEEP-TEMP-XML-SYMBOL-TABLE-FILE keyword of
the COMPILER-OPTIONS configuration record (discussed previously in this
section). If both the environment variable and the configuration keyword specify a
pathname, the keyword value is used.

Note The creation of the XML-format symbol table is controlled by the license. Without a
license for XML Extensions, the XM-format symbol table is not created regardless of the
setting of the SUPPRESS-XML-SYMBOL-TABLE keyword and cannot be preserved
regardless of the setting of the SUPPRESS-XML-SYMBOL-TABLE keyword or
RM_KEEP_XML_SYMTAB_FILE environment variable.

Version 11 Enhancements

Version 11 Runtime System Features
The RM/COBOL version 11 for Windows and UNIX runtime system has been enhanced with
the following new features:

• New Object Version Level. Object version 14 (see page 629) has been introduced to
support the WHILE phrase in the START statement.

• RM/COBOL 11 is the first version to support use on the new Microsoft Windows Vista
operating system. RM/COBOL 11 also supports Windows 2000, Windows XP, and
Windows 2003 Server.

Notes

− RM/COBOL 11 does not support earlier Windows versions, including
Windows 98, Windows 98 SE, Windows Me, and Windows NT 4.0.

− Windows Vista no longer supports the WinHelp form of help files. In RM/COBOL
11, the CodeWatch help file and Syntax Summary help file are now HTML help files
(.chm files). There are two known issues with HTML help files. The first is that the
files must be on a local drive, not a network drive, in order to be able to display the

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 669

help topics. The second is that the files cannot be renamed without causing some
internal links in the file to fail.

Version 11 Compiler Features
The RM/COBOL version 11 for Windows and UNIX compiler has been enhanced with the
following new features:

• There have been extensive revisions to the source format supported by the RM/COBOL
compiler to allow longer source records. These changes include the following:

− The source format is still fixed reference format as defined for standard COBOL, but
the 80-character limit on total source record length has been extended to a maximum
of 65000 characters with a default of 1024 characters. To support this feature, a new
keyword, SOURCE-RECORD-MAX-LENGTH (see page 312), has been added to
the COMPILER-OPTIONS configuration record to determine the maximum source
record length.

− The right margin (also called margin R) for program-text has been extended to a
maximum of the new total source record length, with a default of 72 characters for
backwards compatibility. The capability to change the default initial right margin
setting can be configured with the INITIAL-MARGIN-R keyword (see page 302) in
the COMPILER-OPTIONS configuration record. See also the explanation of the
fixed-form reference format in the RM/COBOL Language Reference Manual for
more information on margin R.

− Compiler directives have been added to allow modifying margin R, control the
listing of source lines, and start a new page in the listing. Two new context-sensitive
words were added to the compiler to support directives: IMP and MARGIN-R. The
floating indicator “>>” was also added to introduce a directive source record.

− Prior to the possibility of source records extending beyond column 72, there was a
natural limit on the number of statements per source record. Now that source records
can be quite large, a limit on the number of statements per source record is necessary
to prevent issues with program debugging and instrumentation. A limit of 64
statements per source record was chosen to avoid such issues.

− The COMPILER-OPTIONS configuration record (see page 294) can specify several
other new keywords related to COBOL source format, including LISTING-ID-
AREA-SEPARATOR, SOURCE-ON-INPUT-DEVICE, KEEP-REPLACED-
LINES, LISTING-LINE-LENGTH, and LISTING-DIAGNOSTIC-PREFIX.

− The LISTING-ATTRIBUTES configuration keyword (see page 305) can now
specify several new values, including RENUMBER-SEQUENCE-AREA,
SUPPRESS-COPIED-LINES, SUPPRESS-COPY-STATEMENT-LINES,
SUPPRESS-REPLACEMENT-LINES, and KEEP-REPLACED-LINES.

− A number of changes have been made to the behavior of COPY and REPLACE
statements. See Chapter 1: Language Structure of the RM/COBOL Language
Reference Manual.

− Hexadecimal literal continuation has been changed to ignore trailing spaces.

− The value specified in the C Compile Command Option can now be 0 through 15.

− The compiler now diagnoses the error of a replaced region that starts on a debug line
where the replacement requires a continuation record with a warning message.

Appendix L: Summary of Enhancements

670 RM/COBOL User's Guide

− The compiler now detects if source records are truncated on input and produces a
summary warning message.

− In the compilation summary listing, if the W Compile Command Option is specified
or configured, the option value is now listed in addition to just the fact that the
workspace size was specified.

− In the compilation summary listing of options specified, the listing (L Compile
Command Option), object (O Compile Command Option), and configuration file
(G and H Compile Command Options).

− Because of changes to how source records are maintained in memory without
unnecessary trailing blanks, and because of some fixes to source scanning low-level
routines needed to handle variable length records, it is expected that the compiler is
now somewhat faster on large programs.

− CodeWatch now includes an Editor Preferences tab in the Preferences dialog box to
set the maximum record length and right margin for purposes of syntax coloring and
animation in the debugger.

• Additional configuration records keyword changes:

− The logging provided by the SUB-CALLS value (see page 346) for the ENABLE-
LOGGING keyword, in the RUN-OPTION configuration record, has been enhanced
to include the annotation “(RM_STOP)” at the end of the log entry line for a called
non-COBOL subprogram that returns an RM_STOP function return value.

− The RUN-FILES-ATTR configuration record now includes the SKIP-INITIAL-
CWD-SEARCH keyword (see page 340). This keyword controls whether or not the
current working directory (CWD) is searched for a filename when RM/COBOL is
locating a file.

− The COMPILER-OPTIONS configuration record now includes the keywords
SUBSCRIPT-CHECKING keyword (see page 313), which specifies stricter
subscript checking at runtime, and POSTPONE-COPY-IN-PSEUDO-TEXT (see
page 310), which specifies whether the compiler should postpone the processing
of a COPY statement included within the replacement pseudo-text of a REPLACE
statement until the replacement occurs instead of at the time the pseudo-text is
scanned.

• RM/COBOL now supports up to 2047 items in the USING list of a CALL statement and
the USING list of the Procedure Division header to allow passing more parameters to a
called program. Prior to version 11, this limit was 255 items.

• The START statement has been enhanced with a new phrase, which is introduced by the
context-sensitive word WHILE. This phrase specifies a filter to be applied when
sequentially reading records (READ NEXT or READ PREVIOUS) in an indexed
organization file subsequent to successful execution of the START statement. The filter
is expressed as a regular expression in the same form as used for the LIKE condition in
relation conditions. The implied subject of the WHILE KEY LIKE filter in a START
statement is the key value of the key of reference in the record that would be accessed by
the READ statement.

• The compiler now implicitly qualifies the data-name specified in the KEY phrase of a
READ or START statement for an indexed organization file with the file-name. This
avoids qualification errors when similarly named key data items exist for two or more
files in the same program.

• The leading key segment data item, or a data item that starts at the same location as the
leading key segment data item and is the same size or shorter, may now be specified in

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 671

the KEY phrase of a START statement in order to specify a partial key when a
segmented key exists for an indexed organization file.

• In RM/COBOL version 11 for Windows, it is now possible to set configuration properties
with the RM/COBOL Configuration (rmconfig) utility (see page 614) and Initialization
File to Windows Registry Conversion (ini2reg) utility (see page 613), either for “All
Users” or for the current user (that is, “This User”). In prior versions of RM/COBOL for
Windows, the properties from these two utilities applied to all users and could not be
applied only to the current user. The rmconfig utility Select File tab now contains the
Scope group of option buttons, which enable you to set various properties for All Users
or This User (that is, the current user). The various properties that are affected include
the control properties, the synonym properties during initialization, and the colors,
toolbar, menu bar and pop-up menu properties. For more information, see Setting
Properties (on page 68).

• The environment variable, RM_IGNORE_GLOBAL_RESOURCES, is now supported
under Windows. This environment variable may be defined if you wish the compiler,
runtime system, or recovery utility not to access the Command Line Options property
defined for All Users. This feature may be useful if you are trying to develop at the same
time others are running an application in live “production mode.”

• On Windows, the RM/InfoExpress client configuration file, rmixclnt.ini, can now be
specified via the IXCONFIG environment variable. This is similar to existing UNIX
behavior, but unlike UNIX, the value of IXCONFIG can be a full pathname to the file
or it can be a folder name when the last character is a backslash (\). In the latter case,
rmixclnt.ini will be appended to the folder name. In addition, the search sequence
for locating the “rmixclnt.ini” configuration file has been modified, for the Windows
client only.

• RM/COBOL version 11 supports PDFlib, a licensed product of the German company
PDFlib GmbH. PDFlib allows a COBOL program to create PDF files with CALL
statements. Until a license is purchased from PDFlib GmbH and applied, PDFlib will
print a “demo stamp” of www.pdflib.com across every page, and some functions or
features may not be available. PDFlib support was later removed in RM/COBOL version
12.08.

• The CodeWatch debugger has been enhanced to remember the workspace main window
size and position from one session to another. As part of this enhancement, multiple
monitor support has been implemented in CodeWatch. CodeWatch also has a new Editor
Preferences tab in the Preferences dialog box.

Version 10 Enhancements

Version 10 Runtime System Features
The RM/COBOL version 10 for Windows and UNIX runtime system has been enhanced with
the following new feature:

• New Object Version Level. Object version 13 has been introduced to support the
expanded total size of a data element subordinate to an OCCURS clause from 65280 to
four gigabytes (as discussed in the next topic, "Version 10 Compiler Features").

Appendix L: Summary of Enhancements

672 RM/COBOL User's Guide

• Main Program Argument. The string specified as the main program argument in the
value of the A Runtime Command Option has been lengthened from a maximum of 100
characters to a maximum of 2048 characters.

• C$CARG and C$DARG Enhancements. The C$CARG and C$DARG library routines
have been enhanced to optionally return a pointer to the data item and a pointer to the
encoded PICTURE editing string for edited data items.

• C$PARG. The C$PARG (see page 560) library routine has been added to obtain a
pointer to the nth actual argument. The value of n may be larger than the number of
formal arguments specified in the program that calls C$PARG.

• SYSTEM. The SYSTEM library routine has been enhanced on Windows NT-class
operating systems to allow a command-line string of 4096 characters.

• Larger OCCURS data. The size of a table element that OCCURS may be greater than
65535 characters with the support for object version 13 in this runtime system.

• Configuration records keyword changes include the following:

− The RUN-OPTION configuration record now includes the SUB-CALLS value for
the ENABLE-LOGGING keyword (see page 346). The log file generated is named
RMCALLS.LOG.

− The TERM-INPUT configuration record now includes a new semantic action value
of FIELD-END, which moves the cursor to the leftmost trailing blank or prompt
character position of the screen field.

Version 10 Compiler Features
The RM/COBOL version 10 for Windows and UNIX compiler has been enhanced with the
following new features:

• ACCEPT and DISPLAY Statement Enhancements. The ACCEPT and DISPLAY
statements have been enhanced with a syntax feature from other common COBOL
dialects. The AT line-column phrase is now supported for positioning, where
line-column is a four- or six-digit unsigned numeric display integer data item or literal.
The first half of the line-column item specifies the line and the second half specifies the
column where the ACCEPT or DISPLAY operation should occur on the display device.

• Limits Expansion. The 65535-character limit on the sum of distinct literal lengths in
a single program has been expanded to over two and a half million characters. The
65280-character limit on the fixed-size header of a variable-length group has been
expanded to four gigabytes. The 65280-character limit on the size of occurring data
elements has been expanded to four gigabytes.

• External Name Length. The compiler configuration has been enhanced to warn when
an external name is longer than 30 characters in length. RM/COBOL generally supports
names up to 240 characters in length during compilation, but external names are
truncated to 30 characters in the object program. This truncation previously occurred
silently and might have caused surprises at runtime. External names that match in the
first 30 characters would refer to the same external object.

Note If the warning is undesired, it can be suppressed using compiler configuration with
the NO-DIAGNOSTIC keyword (see page 309) of the COMPILER-OPTIONS
configuration record.

• The RM/COBOL compiler in version 10 has been fixed to correct a problem of ignoring
the first COPY statement in a file copied using a COPY statement that specifies the

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 673

REPLACING phrase. (This error was introduced in version 9 as part of a fix to correctly
diagnose a COPY statement nested within another COPY statement. Nesting a COPY
statement within another COPY statement, that is, lexically between the word COPY and
the required period separator terminating the COPY statement, is not allowed. However,
nesting a COPY statement within a copied file is allowed by RM/COBOL up to five
levels of nesting.)

Version 9 Enhancements

Version 9 Runtime System Features
The RM/COBOL version 9 for Windows and UNIX runtime system has been enhanced with
the following new features:

• Memory Fill Character. The new F Runtime Command Option (see page 194) may be
used to specify a fill character for read-write memory. Previously, read-write memory
was filled with a space character, which is still the default fill character. The fill
character can also be specified in a configuration file.

• LIKE Condition Variable Pattern. A LIKE condition pattern specified as an
alphanumeric data item containing the pattern value, that is, a variable pattern, is now
trailing blank stripped by default. The trailing blanks are not considered significant in the
pattern value. A configuration keyword, STRIP-LIKE-PATTERN-TRAILING-SPACES
(see page 334), has been added to the RUN-ATTR configuration record to suppress this
new behavior so that trailing spaces are considered significant in the pattern value; that is,
they must match in the value of the subject data item for a true result.

• ANSI/OEM on Windows. The user can now choose to use the ANSI or OEM codepage
as the assumed codepage for character data on Windows. Prior to version 9, the
RM/COBOL for Windows runtime assumed that the OEM codepage described character
data in memory and data files. Thus, the runtime would convert displayed or printed data
from OEM to ANSI if the display or printer font had an ANSI default script. The runtime
system would also convert keyboard input from ANSI to OEM. There were a variety of
other necessary conversions that the runtime system performed since Windows is
primarily based on the ANSI character set. This behavior was consistent with the
historical use of RM/COBOL on MS-DOS, where OEM character sets were used and
thus existing user data files contained OEM characters. Version 9 adds support for
assuming the ANSI codepage on Windows. In the ANSI mode, the runtime will convert
displayed or printed data to OEM only if a font with a default script of OEM/DOS is used
and keyboard input will not be converted. For more information, see Character Set
Considerations for Windows (on page 100).

Note The ANSI mode is appropriate only for new projects with no existing data files or
when the user is willing to convert character data in existing data files from OEM to
ANSI. It would be a severe mistake to mix ANSI and OEM data in the same data file.
Of course, none of this is relevant unless characters from the top half of the codepage
(code points 128 – 255) are used, since code points 0–127 have a common ASCII
interpretation in all codepages.

• C$GetNativeCharset. The C$GetNativeCharset library routine (see page 547) has been
added to query the runtime about the native character set on Windows; that is, whether
the program is running with the OEM or ANSI codepage assumed for characters in
memory and data files. (Prior to version 9, the runtime always assumed the OEM

Appendix L: Summary of Enhancements

674 RM/COBOL User's Guide

codepage for character data.) The actual codepage number can also be obtained. On
UNIX, this library routine returns “NONE” for the character set and 0 for the codepage
number.

• P$ResetPrinter and P$SetLineSpacing. Two new P$ routines have been added.
P$ResetPrinter resets the P$ printer. P$SetLineSpacing sets the number of lines per inch.
For more information, see Appendix E: Windows Printing (on page 461).

• New Object Version Level. Object version 12 (see page 628) has been introduced to
support the CURSOR clause (as described in the following section, "Version 9 Compiler
Features"), large debugging line numbers, new treatment of the SECURE phrase in an
ACCEPT statement, and extended file parameters.

• Faster Initialization. The runtime initialization process has been enhanced to be
significantly faster when a second or subsequent run unit is started within a short period
of time, such as in testing or batch processing.

• The Btrieve Adapter for Linux (librmbtrv.so) is now available.

Version 9 Compiler Features
The RM/COBOL version 9 for Windows and UNIX compiler has been enhanced with the
following new features:

• COPY Statement SUPPRESS Phrase. The COPY statement now allows the
SUPPRESS phrase, which suppresses printing to the source listing file any source
lines included because of the COPY statement. See the “COPY Statement” section in
Chapter 1: Language Structure of the RM/COBOL Language Reference Manual.

• WHEN-COMPILED Special Register. The compiler now supports the WHEN-
COMPILED special register, which provides a value indicating the date and time of the
compilation. The default format for the value matches the IBM OSVS COBOL
implementation of this special register ("hh.mm.ssMMM DD, YYYY"). There is a
configuration option to use the value for the IBM VSC2 COBOL implementation
("MM/DD/YYhh.mm.ss"). The configuration capability is quite flexible, allowing the
user to specify a specific date and time format, along with user-specified text; for
example, a copyright notice of the form “Copyright YYYY/MM/DD. All rights
reserved.” could be configured for the value of the WHEN-COMPILED special register.
The actual compilation date would replace YYYY/MM/DD in the value. For details on
formatting the value of the WHEN-COMPILED special register, see the WHEN-
COMPILED-FORMAT keyword (see page 314) of the COMPILER-OPTIONS
configuration record and the description of special registers in the “Reserved Words”
topic in Chapter 1: Language Structure of the RM/COBOL Language Reference Manual.

• CONSOLE IS CRT Clause. The CONSOLE IS CRT clause has been added to the
Special-Names paragraph. This clause is used in some COBOL dialects to indicate that
all ACCEPT and DISPLAY statements, which do not specify any phrases specific to a
particular format, should be treated as implementor-defined terminal I-O statements as
opposed to ISO 1989-1985 standard ACCEPT and DISPLAY statements. The clause has
been added to ease conversion from such COBOL dialects and has the same meaning in
RM/COBOL as in those other COBOL dialects. See Chapter 3: Environment Division of
the RM/COBOL Language Reference Manual.

• CRT STATUS Clause. The CRT STATUS clause has been added to the SPECIAL-
NAMES paragraph. This clause specifies a data item to receive the exception status
value associated with the field termination key after ACCEPT statements are executed.
See Chapter 3: Environment Division of the RM/COBOL Language Reference Manual.

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 675

• CURSOR Clause. The CURSOR clause has been added to the Special-Names
paragraph. This clause specifies a cursor position data item for Screen Section ACCEPT
statements. When specified, the cursor position is used to position the cursor initially at
the beginning of the ACCEPT statement and is set to the cursor position at the end of the
ACCEPT statement. This clause aids in input error processing because the cursor can be
returned to the input field with the error or to the last field input by the user. See
Chapter 3: Environment Division of the RM/COBOL Language Reference Manual.

• Options Listing. The compiler summary listing has been enhanced to produce more
information about options specified for the compilation on the command line and in
configuration. This ensures not only that the listing more thoroughly documents the
options used, but also may be helpful when diagnosing object behavior that is dependent
on those options. See Summary Listing (on page 173).

• ANSI/OEM on Windows. The compiler can now be run in ANSI or OEM mode on
Windows. This affects the way characters are interpreted for displaying or printing
during compilation and parallels the runtime support for ANSI and OEM character sets.
The compilation mode is recorded in the object so that utilities, such as the Map Program
File (rmmappgm) utility (see page 588), can retrieve it for information, but is otherwise
generally not used at execution. The runtime should be used in the same mode as used
for compilation so that characters will be interpreted as they were at compilation,
although this is not a requirement. The same object program can be run in either ANSI or
OEM mode, but nonnumeric literals that use code points in the range 128 – 255 will have
different interpretations depending on the runtime mode.

• Long User-Defined Words. The warning about user-defined words, such as data-names,
condition-names, file-names, paragraph-names, section-names, and so forth, which
exceed the standard COBOL limit of 30 characters, has been changed. The warning
occurs only on words longer than 240 characters, at which length the compiler truncates
the name if it is longer. The FIPS flagging option for extension flagging can be used to
obtain a warning when names that exceed the standard COBOL limit of 30 characters are
used. Program-names are still restricted to 30 characters in length and are truncated to
that length if a longer program-name is specified.

• Relaxed Reference Modification Rules. The rules for reference modification have been
relaxed to allow truncation without error when the leftmost-character-position or the sum
of the leftmost-character-position and the length minus one exceeds the number of
characters in the referenced modified data item. This behavior matches other COBOL
dialects that do not enforce the standard COBOL rules for reference modification. A
configuration option has been provided to enforce the strict rules for reference
modification. See the STRICT-REFERENCE-MODIFICATION keyword (on page 312)
of the COMPILER-OPTIONS configuration record.

• Suppressible Diagnostic Messages. The compiler configuration has been enhanced to
allow selective suppression of compilation diagnostic messages. This allows the user to
choose to ignore certain warnings and errors that do not concern them. RM/COBOL is
strict about enforcing standard COBOL rules, producing errors where other dialects of
COBOL choose to ignore the non-standard syntax or semantics. Even though
RM/COBOL notes the error, in many cases the error can be ignored when the user is not
concerned about conforming to standard COBOL. For additional information on this
enhancement, see the NO-DIAGNOSTIC keyword (on page 309) of the COMPILER-
OPTIONS configuration record.

• Large Program Enhancements. Additional support for compiling large programs has
been added. Listing line numbers have been changed from five to six digits and the cross
reference listing supports six digit line numbers, if necessary. Internal support for
debugging line numbers exceeding 65535 has been added. The compiler memory
allocation scheme has been enhanced to minimize the effect of failing to set a large

Appendix L: Summary of Enhancements

676 RM/COBOL User's Guide

enough initial workspace size (see the W Compile Command Option on page 152) so
that large programs compile more quickly regardless of the initial workspace size.
Support for a large number of file parameters has been expanded to about four times
the previous limit.

• ACCEPT and DISPLAY Statement Enhancements. The ACCEPT and DISPLAY
statements have been enhanced with syntax features from other common COBOL
dialects. This eases the conversion effort when converting to RM/COBOL from those
other COBOL dialects, since the statements do not have to be re-written to remove the
other forms of syntax. These changes, in conjunction with the addition of the CONSOLE
IS CRT, CRT STATUS, and CURSOR clauses to the Special-Names paragraph,
significantly reduce conversion effort. Also, the SECURE phrase in an ACCEPT
statement now matches the SECURE clause in the Screen Section, replacing input
characters with asterisks instead of treating the SECURE phrase as a synonym for OFF.

• Faster Initialization. The compiler initialization process has been enhanced to be
significantly faster when a second or subsequent compilation is started within a short
period of time, such as in batch processing of multiple source programs.

Version 8 Enhancements
The following sections summarize the major enhancements available in RM/COBOL version
8 for Windows and UNIX. This summary describes the main features of each enhancement
and tells you where to look for more information about them. The RM/COBOL Language
Reference Manual and this user’s guide primarily contain the details regarding these features.

Deficiencies that are version-specific or are discovered after printing are described in the
README files contained on the delivered media. See also Appendix B: Limits and Ranges
(on page 421) for further information.

Version 8 Runtime System Features
The RM/COBOL version 8 for Windows and UNIX runtime system has been enhanced with
the following new features:

• Native Binary Data. The runtime now supports machine-native, binary-format numeric
data items. Such data items are denoted in the source program with the
COMPUTATIONAL-5 or COMP-5 usage clause in the data description entry. Native,
binary-format numeric items are sometimes useful in interfacing with non-COBOL
programs, but in most cases, CodeBridge can be used to avoid the need for this non-
portable data type. For more information, see Unsigned Numeric COMPUTATIONAL-5
Data (NBUN) on page 443 and Signed Numeric COMPUTATIONAL-5 Data (NBSN)
on page 444.

• New Object Version Level. Object version 11 (see page 628) has been introduced to
support COMPUTATIONAL-5 and COMP-5 usage (that is, machine-native binary data
format) and the declaration of empty groups when the object symbol table is produced (Y
Compile Command Option) or in cases when the compiler does not eliminate them in the
Procedure Division.

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 677

Version 8 Compiler Features
The RM/COBOL version 8 for Windows and UNIX compiler has been enhanced with the
following new features:

• COMPUTATIONAL-5 (COMP-5) usage for denoting machine-native, binary-format
numeric data items is now supported. This non-portable data type should be used only
for interfacing with non-COBOL programs where the design of those programs requires
native binary support. In most cases, CodeBridge can be used to interface to non-
COBOL programs without the need for native binary data since the CodeBridge library
will automatically convert from native binary to any COBOL data type. However,
support for COMPUTATIONAL-5 data simplifies development in cases where a non-
COBOL program saves the address of a COBOL data item passed on a CALL statement
and then later stores a binary value at that address. See the “Usage Clause” section in
Chapter 4: Data Division of the RM/COBOL Language Reference Manual.

• The compiler now provides default Working-Storage Section data description entries for
file and data parameters that are specified with an unqualified data-name but which are
not defined by the end of the Data Division (see Chapter 4 of the RM/COBOL Language
Reference Manual). This new compiler feature eliminates compilation errors caused by
forgetting to define one or more such parameters and thus speeds program development.
The following parameters are affected by this feature:

− File access name specified in the ASSIGN clause.

− Padding character data item specified in the PADDING CHARACTER clause.

− Relative key data item specified in the RELATIVE KEY phrase of the ACCESS
MODE clause.

− I/O status data item specified in the FILE STATUS clause.

− Record size data item specified in the DEPENDING phrase of the RECORD IS
VARYING clause.

− Linage data items specified in the LINAGE clause (the linage lines, footing lines, top
lines, and bottom lines data items).

− Label data item specified in the VALUE OF clause.

− Occurs-count data item specified in the DEPENDING phrase of the OCCURS
clause.

• The compiler now supports concatenation expressions. Concatenation expressions use
the ampersand (&) operator to concatenate nonnumeric literals. Besides being an
improved method of continuing long nonnumeric literals, concatenation expressions
provide a means to construct nonnumeric literal values at compile time from
combinations of quoted strings, hexadecimal strings, symbolic-characters, and constant-
names. See Chapter 1: Language Structure of the RM/COBOL Language Reference
Manual.

• The OCCURS clause is now allowed on level-number 01 and 77 data description entries
in the Working-Storage Section.

• An empty group, that is, a group that does not contain any elementary data items, is now
allowed. Empty groups correspond to XML empty elements and thus more closely align
the COBOL data model with the XML data model.

• The compiler now supports the NUMERIC SIGN clause in the Special-Names paragraph.
This clause allows the source program to specify the default sign convention for signed
numeric display data items that are described without the SIGN clause in their data

Appendix L: Summary of Enhancements

678 RM/COBOL User's Guide

description entry. This feature can be used to eliminate the need to remember to specify
the S (Separate Sign) Compile Command Option for source programs that require this
option, such as when a record area size depends on allocating separate signs for signed
numeric display data items. For more details, see Chapter 3: Environment Division of
the RM/COBOL Language Reference Manual.

• The ASSIGN clause no longer requires a device-name, even when the file access name is
specified with a data-name. The device-name is now required only if no file access name
(data-name-1 or literal-1) is specified in the ASSIGN clause. The only restriction is that,
if data-name-1 is specified for the file access name, data-name-1 must not match one of
the device-names built into the compiler as context-sensitive words. See Chapter 3:
Environment Division of the RM/COBOL Language Reference Manual for more
information.

Version 7.5 Enhancements
The following section summarizes the major enhancements available in version 7.5 of
RM/COBOL. This summary describes the main features of each enhancement. The
RM/COBOL Language Reference Manual and this user’s guide contain the details regarding
these features.

CodeWatch Application Development Environment
Introduced
This release includes the latest version of CodeWatch, a fully integrated development
environment for Windows. Starting with version 7.5, CodeWatch now supports the entire
development cycle, including editing, compiling, and debugging RM/COBOL applications.
CodeWatch can be used to debug and change programs that are independently compiled,
without requiring you to build projects—instead, the required knowledge about the structure
of your application is built up during debugging sessions. For more information, see the
CodeWatch manual, which is included with the documentation for an RM/COBOL
development system.

CodeBridge Enhancements
CodeBridge, RM/COBOL’s cross-language call system, has been enhanced to handle 64-bit
integers on all UNIX platforms having a C compiler that supports 64-bit integers. For more
information about CodeBridge, see the CodeBridge User's Guide.

A new runtime callback, GetCallerInfo, has been added to allow CodeBridge non-COBOL
subprograms to enhance error messages with additional information about the caller. The
new callback provides the calling program name and line number, the object file name, and
the date and time the calling program was compiled. The definition and commentary for this
new runtime callback and its associated data structure, CALLER_INFO, are available in
rtcallbk.h, a header file provided with RM/COBOL systems. Examples of the use of this
new callback are included in the msgbox.c sample subprogram for Windows and the usrsub.c
sample subprogram for UNIX.

