The C-scape® Interface Management System

Function Reference

LIANT SOFTWARE CORPORATION
FRAMINGHAM, MASSACHUSETTS

The information in this manual is subject to change without notice. The information in this manual
and the accompanying software are provided under the terms of a license agreement or non-disclosure
agreement. The software may be used or copied only according to the terms of the agreement. No
part of this manual may be reproduced, transmitted, transcribed, stored in any retrieval system, or
translated into any language by any means without the prior written permission of:

Liant Software Corporation
959 Concord Street
Framingham, MA 01701
U.S.A.

(508) 872-8700
(508) 626-2221 fax

Copyright © 1986-92, by Liant Software Corporation.
All rights reserved.

Trademarks

C-scape and Look & Feel are registered trademarks of Liant Software Corporation. Other trademarks
are property of their respective companies.

ii

Contents

Acknowledgements ii
Contents iii
Chapter 1 Introduction 1
1.1 CONVentionsccceceeevveecreeerueeeeeeeeeesnreesseensenenns 1
Chapter 2 C-scape routines 3
2.1 Menu functionsc.ccecveeeeeeeereeneereeneenreeeeneenns 3

2.2 Sed activation functionsc..ccceevveerverueennennen. 4

2.3 Sed paint functionscceeeevevveeeveeeeveseeneneenens 4

2.4 Sed parameter functionscceeveeveeereerennennen 4

2.5 Sed border functionsc.cceeveeeeeevverveereeeennnns 6

2.6 Sed cursor movement functionsc..c........ 6

2.7 Sed field movement functionsceveveenne. 7

2.8 Sed field functionsc.ccceeeereeveeveereereereeenens 7

2.9 Popup functionscecceceeeveeeeresresreeeeereenennen 10

2.10 Menuing system functionscccoeveevveuennene. 10

2.11 String formatting functionscccecueeuveeueennene. 10

2.12 Date and time functionscceeeveeuverneerueenenne 11

2.13 Bob functionsccceeveeeeeeerereereeeeeeceeeenne 12

2.14 Sled functionscceeeeeeeeeererererereneereserenenenes 12

Contents

iii .

iv

2.15
2.16
2.17
2.18
2.19
2.20
221
222

Appendix A
Appendix B

Appendix C

Ted parameter functionscceceevvereeverecierennn. 12
Ted editing functionscccceceveninienieniennnnen. 13
Ted block functionscccccceeeveiiniiniiinnnennnnnnnn. 14
Ted I/O functionscccccceevieeninnnircnnniennennnnenns 14
Screen file functionscccceeeceecccineiinnniniineenns 15
Help functionscccceevveieneniiniinieicnieneeeenens 15
Keyboard functionscceceeeeveniiniinieneniennen. 15
Memory allocation functionsccccecevenuiennnns 16

Function Reference
Field Function Reference

Error Messages

C-scape Manual

1.1

crapter1 INtroduction

C-scape’s documentation comes in two volumes. This is the second volume, the
C-scape Function Reference. It contains a reference page for each C-scape routine
and each standard field function. It also contains a listing of the C-scape error

messages.

The first volume, the C-scape Manual, provides a conceptual overview of C-scape.
Refer to it for a theoretical and practical discussion of C-scape’s features.

These are the chapters and appendices in this reference:

Chapter 2

Appendix A

Appendix B

Appendix C

C-scape Routines

This chapter lists the C-scape library routines grouped by category.
Function Reference

This appendix contains reference pages for every C-scape routine.
These pages are organized alphabetically. For each routine, the
reference page provides a listing of its arguments, return values, a

brief description of its uses, an example of its use in a C-scape
application, and any other information or warnings.

Field Function Reference

This appendix contains a complete reference page for each of the
standard field functions. Eachreference page provides a description
of the field function’s characteristics, variable type, internal
structure, source file, and an example of its use.

Error Messages

This appendix contains a list of the C-scape error messages and a
description of each one.

Conventions

Throughout this manual we use the following naming conventions:

The term “display” describes the actual hardware display device (terminal, monitor,

CRT).

The term “screen” describes a collection of characters grouped together on the
display for some distinct purpose (a “help” screen, a “data entry” screen).

The word “menu” indicates a C-scape data object (a menu object) as well as a
means for presenting user choices (a “123 menu”).

The meaning of these terms should be clear from their context.
The following typeface conventions are used:

boldface Indicates function names.

italics Indicates variables, function arguments, and file names.
fixed print Is used for code examples.

Indicates a key on the keyboard.

The following data types are used throughout this reference and the C-scape source
code:

VOID * Is #defined to void * for ANSI C compilers and to char * for
older compilers. This data type is used wherever a general
purpose data pointer is needed. C-scape uses this whenever
a void * would normally be used.

SIZE_T Is #defined to size_t for ANSI C compilers and to unsigned
int for older compilers.

Within source code examples, /* ... */ indicates a section of code not listed.

2 Section 1.1

2.1

caperz C-SCape routines

C-scape comes with over 300 library routines. These are functions and macros
that you can call from within your programs to perform a wide variety of
tasks—including windowing, menuing, text editing, data entry, mouse
manipulation, and lower level functions.

C-scape actually consists of two libraries: the C-scape Library and the Oakland
Windowing Library (OWL). This volume is a reference for the functions in the
C-scape library. For information on the functions in OWL, consult the OWL
Function Reference.

This chapter contains a listing of C-scape routines by purpose. Each section lists
functions that perform similar or related tasks. The order of sections in this chapter
generally parallels the order in which concepts are discussed in The C-scape
Manual.

Menu functions

menu_Flush Frees the menu object’s creation data.

menu_GetCol Gets the current menu column.

menu_GetFieldCol
menu_GetFieldRow
menu_GetHeight
menu_GetRow
menu_GetWidth
menu_Open
menu_Printf
menu_SetWrapWidth
menu_UnPrintf

Gets the leftmost column of a field.
Gets the row of a field.

Gets the current menu’s height.
Gets the current menu’s row.

Gets the current menu’s width.
Creates a new menu object.
Defines a menu object.

Sets the menu’s word wrap width.
Gets a format string for a field.

C-scape routines 3

2.2 Sed activation functions

sed_Alloc
sed_Close
sed_CreateBob
sed_Go

sed_Ok

sed_Open
sed_SetMouse
sed_SetMouseCode
sed_SetNextWin

Allocates variable storage for a sed.
Destroys a sed object.

Creates a bob object from a sed.
Activates a sed.

Checks if the sed is valid.

Creates a new sed object.

Attaches a mouse handler to a sed.
Sets the sed’s mousecode.

Passes control to another window.

2.3 Sed paint functions

sed_Pop

sed_Repaint
sed_RepaintField
sed_RepaintFields
sed_Top

sed_Update
sed_UpdateCurrField
sed_UpdateField
sed_UpdateFields

Fires a sed’s window.

Repaints the sed.

Repaints a field.

Repaints all the fields.

Moves the sed’s window to the foreground.
Paints a sed without converting data.
Paints the current field.

Paints a field without converting data.
Paints all the fields.

2.4 Sed parameter functions

sed_Center
sed_GetBaton
sed_GetColors
sed_GetCorners
sed_GetCursorType

Centers a sed.

Gets the sed’s baton.

Gets the sed’s colors.

Gets the sed’s corners.

Gets the sed’s current cursor type.

Section 2.2

sed_GetData
sed_GetExit
sed_GetHeight
sed_GetLabel
sed_GetMenu
sed_GetMenuHeight
sed_GetMenuWidth
sed_GetPosition
sed_GetScratchPad
sed_GetScratchSize
sed_GetSize
sed_GetWidth
sed_GetXoffset
sed_GetYoffset
sed_IsActive
sed_SetActive
sed_SetAux
sed_SetBaton
Sed_SetColors
sed_SetCursorType
sed_SetData
sed_SetExit
sed_SetExplode
sed_SetHeight
sed_SetLabel
sed_SetPosition
sed_SetShadow
sed_SetShadowAfttr
sed_SetSpecial
sed_SetWidth
sed_ToggleExit

Gets the sed’s generic data pointer.
Gets the sed’s exit state.

Gets the sed’s height.

Gets the value of the sed’s label.
Gets the sed’s menu.

Gets the height of the sed’s menu.
Gets the width of the sed’s menu.
Gets the sed’s position.

Gets the sed’s scratch pad.

Gets the size of the sed’s scratch pad.
Gets the sed’s dimensions.

Gets the sed’s width.

Gets the sed’s xoffset.

Gets the sed’s yoffset.

Checks if the sed is in active mode.
Sets the sed’s active flag.

Attaches an auxiliary function to a sed.
Sets the value of the sed’s baton.
Sets the sed’s colors.

Sets the sed’s cursor type.

Sets the sed’s generic data pointer.
Sets the sed’s exit state.

Attaches an explode function to the sed.
Sets the sed’s height.

Sets the value of the sed’s label.
Sets the sed’s position.

Sets the sed shadow size.

Sets the shadow attribute of a sed.
Attaches the sed’s special function.
Sets the sed’s width.

Exits the sed.

C-scape routines

2.5 Sed border functions

sed_BorderExists Checks if the sed has a border.
sed_BorderPrompt Displays a prompt in the border.
sed_GetBordCorners Gets the sed’s border’s corners.

sed_GetBorderColor Gets the color of the sed’s border.
sed_GetBorderHeight Gets the height of the sed’s border.
sed_GetBorder Width Gets the width of the sed’s border.

sed_RedirectPrompt Redirects a border prompt.
sed_RepaintBorder Repaints the sed’s border.
sed_SetBorder Attaches a border to a sed.
sed_SetBorderColor Sets the color of the sed’s border.
sed_SetBorderFeature Sets the features of a border.
sed_SetBorderTitle Sets the title of a titled border.

2.6 Sed cursor movement functions

sed_DecChar Moves to the previous character.
sed_GoEnd Goes to the end of the current field.
sed_GoHome Goes to the start of the current field.
sed_GotoChar Goes to a position in the current field.
sed_IncChar Moves to the next character in a field.
sed_IsEnd Checks if the cursor is at the end of a field.
sed_IsHome Checks if the cursor is at the start of a field.
sed_Overwrite Overwrites the current character.
sed_PullLeft Deletes a character, pulling left.
sed_PullRight Deletes a character, pulling right.
sed_PushLeft Inserts a character, pushing left.
sed_PushRight Inserts a character, pushing right.

6 Section 2.5

sed_DecField
sed_DownField
sed_GotoField
sed_GotoFirstField
sed_GotoGridField
sed_GotoLastField
sed_GotoNameField
sed_IncField
sed_LeftField
sed_MoveField
sed_PageDown
sed_PageLeft
sed_PageRight
sed_PageUp
sed_RightField
sed_ScrollDown
sed_ScrollLeft
sed_ScrollRight
sed_ScrollUp
sed_UpField

inter_field
inter_field_grid
inter_page
sed_DeleteField
sed_DeleteRows

2.7 Sed field movement functions

Goes to the previous field.
Moves down a field.

Goes to a specific field.

Goes to the first field.

Goes to a field using its grid address.
Goes to the last field.

Goes to a field using its name.
Goes to the next field.

Moves left a field.

Moves a field.

Scrolls the sed down one page.
Scrolls the sed left one page.
Scrolls the sed right one page.
Scrolls the sed up one page.
Moves right a field.

Scrolls the sed down.

Scrolls the sed left.

Scrolls the sed right.

Scrolls the sed up.

Moves up a field.

2.8 Sed field functions

Controls field function inter-field movement.
Controls field function inter-field grid movement.
Controls field function inter-page movement.
Removes a field.

Deletes rows from a sed.

C-scape routines

sed_DoAux Calls a sed’s auxiliary function.

sed_DoFieldFenter Executes the field’s fenter function.
sed_DoFieldFexit Executes the field’s fexit function.
sed_DoFieldFkey Executes the field’s fkey function.
sed_DoFieldSenter Executes the field’s senter function.
sed_DoFieldSexit Executes the field’s sexit function.
sed_DoSenters Executes all the fields’ senter functions.
sed_DoSexits Executes all the fields’ sexit functions.
sed_DoSpecial Executes the sed’s special function.
sed_GetChar Gets a character within the current field.
sed_GetCurrChar Gets the character at the current position.
sed_GetCurrMerge Gets the current field’s merge.
sed_GetCurrRecord Gets the current field’s record.
sed_GetCurrRecordLen Gets current field’s record length.
sed_GetCurrVar Gets the current field’s variable.
sed_GetFieldBob Gets the bob attached to a field.
sed_GetFieldChar Gets a character within a field.
sed_GetFieldCol Gets the field’s first column number.
sed_GetFieldColors Gets the field’s colors.
sed_GetFieldCount Gets the number of fields in the sed.
sed_GetFieldData Gets a field’s data pointer.

sed_GetFieldDataCount Gets the field’s number of data pointers.
sed_GetFieldLastCol Gets the field’s last column number.

sed_GetFieldName Gets a field’s name.

sed_GetFieldNo Gets the current field number.
sed_GetFieldRow Gets the field’s row number.
sed_GetFieldWidth Gets the field’s displayed width.
sed_GetFieldXoffset Gets the field’s xoffset.

sed_GetFuncs - Gets the field’s field function.
sed_GetGridCol Gets the field’s grid column number.
sed_GetGridField Gets the field number at the grid position.

8 Section 2.8

sed_GetGridRow
sed_GetMerge
sed_GetMergeLen
sed_GetMergePos
sed_GetNameNo
sed_GetNameVar
sed_GetRecord
sed_GetRecordLen
sed_GetRecordPos
sed_GetVar
sed_GetVarSize
sed_InsertRows
sed_IsMarkedField
sed_IsProtectedField
sed_MarkField
sed_ProtectField
sed_SearchMerge
sed_SetCurrRecord
sed_SetFieldBob
sed_SetFieldData
sed_SetFieldName
sed_SetFieldWidth
sed_SetFuncs
sed_SetRecord
sed_SetVar
sed_SwapFields
sed_UnMarkField
sed_UnProtectField

Gets the field’s grid row number.
Gets the field’s merge.

Gets the length of the field’s merge.
Gets the current position in the merge.
Gets the field number associated with a name.
Gets the field variable associated with a name.
Gets the field’s record.

Gets the length of the field’s record.
Gets the current position in the record.
Gets the field’s variable.

Gets the field’s variable size.

Inserts rows in a sed.

Checks if the field is marked.

Checks if the field is protected.

Marks a field.

Protects a field.

Searches for fields by first letter.

Sets the current field’s record.
Attaches a bob object to a field.

Sets a field’s data pointer.

Sets a field’s name.

Sets the field’s displayed width.

Sets the field’s field function.

Sets the field’s record.

Sets the field’s variable.

Swaps fields’ positions.

Unmarks a field.

Unprotects a field.

C-scape routines

2.9 Popup functions

opc_Close Destroys an opc structure.
opc_Edit Creates a popup editor box.
opc_FileBox Displays a file selection box.
opc_Menu Creates a popup menu.
opc_Message Creates a popup message box.
opc_Open Creates an opc structure.
opc_Prompt Creates a popup prompt box.
opc_Text Creates a popup text box.
opc_Verify Displays a verification box.
opc_View Views text in a popup box.

2.10 Menuing system functions

frame_Close Destroys a frame menu object.
frame_Go Activates a frame menu object.
frame_Lock Locks a frame menu choice.
frame_Open Creates a frame menu object.
frame_Repaint Paints a frame menu object.
frame_SetPosition Sets the position of a frame menu.
frame_UnLock Unlocks a frame menu choice.
slug_Close Destroys a slug menu object.
slug_Go Activates a slug menu object.
slug_Open Creates a slug menu object.
slug_Repaint Paints a slug menu object.

2.11 String formatting functions

strcenter Centers a string.
strclip Removes the trailing spaces from a string.

10 Section 2.9

strfill
strieft
strpad
strpreclip
strright
strwrap

ott_Init
ott_Now
tm_AddDays
tm_AddSecs
tm_Adjust

tm_Cmp
tm_Copy
tm_DayOfWeek
tm_DaysInMonth
tm_ElapDays
tm_ElapSecs
tm_Init
tm_IsDateValid

tm_IsTimeValid

tm_IsValid
tm_Now
tm_StructToTt
tm_TtToStruct
tm_Zero

Fills a string with characters.

Left justifies a string.

Pads a string with spaces.

Removes the leading spaces from a string.
Right justifies a string.

Word-wraps a string.

2.12 Date and time functions

Initialize a time.

Get the current time.

Adds a number of days to a time.

Adds a number of seconds to a time.

Adjusts all the elements of a time structure until they
are valid.

Compares two times.

Copies one time to another.

Returns the week day of a given date.

Returns the number of days in a given month.
Subtracts two times and give the result in days.
Subtracts two times and give the result in seconds.
Initialize a time.

Checks the validity of the date portion of a time
structure.

Checks the validity of the time portion of a time
structure.

Checks the validity of a time structure.

Places the current time into a time structure.
Convert a tm struct to a TIME_T value.
Convert a TIME_T value to a tm struct.

Sets all the elements of a time structure to zero.

C-scape routines 11

2.13 Bob functions

bob_GetOwner
bob_GetPosition
bob_GetSed
bob_GetSize
bob_Go
bob_Pop
bob_Repaint
bob_SetPosition
sed_GetAncestor
sed_GetBob

2.14 Sled functions

sled_DeleteRows
sled_GetColSize
sled_GetColVar
sled_GetRow
sled_InsertRows
sled_IsLastRow
sled_Open
sled_Remap
sled_Repaint
sled_SetColVar

ted_GetCursor
ted_GetlInsert
ted_GetLineLen

12

Gets the sed that owns a bob.

Gets a bob object’s position.

Gets the bob object’s sed.

Gets a bob object’s size.

Activates a bob object.

Removes a bob object from the display.
Paints a bob object.

Sets a bob object’s position.

Gets a sed’s most distant ancestor.

Gets the bob created from the sed.

Destroys rows in a sled.

Gets the size of the sled’s columns.
Gets a pointer to a sled entry.

Gets the sled’s current row.

Inserts blank rows into a sled.
Checks if the current row is the last.
Creates a scrolling list.

Remaps the sled’s field variables.
Refreshes the sled to the display.
Sets the value of a sled entry.

2.15 Ted parameter functions

Gets the text cursor offset.
Gets the text insert mode.
Gets the length of the current line.

Section 2.13

ted_GetMark
ted_GetMaxSize
ted_GetNewLineChar
ted_GetPosition
ted_GetRefresh
ted_GetSize
ted_GetString
ted_GetTabChar
ted_GetTabSize
ted_GetWrapWidth
ted_SetInsert
ted_SetMark
ted_SetMaxSize
ted_SetMoveMethod
ted_SetNewLineChar
ted_SetRefresh
ted_SetTabChar
ted_SetTabSize
ted_SetWrapWidth

ted_AddChar
ted_AddRow
ted_AddString
ted_DeleteChar
ted_DownChar
ted_GoBottom
ted_GoEnd
ted_GoHome

Gets the text marking mode.

Gets the text buffer’s maximum size.
Gets the displayed newline character.
Gets the text position in the sed.
Gets the text refresh mode.

Gets the text buffer’s size.

Copies a string from the sed.

Gets the displayed tab character.
Gets the sed’s tab size.

Gets the sed’s wrap width.

Sets the text insert mode.

Sets the text marking mode.

Sets the text buffer’s maximum size.
Sets the cursor movement method.
Sets the displayed newline character.
Sets the text refresh mode.

Sets the displayed tab character.

Sets the sed’s tab size.

Sets the sed’s wrap width.

2.16 Ted editing functions

Writes a character to the sed.

Adds a row to the sed.

Writes a string to the sed.

Deletes a character.

Moves down one character.

Moves to the bottom of the sed text.
Moves to the end of the row.
Moves to the start of the row.

C-scape routines

13

ted_GotoCursor
ted_GoTop
ted_GotoPosition
ted_LeftChar
ted_LeftWord
ted_PageDown
ted_PageUp
ted_RightChar
ted_RightWord
ted_Search
ted_StartWorking
ted_UpChar

Goes to a text cursor offset.
Moves to the top of the sed text.
Goes to a text position in the sed.
Moves left one character.
Moves left one word.

Moves down one page.

Moves up one page.

Moves right one character.
Moves right one word.
Searches for a string.

Starts up a text editor.

Moves up one character.

2.17 Ted block functions

ted_BlockAttr
ted_BlockCopy
ted_BlockCut
ted_BlockDelete
ted_BlockPaste

2.18 Ted I/O functions

sed_ClearTB
sed_GetTB
sed_RewindTB
sed_SetTB
ted_ReadFile
ted_WriteFile

14

Sets the marked text block’s attribute.
Copies a marked text block to buffer.
Cuts a marked text block to buffer.
Deletes a marked text block.

Pastes buffer into a text block.

Resets the sed’s text buffer.
Gets the sed’s text buffer.
Rewinds the sed’s text buffer.
Sets the sed’s text buffer.
Fills a text buffer from a file.
Writes a text buffer to a file.

Section 2.17

2.19 Screen file functions

2.20 Help functions

2.21

sfile_Close
sfile_LoadSed
sfile_Open
sfile_SaveSed

help_Close
help_GetChapter
help_GetData
help_GetMessage
help_GetParagraph
help_GetSize
help_GetText
help_GetTitle
help_Index
help_Init
help_LookUp
help_Show
help_View
help_Xref

Closes a screen file.

Loads a sed from a screen file.
Opens a screen file.

Saves a sed to a screen file.

Closes the help system.

Gets the help’s current chapter number.
Gets the help’s data pointer.

Gets the help’s current message number.
Gets the help’s current paragraph number.
Gets the help’s size parameter.

Gets the help’s current text string.

Gets the help’s current title string.
Computes a help index.

Initializes the help system.

Looks up a message in the help system.
Displays the appropriate help message.
Displays help messages in a scrolling box.
Displays cross-referenced help messages.

Keyboard Functions

ascii

kb_Alt
kb_CapsLock
kb_Check
kb_Clear

Returns ASCII portion of a scancode.

Checks if the Alt key is pressed.

Checks if the keyboard is in Caps Lock mode.
Checks status of the keyboard buffer.

Clears the keyboard buffer.

C-scape routines 15

kb_Control
kb_Idle
kb_Insert
kb_NumLock
kb_Read
kb_Record
kb_ScrollLock
kb_Shift

Checks if the Control key is pressed.

Attaches a keyboard idle function.

Checks if the keyboard is in Insert mode.
Checks if the keyboard is in Num Lock mode.
Reads a character from the keyboard.
Records/plays keystrokes to/from a file.
Checks if the keyboard is in Scroll Lock mode.
Checks if the Shift key is pressed.

2.22 Memory allocation functions

ocalloc
ofree
omalloc
orealloc

16

Allocates and clears a block of memory.
Deallocates a memory block.

Allocates a block of memory.
Reallocates a block of memory.

Section 2.22

Appendix A: Function Reference

ascii Return ASCII portion of a scancode

Synopsis
int ascii (scancode);

int scancode; the scancode
Description

This routine strips off the higher byte of a scancode and returns the ASCII value of
the scancode (the lower byte).

Return Value

Returns the ASCII portion of the scancode.
See Also

kb_Read

Example
{

int scancode, key;
scancode = kb_Read();

key = ascii(scancode);
if (isprint(key)) {
sed_Overwrite(sed, key):;
}
}

A-2 C-scape 4.0

aux_fu nc Prototype an auxiliary function

Synopsis
void aux_func (name) ;

" char *name; auxiliary function to be prototyped
Description

This routine takes the name of an auxiliary function that you wish to prototype and
performs that action.

Return Value

This routine has no return value.

Example

aux_func (aux_Mongoose) ;
main() {

/* o0/
aux_Mongoose (sed_DleTheScore, SED_POSTFEXIT, NULL, NULL);

}

Function Reference A-3

bob_GetOwner Get the sed that owns a bob

Synopsis
sed_type bob_GetOwner (bob, fldnop);

sed_type bob; the bobbed sed

int *fldnop; pointer to field number
Description

This routine returns the sed that owns the given bob. It finds the field in the parent
sed to which the bob is attached, and places the field number of this field into the
integer pointed to by fldnop. If the bob is not attached to a sed, the value of the
variable to which fldnop points is unchanged.

Return Value

Returns a pointer to the sed that owns the bob; NULL, if the bob is not attached to
a sed.

See Also
sed_CreateBob, sed_GetBob, sed_GetAncestor

Example

sed_type oursed, owner;

bob_type bob; '

int £14;

/* ... See if our sed is attached to another */
bob = sed_GetBob(oursed) ;

if (bob != NULL) {

owner = bob_GetOwner (bob, &fld);

/* oursed is attached to field ‘£1d‘’ within sed ‘owner’ */

A4 C-scape 4.0

bob_GetPosition Get a bob object’s position

Synopsis

void bob_GetPosition(bob, row, col);
bob_type bob; the bob object
int *row; row position of the bob
int *col; column position of the bob

Description

This routine returns the position of the upper left hand corner of the bob object into
the locations pointed to by row and col. It gives the position in character coordinates.

Return Value

There is no return value.

See Also
bob_SetPosition

Example

int row, col;

bob_GetPosition(bob, &row, &col);

Function Reference A-5

bob_GetSed Get the bob’s sed

Synopsis
sed_type bob_GetSed (bob) ;
bob_type bob; the bob object

Description

Returns the sed from which the bob was created. If the bob was created from an
object other than a sed then bob_GetSed returns NULL.

Return Value

Returns the sed from which the bob was created or NULL if the bob was created
from an object other than a sed.

Note

This routine is implemented as a macro.
See Also

sed_CreateBob

Example

bob = sed_CreateBob (mysed, BOB_DEPENDENT) ;

VA

1]

sed bob_GetSed (bob) ;

A-6 C-scape 4.0

bob_GetSize Get a bob object’s size

Synopsis

void bob_GetSize (bob, height, width);
bob_type bob; the bob object
int *height; the height of the bob
int *width; the width of the bob

Description

This routine returns the size of the bob object in the locations pointed to by height
and width. It gives the size in character units.

Return Value

There is no return value.
See Also
bob_GetPosition

Example
int hgt, wid;

bob_GetSize(bob, &hgt, &wid);

Function Reference A-7

bob_Go Activate a bob object

Synopsis
int bob_Go (bob) ;
bob_type bob; the bob object

Description

This routine activates a bob object, which passes program control to it. For example,
if a bob is created from a sed, then calling bob_Go has the same effect as calling
sed_Go.

Return Value

Returns the value returned by the specific bob class used. For example, if the bob
was created from a sed then the return value is the same as would have been returned
by sed_Go.

See Also
sed_CreateBob, sed_Go

Example
void bob_fkey (sed)
sed_type sed;
{
bob_type bob;
bob = sed_GetFieldBob (sed, sed_GetFieldNo(sed));
switch(bob_Go(bob)) {

/* .. %/

A-8 C-scape 4.0

bOb_lSSEd Checks if the bob is a sed

Synopsis

boolean bob_IsSed (bob) ;

bob_type bob; the bob to be checked
Description

This routine checks if the bob has been created from a sed.

Return Value

Returns TRUE if the bob was created from a sed; FALSE, otherwise.

Example

if sed_IsBob(bob) {
menu = sed_GetMenu (bob_GetSed(bob)) ;
menu_Printf (menu, "@f[########]", beer_brand, &beer_funcs);
/* using a custom field function */

}

Function Reference A-9

bob_Pop Remove a bob object from the display

Synopsis
void bob_Pop (bob) ;
bob_type bob; the bob object

Description

This routines removes a bob’s image from the display by firing its window. The
area underneath the bob is repainted by windows that were obscured by it.

The bob and its window are not destroyed. To replace the bob onto the display call
bob_Repaint.

Return Value

There is no return value.
See Also
bob_Repaint

Note

This routine is implemented as a macro.

Example
bob_Repaint (bob) ; /* display the bob */
ret = bob_Go (bob) ;
bob_Pop (bob) ; /* remove the bob */

A-10 C-scape 4.0

bob_Repaint Paint a bob object

Synopsis
void bob_Repaint (bob) ;
bob_type bob; the bob object

Description

This routine repaints the bob object to the display. Using this routine on a bob
created from a sed has the same affect as calling sed_Repaint.

bob_Repaint hires the bob’s window if the window it is not currently employed.
Return Value

There is no return value.

See Also

bob_Pop

Note

This routine is implemented as a macro.

Example

bob_Repaint (bob) ; /* display the bob */
ret = bob_Go (bob) ;
bob_Pop (bob) ; /* remove the bob */

Function Reference A-11

bo b_SetDepend Set a bob’s dependency flag

Synopsis
void bob_SetDepend (bob, depend);

bob_type bob; ~ basic object

boolean depend; BOB_DEPENDENT or BOB_INDEPENDENT
Description

This routine sets the dependency flag of bob to depend. depend has the value of
either BOB_DEPENDENT or BOB_INDEPENDENT.

The principal difference between dependent and independent bobs is that dependent
bobs are automatically painted when their parent is painted and clipped within the
edges of their parent window. By contrast, independent bobs must be painted
explicitly and can appear outside of their parent’s edges. When a bob is embedded
in a sed window by means of a bob_funcs field, control passes automatically into
a dependent bob; independent bobs act as popups that appear when a user presses
or clicks the mouse on the bob_funcs field.

Return Value

There is no return value.

A-12 C-scape 4.0

bob_SetPosition Set a bob object’s position

Synopsis
void bob_SetPosition(bob, row, col);
bob_type bob; the bob object
int row; row position of the bob
int col; column position of the bob
Description

This routine sets the position of the upper-left comer of the bob. The position is in
character coordinates.

If the bob’s window is employed, it moves on the display to the new position.
Return Value

There is no return value.

See Also

bob_GetPosition

Note

This routine is implemented as a macro.

Example

int row, col;
bob_GetPosition(bob, &row, &col);

bob_SetPosition(bob, row + 5, col + 5);

Function Reference A-13

cls Clear the background window

Synopsis
void cls();
Description

This routine clears the background window. If there are other windows visible on
the display they are not affected.

Return Value

There is no return value.

Note

This routine is implemenied as a macro.

Example

void main()
{
disp_Init(def_ModeGraphics, grwin_Class);

cls();
/* .. %/
disp_Close();

A-14 C-scape 4.0

frame_Go Activate a frame menu

Synopsis

#include "framer.h"

int frame_Go (frame, ch, data);

sed_type frame; the frame object
int ch; starting character
VOID *data; frame data pointer

Description

This routine activates a framer menuing system. It searches for the first choice
starting with the letter ch. If no choice starts with ch then O is returned. To ignore
the first letter search, set ch equal to the space character, ’ ’. data is a data pointer
that passes data to the user-supplied functions.

Consultthe C-scape Manual for adetailed description of the framer menuing system.

Return Value

Returns the value returned by the user function, the value specified in the definition
structure, or O if (Esc) was pressed.

See Also
frame_Open
Example

#include "framer.h"

void main()
{
sed_type frame;
/* ... */
frame = frame_Open(frame_list, bd_cua, 0x07, 0x70, 0x07);

- sed_Repaint (frame) ;
i frame_Go(frame, ‘' ’, (VOID *) my_data);

Function Reference A-15

frame_Lock Lock a frame menu choice

Synopsis

#include "framer.h"

boolean frame_Lock(frame, family, member, attribute) ;

sed_type frame; the frame object

int family; pulldown menu affected

int member; choice within pulldown

byte attribute; attribute of locked choice
Description

This routine “locks” a menu choice within the frame menuing system. A locked
menu choice appears but cannot be selected by the user. The menu choice is selected
by family and member. family selects the pulldown menu (starting with 0) and
member selects the choice within the pulldown (starting with 0). The attribute of
the choice is changed to attribute.

Return Value
Returns FALSE if an invalid choice is specified, TRUE otherwise.
See Also
frame_UnLock
Example
VA

frame_Lock(frame, 0, 2, 0x07);

A-16 C-scape 4.0

frame_Open Create a frame menu object

Synopsis

#include "framer.h"

sed_type frame_Open(frame_list, border, bck_attr, sel_attr,
bd_attr) ;

struct frame_def frame_list[]; the frame definition structure
bd_fptr border;) the border function
byte bck_attr; the background attr
byte sel_attr; the selected menu choice attr
byte bd_attr; the border attr

Description

This routine creates a frame menu system from a frame definition structure, fra-
me_list. border is the border attached to the pulldown menus. bck_attr, sel_attr,
and bd_attr determine the colors of the frame menu.

Consult the C-scape Manual for a detailed description of the frame menuing system.
Return Value

Returns a pointer to the new frame object. A NULL pointer values indicates
insufficient memory or an error in the definition structure.

See Also
frame_Go, sed_Close
Note

User functions for slug and framer menuing systems and also for bobs all have the
same format and may be used interchangeably. User functions, however, are not a
recommended part of the C-scape library; see Section 16.3 of the C-scape Manual
for more information.

Also, this routine is implemented as a macro.

