Liant Software Corporation

RM/COBOL"

Language Reference Manual

First Edition

LIANT

http://www.liant.com

This document contains the information required to develop COBOL language programs using the Liant Software
Corporation RM/COBOL compiler. This document contains little tutorial material; nevertheless, it should be of value
to the novice as well as the experienced programmer.

For operating system dependent information, the reader should refer to the RM/COBOL User's Guide.

The information in this document is subject to change without prior notice. Liant Software Corporation assumes no
responsibility for any errors that may appear in this document. Liant reserves the right to make improvements and/or
changes in the products and programs described in this manual at any time without notice. Companies, names, and
data used in examples herein are fictitious unless otherwise noted.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopied, recorded, or otherwise, without prior written permission of Liant
Software Corporation.

The software described in this document is furnished to the user under a license for a specific number of uses and
may be copied (with inclusion of the copyright notice) only in accordance with the terms of such license.

Copyright © 1985-2005 by Liant Software Corporation. All rights reserved.
Printed in the U.S.A.

COBOL is an industry language and is not the property of any company or group of companies, or of any
organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL Committee as to the
accuracy and functioning of the programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAC ®
I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translater Form No. F 28-8013, copyrighted 1959 by IBM; FACT,

DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL specifications in programming manuals or similar
publications.

Liant Software Corporation
8911 N. Capital of Texas Highway
Austin, TX 78759
U.S.A.

Phone (512)343-1010
(800) 762-6265
Fax (512) 343-9487

Website http://www.liant.com/

RM, RM/COBOL, RM/COBOL-85, Relativity, Enterprise CodeBench, RM/InfoExpress, RM/Panels, VanGui
Interface Builder, CodeWatch, CodeBridge, Cobol-WOW, WOW Extensions, InstantSQL, Xcentrisity, XML
Extensions, Liant, and the Liant logo are trademarks or registered trademarks of Liant Software Corporation.

IBM and Macro Assembler/2 are trademarks or registered trademarks of International Business Machines
Corporation.

Novell and NetWare are trademarks or registered trademarks of Novell, Incorporated.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Ltd.

All other products, brand, or trade names used in this publication are the trademarks or registered trademarks of their
respective trademark holders, and are used only for explanation purposes.

http://www.liant.com

Documentation Release History for the RM/COBOL Language Reference Manual:

Edition Document Applies To Publication
Number Part Number Product Version Date

1 401226 RM/COBOL version 9 and later January 2005

Contents

Contents

Pl A o e e 1
Organization Of INFOMMELION............ciriieiriieer e 1
Conventions and SYMDOIS.........co.ciiiiiiiree e s 2
REGEEA PUBD T CAIIONS........eeiiiiteie ettt ettt s et e s st e e e s s bt e e s seaeeessssseeessbeeessnseesesannneas 3

Chapter 1: Language StrUCTUI.......ccvvveviiiiiiiee e e e e e e eeeneens 5
(O P o (< = A 5
S 7= 0] PP 5
CNAI LN - SITNGS. ..ttt ettt s e ettt bbbt et se e e b et ebe e 7

COBOL WOKAS......eeiiiettieeeeteteeeceeie sttt e s e ettt e s eaee s s sebesessssaesssesesessssbesssasseeesssenessssresssans 7
USEr-DEfINEA WOISooieieeie ettt ettt e e s e e s ebe e e s s raeessenaeee s 8
SYSEEM-NGIMES ...t sae e s sbe e e 11
[R(ES = AV(= 8 AVATL0] (0 =SOSR 13
CoNtEXt-SENSITIVE WOIS ...ttt etr e s ear e s s ebae e s e sbee e 16

[<= S 16
NUMETIC LITEIAIS..... ittt sttt 16
NONNUMETTC LITEIalS.....coiiveiieiiiietee ettt s e e sree e nes 17
Figurative CONSEANES........ccveieriresese e et re e ene e enen 17
Concatenation EXPreSSIONSccviviveieereeeeeesieseesteseesreseesaeseessessessessessessesseenees 19

PICTURE CharaCter-StriNGS.......ccereeereeriererieseseesteseeseseessesseseessessessessesssssssnesnees 20

COMMENE-ENLIY ..o s 20

Program SIUCIUNE. ..ot s er e 20

S0 001l 0 7= AP 20

(@00 01110107 (o) g o) I I 1 1= TR 21

BlANK LINES ...ttt sttt s e e s s st e e e s e aa e e s saba s e s sebbe s s snenessssbeeesesbenesanns 21

(000]1011.01< 118 I 4 1= 22

IN=LINE COMMENES. ...ttt sttt ettt s e e st s be e s be s s bessab e s sbessabessanessabeas 22

(1= 018 oo 1 0Tl T - RSP 22

= (S 1= 11 £ 23
DiIrECHIVE SEALEIMENES ...ttt s e sre e s sb e e be s e sbessreesares 23
Conditional SEALEMENESccceii it s b sreeeree s 23

ConditionNal PhIrases..........oooceieiiceie ettt e s e et seaaees 24
IMPErative SEAEEMENLS. ..ot 24
Delimited SCOPe StALEMENTS........cciirieeriereeierie et 25
SCOPE Of SEALEMENTS......eeueeeiieie et 25

S 1< 10O 25

ClaUSES AN BNETIES ...ttt et be e s et e e s saan e s s saaeee s 26

ParagrapiS.......ccecieee e aeenen 26

7S 1) O 26

[V Lo T 26

Source Program General FOIMELcccoovieiereeieeieresese e se s eeeseesee e e 27

RM/COBOL Language Reference Manual \%

First Edition

Contents

Inter-Program COmMMUNICALION..........cceiriiiririeeesieeees e 28
NEStEd SOUICE PIOGIaMSccviveuiiterieeete sttt sttt et 28
FilE CONNECLON ...ttt et s b et e et e e b e e sbesaeeaeas 28
Global Names and Local NAMES ..ot 28
External Objects and Internal ObJECLS..........ooiiiiiiiieneeeeee e 29
Common Programs and Initial Programs.........cccceceeeveeienesesiesieeieseese e svese e sveenas 30
Sharing Datain @aRUN UNItccuiiiiiiicice et s 30
Sharing FIlesin @aRUN UNit........cccooviiiiiiiicceeeese e 30
o0 LY o) V= 31

Program-NEIMIES........cccoiieieeie ettt esreeneeeneean 32
Condition-Names, Constant-Names, Data-Names, File-Names,

Record-Names, and Split-Key-Namescccoereerineienieneene s 32
INAEX-NBIMIES ...ttt et re s se e see e e tesrenrenne e 33

Initial State Of A PrOGraM........coiiiiiieee e e enea 33

ENd Program HEAOEY ..ottt e 34

(G0 S = 0 1= 0| A SR 35

REPLACE SEALEMENE ...ttt st se s st se st st sse s 39

Chapter 2: Identification DiVISIONccoovviiiiiiiiiiieeeeeeeeeii e 43

Identification DiVISION SITUCIUIEcc.eeueeieieie et st 43

Program [dentifiCation. ..o e 44
PROGRAM-ID Paragraphccvcivvueiiesieiesesiee e seee st s see et sessessns 44
AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY,

aNd REMARKS Paragraphs........ccoereiineneeeeeeee e st 45
DATE-COMPILED Paragraphcccoeveiirienieiesienieie e 45
Chapter 3: Environment DIVISIONcooooeiiiiiiiiiiiiieeeeeeeeeei e 47

Environment DiViSION SETUCLUIE...........ooiieieieiieececesiesie et eneas 47

CoNfigUIAionN SECLION.......cccuiiiiiiirieeeie ettt 51
SOURCE-COMPUTER Paragraph........ccccccveiveiiinieisieneeeseseseseesesseseeessesassessesens 51
OBJECT-COMPUTER Paragraphccoceeueireneeerieieesieesesieesesseessessessssessssenss 52
SPECIAL-NAMES Paragraphccccoueeveisesieiseseeieseseetesiesessessesessessesessessssessesens 53

ALPHABET ClaUSE.ot iiiieiirieieiesieisie ettt este st s et saeestessenessessenessens 54
Code Name AIPNabELScccoviiiiecececee e e 56
Literal AIPhabets.......ccvevveree e 57
Indexed File AIPhahEtS ..o 58
EBCDIC Trangation.........coeeririeirinieirenieesesieesiesie s 58

CLASS ClAUSEcveveeietisieeiee ettt a e be e ene st e s ee 58

CONSOLE ISCRT ClaUSE.....cceievirriierisieestesseessessssessessessssessesssssssesssssssessssenes 59

CRT STATUS ClaUSE....ccvieeviiiiieterieietesieestessesestessesessessess s ssesessessesessessessssenes 59

CURRENCY SIGN ClaUSE.......coueiriirieririiieesiisieesiesieessessesessessesessessesessessesenes 60

CURSOR ClaUSE.cevetirierieiesieestesieesteseesessessesessessesessessssssssssssesssssesessessssessenes 60

DECIMAL-POINT ClAUSE.....ccevvetiitirieresiesieiesieneesesiesessessesessessssessessesessessesessesens 61

MNEMONI C-NAME ClAUSE.......ccereeririereesie et s see e 61

NUMERIC SIGN ClalSE......cccviuieeririeirierieesiesieesieseeesiesesesseseeessessssessessesesses 62

SYMBOLIC CHARACTERS ClaLISE.......ooveireieeiirieieiesieesie s seens 63

INPUL-OULPUL SECLION ...ttt et ne e e e entesnensennennens 64
FILE-CONTROL Paragraphccooueeierieinerieenie ettt s saesesseseenessens 65

File CONLIOl ENEIY oo.veeeciececeeeee ettt st nneas 65
SELECT ClaUSE....civieeriitieeiitietesteeese sttt ss et e s s 66
ACCESS MODE ClaUSE......ccveirietiiierierisieseetesteseeesseseesessessesesaesessessesessesans 67
ASSIGN ClaUSEoivieeiiitieeti sttt aenenns 69
CODE-SET ClAUSEctiieeiriirierisiesieesiesesessesteessessesesestessssessesessessessssessens 70
COLLATING SEQUENCE ClaUSE........ceoririeniriisieesesienesesienessesseesseseens 71

Vi RM/COBOL Language Reference Manual

First Edition

Contents

FILE STATUS ClalSE....c.cciiiiieeiiiiietesieseete e snenes 71
LOCK MODE ClAUSE......c.coveiirierietesiesisiesieessessesssessesssssssessssessessssassessssenes 72
ORGANIZATION ClAUSEeveverviriereriisieessesieesessesessestesessessesessessesessessens 73
PADDING CHARACTER ClaUSE.......ccccviueeriirieesiisieesiesieseseesssessassesessenes 74
RECORD DELIMITER ClaUSE......cccooueiiiieiriiesesieesesieessessssessessesessenes 74
RECORD KEY and ALTERNATE RECORD KEY Clauses........c.cc...... 76
RESERV E ClaUSE.......oeetiiiiieierieisiesieesie s ssesesse s sesses e ssansesessnnes 77
Sort-Merge File Control ENLYcccveveievenie et 78
SELECT ClAUSE....civiieiiriiirieriteiesiees sttt 78
ASSIGN ClAUSE ..ottt 78
[-O-CONTROL Paragraph.......cccoceveiieieseseseeseeeeseseese e ste e seesessenseseessesneens 79
RERUN ClaUSEccvtivieiiteiieiieti sttt sttt saese st sae s se s s snessesessessesesnas 79
SAME ClAUSE......ccviiieeetistee ettt st e e e s e 80
MULTIPLE FILE ClaUSE......ccceoveeiteeeiesieieiesteseetesieestesaesestesaesessesessessessesessesens 82
Chapter 4: Data DiVISIONuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeneees 83
Data DiViSiON SIIUCIUNE......oveueriiieeierie ettt st sttt 83
LTS = o (o o TSSO TR 86
File DESCriPtiON ENLIYc.covirieiiiiieeee ettt sttt sb e e ene e 86
Sort-Merge File DesCription ENLrY ..o 87
File DESCription ClALSES.ciueiiterieesierieie sttt sttt st st 88
BLOCK CONTAINS ClaUSEeveveiierieresiesietesieseesesteseetestesessessesessessesessessessssessessnsens 88
CODE-SET ClAUSE.....cutitiieteiteietestesietestesestesaessesessesestessessssessesessessssessessesessessesessesss 89
DATA RECORDS ClAUSE......ccviueuieterieestesiesesieseeessesaesessessesessessesessessssessessssessessasens 89
EXTERNAL ClalSE.....c.ciiiieiirierieiisieseeiesteseetesie s e steseetessesessessenessesaenessesssssssesssnessens 90
GLOBAL ClAUSE.....eeetiiieietesieietestees e sieestesaeeste et st seesesteseesestesessesteseesessesessessenens 90
LABEL RECORDS ClAUSE.......coueiiieeeiesieneeiesieiesiesteesteseesestesessestesessestesessessenessessens 90
LINAGE ClBLSE.....cveiiterieeste ettt sttt sttt st sttt be st sttt ene 91
RECORD ClaAUSE. ... ccut ettt sttt sttt sttt st s st sae e be bbb st 95
VALUE OF ClaUSE ..ottt st sttt sttt sttt sttt 97
WOrKing-StOrage SECHIONciuiiriirieirierieeries e 98
LiNKAOE SECHIONcueitireeieite ettt ettt ettt b et b e et b s 98
COMMUNICBLION SECHION ...ttt et sae b se e e e e resaesae s 100
SCIEBN SECLION ...ttt ettt e bbbt bt et et e e e e et e seesbesaeene e e enean 101
ReCOrd DESCPtiON ENEIYccouiiiieeeieee e 102
LeVEl-NUMDBENS.......coiiiecee e 102
Elementary [TEMS.......cooiiieiiceceeeeeesee et st st r e re s 102
T7-Level DESCriPtioN ENLIY ..c.ccuececece et sttt sne 103
Data DESCIIPLION ENIY ..c.veceeceecce sttt s ene e eneeneesee e 103
Condition-Name Data DesCription ENtrYccvevvevevenienese s eeeseeseese s e e 106
Constant-Name Data Description ENtryc.cceeeerevenenn s eceeeeseenee s 106
BLANK WHEN ZERO ClaUSE.......ccviuiieririiieisieieeseseeeseseeeseesses e sessessesssessens 107
Data-Name of FILLER ClalSE........cccoviiiiieieeeieee et 107
EXTERNAL ClalUSE.....c.cciiieeieiiieiistisieesteste st e et sae e ste s stesaesessesnens 107
GLOBAL ClAUSE.....covetiiieeeiesieeeiesieestesaeestesae e steseesestesessestesessestessssessessssessensssessens 108
JUSTIFIED ClaUSE......ueietiiteieiesieietesieestestesestesaesestessesestesaeseesesaesessesessessessesessesens 109
LeVEl-NUMDES ... e e e 109
OCCURS ClALSE.......c.eiteeetisiesieie e seetestereste e e e st st sae e ste s e stesaesesteseesestesessessenenns 110
PICTURE ClaUSEciveuerierieiisiesieesiesie sttt ste st sse s e stessesessensns 112
IMplied PICTURE ClaUSE.......cccvieiiiierinieesiesie st 113
Nonnumeric Implied PICTURE ClauSE........cccooevvvereneseneeeereese e seenens 113
Numeric Implied PICTURE ClaUSE........cccoueverererese e eeereeseesee e 113
Implied PICTURE Clause and Other Data Description Clauses............... 114
PICTURE Character-String (Data Categories)coverrerererenienenenienesiennene 114
Symbols Used in a PICTURE CharaCter-String........cccoeveerereneneeieneneeenieneas 115
RM/COBOL Language Reference Manual vii

First Edition

Contents

viii

Editing RUIES......couoiiie e e 118
Simple INSertion Editing ..o 119

Special INSertion Editing........ccoovereieienneeeee e 119

Fixed INSertion EAItiNg.........ccooireieiineneeeeeee e 119

Floating INsertion Editingcccoeiiieniieieee e 120

Zero SUPPression Editing......coccveieiicesececiesese s 121
PICTURE Symbol PreCedenCe........cccvveveeieecese et 122
REDEFINES ClALUSE ..ottt 124
RENAMES ClaUSE......coviiriieiresiceneseees s 125
SIGN ClAUSE. ...cvreeieereie sttt 126
SYNCHRONIZED ClAUSE......ccoeireireierrereresmeeeserese s snesesessesens 128
USAGE ClAUSE.... ottt sttt sttt s e et ne e 129
COMPUTATIONAL USAHEveeeieiririeeresieesesie et es 130
COMPUTATIONAL-L USBGE....cvevieirreiririeesesiee et sesiee s s es 131
COMPUTATIONAL-3 or PACKED-DECIMAL Usage.......ccoeeerereeeenericinnene 131
COMPUTATIONAL-4 or BINARY USBQE........coeoeriririinieienerieeesieie e 131
COMPUTATIONAL-5 USBgE.....coeviiiereiririeenieiee e 132
COMPUTATIONAL-6 USBgE......ocuiiiereeririeeieiee st 133
DISPLAY USAJE.. .ottt sttt es 133
INDEX USBQEcoeeieiieiciiresreienesne e 134
POINTER USAJE......oeireiireieiiresreeres s 134
VALUE ClaUSE ..ottt 135
Data Item Initialization Rules (Format 1 VALUE Clause)cccoveevrienereennen 136
Condition-Name Rules (Format 2 VALUE ClaUSe)cccoevererereeieneneeenieens 137
Constant-Name Rules (Format 3 VALUE ClausSe)cccoeveenenecenennenieens 137
Communication DeSCription BENLFY ..o 140
INPUL CD GeNEral RUIES.......coieieeeee et e 142
Output CD GeNneral RUIES..........coiieriiieiese et 145
Input-Output CD GeNneral RUIES.........ccoieieciececeeeee e 147
57 (0] (=Y 000 [o 0~ TN 149
EITOr KEY VAIUES.......ceveieie ettt sttt s n e e 152
SCreen DESCIIPLION ENLIY ...cvvcieieeceeeeeeceesies et st e e st eeaeseensesaesnens 153
AUTO ClBUSE. ...c.vveereeies et 157
BACKGROUND ClAUSE.......cueiririenirieteeristesesieseesissesesassesessssesessesenessssesssssesessssens 157
2] I = U =SSR 158
BLANK LINE ClaUSEcutiviieieeieierisieeseeiee sttt 158
BLANK REMAINDER ClaUSE......ccoueuieririinirieiiesieiesesie et s 159
BLANK SCREEN ClAUSE.....c.ciueiirieieririeieesieie st sessee s sasse s sesseessssene s 159
BLANK WHEN ZERO ClAUSE......ccucueririeiririnienesieieesisiesesesiee st sessee s 159
BLINK ClELSE. ... cvetiierieieirietees ettt 160
COLUMN ClAUSE....c.eeteiereteniresiere st sse ettt st b e s s snere e seenens 160
ERASE ClELSEc.ecviiiieeeirietet ettt 161
FOREGROUND ClaUSE........cotreireirmireireereiesesseesesrese s sessessessesens 161
FULL ClAUSE....cceereiiresreeesesret e 162
HIGHLIGHT and LOWLIGHT ClaUSES......c.ccovvrrereereneereereeresreesesree e 162
JUSTIFIED ClaUSE.....cvteueerieieresieesesieie e eses et seseeseestesesessesenesieseneseesenesessenesensas 162
LINE ClEUSE.cuteeeiieeieiesisie ettt sttt sttt se et se st s et ne e 163
PICTURE ClAUSEucetieterieereeieie sttt s se st se s tese et se e ssesanessssans 164
REQUIRED ClAUSE......ocutierteuierieiesesieiesesieiesesaese et sesas e se st sessese s b s ssssessssesns 165
REVERSE ClaAUSE ... vttt sttt sttt s sbs e ss s 165
SECURE ClELSE......c.ciueieiieieirieie ettt sttt et s b e 165
SIGN ClAUSE.cvteiteeieie sttt nn s 166
UNDERLINE ClAUSE......c.civiteutrerieieresieesesieie st sese s sneseessssens 166
USAGE ClaUSE.....c.eceiiiierereees et 166
VALUE ClaUSE ..ottt 166