Two new parameter attributes, called error base attributes, have been added to CodeBridge for
retrieving error information set by C library and Windows API functions. The new error base

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 679

attributes, errno and get_last_error, allow return of the error information by editing the
CodeBridge template instead of the generated code.

Console-Mode Compiler on Windows
The RM/COBOL compiler can now be run as a console-mode application on Windows with
the rmcobolc command. The rmcobolg command can still be used to start the Windows
graphical user interface version (GUI-mode) of the compiler. The console-mode compiler is
smaller and faster than the GUI-mode version and is well suited to batch compilations of large
numbers of programs. Other than the interface, the two compilers are identical since they
both use a common DLL for the compiler implementation. An option at installation allows
you to pick either version of the compiler to be invoked with the rmcobol command. For
additional information, see Batch Compilation on Windows (on page 146).

Multiple and Batch Compiles Easier and Faster
The Windows RM/COBOL compiler selection dialog now allows more than one file to be
selected. You may select additional files by holding down the Ctrl key while clicking on
additional files, or you may use Ctrl+A to select all files. Subdirectories are automatically
ignored. The compilations stop when all files have been compiled or a compilation returns a
non-zero exit code. This mode of compiling is faster than using a script because the compiler
does not need to be reloaded between sources.

Wildcard characters on the command line for both the console-mode compiler and the GUI-
mode compiler can also be used to select multiple files to compile. Supported wildcard
characters are “?” (match any single character) and “*” (match zero or more characters).

For additional information on these new capabilities, see Multiple File Compilation on
Windows (on page 147).

More Reliable Indexed Files
Indexed file support has been made more reliable by adding new integrity features as part of
file version level 4 (see page 254). Additionally, version 4 indexed files optionally support
the new “atomic I/O” capability, which provides a means for users to avoid almost all 98
errors caused by failures that occur while a file is open. Files created with atomic I/O will
almost never need recovery. If a crash occurs during a COBOL I/O operation, the file will be
automatically and quickly recovered the next time the file is opened or a write operation is
performed. The ENABLE-ATOMIC-IO keyword (see page 342) has been added to the RUN-
INDEX-FILES configuration record to determine whether indexed files created by the
runtime system use atomic I/O.

The default indexed file version for new files has been changed from 2 to 4 to automatically
provide the higher level of reliability to new files. The DEFAULT-FILE-VERSION-
NUMBER keyword (see page 342) of the RUN-INDEX-FILES configuration record may be
used to specify a different value.

Version 4 indexed files may, like version 3 files, grow to a larger size than version 0 or 2
files. However, unlike version 3 files, version 4 files may be either large or regular sized
files, depending on the new USE-LARGE-FILE-LOCK-LIMIT keyword (see page 344) of
the RUN-INDEX-FILES configuration record. This new keyword determines whether the
LARGE-FILE-LOCK-LIMIT (see page 339) or the FILE-LOCK-LIMIT keyword (see

Appendix L: Summary of Enhancements

680 RM/COBOL User's Guide

page 338) of the RUN-FILES-ATTR configuration record is used to determine the largest
address that can be locked in the file. This, in turn, determines how large the file can be.

Better Indexed File Performance
Several changes have been made to increase indexed file performance by creating new
indexed files with more reasonable block sizes and by increasing the maximum size of the file
buffer pool from less than one million bytes to ten million bytes.

The RM/COBOL version 7.5 runtime system now creates new indexed files with a minimum
block size of 1024 bytes and ensures that the block size for new indexed files is a multiple of
the disk sector size. Indexed file processing is generally more efficient with larger block sizes
and with block sizes that are also a multiple of the disk sector size (512 bytes on Windows
and, normally, 1024 bytes on UNIX). For additional information about these changes, see
BLOCK CONTAINS CLAUSE (Indexed File Description Entry) on page 244.

Two new keywords, MINIMUM-BLOCK-SIZE (see page 344) and ROUND-TO-NICE-
BLOCK-SIZE (see page 344), have been added to the RUN-INDEX-FILES configuration
record to allow the block size to be computed in the same manner as prior versions of the
RM/COBOL runtime system.

The BUFFER-POOL-SIZE keyword (see page 336) of the RUN-FILES-ATTR configuration
record now allows the buffer pool size to be as large as 10,000,000 bytes. Generally, a larger
buffer pool size will produce better file performance than a smaller buffer pool size. Some
testing may be required to find the optimal size for your application.

Automatic Configuration File Available for Windows
Configuration files may now be automatically loaded on Windows for the runtime, compiler,
and recovery utility in a manner similar to the capability on UNIX. The ability to attach a
configuration file to the executable on Windows using the rmattach utility, however, is still
provided. For more information, refer to Automatic Configuration Files (on page 290).

Tail Comments for Configuration Records
Configuration records may now contain a tail comment; that is, a comment that does not start
in column one of the configuration record. See the discussion of configuration records and
tail comments (on page 290).

Enhancements for Non-COBOL Subprograms on
Windows
The RM/COBOL 7.5 for Windows runtime system has been enhanced to load dynamic link
libraries (DLLs) automatically from a special subdirectory, RmAutoLd, of the runcobol
execution directory without the need to specify the filename with the L (Library) Option on
the runcobol command. All DLLs in this special subdirectory will be loaded automatically.
While it is no longer necessary to specify any non-COBOL libraries on the runcobol
command, the L (Library) Runtime Command Option is still supported for doing so. For
further details, refer to Locating Optional Support Modules (on page 449).

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 681

The Windows runtime system has also been enhanced to support the special predefined
symbols (entry points and variable names), such as RM_EntryPoints, RM_AddOnInit, and
RM_AddOnTerminate, which, previously, were available only on UNIX. While none of
these special entry points is required, if present, the DLL can provide a list of COBOL-
callable entry points without the need to specify the .EDATA section at link time, and can
provide special initialization and termination code that will be called automatically when the
runtime system initializes and terminates. Additional information about these special entry
points may be found in Appendix G: Non-COBOL Subprogram Internals for Windows in the
CodeBridge User's Guide.

Additions to the RM/COBOL Subprogram Library
The RM/COBOL subprogram library has been extended with the following new C$
subprograms. For more details, see Appendix F: Subprogram Library (on page 533).

• C$CompilePattern compiles a variable pattern regular expression for use in the new
LIKE condition, which has been added to the RM/COBOL language. More information
about the LIKE condition may be found in Chapter 5: Procedure Division of the
RM/COBOL Language Reference Manual.

• C$ConvertAnsiToOem may be used to convert a buffer containing ANSI characters to a
buffer containing the corresponding OEM characters. The runtime’s ANSI/OEM euro
character configuration is preserved in the conversion.

• C$ConvertOemToAnsi may be used to convert a buffer containing OEM characters to a
buffer containing the corresponding ANSI characters. The runtime’s ANSI/OEM euro
character configuration is preserved in the conversion.

• C$DARG may be used to obtain the description of an actual argument by using an
argument number to refer to the desired argument.

• C$SecureHash may be used to produce a message digest from a message text using the
secure hash algorithm (SHA-1).

• Several library subprograms for doing bitwise logical operations have been added. These
include C$LogicalAnd, C$LogicalComplement, C$LogicalOr, C$LogicalShiftLeft,
C$LogicalShiftRight, and C$LogicalXor. Each of these subprograms can operate either
on nonnumeric strings or numeric values.

Message Files Eliminated
The message files for RM/COBOL executable programs (runcobol, rmcobol and recover1)
have been eliminated. The files RUN.MSG, RMC.MSG, and REC.MSG, present in
previous versions of RM/COBOL, no longer exist beginning with version 7.5. The messages
contained in these files now reside within each executable. Thus, there is no longer any
searching for the correct message file and no possibility of having mismatched executable and
message file versions.

Compiler Overlay File Eliminated
The overlay file for the RM/COBOL compiler executable programs (rmcobol and rmcobolc)
has been eliminated. The file RMCOBOL.OVY, present in previous versions of
RM/COBOL development systems, no longer exists beginning with version 7.5. Thus, there

Appendix L: Summary of Enhancements

682 RM/COBOL User's Guide

is no longer any searching for the correct overlay file and no possibility of having mismatched
executable and overlay file versions.

Version 7.5 Runtime System Features
In addition to the new C$ subprogram library subprograms supplied in the runtime, the
RM/COBOL version 7.5 for Windows and UNIX runtime system has been enhanced with the
following new features:

• Pipe Paths. For UNIX, where piping print output to a print spooler is common, a file
access name that begins with a pipe character ('|') may now be used to create the pipe
without having to use a DEFINE-DEVICE configuration record. This allows the spooler
options to be constructed dynamically in a variable by the COBOL program. The check
for the pipe character is made after the file access name is mapped using any applicable
environment variables, so a program also can be caused to pipe its output by setting an
environment variable that maps the file access name specified in the program to a value
having the pipe character as its first character. For more details, see File Access Names
on UNIX (on page 22).

• Input Pipes. Input pipes are now supported on UNIX. A pipe is used for input when a
file is opened in the input mode and either the path begins with a pipe character ('|') or the
file access name refers to a DEFINE-DEVICE configuration record (see page 319) that
specifies a pipe with the PIPE=YES keyword. For example, a file opened in the input
mode with a file access name having the value "| ls -1 *.txt" will read a list of the text
files (assuming text files are identified by the ".txt" extension) in the current directory.

• Default Use Procedure Configuration. The action to take when there is no applicable
USE procedure for an I/O error on a file can now be configured. Previously,
RM/COBOL terminated the run unit with an appropriate error message when there was
no applicable USE procedure. Now, the runtime behavior may be configured to cause the
program to continue as if an empty USE procedure were applicable by specifying
DEFAULT-USE-PROCEDURE=CONTINUE (see page 336) in the RUN-FILES-ATTR
configuration record.

• Library Configuration. RM/COBOL object libraries and non-COBOL subprogram
libraries may now be configured with the L keyword (see page 347), which has been
added to the RUN-OPTION configuration record, paralleling the L (Library) Runtime
Command Option (see page 197). Additionally, the LIBRARY-PATH keyword (see
page 347) has been added to the RUN-OPTION configuration record to cause loading of
all RM/COBOL object libraries in a specified directory. Both the L and LIBRARY-
PATH keywords may be specified multiple times in the configuration.

• Main Program Configuration. The MAIN-PROGRAM keyword (see page 348) has
been added to the RUN-OPTION configuration record. This keyword allows specifying
a main program-name to override the program-name specified on the command line.

• Configuration Record Name Enhancement. Configuration record names have been
enhanced to allow the singular or plural forms interchangeably. For example, the RUN-
OPTION and RUN-OPTIONS record names are both allowed and either record name
supports the same set of keywords. The alternative forms of the record-type identifiers
are shown in Table 33: Types of Configuration Records (on page 292).

• Euro Support for Windows. A new configuration record type, with the identifier
INTERNATIONALIZATION, has been added to allow configuration of support for the
euro symbol (€) in ACCEPT statements, DISPLAY statements, and printing operations
on Windows. For more information, see INTERNATIONALIZATION configuration
record (on page 326). In addition, the DATA-CHARACTERS keyword (see page 353)

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 683

of the TERM-ATTR configuration record has been enhanced to allow specification of
multiple disjoint ranges on Windows, thus matching a capability that was already
supported on UNIX. Since the euro symbol is not typically in the default range of
characters that are interpreted as text characters, allowing the euro symbol to be entered
for an ACCEPT statement requires modifying the range of the data characters. This can
be done by using multiple DATA-CHARACTERS keywords with disjoint ranges or by
modifying the upper bound for the data characters range to include the euro symbol.
An example is provided in the description of the DATA-CHARACTERS keyword.
Additionally, the description of the DATA-CHARACTERS keyword has an example
that demonstrates how to convert the period on the numeric keypad into a comma when
doing numeric input in countries that use the comma as the fractional separator rather
than the period.

• Toolbar Tooltips. For Windows, the toolbar button prompt value that was displayed in
the status bar is now also displayed as a tooltip, which is a small pop-up window
containing the prompt text displayed near the toolbar command button when the mouse
cursor hovers over the button. The Toolbar Prompt property (see page 84) has been
added to control this new behavior. This new property allows choosing the old behavior
of displaying the prompt only in the status bar. The property also allows choosing not to
display the prompt at all, display the prompt only as a tooltip, and display different values
in the status bar and tooltip (the latter requires changing the prompt string set in the
toolbar properties in the Windows registry by using rmconfig or in the RM/COBOL
program by calling C$TBar). The Toolbar Prompt property can be set in the registry with
rmconfig or temporarily changed at runtime by calling C$GUICFG.

• SYSTEM Window Types. For Windows, the values that may be specified for the
SYSTEM Window Type property (see page 84) have been expanded to include
MinimizedNoActive and ShowNoActivate. These values can be stored in the Windows
registry using rmconfig or, they can be set at runtime by calling C$GUICFG.

• C$SCRD Support for Line Draw Characters. The C$SCRD subprogram (see
page 564) has been modified to support line draw characters by returning hyphens, plus
signs, and vertical bars for the box characters. On Windows, the Screen Read Line Draw
property (see page 82) has been added to allow C$SCRD to return DOS line draw
characters (for example, $D9, “┘” for the lower-right corner of a box).

• P$GetHandle. The P$GetHandle subprogram (see page 496) has been modified to
provide for the optional return of the true Windows handle of the current P$ printer. This
allows a non-COBOL program to add information (such as special graphics or a bar
code) to a page printed on a P$ printer.

• P$DisableDialog. The P$DisableDialog subprogram (see page 473) is used to control
the automatic invoking of the standard Windows Print dialog box when opening a
“PRINTER?” device.

• P$EnumPrinterInfo. The P$EnumPrinterInfo subprogram (see page 493) is used to
retrieve detailed information about all of the printers on a system. It is not necessary to
open a printer to obtain this information.

• Termination Log for UNIX. The UNIX runtime now allows logging of termination
error messages, including traceback information, using the ENABLE-
LOGGING=TERMINATION keyword (see page 346) of the RUN-OPTION
configuration record. The termination log allows error messages to be collected for later
analysis. UNIX users can still redirect standard error to collect termination information,
but doing so means that the information will not be displayed for the user.

• Creating Files on an RM/InfoExpress Server. The new DISABLE-LOCAL-ACCESS-
METHOD keyword (see page 337) of the RUN-FILES-ATTR configuration record can
be used to prevent files with unqualified, simple names from being created in the current

Appendix L: Summary of Enhancements

684 RM/COBOL User's Guide

working directory. Specifying UNQUALIFIED-NAMES for the value of the new
keyword will allow new files to be created on an RM/InfoExpress Server. On previous
versions of the runtime system, it was necessary for the application to specify the server
machine on which the file should be created either by including a complete pathname in
the COBOL program or by using an environment variable to specify the complete path.
Provided the new keyword is specified, it is now possible to create such files in the first
directory of the RUNPATH environment variable. Specifying the new keyword has no
effect on finding existing files.

• Setting Toolbar Properties. New special characters have been added for the toolbar
icon string under Windows, as discussed in Setting Toolbar Properties (on page 89).

• Additional Enhancements to Configuration Records. These include the following:

− More TERM-INPUT character equivalents have been added for Windows. See
Translation of TERM-INPUT Sequences on Windows (on page 359).

− The COPY-TO-CLIPBOARD value has been added to the list of values allowed for
the ACTION keyword (see page 357) of the TERM-INPUT configuration record.
See also Character Sequence Specification for Field Editing Keys (on page 360).

• New Object Version Level. Object version 10 (see page 627) has been introduced to
solve a problem with reference modified patterns in LIKE conditions. RM/COBOL
v7.50.01 and later runtime systems support object version level 10.

• Pop-Up Window Positioning. A new Pop-Up Window Positioning property (see
page 80) has been added to control initial positioning of pop-up windows on Windows.

Version 7.5 Compiler Features
The RM/COBOL version 7.5 for Windows and UNIX compiler has been enhanced with the
following new features:

• Reserved Words. To support the new language features mentioned below, the reserved
word list has been extended with the new words DATA-POINTER, DEFAULT, and
LIKE. Also, several words have been removed from the list of reserved words and
placed in the new category of context-sensitive words. For more details, see Appendix
A: Reserved Words in the RM/COBOL Language Reference Manual, or see this topic in
the RM/COBOL Syntax Summary.

• Context-Sensitive Words. Some words previously considered to be always reserved
have been changed to be reserved only in certain contexts and are thus now in the new
category of context-sensitive words. For example, the word UNDERLINE was
previously a reserved word, but is now reserved only in the context of a screen
description entry. Also, several new words have been added to this category of words to
support the new features mentioned below. For additional information, see Appendix A:
Reserved Words in the RM/COBOL Language Reference Manual, or see this topic in the
RM/COBOL Syntax Summary.

• FILLER Items Entered in Symbol Table. FILLER data items are now entered in the
symbol table and will therefore be displayed in the listing allocation map. Keeping
FILLER data items in the symbol table requires additional compile-time memory but
allows support for the new WITH FILLER phrase on the INITIALIZE statement. A
new compiler configuration keyword, SUPPRESS-FILLER-IN-SYMBOL-TABLE (see
page 313), has been added to reduce the memory required to compile a program with
many FILLER data items.

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 685

• SELECT Clause NOT OPTIONAL Phrase. For compatibility with other COBOL
dialects, the NOT OPTIONAL phrase may be specified in the SELECT clause for files
that are required to be present at runtime. Since RM/COBOL assumes that files are
required at runtime unless the OPTIONAL phrase is specified, the NOT OPTIONAL
phrase has no effect, but is accepted in order to ease conversion of programs originally
written in other COBOL dialects. For further details, see the topic “File Control Entry”
in Chapter 3: Environment Division of the RM/COBOL Language Reference Manual.

• PICTURE Clause. The PICTURE clause may now be omitted for an elementary data
item described with a VALUE clause that specifies a nonnumeric literal. The data item
defined in this case is as if a PIC X(n) clause had been specified, where n is the length of
the nonnumeric literal specified in the VALUE clause. Refer to the section “Data
Description Entry” in Chapter 4: Data Division of the RM/COBOL Language Reference
Manual.

• Implied PICTURE for Numeric VALUE (by PICTURE Clause). The compiler now
supports an implied PICTURE character-string when the VALUE clause specifies a
numeric literal. This feature is in addition to the feature of an implied PICTURE
character-string when the VALUE clause specifies a nonnumeric literal, also new in
version 7.5. For more information, see the “Data Description Entry” section Chapter 4:
Data Division of the RM/COBOL Language Reference Manual.

• Format 1 VALUE Clause. The Format 1 VALUE clause, which defines initialization
values for Working-Storage items, now also defines values to be used by the new
VALUE phrase of the INITIALIZE statement. Therefore, the clause is now allowed in
the File, Linkage, and Communication Sections and also in record descriptions described
with the EXTERNAL clause, without the previous RM/COBOL restriction that the
VALUE clause could be used only in such situations when it was included in the source
program as part of a copied file. Refer to the section “Data Item Initialization (Format 1
VALUE Clause)” in Chapter 4: Data Division of the RM/COBOL Language Reference
Manual.

• Format 2 VALUE Clause. The Format 2 VALUE clause, which defines values for
level-number 88 condition-names, has been extended to allow relational operators. This
allows, in particular, the use of the new LIKE condition to specify valid values for a data
item by use of a pattern regular expression. Refer to the section “Condition-Name Rules
(Format 2 VALUE Clause)” in Chapter 4: Data Division of the RM/COBOL Language
Reference Manual.

• LIKE Condition. The relational operators have been extended to include the LIKE
operator and thus provide the special case of relation conditions called the LIKE
condition. The LIKE condition specifies a truth-value based on whether a data item
matches a pattern value. Pattern values are given as regular expressions in the same form
used by XML Schema. You can read more about this topic in the section “LIKE
Condition (Special Case of Relation Condition)” in Chapter 5: Procedure Division of the
RM/COBOL Language Reference Manual.

• ACCEPT Statement Enhancements. The ACCEPT statement now supports a proposed
COBOL standard method of obtaining four-digit years by use of the YYYYMMDD and
YYYYDDD optional phrases in the FROM DATE or FROM DAY phrases, respectively.
For more information, see “ACCEPT…FROM Statement” in Chapter 6: Procedure
Division Statements of the RM/COBOL Language Reference Manual.

• EXIT Statement Enhancements. The EXIT statement now includes formats for exiting
a paragraph, a section, or an in-line PERFORM statement. For additional information,
see “EXIT Statement” in Chapter 6: Procedure Division Statements of the RM/COBOL
Language Reference Manual.

Appendix L: Summary of Enhancements

686 RM/COBOL User's Guide

• INITIALIZE Statement Enhancements. The INITIALIZE statement now includes the
optional FILLER, VALUE, and DEFAULT phrases. The FILLER phrase causes
FILLER data items to be initialized rather than ignored. The VALUE phrase causes
initialization to the literal value specified in the VALUE clause associated with the
elementary data item being initialized. The DEFAULT phrase causes items to be
initialized to default values (spaces, zero, or null) when the VALUE or REPLACING
phrases are specified but neither of these values is applicable to the elementary data item
to be initialized. The INITIALIZE statement also now includes the new category-name,
DATA-POINTER, for initializing data pointer data items and allows initialization of
variable-occurrence data items. For more information, see “INITIALIZE Statement” in
Chapter 6: Procedure Division Statements of the RM/COBOL Language Reference
Manual.

• USE Statement Enhancement. The USE statement now allows a series of OPEN
modes, with or without a series of filenames, so that a single USE procedure may be
declared for multiple open modes or specific files. See the section “USE Statement” in
Chapter 5: Procedure Division of the RM/COBOL Language Reference Manual for more
information.

• Literals Passed “BY CONTENT”. The RM/COBOL version 7.5 compiler has been
modified to pass literals specified in the USING phrase of CALL statements as if the BY
CONTENT phrase applied. This change was made to protect the value of the literal in
the calling program from inadvertent changes made to the corresponding Linkage Section
data item in the called program. A new keyword in the COMPILER-OPTIONS
configuration record, SUPPRESS-LITERAL-BY-CONTENT (see page 313), has been
added to override this new behavior until the COBOL source program can be corrected.
For additional information, see Argument Considerations (on page 229).

• Compiler Registration. The RM/COBOL version 7.5 for Windows compiler now
consists of a client (either the console-mode client, rmcobolc.exe, or the GUI-mode
client, rmcobolg.exe, with either being called rmcobol.exe) and a server (rmcbl75c.dll).
The client components are completely compatible with previous versions of the
rmcobol.exe program; that is, no command line changes are required. The server DLL,
however, must be registered with Windows before RM/COBOL programs can be
compiled. This is automatically performed during installation and is an issue only if the
compiler is moved to a different directory without being installed again. In this case,
either client can be used to re-register the server. You can read more about this topic in
Registering the RM/COBOL Compiler and Runtime Executables (on page 54).

• Compiler Z Option Changed. The Z Compile Command Option (see page 159) may no
longer be used to restrict the object version level of generated code to object levels 6 and
below. Object level 7 corresponds to the RM/COBOL 6.nn releases. Eliminating the
need for the compiler to generate code for these very old versions improves the efficiency
and reliability of the compiler and ensures that the compiler does not need to suppress
optimizations that the older runtime systems do not support.

• Listing Now Includes Replaced Statements. Source lines that have been replaced
because of the REPLACE statement or the REPLACING phrase of the COPY statement
are now included as comments in the compilation listing. These lines can be suppressed
in the listing by specifying either the C=2 or C=3 Compile Command Options (see
page 154), or the SUPPRESS-REPLACED-LINES configuration value for the LISTING-
ATTRIBUTES keyword (see page 305) of the COMPILER-OPTIONS configuration
record.

• More Informative Compiler Output. The copy level indicator in the compilation
listing also has been enhanced to provide information about source lines that have been
modified, replaced, or inserted as a result of the REPLACE statement or the
REPLACING phrase of the COPY statement. In addition, the presentation of

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 687

replacement text in the compilation listing has been improved. See the discussion of this
topic on page 165.

• Error-Only Listing with Debug Information. The E Compile Command Option (see
page 155) is no longer ignored when the Y=2 or Y=3 Compile Command Options are
specified. Thus, it is now possible to request an error-only listing while at the same time
generating complete debugging information in the object file.

Version 7.5 Utility Features
New features in the RM/COBOL version 7.5 for Windows and UNIX utility programs include
the following:

• Fast Conversion to New Indexed File Format. The Indexed File Recovery (recover1)
utility (see page 599) has been enhanced to convert indexed files to the new, more
reliable version 4 format . This conversion is very efficient, taking only slightly longer
than a file recovery done to correct an error. To convert an existing file to the new
format, use the Define Indexed File (rmdefinx) utility (see page 594) to change to the
new file version in the file header and then use recover1 to perform the conversion.
Some indexed files with very small block sizes cannot be converted to a version 4 format.
In this case, when you run rmdefinx to change the file version in the header, you will
receive notification that the block size is too small for successful conversion.

• Batch Mode for Changing Indexed Files to File Version Level 4. New parameters,
CONVERT4 and ATOMICIO, have been added to the Define Indexed File (rmdefinx)
utility (see page 594) to allow a large number of files to be converted easily to file
version 4 either with or without the atomic I/O capability. Use of either of these new
parameters will cause rmdefinx to run in “batch mode” without the normal, interactive
user prompting.

More Flexible Licensing
The RM/COBOL compiler, RM/COBOL runtime system, and the Indexed File Recovery
utility now require the same sort of license certificates that Cobol-WOW (known as WOW
Extensions in release 9) and Relativity have been using for some time. These license
certificates are customized for each product and allow for specialized banners, product
expiration dates, and easier upgrades.

Automatic Update Check
The RM/COBOL compiler, the RM/COBOL runtime, and CodeWatch now provide
information about available product updates automatically. CodeWatch provides the update
information when beginning, while the RM/COBOL compiler and runtime provide the
information when they are terminating. The new keyword, DISPLAY-UPDATE-
MESSAGES, has been added to the COMPILER-OPTIONS configuration record (see
page 294) and to the RUN-OPTION configuration record (see page 344) to control which of
the update messages are displayed. It is possible to see all the update messages (the default
for an RM/COBOL development system) or just the “urgent” messages (the default for an
RM/COBOL runtime system). Urgent messages are used to indicate only important problems
that users need to be aware of immediately.

Appendix L: Summary of Enhancements

688 RM/COBOL User's Guide

Version 7.1 for UNIX Enhancements
The following section summarizes the major enhancements available in version 7.1 of
RM/COBOL. This summary describes the main features of each enhancement. The
RM/COBOL Language Reference Manual and this user’s guide contain the details regarding
these features.

Note Many—but not all—features that were new in version 7.0 for Windows are now
available on UNIX in version 7.1. For example, the compiler new features and the runtime
support for those new features are available on UNIX in version 7.1. Windows-specific
features, such as Windows printing are not available in RM/COBOL version 7.1 for UNIX.

Runtime Linking Eliminated
Versions of RM/COBOL prior to 7.1 required that the runtime system be relinked to add new
functionality such as the VanGui Interface Builder. Also, there were numerous different
versions of the runtime, including the terminfo version, the termcap version, the runtime with
the RM/InfoExpress client, and the FlexGen runtime.

RM/COBOL version 7.1 for UNIX eliminates the need to relink the runtime by using optional
support modules to add functionality to the runtime. With version 7.1, there will only be a
single version of the runtime and various support modules to provide the additional
capabilities. These optional support modules are implemented as UNIX “shared objects.”
Micro Focus provides support modules with the RM/COBOL runtime for the terminfo and
termcap terminal interfaces (selectable at installation, as before), the RM/InfoExpress client
interface, and the FlexGen interface routines. Other support modules, such as the VanGui
Interface Builder Server and Enterprise CodeBench, are available from Micro Focus. The
CodeBridge facility will also generate user-written support modules. For more information,
see Appendix D: Support Modules (Non-COBOL Add-Ons) (on page 447).

UNIX Resource File
A resource file capability is provided to support C$GetSyn (see page 550) and C$SetSyn (see
page 572), and to provide stored configuration information for the runtime system and the
compiler. A UNIX resource file (see page 25), similar in format to a Windows initialization
(.ini) file, allows for permanent storage of synonym names and values on UNIX in the same
way that the registry file does on Windows. You can use the resource files to customize your
RM/COBOL application.

Automatic Configuration File
UNIX versions of RM/COBOL prior to 7.1 allowed a configuration file to be linked into the
runtime, compiler, or recovery utility. Version 7.1 of RM/COBOL for UNIX allows for a
configuration file to be located automatically by the runtime system, the compiler, and the
recovery utility. This new method is described as an “automatic configuration file.” For
more details, see Automatic Configuration Files (on page 290).