Function Reference A-17

Example

#include "framer.h"

/* use macro to prototype user functions */

ufunc_func(save_£file);
ufunc_func(load_file);
ufunc_func (fmt_text) ;

ufunc_func (fmt_block) ;

struct frame_def main_menul]

{ "File", NULL, 01},
{ "Save", save_file, 0 },
{ "Load", load_file, 0 1},
{ FRAME_END },

{ "Format", NULL, 0},
{ "Text", fmt_text, 0 },
{ "Block", fmt_block, 0 },
{ FRAME_END 1},

{ FRAME_END }

};
void main()
{
sed_type frame;

VAN 4

frame = frame_Open(main_menu, FNULL, 0x07, 0x70,

sed_Repaint (frame) ;

frame_Go(frame, ’ ', (VOID *) my_data);

VAN

sed_Close(frame) ;
}

int fmt_block(sdata, idata)
VOID *sdata; /* from

frame_Go */

int idata; /* from the frame_def */

{

/* code to format a block */

return(l)f
}

A-18

C-scape 4.0

0x07) ;

frame_UnLock Unlock a frame menu choice

Synopsis

#include *"framer.h"

boolean frame_UnLock(frame, family, member) ;

sed_type frame; the frame object

int family; pulldown menu affected

int member; choice within pulldown
Description

This routine “unlocks” a menu choice within the frame menu; it counteracts the
effects of frame_Lock. It uses family and member to select a menu choice. family
selects the pulldown menu (starting with 0) and member selects the choice within
the pulldown (starting with 0).

Return Value
Returns FALSE if an invalid choice is specified, TRUE otherwise.
Note
This routine is implemented as a macro.
See Also
frame_Lock
Example
/* L. %/

frame_UnLock(frame, 0, 2);

Function Reference A-19

help_CIose Close the help system

Synopsis
#include "helpdecl.h"

void help_Close();

Description

Frees the space that the help system uses. You cannot use the help system after you
close it. You can re-open it, however, with help_Init.

Return Value

There is no return value.

See Also
help_Init

Example

void main()

£

FILE *fp;

/* initialize display interface */
disp_Init(def_ModeGraphics, NULL);

fp = fopen("file.hlp", "xrb");

if (fp == NULL) {
disp_Close() ;
printf ("Unable to open help file\n"):;
return;

}

help_Init(fp, help_View, 6000, NULL);
/* ... %/

help_Close();

fclose(fp);

disp_Close();

A-20 C-scape 4.0

heIp_GetChapter Get the help’s current chapter number

Synopsis
#include "helpdecl.h"
int help_GetChapter (help) ;
help_type help; the help object
Description

This routine returns the current help chapter number. help_Show sets the current
chapter number.

This routine can only be used within a help display function.
Return Value

Returns the current chapter number.

See Also

help_GetParagraph, help_Show

Note

This routine is implemented as a macro.

Example

int chapter;

chapter = help_GetChapter (help);

Function Reference A-21

help_GetData Get the help’s data pointer

Synopsis
#include "helpdecl.h"

VOID *help_GetData (help) ;
help_type help:; the help object

Description

This routine returns the generic data pointer for the help object. The help_Init
function sets this pointer. The data pointer passes data to the help display function.

This routine can only be used within a help display function.
Return Value

Returns the help data pointer.

See Also

help_Init

Note

This routine is implemented as a macro.

Example

struct hv_struct *hv;

/* Was an hv_struct passed to help_Init? (from help_View) */
hv = (struct hv_struct *) help_GetData(h);

if (hv != NULL) {

/* use contents of structure */
else {

/* use defaults */

}

A-22 C-scape 4.0

heIp_GetMessage Get the help’s current message number

Synopsis
#include "helpdecl.h"
int help_GetMessage (help);
help_type help; the help object
Description

This routine returns the current help message number. help_Show sets the current
message number by looking up the current chapter and paragraph in the help file
index. ‘

This routine can only be used within a help display function.
Return Value

Returns the current help message number.

See Also

help_Show

Note

This routine is implemented as a macro.

Example

int msg;

msg = help_GetMessage (help);

Function Reference A-23

help_GetParagraph Get the help’s current paragraph number

Synopsis
#include "helpdecl.h"
int help_GetParagraph (help) ;
help_type help; the help object
Description

This routine returns the current help paragraph number. help_Show sets the current
paragraph number. If no help message exists for a chapter, help_Show sets the
current paragraph number to 0.

This routine can only be used within a help display function.
Return Value
Returns the current help paragraph number.

See Also

help_GetChapter, help_Show

Note

This routine is implemented as a macro.
Example

int paragraph;

paragraph = help_GetParagraph (help) ;

A-24 C-scape 4.0

help_GetSize Get the help’s size parameter

Synopsis

#include "helpdecl.h"

unsigned int help_GetSize (help);
help_type help; the help object

Description

This routine returns the size parameter for the help object. help_Init sets the size
parameter; this parameter represents the size of the buffer allocated to hold the text
of the help messages. This value limits the maximum size of help messages.

This routine can only be used within a help display function.
Return Value

Returns the help size parameter.

See Also

help_Init

Note

This routine is implemented as a macro.

Example

unsigned int size;

size = help_GetSize (help);

Function Reference A-25

help_GetText Get the help’s current text string

Synopsis
#include "helpdecl.h"

char *help_GetText (help):
help_type help; the help object

Description

This routine returns the current help text string. help_Show extracts the current
help text string from the help file. The text string is a *\O’ terminated string with
\n’s at the end of each line. The help display function usually displays the text
string.

This routine can only be used within a help display function.

Return Value

Returns the current help text string.

See Also
help_Show
Note

This routine is implemented as a macro.

Example

/* from help_View ... */
opc_View(NULL, help_GetTitle(h), 0, help_GetText(h)):;

VA

A-26 C-scape 4.0

help_GetTitle Get the help’s current title string

Synopsis
#include "helpdecl.h"
char *help_GetTitle(help);
help_type help; the help object
Description

This routine returns the current help title string. help_Show extracts the current
help title string from the help file. The help display function usually displays the
title string.

This routine can only be used within a help display function.
Note

This routine is implemented as a macro.

Return Value

Returns the current help title string.

See Also

help_Show

Example

/* from help_View ... */ wait for mike...
opc_View (NULL, help_GetTitle(h), 0, help_GetText(h));

/* 0 */

Function Reference A-27

help_lndex Compute a help index

Synopsis
#include "helpdecl.h"

int help_Index(chapter, paragraph) ;

int chapter; the help chapter
int paragraph; the help paragraph

Description

This routine looks up in the help index the message number associated with chapter
and paragraph. 1If no message exists for paragraph, the message for paragraph 0
is looked up. If no message is found, -1 is returned. The help object’s chapter and
paragraph parameters are updated.

Return Value

Returns the message number or (-1) if unable to find a message.
See Also

help_Init

Example

int success;

success = help_LookUp(Z, 3);

A-28 C-scape 4.0

help_Init Initialize the help system

Synopsis
#include "helpdecl.h*

int help_Init(fp, disp, size, data);

FILE *fp; the help file pointer

int (*disp) (); the help display function

unsigned int size; size of the message buffer

VOID *data; the help data pointer.
Description

This routine initializes the help system. fp must point to a valid, open help file.
You must open the help file for reading in the binary mode. It is a good idea to
expand all the tabs in the help file to spaces as most display functions do not translate
tabs to spaces.

disp must be the address of a display function. help_Show calls the display function
whenever it displays a help message. You can write custom functions to display
help messages in the same manner as border and field functions.

size is used to determine the size, in bytes, of the help message buffer. The message
buffer holds a message after it is read in from the help file. size determines the
maximum size of a help message (characters and spaces); it should be set large
enough to display the largest help message but not so large that space will be wasted.

The help’s data pointer is set to data. The data pointer is used to pass data to the
help data function.

This routine parses the help file and allocates storage to hold the help file indexing
information. help_Show uses this information to look up help messages in the help
file. The help file has three sections separated by %% at the beginning of a line.

The first section of the help file is reserved for comments. The second section of
the file contains the help index. The third section of the file contains the help
messages.

Function Reference A-29

The help messages are addressed by two indices, chapter and paragraph. The help
index maps chapters and paragraphs to message numbers. The index syntax is
“chapter,paragraph:message”. The chapter number must be in the first column and
the index entries must be listed in increasing order. The first chapteris 1. The first
paragraph is 0. Try to keep the numbers small (i.e., use chapter numbers 1, 2, 3, 4
not 1, 10, 23, 56) in order to save space.

Messages are designated by *.” followed by a message number. The °.” must be in
the first column and messages must be listed in increasing order. The first line of
each message is treated as a title string. The last message should be terminated by
a’. at the beginning of the next line. The first message is 1. As with chapters, try
to keep the numbers small (i.e., use message numbers 1, 2, 3, 4 not 1, 10, 23, 56)
in order to save space.

You can place a’.” followed by a ’!” at the start of a line to comment out a line in
a help message.

When help_Show is called, it looks up a help message with chapter and paragraph.
If an index exists for the chapter and paragraph then the appropriate message is
displayed. If not, an attempt is made to find a message for the same chapter number
and paragraph 0. If a message exists for paragraph O of the chapter, help_Show
displays it, otherwise it displays no message.

Sample Help File
%

B W N

9 B B 00
W

%
.1

Help Message One

This is a help message.

.! This line is commented out
1

.2

Help Message Two

This is a two

line help message.

.3

A-30 C-scape 4.0

Help Message Three

Enter the correct time into this field.

.4

Help Message Four

Type your name into the appropriate field.
Use the arrow keys to move the cursor.
.End

An error value is returned if help_Init is unsuccessful.

Return Value

Returns one of the following values:

HELP_OK The help system has been successfully initialized.

HELP_NOMEM help_Init could not allocate enough memory to initialize
the help system.

HELP_BADARG help_Initreceived bad arguments. (Either fp or disp is equal
to NULL or help has already been initialized.)

HELP_BADFILE help_Init found an error or unexpected end in the help file.
See Also

help_Close, help_Show

Example

void main()
{
FILE *fp;

/* initialize display interface */
disp_Init(def_ModeGraphics, NULL) ;

fp = fopen("file.hlp", "rb");

if (fp == NULL) {
disp_Close();
printf("Unable to open help file\n");
return;

}

help_Init(fp, help_view, 6000, NULL);

Function Reference A-31

heIp_LookUp Look up a message in the help system

Synopsis
#include "helpdecl.h"
boolean help_LookUp (msg) ;
int msg; the message number
Description

This routine looks up a message in the help system. It adjusts the help system’s
parameters (text, title, etc.).

Return Value
Returns TRUE if successful.

See Also
help_Index, help_Init
Example

VAR Y

if (msg > 0) {
/* get new help message */

if (!'help_LookUp(msg)) {
return(0) ;
}

/* L0 */

A-32 C-scape 4.0

heIp__Show Display the appropriate help message

Synopsis
#include "helpdecl.h"

int help_Show(chapter, paragraph);

int chapter; the help chapter
int paragraph; the help paragraph
Description

This routine searches for the appropriate help message in the help file. If it finds a
message, it calls the help display function. If the specified paragraph does not have
a help message, it tries paragraph 0.

There is no help for chapter 0.
Return Value
Returns 1 if the message was displayed, O otherwise.
See Also
help_Init, sed_SetLabel
Example
/* from special_key */
#include "helpdecl.h"
VA

switch (scancode) {

case FN1:
help_Show(sed_GetLabel (sed), sed_GetFieldNo(sed) + 1);
return (TRUE) ;

VAR

Function Reference A-33

help__View Scrolling box help display function

Synopsis
#include "helpdecl.h"
int help_View(help);
help_type help; the help object
Description

This routine is a help display function. It displays help messages. It is attached to
the help system with the help_Init function.

This routine uses the opc_View routine to display the help message. You can set
the parameters for opc_View by pointing the help data pointer to an hv_struct
containing the data. The hv_struct is listed below:

struct hv_struct {

int Yow; /* row position of help window */
int col; /* col position of help window */
int height; /* height of help window */
int width; /* width of help window */
byte color; /* color of help window */
bd_fptr border; /* help window border function */

}i
Refer to the Help chapter of the C-scape Manual for more information on
help_View.

Return Value

Returns 1 if the message was displayed, O otherwise.
See Also

help_Init, help_Show, opc_View

A-34 C-scape 4.0

Example

struct hv_struct hvd = { -1, -1, -1, -1, 0x70, NULL};

void main()

{

FILE *fp;

/* initialize display interface */
disp_Init(def_ModeGraphics, NULL);

fp = fopen("file.hlp", "rb");

if (fp == NULL) {
disp_Close();
printf ("Unable to find help file\n");
return;

}

help_Init(fp, help_View, 6000, (VOID *) &hvd);
/* o0 %/

Function Reference

A-35

heIp_Xref Cross-referenced help display function

Synopsis
#include "helpdecl.h"

int help_Xref (help):;
help_type help; the help object

Description

This routine is a help display function. It displays help messages. It is attached to
the help system with the help_Init function.

This routine supports a cross-referenced help system using data in the help text file
to determine the cross-references. Specifically, key words in a help message are
delimited by: “@3[key word]”. In this case the phrase “key word” will be high-
lighted whenever the appropriate help message appears. The “3” indicates that help
message number 3 should be displayed if the user selects “key word”. The user can
cycle through as many help messages as are cross-referenced. The user can use the
key to step back through previously displayed help screens.

You can set the display parameters by pointing the help data pointer to an hx_struct
containing the data. The hx_struct is listed below:

struct hx_struct {

byte bk_clr; /* background color of help window */
byte reg_clr; /* color of choices */

byte sel_clr; /* color of selected choice */

byte bd_clr; /* color of help window border */
bd_fptr border; /* help window border function */

}:

Referto the Help chapter of the C-scape Manual for more information on help_Xref.
The border function, bd_xref, is usually used with this help display function.
Return Value

Returns 1 if the message was displayed, O otherwise.

A-36 C-scape 4.0

See Also
help_Init, help_Show

Example

struct hx_struct hxd = { 0x07, 0x0f, 0x70,

void main()
{
FILE *fp;

/* initialize display interface */
disp_Init(def_ModeGraphics, NULL);

fp = fopen("file.hlp", "rb");

if (fp == NULL) {
disp_Close();
printf ("Unable to help file\n");
return;

}

0x07,

help_Init(fp, help_Xref, 6000, (VOID *) &hxd);

/* .0 x/

Function Reference

bd_xref };

A-37

inter_field Field function inter-field movement

Synopsis

#include "scancode.h"

boolean inter_field(sed, scancode);

sed_type sed; the sed
int scancode; keystroke to process
Description

This routine handles the inter-field movement for the standard field functions in the
following manner:

8] Call sed_DecField

DOWN Call sed_IncField

TAB Call sed_LeftField.

SHFT_TAB Call sed_RightField.

ESCAPE Exit the sed, set the baton to 0.

ENTER Call sed_IncField. If called from the last field, exit the sed and

set the baton equal to the current field number plus one.
It is possible to replace inter_field with a modified version.

inter_field can be used as a sed’s special function.
Return Value

Returns TRUE if a keystroke was processed.

See Also

inter_field_grid, inter_page, sed_SetSpecial

A-38 C-scape 4.0

Example

void string_ fkey(sed)

{

sed_type sed;
int scancode;

scancode = kb_Read();

if (sed_DoSpecial (sed, scancode))
return;

if (special_key(sed, scancode))
return;

if (inter_field(sed, scancode))
return;

if (inter_page(sed, scancode))
return;

/* ... */

Function Reference

A-39

inter__field_g rid " Field function inter-field grid movement

Synopsis

#include "scancode.h"

boolean inter_field_grid(sed, scancode);

sed_type sed; the sed
int scancode; keystroke to process
Description

This routine handles the orthogonal inter-field movement for some of the standard
field functions in the following manner:

UP Call sed_UpField

DOWN Call sed_DownField

RIGHT Call sed_RightField

LEFT Call sed_LeftField

ESCAPE Exit the sed, set the baton to 0.

ENTER Exit the sed, set the baton equal to the current field number plus
one.

It is possible to replace inter_field_grid with a modified version.
inter_field_grid can be used as a sed special function.

Return Value

Returns TRUE if a keystroke was processed.

See Also

inter_field, inter_page, sed_SetSpecial

A-40 C-scape 4.0

Example

void gmenu_fkey(sed)

{

sed_type sed;
int scancode;
scancode = kb_Read();

if (scancode == ENTER) {
sed_SetBaton(sed, sed_GetFieldNo(sed)+1);
sed_ToggleExit (sed) ;
return;

}

if (sed_DoSpecial(sed, scancode))
return;

if (special_key(sed, scancode))
return;

if (inter_field _grid(sed, scancode))
return;

if (inter_page(sed, scancode))
return;

/* . */

Function Reference

A-41

inter_page Field function inter-page movement

Synopsis

#include "scancode.h"

boolean inter_page(sed, scancode) ;

sed_type sed; the sed
int scancode; keystroke to process
Description

The standard field functions use this routine to handle inter-page movement as
follows:

PGUP Call sed_PageUp
PGDN Call sed_PageDown

You can replace this routine to change the way the standard field functions handle
inter-page movement.

Return Value
Returns TRUE if a keystroke was processed.

Example

void string_fkey (sed)
sed_type sed;
{

int scancode;

scancode = kb_Read();

if (special_key (sed, scancode))
return;

if (inter_field(sed, scancode))
return;

if (inter_page(sed, scancode))
return;

/* L. %/

A-42 C-scape 4.0

invert_char Swap character’s high and low nibbles

Synopsis
char invert_char(c);

char c; the character to invert.

Description

This routine swaps the high and low nibbles (4 bits) of a character. It is useful for
computing the inverse of a color attribute. :

Return Value

Returns the inverted character.

Example

char color, inverse_color;
/* ... %/

inverse_color = invert_char(color);

Function Reference A-43

menu_Destroy Destroy a menu object

Synopsis
void menu_Destroy (menu) ;

menu_type menu; the menu
Description

This routine closes a menu and frees any storage it used. You cannot use a menu
after you have closed it. You can only use this routine when you have not created
a sed from the menu. If you have created a sed from the menu, sed_Close auto-
matically closes the menu object.

Return Value
There is no return value.
See Also

menu_Open, sed_Close

Example
VA V4
if ((sed = sed_Open(menu)) == NULL) ¢

menu_Destroy (menu) ;
return (FALSE) ;
}

A-44 C-scape 4.0

menu_Flush Free menu object’s creation data

Synopsis
void menu_Flush (menu) ;

menu_type menu; the menu
Description

This routine releases storage used by the menu_Printf parsing engine. It is usually
called after the last of a series of calls to menu_Printf.

When menu_Printf is first called, it allocates memory for parsing format strings.
Once a menu has been completely defined, this memory is no longer needed. Calling
menu_Flush frees this memory for use by others. If you call menu_Printf after
flushing a menu, it will allocate new memory.

Calling menu_Flush is optional. It is useful when you think that you will not call
any further menu_Printfs on a menu.

When sed_Close closes the menu, it will flush the menu if menu_Flush has not
been called.

Return Value

There is no return value.
See Also
menu_Printf

Example

menu = menu_Open|() ;
menu_Printf (menu, "Am I having fun yet?");
menu_Flush (menu) ;

/* .0 %/

Function Reference A-45

menu_GetCol Get current menu column

Synopsis
int menu_GetCol (menu) ;

menu_type menu; the menu

Description

This routine returns the current column number of the menu. This is the column
position at which the next menu_Printf will write a character unless a “@p[]” or
“An” is encountered.

Return Value

Returns the current menu column.

See Also

menu_GetRow, menu_Printf

Note

This routine is implemented as a macro.

Example

/* o0 %/

menu_Printf (menu, "@p[%d]X marks the spot", menu_GetCol (menu)+5);

A-46 C-scape 4.0

menu_GetFieldCol Get the leftmost column of a field

Synopsis

int menu_GetFieldCol (menu, fieldno);

menu_type menu; the sed holding the field
int field; the field in question

Description

This routine returns the integer value of the leftmost position of a field.
Return Value

Returns the leftmost position of the field.

Note
This routine is implemented as a macro.

Example

int row, column;
boolean var;

row = menu_GetFieldRow(sed, fieldno);
column = menu_GetFieldCol (sed, fieldno);
menu_Printf (sed_GetMenu(sed), "€p[%d, %d]ef[###]", row, column +
15,
&var, &yesno_funcs);

Function Reference A-47

menu_GetFieIdRow Get the row of a field

Synopsis

int menu_GetFieldRow(menu, fieldno);

menu_type menu;- the menu holding the field
int field; the field in question
Description

This routine returns the integer value of the row of a field.
Return Value

Returns the row of the field.

Note

This routine is implemented as a macro.

Example

int row, column;
boolean var;

row = menu_GetFieldRow(sed, fieldno);
column = menu_GetFieldCol (sed, fieldno):
menu_Printf (sed_GetMenu(sed), "@pl[%d, %dle@f[###]",
15,

&var, &yesno_funcs);

A-48 C-scape 4.0

row, column +

menu_GetHeight Get current menu height

Synopsis
int menu_GetHeight (menu) ;

menu_type menu; the menu

Description

This routine returns the current number of rows in the menu.

Return Value

Returns the current number of rows in the menu.
See Also

menu_GetWidth, menu_Printf

Note

This routine is implemented as a macro.

Example

VA

menu_Printf (menu, "@p[%d,0]That row", menu_GetHeight (menu) + 3);

Function Reference

A-49

men u_GetRow Get current menu row

Synopsis
int menu_GetRow (menu) ;

menu_type menu; the menu
Description

This routine returns the current row number of the menu. This is the row position
at which the next menu_Printf will write a character unless a “@p[]” or “\n” is
encountered.)

Return Value

Returns the current menu row.
See Also

menu_GetCol, menu_Printf
Note

This routine is implemented as a macro.

Example

/* Lo */

menu_Printf (menu, "@p[%d,0]1This row", menu_GetRow(menu) + 3);

A-50 C-scape 4.0

menu_GetWidth Get current menu width

Synopsis
int menu_GetWidth (menu) ;

menu_type menu; the menu

Description

This routine returns the current number of columns in the menu.

Return Value

Returns the current number of columns in the menu.
See Also

menu_GetHeight, menu_Printf

Note

This routine is implemented as a macro.

Example

/* oLl */

menu_Printf (menu, "@p[%d]Centered", menu_GetWidth(menu) /2 - 4);

Function Reference

A-51

menu_Open Create a new menu object

Synopsis
menu_type menu_Open() ;
Description

This routine creates a new menu object and returns a handle to it. If there is not
enough memory to open a new menu object, the routine returns NULL.

The menu object can be considered as the “blueprint” from which a screen s created.
It contains all the static details of the screen such as field and text positions. A menu
object is built using a series of calls to menu_Printf. Once a menu has been created,
you can create a sed from it with sed_Open. The sed contains all the dynamic
information of a screen such as positioning, field contents, etc. When you close the
sed with sed_Close, the menu object is automatically closed.

Return Value

Returns a handle to the new menu object. A NULL pointer value indicates insuf-
ficient memory.

See Also

menu_Destroy, sed_Close

Example

menu_type menu;
sed_type sed;

menu = menu_Open() ;
menu_Printf (menu, "Your menu here");
menu_Flush (menu) ;

sed = sed_Open (menu) ;

/* ... %/
sed_Close(sed);

A-52 C-scape 4.0

menu_Printf Define a menu

Synopsis
boolean menu_Printf (menu, fmt, argl, arg2,...):;
menu_type menu; the menu
char *fmt; the format string
Description

This routine defines a menu object. It is analogous to C’s printf. You can use as
many menu_Printfs as you need to define a menu.

The menu_Printf format string contains the information that defines a menu object.
There are three categories of characters in the format string: plain characters,
conversion characters, and command characters. The plain characters simply go
into the menu’s text buffer. The conversion characters (% substitutions) grab
arguments from the argument list and format them. The command characters (@
commands) give specific commands to menu_Printf. Some command characters
grab arguments from the argument list.

Itis very important that the argument list contains enough data for all the conversions
and commands specified in the format string. You must also make sure that the
arguments are of the correct type and that they are in the correct order. Unpredictable
results will occur if these conditions are not met.

The format codes are listed below:

command name example description
@al] color @al7] Change current menu color to color [color].
@a[0x70] color s an integer. If color starts with “0x”

it is treated as a hexadecimal number.

Function Reference A-53

command name

epl] position

@f[1] field

e[} repeat

@ quote
backslash

% percent

%%

A-54

example
ep(2,4]

@pl[6]

@E[S (##%#)]

@fp [###]
@EA[####]

@EA3 [###]

@ED3 [####]

@fh2[Exit]
@fw2 [###]

@fbl]
@f {ho} [##]
Q[3,xyz]

Qee, @#, @]
\n

%d
%s
%6f

%%

description
Set menu row and column to position [row,
column]. row and col are ints.

Set menu column to position within current
menu row.

Define a field. ’#’ signs denote “writeable”
positions;

all others are printed literally, and act as
“nonwriteables”.

Define a “protected” field.

Bind data to the field data pointer from the
argument list.

Define a field with 3 (or however many) data
pointers and bind data to the
pointers from the argument list.

Define a field with 3 (or however many) data
pointers without binding the data to the
pointers from the argument list. The
pointers remain uninitialized.

Define a field with the second character (the
’x”) highlighted.

Define a field with width 3 and displayed
width 2 (or any other value).

Define a field with an attached bob object.
Define a field with the name “ho”.

Repeat a string count times;
@[count,string]. count is an int.

string consists of all the chars between the
comma ’,” and the closing bracket ’]’.

Quote a menu_Printf special character.
Used for C control characters.

All % substitutions are handled in the same
manner as printf.

Quote a ’%’ character.

C-scape 4.0

Cuses ’%’ as a control character to indicate a formatting command. menu_Printf
adds to this its own set of formatting commands which use @’ as a control
command.

The syntax for specifying the printing position in a menu is “@p([5,10]”: the control
character “@” followed by the formatting code “p”, and then the row, column
position surrounded by brackets. In this case printing would begin at row 5, column
10.

If there is only one number within the brackets, such as “@p[22]”, the printing
position’s row remains unchanged and the column is set to the new value. It is
possible to use “%d” substitutions within a position command:

menu_Printf (menu, "@p[%d,%d]", row, column);

To create afield, use the syntax “ @f[(###) ##Ht-#HHE]": the “ @” character followed
by “f”, and a field mask surrounded by brackets. The “#” character denotes a
“writeable” character. Writeable characters are those over which the user can type.
Anything else (such as the parentheses and dash in this example), is treated as a
“nonwriteable” character. The user cannot type over it.

Whenever menu_Printf encounters an “@f[” sequence, it takes the next two
arguments from the argument list and binds them to the newly created field. The
first argument becomes the field variable and should be a pointer to the data type
expected for the field; the second argument is the address of the field_function struct
to be associated with the field. For instance:

menu_Printf (menu, "@f[####]", s, &string_funcs);

The preceding code defines a field four writeable positions long. The field variable
is s and the field function is string_funcs.

The “@f[” sequence can contain certain modifying characters, such as ’p’, ’d’, ’b’,
'w’,and *{}’. The ’p’ in “@fp[” signifies that the field will be “protected.” The
’d’ in “@fd[” signifies that data will be bound to the field’s generic data pointer
when the field is defined. The data pointer is taken from the argument list. The ’b’
in “@fb[” signifies that a bob object will be bound to the field. The bob object also
comes from the argument list. The “w10” in “@fw10[” signifies that the field will
have a displayed width of 10. The “{toad}” in @f{toad} signifies that the field will
have the name “toad”. These modifying characters can be used together and in any
order:

Function Reference A-55

menu_Printf (menu, "@fpdw2 [####]", s, &string funcs, "abc");

The preceding code defines a protected field four writeable positions long. The
field variable is s and the field function is string_funcs. A pointer to the string
“abc” is bound to the field’s generic data pointer.

You can define a field with multiple data pointers. For example, you may wish to
bind a string to the field so when users enter the field, a message appears; you may
want another string to hold validation data for the field. The syntax for creating
fields with multiple data pointers is “@fdn[”, where n is a digit. The data pointers
are initialized by the succeeding arguments following the field function in the
argument list:

menu_Printf (menu, "@fdA2[####]", &val, &int_funcs,
"Enter an integer", "(1,22)");

The preceding code defines a field four writeable positions long with two data
pointers associated with it. The field variable is val and the field function is
int_funcs. A pointer to the string “Enter an integer” is bound to the field’s first
data pointer. A pointer to the string “(1,22)” is bound to the field’s second data
pointer. An argument must be provided for each data pointer.

You can observe and modify the data pointers with the commands sed_GetField-
Data and sed_SetFieldData.

To change the current background text printing color, use the syntax “@a[7]”: the
“@” character followed by a “a”, and the color value surrounded by brackets. In
this case, the color is set to the value of 7. If the color starts with “0x” it is treated

as a hexadecimal number: “@a[0x70]” indicates a color value of 70 hex.

To repeat a string multiple times, use the syntax “@[3,abc]”: the “@” character
followed by an open bracket, a repeat count delimited by a comma followed by the
string to be repeated. The string consists of all the characters between the comma
and the closing bracket. The repeat syntax used above is equivalent to “abcabcabc”.

“@” can also be used as a quote character. For example, to print an “@” to the
menu, use “@ @”’; to print “#”, use “@#”; and to print “]”, use “@]”.

The newline character ("\n’) changes the printing position to the start of the next
line. Other C control characters, such as backspace ("\b’), print out their MS DOS
graphics representation.

A-56 C-scape 4.0

Percent (" %’) substitution can be done anywhere in the string. The syntax is identical
to printf; “%s” means print a string, “%2d” means print two digits of a decimal int,
etc. As with printf, there should be one argument for each percent in the string.

menu_Printf does not support the **’ character within percent substitutions (i.e.,
“%*s” is not supported).

If menu_Printf cannot allocate sufficient memory it returns FALSE. You can also
test this with oak_GetErrno.

Return Value

Returns TRUE if successful and FALSE otherwise.

See Also

menu_Flush, menu_UnPrintf, sed_ProtectField, sed_SetFieldData, printf

Function Reference A-57

Example

/* #includes and initializations here */

int test(name, phone, count)
char *name;
char *phone;
long *count;
{
menu_type menu;
sed_type sed;
int ret;

menu = menu_Open() ;

menu_Printf (menu, "@p([0,0]@a[7]1This is a test...."):

menu_Printf (menu, "@p[3,0]Name:");

menu_Printf (menu, "@p([3,7]1Q@EfA[#####HH###HSHH4HR#]",
name, &string_funcs, "Enter your name');

menu_Printf (menu, "@p[6,0]Phone:");
menu_Printf (menu, "@pl[6,7]1@E[(###) #H##-####]1",
phone, &string_funcs);

menu_Printf (menu, "@p[9,0]Count:");
menu_Printf (menu, "@p[9,7]@f{count} [########]",
count, &clong_funcs);

menu_Flush (menu) ;

sed = sed_Open (menu) ;
sed_SetColors (sed, 0x07, 0x07, 0x70);
sed_SetBorder (sed, bd_cua);

sed_SetPosition(sed, 8, 19);

sed_Repaint (sed) ;
ret = sed_Go(sed);

sed_Close(sed) ;
return(ret);

A-58 C-scape 4.0

menu_SetWrapWidth Set the menu’s word wrap width

Synopsis
void menu_SetWrapWidth (menu, wwid);
menu_type menu; the menu
int wwid; word wrap width
Description

This routine sets the word wrap width of the menu to wwid. The word wrap width
is the maximum displayed width of any row in the menu. If any of the menu’s rows
are longer than wwid they are split at the appropriate word break. The default word
wrap width of a menu is 32000.

Return Value

There is no return value.
Note
This routine is implemented as a macro.

Example

menu_Printf(menu, "This sentence might be too long.");
menu_Flush (menu) ;

menu_SetWrapWidth (menu, 20);
sed = sed_Open(menu);

VA

Function Reference A-59

menu_UnPrintf Get a format string for a field

Synopsis

char *menu_UnPrintf (menu, fieldno, buf, row, col, dflag)
menu_type menu; the menu
int fieldno; the field number
char *buf; a buffer for the return value
int row; new row of the field
int col; new column of the field
int dflag data pointer translation flag

Description

This routine takes a field number and creates for it a format string, such as the one
passed as the second argument to menu_Printf. row and col take values for new
row and column values for the field’s position; if you give either a value of -1,
menu_UnPrintf uses the field’s old row or column. The routine places the format
string in the variable buf, which must be as long as the format string (including the
“@p[row,col]@f[], any other command codes, and the length of the actual field
spec).

The dflag variable determines the handling of data pointers. If dflag is non-zero,
“@fd” is translated to “@fD”. If dflag is O, menu_UnPrintf generates an “@fd”
string; if dflag is 1, the routine generates an “@fD” string; if dflag is 2,
menu_UnPrintf will generate the “@fd” string, though without the “d” if there is
only one NULL data pointer. See the menu_Printf entry in this manual for more
information on the “d” and “D” options.

Return Value

Returns the buffer in which it places the format string.