RM/COBOL Language Reference Manual

First Edition

Contents

DELA SITUCTUIESeee ettt e e e s te e st e e s e e ae e e saeeeseeessaeenseeenneeenneeans 167
ClaSSES Of DBLA.......ccveeieiiie ettt ettt e st e s te et e s eesreesaeesreereenns 167
Standard AlIgNMENt RUIES.........ccuiiiiiiieiee e e 167

UnNiqueness Of REFEIENCE.........oouiiiiii e 168
(@ U= 3 o= (o] o 1SR 168
IS 01015 o111 1o S 170
Reference ModifiCation..........cooeiierieeieiese s 172
(Ko 1< 011 11= SRS 173
L0000 [1T o0 o \\F=0 11 TSR 173

QIR o= =T | T S 174
TablE@ DEFINITION ... e 174
Referencesto Table ItEMS........cooiie e 176

Chapter 5: Procedure DiViSIONcccooveeeeiiiveeiiiiie e 179

Procedure DIVISION HEAOENccccoiiiririiecsiee et 179

Procedure DIVISION StIUCLUIE.........cciirieiririeirteie et neenes 182

PrOCEAUIES ...ttt ettt st b et b et beneenes 183

EXOCULION. ...ttt ettt sttt b et b et b et b et enes 184

Procedure REFEIENCES.........oov ettt ettt s e reene s 184

Explicit and Implicit Transfers of Control............cocoveerireinincneee s 185

SEOMENTALION ...ttt bbb 186
SEOOIMENES ...ttt sttt ettt et ae e h e e b e e bt e st e eae e sh e e eb e e sbeenbe e e e saeesanesaeenreeneeans 186

FiXEA POITION......ceiiee et e 186
INdepEndent SEGIMENLScooeiiireee e 187
Segmentation ClassifiCatioN..........ccccieieiiiecececseere e e enea 188
=0 [01= a1z L0 0 X0 511 (o) TSP 188
Restrictions 0N Program FIOW ... 188
ALTER Statement RESIICHIONS.......coviiirirereseresie e 188
PERFORM Statement RESLITCLIONSc.covveireeee e 188
MERGE Statement RESIIHCIIONS.......coovieririreene s 189
SORT Statement RESLHCHONS........ccueieeiieieece et 189

USE SEAEEMENEvecvieeeectisieeeete ettt sttt ss e be st e s esesse e esessessesesseneesessanes 189

COMMON RUIES......eeeee ettt et s b e s ae b e e se e besbe e 192
SUDSCHPE EVAIUBLTON ...ttt 192
ATithmetic SEAEEMENTS.......coiiiie e e e e 192

Y KoTo LYo 0] o = =i o) IO S 192
COMPOSITE SIZE ...ttt e e se e tesresrenre e 192
ROUNDED PHIESE. ...ttt sttt sttt et st ne st sens 193
SIZE Error COoNAitionceiereeierieee ettt b e 193
Overlapping OPEIraNdS.........cceeeereerireresese s e ese e e srese e eseeseeseesressesaeesesseeneen 194
INCOMPALIDIE DELA.......eeeeeeeeeeeeeie et e e e se e aesnesrenns 195

ATItMELIC EXPrESSIONScovieeiiiteieeieste ettt sttt b ettt sb e e be e nesne e 195
ATITNMELIC OPEIELOIS. ... e.eeveieieeeerieeet ettt 196
Formation and Evaluation RUIES.............ccooeeieeiice et 196

ConditioNal EXPIrESSIONS.......ccuiiuieiereeeeiereesie st ste sttt sie st eeeseesbesaesbessesaesse e e eseseeseesaeseens 197
SIMPIE CONAILIONS......cuiieiieiieeeeee e e s see e 197

Relation CONAitiONcooiiiiieeee et e 197
Comparison of NUmMeric Operands...........ccccevevenievenesiesesesseeseeseeseenee s 199
Comparison of Nonnumeric Operands..........ccccoeeevesesieseeesseeseeseeseeseens 199
Comparisons of Index-Names and Index Data ltems..........ccccoceeveveevenene. 200
Comparison of Pointer Data [tems..........ccceevvvvievencecescecsere e 200
LIKE Condition (Special Case of Relation Condition)..........cccccevcvverennne. 200

Class CONAITIONcoueueiireeireree et et b e 209

SigN CONAITION ...ttt e e et 210

RM/COBOL Language Reference Manual
First Edition

ix

Contents

X

Condition-Name Condition (Conditional Variable)c.ccoceevvvreinienncnenene 211
SWiItCh-StatUS CONAITION.........eeeieeieeeeee e 211
CoMPIEX CONAITIONS.cueeeieeeiesie ettt s b b s ae e eneas 211
Negated CONAItIONS........ccoiiierieieie et 212
Combined CONAILIONS.........coiierieiierireeie ettt e 212
Abbreviated Combined Relation Conditions...........cccoevineiinienenesieseneseeee 212
Condition Evaluation RUIES............ccoueiieine et 213
Sequentia Organization INPUE-OULPUL...........cceeerecieriesese e s sre e seesee e re e eneas 214
FUNCEION. ..t ettt sttt 214
(@ 0T 0114 (o] o [P SP 214
ACCESS IMOUE ...ttt ettt enes 214
File POSItION INAICALONc.oivieieeeeeeeeeeeeee e 214
[2O SEBLUSveeveieeeeie ettt sttt b et e s bt e se b e st ese s s e e eneer e aene s e nenn 214
At ENA CONAITION ..ttt et e e b 218
Relative Organization INPUE-OULPULcoerierierinerie et eneas 219
010 Tox 1 o o TSSO 219
(@ 0T 41174 (o] o OSSN 219
ACCESS IMOUES......cuecviiiieterieee sttt ettt et et e e b et e e sseseenes 219
File POSITION INICALOTcueiiiieeeieiiiee et 219
[2O SEBEUS ...ttt bt r b et b s e e nenrens 219
F0\Y = Yo I =,V @] o 1o o 223
At ENA CONAITION ...t 224
Indexed Organization INPUE-OULPUL..........coveeririeiriereeesie e 225
00T 1 o o 1S 225
OFQBNIZALTIONccviieeeeterieeet ettt b ettt bt en e 225
ACCESS IMIOUES.......ee ettt ettt st s e e s bbbt et e e et e se e be e b naas 226
File POSItION INAICALONoiviieieeieeeee et e 226
[2O SEBLUS ...vveeveieieeie ettt sttt ettt st e st et e se b e naese e bt ese s e tesenseaenen 226
INvalid Key CoNAitioN........ccooeeiieieiice ettt enas 230
W =g To @] oo 1 1o o ISR 232
L= o o SR 233
L S w0 o I To:q o S SPR 234
ReCOrd LOCKING MOUES.......coeie ittt s st nneens 235
Automatic Record LOCKING MOEScccureerinierineere e 235
Manual Record LOCKING MOES..........ccoierririinenieeee s 236
Single Record LOCKING MOGES..........cuiirieierienieie et 236
Multiple Record LOcking MOGEScoeriririiiieierere e 237
Interactive Terminal [-O.......c.ooi i e 237
SOM-IMBITE. ...ttt b e bttt et e st e sae e she e see s et easeeseesbeabeenbeenbennneas 238
ComMMUNICALION FACIHITY ...veveieciece et s re e sreene s 238
MessSage CONtrol SYSEEM.......cceiiricieeeie ettt s r e resre e 238
(@ o 1= ot B (0T o ¢ ISP 239
Relationship of the Object Program to the Message Control System
and CommUNi CatioN DEVICES.........cuvirieiriirieere ettt 239
INvoking the ObjECt Programc.cccvveverecereeeeseseese st e e seesee e s nes 239
Scheduled Initiation of the Object Program ... 240
Invocation of the Object Program by the Message Control System..........ccocceeee. 240
Determining the Method of SChedulingcccoerereininee e 240
Concept of Messages and Message SEgMENTS.......cc.crvereererereneseseeies e seesee s 241
CONCEPL OF QUEUES ..ottt ettt ettt s e et s sae e e e e e besbe e 241
Independent Enqueueing and DeqUEUBINGcccoeeriererienieresiesieseeee e e 241
Enabling and Disabling QUEUEScccceruiiierecieeeriere et st 242
(@010 (CY o [T= = 1 VSRS 242

RM/COBOL Language Reference Manual

First Edition

Contents

Chapter 6: Procedure Division StatementS...........cccevvvvvvvvnnnnnnnn. 243
ACCEPT . .. FROM SEAEMENT.......ceiirieririerieesieseeesieseesesiesesteseeesseseesesseseesesseseesessenens 243
ACCEPT Statement (Terminal 1-O)ccveeeeririe e e 247

AUTO PHIASE....c ettt sttt s r e e e e et srenns 249

NO BEEP PHIBSE......ccucitiieiieienie ettt st s 249
BLINK PHIASE......cuiiiiietiiiiiei sttt s s be e s te s s srennens 250
CONTROL PHIESEccuiiieiciisieese ettt st sttt sn et 250
CONVERT PHIGSEcuiciisiciisieeee ettt s sttt sttt 251
CURSOR PHIASEcutitiieiisiesieie e st ste s ste st ste et stesas e ste e seste e ssestesessestensssessens 252
ECHO PhIESE ... c.ccviiiiieeiiiie sttt sttt st nnens 253
ERASE PHIBSE.... .ottt ettt sttt ne st s 253

ON EXCEPTION and NOT ON EXCEPTION Phrases........ccccocvveevrienneneneninnnnns 253
HIGH, LOW and OFF PhIrases........ccooeiiinieininieesiesie st 255
LINE and POSITION PhIESES......cciirieiriiieinieieesiesis st 256
Determining Line and POSITIONcocveveverieneneceeeee e 256

MODE ISBLOCK PHIESEcoutriiiriirieiriisiecresie st 257
PROMPT PRIESE ..ottt 257
REVERSE PhIESEcccuiitiieiitiei sttt sttt 258

R 7 ol S =TSP 258
TAB PhIESE ..ottt sttt sttt sttt saese st e st et e sbeneetesae e etesranens 259
TIME PHFBSE ..ttt sttt sttt sttt st e s tesaeseebestesesbesaesesteseesentenens 259
UNIT PREASE.....eoieeiiiiieeisiiieesieie sttt be s s bese e sbensenestessens 259
UPDATE PHIBSE ..ottt sttt 260
ACCEPT MESSAGE COUNT StAatEMEN.......cvierieerierieierieneeresieeseseeesieseeeseeseesessesens 262
ACCEPT Screen-Name SalemMeNtcceviiiiiieinie e see e see s s seee e 263
A DD SEEEIMENLeieveeeeieieesieeseeieseeseeseeseeeseeeeeeseesseesseesseeseensesssesnaesneesseesseenseenseensean 266
CORRESPONDING PHIaSE......cccoiiieiirieirie sttt st 267

Y R I ¥ =0 1= o | 269
L7 IS - = 001 | SRS 270
USING PHIGSE......ccuiiiiieiisieie sttt sttt ne st ne s b 272
GIVING PhIBSE....c.cciiiieece sttt sttt st sttt sttt et e 274
OVERFLOW, EXCEPTION, and NOT EXCEPTION Phrases..........ccccccvvereseeen. 274
CALL PROGRAM SEAEMENEcvviviieiiriiierisieiesesieeesesesassesessesessessssessessessssessesessessens 276
CANCEL SEBEIMENEcueiveiieieeiesieieseseeie e seere e te e e stesae e stesae e tessesestesaesestessssessensnseses 278
CLOSE SEALEMENTveveieiieierieee sttt sttt e s nnns 280
REEL and UNIT PHIESEScvvviiieiiiiiecriiiees ettt s 281

NO REWIND PHIESEoveuiiiiiieiriisieieesieesie sttt st 281
REMOV AL PHIESE ..ottt s b 282
OO (G = == S 282
COMPUTE SEBEMENE ..ottt st 283
CONTINUE SEAIEMEN.....c.ciiiieeeiiesieiste et seee e e s se e st sa e sresaesesreeenenes 284
DELETE Statement (Relative and Indexed 1-O)cooovireerineenieerieseseese s 285
DELETE FILE SEBEMENL......cviiiieisirieisiesieiesiesee st ssesas e ssesessessesessessesessessenes 287
DISABLE SEEEMENLcviiviiceiitiieisiieee sttt e s sensesessenes 288
INPUT PhIESEecviciiiciieie ettt sttt sttt st st sessenaesensenes 289

[-O TERMINAL PRI@SE......ooieiiiiieiiiiiei sttt 289
OUTPUT PHIBSE ...ttt sttt sttt st s st st st pe s 289
TERMINAL PhIESE.....coeiieiiiiiieiiiiesieie sttt st st st ne et e 289
WITH KEY PHIASE......cuiiiiieiirienieesesee sttt 290
DISPLAY ... UPON SEAEMENEcovieeeiriiieeirieieesieeeieseeesresiees s seenes 291
DISPLAY Statement (Terminal 1-0)ceeveiereiesiieseeeeseeseseese e eee e e snens 293
BEEP PHIaSEcecuiiiiiceiscee ettt sttt st 294
BLINK PHIASE......cuiiiiietiiiiieisiee sttt sa e st s st saenesnennens 295
CONTROL PHIESEccuiiveiciisieise sttt sttt st sn et 295
CONVERT PHIGSEccuiiiesiciiseie sttt sttt sttt 296

RM/COBOL Language Reference Manual Xi

First Edition

Contents

Xii

ERA SE PHITASE.... .ottt ettt e et st e et e s e e et e saesaeessreesaressereesaneesereesareenas 296
HIGH AN LOW PhIBSES. ..o ceeiee ettt ettt e et e e seate e st e s s s svaeessenanasssareees 297
LINE and POSITION PHIESES.......ccocuiiieieiieeeeeesteeesessstesssvessbessseessvessenssssesssnnesns 297
Determining Line and POSITIONccoiiiiiiiiienieee e 298

MODE [SBLOCK PHIESEooeitieitie ettt ee st s s sae s s ressane e 298
REVERSE PhIASEociitieceie sttt ettt sttt st be s sbe s s bessbe s sbessaaessabessnnneans 298

S A o = 0= T 299

L0 LT I 0= R 299
DISPLAY Screen-Name SLAEMENT........cooveii et e e 301
DAV A B S = (=1 1= | 303
REMAINDER PhISEcccveiitee ettt sttt ssves s svessvessbessnneean 305
ENABLE SEAEEMENToeeiieieee ettt e st ee s e st e st e e s s beesssbeessssseassasseessasresessnnens 307
INPUT PGS ..ottt ettt e e ee st e s et e st eesateesateeseseesaressaseesenessareesareeans 308

[-O TERMINAL PhIaSE... ..ottt ettt teesbe s teesb e s ssaesstesssressaneeans 308
OUTPUT PHIBSE ...ttt ettt ste et e s s ae s ebee s saaesebesssanesren s 308
TERMINAL PHIBSE..... .ottt ettt st s s sae s st s s ebe s s bessaeesares 308
VA I I S o 0 e = = =T TR 309

o N S RSt (<101 | TR 310
EVALUATE SEABEMENL........viiiceieiiieeeiestieser e eeestts s sresestesssbessbessbesssbessbessssessressnsessns 311
L IS = 1= = | R 315
GOBACK SEALEIMENLveeeeeeieee et eette et e e ebe e e seaae e s saeeeeessbesssesseeesansenesenseessanns 317
(IO OIS 7= (<1111 | 318
DEPENDING ON PHIGSE......cueieeeie et et eeee e e e e eeeesaeesaeeseeesareesereeseseeseressannena 318

(LS = 1 11<. | TR 320
INITIALIZE SEAEEMENTveeeeetieeeeeeee ettt s et e sttt e s et e e s seaaeeessaseeessbaeessaseeeesanrees 322
INSPECT SEAEMENTveiieieieee e eeteeesee e ste s e e e s st e s sstessstessstessbesssssssbessssessssessssessssesans 326
MERGE SEALEMENEeoieieieeieeeie ettt sttt e e st eeste e s s e e ssteessbeessaessssessbessssesssbessssessasesans 333
MOV E SEAEEMENE ...ttt sttt et e e e e s s e e s ae e s s b eessbesssbesssbesssbessbesssressrenans 338
CORRESPONDING PHIGSE......ccoiuiiiiieitii sttt estee st st ssbesssaessbesssressbessaessareas 341
MULTIPLY SEBLEMENLcciitiiiitieiitie et stie st e s reesree s sraessaes s sbaessbesssbesssbesssbasssbessssessnsesans 343
(@] o NS = 1< /<10 345
AN I 0= 348

(O LI U I = 4TS T 348

(O I 01 == <SRRI 348
EXTEND PHIASE.....eeie ettt eeee e ee ettt e eaeeeee s et e saaee st eesaseesereeseneesereesannenas 349

NO REWIND PRISE ...ttt ettt eee e eeeeee s et e s aaee s reesaeeesereesennesereesnnnena 350
PERFORM SEBLEIMENeiiieeeeeeii et eeestes st ste s s eaessaaessaessaesssasesssesssassssbessssnssnsesans 351
PURGE SEAEEIMENLeeeieeieieeieeei ettt e see e st eeste e s s taessaesssbessbesssressssessssessbesssressasenans 363
READ SEAEEIMENLcvvieeeie ittt eee et e s e s st eestee s stesesaesssbessssessssessbessssessbessssessssesans 364
A & 11 TSR 368
(OO S = 1= = < TR 368

A O I 1= = < R RR 369
INVALID KEY and NOT INVALID KEY Phrases.....c.ccccovveeeivee e sevee e 370