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 689

Support for UNIX Added to CodeBridge
CodeBridge, RM/COBOL’s cross-language call system, is in the RM/COBOL version 7.1
system. The CodeBridge Builder uses a template file to produce a C source file. The C
source file provides the COBOL/C interface that may be used in an optional support module
callable from COBOL programs.

The CodeBridge Builder generates C source modules that are platform-independent. Thus,
you can use the CodeBridge Builder on a Windows platform to generate C source files that
may be used on either a Windows or UNIX system. For more information, refer to the
CodeBridge User's Guide, included in the RM/COBOL development system documentation
set for this release.

Enhancements to Configuration Records
RM/COBOL version 7.1 for UNIX includes the following additions to the configuration
records:

The ENABLE-LOGGING keyword (see page 345) of the RUN-OPTION configuration
record has been enhanced with new values to control the generation of various error and
information log files.

The TERM-ATTR configuration record includes a new keyword, ALWAYS-USE-CURSOR-
POSITIONING (see page 351), which determines whether optimized cursor positioning is
suppressed when positioning the cursor on the screen.

Version 7.0 for Windows Enhancements
The following section summarizes the major enhancements available in version 7.0 of
RM/COBOL. This summary describes the main features of each enhancement. The
RM/COBOL Language Reference Manual and this user’s guide contain the details regarding
these features.

CodeWatch Debugger Introduced
This release includes CodeWatch, a standalone, source-level debugger for Windows.
CodeWatch supports the debugging of any applications without requiring that they be built
under the RM/CodeBench or Enterprise CodeBench development environments. CodeWatch
uses true 32-bit Windows “look-and-feel” and common Windows controls such as native
toolbars, tree lists, progress indicators, and spin buttons. For more information, see the
CodeWatch manual, which is included in the RM/COBOL development system
documentation set for this release. CodeWatch uses the enhanced debugging information that
is available when the new debugging options are specified during compilation of a source
program. For additional information on the new debugging options, refer to the “Enhanced
Debugging Options” paragraph in Version 7.0 Compiler Features (on page 692).

CodeBridge Cross-Language Call System Introduced
A new facility that simplifies communication between COBOL programs and non-COBOL
subprograms (such as those written in C or C++) is included in RM/COBOL version 7.0 for

Appendix L: Summary of Enhancements

690 RM/COBOL User's Guide

Windows. Known as CodeBridge, this facility allows COBOL programmers to call external
APIs or custom-developed subprograms without introducing “foreign” language and data
dependencies into their programs. This means that developers can write C functions using
C data types as usual, without worrying about the complex ArgEntry structure or COBOL
data types. After the function declaration has been augmented for use as a template, the
CodeBridge utility automatically produces a C source file for a bridge DLL. This file
contains all the logic to interface to the calling COBOL program, the developer’s C functions,
and the needed calls to a CodeBridge data conversion library. The developer then compiles
this source file, along with the C functions to be called, and links everything together with
the conversion library to form the completed non-COBOL DLL. In a similar manner,
pre-existing DLL libraries also can be called from RM/COBOL applications.

For a complete description of this facility, refer to the CodeBridge User's Guide, which is
included in the RM/COBOL development system documentation set for this release.

Enhanced Windows Printing
The RM/COBOL version 7.0 for Windows runtime contains enhancements to provide more
capabilities and flexibility when printing with Windows printer drivers. A new predefined
printer device, “PRINTER?”, has been added to the runtime. See Windows Printers (on
page 322) in the DEFINE-DEVICE configuration record in Chapter 10: Configuration.
When this device is opened, a standard Windows Print Setup dialog box is presented to the
user to allow dynamic selection of the Windows printer.

A library of P$ subprograms, described in P$ Subprogram Library (on page 461), and two
options in the Windows registry, the Printer Dialog Always property (see page 80) and the
Printer Dialog Never property (see page 80), have been added to allow developer control of
this dialog box. The RM/COBOL for Windows compiler can use this capability to select the
printer for the listing file.

The RM/COBOL for Windows runtime also has been enhanced to support raw mode printing,
which is useful when printing with escape sequences to a network printer on a Windows NT-
class server. Limited support for Windows printers via escape sequences is provided as well.
See RM/COBOL-Specific Escape Sequences (on page 530).

Additions to the RM/COBOL Subprogram Library
The RM/COBOL subprogram library now includes the following C$ subprograms. For more
details, see Appendix F: Subprogram Library (on page 533).

• C$ClearDevelopmentMode disables expanded error information reporting (known as
“development mode”) in many of the C$ and P$ subprograms.

• C$Delay relinquishes the CPU for a specified length of time (in seconds).

• C$GetEnv and C$SetEnv retrieve and set, respectively, the value of environment
variables.

• C$GetLastFileName retrieves the last file-name and pathname used in a COBOL
I/O statement.

• C$GetLastFileOp retrieves information about the last COBOL I/O file
operation performed.

• C$GetRMInfo retrieves information about the RM/COBOL runtime system.

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 691

• C$GetSyn and C$SetSyn retrieve and set, respectively, the values of RM/COBOL
synonyms used in the UNIX resource file and in Windows registry file.

• C$GetSysInfo retrieves information about the operating system on which the
RM/COBOL runtime system is running.

• C$MemoryAllocate allocates dynamic memory.

• C$MemoryDeallocate deallocates (frees) dynamically allocated memory.

• C$PlaySound plays Windows predefined sound events or sound files.

• C$SetDevelopmentMode enables expanded error information reporting (known as
“development mode”) in many of the C$ and P$ subprograms.

• C$Show sets the show state of the main RM/COBOL window (rmguife.exe).

• C$ShowArgs displays a list of the arguments used to call a subprogram.

Ability to Use Btrieve Interface
An additional subprogram, C$BTRV (see page 536), makes raw Btrieve functions, including
transactions, accessible from RM/COBOL using Btrieve’s normal interface.

Version 7.0 Runtime System Features
In addition to the new C$ and P$ subprogram libraries supplied in the runtime, RM/COBOL
version 7.0 for Windows runtime system includes the following features:

• Support for Large Files. The runtime system allows RM/COBOL 7.0 files to grow past
limits imposed in previous versions. On the Windows 9x-class of operating systems,
files up to 4 gigabytes (GB) are supported. The Windows NT-class of operating systems
support multiple terabyte files on the NT file system. Only files on FAT32 (file system
format supported for Windows 9x-class operating systems) or NTFS (file system format
supported on Windows NT-class operating systems) may be larger than 2 GB. See Using
Large Files on Windows (on page 114).

• Enhanced Runtime Performance. The RM/COBOL version 7.0 for Windows runtime
typically runs computational tasks 20 to 30 percent faster than RM/COBOL version 6.51
for Windows.

• Termination Log Added. On Windows, a log of termination error messages, including
traceback information, can be used to collect information about errors not trapped by
declaratives. The ENABLE-LOGGING=TERMINATION (see page 346) and LOG-
PATH (see page 347) keywords have been added to the RUN-OPTION configuration
record to allow error messages to be collected for later analysis.

• New Runtime Behavior. When the RM/COBOL runtime loads a non-COBOL
subprogram library using CodeBridge, it builds a table of entry points into that library. If
the sequence “RMDLL” is found at the beginning of any entry name, it is removed. See
the CodeBridg User’s Guide for more information.

• Runtime Registration. The RM/COBOL version 7.0 for Windows runtime now consists
of two components: a client (runcobol.exe) and a server (rmcblrun.dll). The client
component is completely compatible with previous versions of the runcobol.exe
program—no command line changes are required. The server DLL, however, must be
registered with Windows before RM/COBOL programs can be run. This is automatically
performed during program installation and is an issue only if the runtime is moved to a

Appendix L: Summary of Enhancements

692 RM/COBOL User's Guide

different directory without being installed again. In this case, the client can be used to
reregister the server. See the procedures that are described in System Installation for
Windows (on page 46).

• More Flexible Filenames. Two new options have been added to the RUN-FILES-ATTR
configuration record. The ALLOW-EXTENDED-CHARS-IN-FILENAMES keyword
(see page 336) allows extended characters in filenames. The ENABLE-OLD-DOS-
FILENAME-HANDLING keyword (see page 337) supports the way in which filenames
are handled in the old DOS-style 8.3 format.

• LINAGE Configuration Options. The PRINT-ATTR configuration record now
includes two new configuration keywords to assist in configuring LINAGE for page
printers, such as laser printers and ink jet printers.

− The LINAGE-INITIAL-FORM-POSITION keyword (see page 329) defines where
the form is positioned in the printer when the file is opened. The RM/COBOL
implementation of LINAGE has required in the past that the form be aligned in the
printer such that the first line printed is line one of the page body of the first logical
page. This was a reasonable requirement when COBOL was mainly used with line
printers and continuous forms. However, this requirement is not reasonable for page
printers. For page printers, the value TOP-OF-FORM would be specified for this
new keyword. The value PAGE-BODY-LINE-1 (the default value) would be
specified for line printers when the operator adjusts the form to the first line of the
logical page.

− The LINAGE-PAGES-PER-PHYSICAL-PAGE keyword (see page 329) defines the
number of logical pages per physical page. LINAGE specifies logical pages, not
physical pages. Therefore, the RM/COBOL implementation of LINAGE did not
use form feed characters when printing LINAGE files since form feed characters
advance the printer to the next physical page. For a page printer, a form feed
character is sometimes necessary to advance to the next physical page. When
LINAGE-PAGES-PER-PHYSICAL-PAGE is set to a nonzero value, then a
physical page break (normally a form feed character) is printed each time that
number of logical pages has been printed. When LINAGE-PAGES-PER-
PHYSICAL-PAGE is set to 0 (the default value), then physical page breaks are not
generated for LINAGE files.

• Inclusion of RM/Panels Runtime. The RM/Panels runtime is now included with the
RM/COBOL runtime.

Version 7.0 Compiler Features
While RM/COBOL version 6.61 for UNIX contained numerous changes to the compiler,
RM/COBOL version 7.0 for Windows features even more capabilities, including the
following:

• Syntax Summary Online Help File. The full RM/COBOL language syntax is included
in an online help file along with examples, coding templates, and tips. Descriptions of
the Compile, Runtime, and Debug Commands are also included.

• Increased Compiler Capacity. RM/COBOL version 7.0 for Windows compiler allows
65535 identifiers to be defined in a single program (up from the 8192 allowed in version
6.61). The maximum space for user-defined words has been increased such that all
65535 identifiers could have unique names 30-characters in length (up from the 21-
character average limit for version 6.61). The changes that support the increased capacity
also eliminate the problem that limited consecutive comment lines to around 800. The
limit is now about 18,000 consecutive comment lines.

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 693

• New Reserved Words. To support some of the features described in the following
paragraphs, the reserved words list has been extended with the following new words:
ADDRESS, CENTURY-DATE, CENTURY-DAY, COUNT-MAX, COUNT-MIN,
DATE-AND-TIME, DAY-AND-TIME, NULL, NULLS, and RETURNING.

Note that if you use these reserved words as user-defined words, you must either change
the spelling of these user-defined words or use the DERESERVE keyword (see page 301)
in the COMPILER-OPTIONS configuration record.

• ACCEPT Statement Enhancements. A number of changes have been made to the
ACCEPT statement related to improving the way dates and times are handled. These
changes provide additional ways of writing Y2K-compliant COBOL. New phrases
include CENTURY-DATE, CENTURY-DAY, DATE-AND-TIME, DATE-COMPILED,
and DAY-AND-TIME. For more information, see the RM/COBOL Language Reference
Manual and Composite Date and Time (on page 231).

• Constant-Names. Compile-time constants can now be defined with constant-names
declared in level-number 78 data description entries. Once defined, a constant-name
can be used in almost all contexts where a literal or integer is required in the language
syntax. When properly used, constant-names greatly simplify the maintenance of
COBOL programs.

• POINTER Data Types. The POINTER data type has been added. Pointer data items
can be used to point to other data items in the program or in allocated memory. Support
for pointer data items includes the NULL and NULLS figurative constants, which are
pointer literals with a null pointer value. There are two new formats of the SET
statement to manipulate pointer data items and an ADDRESS OF special register for
obtaining the address of a data item as a pointer value. A non-null pointer refers to an
area of memory that may be accessed in COBOL by setting the base address of a
level-number 01 or 77 data item described in the Linkage Section of the program to the
pointer value. Dynamic memory allocation is supported by two new subprograms in the
provided library, C$MemoryAllocate (see page 557) and C$MemoryDeallocate (see
page 558).

• Binary Allocation Configuration. New configuration options allow binary numeric
data items to be allocated in the minimum size necessary to support the specified
PICTURE character-string consistent with the configured sizes. RM/COBOL has
traditionally allocated binary numeric data items as two, four, eight, or sixteen bytes. The
new configuration options allow binary numeric data items described with one or two
digits to be allocated as a single byte. For more details on binary numeric data item
allocation configuration, see the descriptions of the BINARY-ALLOCATION keyword
(on page 296) and BINARY-ALLOCATION-SIGNED keyword (on page 298) in the
COMPILER-OPTIONS configuration record.

• Binary Allocation Override. In addition to binary allocation configuration, the
compiler now supports a binary allocation override specification in the USAGE clause.
The binary allocation override specification is an integer, enclosed in parentheses, that
follows a binary usage type (COMPUTATIONAL-4, COMP-4, or BINARY). The
integer specifies the number of bytes to allocate, overriding the number of bytes that
would have been allocated based on the current compiler configuration. The override
specification may specify fewer bytes than would be required to support the decimal
precision indicated by the PICTURE character-string.

Note The binary allocation override feature also applies to native binary data items
(COMPUTATIONAL-5, COMP-5), which were added in version 8.

• COUNT, COUNT-MAX, and COUNT-MIN Special Registers. The compiler now
supports three new special registers, COUNT OF data-name-1, COUNT-MIN OF data-
name-1, and COUNT-MAX OF data-name-1, that may be used to obtain the number of

Appendix L: Summary of Enhancements

694 RM/COBOL User's Guide

occurrences of a table data item. For a fixed-occurrence table, COUNT, COUNT-MAX,
and COUNT-MIN all return the fixed number of occurrences specified in the OCCURS
clause. For a variable-occurrence table, COUNT-MIN returns the minimum number of
occurrences specified in the OCCURS clause, COUNT returns the current number of
occurrences (that is, the current value of the DEPENDING data item specified in the
OCCURS clause), and COUNT-MAX returns the maximum number of occurrences
specified in the OCCURS clause.

• LENGTH Special Register. The compiler now supports a new special register,
LENGTH OF identifier-1, which may be used to obtain the length in bytes of any data
item. The length for most data items is a constant, but the length is a variable for
variable-length groups and for identifiers that specify reference modification.

• PROGRAM-ID Special Register. The compiler now supports a new special register,
PROGRAM-ID, which may be used to obtain the program-name of any program that
specifies this special register.

• In-Line Comments. The compiler now supports the *> symbol as an in-line comment
introducer. Any characters on the same source record following *> will be treated as
commentary. The *> symbol must be preceded by a space separator.

• OMITTED Arguments. The compiler now supports the keyword OMITTED in the
USING list of a CALL statement. Since arguments are positional, this feature allows an
argument to be omitted from other than the end of the USING list.

• GIVING/RETURNING Phrase. The compiler now supports the
GIVING/RETURNING phrase in the Procedure Division header and in a CALL
statement. This phrase specifies an additional argument intended as the output argument
of a called program.

• Formal Arguments (USING/GIVING). The compiler now handles as a special case the
specification of a formal argument as an actual argument in a CALL statement or in a
reference modified identifier reference. In these two cases, the reference is evaluated
according to the description of the actual argument corresponding to the formal argument
rather than using the Linkage Section description of the formal argument. This means
that a program that is just an intermediary between two programs need not have a
Linkage Section data description entry that accurately describes the size of the actual
argument being passed through it. For example, calling C$CARG with a formal
argument, which is described as longer than the corresponding actual argument, will no
longer result in a data reference error. Instead, C$CARG will return the correct length of
the actual argument, and because of the reference modification change described here,
this length may be successfully used to reference modify the formal argument. This also
means that a program can call the supplied subprogram C$CARG with an argument that
the calling program omitted without getting a data reference error. In this case, the call to
C$CARG will succeed and return an argument descriptor that includes a type of
OMITTED and a length of zero.

• In the case of reference modification, an omitted actual argument would cause a data
reference error, but for an argument that is not omitted, the reference modification can
use any offset and length combination that is consistent with the actual argument.
Previous to this enhancement, reference modification that used variables implied a
reference to the item as described in the Linkage Section for the formal argument data
item and this implied reference, if larger than the corresponding actual argument, would
cause a data reference error before the reference modification was applied.

• New Listing Date Formats. The compilation listing date format can now be configured
to include four-digit years with the new format values DDMMYYYY, MMDDYYYY,
YYYYMMDD, and YYYYDDD. The default listing date format has been changed to
MMDDYYYY so that a four-digit year will be used by default. This change also

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 695

included making the DATE-COMPILED paragraph use the same date format as the
compilation listing header.

• Enhanced Debugging Options. The Y Compile Command Option has two new
variations that direct the compiler to embed additional debugging information in the
program object file. The additional debugging information allows CodeWatch to display
the program source during execution without requiring that the program be compiled
under Enterprise CodeBench. See the descriptions of the Y Compile Command Option
(on page 159) and the DEBUG-TABLE-OUTPUT keyword (on page 300) in the
COMPILER-OPTIONS configuration record.

• Argument Linkage Configuration. The COMPILER-OPTIONS configuration record
now includes the LINKAGE-ENTRY-SETTINGS keyword (see page 303) to configure
the behavior of arguments and based linkage items upon subprogram entry during
multiple calls to a subprogram in a run unit. The keyword supports values that provide
behavior corresponding to Micro Focus Visual COBOL behavior for the various settings
of the Micro Focus Visual COBOL compiler directive STICKY-LINKAGE. The
keyword also supports behavior matching certain IBM COBOL implementations.

• Source lines that have been replaced because of the REPLACE statement or the
REPLACING phrase of the COPY statement are now included as comments in the
compilation listing. These lines can be suppressed in the listing by specifying the C=2 or
C=3 Compile Command Option or the SUPPRESS-REPLACED-LINES configuration
value for the LISTING-ATTRIBUTES keyword (see page 305) of the COMPILER-
OPTIONS configuration record.

• The copy level indicator in the compilation listing also has been enhanced to provide
information about source lines that have been modified, replaced or inserted as a result
of the REPLACE statement or the REPLACING phrase of the COPY statement. In
addition, the presentation of replacement text in the compilation listing has been
improved.

• The E Compile Command Option is no longer ignored when the Y=2 or Y=3 Compile
Command Options are specified. Thus, it is now possible to request an error-only listing
while at the same time generating complete debugging information in the object file.

Enhanced File Recovery Performance
For large files, the Indexed File Recovery (recover1) utility (see page 599) runs at least twice
as fast as previous versions. The -m option has been added to allow the user to specify a
larger amount of memory to be used for the recovery. Allocating more memory generally
results in much faster recovery.

New rmpgmcom Utility Option
A new option in the Combine Program (rmpgmcom) utility (see page 585), STRIP, can
remove COBOL symbol table and debug line table information produced by the compiler
Y Option from object files.

Appendix L: Summary of Enhancements

696 RM/COBOL User's Guide

Version 6.6 Enhancements
The following section summarizes the major enhancements available in version 6.6 of
RM/COBOL. This summary describes the main features of each enhancement. The
RM/COBOL Language Reference Manual and this user’s guide contain the details regarding
these features.

Override Date/Time Feature for Year 2000 Testing
Beginning with RM/COBOL version 6.61, a new feature has been added to assist users in
testing for Year 2000 and other future date/time problems in their COBOL programs. Users
can now set the initial date and time when the runtime starts. This allows the user to test parts
of an application without having to change the actual date and time on the machine. For more
information, see the ALLOW-DATE-TIME-OVERRIDE keyword (on page 295) in the
COMPILER-OPTIONS configuration record.

Increased Compiler Capacity
The ability to compile large programs has been improved by allowing more identifiers and
user-defined words during compilation. The maximum number of identifiers has been
increased from 3612 to 8192, while the maximum space available for user-defined words has
been doubled. The new user-defined word limit allows for 8192 user-defined words that
average 21 characters in length, but these cannot all be identifiers since procedure-names
must also fit in this space. The cross reference capability of the compiler was also improved
to correctly cross reference source programs up to 65535 lines in length, up from the 16384
lines supported in prior versions.

Improved Compiler Performance for Large Programs
The compiler performance has been improved for large programs by adjustments to the
memory allocation algorithms.

New Statistics in Compilation Listing File
The compiler now provides additional statistics regarding how much identifier table space and
user-defined word space has been consumed to compile a source program. The messages are
intended to help project managers avoid surprises in suddenly having a source program
exceed one of the limits. The messages are now part of the Program Summary Statistics
portion of the listing. Here is an example of the messages:

Source program used 4489 (55%) of 8192 available identifiers
 (T28 limit).

Source program used 33004 (50%) of 65536 available user-defined
 word space (T48 limit).

The new compiler also offers additional statistics regarding the use of memory during
compilation. The message helps the user establish a proper setting of the workspace size

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 697

compiler option (W command line option and WORKSPACE-SIZE keyword of the
COMPILER-OPTIONS configuration record). The message is now part of the Program
Summary Statistics portion of the listing. Here is an example of the message:

Maximum compilation memory used was 487K bytes (2 presses and
 0 increases required).

Memory presses and increases occur in the compiler to help minimize the amount of memory
used, but at the cost of compilation speed. Minimizing the number of presses by increasing
the workspace size setting yields the fastest compilation. A small number of presses do not
affect compiler speed.

Double-Byte Character Set (DBCS) Support
Double-byte character set (DBCS) characters are now supported by RM/COBOL when
running on those versions of UNIX that allow their use. See the description of the
DBCS-CHARACTERS keyword (on page 353) in the TERM-ATTR configuration record.

Enhanced Indexed File Recovery Program
The Indexed File Recovery (recover1) utility (see page 599) has been enhanced to improve its
ability to repair damaged indexed files. recover1 is now able to repair not only those
problems that, in previous versions, required the use of the recover2 utility, but other
problems as well. The enhancements to recover1 have made the recovery and recover2
utilities obsolete. However, recovery and recover2 are still included on the distribution
media for backward compatibility.

Masked Input and Output
The RM/COBOL runtime now allows dynamic input based on a template supplied with a new
keyword, MASK, that can be specified in the CONTROL phrase in ACCEPT and DISPLAY
statements. This capability applies to UNIX only. For more details, see ACCEPT and
DISPLAY Phrases (on page 209).

Support For Large Files
When running under operating systems that support files larger than 2 GB (gigabytes), the
runtime system will now allow RM/COBOL files to grow past limits imposed in previous
versions. This support is provided by the LARGE-FILE-LOCK-LIMIT keyword (see
page 339) of the RUN-FILES-ATTR configuration record. In order to use this new limit on
relative or sequential files, you must use the USE-LARGE-FILE-LOCK-LIMIT keyword in a
RUN-REL-FILES configuration record (see page 348) or a RUN-SEQ-FILES configuration
record (see page 349). In order to use this new limit on indexed files, you must use an
indexed file version of 3. For more information, see Very Large File Support (on page 234).
Additional information about systems that support large files also can be found in Using
Large Files on UNIX (on page 42) and Using Large Files on Windows (on page 114).

Appendix L: Summary of Enhancements

698 RM/COBOL User's Guide

Version 6.5 Enhancements
The following section summarizes the major enhancements available in version 6.5 of
RM/COBOL. This summary describes the main features of each enhancement. The
RM/COBOL Language Reference Manual and this user’s guide contain the details regarding
these features.

Full 32-Bit Implementation
RM/COBOL is now implemented in 32-bit code across all platforms (UNIX and Windows).
One common RM/COBOL runtime system or compiler will execute under the various
Windows operating systems. On the Windows 9x-class of operating systems, the COBOL
programs can make calls to non-COBOL subprograms in either 16-bit or 32-bit dynamic link
libraries (DLLs). On the Windows NT-class of operating systems, COBOL programs can
make calls only to non-COBOL subprograms in 32-bit DLLs.

Windows Registry Support
RM/COBOL for Windows makes use of the Windows registry to maintain program
properties. This feature eliminates the need for initialization (.ini) files. The tabs in the
Properties dialog box for the COBOL object program can be used to set values in the
registry. See Windows Registry (on page 67) for more information. The new RM/COBOL
Configuration (rmconfig) utility (see page 614) also can be used to set these properties by
displaying the Properties dialog box.

Note The Initialization File to Windows Registry Conversion (ini2reg) utility (see page 613),
available only in Windows, converts an RM/COBOL for Windows initialization file and
places its contents into the registry database.

Extensions for 32-bit Windows
RM/COBOL for Windows now supports various Microsoft 32-bit Windows extensions,
including long filenames and 3D controls.

Automated System Installation and Removal
An automated system installation and removal capability is now a part of RM/COBOL for
Windows. This feature greatly simplifies the loading and unloading of RM/COBOL. It is
especially useful in ensuring that the appropriate programs are included or removed when
upgrading to new versions. See System Installation for Windows (on page 46) and System
Removal for Windows (on page 59) for more information.

Right Mouse Button Pop-Up Menu
RM/COBOL now provides the ability to define a pop-up menu that displays when the right
mouse button is clicked in the client area of the RM/COBOL window. For more information
about setting pop-up menu properties, see Setting Pop-Up Menu Properties (on page 95).

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 699

A new subprogram, C$RBMenu (see page 561), also can be used to define such a pop-up
menu temporarily.

New Subprograms for Windows
Several other new subprograms, which are supported only under Windows, have been added
in version 6.5. C$GUICFG (see page 552) temporarily changes the RM/COBOL graphical
user interface. C$TBarEn (see page 576) enables and disables the toolbar buttons in the
RM/COBOL window. C$TBarSeq (see page 576) sets the bitmap sequence of a toolbar
button in the RM/COBOL window.

Window Style and the SYSTEM Non-COBOL
Subprogram
The Windows version of RM/COBOL now allows you to set the style of the window created
when you use the SYSTEM non-COBOL subprogram. For more information, see SYSTEM
Window Type property (on page 84).

Btrieve Adapter Enhancements
RM/COBOL version 6.5 for 32-bit Windows includes an rmbtrv32.dll, which is the 32-bit
version of the 16-bit rbadaptr.dll that was shipped with RM/COBOL version 6.08 for 16-bit
Windows.

rmbtrv32 supports the following RM/COBOL version 6 features: split keys, duplicate prime
keys, multiple record locks, record lock timeouts, and START with FIRST or LAST. In
addition, rmbtrv32 supports the RUN-INDEX-FILES DATA-COMPRESSION and
BLOCK-SIZE keywords, and rmbtrv32 returns expanded error codes for better error
reporting. rmbtrv32 also supports selected features of Btrieve version 6 and 6.1 files as well
as Btrieve version 6.15 MicroKernel Database Engines. rmbtrv32 supports the Btrieve
maximum of 119 key segments, repeating duplicates, and the no currency change (NCC)
option on insert and update operations.

Using repeating duplicates along with the NCC option should eliminate the possible position-
lost errors that could occur when a second user deleted records as the first user was reading
through them.

rmbtrv32 allows pre-created Btrieve files that have multiple alternate collating sequences
(ACS) defined, although all Btrieve keys that map to RM/COBOL keys must use ACS
number zero since COBOL defines one ACS per file.

Setting RUN-INDEX-FILES DATA-COMPRESSION=NO allows the user to have rmbtrv32
create uncompressed Btrieve files (earlier versions of rbadaptr always created compressed
Btrieve files, which forced some users to pre-create uncompressed files).

For further information on these features, see Chapter 4: System Considerations for Btrieve
(on page 119).

Attached Configuration Files on Windows
The Attach Configuration (rmattach) utility now allows configuration files to be physically
attached to rmcobol.exe, runcobol.exe, and recover1.exe under Windows. When attached,

Appendix L: Summary of Enhancements

700 RM/COBOL User's Guide

a configuration file will be processed prior to any configuration file specified with a
command-line option.

Built-In Configuration File under UNIX
The UNIX version of RM/COBOL allows a configuration file to be linked in to the compiler
and runtime system.

Year 2000 Subprogram
In order to facilitate updating RM/COBOL programs to handle the year 2000 issue, this
release provides a non-COBOL subprogram called C$Century (see page 540). This
subprogram retrieves the first two digits of the current year. For example, for the year
1999, it will return 19; for the year 2000, it will return 20.

C$RERR Eleven-Character Extended Status
The C$RERR subprogram (see page 562) has been enhanced to return an eleven-character
extended status when called with an eleven-character data item. The four-character
extended status returned in a four-character data item remains unchanged from previous
versions of RM/COBOL.