A-60 C-scape 4.0

Example

menu = sed_GetMenu (sed) ;
char buf[50], string_var([30];

/* duplicate the first field, a string funcs field */

menu_Printf (menu,
menu_UnPrintf (menu, 0, buf, -1, menu_GetFieldCol (menu, 0) + 5,

1),
string_var, &string_funcs);

Function Reference A-61

opcC Oakland pop context functions

Description

These routines refer to an opc_type, as do the routines opc_Edit, opc_View, and
soon. This construct allows you to manipulate a popup box’s features as you would
for a sed or other window. Aside from its various attributes and position/dimension
parameters (see below), it contains the following elements:

#include <time.h>
#include "popdecl.h"

void opc_SetTitle(opc, title);
char *opc_GetTitle(opc);

char *title; title string

void opc_SetPrompt (opc, prompt);
char *opc_GetPrompt (opc) ;

char *prompt; prompt string

void opc_SetData(opc, data);
VOID *opc_GetData(opc);

VOID *data; generic data pointer

void opc_SetLabel (opc, label);
int opc_GetLabel (opc) ;

int label; help label

void opc_SetBorder (opc, border):;
bd_£fptr opc_GetBorder (opc) ;

bd_fptr border; border function

void opc_SetBorderFeature(opc, bdfeature);
unsigned int opc_GetBorderFeature (opc) ;

unsigned bdfeature; border features

void opc_SetExplode(opc, explode);
exp_fptr opc_GetExplode(opc);

exp_fptr explode; explode function

void opc_SetShadow(opc, shadow) ;
int opc_GetShadow (opc) ;

int shadow; shadow

A-62 C-scape 4.0

void opc_SetName(opc, name);
char *opc_GetName (opc) ;

char *name; name

void opc_SetMouse (opc, mou);
mouhandler_fptr opc_GetMouse(opc);

mouhandler_fptr mou; mouse handler

void opc_SetMouseFeature (opc, moufeature);

unsigned int opc_GetMouseFeature(opc) ;
unsigned moufeature mouse features

void opc_SetSpecial (opc, special);
spc_£fptr opc_GetSpecial (opc) ;

spc_fptr special; special function

void opc_SetAux(opc, aux);
aux_fptr opc_GetAux(opc) ;

aux_fptr aux; auxiliary function

void opc_SetKeepwin(opc, keepwin);
boolean opc_GetKeepwin (opc) ;

boolean keepwin; " return window handle?

void opc_SetSetwin(opc, setwin);
win_type opc_GetSetwin (opc);

win_type setwin; window handle, if returned

Of these elements, the only two that differ from standard sed parameters are keepwin
and setwin. keepwin, when TRUE, tells the opc_ routine to return the popup’s
handle so you can manipulate it yourself; otherwise, the routine displays and then
closes the popup. If you enable keepwin, you must display, activate, and close the
popup yourself; setwin is the handle to the popup that is returned if you enable

keepwin.

The attribute routines for manipulating the opc_struct refer to either the popup’s
graphics mode colors or text mode colors. This difference is denoted by the final

“G” or “T” in each routine’s name:

void opc_SetBackAttrG(opc, backg);
byte opc_GetBackAttrG(opc) ;

byte backg; graphics mode background attribute

Function Reference

A-63

void opc_SetRegAttrG(opc, regg):;
byte opc_GetRegAttrG(opc):;

byte regg; graphics mode regular attribute

void opc_SetSelAttrG(opc, selg):;
byte opc_GetSelAttrG(opc);

byte selg; graphics mode selected attribute

void opc_SetHiRegAttrG (opc, hiregg);
byte opc_GetHiRegAttrG(opc) ;

byte hiregg; graphics mode highlight regular attribute

void opc_SetHiSelAttrG(opc, hiselg):;
byte opc_GetHiSelAttrG(opc):;

byte hiselg; graphics mode highlight selected attribute

void opc_SetBorderAttrG(opc, borderg):
byte opc_GetBorderAttrG(opc) ;

byte borderg; graphics mode border attribute

void opc_SetShadowAttrG(opc, shadowg);
byte opc_GetShadowAttrG(opc) ;

byte shadowg; graphics and text mode shadow attribute

void opc_SetBackAttrT(opc, backt);
byte opc_GetBackAttrT (opc);

byte backt; text mode background attribute

void opc_SetRegAttrT (opc, regt);
byte opc_GetRegAttrT (opc) ;

byte regt; text mode regular attribute

void opc_SetSelAttrT(opc, selt);
byte opc_GetSelAttrT (opc):;

byte selt; text mode selected attribute

void opc_SetHiRegAttrT(opc, hiregt):;
byte opc_GetHiRegAttrT (opc) ;

byte hiregt; text mode highlight regular attribute

void opc_SetHiSelAttrT(opc, hiselt);
byte opc_GetHiSelAttxrT (opc):

byte hiselt; text mode highlight selected attribute

A-64 C-scape 4.0

void opc_SetBorderAttrT (opc, bordert);
pbyte opc_GetBorderAttrT (opc) ;

byte bordert; text mode border attribute
There are also routines that refer to groups of colors, which are:

opc_SetColorsG(opc_struct, regular, background, selected) ;
opc_GetColorsG(opc_struct, regular, background, selected) ;

byte regular; graphics mode regular field attribute
byte background; graphics mode text attribute
byte selected; graphics mode selected field attribute

opc_SetColorsT (opc_struct, regular, background, selected) ;
opc_GetColorsT (opc_struct, regular, background, selected) ;

byte regular; text mode regular field attribute
byte background; text mode text attribute
byte selected; text mode selected field attribute

opc_SetHiColorsG (opc_struct, hireg, hisel);
opc_GetHiColorsG(opc_struct, hireg, hisel);

byte hireg; graphics mode regular highlight attribute
byte hisel; ~ graphics mode selected highlight attribute

opc_SetHiColorsT(opc_struct, hireg, hisel);
opc_GetHiColorsT (opc_struct, hireg, hisel);

byte hireg; text mode regular highlight attribute
byte hisel; text mode selected highlight attribute

Its position/dimension routines operate on either pixels or character coordinates:

void opc_SetPixRow(opc, pixrow) ;
opcoord opc_GetPixRow (opc) ;

opcoord pixrow; leftmost pixel position

void opc_SetPixCol (opc, pixcol);
opcoord opc_GetPixCol (opc) ;

opcoord pixcol; uppermost pixel position

void opc_SetPixHeight (opc, pixheight);
opcoord opc_GetPixHeight (opc) ;

opcoord pixheight; height in pixels

void opc_SetPixWidth(opc, pixwidth);
opcoord opc_GetPixWidth(opc) ;

opcoord width; width in pixels

Function Reference A-65

opc_SetRow(opc_struct, row);
opc_GetRow (opc_struct) ;

int row; uppermost position

opc_SetCol (opc_struct, col);
opc_GetCol (opc_struct) ;

int col; leftmost position

opc_SetHeight (opc_struct, height);
opc_GetHeight (opc_struct) ;

int height; height in characters

opc_SetWidth (opc_struct, width);
opc_GetWidth (opc_struct) ;

int width; width in characters
Due to the simplicity and large volume of these opc_ routines, there are no individual
reference pages for each of them. Each function has a sed_ analog that you can

consult. If you need information on, for instance, opc_GetWidth, consult the
reference page for sed_GetWidth.

Finally, remember that you can have multiple opc_structs, if you want different
kinds of popups to have various custom “looks.”

A-66 C-scape 4.0

opc_Close

Destroy an opc structure

Synopsis

#include <time.h>
#include "popdecl.h"

void opc_Close(myopc) ;

opc_type myopc; the opc structure

Description

This routine destroys an opc_struct and frees its memory.

Return Value

This routine has no return value.
See Also

opc_Open, opc_Text, opc_ routines
Example

opc_type my_opcC;
/* ... %/

my_opc = opc_Open();

opc_SetColors (my_opc, 0x13, 0x13, 0x31);
/* L. %/

opc_Close(my_opc) ;

Function Reference

A-67

opc_Edit Display a popup editor box

Synopsis

#include <time.h>
#include "popdecl.h"

opc_Edit (my_opc, title, label, text, tlen);

opc_type my_opc; Oakland pop context structure

char *title; title for popup

int label; help label for popup

char *text; the text to be edited

unsigned tlen; maximum length of the buffer
Description

This routine creates and displays a popup editor window. Within the window, it
displays word-wrapped text, which the user can edit. To exit the editor, the user
clicks the mouse outside of the popup or presses (Esc).

text is a *\0’ terminated character array with a \n’ at the end of each line. tlen is
maximum length of the character array. After calling opc_Edit, zext contains the
edited text. title is the title string that the popup’s border displays. label is the
popup’s label for the C-scape help system.

To set the editor’s position, dimensions, and other parameters, use the various
opc_Set routines that are available.

Return Value

There is no return value.
See Also

opc_View, opc_Text, opc_Open, opc_Close, opc_

A-68 C-scape 4.0

Example

¢include <time.h>
#include "popdecl.h"

char text[1025]; /* 1K buffer to hold text */

unsigned int tlen;
char *filename;

fp = fopen(filename, "xr");

len = fread(text, 1, 1024, fp);
text[len] = ‘\0’;

fclose(fp);

opc_Edit (NULL, filename, 0, text, 1len);

Function Reference

A-69

opc_FileBox Display a file selection box

Synopsis

#include <time.h>
#include "popdecl.h"

boolean opc_FileBox(my_opc, title, label, path, plen, mask):;

opc_type my_opc; Oakland pop context structure
char *title; title string for the popup
int label; help label for the popup

char *path; default path for file listing
int plen; maximum length of the path
char *mask; file selection mask

Description

This routine creates and displays a file selection box. path describes the default
path displayed in the file box, where plen is the maximum length of this path. mask
is the mask that determines which files will appear in the box (such as *.zxt. *.c, or
* Inf). The box also includes and buttons. title is the title string that
the popup’s border displays. label is the popup’s label for the C-scape help system.

To set the popup’s position, dimensions, and other parameters, use the various
opc_Set routines that are available.

Return Value

Returns TRUE if successful; FALSE, otherwise.
See Also

opc_Open, opc_Close, opc_

Example

#include <time.h>
#include "popdecl.h”

char filespec[OFILE_MAXSPEC + 1];

opc_FileBox(NULL, "File Selection Box", 0, filespec, OFILE_MAX-
SPEC, "*.pcx");

A-70 C-scape 4.0

opc_Menu Display a popup menu

Synopsis

#include <time.h>
#include "popdecl.h"

int opc_Menu(my_opc, title, label, choice);

opc_type my_opc; Oakland pop context structure

char *title; title for popup

int label; help label for popup

char **choice; NULL terminated array of menu choices
Description

This routine creates and displays a popup menu. The mouse or the arrow keys may
be used to traverse the menu. To remove the popup without selecting one of the
choices, click the mouse outside of the menu or press (Esc).

choice is a NULL terminated list of pointers to the text of the choices. title is the
title string that the popup’s border displays. labelis the popup’s label for the C-scape
help system.

To set the editor’s position, dimensions, and other parameters, use the various
opc_Set routines that are available.

Return Value
Returns the number of the choice made (first choice is 1) or 0 if (Esc) was pressed.

See Also

opc_View, opc_Text, opc_Open, opc_Close, opc_

Function Reference A-71

Example

#include <time.h>
#include "popdecl.h"

static char *file_choices[] = {
"Save file",
"Load file",
"Copy file",
NULL
}:

void deal_with_files()
{

switch (opc_Menu (NULL, "Make a selection", 0, file_choices)) {

case 1:
save_file():
break;

case 2:
load_file();
break;

case 3:
copy_file():;
break;

case 0:

default:
break;

A-72 C-scape 4.0

opc_Message Display a popup message box

Synopsis

#include <time.h>
#include "popdecl.h"

void opc_Message (my_opc, title, label, msg);

opc_type opc; Oakland pop context structure

char *title; title for popup

int label; help label for popup

char *msg; the message to be displayed
Description

This high level routine creates and displays the string msg in a popup message box.
The message is word-wrapped to fit into the window. “\n” characters can be placed
into the message string to force line breaks.

title is the title string that the popup’s border displays. label is the popup’s label
for the C-scape help system.

A call to opc_Message places the message box on the display. To remove the
message call opc_Message again, either with a new message or with msg equal to
NULL.

To set the popup’s position, dimensions, and other parameters, use the various
opc_Set routines that are available.

Return Value
There is no return value.

See Also
opc_Text, opc_Verify, opc_Prompt, opc_Open, opc_Close, opc_

Function Reference A-73

Example

#include <time.h>
#include "popdecl.h"

/* oL */
opc_Message (NULL, NULL, 0, "Loading file:\n Please wait...");
fread(buffer, SIZE, 10000, fp);

opc_Message (NULL, NULL, O, NULL);

/* L. */

A-74 C-scape 4.0

opc_Open Create an opc structure

Synopsis

#include <time.h>
#include "popdecl.h"

opc_type opc_Open() ;
Description

This routine creates an opc_struct. The opc_struct is used by the opc_ family of
routines. Consult the C-scape Manual for more information.

Return Value
Returns a pointer to the newly created opc_struct.

See Also

opc_Close, opc_Edit, opc_Menu, opc_Message, opc_FileBox, opc_Prompt,
opc_Text, opc_Verify, opc_View, opc_ routines

Function Heference A-75

Example

opc_type my_opc;
/* .. %/
my_opc = opc_Open();
opc_SetColors (my_opc, 0x13, 0x13, 0x31);

if (opc_Verify(my_opc, "Hard disk delete", O,
"Okay to delete contents of your hard disk?")) {

/* they want to delete the hard disk */
hard_disk_delete():

}
else {

/* they don’'t */
opc_Message (my_opc, "Surprise!", O,
"We’'re going to do it anyway!"):
hard_disk_delete():
}

opc_Close (my_opc) ;

A-76 C-scape 4.0

opc_Prompt Display a popup prompt box

Synopsis

#include <time.h>
#include "popdecl.h"

void opc_Prompt (my_opc, title, label, msg);

opc_type my_opc; Oakland pop context structure

char *title; title for popup

int label; help label for popup

char *msg; the prompt message to be displayed

Description

This routine creates and displays a popup prompt box. The prompt message is
word-wrapped to fit and an button is placed at the bottom of the window. You
can place “\n” characters in the message string to force line breaks. The prompt
appears until the user clicks the button, clicks outside of the popup, or presses
or (Esc). Then the prompt disappears and the function returns.

title is the title string that the popup’s border displays. label is the popup’s label |
for the C-scape help system.

To set the popup’s position, dimensions, and other parameters, use the various
opc_Set routines that are available. ~

Return Value
There is no return value.

See Also

opc_Message

Function Reference A-77

Example

#include <time.h>
#include "popdecl.h"

char *msg;
if ((fp = fopen(filename, "r")) == NULL) ({

opc_Prompt (NULL, "Warning", 0, "Unable to open file.");
}

A-78 C-scape 4.0

opc_Text Create and return a popup text box

Synopsis

#include <time.h>
#include "popdecl.h"

sed_type opc_Text{my_opc, title, label, text);

opc_type my_opc; Oakland pop context structure
char *title; title for popup

int label; help label for popup

char *text; the text to be displayed

Description

This routine creates a popup sed containing a message. The message is word-
wrapped to fit into the sed. You can place “\n” characters in the message string to
force line breaks.

title is the title string that the popup’s border displays. label is the popup’s label
for the C-scape help system.

opc_Text creates and displays the popup sed and returns a handle to it. You can
use any of the other sed_ routines to modify the sed as desired. As the sed has no
fields in it, calling sed_Go is ill-advised. To remove and destroy the sed, call
sed_Close.

You can create as many popup seds as you like with opc_Text.

To set the popup’s position, dimensions, and other parameters, use the various
opc_Set routines that are available.

Return Value
Returns a handle to a sed or NULL if unable to create a sed.
See Also

opc_Message, sed_Close

Function Reference A-79

Example

#include <time.h>
#include "popdecl.h"

/* ... %/
sed_type msgsed;

msgsed = opc_Text (NULL, NULL, 0, "Please wait");
sed_Repaint (msgsed) ;

/* oo */

sed_Close(msgsed) ;

A-80 C-scape 4.0

opc_Verify Display a verification box

Synopsis

#include <time.h>
#include "popdecl.h"

boolean opc_Verify(my_opc, title, label, text);

opc_type my_opc; Oakland pop context structure

char *title; title for popup

int label; help label for popup

char *text; the text to be viewed
Description

This routine creates and displays a prompt box with the given title along with
and buttons. To select “OK”, the user presses (<) when control is in that
button or clicks on it; clicking outside the box and pressing are equivalent to

selecting the button.

title is the title string that the popup’s border displays. label is the popup’s label
for the C-scape help system.

To set the popup’s position, dimensions, and other parameters, use the various
opc_Set routines that are available.

Return Value
Returns TRUE if the user selects the button; FALSE, otherwise.

Function Reference A-81

Example

#include <time.h>
#include "popdecl.h"

static char text[1001];
FILE roland.txt;

/* ... %/
if (opc_Verify (NULL, NULL, 0, "Okay to quit?") == TRUE) {
fwrite(text, sizeof(char), sizeof(text), roland.txt):

}

/* .0 %/

A-82 C-scape 4.0

opc_View Display text in a popup box

Synopsis

#include <time.h>
#include "popdecl.h"

void opc_View(my_opc, title, label, text);

opc_type my_opc; Oakland pop context structure

char *title; title for popup

int label; help label for popup

char *text; the text to be viewed
Description

This routine creates and displays a popup box with the given title. The specified
text appears within the box and is scrollable in both directions if necessary. To exit
the editor the user clicks the mouse outside of the popup or presses (Esc.

title is the title string that the popup’s border displays. label is the popup’s label
for the C-scape help system.

To set the popup’s position, dimensions, and other parameters, use the various
opc_Set routines that are available.

Return Value

There is no return value.

Function Reference A-83

Example

#include <time.h>
#include "popdecl.h"

static char text[1001];
long len;

opc_type my_opcC;

char *filename;

VA

fp = fopen(filename, "r");

len = fread(text, sizeof(char), sizeof(text), £fp):
text[len] = ’\0’;

opc_View(NULL, filename, 0, text);

/* L */

A-84 C-scape 4.0

ott_Init Initialize a time

Synopsis

#include <time.h>
#include "cstime.h"

TIME_T ott_Init(tt);

TIME_T *tt; pointer to the TIME_T variable to ini-
tialize

Description

This routine returns the TIME_T value that represents the time: midnight, December
31, 1969. If the pointer argument is not NULL, the return value is also stored at
this address.

Return Value
Returns the TIME_T value that represents the time midnight, December 31, 1969.

See Also
ott_Now, tm_Init, tm_Now
Note

The format used to store the value of the TIME_T variable is system dependent. If
the system’s compiler is Standard C compliant, the value is stored using the systems
native format. In this case, you are free to mix OWL function calls, C-scape field
functions, and calls to your system’s libraries (like using time to initialize a field
function’s variable), since all functions use the same format for TIME_T variables.
On other systems, the value is stored in accordance with the POSIX standard. The
library functions on these systems may use a different format to store values in
TIME_T variables which would make OWL functions and C-scape field functions
incompatible with system library functions. By always restricting yourself to only
OWL library functions (like using ott_Now in place of time), you will maintain
the highest level of portability whether your target system is Standard C compliant,
or not.

Function Reference A-85

Example
TIME_T tt;

/* initialize time */
ott_Init(&tt);

A-86 C-scape 4.0

Ott_NOW Get the current time

Synopsis

#include <time.h>
#include "cstime.h"

TIME_T ott_Now(tt);

TIME_T *tt; pointer to the TIME_T variable to ini-
tialize

Description

This routine returns the TIME_T value that represents the current time and date. If
the pointer argument is not NULL, the return value is also stored at this address.

Return Value

Returns the TIME_T value that represents the current time and date, or the value
-1 cast to a TIME_T if not available.

See Also
ott_Init, tm_Now, tm_Init
Note

The format used to store the value of the TIME_T variable is system dependent. If
the system’s compiler is Standard C compliant, the value is stored using the systems
native format. In this case, you are free to mix OWL function calls, C-scape field
functions, and calls to your system’s libraries (like using time to initialize a field
function’s variable), since all functions use the same format for TIME_T variables.
On other systems, the value is stored in accordance with the POSIX standard. The
library functions on these systems may use a different format to store values in
TIME_T variables which would make OWL functions and C-scape field functions
incompatible with system library functions. By always restricting yourself to only
OWL library functions (like using ott_Now in place of time), you will maintain
the highest level of portability whether your target system is Standard C compliant,
or not.

Function Reference A-87

Example

TIME_T tt;

/* set tt to the current time and date */
ott_Now (&tt) ;

A-88 C-scape 4.0

pc_GetMode Get the current PC video mode

Synopsis

#include "pcmode.h"

int pc_GetMode() ;

Description

This routine returns the current hardware video mode.
This routine is only available under MS DOS.
Return Value

Return the current video mode.

See Also
pc_IsCGA

Example

#include "pcmode.h"
switch (pc_GetMode()) { /* MS DOS dependent */
/* ... %/

}

Function Reference A-89

pc_IsCGA - pc_IsVGA Inquire PC video capabilities

Synopsis

#include "pcmode.h"
boolean pc_IsVGA();
boolean pc_ISEGA();
boolean pc_IsCGA();
boolean pc_IsMDA();
boolean pc_IsHerc():;

boolean pc_IsCompadq();
Description

These routines determine whether the video hardware can support the capabilities
of a specific video adaptor. The routines are listed below:

pc_IsVGA Test for Video Graphics Array capabilities.
pc_IsEGA Test for Enhanced Graphics Adaptor capabilities.
pc_IsCGA Test for Color Graphics Adaptor capabilities.
pc_IsMDA Test for Monochrome Display Adaptor capabilities.
pc_IsHerc Test for Hercules Card capabilities.

pc_IsCompaq Test for Compaq computer.

These routines determine what capabilities the video hardware has, not what type
of video adaptor is present. For example, if a system has a VGA then pc_IsVGA,
pc_ISEGA, and pc_IsCGA will all return TRUE. This is because a VGA is capable
of emulating the features of the other adaptors. To best determine the available
video support test for the more advanced types first.

These routines are only available under MS-DOS.

A-90 C-scape 4.0

Return Value

Returns TRUE if the video hardware can support the functionality of the specified
display type.

See Also
pc_GetMode

Example

#include "pcmode.h"

if (pc_IsVGA()) {
/* ... %/

}

else if (pc_ISEGA()) {
/* ... %/

}

else if (pc_IsCGA()) {

/* .. */
}
else {

/* ... */

}

Function Reference A-91

pc_SetRetrace Set the PC retrace mode

Synopsis
#include "pcmode.h"
void pc_SetRetrace (mode) ;
boolean mode; the PC retrace mode
Description

This routine sets the retrace mode of the PC device interface. Setting mode TRUE
instructs the video interface to wait for horizontal retrace signals while writing
characters to the display; this eliminates “snow” on CGA monitors. Setting mode
FALSE instructs the video interface to not wait while writing characters to the
display; this speeds up video performance.

When disp_Init initializes the device interface it automatically decides whether or
not to wait for retrace signals. pc_SetRetrace should only be used if there is a need
to override the default setting (such as when using CGA monitors that do not have
Snow).

This routine is only available under MS-DOS.
Return Value
There is no return value.

Note

This routine is implemented as a macro.

A-92 C-scape 4.0

Example

#include "pcmode.h"

#include <time.h>
#include "popdecl.h" /* for opc_Message */

opc_Message (NULL, NULL, 0, "Do you mind a little snow?");

if (tolower (ascii(kb_Read())) == 'n’) {
pc_SetRetrace (FALSE) ;

}
opc_Message (NULL, NULL, 0, NULL);

Function Reference

A-93

sed_Alloc Allocate variable storage for a sed

Synopsis
boolean sed_Alloc(sed);

sed_type sed; sed for which to allocate
Description

This routine allocates storage space for each of the sed’s field variables. It returns
TRUE if it was able to allocate the variable space; FALSE if not.

If space was allocated for this sed by a prior call to sed_Alloc or by a call to sfi-
le_LoadSed with the SED_ALLOC flag set then that variable space is freed before
the current allocation. The amount of space allocated for each field is determined
by the fields’ varsize element.

If you wish to start a field with a particular value you must subsequently initialize
the field’s variable by copying data in the field’s storage space. You can get a
pointer to this space with sed_GetVar or sed_GetNameVar.

The storage allocated by sed_Alloc is released when you close the sed with
sed_Close.

Return Value

Returns TRUE if it was able to allocate the variable space; FALSE if the memory
was not available for the allocation.

Note

This routine is implemented as a macro.

See Also

sfile_LoadSed, sed_GetVar, sed_GetNameVar

A-94 C-scape 4.0

Example

sed = sed_Open(menu) ;
sed_Alloc (sed) ;

/* set value of field 0 (a string, note cast) */
strcpy((char *) sed_GetVar(sed, 0), "Starting Value");

/* set value of field 1 (an integer, note cast) */
*((int *) sed_GetVar(sed, 1)) = 22;

Function Reference A-95

sed_BorderExists Check if the sed has a border

Synopsis
boolean sed_BorderExists(sed);

sed_type sed; the sed
Description
This routine determines if there is a border attached to the sed.
Return Value
Returns TRUE if the sed has a border attached to it and FALSE otherwise.
See Also
sed_SetBorder
Note
This routine is implemented as a macro.
Example

if (sed_BorderExists(sed)) {

sed_BorderPrompt(sed, "Border already exists!");
}

A-96 C-scape 4.0

sed_BorderPrompt Display a prompt in the border

Synopsis
void sed_BorderPrompt (sed, string);
sed_type sed; the sed
char *string; the prompt string
Description

This routine tells the border to display the prompt string in its prompt area. The
routine does nothing if there is no border attached to the sed or if the sed’s border
has no prompt area.

Return Value

There is no return value.

See Also

sed_SetBorder, sed_SetBorderFeature
Note

This routine is implemented as a macro.
Example

sed_BorderPrompt (sed, "Invalid Entry!");

while(!kb_Check()) {

}

sed_BorderPrompt (sed, NULL); /* Clear the border prompt */

Function Reference A-97

sed_Center Center a sed

Synopsis
void sed_Center (sed) ;

sed_type sed; the sed
Description
This routine repositions a sed so that it is centered on the display.
Return Value
There is no return value.
See Also
sed_SetPosition
Example

sed = sed_Open (menu) ;

sed_Center (sed) ;
sed_Repaint (sed) ;
sed_Go (sed) ;

A-98 C-scape 4.0

sed_ClearTB Reset the sed’s text buffer

Synopsis
void sed_ClearTB(sed);

sed_type sed; the sed
Description

This routine destroys the sed’s text buffer and replaces it with a new, empty one
with default settings.

This routine is usually used before using sed_SetTB to insert new text into a text
buffer.

Return Value

This routine has no return value.

Note

This routine is implemented as a macro.
See Also

sed_GetTB, sed_SetTB

Example
char buffer [BUFLEN];

/* Clear contents of the text buffer */
sed_ClearTB(sed);

/* Copy buffer into the text buffer */
sed_SetTB(sed, buffer, BUFLEN);

/* oLl */

Function Heference A-99

sed_Close ' Destroy a sed object

Synopsis
void sed_Close(sed);

sed_type sed; the sed object
Description

This routine closes the sed and releases any storage it used. The sed can not be used
after it has been closed.

If the sed’s window is employed, sed_Close fires it and removes the sed’s image
from the display.

sed_Close releases all the storage used by the objects attached to the sed. The menu
from which the sed was created is closed and can no longer be used.

If there are bobs attached to the sed, sed_Close will close them. If you used
sled_Open to open the sed, sed_Close will close all the sled’s column arrays.

Return Value

There is no return value.
See Also

sed_Open

Note

This routine is implemented as a macro.

A-100 C-scape 4.0

Example

void get_name (name)
char *name;
/*
Ask for and get a name from the user.
*/
{
menu_type menu;
sed_type sed;

/* create the menu */

menu = menu_Open() ;

menu_Printf (menu, "Enter your name: @f [########H##]",
name, &string_funcs);

menu_Flush (menu) ;

/* create the sed */
sed = sed_Open(menu) ;

/* display the sed */
sed_Repaint (sed) ;

/* activate the sed; get the user input */
sed_Go(sed) ;

/* release storage used by the sed and menu objects */
sed_Close(sed) ;

Function Reference A-101

sed_CreateBob Create a bob object from a sed

Synopsis
bob_type sed_CreateBob (sed, mode) ;
sed_type sed; the sed
int mode; the dependence flag
Description

This routine creates a bob object from a sed.

Bobs (basic objects) provide a standard interface to a number of different objects.
Bobs are created from objects, such as seds, that you can place onto the display and
activate.

The mode argument can have one of the following values:

BOB_DEPENDENT creates a bob that depends upon the sed to which it is
attached. A dependent bob is repainted when its owner
is repainted and moves when its owner moves. You can
create embedded screens, such as text editors (teds) and
scrolling lists (sleds), with dependent bobs.

BOB_INDEPENDENT creates a bob that is independent of its owner. The
framerand slug menuing systems use independent bobs.

Bobsallow youto create complex screens consisting of various screen types working
in concert. Any C-scape field can contain a handle to a bob object. menu_Printf
or sed_SetFieldBob can both set this handle. When a sed is repainted all the
dependent bobs connected to it are repainted as well. A field function can pass
control to a bob by calling bob_Go. Refer to the manual for more information on
bob objects.

Bobs can create screens with note pad editors, scrollable sub-regions, or other sub
regions.

Once you have created a bob from a sed, you can use the bob_ functions to control
it.

A-102 C-scape 4.0

Return Value

Returns the bob object created from the sed or NULL if the bob object cannot be

created.
Note
This routine is implemented as a macro.

See Also
bob_GetSed, bob_Go, menu_Printf, sed_GetFieldBob

Example

sed_type sed;
bob_type bob;

/* .. %/
sed = sed_Open(menu) ;

menu_Printf (outer_menu, "@fb[]", NULL, &bob_funcs,
sed_CreateBob(sed, BOB_DEPENDENT)) ;

Function Reference

A-103

sed_DecChar Move to the previous character

Synopsis
boolean sed_bDecChar (sed) ;

sed_type sed; the sed object
Description

This routine moves the cursor to the previous character in a field. If the cursor is
already at the first position in the field, the routine does nothing.

Return Value

This routine returns TRUE if it succeeds in moving the cursor, otherwise it returns
FALSE.

See Also

sed_GetRecordPos, sed_GetMergePos, sed_GoEnd, sed_GoHome, sed_Go-
toChar, sed_IncChar

Example

void string_fkey (sed)
sed_type sed;
{

int scancode;

switch (scancode = kb_Read()) {

case LEFT:
/* move the cursor backwards if the left arrow is pressed */
sed_DecChar (sed) ;
break;

Case RIGHT:
/* move the cursor forwards if the right arrow is pressed */
sed_IncChar (sed) ;
break;

VALY
}

A-104 C-scape 4.0

sed_DecField Go to the previous field

Synopsis
int sed_DecField(sed);

sed_type sed; the sed
Description

This routine takes the field before the current field and makes it the new current
field. If it is called within an active sed it highlights the new field and moves the
cursor to the first writeable position (if there is one) of the new field.

In detail, sed_DecField does the following. If the sed is in active mode, it calls the
fexit function for the current field. If fexit returns FALSE, it does nothing and
returns SED_INVALID. If the current field is the first unprotected field the routine
does nothing and returns SED_STUCK. Otherwise, the preceding field becomes
the new current field. Before it enters the new field, sed_DecField calls the fenter
function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_DecField does not call the fexit and fenter functions.

You must not call this routine in either a field’s fenter or fexit routines.

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. A “p” following the number represents a
protected field. Calling sed_DecField from field 4 would make field 3 the new
current field. Calling sed_DecField from field 3 would make field 1 the new current

field (field 2 is protected).

0 1 2p
5
6 8

Function Reference A-105

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it could not find an unprotected new field to
which it can move.

See Also
sed_GetFieldNo, sed_GotoField, sed_IncField, sed_ProtectField

Example

boolean inter_field(sed, scancode)
sed_type sed;
int scancode;

switch (scancode) {

/* .../

case UP:
sed_DecField(sed) ;
return (TRUE) ;

case DOWN:
sed_IncField(sed);
return (TRUE) ;

default:
break;

}

return (FALSE) ;

A-106 C-scape 4.0

sed_DeleteField Remove a field

Synopsis

void sed_DeleteField(sed, fieldno);
sed_type sed; the sed
int fieldno; the field number

Description

Thisroutine removes a field from the sed’s menu. All the field numbers after fieldno
are decremented by one. If the current field is deleted then the next field becomes
the current field.

Return Value

There is no return value.
See Also
sed_DeleteRows
Example

switch (kb_Read()) {

case DEL:
sed_DeleteField(sed, sed_GetFieldNo(sed));
sed_Repaint (sed) ;
break;

VARV

Function Reference A-107

sed_DeleteRows) Delete rows from a sed

Synopsis

void sed_DeleteRows (sed, row, count);
sed_type sed; the sed
int row; starting row to delete
int count; number of rows to delete

Description

This routine deletes count rows from the sed starting at menu row row. All the
fields and text in the rows are deleted. The field numbers of fields after the deleted
fields are decreased accordingly.

Return Value

There is no return value.

See Also

sed_DeleteField, sed_InsertRows
Example

switch(kb_Read()) {

case DEL:
sed_DeleteRows (sed,
menu_GetFieldRow (sed, sed_GetFieldNo(sed)), 1);
sed_Repaint (sed) ;
break;

VAN ¥4

A-108 C-scape 4.0

sed_DoAux Call a sed’s auxiliary function

Synopsis
int sed_DoAux(sed, msg, indata, outdata);
sed_type sed; the sed
int msg; the auxiliary message
void *indata; pointer to incoming data
void *outdata; pointer to outgoing data
Description

This routine calls the sed’s auxiliary function. msg is an integer specifying an action
for the auxiliary function to perform. indata is a pointer to incoming data to be
used by the auxiliary function. outdata is a pointer to outgoing data returned by
the auxiliary function. sed_DoAux does nothing if the sed has no auxiliary function.