[O Y S (< 111 | 371
NO DATA and WITH DATA PhIaSES......c.eeeeeeeitiecee ettt s 371
IMIESSAGE PhIBSE......eeeeieeeie e eeeee et e et e s te e s e st e e s e aee e s sbeeessasteesserseeessareeess 372
SEGIMENT PhIBSE ...ttt ettt e et e e s et e e e e st e s et e st e s ereeseeeseneesaees 373

[I N S = 15 101<. | TSR 374
FROM PhIBSE......eieceie ittt e ettt e s ee e s te s et e s s atessaes s staesetesesbeesabesssbesssesseressneeans 374
RETURN SEBEEMENLceeeiieei ettt e essete e s bessae s s besssessbessssessbessssessasessseesns 375
REWRITE SEBEEMENLeveeievieeeie ettt et ee e es s aestesseaesssbesssbessabessebessseesns 377
FROM PhISE......tiiitie ittt ettt ettt e s s te s be s s s ba s s s be s s bessbesssbessabessabessaressns 379

S AN (O IS = <0 1< | 380
S N D IS = (< 11 0| 385
ADVANCING PhISE ...ttt sttt sttt ste s srae s sbessneeeans 387
S IS = = 1.1= | 389

RM/COBOL Language Reference Manual

First Edition

Contents

S O R IS [107 | TSRS 393
START Statement (Relative and Indexed 1-O)........ccoerireinineineeeree e 399
SIZE PHFBSE. ...ttt st bbbt bbb 402
INVALID KEY and NOT INVALID KEY Phrases........coccoveerirennesieerinieneseseeees 402

STOP SEBEEIMENT ...ttt sb ettt bt se bbbt et ne b b e se b e s 404
STRING SEAEMENL. ...ttt enene s 405
DELIMITED PHIBSE ...c.vcviiiciiesieie sttt 406
POINTER PHIESE ..ottt 406
OVERFLOW and NOT OVERFLOW PHIases........cccoeiinmireereneensreesesreresennenene 406
SUBTRACT SEBEMENT ...ttt s sre s sr e aesn e e sresneeneas 408
CORRESPONDING PHIESE......ccoeimireirenieierenreenesrere s 409
UNLOCK SEEEIMIENEvveveerteieisieesesteiesesie e sestesesesie e sessesessste e sessesessssesesessesessssenesssss 411
UNSTRING SEALEMENE ...ttt sttt st se e s et e sessesesesseneseseas 412
USE SEBEEMENL ...ttt ettt sttt s e bbbt 415
WRITE SEAEEMENE ..ottt st 416
FROM PHIESE... .ottt e ekt 418
ADVANCING PhIBSE.....coiciiirecieesieieresee ettt 419
END-OF-PAGE and NOT END-OF-PAGE Phrases........c.ccocovieiinneenneenenienene 420
INVALID KEY and NOT INVALID KEY Phrases........coccovvevrenneeenseneseeieees 421
Appendix A: Reserved WOrds..........cceeeeieeeeiiiieiiiiiiiee e, 423
RESEIVEA WOITS ...ttt ettt e bbb s e e e e e besae e 423
CoNtEXt-SENSITIVE WOITS.coueiiiieieeie ettt sttt e s ene s 429
SPECIAl SYMDIOIS ... et ettt e e e b eae s 431
NONreserved SYSEEM-NGAIMIES..........coiie i se et sresre e esaeneens 432
Appendix B: Compiler MeSSages........cccevviiieiiiieeiiiiiiiiee e 435
COMPITEN MESSAGESveveieitirieiieieste ettt b ettt b et b bt nne 435
Compiler MeSSageS 1 — 100oceeueruereeiriereeiesie ettt 436
Compiler Messages 101 — 200coueeeereerieriesie et s saens 449
Compiler Messages 201 — 300eouerieririeriesie et ee e saesaens 462
Compiler MessagesS 301 — 400coueriiieiieriesie et se e sae s 475
Compiler MessageS 401 — 500ceeveveeieiiesieseseeeeeesiesee e sre e e e saesee e sresnens 487
Compiler MessagesS 501 — 600cccveveeieriisiesieseeeeseesiesee e e sresree e e saeseesreseesnens 500
Compiler MessagesS 601 — 700cceeeeverrererrieseseseeseeeeseeste e saessesseeneeseesseseesnens 505
Compiler Messages 701 — 800cceeeereererrsieseseeeereeeeseeste e saessesseeneeseeseeseesnens 513
Glossary Of TEIMS ...uuiii e e 521
Terms and DEfiNItIONS........cccoiiiiieieeeee e e e s 521
L0 1= U PPPTT 547

RM/COBOL Language Reference Manual Xiii

First Edition

Contents

Xiv

List of Figures

Figure 1: SOUICE FOMMEL.........cceieiieeeiecreeeeree e sttt e e st sre b e ae e nae e e besresrenns 20
Figure 2: Logical Page Layout for General LINAGE Clause.......ccccccvevvvvvrvieceeseeneene 94
Figure 3: Logical Page Layout for Specific LINAGE Clause.........ccccocvvvriveieerernsnnnnns 95
Figure4: PERFORM ... VARYING Statement........ccccceeerrrierininreceseseeeeseeseese e 355
Figure5: PERFORM ... VARYING StaEMENt......cccccoviirieiriieereeeesreesre e snens 357
Figure 6: PERFORM ... VARYING StaEMENt......cccceiviirieiriieeseeee e 358
Figure 7: PERFORM ... VARYING StaEMENt......cccceoviirieiriieeseiee e 359
Figure 8: PERFORM Statement EXampPIEScccovvviveeiriininneee e 361
Figure 9: PERFORM Statement EXampPIEScccvvivieiriieirnsesee e 361
Figure 10: PERFORM Statement EXamMPlESccvvvvveiririeennise e seens 361
Figure 11: SEARCH StatemMEN.......ccoeiieieieiece e sttt s sre 383

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table5:
Table6:
Table7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12;
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:

RM/COBOL CharaCter SEt........ccceiriereririeeeesieeste ettt sesses e sesse s e 6
SYSIEM-NGIMES ...t e e 12
Nonnumeric Literalsand Their VaUEScccovvveieeeieeeee s 17
IMPErative VErDS. ... 24
Examples of Implied PICTURE CharaCters-Strings........ccooveveeeieneeneneseenen. 113
PICTURE Clause Editing.........ccoceeuiirieiiinieisiiecsesiee e 119
Editing Symbol RESUILS.c.ciiiiiiie e 120
Results of + and — EQItiNgccccevveiveieiece e 121
PICTURE Symbol PreCedence.........covvvvieeeeeceie et 123
Valid Data [tem ENCOINGScovvivvieirierecereeeee e 127
Communication Status Key ConditionS.........ccccevevvrieveneseseeeeseese s 150
Error KEY VaAlUES.......oce ettt enae e 152
COlOr INEEGENS.....ceeivieeieetereeeri ettt b e 158
Interaction of LINE and COLUMN Clausesin a Screen Description Entry . 164
Data Item RelatioNShiPSc.ciieeiriiierieeeereeeee s 167
Example 2 DefiNitioNS... ..o 175
Combination of Symbolsin Arithmetic EXpressions.........cccccceeeveneresiene. 195
ATItNMELIC OPEIALOLS.eveieeeeeeeeie ettt e e e 196
Relational OPEraLOrS........ccovieiiieieeieeiesese s sestes e saesee e st sresre s e eaesaestesresnens 198
XML ENtity REFEIENCES.....ccueiviieeciiieeeeeeee ettt st s s 202
Regular Expression Single-Character Escape SEqUENCES.........coceveverieieennns 203
Regular Expression Multi-Character EScape SeqUENCES........ccvverevererennens 204
Unicode Valid Character Property DeSIgNatorscccvveeeeereereereseenesnnnens 205
(oo Tor= I @] o7 > (0] £ SRSP 211
EXCEPTION STATUSVEIUES......ccoiuiierieinirieerieeses et 246
ACCEPT Statement Phrases and Output and Screen Fields..........c.coecevnnees 249
GENENIC KEY NBIMES......oouiieiiriiieieriee e 255
DISPLAY Statement Phrases and Output and Screen Fields..........cccoceeeee 294
Default INitialization ValUES..........cccoeiireiiiienieeeie e 324
Types of MOVE Statements and Their Legalitycccccevvvveeveievcieveseennn, 340
Availability Of AFIl€.......ccoveiiirece e 346
Permissible SEatEMENES.........cov s 347
Data [tem CONENES.......coiirereeieeere et 387
SET Statement Operand Validitycccovveeerieeeeierese e 391
Context-SeNSItiVE WOTAS.........cooorveiiereeeseneeese e 429
System-Names Used in the SPECIAL-NAMES Paragraphccccoceeeeenenee 432
System-Names for DEVICE TYPES.....ucerireeriieerieie st 433
System-Names for Record Delimiting Techniques.........c.cccecvevrineieneeee. 433
System-NameS for LabElSooeiiieie e e 433
SysStem-NameS fOr COlOrScoiiiiririeeeie e 434

RM/COBOL Language Reference Manual

First Edition

Organization of Information
Preface

Preface

RM/COBOL is a high implementation of the American National Standard COBOL
X3.23-1985, designed for optimum performance and wide portability across a broad
diversity of computers and operating systems. This manual provides comprehensive
information about the RM/COBOL language. It provides complete syntax for all
statements and detailed information on other aspects of the language.

Organization of Information

This manual is divided into the following parts:

Chapter 1—L anguage Structur e presents detailed information on the structure of
the language. Thisincludes the structure of program units, the valid character set,
words and types of statements.

Chapter 2—Identification Division details the structure and syntax of the
Identification Division.

Chapter 3—Environment Division details the structure and syntax of the
Environment Division.

Chapter 4—Data Division details the structure and syntax of the Data Division.

Chapter 5—Procedur e Division provides general information on the Procedure
Division. Thisincludes control transfers, program segmentation and a number of
other general rules. Procedure Division compiler directive statements are described
in this chapter.

Chapter 6—Procedure Division Statements details the structure and syntax of all
imperative and conditional statements.

Appendix A—Reserved Words lists words that are reserved, and those that are
removed from the reserved word list when the RM/COBOL 2 compatibility optionis
selected in the Compile Command (as described Chapter 6, Compiling, of the
RM/COBOL User’s Guide).

Appendix B—Compiler M essages lists the informational, warning, and error
messages that may be generated during compilation.

The RM/COBOL Language Reference Manual also includes aglossary (on
page 521) and an index (on page 547).

RM/COBOL Language Reference Manual 1
First Edition

Conventions and Symbols
Preface

Conventions and Symbols

The following conventions and symbols are used or followed throughout this guide.

1. Thenotation for hexadecimal values isthe value followed by alowercase h (for
example, ODh).

2. The separators comma and semicolon may be used anywhere the separator space
isused in the general formats. In the source program, these separators are
interchangeable.

3. The separator period, when used in the formats, has the status of arequired
word.

4. The specia character words +, —, >, <, =, >= and <=, when appearing in formats,
although not underlined, are required when such portions of the formats are
used.

5. The symbolsfound in the syntax charts are used as follows:

italicized words Indicate items for which you substitute a specific value.
UPPERCASE WORDS Indicate optional items which—if you use them—you
enter exactly as shown (although not necessarily in
uppercase).
UPPERCASE WORDS Indicate required items that you enter exactly as shown

(although not necessarily in uppercase).
Indicate indefinite repetition of the last item.

WORDS STACKED Indicate alternatives.
STACKED WORDS

[] Surround optional items.
{1} Surround a set of alternatives, one of which is required.
{] I} Surround a set of unique aternatives, one or more of

which is required, but each alternative may be specified
only once; when multiple alternatives are specified, they
may be specified in any order.

| Separate alternatives.

@ 6. Inthe electronic PDF file, this symbol represents a“note” that allows you to
view last-minute comments about a specific topic on the page in which it occurs.

This sameinformation is also contained in the README text file under the
section, Documentation Changes. In Adobe Reader, you can open comments
and review their contents, although you cannot edit the comments. Notes do not
print directly from the comment that they annotate. Y ou may, however, copy
and paste the comment text into another application, such as Microsoft Word, if
you wish.

To review notes, do one of the following:

e Toview anote, position the mouse over the note icon until the note
description pops up.

e To open anote, double-click the note icon.

e Tocloseanote, click the Close box in the upper-left corner of the
note window.

2 RM/COBOL Language Reference Manual
First Edition

Related Publications
Preface

Related Publications

For additional information, refer to the following publications:

RM/COBOL Syntax Summary

RM/COBOL User’s Guide

CodeBridge (Calling Non-COBOL Subprograms) User's Guide
CodeWatch User’'s Guide

WOW Extensions (For RM/COBOL) User's Guide

XML Extensions for RM/COBOL

RM/COBOL Language Reference Manual 3
First Edition

Related Publications
Preface

4 RM/COBOL Language Reference Manual
First Edition

Character Set
Chapter 1: Language Structure

Chapter 1. Language Structure

This chapter presents detailed information on the structure of the language. This
includes the structure of program units, the valid character set, words and types of
Statements.

The smallest element in the language is the character. A character isadigit, aletter
of the alphabet, punctuation or a special mark. A word is one possible result
obtained when one or more characters are joined in a sequence of contiguous
characters. Just as English words are determined by rules of spelling, so COBOL
words are formed by following a specific set of rules.

Using syntactic and grammatical rules, words and punctuation characters are
combined into statements, sentences, paragraphs and sections. When using the
English language, afailure to follow the rules of grammar and sentence structure
may cause misunderstanding: the same istrue when writing a COBOL source
program. It must be emphasized that a thorough knowledge of the rules of the
language structure is a prerequisite to writing a workable program.

Character Set

The RM/COBOL character set isshown in Table 1. Inside nonnumeric literals and
in comment-entries and comment lines, other characters may be used but have no
grammatical meaning.

Characters are combined to form either a separator or a character-string.

Lowercase letters are allowed anywhere and are treated as uppercase letters except in
nonnumeric literals and when used as the currency symbol in PICTURE character-
strings. Within hexadecimal, nonnumeric literals, the lowercase letters a, b, ¢, d, e,
and f are equivalent to the uppercase letters A, B, C, D, E, and F.

Separators

A separator is a string of one or more of the characters marked with a LinTable 1.

RM/COBOL Language Reference Manual 5
First Edition

Separators

Chapter 1: Language Structure

6

Table 1: RM/COBOL Character Set

Type Representation Name
Digits 0 through 9
Letters A through Z

athrough z

Punctuation : Apostrophe?

Colon*
, Comma*
= Equal sign*
(Left parenthesis®
Period*
Quotation mark *
) Right parenthesis®
: Semicolon?
Space’

Specia & Ampersand

*

Asterisk
Currency
Greater than
Less than

ANV &

- Minus (or hyphen)
+ Plus
/ Slash (or solidus)

! The character can be used as a separator.

Separators are formed according to the following rules:

1. A spaceisaseparator. Anywhere aspaceis used as a separator or as part of a

separator, more than one space may be used.

Commas, semicolons, and periods are separators when they are immediately
followed by a space. At any point in the syntax where aspace is allowed, a
comma separator or semicolon separator is also allowed.

Parentheses are separators that must appear only in balanced pairs of left and
right parentheses. They delimit subscripts, reference modifiers, binary
allocation values, arithmetic expressions, constant expressions, and conditions.

Quotation marks are separators that delimit nonnumeric literals. They must
always appear in balanced pairs, except when the continuation of a nonnumeric
literal is being specified.

An opening quotation mark must be immediately preceded by a space or

left parenthesis.

A closing quotation mark must be immediately followed by a space, comma
separator, semicolon separator, period separator, or right parenthesis.

Either the quotation mark or the apostrophe may be used to delimit nonnumeric
literals. The apostrophe has the same characteristics as the quotation mark,
described above.

RM/COBOL Language Reference Manual

First Edition

Character-Strings
Chapter 1: Language Structure

5. The punctuation character colon is a separator and is required when shown in the
general formats.

6. A pair of adjacent equal signsthat are not split across a continuation forms a
pseudo-text delimiter. A pseudo-text delimiter is a separator.

Pseudo-text delimiters may be used only in balanced pairs to delimit pseudo-text
in the COPY statement (on page 35) and REPLACE statement (on page 39). An
opening pseudo-text delimiter must be immediately preceded by a space; a
closing pseudo-text delimiter must be immediately followed by one of the
separators space, comma, semicolon, or period.

7. A space may immediately precede all separators except:
a. If prohibited by specific statement syntax.

b. If the separator isaclosing quotation mark. In this case, a preceding space
is considered part of the nonnumeric literal, not a separator.

c. The opening pseudo-text delimiter, where the preceding space is required.

8. A space may immediately follow any separator except an opening quotation
mark. In this case, the space is considered part of the nonnumeric literal, not a
Separator.

9. Any punctuation character that appears as part of the specification of a
PICTURE character-string or numeric literal is not considered a punctuation
character; it istreated as a symbol used in the specification of that PICTURE
character-string or numeric literal. PICTURE character-strings are delimited
only by a space, comma, semicolon or period separator. For more information,
see the discussion of PICTURE character-strings (on page 20).

These rules do not apply to characters within nonnumeric literals or comments.

Character-Strings

A character-string is a sequence of one or more characters that forms a COBOL
word, literal, PICTURE character-string, or comment-entry. A character-string is
delimited by separators.

COBOL Words

A COBOL word is a character-string of not more than 240 characters which forms a
user-defined word, a system-name, a context-sensitive word, or areserved word.
Each character of a COBOL word is selected from the set of letters, digits, and the
hyphen. The hyphen may not appear as the first or last character. Lowercase letters
are considered equivalent to the corresponding uppercase letters. Within a source
program, reserved words and user-defined words form disjoint sets; reserved words
and system-names form disjoint sets, system-names and user-defined words form
intersecting sets.

The same COBOL word may be used as a system-name and as a user-defined word
within a source program; the class of a specific occurrence of this COBOL word is
determined by the context of the clause or phrase in which it occurs.

RM/COBOL Language Reference Manual 7
First Edition

Character-Strings
Chapter 1: Language Structure

User-Defined Words

User-defined words comprise al phabetic and numeric characters, and the hyphen.
A user-defined word can neither begin nor end with a hyphen. With the exception
of paragraph-names, section-names, level-numbers and segment-numbers, all
user-defined words must contain at least one alphabetic character.

Here are the types of user-defined words:

Alphabet-name Paragraph-name
Cd-name Program-name
Class-name Record-name
Condition-name Routine-name
Constant-name Screen-name
Data-name Section-name
File-name Segment-number
Index-name Split-key-name

L evel-number Symbolic-character
Library-name Text-name

Mnemonic-name

Within a given source program, but excluding any contained program, the
user-defined words are grouped into the following digoint sets:

Alphabet-names Mnemonic-names
Cd-names Paragraph-names
Class-names Program-names
Condition-names, data-names, Routine-names

record-names, screen-names,
and split-key-names

Constant-names Section-names
File-names Symbolic-characters
Index-names Text-names

Library-names

All user-defined words, except segment-numbers and level-numbers, can belong to
only one of these digoint sets. Further, all user-defined words within a given disjoint
set must be unique, except as specified in the rules for uniqueness of reference.
Segment-numbers and level-numbers need not be unique; a given specification of a
segment-number or level-number may be identical to any other segment-number or
level-number.