Improved recover1 Utility Program
The Indexed File Recovery (recover1) utility (see page 599) has several new enhancements,
including:

• Displaying information on why recovery may be required.

• The ability to display the last 98 or 30 error received when accessing the file, and the
date and time it occurred.

• Several options to control the amount of user interaction required.

• An option that allows the Open For Modify Count to be reset without performing a
full recovery.

Enhanced rmmapinx Utility Program
The Map Indexed File (rmmapinx) utility (see page 590) includes two significant
improvements. It now displays the Open for Modify Count for an indexed file, and it also
displays the value of the last 98 or 30 error received while accessing the file. The date
and time that the error occurred is also available. In addition, this utility reports split
keys correctly.

Appendix L: Summary of Enhancements

 RM/COBOL User's Guide 701

Dynamically Configurable Prompt Character
ACCEPT statements may now specify a prompt character in the CONTROL phrase.
The specified character is used for that ACCEPT statement only; the default prompt
character is not changed. The PROMPT keyword is described under the CONTROL Phrase
(see page 209).

Building Custom Products Using the customiz Shell
Script
The User Makefile that was included in previous versions of the RM/COBOL development
system for UNIX has been replaced with a UNIX Bourne Shell script. When executed, this
script interactively obtains information about the product to be built from the user and
generates the appropriate Makefile. The user can then use this Makefile to build the product.

Indexed File Block Sizes After OPEN OUTPUT
The manner in which a block size is chosen for an indexed file when OPEN OUTPUT is
performed may differ from previous releases. For more information, see the description of
the BLOCK CONTAINS clause under the topic Indexed Files (on page 242).

DELETE FILE under UNIX
The DELETE FILE operation will now fail if the user does not have write permission for both
the file to be deleted and the directory containing the file.

Resolution of Program-Names
The method used to resolve program-names from environment variables has been changed to
the method used in earlier versions. The environment is now searched for a matching name
only after appending the extensions. This procedure is described in steps 5 through 7 in
Subprogram Loading (on page 227).

Compiler Support for External Access Methods
The RM/COBOL compiler now supports the use of external access methods (such as
RM/InfoExpress) to locate source files and copy files. See the EXTERNAL-ACCESS-
METHOD configuration record (on page 324).

Index

 RM/COBOL User's Guide 703

Index

2

2 Compile Command Option 161, 310

7

7 Compile Command Option 160, 298, 562

A

A (Address Stop) Command, Debug option 271
A Compile Command Option 154, 167, 255, 263,

305
A Runtime Command Option 195, 385
ABS 169, 259, 427
ABSE 169, 259, 427
ACCEPT and DISPLAY statements, operating-

system specific information 201–17, See also
ACCEPT statement, Terminal I-O; DISPLAY
statement

cursor types 30, 74–75, 106
defined keys 202, 356

edit keys 202–4, 360, 684
field termination keys and associated exception

status values 205, 363
initial contents of a screen field 201
maximum size of a screen field 194, 201
redirection of input and output 40, 201

standard error 42, 333
standard input 40
standard output 41–42, 163

terminal attributes 30
terminal interfaces 15, 19, 28

ACCEPT exception code values 357
ACCEPT MESSAGE COUNT statement 456
ACCEPT statement, implicit definition

CENTURY-DATE 231, 540, 693
CENTURY-DAY 231, 540, 693
DATE-AND-TIME 231, 540, 693
DAY-AND-TIME 540, 693
EXCEPTION STATUS 224

ACCEPT statement, Terminal I-O See also ACCEPT
and DISPLAY statements, operating-system
specific information; DISPLAY statement

BEFORE TIME phrase 217
CHARACTER-TIMEOUT keyword, TERM-

ATTR configuration record 352
configuration

ACCEPT-BEEP-DEFAULT keyword,
COMPILER-OPTIONS record 295

ACCEPT-FIELD-FROM-SCREEN keyword,
RUN-ATTR record 331

ACCEPT-INTENSITY keyword, RUN-ATTR
record 331

ACCEPT-PROMPT-CHAR keyword, RUN-
ATTR record 331

ACCEPT-SUPPRESS-CONVERSION keyword,
COMPILER-OPTIONS record 295

B keyword, RUN-OPTION record 345, 423
BCOLOR keyword, TERM-ATTR record 351,

356
BEEP keyword, RUN-ATTR record 332
BLINK keyword, RUN-ATTR record 332
CHARACTER-TIMEOUT keyword, TERM-

ATTR record 352
COLUMNS keyword, TERM-ATTR record 352
FCOLOR keyword, TERM-ATTR record 354,

356
M keyword, RUN-OPTION record 347
REDRAW-ON-CALL-SYSTEM keyword,

TERM-ATTR record 355
REVERSE keyword, RUN-ATTR record 334
ROWS keyword, TERM-ATTR record 355
RUN-OPTION record 344
SCREEN-CONTENT-OPTIMIZE keyword,

TERM-ATTR record 355
SUPPRESS-NULLS keyword, TERM-ATTR

record 355
TAB keyword, RUN-ATTR record 334
TERM-INPUT record 357
TERM-INTERFACE record 365
TERM-UNIT record 366
UNDERLINE keyword, RUN-ATTR record 335
USE-COLOR keyword, TERM-ATTR record 356

CONTROL phrase 209
BCOLOR keyword 38, 89, 210, 220, 356
FCOLOR keyword 38, 89, 210, 220, 356
GRAPHICS keyword 38, 106, 211, 214
MASK keyword 202, 212, 697
PROMPT keyword 214, 701
REPAINT-SCREEN keyword 215
SCREEN-COLUMNS keyword 215
TAB keyword 214

CONVERT phrase 40, 41
CURSOR phrase 40, 214
ECHO phrase 40
ERASE phrase 215

Index

704 RM/COBOL User's Guide

HIGH phrase 214, 216
LOW phrase 214, 216
OFF phrase 214, 216
ON EXCEPTION phrase 40–41, 205, 217
PROMPT phrase 201, 203, 214
REVERSE phrase 216
SECURE phrase 214, 216
SIZE phrase 40, 41, 214, 216
TAB phrase 214
TIME phrase. See BEFORE TIME phrase
UPDATE phrase 201

ACCEPT-BEEP-DEFAULT keyword, COMPILER-
OPTIONS configuration record 295

ACCEPT-FIELD-FROM-SCREEN keyword, RUN-
ATTR configuration record 331

ACCEPT-INTENSITY keyword, RUN-ATTR
configuration record 331

ACCEPT-PROMPT-CHAR keyword, RUN-ATTR
configuration record 331

ACCEPT-SUPPRESS-CONVERSION keyword,
COMPILER-OPTIONS configuration record
157, 295

ACTION keyword, TERM-INPUT configuration
record 357, 684

ADDRESS special register 626
ADVANCING mnemonic-name phraseWRITE

statement (sequential I-O) 237
ADVANCING phrase, SEND statement 460
ADVANCING ZERO LINES phrase

WRITE statement (sequential I-O) 237
Allocation map listing 154, 163, 167, 305
ALLOCATION-INCREMENT keyword, RUN-

INDEX-FILES configuration record 342
ALLOCATION-MAP value, LISTING-

ATTRIBUTES keyword 154, 167, 305
ALLOW-DATE-TIME-OVERRIDE keyword,

COMPILER-OPTIONS configuration record
295, 696

ALLOW-EXTENDED-CHARS-IN-FILENAMES
keyword, RUN-FILES-ATTR configuration
record 336, 581, 692

Alphabet-name, user-defined word type 167
ALWAYS-USE-CURSOR-POSITIONING keyword,

TERM-ATTR configuration record 351, 689
analysis program 379, See also Instrumentation
ANS 169, 259, 427
ANSE 169, 259, 427
ANSI codepage 54, 76, 81, 100, 102, 673
ANSI insertion mode

field editing 360
RESET-ANSI-INSERTION value 362
SET-ANSI-INSERTION value 362
TOGGLE-ANSI-INSERTION value 362

Argument passing 195
ASCII, translation 643–47

character abbreviations 654

Atomic I/O, indexed files 254, 342, 345, 595, 679
Attach Configuration utility (rmattach), on Windows

664
AUTO-LINE-FEED keyword, PRINT-ATTR

configuration record 328
Automatic configuration files 177, 290

errors 415
for the compiler 15, 19, 149, 453
for the recovery utility 15, 19, 453, 603
for the runtime 15, 19, 191, 453
on UNIX 15, 19, 453, 688
on Windows 453, 664, 680
processing order 290, 291
support module 453, 603, 664

Automatic product updates 301, 345, 687

B

B (Breakpoint) Command, Debug option 272
B Compile Command Option 153, 311
B keyword, RUN-OPTION configuration record 194,

201, 345, 423
B Runtime Command Option 194, 201, 217, 345, 423
Background color, in ACCEPT or DISPLAY field

210
Backspace field edit key 203
BACKSPACE value, ACTION keyword 360
Banner messages

compiler (rmcobol) 44, 117, 152, 163, 177
runtime (runcobol) 44, 117, 192, 418

Banner messages and STOP RUN statement 192, 346
configuration

K keyword, RUN-OPTION record 192
Batch compilation 146, 679
BCOLOR keyword

CONTROL phrase, ACCEPT and DISPLAY
statements 38, 89, 210, 220, 356

TERM-ATTR configuration record 351
BEEP keyword

CONTROL phrase, DISPLAY statement 220
RUN-ATTR configuration record 332

BEEP phrase
ACCEPT and DISPLAY statements 332
DISPLAY statement 219

BEFORE TIME phrase, ACCEPT statement 217
CHARACTER-TIMEOUT keyword, TERM-ATTR

configuration record 352
BELL phrase. See BEEP phrase
Binary allocation (configuration) 296, 298, 438, 440,

443, 444, 693
Binary sequential files

configuring 311, 349
record delimiting technique 153, 235

BINARY usage 296, 298
signed 440, 444
unsigned 438, 443, 676

Index

 RM/COBOL User's Guide 705

BINARY-ALLOCATION keyword, COMPILER-
OPTIONS configuration record 175, 296, 438,
440, 443, 444, 538, 544, 693

BINARY-ALLOCATION-SIGNED keyword,
COMPILER-OPTIONS configuration record
298, 438, 443, 693

BLINK keyword
CONTROL phrase, DISPLAY statement 220
RUN-ATTR configuration record 332

BLINK phrase
ACCEPT and DISPLAY statements 332
DISPLAY statement 219

Blinking attribute 37, 219
BLOCK CONTAINS clause, file description entry

235, 240, 244, 680, 701
Block size 336

indexed files 244, 344, 701
relative files 240
sequential files 235

BLOCK-SIZE keyword
RUN-FILES-ATTR configuration record 336
RUN-INDEX-FILES configuration record 342
RUN-REL-FILES configuration record 348
RUN-SEQ-FILES configuration record 349

Boolean 30, 31, 36–38, 68
Bourne Shell script 701
BPS keyword, TERM-UNIT configuration record

366
Btrieve Adapter

Btrieve files
indexed file performance considerations 119, 125,

134
system considerations 46, 124

Btrieve MicroKernel Database Engine (MKDE)
122, 123, 133

configuration and installation 46, 121, 124
limitations with RM/COBOL indexed files 134

Btrieve Requester for Windows 46, 121, 122, 133
C$BTRV subprogram 536
COBOL application programs 123
components

librmbtrv.so support module 119, 123
rmbtrv32.dll program 119, 123, 133

configuration options 126, 131
B rmbtrv32 MKDE page size 126
BLOCK-SIZE 131
C create 127
D duplicates 128
DATA-COMPRESSION 131
I initial display 128
L lock 128
M mode 129
O owner 130
P rmbtrv32 page size 125, 130, 137
RUN-INDEX-FILES record 342
T diagnostic trace filename 131

enhancements 699
EXTERNAL-ACCESS-METHOD configuration

record 126
file management system, RM/COBOL 123
indexed files 123
local area networks (LANs) 119, 122, 126
RUN-INDEX-FILES configuration record 131, 342
RUNPATH environment variable 127
software required 46, 121

Btrieve MicroKernel Database Engine (MKDE)
46, 121, 122

Btrieve Requester for Windows 46, 121, 122
librmbtrv.so support module 122, 123
NetWare 121, 122
Pervasive PSQL 122
RM/COBOL development system 121, 123
RM/COBOL runtime system 121, 123
rmbtrve32.dll program 121, 123

split keys 124
starting

Linux 325
Windows 133

Btrieve MicroKernel Database Engine (MKDE). See
Btrieve Adapter

Btrieve Requester for Windows. See Btrieve Adapter
Btrieve. See Btrieve Adapter
Buffer pool 186, 233, 241, 245, 250, 336
Buffer size

B Runtime Command Option (ACCEPT and
DISPLAY statements) 194

maximum size of a screen field 194, 201
SIZE phrase (ACCEPT and DISPLAY statements)

217
with ACCEPT and DISPLAY statements 40, 423

BUFFER-POOL-SIZE keyword, RUN-FILES-ATTR
configuration record 186, 233, 250, 336, 388,
408, 609, 680

Built-in configuration file. See Automatic
configuration files

Business Information Server (BIS) 11

C

C (Clear) Command, Debug option 273
C Compile Command Option 154, 305, 306, 686
C Runtime Command Option 192, 289
C$BitMap subprogram 536
C$BTRV subprogram 536, 691
C$CARG subprogram 298, 538, 694
C$Century subprogram 231, 540, 700
C$ClearDevelopmentMode subprogram 465, 540,

690
C$CompilePattern subprogram 334, 541, 681
C$ConvertAnsiToOem subprogram 103, 542, 681
C$ConvertOemToAnsi subprogram 103, 542, 681
C$DARG subprogram 543, 681

Index

706 RM/COBOL User's Guide

C$Delay subprogram 545, 690
C$Forget subprogram 545
C$GetEnv subprogram 546, 690
C$GetLastFileName subprogram 546, 690
C$GetLastFileOp subprogram 547, 690
C$GetNativeCharset subprogram 102, 547, 673
C$GetRMInfo subprogram 548, 690
C$GetSyn subprogram 25, 86, 550, 688, 691
C$GetSysInfo subprogram 116, 551, 691
C$GUICFG subprogram 552, 699
C$LogicalAnd subprogram 553, 681
C$LogicalComplement subprogram 554, 681
C$LogicalOr subprogram 554, 681
C$LogicalShiftLeft subprogram 555, 681
C$LogicalShiftRight subprogram 555, 681
C$LogicalXor subprogram 556, 681
C$MBar subprogram 77, 93, 112, 557
C$MemoryAllocate subprogram 557, 691, 693
C$MemoryDeallocate subprogram 558, 691, 693
C$NARG subprogram 543, 559, 560
C$OSLockInfo subprogram 559
C$PARG subprogram 560
C$PlaySound subprogram 501, 560, 691
C$RBMenu subprogram 95, 112, 561, 699
C$RERR subprogram 393, 398, 562, 700
C$SBar subprogram 83, 112, 564
C$SCRD subprogram 82, 298, 354, 564
C$SCWR subprogram 565
C$SecureHash subprogram 570, 681
C$SetDevelopmentMode subprogram 43, 117, 465,

571, 691
C$SetEnv subprogram 572, 690
C$SetSyn subprogram 25, 86, 572, 688, 691
C$Show subprogram 573, 691
C$ShowArgs subprogram 574, 691
C$TBar subprogram 77, 84, 85, 89, 112, 575
C$TBarEn subprogram 84, 576, 699
C$TBarSeq subprogram 84, 97, 576, 699
C$Title subprogram 84, 112, 577
C$WRU subprogram 577
C$XCRD subprogram 683
C01-C12 channel-names 167, 237, 460
CALL ‘SYSTEM’ 44, 84, 114, 116, 187, 199, 355,

579, 683, 699, See also SYSTEM subprogram
CALL statement 226–31, 298

external objects 230
subprogram loading 227

Called program summary 163, 171
CANCEL statement 226–31
CCD. See Communications Descriptor
Cd-name, user-defined word type 169
CENTURY-DATE, ACCEPT statement 231, 540,

693
CENTURY-DAY, ACCEPT statement 231, 540, 693
Channel. See Channel-name, C01-C12
Channel-name, C01-C12 167, 237, 460

Character encoding 43, 185
Character sequence specification 357, 358
Character sequence specifications 684
Character sets 76, 81, 100, 547, 673
CHARACTERS clause 236, 241, 244
CHARACTER-TIMEOUT keyword

BEFORE TIME phrase, ACCEPT statement 217
TERM-ATTR configuration record 352

CHARACTER-WIDTH keyword, TERM-UNIT
configuration record 366

Class-name, user-defined word type 167
CLOSE statement

REEL and UNIT phrases (sequential I-O) 237
WITH NO REWIND phrase (sequential I-O) 238

COBOL-74 keyword, COMPILER-OPTIONS
configuration record 160, 298

Cobol-CGIX 11, 454
Cobol-RPC (Remote Procedure Calls) 11, 228, 454
Cobol-WOW. See WOW Extensions
CODE keyword, TERM-INPUT configuration record

357
Code points 100, 673
Code, ACCEPT exception 357
CodeBridge 102, 455, 537, 678, 688, 690
Codepages 76, 100, 673
CODE-SET clause 231, 236, 241, 245
Code-set translation tables 643

character abbreviations 654
CodeWatch 51, 102, 159, 678, 689
COLLATING SEQUENCE clause 230, 245, 246
Color names, valid in COBOL 211
Color properties, setting (Windows) 88
Color terminal support 219

TERM-ATTR configuration record
BCOLOR keyword 351
FCOLOR keyword 354
USE-COLOR keyword 356

with ACCEPT and DISPLAY statements 38, 88,
209–10

with pop-up windows 38, 220
COLUMN and COL phrases. See POSITION phrase
COLUMNS keyword

PRINT-ATTR configuration record 328
TERM-ATTR configuration record 352

Combine Program utility (rmpgmcom) 145, 159, 300,
314, 585, 695

Combined sign
leading 432
trailing 431

Comma, EDIT-COMMA keyword 332
Command-line configuration files 291
Commands

compile 145
debug 255
runtime 189

Communications descriptor (CCD) 458

Index

 RM/COBOL User's Guide 707

COMP. See COMPUTATIONAL
Compatibility between RM/COBOL (74) 2.n and

RM/COBOL-85 161, 310
Compatibility with earlier version of RM/COBOL,

object versions 619
Compilation See also Compile Command; Compiler

batch mode 146, 679
Compile Command 145
conditional 307, 311, 312
libraries 144
listings 163
multiple files 147, 679
process 143
system files

listing 144, 163, 324, 328
object 144
source 144

Compile Command 145
error marker and diagnostics 175
error recovery 176
error threading 176
format of 145
invoking 143
messages

banner 44, 117, 152, 177
compiler configuration errors 179, 185
compiler exit codes 187
compiler status 178

options 148
allocation map (A) 154, 167, 255, 263, 305
alternate usage of COMP data items (U) 153, 299
and the negation character ~ 149
ANSI COBOL 1974 or 1985 semantics (7) 160,

298, 562
binary sequential files (B) 153, 311
command-line, specified on 148
compiler configuration (G) 152, 289
compiler configuration supplement (H) 152, 289
configuration compiler memory (W) 152, 318,

676
configuration files, specified in 149, 152
create smaller COBOL object files (Q) 158, 255,

378, 384, 548, 578, 628
cross reference map (X) 157, 172, 305
language element flagging (F) 160, 302, 632, 637
line sequential files (V) 153, 161, 311
listing file on disk (L) 156, 163, 176, 305, 308,

377
output the symbol and debug line table (Y) 159,

255, 260, 261, 301, 314, 585, 626, 627, 628,
695

print listing (P) 156, 163, 176, 183, 305
registry (Windows), specified in 148
resource files (UNIX), specified in 148
RM/COBOL 2.n programs (2) 161, 310

separate sign in the absence of a SIGN clause (S)
152, 161, 310, 430, 432

sequentially numbered listing (R) 156, 305, 310
specify object file pathname (O) 158, 309
specify the RM/COBOL object version (Z) 159,

310, 620–29, 686
suppress automatic conversion in certain

ACCEPT and DISPLAY statements (M) 40,
157, 295

suppress banner message and terminal error
listing (K) 152, 163, 305

suppress copied text (C) 154, 305, 306, 686
suppress object program (N) 158
suppress source program listing (E) 155, 305, 687
with debugging mode (D) 160, 300
write a copy of the listing to a standard output

device (T) 157, 163, 176, 183, 306
samples of valid and invalid 162
types of options

configuration 151
data item 152
file type 153
listing 154
object program 157
source program 160

Compiler See also Compile Command; Compilation
banner message, Compile Command 177
configuration errors 179, 185
error marker and diagnostic format 175
error recovery messages 176
error threading facility 176
exit codes 187
initialization errors 186
input/output errors 179
messages, configuration 309
options, Compile Command 148–62
overlay file 681
status messages 178
syntax errors 175

Compiler directive
IMP MARGIN-R 164, 302
LISTING 155

Compiler messages 176
configuration errors 185
initialization errors 186
status 178
support module version errors 186
suppressing 309

COMPILER-OPTIONS configuration record 149,
294

ACCEPT-BEEP-DEFAULT keyword 295
ACCEPT-SUPPRESS-CONVERSION keyword

157, 295
ALLOW-DATE-TIME-OVERRIDE keyword 295,

696

Index

708 RM/COBOL User's Guide

BINARY-ALLOCATION keyword 175, 296, 438,
440, 443, 444, 538, 544, 693

BINARY-ALLOCATION-SIGNED keyword 298,
438, 443, 693

COBOL-74 keyword 160, 298
COMPUTATIONAL-AS-BINARY keyword 299
COMPUTATIONAL-TYPE keyword 153, 299,

433, 434
COMPUTATIONAL-VERSION keyword 159,

299, 435, 437
DEBUG keyword 160, 300
DEBUG-TABLE-OUTPUT keyword 159, 300, 695
DERESERVE keyword 301, 693
DISPLAY-UPDATE-MESSAGES keyword 301,

687
EXTERNAL-INDEX-NAMES keyword 301
FLAGGING keyword 161, 301
INITIAL-MARGIN-R keyword 164, 302
KEEP-TEMP-XML-SYMBOL-TABLE-FILE

keyword 44, 117, 302, 668
LINKAGE-ENTRY-SETTINGS keyword 303, 695
LISTING-ATTRIBUTES keyword 152, 154, 156,

157, 167, 172, 305, 686, 695
LISTING-CONDITIONAL-EXCLUSION-

INDICATOR keyword 307
LISTING-CONDITIONAL-INCLUSION-

INDICATOR keyword 307
LISTING-DATE-FORMAT keyword 307
LISTING-DATE-SEPARATOR keyword 308
LISTING-DIAGNOSTIC-PREFIX keyword 308
LISTING-ID-AREA-SEPARATOR keyword 164,

308
LISTING-LINE-LENGTH keyword 164, 308
LISTING-PATHNAME keyword 308
LISTING-TIME-SEPARATOR keyword 308
NO-DIAGNOSTIC keyword 309, 675
OBJECT-PATHNAME keyword 158, 309
OBJECT-VERSION keyword 160, 310
POSTPONE-COPY-IN-PSEUDO-TEXT keyword

310
RESEQUENCE-LINE-NUMBERS keyword 157,

310
RMCOBOL-2 keyword 162, 310
SEPARATE-SIGN keyword 153, 310
SEQUENTIAL-FILE-TYPE keyword 153, 311
SOURCE-ON-INPUT-DEVICE keyword 311
SOURCE-PATTERN-EXCLUDE keyword 311
SOURCE-PATTERN-INCLUDE keyword 312
SOURCE-RECORD-MAX-LENGTH keyword

164, 312
STRICT-REFERENCE-MODIFICATION

keyword 312, 675
SUBSCRIPT-CHECKING keyword 313
SUPPRESS-FILLER-IN-SYMBOL-TABLE

keyword 313, 684, 686

SUPPRESS-LITERAL-BY-CONTENT keyword
313

SUPPRESS-NUMERIC-OPTIMIZATION
keyword 314

SUPPRESS-XML-SYMBOL-TABLE keyword
314, 668

SYMBOL-TABLE-OUTPUT keyword 159, 314
WHEN-COMPILED-FORMAT keyword 314, 674
WORKSPACE-SIZE keyword 152, 174, 318

Compression. See DATA-COMPRESSION
keyword; KEY-COMPRESSION keyword

COMPUTATIONAL data format 161
type option, Compile Command 153

COMPUTATIONAL usage 433, 434
COMPUTATIONAL-1 data format 161
COMPUTATIONAL-1 usage 435
COMPUTATIONAL-3 data format 161
COMPUTATIONAL-3 usage 436, 437
COMPUTATIONAL-4 usage 438, 440
COMPUTATIONAL-5 usage 443, 444, 676
COMPUTATIONAL-6 usage 445
COMPUTATIONAL-AS-BINARY keyword,

COMPILER-OPTIONS configuration record
299

COMPUTATIONAL-TYPE keyword, COMPILER-
OPTIONS configuration record 153, 299, 433,
434

COMPUTATIONAL-VERSION keyword,
COMPILER-OPTIONS configuration record
159, 299, 435, 437

COMSPEC environment variable 116, 387, 580
Conditional compilation

LISTING-CONDITIONAL-EXCLUSION-
INDICATOR keyword, COMPILER-OPTIONS
configuration record 307

LISTING-CONDITIONAL-INCLUSION-
INDICATOR keyword, COMPILER-OPTIONS
configuration record 307

SOURCE-PATTERN-EXCLUDE keyword,
COMPILER-OPTIONS configuration record
311

SOURCE-PATTERN-INCLUDE keyword,
COMPILER-OPTIONS configuration record
312

Condition-name, user-defined word type 169
config.sys BUFFERS command 250
config.sys FILES command 250
Configuration errors 179, 185, 292, 383, 415
Configuration file options 149

negating 149
Configuration file structure 289

termcap default configuration example 368
terminfo default configuration example 370
Windows default configuration example 372
with the Compile Command options 148, 152
with the Runtime Command options 190

Index

 RM/COBOL User's Guide 709

Configuration files
command-line 151, 192, 291
ini2reg utility 51, 67, 614, 698
recover1.ini 67
rmcobol.ini 67
runcobol.ini 67

Configuration options
Compile Command 148–62
Runtime Command 192

Configuration processing order 291
Configuration records 148, 190, 292

attached configuration file, on Windows 664
automatic configuration files 177, 290, 603

on UNIX 15, 19, 688
on Windows 664, 680

COMPILER-OPTIONS 294
DEFINE-DEVICE 319, 494, 500
errors 292
EXTENSION-NAMES 324
EXTERNAL-ACCESS-METHOD 126, 324, 674,

701
INTERNATIONALIZATION 326, 682
list of 292
PRINT-ATTR 328
RUN-ATTR 330
RUN-FILES-ATTR 234, 254, 335, 697
RUN-INDEX-FILES 131, 254, 341
RUN-OPTION 344
RUN-REL-FILES 234, 348, 697
RUN-SEQ-FILES 234, 349, 697
RUN-SORT 350
TERM-ATTR 351
TERM-INPUT 32, 356
TERM-INTERFACE 365
TERM-UNIT 366

CONSOLE IS CRT clause 674
Constant-name, user-defined word type 171
Control characters, DEFINE-CONTROL-

CHARACTERS keyword 366
CONTROL phrase

ACCEPT and DISPLAY statements 209
BCOLOR keyword 210
DISPLAY statement 219, 221
FCOLOR keyword 210
GRAPHICS keyword 211, 214
MASK keyword 202, 212
PASS-THRU keyword 214
PROMPT keyword 214
REPAINT-SCREEN keyword 215
SCREEN-COLUMNS keyword 215
TAB keyword 214
terminfo strings 38

Control properties, setting (Windows) 72
Auto Paste 73, 79, 552
Auto Scale 73, 83, 553
Command Line Options 74

