

Liant Software Corporation

RM/COBOL

Language Reference Manual

First Edition

®

http://www.liant.com

This document contains the information required to develop COBOL language programs using the Liant Software
Corporation RM/COBOL compiler. This document contains little tutorial material; nevertheless, it should be of value
to the novice as well as the experienced programmer.

For operating system dependent information, the reader should refer to the RM/COBOL User's Guide.

The information in this document is subject to change without prior notice. Liant Software Corporation assumes no
responsibility for any errors that may appear in this document. Liant reserves the right to make improvements and/or
changes in the products and programs described in this manual at any time without notice. Companies, names, and
data used in examples herein are fictitious unless otherwise noted.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopied, recorded, or otherwise, without prior written permission of Liant
Software Corporation.

The software described in this document is furnished to the user under a license for a specific number of uses and
may be copied (with inclusion of the copyright notice) only in accordance with the terms of such license.

Copyright © 1985–2005 by Liant Software Corporation. All rights reserved.
Printed in the U.S.A.

COBOL is an industry language and is not the property of any company or group of companies, or of any
organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL Committee as to the
accuracy and functioning of the programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAC ®
I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translater Form No. F 28-8013, copyrighted 1959 by IBM; FACT,
DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL specifications in programming manuals or similar
publications.

Liant Software Corporation
8911 N. Capital of Texas Highway

Austin, TX 78759
U.S.A.

Phone (512) 343-1010
 (800) 762-6265
Fax (512) 343-9487

Website http://www.liant.com/

RM, RM/COBOL, RM/COBOL-85, Relativity, Enterprise CodeBench, RM/InfoExpress, RM/Panels, VanGui
Interface Builder, CodeWatch, CodeBridge, Cobol-WOW, WOW Extensions, InstantSQL, Xcentrisity, XML
Extensions, Liant, and the Liant logo are trademarks or registered trademarks of Liant Software Corporation.

IBM and Macro Assembler/2 are trademarks or registered trademarks of International Business Machines
Corporation.

Novell and NetWare are trademarks or registered trademarks of Novell, Incorporated.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Ltd.

All other products, brand, or trade names used in this publication are the trademarks or registered trademarks of their
respective trademark holders, and are used only for explanation purposes.

http://www.liant.com

Documentation Release History for the RM/COBOL Language Reference Manual:

Edition
Number

Document
Part Number

Applies To
Product Version

Publication
Date

1 401226 RM/COBOL version 9 and later January 2005

 Contents

 RM/COBOL Language Reference Manual v
 First Edition

Contents

Preface .. 1
Organization of Information... 1
Conventions and Symbols .. 2
Related Publications ... 3

Chapter 1: Language Structure.. 5
Character Set .. 5
Separators ... 5
Character-Strings.. 7

COBOL Words.. 7
User-Defined Words .. 8
System-Names ... 11
Reserved Words ... 13
Context-Sensitive Words ... 16

Literals... 16
Numeric Literals... 16
Nonnumeric Literals... 17
Figurative Constants... 17
Concatenation Expressions .. 19

PICTURE Character-Strings ... 20
Comment-Entry... 20

Program Structure... 20
Source Format ... 20
Continuation of Lines.. 21
Blank Lines ... 21
Comment Lines ... 22
In-Line Comments... 22
Debugging Lines ... 22
Statements ... 23

Directive Statements .. 23
Conditional Statements .. 23

Conditional Phrases... 24
Imperative Statements .. 24
Delimited Scope Statements... 25

Scope of Statements .. 25
Sentences... 25
Clauses and Entries ... 26
Paragraphs ... 26
Sections ... 26
Divisions ... 26
Source Program General Format ... 27

Contents

vi RM/COBOL Language Reference Manual
First Edition

Inter-Program Communication... 28
Nested Source Programs ... 28
File Connector ... 28
Global Names and Local Names ... 28
External Objects and Internal Objects ... 29
Common Programs and Initial Programs .. 30
Sharing Data in a Run Unit ... 30
Sharing Files in a Run Unit ... 30
Scope of Names... 31

Program-Names.. 32
Condition-Names, Constant-Names, Data-Names, File-Names,
 Record-Names, and Split-Key-Names .. 32
Index-Names .. 33

Initial State of a Program.. 33
End Program Header .. 34
COPY Statement .. 35
REPLACE Statement ... 39

Chapter 2: Identification Division .. 43
Identification Division Structure .. 43
Program Identification.. 44

PROGRAM-ID Paragraph .. 44
AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY,
 and REMARKS Paragraphs ... 45
DATE-COMPILED Paragraph ... 45

Chapter 3: Environment Division... 47
Environment Division Structure... 47
Configuration Section... 51

SOURCE-COMPUTER Paragraph ... 51
OBJECT-COMPUTER Paragraph .. 52
SPECIAL-NAMES Paragraph .. 53

ALPHABET Clause ... 54
Code Name Alphabets .. 56
Literal Alphabets... 57
Indexed File Alphabets ... 58
EBCDIC Translation... 58

CLASS Clause ... 58
CONSOLE IS CRT Clause .. 59
CRT STATUS Clause .. 59
CURRENCY SIGN Clause.. 60
CURSOR Clause.. 60
DECIMAL-POINT Clause... 61
Mnemonic-Name Clause.. 61
NUMERIC SIGN Clause ... 62
SYMBOLIC CHARACTERS Clause .. 63

Input-Output Section .. 64
FILE-CONTROL Paragraph ... 65

File Control Entry .. 65
SELECT Clause .. 66
ACCESS MODE Clause... 67
ASSIGN Clause .. 69
CODE-SET Clause ... 70
COLLATING SEQUENCE Clause .. 71

 Contents

 RM/COBOL Language Reference Manual vii
 First Edition

FILE STATUS Clause .. 71
LOCK MODE Clause ... 72
ORGANIZATION Clause .. 73
PADDING CHARACTER Clause.. 74
RECORD DELIMITER Clause .. 74
RECORD KEY and ALTERNATE RECORD KEY Clauses 76
RESERVE Clause... 77

Sort-Merge File Control Entry ... 78
SELECT Clause .. 78
ASSIGN Clause .. 78

I-O-CONTROL Paragraph .. 79
RERUN Clause .. 79
SAME Clause... 80
MULTIPLE FILE Clause... 82

Chapter 4: Data Division... 83
Data Division Structure .. 83
File Section... 86

File Description Entry ... 86
Sort-Merge File Description Entry.. 87

File Description Clauses... 88
BLOCK CONTAINS Clause .. 88
CODE-SET Clause.. 89
DATA RECORDS Clause... 89
EXTERNAL Clause.. 90
GLOBAL Clause... 90
LABEL RECORDS Clause... 90
LINAGE Clause .. 91
RECORD Clause... 95
VALUE OF Clause ... 97

Working-Storage Section ... 98
Linkage Section.. 98
Communication Section ... 100
Screen Section .. 101
Record Description Entry ... 102

Level-Numbers.. 102
Elementary Items... 102

77-Level Description Entry .. 103
Data Description Entry ... 103

Condition-Name Data Description Entry .. 106
Constant-Name Data Description Entry .. 106
BLANK WHEN ZERO Clause ... 107
Data-Name or FILLER Clause.. 107
EXTERNAL Clause.. 107
GLOBAL Clause... 108
JUSTIFIED Clause.. 109
Level-Number ... 109
OCCURS Clause ... 110
PICTURE Clause .. 112

Implied PICTURE Clause.. 113
Nonnumeric Implied PICTURE Clause.. 113
Numeric Implied PICTURE Clause.. 113
Implied PICTURE Clause and Other Data Description Clauses............... 114

PICTURE Character-String (Data Categories) .. 114
Symbols Used in a PICTURE Character-String... 115

Contents

viii RM/COBOL Language Reference Manual
First Edition

Editing Rules.. 118
Simple Insertion Editing ... 119
Special Insertion Editing... 119
Fixed Insertion Editing.. 119
Floating Insertion Editing ... 120
Zero Suppression Editing.. 121

PICTURE Symbol Precedence... 122
REDEFINES Clause ... 124
RENAMES Clause.. 125
SIGN Clause.. 126
SYNCHRONIZED Clause .. 128
USAGE Clause.. 129

COMPUTATIONAL Usage .. 130
COMPUTATIONAL-1 Usage ... 131
COMPUTATIONAL-3 or PACKED-DECIMAL Usage................................. 131
COMPUTATIONAL-4 or BINARY Usage... 131
COMPUTATIONAL-5 Usage ... 132
COMPUTATIONAL-6 Usage ... 133
DISPLAY Usage.. 133
INDEX Usage .. 134
POINTER Usage.. 134

VALUE Clause ... 135
Data Item Initialization Rules (Format 1 VALUE Clause) 136
Condition-Name Rules (Format 2 VALUE Clause) .. 137
Constant-Name Rules (Format 3 VALUE Clause) .. 137

Communication Description Entry... 140
Input CD General Rules .. 142
Output CD General Rules.. 145
Input-Output CD General Rules.. 147
Status Key Conditions ... 149
Error Key Values... 152

Screen Description Entry.. 153
AUTO Clause.. 157
BACKGROUND Clause... 157
BELL Clause... 158
BLANK LINE Clause ... 158
BLANK REMAINDER Clause... 159
BLANK SCREEN Clause ... 159
BLANK WHEN ZERO Clause ... 159
BLINK Clause... 160
COLUMN Clause.. 160
ERASE Clause .. 161
FOREGROUND Clause.. 161
FULL Clause... 162
HIGHLIGHT and LOWLIGHT Clauses... 162
JUSTIFIED Clause.. 162
LINE Clause.. 163
PICTURE Clause .. 164
REQUIRED Clause... 165
REVERSE Clause ... 165
SECURE Clause.. 165
SIGN Clause.. 166
UNDERLINE Clause .. 166
USAGE Clause.. 166
VALUE Clause ... 166

 Contents

 RM/COBOL Language Reference Manual ix
 First Edition

Data Structures ... 167
Classes of Data .. 167
Standard Alignment Rules... 167

Uniqueness of Reference.. 168
Qualification.. 168

 Subscripting... 170
 Reference Modification ... 172
 Identifier .. 173
 Condition-Name .. 173
Table Handling ... 174

Table Definition .. 174
References to Table Items ... 176

Chapter 5: Procedure Division... 179
Procedure Division Header... 179
Procedure Division Structure.. 182
Procedures .. 183
Execution.. 184
Procedure References ... 184
Explicit and Implicit Transfers of Control.. 185
Segmentation .. 186

Segments ... 186
Fixed Portion.. 186
Independent Segments ... 187

Segmentation Classification .. 188
Segmentation Control.. 188
Restrictions on Program Flow... 188

ALTER Statement Restrictions.. 188
PERFORM Statement Restrictions .. 188
MERGE Statement Restrictions... 189
SORT Statement Restrictions... 189

USE Statement ... 189
Common Rules ... 192

Subscript Evaluation ... 192
Arithmetic Statements ... 192

Modes of Operation.. 192
Composite Size .. 192
ROUNDED Phrase... 193
Size Error Condition .. 193

Overlapping Operands... 194
Incompatible Data ... 195

Arithmetic Expressions .. 195
Arithmetic Operators... 196
Formation and Evaluation Rules ... 196

Conditional Expressions... 197
Simple Conditions ... 197

Relation Condition ... 197
Comparison of Numeric Operands.. 199
Comparison of Nonnumeric Operands.. 199
Comparisons of Index-Names and Index Data Items................................ 200
Comparison of Pointer Data Items.. 200
LIKE Condition (Special Case of Relation Condition)............................. 200

Class Condition .. 209
Sign Condition ... 210

Contents

x RM/COBOL Language Reference Manual
First Edition

Condition-Name Condition (Conditional Variable) ... 211
Switch-Status Condition... 211

Complex Conditions.. 211
Negated Conditions.. 212
Combined Conditions... 212
Abbreviated Combined Relation Conditions.. 212

Condition Evaluation Rules... 213
Sequential Organization Input-Output.. 214

Function... 214
Organization.. 214
Access Mode ... 214
File Position Indicator ... 214
I-O Status .. 214
At End Condition .. 218

Relative Organization Input-Output ... 219
Function... 219
Organization.. 219
Access Modes.. 219
File Position Indicator ... 219
I-O Status .. 219
Invalid Key Condition... 223
At End Condition .. 224

Indexed Organization Input-Output.. 225
Function... 225
Organization.. 225
Access Modes.. 226
File Position Indicator ... 226
I-O Status .. 226
Invalid Key Condition... 230
At End Condition .. 232

File Locking ... 233
Record Locking .. 234

Record Locking Modes ... 235
Automatic Record Locking Modes .. 235
Manual Record Locking Modes... 236
Single Record Locking Modes... 236
Multiple Record Locking Modes ... 237

Interactive Terminal I-O... 237
Sort-Merge.. 238
Communication Facility ... 238

Message Control System... 238
Object Program ... 239
Relationship of the Object Program to the Message Control System
 and Communication Devices.. 239
Invoking the Object Program .. 239
Scheduled Initiation of the Object Program .. 240
Invocation of the Object Program by the Message Control System........................ 240
Determining the Method of Scheduling .. 240
Concept of Messages and Message Segments... 241
Concept of Queues .. 241
Independent Enqueueing and Dequeueing .. 241
Enabling and Disabling Queues .. 242
Queue Hierarchy ... 242

 Contents

 RM/COBOL Language Reference Manual xi
 First Edition

Chapter 6: Procedure Division Statements................................. 243
ACCEPT . . . FROM Statement.. 243
ACCEPT Statement (Terminal I-O) ... 247

AUTO Phrase .. 249
NO BEEP Phrase... 249
BLINK Phrase ... 250
CONTROL Phrase .. 250
CONVERT Phrase .. 251
CURSOR Phrase ... 252
ECHO Phrase .. 253
ERASE Phrase... 253
ON EXCEPTION and NOT ON EXCEPTION Phrases ... 253
HIGH, LOW and OFF Phrases.. 255
LINE and POSITION Phrases... 256

Determining Line and Position .. 256
MODE IS BLOCK Phrase .. 257
PROMPT Phrase ... 257
REVERSE Phrase ... 258
SIZE Phrase... 258
TAB Phrase ... 259
TIME Phrase ... 259
UNIT Phrase.. 259
UPDATE Phrase ... 260

ACCEPT MESSAGE COUNT Statement.. 262
ACCEPT Screen-Name Statement ... 263
ADD Statement .. 266

CORRESPONDING Phrase.. 267
ALTER Statement .. 269
CALL Statement... 270

USING Phrase ... 272
GIVING Phrase ... 274
OVERFLOW, EXCEPTION, and NOT EXCEPTION Phrases.............................. 274

CALL PROGRAM Statement .. 276
CANCEL Statement ... 278
CLOSE Statement .. 280

REEL and UNIT Phrases .. 281
NO REWIND Phrase .. 281
REMOVAL Phrase ... 282
LOCK Phrase .. 282

COMPUTE Statement .. 283
CONTINUE Statement... 284
DELETE Statement (Relative and Indexed I-O) .. 285
DELETE FILE Statement... 287
DISABLE Statement .. 288

INPUT Phrase ... 289
I-O TERMINAL Phrase .. 289
OUTPUT Phrase ... 289
TERMINAL Phrase... 289
WITH KEY Phrase.. 290

DISPLAY . . . UPON Statement .. 291
DISPLAY Statement (Terminal I-O) ... 293

BEEP Phrase ... 294
BLINK Phrase ... 295
CONTROL Phrase .. 295
CONVERT Phrase .. 296

Contents

xii RM/COBOL Language Reference Manual
First Edition

ERASE Phrase... 296
HIGH and LOW Phrases... 297
LINE and POSITION Phrases... 297

Determining Line and Position .. 298
MODE IS BLOCK Phrase .. 298
REVERSE Phrase ... 298
SIZE Phrase... 299
UNIT Phrase.. 299

DISPLAY Screen-Name Statement.. 301
DIVIDE Statement ... 303

REMAINDER Phrase ... 305
ENABLE Statement ... 307

INPUT Phrase ... 308
I-O TERMINAL Phrase .. 308
OUTPUT Phrase ... 308
TERMINAL Phrase... 308
WITH KEY Phrase.. 309

ENTER Statement .. 310
EVALUATE Statement.. 311
EXIT Statement.. 315
GOBACK Statement .. 317
GO TO Statement ... 318

DEPENDING ON Phrase.. 318
IF Statement ... 320
INITIALIZE Statement .. 322
INSPECT Statement... 326
MERGE Statement ... 333
MOVE Statement ... 338

CORRESPONDING Phrase.. 341
MULTIPLY Statement... 343
OPEN Statement... 345

INPUT Phrase ... 348
OUTPUT Phrase ... 348
I-O Phrase.. 348
EXTEND Phrase ... 349
NO REWIND Phrase .. 350

PERFORM Statement .. 351
PURGE Statement .. 363
READ Statement .. 364

KEY Phrase... 368
LOCK Phrase .. 368
INTO Phrase.. 369
INVALID KEY and NOT INVALID KEY Phrases ... 370

RECEIVE Statement .. 371
NO DATA and WITH DATA Phrases.. 371
MESSAGE Phrase... 372
SEGMENT Phrase .. 373

RELEASE Statement.. 374
FROM Phrase.. 374

RETURN Statement ... 375
REWRITE Statement ... 377

FROM Phrase.. 379
SEARCH Statement ... 380
SEND Statement... 385

ADVANCING Phrase ... 387
SET Statement.. 389

 Contents

 RM/COBOL Language Reference Manual xiii
 First Edition

SORT Statement... 393
START Statement (Relative and Indexed I-O)... 399

SIZE Phrase... 402
INVALID KEY and NOT INVALID KEY Phrases ... 402

STOP Statement ... 404
STRING Statement... 405

DELIMITED Phrase ... 406
POINTER Phrase .. 406
OVERFLOW and NOT OVERFLOW Phrases... 406

SUBTRACT Statement .. 408
CORRESPONDING Phrase.. 409

UNLOCK Statement .. 411
UNSTRING Statement... 412
USE Statement ... 415
WRITE Statement .. 416

FROM Phrase.. 418
ADVANCING Phrase ... 419
END-OF-PAGE and NOT END-OF-PAGE Phrases .. 420
INVALID KEY and NOT INVALID KEY Phrases ... 421

Appendix A: Reserved Words.. 423
Reserved Words ... 423
Context-Sensitive Words.. 429
Special Symbols ... 431
Nonreserved System-Names... 432

Appendix B: Compiler Messages... 435
Compiler Messages .. 435

Compiler Messages 1 — 100 .. 436
Compiler Messages 101 — 200 .. 449
Compiler Messages 201 — 300 .. 462
Compiler Messages 301 — 400 .. 475
Compiler Messages 401 — 500 .. 487
Compiler Messages 501 — 600 .. 500
Compiler Messages 601 — 700 .. 505
Compiler Messages 701 — 800 .. 513

Glossary of Terms.. 521
Terms and Definitions .. 521

Index.. 547

Contents

xiv RM/COBOL Language Reference Manual
First Edition

List of Figures
Figure 1: Source Format .. 20
Figure 2: Logical Page Layout for General LINAGE Clause ... 94
Figure 3: Logical Page Layout for Specific LINAGE Clause... 95
Figure 4: PERFORM . . . VARYING Statement... 355
Figure 5: PERFORM . . . VARYING Statement... 357
Figure 6: PERFORM . . . VARYING Statement... 358
Figure 7: PERFORM . . . VARYING Statement... 359
Figure 8: PERFORM Statement Examples ... 361
Figure 9: PERFORM Statement Examples ... 361
Figure 10: PERFORM Statement Examples ... 361
Figure 11: SEARCH Statement... 383

List of Tables
Table 1: RM/COBOL Character Set.. 6
Table 2: System-Names ... 12
Table 3: Nonnumeric Literals and Their Values ... 17
Table 4: Imperative Verbs ... 24
Table 5: Examples of Implied PICTURE Characters-Strings 113
Table 6: PICTURE Clause Editing.. 119
Table 7: Editing Symbol Results ... 120
Table 8: Results of + and – Editing ... 121
Table 9: PICTURE Symbol Precedence.. 123
Table 10: Valid Data Item Encodings ... 127
Table 11: Communication Status Key Conditions .. 150
Table 12: Error Key Values... 152
Table 13: Color Integers .. 158
Table 14: Interaction of LINE and COLUMN Clauses in a Screen Description Entry . 164
Table 15: Data Item Relationships .. 167
Table 16: Example 2 Definitions... 175
Table 17: Combination of Symbols in Arithmetic Expressions 195
Table 18: Arithmetic Operators... 196
Table 19: Relational Operators.. 198
Table 20: XML Entity References... 202
Table 21: Regular Expression Single-Character Escape Sequences.............................. 203
Table 22: Regular Expression Multi-Character Escape Sequences 204
Table 23: Unicode Valid Character Property Designators .. 205
Table 24: Logical Operators .. 211
Table 25: EXCEPTION STATUS Values... 246
Table 26: ACCEPT Statement Phrases and Output and Screen Fields.......................... 249
Table 27: Generic Key Names... 255
Table 28: DISPLAY Statement Phrases and Output and Screen Fields 294
Table 29: Default Initialization Values.. 324
Table 30: Types of MOVE Statements and Their Legality ... 340
Table 31: Availability of a File.. 346
Table 32: Permissible Statements.. 347
Table 33: Data Item Contents.. 387
Table 34: SET Statement Operand Validity .. 391
Table 35: Context-Sensitive Words... 429
Table 36: System-Names Used in the SPECIAL-NAMES Paragraph 432
Table 37: System-Names for Device Types .. 433
Table 38: System-Names for Record Delimiting Techniques 433
Table 39: System-Names for Labels ... 433
Table 40: System-Names for Colors ... 434

 Organization of Information
Preface

 RM/COBOL Language Reference Manual 1
 First Edition

Preface

RM/COBOL is a high implementation of the American National Standard COBOL
X3.23-1985, designed for optimum performance and wide portability across a broad
diversity of computers and operating systems. This manual provides comprehensive
information about the RM/COBOL language. It provides complete syntax for all
statements and detailed information on other aspects of the language.

Organization of Information
This manual is divided into the following parts:

Chapter 1—Language Structure presents detailed information on the structure of
the language. This includes the structure of program units, the valid character set,
words and types of statements.

Chapter 2—Identification Division details the structure and syntax of the
Identification Division.

Chapter 3—Environment Division details the structure and syntax of the
Environment Division.

Chapter 4—Data Division details the structure and syntax of the Data Division.

Chapter 5—Procedure Division provides general information on the Procedure
Division. This includes control transfers, program segmentation and a number of
other general rules. Procedure Division compiler directive statements are described
in this chapter.

Chapter 6—Procedure Division Statements details the structure and syntax of all
imperative and conditional statements.

Appendix A—Reserved Words lists words that are reserved, and those that are
removed from the reserved word list when the RM/COBOL 2 compatibility option is
selected in the Compile Command (as described Chapter 6, Compiling, of the
RM/COBOL User’s Guide).

Appendix B—Compiler Messages lists the informational, warning, and error
messages that may be generated during compilation.

The RM/COBOL Language Reference Manual also includes a glossary (on
page 521) and an index (on page 547).

Conventions and Symbols
Preface

2 RM/COBOL Language Reference Manual
 First Edition

Conventions and Symbols
The following conventions and symbols are used or followed throughout this guide.

1. The notation for hexadecimal values is the value followed by a lowercase h (for
example, 0Dh).

2. The separators comma and semicolon may be used anywhere the separator space
is used in the general formats. In the source program, these separators are
interchangeable.

3. The separator period, when used in the formats, has the status of a required
word.

4. The special character words +, –, >, <, =, >= and <=, when appearing in formats,
although not underlined, are required when such portions of the formats are
used.

5. The symbols found in the syntax charts are used as follows:

italicized words Indicate items for which you substitute a specific value.
UPPERCASE WORDS Indicate optional items which—if you use them—you

enter exactly as shown (although not necessarily in
uppercase).

UPPERCASE WORDS Indicate required items that you enter exactly as shown
(although not necessarily in uppercase).

... Indicate indefinite repetition of the last item.
WORDS STACKED
STACKED WORDS

Indicate alternatives.

[] Surround optional items.
{ } Surround a set of alternatives, one of which is required.

{| |} Surround a set of unique alternatives, one or more of
which is required, but each alternative may be specified
only once; when multiple alternatives are specified, they
may be specified in any order.

| Separate alternatives.

6. In the electronic PDF file, this symbol represents a “note” that allows you to
view last-minute comments about a specific topic on the page in which it occurs.
This same information is also contained in the README text file under the
section, Documentation Changes. In Adobe Reader, you can open comments
and review their contents, although you cannot edit the comments. Notes do not
print directly from the comment that they annotate. You may, however, copy
and paste the comment text into another application, such as Microsoft Word, if
you wish.

To review notes, do one of the following:

• To view a note, position the mouse over the note icon until the note
description pops up.

• To open a note, double-click the note icon.

• To close a note, click the Close box in the upper-left corner of the
note window.

 Related Publications
Preface

 RM/COBOL Language Reference Manual 3
 First Edition

Related Publications
For additional information, refer to the following publications:

RM/COBOL Syntax Summary

RM/COBOL User’s Guide

CodeBridge (Calling Non-COBOL Subprograms) User's Guide

CodeWatch User’s Guide

WOW Extensions (For RM/COBOL) User's Guide

XML Extensions for RM/COBOL

Related Publications
Preface

4 RM/COBOL Language Reference Manual
 First Edition

 Character Set
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 5
 First Edition

Chapter 1: Language Structure

This chapter presents detailed information on the structure of the language. This
includes the structure of program units, the valid character set, words and types of
statements.

The smallest element in the language is the character. A character is a digit, a letter
of the alphabet, punctuation or a special mark. A word is one possible result
obtained when one or more characters are joined in a sequence of contiguous
characters. Just as English words are determined by rules of spelling, so COBOL
words are formed by following a specific set of rules.

Using syntactic and grammatical rules, words and punctuation characters are
combined into statements, sentences, paragraphs and sections. When using the
English language, a failure to follow the rules of grammar and sentence structure
may cause misunderstanding: the same is true when writing a COBOL source
program. It must be emphasized that a thorough knowledge of the rules of the
language structure is a prerequisite to writing a workable program.

Character Set
The RM/COBOL character set is shown in Table 1. Inside nonnumeric literals and
in comment-entries and comment lines, other characters may be used but have no
grammatical meaning.

Characters are combined to form either a separator or a character-string.

Lowercase letters are allowed anywhere and are treated as uppercase letters except in
nonnumeric literals and when used as the currency symbol in PICTURE character-
strings. Within hexadecimal, nonnumeric literals, the lowercase letters a, b, c, d, e,
and f are equivalent to the uppercase letters A, B, C, D, E, and F.

Separators

A separator is a string of one or more of the characters marked with a 1 in Table 1.

Separators
Chapter 1: Language Structure

6 RM/COBOL Language Reference Manual
 First Edition

Table 1: RM/COBOL Character Set

Type Representation Name

Digits 0 through 9

Letters A through Z
a through z

Punctuation ’ Apostrophe 1

 : Colon 1

 , Comma 1

 = Equal sign 1

 (Left parenthesis 1

 . Period 1

 ” Quotation mark 1

) Right parenthesis 1

 ; Semicolon 1

 Space 1

Special & Ampersand

 * Asterisk

 $ Currency

 > Greater than

 < Less than

 – Minus (or hyphen)

 + Plus

 / Slash (or solidus)
1 The character can be used as a separator.

Separators are formed according to the following rules:

1. A space is a separator. Anywhere a space is used as a separator or as part of a
separator, more than one space may be used.

2. Commas, semicolons, and periods are separators when they are immediately
followed by a space. At any point in the syntax where a space is allowed, a
comma separator or semicolon separator is also allowed.

3. Parentheses are separators that must appear only in balanced pairs of left and
right parentheses. They delimit subscripts, reference modifiers, binary
allocation values, arithmetic expressions, constant expressions, and conditions.

4. Quotation marks are separators that delimit nonnumeric literals. They must
always appear in balanced pairs, except when the continuation of a nonnumeric
literal is being specified.

An opening quotation mark must be immediately preceded by a space or
left parenthesis.

A closing quotation mark must be immediately followed by a space, comma
separator, semicolon separator, period separator, or right parenthesis.

Either the quotation mark or the apostrophe may be used to delimit nonnumeric
literals. The apostrophe has the same characteristics as the quotation mark,
described above.

 Character-Strings
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 7
 First Edition

5. The punctuation character colon is a separator and is required when shown in the
general formats.

6. A pair of adjacent equal signs that are not split across a continuation forms a
pseudo-text delimiter. A pseudo-text delimiter is a separator.

Pseudo-text delimiters may be used only in balanced pairs to delimit pseudo-text
in the COPY statement (on page 35) and REPLACE statement (on page 39). An
opening pseudo-text delimiter must be immediately preceded by a space; a
closing pseudo-text delimiter must be immediately followed by one of the
separators space, comma, semicolon, or period.

7. A space may immediately precede all separators except:

a. If prohibited by specific statement syntax.

b. If the separator is a closing quotation mark. In this case, a preceding space
is considered part of the nonnumeric literal, not a separator.

c. The opening pseudo-text delimiter, where the preceding space is required.

8. A space may immediately follow any separator except an opening quotation
mark. In this case, the space is considered part of the nonnumeric literal, not a
separator.

9. Any punctuation character that appears as part of the specification of a
PICTURE character-string or numeric literal is not considered a punctuation
character; it is treated as a symbol used in the specification of that PICTURE
character-string or numeric literal. PICTURE character-strings are delimited
only by a space, comma, semicolon or period separator. For more information,
see the discussion of PICTURE character-strings (on page 20).

These rules do not apply to characters within nonnumeric literals or comments.

Character-Strings
A character-string is a sequence of one or more characters that forms a COBOL
word, literal, PICTURE character-string, or comment-entry. A character-string is
delimited by separators.

COBOL Words
A COBOL word is a character-string of not more than 240 characters which forms a
user-defined word, a system-name, a context-sensitive word, or a reserved word.
Each character of a COBOL word is selected from the set of letters, digits, and the
hyphen. The hyphen may not appear as the first or last character. Lowercase letters
are considered equivalent to the corresponding uppercase letters. Within a source
program, reserved words and user-defined words form disjoint sets; reserved words
and system-names form disjoint sets, system-names and user-defined words form
intersecting sets.

The same COBOL word may be used as a system-name and as a user-defined word
within a source program; the class of a specific occurrence of this COBOL word is
determined by the context of the clause or phrase in which it occurs.

Character-Strings
Chapter 1: Language Structure

8 RM/COBOL Language Reference Manual
 First Edition

User-Defined Words

User-defined words comprise alphabetic and numeric characters, and the hyphen.
A user-defined word can neither begin nor end with a hyphen. With the exception
of paragraph-names, section-names, level-numbers and segment-numbers, all
user-defined words must contain at least one alphabetic character.

Here are the types of user-defined words:

Alphabet-name Paragraph-name
Cd-name Program-name
Class-name Record-name
Condition-name Routine-name
Constant-name Screen-name
Data-name Section-name
File-name Segment-number
Index-name Split-key-name
Level-number Symbolic-character
Library-name Text-name
Mnemonic-name

Within a given source program, but excluding any contained program, the
user-defined words are grouped into the following disjoint sets:

Alphabet-names Mnemonic-names
Cd-names Paragraph-names
Class-names Program-names
Condition-names, data-names,
record-names, screen-names,
and split-key-names

Routine-names

Constant-names Section-names
File-names Symbolic-characters
Index-names Text-names
Library-names

All user-defined words, except segment-numbers and level-numbers, can belong to
only one of these disjoint sets. Further, all user-defined words within a given disjoint
set must be unique, except as specified in the rules for uniqueness of reference.
Segment-numbers and level-numbers need not be unique; a given specification of a
segment-number or level-number may be identical to any other segment-number or
level-number.

 Character-Strings
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 9
 First Edition

The types of user-defined words are defined as follows:

1. Alphabet-name. An alphabet-name identifies a character code set. It must
contain at least one alphabetic character and must be unique.

2. Cd-name. A cd-name identifies a Message Control System (MCS) interface
area, which is described in a communication description entry within the
Communication Section of the Data Division. Cd-names must be unique and
contain at least one alphabetic character.

Note An MCS is application-specific and not supplied with RM/COBOL. See
the RM/COBOL User’s Guide for further information.

3. Class-name. A class-name identifies a user-specified list of characters. A
class-name must be unique and it must contain at least one alphabetic character.
A class-name is defined in the SPECIAL-NAMES paragraph of the
Environment Division. It may then be used in a class condition test in the
Procedure Division to determine if the current contents of a data item consist
entirely of characters in the list identified by the class-name.

4. Condition-name. A condition-name may be defined in the SPECIAL-NAMES
paragraph within the Environment Division or in a level-number 88 description
within the Data Division. Condition-names must contain at least one alphabetic
character.

A SPECIAL-NAMES condition-name is assigned to ON STATUS or OFF
STATUS of one of eight system software switches.

A level-number 88 condition-name is assigned to a specific value, set of values,
or range of values within a complete set of values that a data item may assume.
The data item itself is called a conditional variable.

A condition-name may be used in conditions as an abbreviation for the relation
condition which tests whether the associated switch or conditional variable is
equal to one of the set of values to which that condition-name is assigned. A
condition-name may also be used in a SET statement, indicating that the
associated value is to be moved to the conditional variable.

5. Constant-name. A constant-name is defined in a level-number 78 data
description entry and names a literal value. A constant-name must be defined
before any reference to the constant-name. Constant-names must contain at least
one alphabetic character and must be unique. A constant-name is always global
and thus may be referenced in any program contained in the program that
defines the constant-name.

An integer-valued constant-name may be defined using a constant-expression.
The constant-expression is evaluated at the time of the definition during
compilation and any reference to the constant-name is equivalent to a reference
to the resultant integer value. The constant-expression may refer to previously
defined integer-valued constant-names.

References to constant-names may be used in any context where the assigned
literal value could be used unless otherwise prohibited. The effect of a constant-
name reference is the same as if the literal value assigned to the constant-name
were written instead. Constant-names that have an integer value may be used
wherever integer is specified in the syntax formats, for example, integers in
BLOCK or RECORD clauses of a file control entry, integer occurrence counts in
an OCCURS clause, and in constant-expressions used to define other integer-
valued constant-names. An integer-valued constant-name may also be used as
the integer repeat count specification in PICTURE character-strings.

Character-Strings
Chapter 1: Language Structure

10 RM/COBOL Language Reference Manual
 First Edition

6. Data-name. A group of contiguous characters or a numeric value treated as a
unit of data is called a data item, and it is named by a data-name. A data-name
must contain at least one alphabetic character. References to data items must be
made unique by qualification, the appending of subscripts, or both.

Complete unique references to data items are called identifiers. When used in
the general formats, ‘data-name’ represents a word that must not be reference-
modified, subscripted, or qualified unless specifically permitted by the rules of
the format.

7. File-name. File-names are the internal names for files accessed by the source
program. They are not necessarily the same as the external names by which the
file is known to the runtime operating system. File-names must contain at least
one alphabetic character and must be unique.

8. Index-name. An index-name names an index associated with a specific table.
It must contain at least one alphabetic character and must be unique.

9. Level-number. A level-number specifies the position of a data item within
a data hierarchy. A level-number is a one- or two-digit number in the range
01 – 49, 66, 77, 78, or 88.

Level-numbers 66, 77, and 88 identify special properties of a data description
entry.

10. Library-name. A library-name is a user-defined word that identifies a library to
be used by the compiler for a given COPY statement. Library-names must be
unique.

11. Mnemonic-name. A mnemonic-name is a user-defined word that is associated
in the SPECIAL-NAMES paragraph with a switch-name, feature-name or low-
volume-I-O-name. Mnemonic-names must be unique and must contain at least
one alphabetic character.

12. Paragraph-name. A paragraph-name identifies the beginning of a set of
COBOL procedural sentences. A reference to a nonunique paragraph-name
must be made unique by qualification with a section-name.

Paragraph-names are equivalent only if they are composed of the same sequence
of the same number of digits or characters.

13. Program-name. The program-name identifies the source and object programs.
The name must contain at least one alphabetic character.

14. Record-name. Record-names name data records within a file. They must
contain at least one alphabetic character and, if not unique, must be made unique
by qualification with the file-name.

15. Routine-name. A routine-name is a user-defined word that identifies a
procedure written in a language other than COBOL.

16. Screen-name. A screen-name identifies a set of one or more entries; these
entries define fields within a region of a terminal screen. Screen-names must
contain at least one alphabetic character and, if not unique, must be made unique
by qualification.

17. Section-name. A section-name identifies the beginning of a set of paragraphs.
Section-names must be unique and must contain at least one alphabetic
character.

 Character-Strings
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 11
 First Edition

18. Segment-number. A segment-number specifies the segmentation classification
of a section. It is a one- to three-digit number in the range 00 – 127.

19. Split-key-name. A split-key-name is a user-defined word that names a
concatenation of one or more data items within a record associated with an
indexed file. The concatenation of the data items forms a single record key for
that file. References to split-key-names must be made unique by qualification.
The only qualifier allowed for a split-key-name is the file-name of the file with
which the split-key-name is associated.

20. Symbolic-character. A symbolic-character is a user-defined word that
identifies a user-defined figurative constant. Symbolic-characters must be
unique and must contain at least one alphabetic character.

21. Text-name. A text-name is the name of a library text file. It must correspond
exactly to a valid file access name that is known to the compile-time operating
system.

System-Names

System-names identify certain hardware or software system components.
System-names consist of code-names, device-names, feature-names, label-names,
low-volume-I-O-names, record delimiting techniques, and switch-names. Most
system-names are not reserved words, but certain reserved words may be used as
system-names. See Table 2 for a complete list of system-names. See Appendix A:
Reserved Words (on page 423) for a list of system-names that are not reserved.

Character-Strings
Chapter 1: Language Structure

12 RM/COBOL Language Reference Manual
 First Edition

Table 2: System-Names

System-Name Description

CODE-NAMES
EBCDIC

DEVICE-NAMES
CARD-PUNCH
CARD-READER
CASSETTE
CONSOLE
DISC
DISK
DISPLAY
INPUT
INPUT-OUTPUT
KEYBOARD
LISTING
MAGNETIC-TAPE
MERGE
OUTPUT
PRINT
PRINTER
PRINTER-1
RANDOM
SORT
SORT-MERGE
SORT-WORK
TAPE

Output-only device or file
Input-only device or file
Input-output device or file
Input-output device or file
Mass-storage device
Mass-storage device
Output-only device or file
Input-only device or file
Input-output device or file
Input-only device or file
Print device or file
Input-output device or file
Sort-merge storage device
Output-only device or file
Print device or file
Print device or file
Print device or file
Mass-storage device
Sort-merge storage device
Sort-merge storage device
Sort-merge storage device
Input-output device or file

FEATURE-NAMES
C01, C02, C03, . . . , C10, C11, C12

LABEL-NAMES
FILE-ID
LABEL
user-defined-word

Declare file access name
Particularize label record contents
Commentary

LOW-VOLUME-I-O-NAMES
CONSOLE
SYSIN
SYSOUT

Operator communication (ACCEPT,
DISPLAY)
Standard input (ACCEPT)
Standard output (DISPLAY)

RECORD DELIMITING TECHNIQUES
BINARY-SEQUENTIAL
LINE-SEQUENTIAL

SWITCH-NAMES
SWITCH-1 or UPSI-0
SWITCH-2 or UPSI-1
SWITCH-3 or UPSI-2
SWITCH-4 or UPSI-3
SWITCH-5 or UPSI-4
SWITCH-6 or UPSI-5
SWITCH-7 or UPSI-6
SWITCH-8 or UPSI-7

 Character-Strings
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 13
 First Edition

Reserved Words
Reserved words are those words reserved for use by the RM/COBOL compiler.
A reserved word must not appear as a user-defined word within a program.
Appendix A: Reserved Words (on page 423) contains a complete list of reserved
words.

Five kinds of reserved words are recognized by the compiler:

1. Keywords. Keywords are required elements of the formats. Their presence
indicates specific compiler action.

2. Optional Words. Optional words are optional elements of the formats. Their
presence has no effect on the object program.

3. Connectives. OF and IN are used interchangeably to connect qualifiers to a
user-defined word. AND and OR are logical connectives, used in the formation
of conditions.

4. Special Registers. Special registers are compiler-generated storage areas. They
are used to store information that is produced in conjunction with the use of
specific features. The format and description of the eight special registers are
described below.

Note The special registers may be referenced only in Procedure Division
statements with the exception of the PROGRAM-ID special register.

-1identifier





OF
INADDRESS

The ADDRESS special register returns the address of identifier-1 as a pointer
data item. It may only be used in certain contexts of the Procedure Division
where a pointer is allowed, which are a relation condition with another pointer
data item, a CALL statement USING phrase, or a Format 5 or 6 SET statement.
The ADDRESS special register is not allowed in the GIVING phrase of a CALL
statement even though a pointer data item is allowed there. When specified in
the USING phrase of a CALL statement, the ADDRESS special register is
always passed by content. When identifier-1 is a Linkage Section data item for
which the base address has not been set by being associated with an actual
argument in a calling program or by execution of a SET statement, the
ADDRESS special register will return a null pointer value. If identifier-1 were
referenced in such a case without the ADDRESS special register, the run unit
would terminate with a data reference error. Thus, the ADDRESS special
register may be used in an IF statement to prevent a data reference termination
of the run unit by avoiding the reference when the ADDRESS OF identifier-1 is
equal to NULL.

1data-name-





OF
INCOUNT

The COUNT special register exists for each COBOL table data item, that is,
data-name-1 must refer to a data item described with the OCCURS clause. For
a fixed occurrence table, COUNT returns the fixed number of occurrences
specified in the OCCURS clause. For a variable occurrence table, COUNT
returns the value of the data-name specified by the DEPENDING ON phrase of
the OCCURS clause. It may be used wherever an integer literal may be used in
the Procedure Division.

Character-Strings
Chapter 1: Language Structure

14 RM/COBOL Language Reference Manual
 First Edition

1data-name-





OF
INMAX-COUNT

The COUNT-MAX special register exists for each COBOL table data item,
that is, data-name-1 must refer to a data item described with the OCCURS
clause. COUNT-MAX always returns the maximum number of occurrences
specified in the OCCURS clause. For a fixed occurrence table, COUNT,
COUNT-MAX, and COUNT-MIN will return the same value. It may be used
wherever an integer literal may be used in the Procedure Division.

1data-name-





OF
INMIN-COUNT

The COUNT-MIN special register exists for each COBOL table data item, that
is, data-name-1 must refer to a data item described with the OCCURS clause.
COUNT-MIN always returns the minimum number of occurrences specified in
the OCCURS clause. For a fixed occurrence table, COUNT, COUNT-MAX,
and COUNT-MIN will return the same value. It may be used wherever an
integer literal may be used in the Procedure Division.















literal-1
-1identifier

OF
INLENGTH

The LENGTH special register exists for any data item or literal. It returns the
length of the data item referenced by identifier-1 or value referenced by literal-1.
It may be used wherever an integer literal may be used in the Procedure
Division. For a variable length group, the LENGTH special register returns the
current length of the group. For a reference modified identifier, the LENGTH
special register returns the length of the result of the reference modification, that
is, the result of the evaluation of the length modifier if it was specified or the
remaining length of the data item after the offset has been applied if the length
modifier is not specified. For a literal, the LENGTH special register returns the
number of characters in the literal. If the literal is a numeric literal, the number
of characters is the same as the number of digits. That is, for a numeric literal,
the sign and decimal point characters, if specified, are not counted in the length
of the literal.
















 1file-name-OF

INCOUNTER-LINAGE

The LINAGE-COUNTER special register is a line counter, generated by the
presence of a LINAGE clause in a file description entry.

ID-PROGRAM

The PROGRAM-ID special register exists for any program. It returns the
program-name of the program in which it is used. It may be used wherever a
nonnumeric literal may be used in the program, except for the END PROGRAM
header. The PROGRAM-ID special register is an exception to the rule that
special registers may be referenced only in Procedure Division statements. The
PROGRAM-ID special register may be specified in VALUE clauses of data
description entries for nonnumeric data items or constant-name definitions. If
the program-name is specified as a nonnumeric literal in the PROGRAM-ID
paragraph, the value of the PROGRAM-ID special register will match that

 Character-Strings
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 15
 First Edition

nonnumeric literal, including its case; otherwise, the value of the PROGRAM-
ID special register will be in uppercase.

CODE-RETURN

The RETURN-CODE special register has the implicit description PICTURE
S9999 COMP-4, and can be set by the user to pass a return code to the calling
program or the operating system before executing a STOP RUN, EXIT
PROGRAM or GOBACK statement. When control is returned to a calling
program, the return code passed by the called program is available to the calling
program in the RETURN-CODE special register; the return code value can be
tested by specifying RETURN-CODE in a relation condition. When control is
returned to the operating system, the return code may be available to the
command language in a system dependent manner; see the RM/COBOL User’s
Guide for specific information. The return code is initialized to zero at the start
of a run unit. This is the normal return code for successful completion; other
values returned are conventionally in multiples of four. Some return code
values, generally the higher values, are reserved for runtime-detected errors; see
the appropriate chapters on installation and system considerations in the
RM/COBOL User’s Guide.

The return code is implicitly set to the value specified in statements having the
following form:









integer-1
-1identifier

RUNSTOP

This statement is equivalent to the statement sequence:

 RUNSTOP;CODE-RETURNTOMOVE .








integer-1
-1identifier

COMPILED-WHEN

The WHEN-COMPILED special register exists for any program. It returns the date
and time of compilation for the program in which it is used. It may be used wherever
a nonnumeric literal may be used in the program, except in the PROGRAM-ID
paragraph and the END PROGRAM header. The WHEN-COMPILED special
register is an exception to the rule that special registers may be referenced only
in Procedure Division statements. The WHEN-COMPILED special register
may be specified in VALUE clauses of data description entries for nonnumeric
data items or constant-name definitions. The default format of the WHEN-
COMPILED value is a 20-character string "hh.mm.ssMMM DD, YYYY",
which matches the IBM OSVS COBOL implementation of this special register.
The compiler can be configured to use the IBM VSC2 COBOL implementation
of this special register, which is a 16-character string "MM/DD/YYhh.mm.ss".
The compiler can also be configured to use a user-specified format that produces
a string of up to 80 characters. See the WHEN-COMPILED-FORMAT
keyword of the COMPILER-OPTIONS configuration record in Chapter 10:
Configuration of the RM/COBOL User’s Guide chapter for details on formatting
the value of the WHEN-COMPILED special register.

Character-Strings
Chapter 1: Language Structure

16 RM/COBOL Language Reference Manual
 First Edition

5. Special Characters. The special character reserved words are the arithmetic
operators (including the unary operators + and –), relational operators, and
concatenation operator:

Addition +

Concatenation &

Division /

Equal to =

Exponentiation **

Greater than >

Greater than/equal to >=

Less than <

Less than/equal to <=

Multiplication *

Subtraction �

Context-Sensitive Words

The words listed in Table 35 (on page 429) are context-sensitive words and are
reserved in the specified language construct or context. If a context-sensitive word is
used where the context-sensitive word is permitted in the general format, the word is
treated as a keyword; otherwise, it is treated as a user-defined word.

Literals
A literal is a character-string whose representation is identical to its value. Literals
are either numeric or nonnumeric.

Numeric Literals

A numeric literal represents a numeric value, not a character-string. Numeric literals
are built according to the following rules:

1. The literal must contain at least 1 but not more than 30 digits.

2. The literal may contain a single + or – as the first character.

3. The literal may contain a single decimal point if the decimal point is not the last
character. The decimal point must be represented with a comma if the
DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES
paragraph.

The word integer, when used in the syntax charts in this manual, designates an
unsigned, numeric literal without a decimal point. Its value cannot be zero unless
specifically allowed within a particular context.

Here are some examples:

1234
+1234
�1.234
.1234
+.1234

 Character-Strings
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 17
 First Edition

Nonnumeric Literals

A nonnumeric literal is a character-string enclosed in quotation marks. The
character-string may contain any character from the character set of the computer.
Quotation marks within the string are represented by two contiguous quotation
marks. Either the quotation mark or the apostrophe may be used as the delimiter, but
within one literal, the first quotation mark establishes the delimiter character for that
literal. The value of the literal is the string itself excluding the delimiting character
and one of each contiguous pair of embedded quotation marks. The literal may
contain from 1 to 65535 characters.

Hexadecimal literals of the form:

H"[h]...", H'[h]...', X"[h]..."

or

X'[h]...'

are also permitted as another form of nonnumeric literal, where h is any valid
hexadecimal digit. Two hexadecimal digits occupy one character position. If an odd
number of hexadecimal digits is specified, the compiler assumes an additional
hexadecimal zero digit on the right to complete the rightmost character position.

Table 3 lists some nonnumeric literals and their associated values.

All nonnumeric literals are of category alphanumeric.

Table 3: Nonnumeric Literals and Their Values

Literal Value

"AGE" AGE

"""TWENTY""" "TWENTY"

'TIME' TIME

H"4C" 4Ch

X'63B' 63B0h

""""" Illegal (odd number of quotation marks)

Figurative Constants

Figurative constants identify commonly used constant values. These constant values
are generated by the compiler according to the context in which the references occur.
Note that figurative constants represent values, not literal occurrences. Thus,
QUOTE cannot delimit a nonnumeric literal, SPACE is not a separator, and so forth.
Singular and plural forms of figurative constants may be used interchangeably.

The following constant represents the value 0 or one or more zero characters,
depending on context.

[ALL] ZERO, [ALL] ZEROS, [ALL] ZEROES

The following constant represents one or more space characters.

[ALL] SPACE, [ALL] SPACES

Character-Strings
Chapter 1: Language Structure

18 RM/COBOL Language Reference Manual
 First Edition

Except in the SPECIAL-NAMES paragraph, the following constant represents one or
more occurrences of the character that has the highest ordinal position in the program
collating sequence. The native HIGH-VALUE is FFh.

[ALL] HIGH-VALUE, [ALL] HIGH-VALUES

Except in the SPECIAL-NAMES paragraph, the following constant represents one or
more occurrences of the character that has the lowest ordinal position in the program
collating sequence. The native LOW-VALUE is 00h.

[ALL] LOW-VALUE, [ALL] LOW-VALUES

The following constant represents one or more quotation marks.

[ALL] QUOTE, [ALL] QUOTES

The following constant represents one or more null or unset pointer values. The
usage of this constant is POINTER. Thus, this constant may only be used in places
where a pointer literal is allowed, which are in the VALUE clause in the data
description entry of a usage POINTER data item, in relation conditions involving
another pointer data item, in the USING phrase of the CALL statement, and in
Format 5 of the SET statement.

[ALL] NULL, [ALL] NULLS

The following constant represents all or part of the string generated by successive
concatenations of the characters comprising literal-1. literal-1 must be a nonnumeric
literal and may be a concatenation expression. literal-1 must not be a figurative
constant.

literal-1ALL

The following constant represents one or more of the character specified as the
value of symbolic-character-1 in the SYMBOLIC CHARACTERS clause of the
SPECIAL-NAMES paragraph.

[] haracter-1symbolic-cALL

When a figurative constant represents a string of one or more characters, the length
of the string is determined by the compiler from context according to the following
rules:

1. When a figurative constant is associated with another data item, as when the
figurative constant is moved to or compared with another data item, the string of
characters specified by the figurative constant is repeated character-by-character
on the right until the size of the resultant string is equal to the size in characters
of the associated data item. This is done prior to and independent of the
application of any JUSTIFIED clause that may be associated with the data item.
When the figurative constant is specified in a concatenation expression, its
length is determined as if the figurative constant were not associated with any
other data item per rules 2 and 3 below, regardless of the context in which the
concatenation expression is specified.

2. When a figurative constant, other than ALL literal, is not associated with
another data item, as when the figurative constant appears in a DISPLAY,

 Character-Strings
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 19
 First Edition

STOP, STRING, or UNSTRING statement, the length of the string is one
character.

3. When the figurative constant ALL literal is not associated with another data
item, the length of the string is the length of the literal.

A figurative constant may be used wherever literal appears in syntax, with the
following exceptions:

• If the literal is restricted to a numeric literal, the only figurative constant
permitted is ZERO (ZEROS, ZEROES).

• When a figurative constant other than ALL literal is used, the word ALL is
redundant and is used for readability only.

• If the literal is restricted to a pointer literal, the only figurative constant
permitted is NULL (NULLS). NULL (NULLS) may only be used in VALUE
clauses associated with a pointer data item, in relation conditions involving
another pointer item, in the USING phrase of the CALL statement, in the
REPLACING phrase of the INITIALIZE statement, and in Format 5 of the SET
statement.

Each reserved word which refers to a figurative constant value is a distinct
character-string with the exception of constructs using the word ALL, such as ALL
literal, ALL SPACES, and so forth, which are composed of two distinct character-
strings.

Concatenation Expressions

A concatenation expression consists of two nonnumeric literals separated by the
concatenation operator &:

literal-2literal-1 &

Both literal-1 and literal-2 must be nonnumeric literals, but either may be specified
with a hexadecimal literal, a figurative constant (including a symbolic-character), or
a constant-name that refers to a nonnumeric value. When a figurative constant is
specified in a concatenation expression, its length is determined by the rules for a
figurative constant that is not associated with another data item regardless of the
context in which the concatenation expression is used.

The value of a concatenation expression is the concatenation of the value of literal-1
and literal-2.

A concatenation expression may be used anywhere a nonnumeric literal may be used
unless otherwise prohibited by specific rules of a given format. literal-1 of a
concatenation expression may be a concatenation expression, but, for formal reasons
having to do with termination of the syntax production, literal-2 cannot be a
concatenation expression. However, any number of nonnumeric literals may be
concatenated by repeated application of literal-1 being a concatenation expression.

Program Structure
Chapter 1: Language Structure

20 RM/COBOL Language Reference Manual
 First Edition

PICTURE Character-Strings
A PICTURE character-string consists of certain combinations of characters used
as symbols. Any punctuation character appearing as part of a PICTURE
character-string is considered a symbol, not a punctuation character. If the
punctuation character comma, period, or semicolon is followed by a space, it is
a separator that delimits the PICTURE character-string and is not part of the
PICTURE character-string.

Comment-Entry
A comment-entry is an entry in the Identification Division that may contain any
characters from the character set of the computer. It terminates at the next nonblank
area A.

Program Structure

Source Format
Source programs are accepted as a sequence of lines (or records) of 80 characters or
less. Each line is divided into five areas, as illustrated in Figure 1.

Figure 1: Source Format

Area A: Columns 8 - 11

Indicator Area: Column 7

Sequence Number: Columns 1 - 6

Area B: Columns 12 - 72

Identification Area: Columns 73 - 80

The sequence number and identification areas are used for clerical and
documentation purposes. They are ignored by the compiler.

The indicator area is used for denoting line continuation, comments and debugging.

Areas A and B contain the actual program according to the following rules:

1. Division headers, section headers, paragraph headers, section-names and
paragraph-names must begin in area A.

2. The Data Division level indicators FD, SD, and CD, and level-numbers 01 and
77 must begin in area A. Other level-numbers may begin in area A or area B,
although B is most often used.

 Program Structure
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 21
 First Edition

3. The keywords, DECLARATIVES and END DECLARATIVES, precede and
follow, respectively, the declaratives portion of the Procedure Division. Each
must appear on a line by itself and each must begin in area A, followed by a
period and a space.

4. Any other language element must begin in area B unless it immediately follows,
on the same line, an element in area A.

Continuation of Lines
Any sentence, entry, phrase, or clause may be continued by starting subsequent lines
in area B. These subsequent lines are called continuation lines.

The line being continued is called the continued line. Any word, literal, or
PICTURE character-string may be broken in such a way that part of it appears on a
continuation line, according to the following rules:

1. A hyphen in the indicator area of a line indicates that the first nonblank character
in area B of the current line is the successor of the last nonblank character of the
preceding line, excluding intervening comment lines or blank lines, without an
intervening space.

However, if the continued line contains a nonnumeric literal without a closing
quotation mark, the first nonblank character in area B on the continuation line
must be a quotation mark, and the continuation line starts with the character
immediately after that quotation mark. All spaces at the end of the continued
line are considered part of the literal. Area A of a continuation line must be
blank. The quotation mark used to continue a nonnumeric literal must be the
same quotation mark (that is, it must be a quotation mark or an apostrophe) that
began the nonnumeric literal.

Continuing a nonnumeric literal according to the previous paragraph is a
deprecated feature maintained only for compatibility with older programs.
Concatenation expressions are the recommended method of continuing
nonnumeric literals in all new RM/COBOL programs. See the description of
concatenation expressions (on page 19).

2. If there is no hyphen in the indicator area of a line, it is assumed that the last
character in the preceding line is followed by a space.

Blank Lines
A blank line is one that is blank in the indicator, A and B areas. A blank line can
appear anywhere in the source program.

Program Structure
Chapter 1: Language Structure

22 RM/COBOL Language Reference Manual
 First Edition

Comment Lines
A comment line is any line with an asterisk or a slash in the indicator area of the line.
A comment line may appear as any line after the Identification Division header of a
source program and as any line in library text referred to by a COPY statement. Any
combination of characters from the character set of the computer may be included in
area A and area B of a comment line. Comment lines are reproduced on the listing
but serve as documentation only.

When a comment line is indicated with an asterisk, the comment is printed on the
next available line in the listing. When a comment line is indicated with a slash,
page ejection occurs before the comment line is printed.

The character-strings and separators comprising pseudo-text may start in either area
A or area B. If there is a hyphen in the indicator area of a line that follows the
opening pseudo-text delimiter, area A of the line must be blank and the normal rules
for continuation of lines apply to the formation of text words.

In-Line Comments
An in-line comment begins with the two contiguous characters *> preceded by a
separator space, and ends with the last character position of the line. An in-line
comment may be placed anywhere a separator space may be placed in a COBOL
source program or in library text for a COBOL source program. For the purpose of
evaluating library text, pseudo-text, and source text, an in-line comment has the
value of a single space character. An in-line comment that is not preceded by any
COBOL words or character-strings on the same line is equivalent to a comment line,
except that it may not be placed between a continued line and a continuation line if a
word, literal, or PICTURE character-string is broken across the continuation.

Note An in-line comment is not recognized as such, if it occurs in the sequence
area (columns 1 to 6) or the identification area (columns 73 through 80) of a source
line. An in-line comment that begins in the indicator area is indistinguishable from a
comment line.

Debugging Lines
A debugging line is any line with a D in the indicator area of the line. Any
debugging line that consists solely of spaces from margin A to margin R is
considered the same as a blank line.

The content of a debugging line must be such that a syntactically correct program is
formed with or without the debugging lines being considered as comment lines.

A debugging line will be considered to have all the characteristics of a comment line
if the Debug Compile Command Option is not specified and the WITH
DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph.

Successive debugging lines are allowed.

A debugging line is only permitted in the separately compiled program after the
OBJECT-COMPUTER paragraph, or, if the OBJECT-COMPUTER paragraph is
omitted, after where the OBJECT-COMPUTER paragraph would be permitted if it
were present.

 Program Structure
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 23
 First Edition

Statements
Source statements always begin with a keyword called a verb. There are four kinds
of statements:

1. Directive

2. Conditional

3. Imperative

4. Delimited Scope

Directive Statements

A directive statement specifies action to be taken by the compiler during
compilation. The directive statements are the COPY, REPLACE, and USE
statements.

Conditional Statements

A conditional specifies that the truth value of a condition is to be determined and that
the subsequent action of the object program is dependent on this truth value.

A conditional statement is one of the following:

• An EVALUATE, IF, SEARCH, or RETURN statement.

• A READ statement that specifies the AT END, NOT AT END, INVALID KEY,
or NOT INVALID KEY phrase.

• A WRITE statement that specifies the INVALID KEY, NOT INVALID KEY,
END-OF-PAGE, or NOT END-OF-PAGE phrase.

• A DELETE, REWRITE, or START statement that specifies the INVALID KEY
or NOT INVALID KEY phrase.

• An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) that specifies the ON SIZE ERROR or NOT ON SIZE ERROR
phrase.

• A RECEIVE statement that specifies the NO DATA or WITH DATA phrase.

• A STRING or UNSTRING statement that specifies the ON OVERFLOW or
NOT ON OVERFLOW phrase.

• A CALL statement that specifies the ON OVERFLOW, ON EXCEPTION, or
NOT ON EXCEPTION phrase.

• An ACCEPT statement that specifies the ON EXCEPTION, ON ESCAPE, NOT
ON EXCEPTION, or NOT ON ESCAPE phrase.

Program Structure
Chapter 1: Language Structure

24 RM/COBOL Language Reference Manual
 First Edition

Conditional Phrases

A conditional phrase specifies the action to be taken upon determination of the truth
value of a condition resulting from execution of a conditional statement.

A conditional phrase is one of the following:

• The AT END or NOT AT END phrase in a READ statement.

• The INVALID KEY or NOT INVALID KEY phrase in a DELETE, READ,
REWRITE, START, or WRITE statement.

• The END-OF-PAGE or NOT END-OF-PAGE phrase in a WRITE statement.

• The ON SIZE ERROR or NOT ON SIZE ERROR phrase in an ADD,
COMPUTE, DIVIDE, MULTIPLY, or SUBTRACT statement.

• The NO DATA or WITH DATA phrase in a RECEIVE statement.

• The ON OVERFLOW or NOT ON OVERFLOW phrase in a STRING or
UNSTRING statement.

• The ON OVERFLOW, ON EXCEPTION, or NOT ON EXCEPTION phrase in
a CALL statement.

• The ON EXCEPTION, ON ESCAPE, NOT ON EXCEPTION, or NOT ON
ESCAPE phrase in an ACCEPT statement.

Imperative Statements

An imperative statement begins with an imperative verb and specifies an
unconditional action to be taken by the object program, or is a conditional statement
that is delimited by its explicit scope terminator (delimited scope statement). An
imperative statement may consist of a sequence of imperative statements, each
possibly separated from the next by a separator or the word THEN.

The imperative verbs are listed in Table 4.

Wherever imperative-statement appears in the general format of statements it refers
to that sequence of consecutive imperative statements that must be ended by a period
or by any phrase associated with a statement containing imperative-statement.

Table 4: Imperative Verbs

ACCEPT 1 EXIT REWRITE 1
ADD 1 GO TO SEND
ALTER INITIALIZE SET
CALL 1 INSPECT SORT
CANCEL MERGE START 1
CLOSE MOVE STOP
COMPUTE 1 MULTIPLY 1 STRING 1
CONTINUE OPEN SUBTRACT 1
DELETE 1 PERFORM UNSTRING 1
DISABLE PURGE UNLOCK
DISPLAY READ 1 WRITE 1
DIVIDE 1 RECEIVE 1
ENABLE RELEASE
1 Provided no conditional phrases are present.

 Program Structure
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 25
 First Edition

Delimited Scope Statements

A delimited scope statement is any statement that includes its explicit scope
terminator. The explicit scope terminators are the following:

END-ACCEPT END-MULTIPLY END-START
END-ADD END-PERFORM END-STRING
END-CALL END-READ END-SUBTRACT
END-DELETE END-RECEIVE END-UNSTRING
END-EVALUATE END-REWRITE END-WRITE
END-IF END-SEARCH

Scope of Statements

Scope terminators delimit the scope of certain Procedure Division statements.
Statements that include their explicit scope terminators are called delimited scope
statements. The scope of statements that are contained within statements (nested)
may also be implicitly terminated.

When statements are nested within other statements, a separator period that ends the
sentence implicitly terminates all nested statements.

When any statement is contained within another statement, the next phrase of the
containing statement following the contained statement terminates the scope of any
unterminated contained statement.

When statements are nested within other statements that allow optional conditional
phrases, any optional conditional phrase encountered is considered to be the next
phrase of the nearest preceding unterminated statement with which that phrase is
permitted to be associated but with which no such phrase has already been
associated. An unterminated statement is one that has not been previously
terminated either explicitly or implicitly.

When a delimited scope statement is nested within another delimited scope statement
with the same verb, each explicit scope terminator terminates the statement started by
the most recently preceding, and as yet unterminated, occurrence of that verb.

Sentences
A sentence is a sequence of one or more statements terminated by the period
separator. There are three kinds of sentences:

1. A directive sentence may contain only a single directive statement.

2. A conditional sentence is a conditional statement, optionally preceded
by an imperative statement, terminated by the separator period.

3. An imperative sentence is an imperative statement terminated by the
separator period.

Program Structure
Chapter 1: Language Structure

26 RM/COBOL Language Reference Manual
 First Edition

Clauses and Entries
An entry is an item of descriptive or declaratory nature made up of consecutive
clauses. Each clause specifies an attribute of the entry. Clauses are separated by
space, comma, or semicolon separators. The entry is terminated by a period
separator.

Paragraphs
A paragraph is a sequence of zero, one, or more sentences or entries. In the
Identification and Environment Divisions, each paragraph begins with a reserved
word called a paragraph header. In the Procedure Division, each paragraph begins
with a user-defined paragraph-name.

Sections
A section is a sequence of zero, one, or more paragraphs in the Environment and
Procedure Divisions and a sequence of zero, one, or more entries in the Data
Division. In the Environment and Data Divisions, each section begins with a section
header that is made up of reserved words. In the Procedure Division, each section
begins with a user-defined section-name.

Divisions
With the exception of COPY and REPLACE statements and the end program header,
the statements, entries, paragraphs, and sections of a source program are grouped into
four divisions which are sequenced in the following order:

1. Identification Division

2. Environment Division

3. Data Division

4. Procedure Division

The end of a source program is indicated either by the end program header, if
specified, or by the absence of additional source program lines.