The auxiliary function is intended to provide the programmer with additional control
over the operations of a sed. C-scape sends the following messages to auxiliary
functions automatically:

SED_PRESENTER calledby a_Repaint functionimmediately before the sed’s
senter functions are called. The auxiliary function’s return
value is ignored when it is sent this message.

SED_POSTSENTER called by a _Repaint function immediately after the sed’s
senter functions are called. The auxiliary function’s return
value is ignored when it is sent this message.

SED_PRESEXIT called by sed_Go immediately before the sed’s sexit
functions are called. You can use this message to provide
validation for an entire sed. Ifthe auxiliary function returns
FALSE in response to this message, the user will not be
able to leave the sed.

SED_POSTSEXIT called by sed_Go immediately after the sed’s sexit func-
tions are called. The auxiliary function’s return value is
ignored when it is sent this message.

Function Reference / A-109

SED_PREFENTER

SED_POSTFENTER

SED_PREFEXIT

SED_POSTFEXIT

called immediately before a field’s fenter function is
called. The auxiliary function’s return value is ignored
when it is sent this message.

called immediately after a field’s fenter function is called.
The auxiliary function’s return value is ignored when it is
sent this message.

called immediately before a field’s fexit function is called.
This message can provide extra field validation. If the
auxiliary function returns O when it receives this message,
it is functionally equivalent to the fexit function returning
FALSE.

called immediately after a field’s fexit function is called
(if the fexit function was successful). This message can
provide extra field validation; if the auxiliary function
returns FALSE when it receives this message, it is func-
tionally equivalent to the fexit function returning FALSE.

These standard C-scape messages do not use indata or outdata (they are NULL).

C-scape provides one standard auxiliary function, called aux_Top. It raises its sed
above all other windows on the display when it becomes current by callin gsed_Top
upon receiving a WINA_STARTGO message.

Youcan use sed_DoAux to send your own custom messages to an auxiliary function.
Your message values should be unique and greater than SED_LASTMSG.

Note that there are also auxiliary messages at the window and object levels. These
are documented in the OWL Manual and OWL Function Reference.

Return Value

Returns the value returned by the auxiliary function upon its completion.

Note

This routine is implemented as a macro.

A-110

C-scape 4.0

See Also
sed_SetAux

Example
#define MYSED_RESETFIELDS SED_LASTMSG + 1

int aux_Reset(sed, msg, indata, outdata)

sed_type sed;
int msg;

VOID *indata;
VOID *outdata;

/*
This auxiliary function resets the sed’'s fields when it receives

a MYSED_RESETFIELDS message.

*/

{

int fldno;

switch(msg) {
case MYSED_RESETFIELDS:
/* reset all the field records */
for (fldno = 0; fldno < sed_GetFieldCount (sed); fldno++)
sed_SetRecord(sed, "", £fldno);

}
sed_UpdateFields (sed) ;
break;

return(l) ;

/* .. %/
sed_SetAux(sed, aux_Reset);
/* Clear our sed by sending a
MYSED_RESETFIELDS message to its auxiliary function.
*/
sed_DoAux (sed, MYSED_RESETFIELDS, NULL, NULL);

VAR

Function Reference

{

A-111

sed_DoFieldFenter - sed_DoFieldSexit cala field function

Synopsis

void sed_DoFieldFenter (sed, fieldno);
sed_type sed; the sed
int fieldno; the field number

boolean sed_DoFieldFexit (sed, fieldno);

sed_type sed; the sed
int fieldno; the field number

void sed_DoFieldFkey (sed, fieldno);

sed_type sed; the sed
int fieldno; the field number

void sed_DoFieldSenter (sed, fieldno);

sed_type sed; the sed
int fieldno; the field number

void sed_DoFieldSexit (sed, fieldno);

sed_type sed; the sed
int fieldno; the field number

Description

sed_DoFieldFenter This routine calls the fenter function for the specified field.
This causes the SED_PREFENTER and SED_POST-
FENTER messages to be sent as well.

sed_DoFieldFexit This routine calls the fexit function for the specified field.
: This causes the SED_PREFEXIT and SED_POSTFEXIT
messages to be sent as well.

sed_DoFieldFkey This routine calls the fkey function for the specified field.

sed_DoFieldSenter This routine calls the senter function for the specified field.
This causes the SED_PRESENTER and SED_POST-
SENTER messages to be sent as well.

A-112 C-scape 4.0

sed_DoFieldSexit This routine calls the sexit function for the specified field.
This causes the SED_PRESEXIT and SED_POSTSEXIT
messages to be sent as well.

Return Value

These routines have no return value with the exception of sed_DoFieldFexit, which
returns TRUE only if all validation on the field succeeds. (This validation is per-
formed by the fexit routine and the auxiliary function.)

Function Reference A-113

sed_DoSenters Execute all the fields’ senter functions

Synopsis
void sed_DoSenters (sed) ;

sed_type sed; the sed
Description
This routine calls the senter function for all the fields in a sed.
Return Value
There is no return value.
See Also
sed_DoSexits
Note
This routine is implemented as a macro.

Example

sed_DoSenters (sed) ;

A-114 C-scape 4.0

sed_DoSexits Execute all the fields’ sexit functions

Synopsis
void sed_DoSexits (sed);

sed_type sed; the sed
Description
This routine calls the sexit function for all the fields in a sed.
Return Value
There is no return value.
See Also
sed_DoSenters

Example

sed_DoSexits (sed);

Function Reference A-115

sed_DoSpecial Execute the sed’s special function

Synopsis
boolean sed_DoSpecial (sed, scancode) ;
sed_type sed; the sed
int scancode; keystroke for the special function to pro-
cess

Description

This routine executes the special function attached to the sed. If the sed has no
special function the routine returns FALSE.

The special function is used to customize the operation of all the fields in a sed
without having to modify any field functions. The fkey function of the standard
field functions call sed_DoSpecial.

Return Value

Returns the value returned by the sed’s special function. The special function returns
TRUE if it intercepted the keystroke, FALSE otherwise.

See Also

sed_SetSpecial

Example

void string_fkey (sed)
sed_type sed;
{

int scancode;

if (sed_DoSpecial (sed, scancode))
return;

if (special_key (scancode))

return;

/* Lol */

A-116 C-scape 4.0

sed_DownField Move down a field

Synopsis
int sed_DownField(sed);

sed_type sed; the sed
Description

This routine takes the field below the current field and makes it the new current
field. If it is called within an active sed it highlights the new field and moves the
cursor to the first writeable position (if there is one) of the new field.

In detail, sed_DownField does the following. If the sed is in active mode it calls
the fexit function for the current field. If fexit returns FALSE, it does nothing and
returns SED_INVALID. If the current field is the bottom-most unprotected field
the routine does nothing and returns SED_STUCK. Otherwise, the field below the
current field becomes the new current field. Before sed_DownField enters the new
field, it calls the fenter function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_DownField does not call the fexit and fenter functions.

You must not call this routine in either a field’s fenter or fexit routines.

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. A “p” following the number represents a
protected field. Calling sed_DownField from field 4 would make field 7 the new
current field. Calling sed_DownField from field 2 would make field 8 the new

current field (field 5 is protected).

0 1 2
5p

Function Reference A-117

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it could not find an unprotected new field to
which it can move.

See Also
sed_UpField, sed_LeftField, sed_RightField, sed_ProtectField
Note

This routine is implemented as a macro.

Example

switch (scancode) {
/* .. */
case UP:
sed_UpField(sed);
return (TRUE) ;
case DOWN:
sed_DownField(sed) ;
return (TRUE) ;
case LEFT:
sed_LeftField(sed);
return(TRUE) ;
case RIGHT:
sed_RightField(sed);
return (TRUE) ;
/* ... */

A-118 C-scape 4.0

SGd_FiﬂdFiEld Find a field in a box

Synopsis

int sed_FindField(sed, boxp, direction);
sed_type sed; sed window
ocbox *boxp; character box
int direction; search direction

Description

This routine searches for a field in sed’s menu that lies within the area specified by
boxp. It is most commonly used within a mouse handler to find the field over which
the mouse cursor lies.

boxp is a pointer to an ocbox (Oakland character box). The coordinates of the box
are relative to the sed’s menu. The box must take into account the sed offsets
(sed_GetXoffset, sed_GetYoffset) into the menu.

direction indicates a preference for the manner in which the box is searched. It may
have one of 4 values with the following significance:

OAK_DOWN or OAK_RIGHT |searches down and right from the top row
of the box.

OAK_UP searches up and right from the bottom row
of the box.

OAK_LEFT searches left and up from the bottom row
of the box.

sed_FindField finds the first unprotected field in the given direction. The field
may lie fully or partially in the box.

Return Value

Returns an integer denoting the number of the field found; -1, if no field was found;
-2, if the only field found was a protected field.

Note

Function Reference A-119

An ocbox uses a C-scape data structure with 4 integer members: toprow, botrow,
leftcol, and rightcol. It describes a rectangular area in character coordinate units.
See the OWL Manual or the OWL Function Reference for more information about
ocboxes.

A-120 C-scape 4.0

sed_GetActive Checks if the sed currently has control

Synopsis

boolean sed_GetActive(sed);
sed_type sed; the sed
Description

A sed can become active by any of the following means:

-calling sed_Go on it
-passing control to it with the mouse
-passing control to it with sed_SetNextWin

Return Value
Returns TRUE if the sed is active; FALSE, otherwise.

Example

if sed_GetActive(sed) {

/* put it on top if it’'s active */
sed_Top(sed) ;

} else {

/* remove it otherwise */
sed_Pop (sed) ;

Function Reference A-121

sed_GetAncestor Get a sed’s most distant ancestor

Synopsis
sed_type sed_GetAncestor (sed) ;
sed_type sed; the sed

Description

This routine gets the most distant ancestor (ultimate owner) of the given sed. If the
sed is an orphan (unowned) it gets the given sed itself.

Return Value

Returns a pointer to a sed. This return value may be the given sed itself if it has no
owner.

Note
This routine is implemented as a macro.
See Also
bob_GetOwner
Example
sed_type sed, granpa;
VALY
granpa = sed_GetAncestor (sed);
if (granpa != sed) {

/* owner is our ancestor ... */

}

A-122 C-scape 4.0

sed_GetAttrTB Get a string of characters with its attribute

Synopsis

unsigned int sed_GetAttrTB(sed, buf, len, mode, attr);
sed_type sed; the sed

char *buf; the buffer for storing text
unsigned int len; the size of the requested buffer

int mode; ted line ending save mode

byte *attr; address to save the gotten attribute
Description

This routine retrieves a string of characters from the sed’s text buffer, all of which
have the same attribute. It stores the string in buf and the string’s attribute in artr.

The function begins retrieving text from the current cursor position. It returns the
number of characters retrieved, a value between 0 and len. If number of characters
from the current cursor position to the end of the text buffer is less than len, then
the function will return this value.

The mode can either be TED_HARD or TED_SOFT. If the mode is TED_HARD,
sed_GetAttrTB adds newlines at the end of any word-wrapped lines. If the mode
is TED_SOFT, the function saves only those newlines that are already part of the
buffer.

Return Value
Returns the number of characters retrieved.

Note

This routine is implemented as a macro.
See Also
sed_GetTB, sed_SetTB, ted_WriteFile, sed_RewindTB

Function Reference A-123

Example

while ((len = sed_GetAttrTB(sed, buf, buflen, TED_SOFT, &attr)) >
0) {

printf ("attr = %x, 1length = %d\n", attr, len);

printf (buf) ;

printf("\n");
}

A-124 C-scape 4.0

sed_GetAux Get a sed’s auxiliary function

Synopsis
aux_fptr sed_GetAux(sed);

sed_type sed; the sed
Description

This routine gets a pointer to the given sed’s auxiliary function. Use sed_SetAux
to set a sed’s auxiliary function pointer.

Return Value

Returns a pointer to the sed’s auxiliary function; FNULL, if none.
Note

This routine is implemented as a macro.

See Also

sed_SetAux

Example

if (sed_GetAux(sed) == FNULL) {
sed_SetAux(sed, aux_FileManager) ;

}

Function Reference A-125

sed_GetBaton Get the sed’s baton

Synopsis
int sed_GetBaton(sed);

sed_type sed; the sed
Description

This routine gets the value of the baton. The baton passes state information between
the functions in the field function structure (the fenter, fexit, fkey, senter, and sexit
functions) and is as a return value by sed_Go. It is initialized to -1 when the sed is
created.

A typical use is in a menu that returns O for the key, 1 for the first menu choice,
2 for the second menu choice, and so on. Another use might be to tell the fexit
function not to validate the data in a field if the user pressed the key.

Return Value

This routine returns the integer value of the baton.
See Also

sed_SetBaton, sed_Go

Note

This routine is implemented as a macro.

Example

void my_string sexit (sed, fieldno)
sed_type sed;
int fieldno;

/*
Copy the record string back into the native string.
Skip if (baton == SED_ABORT) .

*/

{
if (sed_GetBaton(sed) != SED_ABORT) { .

strcpy(sed_GetVar (sed, fieldno), sed_GetRecord(sed, fieldno));

}

A-126 C-scape 4.0

sed _GetBob Get the bob created from the sed

Synopsis
bob_type sed_GetBob(sed) ;
sed_type sed; the sed

Description

This routine returns a pointer to the bob created from the sed. If no bob was created
from the sed it returns NULL.

Return Value

Returns a pointer to the bob created from the sed. Returns NULL if no bob has
been created from the sed.

Note

This routine is implemented as a macro.

See Also
bob_GetOwner, sed_CreateBob, sed_GetAncestor

Example

bob_type bob;
sed_type sed;

VAN ¥4

bob = sed_GetBob(sed)

Function Reference A-127

sed_GetBordCorners Get the corners of the sed’s border

Synopsis
void sed_GetBordCorners(sed, ul_row, ul_col, lr_row, lr_col);
sed_type sed; the sed
int *ul_row; the upper left hand row of the sed
int *ul_col; the upper left hand column of the sed
int *lr_row; the lower right hand row of the sed
int *lr_col; the lower right hand column of the sed
Description

This routine determines the upper left and lower right hand corners of the sed’s
border and places them into the locations pointed to by ul_row, ul_col, Ir_row, and
Ir_col.

The corners are given in display coordinates relative to the upper left hand corner
of the display.

The size of the border attached to the sed determines the location of the corners. If
there is no border attached to the sed then the size of the sed is used.

Return Value

There is no return value.

See Also
sed_GetCorners, sed_GetBorderHeight, sed_GetBorderWidth

Example

int ymin, xmin, ymax, xmax;

sed_GetBordCorners (sed, &ymin, &xmin, &ymax, &xmax);

A-128 C-scape 4.0

sed_GetBorderColor Get the color of the sed’s border

Synopsis

byte sed_GetBorderColor(sed);
sed_type sed; the sed

Description

This routine returns the color of the border attached to the sed.

Return Value

If there is a border attached to the sed its color is returned. If there is no border
attached to the sed, O is returned.

See Also
sed_SetBorder, sed_SetBorderColor, sed_BorderExists

Note

This routine is implemented as a macro.

Example

byte b_color;

b_color = sed_GetBorderColor(sed);

Function Reference A-129

sed_GetBorderHeight Get the height of the sed’s border

Synopsis

int sed_GetBorderHeight (sed);
sed_type sed; the sed

Description

This routine returns the height of the sed’s attached border. If there is no attached
border or if the sed is taller than the border, the height of the sed is returned.

Return Value

The height of the sed’s border.

See Also

sed_GetHeight, sed_GetMenuHeight, sed_GetBorder Width

Example
int hgt;

hgt = sed_GetBorderHeight (sed) ;

A-130 C-scape 4.0

sed_GetBor derWidth Get the width of the sed’s border

Synopsis
int sed_GetBorderWidth(sed);

sed_type sed; the sed
Description

This routine returns the width of the sed’s attached border. If there is no attached
border or if the sed is wider than the border, the width of the sed is returned.

Return Value
The width of the sed’s border.

See Also
sed_GetWidth, sed_GetMenuWidth, sed_GetBorderHeight

Example

int wid;

wid = sed_GetBorderWidth(sed) ;

Function Reference A-131

sed_GetChar Get a character within the current field

Synopsis
char sed_GetChar (sed, pos);
sed_type sed; the sed
int pos; the position
Description

This routine returns the character at record position number pos within the current
field’s record. The first character is at position 0.

Return Value

The character at the specified position within the current field’s record.

See Also
sed_GetCurrChar, sed_GetFieldChar
Note
This routine is implemented as a macro.
Example
/* Toggle minus sign in field ... */
if (sed_GetChar(sed, 0) == '-’') {

/* erase minus sign */

VAR

A-132 C-scape 4.0

SGd_GGtCO'OI‘S Get the sed’s colors

Synopsis
void sed_GetColors(sed, regular, background, selected);
sed_type sed; the sed
byte *regular; regular field attribute
byte *background; background attribute
byte *selected; selected field attribute
Description

This routine determines the colors of the sed and places them into the locations
pointed to by regular, background, and selected.

regular, background, and selected must be pointers to bytes.
Return Value

There is no return value.

See Also

sed_SetColors

Example

byte reg, back, sel;

sed_GetColors(sed, ®, &back, &sel);

Function Reference A-133

sed_GetCorners Gets the sed’s corners

Synopsis
void sed_GetCorners(sed, ul_row, ul_col, lr_row, lr_col);
sed_type sed; the sed
int *ul_row; the upper left hand row of the sed
int *ul_col; the upper left hand column of the sed
int *1lr_row; the lower right hand row of the sed
int *1lr_col; the lower right hand column of the sed
Description

This routine determines the upper left and lower right hand corners of the sed
rectangle and places them into the locations pointed to by ul_row, ul_col, Ir_row,
and Ir_col.

The corners are given in display coordinates relative to the upper left hand corner
of the display.

The size of the sed determines the location of the corners. If there is a border attached
to the sed, it is ignored.

Return Value
There is no return value.
Example

int ymin, xmin, ymax, xmax;

sed_GetCorners(sed, &ymin, &xmin, &ymax, &xmax);

A-134 C-scape 4.0

sed_GetC urrChar Get the character at the current position‘

Synopsis

char sed_GetCurrChar (sed) ;
sed_type sed; the sed

Description

This routine returns the character at the current cursor position within the current
field’s record.

Return Value

The character at the current position within the current field’s record.
See Also

sed_GetChar, sed_GetFieldChar

Note

This routine is implemented as a macro.

Example

if (sed_GetCurrChar(sed) == ' ’) {
/* oL %/

Function Reference A-135

sed_GetCurrFieldData Get the current field’s data pointer

Synopsis
VOID *sed_GetFieldData(sed, datano);
sed_type sed; the sed
int datano; the data number
Description

This routine returns a data pointer for the sed’s current field. Each field has at least
one generic data pointer that the programmer can set. The data pointer is a VOID
* pointer. You can use the datano argument to indicate which data pointer you
want (0 is the first data pointer).

A field normally has one data pointer but you can override this with the menu_Printf
“@fd” command when the field is defined.

The standard field functions use the field generic data pointers in the following
ways:

(0) to store border prompt strings.
(1) to store validation data.

(2) to store formatting information.
Return Value

Returns the generic data pointer for the field. The generic data pointer is a VOID
* pointer. Use a type cast to convert it to a different type if necessary.

Returns NULL if datano exceeds the number of data pointers associated with the
field.

See Also
menu_Printf, sed_SetFieldData, sed_GetFieldDataCount, sed_GetFieldData

Note

This routine is implemented as a macro.

A-136 C-scape 4.0

Example

boolean int_fexit (sed)
sed_type sed;
/*
Validates an integer using the string in field data 1.
*/
{
int val;

sscanf (sed_GetCurrRecord(sed), "%d", &val);

if (!valid_1Int(val,
(char *) sed_GetFieldData(sed, sed_GetFieldNo(sed), 1))) {

tone() ;
sed_BorderPrompt (sed, "Number out of range");

/* wait for a keystroke */
while (!kb_Check())
sed_BorderPrompt (sed,
sed_GetFieldData (sed, sed_GetFieldNo(sed), 0));

return (FALSE) ;
}

sed_DoFieldSexit (sed, sed_GetFieldNo (sed));
sed_DoFieldSenter (sed, sed_GetFieldNo(sed));
sed_UpdateCurrField(sed) ;
sed_BorderPrompt (sed, NULL) ;

return (TRUE) ;

Function Reference A-137

sed_GetCurrMerge Get the current field’s merge

Synopsis

char *sed_GetCurrMerge (sed) ;
sed_type sed; the sed

Description

This routine returns the merge of the current field. A merge is the string containing
the entire contents of the field, both the writeable and nonwriteable positions.

The merge should be copied into a buffer before being used; the contents of the
actual merge should not be altered.

Return Value
Returns a pointer to the merge string of the current field.

See Also
sed_GetMerge, sed_GetRecord, sed_GetScratchPad

Note

This routine is implemented as a macro.

Example

char *p;
p = sed_GetScratchPad(sed) ;

strcpy (p, sed_GetCurrMerge(sed)) ;

A-138 C-scape 4.0

sed _GetCurrRecord Get the current field’s record

Synopsis

char *sed_GetCurrRecord(sed):;
sed_type sed; the sed

Description

This routine returns the record of the current field. A record consists of only the
writeable positions in the field.

Return Value

Returns a pointer to the record string of the current field.

See Also
sed_SetCurrRecord, sed_GetRecord, sed_GetMerge, sed_GetScratchPad

Note

This routine is implemented as a macro.

Example

char buffer([101]; /* make sure buffer is long enough */

strcpy (buffer, sed_GetCurrRecord(sed)):;

Function Reference A-139

sed_GetCurrRecordLen Get current field’s record length

Synopsis

int sed_GetCurrRecordLen (sed) ;
sed_type sed; the sed

Description

This routine returns the length of the record string of the current field. A record
consists of only the writeable positions in the field.

Return Value

Returns the length of the current field’s record string.
See Also

sed_GetRecord, sed_GetRecordLen

Note

This routine is implemented as a macro.

Example

int len;

len = sed_GetCurrRecordLen (sed);

A-140 C-scape 4.0

sed_GetCurrVar Get the current field’s variable

Synopsis

VOID *sed_GetCurrVar (sed) ;
sed_type sed; the sed

Description

This routine returns the pointer to the variable for the current field. The pointer is
bound to the field during the calls to menu_Printf.

Return Value

This routine returns a pointer to the variable for the current field. The field’s variable
is a VOID * pointer. Use a type cast to convert it to another type when necessary.

See Also

sed_GetVar

Note

This routine is implemented as a macro.

Example

void int_senter(sed, fieldno)
sed_type sed;
int fieldno;
/*
Convert native type to string for record.
*/
{

char *s;
s = sed_GetScratchPad(sed) ;
sprintf(s, "%d", *((int *) sed_GetVar(sed, fieldno)));

strright (s, sed_GetRecordLen(sed, fieldno));
sed_SetRecord(sed, s, fieldno);

Function Reference A-141

sed_GetCursorType Get the sed’s current cursor type

Synopsis

unsigned int sed_GetCursorType(sed);
sed_type sed; the sed

Description

This routine determines the current size of the sed’s cursor. The sed’s cursor type
is initialized to CURSOR_NORMAL.

Return Value
Returns the sed’s current cursor type.

The cursor type is one of the following values:

CURSOR_NORMAL The standard cursor.

CURSOR_NONE An invisible cursor.

CURSOR_BLOCK A full-sized cursor.

CURSOR_DASH Acthin cursorlocated in the middle of the characterlocation.
CURSOR_HALF A cursor filling half of the character location.
CURSOR_THIN A thin cursor.

See Also

sed_SetCursorType

Example

unsigned int ctype;

ctype = sed_GetCursorType (sed);

A-142 C-scape 4.0

sed_GetData Get the sed’s generic data pointer

Synopsis
VOID *sed_GetData(sed) ;

sed_type sed; the sed
Description

This routine returns the sed’s generic data pointer. The generic data pointer is a
VOID * pointer that you can use for attaching program-specific data to a sed.

Some typical uses for the generic data pointer are:
(1) asa place to store an array of strings to be displayed as messages, and

(2) asa place to store the last value of the field so that it can be recalled in case
the user makes a mistake.

Return Value

Returns the generic data pointer for the sed. The generic data pointer is a VOID *
pointer. Use a type cast to convert it to a different type if necessary.

See Also

sed_SetData

Note

This routine is implemented as a macro.

Example

struct my_struct *my_s;

my_s = (struct my_struct *) sed_GetData(sed);

Function Reference A-143

sed_GetEXxit

Get the sed’s exit state

Synopsis
boolean sed_GetExit (sed);

sed_type sed; the sed object
Description
This routine returns the exit state of the sed.
Return Value
The exit state of the sed.
See Also
sed_SetExit, sed_ToggleExit
Note
This routine is implemented as a macro.
Example

boolean exit;

exit = sed_GetExit(sed);

A-144 C-scape 4.0

sed_GetFieldBob Get the bob attached to a field

Synopsis
bob_type sed_GetFieldBob(sed, fieldno);
sed_type sed; the sed
int fieldno; the field number
Description

This routine gets a handle to the bob object attached to field fieldno.

Return Value

Returns a handle to the bob object attached to the field. Returns NULL if the field
has no bob object.

See Also
menu_Printf, sed_CreateBob, sed_SetFieldBob

Note

This routine is implemented as a macro.

Example

void bob_fkey (sed)
sed_type sed;

{ bob_type bob;
bob = sed_GetFieldBob(sed, sed_GetFieldNo(sed)):;
switch(bob_Go(bob)) {

VA

Function Reference A-145

sed_GetFieIdChar Get a character within a field

Synopsis

char sed_GetFieldChar (sed, fieldno, pos);
sed_type sed; the sed
int fieldno; the field number
int pos:; the position

Description

This routine returns the character at position number pos within field number
fieldno’s record. The first character is at position 0.

Return Value

The character at the specified position within the specified field’s record.
See Also

sed_GetChar, sed_GetCurrChar

Note

This routine is implemented as a macro.

Example
/* check the first letter of the first field */

switch(sed_GetFieldChar(sed, 0, 0)) {
case ' ':
/* ... */

A-146 C-scape 4.0

sed_GetFieIdCoI Get the field’s first column number

Synopsis
int sed_GetFieldCol (sed, fieldno);
sed_type sed; the sed
int fieldno; field number
Description

This routine determines the display column number from the left edge of the sed
(the first column is 0) of the first position in the field merge.

Return Value
Returns the column number of the first character in the field.
See Also

sed_GetFieldLastCol, sed_GetFieldRow, menu_GetFieldCol, menu_Get-
FieldRow

Example

int col;

col = sed_GetFieldCol (sed);

Function Reference A-147

sed_GetFieldColors Get the field’s colors

Synopsis
void sed_GetFieldColors(sed, fieldno, reg, sel);
sed_type sed; the sed
int fieldno; the field number
byte *reg; the regular color
byte *sel; the selected color

Description

This routine determines the regular and selected colors for field fieldno and places
them into the locations pointed to by reg and sel.

reg and sel must be pointers to bytes.

If the field is marked, the marked colors are returned.
Return Value

There is no return value.

See Also

sed_MarkField, sed_SetColors

Example

byte reg, sel;

sed_GetFieldColors(sed, 0, ®, &sel);

A-148 C-scape 4.0

sed_GetFieldCount Get the number of fields in the sed

Synopsis
int sed_GetFieldCount (sed);

sed_type sed; the sed
Description
This routine returns the number of fields in the sed.
Return Value
Returns the total number of fields contained in the sed.
See Also
sed_GetFieldNo
Note
This routine is implemented as a macro.
Example

int i;

for (i = 0; i < sed_GetFieldCount(sed); i++) {
/* ... %/

Function Reference A-149

sed_GetFieldData Get a field’s data pointer

Synopsis
VOID *sed_GetFieldData(sed, fieldno, datano);
sed_type sed; the sed
int fieldno; the field number
int datano; the data number
Description

This routine returns a data pointer for the field. Each field has at least one generic
data pointer that the programmer can set. The data pointer is a VOID * pointer.
You can use the datano argument to indicate which data pointer you want (0 is the
first data pointer).

A field normally has one data pointer but you can override this with the menu_Printf
“@fd” command when the field is defined.

The standard field functions use the field generic data pointers in the following
ways:

(0) to store border prompt strings.
(1) to store validation data.

(2) to store formatting information.
Return Value

Returns the generic data pointer for the field. The generic data pointer is a VOID
* pointer. Use a type cast to convert it to a different type if necessary.

Returns NULL if datano exceeds the number of data pointers associated with the
field.

See Also

menu_Printf, sed_SetFieldData, sed_GetFieldDataCount, sed_GetCurr-
FieldData

Note

This routine is implemented as a macro.

A-150 C-scape 4.0

Example

boolean int_fexit (sed)
sed_type sed;
/*
Validates an integer using the string in field data 1.
*/
{

int val;

sscanf (sed_GetCurrRecord(sed), "%4d", &val);
if (!valid_Int(val,)
(char *) sed_GetFieldData(sed, sed_GetFieldNo(sed), 1))) {

tone();
sed_BorderPrompt (sed, "Number out of range");

/* wait for a keystroke */
while (!kb_Check())

’

sed_BorderPrompt (sed,
sed_GetFieldData(sed, sed_GetFieldNo(sed), 0));

return (FALSE) ;
}

sed_DoFieldSexit (sed, sed_GetFieldNo(sed));
sed_DoFieldSenter (sed, sed_GetFieldNo(sed));
sed_UpdateCurrField(sed) ;
sed_BorderPrompt (sed, NULL);

return (TRUE) ;

Function Reference A-151

sed_GetFieldDataCount Get the field’s number of data pointers

Synopsis
int sed_GetFieldDataCount (sed, fieldno);
sed_type sed; the sed
int fieldno; the field number
Description

Returns the number of data pointers bound to the field. A field normally has one
data pointer but you can override this by using the menu_Printf “@fd” command
when you define the field.

Return Value

Returns the number of data pointers bound to the field.
See Also

menu_Printf, sed_GetFieldData

Note

This routine is implemented as a macro.

Example

int dcount;

dcount = sed_GetFieldDataCount (sed, 0);

A-152 C-scape 4.0

SEd_GGtFiEldLaStCOI Get the field’s last column number

Synopsis
int sed_GetFieldLastCol(sed, fieldno);
sed_type sed; the sed
int fieldno; field number
Description

This routine determines the display column number (the first column is 0) of the
last position in the field merge.

Return Value

Returns the column number of the last character in the field.
See Also

sed_GetFieldCol, sed_GetFieldRow

Example

int lcol;

lcol = sed_GetFieldLastCol (sed);

Function Reference A-153

sed_GetFieldName Get a field’s name

Synopsis
char *sed_GetFieldName(sed, fieldno);
sed_type sed; the sed
int fieldno; the field number
Description

This routine returns the name associated with the field.

The name should be copied into a buffer if you intend to process it. The contents
of the actual name string should not be altered.

Any field may be given a name. A name is a character string used to identify the
field. A field may be given a name when it is created with menu_Printf or it may
be assigned one with sed_SetFieldName.

Return Value

Returnsa bointer to the field’s name string. Returns NULL if the field has no name.
See Also

menu_Printf, sed_GetNameNo, sed_GotoNameField, sed_SetFieldName
Note

This routine is implemented as a macro.

Example

char name[22]; /* Make sure this is long enough */

strcpy (name, sed_GetFieldName (sed, 3));

A-154 C-scape 4.0

sed_GetFieldNo

Get the current field number

Synopsis
int sed_GetFieldNo(sed);
sed_type sed; the sed

Description

This routine returns the current field number.
Return Value

Returns the number of the current field.

See Also

sed_DecField, sed_GotoField, sed_IncField
Note

This routine is implemented as a macro.

Example

sed_GotoField(sed, sed_GetFieldNo(sed) + 2);

Function Reference

A-155

sed_GetFieldRow Get the field’s row number

Synopsis

int sed_GetFieldRow(sed, fieldno):;
sed_type sed; the sed
int fieldno; field number

Description

This routine determines the display row number from the top of the sed (the first
row is Q) of the field.

Return Value
Returns the row number of the field.
See Also

sed_GetFieldCol, sed_GetFieldLastCol, menu_GetFieldCol, menu_GetField-
Row

Example

int row;

row = sed_GetFieldRow(sed, 22);

A-156 C-scape 4.0

sed_GetFieldWidth Get the field’s displayed width

Synopsis
int sed_GetFieldwidth(sed, fieldno):;
sed_type sed; the sed
int fieldno; the field number
Description

This routine returns the displayed width of field fieldno. The displayed width of a
field is its actual width on the display. This width equals the field’s merge length
unless its displayed width has been explicitly set to a different value with
menu_Printf or sed_SetFieldWidth.

A field automatically scrolls when its merge length exceeds its displayed width and
an attempt is made to move the cursor past one of the field’s edges.