8 RM/COBOL Language Reference Manual
First Edition

Character-Strings
Chapter 1: Language Structure

The types of user-defined words are defined as follows:

1

Alphabet-name. An alphabet-name identifies a character code set. It must
contain at least one al phabetic character and must be unique.

Cd-name. A cd-name identifies aMessage Control System (MCS) interface
area, which is described in a communication description entry within the
Communication Section of the Data Division. Cd-names must be unique and
contain at least one al phabetic character.

Note An MCSis application-specific and not supplied with RM/COBOL. See
the RM/COBOL User’s Guide for further information.

Class-name. A class-name identifies a user-specified list of characters. A
class-name must be unique and it must contain at least one alphabetic character.
A class-nameis defined in the SPECIAL-NAMES paragraph of the
Environment Division. It may then be used in a class condition test in the
Procedure Division to determine if the current contents of a data item consist
entirely of charactersin the list identified by the class-name.

Condition-name. A condition-name may be defined in the SPECIAL-NAMES
paragraph within the Environment Division or in alevel-number 88 description
within the Data Division. Condition-names must contain at least one alphabetic
character.

A SPECIAL-NAMES condition-name is assigned to ON STATUS or OFF
STATUS of one of eight system software switches.

A level-number 88 condition-name is assigned to a specific value, set of values,
or range of values within a complete set of values that a dataitem may assume.
The dataitemitself is called a conditional variable.

A condition-name may be used in conditions as an abbreviation for the relation
condition which tests whether the associated switch or conditional variable is
equal to one of the set of valuesto which that condition-nameis assigned. A
condition-name may also be used in a SET statement, indicating that the
associated value is to be moved to the conditional variable.

Constant-name. A constant-name is defined in alevel-number 78 data
description entry and names aliteral value. A constant-name must be defined
before any reference to the constant-name. Constant-names must contain at |east
one alphabetic character and must be unique. A constant-name is always global
and thus may be referenced in any program contained in the program that
defines the constant-name.

An integer-valued constant-name may be defined using a constant-expression.
The constant-expression is evaluated at the time of the definition during
compilation and any reference to the constant-name is equivalent to a reference
to the resultant integer value. The constant-expression may refer to previously
defined integer-valued constant-names.

References to constant-names may be used in any context where the assigned
literal value could be used unless otherwise prohibited. The effect of a constant-
name reference isthe same as if the literal value assigned to the constant-name
were written instead. Constant-names that have an integer value may be used
wherever integer is specified in the syntax formats, for example, integersin
BLOCK or RECORD clauses of afile control entry, integer occurrence countsin
an OCCURS clause, and in constant-expressions used to define other integer-
valued constant-names. An integer-valued constant-name may also be used as
the integer repeat count specification in PICTURE character-strings.

RM/COBOL Language Reference Manual 9
First Edition

Character-Strings
Chapter 1: Language Structure

6. Data-name. A group of contiguous characters or a numeric value treated as a
unit of datais called adataitem, and it is named by adata-name. A data-name
must contain at least one aphabetic character. Referencesto dataitems must be
made unique by qualification, the appending of subscripts, or both.

Complete unique references to data items are called identifiers. When used in
the general formats, ‘ data-name’ represents aword that must not be reference-
modified, subscripted, or qualified unless specifically permitted by the rules of
the format.

7. File-name. File-names are the internal names for files accessed by the source
program. They are not necessarily the same as the external names by which the
file is known to the runtime operating system. File-names must contain at least
one al phabetic character and must be unique.

8. Index-name. An index-name names an index associated with a specific table.
It must contain at least one al phabetic character and must be unique.

9. Level-number. A level-number specifies the position of adataitem within
a data hierarchy. A level-number isaone- or two-digit number in the range
01— 49, 66, 77, 78, or 88.

Level-numbers 66, 77, and 88 identify special properties of a data description
entry.

10. Library-name. A library-nameis a user-defined word that identifiesalibrary to
be used by the compiler for agiven COPY statement. Library-names must be
unique.

11. Mnemonic-name. A mnemonic-name is a user-defined word that is associated
in the SPECIAL-NAMES paragraph with a switch-name, feature-name or [ow-
volume-1-O-name. Mnemonic-names must be unique and must contain at least
one alphabetic character.

12. Paragraph-name. A paragraph-name identifies the beginning of a set of
COBOL procedural sentences. A reference to a nonunique paragraph-name
must be made unique by qualification with a section-name.

Paragraph-names are equivalent only if they are composed of the same sequence
of the same number of digits or characters.

13. Program-name. The program-name identifies the source and object programs.
The name must contain at least one alphabetic character.

14. Record-name. Record-names hame data records within afile. They must
contain at least one a phabetic character and, if not unique, must be made unique
by qualification with the file-name.

15. Routine-name. A routine-name is a user-defined word that identifies a
procedure written in a language other than COBOL.

16. Screen-name. A screen-name identifies a set of one or more entries; these
entries define fields within aregion of aterminal screen. Screen-names must
contain at least one al phabetic character and, if not unique, must be made unique
by qualification.

17. Section-name. A section-name identifies the beginning of a set of paragraphs.
Section-names must be unique and must contain at least one alphabetic
character.

10 RM/COBOL Language Reference Manual
First Edition

Character-Strings
Chapter 1: Language Structure

18. Segment-number. A segment-number specifies the segmentation classification
of asection. Itisaone-to three-digit number in the range 00 — 127.

19. Split-key-name. A split-key-name is a user-defined word that names a
concatenation of one or more data items within arecord associated with an
indexed file. The concatenation of the data items forms a single record key for
that file. Referencesto split-key-names must be made unique by qualification.
The only qualifier allowed for a split-key-name is the file-name of the file with
which the split-key-name is associated.

20. Symbolic-character. A symbolic-character is a user-defined word that
identifies a user-defined figurative constant. Symbolic-characters must be
unique and must contain at least one a phabetic character.

21. Text-name. A text-nameisthe name of alibrary text file. It must correspond
exactly to avalid file access name that is known to the compile-time operating
system.

System-Names

System-names identify certain hardware or software system components.
System-names consist of code-names, device-names, feature-names, |abel-names,
low-volume-1-O-names, record delimiting techniques, and switch-names. Most
system-names are not reserved words, but certain reserved words may be used as
system-names. See Table 2 for acomplete list of system-names. See Appendix A:
Reserved Words (on page 423) for alist of system-names that are not reserved.

RM/COBOL Language Reference Manual 11
First Edition

Character-Strings
Chapter 1: Language Structure

Table 2: System-Names

System-Name Description

CODE-NAMES
EBCDIC

DEVICE-NAMES
CARD-PUNCH Output-only device or file
CARD-READER Input-only device or file
CASSETTE Input-output device or file
CONSOLE Input-output device or file
DISC Mass-storage device
DISK Mass-storage device
DISPLAY Output-only device or file
INPUT Input-only device or file
INPUT-OUTPUT Input-output device or file
KEYBOARD Input-only device or file
LISTING Print device or file
MAGNETIC-TAPE Input-output device or file
MERGE Sort-merge storage device
OUTPUT Output-only device or file
PRINT Print device or file
PRINTER Print deviceor file
PRINTER-1 Print deviceor file
RANDOM Mass-storage device
SORT Sort-merge storage device
SORT-MERGE Sort-merge storage device
SORT-WORK Sort-merge storage device
TAPE Input-output device or file

FEATURE-NAMES
C01, Co2, C03, . . . , C10, C11, C12

LABEL-NAMES
FILE-ID Declare file access name
LABEL Particularize label record contents

user-defined-word

LOW-VOLUME-I-O-NAMES
CONSOLE
SYSIN
SYSOUT

Commentary

Operator communication (ACCEPT,

DISPLAY)
Standard input (ACCEPT)

Standard output (DISPLAY)

RECORD DELIMITING TECHNIQUES
BINARY-SEQUENTIAL
LINE-SEQUENTIAL

SWITCH-NAMES
SWITCH-1 or UPSI-0
SWITCH-2 or UPSI-1
SWITCH-3 or UPSI-2
SWITCH-4 or UPSI-3
SWITCH-5 or UPSI-4
SWITCH-6 or UPSI-5
SWITCH-7 or UPSI-6
SWITCH-8 or UPSI-7

12 RM/COBOL Language Reference Manual
First Edition

Character-Strings
Chapter 1: Language Structure

Reserved Words

Reserved words are those words reserved for use by the RM/COBOL compiler.
A reserved word must not appear as a user-defined word within a program.
Appendix A: Reserved Words (on page 423) contains a complete list of reserved
words.

Five kinds of reserved words are recognized by the compiler:

1.

Keywords. Keywords are required elements of the formats. Their presence
indicates specific compiler action.

Optional Words. Optional words are optional elements of the formats. Their
presence has no effect on the object program.

Connectives. OF and IN are used interchangeably to connect qualifiersto a
user-defined word. AND and OR arelogical connectives, used in the formation
of conditions.

Special Registers. Special registers are compiler-generated storage areas. They
are used to store information that is produced in conjunction with the use of
specific features. The format and description of the eight special registers are
described below.

Note The special registers may be referenced only in Procedure Division
statements with the exception of the PROGRAM-ID special register.

IN |. .
ADDRESS {%} identifier-1

The ADDRESS special register returns the address of identifier-1 as a pointer
dataitem. It may only be used in certain contexts of the Procedure Division
where a pointer is allowed, which are arelation condition with another pointer
dataitem, a CALL statement USING phrase, or aFormat 5 or 6 SET statement.
The ADDRESS special register is not allowed in the GIVING phrase of aCALL
statement even though a pointer dataitem is allowed there. When specified in
the USING phrase of a CALL statement, the ADDRESS special register is
always passed by content. When identifier-1 is a Linkage Section dataitem for
which the base address has not been set by being associated with an actual
argument in a calling program or by execution of a SET statement, the
ADDRESS special register will return anull pointer value. If identifier-1 were
referenced in such a case without the ADDRESS special register, the run unit
would terminate with a data reference error. Thus, the ADDRESS special
register may be used in an IF statement to prevent a data reference termination
of the run unit by avoiding the reference when the ADDRESS OF identifier-1is
equal to NULL.

IN
COUNT [%} data-name-1

The COUNT special register exists for each COBOL table dataitem, that is,
data-name-1 must refer to a data item described with the OCCURS clause. For
afixed occurrence table, COUNT returns the fixed number of occurrences
specified in the OCCURS clause. For avariable occurrence table, COUNT
returns the value of the data-name specified by the DEPENDING ON phrase of
the OCCURS clause. It may be used wherever an integer literal may be used in
the Procedure Division.

RM/COBOL Language Reference Manual 13
First Edition

Character-Strings
Chapter 1: Language Structure

COUNT -MAX {g:} data-name-1

The COUNT-MAX special register exists for each COBOL table dataitem,
that is, data-name-1 must refer to a data item described with the OCCURS
clause. COUNT-MAX aways returns the maximum number of occurrences
specified in the OCCURS clause. For afixed occurrence table, COUNT,
COUNT-MAX, and COUNT-MIN will return the same value. It may be used
wherever an integer literal may be used in the Procedure Division.

COUNT -MIN [g:} data-name-1

The COUNT-MIN special register exists for each COBOL table dataitem, that
is, data-name-1 must refer to a data item described with the OCCURS clause.
COUNT-MIN aways returns the minimum number of occurrences specified in
the OCCURS clause. For afixed occurrence table, COUNT, COUNT-MAX,
and COUNT-MIN will return the same value. It may be used wherever an
integer literal may be used in the Procedure Division.

IN identifier-1
enotH | g | | et

The LENGTH special register exists for any dataitem or literal. It returnsthe
length of the data item referenced by identifier-1 or value referenced by literal-1.
It may be used wherever an integer literal may be used in the Procedure
Division. For avariable length group, the LENGTH special register returns the
current length of the group. For areference modified identifier, the LENGTH
specia register returns the length of the result of the reference modification, that
is, the result of the evaluation of the length modifier if it was specified or the
remaining length of the dataitem after the offset has been applied if the length
modifier is not specified. For aliteral, the LENGTH special register returnsthe
number of charactersin theliteral. If theliteral isanumeric literal, the number
of charactersisthe same as the number of digits. That is, for anumeric literal,
the sign and decimal point characters, if specified, are not counted in the length
of theliteral.

LINAGE - COUNTER { { gF } filenarrle-l}

The LINAGE-COUNTER specia register isaline counter, generated by the
presence of a LINAGE clause in afile description entry.

PROGRAM-ID

The PROGRAM-ID special register exists for any program. It returns the
program-name of the program in which it isused. It may be used wherever a
nonnumeric literal may be used in the program, except for the END PROGRAM
header. The PROGRAM-ID special register is an exception to the rule that
specia registers may be referenced only in Procedure Division statements. The
PROGRAM-ID special register may be specified in VALUE clauses of data
description entries for nonnumeric data items or constant-name definitions. If
the program-name is specified as anonnumeric literal in the PROGRAM-1D
paragraph, the value of the PROGRAM-ID special register will match that

14 RM/COBOL Language Reference Manual
First Edition

Character-Strings
Chapter 1: Language Structure

nonnumeric literal, including its case; otherwise, the value of the PROGRAM-
ID special register will be in uppercase.

RETURN-CODE

The RETURN-CODE special register has the implicit description PICTURE
S9999 COMP-4, and can be set by the user to pass areturn code to the calling
program or the operating system before executing a STOP RUN, EXIT
PROGRAM or GOBACK statement. When control isreturned to acalling
program, the return code passed by the called program is available to the calling
program in the RETURN-CODE special register; the return code value can be
tested by specifying RETURN-CODE in arelation condition. When control is
returned to the operating system, the return code may be available to the
command language in a system dependent manner; see the RM/COBOL User’s
Guide for specific information. The return code isinitialized to zero at the start
of arun unit. Thisisthe normal return code for successful completion; other
values returned are conventionally in multiples of four. Some return code
values, generally the higher values, are reserved for runtime-detected errors; see
the appropriate chapters on installation and system considerationsin the
RM/COBOL User’s Guide.

Thereturn code is implicitly set to the value specified in statements having the
following form:

STOP RUN { |dent|f|er-1}

integer-1

This statement is equivalent to the statement sequence:

identifier-1

HMOvE { integer-1

} TO RETURN-CODE; STOP RUN .

WHEN - COMPILED

The WHEN-COMPILED special register exists for any program. It returns the date
and time of compilation for the program in which it isused. It may be used wherever
a nonnumeric literal may be used in the program, except in the PROGRAM-ID
paragraph and the END PROGRAM header. The WHEN-COMPILED special
register is an exception to the rule that special registers may be referenced only

in Procedure Division statements. The WHEN-COMPILED special register

may be specified in VALUE clauses of data description entries for nonnumeric
dataitems or constant-name definitions. The default format of the WHEN-
COMPILED valueisaZ20-character string "hh.mm.ssMMM DD, YYYY",

which matches the IBM OSVS COBOL implementation of this special register.
The compiler can be configured to use the IBM VSC2 COBOL implementation

of this special register, which is a 16-character string "MM/DD/YYhh.mm.ss".
The compiler can also be configured to use a user-specified format that produces
astring of up to 80 characters. Seethe WHEN-COMPILED-FORMAT

keyword of the COMPILER-OPTIONS configuration record in Chapter 10:
Configuration of the RM/COBOL User’s Guide chapter for details on formatting
the value of the WHEN-COMPILED specia register.

RM/COBOL Language Reference Manual 15
First Edition

Character-Strings

Chapter 1: Language Structure

5. Special Characters. The specia character reserved words are the arithmetic
operators (including the unary operators + and —), relational operators, and
concatenation operator:

Addition +
Concatenation &
Division /
Equal to =
Exponentiation * %
Greater than >
Greater than/equal to >=
Less than <
Less than/equal to <=
Multiplication *
Subtraction -

Context-Sensitive Words

Thewords listed in Table 35 (on page 429) are context-sensitive words and are
reserved in the specified language construct or context. If a context-sensitive word is
used where the context-sensitive word is permitted in the general format, the word is
treated as a keyword; otherwise, it istreated as a user-defined word.

Literals

A literal is a character-string whose representation isidentical to itsvalue. Literals
are either numeric or nonnumeric.

Numeric Literals

A numeric literal represents a numeric value, not a character-string. Numeric literals
are built according to the following rules:

1. Theliteral must contain at least 1 but not more than 30 digits.
2. Theliteral may contain asingle + or — asthe first character.

3. Theliteral may contain asingle decimal point if the decimal point is not the last
character. The decimal point must be represented with acommaif the
DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES
paragraph.

The word integer, when used in the syntax chartsin this manual, designates an
unsigned, numeric literal without adecimal point. Itsvalue cannot be zero unless
specifically allowed within aparticular context.

Here are some examples:

1234
+1234
-1.234
.1234
+.1234

16 RM/COBOL Language Reference Manual

First Edition

Character-Strings
Chapter 1: Language Structure

Nonnumeric Literals

A nonnumeric literal is a character-string enclosed in quotation marks. The
character-string may contain any character from the character set of the computer.
Quotation marks within the string are represented by two contiguous quotation
marks. Either the quotation mark or the apostrophe may be used as the delimiter, but
within one literal, the first quotation mark establishes the delimiter character for that
literal. Thevaue of theliteral isthe string itself excluding the delimiting character
and one of each contiguous pair of embedded quotation marks. The literal may
contain from 1 to 65535 characters.

Hexadecimal literals of the form:

H"[h]...", H'[h]...", X"[h]..."
or

X'[h]..."
are also permitted as another form of nonnumeric literal, where hisany valid
hexadecimal digit. Two hexadecimal digits occupy one character position. If an odd

number of hexadecimal digits is specified, the compiler assumes an additional
hexadecimal zero digit on the right to complete the rightmost character position.

Table 3 lists some nonnumeric literals and their associated val ues.

All nonnumeric literals are of category alphanumeric.

Table 3: Nonnumeric Literals and Their Values

Literal Value
"AGE" AGE

WU TWENTY"" " "TWENTY"
"TIME' TIME
H"4C" 4Ch
X'63B" 63B0h

R Illegal (odd number of quotation marks)

Figurative Constants

Figurative constants identify commonly used constant values. These constant values
are generated by the compiler according to the context in which the references occur.
Note that figurative constants represent values, not literal occurrences. Thus,
QUOTE cannot delimit a nonnumeric literal, SPACE is not a separator, and so forth.
Singular and plural forms of figurative constants may be used interchangeably.

The following constant represents the value O or one or more zero characters,
depending on context.

[ALL] ZERO, [ALL] ZEROS, [ALL] ZEROES
The following constant represents one or more space characters.