 Program Structure
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 27
 First Edition

Source Program General Format
The following gives the general format and order of presentation of the entries and
statements that constitute a source program. The generic terms identification-
division, environment-division, data-division, procedure-division, 5-source-program,
and end-program-header represent an Identification Division, an Environment
Division, a Data Division, a Procedure Division, a nested source program, and an end
program header.

[]
[]
[]
[]
[]m-headerend-progra

mrce-progranested-sou

divisionprocedure-

iondata-divis

t-divisionenvironmen

iontion-divisidentifica

L

end-program-header must be present if either of the following circumstances exists:

• The source program contains one or more other source programs.

• The source program is contained within another source program.

General Rules

• The beginning of a division in a program is indicated by the appropriate division
header. The end of a division is indicated by one of the following:

− The division header of a succeeding division in that program.

− An Identification Division header that indicates the start of another
source program.

− The end program header.

− That physical position after which no more source program lines occur.

• A source program directly or indirectly contained within another program is
considered in these specifications as a separate program that may additionally
reference certain resources defined in the containing program.

• The object code, resulting from compiling a source program contained within
another program, is considered in these specifications to be inseparable from
the object code resulting from compiling the containing program.

• All separately compiled source programs in a sequence of programs must
be terminated by an end program header except for the last program in
the sequence.

Inter-Program Communication
Chapter 1: Language Structure

28 RM/COBOL Language Reference Manual
 First Edition

Inter-Program Communication
The Inter-Program Communication module provides a facility by which a program
can communicate with one or more programs. This communication is provided by
the following:

• The ability to transfer control from one program to another within a run unit.

• The ability to pass parameters between programs to make certain data values
available to a called program.

The Inter-Program Communication module also permits communication between
two programs by the sharing of data and the sharing of files.

Nested Source Programs
A source program is a syntactically correct set of COBOL statements. A source
program may contain other source programs; these contained programs may
reference some of the resources of the program within which they are contained.

A program may be directly or indirectly contained in another program. Program B is
directly contained in program A if there is no program contained in program A that
also contains program B. Program B is indirectly contained in program A if there
exists a program contained in program A that also contains program B.

File Connector
A file connector is a storage area that contains information about a file and is used as
the linkage between a file-name and a physical file and between a file-name and its
associated record area.

Global Names and Local Names
A data-name names a data item. A file-name names a file connector. These names
are classified as either global or local.

A global name may be used to refer to the object with which it is associated either
from within the program in which the global name is declared or from within any
other program which is contained in the program which declares the global name.

A local name, however, may be used only to refer to the object with which it is
associated from within the program in which the local name is declared. Some
names are always global; some are always local; and some are either local or global
depending upon specifications in the program in which the names are declared.

A record-name is global if the GLOBAL clause is specified in the record description
entry by which the record-name is declared or, in the case of record description
entries in the File Section, if the GLOBAL clause is specified in the file description
entry for the file-name associated with the record description entry. A data-name is
global if the GLOBAL clause is specified either in the data description entry by
which the data-name is declared or in another entry to which that data description
entry is subordinate. A condition-name declared in a data description entry is global
if that entry is subordinate to another entry in which the GLOBAL clause is

 Inter-Program Communication
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 29
 First Edition

specified. However, specific rules sometimes prohibit specification of the GLOBAL
clause for certain data description, file description or record description entries.

A file-name is global if the GLOBAL clause is specified in the file description entry
for that file-name.

A split-key-name is global if the GLOBAL clause is specified in the file description
entry for the file-name of the file with which the split-key-name is associated.

If a condition-name declared in a data description entry, a data-name, a file-name or
a split-key-name is not global, the name is local.

A constant-name is always global.

Global names are transitive across programs contained within other programs.

External Objects and Internal Objects
Accessible data items usually require that certain representations of data be stored.
File connectors usually require that certain information concerning files be stored.
The storage associated with a data item or a file connector may be external or
internal to the program in which the object is declared.

A data item or file connector is external if the storage associated with that object is
associated with the run unit rather than with any particular program within the run
unit. An external object may be referenced by any program in the run unit that
describes the object. References to an external object from different programs using
separate descriptions of the object are always to the same object. In a run unit, there
is only one representative of an external object.

An object is internal if the storage associated with that object is associated only with
the program that describes the object.

External and internal objects may have global or local names.

A data record described in the Working-Storage Section is given the external
attribute by the presence of the EXTERNAL clause in its data description entry. Any
data item described by a data description entry subordinate to an entry describing an
external record also attains the external attribute. If a record or data item does not
have the external attribute, it is part of the internal data of the program in which it is
described.

A file connector is given the external attribute by the presence of the EXTERNAL
clause in the associated file description entry. A file connector without the external
attribute is internal to the program in which the associated file-name is described.

The data records described subordinate to a file description entry which does not
contain the EXTERNAL clause or a sort-merge file description entry, as well as any
data items described subordinate to the data description entries for such records, are
always internal to the program describing the file-name. If the EXTERNAL clause is
included in the file description entry, the data records and the data items attain the
external attribute.

Data records, subordinate data items and various associated control information
described in the Linkage and Communication Sections of a program are always
considered to be internal to the program describing that data. Special considerations
apply to data described in the Linkage Section whereby an association is made
between the data records described and other data items accessible to other programs.

Inter-Program Communication
Chapter 1: Language Structure

30 RM/COBOL Language Reference Manual
 First Edition

Common Programs and Initial Programs
All programs that form part of a run unit may possess neither, one, or both of the
attributes common and initial.

A common program is one which, even though it is directly contained within another
program, may be called by any program directly or indirectly contained in that other
program. The common attribute is attained by specifying the COMMON clause in
the Identification Division of the program. The COMMON clause facilitates the
writing of subprograms that are to be used by all the programs contained within a
program.

An initial program is one whose program state is initialized when the program is
called. Thus, whenever an initial program is called, its program state is the same as
when the program was first called in that run unit. During the process of initializing
an initial program that program’s internal data is initialized; thus, an item of the
program’s internal data whose description contains a VALUE clause is initialized to
that defined value, but an item whose description does not contain a VALUE clause
is initialized to an undefined value. Files with internal file connectors associated
with the program are not in the open mode. The control mechanisms for all
PERFORM statements contained in the program are set to their initial states. The
initial attribute is attained by specifying the INITIAL clause in the Identification
Division of the program.

Sharing Data in a Run Unit
Two programs in a run unit may reference common data under the following
circumstances:

• The data content of an external data record may be referenced from any
program, provided that program has described that data record.

• If a program is contained within another program, both programs may refer to
data possessing the global attribute either in the containing program or in any
program that directly or indirectly contains the containing program.

• The mechanism whereby a parameter value is passed by reference from a calling
program to a called program establishes a common data item; the called
program, which may use a different identifier, may refer to a data item in the
calling program.

Sharing Files in a Run Unit
Two programs in a run unit may reference common file connectors under the
following circumstances:

• An external file connector may be referenced from any program that describes
that file connector.

• If a program is contained within another program, both programs may refer to a
common file connector by referring to an associated global file-name either in
the containing program or in any program that directly or indirectly contains the
containing program.

 Inter-Program Communication
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 31
 First Edition

Scope of Names
When programs are directly or indirectly contained within other programs, each
program may use identical user-defined words to name objects independent of the
use of these user-defined words by other programs. When identically named objects
exist, a program’s reference to such a name, even when it is a different type of user-
defined word, is to the object which that program describes rather than to the object
possessing the same name but described in another program.

The following types of user-defined words may be referenced only by statements and
entries in the program in which the user-defined word is declared:

cd-name
paragraph-name
screen-name
section-name

The following types of user-defined words may be referenced by a program,
provided that the compiler environment supports the associated library and the
entities referenced are known to that system:

library-name
text-name

The following types of user-defined words when they are declared in a
Communication Section may be referenced only by statements and entries in the
program which contains that section:

condition-name
data-name
record-name

The following types of names, when they are declared within a Configuration
Section, may be referenced only by statements and entries either in the program that
contains a Configuration Section or in any program contained within the program:

alphabet-name
class-name
condition-name
mnemonic-name
symbolic-character

Specific conventions for declarations and references apply to the following types of
user-defined words when the conditions listed above do not apply:

condition-name index-name
constant-name program-name
data-name record-name
file-name split-key-name

Inter-Program Communication
Chapter 1: Language Structure

32 RM/COBOL Language Reference Manual
 First Edition

Program-Names

A program-name of a program is declared in the PROGRAM-ID paragraph of the
Identification Division. A program-name may be referenced only by the CALL
statement, the CANCEL statement, and the end program header. The program-
names allocated to programs constituting a run unit are not necessarily unique but,
when two programs in a run unit are identically named, at least one of those two
programs must be directly or indirectly contained within another separately compiled
program that does not contain the other of those two programs.

The following rules regulate the scope of a program-name.

1. If the program-name is that of a program which does not possess the common
attribute and which is directly contained within another program, that program-
name may be referenced only by statements included in that containing program.

2. If the program-name is that of a program which does possess the common
attribute and which is directly contained within another program, that program-
name may be referenced only by statements included in that containing program
and any programs directly or indirectly contained within that containing
program, except that program possessing the common attribute and any
programs contained within it.

3. If the program-name is that of a program which is separately compiled, that
program-name may be referenced by statements included in any other program
in the run unit, except programs it directly or indirectly contains.

Condition-Names, Constant-Names, Data-Names,
File-Names, Record-Names, and Split-Key-Names

Condition-names, constant-names, data-names, file-names, record-names, and
split-key-names—when declared in a source program—may be referenced only by
that program except when one or more of the names are global and the program
contains other programs.

See the discussion of user-defined words on page 8 for the requirements governing
the uniqueness of the names allocated by a single program to be condition-names,
constant-names, data-names, file-names, record-names, and split-key-names.

A program cannot reference any condition-name, constant-name, data-name, file-
name, record-name, or split-key-name declared in any program it contains.

A global name may be referenced in the program in which it is declared or in any
programs which are directly or indirectly contained within that program.

When a program, program B, is directly contained within another program, program
A, both programs may define a condition-name, constant-name, a data-name, a file-
name, a record-name, or a split-key-name using the same user-defined word. When
such a duplicated name is referenced in program B, the following rules are used to
determine the referenced object:

1. The set of names to be used for determination of a referenced object consists of
all names which are defined in program B and all global names which are
defined in program A and in any programs which directly or indirectly contain
program A. Using this set of names, the normal rules for qualification and any
other rules for uniqueness of reference are applied until one or more objects are
identified.

2. If only one object is identified, it is the referenced object.

 Initial State of a Program
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 33
 First Edition

3. If more than one object is identified, no more than one of them can have a name
local to program B. If zero or one of the objects has a name local to program B,
the following rules apply:

a. If the name is declared in program B, the object in program B is the
referenced object.

b. Otherwise, if program A is contained within another program, the
referenced object is:

1) The object in program A if the name is declared in program A.

2) The object in the containing program if the name is not declared in
program A and is declared in the program containing program A. This
rule is applied to further containing programs until a single valid name
has been found.

Index-Names

If a data item possessing either or both the external or global attributes includes a
table accessed with an index, that index also possesses correspondingly either or both
attributes. Therefore, the scope of an index-name is identical to that of the data-name
which names the table whose index is named by that index-name and the scope of
name rules for data-names apply. Index-names cannot be qualified.

Initial State of a Program
The initial state of a program is the state of a program the first time it is called in a
run unit.

The internal data of the program contained in the Working-Storage Section and the
Communication Section is initialized. If a VALUE clause is used in the description
of the data item, the data item is initialized to the defined value. If a VALUE clause
is not associated with a data item, the initial value of the data item is undefined.

Files with internal file connectors associated with the program are not in the
open mode.

The control mechanisms for all PERFORM statements contained in the program are
set to their initial states.

A GO TO statement referred to by an ALTER statement contained in the same
program is set to its initial state.

A program is in the initial state:

• The first time the program is called in a run unit.

• The first time the program is called after the execution of a CANCEL statement
referencing the program or a CANCEL statement referencing a program that
directly or indirectly contains the program.

• Every time the program is called, if it possesses the initial attribute.

• The first time the program is called after the execution of a CALL statement
referencing a program that possesses the initial attribute, and that directly or
indirectly contains the program.

End Program Header
Chapter 1: Language Structure

34 RM/COBOL Language Reference Manual
 First Edition

End Program Header
The end program header indicates the end of the named source program.

.







literal-1

me-1program-na
PROGRAMEND

program-name-1 must conform to the rules for forming a user-defined word (see
page 8).

literal-1 must be a nonnumeric literal.

A constant-name may not be used for literal-1. A constant-name used in place of
literal-1 will be treated as a program-name; the literal value assigned to the constant-
name will not be used.

program-name-1 or literal-1 must be identical to a program-name declared in a
preceding PROGRAM-ID paragraph.

If a PROGRAM-ID paragraph declaring a specific program-name is stated between
the PROGRAM-ID paragraph and the end program header declaring and referencing,
respectively, another program-name, the end program header referencing the former
program-name must precede that referencing the latter program-name.

General Rules

• The end program header must be present in every program that either contains or
is contained within another program.

• The end program header indicates the end of the specified source program. If
program-name-1 and literal-1 are omitted, it is assumed to be the same as the
program-name specified in the immediately preceding PROGRAM-ID
paragraph not yet associated with an end program header.

• If the program terminated by the end program header is contained within another
program, the next statement must either be an Identification Division header or
another end program header that terminates the containing program.

• If the program terminated by the end program header is not contained within
another program and if the next source statement is a COBOL statement, it must
be the Identification Division header of a program to be compiled separately
from the program terminated by the end program header.

 COPY Statement
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 35
 First Edition

COPY Statement
The COPY statement provides the facility for copying text from user-specified
library files into the source program. The effect of the interpretation of the COPY
statement is to insert text into the source program, where it is treated by the compiler
as part of the source program.

Library text is placed in the library as a function independent of the compiler, using
any text-manipulation utilities that are available. Library text must conform to the
same formatting rules that apply to source text.

[]































































 ====



















 ====





































L

word-2
literal-4

-2identifier
t-2pseudo-tex

word-1
literal-3

-1identifier
t-1pseudo-tex

literal-2
me-1library-na

literal-1
1text-name-

BYREPLACING

PRINTINGSUPPRESS
OF
IN

COPY

A constant-name may not be used for literal-1 or literal-2. A constant-name used in
place of literal-1 will be treated as a text-name; the literal value assigned to the
constant-name will not be used. A constant-name used in place of literal-2 will be
treated as a library-name; the literal value assigned to the constant-name will not
be used.

literal-1, literal-2, literal-3, or literal-4 may not be a concatenation expression.

A COPY statement may appear anywhere in a source program that a character-string
or separator is allowed, except that a COPY statement may not be embedded within
another COPY statement. The COPY statement may be embedded in the text
referenced by the COPY statement.

A COPY statement must always be immediately followed by a period separator.
That separator functions solely as a part of the COPY statement and does not
terminate any sentence or entry in which the COPY statement may be embedded.

The first (or only) operand of a COPY statement may be written as a text-name or as
a nonnumeric literal. If the file access name of the text file being referred to
conforms to the requirements of a valid COBOL word—and it is not a reserved
word—it may be written as a text-name; if it does not form a COBOL word and is
made up of the following characters, it may still be a text-name:

• Alphabetic characters

• Digits (0 through 9)

• The characters ! # $ % & () * – . / : ? @ \ ^ _ ‘ { }

In other words, writing the operand of a COPY statement as a nonnumeric literal is
always permissible, but is required when the file access name is a reserved word, is
longer than 240 characters or contains special characters other than those listed above.

In environments in which the concept of file libraries or directories has meaning, the
first operand of a COPY statement may optionally be qualified by a library-name-1.
Library-names are treated as the leading part of a file access name; the concatenation
of the two values is used to locate the file to be copied. The interpretation of the

COPY Statement
Chapter 1: Language Structure

36 RM/COBOL Language Reference Manual
 First Edition

concatenation of library-name-1 and text-name-1 is system dependent. The second
operand of a COPY statement, when present, may be written as a word or as a
nonnumeric literal, subject to the same considerations that apply to the first operand.

A COPY statement may be followed by additional text in area B of a source record.
Multiple COPY statements may occur on a single source record.

Copy files may be nested up to five levels deep; they may contain a COPY statement.
This nesting limit may be exceeded when a COPY statement appears as the last
statement on the last record in a source or copy file; in such cases, the nesting level
limit is raised to nine. The limit of five applies to open copy files; a COPY statement
appearing at the end of a file allows the compiler to close that source or copy file
before opening the one referenced in the COPY statement (that is, the compiler
chains from one file to the next). The copy nesting level indicator is incremented
when a COPY statement appears at the end of a file to indicate the logical nesting of
the copied text. As a result, the copy level indicator does not always indicate the
number of open input files and may, therefore, exceed five.

In the discussion that follows, a text word is considered a character or sequence of
contiguous characters in columns 8 through 72 of records in a library, source
program or in pseudo-text. These characters may be:

• A separator, except for space, a pseudo-text delimiter, and the opening and
closing delimiters for nonnumeric literals. The right parenthesis and left
parenthesis, regardless of context within the library, source program or
pseudo-text, are always considered text words.

• A literal including, in the case of nonnumeric literals, the opening quotation
mark and the closing quotation mark which bound the literal.

• Any other sequence of contiguous characters except comment lines and the word
COPY, bounded by separators, which is neither a separator nor a literal.

The SUPPRESS phrase may be specified to suppress printing the copied source text
in the source listing file. If the SUPPRESS phrase is specified, it is transitive to any
COPY statements in the copied source text. That is, all source text copied when the
SUPPRESS phrase is specified will be suppressed even when there are nested COPY
statements that do not specify the SUPPRESS phrase. Regardless of the presence of
the SUPPRESS phrase, lines with errors will be included in the source listing
preceding the associated diagnostic messages.

Library text is copied into the source program without change unless a REPLACING
phrase is specified. When the REPLACING phrase is specified, the following
rules apply:

1. pseudo-text-1 must contain one or more text words. It must not consist entirely
of a separator comma or a separator semicolon.

2. pseudo-text-2 may contain zero, one or more text words.

3. Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.

4. word-1 and word-2 may be any single COBOL word except COPY.

5. As text is being copied from the library into the source program, each properly
matched occurrence of pseudo-text-1, identifier-1, word-1, or literal-3 in the
library text is replaced by the corresponding pseudo-text-2, identifier-2, word-2,
or literal-4.

6. For purposes of matching, identifier-1, word-1, and literal-3 are treated as
pseudo-text containing only identifier-1, word-1, or literal-4, respectively.

 COPY Statement
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 37
 First Edition

7. The comparison operation that determines text replacement is done as follows:

a. The leftmost library text word that is not a separator comma or a separator
semicolon is the first text word used for comparison. Any text word or
space preceding this text word is copied into the source program. Starting
with the first text word for comparison and the first pseudo-text-1,
identifier-1, word-1, or literal-3 that is specified in the REPLACING
phrase, the entire REPLACING phrase operand that precedes the reserved
word BY is compared with an equivalent number of contiguous library text
words.

b. pseudo-text-1, identifier-1, word-1, or literal-3 match the library text only if
the ordered sequence of text words that forms pseudo-text-1, identifier-1,
word-1, or literal-3 is equal, character for character, to the ordered sequence
of library text words. For purposes of matching, each occurrence of a
separator comma, semicolon or space in pseudo-text-1 or in the library text
is considered to be a single space. Each sequence of one or more space
separators is considered to be a single space.

For purposes of matching, a quoted string nonnumeric literal matches any
other quoted string nonnumeric literal with the same value regardless of
whether quotes or apostrophes were used as the delimiter. For purposes of
matching, any form of a hexadecimal literal matches any other form of a
hexadecimal literal that has the same value, regardless of whether an
X or H is used for the initial character, whether quotes or apostrophes were
used for delimiters and whether uppercase or lowercase letters are used to
specify the value. A hexadecimal literal does not match a quoted string
nonnumeric literal even if the actual values would be the same in the native
character set.

For purposes of matching, each operand and operator of a concatenation
expression is a separate text-word.

c. If no match occurs, the comparison is repeated with each following
pseudo-text-1, identifier-1, word-1, or literal-3, if any, in the REPLACING
phrase until either a match is found or there is no following REPLACING
operand.

d. When all REPLACING phrase operands have been compared and no match
has occurred, the leftmost library text word is copied into the source
program. The following library text word is then considered as the leftmost
library text word, and the comparison cycle starts again with the first
pseudo-text-1, identifier-1, word-1, or literal-3 in the REPLACING phrase.

e. Whenever a match occurs between library text and pseudo-text-1,
identifier-1, word-1, or literal-3, the corresponding pseudo-text-2,
identifier-2, word-2, or literal-4 is placed into the source program. The
library text word following the rightmost text word that participated in the
match then becomes the new leftmost text word for subsequent cycles.

The comparison cycle starts again with the first pseudo-text-1, identifier-1,
word-1, or literal-3 specified in the REPLACING phrase.

f. The comparison cycles continue until the rightmost text word in the library
text has either participated in a match or has been considered as a leftmost
library text word and participated in a complete comparison cycle.

COPY Statement
Chapter 1: Language Structure

38 RM/COBOL Language Reference Manual
 First Edition

8. Comment lines and blank lines occurring in library text or pseudo-text-1 are
ignored for purposes of matching, and the sequence of text words in the library
text (if any) and in pseudo-text-1 is determined by the rules for source format
(see Figure 1 on page 20). Comment lines and blank lines appearing in pseudo-
text-2 are copied into the source program unchanged whenever pseudo-text-2 is
placed into the source program as a result of text replacement.

9. Comment lines and blank lines appearing in library text are copied into the
source program unchanged except that a comment line or a blank line in library
text is not copied if it appears within the sequence of text words that match
pseudo-text-1.

10. Debugging lines may appear within library text and pseudo-text. Text words
within a debugging line participate in the matching rules as if the D did not
appear in indicator area. A debugging line is specified within pseudo-text if the
debugging line begins in the source program after the opening pseudo-text
delimiter but before the matching closing pseudo-text delimiter.

11. The source program that results from the resolution of all COPY and REPLACE
statements must form a syntactically correct source program, as defined in the
rest of this manual.

12. Each text word copied from the library but not replaced is copied so as to start in
the same area of the line in the source program as it begins in the line within the
library. However, if a text word copied from the library begins in area A but
follows another text word that also begins in area A of the same line, and if
replacement of a preceding text word in the line by replacement text of greater
length occurs, the following text word begins in area B if it cannot begin in area
A. Each text word in pseudo-text-2 that is to be placed into the source program
begins in the same area of the source program as it appears in pseudo-text-2.
Each identifier-2, literal-4, and word-2 that is to be placed into the source
program begins in the same area of the source program as the leftmost library
text word that participated in the match would appear had it not been replaced.

13. If additional lines are introduced into the source program as a result of a COPY
statement, each text word introduced appears on a debugging line if the COPY
statement begins on a debugging line or if the text word being introduced
appears on a debugging line in library text. When a text word specified in the
BY phrase is introduced, it appears on a debugging line if the first library text
word being replaced is specified on a debugging line. Except in the preceding
cases, only those text words that are specified on debugging lines where the
debugging line is within pseudo-text-2 appear on debugging lines in the source
program. If any literal specified as literal-4 or within pseudo-text-2 or library
text is too long to be accommodated on a single line without continuation to
another line in the source program, and the literal is not being placed on a
debugging line, additional continuation lines are introduced to contain the
remainder of the literal. A replacement literal may not be continued onto a
debugging line.

14. For purposes of compilation, text words after replacement are placed in the
source program according to the rules for source format (see Figure 1 on
page 20). When copying text words of pseudo-text-2 into the source program,
additional spaces may be introduced between text words where there is already
a space, including the space that implicitly falls between source lines.

15. If additional lines are introduced into the source program as a result of the
processing of COPY statements, the indicator area of the introduced lines
contains the same character as the line on which the text being replaced begins,
unless that line contains a hyphen, in which case the introduced line contains

 REPLACE Statement
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 39
 First Edition

a space in the indicator area. In the case where a literal is continued onto
an introduced line that is not a debugging line, a hyphen is placed in the
indicator area.

COPY Statement Examples

LE1. COPY FDFI

 ILE2.CBL". COPY "FDF

TLIB. LE3 OF TES COPY FDFI

DLIB. LE4 IN PRO COPY FDFI

REPLACE Statement
The REPLACE statement provides the ability to selectively replace source text
within specified regions of the source program.

Format 1: Begin or Change Replacement)

{ }L======== t-2pseudo-text-1pseudo-tex BYREPLACE

Format 2: End Replacement

OFFREPLACE

A Format 1 REPLACE statement specifies that within its scope each occurrence of
pseudo-text-1 is to be replaced by the corresponding pseudo-text-2.

The scope of a Format 1 REPLACE statement begins with the first text word in the
source program following the REPLACE statement, and it continues up to the next
REPLACE statement or the end of the program.

A Format 2 REPLACE statement terminates the scope of any preceding Format 1
REPLACE statement.

A REPLACE statement may appear anywhere in a source program that a character-
string may appear. It must be preceded by a separator period except when it is the
first statement in a separately compiled program. It must be terminated by a
separator period.

REPLACE statements are processed after COPY statements. The text produced
by the action of a REPLACE statement must not contain a REPLACE statement.
The source program that results from resolution of all COPY and REPLACE
statements must form a syntactically correct source program, as defined in the rest
of this manual.

The word REPLACE appearing in a comment-entry or in a position where a
comment-entry may appear is considered part of the comment-entry.

REPLACE Statement
Chapter 1: Language Structure

40 RM/COBOL Language Reference Manual
 First Edition

pseudo-text-1 must contain one or more text words. It must not consist entirely of a
separator comma or a separator semicolon.

pseudo-text-2 may contain zero, one, or more text words.

Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.

The comparison operation that determines text replacement is done as follows:

1. Starting with the leftmost text word in the scope and the first pseudo-text-1,
pseudo-text-1 is compared with an equivalent number of contiguous source
program text words.

2. pseudo-text-1 matches the source program text only if the ordered sequence of
text words that forms pseudo-text-1 is equal, character for character, to the
ordered sequence of source program text words. For purposes of matching, each
occurrence of a separator comma, semicolon or space in pseudo-text-1 or in the
source program text is considered to be a single space. Each sequence of one or
more space separators is considered to be a single space.

For purposes of matching, a quoted string nonnumeric literal matches any other
quoted string nonnumeric literal with the same value regardless of whether
quotes or apostrophes were used as the delimiter. For purposes of matching, any
form of a hexadecimal literal matches any other form of a hexadecimal literal
that has the same value, regardless of whether an X or H is used for the initial
character, whether quotes or apostrophes were used for delimiters and whether
uppercase or lowercase letters are used to specify the value. A hexadecimal
literal does not match a quoted string nonnumeric literal even if the actual values
would be the same in the native character set.

For purposes of matching, each operand and operator of a concatenation
expression is a separate text-word.

3. If no match occurs, the comparison is repeated with each subsequent pseudo-
text-1 until either a match is found or there is no following pseudo-text-1.

4. When all occurrences of pseudo-text-1 have been compared and no match has
occurred, the next source program text word in the scope is then considered as
the leftmost source program text word, and the comparison cycle starts again
with the first occurrence of pseudo-text-1.

5. Whenever a match occurs between pseudo-text-1 and the source program text,
the corresponding pseudo-text-2 replaces the matched text in the source
program. The source program text word following the rightmost text word that
participated in the match then becomes the new leftmost source program text
word for subsequent cycles. The comparison cycle starts again with the first
occurrence of pseudo-text-1.

6. The comparison cycles continue until the rightmost text word in the scope of the
REPLACE statement either has participated in a match or has been considered
as a leftmost source program text word and participated in a complete
comparison cycle.

Comment lines and blank lines occurring in the scope or in pseudo-text-1 are ignored
for purposes of matching, and the sequence of text words in the source program text
and in pseudo-text-1 is determined by the rules for source format (see Figure 1 on
page 20). Comment lines and blank lines appearing in pseudo-text-2 are copied into
the source program unchanged whenever pseudo-text-2 is placed into the source
program as a result of text replacement.

A comment or blank line in the scope is not replaced if it appears within the sequence
of text words that match pseudo-text-1.

 REPLACE Statement
Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 41
 First Edition

Debugging lines may appear within pseudo-text. Text words within a debugging line
participate in the matching rules as if the D did not appear in the indicator area.

Text words inserted into the source program as a result of processing a REPLACE
statement are placed in the source program according to the rules for source format
(see Figure 1 on page 20). When copying text words of pseudo-text-2 into the source
program, additional spaces may be introduced between text words where there is
already a space, including the space that implicitly falls between source lines.

If additional lines are introduced into the source program as a result of the processing
of REPLACE statements, the indicator area of the introduced lines contains the same
character as the line on which the text being replaced begins unless that line contains
a hyphen, in which case the introduced line contains a space.

If any literal within pseudo-text-2 is too long to be accommodated on a single line
without continuation to another line in the source program and the literal is not being
placed on a debugging line, additional continuation lines are introduced to contain
the remainder of the literal. A replacement literal may not be continued onto a
debugging line.

REPLACE Statement Examples

ING3 ==. BY == FOOTADING3 == == HE
ING2 ==BY == FOOTADING2 == == HE
ING1 ==BY == FOOTADING1 == LACE == HE REP

ATUS. ==.ING SQL-ST= BY ==GIVND EXEC> = == <E
USING == L "C$SQL" = BY ==CALXEC SQL> =LACE == <E REP

 LACE OFF. REP

REPLACE Statement
Chapter 1: Language Structure

42 RM/COBOL Language Reference Manual
 First Edition

 Identification Division Structure
Chapter 2: Identification Division

 RM/COBOL Language Reference Manual 43
 First Edition

Chapter 2: Identification
Division

The Identification Division must be included in every source program. This division
identifies both the source program and the resulting object program. In addition, the
user may include other commentary information.

This chapter details the structure and syntax of the Identification Division.

Identification Division Structure

.DIVISIONID
TIONIDENTIFICA









.. PROGRAMINITIAL
COMMONISID-PROGRAM





























literal-1
me-1program-na

[][]Ltry-1comment-en.AUTHOR

[][]Ltry-2comment-en.ONINSTALLATI

[][]Ltry-3comment-en.WRITTEN-DATE

[][]Ltry-4comment-en.COMPILED-DATE

[][]Ltry-5comment-en.SECURITY

[][]Ltry-6comment-en.REMARKS

comment-entry may be any combination of characters from the character set of the
computer. The continuation of comment-entry by the use of the hyphen in the
indicator area is not permitted; however, comment-entry may be contained on one or
more lines. A comment-entry must be contained in area B of a source line and is
ended by source text in area A of a source line. A COPY or REPLACE statement

Program Identification
Chapter 2: Identification Division

44 RM/COBOL Language Reference Manual
 First Edition

within a comment-entry is considered part of the comment-entry and has no effect on
the resultant source program.

Program Identification

.DIVISIONID
TIONIDENTIFICA









The Identification Division must begin with the reserved words IDENTIFICATION
DIVISION or ID DIVISION followed by a separator period.

Paragraph headers identify the type of information contained in the paragraph. The
name of the program must be given in the first paragraph, which is the PROGRAM-
ID paragraph. The other paragraphs are optional and may be written in any order.

PROGRAM-ID Paragraph

.. PROGRAMINITIAL
COMMONISID-PROGRAM





























literal-1
me-1program-na

A constant-name may not be used for literal-1. A constant-name used in place of
literal-1 will be treated as a program-name; the literal value assigned to the constant-
name will not be used.

The PROGRAM-ID paragraph, containing the program-name, identifies the source
program, the object program, and all listings pertaining to a particular program.
program-name-1 is a user-defined word. Alternatively, program-name-1 may be
specified as a nonnumeric literal, in which case the value of program-name-1 may
be a reserved word or may use any characters in the character set of the computer. A
program contained within another program must not be assigned the same name as
that of any other program contained within the separately compiled program that
contains this program.

program-name-1 may be 1 to 30 characters in length. All the characters of
program-name-1, except trailing spaces, are associated with the object program in
order to identify the program to be called or canceled by a CALL or CANCEL
statement.

The PROGRAM-ID paragraph also assigns selected program attributes to the
program that it names.

The optional COMMON clause may be used only if the program is contained within
another program. It specifies that the program is common. A common program is
contained within another program, but may be called from programs other than that
containing it. Such other calling programs must be directly or indirectly contained in
the same program that contains the common program.

The INITIAL clause specifies that the program is initial. When an initial program is
called, it and any programs contained within it are placed in their initial state. When
an EXIT PROGRAM or GOBACK statement is executed in an initial program, the
program is implicitly canceled.

 Program Identification
Chapter 2: Identification Division

 RM/COBOL Language Reference Manual 45
 First Edition

AUTHOR, INSTALLATION, DATE-WRITTEN,
SECURITY, and REMARKS Paragraphs

[]Ltry-1comment-en.AUTHOR

[]Ltry-2comment-en.ONINSTALLATI

[]Ltry-3comment-en.WRITTEN-DATE

[]Ltry-5comment-en.SECURITY

[]Ltry-6comment-en.REMARKS

These paragraphs are optional; their order of presentation is immaterial. They
document information pertaining to the paragraph header. The paragraphs are
reproduced in the listing generated by the compiler, but have no effect on the
compilation.

DATE-COMPILED Paragraph

[]Ltry-4comment-en.COMPILED-DATE

If a DATE-COMPILED paragraph is present, it is replaced during compilation with a
paragraph of the form:

DATE-COMPILED. current-date.

where current-date is the date on which the compilation started. The format of
current-date is determined by the LISTING-DATE-FORMAT and LISTING-DATE-
SEPARATOR keywords of the COMPILER-OPTIONS configuration record. The
default format is “MM/DD/YYYY”, where MM is the month of the year, DD is the
day of the month, and YYYY is the year.

The entire comment-entry-4 is replaced, but comment lines in the paragraph are not
replaced. Only the compilation listing file is affected; the compilation date is not
inserted in the source file. The inserted compilation date matches the date placed in
the object file and the date listed in the compilation listing page headers.

The DATE-COMPILED paragraph is optional and may appear in any order with
respect to the other optional paragraphs of the Identification Division.

Program Identification
Chapter 2: Identification Division

46 RM/COBOL Language Reference Manual
 First Edition

 Environment Division Structure
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 47
 First Edition

Chapter 3: Environment
Division

The Environment Division describes the hardware configuration of the compiling
(or source) computer and the computer on which the object program is run (the
object computer). It also describes the relationship between the files and the
input-output media.

The Environment Division is an optional division in a source program. It is
subdivided in two sections.

Environment Division Structure
The two sections in the Environment Division are as follows:

1. Configuration Section (on page 51), which describes the overall specifications of
source and object programs.

2. Input-Output Section (on page 64), which names the files and external media
required by an object program and which provides information required for
transmission and handling of data during running of the object program.

Environment Division Structure
Chapter 3: Environment Division

48 RM/COBOL Language Reference Manual
 First Edition

.DIVISIONTENVIRONMEN







.SECTIONIONCONFIGURAT







ame-1computer-n








.COMPUTER-SOURCE

[]








.MODEDEBUGGINGWITH

ame-2computer-n








.COMPUTER-OBJECT





























MODULES
CHARACTERS
WORDS

SIZEMEMORY integer-1

[]ame-1alphabet-nISSEQUENCECOLLATINGPROGRAM

[]








.ISLIMIT-SEGMENT mber-1segment-nu










.NAMES-SPECIAL

L
























































































ame-3mnemonic-n1-I-O-name-low-volume

ame-2mnemonic-nme-1feature-na

name-2condition-
name-1condition-

name-2condition-
name-1condition-ame-1mnemonic-n

e-1switch-nam

IS

IS

ISSTATUSOFF
ISSTATUSON

ISSTATUSOFF
ISSTATUSONIS

(continued on next page)

 Environment Division Structure
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 49
 First Edition

(continued from previous page)

L

LL











































































































literal-4literal-3

literal-2literal-1

1code-name-

ame-1alphabet-n

THRU
THROUGHALSO

THRU
THROUGH

NATIVE
2-STANDARD
1-STANDARD

ISALPHABET

{ }

{ } [] LLL

L



































ame-2alphabet-ninteger-1

haracter-1symbolic-c

IN

ARE
IS

CHARACTERS
CHARACTERSYMBOLIC

LL






































literal-6literal-5-1class-name THRU

THROUGHISCLASS





 literal-7ISSIGNCURRENCY





 COMMAISPOINT-DECIMAL

[]











 CHARACTERSEPARATETRAILING

LEADINGISSIGNNUMERIC





 CRTISCONSOLE





 1data-name-ISCURSOR


























 .2data-name-ISSTATUSCRT

(continued on next page)

Environment Division Structure
Chapter 3: Environment Division

50 RM/COBOL Language Reference Manual
 First Edition

(continued from previous page)

.SECTIONOUTPUT-INPUT







.CONTROL-FILE

{ }Lol-entry-1file-contr










.CONTROL-O-I

[]
L








































































































name-1condition-
integer-2

2file-name-
integer-1

-1rerun-name
1file-name-

UNITS-CLOCK

OF
RECORDS

UNIT
REELOFEND

EVERY

ONRERUN

{ } LL


































4file-name-3file-name-FORAREA

MERGE-SORT
SORT
RECORD

SAME

[]{ }

























































.L

Linteger-35file-name- ISPOSITION

CONTAINSTAPEFILEMULTIPLE

 Configuration Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 51
 First Edition

Configuration Section
The Configuration Section deals with the characteristics of the source computer and
the object computer. This section is divided into three paragraphs:

1. SOURCE-COMPUTER paragraph (see the next section), which describes the
computer configuration on which the source program is compiled.

2. OBJECT-COMPUTER paragraph (on page 52), which describes the computer
configuration on which the object program produced by the compiler is to
be run.

3. SPECIAL-NAMES paragraph (on page 53), which relates names used by the
compiler to user-defined words in the source program.

The Configuration Section must not be stated in a program that is contained within
another program.

The entries explicitly or implicitly stated in the Configuration Section of a program
that contains other programs apply to each contained program.

SOURCE-COMPUTER Paragraph
The SOURCE-COMPUTER paragraph identifies the computer upon which the
program is to be compiled.

[][].. MODEDEBUGGINGWITHCOMPUTER-SOURCE ame-1computer-n

computer-name-1 is a user-defined word and is only commentary.

All clauses of the SOURCE-COMPUTER paragraph apply to the program in which
they are explicitly or implicitly specified and to any program contained within that
program.

If the WITH DEBUGGING MODE clause is used, all debugging lines (D in the
indicator area, column 7) are compiled as if there were a blank in the indicator area.

If the WITH DEBUGGING MODE clause is not specified, any debugging lines (D
in the indicator area, column 7) are compiled as if they were comment lines unless
the Debug compilation option is specified (see the RM/COBOL User’s Guide for
details).

When the Debug compilation option is specified, debugging lines are compiled as if
there were a blank in the indicator area whether or not the WITH DEBUGGING
MODE phrase is specified in the source programs.

When multiple programs are compiled with one invocation of the compiler without
the Debug option, the WITH DEBUGGING MODE phrase may be used in one or
more of the source programs without affecting other source programs compiled in the
same group.

Configuration Section
Chapter 3: Environment Division

52 RM/COBOL Language Reference Manual
 First Edition

OBJECT-COMPUTER Paragraph
The OBJECT-COMPUTER paragraph identifies the computer on which the program
is to be executed.

[]

[] 

































.

.

ISLIMIT-SEGMENT

ISSEQUENCECOLLATINGPROGRAM

MODULES
CHARACTERS
WORDS

SIZEMEMORY

COMPUTER-OBJECT

mber-1segment-nu

ame-1alphabet-n

integer-1

ame-2computer-n

computer-name-2 is a user-defined word and is only commentary.

All clauses of the OBJECT-COMPUTER paragraph apply to the program in which
they are explicitly or implicitly specified and to any program contained within that
program.

The MEMORY SIZE clause is treated as commentary.

The PROGRAM COLLATING SEQUENCE clause specifies the program collating
sequence to be used in determining the truth value of any nonnumeric comparisons.
If the PROGRAM COLLATING SEQUENCE clause is specified, the program
collating sequence is the collating sequence associated with alphabet-name-1. If the
PROGRAM COLLATING SEQUENCE clause is not specified, the collating
sequence is ASCII.

The program collating sequence established in the OBJECT-COMPUTER paragraph
determines the truth value of any nonnumeric comparisons that are as follows:

• Explicitly specified in relation conditions.

• Explicitly specified in condition-name conditions.

The program collating sequence established in the OBJECT-COMPUTER paragraph
is applied to any nonnumeric merge or sort keys unless the COLLATING
SEQUENCE phrase is specified in the respective SORT or MERGE statement.

The SEGMENT-LIMIT clause allows the user to reduce the number of permanent
segments in the program, while still retaining the logical properties of fixed portion
segments (segment-numbers 0 through 49). When the SEGMENT-LIMIT clause is
specified, only those segments having segment-numbers from 0 up to, but not
including, the segment-number designated as the segment-limit, are considered as
permanent segments of the object program. segment-number-1 must be an integer
from 1 to 49.

If the SEGMENT-LIMIT clause is omitted, all segments having segment-numbers 0
through 49 are considered permanent segments of the object program.

The clauses of the OBJECT-COMPUTER paragraph may appear in any order.

 Configuration Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 53
 First Edition

SPECIAL-NAMES Paragraph
The SPECIAL-NAMES paragraph relates names used by the compiler to user-
defined words in the source program.


.NAMES-SPECIAL

L
























































































ame-3mnemonic-n1-I-O-name-low-volume

ame-2mnemonic-nme-1feature-na

name-2condition-
name-1condition-

name-2condition-
name-1condition-ame-1mnemonic-n

e-1switch-nam

IS

IS

ISSTATUSOFF
ISSTATUSON

ISSTATUSOFF
ISSTATUSONIS

L

LL











































































































literal-4literal-3

literal-2literal-1

1code-name-

ame-1alphabet-n

THRU
THROUGHALSO

THRU
THROUGH

NATIVE
2-STANDARD
1-STANDARD

ISALPHABET

{ }

{ } [] LLL

L



































ame-2alphabet-ninteger-1

haracter-1symbolic-c

IN

ARE
IS

CHARACTERS
CHARACTERSYMBOLIC

LL






































literal-6literal-5-1class-name THRU

THROUGHISCLASS





 literal-7ISSIGNCURRENCY

(continued on next page)

Configuration Section
Chapter 3: Environment Division

54 RM/COBOL Language Reference Manual
 First Edition

(continued from previous page)





 COMMAISPOINT-DECIMAL

[]











 CHARACTERSEPARATETRAILING

LEADINGISSIGNNUMERIC





 CRTISCONSOLE





 1data-name-ISCURSOR












 .2data-name-ISSTATUSCRT

All clauses specified in the SPECIAL-NAMES paragraph for a program also apply
to programs contained within that program. The alphabet-names, class-names,
condition-names, and symbolic-characters specified in the SPECIAL-NAMES
paragraph of the containing program may be referenced from any contained program.
The clauses in the SPECIAL-NAMES paragraph may appear in any order.

ALPHABET Clause













































































































LLliteral-4literal-3

literal-2literal-1

1code-name-

ame-1alphabet-n

THRU
THROUGH

ALSO

THRU
THROUGH

NATIVE
2-STANDARD
1-STANDARD

ISALPHABET

The ALPHABET clause provides a means for relating a name to a specified
character code set or collating sequence. When the alphabet-name is referenced in
the PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER
paragraph, the COLLATING SEQUENCE clause of an Indexed File Control Entry
or the COLLATING SEQUENCE phrase of a SORT or MERGE statement, the
ALPHABET clause specifies a collating sequence. When the alphabet-name is
referenced in a SYMBOLIC CHARACTERS or CODE-SET clause, the
ALPHABET clause specifies a character code set.

If the STANDARD-1 phrase is specified, the character code set or collating sequence
identified is that defined in American National Standard X3.4-1977, Code for
Information Interchange, usually referred to as ASCII. If the STANDARD-2 phrase

 Configuration Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 55
 First Edition

is specified, the character code set identified is the International Reference Version
of the ISO 7-bit code defined in International Standard 646, 7-bit Coded Character
Set for Information Processing Interchange. If the NATIVE phrase is specified, the
native character set or collating sequence is used. If the code-name phrase is
specified with the code-name EBCDIC, the character code or collating sequence is
the extended binary coded decimal interchange code (8 bits, no parity). See
Appendix J: Code-Set Translation Tables in the RM/COBOL User’s Guide.

If the literal form of the ALPHABET clause is specified, the following rules apply:

1. A given character must not be specified more than once in an ALPHABET
clause that is referenced in the PROGRAM COLLATING SEQUENCE clause,
the COLLATING SEQUENCE clause in the File-Control entry, the
COLLATING SEQUENCE phrase of the SORT and MERGE statements, or that
is associated with a code set for a file that is opened in either the extend, I-O or
output mode.

2. A given character may be specified more than once in an ALPHABET clause
only if alphabet-name-1 is referenced in a SYMBOLIC CHARACTERS clause
or is associated with a code set for a file that is opened in the input mode.

literal-1, literal-2, literal-3, literal-4, literal-5 and literal-6 must not specify a
symbolic-character figurative constant. When a literal in an ALPHABET clause or
CLASS clause is numeric, it must be an unsigned integer and its value must be in the
range 1 to 256, inclusive. When a literal in an ALPHABET clause or CLASS clause
is nonnumeric and it is in a THROUGH or ALSO phrase, it must be one character
in length.

The character that has the highest ordinal position in the current program collating
sequence is associated with the figurative constant HIGH-VALUE, except when this
figurative constant is specified as a literal in the SPECIAL-NAMES paragraph. If
more than one character has the highest position in the program collating sequence,
the last character specified is associated with the figurative constant HIGH-VALUE.

The character that has the lowest ordinal position in the current program collating
sequence is associated with the figurative constant LOW-VALUE, except when this
figurative constant is specified as a literal in the SPECIAL-NAMES paragraph. If
more than one character has the lowest position in the program collating sequence,
the first character specified is associated with the figurative constant LOW-VALUE.

When specified as literals in the SPECIAL-NAMES paragraph, the figurative
constants HIGH-VALUE and LOW-VALUE are associated with those characters
having the highest and lowest positions, respectively, in the native collating
sequence.

The collating sequence identified is that defined according to the following rules:

1. If the literal is numeric, it specifies the ordinal number of a character within the
native character set. If the literal is single-character nonnumeric, it specifies the
actual character within the native character set. If the literal is multiple-
character nonnumeric, each character in the literal, starting with the leftmost
character, is assigned successive ascending positions in the collating sequence
being specified.

2. The order in which the literals appear in the ALPHABET clause specifies, in
ascending sequence, the ordinal number of the character within the collating
sequence being specified.

3. Any characters within the native collating sequence that are not explicitly
specified in the literal phrase assume a position (in the collating sequence being
specified) that is greater than any of the explicitly specified characters. The

Configuration Section
Chapter 3: Environment Division

56 RM/COBOL Language Reference Manual
 First Edition

relative order within the set of these unspecified characters is the same as the
native collating sequence order.

4. If the THROUGH (or THRU) phrase is specified outside of an ALSO phrase,
the set of contiguous characters in the native character set beginning with the
character specified by the value of literal-1 and ending with the character
specified by the value of literal-2, is assigned a successive ascending position in
the collating sequence being specified.

5. If the ALSO phrase is specified, the characters of the native character set
specified by the values of literal-1, or literal-2 if the ALSO phrase follows a
THROUGH (or THRU) phrase, and literal-3 are assigned to the same position in
the collating sequence being specified. If the THROUGH (or THRU) phrase is
specified in the ALSO phrase, the set of contiguous characters in the native
character set beginning with the character specified by the value of literal-3 and
ending with the character specified by the value of literal-4, is assigned the same
position as literal-1, or literal-2, in the collating sequence being specified.

6. The set of contiguous characters specified by a given THROUGH phrase may
specify characters of the native character set in either ascending or descending
sequence.

The ALPHABET clause of the SPECIAL-NAMES paragraph defines three different
character set mappings:

1. An output code set mapping of native characters to external characters.

2. An input code set mapping of external characters to native characters.

3. A collating sequence mapping of characters to character positions.

Which of these mappings is intended depends on the use made of the defined
alphabet. The input or output code set mapping is indicated by the CODE-SET
clause of the SELECT or FD entry; the input code set mapping is indicated by
the SYMBOLIC CHARACTERS . . . IN alphabet-name clause of the SPECIAL-
NAMES paragraph. The collating sequence mapping is indicated by the
PROGRAM COLLATING SEQUENCE clause of the OBJECT-COMPUTER
paragraph, the COLLATING SEQUENCE clause of the SORT and MERGE
statements, and by the COLLATING SEQUENCE clause of the SELECT entry of
an indexed organization file.

Code Name Alphabets

RM/COBOL supports four code-names in the ALPHABET clause: NATIVE,
STANDARD-1, STANDARD-2 and EBCDIC.

The NATIVE alphabet always represents the 256 character code values possible in
the computer. The graphic equivalents of these character code values may be ASCII
or EBCDIC, depending on the source computer. The chosen native code set is
recorded in the object program.

The STANDARD-1 alphabet contains 128 characters in the range 00h to 7Fh. This
alphabet is defined in the document American National Standard X3.4-1977, Code
for Information Interchange and is commonly referred to as ASCII. If the native
character set is ASCII, the 128 ASCII characters are represented by the identical
values 00h to 7Fh in the native character set, and native characters 80h to FFh have
no STANDARD-1 equivalent. If the native character set is EBCDIC, the 128 ASCII
characters are represented by the corresponding 128 native EBCDIC values, and the
remaining 128 EBCDIC values have no STANDARD-1 equivalent.

 Configuration Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 57
 First Edition

The STANDARD-2 alphabet is the same as the STANDARD-1 alphabet except for
the currency symbol character.

The EBCDIC alphabet contains 256 characters, 128 of which have widely accepted
standard ASCII equivalents. For the purpose of processing the SYMBOLIC
CHARACTERS clause when the native code set is based on ASCII, all 256 EBCDIC
character codes are assigned ASCII equivalents. See the RM/COBOL User’s Guide
for the exact mappings used to effect these conversions.

Literal Alphabets

RM/COBOL supports user-defined literal alphabets for file code sets and for
program, sort-merge, and indexed file collating sequences. One use for a literal code
set would be to map all lowercase letters to uppercase on input or output to a file.
Another would be to specify a different ASCII to EBCDIC mapping than that built
into RM/COBOL. A literal collating sequence could be used to cause lowercase
letters in indexed file keys to be treated as uppercase, or to cause numbers to follow
letters in indexed file keys. Europeans might use a literal collating sequence to cause
the correct ordering of keys that contain letters not in the English alphabet.

The syntax for defining a literal alphabet is:

LL


























































literal-4literal-3

literal-2literal-1ame-1alphabet-n

THRU
THROUGH

ALSO

THRU
THROUGH

ISALPHABET

The value of literal-1 is the ordinal position or value of a native character. The
ordinal position of literal-1 in the list of literals is the collating position when the
alphabet is used as a collating sequence, and is one greater than the binary value of
the external character code when used as a code set. The ALSO phrase allows more
than one native character to have the same collating position or be translated to the
same external character.

For example, the following alphabet causes lowercase and uppercase native
characters to be collated to the same position:

U 128;7, 124 THR 92 THRU 9 ALSO "z",O "y", "Z" "Y" ALS
LSO "x","w", "X" A "W" ALSO ALSO "v",O "u", "V" "U" ALS
LSO "t","s", "T" A "S" ALSO ALSO "r",O "q", "R" "Q" ALS
LSO "p","o", "P" A "O" ALSO ALSO "n",O "m", "N" "M" ALS
LSO "l","k", "L" A "K" ALSO ALSO "j",O "i", "J" "I" ALS
LSO "h","g", "H" A "G" ALSO ALSO "f",O "e", "F" "E" ALS
LSO "d","c", "D" A "C" ALSO ALSO "b",O "a", "B" "A" ALS

65,IS 1 THRU OUT-UPPER ALPHABET

The alphabet OUT-UPPER, when used as a code set of a file opened for output,
causes lowercase characters in the records being written to be replaced by
uppercase characters.

The final phrase—124 THRU 128—is redundant when the alphabet is used as a
collating sequence, since unspecified characters are collated in their natural order
following the last specified character. If any characters are omitted from the
definition of the alphabet and the characters occur in a record being written, a file

Configuration Section
Chapter 3: Environment Division

58 RM/COBOL Language Reference Manual
 First Edition

status 97 will result. The following alphabet causes lowercase external characters to
be converted to uppercase native characters on file input:

UGH 128; 124 THROROUGH "Z", "A" TH
UGH 97, 92 THROROUGH "Z", "A" TH
UGH 65, S 1 THROIN-UPPER I ALPHABET

An alphabet in which a native character occurs more than once may be used only on
a file opened for input or in the SYMBOLIC CHARACTERS clause. Such an
alphabet is an illegal collating sequence and is an illegal code set on a file opened for
output, extend or I-O.

Indexed File Alphabets

RM/COBOL accepts both the CODE-SET and COLLATING SEQUENCE clauses
when defining an indexed organization file. The CODE-SET clause can be used on
an ASCII object computer to read an IBM EBCDIC ISAM file; the runtime system
then performs EBCDIC to ASCII translation of data read and ASCII to EBCDIC
translation of data written. The COLLATING SEQUENCE clause can be used to
force lowercase and uppercase key values to be treated identically, or to cause a more
natural ordering of European characters with diacritical marks.

When the CODE-SET clause is specified and the COLLATING SEQUENCE clause
is omitted, the natural collating sequence of the external character set is used. To put
it another way: if the COLLATING SEQUENCE is omitted, the alphabet referred to
in the CODE-SET clause is used, and the native collating sequence is used if the
CODE-SET clause is also omitted.

EBCDIC Translation

Appendix J: Code-Set Translation Tables in the RM/COBOL User’s Guide defines
the translation between the ASCII and EBCDIC character sets. The ASCII to
EBCDIC translation is identical to that described by IBM in the document Systems
Network Architecture Format and Protocol Reference Manual: Architecture Logic
(SC30-3112-0, March 1976). The EBCDIC to ASCII translation is the inverse of the
ASCII to EBCDIC mapping, with the addition that EBCDIC characters with no
ASCII equivalent are assigned values in the range 80h to FFh.

CLASS Clause

L























 literal-6literal-5-1class-name THRU

THROUGHISCLASS

The CLASS clause provides a means of assigning a name to the specified set of
characters listed in that clause. class-name can be referenced only in a class
condition in the Procedure Division. The characters specified by the values of the
literals in this clause define the exclusive set of characters of which this class-name
consists. The CLASS clause defines class conditions other than those that are
standard to the language.

For each numeric literal in the list, the value of the literal specifies the ordinal
number of a character within the native character set. This value must not exceed the
value that represents the number of characters in the native character set.

 Configuration Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 59
 First Edition

For each nonnumeric literal in the list, the value of the character or characters in the
literal specifies the actual character or characters within the native character set.
When a nonnumeric literal is used in a THROUGH phrase, it must be a single-
character literal.

If the THROUGH phrase is specified, the contiguous characters in the native
character set beginning with the character specified by the value of literal-5, and
ending with the character specified by the value of literal-6, are included in the set of
characters identified by class-name. In addition, the contiguous characters specified
by a given THROUGH phrase may specify characters of the native character set in
either ascending or descending order.

CONSOLE IS CRT Clause

CRTISCONSOLE
The CONSOLE IS CRT clause causes any ACCEPT or DISPLAY statement whose
operand is not a screen-name and that has no phrases specific to a particular format
of these statements to be treated as a Format 3, Accept Terminal I-O, or Format 2,
Display Terminal I-O, statement, respectively. If the CONSOLE IS CRT clause is
not specified, then such statements are treated as described in the ISO 1989-1985
standard for the COBOL language (also referred to as American National Standard
X3.23-1985 COBOL in the United States).

CRT STATUS Clause

2data-name-ISSTATUSCRT

The CRT STATUS clause specifies a numeric data item into which the field
termination code value is moved after a Format 3, Accept Terminal I-O, or Format 5,
Accept Screen-Name, ACCEPT statement is executed. See the descriptions of these
formats of the ACCEPT statement for information on the field termination code
values and their meanings. Also, consult the RM/COBOL Users Guide for
information on configuring field termination code values.

data-name-2 should be described in the Working-Storage Section of the program as a
numeric integer data item. If data-name-2 is not qualified and is not defined in the
Data Division, the compiler assumes a Working-Storage Section data description
entry of the following form:

01 data-name-2 PIC 9(9) BINARY(4).

data-name-2 may be qualified.

Note Use of this clause avoids the need to specify an identifier-9 in the ON
EXCEPTION phrase of each Format 3 ACCEPT statement for which the field
termination code value is needed after the ACCEPT statement is executed. If both
the CRT STATUS clause and identifier-9 are specified, the field termination code
value is moved to data-name-2 and identifier-9 after the ACCEPT statement is
executed. The field termination code value can also be obtained with the Format 2,
Accept from Implicit Definition, ACCEPT statement by specifying the ESCAPE
KEY phrase.

Configuration Section
Chapter 3: Environment Division

60 RM/COBOL Language Reference Manual
 First Edition

CURRENCY SIGN Clause

literal-7ISSIGNCURRENCY

The literal that appears in the CURRENCY SIGN clause is used in the PICTURE
clause to represent the currency symbol. The literal must be nonnumeric and is
limited to a single character. The value of the literal must not be any of the following
characters:

• Alphabetic characters A, B, C, D, P, R, S, V, X, Z or the space

• Digits 0 through 9

• Special characters: * + – , . ; () ” / =

If the CURRENCY SIGN clause is specified, then both the default currency sign ($)
and the currency symbol (cs) specified in the CURRENCY SIGN clause may be used
in PICTURE character-strings in that source program, although they are mutually
exclusive in any one PICTURE character-string. The values of the currency sign and
currency symbol may be changed at execution time by runtime configuration as
explained in the RM/COBOL User’s Guide. If CURRENCY SIGN IS “$” is
specified, then “$” is the currency symbol and there is no currency sign.

If the CURRENCY SIGN clause is not specified, only the currency sign ($) is used
in PICTURE character-strings and there is no currency symbol.

CURSOR Clause

1data-name-ISCURSOR

The CURSOR clause specifies the data item to use as the cursor address for a
Format 5, Accept Screen-Name, ACCEPT statement.

data-name-1 must refer to an unsigned numeric integer display data item with either
four or six digits. If the item has four digits, the first two are interpreted as a line
number and the second two as a column number. If the item has six digits, the first
three are interpreted as a line number and the second three as a column number. If
data-name-1 is not qualified and is not defined in the Data Division, the compiler
assumes a Working-Storage Section data description entry of the following form:

01 data-name-1 PIC 9(6) DISPLAY.

data-name-1 may be qualified.

The CURSOR clause has no effect if the data item referred to by data-name-1
contains a nonnumeric value, zeroes, or a value that is beyond the end of the screen
at the beginning of a Format 5 ACCEPT statement. In this case, the cursor is
positioned to the start of the first input field on the screen as if the CURSOR clause
had not been specified.

If data-name-1 refers to a data item that contains a valid screen position at the
beginning of a Format 5 ACCEPT statement, and that position corresponds to an
input field, that position is used as the initial position for the cursor. This position
may be at the beginning of an input field or at some offset within the input field. The
offset may be reduced if the field contains a value that does not fill the field to the
specified offset.

 Configuration Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 61
 First Edition

If data-name-1 contains a valid screen position that does not correspond to an input
field for the executing Format 5 ACCEPT statement, the cursor is positioned to the
next such field, or if there is no succeeding input field, to the first input field. The
ordering of input fields is the order in which their descriptions appear in the Screen
Section of the Data Division.

At the end of a Format 5 ACCEPT statement, if the cursor position was used in that
statement execution, the data item referred to by data-name-1 is updated with the
position of the cursor at the termination of that statement.

The CURSOR clause has no effect on the positioning of fields on the screen.

DECIMAL-POINT Clause

COMMAISPOINT-DECIMAL

The DECIMAL-POINT IS COMMA clause declares that the function of the comma
and period are exchanged in the character-string of the PICTURE clause, in numeric
literals, and in conversion of numeric data for the ACCEPT and DISPLAY
statements. The value of the decimal point and comma characters may be changed at
execution time by runtime configuration regardless of the presence of this clause as
explained in the RM/COBOL User’s Guide.

Mnemonic-Name Clause

ame-3mnemonic-n1-I-O-name-low-volume

ame-2mnemonic-nme-1feature-na

name-2condition-
name-1condition-

name-2condition-
name-1condition-ame-1mnemonic-n

e-1switch-nam

IS

IS

ISSTATUSOFF
ISSTATUSON

ISSTATUSOFF
ISSTATUSONIS




















































The mnemonic-name clause provides a means to relate names to switches, features,
and low-volume I-O devices available in the implementation.

switch-name may be SWITCH-1, SWITCH-2, . . ., SWITCH-8 or UPSI-0,
UPSI-1, . . ., UPSI-7. Switch-names UPSI-0 through UPSI-7 are synonymous with
switch-names SWITCH-1 through SWITCH-8.

The status of any switch may be altered by the execution of a Format 3 SET
statement that specifies as its operand the mnemonic-name associated with that
switch.

Zero, one or two condition-names may be defined with each switch-name entry.
Condition-names defined in this way become associated with the ON or OFF status
of a switch and may be used in condition-name tests in the Procedure Division to
interrogate the current setting of the switch.

feature-name-1 may be any of the channel-names C01, C02, . . ., C12. The
feature-name entries may be used to associate mnemonic-names with specific
channel-names. The mnemonic-names may then be used in WRITE and SEND
statements to control vertical positioning on a hard-copy printing device. The actual

Configuration Section
Chapter 3: Environment Division

62 RM/COBOL Language Reference Manual
 First Edition

effect of the various channel-names is hardware-dependent and is, therefore, defined
in the RM/COBOL User’s Guide.

low-volume-I-O-name-1 may be CONSOLE, SYSIN, or SYSOUT. CONSOLE is
the primary terminal (keyboard and screen) associated with the run unit of which this
program is a part. SYSIN is the standard input file for the run unit that may be the
keyboard of the primary terminal. SYSOUT is the standard output file for the run
unit, which may be the screen of the primary terminal.

mnemonic-name-1, mnemonic-name-2 and mnemonic-name-3 are user-defined
words. Their meaning is defined in the SPECIAL-NAMES paragraph, as shown
above. Once defined, they may be used in certain contexts within the Procedure
Division, as follows:

• mnemonic-name-1 becomes the name of a particular switch; it may be used only
in SET statements.

• mnemonic-name-2 becomes a reference to a feature-name. It may be used only
in SEND and WRITE statements.

• mnemonic-name-3 becomes a reference to the associated low-volume-I-O-name.
It may be used only in ACCEPT and DISPLAY statements.

NUMERIC SIGN Clause

[]CHARACTERSEPARATETRAILING
LEADINGISSIGNNUMERIC









The NUMERIC SIGN clause declares the default operational sign format for signed
numeric display data items described without a SIGN clause in their data description
entry. If this clause is not specified for a signed data item described with an explicit
PICTURE clause, the default is as if NUMERIC SIGN IS TRAILING were
specified. However, if the S (Separate Sign) Compile Command Option is specified,
the default is modified to be as if SIGN IS TRAILING SEPARATE were specified.

The NUMERIC SIGN clause does not apply to data items described with an implied
PICTURE character-string based on a signed numeric literal in the VALUE clause.
In this case, a SIGN IS LEADING SEPARATE clause is assumed if no explicit
SIGN clause is specified in the same data description entry. For additional
information on implied PICTURE character-strings, see the description of the
VALUE clause (on page 135).

Note Specifying the NUMERIC SIGN IS TRAILING SEPARATE clause in the
Special-Names paragraph avoids having to remember to specify the S Compile
Command Option on each compile of a source program that requires this option.

 Configuration Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 63
 First Edition

SYMBOLIC CHARACTERS Clause

{ }

{ } []ame-2alphabet-ninteger-1

haracter-1symbolic-c

IN

ARE
IS

CHARACTERS
CHARACTERSYMBOLIC

LL

L





















The SYMBOLIC CHARACTERS clause provides the ability to define named
figurative constants above and beyond those that are standard in the language. Such
additional figurative constants are named by the symbolic-character, which is a user-
defined word. A given symbolic-character may not be defined more than once in a
program. In the SYMBOLIC CHARACTERS clause, the relationship between each
symbolic-character and the corresponding integer is by position; that is, the first
symbolic-character-1 is paired with the first integer-1, the second symbolic-
character-1 is paired with the second integer-1, and so on. There must be a one-to-
one correspondence between occurrences of symbolic-character-1 and occurrences
of integer-1.

If there is no IN alphabet-name-2 clause immediately following integer-1, integer-1
specifies the ordinal position of symbolic-character-1 in the native character set;
otherwise, integer-1 specifies the ordinal position of symbolic-character-1 in the
character set identified by alphabet-name-2.

The ordinal position specified by integer-1 must exist in the native character set. If
the IN phrase is specified, the ordinal position must exist in the character set named
by alphabet-name-2.

The internal representation of symbolic-character-1 is the internal representation of
the character represented in the native character set.

The SYMBOLIC CHARACTERS clause without the IN alphabet phrase associates
an identifier with a native character. integer-1 of the format is the position of the
ASCII or EBCDIC code rather than the code itself. Position has an offset of 1 from
the value of the code. Appendix J: Code-Set Translation Tables in the RM/COBOL
User’s Guide shows the ASCII and EBCDIC character positions.

For example:

; CTER IS 22 NAK-CHARACHARACTERS SYMBOLIC

This clause achieves its intended result only if the native character set is ASCII. If
the native character set is EBCDIC, NAK-CHARACTER still receives the value of
position 22, but the value is interpreted as a newline character.