Return Value
Returns the displayed width of the field.
See Also
menu_Printf, sed_SetFieldWidth
Note
This routine is implemented as a macro.
Example

int wid;

wid = sed_GetFieldwidth(sed, 0);

Function Reference A-157

sed_GetFieldXoffset Get the field’s xoffset

Synopsis
int sed_GetFieldXoffset(sed, fieldno);
sed_type sed; the sed
int fieldno; the field number
Description

Thisroutine returns the value of the field’s xoffset. The xoffset measures the number
of record positions the field has been scrolled to the right. A value of O means that
the field has not been scrolled.

A field automatically scrolls when its merge length exceeds its displayed width and
an attempt is made to move the cursor past one of the field’s edges.

Return Value

Returns the value of the’ﬁeld’s xoffset.
See Also

sed_SetFieldWidth

Note

This routine is implemented as a macro.
Example

int xoff;

xoff = sed_GetFieldXoffset(sed, 0);

A-158 C-scape 4.0

sed GetFuncs Get the field’s field function

Synopsis
field_funcs_ptr sed_GetFuncs(sed, fieldno):
sed_type sed; the sed
int fieldno; the field number
Description

This routine gets the field function associated with the field.

Return Value

A pointer to the field function structure for the specified field.

See Also

menu_Printf, sed_SetFuncs

Note

This routine is implemented as a macro.

Function Reference A-159

sed_GetGridCol Get the field’s grid column number

Synopsis
int sed_GetGridCol (sed, fieldno):;
sed_type sed; the sed
int fieldno; the field number
Description

This routine determines the grid column number for field fieldno.

Each field has a position in the “grid.” The grid can be pictured as a two dimensional
array of field numbers. The field numbers are sorted by location and placed into
the grid when the menu is defined. The grid facilitates the operation of movement
functions such as sed_UpField and sed_LeftField. Each field has two grid coor-
dinates, grid row and grid column, that are used to find fields in the grid. Itis
possible to move to fields by grid position with sed_GotoGridField.

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. The grid column value for field 0 is 0. The
grid column value for field 5 is 2.

0 1 2

Return Value

The grid column number for the field.
See Also

sed_GetGridRow, sed_GotoGridField
Note

This routine is implemented as a macro.

A-160 C-scape 4.0

sed_GetGridField Get the field number at the grid position

Synopsis

int sed_GetGridField(sed, row, col);
sed_type sed; the sed
int row; the grid row
int col the grid col

Description

This routine determines the field number for grid position row, col.

Each field has a position in the “grid.” The grid can be pictured as atwo dimensional
array of field numbers. The field numbers are sorted by location and placed into
the grid when the menu is defined. The grid facilitates the operation of movement
functions such as sed_UpField and sed_LeftField. Each field has two grid coor-
dinates, grid row and grid column, that are used to find fields in the grid. It is
possible to move to fields by grid position with sed_GotoGridField.

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. The field number associated with grid position
(0, 0) is 0. The field number associated with grid position (1, 2) is 5.

0 1 2

Return Value

The field number for the grid position. Returns (-1) if there is no field at the specified
position.

See Also
sed_GetGridCol, sed_GetGridRow, sed_GotoGridField

Example
fieldno = sed_GetGridField(sed, 0, 0);

Function Reference A-161

sed_GetGridRow Get the field’s grid row number

Synopsis
int sed_GetGridRow(sed, fieldno):;
sed_type sed; the sed
int fieldno; the field number
Description

This routine determines the grid row number for field fieldno.

Each field has a position in the “grid.” The grid can be pictured as atwo dimensional
array of field numbers. The field numbers are sorted by location and placed into
the grid when the menu is defined. The grid facilitates the operation of movement
functions such as sed_UpField and sed_LeftField. Each field has two grid coor-
dinates, grid row and grid column, that are used to find fields in the grid. It is
possible to move to fields by grid position with sed_GotoGridField.

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. The grid row value for field 0 is 0. The grid
row value for field 5 is 1.

Return Value
The grid row number for the field.

See Also
sed_GetGridCol, sed_GetGridField, sed_GotoGridField
Example

int g_row;

g_row = sed_GetGridRow(sed, 1):

A-162 C-scape 4.0

sed_GetHeight - Get the sed’s height

Synopsis
int sed_GetHeight (sed) ;
sed_type sed; the sed

Description

This routine returns the height of the sed.

Return Value
Returns the height of the sed.

See Also
sed_GetWidth, sed_GetBorderHeight, sed_GetMenuHeight

Example

/* don’t let the sed get taller than 10 rows */

if (sed_GetHeight(sed) > 10) {
sed_SetHeight (sed, 10);

}

Function Reference A-163

sed_GetLabeI Get the value of the sed’s label

Synopsis
int sed_GetLabel (sed) ;
sed_type sed; the sed

Description
This routine returns the value of the sed’s label.

The label is an integer that gives a unique number to a sed. The label typically
specifies a chapter number for the help system.

The label is initially set to 0.
Return Value
The value of the sed’s label.

See Also
sed_SetLabel

Note

This routine is implemented as a macro.

Example
help_sShow(sed_GetLabel (sed), sed_GetFieldNo(sed) + 1);

A-164 C-scape 4.0

sed_GetMenu Get the sed’s menu

Synopsis

menu_type sed_GetMenu (sed) ;
sed_type sed; the sed

Description

This routine returns the menu from which the sed was created.
Return Value

Returns the menu associated with its argument.

See Also

menu_Open, sed_Open

Note

This routine is implemented as a macro.

Example
/* ... Add a field to the sed */

menu_Printf (sed_GetMenu (sed),
"@p[10,0] @E [#######] ", &x, &int_funcs);

Function Reference A-165

sed_GetMenuHeight Get the height of the sed’s menu

Synopsis

int sed_GetMenuHeight (sed);
sed_type sed; the sed

Description

This routine returns the number of rows in the menu associated with the sed.

Return Value

Returns the number of rows in the menu associated with the sed.

See Also
sed_GetHeight, sed_GetMenuWidth

Note

This routine is implemented as a macro.

A-166 C-scape 4.0

sed_GetMenuWidth Get the width of the sed’s menu

Synopsis

int sed_GetMenuWidth(sed);
sed_type sed; the sed

Description

This routine returns the number of columns in the menu associated with the sed.
The widest row in the menu determines this number.

Return Value

Returns the number of columns in the menu associated with the sed.

See Also
sed_GetWidth, sed_GetMenuHeight

Note

This routine is implemented as a macro.

Function Reference A-167

sed_GetMerge | Get the field’s merge

Synopsis
char *sed_GetMerge(sed, fieldno);
sed_type sed; the sed
int fieldno; field number
Description

This routine returns the merge of the field specified by the field number fieldno. A
merge is the string containing the entire contents of the field, both the writeable and
nonwriteable positions.

You should copy the merge into a buffer before you use it. The contents of the
actual merge should not be altered.

Return Value

Returns a pointer to the merge string of the specified field.

See Also
sed_GetCurrMerge, sed_GetRecord, sed_GetScratchPad
Note
This routine is implemented as a macro.
Example
int £1d = 0;
char buffer[101]; /* make sure this is long enough */

strepy (buffer, sed_GetMerge(sed, f£14));

A-168 C-scape 4.0

sed_GetMer geLen Get the length of the field’s merge

Synopsis
int sed_GetMergelen(sed, fieldno);
sed_type sed; the sed
int fieldno; field number
Description

This routine returns the length of the merge string of field fieldno. The merge
consists of both the nonwriteable and writeable positions in the field.

Return Value
Returns the length of the specified field’s merge string.

See Also
sed_GetMerge
Note

This routine is implemented as a macro.

Example

int mlen;

mlen = sed_GetMergelen(sed, 2);

Function Reference A-169

sed_GetMergePos Get the current position in the merge

Synopsis
int sed_GetMergePos (sed) ;

sed_type sed; the sed
Description

This routine returns the current position in the record. Note that the merge position
is calculated using both the writeable and nonwriteable positions.

Return Value
Returns the current position in the merge.

See Also
sed_GetRecordPos

Note

This routine is implemented as a macro.

Example

int pos;

pos = sed_GetMergePos (sed) ;

A-170 C-scape 4.0

sed_GetNameNo Get the field number associated with a name

Synopsis

int sed_GetNameNo(sed, name);
sed_type sed; the sed
char *name; the name

Description

This routine returns the field number of the first field with name name. If no field
has the given name, it returns -1. name must match a field name exactly.

Return Value

Returns the field number of the field with the given name or -1 if no field has the
given name.

See Also

menu_Printf, sed_GetFieldName, sed_GotoNameField, sed_SetFieldName,
sed_GetNameVar

Note

This routine is implemented as a macro.

Example

int fieldno;

fieldno = sed_GetNameNo(sed, "total");

Function Reference A-171

sed_GetNameVar Get the field variable associated with a name

Synopsis

VOID *sed_GetNameVar (sed, name);
sed_type sed; the sed
char *name; field name

Description

This routine returns the pointer to the variable for the field with name name. If no
field has the given name, it returns NULL. name must match a field name exactly.

This routine is commonly used with screen files.

Return Value

This routine returns a pointer to the variable for the field with field number fieldno.
The variable is a VOID * pointer. Use a type cast to convert it to another type when
necessary. If it cannot find the field name it returns NULL.

See Also
sed_GetVar, sed_GetNameNo

Example
VA

/* Load screen from file, allocate field variables */
sed = sfile_loadSed(sfile, "screenl", SED_ALLOC);

/* Set field variables */
strcpy((char *) sed_GetNameVar (sed, "animal"), animal);

VAV

A-172 C-scape 4.0

sed_GetPosition Get the sed’s position

Synopsis
void sed_GetPosition(sed, row, col);

sed_type sed; the sed

int *row, *col; the position of the sed
Description

This routine returns the position of the upper left hand corner of the sed into the
locations pointed to by row and col. If there is a border attached to the sed and its
upper left hand comer is above that of the sed, sed_GetPosition returns the position
of the border.

Return Value

There is no return value.

See Also

sed_SetPosition, sed_GetCorners

Example

int row, col;

sed_GetPosition(sed, &row, &col);

Function Reference A-173

sed_GetRecord Get the field’s record

Synopsis
char *sed_GetRecord(sed, fieldno);
sed_type sed; the sed
int fieldno; field number
Description

This routine returns the record of the field specified by the field number fieldno. A
record consists of only the writeable positions in the field.

Return Value

Returns a pointer to the record string of the specified field.
See Also

sed_SetRecord, sed_GetCurrRecord, sed_GetMerge
Note

This routine is implemented as a macro.

Example

void string_sexit(sed, fieldno)

sed_type sed;

int fieldno:
/*

Copy the record string back into the native string.
*/

strepy ((char *) sed_GetVar(sed, fieldno),
sed_GetRecord(sed, fieldno)):

A-174 C-scape 4.0

sed_GetRecordLen Get the length of the field’s record

Synopsis

int sed_GetRecordLen(sed, fieldno);
sed_type sed; the sed
int fieldno; field number

Description

This routine returns the length of the record string of the field specified by field
number fieldno. A record consists of only the writeable positions in the field.

Return Value

Returns the length of the specified field’s record string.
See Also

sed_GetRecord, sed_GetCurrRecordLen

Note

This routine is implemented as a macro.

Example

void long_senter(sed, fieldno)
sed_type sed;
int fieldno;
/*
Convert native type to string for record.
*/
{

char *s;

s = sed_GetScratchPad(sed);
sprintf(s, "%1d", *((long *) sed_GetvVar(sed, fieldno)));

strright (s, sed_GetRecordLen(sed, fieldno));
sed_SetRecord(sed, s, fieldno);

Function Reference A-175

sed_GetRecordPos Get the current position in the record

Synopsis
int sed_GetRecordPos (sed) ;

sed_type sed; the sed
Description

This routine returns the current position in the current record. Note that the record
position is calculated using only the writeable positions and that the record starts
with position 0.

Return Value

Returns the current position in the current record.

See Also

sed_DecChar, sed_GoEnd, sed_GoHome, sed_GotoChar, sed_IncChar
Note

This routine is implemented as a macro.

Example
if (sed_GetRecordPos(sed) > 2) {
/* .. */

A-176 C-scape 4.0

sed_GetScratchPad Get the sed’s scratch pad

Synopsis

char *sed_GetScratchPad(sed) ;
sed_type sed; the sed;

Description

This routine returns a pointer to the sed’s scratch pad. The scratch pad is a buffer
used by menu_Printf to create fields. Its length exceeds the length of the sed’s
longest field. The scratch pad is used for field operations where a buffer whose size
depends on the field’s size is necessary. For example, consider a field senter
function that centers a string within the field’s record:
void center_senter(sed, fld)

sed_type sed;

int £14;
{

/* copy field variable into scratch pad */

strcpy (sed_GetScratchPad(sed), (char *) sed_GetVar(sed, fld));

/* center the string within the scratch pad */
strcenter (sed_GetScratchPad(sed), sed_GetRecordLen(sed, fl1l4));

/* copy the centered string into the field'’'s record */
sed_SetRecord(sed, sed_GetScratchPad(sed), fld);
}

The above routine will work regardless of the length of the field.

You should only use the scratch pad should to hold data temporarily as it is used
by other routines, especially field functions.

Return Value

Returns a pointer to the scratch pad buffer.
See Also

sed_GetScratchSize

Function Reference A-177

Note
This routine is implemented as a macro.

Example

void long_senter (sed, fieldno)
sed_type sed;
int fieldno:
/*
Convert native type to string for record.
*x/
{

char *s;

/* hold string in scratch pad */
S = sed_GetScratchPad(sed);

sprintf(s, “%1l4-", *{(long *) sed_GetVar (sed, fieldno)));

strright (s, sed_GetRecordLen (sed, fieldno));
sed_SetRecord(sed, s, fieldno);

A-178 C-scape 4.0

sed_GetScratchSize Get the size of the sed’s scratch pad

Synopsis
int sed_GetScratchSize(sed);

sed_type sed; the sed
Description

This routine returns the length of the sed’s scratch pad buffer in characters. The
length of the scratch pad exceeds the length of the sed’s longest field.

Return Value

Returns the length of the sed’s scratch pad.
See Also

sed_GetScratchPad

Note

This routine is implemented as a macro.

Function Reference A-179

sed_GetSize Get the sed’s dimensions

Synopsis

void sed_GetSize(sed, height, width):;
sed_type sed; the sed
int *height; the height of the sed
int *width; the width of the sed

Description

This routine returns the size of the sed in the locations pointed to by height and
width.

Return Value

There is no return value.

See Also

sed_GetHeight, sed_GetWidth
Example

int hgt, wid;

sed_GetSize(sed, &hgt, &wid);

A-180 C-scape 4.0

sed_GetTB Get the sed’s text buffer

Synopsis

unsigned int sed_GetTB(sed, buffer, len, mode);
sed_type sed; the sed
char *buffer; buffer to copy text into
unsigned int len; length of the buffer
int mode; newline mode

Description

This routine copies text from the sed’s text buffer into buffer. It copies up to len
characters starting at the current text cursor position. The text cursor is advanced
by the number of characters read. This makes it possible to call sed_GetTB
repeatedly to read large text buffers.

sed_RewindTB can be called prior to calling sed_GetTB to move the text cursor
to the start of the text buffer.

mode determines how the newlines are treated. It can have one of the following
values:

TED_HARD Get the text as it appears on the display with *\n’ characters at the
end of each line.

TED_SOFT Get the text as it is stored in the text buffer with *\n’ characters only
where they actually exist.

A terminating ’\O’ is placed in buffer after the last character read. The length of
buffer should be at least one longer than len in order to accommodate the terminating
O’

Return Value

Returns the number of characters actually copied into the text buffer. This number
can be less than len if sed_GetTB reaches the end of the text buffer.

Note

This routine is implemented as a macro.

Function Reference A-181

See Also
sed_SetTB, sed_RewindTB

Example

char buffer [BUFLEN];
unsigned count;

/* read the text buffer and print it out */
sed_RewindTB(sed) ;

do { :
count = sed_GetTB(sed, buffer, BUFLEN, TED_SOFT):;
printf (buffer);

} while (count == BUFLEN) ;

A-182 C-scape 4.0

sed_GetVar \ Get the field’s variable

Synopsis
VOID *sed_GetVar (sed, fieldno);
sed_type sed; the sed
int fieldno; field number
Description

This routine returns the pointer to the variable for field fieldno. The pointer is bound
to the field during the calls to menu_Printf. '

Return Value

This routine returns a pointer to the variable for the field with field number fieldno.
The variable is a VOID * pointer. Use a type cast to convert it to another type when
necessary.

See Also
sed_GetCurrVar, sed_GetNameVar
Note

This routine is implemented as a macro.

Example

void money_senter (sed, fieldno)
sed_type sed;
int fieldno;
/*
Convert native type to string for record.
*/
{

char *s;

s = sed_GetScratchPad(sed) ;

sprintf(s, "%1d", *((long *) sed_GetVar(sed, fieldno))):
strright (s, sed_GetRecordLen(sed, fieldno)):;
sed_SetRecord(sed, strdecp(s, DECP), fieldno);

Function Reference A-183

sed_GetVarSize Get the field’s variable size

Synopsis
SIZE_ T sed_GetVarSize(sed, fieldno);
sed_type sed; the sed
int fieldno; the field number
Description

This routine returns the size of the field’s variable. This size is defined in the field
function structure.

The field’s variable size is used by sleds (scrolling seds) and screen files to allocate
storage space for field variables.

Return Value
Returns the size of the field’s variable or one of the special values described above.

Note that SIZE_T is equivalent to size_t on ANSI C compilers and equivalent to
unsigned int on older compilers..

Note

This routine is implemented as a macro.

A-184 C-scape 4.0

sed_GetWidth Get the sed’s width

Synopsis
int sed_GetWidth(sed):
sed_type sed; the sed

Description

This routine returns the width of the sed.

Return Value

Returns the width of the sed.

See Also

sed_GetHeight, sed_GetBorderWidth, sed_GetMenuWidth

Example

if (sed_GetWidth(sed) > 40) {
sed_SetWidth(sed, 40);
}

Function Reference A-185

sed GetXoffset Get the sed’s xoffset

Synopsis

int sed_GetXoffset (sed);
sed_type sed; the sed

Description

This routine returns the value of the sed’s xoffset. The xoffset measures the number
of columns the sed has been scrolled to the right. A value of 0 implies that the sed
has not been scrolled horizontally.

Return Value

Returns the value of the xoffset; 0 if the sed has not been scrolled horizontally.
See Also

sed_GetYoffset

Note

This routine is implemented as a macro.

Example

switch(kb_Read()) {

case CTRL_LEFT:
sed_ScrollLeft (sed, sed_GetXoffset (sed));
break;

VA

A-186 C-scape 4.0

sed_GetYoffset Get the sed’s yoffset

Synopsis

int sed_GetYoffset(sed);
sed_type sed; the sed

Description

This routine returns the value of the sed’s yoffset. The yoffset measures the number
of rows the sed has been scrolled down. A value of 0 implies that the sed has not
been scrolled vertically.

Return Value

Returns the value of the yoffset; O if the sed has not been scrolled vertically.
See Also

sed_GetXoffset

Note

This routine is implemented as a macro.

Example

switch(kb_Read()) {

case HOME:
sed_ScrollUp(sed, sed_GetYoffset(sed));
break;

VA ¥

Function Reference A-187

sed_Go Activate a sed

Synopsis
int sed_Go(sed);

sed_type sed; the sed
Description

This routine gets input from the user until the user decides to exit. It does not repaint
the sed but it does highlight the current field. It returns the value of the baton. It
saves the cursor type upon entry and restores it upon exit.

In detail, the sed_Go routine does the following. sed_Go first checks if the current
field is protected. If it is protected, it makes the next unprotected field the current
field. Next it saves the cursor type, sets the sed’s active mode, and highlights the
current field. Then sed_Go calls the fenter function for the current field. It then
calls fkey function repeatedly until the fkey function calls sed_ToggleExit. After
fkey calls sed_ToggleExit, sed_Go calls the fexit function for the current field. If
the fexit function returns FALSE, sed_Go continues calling the fkey function.
Otherwise, if the fexit function returns TRUE, sed_Go calls the sexit function for
each field in the sed, resets the active mode, unhighlights the current field, restores
the cursor type, and returns the value of the baton.

sed_Go restores the cursor type when it passes control from one field to another.

If a sed contains no fields or if it finds no unprotected fields, sed_Go returns
immediately.

If you set a nextwin with sed_SetNextWin, sed_Go will pass control to it instead
of returning.

For an explanation and possible uses of the baton, see sed_SetBaton.
See sed_ProtectField for an explanation of protected fields.
See sed_IsActive for an explanation of active seds.

Refer to the chapter “Seds” in the C-scape Manual for more information.

A-188 C-scape 4.0

Return Value

Returns the value of the baton which is normally the field number plus one from
which the user exited the sed or 0 (zero) if the user presses (Esc).

Note
This routine is implemented as a macro.

See Also
menu_Open, menu_Printf, sed_Open, sed_Repaint, sed_Close, sed_GetBa-
ton, sed_IsActive, sed_ProtectField, sed_SetBaton, sed_SetNextWin,
sed_ToggleExit
Example

VAN

sed = sed_Open (menu) ;

sed_SetColors(sed, 0x07, 0x07, 0x70);
sed_SetPosition(sed, 8, 19);

sed_Repaint (sed) ;
ret = sed_Go(sed);
sed_Pop (sed) ;

VAR Y

Function Reference A-189

sed_GoEnd Go to the end of the current field

Synopsis
void sed_GoEnd(sed);

sed_type sed; the sed

Description

This routine moves the cursor to the position at the end of the record string in the
current field.

Return Value
There is no return value.

See Also
sed_DecChar, sed_GoHome, sed_GotoChar, sed_IncChar

Example

void string_fkey(sed)
sed_type sed;
{

int scancode;

switch (scancode = kb_Read()) {

case HOME:
/* move the cursor to the beginning of the field */
sed_GoHome (sed) ;
break;

case END:
/* move the cursor to the end of the record string */
sed_GoEnd(sed) ;
break;

/* L. *F/

A-190 C-scape 4.0

sed_GoHome Go to the start of the current field

Synopsis
void sed_GoHome (sed) ;

sed_type sed; the sed
Description

This routine moves the cursor to the first position in the current field.

Return Value

There is no return value.

See Also
sed_DecChar, sed_GoEnd, sed_GotoChar, sed_IncChar

Example

void string_fkey(sed)
sed_type sed;
{

int scancode;

switch (scancode = kb_Read()) {

case HOME:
/* move the cursor to the beginning of the field */
sed_GoHome (sed) ;
break;

case END:
/* move the cursor to the end of the record string */
sed_GoEnd (sed) ;
break;

... r/

Function Reference A-191

sed_GotoChar Go to a position in the current field

Synopsis
void sed_GotoChar (sed, position);
sed_type sed; the sed
int position; the new position
Description

This routine moves the cursor to the specified record position in the current field.
Return Value

There is no return value.

See Also

sed_DecChar, sed_GoEnd, sed_GoHome, sed_IncChar

Example

void phone_fenter (sed)
sed_type sed;
/*
Move the cursor past the area code...
*/
{
sed_GotoChar (sed, 3);
}

A-192 C-scape 4.0

sed_GotoField Go to a specific field

Synopsis
int sed_GotoField(sed, fieldno):
sed_type sed; the sed
int fieldno; the field number
Description

This routine makes the field fieldno the new current field. If it is called within an
active sed it highlights the new field and moves the cursor to the first writeable
position (if there is one) of the new field.

In detail, sed_GotoField does the following: If the sed is in active mode, it calls
the fexit function for the current field. If fexit returns FALSE, it does nothing and
returns SED_INVALID. If the new field is protected the routine does nothing and
returns SED_STUCK. Otherwise, field fieldno becomes the new current field.
Before sed_GotoField enters the new field, it calls the fenter function for that field.

You must not call this routine in either a field’s fenter or fexit routines.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_GotoField does not call the fexit and fenter functions.

Return Value
Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if the new field is protected.

See Also
sed_ProtectField

Example

switch(ascii(kb_Read())) {
case ‘'0’:
sed_GotoField(sed, 0);
break;
case ’'1l’:
sed_GotoField(sed, 1);
break;

Function Reference A-193

sed_GotoFirstField Go to the first field

Synopsis

int sed_GotoFirstField(sed);
sed_type sed; the sed

Description

This routine makes the first field in the sed the new current field. If it is called
within an active sed it highlights the new field and moves the cursor to the first
writeable position (if there is one) of the new field.

In detail, sed_GotoFirstField does the following: If the sed is in active mode it
calls the fexit function for the current field. If fexit returns FALSE, this routine
does nothing and returns SED_INVALID. If the current field is the first unprotected
field the routine does nothing and returns SED_STUCK. Otherwise, the first
unprotected field becomes the new current field. Before it enters the new field,
sed_GotoFirstField calls the fenter function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_GotoFirstField does not call the fexit and fenter functions.

You must not call this routine in either a field’s fenter or fexit routines.

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. A “p” following the number represents a
protected field. Calling sed_GotoFirstField from field 4 would make field 1 the

new current field (field O is protected).

Op 1 2

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it could not find an unprotected new field to
which it can move.

A-194 C-scape 4.0

See Also
sed_GotoLastField, sed_ProtectField

Example
switch(kb_Read())
case DOWN:
if (sed_IncField(sed) == SED_STUCK) {

sed_GotoFirstField(sed);
}
break;
/* L. %/

Function Reference

A-195

sed_GotoGridField Go to a field using its grid address

Synopsis

int sed _GotoGridField(sed, row, col);
sed_type sed; the sed
int row; the grid row
int col; the grid column

Description

This routine takes the field specified by the grid coordinates and makes its the new
current field. If it is called within an active sed it highlights the new field and moves
the cursor to the first writeable position (if there is one) of the new field.

In detail, sed_GotoGridField does the following: If the sed is in active mode it
calls the fexit function for the current field. If fexit returns FALSE, this routine
does nothing and returns SED_INVALID. If the specified field is protected or if
the row and column do not specify a valid field the routine does nothing and returns
SED_STUCK. Otherwise, the specified field becomes the new current field. Before
sed_GotoGridField it enters the new field, it calls the fenter function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_GotoGridField does not call the fexit and fenter functions are not called.

Each field is assigned a position in the “grid.” The grid can be pictured as a two
dimensional array of field numbers. The field numbers are sorted by location and
placed into the grid when the menu is defined. The grid is used to facilitate the
operation of movement functions such as sed_UpField and sed_LeftField. Each
field has two grid coordinates, grid row and grid column, that are used to find fields
in the grid. It is possible to determine a field’s grid coordinates using sed_Get-
GridCol and sed_GetGridRow.

You must not call this routine in either a field’s fenter or fexit routines.

A-196 C-scape 4.0

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. sed_GotoGridField(sed, 1, 1) would make
field 4 the new current field.

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it could not find an unprotected new field to
which it can move.

See Also
sed_GetGridCol, sed_GetGridField, sed_GetGridRow

Example
switch (kb_Read()) {
case HOME:
sed_GotoGridField(sed, 0, 0);
break;
/* oLl */

Function Reference A-197

sed_GotoLastField Go to the last field

Synopsis
int sed_GotoLastField(sed) ;
sed_type sed; the sed

Description

This routine makes the last field in the sed the new current field. If it is called within
an active sed it highlights the new field and moves the cursor to the first writeable
position (if there is one) of the new field.

In detail, sed_GotoLastField does the following: If the sed is in active mode it
calls the fexit function for the current field. If fexit returns FALSE, it does nothing
and returns SED_INVALID. If the current field is the last unprotected field the
routine does nothing and returns SED_STUCK. Otherwise, the last unprotected
field becomes the new current field. Before it enters the new field, it calls the fenter
function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_GotoLastField does not call the fexit and fenter functions.

You must not call this routine in either a field’s fenter or fexit routines.

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. A “p” following the number represents a
protected field. Calling sed_GotoLastField from field 4 would make field 7 the

new current field (field 8 is protected).

0 1 2
3 4 5
6 7 8p

A-198 C-scape 4.0

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it could not find an unprotected new field to
which it can move.

See Also
sed_GotoFirstField, sed_ProtectField

Example
switch(kb_Read()) {
case UP:
if (sed_DecField(sed) == SED_STUCK) {

sed_GotoLastField(sed);

}
break;
VA V4

Function Reference A-199

sed_GotoNameField Go to a field using its name

Synopsis
int sed_GotoNameField(sed, name):
sed_type sed; the sed
char *name; the field name
Description

This routine makes the field with name name the new current field. If it is called
within an active sed it highlights the new field and moves the cursor to the first
writeable position (if there is one) of the new field.

In detail, sed_GotoNameField does the following: If the sed is in active mode it
calls the fexit function for the current field. If fexit returns FALSE, it does nothing
and returns SED_INVALID. If the new field is protected or if there is no field with
the name name the routine does nothing and returns SED_STUCK. Otherwise, the
routine changes the current field to the new field. Before it enters the new field, it
calls the fenter function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_GotoNameField does not call the fexit and fenter functions. You must not
call this routine in either a field’s fenter or fexit routines.

Any field may be given a name. A name is a character string used to identify the
field. A field may be given a name when it is created with menu_Printf or it may
be assigned one with sed_SetFieldName. Itis possible to determine a field’s name
using sed_GetFieldName.

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it could not find an unprotected field with the
given name. name must match the field’s name exactly.

See Also

menu_Printf, sed_SetFieldName

Example
sed_GotoNameField(sed, "Total");

A-200 C-scape 4.0

sed_IncChar Move to the next character in a field

Synopsis
boolean sed_IncChar (sed);

sed_type sed; the sed
Description

This routine moves the cursor to the next character in afield. If the cursor is already
at the last position in the field, the routine does nothing.

Return Value

This routine returns TRUE if it succeeded in moving the cursor, otherwise it returns
FALSE.

See Also

sed_GetRecordPos, sed_GetMergePos, sed_GoEnd, sed_GoHome, sed_Go-
toChar, sed_DecChar

Example

void string fkey(sed)
sed_type sed;
{

int scancode;

switch (scancode = kb_Read()) {

case LEFT:
/* move the cursor backwards if the left arrow is pressed */
sed_DecChar (sed) ;
break;

case RIGHT:
/* move the cursor forwards if the right arrow is pressed */
sed_IncChar (sed);
break;

*_... */

Function Reference A-201

sed_IncField | Go to the next field

Synopsis
int sed_IncField(sed);

sed_type sed; the sed
Description

This routine takes the field after the current field and makes it the new current field.
If it is called within an active sed it highlights the new field and moves the cursor
to the first writeable position (if there is one) of the new field.

In detail, sed_IncField does the following. If the sed is in active mode, it calls the
fexit function for the current field. Iffexit returns FALSE, this routine does nothing
and returns SED_INVALID. If the current field is the last unprotected field the
routine does nothing and returns SED_STUCK. Otherwise, the next field becomes
the new current field. Before it enters the new field, sed_IncField calls the fenter
function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_IncField does not call the fexit and fenter functions. ‘

You must not call this routine in either a field’s fenter or fexit routines.

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. A “p” following the number represents a
protected field. Calling sed_IncField from field 4 would make field 5 the new
current field. Calling sed_IncField from field 1 would make field 3 the new current
field (field 2 is protected).

0 1 2p
4 5
6 8

A-202 C-scape 4.0

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it could not find an unprotected new field to
which it can move.

See Also
sed_GetFieldNo, sed_GotoField, sed_DecField, sed_ProtectField

Example

boolean inter_field(sed, scancode)
sed_type sed;
int scancode;

switch (scancode) {

/* ... */

case UP:
sed_DecField(sed);
return (TRUE) ;

case DOWN:
sed_IncField(sed);
return (TRUE) ;

default:
break;

}

return (FALSE) ;

Function Reference A-203

sed_InsertRows Insert rows in a sed

Synopsis
boolean sed_InsertRows (sed, row, count);
sed_type sed; the sed
int row; row to insert at
int count; number of rows to insert
Description

This routine inserts count rows from the sed starting at menu row row. The new
rows are blank and contain no text or fields.

Return Value

Returns TRUE if successful and FALSE if unable to insert the rows.
See Also

sed_DeleteRows

Example

sed_InsertRows (sed, 2, 2);

A-204 C-scape 4.0

sed_IsActive Check if the sed is in active mode

Synopsis

boolean sed_IsActive(sed);
sed_type sed; the sed

Description

This routine determines if the sed is in active mode. The active mode is setto TRUE
upon entering sed_Go and set back to FALSE upon leaving sed_Go.

When the sed is active, the field movement functions (sed_IncField, etc.) call the
fenter and fexit functions, highlight the current field, and move the cursor.

When the sed is inactive, the field movement functions skip the fenter and fexit
functions, paint the current field in its regular color, and ignore the cursor.

Return Value
Returns TRUE if the sed is in active mode and FALSE otherwise.

See Also
sed_Go
Note
This routine is implemented as a macro.
Example
if (sed_IsActive(sed)) {
VA

Function Reference A-205

sed_IsEnd Check if the cursor is at the end of a field

Synopsis
boolean sed_IsEnd(sed);

sed_type sed; the sed
Description

This routine determines if the current record position is at the end of the current
field.

Return Value

Returns a boolean value. The value is TRUE if the current record position is the
end of the current field.

See Also
sed_IsHome
Note

This routine is implemented as a macro.