[ALL] SPACE, [ALL] SPACES

RM/COBOL Language Reference Manual 17
First Edition

Character-Strings
Chapter 1: Language Structure

18

Except in the SPECIAL-NAMES paragraph, the following constant represents one or
more occurrences of the character that has the highest ordinal position in the program
collating sequence. The native HIGH-VALUE is FFh.

[ALL] HIGH-VALUE, [ALL] HIGH-VALUES

Except in the SPECIAL-NAMES paragraph, the following constant represents one or
more occurrences of the character that has the lowest ordinal position in the program
collating sequence. The native LOW-VALUE is 00h.

[ALL] LOW-VALUE, [ALL] LOW-VALUES
The following constant represents one or more quotation marks.
[ALL] QUOTE, [ALL] QUOTES

The following constant represents one or more null or unset pointer values. The
usage of this constant is POINTER. Thus, this constant may only be used in places
where a pointer literal is alowed, which arein the VALUE clause in the data
description entry of ausage POINTER data item, in relation conditions involving
another pointer dataitem, in the USING phrase of the CALL statement, and in
Format 5 of the SET statement.

[ALL] NULL, [ALL] NULLS

The following constant represents all or part of the string generated by successive
concatenations of the characters comprising literal-1. literal-1 must be a nonnumeric
literal and may be a concatenation expression. literal-1 must not be afigurative
constant.

ALL literal-1

The following constant represents one or more of the character specified asthe
value of symbolic-character-1 in the SYMBOLIC CHARACTERS clause of the
SPECIAL-NAMES paragraph.

[&] symbolic-character-1

When afigurative constant represents a string of one or more characters, the length
of the string is determined by the compiler from context according to the following
rules:

1. When afigurative constant is associated with another data item, as when the
figurative constant is moved to or compared with another dataitem, the string of
characters specified by the figurative constant is repeated character-by-character
on the right until the size of the resultant string is equal to the size in characters
of the associated dataitem. Thisisdone prior to and independent of the
application of any JUSTIFIED clause that may be associated with the data item.
When the figurative constant is specified in a concatenation expression, its
length is determined asif the figurative constant were not associated with any
other dataitem per rules 2 and 3 below, regardless of the context in which the
concatenation expression is specified.

2. When afigurative constant, other than ALL literal, is not associated with
another dataitem, as when the figurative constant appearsin aDISPLAY,

RM/COBOL Language Reference Manual

First Edition

Character-Strings
Chapter 1: Language Structure

STOP, STRING, or UNSTRING statement, the length of the string is one
character.

3. When thefigurative constant ALL literal is not associated with another data
item, the length of the string is the length of the literal.

A figurative constant may be used wherever literal appearsin syntax, with the
following exceptions:

o |If thelitera isrestricted to a numeric literal, the only figurative constant
permitted is ZERO (ZEROS, ZEROES).

e When afigurative constant other than ALL literal isused, theword ALL is
redundant and is used for readability only.

o |If thelitera isrestricted to a pointer literal, the only figurative constant
permitted isNULL (NULLS). NULL (NULLS) may only beused in VALUE
clauses associated with apointer dataitem, in relation conditions involving
another pointer item, in the USING phrase of the CALL statement, in the
REPLACING phrase of the INITIALIZE statement, and in Format 5 of the SET
Statement.

Each reserved word which refers to afigurative constant value is a distinct
character-string with the exception of constructs using theword ALL, such asALL
literal, ALL SPACES, and so forth, which are composed of two distinct character-
strings.

Concatenation Expressions

A concatenation expression consists of two nonnumeric literals separated by the
concatenation operator & :

literal-1 & literal-2

Both literal-1 and literal-2 must be nonnumeric literals, but either may be specified
with ahexadecimal literal, a figurative constant (including a symbolic-character), or
a constant-name that refers to a nonnumeric value. When afigurative constant is
specified in a concatenation expression, its length is determined by the rules for a
figurative constant that is not associated with another data item regardless of the
context in which the concatenation expression is used.

The value of a concatenation expression is the concatenation of the value of literal-1
and literal-2.

A concatenation expression may be used anywhere a nonnumeric literal may be used
unless otherwise prohibited by specific rules of agiven format. literal-1 of a
concatenation expression may be a concatenation expression, but, for formal reasons
having to do with termination of the syntax production, literal-2 cannot be a
concatenation expression. However, any humber of nonnumeric literals may be
concatenated by repeated application of literal-1 being a concatenation expression.

RM/COBOL Language Reference Manual 19
First Edition

Program Structure
Chapter 1: Language Structure

PICTURE Character-Strings

A PICTURE character-string consists of certain combinations of characters used
as symbols. Any punctuation character appearing as part of a PICTURE
character-string is considered a symbol, not a punctuation character. If the
punctuation character comma, period, or semicolon isfollowed by a space, it is
a separator that delimits the PICTURE character-string and is not part of the
PICTURE character-string.

Comment-Entry

A comment-entry is an entry in the Identification Division that may contain any
characters from the character set of the computer. It terminates at the next nonblank
areaA.

Program Structure

Source Format

Source programs are accepted as a sequence of lines (or records) of 80 characters or
less. Each lineisdivided into five areas, asillustrated in Figure 1.

Figure 1: Source Format

Sequence Number: Columns 1 - 6
Indicator Area: Column 7

Area A: Columns 8 - 11

A
Area B: Columns 12 - 72 J

Identification Area: Columns 73 - 80

The sequence number and identification areas are used for clerical and
documentation purposes. They are ignored by the compiler.

Theindicator areais used for denoting line continuation, comments and debugging.
Areas A and B contain the actual program according to the following rules:

1. Division headers, section headers, paragraph headers, section-names and
paragraph-names must begin in area A.

2. TheDataDivision level indicators FD, SD, and CD, and level-numbers 01 and
77 must beginin areaA. Other level-numbers may beginin area A or area B,
although B is most often used.

20 RM/COBOL Language Reference Manual
First Edition

3.

Program Structure
Chapter 1: Language Structure

The keywords, DECLARATIVES and END DECLARATIVES, precede and
follow, respectively, the declaratives portion of the Procedure Division. Each
must appear on aline by itself and each must beginin area A, followed by a
period and a space.

Any other language element must begin in area B unlessit immediately follows,
on the sameline, an element in area A.

Continuation of Lines

Any sentence, entry, phrase, or clause may be continued by starting subsequent lines
inareaB. These subsequent lines are called continuation lines.

Theline being continued is called the continued line. Any word, literal, or
PICTURE character-string may be broken in such away that part of it appearson a
continuation line, according to the following rules:

1

A hyphen in the indicator area of aline indicates that the first nonblank character
in area B of the current line is the successor of the last nonblank character of the
preceding line, excluding intervening comment lines or blank lines, without an
intervening space.

However, if the continued line contains a nonnumeric literal without a closing
guotation mark, the first nonblank character in area B on the continuation line
must be a quotation mark, and the continuation line starts with the character
immediately after that quotation mark. All spaces at the end of the continued
line are considered part of the literal. Area A of a continuation line must be
blank. The quotation mark used to continue a nonnumeric literal must be the
same quotation mark (that is, it must be a quotation mark or an apostrophe) that
began the nonnumeric literal.

Continuing a nonnumeric literal according to the previous paragraph isa
deprecated feature maintained only for compatibility with older programs.
Concatenation expressions are the recommended method of continuing
nonnumeric literalsin all new RM/COBOL programs. See the description of
concatenation expressions (on page 19).

If thereis no hyphen in the indicator area of aline, it is assumed that the last
character in the preceding line is followed by a space.

Blank Lines

A blank lineisonethat is blank in the indicator, A and B areas. A blank line can
appear anywhere in the source program.

RM/COBOL Language Reference Manual 21
First Edition

Program Structure
Chapter 1: Language Structure

22

Comment Lines

A comment lineis any line with an asterisk or a slash in theindicator area of theline.
A comment line may appear as any line after the Identification Division header of a
source program and as any linein library text referred to by a COPY statement. Any
combination of characters from the character set of the computer may be included in
area A and area B of acomment line. Comment lines are reproduced on the listing
but serve as documentation only.

When a comment line is indicated with an asterisk, the comment is printed on the
next available linein the listing. When a comment line isindicated with aslash,
page € ection occurs before the comment lineis printed.

The character-strings and separators comprising pseudo-text may start in either area
A or areaB. If thereisahyphen intheindicator area of aline that follows the
opening pseudo-text delimiter, area A of the line must be blank and the normal rules
for continuation of lines apply to the formation of text words.

In-Line Comments

An in-line comment begins with the two contiguous characters *> preceded by a
separator space, and ends with the last character position of theline. Anin-line
comment may be placed anywhere a separator space may be placed in a COBOL
source program or in library text for a COBOL source program. For the purpose of
evaluating library text, pseudo-text, and source text, an in-line comment has the
value of asingle space character. An in-line comment that is not preceded by any
COBOL words or character-strings on the same line is equivalent to a comment line,
except that it may not be placed between a continued line and a continuation lineif a
word, literal, or PICTURE character-string is broken across the continuation.

Note Anin-line comment is not recognized as such, if it occursin the sequence

area (columns 1 to 6) or the identification area (columns 73 through 80) of a source
line. Anin-line comment that beginsin the indicator areais indistinguishable from a
comment line.

Debugging Lines

A debugging lineis any linewith aD in the indicator area of the line. Any
debugging line that consists solely of spaces from margin A to margin R is
considered the same as ablank line.

The content of a debugging line must be such that a syntactically correct program is
formed with or without the debugging lines being considered as comment lines.

A debugging line will be considered to have all the characteristics of acomment line
if the Debug Compile Command Option is not specified and the WITH
DEBUGGING MODE clauseis not specified in the SOURCE-COMPUTER
paragraph.

Successive debugging lines are allowed.

A debugging lineis only permitted in the separately compiled program after the
OBJECT-COMPUTER paragraph, or, if the OBJECT-COMPUTER paragraph is
omitted, after where the OBJECT-COMPUTER paragraph would be permitted if it
were present.

RM/COBOL Language Reference Manual

First Edition

Program Structure
Chapter 1: Language Structure

Statements

Source statements always begin with akeyword called averb. There are four kinds
of statements:

1. Directive

2. Conditional

3. Imperative

4. Delimited Scope

Directive Statements

A directive statement specifies action to be taken by the compiler during
compilation. The directive statements are the COPY, REPLACE, and USE
Statements.

Conditional Statements

A conditional specifiesthat the truth value of acondition isto be determined and that
the subsequent action of the object program is dependent on this truth value.

A conditional statement is one of the following:

e ANnEVALUATE, IF, SEARCH, or RETURN statement.

e A READ statement that specifiesthe AT END, NOT AT END, INVALID KEY,
or NOT INVALID KEY phrase.

e A WRITE statement that specifiesthe INVALID KEY, NOT INVALID KEY,
END-OF-PAGE, or NOT END-OF-PAGE phrase.

e A DELETE, REWRITE, or START statement that specifiesthe INVALID KEY
or NOT INVALID KEY phrase.

e Anarithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) that specifiesthe ON SIZE ERROR or NOT ON SIZE ERROR
phrase.

e A RECEIVE statement that specifies the NO DATA or WITH DATA phrase.

e A STRING or UNSTRING statement that specifiesthe ON OVERFLOW or
NOT ON OVERFLOW phrase.

e A CALL statement that specifiesthe ON OVERFLOW, ON EXCEPTION, or
NOT ON EXCEPTION phrase.

e AnACCEPT statement that specifies the ON EXCEPTION, ON ESCAPE, NOT
ON EXCEPTION, or NOT ON ESCAPE phrase.

RM/COBOL Language Reference Manual 23
First Edition

Program Structure
Chapter 1: Language Structure

Conditional Phrases

A conditional phrase specifies the action to be taken upon determination of the truth
value of a condition resulting from execution of a conditional statement.

A conditional phraseis one of the following:

e TheAT END or NOT AT END phrasein a READ statement.

e TheINVALID KEY or NOT INVALID KEY phrasein aDELETE, READ,
REWRITE, START, or WRITE statement.

e The END-OF-PAGE or NOT END-OF-PAGE phrase in a WRITE statement.

e TheON SIZE ERROR or NOT ON SIZE ERROR phrasein an ADD,
COMPUTE, DIVIDE, MULTIPLY, or SUBTRACT statement.

e TheNO DATA or WITH DATA phrase in a RECEIVE statement.

e The ON OVERFLOW or NOT ON OVERFLOW phrasein a STRING or
UNSTRING statement.

e The ON OVERFLOW, ON EXCEPTION, or NOT ON EXCEPTION phrasein
aCALL statement.

e The ON EXCEPTION, ON ESCAPE, NOT ON EXCEPTION, or NOT ON
ESCAPE phrasein an ACCEPT statement.

Imperative Statements

An imperative statement begins with an imperative verb and specifies an
unconditional action to be taken by the object program, or is a conditional statement
that is delimited by its explicit scope terminator (delimited scope statement). An
imperative statement may consist of a sequence of imperative statements, each
possibly separated from the next by a separator or the word THEN.

Theimperative verbs are listed in Table 4.

Wherever imper ative-statement appears in the general format of statementsit refers
to that sequence of consecutive imperative statements that must be ended by a period
or by any phrase associated with a statement containing imperative-statement.

Table 4: Imperative Verbs

ACCEPT ! EXIT REWRITE !
ADD? GO TO SEND
ALTER INITIALIZE SET

CALL? INSPECT SORT
CANCEL MERGE START?!
CLOSE MOVE STOP
COMPUTE? MULTIPLY ! STRING !
CONTINUE OPEN SUBTRACT*
DELETE? PERFORM UNSTRING !
DISABLE PURGE UNLOCK
DISPLAY READ?! WRITE !
DIVIDE?! RECEIVE !

ENABLE RELEASE

! Provided no conditional phrases are present.

24 RM/COBOL Language Reference Manual
First Edition

Program Structure
Chapter 1: Language Structure
Delimited Scope Statements

A delimited scope statement is any statement that includes its explicit scope
terminator. The explicit scope terminators are the following:

END-ACCEPT END-MULTIPLY END-START
END-ADD END-PERFORM END-STRING
END-CALL END-READ END-SUBTRACT
END-DELETE END-RECEIVE END-UNSTRING
END-EVALUATE END-REWRITE END-WRITE
END-IF END-SEARCH

Scope of Statements

Scope terminators delimit the scope of certain Procedure Division statements.
Statements that include their explicit scope terminators are called delimited scope
statements. The scope of statements that are contained within statements (nested)
may also be implicitly terminated.

When statements are nested within other statements, a separator period that ends the
sentence implicitly terminates all nested statements.

When any statement is contained within another statement, the next phrase of the
containing statement following the contained statement terminates the scope of any
unterminated contained statement.

When statements are nested within other statements that allow optional conditional
phrases, any optional conditional phrase encountered is considered to be the next
phrase of the nearest preceding unterminated statement with which that phraseis
permitted to be associated but with which no such phrase has already been
associated. An unterminated statement is one that has not been previously
terminated either explicitly or implicitly.

When adelimited scope statement is nested within another delimited scope statement
with the same verb, each explicit scope terminator terminates the statement started by
the most recently preceding, and as yet unterminated, occurrence of that verb.

Sentences

A sentence is a sequence of one or more statements terminated by the period
separator. There are three kinds of sentences:

1. A directive sentence may contain only a single directive statement.

2. A conditional sentenceisaconditional statement, optionally preceded
by an imperative statement, terminated by the separator period.

3. Animperative sentence is an imperative statement terminated by the
separator period.

RM/COBOL Language Reference Manual 25
First Edition

Program Structure
Chapter 1: Language Structure

Clauses and Entries

An entry is an item of descriptive or declaratory nature made up of consecutive
clauses. Each clause specifies an attribute of the entry. Clauses are separated by
space, comma, or semicolon separators. The entry is terminated by a period
separator.

Paragraphs

A paragraph is a sequence of zero, one, or more sentences or entries. Inthe

| dentification and Environment Divisions, each paragraph begins with areserved
word called a paragraph header. 1n the Procedure Division, each paragraph begins
with a user-defined paragraph-name.

Sections

A section is a sequence of zero, one, or more paragraphs in the Environment and
Procedure Divisions and a sequence of zero, one, or more entries in the Data
Division. In the Environment and Data Divisions, each section begins with a section
header that is made up of reserved words. In the Procedure Division, each section
begins with a user-defined section-name.

Divisions

With the exception of COPY and REPL ACE statements and the end program header,
the statements, entries, paragraphs, and sections of a source program are grouped into
four divisions which are sequenced in the following order:

1. Identification Division
2. Environment Division
3. DataDivision

4. ProcedureDivision

The end of a source program isindicated either by the end program header, if
specified, or by the absence of additional source program lines.

26 RM/COBOL Language Reference Manual
First Edition

Program Structure
Chapter 1: Language Structure

Source Program General Format

The following gives the general format and order of presentation of the entries and
statements that constitute a source program. The generic terms identification-
division, environment-division, data-division, procedure-division, 5-source-program,
and end-program-header represent an Identification Division, an Environment
Division, aData Division, a Procedure Division, a nested source program, and an end
program header.

identification-division
[environment-division |
[data-division |
[procedure-division |
[nested-source-program |---

[end-program-header]

end-program-header must be present if either of the following circumstances exists:
e The source program contains one or more other source programs.

e The source program is contained within another source program.

General Rules

e Thebeginning of adivisionin aprogramisindicated by the appropriate division
header. The end of adivision isindicated by one of the following:
— Thedivision header of a succeeding division in that program.

— Anldentification Division header that indicates the start of another
source program.

— Theend program header.
— That physical position after which no more source program lines occur.

e A source program directly or indirectly contained within another program is
considered in these specifications as a separate program that may additionally
reference certain resources defined in the containing program.

e The object code, resulting from compiling a source program contained within
another program, is considered in these specifications to be inseparable from
the object code resulting from compiling the containing program.

e All separately compiled source programs in a sequence of programs must
be terminated by an end program header except for the last program in
the sequence.

RM/COBOL Language Reference Manual 27
First Edition

Inter-Program Communication

Chapter 1: Language Structure

28

Inter-Program Communication

The Inter-Program Communication module provides afacility by which a program
can communicate with one or more programs. This communication is provided by
the following:

e Theahility to transfer control from one program to another within a run unit.

e The ahility to pass parameters between programs to make certain data values
available to a called program.

The Inter-Program Communication modul e also permits communication between
two programs by the sharing of data and the sharing of files.

Nested Source Programs

A source program is a syntactically correct set of COBOL statements. A source
program may contain other source programs; these contained programs may
reference some of the resources of the program within which they are contained.

A program may be directly or indirectly contained in another program. Program B is
directly contained in program A if there is no program contained in program A that
also contains program B. Program B isindirectly contained in program A if there
exists a program contained in program A that also contains program B.

File Connector

A file connector is a storage area that contains information about afile and is used as
the linkage between a file-name and a physical file and between afile-name and its
associated record area.