The following clauses define an EBCDIC NAK character:

 -ALPHABET; IN EBCDICCTER IS 62 NAK-CHARACHARACTERS SYMBOLIC
BCDIC;HABET IS EEBCDIC-ALP ALPHABET

If the native character set is EBCDIC, the identifier EBCDIC-NAK is associated
with the value 62 (3Dh plus 1). If the native character set is ASCII, the identifier
EBCDIC-NAK is associated with the value 22.

Input-Output Section
Chapter 3: Environment Division

64 RM/COBOL Language Reference Manual
 First Edition

Input-Output Section
The Input-Output section names the files and external media required by an object
program and provides information required for transmission and handling of data
during execution of the object program. This section is divided into two paragraphs:

1. FILE-CONTROL paragraph (on page 65), which names and associates the files
with external media.

2. I-O-CONTROL paragraph (on page 79), which defines special control
techniques to be used in the object program.

.SECTIONOUTPUT-INPUT







.CONTROL-FILE

{ }Lol-entry-1file-contr










.CONTROL-O-I

[]
L








































































































name-1condition-
integer-2

2file-name-
integer-1

-1rerun-name
1file-name-

UNITS-CLOCK

OF
RECORDS

UNIT
REELOFEND

EVERY

ONRERUN

{ } LL


































4file-name-3file-name-FORAREA

MERGE-SORT
SORT
RECORD

SAME

[]{ }










































 .L
Linteger-35file-name- ISPOSITION

CONTAINSTAPEFILEMULTIPLE

 Input-Output Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 65
 First Edition

FILE-CONTROL Paragraph
The FILE-CONTROL paragraph names each file and allows specification of other
file-related information.

The content of file-control-entry-1 depends on the organization of the file named. In
addition, there is a separate form for a sort-merge file.

File Control Entry

The file control entry names a sequential, relative, or indexed organization file and
provides other file-related information.

[][] 1file-name-OPTIONALNOTSELECT





















































































literal-1
1data-name-

e-1device-nam

literal-1
1data-name-

TAPE
RANDOM

OUTPUT-INPUT
OUTPUT
INPUT
DISPLAY

TOASSIGN

[] 





















AREAS
AREAALTERNATENORESERVE integer-1

[]































































INDEXED

RELATIVE

SEQUENTIALLINE
BINARY

ISONORGANIZATI


















literal-2
2data-name-ISCHARACTERPADDING


















name-1delimiter-
1-STANDARDISDELIMITERRECORD

[]










































3data-name-ISKEYRELATIVE
DYNAMIC
RANDOM
SEQUENTIAL

ISMODEACCESS

(continued on next page)

Input-Output Section
Chapter 3: Environment Division

66 RM/COBOL Language Reference Manual
 First Edition

(continued from previous page)

[]































































EXCLUSIVE

RECORDS
RECORDMULTIPLEONLOCKWITHAUTOMATIC

MANUAL

ISMODELOCK

[]ame-1alphabet-nISSET-CODE

[]ame-2alphabet-nISSEQUENCECOLLATING

{ }

[] 










=


DUPLICATESWITH

ISKEYRECORD L5data-name-name-1split-key-
4data-name-

{ }
[] L

L












=


DUPLICATESWITH

ISKEYRECORDALTERNATE 7data-name-name-2split-key-
6data-name-

[] .ISSTATUSFILE 8data-name-

SELECT Clause

[][] 1file-name-OPTIONALNOTSELECT

The SELECT clause must be specified first in the file control entry. The clauses that
follow may appear in any order. (These other clauses are discussed in alphabetical
order on the following pages.)

If the file connector referenced by file-name-1 is an external file connector, all file
control entries in the run unit which reference this file connector must have:

• The same specification for the OPTIONAL phrase.

• A consistent specification for device-name-1 in the ASSIGN clause. The file
access name specified in the ASSIGN clause, literal-1 or data-name-1, or in the
VALUE OF clause should also be consistent, but the file access name specified
by the program that executes the OPEN statement for file-name-1 will be used.

• The same RECORD DELIMITER specification.

• The same value for integer-1 and the same presence or absence of the
ALTERNATE phrase in the RESERVE clause.

• The same organization.

 Input-Output Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 67
 First Edition

• The same access mode.

• The same lock mode.

• The same character set for the CODE-SET clause.

• The same specification for the PADDING CHARACTER clause.

• The same external data item for data-name-3 in the RELATIVE KEY phrase.

• The same collating sequence for the COLLATING SEQUENCE clause.

• The same data description entry for data-name-4 or each data-name-5, the same
number of data-name-5 in the definition of split-key-name-1, the same relative
location within the associated record for data-name-4 or each data-name-5, and
the same presence or absence of the DUPLICATES phrase.

• The same data description entry for data-name-6 or each data-name-7, the same
number of data-name-7 in the definition of split-key-name-2, the same relative
location within the associated record for data-name-6 or each data-name-7, the
same presence or absence of the DUPLICATES phrase, and the same number of
alternate record keys.

The OPTIONAL phrase applies to files opened in input, I-O, or extend modes. Its
specification is required for files that may not be present each time they are opened
for input, I-O, or extend.

The NOT OPTIONAL phrase is redundant commentary because, by default, files are
not optional, that is, files are required to be present each time they are opened for
input, I-O, or extend. The phrase is supported only for compatibility with other
COBOL dialects that include this phrase.

Each file described in the Data Division must be named once and only once as
file-name-1 in the FILE-CONTROL paragraph. Each file specified in a file control
entry must have a file description entry in the Data Division of the same program.

ACCESS MODE Clause

[]































3data-name-ISKEYRELATIVE

DYNAMIC
RANDOM
SEQUENTIAL

ISMODEACCESS

The ACCESS MODE clause specifies the order in which records are to be accessed
in the file. If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

If the access mode is sequential, records in the file are accessed in the sequence
dictated by the file organization:

• For sequential files, this sequence is specified by predecessor-successor record
relationships established by the execution of WRITE statements when the file is
created or extended.

• For relative files, this sequence is the order of ascending or descending relative
record numbers of existing records in the file.

• For indexed files, this sequence is ascending or descending within a given key of
reference according to the collating sequence of the file.

Input-Output Section
Chapter 3: Environment Division

68 RM/COBOL Language Reference Manual
 First Edition

If the access mode is random, records in the file are accessed according to a key
dictated by the file organization:

• For sequential files, random access may not be specified.

• For relative files, this key is the value of the relative key data item specified by
data-name-3 in the RELATIVE KEY phrase. The RELATIVE KEY phrase is
required when RANDOM is specified in the ACCESS MODE clause for a
relative file.

• For indexed files, this key is the value of a record key data item for the file. The
random access mode is not recommended for indexed files that are described
with the DUPLICATES phrase in the RECORD KEY clause. If the
DUPLICATES phrase is specified in the RECORD KEY clause of the file
control entry, then DELETE and REWRITE statements are not allowed in the
random access mode, and READ statements can only access the first of a set of
records with the same prime record key value.

If the access mode is dynamic, records in the file may be accessed sequentially or
randomly as described in the rules for the input-output statements. Dynamic access
may not be specified for sequential organization files. The RELATIVE KEY phrase
is required when DYNAMIC is specified in the ACCESS MODE clause for a
relative file.

The RELATIVE KEY phrase may only be specified in the ACCESS MODE clause
of a file control entry that describes a relative organization file. If the access mode is
random or dynamic, the RELATIVE KEY phrase must be specified within the
ACCESS MODE clause for a relative file. Also, if a relative file is referenced in a
START statement, the RELATIVE KEY phrase within the ACCESS MODE clause
must be specified for that file. The relative key data item associated with the
execution of an input-output statement for a relative file is the data item referenced
by data-name-3 in the RELATIVE KEY phrase of the ACCESS MODE clause.

All records stored in a relative file are uniquely identified by relative record numbers.
The relative record number of a given record specifies the record’s logical ordinal
position in the file. The first logical record has a relative record number of 1, and
subsequent logical records have relative record numbers of 2, 3, 4, and so forth.

The data item specified by data-name-3 is used to communicate a relative record
number between the user and the mass storage control system (MSCS). data-name-3
may be qualified. data-name-3 must reference an unsigned integer data item whose
description does not contain the PICTURE symbol ‘P’. data-name-3 must not be
defined in a record description entry associated with file-name-1. If data-name-3 is
specified, is not qualified, and is not defined in the Data Division, the compiler
assumes a Working-Storage Section data description entry of the following form:

01 data-name-3 PIC 9(9) BINARY(4).

If the associated file connector is an external file connector, every file control entry
in the run unit that is associated with that file connector must specify the same access
mode. In addition, for relative files, data-name-3 must reference an external data
item and the RELATIVE KEY phrase in each associated file control entry must
reference that same external data item in each case.

 Input-Output Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 69
 First Edition

ASSIGN Clause





















































































literal-1
1data-name-

e-1device-nam

literal-1
1data-name-

TAPE
RANDOM

OUTPUT-INPUT
OUTPUT
INPUT
DISPLAY

TOASSIGN

The ASSIGN clause specifies the association of the file referenced by file-name-1
with a class of external storage devices as indicated by device-name-1. For
sequential organization files, there are 18 permissible selections for device-name-1.
They are CARD-PUNCH, CARD-READER, CASSETTE, CONSOLE, DISC,
DISK, DISPLAY, INPUT, INPUT-OUTPUT, KEYBOARD, LISTING,
MAGNETIC-TAPE, OUTPUT, PRINT, PRINTER, PRINTER-1, RANDOM, and
TAPE. For relative and indexed organization files, one of the mass storage device
names (DISC, DISK, or RANDOM) must be specified or implied.

The contexts in which file-name-1 is used in the rest of the program establish these
constraints on the device-name-1 that may be assigned:

1. If the file is used in an OPEN I-O statement, or if a record of the file is used in a
REWRITE statement, device-name-1 must be DISC, DISK or RANDOM. In
this context, these words are synonymous.

2. If the file is used in an OPEN INPUT or READ statement, or if it appears
in the USING list of a SORT or MERGE statement, device-name-1 must be
CARD-READER, CASSETTE, CONSOLE, DISC, DISK, INPUT,
INPUT-OUTPUT, KEYBOARD, MAGNETIC-TAPE, RANDOM or TAPE.

3. If the file is used in an OPEN EXTEND or OPEN OUTPUT statement, if it
appears in the GIVING list of a SORT or MERGE statement, if it is used in a
RERUN ON phrase, or if a record of the file is used in a WRITE statement,
device-name-1 must be CARD-PUNCH, CASSETTE, CONSOLE, DISC, DISK,
DISPLAY, INPUT-OUTPUT, MAGNETIC-TAPE, OUTPUT, PRINT,
PRINTER, PRINTER-1, RANDOM or TAPE.

The ASSIGN clause may also specify the file access name with literal-1 or as the
contents of a data item identified by data-name-1. The file access name is the name
used to identify the physical file when the program is run. See the file description
entry VALUE OF clause (on page 97) for an alternative method of specifying the file
access name. If neither the ASSIGN clause nor the VALUE OF clause specifies a
file access name, then file-name-1 is used for the file access name. In any case, the
value of the file access name must be valid according to operating system dependent
rules for identifying a file or device. If the file access name is specified by a literal in
the program, portability is more likely if the file access name is short (eight or fewer
characters) and contains only letters and digits. Most operating systems provide a
means to map such file access names to the longer names necessary to identify a
particular physical file. See the RM/COBOL User’s Guide for information on
mapping file access names at execution time.

If literal-1 is specified, it must be a nonnumeric literal.

Input-Output Section
Chapter 3: Environment Division

70 RM/COBOL Language Reference Manual
 First Edition

When the file access name is specified by data-name-1 or literal-1, device-name-1
may be omitted and the compiler will infer the storage device type from the
organization of the file and the I-O statements used in the program. If file-name-1
refers to an external file connector for a sequential file, the compiler will assume a
mass storage device when device-name-1 is omitted.

If data-name-1 is specified, it must be defined in the Data Division as a data item of
the category alphanumeric. The value of this data item is used as the file access
name at the time an OPEN statement is executed for the file. If data-name-1 refers
to a variable length group, the maximum size of the group will be used to determine
the file access name, independent of the value of the DEPENDING ON data item.
data-name-1 may be qualified. If data-name-1 is specified, is not qualified, and is
not defined in the Data Division, the compiler assumes a Working-Storage Section
data description entry of the following form:

01 data-name-1 PIC X(256).

CODE-SET Clause

ame-1alphabet-nISSET-CODE

The CODE-SET clause specifies the character code convention used to represent
data on the external medium. That external character code convention may or may
not be the same as the internal native character code convention.

When there is a CODE-SET clause associated with a file, and its alphabet-name-1
specifies a code-set other than the native code-set, then for each record of the file that
is read from or written to the external medium a character-by-character translation is
done to convert the text of the record according to the mapping specified by
alphabet-name-1.

If there is no CODE-SET clause associated with a file, or if there is a CODE-SET
clause and its alphabet-name-1 specifies the native code-set, the external character
code convention for the file is the same as the internal code convention, and no
character translation is done.

A CODE-SET clause for a file may be specified either in the file control entry for the
file (as shown in the format), or in the file description entry for the file in the Data
Division. It is permissible to specify a CODE-SET clause in both places, but both
alphabet-names must be the same.

If the associated file connector is an external file connector, all CODE-SET clauses
in the run unit that are associated with that file connector must have the same
character set.

In some runtime environments the identity of the code-set associated with a file at the
time it is created is preserved with the file as one of its fixed attributes. In such
environments it may be a requirement that each time the file is subsequently opened
the code-set associated with the file be the same as its original code-set. See the
RM/COBOL User’s Guide for more specific information.

 Input-Output Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 71
 First Edition

COLLATING SEQUENCE Clause

ame-2alphabet-nISSEQUENCECOLLATING

The COLLATING SEQUENCE clause may be used to specify a character mapping
to be used on the values of the keys of an indexed file before determining their
ordering. If no COLLATING SEQUENCE clause is present, the keys are ordered
according to the collating sequence implied by the explicitly specified or default
code-set of the file. When this clause is used, alphabet-name-2 must have been
defined as an alphabet-name in the SPECIAL-NAMES paragraph of the
Configuration Section in the Environment Division. The character code set
designated by alphabet-name-2 determines the ordering of the keys of the file.
Support for a specified collating sequence is system-dependent. On those systems
that do not support a specific collating sequence, the native collating sequence is
used. See the RM/COBOL User’s Guide for details.

The COLLATING SEQUENCE clause may only be specified in a file control entry
that describes an indexed organization file.

In some runtime environments, the specification of a COLLATING SEQUENCE
clause has no effect. In other runtime environments, the identity of the collating
sequence associated with a file at the time it is created is preserved with the file as
one of its fixed attributes. In such environments it may be a requirement that each
time the file is subsequently opened, the collating sequence specified for the file be
the same as its original collating sequence. See the RM/COBOL User’s Guide for
more specific information on this point.

FILE STATUS Clause

8data-name-ISSTATUSFILE

When the FILE STATUS clause is specified, a value will be moved by the runtime
system into the data item specified by data-name-8 after the execution of every
statement that references the file either explicitly or implicitly. This value indicates
the status of execution of the statement. data-name-8 must be defined in the Data
Division as a two-character data item of the category alphanumeric and must not be
defined in the File Section. data-name-8 may be qualified. The data item referenced
by data-name-8 that is updated during the execution of an input-output statement
is the one specified in the file control entry associated with that statement. If
data-name-8 is specified, is not qualified, and is not defined in the Data Division,
the compiler assumes a Working-Storage Section data description entry of the
following form:

01 data-name-8 PIC X(2).

Input-Output Section
Chapter 3: Environment Division

72 RM/COBOL Language Reference Manual
 First Edition

LOCK MODE Clause

[]


















































EXCLUSIVE

RECORDS
RECORDMULTIPLEONLOCKWITHAUTOMATIC

MANUAL

ISMODELOCK

The LOCK MODE clause specifies whether a file is to be opened in exclusive or
shared lock mode and, if shared, the record locking mode. If the LOCK MODE
clause is omitted in the file control entry, the file sharing lock mode for the file is
determined by options in the OPEN statement, the environment in which the file is
opened and a configurable default (see the topic, “File Sharing,” and the FORCE-
USER-MODE configuration keyword in the RM/COBOL User’s Guide). The default
record locking mode for shared files opened for input-output (open I-O mode) is
automatic single.

• The EXCLUSIVE phrase indicates that all OPEN statements that refer to file-
name-1 are to open the file in exclusive mode.

• The MANUAL phrase indicates that an OPEN statement without the
EXCLUSIVE or an applicable WITH LOCK phrase for file-name-1 is to open
the file in shared mode and, if the open mode is I-O, in one of the manual record
locking modes.

• The AUTOMATIC phrase indicates that an OPEN statement without the
EXCLUSIVE or an applicable WITH LOCK phrase for file-name-1 is to open
the file in shared mode and, if the open mode is I-O, in one of the automatic
record locking modes.

• The LOCK ON RECORD phrase specifies one of the single record locking
modes. Single record locking modes apply when AUTOMATIC or MANUAL
is explicitly stated without the MULTIPLE option.

• The LOCK ON MULTIPLE RECORDS phrase specifies one of the multiple
record locking modes.

See File Locking (on page 233) for a description of file locking modes. See Record
Locking (on page 234) for a description of record locking modes. If the associated
file connector is an external file connector, every file control entry in the run unit that
is associated with that file connector must specify the same lock mode.

 Input-Output Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 73
 First Edition

ORGANIZATION Clause

[]





































INDEXED

RELATIVE

SEQUENTIALLINE
BINARY

ISONORGANIZATI

The ORGANIZATION clause specifies the logical structure of a file. The file
organization is established at the time a file is created and cannot subsequently be
changed. When the ORGANIZATION clause is not specified, ORGANIZATION IS
SEQUENTIAL is implied.

Sequential

Sequential organization is a permanent logical file structure in which a record is
identified by a predecessor-successor relationship established when the record is
placed into the file.

Sequential files may be further classified by the record delimiting technique used to
determine the length of records in the file. The ORGANIZATION clause may
specify the record delimiting technique to be binary sequential with the BINARY
option or line sequential with the LINE option. For additional information on record
delimiting techniques, see the description of the RECORD DELIMITER clause (on
page 74.)

Relative

Relative organization is a permanent logical file structure in which each record is
uniquely identified by an integer value greater than zero, which specifies the record’s
logical ordinal position in the file.

Indexed

Indexed organization is a permanent logical file structure in which each record is
identified by the value of one or more keys within that record. All records are
uniquely identified by the value of the prime record key, except when the
DUPLICATES phrase is specified in the RECORD KEY clause. Alternate record
keys may be defined to provide alternate access paths to records in an indexed file.
Record keys may be split keys, which are a concatenation of a sequence of data items
that are not necessarily contiguous within the record.

Input-Output Section
Chapter 3: Environment Division

74 RM/COBOL Language Reference Manual
 First Edition

PADDING CHARACTER Clause









literal-2
2data-name-ISCHARACTERPADDING

The PADDING CHARACTER clause provides a way to specify the character that is
used to fill out or pad blocks for sequential files. If the padding character is defined
with a data-name, data-name-2 may be qualified. It must refer to a one-character
data item of the category alphanumeric defined in the Working-Storage or Linkage
Section. If the padding character is defined with a literal, literal-2 must be a one-
character nonnumeric literal. If data-name-2 is specified, is not qualified, and is not
defined in the Data Division, the compiler assumes a Working-Storage Section data
description entry of the following form:

01 data-name-2 PIC X(1).

The PADDING CHARACTER clause may only be specified in a file control entry
that describes a sequential organization file.

literal-2 or the value of the data item referenced by data-name-2 at the time the file is
opened for output is used as the value of the padding character, and this value
becomes a fixed attribute of the file.

During input operations on a file whose file control entry includes a PADDING
CHARACTER clause, any portion of a block that exists beyond the last logical
record and consists entirely of padding characters is bypassed, and a logical record
that consists entirely of padding characters is ignored. During output operations on
such a file, any portion of a block that exists beyond the last logical record is filled
out with padding characters.

The use and recognition of padding characters occur only if such operations are
compatible with the supporting device type. See the RM/COBOL User’s Guide for
more information on this point.

If the associated file connector is an external file connector, all PADDING
CHARACTER clauses in the run unit that are associated with that file connector
must have the same specifications. If data-name-2 is specified, it must reference an
external data item.

RECORD DELIMITER Clause









name-1delimiter-
1-STANDARDISDELIMITERRECORD

The RECORD DELIMITER clause specifies the record delimiting technique for a
sequential file. The record delimiting technique determines how records are
separated on the external medium. An alternative method of specifying the record
delimiting technique is the LINE or BINARY option of the ORGANIZATION
clause. The record delimiting technique is established at the time a file is created and
cannot subsequently be changed.

The RECORD DELIMITER clause may only be specified in a file control entry that
describes a sequential organization file.

The RECORD DELIMITER clause with the BINARY-SEQUENTIAL option
specifies that the file record delimiting technique is binary sequential. The binary

 Input-Output Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 75
 First Edition

sequential record delimiting technique uses record length headers and trailers to
delimit each variable-length record on the external medium. This allows binary
sequential files to contain data items with usage other than DISPLAY. For fixed-
length binary sequential records, no record delimiter is needed or used. All
characters in the records of a binary sequential file are treated as data, not as control
characters. When the BINARY-SEQUENTIAL option is specified, the
ORGANIZATION clause must not specify the LINE option.

The RECORD DELIMITER clause with the LINE-SEQUENTIAL option specifies
that the file record delimiting technique is line sequential. The line sequential record
delimiting technique is defined to be the same as that used by the standard system
text editor. Typically, this record delimiting technique uses special control
characters to delimit each record, for example, a carriage-return line-feed pair.
Therefore, such files should contain only data items that are explicitly or implicitly
defined with USAGE IS DISPLAY. If there are data items with usage other than
DISPLAY in a line sequential file, their values may be interpreted as control
characters, for example, record separators or horizontal tabs. When the LINE-
SEQUENTIAL option is specified, the ORGANIZATION clause must not specify
the BINARY option.

The use of the RECORD DELIMITER clause with the STANDARD-1 option is
meaningful only when the supporting external medium is magnetic tape. When this
is the case, the clause may be used to indicate that the method of determining the
length of a variable record on the external medium is as specified in American
National Standard X3.27-1978, Magnetic Tape Labels and File Structure for
Information Interchange and International Standard 1001 1979, Magnetic Tape
Labels and File Structure for Information Interchange. See the RM/COBOL User’s
Guide for more information on this point. The RECORD DELIMITER clause with
the STANDARD-1 option may not be specified if LINE or BINARY is specified in
the ORGANIZATION clause since they each specify a different record delimiting
technique.

If the RECORD DELIMITER clause is not specified and neither the LINE nor
BINARY option is specified in the ORGANIZATION clause, the record delimiting
technique for the file is determined by the presence of a Compile Command option or
a Runtime Command option. See the RM/COBOL User’s Guide for further
information on these options.

If the associated file connector is an external file connector, all RECORD
DELIMITER clauses in the run unit that are associated with that file connector must
have the same specifications.

Input-Output Section
Chapter 3: Environment Division

76 RM/COBOL Language Reference Manual
 First Edition

RECORD KEY and ALTERNATE RECORD KEY Clauses

{ } []DUPLICATESWITHISKEYRECORD








= L5data-name-name-1split-key-
4data-name-

{ }

[]DUPLICATESWITH

ISKEYRECORDALTERNATE








= L7data-name-name-2split-key-
6data-name-

The RECORD KEY clause specifies the record key that is the prime record key for
an indexed file. The values of the prime record key must be unique among records
of the file, except when the DUPLICATES phrase is specified in the RECORD KEY
clause. This prime record key provides an access path to records in an indexed file.
split-key-name-1 names a concatenation of one or more data items within a record
associated with the file. The concatenation of the data items, which need not be
contiguous within the record, forms a single record key. split-key-name-1 may be
specified only in a READ or START statement.

An ALTERNATE RECORD KEY clause specifies a record key that is an alternate
record key for an indexed file. This alternate record key provides an alternate access
path to records in an indexed file. Up to 254 alternate record keys may be declared
for an indexed organization file. split-key-name-2 names a concatenation of one or
more data items within a record associated with the file. The concatenation of the
data items, which need not be contiguous within the record, forms a single record
key. split-key-name-2 may be specified only in a READ or START statement.

Note There is a limit of 255 key segments per indexed file. Thus, if split keys are
used, the limit of 254 alternate keys is reduced accordingly.

The RECORD KEY and ALTERNATE RECORD KEY clauses may only be
specified in a file control entry that describes an indexed organization file.

The RECORD KEY clause is required in a file control entry that describes an
indexed organization file.

If the associated file connector is an external file connector, every file control entry
in the run unit that is associated with that file connector must specify the same data
description entry for data-name-4, data-name-6 or each data-name-5, data-name-7,
the same number of data-name-5, data-name-7 in the definition of split-key-name-1,
split-key-name-2, the same relative location within the associated record for data-
name-4, data-name-6 or each data-name-5, data-name-7, the same presence or
absence of the DUPLICATES phrase, and the same number of alternate record keys.

The data descriptions of data-name-4, data-name-5, data-name-6, and data-name-7,
as well as their relative locations within a record, must be the same as those used
when the file was created. The number of alternate keys for the file, the sequence of
data-name-5 or data-name-7 for each key, and the presence or absence of the
DUPLICATES phrase for each key must also be the same as when the file was
created.

The data items to which data-name-4, data-name-5, data-name-6, and data-name-7
refer must each be defined within a record description entry associated with file-
name-1. Each data item must also be defined either as a category alphanumeric data
item or as an unsigned integer data item with DISPLAY usage.

 Input-Output Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 77
 First Edition

None of data-name-4, data-name-5, data-name-6, and data-name-7 may be
described as a data item whose size is variable.

data-name-6 cannot refer to an item whose leftmost character position corresponds to
the leftmost character position of an item to which data-name-4 or any other data-
name-6 associated with this file refers. split-key-name-2 cannot specify a list of data-
names that results in the same key as any other split-key-name-2 associated with this
file. Two record keys are considered the same if they have the same relative offset
within the record for each key segment, the same length for each key segment and
the same number of key segments, where a key segment corresponds to a single data
item in the concatenation of data items that form the split key.

Note The limitation on having no two keys with the same leftmost character position
derives from the standard COBOL implementation of the START statement and the
method of specifying a partial key reference. This limitation is relaxed for split keys,
which are an RM/COBOL extension to standard COBOL.

data-name-4, data-name-5, data-name-6, and data-name-7 may be qualified.

The DUPLICATES phrase specifies that the value of the associated record key may
be duplicated within any of the records in the file. If the DUPLICATES phrase is not
specified, the value of the associated record key must not be duplicated among any of
the records in the file. When the DUPLICATES phrase is specified in the RECORD
KEY clause, the value of the prime record key is not necessarily a unique identifier
for a single record; therefore, in this case, the DELETE and REWRITE statements
are disallowed in the random access mode and are sequential operations in the
dynamic access mode.

Note The ALTERNATE RECORD KEY clauses may be specified in any order
within the file control entry. The compiler sorts the alternate keys into ascending
order of offset within the associated record and then ascending length of key
segment. For two or more keys with the same offset and length of key segment, the
keys are sorted into ascending number of segments. The compiler produces an error
if two or more keys are the same, that is, they have the same relative location of each
segment, the same length for each segment, and the same number of segments. This
sorting of the alternate keys ensures that the associated indexed file description is
independent of the order in which ALTERNATE RECORD KEY clauses are
specified in the programs that refer to an indexed file.

RESERVE Clause

[] 













AREAS
AREAALTERNATENORESERVE integer-1

The RESERVE clause allows the user to specify the number of input-output areas
allocated. If the RESERVE clause is specified, the number of input-output areas
allocated is equal to the value of integer-1 if the ALTERNATE phrase is omitted
or to the value of integer-1 plus one if the ALTERNATE phrase is specified. The
maximum number of input-output areas that can be allocated for a file is 255.
Therefore, the maximum value that integer-1 can have is 254 when the
ALTERNATE phrase is specified, or 255 when the ALTERNATE phrase is
not specified.

Specifying RESERVE NO ALTERNATE AREAS is the same as specifying
RESERVE 1 AREA. Specifying RESERVE NO AREAS is the same as omitting
the RESERVE clause. If the RESERVE clause is not specified, the number of
input-output areas allocated defaults to a number appropriate for the runtime

Input-Output Section
Chapter 3: Environment Division

78 RM/COBOL Language Reference Manual
 First Edition

operating system. See the RM/COBOL User’s Guide for more specific information
on this point.

Sort-Merge File Control Entry

The sort-merge file control entry names a sort or merge file and specifies the
association of the file to a storage-medium.

1file-name-SELECT

.

MERGE
MERGE-SORT

SORT
TOASSIGN

































































literal-1
1data-name-

e-1device-nam

literal-1
1data-name-

SELECT Clause

Each sort or merge file described in the Data Division must be described once and
only once as a file-name in the FILE-CONTROL paragraph. Each sort or merge file
specified in a file control entry must have a sort-merge file description entry in the
Data Division. Since file-name-1 represents a sort or merge file, only the ASSIGN
clause is permitted to follow file-name-1 in the FILE-CONTROL paragraph.

ASSIGN Clause

The ASSIGN clause specifies the association of the sort or merge file referenced
by file-name-1 to a storage medium (device-name-1), such as SORT, MERGE,
SORT-MERGE or SORT-WORK. The device-name may be omitted if a file access
name is specified by data-name-1 or literal-1.

The ASSIGN clause may also specify the file access name with literal-1 or as the
contents of a data item identified by data-name-1. If specified, the file access name
must be correct both syntactically and semantically. However, for a sort-merge file,
the value of the file access name is ignored by the object program.

If literal-1 is specified, it must be a nonnumeric literal.

If data-name-1 is specified, it must be defined in the Data Division as a data item of
the category alphanumeric. data-name-1 may be qualified. If data-name-1 is
specified, is not qualified, and is not defined in the Data Division, the compiler
assumes a Working-Storage Section data description entry of the following form:

01 data-name-1 PIC X(256).

 Input-Output Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 79
 First Edition

I-O-CONTROL Paragraph
The I-O-CONTROL paragraph specifies the points at which rerun is to be
established, the memory area which is to be shared by different files, and the location
of files on a multiple file reel.

[]

[]

[] 





.L

L

L

ile-entrymultiple-f

same-entry

yrerun-entr

.CONTROL-O-I

The I-O-CONTROL paragraph is optional. The clauses within the paragraph may
appear in any order.

Any file-name referenced in the I-O-CONTROL paragraph must be specified in the
FILE-CONTROL paragraph of the same program.

RERUN Clause

[]








































































name-1condition-
integer-2

2file-name-
integer-1

-1rerun-name
1file-name-

UNITS-CLOCK

OF
RECORDS

UNIT
REEL

OFEND

EVERY

ONRERUN

The RERUN clause specifies when and where the rerun information is recorded. The
RERUN clause, when specified, must satisfy the following rules:

1. file-name-1 must be a sequentially organized file.

2. The END OF REEL or END OF UNIT phrase may be used only if file-name-2 is
a sequentially organized file.

3. When the END OF REEL or END OF UNIT phrase is used and file-name-2 is
not an output file, the ON phrase is required.

4. When either the integer-1 RECORDS phrase or the integer-2 CLOCK-UNITS
phrase is specified, the ON phrase with rerun-name-1 must be specified in the
RERUN clause.

5. When condition-name-1 is used, the ON phrase is required.

6. Only one RERUN clause containing the CLOCK-UNITS phrase may be
specified.

7. rerun-name-1 may be any user-defined word.

Input-Output Section
Chapter 3: Environment Division

80 RM/COBOL Language Reference Manual
 First Edition

When either the END OF REEL or END OF UNIT phrase is used without the ON
phrase, the rerun information is written on file-name-2, which must be an output file.
When either the END OF REEL or END OF UNIT phrase is used and file-name-1 is
specified in the ON phrase, the rerun information is written on file-name-1, which
must be an output file. In this case, file-name-2 may be either an input or output file.

When the integer-1 RECORDS phrase is used, the rerun information is written
whenever integer-1 records of file-name-2 have been processed. file-name-2 may be
either an input or output file with any organization or access.

When the integer-2 CLOCK-UNITS phrase is used, the rerun information is written
whenever an interval of time, calculated by an internal clock, has elapsed.

When condition-name is used and file-name-1 is specified in the ON phrase, the
rerun information is written on file-name-1, which must be an output file, whenever a
switch assumes a particular status as specified by the condition-name-1. The
associated switch must be defined in the SPECIAL-NAMES paragraph.

More than one RERUN clause may be specified for a given file-name-2,
provided that:

• When multiple integer-1 RECORDS phrases are specified, no two of them may
specify the same file-name-2.

• When multiple END OF REEL or END OF UNIT phrases are specified, no two
of them may specify the same file-name-2.

SAME Clause

{ }L4file-name-3file-name-FORAREA
MERGE-SORT

SORT
RECORD

SAME
















In the SAME clause, SORT and SORT-MERGE are equivalent.

If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least
one of the file-names must represent a sort or merge file. Files that do not represent
sort or merge files may also be named in the clause.

The file-names specified in a SAME clause may not reference an external file
connector.

The four formats of the SAME clause (SAME AREA, SAME RECORD AREA,
SAME SORT AREA, SAME SORT-MERGE AREA) are considered separately in
the following.

More than one SAME clause may be included in a program. The following
restrictions apply:

1. A file-name must not appear in more than one SAME AREA clause.

2. A file-name must not appear in more than one SAME RECORD AREA clause.

3. A file-name which represents a sort or merge file must not appear in more than
one SAME SORT AREA or SAME SORT-MERGE AREA clause.

4. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all the file-names in that SAME AREA clause must
appear in the SAME RECORD AREA clause. However, additional file-names
not appearing in that SAME AREA clause may also appear in that SAME

 Input-Output Section
Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 81
 First Edition

RECORD AREA clause. The rule that only one of the files mentioned in a
SAME AREA clause can be open at any given time takes precedence over the
rule that all files mentioned in a SAME RECORD AREA clause can be open at
any given time.

5. If a file-name that does not represent a sort or merge file appears in a SAME
AREA clause and one or more SAME SORT AREA or SAME SORT-MERGE
AREA clauses, all of the files named in that SAME AREA clause must be
named in that SAME SORT AREA or SAME SORT-MERGE area clause.

The files referenced in the SAME AREA, SAME RECORD AREA, SAME SORT
AREA, or SAME SORT-MERGE AREA clause need not all have the same
organization or access.

The SAME AREA clause specifies that two or more files that do not represent sort or
merge files are to use the same memory area during processing. The area being
shared includes all storage areas assigned to the files specified; therefore, it is not
valid to have more than one of the files open at the same time.

The SAME RECORD AREA clause specifies that two or more files are to use the
same memory area for processing of the current logical record. All of the files may
be open at the same time. A logical record in the SAME RECORD AREA is
considered a logical record of each opened output file whose file-name appears in
this SAME RECORD AREA clause and of the most recently read input file whose
file-name appears in this SAME RECORD AREA clause. This is equivalent to an
implicit redefinition of the area (that is, records are aligned on the leftmost character
position).

If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least
one of the file-names must represent a sort or merge file. Files that do not represent
sort or merge files may also be named in the clause. This clause specifies that
storage is shared as follows:

1. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a
memory area which will be made available for use in sorting or merging each
sort or merge file named. Thus, any memory area allocated for the sorting or
merging of a sort or merge file is available for reuse in sorting or merging any of
the other sort or merge files.

2. In addition, storage areas assigned to files that do not represent sort or merge
files may be allocated as needed for sorting or merging the sort or merge files
named in the SAME SORT AREA or SAME SORT-MERGE AREA clause. In
this implementation, no such sharing occurs during execution.

3. Files other than sort or merge files do not share the same storage area with each
other. Users wishing these files to share the same storage area with each other
must also include in the program a SAME AREA or SAME RECORD AREA
clause naming these files.

4. During the execution of a SORT or MERGE statement that refers to a sort or
merge file named in this clause, any non sort-merge files named in this clause
must not be open.

Input-Output Section
Chapter 3: Environment Division

82 RM/COBOL Language Reference Manual
 First Edition

MULTIPLE FILE Clause

[]{ }Linteger-35file-name- ISPOSITION

CONTAINSTAPEFILEMULTIPLE

The MULTIPLE FILE clause is required when more than one file shares the same
physical reel of tape and the operating system does not specify file positions.
Regardless of the number of files on a single reel, only those files that are used in the
object program need be specified. If all file-names have been listed in consecutive
order, the POSITION clause need not be given.

If any file in the sequence is not listed, the position—one-relative to the beginning of
the tape—must be specified in the POSITION clause. Whenever the POSITION
clause is omitted, the position is assumed to be one greater than the position of the
immediately preceding file in the MULTIPLE FILE clause, except for the first file-
name-5, which is assumed to be in position 1 when the POSITION clause is omitted.

The file-names specified in a MULTIPLE FILE clause may not reference an external
file connector.

Not more than one file on the same tape reel may be open at one time.

 Data Division Structure
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 83
 First Edition

Chapter 4: Data Division

The Data Division describes the data that the object program is to accept as input, to
manipulate, to create, or to produce as output.

The Data Division is optional. It is subdivided into five subordinate sections, each of
which is optional. The entire Data Division may be omitted, but only when none of
the subordinate sections are present.

Data Division Structure
The five subordinate sections in the Data Division are as follows:

1. File Section (on page 86), which defines the structure of data files. Each file is
defined by a file description entry and one or more record descriptions. Record
descriptions are written immediately following the file description entry.

2. Working-Storage Section (on page 98), which describes records and
noncontiguous data items which are not part of external data files but are
developed and processed internally. It also describes data items whose values,
assigned in the source program, do not change during execution of the object
program.

3. Linkage Section (on page 98), which describes formal arguments to be
associated with actual arguments passed in the USING or GIVING phrases
of a CALL statement and records to be based on a pointer value by use of the
SET statement.

No space is allocated in the program for data items defined in the Linkage
Section of that program. Procedure Division references to these data items are
resolved at runtime by replacing the reference in the program with the location
assigned by the calling program for a formal argument associated with an actual
argument or the location assigned by the most recently executed SET statement
that established the base address for a based linkage record. In the case of
index-names, no such correspondence is established. Index-names in the called
and calling program always refer to separate indexes for indexes defined in the
Linkage Section.

Data Division Structure
Chapter 4: Data Division

84 RM/COBOL Language Reference Manual
 First Edition

Data items defined in the Linkage Section of a program may be referenced
within the Procedure Division of that program only if they are specified as
operands of the USING or GIVING phrases of the Procedure Division header,
or are subordinate to such operands, and the object program is under the control
of a CALL statement that specifies a USING or GIVING phrase that includes a
corresponding actual argument to associate with the formal argument, or the
SET statement has been used to associate an address with the linkage record.
An exception to this rule is that the ADDRESS OF special register may
reference the record-name and will return NULL if the reference requirements
have not been satisfied.

4. Communication Section (on page 100), which describes the data items that serve
as the interface between the Message Control System (MCS) and the program.

5. Screen Section (on page 101), which describes the layout and attributes of fields
on a terminal screen. It also provides for the automatic transfer of data between
screen fields and data items defined in the other sections of the Data Division.

 Data Division Structure
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 85
 First Edition

.DIVISIONDATA







.SECTIONFILE







{ }
{ } 











 LL

L
ntry-2cription-erecord-destry-1ription-en-file-descsort-merge

ntry-1cription-erecord-desry-1iption-entfile-descr

.SECTIONSTORAGE-WORKING


















 Lntry-3cription-erecord-des

-entry-1escription77-level-d

.SECTIONLINKAGE


















 Lntry-4cription-erecord-des

-entry-2escription77-level-d

.SECTIONIONCOMMUNICAT







{ }[]






LLntry-5cription-erecord-desy-1ption-entrion-descricommunicat

.SECTIONSCREEN







[]















Lntry-1cription-escreen-des

File Section
Chapter 4: Data Division

86 RM/COBOL Language Reference Manual
 First Edition

File Section
The File Section header is followed by file description entries or sort-merge file
description entries consisting of a level indicator (FD and SD, respectively), a file-
name and a series of independent clauses, terminated by a period. Each file
description entry or sort-merge description entry is followed by one or more record
description entries.

The file description entry and sort-merge file description entry (FD and SD) are the
highest level of organization in the File Section.

{ }
{ } LL

L






ntry-2cription-erecord-destry-1ription-en-file-descsort-merge
ntry-1cription-erecord-desry-1iption-entfile-descr

.SECTIONFILE

A Format 1 (data item initialization) VALUE clause specified in the File Section is
ignored except in the execution of the INITIALIZE statement. The initial value of a
data item in the File Section is undefined.

File Description Entry
The file description entry furnishes information concerning the physical structure,
identification and record names pertaining to a given file.

1file-name-FD

[]EXTERNALIS

[]GLOBALIS

[] 
















CHARACTERS
RECORDSTOCONTAINSBLOCK integer-2integer-1

[]

[] [][]
[] 












































1data-name-

integer-6integer-5

integer-4integer-3

ONDEPENDING
CHARACTERSTOFROM

SIZEINVARYINGIS
CHARACTERSTOCONTAINS

RECORD





































OMITTED
STANDARD

ARERECORDS
ISRECORD

LABEL









































L
literal-1

2data-name-
-1label-name

IS
LABEL

OFVALUE

(continued on next page)

 File Section
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 87
 First Edition

(continued from previous page)

{ }
























L3data-name-
ARERECORDS

ISRECORD
DATA









































































integer-10
7data-name-

integer-9
6data-name-

integer-8
5data-name-

integer-7
4data-name-

BOTTOMATLINESTOPATLINES

ATFOOTINGWITHLINESISLINAGE

[] .ISSET-CODE ame-1alphabet-n

The level indicator FD identifies the beginning of a file description and must precede
the file-name.

The clauses that follow the name of the file are optional and their order of
appearance is not significant.

The LINAGE clause may be used only if file-name-1 references a sequential file. If
the file description entry for a sequential file contains the LINAGE clause and the
EXTERNAL clause, the LINAGE-COUNTER data item is an external data item. If
the file description entry for a sequential file contains the LINAGE clause and the
GLOBAL clause, the special register LINAGE-COUNTER is a global name.

One or more record description entries must follow the file description entry.

A file description entry must end with a period separator.

Sort-Merge File Description Entry
The sort-merge file description entry furnishes information concerning the physical
structure, identification, and record-names of the file to be sorted or merged.

1file-name-SD

[]

[] [][]
[] 












































1data-name-

integer-6integer-5

integer-4integer-3

ONDEPENDING
CHARACTERSTOFROM

SIZEINVARYINGIS
CHARACTERSTOCONTAINS

RECORD

{ } .ARERECORDS
ISRECORDDATA 















 L3data-name-

The level indicator SD identifies the beginning of the sort-merge file description and
must precede the file-name.

The clauses that follow the name of the file are optional and their order of
appearance is immaterial.

File Description Clauses
Chapter 4: Data Division

88 RM/COBOL Language Reference Manual
 First Edition

One or more record description entries must follow the sort-merge file description
entry. Within the Procedure Division, file-name-1 may not be used in OPEN,
CLOSE, READ, START, DELETE or UNLOCK statements, nor may subordinate
record-names be used in WRITE or REWRITE statements.

File Description Clauses
The file description clauses are placed between the FD or SD file-name-1 declaration
and the first of the subordinate record description entries. They serve to specify or
document characteristics that are relevant to the file as a whole rather than to
particular records.

BLOCK CONTAINS Clause

[]








CHARACTERS
RECORDSTOCONTAINSBLOCK integer-2integer-1

The BLOCK CONTAINS clause specifies the size of a physical record.

This clause is required except when:

• A physical record contains only one complete logical record.

• The device assigned to the file has only one physical record size.

• The number of records contained in a block is specified in the runtime
environment.

The size of the physical record may be stated in terms of RECORDS, unless one of
the following situations exists, in which case the RECORDS phrase must not be
used:

• In mass storage files where logical records may extend across physical records.

• The physical record contains padding.

• If logical records are grouped in such a manner that an inaccurate physical
record size would be implied.

When the word CHARACTERS is specified, the physical record size is specified
in terms of the number of character positions required to store the physical record,
regardless of the types of characters used to represent the items within the
physical record.

If only integer-2 is specified, it represents the exact size of the physical record. If
integer-1 and integer-2 are specified, they refer to the minimum and maximum size
of the physical record, respectively.

If the associated file connector is an external file connector, all BLOCK CONTAINS
clauses in the run unit that are associated with that file connector must have the same
value for integer-1 and integer-2.

 File Description Clauses
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 89
 First Edition

CODE-SET Clause

ame-1alphabet-nISSET-CODE

The CODE-SET clause specifies the character code convention used to represent
data on the external media.

When the CODE-SET clause is specified for a file, all data in that file must be
described as usage is DISPLAY and any signed numeric data must be described with
the SIGN IS SEPARATE clause.

If the CODE-SET clause is specified, alphabet-name-1 specifies the character code
convention used to represent data on the external media. It also specifies the
algorithm for converting the character codes on the external media to or from the
native character codes. This code conversion occurs during the execution of an input
or output operation. See the discussion of the SPECIAL-NAMES paragraph (on
page 53).

If the CODE-SET clause is not specified, the native character code set is assumed for
data on the external media.

If the CODE-SET clause is specified in both the file control entry and the file
description entry for a file, the two alphabet-names must be the same.

If the associated file connector is an external file connector, all CODE-SET clauses
in the run unit, which are associated with that file connector, must have the same
character set.

DATA RECORDS Clause

{ }L3data-name-








ARERECORDS
ISRECORDDATA

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file.

data-name-3 is the name of a data record and must have a 01 level-number record
description, with the same name, associated with it.

The presence of more than one data-name indicates that the file contains more than
one type of data record. These records may be of different sizes, different formats,
and so forth. The order in which they are listed is not significant.

All data records within a file share the same area, whether or not they are of the
same type.

File Description Clauses
Chapter 4: Data Division

90 RM/COBOL Language Reference Manual
 First Edition

EXTERNAL Clause

EXTERNALIS

The EXTERNAL clause specifies that a file connector is external.

Use of the EXTERNAL clause does not imply that the associated file-name is a
global name.

The file connector associated with this description entry is an external file connector.
The data records described subordinate to this file description entry, as well as any
data items described subordinate to the data description entries for such records,
attain the external attribute.

If the file-name that is the subject of the EXTERNAL clause is more than 30
characters in length, only the first 30 characters are used at runtime to match with
external files declared in this or any other program in the run unit.

GLOBAL Clause

GLOBALIS

The GLOBAL clause specifies that a file-name is a global name. A global name is
available to every program contained within the program which declares it.

A file-name described using a GLOBAL clause is a global name. All data-names
subordinate to a global name are global names. All condition-names and
split-key-names associated with a global name are global names.

A statement in a program contained directly or indirectly within a program which
describes a global name may reference that name without describing it again.

If the SAME RECORD AREA clause is specified for several files, the record
description entries or the file description entries for these files must not include
the GLOBAL clause.

LABEL RECORDS Clause

















OMITTED
STANDARD

ARERECORDS
ISRECORDLABEL

The LABEL RECORDS clause specifies whether labels are present.

The OMITTED option specifies that no explicit labels exist for the file or the
device to which the file is assigned. The STANDARD option specifies that labels
exist for the file or the device to which the file is assigned and that they conform to
the conventions of the runtime environment. See the RM/COBOL User’s Guide for
more information.

Omission of the LABEL RECORDS clause from a file description entry is
equivalent to specifying LABEL RECORDS OMITTED.

If a VALUE OF clause is present in a file description entry, a LABEL RECORDS
OMITTED clause is not allowed.

 File Description Clauses
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 91
 First Edition

If the file connector associated with this file description entry is an external file
connector, all LABEL RECORDS clauses in the run unit that are associated with
this file connector must have the same specification.

LINAGE Clause




























































integer-10
7data-name-

integer-9
6data-name-

integer-8
5data-name-

integer-7
4data-name-

BOTTOMATLINESTOPATLINES

ATFOOTINGWITHLINESISLINAGE

The LINAGE clause provides a means for specifying the depth of a logical page in
number of lines. It also allows for the specification of the top and bottom margins
on the logical page and the line number at which the footing area begins.

data-name-4, data-name-5, data-name-6, data-name-7 must reference unsigned
numeric integer data items.

data-name-4, data-name-5, data-name-6, data-name-7 may be qualified. If any
of data-name-4, data-name-5, data-name-6, or data-name-7 is specified, is not
qualified, and is not defined in the Data Division, the compiler assumes a
Working-Storage Section data description entry for that respective data-name of
the following form:

01 data-name-n PIC 9(9) BINARY(4).

The LINAGE clause may only be used in a file description entry for a sequential
organization file.

The LINAGE clause provides a means for specifying the size of a logical page in
terms of number of lines. The logical page size is the sum of the values referenced
by each phrase except the FOOTING phrase. If the LINES AT TOP or LINES AT
BOTTOM phrases are not specified, the values of these items are zero. If the
FOOTING phrase is not specified, no end-of-page condition independent of the
page overflow condition exists.

There is not necessarily any relationship between the size of the logical page and
the size of the physical page. Each logical page is contiguous to the next with no
additional spacing provided. When a LINAGE file is written, form feed characters
are not used because they cause the printer to advance to the next physical page.
The LINAGE-PAGES-PER-PHYSICAL-PAGE in the PRINT-ATTR runtime
configuration record may be used to cause form feeds to be generated between a
specified number of logical pages, that is, the option specifies the number of logical
pages that fit on a physical page.

integer-7 or the value of the data item referenced by data-name-4 specifies the
number of lines that can be written, spaced, or both, on the logical page. The value
must be greater than zero. That part of the logical page in which these lines can be
written or spaced is called the page body.

integer-8 or the value of the data item referenced by data-name-5 specifies the line
number within the page body at which the footing area begins. The value must be
greater than zero and not greater than integer-7 or the value of the data item
referenced by data-name-4.

The footing area comprises the area of the page body between the line represented by
integer-8 or the value of the data item referenced by data-name-5, and the line

File Description Clauses
Chapter 4: Data Division

92 RM/COBOL Language Reference Manual
 First Edition

represented by integer-7 or the value of the data item referenced by data-name-4,
inclusive. When lines are written or spaced in the footing area, an end-of-page
condition occurs. The end-of-page condition can be detected by the END-OF-PAGE
(or EOP) phrase of the WRITE statement.

integer-9 or the value of the data item referenced by data-name-6 specifies the
number of lines that comprise the top margin on the logical page. The value may
be zero.

integer-10 or the value of the data item referenced by data-name-7 specifies the
number of lines that comprise the bottom margin on the logical page. The value may
be zero.

integer-7, integer-9 and integer-10, if specified, are used at the time the file is
opened by the execution of an OPEN statement with the OUTPUT phrase, to specify
the number of lines that make up each of the indicated sections of a logical page.
integer-8, if specified, is used at that time to define the footing area. These values
are used for all logical pages written for that file during an execution of the program.

The values of the data items referenced by data-name-4, data-name-6 and
data-name-7, if specified, are used as follows:

• The values of the data items, at the time an OPEN statement with the OUTPUT
phrase is executed for the file, are used to specify the number of lines that make
up each of the indicated sections for the first logical page.

• The values of the data items, at the time a WRITE statement with the
ADVANCING PAGE phrase is executed or a page overflow condition occurs,
are used to specify the number of lines that make up each of the indicated
sections for the next logical page.

The value of the data item referenced by data-name-5, if specified, at the time an
OPEN statement with the OUTPUT phrase is executed for the file, is used to define
the footing area for the first logical page. At the time a WRITE statement with the
ADVANCING PAGE phrase is executed or a page overflow condition occurs, it is
used to define the footing area for the next logical page.

A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The
value in the LINAGE-COUNTER at any given time represents the line number at
which the device is positioned within the current page body. The rules governing
the LINAGE-COUNTER are as follows:

1. A separate LINAGE-COUNTER is supplied for each file whose file description
entry contains a LINAGE clause.

2. LINAGE-COUNTER may be referenced only in Procedure Division statements;
however, only the runtime system may change the value of LINAGE-
COUNTER. Since more than one LINAGE-COUNTER may exist in a program,
the user must qualify LINAGE-COUNTER by file-name-1 when necessary.

3. The LINAGE-COUNTER special register behaves as if it were described as
PIC 9(n) BINARY, where n represents the number of 9's in the PICTURE
character-string for data-name-4 or the number of digits specified in
integer-7. The number of character positions (bytes) allocated for the
LINAGE-COUNTER special register is determined by the value of n and the
configured binary allocation scheme.

If the file description entry for a sequential file contains the LINAGE clause and the
EXTERNAL clause, the LINAGE-COUNTER data item is an external data item. If
the file description entry for a sequential file contains the LINAGE clause and the
GLOBAL clause, the special register LINAGE-COUNTER is a global name.

 File Description Clauses
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 93
 First Edition

LINAGE-COUNTER is automatically modified, according to the following rules,
during the execution of a WRITE statement to an associated file:

1. When the ADVANCING PAGE phrase of the WRITE statement is specified, the
LINAGE-COUNTER is automatically reset to one. During the resetting of the
LINAGE-COUNTER to the value one, the value of LINAGE-COUNTER is
implicitly incremented to exceed the value specified by integer-7 or the data
item referenced by data-name-4.

2. When the ADVANCING identifier-2 or integer-1 phrase of the WRITE
statement is specified, the LINAGE-COUNTER is incremented by integer-1 or
the value of the data item referenced by identifier-2.

3. When the ADVANCING phrase of the WRITE statement is not specified, the
LINAGE-COUNTER is incremented by the value one.

4. The value of LINAGE-COUNTER is automatically reset to one when the device
is repositioned to the first line that can be written on for each of the succeeding
logical pages.

The value of LINAGE-COUNTER is automatically set to one at the time an
OPEN statement with the OUTPUT phrase is executed for the associated file.

If the file connector associated with this file description entry is an external file
connector, all file description entries in the run unit that are associated with this file
connector must have:

1. A LINAGE clause, if any file description entry has a LINAGE clause.

2. The same corresponding values for integer-7, integer-8, integer-9, and
integer-10, if specified.

3. The same corresponding external data items referenced by data-name-4,
data-name-5, data-name-6, and data-name-7.

File Description Clauses
Chapter 4: Data Division

94 RM/COBOL Language Reference Manual
 First Edition

Figure 2 shows the logical page layout for a general LINAGE clause.

Figure 2: Logical Page Layout for General LINAGE Clause

Bottom Margin:
These lines auto skipped

Top Margin:
These lines auto skipped

Page Body:

Lines may be written
or spaced here.

- -
Footing Area:

EOP occurs when lines
written or spaced here.









integer-9
6data-name-









integer-10
7data-name-

1

3

Line 1 ___
Line 2 ___
Line 3 ___

.

.

.









integer-8
5data-name-

 Line









integer-7
4data-name-

 Line

1 The LINES AT TOP phrase may be omitted or may specify a value of zero. In either of
these cases, there is no top margin.

2 The WITH FOOTING clause may be omitted in which case there is a no footing area.
3 The LINES AT BOTTOM phrase may be omitted or may specify a value of zero. In

either of these cases, there is no bottom margin.

2




























































integer-10
7data-name-

integer-9
6data-name-

integer-8
5data-name-

integer-7
4data-name-

BOTTOMATLINESTOPATLINES

ATFOOTINGWITHLINESISLINAGE

 File Description Clauses
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 95
 First Edition

Figure 3 illustrates the logical page layout for a specific LINAGE clause that describes
a 66-line logical page.

Figure 3: Logical Page Layout for Specific LINAGE Clause

Bottom Margin:
(9 lines)

Top Margin:
(15 lines)

Page Body:
(42 lines)

-
Footing Area: 2

1
2
3
.
.
.
.
.
.
.

37

38
39
40
41
42

LINAGE IS 42 LINES WITH FOOTING AT 38
 LINES AT TOP 15 LINES AT BOTTOM 9

RECORD Clause

[]

[] [][]
[] 
























1data-name-
integer-6integer-5

integer-4integer-3

ONDEPENDING
CHARACTERSTOFROM

SIZEINVARYINGIS
CHARACTERSTOCONTAINS

RECORD

The RECORD clause specifies the size of the data records.

Record descriptions for the file must not describe records which contain less
character positions than that specified by integer-3, integer-5 or records which
contain more character positions than that specified by integer-4 or integer-6.

integer-4 must be greater than or equal to integer-3.

integer-6 must be greater than integer-5.

data-name-1 must describe an elementary unsigned integer in the Working-Storage
or Linkage Section. data-name-1 may be qualified. If data-name-1 is specified, is
not qualified, and is not defined in the Data Division, the compiler assumes a
Working-Storage Section data description entry of the following form:

01 data-name-1 PIC 9(9) BINARY(4).

File Description Clauses
Chapter 4: Data Division

96 RM/COBOL Language Reference Manual
 First Edition

If the RECORD clause is not specified, the size of each data record is fully defined
in the record description entry. If all record description entries describe the
same number of character positions—and none contain Format 2 of the OCCURS
clause—the file will be a fixed-length record file; otherwise, the file will be a
variable-length record file.

If the associated file connector is an external file connector, all file description
entries in the run unit which are associated with that file connector must specify the
same values for integer-3 and integer-4, or integer-5 and integer-6. If the RECORD
clause is not specified, all record description entries associated with this file
connector must be the same length.

1. integer-4, used by itself, indicates that all the data records in the file have the
same size. In this case, integer-4 represents the exact number of characters in
the data record. The file will be a fixed-length record file, even if varying length
record descriptions are associated with it.

2. If integer-3 and integer-4 are both shown, they refer to the minimum number of
characters in the smallest size data record and the maximum number of
characters in the largest size data record, respectively. If integer-3 is not equal
to integer-4, the file will be a variable-length record file, even if fixed-length
record descriptions are associated with it.

3. The size is specified in terms of the number of character positions required to
store the logical record, regardless of the types of characters used to represent
the items within the logical record.

The size of a record is determined by the sum of the number of characters in all
fixed-length elementary items, plus any filler characters generated between
elementary items because of explicit or implicit synchronization. If the record is
variable length, the minimum number of characters in a variable-occurrence data
item is added to the fixed size to get the minimum record size. The maximum
number is added to the fixed size to get the maximum record size.

The IS VARYING IN SIZE phrase is used to specify variable record lengths.
integer-5 specifies the minimum number of character positions in any record of the
file. integer-6 specifies the maximum number of character positions in any record in
the file.

If data-name-1 is specified, the number of character positions in the record must be
placed into the data item referenced by data-name-1 before any RELEASE,
REWRITE or WRITE statement is executed for the file.

If data-name-1 is specified, the execution of a DELETE, RELEASE, REWRITE,
START or WRITE statement or the unsuccessful execution of a READ or RETURN
statement does not alter the content of the data item referenced by data-name-1.

During the execution of a RELEASE, REWRITE or WRITE statement, the number
of character positions in the record is determined by one of the following conditions:

• If data-name-1 is specified, by the content of the data item referenced by
data-name-1.

• If data-name-1 is not specified and the record does not contain a variable-
occurrence data item, by the number of the character positions in the record.

• If data-name-1 is not specified and the record contains a variable-occurrence
data item, by the sum of the fixed portion and that portion of the table
described by the number of occurrences at the time of the execution of the
output statement.

 File Description Clauses
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 97
 First Edition

If data-name-1 is specified, after the successful execution of a READ or RETURN
statement for the file, the contents of the data item referenced by data-name-1 will
indicate the number of character positions in the record just read or returned.

When an INTO phrase is specified in a READ or RETURN statement, the number of
character positions in the current record that participate as the sending data item in
the implied MOVE is the number of character positions in the record just read or
returned.

VALUE OF Clause

L
























literal-1
2data-name-

-1label-name ISLABELOFVALUE

The VALUE OF clause particularizes the description of an item in the label records
associated with a file or specifies the file access name.

label-name-1 may be FILE-ID, LABEL or any user-defined word.

When label-name-1 is FILE-ID, data-name-2 or literal-1 specifies the file access
name for the file. VALUE OF FILE-ID provides an alternative to specifying the file
access name in the ASSIGN clause of the file control entry. If the file access name is
specified in both alternatives, the same data-name or literal must be specified in each;
otherwise, the value specified in the file control entry will take precedence. If the
file access name is not specified in either the file control entry or the file description
entry, then file-name-1 is used as the file access name. The value of the file access
name, however specified, must be valid according to the requirements of the runtime
input-output system. If data-name-2 is specified for the file access name, at the time
of an OPEN statement execution for file-name-1, the value of the data item to which
data-name-2 refers will be used as the file access name.

When label-name-1 is LABEL, data-name-2 or literal-1 particularizes the
description of an item in the label records associated with the file. The value of this
data item or literal is available to the runtime input-output system, but is not
currently used for any purpose. LABEL must not be specified for label-name-1
when the OMITTED option is specified in the LABEL RECORDS clause.

When label-name-1 is a user-defined, the phrase is treated as commentary. data-
name-2 or literal-1 must by syntactically correct, but have no effect on the object
program.

data-name-2 may be qualified. data-name-2 must be defined in the Working-Storage
Section and must not be described with the USAGE IS INDEX clause. If data-
name-2 is specified, is not qualified, and is not defined in the Data Division, the
compiler assumes a Working-Storage Section data description entry of the following
form:

01 data-name-2 PIC X(256).

A figurative constant may be substituted for literal-1.

If the associated file connector is an external file connector, all VALUE OF clauses
in the run unit, which are associated with that file connector, must be consistent.

Working-Storage Section
Chapter 4: Data Division

98 RM/COBOL Language Reference Manual
 First Edition

Working-Storage Section
The Working-Storage Section is made up of the section header, followed by data
description entries for 77-level description entries, record description entries, or both.

A data-name defined at the 01 or 77 level in the Working-Storage Section must be
unique only if there is a reference to it elsewhere in the program. Subordinate data-
names need not be unique if they can be made unique by qualification or if there are
no references to them elsewhere in the program.

L





ntry-3cription-erecord-des
-entry-1escription77-level-d

.SECTIONSTORAGE-WORKING

Linkage Section
The structure of the Linkage Section is identical to the Working-Storage Section.
That is, it consists of a section header, followed by data description entries for
noncontiguous data items, record description entries, or both.

A data-name defined at the 01 or 77 level in the Linkage Section must be unique only
if there is a reference to it elsewhere in the program. Subordinate data-names need
not be unique if they can be made unique by qualification or if there are no
references to them elsewhere in the program.

L





ntry-4cription-erecord-des
-entry-2escription77-level-d

.SECTIONLINKAGE

Record description entries and 77-level-description-entries in the Linkage Section
describe record layouts for formal arguments of a program and for based linkage
records. Linkage Section data items are not allocated storage during compilation, but
rather during the execution of the run unit.

The formal arguments of a program are named in the USING and GIVING phrases
of the Procedure Division header and must be names defined as level 01 or level 77
entries in the Linkage Section. Formal arguments receive their base address from the
actual arguments passed by a calling program. Formal arguments may also be
treated as based linkage records; this can be convenient to establish a default
argument when the calling program does not pass the corresponding actual argument.

Based linkage data records are any record-description-entries or 77-level-description-
entries in the Linkage Section that receive their base address by use of Formats 5 or 6
of the SET statement in which the receiving item is an ADDRESS OF data-name-1.
Based linkage records may include formal arguments of a program. For example, it
may be convenient to set the base address of a formal argument when the
corresponding actual argument is omitted.

When a program is placed into its initial state (either on its first CALL in the run unit
or on its first CALL since it has been canceled), the base addresses of all based
linkage records are set equal to NULL. A Format 5 SET statement must be executed
to change the base address to a value other than NULL. Once set, the base address of

 Linkage Section
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 99
 First Edition

a based linkage record remains set until changed by the execution of a Format 5 or
Format 6 SET statement or the program that describes the based linkage item is
canceled. If the program refers to a data item with a NULL base address, other than
in an ADDRESS OF special register or in the USING or GIVING phrases of a CALL
statement, a runtime data reference error will terminate the run unit. The ADDRESS
OF special register may be used to test for a base address that is equal to NULL.

If a based linkage item is also a formal argument, the actual argument base address in
a subsequent CALL statement in the calling program overrides any base address set
or modified by a Format 5 or Format 6 SET statement in the called program. The
override occurs each time that the program is called, unless the actual argument base
address is equal to NULL. When the actual argument base address is equal to
NULL, the last set base address is used instead. If there has been no Format 5 SET
executed to set the base address, the NULL address from the initial state of the
program will be used for a reference and a data reference error will occur except as
described in the preceding paragraph. An actual argument has a NULL base address
in the following cases:

• The actual argument has been omitted from the CALL statement in the calling
program, either by specifying fewer arguments than the number of expected
formal arguments in the called program or by specifying OMITTED for the
actual argument in the calling program.

• The actual argument was specified in the CALL statement in the calling
program, but is a formal argument or based linkage record that has a NULL base
address. Note that a pointer data item that has a NULL value is not the same as
a based linkage item with a NULL base address. That is, passing a pointer data
item as an actual argument passes the base address of the pointer data item and it
is the data item value that is NULL, not the base address.

The ENTRY-LINKAGE-SETTINGS keyword of the COMPILER-OPTIONS
configuration record may be used to control certain details of how base addresses for
linkage records are interpreted at runtime for a program compiled with a particular
setting of this keyword. The option controls what happens on each entry to a called
program, including how the correspondence of actual arguments to formal arguments
and previous executions of Format 5 and 6 SET statements affect the base address
used for a reference to a Linkage Section data item during that invocation of the
called program. See Chapter 10: Configuration of the RM/COBOL User's Guide,
for an explanation of this compiler configuration option.

A Format 1 (data item initialization) VALUE clause specified in the Linkage Section
is ignored except in the execution of the INITIALIZE statement. If the runtime
element containing the Linkage Section is activated by a COBOL runtime element,
the initial value of a data item in the Linkage Section is determined by the value of
the corresponding formal parameter in the activating runtime element, as described in
the paragraphs above and the general rules of the Procedure Division Header (on
page 179). If the runtime element containing the Linkage Section is activated by the
operating system, the initial value of a Linkage Section data item is as described in
Chapter 7: Running of the RM/COBOL User's Guide.