Cursor Full Field 75
Cursor Insert 75
Cursor Overtype 74
Enable Close 75, 553
Enable Properties Dialog 76, 553
Font 76
Font CharSet OEM 76
Full OEM To ANSI Conversions 76, 553
Icon File 77, 90, 553, 575–77
Load Registry On CALL 77, 88
Load Registry On RETURN 77, 88
Logo Bitmap 78
Logo Bitmap File 78
Main Window Type 78
Mark Alphanumeric 78, 113, 553
Min Window Type 146
Offset X 79
Offset Y 79
Panels Controls 3D 79
Panels Static Controls Border 79
Paste Termination 79, 553
Persistent 79, 553, 599
Pop-Up Window Positioning 80, 684
Printer Dialog Always 66, 80, 553, 690
Printer Dialog Never 80, 552, 690
Printer Enable Escape Sequences 81
Printer Enable Null Esc. Seq. 81, 532
Printer Enable Raw Mode 81, 500
Printer Font CharSet OEM 81
Remove Trailing Blanks 82, 553
Screen Read Line Draw 82, 553, 683
Scroll Buffer Size 73, 82
Show Return Code Dialog 83, 114
Show Through Borders 83
Sizing Priority 73, 83, 553
Status Bar 83, 553, 575
Status Bar Text 83, 564
SYSTEM Window Type 84, 553, 581, 683, 699
Title Text 84, 112, 577
Toolbar 77, 84, 553
Toolbar Prompt 84, 553, 575, 683
Update Timeout 85, 553
Use Windows Colors 85, 210

CONTROL-BREAK value, ACTION keyword 361
Conventions and symbols 4
Conversion. See ACCEPT-SUPPRESS-

CONVERSION keyword; CONVERT phrase
CONVERT phrase, ACCEPT and DISPLAY

statements 40, 41
Copy file, default extension 324
Copy files, printing from Windows

DEFDEV.CPY 500
DEVCAPS.CPY 495, 500, 501
list of 500
LOGFONT.CPY 486, 500, 503
PRINTDLG.CPY 475, 493, 501, 506, 551

Index

710 RM/COBOL User's Guide

PRINTINF.CPY 497, 501, 514
TXTMTRIC.CPY 483, 501, 516
WINDEFS.CPY 467, 479, 488, 501, 519

COPY keyword, EXTENSION-NAMES
configuration record 324

COPY statement 225
listing 154, 164, 687
SUPPRESS phrase 674

COPY-TO-CLIPBOARD value, ACTION keyword
361

COUNT special register 626, 693
COUNT-MAX special register 626, 693
COUNT-MIN special register 626, 693
CREATE-FILES keyword, EXTERNAL-ACCESS-

METHOD configuration record 325
Creating pop-up windows 218
Cross reference listing 163, 172, 305
CROSS-REFERENCE value, LISTING-

ATTRIBUTES keyword 157, 172, 305
CRT STATUS clause 674
CURRENCY SIGN clause 333, 633
Currency symbol, EDIT-CURRENCY-SYMBOL

keyword 332, 333, See also Dollar sign
CURSOR clause 675
CURSOR phrase, ACCEPT statement 40, 214
Cursor positioning 28, 74–75, 106, 351, 360, 689
Cursor types 30, 74–75, 106
Customer Care 6

D

D (Display) Command, Debug option 274
D Compile Command Option 160, 300
D Runtime Command Option 194, 255, 361
Data address development 261
Data characters 352, 683
Data compression, indexed files 242, 253, 342
Data formats 425
Data item options, Compile Command 152
DATA keyword, TERM-INPUT configuration record

358
Data recoverability, indexed files 242, 252, 343
DATA-CHARACTERS keyword, TERM-ATTR

configuration record 352, 683
DATA-COMPRESSION keyword, RUN-INDEX-

FILES configuration record 342
Data-name, user-defined word type 169
Date

allow date/time override 295, 696
composite date and time 231, 540, 693
listing format configuration 307
listing separator configuration 308

DATE-AND-TIME, ACCEPT statement 231, 540,
693

DAY-AND-TIME, ACCEPT statement 540, 693
DBCS characters 213, 353, 697

DBCS-CHARACTERS keyword, TERM-ATTR
configuration record 353, 697

Debug
command prompt 265
command summary 255
commands

clear breakpoints (C) 273
clear data traps (U) 286
display set breakpoints (B) 272
display the value of a data item (D) 274, See also

Data address development
end a Debug session (E) 277
modify the value of a specified data item (M) 278
resume program execution at a specified location

(R) 282, 384
set a breakpoint and clear once satisfied (A) 271
set a breakpoint and do not clear once satisfied

(B) 272
specify a screen line for Debug displays (L) 277
step through individual statements (S) 282
stop program execution (Q) 281
trap a data item when its value changes (T) 283

data address development 261
address-size format 263
alias format 265
identifier format 261

debug references
in the data item 260
in the program area 260

error messages 266
general concepts 257

breakpoints 258
data types 259
debug values 259
execution counts 258
intraline numbers 258, 548, 578
line numbers 258
statements 258
stepping 258
traps 258

invoking 255
output debugging information (Y Compile

Command Option) 159, 255, 260, 261, 301,
314, 585, 626, 627, 628, 695

regaining control 265
Runtime Command, debug and test options 193
screen positions 261
symbolic

configuration 314
Y Compile Command Option 159, 255, 260, 261,

301, 314, 585, 626, 627, 628, 695
DEBUG keyword, COMPILER-OPTIONS

configuration record 160, 300
DEBUG-TABLE-OUTPUT keyword, COMPILER-

OPTIONS configuration record 159, 300, 695
Decimal point, EDIT-DECIMAL keyword 333

Index

 RM/COBOL User's Guide 711

DEFAULT-FILE-VERSION-NUMBER keyword,
RUN-INDEX-FILES configuration record 254,
342, 597, 679

DEFAULT-TYPE keyword, RUN-SEQ-FILES
configuration record 154, 349

DEFAULT-USE-PROCEDURE keyword, RUN-
FILES-ATTR configuration record 336, 682

Define Indexed File utility (rmdefinx) 115, 242, 246,
254, 410, 594, 687

DEFINE-CONTROL-CHARACTERS keyword,
TERM-UNIT configuration record 366

DEFINE-DEVICE configuration record 319, 494
default configuration files, examples of 368
DEVICE keyword 319
ERROR-ON-CANCEL keyword 320, 525
ESCAPE-SEQUENCES keyword 81, 320, 322, 493
NONBLOCKING-FIFO keyword 320
PATH keyword 24, 321
PIPE keyword 321, 682
RAW keyword 81, 322, 500
REMOTE-PRINTER keyword 321
TAPE keyword 322
Windows printers 322

Delete Character field edit key 203
DELETE FILE operation, under UNIX 232
DELETE subprogram 578
DELETE-CHARACTER value, ACTION keyword

361
DERESERVE keyword, COMPILER-OPTIONS

configuration record 301, 693
DESTINATION TABLE OCCURS clause 459
DEVICE keyword, DEFINE-DEVICE configuration

record 319
Device support 238

named pipe 239
printer 238
tape 239

DEVICE-SLEWING-RESERVE keyword, RUN-
SEQ-FILES configuration record 349

Diagnostic undermark 175
Directive, compiler

IMP MARGIN-R 164, 302
LISTING 155

Directory search sequences
compiler 145, 156, 158, 226

NetWare search paths 64
under UNIX 21
under Windows 62

runtime 229
NetWare search paths 64
under UNIX 21
under Windows 62

synonyms, setting 21, 26, 62, 86
using Btrieve files 127

DISABLE statement 456, 460

DISABLE-LOCAL-ACCESS-METHOD keyword,
RUN-FILES-ATTR configuration record 337,
683

DISPLAY statement See also ACCEPT and
DISPLAY statements, operating-system
specific information; ACCEPT statement,
Terminal I-O

BEEP phrase 219
BLINK phrase 219
configuration

B keyword, RUN-OPTION record 345, 423
BCOLOR keyword, TERM-ATTR record 351,

356
BEEP keyword, RUN-ATTR record 332
BLINK keyword, RUN-ATTR record 332
COLUMNS keyword, TERM-ATTR record 352
DISPLAY-INTENSITY keyword, RUN-ATTR

record 332
FCOLOR keyword, TERM-ATTR record 354,

356
M keyword, RUN-OPTION record 347
PASS-THRU-ESCAPE keyword, TERM-ATTR

record 355
REDRAW-ON-CALL-SYSTEM keyword,

TERM-ATTR record 355
REVERSE keyword, RUN-ATTR record 334
ROWS keyword, TERM-ATTR record 355
SCREEN-CONTENT-OPTIMIZE keyword,

TERM-ATTR record 355
SUPPRESS-NULLS keyword, TERM-ATTR

record 355
TERM-INPUT record 357
TERM-INTERFACE record 365
TERM-UNIT record 366
UNDERLINE keyword, RUN-ATTR record 335
USE-COLOR keyword, TERM-ATTR record 356

CONTROL phrase 209, 219
BCOLOR keyword 38, 89, 210, 220, 356
BEEP keyword 220
BLINK keyword 220
ERASE keyword 220
FCOLOR keyword 38, 89, 210, 220, 356
GRAPHICS keyword 38, 106, 211, 214
HIGH keyword 220
LOW keyword 220
MASK keyword 212, 697
NO BEEP keyword 220
NO BLINK keyword 220
NO ERASE keyword 220
NO REVERSE keyword 220
PASS-THRU keyword 214
REPAINT-SCREEN keyword 215
REVERSE keyword 220
SCREEN-COLUMNS keyword 215

CONVERT phrase 40, 41
ERASE phrase 215, 220

Index

712 RM/COBOL User's Guide

HIGH phrase 214, 216, 220
LINE phrase 220
LOW phrase 214, 216, 220
pop-up windows, creating 218
POSITION phrase 220
REVERSE phrase 216, 221
SIZE phrase 40, 41, 214, 216
UNIT phrase 221, 222

DISPLAY usage 429
DISPLAY-INTENSITY keyword, RUN-ATTR

configuration record 332
DISPLAY-UPDATE-MESSAGES keyword

COMPILER-OPTIONS configuration record 301,
687

RUN-OPTION configuration record 345, 687
DLL. See Dynamic link libraries
Dollar sign, EDIT-DOLLAR keyword 333, See also

Currency symbol
Double-byte character set characters 213, 353, 697
DUPLICATES phrase, RECORD KEY clause 625
Dynamic link libraries 63, 229

16-bit and 32-bit implementations 698
Btrieve Adapter 133
Btrieve Requester for Windows 122

Dynamic printer 66, 80, 322, 464, 473, 474

E

E (End) Command, Debug option 277
E Compile Command Option 155, 305, 687
EBCDIC code-name, translation 647

character abbreviations 654
ECHO phrase, ACCEPT statement 40
Edit keys 202–4, See also Field editing keys

backspace 203
delete character 203
erase entire 203
erase remainder 203
insert character 204
left arrow 202
masked input processing 202
right arrow 203

EDIT-COMMA keyword, RUN-ATTR configuration
record 332

EDIT-CURRENCY-SYMBOL keyword, RUN-
ATTR configuration record 332

EDIT-DECIMAL keyword, RUN-ATTR
configuration record 333

EDIT-DOLLAR keyword, RUN-ATTR
configuration record 333

ENABLE statement 456, 460
ENABLE-ATOMIC-IO keyword, RUN-INDEX-

FILES configuration record 342, 679
ENABLE-LOGGING keyword, RUN-OPTION

configuration record 345, 683, 689, 691

ENABLE-OLD-DOS-FILENAME-HANDLING
keyword, RUN-FILES-ATTR configuration
record 337, 692

END-COPY scope terminator 665
END-REPLACE scope terminator 665
Enhancements to RM/COBOL 1, 663

version 10 671
version 11 668
version 12 663
version 6.5 698
version 6.6 696
version 7.0 689
version 7.1 688
version 7.5 678
version 8 676
version 9 673

ENTER-DEBUGGER value, ACTION keyword 194,
361

Environment Division, Configuration Section,
SPECIAL-NAMES paragraph 674

Environment options, Runtime Command 194
Environment variables

for NetWare search paths 64
for UNIX 25, 26, 546, 551, 572, 602

HOME 21, 43
in file access names 22
LD_LIBRARY_PATH 43, 133, 229, 451
list of 43
PATH 21, 43, 229
PRINTER 24, 43, 239, 584, 585, 588, 590, 610
RM_COMPILER_WRAP_LONGNAMES 43
RM_DEVELOPMENT_MODE 43, 571
RM_DYNAMIC_LIBRARY_TRACE 43, 177,

193, 290, 348, 449, 603
RM_ENCODING 43, 185
RM_ESCAPE_TO_COMMAND 43, 361
RM_IGNORE_GLOBAL_RESOURCES 26, 44
RM_KEEP_XML_SYMTAB_FILE 44, 302
RM_LIBRARY_SUBDIR 44, 450
RM_LOAD_WOW_CLIENT 44
RM_VERBOSE_BANNER 44, 177, 193, 418
RM_Y2K 44, 295
RMPATH 21, 43, 226
RMTERM132 43, 215
RMTERM80 43, 215
RUNPATH 21, 23, 44, 229, 337, 451, 610
SHELL 44, 361, 580
TAPE 24, 44, 239
TERM 30, 44, 139, 215, 367, 392
TERMCAP 29, 44
TERMINFO 29, 44
TMPDIR 44, 249
TZ 44

for Windows 67, 86, 546, 551, 572, 602
COMSPEC 116, 387, 580
GROUP 116, 552

Index

 RM/COBOL User's Guide 713

GROUPID 116, 552
in file access names 64
list of 116
NAME 116, 552
PATH 63, 116, 133, 229, 452, 581, 595, 614
PRINTER 66, 116, 239, 584, 585, 588, 590, 610
RM_COMPILER_WRAP_LONGNAMES 116
RM_DEVELOPMENT_MODE 117, 571
RM_DYNAMIC_LIBRARY_TRACE 117, 177,

193, 290, 348, 449, 603
RM_IGNORE_GLOBAL_RESOURCES 74, 86,

117
RM_KEEP_XML_SYMTAB_FILE 117, 302
RM_LIBRARY_SUBDIR 117, 450
RM_LOAD_WOW_CLIENT 117
RM_VERBOSE_BANNER 105, 117, 177, 193,

418
RM_Y2K 117, 295
RMPATH 62–64, 86, 116, 226
RUNPATH 62–64, 86, 117, 127, 229, 337, 452,

610, 614
STATION 117, 552
TEMP 117, 249
TMP 117, 249
TZ 117
USER 117, 552
USERID 117, 552

resolution of program names 229, 701
Erase Entire field edit key 203
ERASE EOL and ERASE EOS. See ERASE phrase
ERASE keyword, CONTROL phrase, DISPLAY

statement 220
ERASE phrase

ACCEPT and DISPLAY statements 215
DISPLAY statement 220

Erase Remainder field edit key 203
ERASE-ENTIRE value, ACTION keyword 361
ERASE-REMAINDER value, ACTION keyword

361
Error classes 176
Error messages. See Messages
errorlevel. See Exit codes.
ERROR-MESSAGE-DESTINATION keyword,

RUN-ATTR configuration record 42, 333
ERROR-ON-CANCEL keyword, DEFINE-DEVICE

configuration record 320, 525
ERROR-ONLY-LIST value, LISTING-

ATTRIBUTES keyword 156, 305
Escape sequences, RM/COBOL-specific 81, 320,

321, 500, 530
raw mode-byte I/O 500, 530

Escape. See SCREEN-ESCAPE value
ESCAPE-SEQUENCES keyword, DEFINE-

DEVICE configuration record 81, 320, 322, 493
ESCAPE-TO-COMMAND value, ACTION keyword

361

ESCAPE-TO-OS value, ACTION keyword 361
Euro support

configuration 326, 542, 681, 682
printing, under Windows 327

EURO-CODEPOINT-ANSI keyword,
INTERNATIONALIZATION configuration
record 326

EURO-CODEPOINT-OEM keyword,
INTERNATIONALIZATION configuration
record 326

EURO-SUPPORT-ENABLE keyword,
INTERNATIONALIZATION configuration
record 327

EXCEPTION keyword, TERM-INPUT configuration
record 358

Exception status values
field termination keys used 205, 358, 363
special 217, 358, 363

EXCEPTION STATUS, ACCEPT statement 224
Exception, ACCEPT code 357
EXCEPTION-HANDLING keyword, RUN-ATTR

configuration record 333
Exit codes

compiler 187
program 199, 226

Exit value. See Exit codes.
EXPANDED-PATH-SEARCH keyword, RUN-

FILES-ATTR configuration record 21, 62, 337
Expressions 541, 681
EXTEND phrase 161
Extension language elements 631
EXTENSION-NAMES configuration record 144,

324, See also Extensions
COPY keyword 324
LISTING keyword 324
OBJECT keyword 324
SOURCE keyword 324

Extensions
configuring 324
defaults 12, 62, 144, 225, 324
resolution of program names 701
Windows 95 and Windows NT 698

EXTERNAL clause 230
External objects

data records 230
file connectors 230
indexes 231

EXTERNAL-ACCESS-METHOD configuration
record 126, 324, 674, 701

CREATE-FILES keyword 325
NAME keyword 325
OPTIONS keyword 325

EXTERNAL-INDEX-NAMES keyword,
COMPILER-OPTIONS configuration record
301

Index

714 RM/COBOL User's Guide

F

F Compile Command Option 160, 302, 632, 637
F Runtime Command Option 194, 346, 673
FATAL-RECORD-LOCK-TIMEOUT keyword,

RUN-FILES-ATTR configuration record 338
FCOLOR keyword

CONTROL phrase, ACCEPT and DISPLAY
statements 38, 89, 210, 220, 356

TERM-ATTR configuration record 354
Features. See Enhancements to RM/COBOL
Field editing actions. See Field editing keys
Field editing keys 202–4, 360, 684
Field termination keys 205, 363
FIELD-END value, ACTION keyword 361
FIELD-HOME value, ACTION keyword 361
File access names 22, 64

locating RM/COBOL files
under UNIX 21
under Windows 62, 86

printer support 24
tape support 24

File allocation, in indexed files 246
File buffering 186, 233, 241, 245, 250, 336
File control entry

CODE-SET clause 231, 241, 245
COLLATING SEQUENCE clause 230, 246
RECORD KEY clause 625

File description entry
BLOCK CONTAINS clause 235, 240, 244, 680
CODE-SET clause 231, 236, 245
LINAGE clause 236
RECORD clause 235, 240, 243

File lock facility 39
File lock limit 234, 338, 339, 592, 680, 697

large files 42, 115, 234
limitations 423

File management system, RM/COBOL 123
File naming conventions, RM/COBOL 11, 324
File organization

indexed 242
relative 240
sequential 234

File performance, indexed files 250
File sharing 232
FILE STATUS clause, file control entry 338, 341
File status data item

indexed file 246
relative file 241
sequential file 237

File type options, Compile Command 153
File types and structure 234

indexed files 242
and Btrieve 119, 125
atomic I/O 342, 345, 595, 679

BLOCK CONTAINS clause 244, 251, 342, 591,
596, 680

block sizes 701
CODE-SET clause 245
COLLATING SEQUENCE clause 246
data compression 242, 253, 342, 591, 596
data recoverability 242, 252, 343, 592, 596
file allocation increment 246, 342, 592, 596
file size estimation 247
file version 4 information 592
file version number 246, 342, 592, 595, 598, 679
key compression 253, 343
RECORD clause 243
RESERVE clause 245
WITH NO LOCK phrase 246

relative files 240
BLOCK CONTAINS clause 240
CODE-SET clause 241
RECORD clause 240
RESERVE clause 241
WITH NO LOCK phrase 241

sequential files 234
ADVANCING mnemonic-name phrase 237
ADVANCING ZERO LINES phrase 237
binary sequential 153, 235, 311, 349
BLOCK CONTAINS clause 235
CODE-SET clause 236
device support 238
LINAGE clause 236
line sequential 153, 234, 311, 349
printer support 238
RECORD clause 235
REEL and UNIT phrases 237
RESERVE clause 236
REVERSED phrase 237
tape support 239
WITH NO LOCK phrase 237
WITH NO REWIND phrase 238

File version number, in indexed files 234, 246, 254,
342, 592, 595, 598, 679, 697

changing 254, 595
FILE-CONTROL-PARAGRAPH

indexed file control entry 245
relative file control entry 241
sequential file control entry 236

FILE-LOCK-LIMIT keyword, RUN-FILES-ATTR
configuration record 254, 338, 680

Filename extension. See Extensions
File-name, user-defined word type 169
FILE-PROCESS-COUNT keyword, RUN-FILES-

ATTR configuration record 338
Files

copy 324
libraries 144, 190
listing 144, 163, 324
locating of 21, 62

Index

 RM/COBOL User's Guide 715

object 144, 189, 324
source 144, 324

FILL-CHARACTER keyword, RUN-OPTION
configuration record 194, 346

Fixed-form reference format 164, 302
FLAGGING keyword, COMPILER-OPTIONS

configuration record 161, 301
FlexGen 453, 688
FORCE-CLOSED keyword, RUN-INDEX-FILES

configuration record 243, 342
FORCE-DATA keyword, RUN-INDEX-FILES

configuration record 243, 343
FORCE-DISK keyword, RUN-INDEX-FILES

configuration record 243, 343
FORCE-INDEX keyword, RUN-INDEX-FILES

configuration record 243, 343
FORCE-USER-MODE keyword, RUN-FILES-

ATTR configuration record 114, 338
Foreground color, in ACCEPT or DISPLAY field

210
FORM-FEED-AVAILABLE keyword, PRINT-

ATTR configuration record 328
FROM phrase, SEND statement 460
FROM/UPON CONSOLE phrase, ACCEPT and

DISPLAY statements 40–42
Function key mapping 28

G

G Compile Command Option 152, 289
Generic exception status values 363
Generic key name, field termination 205
Glyphs 100
GRAPHICS keyword, CONTROL phrase, ACCEPT

and DISPLAY statements 38, 106, 211, 214
GROUP environment variable 116, 552
GROUPID environment variable 116, 552
GRP 169, 259
GUI keyword, TERM-INTERFACE configuration

record 365

H

H Compile Command Option 152, 289
HEX 169, 259
HIGH keyword, CONTROL phrase, DISPLAY

statement 220
HIGH phrase

ACCEPT and DISPLAY statements 214, 216
DISPLAY statement 220

HIGHEST-VALUE special register 630, 666
High-intensity attribute 37, 210, 220
HIGHLIGHT phrase. See HIGH phrase
HOME environment variable 21, 43
Home. See SCREEN-HOME value
Hyphen (-), using with

Compile Command options 145
RM_ENCODING environment variable 43, 185
Runtime Command options 190

I
I Recovery Command option 601
I Runtime Command Option 194, 377
iconv library 43, 185
IMP MARGIN-R directive 164, 302
Indexed file performance 250

altering size of indexed file blocks 251
controlling length of record keys 252
correct data recovery strategy 252
in-memory buffering 250
using key and data compression 253
using RM/COBOL facilities 253
with Btrieve 119, 125

Indexed File Recovery utility (recover1) 22, 63, 67,
71, 243, 254, 342, 398, 410, 599, 687, 697, 700

command line 600
command options 600
recover2 610, 697
recovery 697
support modules, used with 447

Indexed File Unload utility (recover2). See Indexed
File Recovery utility (recover1)

Indexed files 234, 242, See also File types and
structure

and Btrieve 119, 125
atomic I/O 342, 345, 595, 679
block sizes 701
data compression 242, 253, 342
data recoverability 242, 252, 343
key compression 253, 343

Index-name
EXTERNAL-INDEX-NAMES keyword,

COMPILER-OPTIONS configuration record
301

user-defined word type 169
ini2reg utility 51, 67, 614, 698
INITIAL clause, PROGRAM-ID paragraph 227
Initial contents of a screen field 201
Initialization File to Windows Registry Conversion

utility (ini2reg) 51, 67, 613, 698
Initialization files 25
Initialization process, compiler 676
INITIAL-MARGIN-R keyword, COMPILER-

OPTIONS configuration record 164, 302
INITIAL-VALUE special register 630, 666
Input/output control

redirection of 40, 201, 333
standard error device 42, 152, 333
standard input device 40, 333
standard output device 41–42, 157, 163, 176, 183,

306, 333, 354

Index

716 RM/COBOL User's Guide

Insert Character field edit key 204
INSERT-CHARACTER value, ACTION keyword

361
Insertion mode

ANSI 360
RM 360
single-character 360

Installation
UNIX 14–20

system considerations 21–42, 21–42, See also
Configuration records, See also Configuration
records

system removal 20
system requirements 13
system verification 139

Windows 45–59
registering the RM/COBOL compiler 54
registering the RM/COBOL runtime 56, 190
system considerations 59–114, 698, See also

Configuration records
system removal 59
system requirements 45
system verification 141

Installing the utility programs 585
InstantSQL 11
Instrumentation 377–82

data analysis program 379
listing files processed by 380
suppression of listing file 381

data collected 377
method of 378
sample data structure 378

invocation of 377
Interactive Debugger. See Debug
INTERMEDIATE-FILES keyword, RUN-SORT

configuration record 350
Internal data formats

nonnumeric data items 426
numeric computational data items 429

signed numeric COMPUTATIONAL 434
signed numeric COMPUTATIONAL-1 435
signed numeric COMPUTATIONAL-3 437
signed numeric COMPUTATIONAL-4 440
signed numeric COMPUTATIONAL-5 444, 676
unsigned numeric COMPUTATIONAL 433
unsigned numeric COMPUTATIONAL-3 436
unsigned numeric COMPUTATIONAL-4 438
unsigned numeric COMPUTATIONAL-5 443,

676
unsigned numeric COMPUTATIONAL-6 445

numeric DISPLAY data items 429
signed numeric DISPLAY (LEADING

SEPARATE) 430
signed numeric DISPLAY (LEADING) 432
signed numeric DISPLAY (TRAILING

SEPARATE) 429

signed numeric DISPLAY (TRAILING) 431
unsigned numeric DISPLAY (NSU) 429

pointer data items 445
Internal subprogram library 461, 533
INTERNATIONALIZATION configuration record

326, 682
EURO-CODEPOINT-ANSI keyword 326
EURO-CODEPOINT-OEM keyword 326
EURO-SUPPORT-ENABLE keyword 327

IXN 169, 259

K

K Compile Command Option 152, 163, 305
K keyword, RUN-OPTION configuration record 192,

346
K Recovery Command option 601
K Runtime Command Option 192, 346, 418–19
KEEP-FLOPPY-OPEN keyword, RUN-FILES-

ATTR configuration record 339
KEEP-REPLACED-LINES value, LISTING-

ATTRIBUTES keyword 154, 305
KEEP-TEMP-XML-SYMBOL-TABLE-FILE

keyword, COMPILER-OPTIONS configuration
record 668

KEEP-TEMP-XML-SYMBOL-TABLE-FILE
keyword, COMPILER-OPTIONS configuration
record 44, 117, 302

Key compression, indexed files 253, 343
KEY phrase

DISABLE statement 460
ENABLE statement 460

Keyboard input character sequences, terminal input
and output, UNIX 32

KEY-COMPRESSION keyword, RUN-INDEX-
FILES configuration record 343

Keys
cursor types 30, 74–75, 106
defined 202, 356
field edit 202–4, 360, 684
field termination 205, 363

L

L (Line Display) Command, Debug option 277
L Compile Command Option 156, 163, 176, 305,

308, 377
L keyword, RUN-OPTION configuration record 197,

347, 682
L Recovery Command option 601
L Runtime Command Option 190, 197, 228, 229,

347, 417, 449, 451, 586, 682
Language elements 631

extension 631
obsolete 637
subset 637

Index

 RM/COBOL User's Guide 717

LANs. See Local area networks
Large files, using 42, 115, 234, 660, 691
Large programs, compiling 152, 676
LARGE-FILE-LOCK-LIMIT keyword, RUN-

FILES-ATTR configuration record 115, 234,
254, 339, 592, 597, 680, 697

LD_LIBRARY_PATH environment variable 43,
133, 229, 451

Left Arrow field edit key 202
LEFT-ARROW value, ACTION keyword 362
LENGTH special register 626, 694
Libraries 144, 190

internal subprogram 461, 533
Library files 144, 190

Table of Contents (TOC)
rmmappgm utility 588
rmpgmcom utility 145, 585

Library initialization 585
LIBRARY-PATH keyword, RUN-OPTION

configuration record 347
librmbtrv.so support module 119, 123, See also

Btrieve Adapter
License certificates 687
License file 16, 22, 49, 63
Limits and ranges

file locking 423
RM/COBOL 421

LINAGE clause 236
LINAGE-COUNTER special register 298
LINAGE-INITIAL-FORM-POSITION keyword,

PRINT-ATTR configuration record 236, 329,
692

LINAGE-PAGES-PER-PHYSICAL-PAGE keyword,
PRINT-ATTR configuration record 236, 329,
692