Global Names and Local Names

A data-name names a data item. A file-name names afile connector. These names
are classified as either global or local.

A global name may be used to refer to the object with which it is associated either
from within the program in which the global name is declared or from within any
other program which is contained in the program which declares the global name.

A local name, however, may be used only to refer to the object with whichitis
associated from within the program in which the local name is declared. Some
names are always global; some are always local; and some are either local or global
depending upon specifications in the program in which the names are declared.

A record-name is global if the GLOBAL clause is specified in the record description
entry by which the record-name is declared or, in the case of record description
entries in the File Section, if the GLOBAL clause is specified in the file description
entry for the file-name associated with the record description entry. A data-nameis
global if the GLOBAL clauseis specified either in the data description entry by
which the data-name is declared or in another entry to which that data description
entry is subordinate. A condition-name declared in a data description entry is global
if that entry is subordinate to another entry in which the GLOBAL clauseis

RM/COBOL Language Reference Manual

First Edition

Inter-Program Communication
Chapter 1: Language Structure

specified. However, specific rules sometimes prohibit specification of the GLOBAL
clause for certain data description, file description or record description entries.

A file-nameis global if the GLOBAL clauseis specified in the file description entry
for that file-name.

A split-key-nameis global if the GLOBAL clauseis specified in the file description
entry for the file-name of the file with which the split-key-name is associated.

If a condition-name declared in a data description entry, a data-name, afile-name or
a split-key-name is not global, the nameislocal.

A constant-name is always global.

Globa names are transitive across programs contained within other programs.

External Objects and Internal Objects

Accessible data items usually require that certain representations of data be stored.
File connectors usually require that certain information concerning files be stored.
The storage associated with a data item or afile connector may be external or
internal to the program in which the object is declared.

A dataitem or file connector is external if the storage associated with that object is
associated with the run unit rather than with any particular program within the run
unit. An external object may be referenced by any program in the run unit that
describes the object. Referencesto an external object from different programs using
separate descriptions of the object are always to the same object. In arun unit, there
isonly one representative of an external object.

An object isinternal if the storage associated with that object is associated only with
the program that describes the object.

External and internal objects may have global or local names.

A datarecord described in the Working-Storage Section is given the externa
attribute by the presence of the EXTERNAL clausein its data description entry. Any
dataitem described by a data description entry subordinate to an entry describing an
externa record also attains the external attribute. 1f arecord or data item does not
have the external attribute, it is part of the internal data of the program in which it is
described.

A file connector is given the external attribute by the presence of the EXTERNAL
clause in the associated file description entry. A file connector without the external
attribute is internal to the program in which the associated file-name is described.

The data records described subordinate to afile description entry which does not
contain the EXTERNAL clause or a sort-merge file description entry, aswell as any
dataitems described subordinate to the data description entries for such records, are
always internal to the program describing the file-name. If the EXTERNAL clauseis
included in the file description entry, the data records and the data items attain the
external attribute.

Data records, subordinate data items and various associated control information
described in the Linkage and Communication Sections of a program are always
considered to be internal to the program describing that data. Special considerations
apply to data described in the Linkage Section whereby an association is made
between the data records described and other data items accessible to other programs.

RM/COBOL Language Reference Manual 29
First Edition

Inter-Program Communication

Chapter 1: Language Structure

30

Common Programs and Initial Programs

All programs that form part of arun unit may possess neither, one, or both of the
attributes common and initial.

A common program is one which, even though it is directly contained within another
program, may be called by any program directly or indirectly contained in that other
program. The common attribute is attained by specifying the COMMON clause in
the Identification Division of the program. The COMMON clause facilitates the
writing of subprograms that are to be used by all the programs contained within a
program.

Aninitial program is one whose program state is initialized when the program is
called. Thus, whenever an initial program is caled, its program state is the same as
when the program was first called in that run unit. During the process of initializing
aninitial program that program’ sinternal datais initialized; thus, an item of the
program'’s internal data whose description contains aVALUE clause isinitialized to
that defined value, but an item whose description does not contain a VALUE clause
isinitialized to an undefined value. Fileswith internal file connectors associated
with the program are not in the open mode. The control mechanisms for all
PERFORM statements contained in the program are set to their initial states. The
initial attribute is attained by specifying the INITIAL clause in the Identification
Division of the program.

Sharing Data in a Run Unit

Two programsin arun unit may reference common data under the following
circumstances:

e The data content of an external data record may be referenced from any
program, provided that program has described that data record.

e |f aprogram is contained within another program, both programs may refer to
data possessing the global attribute either in the containing program or in any
program that directly or indirectly contains the containing program.

e The mechanism whereby a parameter value is passed by reference from acalling
program to a called program establishes a common data item; the called
program, which may use a different identifier, may refer to adataitem in the
calling program.

Sharing Files in a Run Unit

Two programs in arun unit may reference common file connectors under the
following circumstances:

o Anexterna file connector may be referenced from any program that describes
that file connector.

e |f aprogram is contained within another program, both programs may refer to a
common file connector by referring to an associated global file-name either in
the containing program or in any program that directly or indirectly contains the
containing program.

RM/COBOL Language Reference Manual

First Edition

Inter-Program Communication
Chapter 1: Language Structure

Scope of Names

When programs are directly or indirectly contained within other programs, each
program may use identical user-defined words to name objects independent of the
use of these user-defined words by other programs. When identically named objects
exist, aprogram’ s reference to such aname, even when it is a different type of user-
defined word, is to the object which that program describes rather than to the object
possessing the same name but described in another program.

The following types of user-defined words may be referenced only by statements and
entries in the program in which the user-defined word is declared:

cd-name
paragraph-name
screen-name
section-name

The following types of user-defined words may be referenced by a program,
provided that the compiler environment supports the associated library and the
entities referenced are known to that system:

library-name
text-name

The following types of user-defined words when they are declared in a
Communication Section may be referenced only by statements and entriesin the
program which contains that section:

condition-name
data-name
record-name

The following types of names, when they are declared within a Configuration
Section, may be referenced only by statements and entries either in the program that
contains a Configuration Section or in any program contained within the program:

alphabet-name
class-name
condition-name
mnemonic-name
symbolic-character

Specific conventions for declarations and references apply to the following types of
user-defined words when the conditions listed above do not apply:

condition-name index-name
constant-name program-name
data-name record-name
file-name split-key-name
RM/COBOL Language Reference Manual 31

First Edition

Inter-Program Communication
Chapter 1: Language Structure

Program-Names

A program-name of a program is declared in the PROGRAM-ID paragraph of the
Identification Division. A program-name may be referenced only by the CALL
statement, the CANCEL statement, and the end program header. The program-
names allocated to programs constituting arun unit are not necessarily unique but,
when two programs in arun unit are identically named, at least one of those two
programs must be directly or indirectly contained within another separately compiled
program that does not contain the other of those two programs.

The following rules regulate the scope of a program-name.

1. If the program-name isthat of a program which does not possess the common
attribute and which is directly contained within another program, that program-
name may be referenced only by statementsincluded in that containing program.

2. |If the program-name s that of a program which does possess the common
attribute and which is directly contained within another program, that program-
name may be referenced only by statementsincluded in that containing program
and any programs directly or indirectly contained within that containing
program, except that program possessing the common attribute and any
programs contained within it.

3. If the program-nameisthat of a program which is separately compiled, that
program-name may be referenced by statementsincluded in any other program
in the run unit, except programsit directly or indirectly contains.

Condition-Names, Constant-Names, Data-Names,
File-Names, Record-Names, and Split-Key-Names

Condition-names, constant-names, data-names, file-names, record-names, and
split-key-names—when declared in a source program—may be referenced only by
that program except when one or more of the names are global and the program
contains other programs.

See the discussion of user-defined words on page 8 for the requirements governing
the uniqueness of the names allocated by a single program to be condition-names,
constant-names, data-names, file-names, record-names, and split-key-names.

A program cannot reference any condition-name, constant-name, data-name, file-
name, record-name, or split-key-name declared in any program it contains.

A global name may be referenced in the program in which it is declared or in any
programs which are directly or indirectly contained within that program.

When a program, program B, is directly contained within another program, program
A, both programs may define a condition-name, constant-name, a data-name, afile-
name, a record-name, or a split-key-name using the same user-defined word. When
such aduplicated name is referenced in program B, the following rules are used to
determine the referenced object:

1. The set of namesto be used for determination of a referenced object consists of
all names which are defined in program B and all global names which are
defined in program A and in any programs which directly or indirectly contain
program A. Using this set of names, the normal rules for qualification and any
other rules for uniqueness of reference are applied until one or more objects are
identified.

2. If only one object isidentified, it is the referenced object.

32 RM/COBOL Language Reference Manual
First Edition

Initial State of a Program
Chapter 1: Language Structure

3. If more than one object isidentified, no more than one of them can have aname
local to program B. If zero or one of the objects has a name local to program B,
the following rules apply:

a. If thenameisdeclared in program B, the object in program B isthe
referenced object.

b. Otherwise, if program A is contained within ancther program, the
referenced object is:

1) Theobject in program A if the name is declared in program A.

2) The object in the containing program if the nameis not declared in
program A and is declared in the program containing program A. This
rule is applied to further containing programs until asingle valid name
has been found.

Index-Names

If adataitem possessing either or both the external or global attributes includes a
table accessed with an index, that index also possesses correspondingly either or both
attributes. Therefore, the scope of an index-name isidentical to that of the data-name
which names the table whose index is named by that index-name and the scope of
name rules for data-names apply. Index-names cannot be qualified.

Initial State of a Program

Theinitia state of a program is the state of a program thefirst timeitiscaledina
run unit.

Theinternal data of the program contained in the Working-Storage Section and the
Communication Section isinitialized. If aVALUE clause is used in the description
of the dataitem, the dataitem isinitialized to the defined value. If aVALUE clause
is not associated with a dataitem, theinitia value of the dataitem is undefined.

Files with internal file connectors associated with the program are not in the
open mode.

The control mechanisms for all PERFORM statements contained in the program are
set to their initial states.

A GO TO statement referred to by an ALTER statement contained in the same
programis set to itsinitia state.

A programisintheinitial state:
e Thefirst timethe programiscalled in arun unit.

e Thefirst timethe program is called after the execution of a CANCEL statement
referencing the program or a CANCEL statement referencing a program that
directly or indirectly contains the program.

e Every timethe programiscalled, if it possessestheinitia attribute.

e Thefirst timethe program is called after the execution of a CALL statement
referencing a program that possesses the initial attribute, and that directly or
indirectly contains the program.

RM/COBOL Language Reference Manual 33
First Edition

End Program Header

Chapter 1: Language Structure

34

End Program Header

The end program header indicates the end of the named source program.

program-name-1
END PROGRAM | .
- = | literal-1

program-name-1 must conform to the rules for forming a user-defined word (see
page 8).
literal-1 must be a nonnumeric literal.

A constant-name may not be used for literal-1. A constant-name used in place of
literal-1 will be treated as a program-name; the literal value assigned to the constant-
name will not be used.

program-name-1 or literal-1 must be identical to a program-name declared in a
preceding PROGRAM-ID paragraph.

If a PROGRAM-ID paragraph declaring a specific program-name is stated between
the PROGRAM-ID paragraph and the end program header declaring and referencing,
respectively, another program-name, the end program header referencing the former
program-name must precede that referencing the latter program-name.

General Rules

e Theend program header must be present in every program that either contains or
is contained within another program.

e Theend program header indicates the end of the specified source program. If
program-name-1 and literal-1 are omitted, it is assumed to be the same as the
program-name specified in the immediately preceding PROGRAM-ID
paragraph not yet associated with an end program header.

o |f the program terminated by the end program header is contained within another
program, the next statement must either be an Identification Division header or
another end program header that terminates the containing program.

o |f the program terminated by the end program header is not contained within
another program and if the next source statement isa COBOL statement, it must
be the Identification Division header of a program to be compiled separately
from the program terminated by the end program header.

RM/COBOL Language Reference Manual

First Edition

COPY Statement
Chapter 1: Language Structure

COPY Statement

The COPY statement provides the facility for copying text from user-specified
library filesinto the source program. The effect of the interpretation of the COPY
statement is to insert text into the source program, where it is treated by the compiler
as part of the source program.

Library text is placed in the library as afunction independent of the compiler, using
any text-manipulation utilities that are available. Library text must conform to the
same formatting rules that apply to source text.

text-name-1 IN library-name-1
COPY { _ [SUPPRESS PRINTING]
literal-1 OF literal-2

== pseudo-text-1== == pseudo-text-2 ==
identifier-1 identifier-2
REPLACING) BY .
- literal-3 - literal-4
word-1 word-2

A constant-name may not be used for literal-1 or literal-2. A constant-name used in
place of literal-1 will be treated as a text-name; the literal value assigned to the
constant-name will not be used. A constant-name used in place of literal-2 will be
treated as alibrary-name; the literal value assigned to the constant-name will not

be used.

literal-1, literal-2, literal-3, or literal-4 may not be a concatenation expression.

A COPY statement may appear anywhere in a source program that a character-string
or separator is allowed, except that a COPY statement may not be embedded within
another COPY statement. The COPY statement may be embedded in the text
referenced by the COPY statement.

A COPY statement must always be immediately followed by a period separator.
That separator functions solely as a part of the COPY statement and does not
terminate any sentence or entry in which the COPY statement may be embedded.

Thefirst (or only) operand of a COPY statement may be written as atext-name or as
anonnumeric literal. If the file access name of the text file being referred to
conforms to the requirements of avalid COBOL word—and it is not areserved
word—it may be written as atext-name; if it does not form a COBOL word and is
made up of the following characters, it may still be atext-name:

e Alphabetic characters

e Digits (0 through 9)

e Thecharacters! #$% & ()*—./:?2@\"_"'{}

In other words, writing the operand of a COPY statement as a nonnumeric literal is

always permissible, but is required when the file access name is a reserved word, is
longer than 240 characters or contains special characters other than those listed above.

In environments in which the concept of file libraries or directories has meaning, the
first operand of a COPY statement may optionally be qualified by alibrary-name-1.
Library-names are treated as the leading part of afile access name; the concatenation
of the two valuesis used to locate the file to be copied. Theinterpretation of the

RM/COBOL Language Reference Manual 35
First Edition

COPY Statement
Chapter 1: Language Structure

36

concatenation of library-name-1 and text-name-1 is system dependent. The second
operand of a COPY statement, when present, may be written asaword or as a
nonnumeric literal, subject to the same considerations that apply to the first operand.

A COPY statement may be followed by additional text in area B of a source record.
Multiple COPY statements may occur on a single source record.

Copy files may be nested up to five levels deep; they may contain a COPY statement.
This nesting limit may be exceeded when a COPY statement appears as the last
statement on the last record in a source or copy file; in such cases, the nesting level
limitisraised to nine. Thelimit of five appliesto open copy files; a COPY statement
appearing at the end of afile allows the compiler to close that source or copy file
before opening the one referenced in the COPY statement (that is, the compiler
chains from one file to the next). The copy nesting level indicator is incremented
when a COPY statement appears at the end of afile to indicate the logical nesting of
the copied text. Asaresult, the copy level indicator does not always indicate the
number of open input files and may, therefore, exceed five.

In the discussion that follows, a text word is considered a character or sequence of
contiguous characters in columns 8 through 72 of recordsin alibrary, source
program or in pseudo-text. These characters may be:

e A separator, except for space, a pseudo-text delimiter, and the opening and
closing delimiters for nonnumeric literals. Theright parenthesis and left
parenthesis, regardless of context within the library, source program or
pseudo-text, are always considered text words.

e A litera including, in the case of nonnumeric literals, the opening quotation
mark and the closing quotation mark which bound the literal.

e Any other sequence of contiguous characters except comment lines and the word
COPY, bounded by separators, which is neither a separator nor aliteral.

The SUPPRESS phrase may be specified to suppress printing the copied source text
in the source listing file. If the SUPPRESS phrase is specified, it is transitive to any
COPY statements in the copied sourcetext. That is, all source text copied when the
SUPPRESS phrase is specified will be suppressed even when there are nested COPY
statements that do not specify the SUPPRESS phrase. Regardless of the presence of
the SUPPRESS phrase, lines with errors will be included in the source listing
preceding the associated diagnostic messages.

Library text is copied into the source program without change unless a REPLACING
phrase is specified. When the REPLACING phrase is specified, the following

rules apply:

1. pseudo-text-1 must contain one or more text words. It must not consist entirely
of a separator comma or a separator semicolon.

pseudo-text-2 may contain zero, one or more text words.
Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.
word-1 and word-2 may be any single COBOL word except COPY .

o~ w0 DN

Astext is being copied from the library into the source program, each properly
matched occurrence of pseudo-text-1, identifier-1, word-1, or literal-3 in the
library text is replaced by the corresponding pseudo-text-2, identifier-2, word-2,
or literal-4.

6. For purposes of matching, identifier-1, word-1, and literal-3 are treated as
pseudo-text containing only identifier-1, word-1, or literal-4, respectively.

RM/COBOL Language Reference Manual

First Edition

COPY Statement
Chapter 1: Language Structure

7. The comparison operation that determines text replacement is done as follows:

a. Theleftmost library text word that is not a separator comma or a separator
semicolon isthe first text word used for comparison. Any text word or
space preceding this text word is copied into the source program. Starting
with the first text word for comparison and the first pseudo-text-1,
identifier-1, word-1, or literal-3 that is specified in the REPLACING
phrase, the entire REPLACING phrase operand that precedes the reserved
word BY is compared with an equivalent number of contiguous library text
words.

b. pseudo-text-1, identifier-1, word-1, or literal-3 match the library text only if
the ordered sequence of text words that forms pseudo-text-1, identifier-1,
word-1, or literal-3 is equal, character for character, to the ordered sequence
of library text words. For purposes of matching, each occurrence of a
separator comma, semicolon or space in pseudo-text-1 or in the library text
is considered to be asingle space. Each sequence of one or more space
separators is considered to be a single space.

For purposes of matching, a quoted string nonnumeric literal matches any
other quoted string nonnumeric literal with the same value regardless of
whether quotes or apostrophes were used as the delimiter. For purposes of
matching, any form of a hexadecimal literal matches any other form of a
hexadecimal literal that has the same value, regardless of whether an

X or H isused for the initial character, whether quotes or apostrophes were
used for delimiters and whether uppercase or lowercase letters are used to
specify thevalue. A hexadecimal literal does not match a quoted string
nonnumeric literal even if the actual values would be the samein the native
character set.

For purposes of matching, each operand and operator of a concatenation
expression is a separate text-word.

c. If no match occurs, the comparison is repeated with each following
pseudo-text-1, identifier-1, word-1, or literal-3, if any, in the REPLACING
phrase until either amatch isfound or there is no following REPLACING
operand.

d. When al REPLACING phrase operands have been compared and no match
has occurred, the leftmost library text word is copied into the source
program. The following library text word is then considered as the leftmost
library text word, and the comparison cycle starts again with the first
pseudo-text-1, identifier-1, word-1, or literal-3 in the REPLACING phrase.

e. Whenever amatch occurs between library text and pseudo-text-1,
identifier-1, word-1, or literal-3, the corresponding pseudo-text-2,
identifier-2, word-2, or literal-4 is placed into the source program. The
library text word following the rightmost text word that participated in the
match then becomes the new leftmost text word for subsequent cycles.