Example
if (sed_IsEnd(sed)) {
/* .. */

A-206 C-scape 4.0

sed_IsFieldName Check a field’s name

Synopsis
char *sed_IsFieldName (sed, £fld, name);
sed_type sed; the sed
int f£14; the field number
char *name; the name of the field
Description

This function checks if the field fId in the sed sed has the name name. If the so, the
function returns TRUE; otherwise, FALSE.

Any field may be given a name. A name is a character string used to identify the
field. A field may be given a name when it is created with menu_Printf or it may
be assigned one with sed_SetFieldName.

Return Value

Returns TRUE if field fld has the name name; otherwise, FALSE.

See Also

menu_Printf, sed_GetNameNo, sed_GotoNameField, sed_SetFieldName

Example
if (sed_IsFieldName (sed, sed_GetFieldNo(sed), "total")) {
/* current field is the "total" field */
/* ... %/

Function Reference A-207

sed_lsHome Check if the cursor is at the start of a field

Synopsis
boolean sed_IsHome (sed);

sed_type sed; the sed
Description

This routine determines if the current record position is at the start of the current
field.

Return Value

Returns a boolean value. The value is TRUE if the current record position is the
start of the current field.

See Also

sed_IsEnd

Note

This routine is implemented as a macro.

Example

if (sed_IsHome(sed)) {
/* ... */

A-208 C-scape 4.0

sed_IsMarkedField Check if the field is marked

Synopsis
boolean sed_IsMarkedField(sed, fieldno);
sed_type sed; the sed
int fieldno; the fieldno
Description

This routine determines if field fieldno has been marked with sed_MarkField.

Return Value
Returns TRUE if the specified field is marked and FALSE otherwise.

See Also
sed_MarkField, sed_UnMarkField
Note
This routine is implemented as a macro.
Example
if (sed_IsMarkedField(sed, 0)) {
VA Y §

Function Reference A-209

sed_lIsProtectedField Check if the field is protected

Synopsis
boolean sed_IsProtectedField(sed, fieldno);
sed_type sed; the sed
int fieldno; the fieldno
Description

This routine determines if field fieldno is protected.
Return Value
Returns TRUE if the field is protected and FALSE otherwise.

See Also
menu_Printf, sed_ProtectField, sed_UnProtectField

Note

This routine is implemented as a macro.

Example
if (sed_IsProtectedField(sed, 2)) {
VAV

A-210 C-scape 4.0

sed_LeftField Move left a field

Synopsis
int sed_LeftField(sed);

sed_type sed; the sed
Description

This routine takes the field to the left of current field and makes it the new current
field. If it is called within an active sed it highlights the new field and moves the
cursor to the first writeable position (if there is one) of the new field.

In detail, sed_LeftField does the following. If the sed is in active mode, it calls the
fexit function for the current field. If fexit returns FALSE, it does nothing and
returns SED_INVALID. If the current field is the left-most unprotected field the
routine does nothing and returns SED_STUCK. Otherwise, the field to the left
becomes the new current field. Before it enters the new field, sed_LeftField calls
the fenter function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_LeftField does not call the fexit and fenter functions.

You must not call this routine in either a field’s fenter or fexit routines.

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. A “p” following the number represents a
protected field. Calling sed_LeftField from field 4 would make field 3 the new
current field. Calling sed_LeftField from field 2 would make field O the new current
field (field 1 is protected).

0 Ip 2

Function Reference A-211

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it could not find an unprotected new field to
which it can move.

See Also

sed_UpField, sed_RightField, sed_DownField, sed_ProtectField
Note

This routine is implemented as a macro.

Example

switch (scancode) {
/* ... %/
case UP:
sed_UpField(sed);
return (TRUE) ;
case DOWN:
sed_DownField(sed);
return (TRUE) ;
case LEFT:
sed_LeftField(sed);
return (TRUE) ;
case RIGHT:
sed_RightField(sed);
return (TRUE) ;
/* L. */

A-212 ; C-scape 4.0

sed MarkField Mark a field

Synopsis

void sed_MarkField(sed, fieldno, reg, sel);
sed_type sed; the sed
int fieldno; the fieldno
byte reg:; regular color of the field
byte sel; selected color of the field

Description

This routine marks field fieldno with the regular attribute reg. When the field is
selected, the field is colored with the selected attribute sel.

Return Value

There is no return value.

Note

This routine is implemented as a macro.
See Also

sed_IsMarked, sed_UnMarkField

Example

sed_MarkField(sed, 4, 0x02, 0x20);
sed_UpdateField(sed, 4);

Function Reference A-213

sed MoveField Move a field

Synopsis
void sed_MoveField(sed, fieldno, row, col);
sed_type sed; the sed
int fieldno; the field number
int row; new field row
int col; new field column
Description

This routine moves a field to a new position in the sed’s menu. The new location
is given in menu coordinates.

sed_MoveField does not repaint the sed to show the field in its new position. Use
either sed_Repaint or sed_Update for this purpose.

Return Value

There is no return value.
See Also
sed_SwapFields
Example

/* Move field 1 to a new location */

sed_MoveField(sed, 1, rand() % disp_GetHeight (),
rand() % disp_GetWidth());

A-214 C-scape 4.0

sed_Ok Check if the sed is valid

Synopsis

boolean sed_Ok(sed);

sed_type sed; the sed
Description

This routine checks if a sed is valid. It is not for checking if a sed has been closed,
but rather to ascertain if a particular sed’s integrity has been violated.

Return Value
Returns TRUE if the sed is intact; FALSE, otherwise.

Example

if (!sed_Ok(sed)) {
exit (1) ;
}

Function Reference A-215

sed_Open Create a new sed object

Synopsis
sed_type sed_Open (menu) ;

menu_type menu; the menu
Description

This routine creates a new sed object and returns a handle to it. If there is notenough
memory to open a new sed object, the routine returns NULL.

The sed object can be considered the dynamic portion of a screen since it contains
all the dynamic information of a screen such as positioning, field contents, etc.

You can create only one sed from a particular menu.

Return Value

Returns a handle to the new sed object. A NULL pointer value indicates insufficient
memory.

Note
This routine is implemented as a macro.
See Also

menu_Open, sed_Close

A-216 C-scape 4.0

Example

menu_type menu;
sed_type sed;

menu = menu_Open() ;
menu_Printf (menu, "Yodel Ho, kidz!");
menu_Flush (menu) ;

if ((sed = sed_Open(menu)) == NULL) {
menu_Destroy (menu) ;
return(0) ;

}

VA

sed_Close(sed);

Function Reference A-217

sed_Overwrite Overwrite the current character

Synopsis
char sed_Overwrite(sed, c¢);

sed_type sed; the sed

int c¢; new character to overwrite
Description

This routine overwrites the character in the current field at the current position with
character c.

In the diagram below, the field is enclosed in a box and the underscore represents
the current cursor position.

sed_Overwrite(sed, 'l’);
has the following effect:

before hexlo mom

after: --—--> returns('x’)

Return Value

Returns the value of the character over which it wrote.

See Also

sed_PullLeft, sed_PullRight, sed_PushLeft, sed_PushRight

A-218 C-scape 4.0

Example

void string_fkey(sed)
sed_type sed;

{
int scancode, key;

scancode = kb_Read():;
switch(scancode) {

/* o0 */
default:
key = ascii(scancode);
if (isprint(key)) {
if (kb_Insert()) ({
sed_PushRight (sed, key);
}
else {
sed_Overwrite(sed, key);
}
sed_IncChar (sed);
}

break;

Function Reference

A-219

sed_PageDown Scroll the sed down one page

Synopsis
int sed_PageDown (sed) ;

sed_type sed; the sed
Description

This routine scrolls the sed down one page, if possible. If the scroll is successful
the routine attempts to move to a field on the new page that corresponds to the
position of the current field in the current page.

If it is not possible to move down a page the routine returns SED_STUCK.

If the sed is in active mode, sed_PageDown calls the fexit function for the current
field. Iffexit returns FALSE, this routine does nothing and returns SED_INVALID.
If there are no fields on the new page, the current field remains the same (though it
is not visible). Otherwise, the routine changes the current field to the new field.
Before it enters the new field, it calls the fenter function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_PageDown does not call the fexit and fenter functions.

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it is not possible to move down a page.

See Also
sed_PageLeft, sed_PageRight, sed_PageUp

- Example

switch (scancode) {

case PGUP:
sed_PageUp (sed) ;
return (TRUE) ;

case PGDN:
sed_PageDown (sed) ;
return (TRUE) ;

VAR

A-220 C-scape 4.0

sed_PageLeft Scroll the sed left one page

Synopsis
int sed_PageLeft (sed);

sed_type sed; the sed
Description

This routine scrolls the sed left one page, if possible. If the scroll is successful the
routine attempts to move to a field on the new page that corresponds to the position
of the current field in the current page.

If it is not possible to move left a page the routine returns SED_STUCK.

If the sed is in active mode, sed_PageLeft calls the fexit function for the current
field. If fexit returns FALSE, this routine does nothing and returns SED_INVALID.
If there are no fields on the new page, the current field remains the same (though it
is not visible). Otherwise, the routine changes the current field to the new field.
Before it enters the new field, it calls the fenter function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_PageLeft does not call the fexit and fenter functions.

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it is not possible to move left a page.

See Also
sed_PageDown, sed_PageRight, sed_PageUp
Example

switch (scancode) {

case CTRL_LEFT:
sed_PageLeft (sed);
return (TRUE) ;

case CTRL_RIGHT:
sed_PageRight (sed) ;
return (TRUE) ;

VAV

Function Reference A-221

sed_PageRight Scroll the sed right one page

Synopsis
int sed_PageRight (sed);
sed_type sed; the sed

Description

This routine scrolls the sed left one page, if possible. If the scroll is successful the
routine attempts to move to a field on the new page that corresponds to the position
of the current field in the current page.

If it is not possible to move right a page the routine returns SED_STUCK.

If the sed is in active mode, sed_PageRight calls the fexit function for the current
field. Iffexit returns FALSE, this routine does nothing and returns SED_INVALID.
If there are no fields on the new page, the current field remains the same (though it
is not visible). Otherwise, the routine changes the current field to the new field.
Before it enters the new field, it calls the fenter function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_PageRight does not call the fexit and fenter functions.

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it is not possible to move right a page.

See Also
sed_PageDown, sed_PageLeft, sed_PageUp
Example

switch (scancode) ({

case CTRL_LEFT:
sed_PageLeft (sed) ;
return (TRUE) ;

case CTRL_RIGHT:
sed_PageRight (sed) ;
return (TRUE) ;

VA

A-222 C-scape 4.0

sed__PageUp Scroll the sed up one page

Synopsis
int sed_PageUp(sed);
sed_type sed; the sed

Description

This routine scrolls the sed up one page, if possible. If the scroll is successful the
routine attempts to move to a field on the new page that corresponds to the position
of the current field in the current page.

If it is not possible to move up a page the routine returns SED_STUCK.

If the sed is in active mode, sed_PageUp calls the fexit function for the current
field. Iffexit returns FALSE, this routine does nothing and returns SED_INVALID.
If there are no fields on the new page, the current field remains the same (though it
is not visible). Otherwise, the routine changes the current field to the new field.
Before it enters the new field, it calls the fenter function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_PageUp does not call the fexit and fenter functions.

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it is not possible to move up a page.

See Also
sed_PageDown, sed_PageLeft, sed_PageRight
Example

switch (scancode) {

case PGUP:
sed_PageUp (sed) ;
return (TRUE) ;

case PGDN:
sed_PageDown (sed) ;
return (TRUE) ;

/* ... */

Function Reference A-223

SEd__POp Fire a sed’s window

Synopsis
void sed_Pop (sed);
sed_type sed; the sed

Description

This routines removes a sed’s image from the display by firing its window. The
window manager repaints the windows that were obscured by the sed.

The sed and its window are not destroyed. To replace the sed onto the display call
sed_Repaint. To destroy the sed and its window call sed_Close.

Refer to the chapter “Seds” in the C-scape Manual for more information.
Return Value

There is no return value.

See Also

sed_Close, sed_Repaint

Note

This routine is implemented as a macro.

Example

VAT ¥
sed_Repaint (sed) ;
sed_Go (sed) ;

sed_Pop (sed) ;
VAN 4

A-224 C-scape 4.0

sed_ProtectField Protect a field

Synopsis

void sed_ProtectField(sed, fieldno);
sed_type sed; the sed
int fieldno; the field number

Description

This routine “protects” a field. The user cannot enter a protected field. The field
movement commands, such as sed_DecField or sed_IncField, skip over protected
fields.

Protected fields are useful for fields you do not want the user to edit.
Fields can be unprotected with the sed_UnProtectField command.
Return Value

There is no return value.

See Also

menu_Printf, sed_UnProtectField, sed_IsProtectedField

Note

This routine is implemented as a macro.

Example
sed_ProtectField(sed, 0);

Function Reference A-225

sed_PullLeft Delete a character, pulling left

Synopsis
char sed_PullLeft (sed);
sed_type sed; the sed

Description

This routine deletes the current character in the current field, and pulls the characters
to the left of the deleted character over to fill the gap.

In the diagram below, the field is enclosed in a box and the underscore represents
the current cursor position.

sed_PullLeft (sed);

has the following effect:

after: hello mom ---=-> returns(’'x’)
Return Value
The character that was deleted.
See Also
sed_Overwrite, sed_PullRight, sed_PushLeft, sed_PushRight

Example
sed_PullLeft (sed);

A-226 C-scape 4.0

sed_P ullRight Delete a character, pulling right

Synopsis

char sed_PullRight (sed);
sed_type sed; the sed

Description

This routine deletes the current character in the current field, and pulls the characters
to the right of the deleted character over to fill the gap.

In the diagram below, the field is enclosed in a box and the underscore represents
the current cursor position.

sed_PullRight (sed) ;

has the following effect:

after: hello mom ----> returns (’'x’)

Return Value
The character that was deleted.

See Also
sed_Overwrite, sed_PullLeft, sed_PushLeft, sed_PushRight

Example

/* string_fkey ... */
scancode = kb_Read();

switch(scancode) {

case BACKSPACE:
if (sed_DecChar (sed))

sed_PullRight (sed) ;

break;

case DEL:
sed_PullRight (sed);
break;

Function Reference A-227

sed_PushlLeft Insert a character, pushing left

Synopsis
char sed_PushLeft(sed, c¢);

sed_type sed; the sed

int c; the character to insert
Description

This routine inserts the given character into the current field’s record, and displaces
characters to the left to accommodate the inserted character.

In the diagram below, the field is enclosed in a box and the underscore represents
the current cursor position.

sed_PushlLeft (sed, ’'e’);

has the following effect:

before: g hllo mom

after: ----> returns ('q’)

Return Value

Returns the character that falls off the left edge. If no character falls off, "\0’ is
returned.

See Also
sed_Overwrite, sed_PullLeft, sed_PullRight, sed_PushRight

Example
sed_PushlLeft (sed, key):

A-228 C-scape 4.0

sed_PushRight Insert a character, pushing right

Synopsis
char sed_PushRight(sed, c);

sed_type sed; the sed

int c; the character to insert
Description

This routine inserts the given character into the current field’s record, and dlsplaces
characters to the right to accommodate the inserted character.

In the diagram below, the field is enclosed in a box and the underscore represents
the current cursor position.
sed_PushRight(sed, ‘e’);

has the following effect:

before: hllo mom g

after: hello mom --—--> returns ('qQ’)

Return Value

Returns the character that fell off the right edge. If the cursor is past the end of the
string, "\0’ is returned.

See Also
sed_Overwrite, sed_PullLeft, sed_PullRight, sed_PushLeft

Example

if (isprint(key)) { /* from string_fkey */
if (kb_Insert()) ({
sed_PushRight (sed, key);
}
else {
sed_Overwrite(sed, key):;
}
sed_IncChar (sed);

Function Reference A-229

sed_RedirectPrompt Redirect a border prompt

Synopsis
void sed_RedirectPrompt (sedl, sedl);
sed_type sedl; target sed
sed_type sed2; destination sed
Description

This routine redirects all sed]’s border prompts to sed2’s border. This can be useful
when you are using embedded seds. You must ensure that both sed/ and sed2 are
open and valid. You must not close sed2 before sed]. sedl need not have a border
for its prompts to be redirected; for this to be effective, however, sed2 must have a
border that supports the display of a prompt strings.

Return Value

There is no return value.

See Also

sed_SetBorder

Note

This routine is implemented as a macro.

Example

sed_type sedl, sed2;
VALY

sed_RedirectPrompt (sedl, sed2);

A-230 C-scape 4.0

sed_Repaint Repaint the sed

Synopsis
void sed_Repaint(sed);

sed_type sed; the sed
Description

This routine repaints the entire sed. If there is a border attached to the sed,
sed_Repaint paints that also. If there are any dependent bobs attached to the sed’s
fields, sed_Repaint paints that also. Before painting the fields, sed_Repaint calls
the senter functions for each field in order to convert the user data to a displayable
format.

The sed’s window is hired if it is not currently employed.
You should call this routine before calling sed_Go.
Return Value
There is no return value.
See Also
sed_RepaintField, sed_Update
Note
This routine is implemented as a macro.
Example
/* .0 %/

sed_Repaint (sed);
sed_Go(sed) ;

sed_Pop(sed) ;
J* ... %/

Function Reference A-231

sed_RepaintBorder Repaint the sed’s border

Synopsis

void sed_RepaintBorder (sed);
sed_type sed; the sed

Description

This routine repaints the border attached to a sed. If there is no border attached to
the sed this routine does nothing.

Return Value
There is no return value.
See Also
sed_Repaint, sed_SetBorder
Note
This routine is implemented as a macro.
Example
VARV

sed_SetBorderColor (sed, 0x70);
sed_RepaintBorder (sed);
VAP

A-232 C-scape 4.0

sed_RepaintField Repaint a field

Synopsis
void sed_RepaintField(sed, fieldno);
sed_type sed; the sed
int fieldno; the field number
Description

This routine repaints field fieldno. It calls the senter function for the field before
painting the field.

Return Value

There is no return value.
See Also
sed_UpdateField

Example

/* x is the variable for field 2 */
x = 7;

sed_RepaintField(sed, 2);

Function Reference A-233

sed_RepaintFields Repaint all the fields

Synopsis

void sed_RepaintFields(sed) ;
sed_type sed; the sed

Description

This routine repaints all the sed’s fields. It calls the senter function for each field
before painting the fields. It only paints the fields, it does not paint the text buffer.

Return Value

There is no return value.

See Also

sed_UpdateFields

Note

This routine is implemented as a macro.

Example

sed_RepaintFields(sed);

A-234 C-scape 4.0

sed_RepaintRows Refresh rows of a sed on the display

Synopsis

void sed_RepaintRows(sed, start, end);
sed_type sed; sed
int start; start row
int end; end row

Description

This routine refreshes the display image of a block of rows, from start through end,
in sed. start and end are relative to the sed—sed_RepaintRows takes the sed offsets
into account, automatically.

Unlike sed_Repaint, this function does not call the field senter functions. The
contents of the field records are undisturbed.

Return Value

There is no return value.

Function Reference A-235

sed RewindTB Rewind the sed’s text buffer

Synopsis
void sed_RewindTB(sed);
sed_type sed; the sed

Description

This routine move the text cursor to the start of the text buffer without updating the
display. It is usually called before reading the contents of the text buffer with
sed_GetTB.

Refer to the chapter “Text Editing” in the C-scape Manual for more information.
Return Value

There is no return value.

See Also
sed_GetTB, sed_SetTB

Example

char buffer[BUFLEN] ;
unsigned count;

/* Rewind to start of the text buffer */
sed_RewindTB(sed) ;

/* Copy the text buffer into buffer*/
count = sed_GetTB(sed, buffer, BUFLEN, TED_HARD);

/* Ll */

A-236 C-scape 4.0

sed_RightField Move right a field

Synopsis
int sed_RightField(sed) ;
sed_type sed; the sed

Description

This routine takes the field to the right of the current field and makes it the new
current field. Ifitis called within an active sed it highlights the new field and moves
the cursor to the first writeable position (if there is one) of the new field.

In detail, sed_RightField does the following. If the sed is in active mode it calls
the fexit function for the current field. If fexit returns FALSE, it does nothing and
returns SED_INVALID. If the current field is the right-most unprotected field the
routine does nothing and returns SED_STUCK. Otherwise, the field to the right
becomes the new current field. Before it enters the new field, sed_RightField calls
the fenter function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_RightField does not call the fexit and fenter functions.

You must not call this routine in either a field’s fenter or fexit routines.

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. A “p” following the number represents a
protected field. Calling sed_RightField from field 4 would make field 5 the new
current field. Calling sed_RightField from field O would make field 2 the new

current field (field 1 is protected).

0 Ip 2
4

Function Reference A-237

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it could not find an unprotected new field to
which it can move.

See Also
sed_UpField, sed_LeftField, sed_DownField, sed_ProtectField

Note

This routine is implemented as a macro.

Example

switch (scancode) {
/* ... %/
case UP:
sed_UpField(sed);
return (TRUE) ;
case DOWN:
sed_DownField(sed) ;
return (TRUE) ;
case LEFT:
sed_LeftField(sed);
return (TRUE) ;
case RIGHT:
sed_RightField(sed) ;
return(TRUE) ;
/* ... %/

A-238 C-scape 4.0

sed_ScroliDown Scroll the sed down

Synopsis
int sed_ScrollDown({sed, lines);

sed_type sed; the sed

int lines; number of lines to scroll
Description

This routine scrolls the sed down the specified number of lines, if possible. If the
current field scrolls past the visible region, the routine tries to finds a new, visible
field to which it can move.

If the sed is in active mode, sed_ScrollDown calls the fexit function for the current
field. If fexit returns FALSE, this routine does nothing and returns SED_INVALID.
If there are no fields to move to, the current field remains the same (though it is not
visible). Otherwise, the routine changes the current field to the new field. Before
itenters the new field, it calls the fenter function for that field. If it is not possible
to scroll, the routine returns SED_STUCK.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_ScrollDown does not call the fexit and fenter functions.

If there are no fields in a sed the scrolling functions simply scroll the text buffer.

Return Value |
Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it is not possible to scroll.

See Also
sed_ScrollLeft, sed_ScrollRight, sed_ScrollUp

Example

case HOME:
sed_ScrollUp(sed, sed_GetYoffset(sed));
break;

case END:
sed_ScrollDown(sed, sed_GetMenuHeight(sed));
break;

Function Reference A-239

sed_ScrollLeft Scroll the sed left

Synopsis
int sed_ScrollLeft(sed, cols);

sed_type sed; the sed

int cols; number of columns to scroll
Description

This routine scrolls the sed to the left the specified number of columns, if possible.
If the current field scrolls past the visible region, the routine tries to finds a new,
visible field to which it can move.

If the sed is in active mode, sed_ScrollLeft calls the fexit function for the current
field. Iffexit returns FALSE, this routine does nothing and returns SED_INVALID.
If there are no fields to move to, the current field remains the same (though it is not
visible). Otherwise, the routine changes the current field to the new field. Before
it enters the new field, it calls the fenter function for that field. If it is not possible
to scroll, the routine returns SED_STUCK.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_ScrollLeft does not call the fexit and fenter functions.

If there are no fields in a sed the scrolling functions simply scroll the text buffer.

Return Value
Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it is not possible to scroll.

See Also
sed_ScrollDown, sed_ScrollRight, sed_ScrollUp

Example

case LEFT:
sed_ScrollLeft(sed, 5);
break;

case RIGHT:
sed_ScrollRight(sed, 5);
break;

A-240 C-scape 4.0

sed_ScrollRight Scroll the sed right

Synopsis
int sed_ScrollRight(sed, cols);

sed_type sed; the sed

int cols; number of columns to scroll
Description

This routine scrolls the sed to the right the specified number of columns, if possible.
If the current field scrolls past the visible region, the routine tries to finds a new,
visible field to which it can move.

If the sed is in active mode, sed_ScrollRight calls the fexit function for the current
field. If fexit returns FALSE, this routine does nothing and returns SED_INVALID.
If there are no fields to move to, the current field remains the same (though it is not
visible). Otherwise, the routine changes the current field to the new field. Before
itenters the new field, it calls the fenter function for that field. If it is not possible
to scroll, the routine returns SED_STUCK.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_ScrollRight does not call the fexit and fenter functions.

If there are no fields in a sed the scrolling functions simply scroll the text buffer.

Return Value
Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it is not possible to scroll.

See Also
sed_ScrollDown, sed_ScrollLeft, sed_ScrollUp

Example

case CTRL_LEFT:
sed_ScrolllLeft(sed, sed_GetXoffset(sed)):
break;

case CTRL_RIGHT:
sed_ScrollRight (sed, sed_GetMenuWidth(sed)):
break;

Function Reference A-241

sed_ScrollUp Scroll the sed up

Synopsis
int sed_ScrollUp(sed, lines);

sed_type sed; the sed

int lines; number of lines to scroll
Description

This routine scrolls the sed up the specified number of lines, if possible. If the
current field scrolls past the visible region, the routine tries to finds a new, visible

~ field to which it can move.

If the sed is in active mode, sed_ScrollUp calls the fexit function for the current
field. Iffexit returns FALSE, this routine does nothing and returns SED_INVALID.
If there are no fields to move to, the current field remains the same (though it is not
visible). Otherwise, the routine changes the current field to the new field. Before
it enters the new field, it calls the fenter function for that field. If it is not possible
to scroll, the routine returns SED_STUCK.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_ScrollUp does not call the fexit and fenter functions.

If there are no fields in a sed the scrolling functions simply scroll the text buffer.

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it is not possible to scroll.

See Also
sed_ScrollDown, sed_ScrollLeft, sed_ScrollRight

Example

case HOME:
sed_ScrollUp(sed, sed_GetYoffset (sed));
break;

case END:
sed_ScrollDown (sed, sed_GetMenuHeight (sed)) ;
break;

A-242 C-scape 4.0

sed_SearchMerge Search for fields by first letter

Synopsis
int sed_SearchMerge(sed, c);

sed_type sed; the sed

char c; the search character
Description

This routine finds the next field whose merge begins with the given character. It
ignores leading spaces and case as well as protected fields and fields with writeable
positions.

This routine is useful for implementing menus with first letter searching.

Return Value

Returns the field number of the field if the search is successful; otherwise returns
-1.

Example

void menu_fkey (sed)
sed_type sed;
{
int scancode, letter, choice; /* from menu_fkey (fnmenu.c) */

scancode = kb_Read();

switch(scancode) {
VA

default:
/* do first letter search */
if isprint(letter = ascii(scancode)) {
if ((choice = sed_SearchMerge(sed, (char) letter)) I= -1){
sed_GotoField(sed, choice);
}
}
break;
}
}

Function Reference ‘ A-243

sed_SetActive Set the sed’s active flag

Synopsis

void sed_SetActive(sed, mode);
sed_type sed; the sed
boolean mode; the active mode

Description

This routine sets the active flag of the sed. The active flag indicates the active status
of the sed.

Return Value

There is no return value.

See Also

sed_GetActive, sed_Go, sed_IsActive
Note

This routine is implemented as a macro.

Example

sed_SetActive(sed, TRUE);

A-244 C-scape 4.0

sed SetAux Attach an auxiliary function to a sed

Synopsis

void sed_SetAux(sed, fun);
sed_type sed; sed that gets auxiliary
aux__fptr fun; auxiliary function

Description

This routine attaches the auxiliary function fun to the given sed. If fun is NULL
the sed will have no auxiliary function.

The auxiliary function is intended to provide the programmer with additional control
over the operations of a sed without having to modify field functions. It allows
processing before and after the field’s senter function, sexit function, fenter
function, and fexit function.

C-scape sends the following messages to auxiliary functions automatically:

SED_PRESENTER called by a Repaint function immediately before the sed’s
senter functions are called. The auxiliary function’s return
value is ignored when it is sent this message.

SED_POSTSENTER called by a Repaint function immediately after the sed’s
senter functions are called. The auxiliary function’s return
value is ignored when it is sent this message.

SED_PRESEXIT called by sed_Go immediately before the sed’s sexit
functions are called. You can use this message to provide
validation for an entire sed. Ifthe auxiliary functionreturns
FALSE in response to this message, the user will not be
able to leave the sed.

SED_POSTSEXIT called by sed_Go immediately after the sed’s sexit func-
tions are called. The auxiliary function’s return value is
ignored when it is sent this message.

SED_PREFENTER called immediately before a field’s fenter function is
called. The auxiliary function’s return value is ignored
when it is sent this message.

Function Reference A-245

SED_POSTFENTER

SED_PREFEXIT

SED_POSTFEXIT

called immediately after a field’s fenter function is called.
The auxiliary function’s return value is ignored when it is
sent this message.

called immediately before a field’s fexit function is called.
This message can provide extra field validation; if the
auxiliary function returns FALSE when it receives this
message, it is functionally equivalent to the fexit function
returning FALSE.

- called immediately after a field’s fexit function is called

(if the fexit function was successful). This message can
provide extra field validation; if the auxiliary function
returns FALSE when it receives this message, it is func-
tionally equivalent to the fexit function returning FALSE.

The standard C-scape SED_ messages do not use indata or outdata (they are NULL).
There are also auxiliary messages at the window and object levels; these are
documented in the OWL Manual and OWL Function Reference.

C-scape provides one standard auxiliary function, called aux_Top. It raises its sed
above all other windows on the display when it becomes current by calling sed_Top
upon receiving a WINA_STARTGO message.

Youcan use sed_DoAux to send your own custom messages to an auxiliary function.
Your message values should be unique and greater than SED_LASTMSG.

All auxiliary functions must have the same form:

A-246

C-scape 4.0

int aux_Sample(sed, msg, indata, outdata)
sed_type sed;
int msg;
VOID *indata;
VOID *outdata;

{
switch(msg) {
case SED_PRESENTER:
/* L. */

}

return(l);
}

Return Value

There is no return value.

Note

This routine is implemented as a macro.
See Also

sed_DoAux

Function Reference

A-247

Example

/* use macro to prototype auxiliary function */
aux_func (aux_FirstField):

main()
{
/* L0 %/

sed_SetAux(sed, aux_FirstField);

VA
}

int aux_FirstField(sed, msg, indata, outdata)
sed_type sed;
int msg;
VOID *indata;
VOID *outdata;

/*
This auxiliary function makes sure that a sed’s current
field is always reset to the first field
when the sed is painted.

*/

{
int fldno:

switch(msg) {

case SED_PRESENTER:
sed_GotoFirstField(sed);
break:;

}

return (TRUE) ;

A-248 C-scape 4.0

sed_SetBaton Set the value of the sed’s baton

Synopsis
int sed_SetBaton(sed, baton);
sed_type sed; the sed
int baton; baton value
Description

This routine sets the value of the baton. The baton passes state information between
the functions in the field function structure (fenter, fexit, fkey, senter, and sexit
functions) and is used by sed_Go as a return value.

For some typical uses of the baton, see sed_GetBaton.
The baton is initialized to -1 when the sed is created.
Return Value
There is no return value.
See Also
sed_GetBaton, sed_Go
Note
This routine is implemented as a macro.
Example
VA

switch (scancode) {

case ESC:
sed_SetBRaton(sed, 0);
sed_ToggleExit(sed) ;
break;

/* L. *

Function Reference A-249

sed_SetBorder Attach a border to a sed

Synopsis
boolean sed_SetBorder (sed, border_func);

sed_type sed; the sed
bd_fptr border_func; the border function

Description

This routine creates a border from the given border function and sends an “open”
message to it.

Once a border has been attached to the sed, the other sed routines automatically
incorporate it into their actions. The display routines (sed_Repaint, sed_Update)
tell the border to paint itself. The destructor routines (sed_Close, sed_SetBorder)
tell the border to destroyed itself. The size and positioning functions compensate
for the size of the border when doing their calculations.

If a sed already has a border, sed_SetBorder destroys the old border and replaces
it with the new border.

C-scape’s standard border function is bd_cua. To use this border in graphics mode,
you must #include the file ogldecl.h and call the routines ogl_Init and bdcua_I-
nitGraphics prior to calling sed_SetBorder. To use it in text mode, call
bdcua_InitText prior to calling sed_SetBorder. You can also call the routine
bdcua_InitCombo, if you want to use either text or graphics mode. For more
information on bd_cua, refer to the OWL Manual and the OWL Function Reference.

Return Value
Returns TRUE if successful. If unable to create the border it returns FALSE.

See Also

bdcua_InitCombo, bdcua_InitGraphics, bdcua_InitText, ogl_Init, sed_Set-
BorderFeature, sed_SetBorderTitle

Note

This routine is implemented as a macro.

A-250 C-scape 4.0

Example
VAR

sed = sed_Open (menu) ;

sed_SetBorder (sed, bd_cua);
sed_SetBorderTitle(sed, "My data screen");

sed_Repaint (sed);
/* ... */

Function Reference A-251

sed_SetBorderColor Set the color of the sed’s border

Synopsis

void sed_SetBorderColor (sed, color);
sed_type sed; the sed
byte color; the color

Description

This routine sets the color of a border (other than bd_cua for graphics) attached to
the sed to color. If there is no border then the routine does nothing.

Return Value

There is no return value.

See Also

Note

This routine is implemented as a macro.