Line draw characters 37, 106, 211, 223
LINE phrase, DISPLAY statement 220
Line sequential files

configuring 311, 349
record delimiting technique 153, 234

LINES keyword, PRINT-ATTR configuration record
330

LINKAGE-ENTRY-SETTINGS keyword,
COMPILER-OPTIONS configuration record
303, 695

Linux
accessing Btrieve files 119, 325, 674, See also

Btrieve Adapter
NAME keyword, EXTERNAL-ACCESS-

METHOD configuration record 325, 674
Listing 163

allocation map 154, 167, 305
alphabet-names, symbolic-characters, mnemonic-

names and class-names 167
as used by Debug 264
constant-names 171

data-names, index-names, condition-names, file-
names and cd-names 169

split-key-names 168
called program summary 171
configuration 152, 305, 686, 695
copy level indicator 164, 687
cross reference listing 172, 305
error marker and diagnostics 175
error recovery 176
error threading 176
program listing 163

listing header 163
listing subheader 163

summary listing 173, 675
summary of sections 163

LISTING directive 155
Listing file 144, 163

configuration 305
default extension 324

LISTING keyword, EXTENSION-NAMES
configuration record 324

Listing options, Compile Command 154
LISTING-ATTRIBUTES keyword, COMPILER-

OPTIONS configuration record 152, 154, 156,
157, 167, 172, 305, 686, 695

LISTING-CONDITIONAL-EXCLUSION-
INDICATOR keyword, COMPILER-OPTIONS
configuration record 307

LISTING-CONDITIONAL-INCLUSION-
INDICATOR keyword, COMPILER-OPTIONS
configuration record 307

LISTING-DATE-FORMAT keyword, COMPILER-
OPTIONS configuration record 307

LISTING-DATE-SEPARATOR keyword,
COMPILER-OPTIONS configuration record
308

LISTING-DIAGNOSTIC-PREFIX keyword,
COMPILER-OPTIONS configuration record
308

LISTING-FILE value, LISTING-ATTRIBUTES
keyword 156, 305

LISTING-ID-AREA-SEPARATOR keyword,
COMPILER-OPTIONS configuration record
164, 308

LISTING-LINE-LENGTH keyword, COMPILER-
OPTIONS configuration record 164, 308

LISTING-PATHNAME keyword, COMPILER-
OPTIONS configuration record 308

LISTING-TIME-SEPARATOR keyword,
COMPILER-OPTIONS configuration record
308

Local area networks (LANs) 119, 122, 126
Locating RM/COBOL files

directory search sequences
under UNIX 21
under Windows 62

Index

718 RM/COBOL User's Guide

file access names
under UNIX 22
under Windows 64, 86

file locations within operating system pathnames
under UNIX 21, 337
under Windows 62, 337

NetWare search paths 64
Windows systems print jobs 66

LOG-PATH keyword, RUN-OPTION configuration
record 347, 691

LOW keyword, CONTROL phrase, DISPLAY
statement 220

LOW phrase
ACCEPT and DISPLAY statements 214, 216
DISPLAY statement 220

LOWEST-VALUE special register 630, 666
Low-intensity attribute 37, 210, 220
LOWLIGHT. See LOW phrase

M

M (Modify) Command, Debug option 278
M Compile Command Option 40, 157, 295
M keyword, RUN-OPTION configuration record

195, 347
M Recovery Command option 602
M Runtime Command Option 42, 195, 347
MAIN-PROGRAM keyword, RUN-OPTION

configuration record 348, 682
Map Indexed File utility (rmmapinx) 251, 590, 700
Map Program File utility (rmmappgm) 588
Margin R 164, 302
MARGIN-R directive 164, 302
MASK keyword, CONTROL phrase, ACCEPT and

DISPLAY statements 202, 212, 697
Masked input processing 202, 212, 213, 697
Maximum size of a screen field 194, 201
MAX-VALUE special register 630, 666
MCS. See Message Control System
Memory available for a run unit 39, 111
MEMORY-SIZE keyword, RUN-SORT

configuration record 195, 350
Menu Bar properties, setting (Windows) 82, 93, 112,

557
Message Control System (MCS) 456
Message digests 570, 681
Messages See also Runtime messages

compiler
banner, Compile Command 177
configuration errors 179, 185
error marker and diagnostic format 175
error recovery 176
error threading facility 176
exit codes 187
initialization errors 186
input/output errors 179

status 178
syntax errors 175

debug errors 266
program exit codes 199, 226
recover1 605, 609
redirection of input and output 40
runtime errors 198, 383

Microsoft Windows
32-bit implementation 698
automatic configuration files 290, 453, 603, 664,

680
Btrieve files. See Btrieve Adapter
CALL ‘DELETE’ 578
CALL ‘RENAME’ 579
CALL ‘SYSTEM’ 44, 84, 114, 116, 187, 199, 355,

579, 683, 699
configuration

creating a shortcut 59
filename extension associations 61
prompting for a filename 61

Control menu
Copy 113
Copy table 113
icon 112, 113
Paste 79, 113
Properties 114

default configuration example 372
file sharing 232
ini2reg utility 51, 67, 614, 698
initialization files 67
installation and system requirements 45–59, 698

registering the RM/COBOL compiler 54
registering the RM/COBOL runtime 56, 190
system removal 59

large files
file locking 115
using 115, 234, 691

line draw characters, portable 106
locating RM/COBOL files

directory search sequences 62
file access names 64, 86
file locations within operating system pathnames

62, 337
NetWare search paths 64
Windows system print jobs 66

memory available for a COBOL run unit 111
NetWare 62, 122
performance 114
printing 66, 80, 81, 322, 690

euro currency symbol 327
properties, setting 68, 114, 147, 614

Color 88
Control 72, 552
Menu Bar 82, 93, 112, 557
Pop-up Menu 95, 112, 561, 699
Properties dialog box, illustrated 69

Index

 RM/COBOL User's Guide 719

selecting a file to configure 69
Synonyms 62, 86, 239
Toolbar 82, 85, 89, 112, 575, 684

recover1 utility 63
recover1.ini file 67
registry file 67, 76, 77, 82, 88, 550, 552, 572, 600,

602, 688, 691, 698
rmcobol.ini file 67
rmconfig utility 52, 62, 67, 614, 698
runcobol.ini file 67
runtime system window

cursor types 74–75, 106
described 111

support modules 215, 447
CALL and CANCEL statements 227
external access method configuration 325
initialization errors 416
locating 117, 228
tracing loads 117, 177, 193, 348, 603
version errors 416, 605

system considerations 59–114
SYSTEM subprogram. See CALL ‘SYSTEM’
Toolbar Editor 77, 97, 577
troubleshooting RM/COBOL 657
use with pop-up windows 218

MINIMUM-BLOCK-SIZE keyword, RUN-INDEX-
FILES configuration record 245, 344, 600, 605,
680

MIN-VALUE special register 630, 666
Mnemonic-name, user-defined word type 167
MOVE-ATTR keyword, TERM-UNIT configuration

record 367
Multiple file compilation 147, 679
MULTIPLE phrase, LOCK MODE clause, file

control entry 39, 625
Multiple record locks 39, 625

N

N Compile Command Option 158
NAME environment variable 116, 552
NAME keyword, EXTERNAL-ACCESS-METHOD

configuration record 325
Named pipe support 239
Native character set 76, 100, 547, 673
NBS 169, 259, 435, 440
NBSN 169, 259, 444
NBU 169, 259, 438
NBUN 169, 259, 443
NCS 169, 259, 434
NCU 169, 259, 433
NetWare 62, 122

search paths 64
system requirements 45–46

Network file access 39
Network file damage 658

Network redirector file caching, disabling 658
NLC 169, 259, 432
NLS 169, 259, 430
NO BEEP keyword

CONTROL phrase, DISPLAY statement 220
RUN-ATTR configuration record 332

NO BLINK keyword
CONTROL phrase, DISPLAY statement 220
RUN-ATTR configuration record 332

NO ERASE keyword, CONTROL phrase, DISPLAY
statement 220

NO REVERSE keyword
CONTROL phrase, DISPLAY statement 220
RUN-ATTR configuration record 334

NO-DIAGNOSTIC keyword, COMPILER-
OPTIONS configuration record 309, 675

NONBLOCKING-FIFO keyword, DEFINE-
DEVICE configuration record 320

Nonnumeric data items 426
NO-TERMINAL-DISPLAY value, LISTING-

ATTRIBUTES keyword 152, 305
Novell NetWare Client32 659
NPP 169, 259, 436
NPS 169, 259, 437
NPU 169, 259, 445
NSE 169, 259, 427
NSU 169, 259, 429
NTC 169, 259, 431
NTS 169, 259, 429
Number of files a run unit can open 39
Number of region locks 39
Numeric computational data items 429
Numeric DISPLAY data items 429

O

O Compile Command Option 158, 309
Object file 144, 189

default extension 324
OBJECT keyword, EXTENSION-NAMES

configuration record 324
Object program options, Compile Command 157
Object versions 159, 300, 310, 589, 619, 686

level numbers, list of 619
version 1 621
version 10 627, 684
version 11 628, 676
version 12 628, 674
version 13 629, 671
version 14 629, 668
version 15 630, 663
version 2 621
version 3 622
version 4 623
version 5 623
version 6 624

Index

720 RM/COBOL User's Guide

version 7 625
version 8 625
version 9 627

OBJECT-PATHNAME keyword, COMPILER-
OPTIONS configuration record 158, 309

Objects, external 230
OBJECT-VERSION keyword, COMPILER-

OPTIONS configuration record 160, 310
Obsolete language elements 637
OEM codepage 76, 81, 100, 102, 673
OFF phrase, ACCEPT statement 214, 216
ON EXCEPTION phrase

ACCEPT statement 40–41, 205, 217
CALL statement 228

ON OVERFLOW phrase, CALL statement 228
OPEN OUTPUT

block sizes in indexed files 701
sequential files in a shared environment 232

OPEN statement
REVERSED phrase (sequential I-O) 237
WITH LOCK phrase 232

Opportunistic locking 659
OPTIONS keyword, EXTERNAL-ACCESS-

METHOD configuration record 325
Organization of this guide 2
Overlay file, compiler 681

P

P Compile Command Option 156, 163, 176, 183, 305
P Recover1 Command Option 602
P Runtime Command Option 80, 192
P$ printer, defined 465
P$ChangeDeviceModes subprogram 492, 501
P$ClearDialog subprogram 473
P$ClearFont subprogram 480, 481, 485, 486
P$DisableDialog subprogram 66, 473, 683
P$DisplayDialog subprogram 66, 473
P$DrawBitmap subprogram 467, 476
P$DrawBox subprogram 477, 479
P$DrawLine subprogram 477, 479
P$EnableDialog subprogram 66, 80, 474
P$EnableEscapeSequences subprogram 81, 493
P$EnumPrinterInfo subprogram 493, 683
P$GetDefineDeviceInfo subprogram 494
P$GetDeviceCapabilities subprogram 495, 500
P$GetDialog subprogram 320, 474, 501
P$GetFont subprogram 481, 485
P$GetHandle subprogram 496, 683
P$GetPosition subprogram 478, 484
P$GetPrinterInfo subprogram 497, 501
P$GetTextExtent subprogram 482
P$GetTextMetrics subprogram 481, 482, 485, 501
P$GetTextPosition subprogram 484
P$LineTo subprogram 478, 479
P$MoveTo subprogram 478

P$NewPage subprogram 498
P$ResetPrinter subprogram 499, 674
P$SetBoxShade subprogram 479, 490
P$SetDefaultAlignment subprogram 467, 484
P$SetDefaultMode subprogram 467, 491
P$SetDefaultUnits subprogram 467, 491
P$SetDialog subprogram 475, 501
P$SetDocumentName subprogram 499
P$SetFont subprogram 466, 480, 481, 485, 500
P$SetHandle subprogram 496, 499
P$SetLeftMargin subprogram 491
P$SetLineExtendMode subprogram 487
P$SetLineSpacing subprogram 487, 674
P$SetPen subprogram 479
P$SetPitch subprogram 488
P$SetPosition subprogram 480, 489
P$SetRawMode subprogram 81, 322, 500
P$SetTabStops subprogram 488
P$SetTextColor subprogram 488
P$SetTextPosition subprogram 489
P$SetTopMargin subprogram 492
P$TextOut subprogram 488, 489
PACKED-DECIMAL usage

signed 437
unsigned 436

PADDING CHARACTER clause 230
PARAGRAPH, in PROCEDURE-NAME special

register 666
PARITY keyword, TERM-UNIT configuration

record 367
PASS-THRU keyword, CONTROL phrase,

DISPLAY statement 214
PASS-THRU-ESCAPE keyword, TERM-ATTR

configuration record 214, 354
PATH environment variable 21, 43, 63, 116, 133,

229, 452, 581, 595, 614
PATH keyword

DEFINE-DEVICE configuration record 24, 321
TERM-UNIT configuration record 367

Pathname 21, 62
Patterns 541, 681
PDFlib support 671
Performance, improved 114
Persistent property

Recovery (recover1) 602
runtime (runcobol) 192

Pervasive PSQL 122, See also Btrieve Adapter
PICTURE character-string, window control block

222
PIF. See Program information file
Pipe character 23, 321, 682
PIPE keyword, DEFINE-DEVICE configuration

record 321, 682
Piping 40, 201

named pipe support 239
Pointer data items 445

Index

 RM/COBOL User's Guide 721

Pop-up Menu properties, setting (Windows) 95, 112,
561, 699

Pop-Up Window Manager. See Pop-up windows
Pop-up windows 218

color terminal support 220
control block 219, 222

binary allocation, configuration 298
defining the border 223
defining the location 223
defining the location of the title 224
defining the size 223
defining the title 224
identifying 222
initializing 223

creating 218
BEEP phrase, DISPLAY statement 219
BLINK phrase, DISPLAY statement 219
CONTROL phrase, DISPLAY statement 219
ERASE phrase, DISPLAY statement 220
HIGH phrase, DISPLAY statement 220
LINE phrase, DISPLAY statement 220
LOW phrase, DISPLAY statement 220
POSITION phrase, DISPLAY statement 220
REVERSE phrase, DISPLAY statement 221
UNIT phrase, DISPLAY statement 221

operation status 224
removing 221

CONTROL phrase, DISPLAY statement 221
UNIT phrase, DISPLAY statement 222

sample program 196
system verification 140, 141
use with the Windows operating system 218

POSITION phrase, DISPLAY statement 220
POSTPONE-COPY-IN-PSEUDO-TEXT keyword,

COMPILER-OPTIONS configuration record
310

PRECEDENCE keyword, TERM-INPUT
configuration record 358

PRINT-ATTR configuration record 144, 328
AUTO-LINE-FEED keyword 328
COLUMNS keyword 328
default configuration files, examples of 368
FORM-FEED-AVAILABLE keyword 328
LINAGE-INITIAL-FORM-POSITION keyword

236, 329, 692
LINAGE-PAGES-PER-PHYSICAL-PAGE

keyword 236, 329, 692
LINES keyword 330
TOP-OF-FORM-AT-CLOSE keyword 330
WRAP-COLUMN keyword 330
WRAP-MODE keyword 330

Printer
DEFINE-DEVICE configuration record 319
dynamic 66, 80, 322, 464, 473, 474
file access names 24
support on sequential files 238

PRINTER environment variable 24, 43, 66, 116, 239,
584, 585, 588, 590, 610

PRINTER? synonym 323
Printing, from Novell NetWare Client32 660
Printing, from Windows 322, 461, 690

copy files 500
escape sequences, RM/COBOL-specific 500, 530

raw mode-byte I/O 500, 530
euro currency symbol 327
examples

change a font while printing 526
change the number of lines per inch 527
change the orientation of the page 524
change the orientation of the paper 527
change the pitch of a font 527
change the print resolution 524
draw a box around text 523
draw a box using relative positioning 522
draw a ruler 523
draw a shaded box with colors 522
list of 521
open and write to separate printers 527
print a watermark 522
print a word in boldface type 526
print a word in italics 526
print a word underlined 526
print bitmap files 526
print multiple copies 471, 524
print multiple text outputs on the same line 526
print text at the corners of a page 528
print text at the top of a page 528
set alignment of text 529
set text position 529
set the point size for a specific font 529
set the printer device, display the Windows Print

dialog box, and check the exit code value 525
OMITTED keyword, CALL statement 468
P$ subprogram functions 461

bypass printer drivers and enable printing with
escape sequences 530

change the current printer 499
change the orientation of the paper 492
change the paper source 492
clear all font description values and return them to

their default (unset) state 480
clear values of the Windows Print dialog box to

their default (unset) state 473
common arguments 466
compute the printable area of the page to be

printed 495
concatenate lines while printing 487
disable standard Windows Print dialog box 473
display Windows Print dialog box automatically

when predefined dynamic printer device is next
opened 474

draw a line starting at the current position 478

Index

722 RM/COBOL User's Guide

draw boxes 477
draw boxes around text 482
draw lines 477
enable a set of RM/COBOL-specific escape

sequences 493
enable printing with RM/COBOL-specific escape

sequences and bypass printer drivers 500
font, return to normal 466
force new page and change page orientation 498
generate columns of text 491
invoke standard Windows Print dialog box 473
list of 461
omitting arguments 468
overview of 464
print a bitmap file 476
print multiple copies 471, 524
print partial reports 472
reposition the line-draw pen without drawing a

line 478
reset printer 492, 499, 674
retrieve characteristics of current font 481, 482
retrieve detailed information about network

printers 493
retrieve device capabilities of printer 495
retrieve ending position of the last print operation

478
retrieve ending position of the last print operation,

adjusted to the top or bottom of the current font
484

retrieve handle to the current printer 496
retrieve the define device information as specified

in the runtime configuration file 494
retrieve values from Windows Print dialog box

320, 474
set (change) fonts while printing to a Windows

printer 485
set (initialize) values in Windows Print dialog box

475
set a left margin (offset from left side of paper)

for the subsequent COBOL WRITE statement
491

set a new position for the next print operation,
adjusted from the top or bottom of the current
font 489

set a position for the next print operation 480
set color and density of the color used in

P$DrawBox 479
set color for text output 488
set default alignment used in text positioning 484
set default mode used in positioning and sizing

parameters 491
set default unit of measurement in positioning and

sizing parameters 491
set new values in DEVMODE structure 492
set normal, compressed, or expanded font pitch

488

set number of lines per inch 487, 674
set output text on the printer while bypassing

COBOL WRITE statement 489
set raw mode output when the next printer is

opened 500
set style, width, and color of pen tool for a box or

line 479
set tab stop increments 488
set the name of the document as it displays in the

Windows printer status window 499
set top margin for subsequent pages 492
specify detailed printer information 497
using 466

Printer Dialog Always property 66, 80, 690
Printer Dialog Never property 80, 690
Printer Enable Escape Sequences property 81
Printer Enable Null Esc. Seq. property 81, 532
Printer Enable Raw Mode property 81, 500
Windows system print jobs 66

PRINT-LISTING value, LISTING-ATTRIBUTES
keyword 156, 305

PROCEDURE, in PROCEDURE-NAME special
register 666

PROCEDURE-NAME special register 666
Product updates, automatic 301, 345, 687
Program exit codes 199
Program information file 114
Program listing 163
Program names, resolution of 227, 701
Program options, runtime system 195
Program, internal 533
PROGRAM-ID special register 626, 694
Prompt character 701
PROMPT keyword, CONTROL phrase, ACCEPT

statement 214, 701
PROMPT phrase, ACCEPT statement 201, 203, 214
Properties, setting (Windows) 147, See also

Microsoft Windows
Color 88
Control 72, 552
Menu Bar 82, 93, 112, 557
Pop-up Menu 95, 112, 561, 699
Synonyms 62, 86, 239
Toolbar 82, 89, 112, 575, 684

PTR 169, 259, 445
PURGE statement 456

Q

Q (Quit) Command, Debug option 281
Q Compile Command Option 158, 255, 378, 384,

548, 578, 628
Q Recovery Command option 602
Q Runtime Command Option 197

Index

 RM/COBOL User's Guide 723

R

R (Resume) Command, Debug option 282, 384
R Compile Command Option 156, 305, 310
RAW keyword, DEFINE-DEVICE configuration

record 81, 322, 500
READ statement

WITH NO LOCK phrase (indexed I-O) 246
WITH NO LOCK phrase (relative I-O) 241
WITH NO LOCK phrase (sequential I-O) 237

RECEIVE statement 456
RECORD clause 235, 240, 243
Record delimiting techniques

binary sequential 153, 235
configuring 311, 349
line sequential 153, 234

RECORD KEY clause, file control entry,
DUPLICATES phrase 625

Record locking 39, 625
time-out settings 338, 341

Recover1 Command
options

persistent property (P) 602
recover1 utility 63, 67, 71, 243, 254, 599, 687
recover1 window 602
Recovery Command 600

options
integrity scan (I) 601
invalidate KIB and specify template file (K) 601
log file (L) 601
memory size for sort (M) 602
quiet mode (Q) 602
truncate file (T) 603
yes-to-prompts mode(Y) 603
zero Open For Modify Count (Z) 603

specifying options
in the Windows registry 600
in UNIX resource files 600
on the command line 601

Redirection of input and output control 40, 163, 201,
333

REDRAW-ON-CALL-SYSTEM keyword, TERM-
ATTR configuration record 355, 580

REEL phrase, CLOSE statement (sequential I-O) 237
Region lock facility 625

under UNIX 39
Registering the RM/COBOL compiler 54
Registering the RM/COBOL runtime 56, 190
Registry file, Windows 67

C$GetSyn subprogram 550, 688, 691
C$GUICFG subprogram 552
C$SetSyn subprogram 572, 688, 691
Font CharSet OEM property 76
Initialization File to Windows Registry Conversion

utility (ini2reg) 51, 67, 613, 698
Load Registry On CALL property 77, 88

Load Registry On RETURN property 77, 88
Printer Font CharSet OEM property 82
recovery utility options 600, 602
RM/COBOL Configuration utility (rmconfig) 52,

67, 614, 698
Regular expressions 541, 681
Relative files 234, 240, See also File types and

structure
Relativity 11
Relinking. See Support modules
Remote Procedure Calls (Cobol-RPC) 11, 228, 454
REMOTE-PRINTER keyword, DEFINE-DEVICE

configuration record 321
Removing pop-up windows 221
RENAME subprogram 579
Renaming executables 681
RENUMBER-SEQUENCE-AREA value, LISTING-

ATTRIBUTES keyword 157, 305
REPAINT-SCREEN keyword, CONTROL phrase,

ACCEPT and DISPLAY statements 215
REPAINT-SCREEN value, ACTION keyword 362
REPLACE phrase, COPY statement 165
REPLACE statement, program listing 165
REPLACING LINE phrase, SEND statement 460
RESEQUENCE-LINE-NUMBERS keyword,

COMPILER-OPTIONS configuration record
157, 310

RESERVE clause 236, 241, 245
Reserved words, dereserve 161, 301, 693
RESET-ANSI-INSERTION value, ACTION

keyword 362
Resolution of program names 227, 701
RESOLVE-LEADING-NAME keyword, RUN-

FILES-ATTR configuration record 23, 66, 339
RESOLVE-SUBSEQUENT-NAMES keyword,

RUN-FILES-ATTR configuration record 23,
66, 340

Return code. See Exit codes.
RETURN-CODE special register 199, 226
Reverse attribute 37
REVERSE keyword

CONTROL phrase, DISPLAY statement 220
RUN-ATTR configuration record 334

REVERSE phrase
ACCEPT and DISPLAY statements 216, 334
DISPLAY statement 221

REVERSED phrase, OPEN statement (sequential I-
O) 237

REVERSE-VIDEO phrase. See REVERSE phrase
Right Arrow field edit key 203
RIGHT-ARROW value, ACTION keyword 362
RM insertion mode

field editing 360
SET-RM-INSERTION value 362

RM/COBOL
add-on packages 10

Index

724 RM/COBOL User's Guide

Btrieve. See Btrieve Adapter
Business Information Server (BIS) 11
CodeBridge 10
code-set translation tables 643
CodeWatch 10
compiler 9, 143
configuration 289
data formats, internal 425
debugging 255
enhancements 1, 663
features 201

ACCEPT and DISPLAY statements, operating-
system specific information 201–17

CALL statement 226
CANCEL statement 227
composite date and time 231, 693
COPY statement 225
DELETE FILE operation 232
file buffering 233, 241, 245
file sharing 232
file types and structure 234
indexed file performance 250
message control system (MCS) 456
pop-up windows 218
STOP RUN statement and RETURN-CODE

special register 226
temporary files 249, 324

file naming conventions 11
for UNIX

installation and system requirements 13–20
support modules 44
system considerations 21–42
system removal 20
terminal input and output 15, 19, 28–38

for Windows
installation and system requirements 45–59, 698
registering the compiler 54
registering the runtime 56, 190
system considerations 59–114

instrumentation 377–82
integrated packages 10
internal libraries and utility programs 10
language elements

extension, obsolete, and subset 631–41
limits and ranges 134, 421
local area networks (LANs) 119, 122, 126
NetWare 45–46, 62, 64, 122
object versions 619
renaming executables 681
runtime messages 383
runtime system 9, 189
software 9
subprogram library 461, 533
support modules (non-COBOL add-ons) 447
system verification 139
XML Extensions 11

RM/COBOL and ANSI COBOL 153
RM/COBOL Configuration utility (rmconfig) 52, 62,

67, 614, 698
RM/COBOL indexed files and Btrieve MicroKernel

Database Engine (MKDE) limitations
variable-length records 125, 130

RM/COBOL indexed files and Btrieve MicroKernel
Database Engine limitations 134

RM/COBOL Open File Manager 325
RM/InfoExpress 11, 325, 337, 453, 701
RM/Panels

borders on static control 79
Load Registry On CALL property 77
Load Registry On RETURN property 77
pop-up menus 95
three-dimensional controls 79

RM/plusDB 325
RM_COMPILER_WRAP_LONGNAMES

environment variable 43, 116
RM_DEVELOPMENT_MODE environment

variable 43, 117, 571
RM_DYNAMIC_LIBRARY_TRACE environment

variable 43, 117, 177, 193, 290, 348, 449, 603
RM_ENCODING environment variable 43, 185
RM_ESCAPE_TO_COMMAND environment

variable 43, 361
RM_IGNORE_GLOBAL_RESOURCES

environment variable 26, 44, 74, 86, 117
RM_KEEP_XML_SYMTAB_FILE environment

variable 44, 117, 302
RM_LATIN_1 43
RM_LATIN_9 43
RM_LIBRARY_SUBDIR environment variable 44,

117, 450
RM_LOAD_WOW_CLIENT environment variable

44, 117
RM_VERBOSE_BANNER environment variable 44,

105, 117, 193, 418
RM_Y2K environment variable 44, 117, 295
rmattach utility, on Windows 664
rmbtrv32.dll program 119, 123, 133, See also Btrieve

Adapter
rmcobol (Compile Command) 143, 145
RMCOBOL-2 keyword, COMPILER-OPTIONS

configuration record 162, 310
rmcobolc command 679
rmcobolg command 679
rmconfig utility 52, 62, 67, 614, 698
rmdefinx utility 115, 242, 246, 254, 594, 687
rmmapinx utility 251, 590, 700
rmmappgm utility 588
RMPATH environment variable

for UNIX 21, 43, 226
for Windows 62–64, 86, 116, 226

rmpgmcom utility 145, 159, 300, 314, 585, 695
RMSETNCS utility 102, 103

Index

 RM/COBOL User's Guide 725

RMTERM132 environment variable 43, 215
RMTERM80 environment variable 43, 215
ROUND-TO-NICE-BLOCK-SIZE keyword, RUN-

INDEX-FILES configuration record 245, 344,
600, 605, 680

ROWS keyword, TERM-ATTR configuration record
82, 355

RUN phrase, STOP statement 192, 199, 226, 333,
419

Run unit exit code. See Exit codes.
RUN unit, termination 419
RUN-ATTR configuration record 330

ACCEPT-FIELD-FROM-SCREEN keyword 331
ACCEPT-INTENSITY keyword 331
ACCEPT-PROMPT-CHAR keyword 331
BEEP keyword 332
BLINK keyword 332
default configuration files, examples of 368
DISPLAY-INTENSITY keyword 332
EDIT-COMMA keyword 332
EDIT-CURRENCY-SYMBOL keyword 332
EDIT-DECIMAL keyword 333
EDIT-DOLLAR keyword 333
ERROR-MESSAGE-DESTINATION keyword 42,

333
EXCEPTION-HANDLING keyword 333
REVERSE keyword 334
SCROLL-SCREEN-AT-TERMINATION keyword

334
STRIP-LIKE-PATTERN-TRAILING-SPACES

keyword 334, 673
TAB keyword 334
UNDERLINE keyword 335

runcobol (Runtime Command) 189
RUN-FILES-ATTR configuration record 145, 234,

335, 697
ALLOW-EXTENDED-CHARS-IN-FILENAMES

keyword 336, 581, 692
BLOCK-SIZE keyword 336
BUFFER-POOL-SIZE keyword 186, 233, 250,