The comparison cycle starts again with the first pseudo-text-1, identifier-1,
word-1, or literal-3 specified in the REPLACING phrase.

f. The comparison cycles continue until the rightmost text word in the library
text has either participated in amatch or has been considered as a leftmost
library text word and participated in a complete comparison cycle.

RM/COBOL Language Reference Manual 37
First Edition

COPY Statement
Chapter 1: Language Structure

8. Comment lines and blank lines occurring in library text or pseudo-text-1 are
ignored for purposes of matching, and the sequence of text wordsin the library
text (if any) and in pseudo-text-1 is determined by the rules for source format
(see Figure 1 on page 20). Comment lines and blank lines appearing in pseudo-
text-2 are copied into the source program unchanged whenever pseudo-text-2 is
placed into the source program as a result of text replacement.

9. Comment lines and blank lines appearing in library text are copied into the
source program unchanged except that a comment line or ablank linein library
text is not copied if it appears within the sequence of text words that match
pseudo-text-1.

10. Debugging lines may appear within library text and pseudo-text. Text words
within a debugging line participate in the matching rules as if the D did not
appear inindicator area. A debugging lineis specified within pseudo-text if the
debugging line beginsin the source program after the opening pseudo-text
delimiter but before the matching closing pseudo-text delimiter.

11. The source program that results from the resolution of all COPY and REPLACE
statements must form a syntactically correct source program, as defined in the
rest of this manual.

12. Each text word copied from the library but not replaced is copied so asto start in
the same area of the linein the source program asit beginsin the line within the
library. However, if atext word copied from the library beginsin area A but
follows another text word that also beginsin area A of the sameline, and if
replacement of a preceding text word in the line by replacement text of greater
length occurs, the following text word beginsin area B if it cannot begin in area
A. Each text word in pseudo-text-2 that is to be placed into the source program
begins in the same area of the source program asit appearsin pseudo-text-2.
Each identifier-2, literal-4, and word-2 that isto be placed into the source
program begins in the same area of the source program as the leftmost library
text word that participated in the match would appear had it not been replaced.

13. If additional lines are introduced into the source program as aresult of a COPY
statement, each text word introduced appears on a debugging line if the COPY
statement begins on a debugging line or if the text word being introduced
appears on adebugging linein library text. When atext word specified in the
BY phraseisintroduced, it appears on adebugging line if the first library text
word being replaced is specified on a debugging line. Except in the preceding
cases, only those text words that are specified on debugging lines where the
debugging line is within pseudo-text-2 appear on debugging lines in the source
program. If any literal specified asliteral-4 or within pseudo-text-2 or library
text istoo long to be accommodated on a single line without continuation to
another line in the source program, and the literal is not being placed on a
debugging line, additional continuation lines are introduced to contain the
remainder of theliteral. A replacement literal may not be continued onto a
debugging line.

14. For purposes of compilation, text words after replacement are placed in the
source program according to the rules for source format (see Figure 1 on
page 20). When copying text words of pseudo-text-2 into the source program,
additional spaces may be introduced between text words where there is already
a space, including the space that implicitly falls between source lines.

15. If additional lines are introduced into the source program as a result of the
processing of COPY statements, the indicator area of the introduced lines
contains the same character as the line on which the text being replaced begins,
unless that line contains a hyphen, in which case the introduced line contains

38 RM/COBOL Language Reference Manual
First Edition

REPLACE Statement
Chapter 1: Language Structure

aspaceintheindicator area. Inthe case where aliteral is continued onto
an introduced line that is not a debugging line, ahyphen is placed in the
indicator area.

COPY Statement Examples
COPY FDFILEL.
COPY "FDFILE2.CBL".
COPY FDFILE3 OF TESTLIB.

COPY FDFILE4 IN PRODLIB.

REPLACE Statement

The REPLACE statement provides the ability to selectively replace source text
within specified regions of the source program.

Format 1. Begin or Change Replacement)

REPLACE { == pseudo-text-1== BY == pseudo-text-2== }---

Format 2: End Replacement

REPLACE OFF

A Format 1 REPLACE statement specifies that within its scope each occurrence of
pseudo-text-1 is to be replaced by the corresponding pseudo-text-2.

The scope of aFormat 1 REPLACE statement begins with the first text word in the
source program following the REPLACE statement, and it continues up to the next
REPLACE statement or the end of the program.

A Format 2 REPLACE statement terminates the scope of any preceding Format 1
REPLACE statement.

A REPLACE statement may appear anywhere in a source program that a character-
string may appear. It must be preceded by a separator period except when it isthe
first statement in a separately compiled program. It must be terminated by a
separator period.

REPL ACE statements are processed after COPY statements. The text produced
by the action of a REPLACE statement must not contain a REPL ACE statement.
The source program that results from resolution of all COPY and REPLACE
statements must form a syntactically correct source program, as defined in the rest
of this manual.

The word REPLACE appearing in acomment-entry or in a position where a
comment-entry may appear is considered part of the comment-entry.

RM/COBOL Language Reference Manual 39
First Edition

REPLACE Statement

Chapter 1: Language Structure

40

pseudo-text-1 must contain one or more text words. It must not consist entirely of a
separator comma or a separator semicolon.

pseudo-text-2 may contain zero, one, or more text words.
Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.
The comparison operation that determines text replacement is done as follows:

1. Starting with the leftmost text word in the scope and the first pseudo-text-1,
pseudo-text-1 is compared with an equivalent number of contiguous source
program text words.

2. pseudo-text-1 matches the source program text only if the ordered sequence of
text words that forms pseudo-text-1 is equal, character for character, to the
ordered sequence of source program text words. For purposes of matching, each
occurrence of a separator comma, semicolon or space in pseudo-text-1 or in the
source program text is considered to be a single space. Each sequence of one or
more space separators is considered to be a single space.

For purposes of matching, a quoted string nonnumeric literal matches any other
guoted string nonnumeric literal with the same value regardless of whether
guotes or apostrophes were used as the delimiter. For purposes of matching, any
form of ahexadecimal literal matches any other form of a hexadecimal literal
that has the same value, regardless of whether an X or H is used for the initia
character, whether quotes or apostrophes were used for delimiters and whether
uppercase or lowercase |etters are used to specify the value. A hexadecimal
literal does not match a quoted string nonnumeric literal even if the actual values
would be the same in the native character set.

For purposes of matching, each operand and operator of a concatenation
expression is a separate text-word.

3. If no match occurs, the comparison is repeated with each subsequent pseudo-
text-1 until either amatch isfound or there is no following pseudo-text-1.

4. When al occurrences of pseudo-text-1 have been compared and no match has
occurred, the next source program text word in the scope is then considered as
the leftmost source program text word, and the comparison cycle starts again
with the first occurrence of pseudo-text-1.

5. Whenever amatch occurs between pseudo-text-1 and the source program text,
the corresponding pseudo-text-2 replaces the matched text in the source
program. The source program text word following the rightmost text word that
participated in the match then becomes the new leftmost source program text
word for subsequent cycles. The comparison cycle starts again with the first
occurrence of pseudo-text-1.

6. The comparison cycles continue until the rightmost text word in the scope of the
REPLACE statement either has participated in a match or has been considered
as aleftmost source program text word and participated in a complete
comparison cycle.

Comment lines and blank lines occurring in the scope or in pseudo-text-1 are ignored
for purposes of matching, and the sequence of text words in the source program text
and in pseudo-text-1 is determined by the rules for source format (see Figure 1 on
page 20). Comment lines and blank lines appearing in pseudo-text-2 are copied into
the source program unchanged whenever pseudo-text-2 is placed into the source
program as aresult of text replacement.

A comment or blank linein the scope is not replaced if it appears within the sequence
of text words that match pseudo-text-1.

RM/COBOL Language Reference Manual

First Edition

REPLACE Statement
Chapter 1: Language Structure

Debugging lines may appear within pseudo-text. Text words within adebugging line
participate in the matching rules as if the D did not appear in the indicator area.

Text words inserted into the source program as a result of processing a REPLACE
statement are placed in the source program according to the rules for source format
(see Figure 1 on page 20). When copying text words of pseudo-text-2 into the source
program, additional spaces may be introduced between text words where thereis
already a space, including the space that implicitly falls between source lines.

If additional lines are introduced into the source program as a result of the processing
of REPLACE statements, the indicator area of the introduced lines contains the same
character as the line on which the text being replaced begins unless that line contains
a hyphen, in which case the introduced line contains a space.

If any literal within pseudo-text-2 istoo long to be accommodated on a single line
without continuation to another line in the source program and the literal is not being
placed on adebugging line, additional continuation lines are introduced to contain
the remainder of theliteral. A replacement literal may not be continued onto a
debugging line.

REPLACE Statement Examples

REPLACE == HEADINGl == BY == FOOTINGl ==
== HEADING2 == BY == FOOTING2 ==
== HEADING3 == BY == FOOTING3 ==.

REPLACE == <EXEC SQL> == BY ==CALL "CS$SQL" USING ==
== <END EXEC> == BY ==GIVING SQL-STATUS. ==.

REPLACE OFF.

RM/COBOL Language Reference Manual
First Edition

41

REPLACE Statement
Chapter 1: Language Structure

42 RM/COBOL Language Reference Manual
First Edition

Identification Division Structure
Chapter 2: Identification Division

Chapter 2: Identification
Division

The Identification Division must be included in every source program. This division
identifies both the source program and the resulting object program. In addition, the
user may include other commentary information.

This chapter details the structure and syntax of the Identification Division.

Identification Division Structure

{ IDENTIFICATION

ID } DIVISION.

) program-name-1 COMMON
PROGRAM-ID. {Iiteral-l } {IS {‘ INITIAL PROGRAM |.

[AUTHOR. [comment-entry-1]---]
[INSTALLATION. [comment-entry-2]--- |
[DATE-WRITTEN. [comment-entry-3]--- |

[DATE-COMPILED. [comment-entry-4 |--- |

[SECURITY. [comment-entry-5]--- |

[REMARKS. [comment-entry-6 |-+ |

comment-entry may be any combination of characters from the character set of the
computer. The continuation of comment-entry by the use of the hyphen in the
indicator areais not permitted; however, comment-entry may be contained on one or
more lines. A comment-entry must be contained in area B of asourcelineandis
ended by sourcetext in area A of asourceline. A COPY or REPLACE statement

RM/COBOL Language Reference Manual 43
First Edition

Program Identification
Chapter 2: Identification Division

within a comment-entry is considered part of the comment-entry and has no effect on
the resultant source program.

Program Identification

{IDENTIFICATION

ID } DIVISION.

The Identification Division must begin with the reserved words IDENTIFICATION
DIVISION or ID DIVISION followed by a separator period.

Paragraph headers identify the type of information contained in the paragraph. The
name of the program must be given in the first paragraph, which is the PROGRAM-
ID paragraph. The other paragraphs are optional and may be written in any order.

PROGRAM-ID Paragraph

) program-name-1 COMMON
PROGRAM-ID. {Iitera]-l } {IS {‘ INITIAL PROGRAM |.

A constant-name may not be used for literal-1. A constant-name used in place of
literal-1 will be treated as a program-name; the literal value assigned to the constant-
name will not be used.

The PROGRAM-ID paragraph, containing the program-name, identifies the source
program, the object program, and all listings pertaining to a particular program.
program-name-1 is a user-defined word. Alternatively, program-name-1 may be
specified as a nonnumeric literal, in which case the value of program-name-1 may
be areserved word or may use any charactersin the character set of the computer. A
program contained within another program must not be assigned the same name as
that of any other program contained within the separately compiled program that
contains this program.

program-name-1 may be 1 to 30 charactersin length. All the characters of
program-name-1, except trailing spaces, are associated with the object program in
order to identify the program to be called or canceled by a CALL or CANCEL
statement.

The PROGRAM-ID paragraph also assigns selected program attributes to the
program that it names.

The optional COMMON clause may be used only if the program is contained within
another program. It specifiesthat the program is common. A common program is
contained within another program, but may be called from programs other than that
containing it. Such other calling programs must be directly or indirectly contained in
the same program that contains the common program.

The INITIAL clause specifies that the program isinitial. When an initial program is
called, it and any programs contained within it are placed in their initial state. When
an EXIT PROGRAM or GOBACK statement is executed in an initial program, the
program isimplicitly canceled.

44 RM/COBOL Language Reference Manual
First Edition

Program Identification
Chapter 2: Identification Division

AUTHOR, INSTALLATION, DATE-WRITTEN,
SECURITY, and REMARKS Paragraphs

AUTHOR. [comment-entry-1]---
INSTALLATION. | comment-entry-2 |-
DATE-WRITTEN. [comment-entry-3]---
SECURITY. [comment-entry—S]--~

REMARKS. [comment-entry-6 |-+

These paragraphs are optional; their order of presentation isimmaterial. They
document information pertaining to the paragraph header. The paragraphs are
reproduced in the listing generated by the compiler, but have no effect on the
compilation.

DATE-COMPILED Paragraph

DATE-COMPILED. [comment-entry-4 |-+

If aDATE-COMPILED paragraph is present, it is replaced during compilation with a
paragraph of the form;

DATE-COMPILED. current-date.

where current-date is the date on which the compilation started. The format of
current-date is determined by the LISTING-DATE-FORMAT and LISTING-DATE-
SEPARATOR keywords of the COMPILER-OPTIONS configuration record. The
default format is“MM/DD/YYYY”, where MM is the month of the year, DD isthe
day of the month, and YY Y isthe year.

The entire comment-entry-4 is replaced, but comment lines in the paragraph are not
replaced. Only the compilation listing file is affected; the compilation date is not
inserted in the source file. The inserted compilation date matches the date placed in
the object file and the date listed in the compilation listing page headers.

The DATE-COMPILED paragraph is optional and may appear in any order with
respect to the other optional paragraphs of the Identification Division.

RM/COBOL Language Reference Manual 45
First Edition

Program Identification
Chapter 2: Identification Division

46 RM/COBOL Language Reference Manual
First Edition

Environment Division Structure
Chapter 3: Environment Division

Chapter 3: Environment
Division

The Environment Division describes the hardware configuration of the compiling
(or source) computer and the computer on which the object program is run (the
object computer). It also describes the relationship between the files and the
input-output media.

The Environment Division isan optional division in a source program. Itis
subdivided in two sections.

Environment Division Structure

The two sections in the Environment Division are as follows:

1. Configuration Section (on page 51), which describes the overall specifications of
source and object programs.

2. Input-Output Section (on page 64), which names the files and external media
required by an object program and which provides information required for
transmission and handling of data during running of the object program.

RM/COBOL Language Reference Manual 47
First Edition

Environment Division Structure

Chapter 3: Environment Division

48

ENVIRONMENT DIVISION.

Cco

NFIGURATION SECTION.

[

SOURCE - COMPUTER. { computer-name-1

WITH DEBUGGING MODE]. }

OBJECT - COMPUTER. { computer-name-2

WORDS
MEMORY SIZE integer-1 1 CHARACTERS
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name-1 |

[

SEGMENT-LIMIT IS segment-number-l] . }

SPECIAL - NAMES . {

IS mnemonic-name-1 H‘

switch-name-1

ON STATUS IS condition-name-1
OFF STATUS IS condition-name-2

feature-name-1 1S mnemonic-name-2

|low-volume-I-O-name-1 IS mnemonic-name-3

RM/COBOL Language Reference Manual

First Edition

ON STATUS IS condition-name-1
OFF STATUS IS condition-name-2

\}

(continued on next page)

Environment Division Structure
Chapter 3: Environment Division

(continued from previous page)

ALPHABET alphabet-name-1 IS

STANDARD-1
STANDARD -2
NATIVE
code-name-1
. THROUGH | .
{ literal-1 { { THRU } IlteraJ-Z}]
: THROUGH | .]
{ALSO literal-3 HTHRU } literal-4 } }

CHARACTER
CHARACTERS

SYMBOLIC { } { { symbolic-character-1 |- - - IS }

| ARE

{integer-1}--- } [IN alphabet-name-2 |

. THROUGH | .
CLASS class-name-1 IS { literal-5 {{THRU } literal-6 } }

CURRENCY SIGN IS Iiteral-7}

DECIMAL -POINT IS COMMA }

LEADING

NUMERIC SIGN IS {TRAILING

}[SEPARATE CHARACTER]}

CONSOLE ISCRT }

CURSOR IS data—namel}

CRT STATUS IS data—namez}

(continued on next page)

RM/COBOL Language Reference Manual 49
First Edition

Environment Division Structure
Chapter 3: Environment Division

(continued from previous page)

INPUT -OUTPUT SECTION.

FILE-CONTROL.

{ file-control-entry-1 }- -

1-O-CONTROL. {

RERUN {ON { file-name-1 H
- - rerun-name-1

REEL
UNIT OF file-name-2
integer-1 RECORDS

[wOF]{

EVERY

integer-2 CLOCK -UNITS
condition-name-1

RECORD

SAME | SORT AREA FOR filename3 { filename4 }---
SORT -MERGE

MULTIPLE FILE TAPE CONTAINS

{ filename5 [POSITION IS integer-3]}- -

50 RM/COBOL Language Reference Manual
First Edition

Configuration Section
Chapter 3: Environment Division

Configuration Section

The Configuration Section deals with the characteristics of the source computer and
the object computer. This section is divided into three paragraphs:

1. SOURCE-COMPUTER paragraph (see the next section), which describes the
computer configuration on which the source program is compiled.

2. OBJECT-COMPUTER paragraph (on page 52), which describes the computer
configuration on which the object program produced by the compiler isto
be run.

3. SPECIAL-NAMES paragraph (on page 53), which relates names used by the
compiler to user-defined words in the source program.

The Configuration Section must not be stated in a program that is contained within

another program.

The entries explicitly or implicitly stated in the Configuration Section of a program
that contains other programs apply to each contained program.

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer upon which the
program is to be compiled.

SOURCE -COMPUTER. [computer-name-1 [WITH DEBUGGING MODE .]

computer-name-1 is a user-defined word and is only commentary.

All clauses of the SOURCE-COMPUTER paragraph apply to the program in which
they are explicitly or implicitly specified and to any program contained within that
program.

If the WITH DEBUGGING MODE clauseis used, al debugging lines (D in the
indicator area, column 7) are compiled as if there were ablank in the indicator area.

If the WITH DEBUGGING MODE clauseis not specified, any debugging lines (D
in the indicator area, column 7) are compiled asif they were comment lines unless
the Debug compilation option is specified (see the RM/COBOL User’s Guide for
details).

When the Debug compilation option is specified, debugging lines are compiled asiif
there were ablank in the indicator area whether or not the WITH DEBUGGING
MODE phrase is specified in the source programs.