Example
VA
bdcua_InitText () ;
/* ... %)/
sed = sed_Open (menu) ;
sed_SetBorder (sed, bd_cua);
sed_SetBorderTitle(sed, "My data screen'");

sed_SetBorderColor (sed, O0x0f);

sed_Repaint (sed) ;
/* ... %/

A-252 C-scape 4.0

sed_SetBor derFeature Set the features of a border

Synopsis

void sed_SetBorderFeature(sed, feature);
sed_type sed; sed whose border features to set
unsigned int feature; the feature bit mask

Description

This routine sets the features of the given sed’s border as specified by feature.
feature is a bit mask formed by the bitwise ORing (the “I”” operator in C) of border
feature values. Providing zero for feature turns off all features. Consult the OWL
Manual for a complete list of border features.

Return Value

There is no return value.

See Also

sed_SetBorder

Note

This routine is implemented as a macro.

~xample

sed_SetBorder (sed, bd_cua);
sed_SetBorderFeature(sed, BD_MOVE I BD_RESIZE | BD_OUTLINE) ;

Function Reference A-253

sed_SetBorderTitle Set the title of a titled border

Synopsis
int sed_SetBorderTitle(sed, title);
sed_type sed; the sed
char *title; the title string
Description

This routine sets the title of a titled border to the string pointed to by fitle. This
routine does nothing if there is no border attached to the sed or if the attached border
does not support titles.

Return Value
Returns TRUE if successful, FALSE otherwise.

See Also
sed_BorderPrompt

Note

This routine is implemented as a macro.

Example
VAR Y

sed = sed_Open (menu) ;

sed_SetBorder (sed, bd_cua):
sed_SetBorderTitle(sed, "My data screen");

sed_Repaint (sed) ;
VAN

A-254 C-scape 4.0

sed_SetColors Set the sed’s colors

Synopsis

void sed_SetColors(sed, regular, background, highlight);
sed_type sed; the sed
byte regular; attributes

byte background;
byte highlight;

Description

This routine sets the colors of the sed. It takes a sed object and three attribute values.
regular is the regular color of fields. highlight is the color of highlighted fields.
background sets the background color of the sed.

Marking a field overrides the regular and highlight attributes (see sed_MarkField).
The background color affects all the text defined in color 0 by menu_Printf and is
the initial color of a border.

You can change the displayed colors of a sed by adjusting values in the attribute
map (sed disp_SetMapEntry).

Return Value
There is no return value.

See Also
sed_GetBorderColor, sed_GetColors, sed_MarkField, disp_SetMapEntry

Example
VAR ¥

sed = sed_Open (menu) ;
sed_SetColors(sed, 0x70, 0x70, 0x07);

sed_Repaint (sed) ;
/* ... %/

Function Reference A-255

sed_SetCurrRecord Set the current field’s record

Synopsis
void sed_SetCurrRecord(sed, string);
sed_type sed; the sed
char *string; the new record string
Description

This routine sets the contents of the current field’s record equal to string. It does
not paint the field.

Return Value

There is no return value.

See Also

sed_GetCurrRecord

Note

This routine is implemented as a macro.
Example

/* ... clear the current field */

sed_SetCurrRecord(sed, "");
sed_UpdateCurrField(sed); /* update the display */

/* L0 x)/

A-256 C-scape 4.0

sed_SetCursorType Set the sed’s cursor size

Synopsis

void sed_SetCursorType(sed, ctype);
sed_type sed; the sed
unsigned int ctype; the cursor type

Description

This routine sets the size of the sed’s cursor. The default cursor type is CUR-
SOR_NORMAL.

The cursor type is one of the following values:

CURSOR_NORMAL The standard cursor.

CURSOR_NONE An invisible cursor.

CURSOR_BLOCK A full-sized cursor.

CURSOR_DASH . A thin cursorlocated in the middle of the characterlocation.
CURSOR_HALF A cursor filling half of the character location.
CURSOR_THIN A thin cursor.

If the sed is inactive, sed_SetCursorType sets the sed’s cursor type to ctype. If
the routine is called from within a field function the cursor type is changed until
control leaves the current field. At that time, sed_Go changes the cursor back to
the type it was when the field was entered.

Note that cursor sizes are hardware dependent. Some cursor sizes may not be
available for certain systems.

Return Value

There is no return value.
See Also
sed_GetCursorType

Function Reference A-257

Example

/* .. %/
sed = sed_Open (menu) ;

/* Turn off cursor in sed */
sed_SetCursorType(sed, CURSOR_NONE) ;

sed_Repaint (sed) ;
sed_Go (sed) ;

/* o0 %/

A-258 C-scape 4.0

sed_SetData Set the sed’s generic data pointer

Synopsis
void sed_SetData(sed, data);
sed_type sed; the sed
VOID *data; pointer to data

Description

This routine sets the sed’s generic data pointer. The generic data pointer isa VOID
* pointer that you can use for attaching program-specific data to a sed.

Some typical uses for the generic data pointer are:
(1) as a place to store an array of strings to be displayed as messages, and

(2) as a place to store the last value of the field so that it can be recalled in case
the user makes a mistake.

Return Value

There is no return value.
See Also
sed_GetData
Note
This routine is implemented as a macro.
Example
/* L. %/
sed = sed_Open(menu) ;

sed_SetData(sed, (VOID *) &my_struct);

VARV

Function Reference A-259

sed_SetExit Set the sed’s exit state

Synopsis
void sed_SetExit(sed, state);

sed_type sed; the sed

boolean state; the new exit state
Description

This routine sets the exit state of the sed.
Note _

This routine is implemented as a macro.
Return Value

There is no return value.

See Also
sed_GetExit, sed_ToggleExit

Example

sed_SetExit(sed, TRUE);

A-260 C-scape 4.0

sed_SetExplode Attach an explode function to the sed

Synopsis
void sed_SetExplode (sed, explode) ;

sed_type sed; the sed

exp_fptr explode; the explode function
Description

This routine attaches an explode function to the sed. The window manager calls
the explode function when the sed is initially painted to the display. The explode
function paints images to the display before the sed is painted and is used to create
“special effects” when creating windows.

Some standard explode functions are exp_std and exp_BeamMeUp.
Return Value

There is no return value.

Note

This routine is implemented as a macro.

Example

sed_SetExplode(sed, exp_std) ;
sed_Repaint (sed) ;

Function Reference A-261

sed_SetFieldBob Attach a bob object to a field

Synopsis

boolean sed_SetFieldBob(sed, fieldno, bob);
sed_type sed; the sed
int fieldno; the field number
bob_type bob; the bob object

Description

This routine attaches a bob object to a field. If the field already has a bob, the old
bob is detached but not closed. Be sure to get a handle to the old bob before calling
this function so you can close or reattach it.

Return Value

Returns TRUE is successful; otherwise, it returns FALSE.
See Also

A menu_Printf, sed_CreateBob, sed_GetFieldBob

Note
This routine is implemented as a macro.

Example
bob = sed_CreateBob(ised, BOB_DEPENDENT) ;

VA
sed_SetFieldBob(osed, 3, bob);

VA

A-262 C-scape 4.0

sed_SetFieldData Set a field’s data pointer

Synopsis
boolean sed_SetFieldData(sed, fieldno, datano, data);
sed_type sed; the sed
int fieldno; the field number
int datano; the data number
VOID *data pointer to data
Description

This routine redirects one of the field’s generic data pointers to point to data. Each
field has at least one generic data pointer that the programmer can set. The data
pointer is a VOID * pointer. You can use the datano argument to indicate which
data pointer you want to set (0 is the first data pointer).

A field normally has one data pointer but you can override this with the menu_Printf
“@fd” command when the field is defined. After a field had been defined, you
cannot change the number of data pointers it has.

The standard field functions use the field generic data pointers in the following
ways:

(0) to store border prompt strings.
(1) to store validation data.
(2) to store formatting information.

Return Value
Returns TRUE if successful. Returns FALSE if passed a bad data number.

See Also
menu_Printf, sed_GetFieldData, sed_GetFieldDataCount
Note
This routine is implemented as a macro.
Example
sed_SetFieldData(sed, 0, 1, (VOID *) "(0,100)");

Function Reference A-263

sed_SetFieldName Set a field’s name

Synopsis

void sed_SetFieldName (sed, fieldno, name);
sed_type sed; the sed
int fieldno; the field number
char *name; the field name

Description

This routine sets the field’s name to the string to which name points. If the field
already has a name, sed_SetFieldName removes the old name. If name is equal
to NULL then the field will have no name. You can determine a field’s name with
sed_GetFieldName.

Return Value

There is no return value.

See Also

sed_GetFieldName, sed_GotoNameField, sed_GetNameNo
Note

This routine is implemented as a macro.

Example

/* Give field 1 a name */ :
sed_SetFieldName(sed, 1, "Touchstone");

A-264 C-scape 4.0

sed_SetFieldWidth Set the field’s displayed width

Synopsis
void sed_SetFieldWidth(sed, fieldno, width);
sed_type sed; the sed
int fieldno; the field number
int width; the field width
Description

This routine sets the displayed width of field fieldno to width. The displayed width
of a field is its actual width on the display. This width is equal to the field’s merge
length unless you use menu_Printf or sed_SetFieldWidth to explicitly set its
displayed width to a different value.

A field automatically scrolls when its merge length exceeds its displayed width and
the user attempts to move the cursor past one of the field’s edges.

Return Value

There is no return value.

See Also

menu_Printf, sed_GetFieldWidth

Example

/* Make field 3 narrower */
sed_SetFieldwidth(sed, 3, 10);

Function Reference A-265

sed_SetFuncs Set the field’s field function

Synopsis

void sed_SetFuncs(sed, fieldno, funcs);
sed_type sed; the sed
int fieldno; the field number

field_funcs_ptr funcs; the field function structure
Description

This routine sets the field’s function structure. funcs must be the address of a valid
field function structure.

Return Value

There is no return value.

See Also

sed_GetF uncs

Note

This routine is implemented as a macro.

Example

sed_SetFuncs(sed, 0, &string funcs);

A-266 C-scape 4.0

sed_SetHeight Set the sed’s height

Synopsis
void sed_SetHeight (sed, height);
sed_type sed; the sed
int height; the new height
Description

This routine sets the height of the sed. If the height is smaller than the number of
rows in the menu, the sed will automatically scroll.

height must be greater than zero.
The sed is re-sized on the display if its window is currently employed.
Return Value
There is no return value.
See Also
sed_SetWidth
Example
/* L. */
sed = sed_Open (menu) ;

sed_SetHeight (sed, 15);

VARV

Function Reference A-267

sed_SetLabel Set the value of the sed’s label

Synopsis

void sed_Setlabel (sed, label);
sed_type sed; the sed
int label; the label

Description

This routine sets the value of the sed’s label.

The label is an integer that gives a unique number to a sed. The label typically
specifies a chapter number for the help system.

The label is initially set to 0.
Return Value
There is no return value.
See Also
sed_GetLabel
Note
This routine is implemented as a macro.
Example
VA
sed = sed_Open (menu) ;

sed_SetLabel (sed, 1):;

VA

A-268 C-scape 4.0

sed_SetMouse Attach a mouse handler to a sed

Synopsis
void sed_SetMouse(sed, mhandler);
sed_type sed; the sed to which to attach
mouhandler_fptr mhandler; the mouse handler
Description

This routine attaches the mouse handler mhandler to the given sed.
These mouse handlers are currently implemented:

winmou_All provides mouse support for all situations except with a framer
menuing system.

sedmou_Framer provides mouse support for the framer menuing system.

To give winmou_All the particular behavior you want, use the routine win_Set-
MouseFeature. To use the mouse to size, move, and scroll the window you must
attach a border to the sed with enabled mouse support. Other borders can have
mouse handling capabilities enabled by using sed_SetBorderFeature.

Return Value
There is no return value.

See Also

win_SetMouseFeature, sed_SetBorderFeature, sed_SetBorder

Function Reference A-269

Example

menu_type menu;
sed_type popsed;
int ret;

/* make a popup fun window to place above sed ‘sed’ */

menu = menu_Open() ;

menu_Printf (menu, "\n This is a popup window\n\n");
menu_Printf (menu, "@f[OK] ", NULL, &menu_funcs);
menu_Printf (menu, "@fd2([Cancell", NULL, &menu_funcs, NULL,"O0");
popsed = sed_Open(menu) ;

sed_SetHeight (popsed, 5);

sed_SetWidth (popsed, 25);

/* get the position of the original sed */
sed_GetPosition(sed, &row, &col);

/* offset the popup from the original window */
sed_SetPosition(popsed, row + 3, col + 4);

sed_SetBorder (popsed, bd_cua);
sed_SetBorderFeature (popsed, BD_MOVE | BD_RESIZE);

sed_SetShadow (popsed, 1);
sed_SetShadowAttr (popsed, 0x08);

/* attach a mouse handler to the sed */
sed_SetMouse (popsed, sedmou_GreedyClick) ;
sed_Repaint (popsed) ;

ret = sed_Go(popsed) ;

sed_Close(popsed) ;

/* L. */

A-270 C-scape 4.0

sed_SetNameVar Point a named field’s variable to new space

Synopsis
boolean sed_SetNameVar (sed, name, var);
sed_type sed; the sed
char *name; the name of the field
VOID *var; the new variable space
Description

This routine finds the field in sed named name. It points this field’s variable to the
new space var. Ifitcan’tfind afield named name in sed, itreturns FALSE; otherwise,
it returns TRUE.

This function is often used to attach variable space to seds that are loaded from
screen files with the SED_NOALLOC flag.

Return Value

If it can’t find a field named name in sed, it returns FALSE, otherwise it returns
TRUE.

See Also
sed_SetNameVarValue

Function Reference A-271

Example

sfile_type sfile;
sed_type sed;
char item[101];
int quant;

/* load and validate "my_sed" */

if ((sfile = sfile_Open("sfile.lnf", my_symbollist)) == NULL
|| (sed = sfile_loadSed(sfile, "my_sed", SED_NOALLOC)) == NULL
|| sed_SetNameVar(sed, "item", (VOID *)item) == FALSE
|| sed_SetNameVar(sed, "quant", (VOID *)&quant) == FALSE) {

opc_Prompt (NULL, NULL, NULL, "Error in loading '‘my_sed’"):;
if (sfile != NULL) {
sfile_Close(sfile);

}

return;

A-272 C-scape 4.0

sed_SetNameVarValue Copy a value into a named field’s variable

Synopsis
boolean sed_SetNameVarValue(sed, name, var);
sed_type sed; the sed
char *name; the name of the field
VOID *var; a pointer to the new value
Description

This routine finds the field in sed named name. It copies the new value pointed to
by var into this field’s variable. If it can’t find a field named name in sed, it returns
FALSE,; otherwise, it returns TRUE.

This function is often used to initialize variables in seds that are loaded from screen
files with the SED_ALLOC flag.

Return Value

If it can’t find a field named name in sed, it returns FALSE, otherwise it returns
TRUE.

See Also

sed_SetNameVar

Function Reference A-273

Example

sfile_type sfile;

sed_type sed;

static char default_item[101] = "Spinal Tap - Shark Sandwich";
static int default_gty = 1000;

/* load, validate, and initialize "my_sed" */
if ((sfile = sfile_Open(“sfile.lnf", my_symbollist)) == NULL
|| (sed = sfile LoadSed(sfile, "my_sed", SED_ALLOC)) == NULL
|| sed_setNameVarvalue(sed, "item", (VOID *) &default_item) ==
FALSE
|| sed_SetNameVarValue(sed, "quant", (VOID *) &default_gty) =
FALSE) {

opc_Prompt (NULL, NULL, NULL, "Error in loading 'my_sed’");
if (sfile != NULL) {

sfile_Close(sfile);
}

return;

A-274 C-scape 4.0

sed_SetNextWin Pass control to another window

Synopsis
void sed_SetNextWin(sed, nextwin);
sed_type sed; the current sed
win_type nextwin; the next window
Description

Use this routine if you wish to pass control to another window (sed) without leaving
sed_Go.

If you call sed_SetNextWin with a handle to the next window, when you leave
your sed by calling sed_ToggleExit, the window manager will pass control to the
nextwin instead of returning from sed_Go. If nextwin is NULL the window manager
will not pass control to another window and sed_Go will simply return.

Typically this function is used by mouse handlers to pass control between various
windows when they are selected with the mouse. The next window is initially set
to NULL.

Note that nextwin can be a sed because a sed is a type of window.
Return Value

There is no return value.

Note

This routine is implemented as a macro.

See Also

sed_Go

Example

case TAB:
/* Jump to other window (sed2) */
sed_SetNextWin(sed, sed2);
sed_ToggleExit (sed);
break;

Function Reference A-275

sed_SetPosition Set the sed’s position

Synopsis

void sed_SetPosition(sed, row, col);

sed_type sed; the sed
int row, col; the display position of the sed
Description

This routine sets the position of the upper-left corner of the sed. If there is a border
attached to the sed the position refers to the upper-left corner of the border.

The sed is moved to a new position on the display if its window is currently
employed.

Return Value
There is no return value.
Note
This routine is implemented as a macro.
See Also
sed_GetPosition
Example
/* ... %/
sed = sed_Open(menu) ;

sed_SetBorder (sed, bd_cua);
sed_SetPosition(sed, 5, 20);

VA

A-276 C-scape 4.0

sed_SetRecord Set the field’s record

Synopsis

void sed_SetRecord(sed, string, fieldno);
sed_type sed; the sed
char *string; the new record string
int fieldno; the field number

Description

This routine sets the contents of field fieldno’s record to the given string. It does
not paint the field.

If string is longer than the field’s record, sed_SetRecord does not copy the extra
characters; if string is shorter, it pads the record with \Q’s (which are displayed as
spaces).

Return Value

There is no return value.
See Also
sed_GetRecord

Note

This routine is implemented as a macro.

Example

void string_senter (sed, fieldno)
sed_type sed;
int fieldno;
/*
Copy the native string into the record string.
*/
{
sed_SetRecord(sed, (char *) sed_GetVar(sed, fieldno), fieldno);
}

Function Reference A-277

sed_SetShadow Set the sed shadow size

Synopsis
void sed_SetShadow(sed, shd);

sed_type sed; sed whose shadow to set

int shd; size of shadow in characters
Description

This routine sets the size of the given sed’s shadow as specified by shd. Note that
shadow size is specified in character units.

A shadow is an extension to the sed’s border that paints a darkened strip along the
bottom and right edges of the sed to give it a three dimensional appearance. The
color of the strip is determined by the shadow attribute of the window on which the
shadow falls.

sed

Ishuww

Return Value

There is no return value.

Note

This routine is implemented as a macro.
See Also

sed_SetShadowAttr

Example

sed_SetBorder (sed, bd_cua);
sed_SetShadow(sed, 1);

A-278 C-scape 4.0

sed_SetShadowAtir Set the shadow attribute of a sed

Synopsis
void sed_SetShadowAttr (sed, attr)}

sed_type sed; the sed

byte attr; the shadow color attribute
Description

This routine sets the sed’s shadow attribute to the value given by artr.

The shadow attribute dictates how a shadow (from some other overlapping sed with
a shadow border) will appear as it falls on this given sed. For example, if you want
black shadows to appear across your sed use attribute 0x00. Use a different attribute,
such as 0x08, to create shadows that show the contents of the sed faintly within the
shadow.

Return Value

There is no return value.

Note

This routine is implemented as a macro.

See Also
sed_SetShadow

Example
VAT Y

sed = sed_Open (menu) ;

sed_SetShadow(sed, 1);
sed_SetShadowAttr (sed, 0x08);

VAV

Function Reference A-279

sed_SetSpecial Attach the sed’s special function

Synopsis
void sed_SetSpecial(sed, special);

sed_type sed; the sed

spc_fptr special; the special function
Description

This routine attaches a special function to the sed. If special is NULL then the sed
will have no special function.

You can execute the special function by calling sed_DoSpecial.

The special function is called by the fkey function of the standard field functions.
It is used to customize the operation of all the fields in a sed without having to
modify any field functions.

Several special functions, such as spc_Abort and spc_Embed, are provided and
you can create your own as needed.

Return Value

There is no return value.
See Also
sed_DoSpecial, spc_func
Note

This routine is implemented as a macro.

A-280 C-scape 4.0

Example

/* use macro to prototype special function
spc_func (my_spc_func) ;

main()
{
VA
sed = sed_Open (menu) ;

/* Make Escape key return SED_ABORT */
sed_SetSpecial (sed, my_spc_func) ;

Function Reference

*/

A-281

sed_SetTB Set the sed’s text buffer

Synopsis
boolean sed_SetTB(sed, text, len);

sed_type sed; the sed

char *text; the text array

unsigned int len; length of the text array
Description

This routine sets the contents of the sed’s text buffer. It copies the first len characters
from text into the text buffer starting at the current text cursor position and advances
the cursor position the number of characters set. This makes it possible to call
sed_SetTB repeatedly to load large arrays of text.

You can clear the contents of the text buffer prior to calling this routine with
sed_ClearTB.

Return Value

Returns TRUE if successful, FALSE otherwise.
See Also

sed_GetTB, sed_ClearTB

Example
char buffer [BUFLEN] ;

/* clear the contents of the text buffer */
sed_ClearTB(sed) ;

/* copy buffer into the text buffer */
sed_SetTB(sed, buffer, BUFLEN) ;

/* o0 */

A-282 C-scape 4.0

sed_SetVar Set the field’s variable

Synopsis
void sed_Setvar(sed, fieldno, var);
sed_type sed; the sed
int fieldno; the field number
VOID *var; pointer to new field variable

Description

This routine sets the pointer to field fieldno’s variable to a pointer to a new variable.
The field’s variable pointer is initially set when it is defined by menu_Printf.
sed_SetVar lets you make a field point to a new variable.

The field variable is a VOID * pointer. Use a type cast to convert another type to
a VOID * pointer when necessary.

Return Value
There is no return value.

See Also

menu_Printf, sed_GetVar

Note

This routine is implemented as a macro.

Example

int val;

sed_SetVar(sed, 0, (VOID *) &val);

Function Reference A-283

sed_SetVarValue Set the field’s variable

Synopsis
void sed_SetVarValue(sed, fieldno, value);

sed_type sed; the sed

int fieldno; the field number

VOID *value; pointer to new field variable
Description

This routine copies the value pointed to by value into field fieldno’s variable. It
can be used to initialize a fields variable or to give a fields variable a new value.

The field variable is a VOID * pointer. value must be a void pointer to the new
value. Use atype cast to convert another type to a VOID * pointer when necessary.

Return Value

There is no return value.

See Also

sed_GetVar, sed_GetVarValue
Example

int dummy_zero = 0;

sed_SetVarvValue(sed, 0, (VOID *) &dummy_zero);
sed_SetVarvValue(sed, 1, (VOID *) &dummy_zero);

A-284 C-scape 4.0

sed_SetWidth Set the sed’s width

Synopsis
void sed_SetWidth(sed, width);
sed_type sed; the sed
int width; the new width
Description

This routine sets the width of the sed. If the width is smaller than the menu, you
can use the scrolling functions to display all of it.

width must be greater than zero.

The sed is re-sized on the display if its window is currently employed.
Return Value

There is no return value.

See Also

sed_SetHeight

Example

sed = sed_Open(sed):

sed_SetWidth(sed, 60);

Function Reference A-285

sed_SwapFields Swap fields’ positions

Synopsis
void sed_SwapFields(sed, fieldl, field2);
sed_type sed; the sed
int fieldl; the field number of the first field
int field2; the field number of the second field
Description

This routine swaps the field numbers of fields field] and field2. The field locations
and other data do not change.

The sed is not repainted to show the fields in their new positions. Use either
sed_Repaint or sed_Update for this purpose.

Return Value

There is no return value.

See Also

sed_MoveField

Note

This routine is implemented as a macro.

Example

/* Swap field 1 and 22 */
sed_SwapFields(sed, 1, 22);

A-286 C-scape 4.0

sed_ToggleEXxit Exit the sed

Synopsis
void sed_ToggleExit (sed);
sed_type sed; the sed

Description

This routine causes the sed to exit and return control to the calling function. The
sed still checks the fexit function for permission to leave before it does so.

Return Value
There is no return value.
See Also
sed_GetExit, sed_Go
Note
This routine is implemented as a macro.
Example
VALY

switch (scancode) {

case ESC:
sed_SetBaton(sed, 0);
sed_ToggleExit (sed) ;
return (TRUE) ;

case ENTER:
/* try to go to the next field else exit */
if (sed_IncField(sed) == SED_STUCK) ({

sed_SetBaton(sed, sed_GetFieldNo(sed)+1);
sed_ToggleExit (sed) ;

}

return (TRUE) ;

VAN

Function Reference A-287

sed_Top Move the sed’s window to the foreground

Synopsis
void sed_Top(sed);
sed_type sed; the sed

Description

This routine brings a sed to the top of the window list. If the sed is behind any other
windows it will be repainted in the foreground. This routine does not repaint
anything if the sed’s window is unemployed or if it is already on top.

Return Value

There is no return value.

Note

This routine is implemented as a macro.

Example

/* Make sure sed is visible... */
sed_Top (sed) ;

A-288 C-scape 4.0

sed_UnMarkField Unmark a field

Synopsis
void sed_UnMarkField(sed, fieldno);
sed_type sed; the sed
int fieldno; the field number
Description

This routine “unmarks” a field previously marked by sed_MarkField.
You can mark the field again with sed_MarkField.

The unmarked field, when repainted, will be drawn with the current sed field colors.
Return Value

There is no return value.

See Also

sed_MarkField, sed_IsMarkedField

Note

This routine is implemented as a macro.

Example

sed_UnMarkField(sed, 2);
sed_UpdateField(sed, 2);

Function Reference A-289

sed_UnProtectField Unprotect a field

Synopsis
void sed_UnProtectField(sed, fieldno);
sed_type sed; the sed
int fieldno; the field number
Description

This routine “unprotects” a field previously protected by sed_ProtectField or
menu_Printf.

You can protect the field again with sed_ProtectField.
Return Value

There is no return value.

See Also

sed_ProtectField, sed_IsProtectedField

Note

This routine is implemented as a macro.

Example

sed_UnProtectField(sed, 22);

A-290 C-scape 4.0

sed_Update Paint a sed without converting data

Synopsis
void sed_Update(sed);
sed_type sed; the sed

Description

This routine draws a sed on the display without calling the senter functions for the
fields. :

Return Value

There is no return value.

See Also

sed_Repaint, sed_UpdateFields

Note

This routine is implemented as a macro.

Example

/* Clear the fields */
for (i = 0; 1 < sed_GetFieldCount(sed); i++) {
sed_SetRecord(sed, "', i);

}

sed_Update(sed) ;

Function Reference A-291

sed_UpdateCurrField Paint the current field

Synopsis

void sed_UpdateCurrField(sed);
sed_type sed; the sed

Description

This routine paints the contents of the current field to the display without calling
the senter function for the field.

Return Value
There is no return value.
See Also
sed_RepaintField
Note
This routine is implemented as a macro.
Example
VAR

sed_SetCurrRecord(sed, "Empty"):
sed_UpdateCurrField(sed);

/* .0 */

A-292 C-scape 4.0

sed_U pdateField Paint a field without converting data

Synopsis

void sed_UpdateField(sed, fieldno);
sed_type sed; the sed
int fieldno; the field number

Description

This routine paints the contents of the specified field to the display without calling

the senter function.
Return Value
There is no return value.
See Also
sed_RepaintField
Note
This routine is implemented as a macro.
Example
/* .. */

sed_SetRecord(sed, 0, "");
sed_UpdateField(sed, 0);

VAN

Function Reference

A-293

sed_UpdateFields , Paint all the fields

Synopsis

void sed_UpdateFields (sed);
sed_type sed; the sed

Description

This routine paints the contents of all the visible fields to the display without calling
the senter functions for the fields. sed_UpdateFields paints only the fields, not
the text buffer.

Return Value

There is no return value.

See Also

sed_RepaintFields

Note

This routine is implemented as a macro.

Example

/* Fill fields with ... */

for (i = 0; i < sed_GetFieldCount(sed); i++) {
sed_SetRecord(sed, "....", 1):

}

sed_UpdateFields (sed) ;

A-294 C-scape 4.0

sed_UpFieId , Move up a field

Synopsis
int sed_UpField(sed);
sed_type sed; the sed

Description

This routine takes the field above the current field and makes it the new current
field. If it is called within an active sed it highlights the new field and moves the
cursor to the first writeable position (if there is one) of the new field.

In detail, sed_UpField does the following. If the sed is in active mode, it calls the
fexit function for the current field. If fexit returns FALSE, it does nothing and
returns SED_INVALID. If the current field is the top-most unprotected field the
routine does nothing and returns SED_STUCK. Otherwise, to the field above the
current field becomes the new current field. Before it enters the new field,
sed_UpField calls the fenter function for that field.

If the sed is not in active mode (i.e., if the routine is called outside of sed_Go),
sed_UpField does not call the fexit and fenter functions.

You must not call this routine in either a field’s fenter or fexit routines.

In the diagram below, the boxes represent fields. The numbers within the boxes
represent the numbering of the fields. A “p” following the number represents a
protected field. Calling sed_UpField from field 4 would make field 1 the new
current field. Calling sed_UpField from field 8 would make field 2 the new current

field (field S is protected).

0 2
4 Sp
6 7 8

Function Reference A-295

Return Value

Returns SED_MOVED if successful, SED_INVALID if the original field’s fexit
function failed, and SED_STUCK if it could not find an unprotected new field to
which it can move.

See Also
sed_DownField, sed_LeftField, sed_RightField, sed_ProtectField

Note

This routine is implemented as a macro.

Example

switch (scancode) {
/* Lo */
case UP:
sed_UpField(sed) ;
return (TRUE) ;
case DOWN:
sed_DownField(sed) ;
return (TRUE) ;
case LEFT:
sed_LeftField(sed):
return (TRUE) ;
case RIGHT:
sed_RightField(sed);
return(TRUE) ;
/* o0 %/

A-296 C-scape 4.0

sedwin_Mouselnit Initialize the sed request handler

Synopsis
void sedwin_MouseInit () ;
Description

Thisroutine initializes the request handler for the sed window class to enable support
for mouse functions. The handler affects all seds and all borders. It permits them
to respond to mouse messages that pertain to scrolling, re-sizing, and dragging.

You only need to call this routine if you want to use the mouse with seds. It is not
necessary if you are not using the mouse —a null handler is used by default.

Return Value

There is no return value.

See Also

hard_InitMouse, sed_SetMouse, sed_SetBorder, sed_SetBorderFeature

Example

void main()

{

/* Initialize device interface */
disp_Init(def_ModeCurrent, NULL) ;

/* Turn on the mouse */
hard_InitMouse();

/* Turn on sedwin mouse support */
sedwin_MouseInit () ;

Function Reference A-297

sfile_LoadSed Load a sed from a screen file

Synopsis

#include "sfile.h"

sed_type sfile_loadSed(sfile, sedname, mode);

sfile_type sfile; the screen file
char *sedname; the name of the sed
int mode; the auto allocation flag

Description

This routine loads the sed named by sedname from the screen file sfile and, dependent
upon mode, may allocate space for the sed’s field variables.

If SED_ALLOC is passed as mode then this routine allocates whatever storage the
sed’s fields require (using the varsize element of each field’s function structure)
and points the field’s variables to this storage. You can get at this storage with
sed_GetVar. If you name the fields in a screen file with Look & Feel, or have
otherwise named them in menu_Printf or with sed_SetFieldName, you can then
use sed_GetNameVar to get a pointer to the field’s variable.

The storage allocated by sfile_LoadSed is released when you close the sed with
sed_Close.

If mode is equal to SED_NOALLOC, sfile_LoadSed does not allocate storage
space. You must explicitly declare variables or otherwise allocate storage and then
point the field variables to this storage with the sed_SetVar routine. Note that if
you do not use auto-allocation you must ensure that every field’s variable points to
valid storage space or else the field’s senter and sexit functions will not function
properly. For specialized seds such as sleds and teds, space is already allocated
automatically, so SED_NOALLOC should be specified.

Before you call sfile_LoadSed you must have successfully opened a screen file
with sfile_Open. The symbol list that was passed to sfile_Open must include entries
for all the functions used in a screen file. If this symbol list is incomplete sfi-
le_LoadSed will not be able to match screen file symbols with the appropriate
functions. Specifically, it will use null_funcs for any field function symbol it cannot
find and NULL for any other type of function symbol it cannot find. You should

A-298 C-scape 4.0

try, however, not to include symbols for unnecessary functions. If you do, these
routines will be linked into your program and add unnecessary code to your
application. You can use Look & Feel to automatically generate a symbol table for
a given screen file.

You must include sfile.h in order to use sfile_ routines.