336, 388, 408, 609, 680
DEFAULT-USE-PROCEDURE keyword 336, 682
DISABLE-LOCAL-ACCESS-METHOD keyword

337, 683
ENABLE-OLD-DOS-FILENAME-HANDLING

keyword 337, 692
EXPANDED-PATH-SEARCH keyword 21, 62,

337
FATAL-RECORD-LOCK-TIMEOUT keyword

338
FILE-LOCK-LIMIT keyword 254, 338, 680
FILE-PROCESS-COUNT keyword 338
FORCE-USER-MODE keyword 114, 338
KEEP-FLOPPY-OPEN keyword 339
LARGE-FILE-LOCK-LIMIT keyword 115, 234,

254, 339, 592, 597, 680, 697

RESOLVE-LEADING-NAME keyword 23, 66,
339

RESOLVE-SUBSEQUENT-NAMES keyword 23,
66, 340

SKIP-INITIAL-CWD-SEARCH keyword 340
USE-PROCEDURE-RECORD-LOCK-TIMEOUT

keyword 341
RUN-INDEX-FILES configuration record 131, 341

ALLOCATION-INCREMENT keyword 342
BLOCK-SIZE keyword 342
DATA-COMPRESSION keyword 342
default configuration files, examples of 368
DEFAULT-FILE-VERSION-NUMBER keyword

254, 342, 597, 679
ENABLE-ATOMIC-IO keyword 342, 679
FORCE-CLOSED keyword 243, 342
FORCE-DATA keyword 243, 343
FORCE-DISK keyword 243, 343
FORCE-INDEX keyword 243, 343
KEY-COMPRESSION keyword 343
MINIMUM-BLOCK-SIZE keyword 245, 344, 600,

605, 680
ROUND-TO-NICE-BLOCK-SIZE keyword 245,

344, 600, 605, 680
USE-LARGE-FILE-LOCK-LIMIT keyword 254,

344, 679
RUN-OPTION configuration record 191, 344

B keyword 194, 201, 345, 423
default configuration files, examples of 368
DISPLAY-UPDATE-MESSAGES keyword 345,

687
ENABLE-LOGGING keyword 345, 683, 689, 691
FILL-CHARACTER keyword 194, 346
K keyword 192, 346
L keyword 197, 347, 682
LIBRARY-PATH keyword 347
LOG-PATH keyword 347, 691
M keyword 195, 347
MAIN-PROGRAM keyword 348, 682
V keyword 193, 348, 449

RUNPATH environment variable 127, 337, 610
for UNIX 21, 23, 44, 229, 451
for Windows 62–64, 86, 117, 229, 452, 614

RUN-REL-FILES configuration record 234, 348, 697
BLOCK-SIZE keyword 348
USE-LARGE-FILE-LOCK-LIMIT keyword 234,

349, 697
RUN-SEQ-FILES configuration record 234, 349, 697

BLOCK-SIZE keyword 349
default configuration files, examples of 368
DEFAULT-TYPE keyword 154, 349
DEVICE-SLEWING-RESERVE keyword 349
TAB-STOPS keyword 144, 350
USE-LARGE-FILE-LOCK-LIMIT keyword 234,

350, 697
RUN-SORT configuration record 191, 350

Index

726 RM/COBOL User's Guide

default configuration files, examples of 368
INTERMEDIATE-FILES keyword 350
MEMORY-SIZE keyword 195, 350

Runtime Command 189
input/output control redirection, under UNIX 40
invoking 189
messages

diagnostic 198
execution 199
program exit codes 199

options 190
banner and STOP RUN message suppression (K)

346, 418–19
command-line, specified on 190
configuration file (C) 192, 289
configuration files, specified in 191, 192, 193
instrumentation (I) 194, 377
invoke Interactive Debugger (D) 194, 255, 361
level 2 semantics for Format 1 ACCEPT and

DISPLAY statements (M) 42, 195, 347
list support modules loaded by the runtime (V)

105, 193, 290, 348, 449
maximum size for ACCEPT and DISPLAY

buffers (B) 194, 201, 217, 345, 423
memory to be used for a sort operation (T) 195,

351, 388, 414
object or non-COBOL program libraries (L) 190,

197, 228, 229, 347, 417, 449, 451, 586, 682
pass an argument to the main program (A) 195,

385
persistent property (P) 192
registry (Windows), specified in 190
resource files (UNIX), specified in 190
schedule the program by the Message Control

System (Q) 197
specify a fill character value (F) 194, 346, 673
supplemental runtime configuration file (X) 193,

289
suppressbanner and STOP RUN message (K) 192
switch set and reset (S) 195, 381

samples of valid and invalid 198
types of options

configuration 192
debug and test 193
environment 194
program 195

Runtime messages
error message format 383
error message types 198, 383

COBOL normal termination 383, 419
configuration 383, 415
data reference 383, 384
input/output 383, 393
internal error 383, 413
message control 383, 414
operator-requested termination 383

procedure 383, 387
runcobol initialization messages 383, 416

initialization errors 416
main program loading errors 417
option processing errors 417
registration error messages 419
runcobol banner message 418
runcobol usage message 418
support module initialization errors 416
support module version errors 416

sort-merge 383, 414
traceback 383

runtime window 192

S

S (Step) Command, Debug option 282
S Compile Command Option 152, 161, 310, 430, 432
S Runtime Command Option 195, 381
Scan suppression 176
Scope terminator

END-COPY 665
END-REPLACE 665

Screen field
initial contents 201
maximum size 194, 201

Screen width 215
SCREEN-COLUMNS keyword, CONTROL phrase,

ACCEPT and DISPLAY statements 215
SCREEN-CONTENT-OPTIMIZE keyword, TERM-

ATTR configuration record 355
SCREEN-ESCAPE value, ACTION keyword 362
SCREEN-HOME value, ACTION keyword 362
SCREEN-PREVIOUS-FIELD value, ACTION

keyword 362
SCREEN-TERMINATE value, ACTION keyword

362
SCROLL-SCREEN-AT-TERMINATION keyword,

RUN-ATTR configuration record 334
SECTION, in PROCEDURE-NAME special register

666
Secure hash algorithm 570, 681
SECURE phrase, ACCEPT statement 214, 216, See

also OFF phrase
Segmentation 143
SELECT clause, use of 65
SEND statement 456, 460
Separate sign

compiler option 152
configuration 153, 310
leading 430
trailing 429

SEPARATE-SIGN keyword, COMPILER-OPTIONS
configuration record 153, 310

Sequential files 234, See also File types and
structures

Index

 RM/COBOL User's Guide 727

SEQUENTIAL-FILE-TYPE keyword, COMPILER-
OPTIONS configuration record 153, 311

SET-ANSI-INSERTION value, ACTION keyword
362

SET-RM-INSERTION value, ACTION keyword 362
Shared environments 232
Shared objects, on UNIX. See Support modules
SHELL environment variable 44, 361, 580
Sign, operational

compiler option 152
configuration 153, 310
leading combined 432
leading separate 430
trailing combined 431
trailing separate 429

Signed COMPUTATIONAL 434
Signed COMPUTATIONAL-1 435
Signed numeric COMPUTATIONAL-3 437
Signed numeric COMPUTATIONAL-4 440
Signed numeric COMPUTATIONAL-5 444, 676
Signed numeric DISPLAY (LEADING SEPARATE)

430
Signed numeric DISPLAY (LEADING) 432
Signed numeric DISPLAY (TRAILING

SEPARATE) 429
Signed numeric DISPLAY (TRAILING) 431
SIZE phrase

ACCEPT and DISPLAY statements 40, 41, 214,
216

START statement (relative and indexed I-O) 624
SKIP-INITIAL-CWD-SEARCH keyword, RUN-

FILES-ATTR configuration record 340
Sort files, temporary 249
SORT statement

configuring 195, 350
errors 414
memory 195, 350

Sort-merge facility, temporary files 249
Source file 144

default extension 324
SOURCE keyword, EXTENSION-NAMES

configuration record 324
Source listing 163
Source program options, Compile Command 160
SOURCE-ON-INPUT-DEVICE keyword,

COMPILER-OPTIONS configuration record
311

SOURCE-PATTERN-EXCLUDE keyword,
COMPILER-OPTIONS configuration record
311

SOURCE-PATTERN-INCLUDE keyword,
COMPILER-OPTIONS configuration record
312

SOURCE-RECORD-MAX-LENGTH keyword,
COMPILER-OPTIONS configuration record
164, 312

Special entry points, for support modules 227
Special registers

ADDRESS 626
COUNT 626, 693
COUNT-MAX 626, 693
COUNT-MIN 626, 693
HIGHEST-VALUE 630, 666
INITIAL-VALUE 630, 666
LENGTH 626, 694
LINAGE-COUNTER 298
LOWEST-VALUE 630, 666
MAX-VALUE 630, 666
MIN-VALUE 630, 666
PROCEDURE-NAME 666
PROGRAM-ID 626, 694
RETURN-CODE 199, 226
WHEN-COMPILED 314, 629, 674

SPECIAL-NAMES paragraph 674
Split keys 124, 168
Split-key-name, user-defined word type 168
Standard error device 42, 152, 333
Standard input device 40, 333
Standard output device 41–42, 157, 163, 176, 183,

306, 333, 354
STATION environment variable 117, 552
Status code. See Exit codes.
STOP RUN statement 192, 199, 226, 333, 419

and suppression of banner messages 192, 346
STOP statement, temporary 42, 199, 333, 419
STOP-BITS keyword, TERM-UNIT configuration

record 367
STRICT-REFERENCE-MODIFICATION keyword,

COMPILER-OPTIONS configuration record
312, 675

STRIP-LIKE-PATTERN-TRAILING-SPACES
keyword, RUN-ATTR configuration record
334, 673

Subprogram libraries 533, 690
Subprogram loading 227

resolution of program names 701
SUBSCRIPT-CHECKING keyword, COMPILER-

OPTIONS configuration record 313
Subset language elements 637
Summary listing 173, 675
Support modules 215, 545

Automatic Configuration File 15, 19, 149, 191,
290, 415, 453, 603, 664, 680, 688

Btrieve, large file Linux 119, 674
CALL and CANCEL statements 226
Cobol-CGIX Server 454
Cobol-RPC (Remote Procedure Calls) Server 454
external access method configuration 325
FlexGen 15, 19, 453
implementation and overview 447
initialization errors 416
locating 43, 44, 117, 228, 449, 680

Index

728 RM/COBOL User's Guide

message control system (MCS), building 456
removal of 20
RM/InfoExpress Client 15, 19, 453
special entry points 227
Terminal Interface (termcap and terminfo) 29
Terminal Interface (terminfo and termcap) 452
tracing loads 43, 105, 117, 177, 193, 290, 348, 603
used on UNIX 448
used on Windows 448
user-written 455
version errors 186, 416, 605
WOW Extensions 44, 117

Support services, technical 6
SUPPRESS phrase

COPY statement 674
SUPPRESS-COPIED-LINES value, LISTING-

ATTRIBUTES keyword 305
SUPPRESS-COPY-FILES value, LISTING-

ATTRIBUTES keyword 306
SUPPRESS-COPY-STATEMENT-LINES value,

LISTING-ATTRIBUTES keyword 306
SUPPRESS-FILLER-IN-SYMBOL-TABLE

keyword, COMPILER-OPTIONS configuration
record 313, 684, 686

SUPPRESS-LITERAL-BY-CONTENT keyword,
COMPILER-OPTIONS configuration record
313

SUPPRESS-NULLS keyword, TERM-ATTR
configuration record 355

SUPPRESS-NUMERIC-OPTIMIZATION keyword,
COMPILER-OPTIONS configuration record
314

SUPPRESS-REPLACED-LINES value, LISTING-
ATTRIBUTES keyword 306

SUPPRESS-REPLACMENT-LINES value,
LISTING-ATTRIBUTES keyword 306

SUPPRESS-XML SYMBOL-TABLE keyword,
COMPILER-OPTIONS configuration record
314

SUPPRESS-XML-SYMBOL-TABLE keyword,
COMPILER-OPTIONS configuration record
668

Switches 195
Symbol table output

Y Compile Command Option 159, 255, 260, 261,
301, 314, 585, 626, 627, 628, 695

Symbolic-character, user-defined word type 167
Symbols and conventions 4
SYMBOL-TABLE-OUTPUT keyword,

COMPILER-OPTIONS configuration record
159, 314

Synonyms
entries in file access names 22, 64
in directory search sequences, use of 21, 26, 62
properties, setting (Windows) 62, 86, 239

Syntax errors 175

System files. See Files
SYSTEM subprogram 44, 84, 114, 116, 187, 199,

355, 579, 683, 699
System verification

under UNIX 139
under Windows 141

T

T (Trap) Command, Debug option 283
T Compile Command Option 157, 163, 176, 183, 306
T Recovery Command option 603
T Runtime Command Option 195, 351, 388, 414
TAB keyword

CONTROL phrase, ACCEPT statement 214
RUN-ATTR configuration record 334

TAB phrase, ACCEPT statement 214
Tab stops

configuring 350
source files (BDS) 144

Table of Contents (TOC)
rmmappgm utility 588
rmpgmcom utility 585

TAB-STOPS keyword, RUN-SEQ-FILES
configuration record 144, 350

Tail comments 290, 680
Tape

DEFINE-DEVICE configuration record 319
file access names 24
support on sequential files 239

TAPE environment variable 24, 44, 239
TAPE keyword, DEFINE-DEVICE configuration

record 322
TEMP environment variable 117, 249
Temporary files, locating 249
Temporary STOP statement 42, 199, 333, 419
TERM environment variable 30, 44, 139, 215, 367,

392
TERM-ATTR configuration record 351

ALWAYS-USE-CURSOR-POSITIONING
keyword 351, 689

BCOLOR keyword 351
CHARACTER-TIMEOUT keyword 217, 352
COLUMNS keyword 352
DATA-CHARACTERS keyword 352, 683
DBCS-CHARACTERS keyword 353, 697
FCOLOR keyword 354
PASS-THRU-ESCAPE keyword 214, 354
REDRAW-ON-CALL-SYSTEM keyword 355, 580
ROWS keyword 82, 355
SCREEN-CONTENT-OPTIMIZE keyword 355
SUPPRESS-NULLS keyword 355
USE-COLOR keyword 356

Termcap 202, 452
database 30–38
default configuration 368

Index

 RM/COBOL User's Guide 729

support module version errors 416
terminal input and output 15, 19, 28

TERMCAP environment variable 29, 44
TERMCAP keyword, TERM-INTERFACE

configuration record 365
Terminal attributes 30

configuring 351
Terminal input and output

cursor types 30
terminal attributes 30
terminal interfaces 15, 19, 28

Terminal interfaces 15, 19, 28, 452, See also
Termcap; Terminal input and output; Terminfo

TERMINAL-LISTING value, LISTING-
ATTRIBUTES keyword 157, 306

Terminate. See SCREEN-TERMINATE value
Termination code. See Exit codes.
Termination status. See Exit codes.
Terminfo 202, 452

database 30–38
default configuration 370
support module version errors 416
terminal input and output 15, 19, 28

TERMINFO environment variable 29, 44
TERMINFO keyword, TERM-INTERFACE

configuration record 365
TERM-INPUT configuration record 32, 356

ACTION keyword 357, 684
field editing key

BACKSPACE value 360
CONTROL-BREAK value 361
COPY-TO-CLIPBOARD value 361
DELETE-CHARACTER value 361
ENTER-DEBUGGER value 194, 361
ERASE-ENTIRE value 361
ERASE-REMAINDER value 361
ESCAPE-TO-COMMAND value 361
ESCAPE-TO-OS value 361
FIELD-END value 361
FIELD-HOME value 361
INSERT-CHARACTER value 361
LEFT-ARROW value 362
REPAINT-SCREEN value 362
RESET-ANSI-INSERTION value 362
RIGHT-ARROW value 362
SCREEN-ESCAPE value 362
SCREEN-HOME value 362
SCREEN-PREVIOUS-FIELD value 362
SCREEN-TERMINATE value 362
SET-ANSI-INSERTION value 362
SET-RM-INSERTION value 362
TOGGLE-ANSI-INSERTION value 362

character sequence specifications 358, 684
CODE keyword 357
DATA keyword 358
default configuration files, examples of 368
field editing keys 202–4, 360, 684
PRECEDENCE keyword 358

TERM-INPUT configuration recordEXCEPTION
keyword 358

TERM-INTERFACE configuration record 365
default configuration files, examples of 368
GUI keyword 365
TERMCAP keyword 365
TERMINFO keyword 365
WINDOWS keyword 365

TERM-UNIT configuration record 366
BPS keyword 366
CHARACTER-WIDTH keyword 366
default configuration files, examples of 368
DEFINE-CONTROL-CHARACTERS keyword

366
MOVE-ATTR keyword 367
PARITY keyword 367
PATH keyword 367
STOP-BITS keyword 367
TYPE keyword 367
UNIT keyword 367

Tilde (~)
file locations 21, 337
negation character, Compile Command line 145
setting Menu Bar properties 94
setting Pop-up Menu properties 96

Time
allow date/time override 295, 696
composite date and time 231, 540, 693
listing separator configuration 308

Time-out, BEFORE TIME phrase, ACCEPT
statement 217, 352

TMP environment variable 117, 249
TMPDIR environment variable 44, 249
TOGGLE-ANSI-INSERTION value, ACTION

keyword 362
Toolbar properties, setting (Windows) 82, 89, 112,

575, 684
Tooltips 84, 683
TOP-OF-FORM-AT-CLOSE keyword, PRINT-

ATTR configuration record 330
Troubleshooting

RM/COBOL for Windows 657
disable network redirector file caching 658
file and printer sharing for NetWare Networks

service 660
network file damage 658
Novell NetWare Client32 659
opportunistic locking on Windows NT 659
printing to a Novell print queue using Client32

660
virus protection software 659

TYPE keyword, TERM-UNIT configuration record
367

TZ environment variable 44, 117

Index

730 RM/COBOL User's Guide

U

U (Untrap) Command, Debug option 286
U Compile Command Option 153, 299
UNC. See Universal naming convention
Underline attribute 37
UNDERLINE keyword, RUN-ATTR configuration

record 335
Underscore (_), using with

RM_ENCODING environment variable 43, 185
Unicode 43
Unicode encoding standard 185
UNIT keyword, TERM-UNIT configuration record

367
UNIT phrase

CLOSE statement (sequential I-O files) 237
DISPLAY statement 221, 222

Universal naming convention (UNC) 62
UNIX

automatic configuration files 15, 19, 177, 290, 453,
603, 688

input/output control redirection 40
installation and system requirements 13–20

system removal 20
large files, using 42, 234
locating RM/COBOL files

directory search sequences 21
file access names 22
file locations within operating system pathnames

21
memory available for a COBOL run unit 39
network file access 39
number of files 39
number of region locks 39
pathnames 21
resource file 25
support modules 20, 215, 447, 545

CALL and CANCEL statements 226
external access method configuration 325
initialization errors 416
installation of 15, 19
locating 43, 44, 228
Terminal Interface (termcap and terminfo) 29
tracing loads 43, 177, 193, 348, 603
version errors 416, 605

system considerations 21–42
terminal input and output 28–38

cursor types 30
keyboard input character sequences 32
line draw characters 38
TERM environment variable 30
terminal attributes 30
terminal interfaces 15, 19, 28
terminfo and termcap capabilities 31, 36
terminfo considerations 37

UNIX resource file 25

C$GetSyn subprogram 550, 688, 691
C$SetSyn subprogram 572, 688, 691
recovery utility options 600, 602

Unsigned numeric COMPUTATIONAL 433
Unsigned numeric COMPUTATIONAL-3 436
Unsigned numeric COMPUTATIONAL-4 438
Unsigned numeric COMPUTATIONAL-5 443, 676
Unsigned numeric COMPUTATIONAL-6 445
Unsigned numeric DISPLAY (NSU) 429
UPDATE phrase, ACCEPT statement 201
UPON/FROM CONSOLE phrase, ACCEPT and

DISPLAY statements 40–42
Usage

BINARY, signed 440, 444
BINARY, unsigned 438, 443, 676
PACKED-DECIMAL, signed 437
PACKED-DECIMAL, unsigned 436

USAGE clause 299, 429
data description entry 298

USE-COLOR keyword, TERM-ATTR configuration
record 356

USE-LARGE-FILE-LOCK-LIMIT keyword
RUN-INDEX-FILES configuration record 254,

344, 679
RUN-REL-FILES configuration record 234, 349,

697
RUN-SEQ-FILES configuration record 234, 350,

697
USE-PROCEDURE-RECORD-LOCK-TIMEOUT

keyword, RUN-FILES-ATTR configuration
record 341

USER environment variable 117, 552
User-defined words 167, 675
USERID environment variable 117, 552
Utilities

Attach Configuration (rmattach), on Windows 664
Combine Program (rmpgmcom) 145, 159, 300,

314, 585, 695
Define Indexed File (rmdefinx) 115, 242, 246, 254,

410, 594, 687
delivered media 584
Indexed File Recovery (recover1) 22, 63, 67, 71,

243, 254, 342, 398, 410, 599, 687, 697, 700
recover2 610, 697
recovery 697
support modules, used with 447

Initialization File to Windows Registry Conversion
(ini2reg) 51, 67, 613, 698

installation 585
Map Indexed File (rmmapinx) 251, 590, 700
Map Program File (rmmappgm) 588
RM/COBOL Configuration (rmconfig) 52, 62, 67,

614, 698

Index

 RM/COBOL User's Guide 731

V

V Compile Command Option 153, 161, 311
V keyword, RUN-OPTION configuration record 193,

348, 449
V Runtime Command Option 105, 193, 290, 348,

449
Variable-length records 125, 130, 137
Verbose banner 44, 105, 117, 177, 193, 418
Verification procedures

for UNIX 139
for Windows 141

Version number, file 234, 246, 254, 342, 592, 595,
598, 679, 697

Video display attributes 28
Virus protection software 659

W

W Compile Command Option 152, 318, 676
WCB-BORDER-CHAR parameter 223
WCB-BORDER-SWITCH parameter 223
WCB-BORDER-TYPE parameter 223
WCB-FILL-SWITCH parameter 224
WCB-HANDLE parameter 222
WCB-LOCATION-REFERENCE parameter 223
WCB-NUM-COLS parameter 223
WCB-NUM-ROWS parameter 223
WCB-TITLE parameter 224
WCB-TITLE-JUSTIFICATION parameter 224
WCB-TITLE-LENGTH parameter 224
WCB-TITLE-LOCATION parameter 224
WHEN-COMPILED special register 314, 629, 674
WHEN-COMPILED-FORMAT keyword,

COMPILER-OPTIONS configuration record
314, 674

Wildcard characters, in multiple file compilations 74,
147

window, recover1 602
window, runtime 192
WINDOW-CREATE keyword, pop-up windows

CONTROL phrase 218
WINDOW-REMOVE keyword, pop-up windows

CONTROL phrase 221
WINDOWS keyword, TERM-INTERFACE

configuration record 365
Windows registry file. See Registry file, Windows
Windows. See Microsoft Windows; Pop-up windows
WITH DUPLICATES phrase, RECORD KEY clause

625
WITH LOCK phrase, OPEN statement (relative and

indexed I-O) 232, 253
WITH NO LOCK phrase, READ statement 237, 241,

246
WITH NO REWIND phrase, CLOSE statement

(sequential I-O) 237

WITH phrase, SEND statement 460
WORKSPACE-SIZE keyword, COMPILER-

OPTIONS configuration record 152, 174, 318
WOW Extensions 11, 44, 117, 321
WOW EXTENSIONS

printing, WOW Thin Client 320, 525
WRAP-COLUMN keyword, PRINT-ATTR

configuration record 330
WRAP-LONGNAMES value, LISTING-

ATTRIBUTES keyword 43, 116, 306
WRAP-MODE keyword, PRINT-ATTR

configuration record 330
WRITE statement

ADVANCING mnemonic-name phrase (sequential
I-O) 237

ADVANCING ZERO LINES phrase (sequential I-
O) 237

X

X Compile Command Option 157, 172, 305
X Runtime Command Option 193, 289
Xcentrisity 11
XML Extensions 11, 667
XML projects

and the licensed RM/COBOL compiler 667
character encoding 43, 185
messages, abnormal termination 184–85
symbol table, configuration 43, 44, 117, 302, 314

Y

Y Compile Command Option 159, 255, 260, 261,
301, 314, 585, 626, 627, 628, 695

Y Recovery Command option 603
Year 2000 subprogram 540, 700
Year 2000 testing 295, 696

Z

Z Compile Command Option 159, 310, 620–29, 686
Z Recovery Command option 603
Zoned sign

leading 432
trailing 431

	Preface
	Welcome to RM/COBOL for Windows and UNIX
	Who Should Use This Book
	Organization of Information
	Related Publications
	Conventions and Symbols
	Technical Support
	Support Guidelines
	Test Cases

	Chapter 1: Introduction
	RM/COBOL Software
	RM/COBOL Compiler
	RM/COBOL Runtime System
	CodeWatch
	CodeBridge
	Internal Libraries and Utility Programs
	Integrated and Add-On Packages
	File Naming Conventions

	Chapter 2: Installation and System Considerations for UNIX
	System Requirements for UNIX
	Required Hardware
	Required Software

	System Installation for UNIX
	Electronic Product Delivery Installation
	CD-ROM Installation
	Loading the License File
	Mounting the Diskette as an MS-DOS File System
	Transferring the RM/COBOL License File via FTP from a Windows Client

	Loading the Distribution Media
	Performing the Installation
	Unloading the Distribution Media

	System Removal for UNIX
	Locating RM/COBOL Files on UNIX
	File Locations within Operating System Pathnames on UNIX
	Directory Search Sequences on UNIX
	File Access Names on UNIX

	UNIX Resource File
	Resource File Format
	Command-Line Options
	Specifying Synonyms
	Example of .rmcobolrc File
	Example of .runcobolrc File
	Example of .recover1rc File

	Terminal Input and Output on UNIX
	Terminal Interfaces
	Termcap Database
	Terminfo Database

	Cursor Types
	Terminal Attributes
	Terminal Name
	Terminfo and Termcap Capabilities Used by the Runtime System
	Keyboard Input Character Sequences
	Additional Termcap Capabilities Used by the Runtime System
	Terminfo Considerations
	Line Draw Characters

	Other System Considerations for UNIX
	Memory Available for a COBOL Run Unit on UNIX
	Number of Files
	Number of Region Locks
	Network File Access
	Redirection of Input and Output
	Standard Input
	Standard Output
	Standard Error

	Using Large Files on UNIX
	Environment Variables for UNIX

	Chapter 3: Installation and System Considerations for Microsoft Windows
	System Requirements for Windows
	Required Hardware
	Required Software
	Local Area Network (LAN) Software
	Btrieve Software

	System Installation for Windows
	Installation Locations
	Electronic Product Delivery Installation
	CD-ROM Installation
	Installation Notes for Windows
	Installation of RM/COBOL on Windows
	Installation of RM/COBOL on Network Client Machines
	Default Native Character Set

	Registering the RM/COBOL Compiler and Runtime Executables
	Compiler Registration
	Runtime Registration

	System Removal for Windows
	System Configuration for Windows
	Creating a Windows Shortcut
	Using Associations with Filename Extensions
	Prompting for a Filename

	Locating RM/COBOL Files on Windows
	File Locations within Operating System Pathnames on Windows
	Directory Search Sequences on Windows
	Novell NetWare Search Paths
	File Access Names on Windows
	Windows System Print Jobs

	Windows Registry
	Windows Registry Considerations
	Renaming the RM/COBOL for Windows Runtime

	Setting Properties
	Selecting a File to Configure
	Setting Control Properties
	Auto Paste Property
	Auto Scale Property
	Command Line Options Property
	Cursor Overtype Property
	Cursor Insert Property
	Cursor Full Field Property
	Enable Close Property
	Enable Properties Dialog Property
	Font Property
	Font CharSet OEM Property
	Full OEM To ANSI Conversions Property
	Icon File Property
	Load Registry On CALL Property
	Load Registry On RETURN Property
	Logo Bitmap Property
	Logo Bitmap File Property
	Main Window Type Property
	Mark Alphanumeric Property
	Offset X Property
	Offset Y Property
	Panels Controls 3D Property
	Panels Static Controls Border Property
	Paste Termination Property
	Persistent Property
	Pop-Up Window Positioning Property
	Printer Dialog Always Property
	Printer Dialog Never Property
	Printer Enable Escape Sequences Property
	Printer Enable Null Esc. Seq. Property
	Printer Enable Raw Mode Property
	Printer Font CharSet OEM Property
	Remove Trailing Blanks Property
	Screen Read Line Draw Property
	Scroll Buffer Size Property
	Show Return Code Dialog Property
	Show Through Borders Property
	Sizing Priority Property
	Status Bar Property
	Status Bar Text Property
	SYSTEM Window Type Property
	Title Text Property
	Toolbar Property
	Toolbar Prompt Property
	Update Timeout Property
	Use Windows Colors Property