When multiple programs are compiled with one invocation of the compiler without
the Debug option, the WITH DEBUGGING MODE phrase may be used in one or
more of the source programs without affecting other source programs compiled in the
same group.

RM/COBOL Language Reference Manual 51
First Edition

Configuration Section
Chapter 3: Environment Division

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the computer on which the program
is to be executed.

OBJECT - COMPUTER. [computer-name-2

WORDS
MEMORY SIZE integer-1 { CHARACTERS
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name-1 |

[SEGMENT -LIMIT IS segment-number-1] . }

computer-name-2 is a user-defined word and is only commentary.

All clauses of the OBJECT-COMPUTER paragraph apply to the program in which
they are explicitly or implicitly specified and to any program contained within that
program.

The MEMORY SIZE clauseis treated as commentary.

The PROGRAM COLLATING SEQUENCE clause specifies the program collating
sequence to be used in determining the truth value of any nonnumeric comparisons.
If the PROGRAM COLLATING SEQUENCE clause is specified, the program
collating sequence is the collating sequence associated with alphabet-name-1. If the
PROGRAM COLLATING SEQUENCE clause is not specified, the collating
sequence is ASCII.

The program collating sequence established in the OBJECT-COMPUTER paragraph
determines the truth value of any nonnumeric comparisons that are as follows:

o Explicitly specified in relation conditions.

o Explicitly specified in condition-name conditions.

The program collating sequence established in the OBJECT-COMPUTER paragraph
is applied to any nonnumeric merge or sort keys unlessthe COLLATING
SEQUENCE phrase is specified in the respective SORT or MERGE statement.

The SEGMENT-LIMIT clause alows the user to reduce the number of permanent
segmentsin the program, while still retaining the logical properties of fixed portion
segments (segment-numbers 0 through 49). When the SEGMENT-LIMIT clauseis
specified, only those segments having segment-numbers from 0 up to, but not
including, the segment-number designated as the segment-limit, are considered as
permanent segments of the object program. segment-number-1 must be an integer
from 1 to 49.

If the SEGMENT-LIMIT clause is omitted, all segments having segment-numbers 0
through 49 are considered permanent segments of the object program.

The clauses of the OBJECT-COMPUTER paragraph may appear in any order.

52 RM/COBOL Language Reference Manual
First Edition

Configuration Section
Chapter 3: Environment Division

SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph relates names used by the compiler to user-
defined words in the source program.

SPECIAL -NAMES. {

IS mnemonic-name-1 H‘

ON STATUS IS condition-name-1
OFF STATUS IS condition-name-2

switch-name-1

ON STATUS IS condition-name-1
OFF STATUS IS condition-name-2

feature-name-1 IS mnemonic-name-2

low-volume-I-O-name-1 IS mnemonic-name-3

ALPHABET alphabet-name-1 IS

STANDARD-1
STANDARD -2
NATIVE
code-name-1
, THROUGH | . .
{ literal-1 { { THRU } IlteraJ-Z}]
. THROUGH | .)
{ALSO literal-3 {{THRU } Ilteral-4_]-- }

CHARACTER
CHARACTERS

[SYMBOUC { } { { symbolic-character-1}-++ | 'S }

| ARE

{integer-1}--- } [IN alphabet-name-2 |

. THROUGH .
CLASS class-name-1 IS {Ilteral-s {{THRU } literal-6 }}

CURRENCY SIGN IS Iiteral-7}

(continued on next page)

RM/COBOL Language Reference Manual 53
First Edition

Configuration Section

Chapter 3: Environment Division

54

(continued from previous page)

DECIMAL-POINT IS COMMA }

LEADING

NUMERIC SIGN IS {TRAILING

} [SEPARATE CHARACTER]}

CONSOLE ISCRT }

CURSOR IS data-nanel}

CRT STATUS IS data—namez} .

All clauses specified in the SPECIAL-NAMES paragraph for a program also apply
to programs contained within that program. The al phabet-names, class-names,
condition-names, and symbolic-characters specified in the SPECIAL-NAMES
paragraph of the containing program may be referenced from any contained program.
The clauses in the SPECIAL-NAMES paragraph may appear in any order.

ALPHABET Clause

ALPHABET alphabet-name-1 IS

STANDARD -1
STANDARD -2
NATIVE
code-name-1
literal-1 THROUGH literal-2
THRU
ALSO literal-3 THROUGH literal-4 | |---
- THRU

The ALPHABET clause provides a means for relating a name to a specified
character code set or collating sequence. When the alphabet-name is referenced in
the PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER
paragraph, the COLLATING SEQUENCE clause of an Indexed File Control Entry
or the COLLATING SEQUENCE phrase of a SORT or MERGE statement, the
ALPHABET clause specifies a collating sequence. When the alphabet-nameis
referenced in aSYMBOLIC CHARACTERS or CODE-SET clause, the
ALPHABET clause specifies a character code set.

If the STANDARD-1 phrase is specified, the character code set or collating sequence
identified is that defined in American National Standard X3.4-1977, Code for
Information Interchange, usually referred to as ASCII. If the STANDARD-2 phrase

RM/COBOL Language Reference Manual

First Edition

Configuration Section
Chapter 3: Environment Division

is specified, the character code set identified isthe International Reference Version
of the SO 7-bit code defined in International Standard 646, 7-bit Coded Character
Set for Information Processing Interchange. If the NATIVE phraseis specified, the
native character set or collating sequenceis used. If the code-name phraseis
specified with the code-name EBCDIC, the character code or collating sequenceis
the extended bhinary coded decimal interchange code (8 bits, no parity). See
Appendix J. Code-Set Translation Tables in the RM/COBOL User’s Guide.

If the literal form of the ALPHABET clause is specified, the following rules apply:

1. A given character must not be specified more than oncein an ALPHABET
clause that is referenced in the PROGRAM COLLATING SEQUENCE clause,
the COLLATING SEQUENCE clause in the File-Control entry, the
COLLATING SEQUENCE phrase of the SORT and MERGE statements, or that
is associated with a code set for afile that is opened in either the extend, I-O or
output mode.

2. A given character may be specified more than oncein an ALPHABET clause
only if alphabet-name-1 is referenced in a SYMBOLIC CHARACTERS clause
or is associated with a code set for afile that is opened in the input mode.

literal-1, literal-2, literal-3, literal-4, literal-5 and literal-6 must not specify a
symbolic-character figurative constant. When aliteral in an ALPHABET clause or
CLASS clause is numeric, it must be an unsigned integer and its value must be in the
range 1 to 256, inclusive. When aliteral in an ALPHABET clause or CLASS clause
isnonnumeric and it isin a THROUGH or AL SO phrase, it must be one character

in length.

The character that has the highest ordinal position in the current program collating
seguence is associated with the figurative constant HIGH-V ALUE, except when this
figurative constant is specified as aliteral in the SPECIAL-NAMES paragraph. If
more than one character has the highest position in the program collating sequence,
the last character specified is associated with the figurative constant HIGH-VALUE.

The character that has the lowest ordinal position in the current program collating
seguence is associated with the figurative constant LOW-VALUE, except when this
figurative constant is specified as aliteral in the SPECIAL-NAMES paragraph. If
more than one character has the lowest position in the program collating sequence,
the first character specified is associated with the figurative constant LOW-VALUE.

When specified as literals in the SPECIAL-NAMES paragraph, the figurative
constants HIGH-VALUE and LOW-VALUE are associated with those characters
having the highest and lowest positions, respectively, in the native collating
sequence.

The collating sequence identified is that defined according to the following rules:

1. If theliteral is numeric, it specifies the ordinal number of a character within the
native character set. If theliteral is single-character nonnumeric, it specifiesthe
actual character within the native character set. If the literal is multiple-
character nonnumeric, each character in the literal, starting with the leftmost
character, is assigned successive ascending positionsin the collating sequence
being specified.

2. Theorder in which the literals appear in the ALPHABET clause specifies, in
ascending seguence, the ordinal number of the character within the collating
seguence being specified.

3. Any characters within the native collating sequence that are not explicitly
specified in the literal phrase assume a position (in the collating sequence being
specified) that is greater than any of the explicitly specified characters. The

RM/COBOL Language Reference Manual 55
First Edition

Configuration Section
Chapter 3: Environment Division

relative order within the set of these unspecified charactersis the same asthe
native collating sequence order.

4. If the THROUGH (or THRU) phrase is specified outside of an AL SO phrase,
the set of contiguous characters in the native character set beginning with the
character specified by the value of literal-1 and ending with the character
specified by the value of literal-2, is assigned a successive ascending position in
the collating sequence being specified.

5. If the ALSO phraseis specified, the characters of the native character set
specified by the values of literal-1, or literal-2 if the ALSO phrase follows a
THROUGH (or THRU) phrase, and literal-3 are assigned to the same position in
the collating sequence being specified. |f the THROUGH (or THRU) phraseis
specified in the ALSO phrase, the set of contiguous characters in the native
character set beginning with the character specified by the value of literal-3 and
ending with the character specified by the value of literal-4, is assigned the same
position as literal-1, or literal-2, in the collating sequence being specified.

6. The set of contiguous characters specified by a given THROUGH phrase may
specify characters of the native character set in either ascending or descending
sequence.

The ALPHABET clause of the SPECIAL-NAMES paragraph defines three different
character set mappings:

1. Anoutput code set mapping of native characters to external characters.
2. Aninput code set mapping of external charactersto native characters.

3. A collating sequence mapping of charactersto character positions.

Which of these mappingsisintended depends on the use made of the defined
alphabet. Theinput or output code set mapping is indicated by the CODE-SET
clause of the SELECT or FD entry; the input code set mapping isindicated by

the SYMBOLIC CHARACTERS. . . IN alphabet-name clause of the SPECIAL-
NAMES paragraph. The collating sequence mapping isindicated by the
PROGRAM COLLATING SEQUENCE clause of the OBJECT-COMPUTER
paragraph, the COLLATING SEQUENCE clause of the SORT and MERGE
statements, and by the COLLATING SEQUENCE clause of the SELECT entry of
an indexed organization file.

Code Name Alphabets

RM/COBOL supports four code-namesin the ALPHABET clause: NATIVE,
STANDARD-1, STANDARD-2 and EBCDIC.

The NATIVE aphabet always represents the 256 character code values possiblein
the computer. The graphic equivalents of these character code values may be ASCII
or EBCDIC, depending on the source computer. The chosen native code set is
recorded in the object program.

The STANDARD-1 alphabet contains 128 characters in the range 00h to 7Fh. This
alphabet is defined in the document American National Sandard X3.4-1977, Code
for Information Interchange and is commonly referred to as ASCII. |If the native
character set is ASCII, the 128 ASCII characters are represented by the identical
values 00h to 7Fh in the native character set, and native characters 80h to FFh have
no STANDARD-1 equivalent. If the native character set is EBCDIC, the 128 ASCI|
characters are represented by the corresponding 128 native EBCDIC values, and the
remaining 128 EBCDIC values have no STANDARD-1 equivalent.

56 RM/COBOL Language Reference Manual
First Edition

Configuration Section
Chapter 3: Environment Division

The STANDARD-2 alphabet is the same as the STANDARD-1 alphabet except for
the currency symbol character.

The EBCDIC alphabet contains 256 characters, 128 of which have widely accepted
standard ASCII equivalents. For the purpose of processing the SYMBOLIC
CHARACTERS clause when the native code set is based on ASCI|I, all 256 EBCDIC
character codes are assigned ASCII equivalents. Seethe RM/COBOL User’s Guide
for the exact mappings used to effect these conversions.

Literal Alphabets

RM/COBOL supports user-defined literal alphabets for file code sets and for
program, sort-merge, and indexed file collating sequences. One use for aliteral code
set would be to map all lowercase letters to uppercase on input or output to afile.
Another would be to specify a different ASCII to EBCDIC mapping than that built
into RM/COBOL. A literal collating sequence could be used to cause |lowercase
lettersin indexed file keysto be treated as uppercase, or to cause numbers to follow
lettersin indexed file keys. Europeans might use aliteral collating sequence to cause
the correct ordering of keys that contain letters not in the English alphabet.

The syntax for defining a literal alphabet is:

ALPHABET alphabet-name-1 IS < literal-1 {{W} IiteraI-Z}

ALSO literal-3 THROUGH literal-4 | |---
- THRU

The value of literal-1 is the ordinal position or value of a native character. The
ordinal position of literal-1 in thelist of literals is the collating position when the
alphabet is used as a collating sequence, and is one greater than the binary value of
the external character code when used as a code set. The ALSO phrase allows more
than one native character to have the same collating position or be translated to the
same external character.

For example, the following alphabet causes |lowercase and uppercase native
characters to be collated to the same position:

ALPHABET OUT-UPPER IS 1 THRU 65,

"A" ALSO "a", "B" ALSO "b", "C" ALSO "c", "D" ALSO "d",
"E" ALSO "e", "F" ALSO "f", "G" ALSO "g", "H" ALSO "h",
"I" ALSO "i", "J" ALSO "j", "K" ALSO "k", "L" ALSO "1",
"M" ALSO "m", "N" ALSO "n", "O" ALSO "o", "P" ALSO "p",
"Q" ALSO "g", "R" ALSO "r", "S" ALSO "s", "T" ALSO "t",
"U" ALSO "u", "V" ALSO "v", "W" ALSO "w", "X" ALSO "x",
"Y" ALSO "y", "Z" ALSO "z", 92 THRU 97, 124 THRU 128;

The aphabet OUT-UPPER, when used as a code set of afile opened for output,
causes lowercase characters in the records being written to be replaced by
uppercase characters.

Thefinal phrase—124 THRU 128—is redundant when the alphabet isused as a
collating sequence, since unspecified characters are collated in their natural order
following the last specified character. If any characters are omitted from the
definition of the alphabet and the characters occur in arecord being written, afile

RM/COBOL Language Reference Manual 57
First Edition

Configuration Section

Chapter 3: Environment Division

58

status 97 will result. The following aphabet causes lowercase external charactersto
be converted to uppercase native characters on file input:

ALPHABET IN-UPPER IS 1 THROUGH 65,
"A" THROUGH "Z", 92 THROUGH 97,
"A" THROUGH "Z", 124 THROUGH 128;

An aphabet in which a native character occurs more than once may be used only on
afile opened for input or in the SYMBOLIC CHARACTERS clause. Such an
alphabet isan illegal collating sequence and isanillegal code set on afile opened for
output, extend or 1-O.

Indexed File Alphabets

RM/COBOL accepts both the CODE-SET and COLLATING SEQUENCE clauses
when defining an indexed organization file. The CODE-SET clause can be used on
an ASCII object computer to read an IBM EBCDIC ISAM filg; the runtime system
then performs EBCDIC to ASCI| tranglation of dataread and ASCII to EBCDIC
trandation of datawritten. The COLLATING SEQUENCE clause can be used to
force lowercase and uppercase key values to be treated identically, or to cause amore
natural ordering of European characters with diacritical marks.

When the CODE-SET clauseis specified and the COLLATING SEQUENCE clause
is omitted, the natural collating sequence of the external character set isused. To put
it another way: if the COLLATING SEQUENCE is omitted, the alphabet referred to
in the CODE-SET clause is used, and the native collating sequence is used if the
CODE-SET clauseis also omitted.

EBCDIC Translation

Appendix J Code-Set Trandation Tablesin the RM/COBOL User’s Guide defines
the trandation between the ASCII and EBCDIC character sets. The ASCII to
EBCDIC trandation isidentical to that described by IBM in the document Systems
Network Architecture Format and Protocol Reference Manual: Architecture Logic
(SC30-3112-0, March 1976). The EBCDIC to ASCII trandlation is the inverse of the
ASCII to EBCDIC mapping, with the addition that EBCDIC characters with no
ASCII equivalent are assigned values in the range 80h to FFh.

CLASS Clause

. THROUGH | .
CLASS class-name-1 IS {Ilteral-S {{THRU } literal-6 }}

The CLASS clause provides a means of assigning a name to the specified set of
characterslisted in that clause. class-name can be referenced only in aclass
condition in the Procedure Division. The characters specified by the values of the
literalsin this clause define the exclusive set of characters of which this class-name
consists. The CLASS clause defines class conditions other than those that are
standard to the language.

For each numeric literal in the list, the value of the literal specifiesthe ordinal
number of a character within the native character set. Thisvalue must not exceed the
value that represents the number of characters in the native character set.

RM/COBOL Language Reference Manual

First Edition

Configuration Section
Chapter 3: Environment Division

For each nonnumeric literal in thelist, the value of the character or charactersin the
literal specifiesthe actual character or characters within the native character set.
When a nonnumeric literal isused ina THROUGH phrase, it must be asingle-
character literal.

If the THROUGH phrase is specified, the contiguous charactersin the native
character set beginning with the character specified by the value of literal-5, and
ending with the character specified by the value of literal-6, are included in the set of
charactersidentified by class-name. In addition, the contiguous characters specified
by a given THROUGH phrase may specify characters of the native character set in
either ascending or descending order.

CONSOLE IS CRT Clause

CONSOLE IS CRT

The CONSOLE IS CRT clause causes any ACCEPT or DISPLAY statement whose
operand is not a screen-name and that has no phrases specific to a particular format
of these statementsto be treated as a Format 3, Accept Terminal 1-O, or Format 2,
Display Terminal 1-O, statement, respectively. If the CONSOLE ISCRT clauseis
not specified, then such statements are treated as described in the |SO 1989-1985
standard for the COBOL language (al so referred to as American National Standard
X3.23-1985 COBOL in the United States).

CRT STATUS Clause

CRT STATUS IS data-name-2

The CRT STATUS clause specifies a numeric dataitem into which the field
termination code value is moved after a Format 3, Accept Terminal 1-O, or Format 5,
Accept Screen-Name, ACCEPT statement is executed. See the descriptions of these
formats of the ACCEPT statement for information on the field termination code
values and their meanings. Also, consult the RM/COBOL Users Guide for
information on configuring field termination code values.

data-name-2 should be described in the Working-Storage Section of the program as a
numeric integer dataitem. If data-name-2 is not qualified and is not defined in the
Data Division, the compiler assumes a Working-Storage Section data description
entry of the following form:

01 data-name-2 PIC 9(9) BINARY (4).

data-name-2 may be qualified.

Note Use of this clause avoids the need to specify an identifier-9 in the ON
EXCEPTION phrase of each Format 3 ACCEPT statement for which thefield
termination code value is needed after the ACCEPT statement is executed. If both
the CRT STATUS clause and identifier-9 are specified, the field termination code
value is moved to data-name-2 and identifier-9 after the ACCEPT statement is
executed. The field termination code value can also be obtained with the Format 2,
Accept from Implicit Definition, ACCEPT statement by specifying the ESCAPE
KEY phrase.

RM/COBOL Language Reference Manual 59
First Edition

Configuration Section

Chapter 3: Environment Division

60

CURREN