The compiler handles as a special case the specification of a Linkage Section record-
name as an actual argument in a CALL statement or in a reference modified
identifier. In these two cases, the record-name is resolved according to the
description of the actual data item on which the record-name is based rather than
using the Linkage Section description of the record-name. The record-name is based
on an actual argument if it represents a formal argument, that is, is named in the
Procedure Division header USING or GIVING argument list, or may be based on
some other data item through use of Formats 5 and 6 of the SET statement. Other

Communication Section
Chapter 4: Data Division

100 RM/COBOL Language Reference Manual
 First Edition

than when used as an actual argument or in a reference modified identifier, a Linkage
Section record-name is resolved according to its data description entry in the Linkage
Section of the program in which it is declared.

This special case means that a program that is just an intermediary between two
programs need not have a Linkage Section data description entry that accurately
describes the size of the actual argument being passed through it. For example,
calling C$CARG with a formal argument, which is described as longer than the
corresponding actual argument, will no longer result in a data reference error.
Instead, C$CARG will return the correct length of the actual argument, and because
of the reference modification change described here, this length may be successfully
used to reference modify the formal argument in order to access the entire contents of
the actual argument. This also means that a program can call the supplied
subprogram C$CARG with an argument that the calling program omitted without
getting a data reference error. In this case, the call to C$CARG will succeed and
return an argument descriptor that includes a type of OMITTED and a length of zero.

In the case of reference modification, an omitted actual argument would cause a data
reference error, but for an argument that is not omitted, the reference modification
can use any offset and length combination that is consistent with the actual argument.
Previous to this enhancement, reference modification that used variables implied a
reference to the item as described in the Linkage Section for the formal argument
data item and this implied reference, if larger than the corresponding actual
argument, would cause a data reference error before the reference modification was
applied.

This special case also means that when the supplied subprogram,
C$MemoryAllocate, is used to allocate an area of memory and then the SET
statement is used to base a Linkage Section record on this allocated memory, the
entire allocated memory area is passed as an actual argument when the record-name
is used in the USING or GIVING phrases of the CALL statement. Also, the entire
allocated memory area may be accessed by using reference modification of the
record-name.

Communication Section
The Communication Section is made up of the section header, followed by
communication description entries consisting of a level indicator (CD), a cd-name
and a series of independent clauses. The communication description entry is
terminated by a period.

The record-description entry associated with the Communication Section may be
implicitly redefined by user-specified record description entries written immediately
following the communication description entry.

{ }[]LLntry-5cription-erecord-desy-1ption-entrion-descricommunicat

.SECTIONIONCOMMUNICAT

 Screen Section
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 101
 First Edition

Screen Section
The syntactic structure of the Screen Section resembles that of the Working-Storage
Section. That is, it consists of a section header followed by zero, one, or more
entries, each of which consists of a required level number followed by a series of
optional clauses.

The entries specify the appearance of a rectangular display area called a screen. The
maximum meaningful horizontal and vertical dimensions of the screen are
determined by the hardware characteristics of the terminal associated with the run
unit. The common limit for the horizontal dimension is 80 character positions, and
the common limit for the vertical dimension is 25 lines.

Screen entries may be used to define all or any portion of the physical screen, and the
entire screen or any subregion of it may be redefined as many times as is needed by
the program.

Level numbers are used in the same way as in the other sections of the Data Division.
That is, level 77 entries are used to describe screen items not part of a larger
structure, and not subdivided into subordinate entries. Level numbers 01 through 49
can be used to define screen entries that are organized in a hierarchical structure:
level 01 is the most inclusive. Level numbers 66 and 88 may not be used in the
Screen Section.

Each entry in the Screen Section may define a screen-name. The rules regarding
uniqueness of screen-names are the same as the rules regarding uniqueness of data-
names in the other sections of the Data Division. That is, a screen-name defined at
the 01 or 77 level in the Screen Section must be unique only if there is a reference to
it elsewhere in the program. Subordinate screen-names (those at level numbers 02
through 49) need not be unique if they can be made unique by qualification or if
there are no references to them elsewhere in the program.

Screen-names defined in the Screen Section do not represent data items, and they can
be referred to elsewhere in the program only in an ACCEPT . . . FROM statement
(on page 243) and a DISPLAY . . . UPON statement (on page 291).

[]Lntry-1cription-escreen-des

.SECTIONSCREEN

Record Description Entry
Chapter 4: Data Division

102 RM/COBOL Language Reference Manual
 First Edition

Record Description Entry
A record description entry consists of a set of data description entries that describe
the characteristics of a particular record. Each data description entry consists of a
level-number followed by a data-name and a series of independent clauses, as
required.

{ }Lry-1iption-entdata-descr

Level-Numbers
The first data description of a record must have a level-number of 01 or 1, and must
start in area A of a source line.

Any data item whose description specifies a level-number in the range 01 through 48
may be subdivided into one or more subordinate data items. When this is done, the
subdivided data item becomes a group item. The subdivision is accomplished by
following the data description of the group item by one or more further data item
descriptions, each having the same level-number. The common level-number
selected for these immediately subordinate data items must be larger (by one or
more) than the level-number of the group data item but less than 50.

Each subordinate data item may in turn be subdivided by the same process, and the
nesting of subordinates within subordinates is limited only by the availability of
increasing level-numbers that are less than 50. This arrangement of data definitions
results in a hierarchical data structure. The rank of the constituent data items is
determined by the numerical value of its level-number: the smaller the level-number,
the more inclusive the data item and the higher its rank.

Elementary Items
Any data description entry that is not further subdivided is called an elementary item.
A record itself may be an elementary item, consisting of a single level-01 data
description entry. A subdivided data description entry with its subdivisions is called
a group and is nonelementary. Therefore, a group includes all group and elementary
items following it until a level-number less than or equal to the level-number of that
group is encountered.

Note that certain clauses of the data description entry may occur only in elementary
items. They may not occur in a nonelementary entry as they may affect the
subdivisions of that entry. The description of an elementary item must have either a
PICTURE clause or INDEX usage; it may not have both.

 77-Level Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 103
 First Edition

77-Level Description Entry
In the Working-Storage and Linkage Sections, a special level-number of 77 can be
used in data description entries that are not subdivisions of other items, and are not
themselves subdivided. These data description entries specify noncontiguous data
items. Such a data description entry is elementary.

A 77-level data description entry must contain a data-name and either the PICTURE
clause or the USAGE IS INDEX clause, but can contain an OCCURS clause only in
the Working-Storage Section. Other clauses are optional and can be used to
complete the description of the item if necessary.

ry-2iption-entdata-descr

Data Description Entry
A data description entry specifies data item characteristics.

Format 1: Data-Name Full Declaration









FILLER

1data-name-
er-1level-numb

[]2data-name-REDEFINES

[]EXTERNALIS

[]GLOBALIS
















 string-1character-ISPIC

PICTURE

(continued on next page)

Data Description Entry
Chapter 4: Data Division

104 RM/COBOL Language Reference Manual
 First Edition

Format 1: Data-Name Full Declaration (continued from previous page)

[]

[]

[]
[]

[]
[]































































































































POINTER
DECIMAL-PACKED

INDEX
DISPLAY

6-COMP
6-NALCOMPUTATIO

5-COMP
5-NALCOMPUTATIO

4-COMP
4-NALCOMPUTATIO

3-COMP
3-NALCOMPUTATIO

1-COMP
1-NALCOMPUTATIO

COMP
NALCOMPUTATIO

BINARY

ISUSAGE

)(
)(

)(
)(

)(

integer-3
integer-3

integer-3
integer-3

integer-3

[] [] 














 CHARACTERSEPARATETRAILING

LEADINGISSIGN

[]

{ }

{ }[]









































L

LL

-1index-name

4data-name-

3data-name-integer-2integer-1
integer-2

BYINDEXED

ISKEY
DESCENDING
ASCENDING

ONDEPENDINGTIMESTO
TIMES

OCCURS























RIGHT
LEFT

SYNC
EDSYNCHRONIZ
















 RIGHTJUST

JUSTIFIED

[]ZEROWHENBLANK

[] .literal-1ISVALUE

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 105
 First Edition

Format 2: Data-Name Renames

1data-name-66

.THRU
THROUGHRENAMES 















 3data-name-2data-name-

Format 3: Condition-Name Declaration

name-1condition-88

[] .ISFALSETOSETWHEN

THRU
THROUGH

AREVALUES
ISVALUE

literal-3

literal-1-operatorrelational

literal-2literal-1

L























































Format 4: Constant-Name Declaration

ame-1constant-n78

.ISVALUE








1xpression-constant-e
literal-1

The clauses may be written in any order except that data-name-1 or the FILLER
clause, if specified, must immediately follow level-number.

The PICTURE clause must not be specified for the subject of a RENAMES clause or
for an item whose usage is index or pointer. For any other entry describing an
elementary item, a PICTURE clause must be specified except that the PICTURE
clause may be omitted for an elementary item when the VALUE clause is specified.
In the latter case, a PICTURE clause is implied from the literal specified in the
VALUE clause, as described in Implied PICTURE Clause (on page 113).

The words THRU and THROUGH are equivalent.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO, must not be specified except for an elementary data item.

The EXTERNAL clause may be specified only in data description entries in the
Working-Storage Section whose level-number is 01.

The EXTERNAL clause and the REDEFINES clause must not be specified in the
same data description entry.

The GLOBAL clause may be specified only in data description entries whose
level-number is 01.

Data Description Entry
Chapter 4: Data Division

106 RM/COBOL Language Reference Manual
 First Edition

data-name-1 must be specified for any entry containing the GLOBAL or
EXTERNAL clause, or for record descriptions associated with a file description
entry that contains the EXTERNAL or GLOBAL clause.

Each data description entry must end with a period separator.

Condition-Name Data Description Entry
Format 3 is used to define 88-level condition-names. Each condition-name requires
a separate entry with level-number 88. Format 3 contains the name of the condition
and the value, values or range of values associated with the condition-name. The
condition-name entries for a particular conditional variable must follow the entry
describing the item with which the condition-name is associated. A condition-name
can be associated with any data description entry that contains a level-number except
the following:

• Another 88-level condition-name

• A level 66 item (RENAMES)

• A level 78 item (constant-name)

• A group containing items with descriptions including JUSTIFIED,
SYNCHRONIZED or USAGE (other than USAGE IS DISPLAY)

• An index data item

Constant-Name Data Description Entry
Format 4 is used to define constant-names. Each constant-name requires a separate
entry with level-number 78. Format 4 contains the name of the constant and the
value associated with the constant-name. The constant-name may be used wherever
a literal is specified in a format, unless otherwise forbidden. The effect of specifying
a constant-name is as if the literal value associated with the constant-name had been
specified instead of the constant-name. A constant-name with an integer value may
also be used wherever an integer value is specified in a format or as the repeat count
in a PICTURE character-string. A constant-name with an integer value may also be
used as a level-number or segment-number.

A constant-name may only be used after it has been declared in a data description
entry. That is, a constant-name must not be the object of a forward reference.

A constant-name may not be used for a literal text-name or literal library-name in a
COPY statement, or a literal program-name in a PROGRAM-ID paragraph or END
PROGRAM header.

Constant-names are implicitly global.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 107
 First Edition

BLANK WHEN ZERO Clause

ZEROWHENBLANK

The BLANK WHEN ZERO clause permits the blanking of an item when its value
is zero.

The BLANK WHEN ZERO clause can be used only for an elementary item whose
PICTURE is specified as numeric or numeric edited and whose usage is explicitly or
implicitly DISPLAY.

The BLANK WHEN ZERO clause must not be specified in the same entry with a
PICTURE clause having an asterisk as the zero suppression symbol.

The BLANK WHEN ZERO clause must not be specified in the same entry with a
PICTURE clause that specifies an operational sign with the symbol S. However, if
the separate sign option is specified in the Compile Command, then the BLANK
WHEN ZERO clause may be specified in the same entry with a PICTURE clause
that specifies an operational sign; in this case, the operational sign symbol S is
ignored and a trailing symbol + assumed in the PICTURE character-string.

When the BLANK WHEN ZERO clause is used, the item will contain nothing but
spaces if the value of the item is zero.

When the BLANK WHEN ZERO clause is used for an item whose PICTURE is
numeric, the category of the item is considered to be numeric edited.

Data-Name or FILLER Clause







FILLER
1data-name-

A data-name specifies the name of the data being described. The keyword FILLER
specifies an item of the logical record that cannot be referred to explicitly.

If either data-name-1 or the keyword FILLER is specified, it must be the first word
following the level-number in each data description entry. If this clause is omitted,
the data item being described is treated as though FILLER had been specified.

The keyword FILLER may be used to name a data item. Under no circumstances
can a FILLER item be referred to explicitly. However, the keyword FILLER may be
used to name a conditional variable: such use does not require explicit reference to
the FILLER item, but to its value.

EXTERNAL Clause

EXTERNALIS

The EXTERNAL clause specifies that a data item is external. The constituent data
items and group data items of an external data record are available to every program
in the run unit which describes that record.

The EXTERNAL clause may be specified in record description entries in the
Working-Storage Section.

Data Description Entry
Chapter 4: Data Division

108 RM/COBOL Language Reference Manual
 First Edition

In the same program, the data-name specified as the subject of the entry whose
level-number is 01 that includes the EXTERNAL clause must not be the same
data-name specified for any other data description entry which includes the
EXTERNAL clause.

The VALUE clause must not be used in any data description entry that includes,
or is subordinate to, an entry which includes the EXTERNAL clause. The VALUE
clause may be specified for condition-name entries associated with such data
description entries.

The data contained in the record named by the data-name clause is external and may
be accessed and processed by any program in the run unit which describes and,
optionally, redefines it subject to the rules set forth in the paragraphs that follow.

Within a run unit, if two or more programs describe the same external data record,
each record-name of the associated record description entries must be the same and
the records must define the same number of standard data format characters.
However, a program that describes an external record may contain a data description
entry including the REDEFINES clause that redefines the complete external record,
and this complete redefinition need not occur identically in other programs in the
run unit.

Use of the EXTERNAL clause does not imply that the associated data-name is a
global name.

If the data-name that is the subject of the EXTERNAL clause is more than 30
characters in length, only the first 30 characters are used at runtime to match with
external data declared in this or any other program in the run unit.

GLOBAL Clause

GLOBALIS

The GLOBAL clause specifies that a data-name is a global name. A global name is
available to every program contained within the program that declares it.

The GLOBAL clause may be specified in record description entries in the File
Section or the Working-Storage Section.

In the same Data Division, the data description entries for any two data items for
which the same data-name is specified must not include the GLOBAL clause.

A data-name described using a GLOBAL clause is a global name. All data-names
subordinate to a global name are global names. All condition-names associated with
a global name are global names.

A statement in a program contained directly or indirectly within a program which
describes a global name may reference that name without describing it again.

If the GLOBAL clause is used in a data description entry that contains the
REDEFINES clause, it is only the subject of that REDEFINES clause which
possesses the global attribute.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 109
 First Edition

JUSTIFIED Clause

RIGHTJUST
JUSTIFIED









The JUSTIFIED clause specifies nonstandard positioning of data within a receiving
data item.

When a receiving data item is described with the JUSTIFIED clause and the sending
data item is larger than the receiving data item, the leftmost characters are truncated.
When a receiving data item is described with the JUSTIFIED clause and it is larger
than the sending data item, the data is aligned at the rightmost character position in
the data item with space-fill for the leftmost character positions.

When the JUSTIFIED clause is omitted, the standard rules for aligning data within
an elementary item apply.

The JUSTIFIED clause cannot be specified for an index data item or for any data
item described as numeric or for which editing is specified.

The JUSTIFIED clause can be specified only at the elementary item level.

JUST is an abbreviation for JUSTIFIED.

Level-Number

er-1level-numb

The level-number shows the hierarchy of data within a logical record. In addition,
it identifies entries for working storage items, linkage items, condition-names,
constant-names, and the RENAMES clause.

level-number-1 is required as the first element in each data description entry.

Data description entries subordinate to a CD, FD or SD entry must have level-
numbers with values 01 through 49, 66, 78, or 88.

Data description entries in the Working-Storage Section and Linkage Section must
have level-numbers with the values 01 through 49, 66, 77, 78, or 88.

The level-number 01 identifies the first entry in each record description.

Level-number 66 is assigned to identify RENAMES entries.

Level-number 77 is assigned to identify noncontiguous working storage data items
and noncontiguous linkage data items.

Level-number 78 is assigned to identify constant-names.

Level-number 88 is assigned to identify condition-names associated with a
conditional variable.

Multiple level 01 entries subordinate to any given level indicator CD, FD or SD,
represent implicit redefinitions of the same area.

Data Description Entry
Chapter 4: Data Division

110 RM/COBOL Language Reference Manual
 First Edition

OCCURS Clause

Format 1: Fixed Number of Occurrences

{ }

{ }[]L

LL

-1index-name

4data-name-

integer-2

BYINDEXED

ISKEYDESCENDING
ASCENDING

TIMESOCCURS


















Format 2: Variable Number of Occurrences

[]

{ }

{ }[]L

LL

-1index-name

4data-name-

3data-name-integer-2integer-1

BYINDEXED

ISKEYDESCENDING
ASCENDING

ONDEPENDINGTIMESTOOCCURS


















The OCCURS clause eliminates the need for separate entries for repeated data items
and supplies information required for the application of subscripts.

The OCCURS clause is used in defining tables and other homogeneous sets of
repeated data items. Whenever the OCCURS clause is used, the data-name which is
the subject of this entry must be subscripted whenever it is referred to in a statement
other than SEARCH. Further, if the subject of this entry is a group item, all data-
names belonging to the group must be subscripted whenever they are used as
operands, except as the object of a REDEFINES clause.

The OCCURS clause cannot be specified in a data description entry that:

• Has an 01, 66, 77, 78, or 88 level-number. However, in the Working-Storage
Section, the OCCURS clause may be specified in a data description entry with
an 01 or 77 level-number.

• Has a variable-occurrence data item subordinate to it.

Except for the OCCURS clause itself, all data description clauses associated with
an item whose description includes an OCCURS clause apply to each occurrence of
the item described.

The number of occurrences of the subject entry is defined as follows:

• In Format 1, the value of integer-2 represents the exact number of occurrences.

• In Format 2, the current value of the data item referenced by data-name-3
represents the number of occurrences.

This format specifies that the subject of this entry has a variable number of
occurrences. The value of integer-2 represents the maximum number of
occurrences and the value of integer-1 represents the minimum number of
occurrences. This does not imply that the length of the subject of the entry is
variable, but that the number of occurrences is variable.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 111
 First Edition

At the time of reference to the subject of this entry or to any containing or
subordinate data item, the value of the data item referenced by data-name-3
must fall within the range integer-1 through integer-2. The contents of the data
items whose occurrence numbers exceed the value of the data item referenced by
data-name-3 are undefined.

When both integer-1 and integer-2 are used, the value of integer-1 must be less
than the value of integer-2. The value of integer-1 may be zero. If integer-1 is
omitted, it is assumed to be zero.

The data description of data-name-3 must describe an integer. data-name-3 may
be qualified. If data-name-3 is specified, is not qualified, and is not defined in
the Data Division, the compiler assumes a Working-Storage Section data
description entry of the following form:

01 data-name-3 PIC 9(9) BINARY(4).

A data description entry that contains Format 2 of the OCCURS clause may be
followed, within that record description, only by data description entries that are
subordinate to it.

When a group data item having subordinate to it an entry that specifies Format 2 of
the OCCURS clause is referenced, the part of the table area used in the operation is
determined as follows:

1. If the data item referenced by data-name-3 is outside the group, only that part of
the table area that is specified by the value of the data item referenced by data-
name-3 at the start of the operation is used.

2. If the data item referenced by data-name-3 is included in the same group and the
group data item is referenced as a sending item, only that part of the table area
that is specified by the value of the data item referenced by data-name-3 at the
start of the operation is used in the operation. If the group is a receiving item,
the maximum length of the group is used.

If Format 2 is specified in a record description entry and the associated file
description or sort-merge description entry contains the VARYING phrase of the
RECORD clause, the records are variable length. If the DEPENDING ON phrase of
the RECORD clause is not specified, the content of the data item referenced by data-
name-3 of the OCCURS clause must be set to the number of occurrences to be
written before the execution of any RELEASE, REWRITE or WRITE statement.

In the KEY IS phrase, the first specification of data-name-4 must be the name of
either the entry containing the OCCURS clause or an entry subordinate to it.
Subsequent specifications of data-name-4 must be subordinate to the entry
containing the OCCURS clause. Each data-name-4 may be qualified, but must not
be subscripted, as is normally required. For each data-name-4, the associated data
description must not include an OCCURS clause, except when the first data-name-4
is the same as the entry containing the OCCURS clause. There may not be any
OCCURS clauses between this OCCURS clause and the descriptions of any data-
name-4.

When the KEY IS phrase is specified, the repeated data must be arranged in
ascending or descending order according to the values contained in data-name-4.
The ascending or descending order is determined according to the rules for
comparison of operands. The data-names are listed in their descending order of
significance.

Data Description Entry
Chapter 4: Data Division

112 RM/COBOL Language Reference Manual
 First Edition

An INDEXED BY phrase may be used to define one or more index-names to be
associated with the subject of this entry. Index-names are not data-names, and they
may be used only in contexts where the formats explicitly mention them. An index-
name is a user-defined word, and each index-name must be unique within the
program. Index-names are used principally in subscripts, and their use in this context
can result in access that is more efficient to the elements of a table.

PICTURE Clause

string-1character-ISPIC
PICTURE









The PICTURE clause describes the general characteristics and editing requirements
of an elementary item.

A PICTURE clause can be specified only at the elementary item level.

character-string-1 consists of certain allowable combinations of characters in the
COBOL character set used as symbols. The allowable combinations determine the
category of the elementary item. The maximum number of characters allowed in the
character-string is 240.

The lowercase letters corresponding to the uppercase letters representing the
PICTURE symbols A, B, P, S, V, X, Z, CR and DB are equivalent to their uppercase
representations in a PICTURE character-string. Other lowercase letters are not
equivalent to their corresponding uppercase representations. This means that if a
lowercase q, for example, has been designated as the currency symbol the uppercase
Q may not be substituted for it, and vice versa.

The PICTURE clause must not be specified for the subject of a RENAMES clause or
for an item whose usage is index or pointer. For any other entry describing an
elementary item, a PICTURE clause must be specified except that the PICTURE
clause may be omitted for an elementary item when the VALUE clause is specified.
In the latter case, a PICTURE clause is implied from the literal specified in the
VALUE clause, as described in Implied PICTURE Clause (on page 113).

PIC and PICTURE are synonymous.

The asterisk when used as the zero suppression symbol and the BLANK WHEN
ZERO clause may not appear in the same entry.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 113
 First Edition

Implied PICTURE Clause

The PICTURE clause may be implied from a literal specified in the VALUE clause.
The implied PICTURE character-string for this clause differs depending on whether
the literal is numeric or nonnumeric. Table 5 provides a few specific examples of
numeric and nonnumeric implied PICTURE character-strings. The table is followed
by the rules used to determine the implied PICTURE character-strings for
nonnumeric and numeric literals in the VALUE clause.

Table 5: Examples of Implied PICTURE Characters-Strings

Literal Implied PICTURE Character-String

"Some text" X(9)

SPACES X(1)

"00" X(2)

00 9(2)

ZEROES Not applicable, as described below.

123 9(3)

12345.123456 9(5)V9(6)

00000.2400 9(5)V9(4)

+456 S9(3)

-0832.150 S9(4)V9(3)

Note The figurative constants ZERO, ZEROS, and ZEROES are not considered
numeric or nonnumeric for purposes of implying the PICTURE clause. One or more
0 or "0" characters must be used instead to clearly indicate the desired intent. This is
necessary because these figurative constants are either numeric or nonnumeric,
depending on context. There is insufficient context for the compiler to make the
determination in this case, since there is no associated data item as, for example,
there would be in a MOVE statement.

Nonnumeric Implied PICTURE Clause

When the VALUE clause specifies a nonnumeric literal and the PICTURE clause is
not specified for an elementary item, the implied PICTURE clause is of the form
‘PICTURE X(length)’, where length is the length of the nonnumeric literal specified
in the VALUE clause.

Numeric Implied PICTURE Clause

When the VALUE clause specifies a numeric literal and the PICTURE clause is not
specified for an elementary item, the implied PICTURE clause character-string is
derived from the numeric literal specified in the VALUE clause, according to the
following rules:

1. The character-string has an S if and only if the numeric literal has a sign.

2. The character-string has as many of the symbols 9 as there are digits specified in
the numeric literal. The numeric literal may specify leading or trailing zero
digits, which will be counted in determining the number of symbols 9 in the
implied PICTURE character-string.

Data Description Entry
Chapter 4: Data Division

114 RM/COBOL Language Reference Manual
 First Edition

3. The character-string has a symbol V if and only if the numeric literal contains a
decimal point. The symbol V is in the same position relative to the symbols 9 as
the decimal point is relative to the digits in the numeric literal.

Implied PICTURE Clause and Other Data Description Clauses

When a signed numeric literal in a VALUE clause implies the PICTURE character-
string, the default sign convention for DISPLAY usage is a leading separate
character as if a SIGN IS LEADING SEPARATE CHARACTER clause had been
specified. If an explicit SIGN clause is specified in the same data description entry,
the given SIGN clause specification is applied instead. The NUMERIC SIGN
clause, if specified in the Special-Names paragraph, does not apply to data items
described with an implied PICTURE character-string.

The SIGN, USAGE and BLANK WHEN ZERO clauses may be used in the same
data description entry for an implied PICTURE character-string as long as they do
not conflict with the implied PICTURE character-string or each other.

PICTURE Character-Strings (Data Categories)

The five categories of data that can be described with the character-string in a
PICTURE clause are defined as follows:

1. Alphabetic. Its PICTURE character-string can contain only the symbol A. The
contents of an alphabetic data item when represented in standard data format
must be one or more alphabetic characters (“a” through “z”, “A” through “Z”,
and space).

2. Numeric. Its PICTURE character-string can contain only the symbols 9, P, S,
and V. Its PICTURE character-string must contain at least one symbol 9 and not
more than thirty symbols 9. Each symbol 9 specifies a digit position. If
unsigned, the contents of a numeric data item when represented in standard data
format must be one or more numeric characters. If signed, a numeric data item
may also contain a “+”, “–“, or other representation of an operational sign. The
actual in-memory contents of a numeric data item are not standard data format
when the usage is other than DISPLAY as specified by a USAGE clause
applicable to the data description entry or when the data item is signed and the
SEPARATE CHARACTER phrase is not specified in a SIGN clause applicable
to the data description entry.

3. Alphanumeric. Its PICTURE character-string is restricted to certain
combinations of the symbols A, X, and 9, and the item is treated as if the
character-string contained all symbols X. The PICTURE character-string must
contain at least one symbol X or a combination of the symbols A and 9. A
PICTURE character-string that contains all symbols A or all symbols 9 does not
define an alphanumeric data item, since such character-strings define an
alphabetic or numeric data item, respectively. The contents of an alphanumeric
data item when represented in standard data format must be two or more
characters in the character set of the computer.

4. Alphanumeric edited. Its PICTURE character-string is restricted to certain
combinations of the following symbols: A, X, 9, B, 0, and slash (/). The
PICTURE character-string must contain at least one symbol A or X and at least
one symbol B, 0, or slash (/). The contents of an alphanumeric edited date item
when represented in standard data format must be two or more characters in the
character set of the computer.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 115
 First Edition

5. Numeric edited. Its PICTURE character-string is restricted to certain
combinations of the following symbols: B, slash (/), P, V, Z, 0, 9, comma (,),
period (.), asterisk (*), minus (–), plus (+), CR, DB, and the currency symbol
(the symbol $ or the symbol specified in the CURRENCY SIGN clause of the
SPECIAL-NAMES paragraph). The allowable combinations are determined
from the order of precedence of symbols (see Table 9 on page 123) and the
editing rules (on page 118). The number of digit positions that can be
represented in the PICTURE character-string must range from one to thirty,
inclusive. The character-string must contain at least one symbol 0, B, slash, Z,
asterisk, plus, minus, comma, period, CR, DB, or the currency symbol. The
contents of each of the character positions in a numeric edited data item must be
consistent with the corresponding PICTURE symbol.

Note The additional data categories, index data and data pointer, also exist, but do
not use a PICTURE clause in their data description entry. An index data item is
described with the USAGE IS INDEX clause. A data pointer data item is described
with the USAGE IS POINTER clause.

The size of an elementary item, where size means the number of character positions
occupied by the elementary item in standard data format, is determined by the
number of allowable symbols that represent character positions. An unsigned
nonzero integer which is enclosed in parentheses following the symbol A, comma (,),
X, 9, P, Z, asterisk (*), B, slash (/), 0, plus (+), minus (–), or the currency symbol
indicates the number of consecutive occurrences of the symbol. Note that the
following symbols may appear only once in a given PICTURE: S, V, period (.), CR,
and DB.

Symbols Used in a PICTURE Character-String

The functions of the symbols used in a PICTURE character-string to describe an
elementary item are as follows:

A Each symbol A in the character-string represents a character position that
can contain only an alphabetic character (“a” through “z”, “A” through “Z”,
and space). Each symbol A is counted in the size of the data item described
by the PICTURE character-string.

B Each symbol B in the character-string represents a character position
into which the character space will be inserted when the data item is the
receiving item of an elementary MOVE statement. Each symbol B
is counted in the size of the data item described by the PICTURE
character-string.

P Each symbol P in the character-string indicates an assumed decimal scaling
position and is used to specify the location of an assumed decimal point
when the point is not within the number that appears in the data item. The
scaling position symbol P is not counted in the size of the data item
described by the PICTURE character-string, but each symbol P is counted
in determining the maximum number (30) of digit positions in numeric or
numeric edited data items. The symbol P may appear only as a continuous
string in the leftmost or rightmost digit positions within a PICTURE
character-string. Since the scaling position symbol P implies an assumed
decimal point (to the left of the symbols P if they are the leftmost digit
positions and to the right of the symbols P if they are the rightmost digit
positions), the assumed decimal point symbol V is redundant either to the
left or right of the symbols P, respectively, within such a PICTURE

Data Description Entry
Chapter 4: Data Division

116 RM/COBOL Language Reference Manual
 First Edition

character-string. The symbol P and the insertion symbol period (.) cannot
both occur in the same PICTURE character-string.

In certain operations that reference a data item whose PICTURE character-string
contains the symbol P, the algebraic value of the data item is used rather than the
actual character representation of the data item. This algebraic value assumes
the decimal point in the prescribed location and zero in place of the digit
positions specified by the symbol P. The size of the value is the number of digit
positions represented by the PICTURE character-string. These operations are
any of the following:

• Any operation requiring a numeric sending operand.

• A MOVE statement where the sending operand is numeric and its
PICTURE character-string contains the symbol P.

• A MOVE statement where the sending operand is a numeric edited data
item and its PICTURE character-string contains the symbol P and the
receiving operand is numeric or numeric edited.

• A comparison operation where both operands are numeric.

• In all other operations the digit positions specified with the symbol P are
ignored and are not counted in the size of the operand.

S The symbol S is used in a character-string to indicate the presence, but
neither the representation nor, necessarily, the position of an operational
sign. The symbol S must be written as the leftmost character in the
PICTURE character-string. The symbol S is not counted in determining the
size (in terms of standard data format characters) of the data item described
by the PICTURE character-string unless the entry contains or is subject to a
SIGN clause that specifies the SEPARATE CHARACTER phrase. The
symbol S in the PICTURE character-string and the BLANK WHEN ZERO
clause may not occur in the same data description entry.

V The symbol V is used in a character-string to indicate the location of the
assumed decimal point and may appear only once in any single PICTURE
character-string. The symbol V does not represent a character position and,
therefore, is not counted in the size of the data item described by the
PICTURE character-string. When the assumed decimal point is to the right
of the rightmost symbol in the string representing a digit position or scaling
position, or is to the left of scaling positions that represent the leftmost digit
positions, the V is redundant. The symbol V and the insertion symbol
period (.) cannot both occur in the same PICTURE character-string.

X Each symbol X in the character-string is used to represent a character
position that contains any allowable character from the character set of the
computer. Each symbol X is counted in the size of the data item described
by the PICTURE character-string.

Z Each symbol Z in a character-string may only be used to represent the
leftmost leading numeric character positions that will be replaced by space
characters when the contents of those character positions are leading zeroes
and the data item is the receiving item of an elementary MOVE statement.
Each symbol Z is counted in the size of the item described by the PICTURE
character-string and in determining the maximum number (30) of digit
positions allowed in a numeric edited data item. If the symbol Z is used to
the right of the decimal point in a character-string, then all digit positions in
that character-string must be described with the symbol Z. If the symbol Z
represents all the digit-positions in the character-string, then the described

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 117
 First Edition

data item is blank when zero, even if the BLANK WHEN ZERO clause is
not specified.

9 Each symbol 9 in the character-string represents a character position that
contains a numeric character. Each symbol 9 is counted in the size of the
item described by the PICTURE character-string and in determining the
maximum number (30) of digit positions in a numeric or numeric edited
data item.

0 Each symbol 0 in the character-string represents a character position into
which the character zero (“0”) will be inserted when the data item is the
receiving item of an elementary MOVE statement and removed when a
numeric edited data item is the sending item in an elementary MOVE
statement with a numeric or numeric edited receiving data item. Each
symbol 0 is counted in the size of the data item described by the PICTURE
character-string. The symbol 0 does not represent a digit position in a
numeric edited data item.

/ Each symbol slash (/) in the character-string represents a character position
into which a character slash (“/”) will be inserted when the data item is the
receiving item of an elementary MOVE statement. Each symbol slash (/) is
counted in the size of the data item described by the PICTURE character-
string.

, Each symbol comma (,) in the character-string represents a character
position into which a character comma (“,”) will be inserted when the data
item is the receiving item of an elementary MOVE statement. Each symbol
comma (,) is counted in the size of the data item described by the PICTURE
character-string.

. When the symbol period (.) appears in the character-string, it is an editing
symbol that represents the decimal point for alignment purposes and, in
addition, represents a character position into which the character period (“.”)
will be inserted. The symbol period (.) is counted in the size of the data
item described by the PICTURE character-string.

Note For a given program the functions of the period and comma are exchanged
if the DECIMAL-POINT IS COMMA clause is stated in the SPECIAL-NAMES
paragraph. In this exchange, the rules for the period apply to the comma and the
rules for the comma apply to the period wherever they appear in a PICTURE
clause.

+, –, CR, DB
These symbols are used as editing sign control symbols. When used, they
represent the character position into which the editing sign control symbol
will be placed. The symbols are mutually exclusive in any one PICTURE
character-string and each character used in the symbol is counted in
determining the size of the data item described by the PICTURE character-
string. If the symbols plus or minus occur more than once (a floating sign
control symbol), then one less than the total number of these symbols is
counted in determining the maximum number (30) of digit positions
allowed in a numeric edited data item. If a floating symbol plus or minus is
used to the right of the decimal point in a character-string, then all digit
positions in that character-string must be described with the symbol plus or
minus, respectively. If a floating plus or minus symbol string represents all
the digit-positions in the character-string, then the described data item is
blank when zero, even if the BLANK WHEN ZERO clause is not specified.

Data Description Entry
Chapter 4: Data Division

118 RM/COBOL Language Reference Manual
 First Edition

* Each symbol asterisk (*) in the character-string represents a leading numeric
character position into which a character asterisk (“*”) will be placed when
that position contains a leading zero and the data item is the receiving item
of an elementary MOVE statement. Each symbol asterisk (*) is counted in
the size of the data item described by the PICTURE character-string and in
determining the maximum number (30) of digit positions allowed in a
numeric edited data item. If the symbol asterisk (*) is used to the right of
the decimal point in a character-string, then all digit positions in that
character-string must be described with the symbol asterisk (*). The symbol
asterisk in the PICTURE character-string and the BLANK WHEN ZERO
clause may not occur in the same data description entry. If the symbol
asterisk represents all the digit-positions in the character-string, then, when
zero, the described data item is all asterisks (ALL “*”), except that, if the
character-string contains the symbol period (.), a character period (“.”) will
occur at the specified location in the data item.

cs The currency symbol in a character-string is represented either by the
currency sign (the symbol $) or by the single character specified in the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The
currency symbol in the character-string represents a character position into
which a currency symbol is to be placed when the data item is the receiving
item of an elementary MOVE statement. Each currency symbol is counted
in the size of the data item described by the PICTURE character-string. If
the currency symbol occurs more than once (a floating currency symbol),
then one less than the total number of currency symbols is counted in
determining the maximum number (30) of digit positions allowed in a
numeric edited data item. If the currency symbol is used to the right of the
decimal point in a character-string, then all digit positions in that character-
string must be described with the currency symbol. If a floating currency
symbol string represents all the digit-positions in the character-string, then
the described data item is blank when zero, even if the BLANK WHEN
ZERO clause is not specified.

Editing Rules

There are two general methods of performing editing in the PICTURE clause, either
by insertion or by suppression and replacement. There are four types of insertion
editing available:

1. Simple insertion

2. Special insertion

3. Fixed insertion

4. Floating insertion

There are two types of suppression and replacement editing:

1. Zero suppression and replacement with spaces

2. Zero suppression and replacement with asterisks

The type of editing which may be performed upon a data item depends on the
category to which the data item belongs. Table 6 specifies which type of editing may
be performed upon a given category.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 119
 First Edition

Table 6: PICTURE Clause Editing

Category Type of Editing

Alphabetic None.

Numeric None.

Alphanumeric None.

Alphanumeric Edited Simple insertion using symbols 0, B, and slash (/).

Numeric Edited All, subject to the following rules.

Floating insertion editing and editing by zero suppression and replacement are
mutually exclusive in a PICTURE clause. Only one type of replacement may be
used with zero suppression in a PICTURE clause.

Simple Insertion Editing

The symbols comma (,), B, 0, and slash (/) are used as the insertion characters. The
insertion characters are counted in the size of the item and represent the position in
the item into which the character will be inserted.

Special Insertion Editing

The symbol period (.) is used as the insertion character. It also represents the
decimal point for alignment purposes. The insertion character used for the actual
decimal point is counted in the size of the item. The use of the assumed decimal
point—represented by the symbol V—and the actual decimal point, represented by
the insertion symbol period (.), in the same PICTURE character-string is disallowed.
The result of special insertion editing is the appearance of the insertion character in
the item in the same position as shown in the character-string.

Fixed Insertion Editing

The currency symbol and the editing sign control symbols plus (+), minus (–), CR,
and DB are the insertion characters. Only one currency symbol and only one of the
editing sign control symbols can be used in a given PICTURE character-string.
When the symbols CR and DB are used, they represent two character positions in
determining the size of the item, and they must represent the rightmost character
positions that are counted in the size of the item. If these character positions contain
the symbols CR or DB, the uppercase letters are the insertion characters.

A plus (+) or minus (–) symbol, when used, must be either the leftmost or rightmost
character position to be counted in the size of the item.

The currency symbol must be the leftmost character position to be counted in the size
of the item except that it can be preceded by either a plus (+) or a minus (–) symbol.

Fixed insertion editing results in the insertion character occupying the same character
position in the edited item as it occupied in the PICTURE character-string.

Editing sign control symbols produce the results shown in Table 7 depending upon
the value of the data item.

Data Description Entry
Chapter 4: Data Division

120 RM/COBOL Language Reference Manual
 First Edition

Table 7: Editing Symbol Results

 Result

Editing Symbol Data Item (Positive or Zero) Data Item (Negative)

+ + –

– space –

CR 2 spaces CR

DB 2 spaces DB

Floating Insertion Editing

The currency symbol and editing sign control symbols plus (+) and minus (–) are
the floating insertion characters and as such are mutually exclusive in a given
PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string by using a
string of at least two of the floating insertion characters. The string may contain any
of the simple insertion symbols or have simple insertion characters immediately to its
right. Such simple insertion characters are part of the floating string. When the
floating insertion character is the currency symbol, the string of floating insertion
characters may have the fixed insertion characters CR and DB immediately to the
right of the string.

The leftmost character of the floating insertion string represents the leftmost limit of
the floating symbols in the data item. The rightmost character of the floating string
represents the rightmost limit of the floating symbols in the data item.

The second floating character from the left represents the leftmost limit of the
numeric data that can be stored in the data item. Nonzero numeric data may replace
all the characters at or to the right of this limit.

In a PICTURE character-string, there are only two ways of representing floating
insertion editing. One way is to represent any or all of the leading numeric character
positions on the left of the decimal point by the insertion character. The other way is
to represent all of the numeric character positions in the PICTURE character-string
by the insertion character.

If the insertion characters are only to the left of the decimal point in the PICTURE
character-string, the result is that a single floating insertion character will be placed
into the character position immediately preceding either the decimal point or the first
nonzero digit in the data represented by the insertion symbol string, whichever is
farther to the left in the PICTURE character-string. The character positions
preceding the insertion character are replaced with spaces.

If all numeric character positions in the PICTURE character-string are represented by
the insertion character, at least one of the insertion characters must be to the left of
the decimal point.

When the floating character is the editing control symbol plus (+) or minus (–), the
character inserted depends upon the value of the data item; see Table 8.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 121
 First Edition

Table 8: Results of + and – Editing

 Result

Editing Symbol Data Item (Positive or Zero) Data Item (Negative)

+ + –

– space –

If all numeric character positions in the PICTURE character-string are represented by
the insertion character, the result depends upon the value of the data. If the value is
zero, the entire data item will contain spaces. If the value is not zero, the result is the
same as when the insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the
receiving data item must be the number of characters in the sending data item, plus
the number of nonfloating insertion characters being edited into the receiving data
item, plus one for the floating insertion character.

Zero Suppression Editing

The suppression of leading zeroes in numeric character positions is indicated by
the use of the symbol Z or by the symbol asterisk (*) as suppression symbols in a
PICTURE character-string. These symbols are mutually exclusive in a given
PICTURE character-string. Each suppression symbol is counted in determining the
size of the item. If Z is used, the replacement character will be the space; if the
asterisk is used, the replacement character will be *.

Zero suppression and replacement are indicated in a PICTURE character-string by
using a string of one or more of the allowable symbols to represent leading numeric
character positions which are to be replaced when the associated character position in
the data contains a leading zero. Any of the simple insertion characters embedded in
the string of symbols or to the immediate right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero
suppression. One way is to represent any or all of the leading numeric character
positions to the left of the decimal point by suppression symbols. The other way is to
represent all of the numeric character positions in the PICTURE character-string by
suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading
zero in the data, which corresponds to a symbol in the string, is replaced by the
replacement character.

Suppression terminates at the first nonzero digit in the data represented by the
suppression symbol string or at the decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string are represented by
suppression symbols and the value of the data is not zero, the result is the same as if
the suppression characters were only to the left of the decimal point. If the value is
zero and the suppression symbol is Z, the entire data item, including any editing
characters, is spaces. If the value is zero and the suppression symbol is asterisk (*),
the entire data item, including any insertion editing symbols except the actual
decimal point, is “*”. In this case, the actual decimal point will appear in the data
item.

The symbols plus (+), minus (–), asterisk (*), Z, and the currency symbol, when
used as floating replacement characters, are mutually exclusive within a given
character-string.

Data Description Entry
Chapter 4: Data Division

122 RM/COBOL Language Reference Manual
 First Edition

PICTURE Symbols Precedence

Table 9 shows the order of precedence when using characters as symbols in a
PICTURE character-string. An “X” at an intersection indicates that the symbol (or
symbols) at the top of the column may precede (but not necessarily immediately), in
a given character-string, the symbol (or symbols) at the left of the row. Arguments
listed as one or another (for instance, plus (+) or minus (–)) indicate mutually
exclusive symbols. The currency symbol is indicated by the symbol cs.

At least one of the symbols A, X, Z, 9 or asterisk (*), or at least two occurrences of
one of the symbols plus (+), minus (–), or cs must be present in a PICTURE
character-string.

The nonfloating insertion symbols plus (+) and minus (–), the floating insertion
symbols Z, asterisk (*), plus (+), minus (–), and cs, and the symbol P appear twice in
Table 9. The first appearance of the symbol in the FIRST SYMBOL column and
SECOND SYMBOL row represents its use to the left of the decimal point position.
The second appearance of the symbol represents its use to the right of the decimal
point position.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 123
 First Edition

Table 9: PICTURE Symbols Precedence

 First
Symbol

Non-floating
Insertion Symbols

Floating
Insertion Symbols

Other Symbols

Second
Symbol B 0 / , .









−
+









−
+









DB
CR CS









*
z









*
z









−
+









−
+ CS CS 9 A

X S V P P

B X X X X X X X X X X X X X X X X X

0 X X X X X X X X X X X X X X X X X

/ X X X X X X X X X X X X X X X X X

, X X X X X X X X X X X X X X X X

. X X X X X X X X X X









−
+









−
+ X X X X X X X X X X X X X X









DB
CR X X X X X X X X X X X X X X

N
on

-fl
oa

tin
g

In

se
rt

io
n

Sy
m

bo
ls

CS X









*
z X X X X X X X









*
z X X X X X X X X X X X









−
+ X X X X X X









−
+ X X X X X X X X X

X X X X X X

Fl
oa

tin
g

In

se
rt

io
n

Sy
m

bo
ls

CS X X X X X X X X X

9 X X X X X X X X X X X X X X X

A
X

X X X X X

S

V X X X X X X X X X X X X

P X X X X X X X X X X X X

O
th

er
 S

ym
bo

ls

P X X X X X

Data Description Entry
Chapter 4: Data Division

124 RM/COBOL Language Reference Manual
 First Edition

REDEFINES Clause









FILLER

1data-name-
er-1level-numb

[]2data-name-REDEFINES

The REDEFINES clause allows a computer storage area to be described by different
data description entries.

Note level-number-1, data-name-1 and FILLER are shown in the above format
(gray highlight) to improve clarity. They are not part of the REDEFINES clause.

The level-numbers of data-name-1 and data-name-2 must be identical but must not
be 66 or 88.

This clause must not be used in level 01 entries in the File Section or Communication
Section.

The data description entry for data-name-2 cannot contain an OCCURS clause.
However, data-name-2 may be subordinate to an item whose data description
contains an OCCURS clause. In this case, the reference to data-name-2 in the
REDEFINES clause may not be subscripted. Neither the original definition nor the
redefinition can include a variable-occurrence data item.

data-name-2 must not be qualified; if it is not a unique data-name, the necessary
qualification is implicitly provided by the position of the REDEFINES clause within
the hierarchical structure of the Data Division.

No entry having a level-number numerically lower than the level-number of
data-name-2 and the subject of the entry may occur between the data description
entries of data-name-2 and the subject of the entry.

Redefinition starts at data-name-2 and ends when a level-number less than or equal
to that of data-name-2 is encountered.

When the level-number of data-name-1 is other than 01, it must not specify more
character positions than the data item referenced by data-name-2 contains. It is
important to observe that the REDEFINES clause specifies the redefinition of a
storage area, not of the data items occupying the area.

Multiple redefinitions of the same character positions are permitted. When multiple
redefinitions are used, either the first or the most recently defined name on the same
level within the current hierarchy may be used as data-name-2.

The entries giving the new description of the character positions must not contain
any VALUE clauses except in condition-name entries.

Multiple level 01 entries subordinate to any given level indicator represent implicit
redefinitions of the same area.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 125
 First Edition

RENAMES Clause

1data-name-66

.THRU
THROUGHRENAMES 















 3data-name-2data-name-

The RENAMES clause permits alternative, possibly overlapping, groupings of
elementary items.

Note Level-number 66 and data-name-1, and the period space separator are shown
in the above format (gray highlight) to improve clarity. They are not part of the
RENAMES clause.

All RENAMES entries referring to data items within a given logical record must
immediately follow the last data description entry of the associated record
description entry.

data-name-2 and data-name-3 must be names of elementary items or groups of
elementary items in the same logical record, and cannot be the same data-name.
A 66 level entry cannot rename another 66 level entry nor can it rename a 77, 88 or
01 level entry.

data-name-1 cannot be used as a qualifier, and can only be qualified by the names of
the associated level 01, FD, CD, or SD entry. Neither data-name-2 nor data-name-3
may have an OCCURS clause in its data description entry nor be subordinate to an
item that has an OCCURS clause in its data description entry.

The beginning of the area described by data-name-3 must not be to the left of the
beginning of the area described by data-name-2. The end of the area described by
data-name-3 must be to the right of the end of the area described by data-name-2.
data-name-3, therefore, cannot be subordinate to data-name-2.

data-name-2 and data-name-3 may be qualified.

None of the items within the range, including data-name-2 and data-name-3, if
specified, can be variable-occurrence data items.

One or more RENAMES entries can be written for a logical record.

When data-name-3 is not specified, all of the data attributes of data-name-2 become
the data attributes for data-name-1, and data-name-1 may be used as a synonym for
data-name-2.

When data-name-3 is specified, data-name-1 is defined as a group item that includes
all elementary items starting with data-name-2 (if data-name-2 is an elementary
item) or the first elementary item in data-name-2 (if data-name-2 is a group item),
and concluding with data-name-3 (if data-name-3 is an elementary item) or the last
elementary item in data-name-3 (if data-name-3 is a group item).

The words THRU and THROUGH are synonymous.

Data Description Entry
Chapter 4: Data Division

126 RM/COBOL Language Reference Manual
 First Edition

SIGN Clause

[] []CHARACTERSEPARATETRAILING
LEADINGISSIGN









The SIGN clause specifies the position and the mode of representation of the
operational sign when it is necessary to describe these properties explicitly.

The SIGN clause may be used to specify the position and mode of representation of
the operational sign for signed numeric data items. It may be specified either at the
elementary level or at the group level. When it is specified at the elementary level, it
applies only to that item. When it is specified at the group level, it applies to each
subordinate signed numeric data item.

If a SIGN clause is specified in a group item subordinate to another group item that
also has a SIGN clause, the SIGN clause specified in the subordinate group item
takes precedence for that subordinate group item.

If a SIGN clause is specified in an elementary numeric data description entry
subordinate to a group item for which a SIGN clause is specified, the SIGN clause
specified in the subordinate elementary numeric data description entry takes
precedence for that elementary numeric data item.

The SIGN clause is applicable only to numeric data description entries whose
PICTURE character-string contains the symbol S and whose explicit or implicit
usage is DISPLAY.

If the CODE-SET clause is specified, any signed numeric data description entries
associated with that file description entry must be described with the SIGN IS
SEPARATE clause.

A numeric data description entry whose PICTURE character-string contains the
character S, but to which no optional SIGN clause applies, has an operational sign
whose representation depends on the presence of the optional NUMERIC SIGN
clause in the Special-Names paragraph. If the NUMERIC SIGN clause is specified
in the Special-Names paragraph, the operational sign representation is as if the
corresponding SIGN clause had been specified in the data description entry. If the
NUMERIC SIGN clause is not specified in the Special-Names paragraph, the
operational sign representation depends on the setting of the S (Separate Sign)
Compile Command Option:

• If the Separate Sign Default option is not in effect, the operational sign will be
the same as if SIGN IS TRAILING (without the optional SEPARATE
CHARACTER phrase) had been specified.

• If the Separate Sign Default option is in effect, the operational sign will be the
same as if SIGN IS TRAILING SEPARATE CHARACTER had been specified.

See Chapter 6: Compiling of the RM/COBOL User’s Guide, for a full discussion of
the S (Separate Sign) Compile Command Option.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 127
 First Edition

If the optional SEPARATE CHARACTER phrase is not present:

• The operational sign will be associated with the leading (or, respectively,
trailing) digit position of the elementary numeric data item.

• The letter S in a PICTURE character-string is not counted in determining the
size of the item (in terms of standard data format characters).

• The valid signs for combined sign data items depend on the value of the leading
(or, respectively, trailing) digit with which the sign is associated and whether the
value is positive or negative; see Table 10.

Table 10: Valid Data Item Encodings

Digit

Positive Value
Valid Encodings

Negative Value
Valid Encodings

0 { }

1 A J

2 B K

3 C L

4 D M

5 E N

6 F O

7 G P

8 H Q

9 I R

See the USAGE clause (on page 129) for the valid sign values on other data types.

If the optional SEPARATE CHARACTER phrase is present, then:

• The operational sign will be the leading (or, respectively, trailing) character
position of the elementary numeric data item; this character position is not a
digit position.

• The letter S in a PICTURE character-string is counted in determining the size of
the item (in terms of standard data format characters).

• The operational signs for positive and negative are the standard data format
characters + and –, respectively.

Data Description Entry
Chapter 4: Data Division

128 RM/COBOL Language Reference Manual
 First Edition

SYNCHRONIZED Clause















RIGHT
LEFT

SYNC
EDSYNCHRONIZ

The SYNCHRONIZED clause specifies the alignment of an elementary item on an
even byte boundary.

This clause specifies that the subject data item is to be aligned in the computer such
that no other data item occupies any of the character positions between the leftmost
and rightmost natural boundaries delimiting this data item. If the number of
character positions required to store this data item is less than the number of
character positions between those natural boundaries, the unused character positions
(or portions thereof) are not used for any other data item. Such unused character
positions, however, are included in:

• The size of any group item (or items) to which the elementary item belongs.

• The character positions redefined when this data item is the object of a
REDEFINES clause.

The words SYNC and SYNCHRONIZED are synonymous.

This clause may appear only with an elementary item or with the USAGE IS
INDEX clause.

SYNCHRONIZED LEFT specifies that the elementary item is to be positioned such
that it will begin at the next available even byte boundary. If the data item contains
an odd number of character positions, one trailing character position of FILLER is
supplied.

SYNCHRONIZED not followed by either RIGHT or LEFT is equivalent to a
SYNCHRONIZED LEFT clause.

SYNCHRONIZED RIGHT specifies that the elementary item is to be positioned
such that it will terminate on an even byte boundary. If the data item contains an odd
number of character positions, a leading character position of FILLER is supplied.

Whenever a SYNCHRONIZED item is referenced in the source program, the
original size of the item, as determined by the PICTURE clause, the USAGE clause
and the SIGN clause, is used in determining any action that depends on size, such as
justification, truncation or overflow.

If the data description of an item contains the SYNCHRONIZED clause and an
operational sign, the sign of the item appears in the normal operational sign position,
without respect to whether the item is SYNCHRONIZED LEFT or
SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data description entry of a data
item that also contains an OCCURS clause, or in a data description entry of a data
item subordinate to a data description entry that contains an OCCURS clause, then:

• Each occurrence of the data item is SYNCHRONIZED.

• Any implicit FILLER generated for other data items within that same table are
generated for each occurrence of those data items.

Records of a file and index data items are automatically synchronized left. Records
and noncontiguous data items in working storage are implicitly synchronized left
unless explicitly synchronized right.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 129
 First Edition

The format on external media of records or groups containing elementary items
described with the SYNCHRONIZED clause includes any implied FILLER bytes.

When the data item preceding a data item described with the SYNCHRONIZED
clause does not terminate on a byte whose address is even, one implied character
position of FILLER is generated. Such automatically generated FILLER positions
are included in:

• The size of any group to which the FILLER item belongs.

• The number of character positions allocated when the group item of which the
FILLER item is a part appears as the object of a REDEFINES clause.

USAGE Clause

[]

[]

[]
[]

[]
[]



































































POINTER
DECIMAL-PACKED

INDEX
DISPLAY

6-COMP
6-NALCOMPUTATIO

5-COMP
5-NALCOMPUTATIO

4-COMP
4-NALCOMPUTATIO

3-COMP
3-NALCOMPUTATIO

1-COMP
1-NALCOMPUTATIO

COMP
NALCOMPUTATIO

BINARY

ISUSAGE

)(
)(

)(
)(

)(

integer-3
integer-3

integer-3
integer-3

integer-3

The USAGE clause specifies the format of a data item in the computer storage.

integer-3 must be in the range 1 through 16 and represents the number of bytes to
allocate as a binary allocation override. The binary allocation override may also be
specified following COMPUTATIONAL or COMP usage if the compiler has been
configured to treat this usage type as binary by use of the COMPUTATIONAL-
TYPE keyword of the COMPILER-OPTIONS configuration record.

This clause specifies the manner in which a data item is represented in the storage of
a computer. It does not affect the use of the data item, although the specifications for
some statements in the Procedure Division may restrict the USAGE clause of the
operands referenced.

The USAGE clause may be written at any level. If the USAGE clause is written at a
group level, it applies to each elementary item in the group. The USAGE clause of
an elementary item cannot contradict the USAGE clause of a group to which the item
belongs. When the usage is COMPUTATIONAL-4, COMP-4,
COMPUTATIONAL-5, COMP-5 or BINARY, the binary allocation override may
also be included or omitted at any level as part of a USAGE clause at that level. If
included, the binary allocation override may specify a different value than that

Data Description Entry
Chapter 4: Data Division

130 RM/COBOL Language Reference Manual
 First Edition

specified in the USAGE clause for a containing group. The rules for the binary
allocation override within group structure are as follows:

• If the USAGE clause is written at a group level and specifies
COMPUTATIONAL-4, COMP-4, COMPUTATIONAL-5, COMP-5, or
BINARY usage with the allocation override integer-3 specified in parentheses
following the usage type, the allocation override integer-3 applies to each
elementary item in the group that does not specify a USAGE clause and is not
subordinate to another group with a higher level-number that specifies a
USAGE clause.

• If the USAGE clause is written at a group level and specifies
COMPUTATIONAL-4, COMP-4, COMPUTATIONAL-5, COMP-5, or
BINARY usage without the allocation override integer-3, the configured binary
allocation scheme applies to each elementary item in the group that does not
specify a USAGE clause and is not subordinate to another group with a higher
level-number that specifies a USAGE clause.

If the USAGE clause is not specified for an elementary item, or for any group to
which the item belongs, the usage is implicitly DISPLAY.

A COMPUTATIONAL (COMPUTATIONAL-1, COMPUTATIONAL-3,
COMPUTATIONAL-4, COMPUTATIONAL-5, COMPUTATIONAL-6) item
represents a value to be used in computations and must be numeric. If a group is
described as COMPUTATIONAL, the elementary items in the group are
COMPUTATIONAL. The group itself is not COMPUTATIONAL (cannot be used
in computations).

The PICTURE character-string of a COMPUTATIONAL, BINARY,
COMPUTATIONAL-3, COMPUTATIONAL-4, COMPUTATIONAL-5, or
PACKED-DECIMAL item can contain only 9’s, the operational sign character S, the
implied decimal point character V and one or more P’s. A COMPUTATIONAL-1
item must be an integer. Therefore, its PICTURE character-string may not contain
any P’s; if V is used it must be the rightmost character in the PICTURE character-
string. The PICTURE character-string of a COMPUTATIONAL-6 item can contain
only V, 9, and P.

COMPUTATIONAL Usage

The format of a COMPUTATIONAL (abbreviated COMP) item is one decimal digit
per character position for each 9 in the PICTURE character-string. If an S appears
in the PICTURE character-string, an additional trailing character contains the sign.
Hexadecimal values 0 through 9 are used to represent the numeric digits zero through
nine. The hexadecimal value D is used for negative sign representation. Depending
on configured sign representation, the hexadecimal value C or F is used for positive
sign representation. Any value other than the correct values for numeric digit or
sign representation will be treated as invalid for purposes of the NUMERIC class
condition.

Note The compiler may be configured to treat COMPUTATIONAL (COMP)
usage as if it were BINARY or PACKED-DECIMAL usage by use of the
COMPUTATIONAL-TYPE keyword of the COMPILER-OPTIONS
configuration record.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 131
 First Edition

COMPUTATIONAL-1 Usage

The format of a COMPUTATIONAL-1 item (abbreviated COMP-1) is 16-bit two’s
complement signed binary integer, independent of the number of 9’s or the
appearance of S in the PICTURE character-string. The number of 9’s is significant
when the value is converted to decimal during data manipulation and for the size
error condition. The value of a COMPUTATIONAL-1 item ranges between –32768
and 32767.

When a COMP-1 data item is specified as a receiving operand in an arithmetic
statement, the size error condition can be caused by either of the following:

• The PICTURE character-string specifies fewer than five 9’s, and the decimal
representation of the value to be stored into the COMP-1 data item requires more
9’s than are specified.

• The PICTURE character-string specifies five or more 9’s, and the value to be
stored into the COMP-1 data item falls outside the range –32768 through 32767,
inclusive.

COMPUTATIONAL-3 or PACKED-DECIMAL Usage

The format of a COMPUTATIONAL-3 (abbreviated COMP-3) and PACKED-
DECIMAL item is two decimal digits per character position. All
COMPUTATIONAL-3 and PACKED-DECIMAL items are allocated a field for an
operational sign whether or not an S appears in the PICTURE character-string. The
operational sign field occupies the rightmost four bits (half of a character position) of
the item. The digits of the data item occupy half-character positions immediately to
the left of the operational sign field, one for each 9 in the PICTURE character-string.
If an even number of 9’s are in the PICTURE character-string of the data item, an
additional half-character is allocated at the left end of the item, to complete an
integral number of character positions. This extra position is not available for
storage of a digit when the data item is used as a receiving field. Nor is it used when
determining the size error condition or when validating VALUE IS literals.

If the PICTURE character-string of a COMPUTATIONAL-3 or PACKED-
DECIMAL item contains an S, the value of the operational sign field is used to
indicate the sign of the data item. Hexadecimal values 0 through 9 are used to
represent numeric digits. The hexadecimal value D is used for negative sign
representation. Depending on configured sign representation, the hexadecimal value
C, B or F is used for positive sign representation. Any value other than the correct
values for numeric digit or sign representation will be treated as invalid for purposes
of the NUMERIC class condition.

If the PICTURE character-string of a COMPUTATIONAL-3 or PACKED-
DECIMAL item does not contain an S, the data item is treated as nonnegative
regardless of the contents of the operational sign field.

COMPUTATIONAL-4 or BINARY Usage

The format of a COMPUTATIONAL-4 (abbreviated COMP-4) or BINARY item
is binary with the high order bytes at lower addresses than the low-order bytes.
Twos-complement binary is used to represent signed data items, that is, when the
PICTURE character-string of a COMPUTATIONAL-4 or BINARY item contains an
S. If an allocation override integer-3 is specified in parentheses following the usage
type, then integer-3 bytes will be allocated. Otherwise, the number of bytes allocated

Data Description Entry
Chapter 4: Data Division

132 RM/COBOL Language Reference Manual
 First Edition

depends on the number of 9's in the PICTURE character-string and the BINARY-
ALLOCATION and BINARY-ALLOCATION-SIGNED keywords of the
COMPILER-OPTIONS configuration record. The default configured binary
allocation scheme is two bytes for one to four 9's, four bytes for five to nine 9's, eight
bytes for ten to eighteen 9's, and sixteen bytes for nineteen to thirty 9's.

The value of integer-3 in a binary allocation override may be less than the number of
bytes required to support the decimal precision specified in the PICTURE character-
string by the number of 9's included in that character-string. In this case, the size
error condition will be detected if the value to be stored is outside the range of values
supported by the number of bytes indicated by integer-3. For example, an item
described as PIC S9(3) BINARY (1) can store values in the range -128 to +127; a
size error condition would exist on an attempt to store values less than -128 or
greater than +127 into such an item. As another example, an item described as PIC
99V9 BINARY (1) can store values in the range 0 to 25.5; a size error condition
would exist on an attempt to store a value less than -25.5 or greater than +25.5 into
such an item. Note that in this latter example, when a negative value is the sending
value, its absolute value is stored into the data item because the item is unsigned.

The binary allocation override does not increase the precision specified by the
PICTURE character-string. For example, the specification PIC 9 BINARY(1)
describes a data item that will cause the size error condition (in arithmetic
statements) or truncation (in MOVE statements) for numbers greater than 9, except
in those cases where truncation does not apply (as in a group move or an arithmetic
statement that does not specify the SIZE ERROR phrase). Thus, while it is possible
to have numbers with values from 0 to 255 in this data item, the programmer should
only plan on being able to put values from 0 to 9 in this data item.

COMPUTATIONAL-5 Usage

The format of a COMPUTATIONAL-5 (abbreviated COMP-5) item is binary with
native machine byte ordering. Twos-complement binary is used to represent signed
data items, that is, when the PICTURE character-string of a COMPUTATIONAL-4
or BINARY item contains an S. If an allocation override integer-3 is specified in
parentheses following the usage type, then integer-3 bytes will be allocated.
Otherwise, the number of bytes allocated depends on the number of 9’s in the
PICTURE character-string and the BINARY-ALLOCATION and BINARY-
ALLOCATION-SIGNED keywords of the COMPILER-OPTIONS configuration
record. The default configured binary allocation scheme is two bytes for one to four
9’s, four bytes for five to nine 9’s, eight bytes for ten to eighteen 9’s, and sixteen
bytes for nineteen to thirty 9’s.

The value of integer-3 in a binary allocation override may be less than the number of
bytes required to support the decimal precision specified in the PICTURE character-
string by the number of 9’s included in that character-string. In this case, the size
error condition will be detected if the value to be stored is outside the range of values
supported by the number of bytes indicated by integer-3. For example, an item
described as PIC S9(3) BINARY (1) can store values in the range -128 to +127; a
size error condition would exist on an attempt to store values less than -128 or
greater than +127 into such an item. As another example, an item described as PIC
99V9 BINARY (1) can store values in the range 0 to 25.5; a size error condition
would exist on an attempt to store a value less than -25.5 or greater than +25.5 into
such an item. Note that in this latter example, when a negative value is the sending
value, its absolute value is stored into the data item because the item is unsigned.