	Setting Synonym Properties
	Setting Color Properties
	Setting Toolbar Properties
	Setting Menu Bar Properties
	Setting Pop-up Menu Properties

	Toolbar Editor
	Running the Toolbar Editor
	Editing a Bitmap
	Testing the Bitmap
	Transferring the Image Up
	Importing and Exporting Bitmaps

	Character Set Considerations for Windows
	Codepages on Windows
	RM/COBOL for ANSI Codepage on Windows
	Installation Character Set Considerations on Windows
	RMSETNCS Utility

	Related Character Set Configuration on Windows

	Terminal Input and Output on Windows
	Terminal Interfaces
	Cursor Types
	Blinking Attribute
	Portable Line Draw Characters
	Keyboard Input Character Sequences

	Other System Considerations for Windows
	Memory Available for a COBOL Run Unit on Windows
	Runtime System Window
	Control Menu Icon

	Return Code Message Box
	CALL “SYSTEM”
	Performance
	Using Large Files on Windows
	Windows File Systems Considerations
	Large File Locking Issues
	Test Programs Available

	Environment Variables for Windows

	Chapter 4: System Considerations for Btrieve
	Btrieve Adapter Concepts
	Indexed Files

	Required Software Components
	Novell NetWare
	Btrieve MicroKernel Database Engine (MKDE)
	Btrieve Requester for 32-Bit Windows
	Pervasive PSQL v8 (or higher) for Linux
	RM/COBOL Compiler (for Windows and Linux)
	RM/COBOL Runtime System (for Windows and Linux)
	Btrieve Adapter

	Configuration for Btrieve
	System Considerations for Btrieve Files
	RM/COBOL versus Btrieve Indexed File Performance

	Btrieve Adapter Options
	EXTERNAL-ACCESS-METHOD Configuration Record Options
	B (Btrieve Adapter Btrieve MKDE Page Size) Option
	Create Option
	D (Duplicates) Option
	I (Initial Display) Option
	L (Lock) Option
	M (Mode) Option
	O (Owner) Option
	P (Btrieve Adapter Page Size) Option
	T (Diagnostic Trace Filename) Option

	RUN-INDEX-FILES Configuration Record Options

	Starting Btrieve Adapter for Linux
	Starting Btrieve Adapter for Windows
	RM/COBOL Indexed Files and Btrieve MicroKernel Database Engine (MKDE) Limitations
	Current Record Position Limitations
	File Position Indicator Limitations
	Permission Error Detection Limitations
	Using Existing Btrieve Files with RM/COBOL
	Btrieve MicroKernel Database Engine (MKDE) Limitations Affecting RM/COBOL Applications
	Variable-Length Records
	Key Placement
	Automatic Creation of Variable-Length Record Files
	Verification of Maximum Record and Block Length
	Support for RM/COBOL Internal Data Formats
	Support for Btrieve Internal Data Formats
	Input/Output Errors in Btrieve

	Chapter 5: System Verification
	System Verification for UNIX
	Single-User Tests
	Multi-User Test

	System Verification for Windows
	Single-User Tests
	Multi-User Test

	Chapter 6: Compiling
	Compilation Process
	System Files
	Source Files
	Object Files
	Listing Files

	Libraries
	Compile Command
	Batch Compilation on Windows
	Multiple File Compilation on Windows
	Multiple File Selection with File Open Dialog
	Multiple File Selection with Wildcard Characters in Filename

	Compile Command Options
	Configuration Compile Command Options
	Data Item Compile Command Options
	File Type Compile Command Options
	Listing Compile Command Options
	Object Program Compile Command Options
	Source Program Compile Command Options

	Sample Compile Commands
	Valid Compile Commands
	Invalid Compile Command

	Listing
	Program Listing
	Allocation Map
	Alphabet-Names, Symbolic-Characters, Mnemonic-Names, and Class-Names
	Split Key Names
	Data-Names, Index-Names, Condition-Names, File-Names and Cd-Names
	Constant-Names

	Called Program Summary
	Cross Reference Listing
	Summary Listing
	Error Marker and Diagnostics
	Error Recovery
	Error Threading

	Compile Command Messages
	Compiler Status Messages
	Compiler Configuration Errors
	Compiler Initialization Errors
	Support Module Version Errors

	Compiler Exit Codes

	Chapter 7: Running
	Runtime Command
	Runtime Command Options
	Configuration Runtime Command Options
	Debug and Test Runtime Command Options
	Environment Runtime Command Options
	Program Runtime Command Options

	Sample Runtime Commands
	Valid Runtime Commands
	Invalid Runtime Commands

	Runtime Messages
	Diagnostic Messages
	Execution Messages

	Program Exit Codes

	Chapter 8: RM/COBOL Features
	ACCEPT and DISPLAY Statements
	Maximum Size of a Screen Field
	Initial Contents of a Screen Field
	Defined Keys
	Field Edit Keys
	Field Termination Keys

	ACCEPT and DISPLAY Phrases
	CONTROL Phrase
	ERASE Phrase
	HIGH Phrase
	LOW Phrase
	OFF Phrase
	REVERSE Phrase
	SIZE Phrase
	TIME Phrase

	ACCEPT Exception Status Values

	Pop-Up Windows
	Creating Pop-Up Windows
	BEEP Phrase
	BLINK Phrase
	CONTROL Phrase
	ERASE Phrase
	HIGH and LOW Phrases
	LINE and POSITION Phrases
	REVERSE Phrase
	UNIT Phrase

	Removing a Pop-Up Window
	CONTROL Phrase
	UNIT Phrase

	Pop-Up Window Control Block
	Identifying the Pop-Up Window
	Defining the Size of the Pop-Up Window
	Defining the Location of the Pop-Up Window
	Defining the Border of the Pop-Up Window
	Initializing the Pop-Up Window Area
	Defining the Location of the Title of the Pop-Up Window
	Defining the Title of the Pop-Up Window

	Pop-Up Window Operation Status

	COPY Statement
	STOP RUN Statement and RETURN-CODE Special Register
	CALL and CANCEL Statements
	Subprogram Loading
	Argument Considerations
	External Objects

	Composite Date and Time
	DELETE FILE Operation
	File Sharing
	File Buffering
	Very Large File Support
	File Types and Structure
	Sequential Files
	RECORD Clause (Sequential File Description Entry)
	BLOCK CONTAINS Clause (Sequential File Description Entry)
	LINAGE Clause (Sequential File Description Entry)
	RESERVE Clause (Sequential File Control Entry)
	CODE-SET Clause (Sequential File Control Entry or File Description Entry)
	REVERSED Phrase (OPEN Statement)
	WITH NO LOCK Phrase (READ Statement)
	ADVANCING ZERO LINES Phrase (WRITE Statement)
	ADVANCING mnemonic-name Phrase (WRITE Statement)
	REEL and UNIT Phrases (CLOSE Statement)
	WITH NO REWIND Phrase (CLOSE Statement)
	Device Support

	Relative Files
	RECORD Clause (Relative File Description Entry)
	BLOCK CONTAINS Clause (Relative File Description Entry)
	RESERVE Clause (Relative File Control Entry)
	CODE-SET Clause (Relative File Control Entry or File Description Entry)
	WITH NO LOCK Phrase (READ Statement)

	Indexed Files
	Data Compression
	Data Recoverability
	RECORD Clause (Indexed File Description Entry)
	BLOCK CONTAINS Clause (Indexed File Description Entry)
	RESERVE Clause (Indexed File Control Entry)
	CODE-SET Clause (Indexed File Control Entry or File Description Entry)
	COLLATING SEQUENCE Clause (Indexed File Control Entry)
	WITH NO LOCK Phrase (READ Statement)
	File Allocation
	File Size Estimation

	Temporary Files
	Indexed File Performance
	In-Memory Buffering
	Altering the Size of Indexed File Blocks
	Controlling the Length of Record Keys
	Correct Data Recovery Strategy
	Using Key and Data Compression
	Using RM/COBOL Facilities
	Indexed File Version Levels
	File Version Level 0
	File Version Level 2
	File Version Level 3
	File Version Level 4
	Changing the File Version Level

	Chapter 9: Debugging
	Invoking a Program for Debug
	General Debug Concepts
	Statements
	Breakpoints
	Traps
	Stepping
	Execution Counts
	Line and Intraline Numbers
	Debug Values
	Data Types

	Debug References
	Program Area References
	Data Item References

	Screen Positions
	Data Address Development
	Identifier Format
	Address-Size Format
	Alias Format

	Regaining Control
	Debug Command Prompt
	Debug Error Messages
	A (Address Stop) Command
	B (Breakpoint) Command
	C (Clear) Command
	D (Display) Command
	E (End) Command
	L (Line Display) Command
	M (Modify) Command
	Q (Quit) Command
	R (Resume) Command
	S (Step) Command
	T (Trap) Command
	U (Untrap) Command

	Chapter 10: Configuration
	Configuration File Structure
	Automatic Configuration Files
	Command-Line Configuration Files
	Configuration Processing Order
	Configuration Errors
	Configuration Records
	COMPILER-OPTIONS Configuration Record
	ACCEPT-BEEP-DEFAULT
	ACCEPT-SUPPRESS-CONVERSION
	ALLOW-DATE-TIME-OVERRIDE
	BINARY-ALLOCATION
	BINARY-ALLOCATION-SIGNED
	COBOL-74
	COMPUTATIONAL-AS-BINARY
	COMPUTATIONAL-TYPE
	COMPUTATIONAL-VERSION
	DEBUG
	DEBUG-TABLE-OUTPUT
	DERESERVE
	DISPLAY-UPDATE-MESSAGES
	EXTERNAL-INDEX-NAMES
	FLAGGING
	INITIAL-MARGIN-R
	KEEP-TEMP-XML-SYMBOL-TABLE-FILE
	LINKAGE-ENTRY-SETTINGS
	LISTING-ATTRIBUTES
	LISTING-CONDITIONAL-EXCLUSION-INDICATOR
	LISTING-CONDITIONAL-INCLUSION-INDICATOR
	LISTING-DATE-FORMAT
	LISTING-DATE-SEPARATOR
	LISTING-DIAGNOSTIC-PREFIX
	LISTING-ID-AREA-SEPARATOR
	LISTING-LINE-LENGTH
	LISTING-PATHNAME
	LISTING-TIME-SEPARATOR
	NO-DIAGNOSTIC
	OBJECT-PATHNAME
	OBJECT-VERSION
	POSTPONE-COPY-IN-PSEUDO-TEXT
	RESEQUENCE-LINE-NUMBERS
	RMCOBOL-2
	SEPARATE-SIGN
	SEQUENTIAL-FILE-TYPE
	SOURCE-ON-INPUT-DEVICE
	SOURCE-PATTERN-EXCLUDE
	SOURCE-PATTERN-INCLUDE
	SOURCE-RECORD-MAX-LENGTH
	STRICT-REFERENCE-MODIFICATION
	SUBSCRIPT-CHECKING
	SUPPRESS-FILLER-IN-SYMBOL-TABLE
	SUPPRESS-LITERAL-BY-CONTENT
	SUPPRESS-NUMERIC-OPTIMIZATION
	SUPPRESS-XML-SYMBOL-TABLE
	SYMBOL-TABLE-OUTPUT
	WHEN-COMPILED-FORMAT
	WORKSPACE-SIZE

	DEFINE-DEVICE Configuration Record
	DEVICE
	ERROR-ON-CANCEL
	ESCAPE-SEQUENCES
	NONBLOCKING-FIFO
	PATH
	PIPE
	REMOTE-PRINTER
	RAW
	TAPE
	Windows Printers

	EXTENSION-NAMES Configuration Record
	COPY
	LISTING
	OBJECT
	SOURCE

	EXTERNAL-ACCESS-METHOD Configuration Record
	CREATE-FILES
	NAME
	OPTIONS

	INTERNATIONALIZATION Configuration Record
	EURO-CODEPOINT-ANSI
	EURO-CODEPOINT-OEM
	EURO-SUPPORT-ENABLE
	Euro Support Considerations Under Windows

	PRINT-ATTR Configuration Record
	AUTO-LINE-FEED
	COLUMNS
	FORM-FEED-AVAILABLE
	LINAGE-INITIAL-FORM-POSITION
	LINAGE-PAGES-PER-PHYSICAL-PAGE
	LINES
	TOP-OF-FORM-AT-CLOSE
	WRAP-COLUMN
	WRAP-MODE

	RUN-ATTR Configuration Record
	ACCEPT-FIELD-FROM-SCREEN
	ACCEPT-INTENSITY
	ACCEPT-PROMPT-CHAR
	BEEP
	BLINK
	DISPLAY-INTENSITY
	EDIT-COMMA
	EDIT-CURRENCY-SYMBOL
	EDIT-DECIMAL
	EDIT-DOLLAR
	ERROR-MESSAGE-DESTINATION
	EXCEPTION-HANDLING
	REVERSE
	SCROLL-SCREEN-AT-TERMINATION
	STRIP-LIKE-PATTERN-TRAILING-SPACES
	TAB
	UNDERLINE

	RUN-FILES-ATTR Configuration Record
	ALLOW-EXTENDED-CHARS-IN-FILENAMES
	BLOCK-SIZE
	BUFFER-POOL-SIZE
	DEFAULT-USE-PROCEDURE
	DISABLE-LOCAL-ACCESS-METHOD
	ENABLE-OLD-DOS-FILENAME-HANDLING
	EXPANDED-PATH-SEARCH
	FATAL-RECORD-LOCK-TIMEOUT
	FILE-LOCK-LIMIT
	FILE-PROCESS-COUNT
	FORCE-USER-MODE
	KEEP-FLOPPY-OPEN
	LARGE-FILE-LOCK-LIMIT
	RESOLVE-LEADING-NAME
	RESOLVE-SUBSEQUENT-NAMES
	SKIP-INITIAL-CWD-SEARCH
	USE-PROCEDURE-RECORD-LOCK-TIMEOUT

	RUN-INDEX-FILES Configuration Record
	ALLOCATION-INCREMENT
	BLOCK-SIZE
	DATA-COMPRESSION
	DEFAULT-FILE-VERSION-NUMBER
	ENABLE-ATOMIC-IO
	FORCE-CLOSED
	FORCE-DATA
	FORCE-DISK
	FORCE-INDEX
	IGNORE-BLOCK-CONTAINS
	KEY-COMPRESSION
	MINIMUM-BLOCK-SIZE
	ROUND-TO-NICE-BLOCK-SIZE
	USE-LARGE-FILE-LOCK-LIMIT

	RUN-OPTION Configuration Record
	B
	DISPLAY-UPDATE-MESSAGES
	ENABLE-LOGGING
	FILL-CHARACTER
	K
	L
	LIBRARY-PATH
	LOG-PATH
	M
	MAIN-PROGRAM
	V

	RUN-REL-FILES Configuration Record
	BLOCK-SIZE
	USE-LARGE-FILE-LOCK-LIMIT

	RUN-SEQ-FILES Configuration Record
	BLOCK-SIZE
	DEFAULT-TYPE
	DEVICE-SLEWING-RESERVE
	TAB-STOPS
	USE-LARGE-FILE-LOCK-LIMIT

	RUN-SORT Configuration Record
	INTERMEDIATE-FILES
	MEMORY-SIZE

	TERM-ATTR Configuration Record
	ALWAYS-USE-CURSOR-POSITIONING
	BCOLOR
	CHARACTER-TIMEOUT
	COLUMNS
	DATA-CHARACTERS
	DBCS-CHARACTERS
	FCOLOR
	PASS-THRU-ESCAPE
	REDRAW-ON-CALL-SYSTEM
	ROWS
	SCREEN-CONTENT-OPTIMIZE
	SUPPRESS-NULLS
	USE-COLOR

	TERM-INPUT Configuration Record
	ACTION
	CODE
	DATA
	EXCEPTION
	PRECEDENCE
	Character Sequence Specification
	Translation of TERM-INPUT Sequences on Windows
	Translation of TERM-INPUT Sequences on UNIX
	Character Sequence Specification for Input Data Character Keys
	Character Sequence Specification for Field Editing Keys
	Character Sequence Specification for Field Termination Keys

	TERM-INTERFACE Configuration Record
	GUI
	TERMCAP
	TERMINFO
	WINDOWS

	TERM-UNIT Configuration Record
	BPS
	CHARACTER-WIDTH
	DEFINE-CONTROL-CHARACTERS
	MOVE-ATTR
	PARITY
	PATH
	STOP-BITS
	TYPE
	UNIT

	Default Configuration Files
	Termcap Example
	Terminfo Example
	Windows Example

	Chapter 11: Instrumentation
	Invoking Instrumentation
	Data Collection
	Data Analysis

	Appendix A: Runtime Messages
	Error Message Types
	Data Reference Errors
	Procedure Errors
	Input/Output Errors
	Internal Errors
	Sort-Merge Errors
	Message Control Errors
	Configuration Errors
	Runtime System Initialization Messages
	Initialization Errors
	Support Module Initialization Errors
	Support Module Version Errors
	Option Processing Errors
	Main Program Loading Errors
	Runcobol Banner Message
	Runcobol Usage Message
	Registration Error Messages

	COBOL Normal Termination Messages

	Appendix B: Limits and Ranges
	RM/COBOL Limits and Ranges
	File Locking

	Appendix C: Internal Data Formats
	Internal Data Formats
	Nonnumeric Data
	Alphanumeric (ANS)
	Alphanumeric Edited (ANSE)
	Alphabetic (ABS)
	Alphabetic Edited (ABSE)
	Numeric Edited (NSE)

	Numeric Data
	Unsigned Numeric DISPLAY (NSU)
	Signed Numeric DISPLAY, TRAILING SEPARATE (NTS)
	Signed Numeric DISPLAY, LEADING SEPARATE (NLS)
	Signed Numeric DISPLAY, TRAILING (NTC)
	Signed Numeric DISPLAY, LEADING (NLC)
	Unsigned Numeric COMPUTATIONAL (NCU)
	Signed Numeric COMPUTATIONAL (NCS)
	Signed Numeric COMPUTATIONAL-1 (NBS)
	Unsigned Numeric COMPUTATIONAL-3 (NPP)
	Signed Numeric COMPUTATIONAL-3 (NPS)
	Unsigned Numeric COMPUTATIONAL-4 (NBU)
	Signed Numeric COMPUTATIONAL-4 (NBS)
	Unsigned Numeric COMPUTATIONAL-5 (NBUN)
	Signed Numeric COMPUTATIONAL-5 (NBSN)
	Unsigned Numeric COMPUTATIONAL-6 (NPU)

	Pointer Data

	Appendix D: Support Modules (Non-COBOL Add-Ons)
	Introduction
	Overview of Optional Support Modules
	Locating Optional Support Modules
	In Production Mode
	In Test Mode
	Using a Different Execution Directory
	Using a Different Subdirectory
	Using the L Option

	Support Modules Available for RM/COBOL
	Terminal Interface Support Modules on UNIX
	Automatic Configuration File Support Module
	RM/InfoExpress Client Support Module on UNIX
	FlexGen Support Module on UNIX
	Cobol-RPC Server Support Module on UNIX
	Cobol-CGIX Server Support Module on UNIX

	Building Your Own Support Module
	User-Written Support Module
	User-Written Support Module from Old sub.c or sub.o

	Building a Message Control System (MCS)
	Message Control System (MCS) Support Module
	Initializing the MCS
	Message Control System Data Structures
	RM/COBOL Communications Descriptor (CCD)

	Appendix E: Windows Printing
	P$ Subprogram Library
	Overview
	Using Windows Printing Functions
	Returning to a "Normal" Font
	Common P$ Subprogram Arguments
	Omitting P$ Subprogram Arguments

	Windows Print Dialog Box Subprograms
	Printing Multiple Copies
	Printing Partial Reports
	P$ClearDialog
	P$DisableDialog
	P$DisplayDialog
	P$EnableDialog
	P$GetDialog
	P$SetDialog

	Drawing Subprograms
	P$DrawBitmap
	P$DrawBox
	P$DrawLine
	P$GetPosition
	P$LineTo
	P$MoveTo
	P$SetBoxShade
	P$SetPen
	P$SetPosition

	Text Manipulation Subprograms
	P$ClearFont
	P$GetFont
	P$GetTextExtent
	P$GetTextMetrics
	P$GetTextPosition
	P$SetDefaultAlignment
	P$SetFont
	P$SetLineExtendMode
	P$SetLineSpacing
	P$SetPitch
	P$SetTabStops
	P$SetTextColor
	P$SetTextPosition
	P$TextOut

	Common Drawing and Text Manipulation Subprograms
	P$SetDefaultMode
	P$SetDefaultUnits
	P$SetLeftMargin
	P$SetTopMargin

	Printer Control Subprograms
	P$ChangeDeviceModes
	P$EnableEscapeSequences
	P$EnumPrinterInfo
	P$GetDefineDeviceInfo
	P$GetDeviceCapabilities
	P$GetHandle
	P$GetPrinterInfo
	P$NewPage
	P$ResetPrinter
	P$SetDocumentName
	P$SetHandle
	P$SetRawMode

	Copy Files
	DEFDEV.CPY
	DEVCAPS.CPY
	LOGFONT.CPY
	PRINTDLG.CPY
	PRINTINF.CPY
	TXTMTRIC.CPY
	WINDEFS.CPY
	Example Code Fragments
	Printing a Watermark
	Drawing Shaded Boxes with Colors
	Drawing a Box around Text
	Drawing a Ruler
	Presetting the Print Dialog Box
	Checking the Exit Code after Displaying the Print Dialog Box
	Printing a Bitmap
	Changing a Font While Printing
	Using the COBOL WRITE Statement to Print Multiple Text Outputs on the Same Line
	Changing Orientation, Pitch, and Line Spacing
	Opening and Writing to Separate Printers
	Printing Text at the Top of a Page
	Printing Text at the Corners of a Page
	Setting the Point Size for a Font
	Setting Text Position

	RM/COBOL-Specific Escape Sequences

	Appendix F: Subprogram Library
	Subprogram Library
	C$Bitmap
	C$BTRV
	C$CARG
	C$Century
	C$ClearDevelopmentMode
	C$CompilePattern
	C$ConvertAnsiToOem
	C$ConvertOemToAnsi
	C$DARG
	C$Delay
	C$Forget
	C$GetEnv
	C$GetLastFileName
	C$GetNativeCharset
	C$GetLastFileOp
	C$GetRMInfo
	C$GetSyn
	C$GetSysInfo
	C$GUICFG
	C$LogicalAnd
	C$LogicalComplement
	C$LogicalOr
	C$LogicalShiftLeft
	C$LogicalShiftRight
	C$LogicalXor
	C$MBar
	C$MemoryAllocate
	C$MemoryDeallocate
	C$NARG
	C$OSLockInfo
	C$PARG
	C$PlaySound
	C$RBMenu
	C$RERR
	C$SBar
	C$SCRD
	C$SCWR
	Usage Notes
	Fatal Errors
	Exception Codes

	C$SecureHash
	C$SetDevelopmentMode
	C$SetEnv
	C$SetSyn
	C$Show
	C$ShowArgs
	C$TBar
	C$TBarEn
	C$TBarSeq
	C$Title
	C$WRU
	DELETE
	RENAME
	SYSTEM
	UNIX Considerations
	Windows Considerations

	Appendix G: Utilities
	Organization
	Utilities Delivered on Media
	General Considerations
	Installing the Utility Programs

	Combine Program (rmpgmcom) Utility
	Using the Utility
	Execution of Programs within Libraries

	Map Program File (rmmappgm) Utility
	Using the Utility

	Map Indexed File (rmmapinx) Utility
	Using the Utility
	Basic File Information Display
	Detailed Information Report
	Key Descriptor Information Display

	Define Indexed File (rmdefinx) Utility
	Using the Utility
	File Pre-creation
	File Modification

	Indexed File Recovery (recover1) Utility
	Recovery Command
	Recovery Command Options

	Recovery Process Description
	Recovery Support Module Version Errors
	Recovery Example
	Recovery Program Error Messages
	Standalone Use of the Recover2 Program
	Recover2 Program Error Messages

	Initialization File to Windows Registry Conversion (ini2reg) Utility
	Using the Utility

	RM/COBOL Configuration (rmconfig) Utility
	Using the Utility

	Appendix H: Object Versions
	Level Numbers
	Object Version 1
	Object Version 2
	Object Version 3
	Object Version 4
	Object Version 5
	Object Version 6
	Object Version 7
	Object Version 8
	Object Version 9
	Object Version 10
	Object Version 11
	Object Version 12
	Object Version 13
	Object Version 14
	Object Version 15

	Appendix I: Extension, Obsolete, and Subset Language Elements
	Extension Elements
	Obsolete Elements
	Subset Elements

	Appendix J: Code-Set Translation Tables
	Appendix K: Troubleshooting RM/COBOL
	RM/COBOL for Windows Running in a Microsoft Windows or Novell Network Environment
	Old vredir.vxd File
	Network Redirector File Caching
	Opportunistic Locking
	Virus Protection Software
	Novell NetWare Client32 Version
	Printing to a Novell Print Queue Using Novell NetWare Client32
	File and Printer Sharing for NetWare Networks Service

	RM/COBOL for UNIX
	Number of Available SEMUNDO Structures

	Appendix L: Summary of Enhancements
	Version 12 Enhancements
	Version 12 Runtime System Features
	Version 12 Compiler Features
	Features Added to Support XML Extensions

	Version 11 Enhancements
	Version 11 Runtime System Features
	Version 11 Compiler Features

	Version 10 Enhancements
	Version 10 Runtime System Features
	Version 10 Compiler Features

	Version 9 Enhancements
	Version 9 Runtime System Features
	Version 9 Compiler Features

	Version 8 Enhancements
	Version 8 Runtime System Features
	Version 8 Compiler Features

	Version 7.5 Enhancements
	CodeWatch Application Development Environment Introduced
	CodeBridge Enhancements
	Console-Mode Compiler on Windows
	Multiple and Batch Compiles Easier and Faster
	More Reliable Indexed Files
	Better Indexed File Performance
	Automatic Configuration File Available for Windows
	Tail Comments for Configuration Records
	Enhancements for Non-COBOL Subprograms on Windows
	Additions to the RM/COBOL Subprogram Library
	Message Files Eliminated
	Compiler Overlay File Eliminated
	Version 7.5 Runtime System Features
	Version 7.5 Compiler Features
	Version 7.5 Utility Features
	More Flexible Licensing
	Automatic Update Check

	Version 7.1 for UNIX Enhancements
	Runtime Linking Eliminated
	UNIX Resource File
	Automatic Configuration File
	Support for UNIX Added to CodeBridge
	Enhancements to Configuration Records

	Version 7.0 for Windows Enhancements
	CodeWatch Debugger Introduced
	CodeBridge Cross-Language Call System Introduced
	Enhanced Windows Printing
	Additions to the RM/COBOL Subprogram Library
	Ability to Use Btrieve Interface
	Version 7.0 Runtime System Features
	Version 7.0 Compiler Features
	Enhanced File Recovery Performance
	New rmpgmcom Utility Option

	Version 6.6 Enhancements
	Override Date/Time Feature for Year 2000 Testing
	Increased Compiler Capacity
	Improved Compiler Performance for Large Programs
	New Statistics in Compilation Listing File
	Double-Byte Character Set (DBCS) Support
	Enhanced Indexed File Recovery Program
	Masked Input and Output
	Support For Large Files

	Version 6.5 Enhancements
	Full 32-Bit Implementation
	Windows Registry Support
	Extensions for 32-bit Windows
	Automated System Installation and Removal
	Right Mouse Button Pop-Up Menu
	New Subprograms for Windows
	Window Style and the SYSTEM Non-COBOL Subprogram
	Btrieve Adapter Enhancements
	Attached Configuration Files on Windows
	Built-In Configuration File under UNIX
	Year 2000 Subprogram
	C$RERR Eleven-Character Extended Status
	Improved recover1 Utility Program
	Enhanced rmmapinx Utility Program
	Dynamically Configurable Prompt Character
	Building Custom Products Using the customiz Shell Script
	Indexed File Block Sizes After OPEN OUTPUT
	DELETE FILE under UNIX
	Resolution of Program-Names
	Compiler Support for External Access Methods

	Index