Return Value

Returns a handle to the sed it loaded or NULL if unable to load the sed.
See Also

sfile_Open, sfile_SaveSed, sfile_Close

Example

fsyminit_struct my_list[] = {
{FSYM_CLASS},
/* don’'t need to declare seds--they’re implicit! */

{FSYM_FIELDFUNCS},

{"datet_funcs", FNULL, (VOID *) &datet_funcs },
{"slong_funcs", FNULL, (VOID *) &slong_funcs },
{"string_funcs", FNULL, (VOID *) &string_funcs 1},

{FSYM_BORDER},
{"bd_cua", (VOID_FPTR) bd_cua , NULL },

{FSYM_MOUSE},
{"winmou_Aall", (VOID_FPTR) winmou_All , NULL },

{FSYM_LISTEND}
}:

Function Reference A-299

void main()

{
sed_type sed, sled;
sfile_type sfile;

/* Initialize the display */
disp_Init (def_ModeText, NULL);

sfile = sfile Open("aliens.lnf", my_list):

/* Load the sed, allocate space */
sed = sfile_loadSed(sfile, "saucer", SED_ALLOC);

/* Load the sled, don’t allocate space */
sled = sfile_lLoadSed(sfile, "galaxies_sled", SED_NOALLOC) ;

if (sed != NULL) {
sed_Repaint (sed) ;
sed_Go(sed) ;
/* pull the data out of the sed... */

sed_Close(sed) ;

}

if (sled !'= NULL) {
sed_Repaint (sled) ;
sed_Go(sled);
/* pull the data out of the sled... */

sed_Close(sled);
}

sfile_Close(sfile);
disp_Close();

A-300 C-scape 4.0

sfile_SaveSed Save a sed to a screen file

Synopsis

#include "sfile.h"

boolean sfile_SaveSed(sfile, sed, sedname) ;

sfile_type sfile; screen file into which to save

sed_type sed; sed to save

char *sedname; name of the sed in the file
Description

This routine saves the given sed sed into the screen file sfile. sedname is the name
by which the sed will be known when later loaded as a screen by sfile_LoadSed.
Note that the sed’s name is a string and must be in quotation marks if used as a
string constant (i.e., literal).

Before you call sfile_SaveSed you must have successfully opened a screen file with
sfile_Open. The symbol list that was passed to sfile_Open must include entries
for all the functions used in the sed. If this symbol list is incomplete sfile_SaveSed
will not be able to match screen file symbols with the appropriate functions.

You must include sfile.h in order to use sfile_ routines.
Return Value
Returns TRUE if successful; FALSE, if not.

See Also
sfile_Open, sfile_LoadSed, sfile_Close

Function Reference A-301

Example

fsyminit_struct my_list[] = {

{FSYM_FIELDFUNCS 1},

{"string_funcs", NULL, (VOID *) &string_funcs},

{FSYM_USER 1},
{FSYM_BORDER 1},
{"bd_cua", (VOID_FPTR) bd_cua, NULL},

{FSYM_LISTEND}
};

void main()

{
menu_type menu;
sed_type sed;
sfile_type sfile;
char name([22];

name[0] = ‘\0’;

/* Initialize the display */
disp_Init(def_ModeText, NULL);

/* Open the sfile */
sfile = sfile Open("test.lnf", my_list);

/* Create the sed */

menu = menu_Open();

menu_Printf (menu, "This is a test\n");
menu_Printf (menu, "Qf[#########]\n", name,

sed = sed_Open (menu) ;
sed_SetBorder (sed, bd_cua);
sed_SetBorderTitle(sed, "Test");
sed_SetPosition(sed, 5, 10);

/* Put the sed into the sfile */
sfile_SaveSed(sfile, sed, "test");

sfile_Close(sfile);
disp_Close();

A-302 C-scape 4.0

&string_funcs) ;

sled_DeleteRows Destroy rows in a sled

Synopsis
#include "sled.h"

void sled_DeleteRows (sled, row, count);

sed_type sled; the sled

int row; row to delete

int count; number of rows to delete
Description

This routine deletes count rows from the sled’s column arrays at row row. The rows
after the deleted rows are moved to close the gap created by the deletion.

Return Value

There is no return value.
See Also
sled_InsertRows, sled_Repaint

Example
#include "sled.h"

VAR

case GREYPLUS:
sled_InsertRows (sed, sled_GetRow(sed), 1);
sled_Repaint (sed);
return (TRUE) ;

case GREYMINUS:
sled_DeleteRows (sed, sled_GetRow(sed), 1);
sled_Repaint (sed) ;
return (TRUE) ;

}

Function Reference A-303

sled_GetCol - sled_GetRow Get the sled’s current row

Synopsis
#include "sled.h"

int sled_GetRow(sled):;
sled_type sled;

int sled_GetCol (sled);
sled_type sled;

Description

These routines determine the sled’s current row or column number. The current
row number corresponds to the element number within the column array that the
current field’s variable points to.

Return Value

Returns the sled’s current row or column number.
See Also

sled_IsLastRow

Example
#include "sled.h"

/* L0 */

case GREYPLUS:
sled_InsertRows (sed, sled_GetRow(sed), 1);
sled_Repaint(sed);
return (TRUE) ;

case GREYMINUS:
sled_DeleteRows (sed, sled_GetRow(sed), 1);
sled_Repaint (sed) ;
return(TRUE) ;

A-304 C-scape 4.0

sled_GetColSize Get the size of the sled’s columns

Synopsis

#include "sled.h"

int sled_GetColSize(sled);
sed_type sled; the sled

Description

This routine observes the number of rows in the sled’s column array(s). This number
is always greater than or equal to 1.

Return Value

Returns the number of rows in the sled’s column array(s).
See Also

sled_GetWidth, sled_GetColVar

Note

This routine is implemented as a macro.

Example

#include "sled.h"

/* Printf the data out */

for (row = 0; row < sled_GetColSize(sled); row++) {
printf("%s ", (char *) sled_GetColVar(sled, 0, row));
printf("%d\n", *((int *) sled_GetColVar(sled, 1, row)));

}

Function Reference A-305

sled_GetColVar Get a pointer to a sled entry

Synopsis
#include "sled.h"

VOID *sled_GetColVar(sled, col, row);

sed_type sled; the sled

int col; the col

int row; the row
Description

This routine returns a pointer to element row in column array col.

This routine returns a VOID * pointer; you must cast this pointer to the appropriate
data type.

Return Value

Returns a pointer to an element in the sled’s column array.
See Also

sled_SetColVar

Example

#include "sled.h"

/* Printf the data out */

for (row = 0; row < sled_GetColSize(sled); row++) {
printf("%$s ", (char *) sled_GetColVar(sled, 0, row));
printf("$d\n", *((int *) sled_GetColVar(sled, 1, row)));

A-306 C-scape 4.0

sled_GetWidth Get the sled’s width

Synopsis
#include "sled.h"

int sled_GetWidth(sled);
sed_type sled; the sled

Description

This routine observes the number of fields in each row in the sled’s column array(s).
This number is always greater than or equal to 1.

Return Value

Returns the number of fields in each of the sled’s rows.

See Also
sled_GetColSize, sled_GetColVar
Note

This routine is implemented as a macro.

Example
#include "sled.h"

VA ¥4

/* traverse the sled’s row */
for (col = 0; col < sled_GetWidth(sled); col++) {

/* do something to each field in this row of the sled */

Function Reference A-307

sled _InsertRows ' Insert blank rows into a sled

Synopsis
#include "sled.h"

boolean sled_InsertRows (sled, row, count);

sed_type sled; the sled

int row; row to insert at

int count; number of rows to insert
Description

This routine inserts count blanks rows into the sled’s column arrays at row row.
Return Value

Returns TRUE if it is able to insert the rows; otherwise, it returns FALSE..
See Also

sled_DeleteRows, sled_Repaint

Example
#include "sled.h"

/* L.l */

case GREYPLUS:
sled_InsertRows (sed, sled_GetRow(sed), 1);
sled_Repaint(sed) ;
return (TRUE) ;

case GREYMINUS:
sled_DeleteRows (sed, sled_GetRow(sed), 1);
sled_Repaint(sed) ;
return (TRUE) ;

A-308 _ C-scape 4.0

sled_ls LastRow Check if the current row is the last

Synopsis
#include "sled.h"
boolean sled_IsLastRow(sled);
sed_type sled; the sled
Description
This routine tests if the current row in the sled corresponds to the last row in the
sled’s column arrays.
Return Value

Returns TRUE if the current row in the sled corresponds to the last row in the sled’s
column arrays.

See Also

sled_GetRow, sled_Remap

Note

This routine is implemented as a macro.

Example
#include "sled.h"

/* ... %/
case DOWN:
/* See if we’ve reached the end of the column array
or the end of the sed */
if (sled_IsLastRow(sed) || sed_DownField(sed) == SED_STUCK) {
sed_SetBaton(sed, BOB_DOWN) ;
sed_ToggleExit (sed) ;
}
return (TRUE) ;

sled_MarkCol Create a scrolling list

Function Reference A-309

sled_Mark_

Sled marking routines

Synopsis
#include "sled.h"

void sled_GetMarkAttr(sed, regular, selected);

sed_type sed;
byte *regular;
byte *selected;

void sled_SetMarkAttr(sed, regular, selected);

sed_type sed;
byte regular;
byte selected;

boolean sled_IsMarkedRow(sed, row);
sed_type sed;
int row;

boolean sled_IsMarkedCol (sed, col);
sed_type sed;
int col;

void sled_MarkCol (sed, col);
sed_type sed;
int col;

void sled_UnMarkCol (sed, col):
sed_type sed;
int col;

void sled_MarkRow(sed, row);
sed_type sed;
int row;

void sled_UnMarkRow(sed, row);
sed_type sed;
int row;

Description

A-310 C-scape 4.0

These functions mark rows and columns within a sled, set the marking colors, and
test if a row or column is marked.

sled_GetMarkAttr returns the current marking colors by placing them in regular
and selected.

sled_SetMarkAttr sets the sled’s marking colors to the values regular and selected.

sled_IsMarkedRow and sled_IsMarkedCol check the marked status of a row or
column.

sled_MarkCol, sled_UnMarkCol, sled_MarkRow, and sled_UnMarkRow
mark or unmark a row or column in a sled.

Function Reference A-311

sled_Open Create a scrolling list

Synopsis
#include "sled.h"

sed_type sled_Open(menu, héight, special);

menu_type menu; the menu
int height; height of the sled
spc_fptr special; the special function

Description

This routine creates a sed with height rows from a menu that defines the first row
of the sed. sled_Open also allocates a column array for each field in menu. These
columns arrays grow as you add data to them. special is a sed special function
bound to the sed to handle the scrolling list operation. You can destroy the sed and
its column arrays with sed_Close.

Return Value

Returns a handle to a sed object or NULL if unable to create the sled.
Note

This routine is implemented as a macro.

See Also

sed_Close

A-312 C-scape 4.0

Example

#include "sled.h"

{
menu_type imenu, omenu;
sed_type sled, osed;
bob_type bob;

/* Create one row of the sled */
imenu = menu_Open();

menu_Printf (imenu, "@f[######4###]", NULL, &money_funcs);

/* Create a sled 5 rows tall */
sled = sled_Open(imenu, 5, spc_Sled);

/* Create a bob from the sled */
bob = sed_CreateBob(sled, BOB_DEPENDENT) ;

/* Place the sled inside an outer sed */
omenu = menu_Open() ;

menu_Printf (menu, "@fb[]", NULL, &sled_funcs, bob);
osed = sed_Open (omenu) ;

sed_Repaint (osed) ;
sed_Go (osed) ;

/* ... Destroy all the objects */
sed_Close (osed) ;

Function Reference A-313

sled_PageDown - sled_PageUp Sied page up and down routines

Synopsis
#include "sled.h"

int sled_PageUp(sled);
sed_type sled; the sled

int sled_PageDown(sled) ;
sed_type sled; the sled

Description

The two routines, sled_PageUp and sled_PageDown, facilitate scrolling within a
sled that has fixed rows at its top. Each remaps a sled up or down by the number
of scrollable rows in it.

Return Value

Like sled_Remap, these functions return SED_MOVED, SED_STUCK, or
SED_INVALID.

A-314 C-scape 4.0

sled_Protect_ Sled protecting routines

Synopsis
#include "sledprot.h"
void sled_ProtectRow(sled, row);

sled_type sled;
int row;

void sled_ProtectCol(sled, col);
sled_type sled;
int col;

boolean sled_IsProtectedRow(sled, row) ;
sled_type sed;
int row;

boolean sled_IsProtectedCol(sled, col);
sled_type sled;
int col;

Description

These functions allow you to protect a sled row or column or check the protected
status of a sled row or column.

A user cannot enter a protected row or column. Protected rows and columns are
useful for data you do not want the user to edit.

Return Value

sled_IsProtectedRow and sled_IsProtectedCol return TRUE if the row or column
is protected or FALSE otherwise.

Function Reference A-315

sled_Remap Remap the sled’s field variables

Synopsis
#include "sled.h"

boolean sled_Remap(sled, rows);

sed_type sled; the sled
int rows; number of rows to scroll sled

Description

This routine points the sled’s field variables to a new set of elements in the sled’s
column arrays. The new elements are rows rows away from the old elements in the
column array. Negative numbers move the variables toward the top of the column
array.

Return Value

Returns TRUE if it is able to remap the sled’s variables; otherwise, it returns FALSE.
See Also

sled_GetRow

A-316 C-scape 4.0

Example
#include "sled.h"

/* ... %/
switch (sed_Go(sled)) {
case BOB_UP:

if (sled_Remap(sled, -1)) {
/* the field should appear to be newly entered */

sed_DoFieldFenter (sed, sed_GetFieldNo(sed));
sed_GoHome (sled) ;

}
else {
sed_UpField(sed);
}
break;
case BOB_DOWN:

if (sled_Remap(sled, 1)) {
/* the field should appear to be newly entered */

sed_DoFieldFenter (sed, sed_GetFieldNo(sed)):;
sed_GoHome (sled) ;
}

else {
sed_DownField(sed) ;

}
break;

Function Reference A-317

sIed_Repaint Refresh the sled to the display

Synopsis
#include "sled.h"
void sled_Repaint(sled);
sed_type sled; the sled
Description
This routine call the senter functions for the sled’s fields and repaints the sled. If
afield’s variable points past the end of a column array, sled_Repaint paints it blank.
Return Value

There is no return value.

See Also
sled_DeleteRows, sled_InsertRows

Note

This routine is implemented as a macro.

Example
#include "sled.h"

VA

case GREYPLUS:
sled_InsertRows (sed, sled_GetRow(sed), 1);
sled_Repaint (sed) ;
return (TRUE) ;

case GREYMINUS:
sled_DeleteRows (sed, sled_GetRow(sed), 1);
sled_Repaint(sed) ;
return (TRUE) ;

A-318 C-scape 4.0

sled_SetColVar Set the value of a sled entry

Synopsis
#include "sled.h"

void sled_SetColVar(sled, col, row, data) ;

sed_type sled; the sled

int col; the col

int row; the row

VOID *data; data for array entry
Description

This routine copies the data pointed to by data into the sled’s column array. The
data is copied into column array col at row row.

This routine expects a VOID * pointer; you must cast data to a VOID *.
Return Value

There is no return value.

See Also

sled_GetColVar

Example
#include "sled.h"

int q = 7;
char *name = "Frog";
/* oL x/

sled_SetColVar(sled, 0, 0, (VOID *) name);
sled_SetColVar(sled, 1, 0, (VOID *) &q) ;

Function Reference A-319

SIUQ_GO Activate a slug menu

Synopsis
#include "slug.h"

int slug_Go(slug, start, row, col, data):

sed_type slug; the slug object

int start; starting field number

int row; display row

int col; display column

VOID *data; slug data pointer
Description

This routine paints, activates, then pops a slug menuing system. start determines
which menu choice is initially highlighted. row and col determine where the menu
will be placed on the display. data is a data pointer that passes data to the user-
supplied functions.

Consult the C-scape Manual for a detailed description of the slug menuing system.

Return Value

Returns the value returned by the user function, the value specified in the definition
structure, or 0 if (Esc) was pressed.

See Also
slug_Open, sed_Close

Example
#include "slug.h"

/* .. %/
sed_type slug;

slug = Slug_Open(menu_def, SLUG_VERTICAL, NULL);

/* .. %/
slug_Go(slug, 0, 0, 0, (VOID *) my_data);

A-320 C-scape 4.0

slug_O pen Create a slug menu object

Synopsis
#include "slug.h"

sed_type slug_Open(slug_def, dir_flag, border, bck, sel, bdr);

struct slug_list slug_def[]; the slug definition structure
int dir_flag; the direction flag
bd_fptr border the border function
byte bck; the background color
byte sel; the selected menu choice color
byte bdr; the border color

Description

This routine creates a slug menu object from a slug definition structure, slug_def.
dir_flag determines the orientation of the slug menu. Use SLUG_VERTICAL for
vertical menus and SLUG_HORIZONTAL for horizontal menus. border is the slug
menu’s border. bck_color, sel_color, and bdr_color determine the colors of the
slug menu.

Consult the C-scape Manual for a detailed description of the slug menuing system.

Return Value

Returns a pointer to the new slug object. A NULL pointer values indicates insuf-
ficient memory or an error in the definition structure.

Note

This routine is implemented as a macro.

See Also
slug_Go, sed_Close

Function Reference ; A-321

Example

struct slug_list disk_menul] = {
{ » save ", "Save a file", NULL, save, 0 },
{ " Load ", "Load a file", NULL, load, 0 1},
{ NULL, "Disk menu", NULL, NULL, 2 }
}i
struct slug_list menu_def[] = {
{ " pDisk ", "Disk commands", disk_menu, NULL, 0 1},
{ " Quit ", "Exit", , NULL, quit, 0 },
{ NULL, "Main menu", NULL, NULL, 1 }
}:
/* ... %/

sed_type slug:;

slug = -slug_Open(menu_def, SLUG_VERTICAL, bd_cua, 0x07,
0x07) ;

/* .. %/
slug_Go(slug, 0, 0, 0, (VOID *) my_data):;

VAN

A-322 C-scape 4.0

0x70,

slug_Repaint Paint a slug menu

Synopsis
#include "slug.h"

void slug_Repaint(slug, row, col);

sed_type slug; the slug object

int row; display row

int col; display column
Description

This routine paints a slug menu to the display. row and col determine where the
menu will appear on the display.

When creating a 123-type menu, you should be call this before slug_Go.

Return Value

There is no return value.

Example
VARV

sed_type slug;

slug = slug_Open(123_menu, SLUG_HORIZONTAL, NULL, 0x07, 0x70,
0x07) ;

slug_Repaint(slug, 0, 0);
slug_Go(slug, 0, 0, 0, (VOID *) my_data);

VA

Function Reference A-323

spc_fu nc Prototype a special function

Synopsis
void spc_func (name) ;

char *name; special function to be prototyped
Description

This routine takes the name of a special function that you wish to prototype and
performs that action.

Return Value

This routine has no return value.
Example

spc_func (spc_Zapata) ;

main()

/* Lo %/
sed_SetSpecial (sed, spc_Zapata);

/* ... */
sed_DoSpecial (sed, scancode);

/* oLl x/
}

A-324 C-scape 4.0

special_key Field function special key handler

Synopsis

#include "scancode.h"

boolean special_key(sed, scancode);

sed_type sed; the sed
int scancode; keystroke to process
Description

This routine is used by the standard field function to handle function keys and other
special keys in following manner:

FN1 Call help_Show
MOU_HERE Return; another field was selected with the mouse.
MOU_THERE Call sed_ToggleExit; another sed was selected with the mouse.

This routine can be altered to change the way the standard field functions handle
function keys.

Return Value

Returns TRUE if a keystroke was intercepted.
See Also

inter_field, inter_page, sed_SetSpecial

Example

void string_ fkey(sed)
sed_type sed;
{

int scancode, key;
scancode = kb_Read();
if (special_key(sed, scancode))

return;
A ¥

Funciion Reference A-325

strcenter - strright String formatting functions

Synopsis
char *strcenter (s, 1len); Center a string
char *s; the string
int len; length of centered string
char *strclip(s) Remove trailing spaces from a string
char *s; the string
char *strfill(s, ch, Fill a string with characters
count) ;
the string
char *s; character to fill with
char ch; number of characters
int count;
char *strleft(s, len); Left justify a string
char *s; the string
int len; length of justified string.
char *strpad(s, len); Pad a string with spaces
char *s; the string
int len; length of padded string.
char *strpreclip(s); Remove leading spaces from a string
char *s; the string
char *strright(s, len); Right justify a string
char *s; the string
int len; length of justified string.

A-326 C-scape 4.0

Description

strcenter adjusts the string’s trailing and leading spaces until it is len characters

strclip
strfill

strleft

strpad

strright

long with the text centered. The string must have space
allocated for at least len + 1 characters.

removes the trailing spaces from a string.

fills string s with count characters ch. The string is ’\0’ terminated. The
string must have enough space to contain at least count + 1 characters.

removes the string’s leading spaces and adjusts the trailing spaces until
itis len characters long. The string must have space allocated for at least
len + 1 characters.

adjusts the string’s trailing spaces until it is len characters long. The
string must have space allocated for at least len + 1 characters.

removes the string’s trailing spaces and adjusts the leading spaces until
itis len characters long. The string must have space allocated for at least
len + 1 characters.

Return Value

All these routines return a pointer to the string passed to them.

Examples
void main() STRCLIP OUTPUT:
{

char s[11];

[abc 1
strcpy (s, " abc ") [abcl
printf("[%$s]l\n", s);
strclip(s);

printf("[%sl\n", s);

Function Reference A-327

void main() STRCENTER OUTPUT:

{
char s[11];

[abc]
strcpy(s, "abc"): [abc 1
printf("[%s]\n", s);
strcenter (s, 10);
printf (" [(%s]l\n", s);
}
void main() STRFILL OUTPUT:
{
char s[11];
[aaaaaaaal
strfill(s, ‘a’, 8);
printf (" [%s]\n", s);
}
void main() STRLEFT OUTPUT:
{

char s[11];
[abc]
strepy(s, " abc "): [abc]
printf (" [¥s]\n", s);
strleft(s, 10);
printf("[%s]\n", s);
}
void main() STRPAD OUTPUT:
{

char s[11];

[abc]
strcpy(s, "abc"); [abc]
printf (" [%sl\n", s);
strpad(s, 10);

- printf("[%sl\n", s);
}

A-328 C-scape 4.0

void main()

{

}

char s([11];

strcpy(s, " abc ");

printf (" [%s]\n", s);
strpreclip(s, 10);
printf (" [%$s]l\n", s);

void main()

{

char s[11];

strcpy(s, " abc ");
printf("[%$s]l\n", s);
strright(s, 10);

printf (" [$s]\n", s);

STRPRECLIP OUTPUT:

[abc]
[abc]

STRRIGHT OUTPUT:

[abc 1]
[abc]

Function Reference

A-329

strwrap Word wrap a string

Synopsis

char *strwrap(text, row, width);
char *text; the string to word wrap
int *row; number of rows in word-wrapped text
int width; width of the text rows

Description

This routine allocates space for a string and copies the string fext into it. If any of
the lines of text in fext are longer than width, strwrap splits them at the appropriate
word break. row holds the number of rows in the new string. Rows are terminated
by "\n’s.

Return Value

Returns a pointer to the new word wrapped string. Returns NULL if unable to
allocate space for the new string.

Example

void main()
{
char *s;
int r;

s = strwrap("The quick red slug slimed over Josh.", &r, 15);
printf ("%s\n", s);

printf("row = %d.\n", r);

}
OUTPUT:

The quick

red slug
slimed over the
frog.

row = 4.

A-330 C-scape 4.0

ted__AddC har Write a character to the sed

Synopsis
poolean ted_AddChar (sed, c);
sed_type sed; the sed
char c; the character
Description

This routine adds character c to the sed’s text buffer at the current cursor location.

If the sed is in insert mode, the characters following the current cursor location are
displaced to the right to accommodate the inserted character. If the sed is not in
insert mode the character overwrites the character at the current cursor location.

If the sed is in refresh mode, the display is updated.
Return Value

Returns TRUE if successful, FALSE if not.

See Also

ted_AddRow, ted_AddString, ted_SetInsert

Example
switch (scancode) {
/* ... %/

default:
key = ascii(scancode);

if (isprint(key)) {
ted_AddChar (sed, key);
}

break;

Function Reference A-331

ted_Add Row ' Add a row to the sed

Synopsis
boolean ted_AddRow(sed) ;

sed_type sed; the sed
Description
This routine inserts a newline character in the sed at the current cursor location.
If the sed is in refresh mode, the display is updated.
Return Value
Returns TRUE if successful, FALSE if not.
See Also
ted_AddChar, ted_DeleteChar
Note
This routine is implemented as a macro.
Example
switch (scancode) {
/* . *)

case ENTER:
ted_AddRow (sed) ;
break;

* oLL..x/

A-332 C-scape 4.0

ted_AddString Write a string to the sed

Synopsis
poolean ted_AddString(sed, string, len);
sed_type sed; the sed
char *string; the string
int len; the length of the string
Description

This routine adds string string to the sed at the current cursor location. The cursor
location is moved to the end of the string. len is the length of the string.

If the sed is in insert mode, the characters following the current cursor location are
displaced to the right to accommodate the inserted characters. If the sed is not in
insert mode the string overwrites the characters at the current cursor location.

If the sed is visible, the display is updated.
Return Value
Returns TRUE if successful, FALSE if not.
See Also
ted_AddChar
Example

switch (scancode) {

VALY

case FN3: /* insert C keyword ‘case:’ */
ted_Addstring(sed, "case:\t", 6);
break;

VAN
}

Function Reference A-333

ted_BlockAttr Set the marked text block’s attribute

Synopsis
boolean ted_BlockAttr(sed, attr);
sed_type sed; the sed
byte attr; the attribute
Description

This routine changes the display attribute of the current marked region in the sed
to attr.

If there is no currently marked region the routine does nothing.
Return Value

Returns TRUE if successful, FALSE if not.

See Also

ted_SetMark

Note

This routine is implemented as a macro.

Example

switch (scancode) {

VAN

case ALT_H: /* highlight marked area */
ted_BlockAttr(sed, 0x70);
break;

/* Lo */

}

A-334 C-scape 4.0

ted_BIockCopy Copy a marked text block to buffer

sSynopsis

boolean ted_BlockCopy (sed, buffer);
sed_type sed; the sed
menu_type buffer; the cut buffer

Description

This routine copies the current marked region in the sed to buffer. The marking
mode of the region is stored in the buffer. ted_BlockPaste can later paste the buffer
back into a sed.

If there is no currently marked region the routine does nothing.

This routine does not change the text buffer’s marking mode.

Return Value
Returns TRUE if successful, FALSE if not.

See Also
ted_BlockCut, ted_BlockPaste, ted_SetMark

Note

This routine is implemented as a macro.

Example

switch (scancode) {
case GREYPLUS:
if (ted_GetMark(sed) == TED_NOMARK) { /*copy current line */
ted_GoHome (sed) ;
ted_SetRefresh(sed, TED_NOREFRESH) ;
ted_SetMark(sed, . TED_MARK) ;
ted_GoEnd(sed) ;
}
ted_SetRefresh(sed, TED_REFRESH) ;
ted_BlockCopy(sed, copy_menu) ;
ted_SetMark(sed, TED_NOMARK) ;
break;

Function Reference A-335

ted__BIockCut Cut a marked text block to buffer

Synopsis

boolean ted_BlockCut(sed, buffer);
sed_type sed; the sed
menu_type buffer; the cut buffer

Description

This routine deletes the current marked region in the sed and copies it to buffer; it
also stores the marking mode of the region there. ted_BlockPaste can later paste
the buffer back into a sed.

If there is no currently marked region the routine does nothing.
If the sed is visible, the display is updated.
The text buffer’s marking mode is reset to TED_NOMARK.

Return Value
Returns TRUE if successful, FALSE if not.

See Also

ted_BlockCopy, ted_BlockPaste, ted_SetMark
Note

This routine is implemented as a macro.

Example

case GREYMINUS:

if (ted_GetMark(sed) == TED_NOMARK) { /*cut current line */
ted_GoHome (sed) ;
ted_SetRefresh(sed, TED NOREFRESH),
ted_SetMark (sed, TED_MARK) ;
ted_GoEnd(sed) ;

}

ted_SetRefresh(sed, TED_REFRESH);

ted_BlockCut (sed, copy_menu);

ted_SetMark (sed, TED_NOMARK) ;

break;

A-336 C-scape 4.0

ted_BIockDeIete Delete a marked text block

Synopsis

void ted_BlockDelete(sed);
sed_type sed; the sed

Description

This routine deletes the current marked region in the sed without copying it to a
buffer. The contents of the marked region are lost and cannot be retrieved.

If there is no currently marked region the routine does nothing.
If the sed is in refresh mode, the display is updated. |
The text buffer’s marking mode is reset to TED_NOMARK.
Return Value

There is no return value.

See Also

ted_BlockCopy, ted_BlockPaste, ted_SetMark

Note

This routine is implemented as a macro.

Example

switch (scancode) {
case ALT_D:
if (ted_GetMark(sed) == TED_NOMARK) {
sed_BorderPrompt (sed, "No current marked region.");

}

else {
sed_BorderPrompt (sed, "Okay to delete marked region?");
if (kb_Read() == 'Y’) {

ted_BlockDelete(sed) ;
}
}
break;

Function Reference A-337

ted_BlockPaste Paste buffer into a text block

Synopsis

boolean ted_BlockPaste(sed, buffer);
sed_type sed; the sed
menu_type buffer; the paste buffer

Description

This routine pastes the paste buffer into the sed at the current cursor location
according to the marking mode of the block. If the block in column mode,
ted_BlockPaste pastes it column-wise; otherwise ted_BlockPaste pastes it
directly.

The paste buffer’s contents are usually set with ted_BlockCopy or ted_BlockCut.
Any menu, however, can be used as a paste buffer.

If the sed is in insert mode, ted_BlockPaste inserts the block otherwise it writes
over existing text.

If the sed is visible, the display is updated.
Return Value

Returns TRUE if successful, FALSE if not.
See Also

ted_BlockCopy, ted_BlockCut, ted_SetMark
Note

This routine is implemented as a macro.

Example

switch (scancode). {

case INS:
ted_BlockPaste(sed, copy_menu) ;
break;

* . */

A-338 C-scape 4.0

ted_DeleteChar ’ Delete a character

Synopsis
char ted_DeleteChar (sed);

sed_type sed; the sed
Description

This routine deletes the character at the sed’s current cursor location. The characters
following the current cursor location move to the left to fill in the gap left by the
deleted character.

If the sed is visible, the display is updated.
Return Value
Returns the deleted character.
See Also
ted_BlockDelete, ted_AddChar
Note
This routine is implemented as a macro.
Example
switch (scancode) {
AR Y

case BACKSPACE:
if (ted_LeftChar(sed, TED_TABJUMP)) {
ted_DeleteChar (sed) ;
}

break;

*... */

Function Reference A-339

ted__DownChar Move down one character

Synopsis
int ted_DownChar (sed) ;

sed_type sed; the sed
Description
This routine moves the cursor down to the next row in the sed.

For example, ted_DownChar would have the following effect:

Before: After:

I am the atomic powered robot. I am the atomic powered robot.
Please give my regards to Please give my regards to
everybody. everybody.

Return Value

This routine returns TRUE if it succeeded in moving the cursor, otherwise it returns
FALSE.

See Also

ted_SetMoveMethod, ted_LeftChar, ted_RightChar, ted_UpChar
Note

This routine is implemented as a macro.

Example

switch (scancode) {

case DOWN:
ted_DownChar (sed) ;
break;

* e */

A-340 C-scape 4.0

ted__GetCu rsor Get the text cursor offset

Synopsis
long ted_GetCursor (sed);
sed_type sed; » the sed

Description

This routine returns the offset of the character that the cursor is currently nearest
to. Forexample, in box 1 ted_GetCursor would return 5, in box 2 ted_GetCursor
would return 30:

1: 2:

I am the atomic powered robot. I am the atomic powered robot._
Please give my regards to Please give my regards to
everybody. everybody.

Return Value

Returns a long value corresponding to the offset of the cursor.
See Also

ted_GotoCursor, ted_LeftChar, ted_RightChar

Example

long cursor;
char msg[200];

/* L. */
switch (scancode) {
case ALT W: /* display the length of the next word */
ted_RightWord (sed) ;
cursor = ted_GetCursor (sed);
ted_RightWord(sed) ;
cursor = ted_GetCursor(sed) - cursor;
sprintf (msg, "Word is %1d characters long.", cursor);
sed_BorderPrompt (sed, "msg");
break;

Function Reference A-341

ted_Getlnsert Get the text insert mode

Synopsis
int ted_GetInsert(sed);

sed_type sed; the sed
Description
This routine gets the insert mode of the sed.
The insert mode can have the following values:

TED_INSERT Insert mode. Characters are slid to the left when new
characters are written to the sed.

TED_OVERWRITE Overwrite mode. New characters are written on top of the
old characters in the sed.

Return Value
Returns TED_INSERT if the sed is in insert mode and TED_OVERWRITE if the

sed is in overwrite mode.

See Also
ted_SetInsert

Note

This routine is implemented as a macro.

Example

switch (scancode) {
case INS:
if (ted_GetInsert(sed) == TED OVERWRITE)y {
ted_SetInsert(sed, TED_INSERT);
}
else {
ted_SetInsert(sed, TED_OVERWRITE) ;
}

break;

A-342 C-scape 4.0

ted_GetLinelLen Get the length of the current line

Synopsis
int ted_GetLineLen (sed);

sed_type sed; the sed
Description

This routine returns the length in characters of the line on which the cursor is cur-
rentl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>