The binary allocation override does not increase the precision specified by the
PICTURE character-string. For example, the specification PIC 9 BINARY(1)

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 133
 First Edition

describes a data item that will cause the size error condition (in arithmetic
statements) or truncation (in MOVE statements) for numbers greater than 9, except
in those cases where truncation does not apply (as in a group move or an arithmetic
statement that does not specify the SIZE ERROR phrase). Thus, while it is possible
to have numbers with values from 0 to 255 in this data item, the programmer should
only plan on being able to put values from 0 to 9 in this data item.

On “little-endian” machines (for example, Intel machines), COMPUTATIONAL-5
data is stored with higher order bytes stored in higher addresses that lower order
bytes. Thus, on “little-endian” machines, COMPUTATIONAL-5 data is stored in a
format that differs from BINARY or COMPUTATIONAL-4 data.

On “big-endian” machines (for example, most RISC-based machines),
COMPUTATIONAL-5 data is stored with higher order bytes stored in lower
addresses than lower order bytes. Thus, on “big-endian” machines, BINARY,
COMPUTATIONAL-4, and COMPUTATIONAL-5 data are stored in the same
format.

Note COMPUTATIONAL-5 usage is intended for interfacing with non-COBOL
programs, particularly in cases where the non-COBOL program stores binary data in
a bound COBOL data item. The format of COMPUTATIONAL-5 binary items is
machine-dependent and thus is not portable between machines unless they are of the
same memory architecture. For this reason, COMPUTATIONAL-5 usage data items
should not be specified in the record descriptions for files. However, the compiler
does not disallow COMPUTATIONAL-5 usage in file record description entries so
that files with COMPUTATIONAL-5 data, for example legacy files written from
another COBOL dialect, can be read. However, if the data is read on a machine with
a memory architecture that differs from that of the machine on which it was written,
incorrect results will be obtained without warning. It is highly recommended that
COMPUTATIONAL-5 data not be used except in those rare circumstances where it
is required to interface with a non-COBOL program used as part of a run unit.

COMPUTATIONAL-6 Usage

The COMPUTATIONAL-6 type (abbreviated COMP-6) is used for describing
unsigned packed decimal internal representation of numeric data. The format of a
COMPUTATIONAL-6 data item is two decimal digits per character position. All
COMPUTATIONAL-6 items are unsigned and must not contain an S in the
PICTURE character-string; the format does not reserve any space for an operational
sign. If an odd number of 9’s are in the PICTURE character-string of the data item,
an additional half-character is allocated at the left end of the item, to complete an
integral number of character positions. This extra position is not available for
storage of a digit when the data item is used as a receiving field. Nor is it used when
determining the size error condition or when validating VALUE IS literals. Any
value other than the correct values for numeric digit representation will be treated as
invalid for purposes of the NUMERIC class condition.

DISPLAY Usage

The USAGE IS DISPLAY clause indicates that the format of the data is the standard
data format and that the data is aligned on a character boundary. The operational
sign of a signed DISPLAY item is determined by whether the data item has a
separate or combined sign. If the data item has a separate sign, a + in the sign field
indicates a positive value and a – indicates a negative value. Any other value is
considered invalid for purposes of the NUMERIC class condition. If the data item
has a combined sign, refer to Table 10 on page 127 for valid sign encoding.

Data Description Entry
Chapter 4: Data Division

134 RM/COBOL Language Reference Manual
 First Edition

INDEX Usage

An elementary item described with the USAGE IS INDEX clause is called an index
data item and contains a value that must correspond to an occurrence number of a
table element. If a group item is described with the USAGE IS INDEX clause, the
elementary items in the group are all index data but the group item name cannot be
used in the SET statement or in a relation condition.

An index data item can be referenced explicitly only in a SEARCH or SET
statement, a relation condition, the USING phrase of a Procedure Division header, or
the USING phrase of a CALL statement. An index data item may not be a
conditional variable.

Index data items are implicitly synchronized left.

The JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO clauses cannot be
used to describe group or elementary items described with the USAGE IS INDEX
clause.

An index data item can be part of a group that is referred to in a MOVE statement or
in an Input-Output statement, in which case, no conversion will take place.

POINTER Usage

The USAGE IS POINTER clause indicates that the data item is to contain a pointer
to another data item. A pointer is a 24-byte structure that includes address, offset,
and length fields. This structure is implementation-dependent, and the individual
fields are not meant to be manipulated except with Formats 5 and 6 of the SET
statement. POINTER usage data items have no PICTURE clause and thus are not
numeric operands.

The effective address of a pointer is the sum of its address and offset fields. A
pointer covers an area of memory from the value of the address field to the sum of
the values of the address and length fields.

Pointer data items should never be described in record description entries in the File
Section since their value is only valid during a particular run unit.

Pointer data items should not be the subject or object of a redefinition and should
only be manipulated with the INITIALIZE statement, Formats 5 and 6 of the SET
statement, or set to a valid value by use of the C$MemoryAllocate subprogram in the
supplied subprogram library. If a group containing pointer data items is moved to
another group, the receiving group should have pointer data items in the same
locations within the group as in the sending group. Failure to follow these rules will
result in a severely misbehaving program that may terminate the run unit with a
memory access violation exception, may change the code memory for the COBOL
program or the runtime system, or may inadvertently change data values other than
those intended to be changed.

The JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses may not be used to
describe group or elementary items described with the USAGE IS POINTER clause.

The VALUE clause may be used with the USAGE IS POINTER clause, but the
only literal that may be specified in such a VALUE clause is the figurative constant
NULL (NULLS).

Pointer data items may only be used in relation conditions involving another pointer
data item, the USING and GIVING phrases of the Procedure Division header, the
INITIALIZE statement, the CALL statement, and Formats 5 and 6 of the SET
statement.

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 135
 First Edition

VALUE Clause

Format 1: Data Item Initialization

literal-1ISVALUE

Format 2: Condition-Name Values

[]literal-3

literal-1-operatorrelational

literal-2literal-1

ISFALSETOSETWHEN

THRU
THROUGH

AREVALUES
ISVALUE L

















































Format 3: Constant-Name Value









1xpression-constant-e
literal-1ISVALUE

The VALUE clause defines the initial values of Working-Storage Section and
Communication Section data items, the values used by the VALUE phrase of the
INITIALIZE statement, the values associated with condition-names, the values of
Screen Section displayable items, and the values assigned to constant-names.

A signed numeric literal must have associated with it a signed numeric PICTURE
character-string.

All numeric literals in a VALUE clause of an item must have a value which is within
the range of values indicated by the PICTURE clause, and must not have a value
which would require truncation of nonzero digits. Nonnumeric literals in a VALUE
clause of an item must not exceed the size indicated by the PICTURE clause.

The words THRU and THROUGH are synonymous.

The WHEN SET TO FALSE phrase has meaning only if the associated condition-
name is referenced in a SET condition-name-1 TO FALSE statement. This phrase
declares the false value to be used in a SET condition-name-1 TO FALSE statement.

When the VALUE clause specifies a nonnumeric literal for an elementary data item,
the PICTURE clause may be omitted. In this case, a PICTURE clause of the form
'PICTURE X(length)' is implied, where length is the length of the nonnumeric literal.

The VALUE clause must not conflict with other clauses in the data description of the
item or in the data description within the hierarchy of the item. The following rules
apply:

1. If the category of the item is numeric, all literals in the VALUE clause must be
numeric. If the literal defines the value of a working storage item, the literal is
aligned in the data item according to the standard alignment rules (see page 167).

Data Description Entry
Chapter 4: Data Division

136 RM/COBOL Language Reference Manual
 First Edition

2. If the category of the item is alphabetic, alphanumeric, alphanumeric edited or
numeric edited, all literals in the VALUE clause must be nonnumeric literals.
The literal is aligned in the data item as if the data item had been described as
alphanumeric. Editing characters in the PICTURE clause are included in
determining the size of the data item but have no effect on initialization of the
data item. Therefore, the value of an edited item is presented in an edited form.

3. As an exception to the rules in item 2, RM/COBOL allows specification of a
numeric literal in the VALUE clause for an item of category numeric edited. In
this case, the compiler performs the logical equivalent of a MOVE of the
numeric literal to the numeric edited data item to form a nonnumeric literal that
is used to initialize the numeric edited data item (Format 1) or as the relation
literal value for a condition-name (Format 2). If the numeric literal value is zero
and a BLANK WHEN ZERO clause applies to the data item, then the resultant
nonnumeric literal will be space filled.

4. If the category of the item is data pointer, all literals in the VALUE clause must
be pointers. The only pointer literal is NULL (NULLS).

Initialization takes place independent of any BLANK WHEN ZERO or JUSTIFIED
clause that may be specified, except as noted in item 3 above.

A figurative constant may be substituted in both Format 1 and Format 2 wherever a
literal is specified.

Data Item Initialization Rules (Format 1 VALUE Clause)

Rules governing the use of the VALUE clause differ with the respective sections of
the Data Division:

1. In the File Section, the VALUE clause takes effect only during the execution of
an INITIALIZE statement. The initial values of the data items in the File
Section are undefined.

2. In the Working-Storage Section and Communication Section, the VALUE
clause specifies the initial value of data items, other than those data items in an
external record. In this case, the VALUE clause causes the data item to assume
the specified value when the program is placed into its initial state. For all data
items, including data items in an external record, the VALUE clause also takes
effect during the execution of an INITIALIZE statement. If the VALUE clause
is not used in the description of a data item, the initial value is undefined.

3. In the Linkage Section, the VALUE clause takes effect only during the
execution of an INITIALIZE statement. The initial values of the data items
in the Linkage Section are specified in the rules for the Linkage Section (on
page 98) and the Procedure Division, as discussed in Chapter 5: Procedure
Division (on page 179).

The VALUE clause must not be stated in a data description entry that contains a
REDEFINES clause, or in an entry that is subordinate to an entry containing a
REDEFINES clause. This rule does not apply to condition-name entries.

If the VALUE clause is used in an entry at the group level, the literal must be a
figurative constant or a nonnumeric literal, and the group area is initialized without
consideration for the individual elementary or group items contained within this
group. The VALUE clause cannot be stated at the subordinate levels within this
group. The VALUE clause must not be written for a group containing items with

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 137
 First Edition

descriptions including JUSTIFIED, SYNCHRONIZED or USAGE (other than
USAGE IS DISPLAY).

If a Format 1 VALUE clause is specified in a data description entry that contains an
OCCURS clause or in an entry that is subordinate to an OCCURS clause, each
occurrence of the data item is initialized to the specified value.

A data item is said to be associated with a variable-occurrence data item in any of the
following circumstances:

• It is a group data item that contains a variable-occurrence data item.

• It is a variable-occurrence data item.

• It is a data item that is subordinate to a variable-occurrence data item.

If a VALUE clause is specified in the data description entry of a data item that is
associated with a variable-occurrence data item, the initialization of the data item
behaves as if the value of the data item referenced by the DEPENDING ON phrase
in the OCCURS clause specified for the variable-occurrence data item had been set
to the maximum number of occurrences as specified by that OCCURS clause.

If a VALUE clause is associated with the data item referenced by a DEPENDING
ON phrase, that value is considered to be placed into the data item after the variable-
occurrence data item is initialized.

Condition-Name Rules (Format 2 VALUE Clause)

In a condition-name entry, the VALUE clause is required. The VALUE clause and
the condition-name itself are the only two clauses permitted in the entry. The
characteristics of a condition-name are implicitly those of its conditional variable.

Format 2 can be used only in connection with condition-names. Wherever the
THROUGH phrase is used, literal-1 must be less than literal-2.

When a relational operator is specified, the truth-value of the condition-name is
determined by a relation condition that uses the conditional variable as the subject,
relational-operator as the relational operator, and literal-1 as the object of the
relation. If a relational operator is specified with the first, or only, literal-1, a true
value for the purposes of the SET … TO TRUE statement is not defined unless that
relational operator includes equality, in which case, literal-1 is the true value for the
SET statement. The relational operators GREATER THAN, >, LESS THAN, <,
NOT EQUAL, NOT =, LIKE, and NOT LIKE do not include equality; if the SET …
TO TRUE statement is to be used with a condition-name defined with one of these
relational operators, the Format 2 VALUE clause must first specify a literal-1
without a relational operator or with a relational operator that includes equality.

Note The relational-operator may be any of the relational operators for the relation
condition (on page 197).

Constant-Name Rules (Format 3 VALUE Clause)

A Format 3 VALUE clause may be used only in a level-number 78 constant-name
data description entry.

If literal-1 is specified, the constant-name has the same characteristics as literal-1.

If constant-expression-1 is specified, the constant-name has the characteristics of an
unsigned integer literal.

Data Description Entry
Chapter 4: Data Division

138 RM/COBOL Language Reference Manual
 First Edition

A constant-expression has the following format:

[]

()

[]

()

L












































































































































−
+

































































3xpression-constant-e

7data-name-

literal-5
5data-name-

integer-2

2xpression-constant-e

6data-name-

literal-4
4data-name-

integer-1

COMPILED-DATE

OFSTART

OFSIZE
LENGTH

NEXT

NOT

OREXCLUSIVE
OR
AND
**

/
*

COMPILED-DATE

OFSTART

OFSIZE
LENGTH

NEXT

NOT

literal-1 or integer-1 may be specified by a constant-name previously declared.

integer-1 may be signed or zero, but must be nonnegative and less than
4,294,967,296.

data-name-4, data-name-5, data-name-6, and data-name-7 may be qualified.

data-name-4, data-name-5, data-name-6, and data-name-7 must have been
defined before the declaration of the level-number 78 constant-name. Further, if
data-name-4 or data-name-5 refer to a group data item, that group must have been
completed before the declaration of the level-number 78 constant-name. The
group is completed by the specification of another data item at the same or lower
level-number than the level-number of the group referenced by data-name-4, or
data-name-5, respectively.

In constant-expression-1, any number of arithmetic or logical operators may be used.
The result is evaluated using 32-bit integer arithmetic in strict left to right order with
all operators having the same precedence. Parentheses may be used to force a
desired precedence since constant-expressions in parentheses are evaluated first. If
any intermediate result is less than zero, the final value is undefined. Overflow is
ignored when evaluating arithmetic operations. The value assigned to a constant-
name is included in the compiler listing allocation map, which may be used to verify
the results of a constant-expression evaluation as well as simple literal assignments to
constant-names.

The logical operators AND, OR, EXCLUSIVE OR, and NOT operate on the
binary representation in a bit-wise manner. The binary representation is a 32-bit
integer quantity.

LENGTH OF data-name-4 or SIZE OF data-name-4 gives the integer value
representing the number of character positions allocated for the data item referenced
by data-name-4. If data-name-4 is a group item, the length includes all subordinate
data items and any filler generated because of SYNCHRONIZED clauses.

LENGTH OF literal-4 or SIZE OF literal-4 gives the integer value representing the
number of character positions required for literal-4. If the literal is a numeric literal,
the number of characters is the same as the number of digits. That is, for a numeric
literal, the sign and decimal point characters, if specified, are not counted in the
length of the literal.

NEXT gives the integer value representing the offset at which the next byte of
storage that follows the previous data declaration. If that data description specifies
the OCCURS clause and describes an elementary data item, the value given by
NEXT is the offset following the maximum number of occurrences specified by the
OCCURS clause. If NEXT is used in a level-number 78 entry that is embedded in a

 Data Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 139
 First Edition

group or at the end of a group and that group data description specifies the OCCURS
clause, the value given by NEXT is the offset following a single occurrence of the
group up to the point the level-number 78 entry is specified.

START OF data-name-6 gives the integer value representing the offset at which the
data item referenced by data-name-6 begins.

Offsets given by NEXT and START OF are defined as follows:

• If the data item is part of an EXTERNAL record or a LINKAGE record, the
offset is calculated from the start of the associated 01-level data item.

• If the data item is part of a FILE record, the offset is calculated from the start of
the associated 01-level data item for NEXT or for a START OF specified before
the end of the File Section. For a START OF specified after the end of the File
Section, the offset is calculated from the beginning of the Data Division. (This
difference is caused by the need to handle SAME clauses specified in the
I-O-CONTROL paragraph at the end of the File Section.)

• Otherwise, the offset is calculated from the start of the Data Division.

Offsets are not portable across different COBOL implementations, and no reliance
should be placed on particular values outside this compilation unit.

DATE-COMPILED gives the integer value representing the date the compilation
started as YYYYMMDD, where YYYY is the year, MM is the month of the year,
and DD is the day of the month.

Communication Description Entry
Chapter 4: Data Division

140 RM/COBOL Language Reference Manual
 First Edition

Communication Description Entry
The communication description entry specifies the interface area between the
Message Control System (MCS) and a COBOL program.

Format 1: Input CD

[]

.

















































































































11data-name-10data-name-9data-name-
8data-name-7data-name-6data-name-5data-name-

4data-name-3data-name-2data-name-1data-name-

11data-name-
10data-name-

9data-name-
8data-name-

7data-name-
6data-name-
5data-name-

4data-name-
3data-name-
2data-name-

1data-name-

cd-name-1

ISCOUNTMESSAGE
ISKEYSTATUS

ISKEYEND
ISLENGTHTEXT

ISSOURCESYMBOLIC
ISTIMEMESSAGE
ISDATEMESSAGE

IS3-QUEUE-SUBSYMBOLIC
IS2-QUEUE-SUBSYMBOLIC
IS1-QUEUE-SUBSYMBOLIC

ISQUEUESYMBOLIC

INPUTINITIALFORCD

Format 2: Output CD

[]
[]
[]

{ }[]
[]
[] .5data-name-

4data-name-
-1index-name

integer-1
3data-name-

2data-name-
1data-name-

cd-name-1

ISNDESTINATIOSYMBOLIC
ISKEYERROR

BYINDEXED
TIMESOCCURSTABLENDESTINATIO

ISKEYSTATUS
ISLENGTHTEXT

ISCOUNTNDESTINATIO
OUTPUTFORCD









L

 Communication Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 141
 First Edition

Format 3: Input-Output CD

[]

.











































































6data-name-5data-name-
4data-name-3data-name-2data-name-1data-name-

6data-name-
5data-name-

4data-name-
3data-name-

2data-name-
1data-name-

cd-name-1

ISKEYSTATUS
ISKEYEND

ISLENGTHTEXT
ISTERMINALSYMBOLIC

ISTIMEMESSAGE
ISDATEMESSAGE

O-IINITIALFORCD

A CD entry may appear only in the Communication Section.

Within a single program, the INITIAL clause may be specified in only one CD. The
INITIAL clause must not be used in a program that specifies the USING phrase of
the Procedure Division header.

For Format 1 (Input CD):

• If the INITIAL clause is present, it must appear in the position shown; the other
optional clauses may be specified in any order.

• If neither option for specifying the interface area is used, a level 01 data
description entry must follow the CD entry. Either option may be followed by a
level 01 data description entry.

• Record description entries following an input CD entry implicitly redefine the
record area established by the input CD entry and must describe a record of
exactly 87 standard data format characters. Multiple redefinitions of this record
are permitted. VALUE clauses for data items not in the first redefinition do not
cause those data items to have an initial value when the program is placed into
its initial state, but will be used for the INITIALIZE statement with the VALUE
phrase. The MCS always references the record according to the data description
defined in item 2k of the general rules for Format 1, which begin on page 142.

• data-name-1, data-name-2, data-name-3, data-name-4, data-name-5,
data-name-6, data-name-7, data-name-8, data-name-9, data-name-10 and
data-name-11 must be unique within the CD entry. Within this series any
data-name may be replaced by the reserved word FILLER.

For Format 2 (Output CD):

• If none of the optional clauses of the CD entry is specified, a level 01 data
description entry must follow the CD entry.

• Record description entries subordinate to an output CD entry implicitly redefine
the record area established by the output CD entry. Multiple redefinitions of this
record are permitted. VALUE clauses for data items not in the first redefinition
do not cause those data items to have an initial value when the program is placed
into its initial state, but will be used for the INITIALIZE statement with the
VALUE phrase. The MCS always references the record according to the data
description defined in item 2d of the general rules for Format 2, which begin on
page 145.

Communication Description Entry
Chapter 4: Data Division

142 RM/COBOL Language Reference Manual
 First Edition

• data-name-1, data-name-2, data-name-3, data-name-4 and data-name-5 must be
unique within a CD entry.

• If both the DESTINATION TABLE OCCURS clause and the ERROR KEY
clause are present, the ERROR KEY clause must not precede the
DESTINATION TABLE OCCURS clause. If both the DESTINATION TABLE
OCCURS clause and the SYMBOLIC DESTINATION clause are present, the
SYMBOLIC DESTINATION clause must not precede the DESTINATION
TABLE OCCURS clause. Except for these restrictions, the optional clauses of
an output CD entry may appear in any order.

• If the DESTINATION TABLE OCCURS clause is not specified, one error key
and one symbolic destination area are assumed. In this case, subscripting is not
permitted when referencing these data items.

• If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and
data-name-5 may be referenced only by subscripting.

For Format 3 (Input-Output CD):

• If the INITIAL clause is present, it must appear in the position shown; the other
optional clauses may be specified in any order.

• If neither option for specifying the interface area is used, a level 01 data
description entry must follow the CD entry. Either option may be followed by a
level 01 data description entry.

• Record description entries following an input-output CD entry implicitly
redefine the record area established by the input-output CD entry and must
describe a record of exactly 33 standard data format characters. Multiple
redefinitions of this record are permitted. VALUE clauses for data items not in
the first redefinition do not cause those data items to have an initial value when
the program is placed into its initial state, but will be used for the INITIALIZE
statement with the VALUE phrase. The MCS always references the record
according to the data description defined in item 2f of the general rules for
Format 3, which begin on page 147.

• data-name-1, data-name-2, data-name-3, data-name-4, data-name-5 and
data-name-6 must be unique within the CD entry. Within this series, any data-
name may be replaced by the reserved word FILLER.

Input CD General Rules
The following general rules apply to Format 1:

1. The input CD information constitutes the communication between the MCS and
the program about the message being handled. This information does not come
from the terminal as part of the message.

2. For each input CD entry, a record area of 87 contiguous character positions is
allocated. This record area is defined to the MCS as follows:

a. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 1
through 12 in the record.

b. The SYMBOLIC SUB-QUEUE-1 clause defines data-name-2 as the name
of an elementary alphanumeric data item of 12 characters occupying
positions 13 through 24 in the record.

 Communication Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 143
 First Edition

c. The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the name
of an elementary alphanumeric data item of 12 characters occupying
positions 25 through 36 in the record.

d. The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the name
of an elementary alphanumeric data item of 12 characters occupying
positions 37 through 48 in the record.

e. The MESSAGE DATE clause defines data-name-5 as the name of a data
item whose implicit description is that of an integer of six digits, without an
operational sign, occupying character positions 49 through 54 in the record.

f. The MESSAGE TIME clause defines data-name-6 as the name of a data
item whose implicit description is that of an integer of eight digits, without
an operational sign, occupying character positions 55 through 62 in the
record.

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 63
through 74 in the record.

h. The TEXT LENGTH clause defines data-name-8 as the name of an
elementary data item whose implicit description is that of an integer of four
digits, without an operational sign, occupying character positions 75
through 78 in the record.

i. The END KEY clause defines data-name-9 as the name of an elementary
alphanumeric data item of one character occupying position 79 in the
record.

j. The STATUS KEY clause defines data-name-10 as the name of an
elementary alphanumeric data item of two characters occupying positions
80 and 81 in the record.

k. The MESSAGE COUNT clause defines data-name-11 as the name of an
elementary data item whose implicit description is that of an integer of six
digits, without an operational sign, occupying character positions 82
through 87 in the record.

The second option (data-name-1, data-name-2, . . ., data-name-11) may be
used to replace the above clauses by a series of data-names which, taken in
order, correspond to the data-names defined by these clauses.

Use of either option results in a record whose implicit description is
equivalent to the following:

 9(6). PICTURE 02
 XX. PICTURE 02
 X. PICTURE 02

 9(4). PICTURE 02
 X(12). PICTURE 02

 9(8). PICTURE 02
 9(6). PICTURE 02
 X(12). PICTURE 02
 X(12). PICTURE 02
 X(12). PICTURE 02
 X(12). PICTURE 02

FILLER. 01

11data-name-
10data-name-
9data-name-
8data-name-
7data-name-
6data-name-
5data-name-
4data-name-
3data-name-
2data-name-
1data-name-

Communication Description Entry
Chapter 4: Data Division

144 RM/COBOL Language Reference Manual
 First Edition

3. The contents of data items referenced by data-name-2, data-name-3 and
data-name-4, when not being used must contain spaces.

4. The data items referenced by data-name-1, data-name-2, data-name-3 and
data-name-4 contain symbolic names designating queues, sub-queues, . . .,
respectively. These symbolic names must follow the rules for the formation of
system-names, and must have been previously defined to the MCS.

5. A RECEIVE statement causes the serial return of the next message or a portion
of a message from the queue as specified by the entries in the CD. At the time
of execution of a RECEIVE statement, the data-name-1 field in the input CD
area must contain the name of a symbolic queue. The data items specified by
data-name-2, data-name-3 and data-name-4 may contain symbolic sub-queue
names or spaces. When a given level of the queue structure is specified, all
higher levels must also be specified. If less than all the levels of the queue
hierarchy are specified, the MCS determines the next message or portion of a
message to be accessed within the queue or sub-queue specified in the input CD.
After the execution of a RECEIVE statement, the contents of the data items
referenced by data-name-1 through data-name-4 will contain the symbolic
names of all the levels of the queue structure.

6. Whenever a program is scheduled by the MCS to process a message, that
program establishes a run unit and the symbolic names of the queue structure
that demanded this activity will be placed in the data items referenced by
data-name-1 through data-name-4 of the CD associated with the INITIAL
clause as applicable. In all other cases, the contents of the data items referenced
by data-name-1 through data-name-4 of the CD associated with the INITIAL
clause are initialized to spaces.

The symbolic names are inserted, or the initialization to spaces is completed,
prior to the execution of the first Procedure Division statement.

The execution of a subsequent RECEIVE statement naming the same contents of
the data items referenced by data-name-1 through data-name-4 will return the
actual message that caused the program to be scheduled. Only at that time will
the remainder of the CD be updated.

7. If the MCS attempts to schedule a program lacking an INITIAL clause, the
results are undefined.

8. During the execution of a RECEIVE statement, the MCS provides, in the data
item referenced by data-name-5, the date on which it recognized that the
message was complete in the form YYMMDD (year, month, day). The contents
of the data item referenced by data-name-5 are not updated by the MCS other
than as part of the execution of a RECEIVE statement.

9. During the execution of a RECEIVE statement, the MCS provides, in the data
item referenced by data-name-6, the time at which it recognized that the
message was complete in the form HHMMSShh (hours, minutes, seconds,
hundredths of a second). The contents of the data item referenced by data-
name-6 are not updated by the MCS other than as part of the execution of a
RECEIVE statement.

10. During the execution of a RECEIVE statement, the MCS provides, in the data
item referenced by data-name-7, the symbolic name of the communication
terminal that is the source of the message being transferred. If the symbolic
name of the communication terminal is not known to the MCS, the contents of
the data item referenced by data-name-7 will contain spaces.

 Communication Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 145
 First Edition

11. The MCS indicates through the contents of the data item referenced by
data-name-8 the number of character positions filled as a result of the execution
of the RECEIVE statement.

12. The contents of the data item referenced by data-name-9 are set by the MCS
only as part of the execution of a RECEIVE statement according to the
following rules:

When the RECEIVE MESSAGE phrase is specified:

a. If an end of group has been detected, the contents of the data item
referenced by data-name-9 are set to 3.

b. If an end of message has been detected, the contents of the data item
referenced by data-name-9 are set to 2.

c. If less than a message is transferred, the contents of the data item referenced
by data-name-9 are set to 0.

When the RECEIVE SEGMENT phrase is specified:

a. If an end of group has been detected, the contents of the data item
referenced by data-name-9 are set to 3.

b. If an end of message has been detected, the contents of the data item
referenced by data-name-9 are set to 2.

c. If an end of segment has been detected, the contents of the data item
referenced by data-name-9 are set to 1.

d. If less than a message is transferred, the contents of the data item referenced
by data-name-9 are set to 0.

When more than one of the above conditions is satisfied simultaneously, the rule
first satisfied in the order listed determines the contents of the data item
referenced by data-name-9.

13. The contents of the data item referenced by data-name-10 indicate the status
condition of the previously executed RECEIVE, ACCEPT . . . MESSAGE
COUNT, ENABLE INPUT or DISABLE INPUT statement. (See Table 11 on
page 150).

14. The contents of the data item referenced by data-name-11 indicate the number
of messages that exist in a queue, sub-queue-1, and so on. The MCS updates the
contents of the data item referenced by data-name-11 only as part of the
execution of an ACCEPT . . . MESSAGE COUNT statement.

Output CD General Rules
The following general rules apply to Format 2:

1. The nature of the output CD information is such that it is not sent to the terminal,
but constitutes the communication between the program and the MCS about the
message being handled.

2. A record area of contiguous character positions is allocated for each output CD.
If the CD entry does not contain a DESTINATION TABLE OCCURS clause,
the length of the allocated record area is 23 characters. If the CD entry does
contain a DESTINATION TABLE OCCURS clause, the length of the allocated
record area is 10 plus 13 times the value of integer-1.

Communication Description Entry
Chapter 4: Data Division

146 RM/COBOL Language Reference Manual
 First Edition

The implicit description of the allocated record area is:

a. The DESTINATION COUNT clause defines data-name-1 as the name of a
data item whose implicit description is that of an integer, without an
operational sign, occupying character positions 1 through 4 in the record.

b. The TEXT LENGTH clause defines data-name-2 as the name of an
elementary data item whose implicit description is that of an integer of four
digits, without an operational sign, occupying character positions 5 through
8 in the record.

c. The STATUS KEY clause defines data-name-3 to be an elementary
alphanumeric data item of two characters occupying positions 9 and 10 in
the record.

d. Character positions 11 through 23 and every set of 13 characters thereafter
will form table items of the following description:

1) The ERROR KEY clause defines data-name-4 as the name of an
elementary alphanumeric data item of one character.

2) The SYMBOLIC DESTINATION clause defines data-name-5 as the
name of an elementary alphanumeric data item of 12 characters.

Use of the above clauses results in a record whose implicit description is
equivalent to the following:

X(12). PICTURE 03
X. PICTURE 03

 TIMES. OCCURSFILLER 02
XX. PICTURE 02
9(4). PICTURE 02
9(4). PICTURE 02

FILLER. 01

5data-name-
4data-name-

integer-1
3data-name-
2data-name-
1data-name-

3. During the execution of a SEND, PURGE, ENABLE OUTPUT or DISABLE
OUTPUT statement, the content of the data item referenced by data-name-1 will
indicate to the MCS the number of symbolic destinations that are to be used
from the area referenced by data-name-5. The MCS finds the first symbolic
destination in the first occurrence of the area referenced by data-name-5, the
second symbolic destination in the second occurrence of the area referenced by
data-name-5, and so forth, up to and including the occurrence of the area
referenced by data-name-5 that is indicated by the contents of data-name-1. If
during the execution of a SEND, PURGE, ENABLE OUTPUT or DISABLE
OUTPUT statement, the value of the data item referenced by data-name-1 is
outside the range of 1 through integer-1, inclusive, an error condition is
indicated, no action is taken for any destination, and the execution of the SEND,
PURGE, ENABLE OUTPUT or DISABLE OUTPUT statement is terminated.
The user must ensure that the value of the data item referenced by data-name-1
is valid at the time of the execution of the SEND, PURGE, ENABLE OUTPUT
or DISABLE OUTPUT statement.

4. As part of the execution of a SEND statement, the MCS will interpret the
content of the data item referenced by data-name-2 to be the user’s indication of
the number of leftmost character positions of the data item referenced by the
identifier in the SEND statement from which data is to be transferred. See the
discussion of the SEND statement (on page 385).

5. Each occurrence of the data item referenced by data-name-5 contains a symbolic
destination name previously known to the MCS. These symbolic destination
names must follow the rules for the formation of system-names.

 Communication Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 147
 First Edition

6. The content of the data item referenced by data-name-3 indicates the status
condition of the previously executed SEND, PURGE, ENABLE OUTPUT or
DISABLE OUTPUT statement. (See Table 11 on page 150.)

7. If, during the execution of a SEND, PURGE, ENABLE OUTPUT or DISABLE
OUTPUT statement the MCS determines that an error has occurred, the content
of the data item referenced by data-name-3 and all occurrences of the data items
referenced by data-name-4 are updated. The content of the error key data item
referenced by data-name-4, when nonzero, indicates that an error has occurred
for the destination specified by the associated value in the symbolic destination
data item referenced by data-name-5. Otherwise, the content of the error key
data item referenced by data-name-4 is set to zero. See Table 12 on page 152
for the meanings of the various error key values.

Input-Output CD General Rules
The following general rules apply to Format 3:

1. The input-output CD information constitutes the communication between the
MCS and the program about the message being handled. This information does
not come from the terminal as part of the message.

2. For each input-output CD, a record area of 33 contiguous character positions is
allocated. This record area is defined to the MCS as follows:

a. The MESSAGE DATE clause defines data-name-1 as the name of a data
item whose implicit description is that of an integer of six digits, without an
operational sign, occupying character positions 1 through 6 in the record.

b. The MESSAGE TIME clause defines data-name-2 as the name of a data
item whose implicit description is that of an integer of eight digits, without
an operational sign, occupying character positions 7 through 14 in the
record.

c. The SYMBOLIC TERMINAL clause defines data-name-3 as the name of
an elementary alphanumeric data item of 12 characters occupying positions
15 through 26 in the record.

d. The TEXT LENGTH clause defines data-name-4 as the name of an
elementary data item whose implicit description is that of an integer of four
digits, without an operational sign, occupying character positions 27
through 30 in the record.

e. The END KEY clause defines data-name-5 as the name of an elementary
alphanumeric data item of one character occupying position 31 in the
record.

f. The STATUS KEY clause defines data-name-6 as the name of an
elementary alphanumeric data item of two characters occupying positions
32 and 33 in the record.

The second option (data-name-1, data-name-2, . . ., data-name-6) may be used
to replace the above clauses which, taken in order, correspond to the data-names
defined by these clauses.

Communication Description Entry
Chapter 4: Data Division

148 RM/COBOL Language Reference Manual
 First Edition

Use of either option results in a record whose implicit description is equivalent
to the following:

XX. PICTURE 02
X. PICTURE 02
9(4). PICTURE 02

 X(12). PICTURE 02
9(8). PICTURE 02
9(6). PICTURE 02

FILLER. 01

6data-name-
5data-name-
4data-name-
3data-name-
2data-name-
1data-name-

3. When a program is scheduled by the MCS to process a message, the first
RECEIVE statement referencing the input-output CD with the INITIAL clause
returns the actual message that caused the program to be scheduled.

4. data-name-1 has the format YYMMDD (year, month, day). Its contents
represent the date on which the MCS recognizes that the message is complete.

The contents of the data item referenced by data-name-1 are updated only by the
MCS as part of the execution of a RECEIVE statement.

5. data-name-2 has the format HHMMSShh (hours, minutes, seconds, hundredths
of a second) and its contents represent the time at which the MCS recognizes
that the message is complete.

The contents of the data item referenced by data-name-2 are updated only by the
MCS as part of the execution of a RECEIVE statement.

6. Whenever a program is scheduled by the MCS to process a message, that
program establishes a run unit and the symbolic name of the communication
terminal that is the source of the message that invoked this program is placed in
the data item referenced by data-name-3 of the input-output CD associated with
the INITIAL clause as applicable. This symbolic name must follow the rules for
the formation of system-names.

In all other cases, the contents of the data item referenced by data-name-3 of the
input-output CD associated with the INITIAL clause are initialized to spaces.

The symbolic name is inserted, or the initialization to spaces is completed, prior
to the execution of the first Procedure Division statement.

7. If the MCS attempts to schedule a program lacking an INITIAL clause, the
results are undefined.

8. When the INITIAL clause is specified for an input-output CD and the program is
scheduled by the MCS, the contents of the data item referenced by data-name-3
must not be changed by the program. If the contents are changed, the execution
of any statement referencing cd-name is unsuccessful, and the data item
referenced by data-name-6 is set to indicate unknown source or destination, as
applicable.

9. For an input-output CD without the INITIAL clause, or for an input-output CD
with the INITIAL clause when the program is not scheduled by the MCS, the
program must specify the symbolic name of the source or destination in data-
name-3 prior to the execution of the first statement referencing cd-name.

After executing the first statement referencing cd-name, the contents of the data
item referenced by data-name-3 must not be changed by the program. If the
contents are changed, the execution of any statement referencing cd-name is
unsuccessful, and the data item referenced by data-name-6 is set to indicate
unknown source or destination, as applicable.

 Communication Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 149
 First Edition

10. The MCS indicates, through the contents of the data item referenced by data-
name-4, the number of character positions filled as a result of the execution of
the RECEIVE statement.

As part of the execution of a SEND statement, the MCS interprets the contents
of the data item referenced by data-name-4 as the user’s indication of the
number of leftmost character positions of the data item referenced by the
associated SEND identifier from which data is transferred.

11. The contents of the data item referenced by data-name-5 are set only by the
MCS as part of the execution of a RECEIVE statement according to the
following rules:

When the RECEIVE MESSAGE phrase is specified:

a. If an end of group has been detected, the contents of the data item
referenced by data-name-5 are set to 3.

b. If an end of message has been detected, the contents of the data item
referenced by data-name-5 are set to 2.

c. If less than a message is transferred, the contents of the data item referenced
by data-name-5 are set to 0.

d. When the RECEIVE SEGMENT phrase is specified:

e. If an end of group has been detected, the contents of the data item
referenced by data-name-5 are set to 3.

f. If an end of message has been detected, the contents of the data item
referenced by data-name-5 are set to 2.

g. If an end of segment has been detected, the contents of the data item
referenced by data-name-5 are set to 1.

h. If less than a message is transferred, the contents of the data item referenced
by data-name-5 are set to 0.

When more than one of the conditions is satisfied simultaneously, the rule first
satisfied in the order listed determines the contents of the data item referenced
by data-name-5.

12. The contents of the data item referenced by data-name-6 indicate the status
condition of the previously executed PURGE, RECEIVE or SEND statement.
(See Table 11 on page 150.)

Status Key Conditions
Table 11 indicates the possible content of the data item referenced by data-name-10
(Format 1), data-name-3 (Format 2), or data-name-6 (Format 3) at the completion of
each statement shown.

A symbol on a line in a statement column indicates that the associated code
shown for that line is possible for that statement.

Communication Description Entry
Chapter 4: Data Division

150 RM/COBOL Language Reference Manual
 First Edition

Table 11: Communication Status Key Conditions

Description St

at
us

 K
ey

 V
al

ue

R
EC

EI
VE

SE
N

D
 in

pu
t-o

ut
pu

t-c
d

SE
N

D
 o

ut
pu

t-c
d

PU
R

G
E

AC
C

EP
T

M
ES

SA
G

E
C

O
U

N
T

EN
AB

LE
 IN

PU
T

EN
AB

LE
 IN

PU
T/

I-O

TE
R

M
IN

AL

EN
AB

LE
 O

U
TP

U
T

D
IS

AB
LE

 IN
PU

T

D
IS

AB
LE

 IN
PU

T/
I-O

TE

R
M

IN
AL

D
IS

AB
LE

 O
U

TP
U

T

No error detected. Action
completed.

00

One or more destinations
disabled. Action completed.

10

Destination disabled. No
action taken.

10

Symbolic source, or one or
more queues or destinations
already disabled/enabled.

15

One or more destinations
unknown. Action completed
for known destinations.

20

One or more queues or
sub-queues unknown. No
action taken.

20

 The status is allowed.

 The status is not allowed.

 Communication Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 151
 First Edition

Table 11: Communication Status Key Conditions (Cont.)

Description St

at
us

 K
ey

 V
al

ue

R
EC

EI
VE

SE
N

D
 in

pu
t-o

ut
pu

t-c
d

SE
N

D
 o

ut
pu

t-c
d

PU
R

G
E

AC
C

EP
T

M
ES

SA
G

E
C

O
U

N
T

EN
AB

LE
 IN

PU
T

EN
AB

LE
 IN

PU
T/

I-O

TE
R

M
IN

AL

EN
AB

LE
 O

U
TP

U
T

D
IS

AB
LE

 IN
PU

T

D
IS

AB
LE

 IN
PU

T/
I-O

TE

R
M

IN
AL

D
IS

AB
LE

 O
U

TP
U

T

Symbolic source is unknown.
No action taken.

21

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

Destination count invalid. No
action taken.

30

��
��
��

 ��
��
��

 �
�
�

 �
�
�

 �
�
�

 ��
��
��

 ��
��
��

Password invalid. No
enabling/disabling action
taken.

40

��
��
��

 ��
��
��

 �
�
�

 �
�
�

 �
�
�

Text length exceeds size of
identifier-1.

50

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

Portion requested to be sent
has text length of zero or
identifier-1 absent. No action
taken.

60

��
��
��

 �
�
�

 �
�
�

 �
�
�

 �
�
�

 �
�
�

 ��
��
��

 ��
��
��

 ��
��
��

Output queue capacity
exceeded.

65

��
��
��

 ��
��
��

 �
�
�

 �
�
�

 �
�
�

 �
�
�

 �
�
�

 ��
��
��

 ��
��
��

 ��
��
��

One or more destinations do
not have portions associated
with them. Action completed
for other destinations.

70

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

A combination of at least two
status key conditions 10, 15,
and 20 have occurred.

80

��
��
��

 ��
��
��

 �
�
�

 �
�
�

 ��
��
��

Communication Description Entry
Chapter 4: Data Division

152 RM/COBOL Language Reference Manual
 First Edition

Error Key Values
Table 12 indicates the possible content of the data item referenced by data-name-4
(Format 2) at the completion of each statement shown.

A symbol on a line in a statement column indicates that the associated error key
value shown for that line is possible for that statement.

Table 12: Error Key Values

Description Er

ro
r K

ey
 V

al
ue

SE
N

D

PU
R

G
E

EN
AB

LE
 O

U
TP

U
T

D
IS

AB
LE

O

U
TP

U
T

No error. 0

Symbolic destination unknown. 1

Symbolic destination disabled. 2
 ��

��
 �
�

No partial message with referenced symbolic
destination. 4

��
��

��
��

�
�

Symbolic destination already enabled/disabled. 5

��
��

 ��
��

Output queue capacity exceeded. 6
 ��
��

 ��
��

 �
�

Reserved for future use. 7–9

��
��

��
��

��
��

�
�

 The status is allowed.

�
� The status is not allowed.

 Screen Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 153
 First Edition

Screen Description Entry

Format 1: Screen Group







FILLER
e-1screen-namer-1level-numb







integer-1
-1color-name

ISCOLOR-BACKGROUND
ISBACKGROUND







integer-2
-2color-name

ISCOLOR-FOREGROUND
ISFOREGROUND

[][]DISPLAYISUSAGE

[] [] 














 CHARACTERSEPARATETRAILING

LEADINGISSIGN







SKIP-AUTO
AUTO

[]SECURE

[]REQUIRED

[] .FULL

{ }Lntry-1cription-escreen-des

Screen Description Entry
Chapter 4: Data Division

154 RM/COBOL Language Reference Manual
 First Edition

Format 2: Screen Literal







FILLER
e-1screen-namer-1level-numb







BEEP
BELL





























REMAINDER
LINE
SCREEN

BLANK

[]BLINK





























SCREEN
EOL
EOS

ERASE

[]






LOWLIGHT
HIGHLIGHTNO















VIDEO-REVERSE
REVERSED
REVERSE

[]UNDERLINE







integer-1
-1color-name

ISCOLOR-BACKGROUND
ISBACKGROUND







integer-2
-2color-name

ISCOLOR-FOREGROUND
ISFOREGROUND



















































+
-1identifier

integer-3PLUS
ISNUMBERLINE



















































+








-2identifier

integer-4PLUS
ISNUMBERCOL

COLUMN

[][] .literal-1ISVALUE

 Screen Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 155
 First Edition

Format 3: Screen Field







FILLER
e-1screen-namer-1level-numb







BEEP
BELL





























REMAINDER
LINE
SCREEN

BLANK

[]BLINK





























SCREEN
EOL
EOS

ERASE

[]






LOWLIGHT
HIGHLIGHTNO















VIDEO-REVERSE
REVERSED
REVERSE

[]UNDERLINE







integer-1
-1color-name

ISCOLOR-BACKGROUND
ISBACKGROUND







integer-2
-2color-name

ISCOLOR-FOREGROUND
ISFOREGROUND



















































+
-1identifier

integer-3PLUS
ISNUMBERLINE



















































+








-2identifier

integer-4PLUS
ISNUMBERCOL

COLUMN

















































-9identifier
-8identifier

literal-1
-7identifier

string-1character-

USING
TO

FROM
ISPIC

PICTURE

(continued on next page)

Screen Description Entry
Chapter 4: Data Division

156 RM/COBOL Language Reference Manual
 First Edition

Format 3: Screen Field (continued from previous page)

[][]DISPLAYISUSAGE

[]ZEROWHENBLANK
















 RIGHTJUST

JUSTIFIED

[] [] 














 CHARACTERSEPARATETRAILING

LEADINGISSIGN







SKIP-AUTO
AUTO

[]SECURE

[]REQUIRED

[] .FULL

level-number-1 must be in the range 01 to 49, or 77. Level-numbers 66 and 88 are
not allowed. Level-numbers in the range 01 through 49 are used to define group and
elementary fields in the same way as in the other sections of the Data Division.

A screen description entry that contains a screen-name following the level-number
defines that screen-name. Screen-names may be used only in ACCEPT and
DISPLAY statements. A screen-name is not a data-name, and the two types of
names are not interchangeable.

A particular screen-attribute may not be specified more than once in a given screen
description entry. The possible screen-attributes are defined in the following
subsections. Note that a number of the clauses that can be used in other sections of
the Data Division are not available in the Screen Section. These include OCCURS,
REDEFINES, RENAMES, SIGN, SYNC and USAGE.

 Screen Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 157
 First Edition

AUTO Clause







SKIP-AUTO
AUTO

The AUTO clause may be used either at the group level or at the elementary level.
When used at the group level the effect is as if it were specified in each subordinate
elementary entry that specifies a PICTURE clause with a TO or USING option.

When an elementary field that has the AUTO attribute is functioning as an input field
during the course of an ACCEPT operation, the field is considered to be complete as
soon as sufficient characters have been entered to fill the field. If the field is not the
last input field in the group to which it belongs, the cursor moves to the next field
and the ACCEPT operation continues. If the field is the last input field in the group
to which it belongs, the ACCEPT operation terminates.

In the absence of the AUTO attribute, the operator must explicitly terminate each
field before the cursor moves to the next input field.

BACKGROUND Clause







integer-1
-1color-name

ISCOLOR-BACKGROUND
ISBACKGROUND

color-name-1 may be any properly formed user-defined word that names a color
known to the runtime system. The default names known to all RM/COBOL runtime
systems are provided in Table 13. color-name-1 is not a data-name, that is, color-
name-1 must be the color-name itself and does not refer to a data item that contains
the color-name.

The BACKGROUND clause may be used either at the group level or at the
elementary level. When used at the group level the effect is as if it were specified in
each subordinate elementary entry that is not controlled by an intervening nested
BACKGROUND clause.

The BACKGROUND clause causes the background of the screen field to be shown
in the specified color provided the terminal supports color operations and provided
the appropriate configuration operations have been performed. The specification is
effective for both input and output fields.

The BACKGROUND-COLOR clause is an alternative method of specifying the
background color for the screen item. It is provided for compatibility with other
common dialects of COBOL. The value of integer-1 must be in the range 0 through
7 and specifies a color-name according to Table 13.

Screen Description Entry
Chapter 4: Data Division

158 RM/COBOL Language Reference Manual
 First Edition

Table 13: Color Integers

Value COLOR-NAME

0 BLACK

1 BLUE

2 GREEN

3 CYAN

4 RED

5 MAGENTA

6 BROWN

7 WHITE

The BACKGROUND-COLOR clause may be used either at the group level or at the
elementary level with the same result as a BACKGROUND clause that specifies a
color-name corresponding to the value of integer-1.

BELL Clause







BEEP
BELL

During the course of a DISPLAY operation, the terminal’s audible alert signal is
sounded when the cursor encounters an elementary input field that has the BELL
attribute.

The BELL clause may be used only at the elementary level.

The words BELL and BEEP are synonymous.

BLANK LINE Clause

LINEBLANK

During the course of a DISPLAY operation, when the cursor encounters an
elementary field that has the BLANK LINE attribute, the line from the position of
the cursor to the right end of the line is cleared to spaces. The position of the cursor
remains unchanged.

The BLANK LINE clause may be used only at the elementary level.

 Screen Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 159
 First Edition

BLANK REMAINDER Clause

REMAINDERBLANK

During the course of a DISPLAY operation, when the cursor encounters an
elementary field that has the BLANK REMAINDER attribute, the line from the
position of the cursor to the right end of the line and all lines below the cursor are
cleared to spaces. The position of the cursor remains unchanged.

The BLANK REMAINDER clause may be used only at the elementary level.

BLANK SCREEN Clause

SCREENBLANK

During the course of a DISPLAY operation, when the cursor encounters an
elementary field that has the BLANK SCREEN attribute, the entire screen is cleared
to spaces. The position of the cursor remains unchanged.

The BLANK SCREEN clause may be used only at the elementary level.

Regardless of the order in which they appear in the screen description entry, the
following screen attributes are always acted on in the following order:

1. BLANK SCREEN or ERASE SCREEN

2. LINE or COLUMN positioning

3. BLANK REMAINDER or ERASE EOS

4. BLANK LINE or ERASE EOL

Therefore, it is redundant to specify BLANK LINE in the same entry with BLANK
REMAINDER, and it is redundant to specify either of those attributes in the same
entry with BLANK SCREEN.

BLANK WHEN ZERO Clause

ZEROWHENBLANK

The BLANK WHEN ZERO clause has the same effect in the Screen Section as it
does in the other sections of the Data Division. It causes the screen field to be filled
with spaces if the value of the associated item is zero. It is effective only during an
output operation.

The BLANK WHEN ZERO clause can be used only at the elementary level for a
screen item whose category is numeric or numeric edited.

The BLANK WHEN ZERO clause must not be specified in the same entry with a
PICTURE clause having an asterisk as the zero suppression symbol.

The BLANK WHEN ZERO clause must not be specified in the same entry with a
PICTURE clause that specifies an operational sign with the symbol S.

Screen Description Entry
Chapter 4: Data Division

160 RM/COBOL Language Reference Manual
 First Edition

BLINK Clause

BLINK

During both ACCEPT and DISPLAY operations, the BLINK clause causes the
screen field to be shown in the flashing mode if such a mode is available on the
terminal.

The BLINK clause may be used only at the elementary level.

COLUMN Clause



































+








-2identifier

integer-4PLUS
ISNUMBERCOL

COLUMN

The COLUMN clause may be used to specify an absolute or relative horizontal
position for the cursor. It may be specified only at the elementary level. The words
COLUMN and COL are synonymous.

If identifier-2 is used, it must be defined in one of the other sections of the Data
Division as an elementary numeric integer. It may be qualified or subscripted, but
reference modification is not permitted.

If identifier-2 is used or if integer-4 is used without the PLUS option, the current
value of the data item referred to by identifier-2 or the value of integer-4 is
interpreted as an absolute 1-relative column position. That is, a value of 1 specifies
the leftmost column position in the current line. Behavior of the cursor is undefined
if the value is less than 1 or greater than the width of the screen.

If the PLUS option is used, the value of integer-4 is interpreted as an increment to
the current position of the cursor, and the cursor is advanced to the right the specified
number of positions. Behavior of the cursor is undefined if such advancement moves
the cursor beyond the right edge of the screen.

If the COLUMN clause is omitted in an elementary screen description entry, the
horizontal cursor position is:

• 1 if the LINE clause is used in the same screen description entry.

• The current cursor position if the LINE clause is also omitted.

See Table 14 on page 164 for a summary of the interaction of the LINE and
COLUMN clauses.

A COLUMN clause with no operand is equivalent to a COLUMN PLUS 1 clause.

 Screen Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 161
 First Edition

ERASE Clause













SCREEN
EOL
EOS

ERASE

The ERASE clause may be specified only for elementary screen description entries.

During a display operation, when displaying an elementary field described with the
ERASE clause that specifies the EOS option, the line from the position of the cursor
to the right end of the line and all lines below the cursor are cleared to spaces. The
position of the cursor remains unchanged at the beginning of the screen field.

During a display operation, when displaying an elementary field described with the
ERASE clause that specifies the EOL option, the line from the position of the cursor
to the right end of the line is cleared to spaces. The position of the cursor remains
unchanged at the beginning of the screen field.

During a display operation, when displaying an elementary field described with the
ERASE clause that explicitly or implicitly specifies the SCREEN option, the line
from the position of the cursor to the right end of the line is cleared to spaces. The
position of the cursor remains unchanged at the beginning of the screen field.

See BLANK SCREEN Clause (on page 159) for additional information on blanking
(erasing) the screen and portions of the screen.

FOREGROUND Clause







integer-2
-2color-name

ISCOLOR-FOREGROUND
ISFOREGROUND

color-name-2 may be any properly formed user-defined word that names a color
known to the runtime system. The default names known to all RM/COBOL runtime
systems are provided in Table 13 on page 158. color-name-2 is not a data-name, that
is, color-name-2 must be the color-name itself and does not refer to a data item that
contains the color-name.

The FOREGROUND clause may be used either at the group level or at the
elementary level. When used at the group level the effect is as if it were specified in
each subordinate elementary entry that is not controlled by an intervening nested
FOREGROUND clause.

The FOREGROUND clause causes the foreground of the screen field to be shown in
the specified color provided the terminal supports color operations and provided the
appropriate configuration operations have been performed. The specification is
effective for both input and output fields.

The FOREGROUND-COLOR clause is an alternative method of specifying the
foreground color for the screen item. It is provided for compatibility with other
common dialects of COBOL. The value of integer-2 must be in the range 0 through
7 and specifies a color-name according to Table 13 on page 158.

The FOREGROUND-COLOR clause may be used either at the group level or at the
elementary level with the same result as a FOREGROUND clause that specifies a
color-name corresponding to the value of integer-2.

Screen Description Entry
Chapter 4: Data Division

162 RM/COBOL Language Reference Manual
 First Edition

FULL Clause

FULL

The FULL clause may be used either at the group level or at the elementary level.
When used at the group level the effect is as if it were specified in each subordinate
elementary entry that specifies a PICTURE clause with a TO or USING option.

When an elementary field that has the FULL attribute is functioning as an input field
during the course of an ACCEPT operation, the user is required to enter either a field
terminator by itself, in which case the field is bypassed and the value of the
associated item remains unchanged, or a sufficient number of characters to fill the
entire screen field. Partially filling the screen field is not allowed. If the
REQUIRED attribute is also specified, the option of entering a field terminator by
itself is not available.

HIGHLIGHT and LOWLIGHT Clauses

[]








LOWLIGHT

HIGHLIGHTNO

An elementary field that is described with the HIGHLIGHT clause is shown at high
intensity during both ACCEPT and DISPLAY operations.

An elementary field that is described with the LOWLIGHT clause or NO
HIGHLIGHT clause is shown at low intensity during both ACCEPT and DISPLAY
operations.

The default intensity is high for ACCEPT operations and low for DISPLAY
operations.

The HIGHLIGHT, LOWLIGHT and NO HIGHLIGHT clauses may be specified
only in elementary screen description entries.

JUSTIFIED Clause

RIGHT
JUST
JUSTIFIED









The JUSTIFIED clause has the same effect in the Screen Section as it does in the
other sections of the Data Division. That is, it specifies nonstandard positioning of
nonnumeric data within the screen field when the screen field is acting as a receiving
field. If the associated item is longer than the screen field, the leftmost characters of
the associated item are truncated and the remaining characters from the associated
item are moved into the screen field. If the associated item is shorter than the screen
field, the remaining leftmost positions are space-filled. In either case, the rightmost
character from the associated item falls in the rightmost position of the screen field.

The JUSTIFIED clause may be used only at the elementary level and only with
screen fields whose category is alphanumeric or alphabetic. It is effective only
during ACCEPT operations.

JUSTIFIED and JUST are synonymous.

 Screen Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 163
 First Edition

LINE Clause



































+
-1identifier

integer-3PLUS
ISNUMBERLINE

The LINE clause may be used to specify an absolute or relative vertical position for
the cursor. It may be specified only at the elementary level.

If identifier-1 is used, it must be defined in one of the other sections of the Data
Division as an elementary numeric integer. It may be qualified or subscripted, but
reference modification is not permitted.

If identifier-1 is used or if integer-3 is used without the PLUS option the current
value of the data item referred to by identifier-1 or the value of integer-3 is
interpreted as an absolute 1-relative line position. That is, a value of 1 specifies the
topmost line on the screen. Behavior of the cursor is undefined if the value is less
than 1 or greater than the number of lines available on the screen.

If the PLUS option is used, the value of integer-3 is interpreted as an increment to
the current position of the cursor, and the cursor is undefined if such advancement
moves the cursor below the bottom edge of the screen.

If the LINE clause is omitted in an elementary screen description entry, the cursor
position remains on the current line.

If the LINE clause is used without the COLUMN clause, the cursor is moved to the
leftmost position of the specified line. Table 14 shows the interaction of LINE and
COLUMN clauses in a screen description entry.

A LINE clause with no operand is equivalent to a LINE PLUS 1 clause.

Screen Description Entry
Chapter 4: Data Division

164 RM/COBOL Language Reference Manual
 First Edition

Table 14: Interaction of LINE and COLUMN Clauses in a Screen
Description Entry

LINE Clause

COLUMN Clause

Field Position
(line 1, column 2)

omitted omitted
COLUMN
COLUMN n
COLUMN PLUS n

(Curline, Curcol)
(Curline, Curcol + 1)
(Curline, n)
(Curline, Curcol + n)

LINE omitted
COLUMN
COLUMN n
COLUMN PLUS n

(Curline + 1, 1)
(Curline + 1, Curcol + 1)
(Curline + 1, n)
(Curline + 1, Curcol + n)

LINE m omitted
COLUMN
COLUMN n
COLUMN PLUS n

(m, 1)
(m, Curcol + 1)
(m, n)
(m, Curcol + n)

LINE PLUS m omitted
COLUMN
COLUMN n
COLUMN PLUS n

(Curline + m, 1)
(Curline + m, Curcol + 1)
(Curline + m, n)
(Curline + m, Curcol + n)

1 Curline is 1 for the first elementary entry in a screen record and is the line number of the
immediately preceding elementary entry for each subsequent entry in the screen record.

2 Curcol is 1 for the first elementary entry in a screen record and is the column number
plus field width of the immediately preceding elementary entry for each subsequent entry
in the screen record.

PICTURE Clause

























































-9identifier
-8identifier

literal-1
-7identifier

string-1character-

USING
TO

FROM
IS

PIC
PICTURE

The PICTURE clause may be specified only at the elementary level; it may not be
specified in the same screen description entry as a VALUE clause.

PICTURE and PIC are synonymous.

character-string-1 is defined in the same way and has the same interpretation as in
the other sections of the Data Division.

As indicated by the format, a PICTURE clause in the Screen Section must contain
either one or two associated items specified in the FROM, TO or USING phrases.
Two associated items may be specified only if both a FROM and TO phrase are
specified. The USING phrase is equivalent to specifying both a FROM and TO
phrase, each of which specify the same identifier-9.

When identifier-7, identifier-8, or identifier-9 are specified, they must have been
defined as data items in one of the other sections of the Data Division. They may not
be reference modified, but qualification and subscripting may be used.

When an identifier is specified as an associated data item, the compiler allocates a
unique memory area for that screen item to serve as an intermediate storage area for
the transmission of data between the screen field and the associated data item. The

 Screen Description Entry
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 165
 First Edition

size of the intermediate storage area is determined by the PICTURE character-string
in the same way as for the other sections of the Data Division.

The presence of a FROM or USING phrase in the description of a screen item marks
that screen item as an output item that is active during DISPLAY operations. The
execution of a DISPLAY statement causes an implicit MOVE from the associated
data item to the screen item prior to displaying the screen field.

The presence of a TO or USING phrase in the description of a screen item marks that
screen item as an input item that is active during ACCEPT operations. The
execution of an ACCEPT statement causes an implicit MOVE from the screen item
to the associated data item after accepting the screen field.

REQUIRED Clause

REQUIRED

The REQUIRED clause may be used either at the group level or at the elementary
level. When used at the group level the effect is as if it were specified in each
subordinate elementary entry that specifies a PICTURE clause with a TO or USING
option.

When an elementary field that has the REQUIRED attribute is functioning as an
input field during the course of an ACCEPT operation, the user is required to enter at
least one character in the field.

REVERSE Clause















VIDEO-REVERSE
REVERSED
REVERSE

An elementary field that has the REVERSE attribute is shown in reverse video
during both ACCEPT and DISPLAY operations.

The REVERSE clause may be used only at the elementary level.

The words REVERSE, REVERSED, and REVERSE-VIDEO are synonymous.

SECURE Clause

SECURE

The SECURE clause may be used either at the group level or at the elementary level.
When used at the group level the effect is as if it were specified in each subordinate
elementary entry that specifies a PICTURE clause with a TO or USING option.

When an elementary field that has the SECURE attribute is functioning as an input
field during the course of an ACCEPT operation, the characters entered by the user
are moved to the intermediate area but are not shown on the screen. Instead,
asterisks are placed in the screen field for each character entered by the user.

Screen Description Entry
Chapter 4: Data Division

166 RM/COBOL Language Reference Manual
 First Edition

SIGN Clause

[] []CHARACTERSEPARATETRAILING
LEADINGISSIGN









The SIGN clause in a screen description entry has the same function and rules as in
other sections of the Data Division, except that for screen items, the operational sign
is always separate. The SIGN clause may be specified in either a group screen
description entry or an elementary field screen description entry. When used at the
group level it applies to all elementary items subordinate to that group that are not
subordinate to an intervening nested SIGN clause.

UNDERLINE Clause

UNDERLINE

An elementary field that has the UNDERLINE attribute is shown in underline mode
during both ACCEPT and DISPLAY operations, provided the terminal supports
that mode.

The UNDERLINE clause may be used only at the elementary level.

USAGE Clause

[] DISPLAYISUSAGE

The USAGE clause may be used in either a group screen description entry or an
elementary field screen description entry. When used at the group level, it applies to
all elementary items subordinate to that group.

The USAGE clause in the Screen Section can specify only DISPLAY usage.
DISPLAY usage indicates that the format of the data is a standard data format. If the
USAGE clause is not specified for an elementary item, or for any group to which the
item belongs, the usage is implicitly DISPLAY.

VALUE Clause

[] literal-1ISVALUE

literal-1 must be a nonnumeric literal.

The VALUE clause may be used only at the elementary level. It may not be
specified in the same screen description entry as a PICTURE, BLANK WHEN
ZERO, JUSTIFIED, SIGN, USAGE, SECURE, AUTO, REQUIRED or FULL
clause.

Screen fields whose description includes a VALUE clause are active during
DISPLAY operations.

 Data Structures
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 167
 First Edition

Data Structures

Classes of Data
The five categories of data items, as discussed in PICTURE Character-String (Data
Categories) on page 114, are grouped into three classes:

1. Alphabetic

2. Numeric

3. Alphanumeric

For alphabetic and numeric, the classes and categories are synonymous.

The alphanumeric class includes the categories of alphanumeric edited, numeric
edited and alphanumeric (without editing).

Every elementary item except for an index data item belongs both to one of the
classes and to one of the categories. The class of a group item is treated at object
time as alphanumeric regardless of the class of elementary items subordinate to that
group item.

Table 15 depicts the relationship of the class and categories of data items.

Table 15: Data Item Relationships

Level of Item Class Category

Elementary Alphabetic Alphabetic

 Numeric Numeric

 Alphanumeric Numeric Edited
Alphanumeric Edited
Alphanumeric

Nonelementary (Group) Alphanumeric Alphabetic
Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

Standard Alignment Rules
The standard rules of positioning data within an elementary item depend on the
category of the receiving item.

If the receiving data item is described as numeric:

• The data is aligned by decimal point and is moved to the receiving character
positions with zero fill or truncation on either end as required.

• When an assumed decimal point is not explicitly specified, the data item is
treated as if it had an assumed decimal point immediately following its rightmost
character and is aligned as described above.

If the receiving data item is a numeric edited data item, the data moved to the edited
data item is aligned by decimal point with zero-fill or truncation at either end as

Uniqueness of Reference
Chapter 4: Data Division

168 RM/COBOL Language Reference Manual
 First Edition

required within the receiving character positions of the data item, except where
editing requirements cause replacement of the leading zeroes.

If the receiving data item is alphanumeric (other than a numeric edited data item),
alphanumeric edited or alphabetic, the sending data is moved to the receiving
character positions and aligned at the leftmost character position in the data item with
space-fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are
modified as described in the JUSTIFIED clause.

Uniqueness of Reference
Every user-defined name in a COBOL program is assigned, by the user, to name a
resource that is to be used in solving a data processing problem. In order to use a
resource, a statement in a COBOL program must contain a reference that uniquely
identifies that resource. In order to ensure uniqueness of reference, a user-defined
name may be qualified, subscripted or reference-modified as described in the
following paragraphs.

When the same name has been assigned in separate programs to two or more
occurrences of a resource of a given type, and when qualification by itself does not
allow the reference in one of those programs to differentiate between the two
identically named resources, then certain conventions which limit the scope of names
apply. These conventions ensure that the resource identified is that described in the
program containing the reference.

Unless otherwise specified by the rules for a statement, any subscripting and
reference modification are evaluated only once as the first operation of the execution
of that statement.

Qualification
Every user-defined name explicitly referenced in a COBOL source program must be
uniquely referenced because either:

• No other name has the identical spelling and hyphenation.

• It is unique within the context of a REDEFINES clause.

• The name exists within a hierarchy of names such that reference to the name can
be made unique by mentioning one or more of the higher level names in the
hierarchy.

These higher level names are called qualifiers and the process that specifies
uniqueness is called qualification. Identical user-defined names may appear in a
source program; however, uniqueness must then be established through
qualification for each user-defined name explicitly referenced, except in the case
of redefinition. All available qualifiers need not be specified so long as
uniqueness is established. Reserved words naming the special registers require
qualification to provide uniqueness of reference whenever a source program
would result in more than one occurrence of any of these special registers. A
paragraph-name or section-name appearing in a program may not be referenced
from any other program.

• A program is contained within a program or contains another program.

 Uniqueness of Reference
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 169
 First Edition

Regardless of the above, the same data-name must not be used as the name of an
external record and as the name of any other external data item described in any
program contained within or containing the program which describes that external
data record. The same data-name must not be used as the name of an item
possessing the global attribute and as the name of any other data item described in
the program which describes that global data item.

An exception regarding the qualification requirement is made with respect to the
operand of a REDEFINES clause because its position within the hierarchical
structure of the Data Division implicitly supplies any qualification that might be
needed.

In the hierarchy of qualification, names associated with a level indicator are the most
significant, followed by names associated with level-number 01, followed by names
associated with level-numbers 02, . . ., 49. The name of a conditional variable may
be used as a qualifier for any of its condition-names.

Qualification is performed by following a data-name, condition-name,
LINAGE-COUNTER, screen-name, split-key-name, or by one or more phrases made
up of a qualifier preceded by IN or OF. IN and OF are logically equivalent.

Format 1: Qualification for Data-Names and Condition-Names




























































































cd-name-1
1file-name-

cd-name-1
1file-name-data-name-

name-1condition-
1data-name-

OF
IN

OF
IN

OF
IN L2

Format 2: Qualification for LINAGE-COUNTER

2file-name-








OF
INCOUNTER-LINAGE

Format 3: Qualification for Screen-Names

L














 e-2screen-name-1screen-nam OF

IN

Format 4: Qualification for Split-Key-Names

3file-name-name-1split-key-








OF
IN

Uniqueness of Reference
Chapter 4: Data Division

170 RM/COBOL Language Reference Manual
 First Edition

The rules for qualification are as follows:

1. Each reference in the Environment Division, the Data Division, or the Procedure
Division to a nonunique user-defined word must be made unique by supplying a
sequence of qualifiers that precludes any ambiguity of reference. An exception
exists for paragraph-names referenced from the section in which they are defined
within the Procedure Division as explained in Procedure References.

2. data-name-1 and data-name-2 may be record-names.

3. Each qualifier must be a name associated with a level indicator (FD, SD or CD),
a record-name (level 01), the name of a group item to which the item being
qualified is subordinate, or the name of the conditional variable with which the
condition-name is associated. All qualifiers must be within the same hierarchy
as the name being qualified, and they must be specified in the order of
successively more inclusive (higher) levels in the hierarchy.

4. The same name must not appear at two levels in a hierarchy.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. In a program that contains more than one LINAGE clause, each reference to
LINAGE-COUNTER must be qualified by the associated file-name.

7. Each reference to a split-key-name, defined in a RECORD KEY or
ALTERNATE RECORD KEY clause, must be qualified by the file-name of the
file with which the split-key-name is associated if the split-key-name is not
unique within the program.

8. A name can be qualified even though it does not need qualification: if there is
more than one combination of qualifiers that ensures uniqueness, any such set
can be used. Qualified data-names may have any number of qualifiers up to a
limit of 49.

Subscripting
Subscripts are used when reference is made to an individual element within a table of
like elements that have not been assigned individual data-names.

{ })(1subscript-name-1condition-
1data-name-









Except as the subject of a SEARCH statement, in a REDEFINES clause, or in a KEY
IS phrase of an OCCURS clause, every reference to a table element must be
subscripted, and there must be within the parentheses exactly as many subscripts as
there are controlling OCCURS clauses for the data item referred to by data-name-1
or the conditional variable associated with condition-name-1.

A data item is controlled by an OCCURS clause if the OCCURS clause is in the data
description of the data item or in the data description of a higher-level data item to
which the data item is subordinate. A table element is a data item that has at least
one controlling OCCURS clause.

Each subscript in the list is associated with a specific OCCURS clause that appears
either in the data description of data-name-1 itself or at a higher level within the
same hierarchy. When there is more than one subscript in the parenthesized list, the
subscripts are written in the order of successively less inclusive dimensions of the
table. That is, the rightmost subscript in the list is associated with the OCCURS
clause that appears in the data description of data-name-1 itself, or the nearest

 Uniqueness of Reference
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 171
 First Edition

preceding OCCURS clause, if the data description of data-name-1 does not contain
an OCCURS clause.

The value of each subscript is an occurrence number. The lowest possible
occurrence number is 1, and an occurrence number of 1 refers to the first element of
the table. Higher occurrence numbers (2, 3, . . .) refer in sequence to the following
elements of the table. The highest permissible occurrence number for any given
dimension of the table is the maximum number of occurrences of the item as
specified in the associated OCCURS clause.

The syntax for each individual subscript is:































−
+







 integer-2-1index-name

2data-name-
integer-1

integer-1 may be signed, but only with a plus sign. When the integer-1 form of a
subscript is used, the occurrence number is the value of integer-1.

When the data-name-2 form of a subscript is used, data-name-2 may be qualified but
not subscripted. It must be defined in the Data Division as a numeric integer data
item. The value of the occurrence number of the subscript is the current value of the
data item referred to by data-name-2 optionally incremented (when the + is used) or
decremented (when the – is used) by the value of integer-2. The value of integer-2
may be zero. Note that when the integer-2 option is present, the sum (or difference)
of the current value of the data item and integer-2 must be a valid occurrence
number. The user is responsible for ensuring that the current value of the data item
referred to by data-name-2 is appropriate for this use of data-name-2. The value of
the data item can be modified by a number of different statements such as the MOVE
statement, arithmetic statements, and so forth.

When the index-name-1 form of a subscript is used, the OCCURS clause that
is associated with the subscript must specify an INDEXED BY phrase, and
index-name-1 must be defined in the list of that INDEXED BY phrase.

The value of the occurrence number of the subscript is the occurrence number
contained in the index referred to by index-name-1 optionally incremented (when the
+ is used) or decremented (when the – is used) by the value of integer-2. The value
of integer-2 may be zero. Note that when the integer-2 option is present, the sum
(or difference) of the current value of the index and integer-2 must be a valid
occurrence number. The user is responsible for ensuring that the current value of the
index referred to by index-name-1 is appropriate for this use of index-name-1. The
value of an index can be modified only by the SET statement and by certain forms
of the PERFORM and SEARCH statements.

When it is convenient to do so, the integer-1 or index-name-1 form of a subscript
should be used in preference to the data-name form, for efficiency.

Uniqueness of Reference
Chapter 4: Data Division

172 RM/COBOL Language Reference Manual
 First Edition

Reference Modification
Reference modification permits reference to a subfield of a data item. It may be used
anywhere an identifier referencing an alphanumeric data item is allowed, unless
explicitly disallowed by the rules for a specific statement.

[]):(length-1osition-1haracter-pleftmost-c1data-name-

data-name-1 must refer to a data item whose usage is DISPLAY (called “the
operand” in this discussion). It may be qualified, subscripted or both.

leftmost-character-position-1 and length-1 are both arithmetic expressions as defined
in the discussion of Arithmetic Expressions (on page 195). The value of
leftmost-character-position-1 specifies the leftmost character position of the
subfield within the operand. The value of length-1 specifies the character length of
the subfield. The subfield selected in this way is treated as an elementary data item
without the JUSTIFIED clause. It has the same class and category as the operand,
except that the categories numeric, numeric edited and alphanumeric edited are
treated as class and category alphanumeric.

If the operand is described as numeric, numeric edited, alphabetic or alphanumeric
edited, it is operated on for purposes of reference modification as if it were redefined
as an alphanumeric data item of the same size as the operand.

Each character position of the operand is assigned an ordinal number starting with
one at the leftmost character position and incrementing by one for each subsequent
character position up to and including the rightmost character position. If the data
description for the operand contains or is subject to a SIGN IS SEPARATE clause,
the sign position is assigned an ordinal number in the same way as for the digit
positions of the data item.

The value of leftmost-character-position-1 specifies the ordinal position of the
leftmost character of the subfield with respect to the leftmost position of the operand.
The evaluation must result in a positive integer not greater than the number of
characters in the operand.

When length-1 is omitted, the subfield extends from the position specified by
leftmost-character-position-1 up to and including the rightmost character position
of the operand.

When length-1 is present, its value specifies the length in characters of the subfield.
The evaluation must result in a positive integer. The sum of the values of the two
expressions minus 1 must not be greater than the number of characters in the
operand.

RM/COBOL relaxes the preceding rules regarding the values of leftmost-character-
position-1 and length-1. The relaxed rules allow leftmost-character-position-1 to
exceed the number of characters in the operand; in this case, the subfield will be zero
length. Also, the sum of the two expressions minus 1 may be greater than the
number of characters in the operand. In this case, the length of the subfield is
reduced until the sum of leftmost-character-position-1 and the reduced length minus
1 is equal to the number of characters in the operand, but not less than zero. The
relaxed rules apply to both sending and receiving operands. The relaxed rules do not
allow negative or zero values for either leftmost-character-position-1 or length-1.
The strict ISO Standard 1989-1985 compliant rules can be enforced by specifying the
value YES for the STRICT-REFERENCE-MODIFICATION keyword of the
COMPILER-OPTIONS configuration record, as explained in Chapter 10:
Configuration of the RM/COBOL User’s Guide.

 Uniqueness of Reference
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 173
 First Edition

If subscripting is specified for the operand, the reference modification expressions
are evaluated immediately after evaluation of the subscripts. If subscripting is not
specified for the operand, the reference modification expressions are evaluated at the
time subscripts would have been evaluated had they been specified.

When an identifier that refers to a level-number 01 or 77 Linkage Section data item
formal argument is reference modified, the data item is resolved according to its
description in the calling program. This is an exception to the rule that formal
arguments are resolved according to their description in the Linkage Section of the
called program. How the data item is resolved mainly affects the length of the data
item as seen in the called program. For additional information on this special case of
resolving Linkage Section record-names, see Linkage Section (on page 98).

Identifier
An identifier is a term used to reflect that a data-name may be followed by a
syntactically correct combination of qualifiers, subscripts or reference modifiers to
ensure uniqueness.

{ }[] [][]):()(length-1osition-1haracter-pleftmost-c1subscript-

cd-name-1
1file-name-2data-name-1data-name- 










































OF
IN

OF
IN

Condition-Name
Each reference to a condition-name must be unique, or be made unique through
qualification, subscripting, or both.

{ }[])(1subscript-

cd-name-1
1file-name-1data-name-name-1condition- 










































OF
IN

OF
IN

If qualification is used to make a condition-name unique, the associated conditional
variable may be used as the first qualifier. If qualification is used, the hierarchy of
names associated with the conditional variable or the conditional variable itself must
be used to make the condition-name unique.

If references to a conditional variable require subscripting, references to any of its
condition-names also require the same subscripting.

The restrictions on the combined use of qualification and subscripting of
condition-names are the same as those that apply to an identifier.

In the general formats, condition-name-1 refers to a condition-name qualified or
subscripted, as necessary for unique reference.

Table Handling
Chapter 4: Data Division

174 RM/COBOL Language Reference Manual
 First Edition

Table Handling
Tables of data are common components of business data processing problems.
Although the repeating items that make up a table could be otherwise described as a
series of separate data description entries all having the same level-number and all
subordinate to the same group item, there are two reasons why this approach is not
satisfactory.

First, from a documentation standpoint, the underlying homogeneity of the items
would not be readily apparent; second, the problem of making available an individual
element of such a table would be severe when there is a decision as to which element
is to be made available at object time.

Tables of data items are defined by including the OCCURS clause in their data
description entries. This clause specifies that the item is to be repeated as many
times as stated. The item is considered to be a table element and its name and
description apply to each repetition or occurrence. Since each occurrence of a table
element does not have assigned to it a unique data-name, reference to a desired
occurrence may be made only by specifying the identifier of the table element
together with the occurrence number of the desired table element. The occurrence
number is specified by a subscript.

The number of occurrences of a table element may be specified to be fixed or
variable depending on the value of another data item.

Table Definition
To define a one-dimensional table, use an OCCURS clause as part of the data
description of the table element, but the OCCURS clause must not appear in the
description of group items which contain the table element.

Example 1

CIMAL. PACKED-DECTURE 9(9) PI 03 SSN
).CTURE X(40 PI 03 NAME
MES.CURS 20 TILEMENT OC02 TABLE-E

TABLE-1. 01

Defining a one-dimensional table within each occurrence of an element of
another one-dimensional table gives rise to a two-dimensional table. To define a
two-dimensional table, then, an OCCURS clause must appear in the data description
of the element of the table, and in the description of only one group item which
contains that table. In the description of a three-dimensional table, the OCCURS
clause should appear in the data description of two nested group items which contain
the element. The process of nesting table definitions may be continued to any depth,
but the size of the outermost group increases geometrically with each dimension.

 Table Handling
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 175
 First Edition

The following example shows how a three-dimensional table may be defined.

Example 2

. PIC 9(07)ULATION 0 CITY-POP 2

. PIC X(02)E 0 CITY-COD 2
IMES. CCURS 30 T OITY-TABLE 15 C
. PIC X(02) OUNTY-CODE 15 C
IMES. CCURS 50 T OTY-TABLE 10 COUN
. PIC X(02) E-CODE 10 STAT
IMES. CCURS 50 T OABLE 05 STATE-T

LE.CENSUS-TAB 01

The data item named STATE-TABLE is a one-dimensional table. The data item
named COUNTY-TABLE, which is subordinate to STATE-TABLE, is a two-
dimensional table. The data item named CITY-TABLE, which is subordinate to
COUNTY-TABLE, is a three-dimensional table.

Example 2 defines 230,101 data items having a total size of 680,100 characters. See
Table 16.

Table 16: Example 2 Definitions

Name Number Size

CENSUS-TABLE 1 680100

STATE-TABLE 50 680100

STATE-CODE 50 2

COUNTY-TABLE 2500 13600

COUNTY-CODE 2500 2

CITY-TABLE 75000 270

CITY-CODE 75000 2

CITY-POPULATION 75000 7

Table Handling
Chapter 4: Data Division

176 RM/COBOL Language Reference Manual
 First Edition

References to Table Items
Whenever the user refers to a table element or a condition-name associated with a
table element, the reference must indicate which occurrence of the element is
intended. For access to a one-dimensional table, the occurrence number of the
desired element provides complete information. For access to tables of more than
one dimension, an occurrence number must be supplied for each dimension of the
table. In Example 2 then, a reference to the fourth STATE-CODE would be
complete, whereas a reference to the fourth COUNTY-CODE would not. To refer to
COUNTY-CODE, which is an element of a two-dimensional table, the user must
refer to, for example, the fourth COUNTY-CODE within the sixth STATE-TABLE.

Occurrence numbers are specified by appending one or more subscripts to the
data-name.

The subscript can be represented by an integer, a data-name that references an integer
numeric elementary item, or an index-name associated with the table. A data-name
or index-name may be followed by either the operator + or the operator – and an
integer, which is used as an increment or decrement, respectively. It is permissible to
mix integers, data-names, and index-names.

The subscripts, enclosed in parentheses, are written immediately following any
qualification for the name of the table element. The number of subscripts in such a
reference must equal the number of dimensions in the table whose element is being
referenced. That is, there must be a subscript for each OCCURS clause in the
hierarchy containing the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of
successively less inclusive dimensions of the data organization. If a
multidimensional table is thought of as a series of nested tables and the most
inclusive or outermost table in the nest is considered to be the major table with the
innermost or least inclusive table being the minor table, the subscripts are written
from left to right in the order major, intermediate and minor.

A reference to an item must not be subscripted if the item is not a table element or an
item or condition-name within a table element.

The lowest permissible occurrence number is 1. The highest permissible occurrence
number in any particular case is the maximum number of occurrences of the item as
specified in the OCCURS clause.

When an integer or data-name is used to represent a subscript, it may be used to
reference items within different tables. These tables need not have elements of the
same size. The same integer or data-name may appear as the only subscript with one
item and as one of two or more subscripts with another item.

In order to facilitate such operations as table searching and manipulating specific
items, a technique called indexing is available. To use this technique, the
programmer assigns one or more index-names to an item whose data description
entry contains an OCCURS clause. An index associated with an index-name acts as
a subscript, and its value corresponds to an occurrence number for the item with
which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated
with its table, is an optional part of the OCCURS clause. There is no separate entry
to describe the index associated with index-name since its definition is completely
hardware oriented. At object time, the contents of the index correspond to an
occurrence number for that specific dimension of the table with which the index is
associated. The initial value of an index at object time is undefined, and the index
must be initialized before use. The initial value of an index is assigned with the

 Table Handling
Chapter 4: Data Division

 RM/COBOL Language Reference Manual 177
 First Edition

PERFORM statement with the VARYING phrase, the SEARCH statement with the
ALL phrase, or the SET statement.

The use of an integer or data-name as a subscript referencing a table element does
not cause the alteration of any index associated with that table.

An index-name can be used to reference only the table with which it is associated
through the INDEXED BY phrase.

Data that is arranged in the form of a table is often searched. The SEARCH
statement provides facilities for producing serial or binary searches. It is used to
search a table for a table element that satisfies a specific condition and to adjust the
value of the associated index to indicate that table element.

Relative indexing is an additional option for making references to a table element or
to an item within a table element. When the name of a table element is followed by a
subscript of the form (index-name + or – integer), the occurrence number required to
complete the reference is the same as if index-name were set up or down by integer
using the SET statement before the reference. The use of relative indexing does not
cause the object program to alter the value of the index.

The value of an index can be made accessible to an object program by storing the
value in an index data item. Index data items are described in the program by a data
description entry containing a USAGE IS INDEX clause. The index value is moved
to the index data item by the execution of a SET statement.

Table Handling
Chapter 4: Data Division

178 RM/COBOL Language Reference Manual
 First Edition

 Procedure Division Header
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 179
 First Edition

Chapter 5: Procedure Division

The Procedure Division contains the procedures to be executed by the object
program. It is an optional division within a source program, and it may be omitted if
there are no procedures to be executed. The procedures within the Procedure
Division may be subdivided into declarative and nondeclarative procedures.

Procedure Division Header
When it is present, the Procedure Division is identified by and must begin with the
following header:

{ }

.





















































 2data-name-

1data-name-

RETURNING
GIVING

USING

DIVISIONPROCEDURE

L

The USING phrase of the Procedure Division header identifies the names used by the
program for any parameters passed to it by a calling program or from the
RM/COBOL Runtime Command. It is required only in one of the following
circumstances:

• If the object program is to be invoked by a CALL statement and that statement
includes a USING phrase.

• If the object program is to function as the first program in its run unit and it
requires access to the text of the runtime command that invokes the object
program.

In the first case, the parameters passed to the called program are identified in the
USING phrase of the calling program’s CALL statement. The correspondence
between the two lists of names is established on a positional basis. That is, the first
data-name-1 in the USING list of the CALL statement in the calling program
corresponds to the first data-name-1 in the USING list of the Procedure Division
header in the called program, the second data-name-1 in the USING list of the CALL
statement in the calling program corresponds to the second data-name-1 in the
USING list of the Procedure Division header in the called program, and so forth.
The two lists need not have the same number of operands, but operands for which
there is no corresponding operand in the other list may not be referred to, nor may

Procedure Division Header
Chapter 5: Procedure Division

180 RM/COBOL Language Reference Manual
 First Edition

any of their subordinate data items, condition-names or index-names be referred to in
the called program.

In the second case, there is only a single parameter, and it must be defined in the
Linkage Section with entries similar to the following:

H.ETER-LENGTG ON PARAM DEPENDIN
00 TIMES URS 0 TO 1 PIC X OCCMETER-CHAR 03 PARA

ER-TEXT.02 PARAMET
). BINARY (2 PIC S9(4)ER-LENGTH 02 PARAMET

ETER.MAIN-PARAM 01

The Procedure Division header should have the following form:

AMETER. G MAIN-PARISION USINCEDURE DIV PRO

Subscripted references to PARAMETER-CHAR can then be used to access the
characters within the invocation line. There is further information in the RM/COBOL
User’s Guide describing the technique for passing a character-string to the first
program in a run unit.

In either case, each data-name-1 and data-name-2 must be defined as a level 01 entry
or a level 77 entry in the Linkage Section of the Data Division. A particular user-
defined word may not appear more than once as data-name-1 or data-name-2. The
data description entry for data-name-1 or data-name-2 must not contain a
REDEFINES clause. However, data-name-1 or data-name-2 may be the object of a
REDEFINES clause elsewhere in the Linkage Section.

If the reference to the corresponding data item in the CALL statement declares the
parameter to be passed by content, the value of the item is moved when the CALL
statement is executed and placed into a system-defined storage item possessing the
attributes declared in the Linkage Section for data-name-1. The data description of
each parameter in the BY CONTENT phrase of the CALL statement must be
congruent to the data description of the corresponding parameter in the USING
phrase of the Procedure Division header. Two data descriptions are congruent if they
specify the same size and, for numeric items, the same usage, scale and sign
convention. For binary data items, congruency also depends on both items being
allocated with the same number of bytes, which depends on specification of the same
binary allocation override in the USAGE clause or matching configuration of the
compiler with the BINARY-ALLOCATION and BINARY-ALLOCATION-
SIGNED keywords of the COMPILER-OPTIONS configuration record when
compiling each of the possibly separately compiled programs.

If the reference to the corresponding data item in the CALL statement declares the
parameter to be passed by reference, the object program operates as if the data item
in the called program occupies the same storage area as the corresponding data item
in the calling program. If data-name-1 or any of its subordinate elements is referred
to in the Procedure Division, it must not be defined as being longer than its
corresponding data item in the calling program.

RETURNING is a synonym for GIVING.

The GIVING phrase identifies the name used by the program for a result value. It is
required only when the calling program specifies a GIVING phrase in the CALL
statement and the design of that calling program depends on a result being placed in
its GIVING argument. That is, it is not an error if the calling program specifies a
GIVING operand and the called program does not; in this case, the called program
ignores and cannot affect the GIVING operand in the calling program. However, it
is a data reference error to refer to data-name-2, or any of its subordinate data-names
or condition-names, redefined data-names, or renamed data-names if the calling

 Procedure Division Header
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 181
 First Edition

program does not have a GIVING phrase, except in certain contexts. When the
calling program does not have a GIVING phrase, the contexts where an error will not
occur are:

• The ADDRESS OF special register, which will be equal to NULL in this case.

• The USING or GIVING phrase of a CALL statement. In this case, the called
program will receive an actual argument with a NULL base address. The called
program would cause a data reference error if that program referred to the
corresponding formal argument other than in the contexts described here.

Each reference to data-name-1 or data-name-2 in the called program is resolved in
accordance with the description of data-name-1 or data-name-2 as given in the
Linkage Section of the called program, except when they name a level 01 or level 77
entry and they are specified in the USING or GIVING phrase of a CALL statement,
or when they are reference modified. In these two exception cases, the reference to
data-name-1 or data-name-2 is resolved according to the description in the calling
program.

A data item defined in the Linkage Section of the called program may be referred
to within the Procedure Division of that program only if it satisfies one of the
following conditions:

• It is an operand in the USING phrase of the Procedure Division header and there
is a corresponding operand in the USING phrase of the CALL statement of the
calling program.

• It is an operand in the GIVING phrase of the Procedure Division header and
there is a corresponding operand in the GIVING phrase of the CALL statement
of the calling program.

• It is the target of a Format 5 SET statement using the SET ADDRESS OF
data-name-1 format, where data-name-1 is the name of the data item and the
sending pointer value is not a null pointer value.

• It is subordinate to a data item that satisfies one of the preceding conditions.

• It is defined with a REDEFINES or RENAMES clause, the object of which
satisfies one of the preceding conditions.

• It is an item subordinate to an item that satisfies the preceding condition.

• It is a condition-name or index-name associated with a data item that satisfies
any of the preceding conditions.

• It is the operand of an ADDRESS special register. In this case, if none of the
preceding conditions are satisfied, the ADDRESS special register will have a
null pointer value. Thus, an IF statement may be used to verify that one of the
preceding conditions has been satisfied by verifying that the ADDRESS of the
data item is not equal to NULL.

• It is the operand of a USING or GIVING phrase in a CALL statement. In
this case, if none of the preceding conditions are satisfied, the program called
by the CALL statement receives an omitted argument for its corresponding
formal argument.

Procedure Division Structure
Chapter 5: Procedure Division

182 RM/COBOL Language Reference Manual
 First Edition

Procedure Division Structure
The Procedure Division must conform to one of the following formats:

Format 1: Declaratives or Sections

{ }

.





























































2data-name-

1data-name-

RETURNING
GIVING

USING

DIVISIONPROCEDURE

L

.ESDECLARATIV


{ [].mber-1segment-nume-1section-na SECTION

.ent-1USE-statem

[.name-1paragraph-

[]] }LLLsentence-1


.ESDECLARATIVEND

{ [].mber-2segment-nume-2section-na SECTION

[.name-2paragraph-

[]] }






LLLsentence-2

 Procedures
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 183
 First Edition

Format 2: Paragraphs

{ }

.





























































2data-name-

1data-name-

RETURNING
GIVING

USING

DIVISIONPROCEDURE

L

{ .name-3paragraph-

[] }






LLsentence-3

segment-number-1 must be an integer ranging in value from 0 through 49.

segment-number-2 must be an integer ranging in value from 0 through 127.

If a segment-number is omitted from the section header, the segment-number is
assumed to be 0.

All sections that have the same segment-number constitute a program segment.
Sections that have the same segment-numbers need not be physically contiguous in
the source program.

Segments with segment-number 0 through 49 belong to the fixed portion of the
object program.

Segments with segment-number 50 through 127 are independent segments. A
program without declaratives may consist solely of independent segments.

Declarative sections must be grouped at the beginning of the Procedure Division,
preceded by the keyword DECLARATIVES and followed by the keywords END
DECLARATIVES.

Procedures
A procedure comprises a paragraph, a group of successive paragraphs, a section or a
group of successive sections within the Procedure Division. If one paragraph is in a
section, all paragraphs must be in sections. A procedure-name is a word used to refer
to a paragraph or section. It consists of a section-name, a paragraph-name, or a
paragraph-name qualified by a section-name.

A section consists of a section header followed by zero or more paragraphs. A
section ends immediately before the next section or at the end of the Procedure
Division or, in the declaratives portion of the Procedure Division, at the keywords
END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space and by
zero or more sentences. A paragraph ends immediately before the next paragraph-
name or section-name or at the end of the Procedure Division or, in the declaratives
portion of the Procedure Division, at the keywords END DECLARATIVES.

In a Procedure Division that is not divided into sections, a paragraph-name may be
defined more than once. In a Procedure Division that is divided into sections, a

Execution
Chapter 5: Procedure Division

184 RM/COBOL Language Reference Manual
 First Edition

paragraph-name may be defined more than once in the same section. Such
nonunique paragraph-names may not be referenced.

A statement is a syntactically valid combination of words and symbols beginning
with a verb. The word THEN may be used as a statement separator within the
Procedure Division. It has no effect on the meaning of the statements.

Execution
Execution begins with the first statement of the Procedure Division, excluding
declaratives.

Statements are then executed in the order in which they appear in the source
program, except where the rules indicate some other order.

Procedure References
A procedure is referred to by its paragraph-name or section-name. Paragraph-names
may be qualified by the section-name of the section containing the paragraph,
whether or not it needs qualification. When referring to a section-name or when
using a section-name as a qualifier, the word SECTION must not appear.
Qualification is performed by following a paragraph-name with a section-name
preceded by IN or OF. IN and OF are synonymous in this context. The general
format for paragraph qualification is:

me-1section-naname-1paragraph-








OF
IN

paragraph-name-1 need not be qualified when referred to within the section in which
it is defined or when it is unique.

 Explicit and Implicit Transfers of Control
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 185
 First Edition

Explicit and Implicit Transfers of Control
The mechanism that controls program flow transfers control from statement to
statement in the sequence in which they were written in the source program unless an
explicit transfer of control overrides this sequence or there is no next executable
statement to which control can be passed. The transfer of control from statement to
statement occurs without the writing of an explicit Procedure Division statement,
and, therefore, is an implicit transfer of control.

RM/COBOL provides both explicit and implicit means of altering the implicit
control transfer mechanism.

In addition to the implicit transfer of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without the
execution of a procedure branching statement.

RM/COBOL provides the following types of implicit control flow alterations that
override the statement-to-statement transfers of control:

• If a paragraph is being executed under control of another statement (PERFORM,
USE, SORT or MERGE), and the paragraph is the last paragraph in the range of
the controlling statement, an implied transfer of control occurs from the last
statement in the paragraph to the control mechanism of the last-executed
controlling statement.

• If a paragraph is being executed under the control of a PERFORM statement that
causes iterative execution, and that paragraph is the first paragraph in the range
of that PERFORM statement, an implicit transfer of control occurs between the
control mechanism associated with that PERFORM statement and the first
statement in that paragraph for each iterative execution of the paragraph.

• When a SORT or MERGE statement is executed, an implicit transfer of control
occurs to any associated input or output procedures.

• When any statement is executed that results in the execution of a declarative
section, an implicit transfer of control to the declarative section occurs. Note
that another implicit transfer of control occurs after execution of the declarative
back to the statement that caused the execution of the declarative.

An explicit transfer of control consists of an alteration of the implicit control transfer
mechanism by the execution of a procedure branching or conditional statement. An
explicit transfer of control can be caused only by the execution of a procedure
branching or conditional statement. The execution of the procedure branching
ALTER statement does not in itself constitute an explicit transfer of control, but
affects the explicit transfer of control that occurs when the associated GO TO
statement is executed. The procedure branching statement EXIT PROGRAM causes
an explicit transfer of control only when the statement is executed in a called
program.

The term “next executable statement” refers to the next statement to which control is
transferred according to the rules above and the rules associated with each language
element in the Procedure Division.

Segmentation
Chapter 5: Procedure Division

186 RM/COBOL Language Reference Manual
 First Edition

There is no next executable statement following:

• The last statement in a declarative section when the paragraph in which it
appears is not being executed under the control of some other statement.

• The last statement in a declarative section when the statement is in the range of
an active PERFORM statement executed in a different section and this last
statement of the declarative section is not also the last statement of the procedure
that is the exit of the active PERFORM statement.

• The last statement in a program when the paragraph in which it appears is not
being executed under the control of some other statement in that program.

• A STOP RUN statement or EXIT PROGRAM statement that transfers control
outside the program.

• The end program header.

There is also no next executable statement when the program contains no
Procedure Division.

When there is no next executable statement and control is not transferred outside the
program, the program flow of control is undefined unless the program execution is in
the nondeclarative portion of a program under control of a CALL statement, in which
case an implicit EXIT PROGRAM statement is executed.

Segmentation
Segmentation allows the user to segment the Procedure Division of a program,
and to specify overlays among the segments. Thus, less runtime memory is required
to execute the program. There is no provision for segmenting the data regions of
a program.

Segments
When segmentation is used, the Procedure Division must be written as a series of
sections. In addition, each section must be classified as belonging either to the fixed
portion or to one of the independent segments of the object program as determined
by the assignment of segment-numbers. All paragraphs that contain the same
segment-number in their section headers are considered at object time to be one
segment. Since segment-numbers can range from 0 through 127, it is possible to
subdivide the object program into a maximum of 128 segments. Segmentation has
no effect on the need to qualify procedure-names to ensure uniqueness.

Fixed Portion

The fixed portion of the object program is logically treated as if it were always in
memory. All sections whose segment-number is less than 50 belong to the fixed
portion. The fixed portion of the program is made up of two types of segments:
fixed permanent segments and fixed overlayable segments.

A fixed permanent segment is a segment in the fixed portion that cannot be overlaid
by any other part of the program. A fixed overlayable segment is a segment in the
fixed portion that, although logically treated as if it were always in memory, can be

 Segmentation
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 187
 First Edition

overlaid by another segment so as to reduce memory utilization. Such a segment, if
called for by the program, is always made available in its last-used state. Variation
of the number of fixed permanent segments in the fixed portion can be accomplished
by using the SEGMENT-LIMIT clause.

Independent Segments

An independent segment is defined as part of the object program that can overlay,
and can be overlaid by, a fixed overlayable segment or another independent segment.
An independent segment has a segment-number of 50 through 127.

An independent segment is in its initial state whenever control is transferred (either
implicitly or explicitly) to that segment for the first time during the execution of
the program.

On subsequent transfers of control to the segment, an independent segment is also in
its initial state when:

• Control is transferred to that segment as a result of the implicit transfer of
control between consecutive statements from a segment with a different
segment-number.

• Control is transferred to that segment as the result of the implicit transfer of
control between a SORT or MERGE statement, in a segment with a different
segment-number, and an associated input or output procedure in that
independent segment.

• Control is transferred explicitly to that segment from a segment with a different
segment-number.

On subsequent transfers of control to the segment, an independent segment is in its
last-used state when:

• Control is transferred implicitly to that segment from a segment with a different
segment-number (except as noted previously).

• Control is transferred to that segment as the result of the implicit transfer of
control between a SORT or MERGE statement, in a segment with a different
segment-number, and an associated input or output procedure in that
independent segment.

• Control is transferred explicitly to that segment as the result of the execution of
an EXIT PROGRAM statement.

Segmentation
Chapter 5: Procedure Division

188 RM/COBOL Language Reference Manual
 First Edition

Segmentation Classification
Sections that are to be segmented are classified using a system of segment-numbers
and the following criteria:

• Logic Requirements. Sections that must be available for reference at all times,
or are referred to very frequently, are normally classified as belonging to one of
the permanent segments; sections that are used less frequently are normally
classified as belonging either to one of the overlayable fixed segments or to one
of the independent segments, depending on logic requirements.

• Frequency of Use. Generally, the more frequently a section is referred to, the
lower its segment-number; the less frequently it is referred to, the higher its
segment-number.

• Relationship to Other Sections. Sections that frequently communicate with one
another should be given the same segment-numbers.

Segmentation Control
The logical sequence of the program is the same as the physical sequence except for
specific transfers of control. Control may be transferred within a source program to
any paragraph in a section; that is, it is not mandatory to transfer control to the
beginning of a section.

Restrictions on Program Flow
When segmentation is used, the following restrictions are placed on the ALTER,
PERFORM, MERGE and SORT statements.

ALTER Statement Restrictions

A GO TO statement in a section whose segment-number is greater than or equal
to 50 must not be referred to by an ALTER statement in a section with a different
segment-number.

PERFORM Statement Restrictions

A PERFORM statement in the fixed portion can have within its range, in addition to
any declarative sections whose execution is caused within that range, only one of the
following:

• Sections or paragraphs wholly contained in the fixed portion.

• Sections or paragraphs wholly contained in a single independent segment.

A PERFORM statement in an independent segment can have within its range, in
addition to any declarative sections whose execution is caused within that range, only
one of the following:

• Sections or paragraphs wholly contained in the fixed portion.

• Sections or paragraphs wholly contained in the same independent segment as
that PERFORM statement.

 USE Statement
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 189
 First Edition

MERGE Statement Restrictions

If a MERGE statement appears in the fixed portion, any output procedure referenced
by that MERGE statement must be entirely within the fixed portion, or entirely
within a single independent segment.

If a MERGE statement appears in an independent segment, any output procedure
referenced by that MERGE statement must be entirely within the fixed portion, or
entirely within the same independent segment as that MERGE statement.

SORT Statement Restrictions

If a SORT statement appears in the fixed portion, any input or output procedures
referenced by that SORT statement must be entirely within the fixed portion, or
entirely within a single independent segment.

If a SORT statement appears in an independent segment, any input or output
procedures referenced by that SORT statement must be entirely within the fixed
portion, or entirely within the same independent segment as that SORT statement.

USE Statement
The USE statement specifies procedures for input-output error handling beyond the
standard procedures provided by the runtime system. It is a compiler directing
statement required in each declarative section.

[]

{ }



































EXTEND
O-I

OUTPUT
INPUT

ONPROCEDURE

ERROR
EXCEPTION

STANDARDAFTERGLOBALUSE

L1file-name-

A USE statement must immediately follow a section header in the declaratives
portion of the Procedure Division and must be followed by a separator period. The
remainder of the section must consist of zero or more paragraphs that define the
procedures to be used.

The USE statement itself is not executed; it defines the conditions calling for the
execution of the USE procedure.

A file-name may not be listed in more than one USE statement, nor may it appear
more than once in the list of any USE statement. File-names that appear in a USE
statement list may not be SORT or MERGE files.

The appearance of a file-name in a USE statement must not cause the simultaneous
request for execution of more than one USE procedure.

The INPUT, OUTPUT, I-O and EXTEND phrases may each be specified only once
in the declaratives portion of a given Procedure Division.

The words ERROR and EXCEPTION are synonymous in this context.

USE Statement
Chapter 5: Procedure Division

190 RM/COBOL Language Reference Manual
 First Edition

Declarative procedures may be included in any source program irrespective of
whether the program contains or is contained within another program. A declarative
is invoked when any of the conditions described in the USE statement that prefaces
the declarative occurs while the program is being executed. Only a declarative
within the separately compiled program that contains the statement, which caused the
qualifying condition, is invoked when any of the conditions described in the USE
statement which prefaces the declarative occurs while that separately compiled
program is being executed. If no qualifying declarative exists in the separately
compiled program, no declarative is executed.

During the execution of an input-output statement, the runtime system executes the
section associated with a USE statement under these conditions:

• An invalid key condition occurs and there is no INVALID KEY phrase in the
input-output statement.

• An at end condition occurs and there is no AT END phrase in the input-output
statement.

• Some other exception or error condition arises.

The USE section is executed as if it were the operand of a Format 1 PERFORM
statement, after having stored the I-O status value into the associated file status data
item if there is one.

In circumstances where it is appropriate to do so, the system standard input-output
error recovery procedures are also performed.

The rules that determine which USE procedure is to be executed are as follows:

1. If file-name-1 is specified in the USE statement, the associated procedure is
executed when the situation defined above arises during the execution of an
input-output statement that refers to file-name-1.

2. If the INPUT phrase is specified in the USE statement, the associated procedure
is executed when the situation defined above arises during the execution of an
input-output statement that refers to any file that is open in the input mode or is
in the process of being opened in the input mode, provided the file is not
referenced explicitly by name in another USE statement.

3. If the OUTPUT phrase is specified in the USE statement, the associated
procedure is executed when the situation defined above arises during the
execution of an input-output statement that refers to any file that is open in the
output mode or is in the process of being opened in the output mode, provided
the file is not referenced explicitly by name in another USE statement.

4. If the I-O phrase is specified in the USE statement, the associated procedure is
executed when the situation defined above arises during the execution of an
input-output statement that refers to any file that is open in the I-O mode or is in
the process of being opened in the I-O mode, provided the file is not referenced
explicitly by name in another USE statement.

5. If the EXTEND phrase is specified in the USE statement, the associated
procedure is executed when the situation defined above arises during the
execution of an input-output statement that refers to any file that is open in the
extend mode or is in the process of being opened in the extend mode, provided
the file is not referenced explicitly by name in another USE statement.

When the execution of the USE procedure is complete, control returns to the runtime
system. The runtime system then resumes execution of the COBOL program at the

 USE Statement
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 191
 First Edition

next executable statement following the input-output statement whose execution
caused the exception or error.

When there is no applicable USE procedure and a critical error occurs for an
input-output statement, the runtime system produces an error message and terminates
execution of the run unit. This behavior can be configured to allow the program to
continue as if a default empty USE procedure were applicable. See the DEFAULT-
USE-PROCEDURE keyword of the COMPILER-OPTIONS record in Chapter 10:
Configuration of the RM/COBOL User’s Guide for information on configuring
this behavior.

Within a USE procedure there must be no reference to any nondeclarative procedure.
Conversely, in the nondeclarative portion there must be no reference to procedure-
names that appear in the declarative portion, except that PERFORM statements may
refer to the procedures associated with a USE statement.

Within a USE procedure, there must not be the execution of any statement that would
cause the execution of a USE procedure that had previously been invoked and had
not yet returned control to the invoking routine.

Special precedence rules are followed when programs are contained within other
programs. In applying these rules, only the first qualifying declarative will be
selected for execution. The declarative that is selected for execution must satisfy the
rules for execution of that declarative. The order of precedence for selecting a
declarative is:

1. The declarative within the program that contains the statement which caused the
qualifying condition.

2. The declarative in which the GLOBAL phrase is specified and which is within
the program directly containing the program that was last examined for a
qualifying declarative.

3. Any declarative selected by applying rule 2 to each more inclusive containing
program until rule 2 is applied to the outermost program. If no qualifying
declarative is found, none is executed.

USE Statement Example

VES. DECLARATI END
RUN."NO" STOP UE-FLAG = IF CONTIN
 0 PROMPT.G POSITIONNTINUE-FLA ACCEPT CO

e.".O open modfile in I-Error for DISPLAY "
TINE.-ERROR-ROU I-O

ON I-O. PROCEDURE EXCEPTION STANDARD USE AFTER
TION.-ERROR SEC I-O

LARATIVES. DEC
ISION.CEDURE DIV PRO

Common Rules
Chapter 5: Procedure Division

192 RM/COBOL Language Reference Manual
 First Edition

Common Rules

Subscript Evaluation
Unless otherwise specified by the rules for a specific statement, any subscripts that
appear in an individual statement are evaluated only once as the first operation of the
execution of that statement.

Arithmetic Statements
The arithmetic statements are ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT. They have several features in common that are discussed in
this section.

Modes of Operation

The data descriptions of the operands in an arithmetic statement need not be the
same; any necessary mode conversion and decimal point alignment is supplied
throughout the calculation.

Arithmetic operations are done in binary, packed decimal or unpacked decimal mode
depending on the operation and on the usage of the operands. If the operation is
division or exponentiation, it is done in unpacked decimal mode, first converting the
values of one or both operands to that mode as necessary. When both operands of an
addition or subtraction operation are binary, and they do not have the same number
of positions to the right of the decimal point, the operation is done in unpacked
decimal mode, first converting the values of both operands to that mode. Other
operations are done in the higher mode of the two operands, with binary being
treated as the lowest mode and unpacked decimal the highest. If the two operands
are of the same mode the operation is done in that common mode; otherwise, the
value of the operand having the lower mode is converted to the higher mode, and the
operation is done using the converted value.

Composite Size

The composite size of specified operands in an arithmetic statement other than
COMPUTE must not be greater than 30 digits. The specified operands in an ADD or
SUBTRACT statement are those operands that contribute values to the final result;
operands that serve only as receiving operands are not contributing operands. For
example, in the statement ADD A B GIVING C, A and B are contributing operands,
but C is not. In the statement ADD P TO Q, both P and Q are contributing operands.
In the statement SUBTRACT X FROM Y GIVING Z, X and Y are contributing
operands but Z is not.

The specified operands in a MULTIPLY or DIVIDE statement are all the receiving
operands except for the operand of the REMAINDER phrase.

The composite size of a set of operands is the size that results when the operands are
aligned on their decimal points and the maximum number of positions to the left of
the common decimal point position is added to the maximum number of positions to
the right of the common decimal point position. For example, if A is defined as
PIC 9(8)V9(4) and B is defined as PIC 9(3)V9(6), the composite size of A and B is

 Common Rules
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 193
 First Edition

8 + 6 = 14. The “phantom” positions resulting from the use of P in the PICTURE
character-string are counted in determining the composite size. For example, if X is
defined as PIC P(8)9(6) and Y is defined as PIC 9(8)P(10), the composite size of X
and Y is 14 + 18 = 32, which exceeds the limit of 30.

ROUNDED Phrase

If, after decimal point alignment, the number of places in the fractional part of the
result of an arithmetic operation is greater than the number of places provided for the
fractional part of the resultant identifier, truncation is relative to the size provided for
the resultant identifier. When the ROUNDED phrase is specified in the arithmetic
statement, the absolute value of the resultant identifier is increased by one in the low-
order digit position whenever the most significant digit of the excess is greater than
or equal to five.

When the low-order integer positions in a resultant identifier are represented by the
symbol P in the PICTURE character-string for that resultant identifier, rounding or
truncation occurs relative to the rightmost integer position for which storage is
allocated.

Size Error Condition

The size error condition occurs under any of the following circumstances:

• Violation of the rules for evaluation of exponentiation always terminates the
arithmetic operation and always causes a size error condition.

• Division by zero always terminates the arithmetic operation and always causes a
size error condition.

• If, after decimal point alignment and rounding (if specified), the absolute value
of a result exceeds the largest value that can be contained in a resultant
identifier, a size error condition exists. If the usage of a resultant identifier is
binary, the largest value that can be contained in it is the maximum value
implied by its PICTURE character-string. However, if a binary allocation
override was specified that forced allocation of fewer bytes than needed to
support the maximum value implied by its PICTURE character-string, then the
maximum value is determined by the maximum value supported by the number
of bytes specified in the binary allocation override and, for signed numbers the
maximum for the absolute value of negative values is one greater than the
maximum for positive numbers. For example, a one-byte signed binary data
item can contain the values -128 to +127; the size error condition will exist on
an attempt to store a value less than -128 or greater than +127 into a an item
described as PIC S9(3) BINARY(1).

If the SIZE ERROR phrase is specified and a size error condition exists after the
execution of the arithmetic operations specified by an arithmetic statement:

• The values of resultant identifiers for which a size error condition exists remain
unchanged from the values they had before execution of the arithmetic
statement.

• The values of resultant identifiers for which no size error condition exists are the
same as they would have been if the size error condition had not resulted for any
of the resultant identifiers.

Common Rules
Chapter 5: Procedure Division

194 RM/COBOL Language Reference Manual
 First Edition

• After completion of the arithmetic operations, control is transferred to
imperative-statement-1 in the SIZE ERROR phrase and execution continues
according to the rules for each statement specified in imperative-statement-1. If
a procedure branching or conditional statement that causes explicit transfer of
control is executed, control is transferred in accordance with the rules for that
statement; otherwise, upon completion of execution of imperative-statement-1,
control is transferred to the end of the arithmetic statement and the NOT SIZE
ERROR phrase, if specified, is ignored.

If the SIZE ERROR phrase is not specified and a size error condition exists after the
execution of the arithmetic operations specified by an arithmetic statement:

• The values of resultant identifiers for which a size error condition exists
are undefined.

• The values of resultant identifiers for which no size error condition exists are the
same as they would have been if the size error condition had not resulted for any
of the resultant identifiers.

• After completion of the arithmetic operations, control is transferred to the end of
the arithmetic statement and the NOT SIZE ERROR phrase, if specified, is
ignored.

If the size error condition does not exist after the execution of the arithmetic
operations specified by an arithmetic statement, the SIZE ERROR phrase, if
specified, is ignored and control is transferred to the end of the arithmetic statement
or to imperative-statement-2 in the NOT SIZE ERROR phrase if it is specified. In
the latter case, execution continues according to the rules for each statement
specified in imperative-statement-2. If a procedure branching or conditional
statement that causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of
execution of imperative-statement-2, control is transferred to the end of the
arithmetic statement.

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT
statement with the CORRESPONDING phrase, if any of the individual operations
produces a size error condition, imperative-statement-1 in the SIZE ERROR phrase
is not executed until all of the individual additions or subtractions are completed.

Overlapping Operands
When a sending and a receiving data item in any statement share a part or all of their
storage areas, yet are not defined by the same data description entry, the result of the
execution of such a statement is undefined. For statements in which the sending and
receiving data items are defined by the same data description entry, the results of the
execution of the statement may be defined or undefined depending on the general
rules associated with the applicable statement. If there are no specific rules
addressing such overlapping operands, the results are undefined.

In the case of reference modification, the unique data item produced by reference
modification is not considered to be the same data description entry as any other data
description entry. Therefore, if an overlapping situation exists, the results of the
operation are undefined.

 Arithmetic Expressions
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 195
 First Edition

Incompatible Data
During the execution of the object program, the actual content of a data item is
presumed to agree with the class of the data item as specified by its PICTURE
clause. No checking is done by the runtime system to detect violations of this
requirement, and results are undefined when violations occur. It is particularly
important to ensure that the content of a data item described as numeric is in fact
numeric when it is used in an arithmetic context.

This rule is suspended for a data item used as the operand of a class condition. Thus,
in circumstances in which it is necessary to refer to a data item in an arithmetic
context, and it is not certain that the content of the data item is compatible with that
type of reference, an IF NUMERIC test should be applied.

Arithmetic Expressions
An arithmetic expression can be an identifier of a numeric elementary item, a
numeric literal, such identifiers and literals separated by arithmetic operators, two
arithmetic expressions separated by an arithmetic operator, or an arithmetic
expression enclosed in parentheses. Any arithmetic expression may be preceded by a
unary operator. The permissible combinations of variables, numeric literals,
arithmetic operators and parentheses are given in Table 17.

Table 17: Combination of Symbols in Arithmetic Expressions

 Second Symbol

First Symbol

Operand

* / – + **

Unary
+ or –

(

)

Operand
(an identifier or literal)

��
��
��

��
��
��

���
���
���

��
��
��

* / + – **

��
��
��

��
��
��

Unary + or –

 ��
��
��

 ���
���
���

 ��
��
��

(

 ��
��
��

 ��
��
��

)

��
��
��

���
���
���

���
���
���

 A permissible pair of symbols.

�
�

 An invalid pair of symbols.

Arithmetic Expressions
Chapter 5: Procedure Division

196 RM/COBOL Language Reference Manual
 First Edition

Those identifiers and literals appearing in an arithmetic expression must represent
either numeric elementary items or numeric literals on which arithmetic may
be performed.

Arithmetic Operators
There are five binary arithmetic operators and two unary arithmetic operators that
may be used in arithmetic expressions. They are represented by specific characters
that must be preceded by a space and followed by a space. See Table 18.

Table 18: Arithmetic Operators

Type Operator Meaning

BINARY + Addition.

 – Subtraction.

 * Multiplication.

 / Division.

 ** Exponentiation.

UNARY + The effect of multiplication
by the numeric literal +1.

 – The effect of multiplication
by the numeric literal –1.

Formation and Evaluation Rules
Parentheses may be used in arithmetic expressions to specify the order in which
elements are to be evaluated. Expressions within parentheses are evaluated first;
within nested parentheses, evaluation proceeds from the least inclusive set to the
most inclusive set. When parentheses are not used, or parenthesized expressions are
at the same level of inclusiveness, the following hierarchical order of execution is
implied:

1. Unary plus and minus

2. Exponentiation

3. Multiplication and division

4. Addition and subtraction

Parentheses are used either to eliminate ambiguities in logic where consecutive
operations of the same hierarchical level appear, or to modify the normal hierarchical
sequence of execution in expressions where it is necessary to have some deviation
from the normal precedence. When the sequence of execution is not specified by
parentheses, the order of execution of consecutive operations of the same hierarchical
level is from left to right.

The ways in which operands, operators and parentheses may be combined in an
arithmetic expression are summarized in Table 17 on page 195.

An arithmetic expression may begin only with one of the following symbols:
(+ – or an operand. An arithmetic expression may end only with a) or an operand.
There must be a one-to-one correspondence between left and right parentheses in an
arithmetic expression such that each left parenthesis is to the left of its corresponding
right parenthesis.

 Conditional Expressions
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 197
 First Edition

The following rules apply to evaluation of exponentiation in the following arithmetic
expression:

arithmetic-expression-1 ** arithmetic-expression-2

arithmetic-expression-1 provides the base value and arithmetic-expression-2
provides the exponent value.

1. If the value of the base is zero, the exponent value must be greater than zero;
otherwise, the size error condition exists.

2. If the value of the base is negative, the exponent value must be an integer;
otherwise, the size error condition exists.

Arithmetic expressions allow the user to combine arithmetic operations without the
restrictions on composite of operands, receiving data items, or both.

Conditional Expressions
Conditional expressions identify conditions that are tested to enable the object
program to select between alternate paths of control depending upon the truth value
of the condition. Conditional expressions may be used in the EVALUATE, IF,
PERFORM, and SEARCH statements. There are two categories of conditions
associated with conditional expressions: simple conditions and complex conditions.
Each may be enclosed within any number of paired parentheses, in which case its
category is not changed.

Simple Conditions
The simple conditions are relation, class, sign, condition-name and switch-status. A
simple condition has a truth value of true or false. A simple condition enclosed in
parentheses has the same truth value as the simple condition standing alone.

Relation Condition

A relation condition causes a comparison of two operands, each of which may be the
data item referenced by an identifier, a literal, an arithmetic expression or an index-
name. A relation condition has the truth value of true if the relation exists between
the operands; otherwise, the relation condition has the truth value of false.

The general format of a relation condition is:





































-2index-name
n-2-expressioarithmetic

literal-2
-2identifier

-operatorrelational

-1index-name
n-1-expressioarithmetic

literal-1
-1identifier

The operand to the left of the relational-operator is called the subject of the
condition; the operand to the right is called the object of the condition, or, in the case
of the LIKE relational operator, the pattern of the condition (see page 200).

Conditional Expressions
Chapter 5: Procedure Division

198 RM/COBOL Language Reference Manual
 First Edition

The general format for the relational-operator is:

[]
[]
[]
[]
[]
[]

[]








































































































































=<

=>

=

<

>

SENSITIVE-CASE
EINSENSITIV-CASE

LEFT
RIGHT

TRIMMED
LIKENOTIS

IS
TOEQUALORTHANLESSIS

IS
TOEQUALORTHANGREATERIS

NOTIS
TOEQUALNOTIS

NOTIS
THANLESSNOTIS

NOTIS
THANGREATERNOTIS

The relational operator specifies the type of comparison to be made in a relation
condition. A space must precede and follow each reserved word that makes up the
relational operator. When used, NOT and the next keyword or relation character are
one relational operator that defines the comparison to be executed for truth value; for
example, NOT EQUAL is a truth test for an unequal comparison; NOT GREATER
is a truth test for an equal or less than comparison. The relational operator IS NOT
GREATER THAN is equivalent to IS LESS THAN OR EQUAL TO, and the
relational operator IS NOT LESS THAN is equivalent to IS GREATER THAN OR
EQUAL TO.

Comparison of two numeric operands is permitted regardless of the formats specified
in their respective USAGE clauses. However, for all other comparisons the operands
must have the same usage. If either of the operands is a group item, the nonnumeric
comparison rules apply. POINTER usage in RM/COBOL is not a numeric usage;
pointer operands may only be compared to other pointer operands, which include the
figurative constant NULL (NULLS) and the ADDRESS special register.

The meanings of the relational operators are given in Table 19.

Table 19: Relational Operators

Relational Operator Meaning

IS [NOT] GREATER THAN
IS [NOT] >

Greater than or not greater than.

IS [NOT] LESS THAN
IS [NOT] <

Less than or not less than.

IS [NOT] EQUAL TO
IS [NOT] =

Equal to or not equal to.

IS GREATER THAN OR EQUAL TO
IS >=

Greater than or equal to.

IS LESS THAN OR EQUAL TO
IS <=

Less than or equal to.

IS [NOT] LIKE Pattern matches or not matches subject.

 Conditional Expressions
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 199
 First Edition

Note The required relational characters >, < and = are not underlined to avoid
confusion with other symbols such as ≥ (greater than or equal to).

Comparison of Numeric Operands

For operands whose class is numeric, a comparison is made with respect to the
algebraic value of the operands, aligned by their decimal points. The lengths of the
operands, in terms of number of digits represented, are not significant. Zero is
considered a unique value regardless of the sign.

Comparison of numeric operands is permitted regardless of their usage. Unsigned
numeric operands are considered positive for purposes of comparison.

Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a
comparison is made with respect to a specified collating sequence of characters.
When a numeric operand is compared with a nonnumeric operand, the following
rules apply:

1. If the nonnumeric operand is an elementary data item or a nonnumeric literal,
the numeric operand is treated as though it were moved to an elementary
alphanumeric data item of the same size as the numeric data item (in terms of
standard data format characters), and the contents of this alphanumeric data item
were then compared to the nonnumeric operand.

2. If the nonnumeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size as the numeric data item
(in terms of standard data format characters), and the contents of this group item
were then compared to the nonnumeric operand.

The size of an operand is the total number of standard data format characters in the
operand. Numeric and nonnumeric operands may be compared only when the
numeric operand is an integer and its usage is DISPLAY.

There are two cases to consider: operands of equal size and operands of
unequal size.

Operands of equal size:

• If the operands are of equal size, comparison effectively proceeds by comparing
characters in corresponding character positions starting from the high order end
and continuing until either a pair of unequal characters is encountered or the low
order end of the operand is reached, whichever comes first. The operands are
determined to be equal if all pairs of corresponding characters are equal.

• The first encountered pair of unequal characters is compared to determine their
relative position in the collating sequence. The operand that contains the
character that is positioned higher in the collating sequence is considered to be
the greater operand.

Operands of unequal size:

• If the operands are of unequal size, comparison proceeds as though the shorter
operand were extended on the right by sufficient spaces to make the operands of
equal size.

Conditional Expressions
Chapter 5: Procedure Division

200 RM/COBOL Language Reference Manual
 First Edition

Comparisons of Index-Names and Index Data Items

If two index-names are compared, the result is the same as if the corresponding
occurrence numbers were compared.

For an index-name and a data item (other than an index data item) or literal, the
comparison is made between the occurrence number that corresponds to the value of
the index-name and the data item or literal.

When a comparison is made between an index data item and an index-name or
another index data item, the actual values are compared without conversion to the
occurrence number.

Comparison of an index data item with any data item or literal not specified above is
not permitted.

Comparison of Pointer Data Items

For operands that are pointers, a comparison is made with respect to the effective
address of the operands. The effective address of a pointer is the sum of the address
and offset values for the pointer. A null pointer value (for example, the figurative
constant NULL) has an effective address of zero. Thus, a pointer data item is always
either equal to or greater than a null pointer value.

LIKE Condition (Special Case of Relation Condition)

The general format for the LIKE condition is:

[]



























































































literal-2
-2identifier

literal-1
-1identifier

SENSITIVE-CASE
EINSENSITIV-CASE

LEFT
RIGHT

TRIMMED
LIKENOTIS

identifier-1 must refer to an alphanumeric data item.

literal-1 and literal-2 must be nonnumeric literals.

identifier-2 must refer to an alphanumeric data item or a pointer data item.

The data item referenced by identifier-1 or the value of literal-1 is the subject of the
condition.

The data item referenced by identifier-2 or the value of literal-2 is the pattern of the
condition. If identifier-2 refers to an alphanumeric data item, the value of that data
item specifies the pattern as a regular expression. If identifier-2 refers to a pointer
data item, then the value of that data item points to a compiled pattern.

The LIKE condition returns true if the subject value of the condition matches the
pattern value of the condition and false otherwise.

Unless otherwise specified by use of the TRIMMED phrase, the entire contents of
the subject value must match the pattern value. If the TRIMMED LEFT phrase is
specified, leading spaces are ignored. If the TRIMMED RIGHT phrase is specified,
trailing spaces are ignored. If the TRIMMED phrase is specified without either the
LEFT or RIGHT modifiers, leading and trailing spaces are ignored. The TRIMMED
phrase must not be used if the subject data may contain significant spaces that would

 Conditional Expressions
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 201
 First Edition

be ignored as a result of its specification; reference modification of the subject may
be necessary to select the significant portion of the data to be matched in this case.

Case is significant for the LIKE condition if the CASE-SENSITIVE phrase is
specified or implied, that is, a case-sensitive match of the subject value to the pattern
value is done. Case is not significant for the LIKE condition if the CASE-
INSENSITIVE phrase is specified, that is, a case-insensitive match of the subject
value to the pattern value is done.

The pattern may be specified as a literal, an alphanumeric data item, or a pointer data
item, with the following interpretations:

• Literal pattern. The RM/COBOL compiler automatically compiles the pattern
specified as literal-2 during source program compilation. Errors in the pattern,
if any, are reported in the compilation listing, including an indication of where in
the pattern the problem occurred. All spaces included in the literal pattern value
are considered significant.

• Alphanumeric data item pattern. The RM/COBOL compiler generates code to
compile at runtime a pattern specified as identifier-2, where identifier-2 refers to
an alphanumeric data item that contains the pattern. If the data item contains
leading spaces that are not part of the pattern value, reference modification must
be used to exclude the spaces. Trailing spaces in the pattern are stripped by
default unless the RUN-ATTR configuration record specifies STRIP-LIKE-
PATTERN-TRAILING-SPACES=NO. (Tailing spaces that should be matched
can be specified in a pattern by using a space followed by a quantifier operator
even when trailing space stripping is in effect.) If the pattern contains an error,
the LIKE condition will return a false (non-matching) result without any
indication that an error occurred. The pattern will be re-compiled each time the
condition is executed, regardless of whether the pattern value has changed.

• Pointer data item pattern. If a pattern must be variable at runtime, but is used
multiple times for a given pattern value, compiling the pattern once and
specifying a pointer to the compiled result can enhance performance. In this
case, the data item referenced by identifier-2 must be a pointer data item, the
value of which has been previously set by using the subprogram library routine,
C$CompilePattern, as described in Appendix F: Subprogram Library of the
RM/COBOL User’s Guide. When called, this routine indicates whether the
pattern contains an error and provides an easy method of stripping trailing
spaces in the pattern value. Therefore, this method is preferable to using an
alphanumeric data item directly in the LIKE condition regardless of performance
issues. The LIKE condition returns a false (non-matching) result if the pattern is
specified as a null valued pointer or if the pointer does not point to a compiled
pattern.

A pattern is specified by a regular expression. A regular expression is a string that
uses expressions similar to arithmetic expressions to specify the rules for matching.
Various operators are used to combine smaller expressions. The formal grammar for
regular expressions is given on page 208. The regular expressions used in the LIKE
condition are the same as those specified for XML (eXtensible Markup Language)
schema. A regular expression is composed as follows:

1. Any character other than the special characters specified in item 2 are ordinary
characters. An ordinary character is a one-character regular expression that
matches itself. For example, "A" matches the string "A" and "3" matches the
string "3". Characters may be specified using XML character references as
“&#d;”, where d is one or more decimal digits that provide the decimal
representation of the Unicode code-point for the character, or as “&#xh;”, where
h is one or more hexadecimal digits that provide the hexadecimal representation

Conditional Expressions
Chapter 5: Procedure Division

202 RM/COBOL Language Reference Manual
 First Edition

of the Unicode code-point for the character. Also, the recognized XML entity
references are illustrated in Table 20.

Table 20: XML Entity References

Entity Reference Character

& &

' '

< <

> >

" "

Recognition and conversion of XML character references and XML entity
references occur before a character is interpreted within the regular expression.
Incomplete sequences are treated as the literal sequence of characters. For
example, “&”, which is missing the required semicolon, represents the
character sequence ‘&’, ‘a’, ‘m’ and ‘p’. Such incomplete sequences do not
cause an error because of the incompleteness, but may cause an error if the
literal sequence is not valid in the context in which it appears. For example,
“\.” is equivalent to “\.’, which is a valid escaped period, but “\.”
includes the sequence “\&”, which is not a valid escape sequence and would,
therefore, cause an error. No part of the XML character reference or XML
entity reference sequence may be represented using an XML character reference
or XML entity reference. For example, the sequence “&amp;” is
recognized as literally “&” and is not further converted to “&”.

2. The characters “.” (period), “\” (back slash), “*” (asterisk), “+” (plus sign),
“?” (question mark), “|” (vertical bar), “(” (left parenthesis), “)” right
parenthesis, “[” (left bracket), “]” (right bracket), “{” (left brace), and “}” right
brace are special characters that act as operators, which are explained
individually in the items that follow.

3. The special character “.” (period) matches any character other than newline
(0Ah) or return (0Dh). For example, "." matches any of the strings "A" or "B"
or "9".

4. The special character “\” (backslash) begins an escape sequence. Escape
sequences may be single-character escapes (as shown in the following table),
mulit-character escapes (see page 204), or category escapes (see page 205).

Single-character escapes match a single character and exist because that
character is usually difficult or impossible to write directly into a regular
expression. The valid single-character escapes are shown in Table 21.

 Conditional Expressions
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 203
 First Edition

Table 21: Regular Expression Single-Character Escape Sequences

Escape Sequence Character

\n newline (
)

\r return ()

\t horizontal tab ()

\\ \

\| |

\. .

\- -

\^ ^

\? ?

* *

\+ +

\{ {

\} }

\((

\))

\[[

\]]

Conditional Expressions
Chapter 5: Procedure Division

204 RM/COBOL Language Reference Manual
 First Edition

Multi-character escapes match commonly used sets of characters without having
to write a character class expression to describe the set of characters to be
matched. Table 22 lists and describes the valid multi-character escapes.

Table 22: Regular Expression Multi-Character Escape Sequences

Escape Sequence

Equivalent Character
Class

Meaning

. [^\n\r] Any character except
newline or return.

\s [\t\n\r] White space.

\S [^\s] Not white space.

\i [\p{L}_:] Initial name characters
(of XML).

\I [^\i] Not initial name characters
(of XML).

\c [\i\d\.·-] Name characters (of XML).
(See Note 2.)

\C [^\c] Not name characters
(of XML).

\d \p{Nd} Numeric digits.

\D [^\d] Not numeric digits.

\w [�-ÿ-
 [\p{P}\p{Z}\p{S}\p{C}]]

All characters except
punctuation, separator,
symbol and other
characters. (See Note 1 and
property definitions in
Table 23.)

\W [^\w] Punctuation, separator,
symbol and other
characters. (See Note 1.)

Note 1 The definitions of the “\w” and “\W” sequences are subject to change, so
these sequences should be avoided until they are clarified. The XML schema
definition of “\w” is unclear because it is described as “all characters except the
set of ‘punctuation’, ‘separator’, and ‘control’ characters”. This informal
description differs from its formal definition of [�-]-
[\p{P}\p{S}\p{C}], which is all characters except the set of punctuation,
symbol, and other characters. This could mean that the formal definition should
be [�-]-[\p{P}\p{Z}\p{C}], [�-]-
[\p{P}\p{Z}\p{Cc}] or [�-]-[\p{P}\p{Z}\p{S}\p{C}]. Since
“\w” probably stands for “the word class of characters”, the latter may be the
correct interpretation and is the one currently implemented in RM/COBOL. In
the regular expressions of the Perl language, “\w” matches alphanumeric
characters including “_”, which strictly interpreted would be [\p{L}\p{N}_].
Unicode classifies “_” in the “Pc” category, so excluding punctuation characters
excludes the “_” character. The definition of “\W”, the characters not in “\w”,
depends on the definition of “\w” and is, therefore, similarly unclear.

Note 2 The B7h code point in Unicode is the “MIDDLE DOT” extender
character and is classified as a name character. Therefore, XML name
characters include this code point value.

 Conditional Expressions
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 205
 First Edition

Category escapes match sets of characters based on their Unicode category. The
set of characters that have Unicode property X is designated with “\p{X}”. The
complement of this set, that is, all characters that do not have Unicode property
X, is specified as “P{X}”. Unicode property designators are an uppercase letter
optionally followed by a lowercase letter. The valid character property
designators from the Unicode standard are shown in Table 23.

Table 23: Unicode Valid Character Property Designators

Category Property Designator Character Class

L All letters.
Lu Uppercase letters.
Ll Lowercase letters.
Lt Title case letters.
Lm Modifier letters.

Letters

Lo Other letters.
M All marks.
Mn Non-spacing marks.
Mc Spacing combining marks.

Marks

Me Enclosing marks.
N All numbers.
Nd Decimal digit numbers.
Nl Letter numbers.

Numbers

No Other numbers.
P All punctuation.
Pc Connector punctuation.
Pd Dash punctuation.
Ps Open punctuation.
Pe Close punctuation.
Pi Initial quote punctuation.
Pf Final quote punctuation.

Punctuation

Po Other punctuation.
Z All separators.
Zs Space separators.
Zl Line separators.

Separators

Zp Paragraph separators.
S All symbols.
Sm Math symbols.
Sc Currency symbols.
Sk Modifier symbols.

Symbols

So Other symbols.
C All others.
Cc Control others.
Cf Format others.
Co Private use others.

Other

Cn Not assigned others.

For example, the pattern value “\p{Nd}” matches any decimal digit character
and the pattern value “\P{Nd}” matches any character other than a decimal
digit character.

Conditional Expressions
Chapter 5: Procedure Division

206 RM/COBOL Language Reference Manual
 First Edition

In addition to specifying any of the character property designators above, the
character category escape can also specify any of the Unicode character blocks.
In this case, the property is specified as IsBlockName, where BlockName is the
Unicode block name with all white space stripped out. Since this
implementation only supports 8-bit characters, only the character blocks
IsBasicLatin (characters 00h through 7Fh) and IsLatin-1Supplement (characters
80h through FFh) are non-empty. For example, the pattern value
“\p{IsBasicLatin}” matches any character in the range 00h through 7Fh, and
the pattern value “\P{IsBasicLatin}” matches any character that is not 00h
through 7Fh.

5. The special characters, “[” (left bracket) and “]” (right bracket), are used to
define a one-character character class regular expression. The character class
matches any of the characters specified between the brackets, except that, when
the “^” (caret) character is the first character after the left bracket the class
matches any character not specified between the brackets. Special characters
(listed in item 2), other than “\”, “[”, and “]”, lose their special meaning when
contained in brackets (that is, they represent themselves in the character class).
A range of characters may be specified with the “-” (hyphen) character
separating two other characters. To include a “^” in the character class, include
it anywhere except as the first character after the left bracket (if the “^” is the
only character in the class, omit the brackets). To include a “-” in the character
class, include it as the first (or second if the first character is a “^”) or last
character between the brackets or use the escape sequence “\-” to specify the
character. To include a “\”, “[”, or “]” in the character class, use the escape
sequences “\\”, “\[”, or “\]”, respectively. For example, "[0-9]" matches a
decimal digit character and "[^0-9]" matches any character except a decimal
digit character. The second character in a hyphenated character range must not
be less than the first character.

6. Within a character class expression, a character class may be subtracted by
using the “-” followed by another character class expression. For example,
“[\p{P}-[;:]]” defines a character class that includes all the punctuation
characters except for semicolon and colon. A character class subtraction must
be the last portion of a character class expression before the closing “]” for the
containing character class expression, but may contain character class
subtractions within itself. When a character class is negated, that is, begins with
the “^” character, the negation takes place before the subtraction, that is, the
negation has higher precedence than the class subtraction. For example,
“[^A-F-[U-Z]]”, the characters not in [A-F] less the characters in [U-Z], is
equivalent to “[^A-FU-Z]”, the characters not in [A-FU-Z].

7. Subexpressions may be concatenated by juxtaposition in left to right order. For
example, “AB.” matches “ABC” or “ABD” or “AB3” or any other three-
character string that begins with “AB”. As another example, “A[BC]D” matches
“ABD” or "ACD".

8. Two subexpressions may be combined with the “|” infix operator to specify
alternatives. If either of the subexpressions matches the current position in the
subject string, the regular expression formed in this way matches. For example,
“PRE|PER” matches “PRE” or “PER”.

9. The special character “*” causes the preceding subexpression to be matched
zero or more times. For example, the string “AB*C” matches “AC” or “ABC”
or “ABBBBC”.

 Conditional Expressions
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 207
 First Edition

10. The special character “+” causes the preceding subexpression to be matched one
or more times. For example, the pattern “$[0-9]+\.00” matches the strings
“$0.00” or “$1.00” or “$392.00”, but does not match the string “$.00” since
there are no digits before the decimal point.

11. The special character “?” causes the preceding subexpression to be matched zero
or one times, that is, the preceding subexpression is optional in matching. For
example, the string “-$?123” matches the string “-$123” or “-123”.

12. The special characters “{” and “}” are used to define repetition of the preceding
subexpression by a specified range. “{n}” or “{n,n}” matches exactly n
occurrences. “{n,}” matches n or more occurrences. “{n,m}” matches from n to
m occurrences. n and m must be decimal integers in the range 0 to 65535, and n
must be less than or equal to m. When a choice is allowed, the longest matching
string in the subject is matched. For example “(A{2})*” matches zero or more
pairs of “A” characters in the subject string, “A{3,}” matches three or more
successive “A” characters in the subject string, and “A{3,5}” matches from 3
to 5 successive “A” characters in the subject string.

Note “{0}” or “{0,0}” cause the previous subexpression to be ignored. “{1}”
or “{1,1}” are redundant since they are equivalent to the default. “{0,}” is
equivalent to “*”, “{1,}” is equivalent to “+”, and “{0,1}” is equivalent to “?”.

13. The order of precedence for operators from highest to lowest is escape (with
“\”), class definition (with “[” and “]”), repetition (with “*”, “+”, “?”, or “{}”),
concatenation, and alternation (with “|”). The order of precedence for repetition,
concatenation, and alternation can be overridden by use of parentheses. For
example:

• “AB|CD” matches “AB” or “CD”, because concatenation has higher
precedence than alternation;

• “A(B|C)D” matches “ABD” or “ACD”, because the parentheses override
the precedence order;

• “ABC*” matches “ABCCCC”, because repetition has higher precedence
than concatenation; and

• “(ABC)*” matches zero or more occurrences of “ABC” in the subject string,
because parentheses override the precedence order.

When the TRIMMED phrase is not specified in the LIKE condition, matching is
done on the entire contents of the subject value. In this case, the pattern must specify
whether trailing spaces are to be included in the match. If the pattern does not allow
for trailing spaces and the subject value contains trailing spaces, the LIKE condition
result will be false (non-matching). To allow for trailing spaces, the pattern should
end with “ *”, that is, a space followed by the “*” repetition operator. This is not
necessary if, for example, the pattern ends with “.*”, that is, a period followed by the
“*” repetition operator, since this allows any number of any trailing character,
including trailing spaces.

Conditional Expressions
Chapter 5: Procedure Division

208 RM/COBOL Language Reference Manual
 First Edition

Regular expression grammar summary:

 [1] regExp ::= branch ('|' branch)*
 [2] branch ::= piece*

 [3] piece ::= atom quantifier?

 [4] quantifier ::= [?*+] | ('{' quantity '}')

 [5] quantity ::= quantRange | quantMin | QuantExact

 [6] quantRange ::= QuantExact ',' QuantExact

 [7] quantMin ::= QuantExact ','

 [8] QuantExact ::= [0-9]+

 [9] atom ::= Char | charClass | ('(' regExp ')')

[10] Char ::= [^.\?*+()|#x5B#x5D]

[11] charClass ::= charClassEsc | charClassExpr

[12] charClassExpr ::= '[' charGroup ']'

[13] charGroup ::= posCharGroup | negCharGroup |charClassSub

[14] posCharGroup ::= (charRange | charClassEsc)+

[15] negCharGroup ::= '^' posCharGroup

[16] charClassSub ::= (posCharGroupND | negCharGroupND)
 '-' charClassExpr

[17] negCharGroupND ::= '^' posCharGroupND

[18] posCharGroupND ::= (XmlCharRef | XmlChar | charClassEsc)+

[19] XmlCharRef ::= ('&#' [0-9]+ ';') |
 ('&#x' [0-9a-fA-F]+ ';')

[20] XmlChar ::= [^\#x2D#x5B#x5D]

[21] charRange ::= seRange | XmlCharRef | XmlCharIncDash

[22] seRange ::= charOrEsc '-' charOrEsc

[23] charOrEsc ::= XmlChar | SingleCharEsc

[24] XmlCharIncDash ::= [^\#x5B#x5D]

[25] charClassEsc ::= (SingleCharEsc | MultiCharEsc |
 catEsc | complEsc)

[26] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E]

[27] catEsc ::= '\p{' charProp '}'

[28] complEsc ::= '\P{' charProp '}'

[29] charProp ::= IsCategory | IsBlock

[30] IsCategory ::= Letters | Marks | Numbers |
 Punctuation | Separators |
 Symbols | Others

[31] Letters ::= 'L' [ultmo]?

[32] Marks ::= 'M' [nce]?

[33] Numbers ::= 'N' [dlo]?

[34] Punctuation ::= 'P' [cdseifo]?

[35] Separators ::= 'Z' [slp]?

[36] Symbols ::= 'S' [mcko]?

[37] Others ::= 'C' [cfon]?

[38] IsBlock ::= 'Is' [a-zA-Z [0-9a-zA-Z#x2D]*

[39] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW])

 Conditional Expressions
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 209
 First Edition

Class Condition

The general format for the class condition is:

[]
























-1class-name

-1identifier
UPPER-ALPHABETIC
LOWER-ALPHABETIC

ALPHABETIC
NUMERIC

NOTIS

The class condition determines whether the current contents of an operand are
numeric, alphabetic, alphabetic-lower, alphabetic-upper, or consist only of the
characters in the set of characters specified by a CLASS clause defined in the
SPECIAL-NAMES paragraph of the Environment Division. The class of an operand
is determined as follows:

• An operand is numeric if its contents consist entirely of the characters 0, 1, 2,
3, . . ., 9, with or without an operational sign. The specified usage of the
operand and its explicit or implicit SIGN clause are taken into account in
determining the validity of the digit and sign representation.

• An operand is alphabetic if its contents consist entirely of any combination of
the uppercase letters A, B, C, . . ., Z, the lowercase letters a, b, c, . . ., z, or space.
It should be noted that this definition of the alphabetic test is not the same as the
definition of the alphabetic test in previous versions of COBOL. In order to
achieve compatibility with the earlier versions of COBOL, two courses of action
are possible: either change the source program to use the alphabetic-upper test
in place of the alphabetic test, or make use of the Compile Command option that
causes the RM/COBOL compiler to treat alphabetic tests as if they were
alphabetic-upper tests. The RM/COBOL User’s Guide contains further
information on this topic.

• An operand is alphabetic-lower if its contents consist entirely of the lowercase
letters a, b, c, . . ., z, or space.

• An operand is alphabetic-upper if its contents consist entirely of the uppercase
letters A, B, C, . . ., Z, or space.

• An operand fulfills a class-name test if its contents consist entirely of the
characters listed in the definition of class-name-1 in the SPECIAL-NAMES
paragraph.

When used, NOT and the next keyword specify one class condition that defines the
class test to be executed for truth value, for example, NOT NUMERIC is a truth test
for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description describes
the item as alphabetic.

In the NUMERIC test, the usage of the operand being tested may be DISPLAY,
COMPUTATIONAL, COMPUTATIONAL-3 or COMPUTATIONAL-6.

If the usage of the operand being tested is DISPLAY, then:

1. If the data description of the item being tested indicates the presence of an
operational sign, the item being tested is determined to be numeric only if the
contents are numeric and a valid operational sign is present. The valid
operational signs for numeric DISPLAY data items are defined in the
discussions of the SIGN clause (on page 126) and USAGE clause (on page 129).

Conditional Expressions
Chapter 5: Procedure Division

210 RM/COBOL Language Reference Manual
 First Edition

2. If the data description of the item being tested does not indicate the presence of
an operational sign, the item being tested is determined to be numeric only if the
contents are numeric and an operational sign is not present.

If the usage of the operand being tested is COMPUTATIONAL, the item being
tested is determined to be numeric only if each character position contains an
unpacked decimal digit, except that, if the data description of the item being tested
indicates the presence of an operational sign, the rightmost character position must
contain a valid sign. The representation for a negative sign is hexadecimal D.
Depending on configured sign representation, the representation for a positive sign
may be hexadecimal C, B, or F.

If the usage of the operand being tested is COMPUTATIONAL-3, the item being
tested is determined to be numeric only if each character position, except the
rightmost, contains two packed decimal digits. The rightmost character position
must contain a packed decimal digit in the high order half-byte and a valid sign in the
low order half-byte. The representation for a negative sign is hexadecimal D.
Depending on configured sign representation, the representation for a positive sign
may be hexadecimal C, B, or F.

If the usage of the operand being tested is COMPUTATIONAL-6, the item being
tested is determined to be numeric only if each character position contains two
packed decimal digits.

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be alphabetic
only if the contents consist of any combination of the alphabetic characters and the
space.

The ALPHABETIC-LOWER test cannot be used with an item whose data
description describes the item as numeric. The item being tested is determined to be
alphabetic-lower only if its contents consist of any combination of the lowercase
alphabetic characters a through z and space.

The ALPHABETIC-UPPER test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be alphabetic-
upper only if its contents consist of any combination of the uppercase alphabetic
characters A through Z and space.

The class-name test must not be used with an item whose data description describes
the item as numeric.

Sign Condition

The sign condition determines whether the algebraic value of an arithmetic
expression is less than, greater than, or equal to zero. The general format for a sign
condition is:

[]












ZERO
NEGATIVE
POSITIVE

NOTISn-1-expressioarithmetic

When used, NOT and the next keyword specify one sign condition that defines the
algebraic test to be executed for truth value; for example, NOT ZERO is a truth test
for a nonzero value. A value is positive only if it is greater than zero. A value is
negative only if it is less than zero. The value zero is neither positive nor negative.

 Conditional Expressions
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 211
 First Edition

Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to determine whether
its value is equal to one of the values associated with a condition-name declared in a
level-number 88 data description entry subordinate to the conditional variable. The
general format for the condition-name condition is:

name-1condition-

If condition-name-1 is associated with a range of values, the conditional variable is
tested to determine if its value falls within this range, including the end values.

The rules for comparing a conditional variable with a condition-name value are the
same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the condition-name
equals the value of its associated conditional variable.

Switch-Status Condition

A switch-status condition determines the on or off status of a software switch. The
switch-name and the on or off value associated with the condition must be named in
the SPECIAL-NAMES paragraph of the Environment Division. The general format
for the switch-status condition is:

name-2condition-

The result of the test is true if the switch is set to the specified position corresponding
to condition-name-2.

Complex Conditions
A complex condition is formed by combining simple conditions, combined
conditions and complex conditions with logical connectors (logical operators AND
and OR) or by negating these conditions with logical negation (the logical operator
NOT). The truth value of a complex condition, whether parenthesized or not, is the
truth value that results from the interaction of the stated logical operators on the
individual truth values of the constituent simple conditions.

The logical operators and their meanings are shown in Table 24.

Table 24: Logical Operators

Logical Operator Meaning

AND Logical conjunction; the truth value is true if both of the
conjoined conditions are true; false if one or both of the
conjoined conditions is false.

OR Logical inclusive OR; the truth value is true if one or both of
the included conditions is true; false if both included
conditions are false.

NOT Logical negation or reversal of truth value; the truth value is
true if the condition is false; false if the condition is true.

The logical operators must be preceded by a space and followed by a space.

Conditional Expressions
Chapter 5: Procedure Division

212 RM/COBOL Language Reference Manual
 First Edition

Negated Conditions

A condition is negated by the use of the logical operator NOT, which reverses the
truth value of the condition to which it is applied. Thus, the truth value of a negated
condition is true only if the truth value of the condition is false; the truth value of a
negated condition is false only if the truth value of the condition is true. The
inclusion in parentheses of a negated condition does not change the truth value.

The general format for a negated condition is:

1condition-NOT

Combined Conditions

A combined condition results from connecting conditions with one of the logical
operators AND or OR. The general format of a combined condition is:

L














 3condition-2condition- OR

AND

condition-2 and condition-3 may be one of the following:

• Simple condition.

• Negated condition.

• Combined condition.

• Negated combined condition; that is, the NOT logical operator followed by a
combined condition enclosed within parentheses.

• Combinations of the above.

Although parentheses need never be used when AND or OR (but not both) is used
exclusively in a combined condition, parentheses may be used to affect the final truth
value when a mixture of AND, OR and NOT is used.

Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with logical
connectives such that a succeeding relation condition contains a subject or subject
and relational operator that is common with the preceding relation condition, and no
parentheses are used within such a consecutive sequence, any relation condition
except the first may be abbreviated by:

• The omission of the subject of the relation condition

• The omission of the subject and relational operator of the relation condition

The format for an abbreviated combined relation condition is:

[] [] L














 object-1-operatorrelationalondition-1relation-c NOTOR

AND

 Conditional Expressions
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 213
 First Edition

The effect of using such abbreviations is as if the last preceding stated subject were
inserted in place of the omitted subject, and the last stated relational operator were
inserted in place of the omitted relational operator.

The interpretation applied to the use of the word NOT in an abbreviated combined
relation condition is:

• If the word immediately following NOT is GREATER, >, LESS, <, EQUAL or
=, the NOT participates as part of the relational operator.

• In all other circumstances, the NOT is interpreted as a logical operator and,
therefore, the implied insertion of subject or relational operator results in a
negated relation condition.

Condition Evaluation Rules
Condition evaluation rules indicate the ways in which conditions and logical
operators may be combined and parenthesized. There must be a one-to-one
correspondence between left and right parentheses such that each left parenthesis is
to the left of its corresponding right parenthesis.

Parentheses may be used to specify the order in which individual conditions of
complex conditions are to be evaluated when it is necessary to depart from the
implied evaluation precedence. Conditions within parentheses are evaluated first;
within nested parentheses evaluation proceeds from the least inclusive condition to
the most inclusive condition. When parentheses are not used, or parenthesized
conditions are at the same level of inclusiveness, the following hierarchical order of
logical evaluation is implied until the final truth value is determined:

• Truth values for simple conditions are established.

• Truth values for negated simple conditions are established.

• Truth values for combined conditions are established: AND logical operators
followed by OR logical operators.

• Truth values for negated combined conditions are established.

• When the sequence of evaluation is not completely specified by parentheses, the
order of evaluation of consecutive operations of the same hierarchical level is
from left to right.

Sequential Organization Input-Output
Chapter 5: Procedure Division

214 RM/COBOL Language Reference Manual
 First Edition

Sequential Organization Input-Output
The sequential organization input-output statements in the Procedure Division are the
CLOSE, DELETE FILE, OPEN, READ, REWRITE, UNLOCK and WRITE
statements.

Function
Sequential organization input-output provides a capability to access records of a file
in an established sequence. The sequence is established as a result of writing the
records to the file.

Organization
Sequential files are organized such that each record in the file except the first has a
unique predecessor record, and each record except the last has a unique successor
record. These predecessor-successor relationships are established by the order of
WRITE statements when the file is created. Once established, these relationships do
not change except when records are added to the end of the file.

Access Mode
Only the sequential access mode is available for files whose organization is
sequential. In the sequential access mode, the sequence in which records are
accessed is the order in which the records were originally written.

File Position Indicator
The file position indicator is a concept used to facilitate specification of the next
record to be accessed within a given file during certain sequences of input-output
operations. The concept of the file position indicator has no meaning for a file
opened in the output or extend mode. The setting of the file position indicator is
affected only by the CLOSE, OPEN and READ statements.

I-O Status
If the FILE STATUS clause is included in a file control entry, it defines a two-
character file status data item for that file. During the execution of each input-output
statement that refers to such a file, the runtime system stores a value into the file
status data item. Storage of the value is done before the execution of any associated
imperative statement and before any applicable USE procedure is executed. The
value can be used by the program to determine the status of that input-output
operation. The value that is stored into the file status data item is called the I-O
status value.

The I-O status value indicates the status of an input-output operation. It also
determines whether an applicable USE procedure should be executed: if one of the
conditions listed under the heading “Successful Completion” results, an applicable
USE procedure is not executed; if any other condition results, such a procedure may
be executed depending on rules stated the USE statement (on page 189).

 Sequential Organization Input-Output
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 215
 First Edition

Certain classes of I-O status values indicate critical error conditions. They are the
ones that begin with the digits 3, 4 and 9. When such conditions arise, certain
system-standard error correction procedures may be tried first, depending on the
nature of the problem. If they are not successful in clearing the problem, either a
user-specified USE procedure is executed (if one is applicable) and execution of the
program continues, or a runtime error message is produced and execution of the run
unit terminates.

Upon completion of the input-output operation, the I-O status value expresses one of
the following conditions:

• Successful Completion. The input-output statement was executed successfully
and no exceptional conditions arose. The left character of the I-O status value is
0 for these cases.

• At End. A sequential READ statement was not executed successfully because of
an at end condition. The left character of the I-O status value is 1 for this case.

• Permanent Error. The input-output statement was not executed successfully
because of an error that precludes further processing of the file. The problem
could be a violation of an external boundary, or a hardware input-output error
such as a data check, parity error, transmission error, and so forth. The left
character of the I-O status value is 3 for these cases.

• Logic Error. The input-output statement was not executed successfully because
an improper sequence of input-output statements was performed on the file, or
because of a violation of a user-defined limit. The left character of the I-O status
value is 4 for these cases.

• General Error. The input-output statement was not executed successfully
because of a condition that is specified by the right character of the I-O status
value. The left character of the I-O status value is 9 for these cases.

It should be noted that the I-O status values specified here differ in many respects
from the ones defined in earlier versions of RM/COBOL. The new values comply
with the American National Standard COBOL 1985 whereas the old values comply
with ANSI COBOL 1974. In the following list, the old values are shown in square
brackets following the new values when the two values are not the same. In
situations where it is necessary to preserve compatibility with earlier versions of
RM/COBOL in this respect, two courses of action are possible: either modify the
text of the source program to use the new set of status values, or make use of the
Compile Command option that causes the compiler to treat the entire program as an
ANSI COBOL 1974 program. That option and the language features it controls are
discussed in detail in the RM/COBOL User’s Guide.

Sequential Organization Input-Output
Chapter 5: Procedure Division

216 RM/COBOL Language Reference Manual
 First Edition

The following list shows the possible I-O status values that can arise as a result of
executing an input-output statement that refers to a sequential file:

• Successful Completion

− I-O Status Value=00. The input-output statement is successfully executed
and no further information is available concerning the operation.

− I-O Status Value=04 [97]. A READ statement executed successfully but the
length of the record being processed does not conform to the fixed file
attributes for the file.

− I-O Status Value=05. The input-output statement is successfully executed
but the file is not present at the time the input-output statement is executed.

• For a DELETE FILE statement, the referenced file is not available.

• For an OPEN statement, the referenced optional file is not present. If
the open mode is I-O or extend, the file has been created.

− I-O Status Value=07. The input-output statement executed successfully.
However, for a CLOSE statement with the NO REWIND, REEL/UNIT, or
FOR REMOVAL phrase or for an OPEN statement with the NO REWIND
phrase, the referenced file is on a non-reel/unit medium.

• At End Condition with Unsuccessful Completion

I-O Status Value=10. A sequential READ statement is attempted and no next
logical record exists in the file because the end of the file has been reached, or a
sequential READ statement is attempted for the first time on an optional input
file that is not present.

• Permanent Error Condition with Unsuccessful Completion

− I-O Status Value=30. A permanent error exists and no further information
is available concerning the input-output operation.

− I-O Status Value=34. A permanent error exists because of an attempt to
write beyond the externally defined boundaries of a sequential file.

− I-O Status Value=35 [94]. A permanent error exists because an OPEN
statement with the INPUT, I-O, or EXTEND phrase is attempted on a
nonoptional file that is not present.

− I-O Status Value=37 [90, 95]. A permanent error exists because an OPEN
statement is attempted on a file that does not support the open mode
specified in the OPEN statement, or a DELETE FILE statement refers to a
protected file. For OPEN statements, the possible violations are as follows:

• The EXTEND or OUTPUT phrase is specified but the file does not
support write operations.

• The I-O phrase is specified but the file does not support the input and
output operations that are permitted for a sequential file when opened in
the I-O mode.

• The INPUT phrase is specified but the file does not support read
operations.

− I-O Status Value=38 [93]. A permanent error exists because an OPEN or
DELETE FILE statement is attempted on a file previously closed with lock.

 Sequential Organization Input-Output
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 217
 First Edition

− I-O Status Value=39 [94]. An OPEN or DELETE FILE statement is
unsuccessful because of an incompatibility between the fixed file attributes
and the attributes specified for the file in the program.

• Logic Error Condition with Unsuccessful Completion

− I-O Status Value=41 [92]. An OPEN statement is attempted for a file that is
already open, or a DELETE FILE statement is attempted for an open file.

− I-O Status Value=42 [91]. A CLOSE statement is attempted for a file that is
not open.

− I-O Status Value=43 [90]. A REWRITE statement is attempted for a mass
storage file, and the last input-output statement executed for the file was not
a successfully executed READ statement.

− I-O Status Value=44 [97]. A boundary violation exists either because of an
attempt to write or rewrite a record whose length is longer or shorter than
the limits established by the RECORD IS VARYING clause, or because of
an attempt to rewrite a record that is not the same size as the record being
replaced.

− I-O Status Value=46 [96]. A sequential READ statement is attempted on a
file open in the input or I-O mode and no valid next record has been
established either because the preceding READ statement caused an at end
condition, or because the preceding READ statement was unsuccessful for
some other reason.

− I-O Status Value=47 [90, 91]. A READ statement is attempted on a file not
open in the input or I-O mode.

− I-O Status Value=48 [90, 91]. A WRITE statement is attempted on a file
not open in the output or extend mode.

− I-O Status Value=49 [90, 91]. A REWRITE statement is attempted on a file
not open in the I-O mode.

• General Error

− I-O Status Value=93. An OPEN statement is attempted on a file that is not
available. The availability of a file is determined by several factors,
including the lock mode. See the RM/COBOL User’s Guide for details on
the availability of a file.

− I-O Status Value=94. An OPEN statement is attempted at a time when there
is insufficient available memory to provide the required supplementary
input-output areas and control structures, or an OPEN statement is
attempted for a file that has an attribute that is not supported, or an OPEN
statement is attempted for a file that has file attributes that are inconsistent
among themselves.

− I-O Status Value=97. A REWRITE or WRITE statement is attempted while
the record area contains one or more characters that are not legal for a line
sequential file after mapping through the applicable code set.

− I-O Status Value=98. Defective record structure has been found in the file.

− I-O Status Value=99. A READ or REWRITE statement is attempted that
refers to a record locked by another concurrent user. This I-O status value
is returned only when the referenced file has an associated file status data
item and there is an applicable USE procedure; when this is not the case, the
program waits for the record to become available.

Sequential Organization Input-Output
Chapter 5: Procedure Division

218 RM/COBOL Language Reference Manual
 First Edition

At End Condition
The at end condition can occur as a result of the execution of a Format 1 READ
statement. Details regarding the circumstances that cause an at end condition are
presented in the discussion of the Format 1 READ statement (on page 364).

If the at end condition arises, execution of the READ statement is unsuccessful and
the positioning of the file is not changed. The NOT AT END phrase and its
imperative statement, if present, are ignored, and the following actions occur:

1. If there is a file status data item associated with the file, the appropriate I-O
status value (10) is stored into it.

2. If the AT END phrase is specified in the READ statement, any USE procedure
associated with the file is not executed. Control is transferred to the imperative
statement specified in the AT END phrase. The imperative statement is
executed according to the rules for each statement encountered in that imperative
statement. If a procedure branching or conditional statement that causes explicit
transfer of control is executed, control is transferred in accordance with the rules
for that statement. If control reaches the end of the imperative statement in the
AT END phrase, control is transferred to the end of the READ statement.

3. If the AT END phrase is not specified in the READ statement, but an applicable
USE procedure is specified either explicitly or implicitly, that procedure is
performed and control is transferred to the end of the READ statement.

4. If the AT END phrase is not specified in the READ statement and no applicable
USE procedure is specified, a runtime error message is produced and execution
of the run unit terminates. The runtime can be configured, as described for the
DEFAULT-USE-PROCEDURE keyword of the COMPILER-OPTIONS record
in Chapter 10: Configuration of the RM/COBOL User’s Guide, to assume that a
default empty USE procedure is applicable, thus causing execution to continue
at the next executable statement after the READ statement.

If the at end condition does not arise for the execution of a READ statement, the AT
END phrase and its associated imperative statement, if present, are ignored, and the
following actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O
status value is stored into it.

2. If there is an error or exception condition and an applicable USE procedure is
specified, either explicitly or implicitly, that procedure is performed and control
is transferred to the end of the READ statement.

3. If there is an error or exception condition and no applicable USE procedure is
specified, a runtime error message is produced and execution of the run unit
terminates. The runtime can be configured, as described for the DEFAULT-
USE-PROCEDURE keyword of the COMPILER-OPTIONS record in
Chapter 10: Configuration of the RM/COBOL User’s Guide, to assume that a
default empty USE procedure is applicable, thus causing execution to continue
at the next executable statement after the READ statement.

4. If no error or exception condition exists and a NOT AT END phrase is present,
the imperative statement in the phrase is executed according to the rules for each
statement encountered in that imperative statement. If a procedure branching or
conditional statement that causes explicit transfer of control is executed, control
is transferred in accordance with the rules for that statement; otherwise, control
is transferred to the end of the READ statement.

 Relative Organization Input-Output
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 219
 First Edition

Relative Organization Input-Output
The relative organization input-output statements in the Procedure Division are the
CLOSE, DELETE, DELETE FILE, OPEN, READ, REWRITE, START, UNLOCK
and WRITE statements.

Function
Relative organization input-output provides the capability to access records of a mass
storage file in either a random or sequential manner. Each record in a relative file is
uniquely identified by an integer value greater than zero that specifies the logical
position of the record in the file.

Organization
Relative file organization is permitted only on mass storage devices (RANDOM,
DISK or DISC device in an ASSIGN TO clause).

A relative file consists of records that are identified by relative record numbers. The
file may be thought of as comprising a serial string of areas, each capable of holding
a logical record. Each of these areas is denominated by a relative record number, an
integer value greater than zero. Records are stored and retrieved based on this
number. For example, the 10th record is the one addressed by relative record number
10 and is the 10th record area, whether or not records have been written in the first
through the ninth record areas.

Access Modes
In the sequential access mode, the sequence in which records are accessed is the
ascending order of the relative record numbers of all records that currently exist
within the file.

In the random access mode, the sequence in which records are accessed is controlled
by the programmer. The desired record is accessed by placing its relative record
number in the relative key data item.

In the dynamic access mode, the programmer may change at will from sequential
access to random access using appropriate forms of input-output statements.

File Position Indicator
The file position indicator is a concept used to facilitate specification of the next
record to be accessed within a given file during certain sequences of input-output
operations. The concept of the file position indicator has no meaning for a file
opened in the output or extend mode. The setting of the file position indicator is
affected only by the CLOSE, OPEN, READ and START statements.

I-O Status
If the FILE STATUS clause is included in a file control entry, it defines a two-
character file status data item for that file. During the execution of each input-output

Relative Organization Input-Output
Chapter 5: Procedure Division

220 RM/COBOL Language Reference Manual
 First Edition

statement that refers to such a file, the runtime system stores a value into the file
status data item. Storage of the value is done before the execution of any associated
imperative statement and before any applicable USE procedure is executed. The
value can be used by the program to determine the status of that input-output
operation. The value that is stored into the file status data item is called the I-O
status value.

The I-O status value indicates the status of an input-output operation. It also
determines whether an applicable USE procedure should be executed: if one of the
conditions listed under the heading “Successful Completion” results, an applicable
USE procedure is not executed; if any other condition results, such a procedure may
be executed depending on rules stated in the discussion of the USE statement (on
page 189).

Certain classes of I-O status values indicate critical error conditions. They are the
ones that begin with the digits 3, 4 and 9. When such conditions arise, certain
system-standard error correction procedures may be tried first, depending on the
nature of the problem. If they are not successful in clearing the problem, either a
user-specified USE procedure is executed (if one is applicable) and execution of the
program continues, or a runtime error message is produced and execution of the run
unit terminates.

Upon completion of the input-output operation, the I-O status value expresses one of
the following conditions:

• Successful Completion. The input-output statement was executed successfully
and no exceptional conditions arose. The left character of the I-O status value is
0 for these cases.

• At End. A sequential READ statement was not executed successfully because of
an at end condition. The left character of the I-O status value is 1 for these
cases.

• Invalid Key. The input-output statement was not executed successfully because
of an invalid key condition. The left character of the I-O status value is 2 for
these cases.

• Permanent Error. The input-output statement was not executed successfully
because of an error that precludes further processing of the file. The problem
could be a violation of an external boundary, or a hardware input-output error
such as a data check, parity error, transmission error, and so forth. The left
character of the I-O status value is 3 for these cases.

• Logic Error. The input-output statement was not executed successfully because
an improper sequence of input-output statements was performed on the file, or
because of a violation of a user-defined limit. The left character of the I-O status
value is 4 for these cases.

• General Error. The input-output statement was not executed successfully
because of a condition that is specified by the right character of the I-O status
value. The left character of the I-O status value is 9 for these cases.

It should be noted that the I-O status values specified here differ in many respects
from the ones defined in earlier versions of RM/COBOL. The new values comply
with ANSI COBOL 1985 whereas the old values comply with ANSI COBOL 1974.
In the following list, the old values are shown in square brackets following the new
values when the two values are not the same. In situations where it is necessary to
preserve compatibility with earlier versions of RM/COBOL in this respect, two
courses of action are possible: either modify the text of the source program to use
the new set of status values, or make use of the 2 Compile Command Option, which

 Relative Organization Input-Output
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 221
 First Edition

causes the compiler to treat the entire program as an ANSI COBOL 1974 program.
That option and the language features it controls are discussed in detail in Chapter 6:
Compiling of the RM/COBOL User’s Guide.

The following list shows the possible I-O status values that can arise as a result of
executing an input-output statement that refers to a relative file:

• Successful Completion

− I-O Status Value=00. The input-output statement is successfully executed
and no further information is available concerning the operation.

− I-O Status Value=04 [97]. A READ statement executed successfully but the
length of the record being processed does not conform to the fixed file
attributes for the file.

− I-O Status Value=05. The input-output statement is successfully executed
but the file is not present at the time the input-output statement is executed.

• For a DELETE FILE statement, the referenced file is not available.

• For an OPEN statement, the referenced optional file is not present. If
the open mode is I-O or extend, the file has been created.

• At End Condition with Unsuccessful Completion

− I-O Status Value=10. A sequential READ statement is attempted and no
next (or previous) logical record exists in the file because the end (or
beginning) of the file has been reached, or a sequential READ statement is
attempted for the first time on an optional input file that is not present.

− I-O Status Value=14. A sequential READ statement is attempted for a
relative file and the number of significant digits in the relative record
number is larger than the size of the relative key data item specified for the
file.

• Invalid Key Condition with Unsuccessful Completion

− I-O Status Value=22. An attempt is made to write a record that would
create a duplicate key in a relative file.

− I-O Status Value=23. Either an attempt is made to randomly access a record
that does not exist in the file, or a START or random READ statement is
attempted on an optional input file that is not present.

− I-O Status Value=24. Either an attempt is made to write beyond the
externally defined boundaries of a relative file, or a sequential WRITE
statement is attempted for a relative file and the number of significant digits
in the relative record number is larger than the size of the relative key data
item specified for the file.

• Permanent Error Condition with Unsuccessful Completion

− I-O Status Value=30. A permanent error exists and no further information
is available concerning the input-output operation.

− I-O Status Value=35 [94]. A permanent error exists because an OPEN
statement with the INPUT, I-O, or EXTEND phrase is attempted on a
nonoptional file that is not present.

− I-O Status Value=37 [90, 95]. A permanent error exists because an OPEN
statement is attempted on a file that does not support the open mode

Relative Organization Input-Output
Chapter 5: Procedure Division

222 RM/COBOL Language Reference Manual
 First Edition

specified in the OPEN statement, or a DELETE FILE statement refers to a
protected file. For OPEN statements, the possible violations are as follows:

• The EXTEND or OUTPUT phrase is specified but the file does not
support write operations.

• The I-O phrase is specified but the file does not support the input and
output operations that are permitted for a relative file when opened in
the I-O mode.

• The INPUT phrase is specified but the file does not support read
operations.

− I-O Status Value=38 [93]. A permanent error exists because an OPEN or
DELETE FILE statement is attempted on a file previously closed with lock.

− I-O Status Value=39[94]. An OPEN or DELETE FILE statement is
unsuccessful because of an incompatibility between the fixed file attributes
and the attributes specified for the file in the program.

• Logic Error Condition with Unsuccessful Completion

− I-O Status Value=41 [92]. An OPEN statement is attempted for a file that is
already open, or a DELETE FILE statement is attempted for an open file.

− I-O Status Value=42 [91]. A CLOSE statement is attempted for a file that is
not open.

− I-O Status Value=43 [90]. A DELETE or REWRITE statement in the
sequential access mode is attempted for a file, and the last input-output
statement executed for the file was not a successfully executed READ
statement.

− I-O Status Value=44 [97]. A boundary violation exists because of an
attempt to write or rewrite a record whose length is longer or shorter than
the limits established by the RECORD IS VARYING clause.

− I-O Status Value=46 [96]. A sequential READ statement is attempted on a
file open in the input or I-O mode and no valid next record has been
established for one of the following reasons:

• The preceding START statement was unsuccessful.

• The preceding READ statement caused an at end condition.

• The preceding READ statement was unsuccessful for some other
reason.

− I-O Status Value=47 [90, 91]. A READ or START statement is attempted
on a file not open in the input or I-O mode.

− I-O Status Value=48 [90, 91]. A WRITE statement is attempted on a file
not open in the I-O, output, or extend mode or on a sequential access file
open in the I-O mode.

− I-O Status Value=49 [90, 91]. A DELETE or REWRITE statement is
attempted on a file not open in the I-O mode.

• General Error

− I-O Status Value=93. An OPEN statement is attempted on a file that is not
available. The availability of a file is determined by several factors,
including the lock mode. See the RM/COBOL User’s Guide for details on
the availability of a file.

 Relative Organization Input-Output
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 223
 First Edition

− I-O Status Value=94. An OPEN statement is attempted at a time when there
is insufficient available memory to provide the required supplementary
input-output areas and control structures, or an OPEN statement is
attempted for a file that has an attribute that is not supported, or an OPEN
statement is attempted for a file that has file attributes that are inconsistent
among themselves.

− I-O Status Value=98. Defective record structure has been found in the file.

− I-O Status Value=99. A DELETE, READ, or REWRITE statement is
attempted that refers to a record locked by another concurrent user. This
I-O status value is returned only when the referenced file has an associated
file status data item and there is an applicable USE procedure; when this is
not the case, the program waits for the record to become available.

Invalid Key Condition
The invalid key condition can occur as a result of the execution of a DELETE,
READ, REWRITE, START or WRITE statement. Details regarding the situations
that cause an invalid key condition are presented in the sections of Chapter 6:
Procedure Division Statements, which explain the individual input-output
statements. If an invalid key condition occurs, execution of the input-output
statement that recognized the condition is unsuccessful and the file is not affected.

If the invalid key condition exists after the execution of the input-output operations
called for by the input-output statement, the NOT INVALID KEY phrase, if
specified, is ignored and the following actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O
status value is stored into it.

2. If the INVALID KEY phrase is specified in the input-output statement, any USE
procedure associated with the file is not executed. Control is transferred to the
imperative statement specified in the INVALID KEY phrase. The imperative
statement is executed according to the rules for each statement encountered in
that imperative statement. If a procedure branching or conditional statement that
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement. If control reaches the end of the
imperative statement in the INVALID KEY phrase, control is transferred to the
end of the input-output statement.

3. If the INVALID KEY phrase is not specified in the input-output statement, but
an applicable USE procedure is specified either explicitly or implicitly, that
procedure is performed and control is transferred to the end of the input-output
statement.

4. If the INVALID KEY phrase is not specified in the input-output statement and
no applicable USE procedure is specified, a runtime error message is produced
and execution of the run unit terminates. The runtime can be configured, as
described for the DEFAULT-USE-PROCEDURE keyword of the COMPILER-
OPTIONS record in Chapter 10: Configuration of the RM/COBOL User’s
Guide, to assume that a default empty USE procedure is applicable, thus
causing execution to continue at the next executable statement after the
input-output statement.

Relative Organization Input-Output
Chapter 5: Procedure Division

224 RM/COBOL Language Reference Manual
 First Edition

If the invalid key condition does not exist after the execution of the input-output
operations called for by an input-output statement, the INVALID KEY phrase, if
specified, is ignored and the following actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O
status value is stored into it.

2. If there is an error or exception condition other than an invalid key condition and
an applicable USE procedure is specified, either explicitly or implicitly, that
procedure is performed and control is transferred to the end of the input-output
statement.

3. If there is an error or exception condition other than an invalid key condition and
no applicable USE procedure is specified, a runtime error message is produced
and execution of the run unit terminates. The runtime can be configured, as
described for the DEFAULT-USE-PROCEDURE keyword of the COMPILER-
OPTIONS record in Chapter 10: Configuration of the RM/COBOL User’s
Guide, to assume that a default empty USE procedure is applicable, thus causing
execution to continue at the next executable statement after the input-output
statement.

4. If no error or exception condition exists and a NOT INVALID KEY phrase is
present, the imperative statement in the NOT INVALID KEY phrase is executed
according to the rules for each statement encountered in that imperative
statement. If a procedure branching or conditional statement that causes explicit
transfer of control is executed, control is transferred in accordance with the rules
for that statement; otherwise, control is transferred to the end of the input-output
statement.

At End Condition
The at end condition can occur as a result of the execution of a Format 1 READ
statement. Details regarding the circumstances that cause an at end condition appear
in the discussion of the Format 1 READ statement (on page 364).

When the at end condition arises, execution of the READ statement is unsuccessful
and the positioning of the file is not changed. The NOT AT END phrase and its
imperative statement, if present, are ignored, and the following actions occur:

1. If there is a file status data item associated with the file, the appropriate I-O
status value is stored into it.

2. If the AT END phrase is specified in the READ statement, any USE procedure
associated with the file is not executed. Control is transferred to the imperative
statement specified in the AT END phrase. The imperative statement is
executed according to the rules for each statement encountered in that imperative
statement. If a procedure branching or conditional statement that causes explicit
transfer of control is executed, control is transferred in accordance with the rules
for that statement. If control reaches the end of the imperative statement in the
AT END phrase, control is transferred to the end of the READ statement.

3. If the AT END phrase is not specified in the READ statement, but an applicable
USE procedure is specified either explicitly or implicitly, that procedure is
performed and control is transferred to the end of the READ statement.

4. If the AT END phrase is not specified in the READ statement and no applicable
USE procedure is specified, a runtime error message is produced and execution
of the run unit terminates. The runtime can be configured, as described for the
DEFAULT-USE-PROCEDURE keyword of the COMPILER-OPTIONS record

 Indexed Organization Input-Output
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 225
 First Edition

in Chapter 10: Configuration of the RM/COBOL User’s Guide, to assume that a
default empty USE procedure is applicable, thus causing execution to continue
at the next executable statement after the READ statement.

If the at end condition does not arise for the execution of a Format 1 READ
statement, the AT END phrase and its associated imperative statement, if present, are
ignored, and the following actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O
status value is stored into it.

2. If there is an error or exception condition and an applicable USE procedure is
specified, either explicitly or implicitly, that procedure is performed and control
is transferred to the end of the READ statement.

3. If there is an error or exception condition and no applicable USE procedure is
specified, a runtime error message is produced and execution of the run unit
terminates. The runtime can be configured, as described for the DEFAULT-
USE-PROCEDURE keyword of the COMPILER-OPTIONS record in
Chapter 10: Configuration of the RM/COBOL User’s Guide, to assume that a
default empty USE procedure is applicable, thus causing execution to continue
at the next executable statement after the READ statement.

4. If no error or exception condition exists and a NOT AT END phrase is present,
the imperative statement in the phrase is executed according to the rules for each
statement encountered in that imperative statement. If a procedure branching or
conditional statement that causes explicit transfer of control is executed, control
is transferred in accordance with the rules for that statement; otherwise, control
is transferred to the end of the READ statement.

Indexed Organization Input-Output
The indexed organization input-output statements in the Procedure Division are the
CLOSE, DELETE, DELETE FILE, OPEN, READ, REWRITE, START, UNLOCK
and WRITE statements.

Function
Indexed organization input-output provides the capability to access records of a mass
storage file in either a random or sequential manner. Each record in an indexed
organization file is uniquely identified by the value of one or more keys within that
record, except when the DUPLICATES phrase is specified for all the keys associated
with the file.

Organization
An indexed organization file is a mass storage file in which data records may be
accessed by the value of a key. A record description may include one or more key
data items, each of which is associated with an index. Each index provides a logical
path to the data records according to the contents of a data item within each record
that is the recorded key for that index.

The data item named in the RECORD KEY clause of the file control entry for a file
is the prime record key for that file. For purposes of inserting, updating and deleting

Indexed Organization Input-Output
Chapter 5: Procedure Division

226 RM/COBOL Language Reference Manual
 First Edition

records in a file, each record is identified solely by the value of its prime record key.
This value should, therefore, be unique and must not be changed when updating the
record. The value must be unique unless the DUPLICATES phrase is specified in
the RECORD KEY clause. When the DUPLICATES phrase is specified in the
RECORD KEY clause, the value of the prime record key is not necessarily a unique
identifier for a single record; therefore, in this case, the DELETE and REWRITE
statements are disallowed in the random access mode and are sequential operations in
the dynamic access mode.

Alternate record keys provide alternate means of retrieval for the records of a file.
Such keys are named in the ALTERNATE RECORD KEY clause of the file control
entry. The value of a particular alternate record key in each record must be unique
unless the DUPLICATES phrase is specified in the ALTERNATE RECORD KEY
clause.

Access Modes
For indexed organization, the order of sequential access is ascending based on the
value of the current key of reference. If a collating sequence is specified for the file,
it is used in determining the ascending sequence for keys. Any of the keys defined
for the file may be established as the current key of reference during the processing
of the file. The order of retrieval from a set of records that have duplicate key of
reference values is the original order of arrival of those records into that set. The
START statement may be used to establish a starting point within an indexed file for
a series of subsequent sequential retrievals.

When an indexed file is accessed in random access mode, input-output statements are
used to access the records in a programmer-specified order. The programmer
specifies the desired record by placing the value of one of its record keys in a record
key or an alternate record key data item.

In the dynamic access mode, the programmer may change at will from sequential
access to random access using appropriate forms of input-output statements.

File Position Indicator
The file position indicator is a concept used to facilitate specification of the next
record to be accessed within a given file during certain sequences of input-output
operations. The concept of the file position indicator has no meaning for a file
opened in the output or extend mode. The setting of the file position indicator is
affected only by the CLOSE, OPEN, READ and START statements.

I-O Status
If the FILE STATUS clause is included in a file control entry, it defines a two-
character file status data item for that file. During the execution of each input-output
statement that refers to such a file, the runtime system stores a value into the file
status data item. Storage of the value is done before the execution of any associated
imperative statement and before any applicable USE procedure is executed. The
value can be used by the program to determine the status of that input-output
operation. The value that is stored into the file status data item is called the I-O
status value.

The I-O status value indicates the status of an input-output operation. It also
determines whether an applicable USE procedure should be executed: if one of the

 Indexed Organization Input-Output
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 227
 First Edition

conditions listed under the heading “Successful Completion” results, an applicable
USE procedure is not executed; if any other condition results, such a procedure may
be executed depending on the rules for the USE statement (on page 189).

Certain classes of I-O status values indicate critical error conditions. They are the
ones that begin with the digits 3, 4 and 9. When such conditions arise, certain
system-standard error correction procedures may be tried first, depending on the
nature of the problem. If they are not successful in clearing the problem, either a
user-specified USE procedure is executed (if one is applicable) and execution of the
program continues, or a runtime error message is produced and execution of the run
unit terminates.

Upon completion of the input-output operation, the I-O status value expresses one of
the following conditions:

• Successful Completion. The input-output statement was executed successfully
and no exceptional conditions arose. The left character of the I-O status value is
0 for these cases.

• At End. A sequential READ statement was not executed successfully because of
an at end condition. The left character of the I-O status value is 1 for this case.

• Invalid Key. The input-output statement was not executed successfully because
of an invalid key condition. The left character of the I-O status value is 2 for
these cases.

• Permanent Error. The input-output statement was not executed successfully
because of an error that precludes further processing of the file. The problem
could be a violation of an external boundary, or a hardware input-output error
such as a data check, parity error, transmission error, and so forth. The left
character of the I-O status value is 3 for these cases.

• Logic Error. The input-output statement was not executed successfully because
an improper sequence of input-output statements was performed on the file, or
because of a violation of a user-defined limit. The left character of the I-O status
value is 4 for these cases.

• General Error. The input-output statement was not executed successfully
because of a condition that is specified by the right character of the I-O status
value. The left character of the I-O status value is 9 for these cases.

It should be noted that the I-O status values specified here differ in many respects
from the ones defined in earlier versions of RM/COBOL. The new values comply
with ANSI COBOL 1985 whereas the old values comply with ANSI COBOL 1974.
In the following list, the old values are shown in square brackets following the new
values when the two values are not the same. In situations where it is necessary to
preserve compatibility with earlier versions of RM/COBOL in this respect, two
courses of action are possible: either modify the text of the source program to use
the new set of status values, or make use of the 2 Compile Command Option, which
causes the compiler to treat the entire program as an ANSI COBOL 1974 program.
That option and the language features it controls are discussed in detail in Chapter 6:
Compiling of the RM/COBOL User’s Guide.

Indexed Organization Input-Output
Chapter 5: Procedure Division

228 RM/COBOL Language Reference Manual
 First Edition

The following list shows the possible I-O status values that can arise as a result of
executing an input-output statement that refers to an indexed file:

• Successful Completion

− I-O Status Value=00. The input-output statement is successfully executed
and no further information is available concerning the operation.

− I-O Status Value=02. The input-output statement executed successfully, but
a duplicate key is detected. For a READ statement, the key value for the
current key of reference is equal to the value of the same key in the next
record within the current key of reference. For a WRITE statement, the
record just written created a duplicate key value for at least one record key
for which duplicates are allowed. For a REWRITE statement, the record
just written created a duplicate key value for at least one alternate record
key for which duplicates are allowed.

− I-O Status Value=04 [97]. A READ statement executed successfully but the
length of the record being processed does not conform to the fixed file
attributes for the file.

− I-O Status Value=05. The input-output statement is successfully executed
but the file is not present at the time the input-output statement is executed.

• For a DELETE FILE statement, the referenced file is not available.

• For an OPEN statement, the referenced optional file is not present. If
the open mode is I-O or extend, the file has been created.

• At End Condition with Unsuccessful Completion

− I-O Status Value=10. A sequential READ statement is attempted and no
next (or previous) logical record exists in the file because the end (or
beginning) of the file has been reached, or a sequential READ statement is
attempted for the first time on an optional input file that is not present.

• Invalid Key Condition with Unsuccessful Completion

− I-O Status Value=21. A sequence error exists for a sequentially accessed
indexed file. Either the prime record key value has been changed by the
program between the successful execution of a READ statement and the
execution of the next REWRITE statement for that file, or the ascending
sequence requirements for successive record key values are violated. A
sequentially accessed indexed file includes the execution of a REWRITE
statement in the dynamic access mode when the DUPLICATES phrase is
specified in the RECORD KEY clause.

− I-O Status Value=22. An attempt is made to write or rewrite a record that
would create a duplicate record key value for a record key for which the
DUPLICATES phrase is not specified.

− I-O Status Value=23. Either an attempt is made to randomly access a record
that does not exist in the file, or a START or random READ statement is
attempted on an optional input file that is not present.

− I-O Status Value=24. An attempt is made to write beyond the externally
defined boundaries of the file.

 Indexed Organization Input-Output
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 229
 First Edition

• Permanent Error Condition with Unsuccessful Completion

− I-O Status Value=30. A permanent error exists and no further information
is available concerning the input-output operation.

− I-O Status Value=35 [94]. A permanent error exists because an OPEN
statement with the INPUT, I-O or EXTEND phrase is attempted on a
nonoptional file that is not present.

− I-O Status Value=37 [90, 95]. A permanent error exists because an OPEN
statement is attempted on a file that does not support the open mode
specified in the OPEN statement, or a DELETE FILE statement refers to a
protected file. For OPEN statements, the possible violations are as follows:

• The EXTEND or OUTPUT phrase is specified but the file does not
support write operations.

• The I-O phrase is specified but the file does not support the input and
output operations that are permitted for an indexed file when opened in
the I-O mode.

• The INPUT phrase is specified but the file does not support read
operations.

− I-O Status Value=38 [93]. A permanent error exists because an OPEN or
DELETE FILE statement is attempted on a file previously closed with lock.

− I-O Status Value=39[94]. An OPEN or DELETE FILE statement is
unsuccessful because of an incompatibility between the fixed file attributes
and the attributes specified for the file in the program.

• Logic Error Condition with Unsuccessful Completion

− I-O Status Value=41 [92]. An OPEN statement is attempted for a file that is
already open, or a DELETE FILE statement is executed for an open file.

− I-O Status Value=42 [91]. A CLOSE statement is attempted for a file that is
not open.

− I-O Status Value=43 [90]. A DELETE or REWRITE statement in the
sequential access mode is attempted for a file, and the last input-output
statement executed for the file was not a successfully executed READ
statement. A DELETE or REWRITE statement in the dynamic access mode
is attempted for a file that specifies the DUPLICATES phrase in the
RECORD KEY clause and the last input-output statement executed for the
file was not a successfully executed READ statement.

− I-O Status Value=44 [97]. A boundary violation exists because of an
attempt to write or rewrite a record whose length is longer or shorter than
the limits established by the RECORD IS VARYING clause.

− I-O Status Value=46 [96]. A sequential READ statement is attempted on a
file open in the input or I-O mode and no valid next record has been
established for one of the following reasons:

• The preceding START statement was unsuccessful.

• The preceding READ statement caused an at end condition.

• The preceding READ statement was unsuccessful for some other
reason.

Indexed Organization Input-Output
Chapter 5: Procedure Division

230 RM/COBOL Language Reference Manual
 First Edition

− I-O Status Value=47 [90, 91]. A READ or START statement is attempted
on a file not open in the input or I-O mode.

− I-O Status Value=48 [90, 91]. A WRITE statement is attempted on a file
not open in the I-O, output, or extend mode or on a sequential access file
open in the I-O mode.

− I-O Status Value=49 [90, 91]. A DELETE or REWRITE statement is
attempted on a file not open in the I-O mode.

• General Error

− I-O Status Value=93. An OPEN statement is attempted on a file that is not
available. The availability of a file is determined by several factors,
including the lock mode. See the RM/COBOL User’s Guide for details on
the availability of a file.

− I-O Status Value=94. An OPEN statement is attempted at a time when there
is insufficient available memory to provide the required supplementary
input-output areas and control structures.

− I-O Status Value=98. An input-output statement is attempted on a file
whose index structure or other critical control characters are defective.
Either the file being referred to is not an indexed file at all, or it has been
damaged in some way since its last usage or creation. See the discussion of
the Indexed File Recovery Utility (recover1), in Appendix G: Utilities of
the RM/COBOL User’s Guide, for assistance in restoring a corrupted
indexed file.

− I-O Status Value=99. A DELETE, READ, or REWRITE statement is
attempted that refers to a record locked by another concurrent user. This
I-O status value is returned only when the referenced file has an associated
file status data item and there is an applicable USE procedure; when this is
not the case, the program waits for the record to become available.

Invalid Key Condition
The invalid key condition can occur as a result of the execution of a DELETE,
READ, REWRITE, START or WRITE statement. Details regarding the situations
that cause an invalid key condition are presented in the sections of Chapter 6:
Procedure Division Statements, which explain the individual input-output
statements. If an invalid key condition occurs, execution of the input-output
statement that recognized the condition is unsuccessful and the file is not affected.

If the invalid key condition exists after the execution of the input-output operations
called for by the input-output statement, the NOT INVALID KEY phrase, if
specified, is ignored and the following actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O
status value is stored into it.

2. If the INVALID KEY phrase is specified in the input-output statement, any USE
procedure associated with the file is not executed. Control is transferred to the
imperative statement specified in the INVALID KEY phrase. The imperative
statement is executed according to the rules for each statement encountered in
that imperative statement. If a procedure branching or conditional statement that
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement. If control reaches the end of the

 Indexed Organization Input-Output
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 231
 First Edition

imperative statement in the INVALID KEY phrase, control is transferred to the
end of the input-output statement.

3. If the INVALID KEY phrase is not specified in the input-output statement, but
an applicable USE procedure is specified, either explicitly or implicitly, that
procedure is performed and control is transferred to the end of the input-output
statement.

4. If the INVALID KEY phrase is not specified in the input-output statement and
no applicable USE procedure is specified, a runtime error message is produced
and execution of the run unit is terminated. The runtime can be configured, as
described for the DEFAULT-USE-PROCEDURE keyword of the COMPILER-
OPTIONS record in Chapter 10: Configuration of the RM/COBOL User’s
Guide, to assume that a default empty USE procedure is applicable, thus causing
execution to continue at the next executable statement after the input-output
statement.

If the invalid key condition does not exist after the execution of the input-output
operations called for by an input-output statement, the INVALID KEY phrase, if
specified, is ignored and the following actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O
status value is stored into it.

2. If there is an error or exception condition other than an invalid key condition and
an applicable USE procedure is specified, either explicitly or implicitly, that
procedure is performed and control is transferred to the end of the input-output
statement.

3. If there is an error or exception condition other than an invalid key condition and
no applicable USE procedure is specified, a runtime error message is produced
and execution of the run unit terminates. The runtime can be configured, as
described for the DEFAULT-USE-PROCEDURE keyword of the COMPILER-
OPTIONS record in Chapter 10: Configuration of the RM/COBOL User’s
Guide, to assume that a default empty USE procedure is applicable, thus causing
execution to continue at the next executable statement after the input-output
statement.

4. If no error or exception condition exists and a NOT INVALID KEY phrase is
present, the imperative statement in the NOT INVALID KEY phrase is executed
according to the rules for each statement encountered in that imperative
statement. If a procedure branching or conditional statement that causes
explicit transfer of control is executed, control is transferred in accordance
with the rules for that statement; otherwise, control is transferred to the end of
the input-output statement.

Indexed Organization Input-Output
Chapter 5: Procedure Division

232 RM/COBOL Language Reference Manual
 First Edition

At End Condition
The at end condition can occur as a result of the execution of a Format 1 READ
statement. Details regarding the circumstances that cause an at end condition appear
in the discussion of the Format 1 READ statement (on page 364).

When the at end condition arises, execution of the READ statement is unsuccessful
and the positioning of the file is not changed. The NOT AT END phrase and its
imperative statement, if present, are ignored, and the following actions occur:

1. If there is a file status data item associated with the file, the appropriate I-O
status value (10) is stored into it.

2. If the AT END phrase is specified in the READ statement, any USE procedure
associated with the file is not executed. Control is transferred to the imperative
statement specified in the AT END phrase. The imperative statement is
executed according to the rules for each statement encountered in that imperative
statement. If a procedure branching or conditional statement that causes explicit
transfer of control is executed, control is transferred in accordance with the rules
for that statement. If control reaches the end of the imperative statement in the
AT END phrase, control is transferred to the end of the READ statement.

3. If the AT END phrase is not specified in the READ statement, but an applicable
USE procedure is specified, either explicitly or implicitly, that procedure is
performed and control is transferred to the end of the READ statement.

4. If the AT END phrase is not specified in the READ statement and no applicable
USE procedure is specified, a runtime error message is produced and execution
of the run unit is terminated. The runtime can be configured, as described for
the DEFAULT-USE-PROCEDURE keyword of the COMPILER-OPTIONS
record in Chapter 10: Configuration of the RM/COBOL User’s Guide, to
assume that a default empty USE procedure is applicable, thus causing execution
to continue at the next executable statement after the READ statement.

If the at end condition does not arise for the execution of a Format 1 READ
statement, the AT END phrase and its associated imperative statement, if present, are
ignored, and the following actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O
status value is stored into it.

2. If there is an error or exception condition and an applicable USE procedure is
specified, either explicitly or implicitly, that procedure is performed and control
is transferred to the end of the READ statement.

3. If there is an error or exception condition and no applicable USE procedure is
specified, a runtime error message is produced and execution of the run unit
terminates. The runtime can be configured, as described for the DEFAULT-
USE-PROCEDURE keyword of the COMPILER-OPTIONS record in
Chapter 10: Configuration of the RM/COBOL User’s Guide, to assume that a
default empty USE procedure is applicable, thus causing execution to continue
at the next executable statement after the READ statement.

4. If no error or exception condition exists and a NOT AT END phrase is present,
the imperative statement in the phrase is executed according to the rules for each
statement encountered in that imperative statement. If a procedure branching or
conditional statement that causes explicit transfer of control is executed, control
is transferred in accordance with the rules for that statement; otherwise, control
is transferred to the end of the READ statement.

 File Locking
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 233
 First Edition

File Locking
In runtime environments in which more than one run unit can be running
concurrently, the possibility arises that one run unit must deny concurrent access to a
file or set of files by other run units. This is accomplished through file locking.
There are several methods provided in RM/COBOL to specify file locking.

The LOCK MODE clause in the file control entry may specify the EXCLUSIVE
phrase. The LOCK MODE IS EXCLUSIVE clause causes each OPEN statement to
open the file in exclusive mode.

The EXCLUSIVE phrase may be specified in the OPEN statement. This causes the
OPEN statement to open each file in exclusive mode.

The LOCK phrase may be specified for an individual file in the OPEN statement.
This causes the OPEN statement to open that file in exclusive mode.

When the LOCK MODE clause is not specified for a file and the OPEN statement
does not specify the EXCLUSIVE or WITH LOCK phrases, whether the OPEN
statement opens the file in exclusive or shared mode depends on the environment
supporting the file and a configurable default. (See the topic, “File Sharing,” and the
FORCE-USER-MODE configuration keyword in the RM/COBOL User’s Guide for
additional information.)

A file may be opened in the input mode as a shared or exclusive file when the same
file is open only in the shared or exclusive input mode by other run units. The
exclusive input mode prevents other run units only from concurrent updates of the
file, not from concurrent reading of the file.

When an attempt is made

• to open a file for which some other run unit has the same file open in exclusive
extend, exclusive input-output, or exclusive output mode,

• to open a file in input-output or extend mode for which some other run unit has
the same file open in exclusive input mode,

• to open a file in exclusive extend or exclusive input-output mode for which some
other run unit has the same file open in any mode, or

• to open a file in exclusive input mode for which some other run unit has the
same file open in extend, input-output or output mode

the OPEN statement is unsuccessful. The file status data item, if there is one, is set
to a value indicating this condition and any applicable USE procedure for the file is
executed.

Regardless of lock mode, a file that is open in any mode by another run unit cannot
be opened in the output mode.

In shared file environments, opening a file in exclusive mode can improve
performance of the other input-output statements executed while the file is open.
This is because exclusive mode guarantees that no other run unit will update the file
while this run unit has the file open. Therefore, physical records can be locally
buffered by the run unit when the file is open in exclusive mode, resulting in lower
operating system overhead. For files open in the input-output mode, operating
system overhead is further reduced since record locking operations are not necessary.

Record Locking
Chapter 5: Procedure Division

234 RM/COBOL Language Reference Manual
 First Edition

Record Locking
In runtime environments in which more than one user can be running concurrently,
the possibility arises that multiple users may wish to access the same file at the same
time. In these circumstances, the following sequence of events may occur: user A
reads a record from a file, modifies a field within the record, and then rewrites the
record. After user A reads the record but before it is rewritten, user B reads the same
record from the same file, modifies it and rewrites it. The final contents of the record
depend on the sequence in which these operations occur, and this is not predictable
since the two users are not coordinated.

To prevent this sort of destructive interference between concurrent users of shared
files, RM/COBOL provides record locking facilities. If the LOCK MODE clause is
not specified for a file, the default record locking mode for a file opened in a shared
input-output mode is automatic single. (See the topic, “File Sharing,” and the
FORCE-USER-MODE configuration keyword in the RM/COBOL User’s Guide for
additional information.) If the LOCK MODE clause is omitted, the default record
locking mode is as described in the RM/COBOL User’s Guide. There are four record
locking modes: automatic multiple, automatic single, manual multiple, and manual
single. For more information, see Record Locking Modes (on page 235). Record
locking occurs only when the file is open in the shared input-output mode.

Records need not be locked in order to rewrite or delete them. The runtime system
will obtain the lock in those cases where it is not already held by the run unit. The
record so locked may contain different data than expected because of the action of
other run units sharing the file. In addition, the REWRITE or DELETE statement
will be unsuccessful if another run unit has deleted that record or if the record is
locked by another run unit and the program executing the DELETE or REWRITE
statement is such that it does not wait for the record lock to be released. If the record
is successfully locked, the record lock is released upon completion of the REWRITE
or DELETE statement. It is the application programmer’s responsibility to provide
appropriate record locking when necessary for data integrity in a shared file
environment by use of the READ statement immediately prior to REWRITE or
DELETE statements.

When a run unit attempts to hold multiple record locks, either through one of the
multiple record locking modes in one file or single record locking modes in more
than one file, it is the application programmer’s responsibility to avoid deadlock
situations. A deadlock situation occurs when run unit 1 holds a lock on record A and
repeatedly attempts to lock record B while run unit 2 holds a lock on record B and
repeatedly attempts to lock record A. Each application that shares the same files
should lock records in the same order and, upon unsuccessfully locking one record in
the series, unlock all currently locked records before attempting to lock the records
again.

Programs that use record locking may specify both a file status data item and an
applicable USE procedure for each file that is possibly shared by other concurrent
run units. When this condition is met, the runtime system invokes the USE
procedure with the file status data item set to a value of 99 when a record cannot be
locked because it is currently locked by another run unit. This can occur for a
DELETE or REWRITE statement if these statements are executed without having
previously locked the record to be deleted or replaced. When the 99 status occurs,
the program can unlock (by use of the UNLOCK statement) any records already
successfully locked and then attempt to obtain the required locks again.

Programs that do not specify both a file status data item and an applicable USE
procedure for a shared file will cause the runtime system to wait for a record to be

 Record Locking
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 235
 First Edition

unlocked by another run unit before locking the record for this run unit. Such
programs should never attempt to hold multiple record locks, either in one logical file
or in two or more logical files, since the program cannot recover from potential
deadlock situations with other concurrently executing run units that share those files.

Regardless of whether both a file status data item and applicable USE procedure are
defined, if the run unit attempts to lock the same record through two different
COBOL file-names that refer to the same physical file, the input-output statement
will be unsuccessful with an I-O status value of 99.

Note The maximum number of record locks that may be held simultaneously is a
system-dependent parameter. An application should not be designed to hold a large
number of simultaneous record locks. Special care should be taken when automatic
multiple record locking applies to a file because each READ statement without the
NO LOCK phrase will obtain another record lock. When a DELETE, READ, or
REWRITE statement is executed that attempts to obtain a record lock that exceeds
the maximum number of record locks, the statement will complete unsuccessfully.

Record Locking Modes
There are two ways to obtain record locks, either automatically upon execution of a
READ statement or manually upon execution of a READ statement that specifies the
LOCK phrase.

There are two ways to release record locks, either implicitly such that only a single
record is locked by the run unit for the file or explicitly such that multiple records
may be locked by the run unit for the file.

These record locking and unlocking methods may be independently combined to
give four distinct record locking modes: automatic single, automatic multiple,
manual single and manual multiple.

Automatic Record Locking Modes

When the LOCK MODE IS AUTOMATIC clause is specified in the file control
entry or is the default applied to the file, then a record is automatically locked when a
READ statement without the NO LOCK phrase is executed successfully in the
shared input-output mode. The NO LOCK phrase may be specified in the READ
statement to suppress this automatic record locking. When automatic record locking
applies, the NO LOCK phrase should be specified in READ statements for which it
is known that the accessed record will not be updated by a REWRITE statement or
deleted by a DELETE statement.

The automatic record locking modes are automatic single and automatic multiple.

Automatic single record locking applies when the LOCK MODE IS AUTOMATIC
clause does not specify the MULTIPLE option in the LOCK ON RECORD phrase or
when the LOCK MODE clause is omitted and automatic single record locking is the
applicable default for the file. In automatic single record locking mode, at most one
record in the logical file is locked by the run unit at any one time because any input-
output statement that refers to the file causes any existing record lock to be released.

Automatic multiple record locking applies when the LOCK MODE IS
AUTOMATIC clause specifies the LOCK ON MULTIPLE RECORDS phrase or
when the LOCK MODE clause is omitted and automatic multiple record locking is
the applicable default for the file. Automatic multiple record locking allows the run
unit to hold a number of record locks in one file simultaneously. In automatic

Record Locking
Chapter 5: Procedure Division

236 RM/COBOL Language Reference Manual
 First Edition

multiple record locking mode, existing record locks are not released until a CLOSE
or UNLOCK statement that refers to the file-name is executed, except that the
successful execution of the DELETE statement causes the record lock to be released
for the deleted record.

Manual Record Locking Modes

When the LOCK MODE IS MANUAL clause is specified in the file control entry or
is the default applied to the file, then a record is manually locked when a READ
statement with the LOCK phrase is executed successfully in the shared input-output
mode. A READ statement that does not specify the LOCK phrase does not attempt
to lock the record accessed. The LOCK phrase may be omitted in a READ statement
for which it is known that the accessed record will not be updated by a REWRITE
statement or deleted by a DELETE statement.

The manual record locking modes are manual single and manual multiple.

Manual single record locking applies when the LOCK MODE IS MANUAL clause
does not specify the MULTIPLE option in the LOCK ON RECORD phrase or when
the LOCK MODE clause is omitted and manual single record locking is the
applicable default for the file. In manual single record locking mode, at most one
record in the logical file is locked by the run unit at any one time because any input-
output statement that refers to the file causes any existing record lock to be released.

Manual multiple record locking applies when the LOCK MODE IS MANUAL
clause specifies the LOCK ON MULTIPLE RECORDS phrase or when the LOCK
MODE clause is omitted and manual multiple record locking is the applicable default
for the file. Manual multiple record locking allows the run unit to hold a number of
record locks in one file simultaneously. In manual multiple record locking mode,
existing record locks are not released until a CLOSE or UNLOCK statement that
refers to the file-name is executed, except that the successful execution of the
DELETE statement causes the record lock to be released for the deleted record.

Single Record Locking Modes

Single record locking modes are specified by omission of the MULTIPLE option in
the LOCK MODE clause of the file control entry or by configuration of single record
locking as the default for files not described with the LOCK MODE clause. In single
record locking modes, locked records are implicitly released upon execution of any
input-output statement that refers to the file. Thus, at most a single record at a time
is locked by the run unit for the file. This single record lock moves from record to
record as READ statements that obtain a record lock are executed, or is released if
any other input-output statement is executed.

The single record locking modes are automatic single and manual single. Automatic
single record locking mode is described in Automatic Record Locking Modes (on
page 235). Manual single record locking mode is described in Manual Record
Locking Modes (on page 236).

 Interactive Terminal I-O
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 237
 First Edition

Multiple Record Locking Modes

Multiple record locking modes are specified by explicit inclusion of the WITH
LOCK ON MULTIPLE RECORDS phrase in the LOCK MODE clause of the file
control entry or by configuration of multiple record locking as the default for files
not described with the LOCK MODE clause. In multiple record locking modes,
locked records are released only upon execution of a CLOSE or UNLOCK statement
that refers to the file-name, except that the successful execution of the DELETE
statement causes the record lock to be released for the deleted record.

The multiple record locking modes are automatic multiple and manual multiple.
Automatic multiple record locking mode is described in Automatic Record Locking
Modes (on page 235). Manual multiple record locking mode is described in Manual
Record Locking Modes (on page 236).

Interactive Terminal I-O
RM/COBOL supports three distinct modes of transferring data to and from the
terminal in an interactive fashion with the terminal operator:

1. Standard-compliant mode. The Format 1 ACCEPT statement and the
Format 1 DISPLAY statement are used to communicate with the terminal in
the standard-compliant mode. This mode provides no means of controlling the
video and audio features available on many CRT-based terminals but it offers
the best chance of complete portability across many different implementations
of COBOL. In the standard-compliant mode of terminal communication, the
hardware device is driven in a plain line-by-line scrolling fashion, as if it were
a typewriter.

2. Field-oriented mode. The Format 3 ACCEPT statement and the Format 2
DISPLAY statement are used to communicate with the terminal in the
field-oriented mode. The field-oriented mode supports a wide variety of
language features that allow the user to control the majority of the video and
audio features available on many CRT-based terminals. It also allows the user
to place individual fields anywhere on the screen and to control completely the
appearance of the entire screen or any subregion of the screen.

3. Screen-oriented mode. The Format 5 ACCEPT statement and the Format 3
DISPLAY statement are used in conjunction with the Screen Section of the
Data Division to communicate with the terminal in the screen-oriented mode.
This mode provides much the same control over CRT features as does the
field-oriented mode. The primary difference between the two is that in the
field-oriented mode the added language elements that control CRT features are
in the individual ACCEPT or DISPLAY statements, whereas in the screen-
oriented mode they are collected together in the Screen Section of the Data
Division.

Both the field-oriented and the screen-oriented modes of terminal control are
nonstandard extensions to the COBOL language.

The three modes of communicating with the terminal are not intended to be
intermixed within a given run unit. The interaction between the three modes is
undefined, and intermixing elements from the three modes leads to results that are
unpredictable and probably divergent across various implementations of
RM/COBOL. A run unit should be planned with one of the modes in mind, and
elements of the other modes should be avoided within that run unit.

Sort-Merge
Chapter 5: Procedure Division

238 RM/COBOL Language Reference Manual
 First Edition

Sort-Merge
The sort-merge feature provides the capability to order one or more files of records,
or to combine two or more identically ordered files of records, according to a set of
user-specified keys contained within each record. Optionally, a user may apply some
special processing to each of the individual records by input or output procedures.
This special processing may be applied before, after, or both before and after the
records are ordered by the SORT, or after the records have been combined by the
MERGE.

Sort-merge provides the facility for sorting one or more files, or combining two or
more files, one or more times within a given execution of a program.

The files listed in the USING and GIVING phrases of the SORT and MERGE
statements may be of any organization.

No input-output statement may be executed for the file named in the sort-merge file
description.

Communication Facility
The communication facility provides the ability to access, process, and create
messages or portions thereof. It provides the ability to communicate through a
Message Control System (MCS) with local and remote communication devices.

Message Control System
The implementation of the communication facility requires that an MCS be present
in the operating environment of the object program.

The MCS is the logical interface to the operating system under which the object
program operates. The primary functions of the MCS are the following:

• To act as an interface between the object program and the network of
communication devices, in much the same manner as an operating system acts as
an interface between the object program and such devices as card readers,
magnetic tapes, mass storage devices and printers.

• To perform line discipline, including such tasks as dial-up, polling and
synchronization.

• To perform device-dependent tasks, such as character translations and insertion
of control characters, so that the user can create device-independent programs.

The first function, that of interfacing the object program with the communication
devices, is the most obvious to the user. In fact, the user may be unaware that the
other two functions exist. Messages from communication devices are placed in input
queues by the MCS while awaiting disposition by the object program. Output
messages from the object program are placed in output queues by the MCS while
awaiting transmission to communication devices. The structures, formats, and
symbolic names of the queues are defined by the user to the MCS at some time prior
to the execution of the object program. Symbolic names for message sources and
destinations are also defined at that time. The user must specify, in the program,
symbolic names that are known to the MCS.

 Communication Facility
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 239
 First Edition

During the execution of an object program, the MCS performs all necessary actions
to update the various queues as required.

Object Program
The object program interfaces with the MCS when it is necessary to send data,
receive data, or to interrogate the status of the various queues that are created and
maintained by the MCS. In addition, the object program may direct the MCS to
establish or break the logical connection between the communication device and a
specified portion of the MCS queue structure. The method of handling the physical
connection is a function of the MCS.

Relationship of the Object Program to the Message
Control System and Communication Devices
The interfaces that exist in a communication environment are established by the use
of a CD and associated clauses in the Communication Section of the Data Division.
There are two such interfaces:

1. The interface between the object program and the MCS.

2. The interface between the MCS and the communication devices.

The source program uses four statements to control the interface with the MCS:

1. The RECEIVE statement, which causes data in a queue to be passed to the
object program

2. The SEND statement, which causes data associated with the object program to
be passed to one or more queues

3. The ACCEPT statement with the MESSAGE COUNT phrase, which causes the
MCS to indicate to the object program the number of complete messages in the
specified queue structure

4. The PURGE statement, which causes the MCS to eliminate a partial message
which has been released by one or more SEND statements

The source program uses two statements to control the interface between the MCS
and communication devices:

1. The ENABLE statement, which establishes a logical connection between the
MCS and one or more communication devices

2. The DISABLE statement, which breaks a logical connection between the MCS
and one or more communication devices

Invoking the Object Program
There are two methods of invoking an object program that makes use of the
communication facility:

1. Scheduled initiation

2. MCS invocation

The only operating difference between the two methods is that MCS invocation
causes the areas referenced by the symbolic queue and subqueue names in the
specified CD to be filled.

Communication Facility
Chapter 5: Procedure Division

240 RM/COBOL Language Reference Manual
 First Edition

Scheduled Initiation of the Object Program
An object program using the communication facility may be scheduled for execution
through the normal means available in the operating environment of the program,
such as job control language. In that case, the program can use three methods to
determine what messages, if any, are available in the input queues:

1. ACCEPT statement with the MESSAGE COUNT phrase

2. RECEIVE statement with a NO DATA phrase

3. RECEIVE statement without a NO DATA phrase (in which case a program wait
is implied if no data is available)

Invocation of the Object Program by the Message
Control System
It is sometimes desirable to schedule an object communication program only when
there is work available for it to do. Such scheduling occurs if the MCS determines
what object program is required to process the available message and subsequently
causes that program to be scheduled for execution. Each object program scheduled
by the MCS establishes a run unit. Prior to the execution of the object program, the
MCS places the symbolic queue and subqueue names in the associated data items of
the communication description entry that specifies the FOR INITIAL INPUT clause,
or the MCS places the symbolic terminal name in the associated data item of the
communication description entry that specifies the FOR INITIAL I-O clause.

A subsequent RECEIVE statement directed to that CD will result in the available
message being passed to the object program.

Determining the Method of Scheduling
A source program can be written so that its object program can operate with either of
the two modes of scheduling. The following technique may be used to determine
which method was used to load the object program:

• One CD must contain a FOR INITIAL INPUT clause or a FOR INITIAL I-O
clause.

• When the program contains a CD with the FOR INITIAL INPUT clause, the
Procedure Division may contain statements to test the initial value of the
symbolic queue name in that CD. If it is space filled, the object program was
activated by the normal runtime invocation process. If it is not space filled, the
MCS has invoked the object program and initialized the data item with the
symbolic name of the queue containing the messages to be processed.

• When the program contains a CD with the FOR INITIAL I-O clause, the
Procedure Division may contain statements to test the initial value of the
symbolic terminal name in that CD. If it is space filled, the object program was
activated by the normal runtime invocation process. If it is not space filled, the
MCS has invoked the object program and initialized the data item with the
symbolic name of the communication terminal that is the source of the message
to be processed.

 Communication Facility
Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 241
 First Edition

Concept of Messages and Message Segments
A message consists of an arbitrary amount of information, usually character data,
whose beginning and end are defined or implied. As such, messages comprise the
fundamental but not necessarily the most elementary unit of data to be processed in a
communication environment.

Messages may be logically subdivided into smaller units of data called message
segments, which are delimited within a message by means of end of segment
indicators (ESI). A message consisting of one or more segments is delimited from
the next message by means of an end of message indicator (EMI). In a similar
manner, a group of several messages may be logically separated from succeeding
messages by means of an end of group indicator (EGI). When a message or message
segment is received by the program, a communication description interface area is
updated by the MCS to indicate which, if any, delimiter was associated with the text
transferred during the execution of that RECEIVE statement. On output the
delimiter, if any, to be associated with the text released to the MCS during the
execution of a SEND statement is specified or referenced in the SEND statement.
Thus, the presence of these logical indicators is recognized and specified both by the
MCS and by the object program; however, no indicators are included in the message
text processed by programs.

A precedence relationship exists between the indicators EGI, EMI and ESI. EGI is
the most inclusive indicator and ESI is the least inclusive indicator. The existence of
an indicator associated with message text implies the association of all less inclusive
indicators with that text. For example, the existence of the EGI implies the existence
of EMI and ESI.

Concept of Queues
The following discussion applies only when the communication environment is
established using a CD without the FOR I-O clause.

Queues consist of one or more messages from or to one or more communication
devices. They form the data buffers between the object program and the MCS. Input
queues are logically separate from output queues.

The MCS logically places in queues or removes from queues only complete
messages. Portions of messages are not logically placed in queues until the entire
message is available to the MCS. That is, the MCS does not pass a message segment
to an object program until all segments of that message are in the input queue, even
though the source program uses the SEGMENT phrase of the RECEIVE statement.
For output messages, the MCS does not transmit any segment of a message until all
of its segments are in the output queue. The number of messages that exist in a given
queue reflects only the number of complete messages that exist in the queue.

The process by which messages are placed into a queue is called enqueueing. The
process by which messages are removed from a queue is called dequeueing.

Independent Enqueueing and Dequeueing
It is possible that a message may be received by the MCS from a communication
device prior to the execution of the object program. In this case, the MCS enqueues
the message in the proper input queue until the object program requests dequeueing
with the RECEIVE statement. It is also possible that an object program will cause
the enqueueing of messages in an output queue, which are not transmitted to a

Communication Facility
Chapter 5: Procedure Division

242 RM/COBOL Language Reference Manual
 First Edition

communication device until after the object program has terminated. Two common
reasons for such occurrences are as follows:

1. The output queue is disabled.

2. The object program creates output messages at a speed faster than the
destination can receive them.

Enabling and Disabling Queues
Usually, the MCS enables and disables queues based on circumstances not
necessarily related to the program, such as time of day or message activity.
However, the program has the ability to enable and disable queues itself by using the
ENABLE and DISABLE statements.

A key is required in both statements in order to prevent indiscriminate use of the
facility by a user who is not aware of the total network environment, and who may,
therefore, disrupt system functions by the untimely issuance of ENABLE and
DISABLE statements. However, this action never interrupts a transmission.

Queue Hierarchy
In order to control more explicitly the messages being enqueued and dequeued, it is
possible to define in the MCS a hierarchy of input queues, that is, queues comprising
queues. Four levels of queues are available. In order of decreasing significance, the
queue levels are named queue, sub-queue-1, sub-queue-2 and sub-queue-3.

 ACCEPT . . . FROM Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 243
 First Edition

Chapter 6: Procedure Division
Statements

This chapter presents detailed information on the syntax and meaning of each
Procedure Division statement. Each Procedure Division statement within a series of
statements may be connected to the next by the optional word THEN.

{ }








t-1l-statemenconditiona
-2-statementimperative-1-statementimperative LTHEN

ACCEPT . . . FROM Statement
The ACCEPT . . . FROM statement causes low volume data to be made available to
the specified data item.

Format 1: Accept From System-Name

[]ACCEPT-ENDFROMACCEPT 
















1-I-O-name-low-volume
ame-3mnemonic-n-1identifier

Data is transferred from the standard input device into the data item referred to by
identifier-1. The FROM phrase may affect which input device is used. If
mnemonic-name-3 is used in the FROM phrase, it must have been defined in the
SPECIAL-NAMES paragraph of the Environment Division with the
low-volume-I-O-name-1 IS mnemonic-name-3 clause. The associated
low-volume-I-O-name-1 must be CONSOLE or SYSIN.

Note If identifier-1 is numeric or justified right and the FROM phrase is not
specified, the Format 1 ACCEPT statement is treated as if it were a Format 3
ACCEPT statement with the CONVERT phrase. A compiler option suppresses this
modification. For details, see the discussion of the Compile Command in Chapter 6:
Compiling in the RM/COBOL-85 User’s Guide.

If the size of the receiving data item—or the portion of the receiving data item not
yet occupied by transferred data—exceeds the size of the transferred data, the
transferred data is stored aligned to the left in the receiving data item (or that portion
not yet occupied), and additional data is accepted from the keyboard.

ACCEPT . . . FROM Statement
Chapter 6: Procedure Division Statements

244 RM/COBOL Language Reference Manual
 First Edition

If the size of the transferred data exceeds the size of the receiving data item—or the
portion of the receiving data item not yet occupied by transferred data—only the
leftmost characters of the transferred data are stored in the receiving data item (or the
remaining portion). The remaining characters of the data that do not fit into the
receiving data item are discarded.

ACCEPT . . . FROM CONSOLE is treated as if CONSOLE IS CONSOLE was
specified in the SPECIAL-NAMES paragraph if CONSOLE has not been otherwise
defined.

ACCEPT . . . FROM SYSIN is treated as if SYSIN IS SYSIN was specified in the
SPECIAL-NAMES paragraph if SYSIN has not been otherwise defined.

Format 2: Accept From Implicit Definition

[]

[] []ACCEPT-END

TIME
STATUSEXCEPTION

KEYESCAPE
WEEK-OF-DAY

TIME-AND-DAY
YYYYDDDDAY
COMPILED-DATE

TIME-AND-DATE
YYYYMMDDDATE

DAY-CENTURY
DATE-CENTURY

FROMACCEPT













































-2identifier

For any single Format 2 ACCEPT statement execution, the runtime ensures the
consistency of the data returned for cases when the result might be affected by a
boundary condition. For example, the runtime guarantees for the DATE-AND-TIME
option that the time and date agree when the time is just before or just after midnight.
On the other hand, when the DATE and TIME options are used in separate ACCEPT
statements near midnight, the program will obtain an inconsistent set of values that is
nearly 24 hours off when considered as a pair if midnight occurs between the two
ACCEPT statements.

The information requested is transferred according to the rules of the MOVE
statement (on page 338). CENTURY-DATE, CENTURY-DAY, DATE, DATE-
AND-TIME, DATE-COMPILED, DAY, DAY-AND-TIME, DAY-OF-WEEK,
ESCAPE KEY, EXCEPTION STATUS, and TIME are implicitly defined data items
and, therefore, are not described in the program.

CENTURY-DATE is made up of the data elements year, month, and day. The
sequence is YYYYMMDD; thus, a current date of July 1, 2003 would be expressed
as 20030701. CENTURY-DATE, when accessed by a program, behaves as if it had
been described as an unsigned elementary numeric integer data item eight digits in
length.

CENTURY-DAY is made up of the data elements year and day. The sequence is
YYYYDDD; thus, a current date of July 1, 2003 would be expressed as 2003182.
CENTURY-DAY, when accessed by a program, behaves as if it had been described
as an unsigned elementary numeric integer data item seven digits in length.

DATE without the YYYYMMDD phrase is made up of the data elements year,
month, and day. The sequence is YYMMDD; July 1, 1988 would be expressed as

 ACCEPT . . . FROM Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 245
 First Edition

880701. DATE, when accessed by a program, behaves as if it had been described as
an unsigned elementary numeric integer data item six digits in length.

DATE with the YYYYMMDD phrase is made up of the same data elements and
behaves in the same manner as described for CENTURY-DATE.

DATE-AND-TIME is made up of the data elements year, month, day, hours,
minutes, seconds, and hundredths of seconds. The sequence is
YYYYMMDDHHMMSShh; thus, a current date and time of July 1, 2003 at 2:41
p.m. would be expressed as 2003070114410000. DATE-AND-TIME, when
accessed by a program, behaves as if it had been described as an unsigned
elementary numeric integer data item sixteen digits in length.

DATE-COMPILED is made up of the data elements year, month, and day for the
date the program compilation started (that is, it is a constant for any particular
compilation). The sequence is YYYYMMDD; thus, if the program were compiled
on July 1, 2003, this would be expressed as 20030701. DATE-COMPILED, when
accessed by a program, behaves as if it had been described as an unsigned
elementary numeric integer data item eight digits in length.

DAY without the YYYYDDD phrase is made up of the data elements year and day.
The sequence is YYDDD; July 1, 1988 would be expressed as 88182. DAY, when
accessed by a program, behaves as if it had been described as an unsigned
elementary numeric integer data item five digits in length.

DAY with the YYYYDDD phrase is made up of the same data elements and behaves
in the same manner as described for CENTURY-DAY.

DAY-AND-TIME is made up of the data elements year, day, hours, minutes,
seconds, and hundredths of seconds. The sequence is YYYYDDDHHMMSShh;
thus, a current date and time of July 1, 2003 at 2:41 p.m. would be expressed as
200318214410000. DAY-AND-TIME, when accessed by a program, behaves as if it
had been described as an unsigned elementary numeric integer data item fifteen
digits in length.

DAY-OF-WEEK is composed of a single data element whose contents represent the
day of the week. DAY-OF-WEEK behaves as if it had been defined in the Data
Division as an unsigned elementary numeric integer data item one digit in length.
The value 1 represents Monday, 2 represents Tuesday, . . ., 7 represents Sunday.

ESCAPE KEY provides access to an encoded value that designates the terminator
key that terminated the most recent ACCEPT operation. ESCAPE KEY behaves as
if defined in the Data Division as an unsigned, two-digit, numeric integer data item.
The value of specific keys is determined by the runtime configuration (see the
RM/COBOL User’s Guide.) The default values for these keys are shown in Table 27
on page 255.

EXCEPTION STATUS provides access to an encoded value that identifies the type
of exception condition that occurred during the preceding pop-up window operation
or CALL PROGRAM statement execution. EXCEPTION STATUS behaves as if it
had been described as an unsigned elementary numeric integer data item three digits
in length. For a pop-up window operation, the possible values and their meanings
are described in the “Pop-Up Window Error Codes” table in Chapter 8: RM/COBOL
Features of the RM/COBOL User’s Guide. For a CALL PROGRAM statement
execution, the possible values and their meanings are shown here in Table 25.

ACCEPT . . . FROM Statement
Chapter 6: Procedure Division Statements

246 RM/COBOL Language Reference Manual
 First Edition

Table 25: EXCEPTION STATUS Values

Value Meaning

000 Called program completed with no exception.

030 Hardware error.

199 CALL PROGRAM failed.

200 Called program exceeds size limitation.

201 Revision incompatibility in called program.

202 Called program is not a legal COBOL program file.

203 Called program not found.

207 Linkage error.

208 Linkage data too big for available memory.

TIME is made up of the data elements hours, minutes, seconds, and hundredths of a
second. TIME is based on elapsed time after midnight on a 24-hour clock basis. The
sequence is HHMMSShh; thus, 2:41 p.m. would be expressed 14410000. TIME,
when accessed by a program, behaves as if it had been described as an unsigned
elementary numeric integer data item eight digits in length. The minimum value of
TIME is 00000000; the maximum value is 23595999.

ACCEPT . . . FROM Statement Examples

. OM CONSOLEXT-ITEM FR ACCEPT NE

 -terminal.FROM input-response ntinuation ACCEPT co

Y. UE FROM DAAR-DAY-VAL ACCEPT YE

 ROM TIME. ME-VALUE F ACCEPT TI

AY. CENTURY-DVALUE FROMNTURY-DAY- ACCEPT CE

D-TIME. OM DATE-ANE-VALUE FRTE-AND-TIM ACCEPT DA

LED. DATE-COMPIDATE FROM MPILATION- ACCEPT CO

 ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 247
 First Edition

ACCEPT Statement (Terminal I-O)
The terminal I-O ACCEPT statement causes low volume data to be accepted from
the terminal keyboard and transferred to the specified data item. ACCEPT statement
phrases allow the specification of position, form, and format of the accepted data.

Format 3: Accept Terminal I-O

[]

[]ACCEPT-END
ESCAPE
EXCEPTION

ONNOT

SENTENCENEXTESCAPE
EXCEPTION

ON

UPDATE

TIMEBEFORE

TAB

SIZE

VIDEO-REVERSE
REVERSED
REVERSE

ISCHARACTER
ISCHARACTER

PROMPT

BLOCKISMODE

POSITION
COL
COLUMN

LINE

AT

OFF
SECURE
LOWLIGHT
LOW
HIGHLIGHT
HIGH

EOS
EOL

ERASE

ECHO

CURSOR

CONVERT

CONTROL

BLINK
BELL
BEEP

NO

SKIP-AUTO
AUTO

WITHUNITACCEPT









































































































































































































































































































































































































































































-2-statementimperative

-1-statementimperative
-9identifier

literal-8
-8identifier

literal-7
-7identifier

literal-6
-10identifier

literal-2
-3identifier

literal-5
-6identifier

literal-4
-5identifier

literal-3
-4identifier

literal-1
-2identifier

-1identifier L

ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

248 RM/COBOL Language Reference Manual
 First Edition

The Format 3 ACCEPT statement causes the transfer of data from the terminal
keyboard. The data replaces the contents of the data item named by identifier-1. The
receiving data item may have any usage except INDEX or POINTER.

identifier-2 (UNIT), identifier-3 (POSITION), identifier-5 (CURSOR), identifier-6
(LINE), identifier-7 (SIZE), identifier-8 (TIME), and identifier-9 (EXCEPTION)
must be described as integer numeric data items. literal-1 (UNIT), literal-2
(POSITION), literal-4 (CURSOR), literal-5 (LINE), literal-7 (SIZE), and literal-8
(TIME) must be nonnegative integer numeric literals.

identifier-4 (CONTROL) must be a nonnumeric data item. literal-3 (CONTROL)
must be a nonnumeric literal.

identifier-10 (PROMPT) must refer to a nonnumeric data item one character in
length. literal-6 (PROMPT) must be a nonnumeric literal one character in length.

It is worthwhile to define several terms used to describe the detailed function of
each phrase:

• The term “input field” describes a conceptual data item containing the data
transmitted from the terminal as displayed on the screen. The size of this data
item is determined according to rules outlined in the discussion of the SIZE
phrase that begins on page 258, and the type of the data item is alphanumeric.

• The term “receiving item” is synonymous with the data item identifier-1.

• The term “screen field” applies to the physical field presented on the screen
itself.

• The term “field termination” is the means by which the terminal operator
indicates the conclusion of data input for an input field; “field termination key”
describes a character or character sequence which is interpreted, not as data to be
included in the input field, but as field termination. More than one field
termination key exists; such keys are differentiated by means of “field
termination key codes.”

Table 26 shows the relationship of the various Format 3 ACCEPT statement phrases
to the characteristics of the input field and screen field subject to control by the
program.

Note that the CONTROL phrase may be used in many instances to allow dynamic
(that is, runtime as opposed to compile time) specification of characteristics.

Features that require support of the host operating system or terminal hardware may
not be supported in all circumstances. Unsupported features will compile correctly,
but will be ignored at runtime. See the RM/COBOL User’s Guide for specific
details. Also note that some phrases may require that character positions on the
screen between fields be reserved for attribute characters (typically, to support the
HIGH, LOW, OFF, BLINK, REVERSE, ERASE EOL and ERASE EOS phrases).
Take care to allow for attribute characters by not juxtaposing fields that may
require them.

 ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 249
 First Edition

Table 26: ACCEPT Statement Phrases and Output and Screen Fields

Characteristic Phrases

Screen field position LINE, POSITION, ERASE, SIZE, UNIT, CONTROL

Screen field size identifier-1, UPDATE, SIZE, CONTROL

Position within field CURSOR

Visual attributes ERASE, HIGH/LOW/OFF, BLINK, REVERSE, CONTROL

Audio attribute NO BEEP, CONTROL

Default value display UPDATE, CONTROL

Prompt character fill PROMPT, CONTROL

Input conversion UPDATE, CONVERT, CONTROL, identifier-1, compiler
option

Verification display ECHO, UPDATE, CONVERT, CONTROL

Field termination ON EXCEPTION, TAB, CONTROL

When an ACCEPT statement contains more than one receiving operand (identifier-1),
the values are transferred in the sequence in which the operands are encountered.
ACCEPT phrases apply to the previously specified identifier-1 only. A subsequent
identifier-1 in the same ACCEPT statement is treated as if no previous phrases had
been specified (but see the discussion of the POSITION phrase that begins on
page 256).

An ACCEPT statement may contain no more than one ON EXCEPTION phrase, and
if present it must be associated with the last (or only) identifier-1.

AUTO Phrase







SKIP-AUTO
AUTO

AUTO-SKIP is a synonym for AUTO. The AUTO phrase describes the normal
behavior of RM/COBOL, where a field is automatically accepted when the last
character of the field is entered, without waiting for a field termination key to be
pressed. The phrase is allowed for compatibility with other dialects of COBOL. In
RM/COBOL, the TAB phrase must be specified to suppress the automatic
acceptance of a field when the last character is entered.

NO BEEP Phrase









BELL
BEEPNO

BELL is a synonym for BEEP.

The presence of the NO BEEP phrase in an ACCEPT statement causes suppression
of the audio alarm signal.

If the NO BEEP phrase is omitted, an audio alarm signal occurs.

ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

250 RM/COBOL Language Reference Manual
 First Edition

BLINK Phrase

BLINK

The presence of the BLINK phrase causes the PROMPT fill character and any
displayed data to be displayed in a blinking mode.

If the BLINK phrase is not specified, the data is displayed in a nonblinking mode.

CONTROL Phrase









literal-3
-4identifierCONTROL

The value of identifier-4 or literal-3 in the CONTROL phrase is used to specify a
dynamic option list. The value must be a character-string consisting of a series of
keywords delimited by commas; some keywords allow assignment of a value by
following the keyword with an equal sign and the value. Blanks are ignored in the
character-string. Lowercase letters are treated as uppercase letters within keywords.
Keywords specified override corresponding static options specified as phrases for the
same identifier-1. Keywords may be specified in any order. Keywords, which
specify options that do not apply to the statement, are ignored.

The keywords that affect an ACCEPT statement are BEEP, BLINK, CONVERT,
ECHO, ERASE, ERASE EOL, ERASE EOS, HIGH, LOW, NO BEEP, NO BLINK,
NO CONVERT, NO ECHO, NO ERASE, NO PROMPT, NO REVERSE, NO TAB,
NO UNDERLINE, NO UPDATE, OFF, PROMPT, REVERSE, TAB,
UNDERLINE, UPDATE and UPPER. The meanings of these keywords when they
appear in the value of the CONTROL phrase operand are the same as the
corresponding phrases which may be written as static options of the ACCEPT
statement, with the addition of the negative forms to allow suppression of statically
declared options. The keywords UNDERLINE and UPPER are not available as
static options of the ACCEPT statement. When specified, UPPER causes all
lowercase alphabetic characters contained in the screen field to be changed to
uppercase alphabetic characters before input data conversion and storing in the
receiving field. When specified, UNDERLINE causes the field on the screen to be
shown in underlined mode, provided the terminal supports that mode. Additional
keywords may be supported in environments that have device dependent functions
(for example, color control); see the RM/COBOL User’s Guide for specifics.

The keywords are grouped by function such that only the rightmost appearance in the
control value of a keyword from a functional group actually affects the screen field.
The functional groupings are as follows:

• Erasure: ERASE, ERASE EOL, ERASE EOS, NO ERASE

• Alarm: BEEP, NO BEEP

• Intensity: HIGH, LOW, OFF

• Blinking: BLINK, NO BLINK

• Video: REVERSE, NO REVERSE

• Termination: TAB, NO TAB

• Prompting: PROMPT, NO PROMPT

 ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 251
 First Edition

• Input data conversion: CONVERT, NO CONVERT

• Output data conversion: UPDATE, NO UPDATE

• Verification: ECHO, NO ECHO

• Input data editing: UPPER

• Underscoring: UNDERLINE, NO UNDERLINE

• Password entry protection: SECURE, NO SECURE

Note that if the keyword UPDATE is specified, input data conversion is implied;
unless identifier-1 is numeric edited, the keywords CONVERT and NO CONVERT
are ignored. In the cases when identifier-1 is numeric and UPDATE is not specified,
NO CONVERT may be used to suppress implicit or explicit input conversion.

CONVERT Phrase

CONVERT

If identifier-1 is numeric, the CONVERT phrase causes input conversion of the input
field to a signed numeric value that is then stored in identifier-1. The CONVERT
phrase is implied when identifier-1 is numeric, unless specifically overridden by the
NO CONVERT keyword in identifier-7 or literal-7 of the CONTROL phrase, or by
the use of the compiler option to suppress implied input conversion (see the
RM/COBOL User’s Guide for details).

Numeric input conversion is accomplished by a scan of the input field according to
the following rules:

1. Set the sign according to the rightmost sign present in the input data, or positive
if no minus sign is present in the input data. The characters CR or DB occurring
after all digits in the input field are treated as a minus sign.

2. Set the implied decimal point according to the rightmost period given in the
input. If no period is present, the numeric value is an integer. If the DECIMAL-
POINT IS COMMA clause was specified in the source program, a comma
replaces the period in determining the implied decimal point.

3. Delete all nonnumeric characters from the input field.

See the discussion of the ON EXCEPTION phrase that begins on page 253 for more
rules which, if violated, cause an error code to be stored in identifier-8 and an
exception condition to exist. A value will be stored in identifier-1, however,
according to the rules listed above without regard to the presence of an exception
condition.

The CONVERT phrase is implied by the UPDATE phrase when identifier-1 is
numeric, but the CONVERT and UPDATE phrases may both be specified without
error.

The use of input conversion is strongly recommended for numeric receiving items
unless the program needs a different conversion algorithm and performs its own
input validation.

If identifier-1 is numeric and input conversion is not specified (either explicitly or
implicitly), identifier-1 is treated as an elementary alphanumeric data item whose
size is equal to the number of data storage positions occupied by identifier-1. The

ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

252 RM/COBOL Language Reference Manual
 First Edition

data from the unconverted input field is moved to identifier-1 according to the rules
for an alphanumeric move. The use of identifier-1, whose value has been set in this
manner, in an arithmetic operation, will have unpredictable results.

If identifier-1 is numeric edited and the CONVERT phrase is specified, the input
field is converted to a signed numeric value as described above and that value is then
stored in identifier-1 with editing according to the PICTURE character-string for
identifier-1.

If identifier-1 is justified right alphanumeric and the CONVERT phrase is specified,
the data from the input field is moved to identifier-1 according to the move rules for
a justified right receiving data item.

If identifier-1 is alphanumeric edited and the CONVERT phrase is specified, those
characters in the input field which correspond in position (from the left) to the
PICTURE symbols A, X or 9 are moved to their respective positions in identifier-1.
Spaces will be moved to those positions in identifier-1 that are represented by the
PICTURE symbols A, X or 9 but which have no corresponding positions in the input
field. The insertion characters 0, space and / will be stored in identifier-1 character
positions represented by PICTURE symbols 0, B and /, respectively.

If identifier-1 is any other type, or if the CONVERT phrase is not specified, the data
from the input field is moved to identifier-1 according to the rules for an
alphanumeric move.

CURSOR Phrase









literal-4
-5identifierCURSOR

The value of identifier-5 or literal-4 in the CURSOR phrase specifies the initial
cursor offset within the screen field from which the data is to be accepted. When
identifier-5 is specified, the cursor offset at field termination is also returned to the
program in identifier-5.

An offset of 1 represents the leftmost character position of the screen field. A value
of zero is treated as 1; a value greater than the size of the screen field is treated as
equal to the size of the screen field.

Note When the CURSOR clause is specified in the SPECIAL-NAMES paragraph, it
has no effect on this format of the ACCEPT statement. The CURSOR phrase must
be used in this format of the ACCEPT statement to position the cursor to other than
the beginning of the field. The CURSOR clause in the SPECIAL-NAMES
paragraph is used in format 5, ACCEPT screen-name, ACCEPT statements. This
contrasts with the CRT STATUS clause in the SPECIAL-NAMES paragraph, which
is used with both this format and the format 5 ACCEPT screen-name statement.

 ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 253
 First Edition

ECHO Phrase

ECHO

The presence of the ECHO phrase in an ACCEPT statement causes the contents of
identifier-1 to be displayed in the screen field following data input. The display of
the data is done as if a DISPLAY statement with similar options were executed.
Note, however, that the CONVERT phrase in an ACCEPT statement controls only
input conversion: output conversion is controlled by the UPDATE phrase.

If identifier-1 is numeric and input conversion was specified either explicitly or
implicitly, the display of the data uses output conversion.

When the ECHO phrase is not specified, the original input data remains in the
screen field.

ERASE Phrase







EOS
EOLERASE

The presence of the ERASE phrase without either of the reserved words EOL or EOS
causes the entire screen of the terminal to be erased. The current line and current
position are set to 1.

The presence of the ERASE EOL phrase causes the portion of the line containing the
leftmost character of the screen field to be erased from the leftmost character of the
screen field to the rightmost character of that line.

The presence of the ERASE EOS phrase causes the portion of the screen to be erased
from the leftmost character of the screen field to the rightmost character of the
bottom line of the screen.

In all three cases above, erasure occurs before any data is displayed in or accepted
from the screen field.

When no ERASE phrase is specified, no erasure occurs before accepting the data.

ON EXCEPTION and NOT ON EXCEPTION Phrases

[]


































-2-statementimperative

-1-statementimperative-9identifier

ESCAPE
EXCEPTIONONNOT

SENTENCENEXTESCAPE
EXCEPTIONON

ESCAPE is a synonym for EXCEPTION.

The presence of the ON EXCEPTION phrase allows field termination characteristics
and conversion errors to be reported. Regardless of the presence or absence of the
ON EXCEPTION phrase, if the CRT STATUS clause is specified in the SPECIAL-
NAMES paragraph of the Environment Division, the field termination code will be
stored in the data item referenced by that clause.

ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

254 RM/COBOL Language Reference Manual
 First Edition

At field termination, a field termination code is stored in identifier-9. This code is
normally the code associated with a field termination key. However, if the TAB
phrase is not specified for the same identifier-1, the field may also be terminated by
typing a data character (in other words, not a field termination key) in the rightmost
character position of the screen field; this method of field termination results in a
value of zero being stored in identifier-9. If identifier-9 is omitted, the value of the
termination code may be obtained with a Format 2 ACCEPT statement that specifies
the ESCAPE KEY option or from the data item referenced by the CURSOR clause if
that clause is specified in the SPECIAL-NAMES paragraph.

If input data conversion has been specified (see the discussions of the CONVERT
phrase on page 251 and the UPDATE phrase on page 260) and the conversion
process detects a violation of the following rules, the value 98 is stored in
identifier-9, overriding the field termination key code.

If identifier-1 is numeric or numeric edited, the following rules are checked:

1. At most one decimal point (period, or comma if DECIMAL-POINT IS
COMMA) is allowed.

2. At most one operational sign (+ or – either leading or trailing, or DB or CR as
the rightmost nonblank characters of the input field) is allowed.

3. Leading asterisks are allowed, but asterisks may not follow any digits (0
through 9).

4. All characters must be in the set digits (0 through 9), space, period, comma,
dollar sign, currency symbol, stroke (/), and plus and minus. In addition, the
characters C, R, D, B, and asterisk are allowed as stipulated in rules 2 and 3.

5. The resulting value of the conversion must not cause a size error condition when
stored in identifier-1.

Note that input data conversion will store a value in identifier-1 even if one of these
rules is violated; see the discussion of the CONVERT phrase that begins on page 251
for more details.

If identifier-1 is alphanumeric edited, an input data conversion error occurs when an
input field character in a position corresponding to the PICTURE symbol 0, B, or /
(in the PICTURE character-string describing identifier-1) exists but is not equal to 0,
blank or /, respectively.

When the value of identifier-9 is nonzero, imperative-statement-1 may be executed.
imperative-statement-1 will be executed when identifier-9 has the value 98 (input
data conversion rule violation) or the value 99 (input timed out). For other values of
identifier-9, the execution of imperative-statement-1 depends on the field termination
key; see the RM/COBOL User’s Guide.

See Table 27 for field termination keys and the corresponding field termination codes
placed in identifier-9.

 ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 255
 First Edition

Table 27: Generic Key Names

Generic Key Name 1 Code Generic Key Name 1 Code

Return 13 Function 18 18

Function 1 01 Function 19 19

Function 2 02 Function 20 20

Function 3 03 Command 40

Function 4 04 Attention 41

Function 5 05 Print 49

Function 6 06 Up Arrow 52

Function 7 07 Down Arrow 53

Function 8 08 Home 54

Function 9 09 New Line 55

Function 10 10 Tab Left 56

Function 11 11 Erase Right 57

Function 12 12 Tab Right 58

Function 13 13 Insert Line 59

Function 14 14 Delete Line 61

Function 15 15 Send 64

Function 16 16 Help 83

Function 17 17 Redo 84
1 The actual key names for a specific terminal that correspond to the generic key names

given above are documented in the RM/COBOL User’s Guide.

HIGH, LOW and OFF Phrases



























OFF
SECURE
LOWLIGHT
LOW
HIGHLIGHT
HIGH

HIGHLIGHT is a synonym for HIGH. LOWLIGHT is a synonym for LOW.

The presence of the HIGH or LOW phrase causes the PROMPT fill character and the
accepted data (if UPDATE, ECHO or both are specified) to be displayed at the
specified intensity.

The presence of the OFF phrase causes data to be input from the terminal keyboard
but not displayed in the screen field. Space characters are displayed in the screen
field in lieu of data characters.

When none of the phrases HIGH, LOW or OFF is specified, the default intensity
is HIGH.

The SECURE phrase causes asterisks to be displayed in the field instead of the actual
characters accepted. However, if the object version is restricted to less than 12, the
SECURE phrase is treated as a synonym for OFF.

ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

256 RM/COBOL Language Reference Manual
 First Edition

LINE and POSITION Phrases



























































literal-2
-3identifier

literal-5
-6identifier

NUMBER
POSITION
COL
COLUMN

NUMBERLINE

AT

COLUMN and COL are synonyms for POSITION.

The screen field is positioned on the terminal screen by specifying the line and
position (that is, the character position within the line) of the leftmost character of
the screen field. The top line of the terminal screen is line 1, the line below line 1 is
line 2, and so forth. The rightmost character position of a line is immediately
followed by the leftmost character position (position 1) of the line below; a screen
field may overlap line boundaries on the terminal screen. The leftmost character of
the screen field refers to the leftmost character position of that portion of the screen
field that is on the topmost line containing a portion of the screen field. Similarly,
the rightmost character position of the screen field refers to the rightmost character
position of that portion of the screen field that is on the bottommost line containing a
portion of the screen field.

The current line and current position prior to the ACCEPT operation for each
identifier-1 may affect the position of the screen field as described in the rules below.
At the beginning of a run unit, the current line is the last (bottommost) line and the
current position is the leftmost position (position 1) of that line. The current line and
current position are changed by each Format 3 ACCEPT and Format 2 DISPLAY
operation to be the line and position of the character immediately following the
rightmost character of the screen field. If the ERASE phrase (without EOL or EOS)
is specified for the same identifier-1, the current line and current position are both set
to 1.

The value of identifier-6 or literal-5 in the LINE phrase specifies the line value
for the leftmost character of the screen field. The value of identifier-3 or literal-2
in the POSITION phrase specifies the position value for the leftmost character of the
screen field.

Determining Line and Position
If the POSITION phrase is omitted, the position value is set to 1 for the first
identifier-1 of a Format 3 ACCEPT statement; this value is also set to 1 if a UNIT
phrase is specified for the same identifier-1. It is set to zero in all other cases.

If the line value is zero, or if the LINE phrase is omitted, the line value is set
according to the following rules:

• If an ERASE phrase (without EOL or EOS) is specified for the same identifier-
1, the line value is set to 1.

• If the position value is not equal to zero, the line value is set to the current line
plus 1.

• If the position value is equal to zero, the line value is set to the current line.

If the position value is greater than the maximum number of characters within a line,
the position value is reduced by the maximum number of characters within a line and

 ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 257
 First Edition

the line value is incremented by 1. This process is repeated until the position value is
not greater than the maximum number of characters within a line.

If the position value is equal to zero, the position value is set to the current position.

If the line value exceeds the number of lines on the screen, the contents of the screen
are scrolled up one line and the line value is set to the number of lines on the screen.

If the line of the rightmost character of the screen field exceeds the number of lines
on the screen, the contents of the screen are scrolled up the amount of the excess and
the line value is reduced by the amount of the excess.

The resulting line value and position value specify the position of the leftmost
character of the screen field.

MODE IS BLOCK Phrase

BLOCKISMODE

The presence of the MODE IS BLOCK phrase in an ACCEPT statement causes
the ACCEPT to accept a group data item as a single input field. This is the normal
behavior of RM/COBOL, so if the phrase is omitted, a group is still accepted as
a single input field. The phrase is allowed for compatibility with other dialects
of COBOL.

PROMPT Phrase







literal-6
-10identifier

ISCHARACTER
ISCHARACTERPROMPT

The presence of the PROMPT phrase in an ACCEPT statement causes the data to be
accepted with prompting. The action of prompting is to display fill characters on the
screen in the positions from which data is to be accepted.

The value of literal-6 or the data item referenced by identifier-10 specifies the fill
character to be used in prompting. literal-6 must be a single-character, nonnumeric
literal or figurative constant. identifier-10 must refer to a single character
alphanumeric data item. If literal-6 and identifier-10 are omitted in the PROMPT
phrase, an underscore is used as the fill character.

Note The keyword CHARACTER is required when identifier-10 is specified in the
PROMPT phrase. Otherwise, identifier-10 will be considered the next data item to
be accepted in a series of data items accepted within one ACCEPT statement.

When the PROMPT phrase is not specified, the data is accepted without prompting;
the original contents of the field on the screen are undisturbed before accepting input
unless the UPDATE phrase is specified.

When both the UPDATE and PROMPT phrases are specified, the fill character fills
any character positions not occupied by the original value of the receiving operand.

ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

258 RM/COBOL Language Reference Manual
 First Edition

REVERSE Phrase













VIDEO-REVERSE
REVERSED
REVERSE

REVERSED and REVERSE-VIDEO are synonyms for REVERSE.

The presence of the REVERSE phrase causes any displayed data to be displayed in a
reverse video mode.

If the REVERSE phrase is not specified, the data is displayed in normal video mode.

SIZE Phrase









literal-7
-7identifierSIZE

The value of identifier-7 or literal-7 in the SIZE phrase specifies the size of the
screen field and the input field.

If the SIZE phrase is not present, or if a value of zero is specified, the size of the
input field and screen field (called the size value) is determined by the characteristics
of identifier-1 and by the presence or absence of input and output conversion (see the
discussions of the CONVERT phrase on page 251 and the UPDATE phrase on page 261),
as follows:

• If identifier-1 is numeric and input conversion is specified (either explicitly or
implicitly), the size value is set to the number of digits defined in the PICTURE
character-string for identifier-1, plus 1 if identifier-1 is signed, plus 1 if
identifier-1 is noninteger.

• If identifier-1 is numeric, input conversion is not specified, and identifier-1 is
usage DISPLAY, BINARY or equivalent, the size value is set to the number of
data storage positions (that is, the number of bytes) occupied by identifier-1.

• If identifier-1 is numeric, input conversion is not specified, the CONVERT
phrase is specified, and identifier-1 is usage PACKED-DECIMAL or equivalent,
the size value is set to twice the number of data storage positions occupied by
identifier-1.

• If identifier-1 is numeric edited and the UPDATE and CONVERT phrases are
specified explicitly, the size value is set as described in rule 1. Note that the
number of digits defined in the PICTURE character-string does not include the
insertion symbol 0.

• In all other circumstances, the size value is set to the number of data storage
positions occupied by identifier-1.

• If identifier-1 is numeric and the SIZE phrase is present and the value of its
operand is greater than the number of 9’s in the PICTURE character-string of
identifier-1, truncation of the entered value may occur and no conversion error is
produced. If the usage of identifier-1 is COMP-1, binary truncation is done. If
the usage of identifier-1 is COMP-1 and its PICTURE character-string specifies
five or more 9’s, the entered value is also truncated.

 ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 259
 First Edition

TAB Phrase

TAB

The presence of the TAB phrase in an ACCEPT statement causes a wait for a field
termination key; the field termination key will signal field termination.

If the TAB phrase is omitted, field termination occurs when either the end of the
input field is encountered or a field termination key is pressed.

TIME Phrase









literal-8
-8identifierTIMEBEFORE

The value of identifier-8 or literal-8 in the TIME phrase specifies the length of time
to wait before automatically terminating when no data is entered during the execution
of the ACCEPT statement. The time period is specified in hundredths of seconds,
but should be considered only an approximate value because of system variations.
For example, a value of 6000 specifies an approximate timeout value of one minute.

A time-out value of 0 indicates that the ACCEPT should terminate immediately
if there is no character waiting. A time-out value greater than 4,294,967,295
(a PIC 9(10) data item set to a value 9999999999 is recommended) indicates that the
TIME phrase is being overridden and the ACCEPT will behave as if the TIME
phrase were not specified.

If the user enters any data during the execution of an ACCEPT statement prior to the
completion of the timing interval, the timer is canceled. The user may then take any
amount of time to complete the entry of data for the ACCEPT statement as if the
TIME phrase had not been specified.

If the timing interval completes without any entry of data by the user, then the
ACCEPT statement terminates and returns a value as if the user had typed the
Return key, except that an exception condition is raised and the exception status code
value 99 is returned.

UNIT Phrase









literal-1
-2identifierUNIT

The UNIT phrase, if specified, must be the first phrase entered. The other phrases
may be written in any order.

The value of identifier-2 or literal-1 in the UNIT phrase specifies the terminal from
which the data is to be accepted. If the UNIT phrase is omitted, the terminal that
started the run unit is used.

The UNIT phrase may be ignored by some runtime implementations except as it
affects the default value of the POSITION phrase (described previously). This will
occur in all systems that do not allow use of terminals other than the one associated
with the run unit execution.

ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

260 RM/COBOL Language Reference Manual
 First Edition

UPDATE Phrase

UPDATE

The UPDATE phrase causes the current value of identifier-1 to be displayed in the
screen field with output conversion (internal to human-readable form). The operator
may then modify the contents of the screen field before indicating field termination.
The data in the input field is then stored in identifier-1 with input conversion
(human-readable to internal form; see the discussion of the CONVERT phrase that
begins on page 251).

In output conversion, the value of a numeric data item is converted to a standardized
format according to the output conversion rules for the DISPLAY statement:

1. A leading, separate minus sign is provided for a negative value.

2. An explicit decimal point is provided for a noninteger value. The representation
of this explicit decimal point is a period, except that, if the DECIMAL-POINT
IS COMMA clause is specified in the source program, a comma is used instead.

3. Digits are left justified with leading zeroes removed.

With the exception of numeric edited data items, nonnumeric data items are not
converted before they are displayed (that is, output conversion for nonnumeric data
items is a null operation).

If identifier-1 is numeric edited and both the CONVERT and UPDATE phrases are
specified, a numeric value for identifier-1 is determined according to the rules for the
MOVE statement (MOVE numeric-edited TO numeric). That value is then
converted to a standardized form according to the rules listed above. If identifier-1 is
numeric edited, the UPDATE phrase is specified, and the CONVERT phrase is not
specified, identifier-1 is treated as a nonnumeric data item and is not converted
before display.

Note that output conversion affects only the appearance of the value in the screen
field. The contents of identifier-1 are not changed by output conversion itself.

Output conversion in an ACCEPT statement is controlled by the UPDATE phrase.
The UPDATE phrase also implies input conversion (see the discussion of the
CONVERT phrase). Unlike the action of the CONVERT phrase in a DISPLAY
statement, the CONVERT phrase in an ACCEPT statement does not control output
conversion but instead affects input conversion.

 ACCEPT Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 261
 First Edition

ACCEPT Statement (Terminal I-O) Examples

SWER-2. SWER-1, AN ACCEPT AN

VERT. ECHO, CON PROMPT,
 SITION K, LINE 1, POART-VALUE ACCEPT ST

 MPT, ECHO.ION 0, PROXT-N POSIT ACCEPT NE

 MN-POS., POSITIONLINE MN-LN MONTH,
S; TION YR-POR-LN, POSIAR, LINE Y ACCEPT YE

N 0 OFF. UE POSITIOSSWORD-VAL ACCEPT PA

T. END-ACCEP
URE KEY-PROCED FUNCTION- PERFORM

ON-CODEION FUNCTI ON EXCEPT
UNT;VENTORY-CO ACCEPT IN

ing. ontrol-str command-c CONTROL
trsor-offsecommand-cu CURSOR

lumncommand-co COLUMN
mmand-line LINE co

ngmmand-stri ACCEPT co

INX1). -CONTROL (TROL FIELD(INX1) CONLD-COLUMN COL FIE
E (INX1) FIELD-LININX1) LINEELD-DATA (ACCEPT FI

ACCEPT MESSAGE COUNT Statement
Chapter 6: Procedure Division Statements

262 RM/COBOL Language Reference Manual
 First Edition

ACCEPT MESSAGE COUNT Statement
The ACCEPT statement with the MESSAGE COUNT phrase causes the number of
complete messages in a queue to be made available.

Format 4: Accept Input CD Message Count

[]ACCEPT-ENDCOUNTMESSAGEACCEPT cd-name-1

cd-name-1 must reference an input CD.

The ACCEPT MESSAGE COUNT statement causes the message count data item
specified for cd-name-1 to be updated to indicate the number of complete messages
that exist in the queue structure designated by the contents of the data items specified
by data-name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-
QUEUE-3) of the area referenced by cd-name-1.

Upon execution of the ACCEPT MESSAGE COUNT statement, the area specified
by a communication description entry must contain at least the name of the symbolic
queue to be tested. Testing the condition causes the contents of the data items
referenced by data-name-10 (STATUS KEY) and data-name-11 (MESSAGE
COUNT) of the area associated with the communication description entry to be
appropriately updated. See the discussion of the communication description entry
(on page 140).

ACCEPT Message Count Statement Example

NT. ESSAGE COUM-LINE-1 M ACCEPT CO

 ACCEPT Screen-Name Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 263
 First Edition

ACCEPT Screen-Name Statement
The ACCEPT Screen-Name statement moves data entered by the terminal operator
from fields on the terminal screen to data items defined in the Data Division. The
organization, placement and visual attributes of the fields on the screen are defined in
the Screen Section of the Data Division.

Format 5: Accept Screen-Name

[]ACCEPT-END

ESCAPE
EXCEPTIONONNOT

ESCAPE
EXCEPTIONON

NUMBERCOL
COLUMN

NUMBERLINE

ATACCEPT











































































































-2-statementimperative

-1-statementimperative

integer-2
-2identifier

integer-1
-1identifier

e-1screen-nam

screen-name-1 must be defined as an elementary or group entry in the Screen Section
of the Data Division. identifier-1 and identifier-2, when used, must refer to
elementary numeric integer data items.

COL is a synonym for COLUMN.

ESCAPE is a synonym for EXCEPTION.

If the LINE phrase is specified, the value of integer-1 or the current value of the data
item referred to by identifier-1 is used as an increment to each of the explicit or
implicit LINE specifications within screen-name-1, thus shifting the screen
downward the specified number of lines.

A similar rule applies if the COLUMN phrase is specified: the value of integer-2 or
the current value of the data item referred to by identifier-2 is used as an increment to
each of the explicit or implicit COLUMN specifications within screen-name-1, thus
shifting the screen to the right the specified number of columns.

The following discussion uses the phrase “each input field referred to by screen-
name-1.” Within the Screen Section, an input field is defined by an elementary entry
that contains a PICTURE clause having the TO or USING option. If screen-name-1
is an elementary item having a PICTURE clause with a TO or USING option, the
phrase “each input field referred to by screen-name-1” is a reference to the screen
field defined by screen-name-1. If screen-name-1 is a group item, the phrase is a
reference to each subordinate elementary input field, taken in the order of their
definition.

For each input field referred to by screen-name-1, the cursor is positioned at the
beginning of the field, the field is filled with the retained value and the operator is
given control to enter a new value for that field. If the operator does not wish to
change the retained value of the field, the Return key can be used to terminate entry

ACCEPT Screen-Name Statement
Chapter 6: Procedure Division Statements

264 RM/COBOL Language Reference Manual
 First Edition

for the field, leaving the value unchanged. If the CURSOR clause is specified in the
SPECIAL-NAMES paragraph and the value in the data item referenced by that
CURSOR clause contains a valid cursor position, the cursor will be placed as
specified at the beginning of the ACCEPT statement; also, in this case, at the end of
the ACCEPT statement, the position of the cursor will be stored into the referenced
data item.

While the operator is entering a value into a field, the local editing keys may be used
to revise the value being entered. Until the last input field has been completed, the
operator may move the cursor to previously entered input fields to revise their
contents. The keys needed to perform these operations are defined in the
RM/COBOL User’s Guide.

The retained value that is shown in the field when the field first becomes active
during an ACCEPT operation depends on whether screen-name-1 has previously
been the subject of an ACCEPT or DISPLAY operation within this run unit. If this
is the first usage of screen-name-1 within the run unit, the retained value is ZEROES
for numeric items or SPACES for nonnumeric items. If this is not the first usage of
screen-name-1 within the run unit, the retained value is the value left from the last
ACCEPT or DISPLAY of screen-name-1.

If the current input field is numeric, the operator may enter a leading or trailing sign
character (provided the input field allows for a sign) and a decimal point in addition
to the numeric digits. The sign and decimal point characters are recognized and
removed, using the same de-editing algorithm that is used during a Format 3
ACCEPT of a numeric operand that specifies the CONVERT phrase.

After each input field is completed, the runtime system checks that the characters
entered are valid for that particular field. If invalid characters have been entered, an
error message is displayed on the bottom line of the screen, and the operator is given
control to correct the field. (When the correction operation occurs, existing
information on the bottom line, if any, is overlayed and not restored.)

During the course of an ACCEPT operation, the operator may terminate the
operation prematurely by use of the Escape key or one of the function keys. If the
Escape key is used, the current and all remaining input fields within screen-name-1
are passed over without changing their retained values. If one of the function keys is
used, the current field is completed and becomes the retained value; further input
fields, if any, are passed over without changing their retained values. In either case,
the escape condition is raised. If neither the Escape key nor one of the function keys
is used to signal premature termination, the ACCEPT operation terminates normally
after the last input field has been completed.

The circumstance that caused termination of the ACCEPT operation is recorded by
the runtime system, and may be interrogated by executing an ACCEPT . . . FROM
ESCAPE KEY statement. If the CRT STATUS clause is specified in the
SPECIAL-NAMES paragraph, the termination code is also available in the data
item referenced by that clause.

When the ACCEPT operation completes (either normally or prematurely), each
retained value corresponding to an input field within screen-name-1 is moved to its
associated item. The move is done according to the standard MOVE rules (which are
listed in the MOVE statement on page 338) with the sending item being the retained
value as described by the PICTURE clause in the Screen Section entry, and the
destination item being the associated item. If the CURSOR clause is specified in the
SPECIAL-NAMES paragraph and the data item referenced by that clause contained
a valid screen position at the beginning of the ACCEPT statement, then that data
item is updated with the cursor position at the end of the ACCEPT statement.

 ACCEPT Screen-Name Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 265
 First Edition

If the escape condition is raised during an ACCEPT operation and there is an ON
ESCAPE phrase in the ACCEPT statement, control is transferred to imperative-
statement-1 and execution continues according to the rules for each statement
specified in imperative-statement-1. If a procedure branching or conditional
statement that causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of
execution of imperative-statement-1, control is transferred to the end of the ACCEPT
statement and the NOT ON ESCAPE phrase, if present, is ignored.

If the escape condition is raised during an ACCEPT operation and there is no ON
ESCAPE phrase, the escape condition is ignored.

If the escape condition is not raised during an ACCEPT operation and there is a
NOT ON ESCAPE phrase, imperative-statement-1 is ignored, control is transferred
to imperative-statement-2 and execution continues according to the rules for each
statement specified in imperative-statement-2. If a procedure branching or
conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon
completion of execution of imperative-statement-2, control is transferred to the end
of the ACCEPT statement.

Screen fields within screen-name-1 that are not input fields have no effect on the
operation of the ACCEPT statement.

The BLANK LINE, BLANK REMAINDER and BLANK SCREEN attributes are
not active during an ACCEPT operation. The effect of other attributes (AUTO,
BELL, BLINK, FULL, REQUIRED, SECURE, and so forth) is as described in
Chapter 4: Data Division.

The appearance of the screen is undefined and unpredictable when LINE or
COLUMN values are specified such that screen fields extend beyond the boundaries
of the physical screen, either horizontally or vertically.

ACCEPT Screen-Name Statement Examples

. 0 COLUMN 5 AT LINE 1VOICE-FORM ACCEPT IN

EPT. END-ACC
NE 23 MESSAGE LIAY ESCAPE- DISPL

PE ON ESCA
ORD LINE 9PLOYEE-REC ACCEPT EM

OB-LINE. COL LINE ET COL EOB-B-SCREEN A ACCEPT EO

ADD Statement
Chapter 6: Procedure Division Statements

266 RM/COBOL Language Reference Manual
 First Edition

ADD Statement
The ADD statement causes two or more numeric operands to be summed and the
result to be stored.

Format 1: Add…To

[]{ }

[]

[]

[]ADD-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDTOADD

-2-statementimperative

-1-statementimperative

-2identifierliteral-1
-1identifier LL









Format 2: Add…Giving

[]{ }

[]

[]

[]ADD-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDGIVING

TOADD

-2-statementimperative

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-1
-1identifier

L

LL
















Format 3: Add Corresponding

[]

[]

[]

[]ADD-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDTOCORR
INGCORRESPONDADD

-2-statementimperative

-1-statementimperative

-2identifier-1identifier








In Format 1, the values of the operands preceding the word TO are added together;
that sum is then added to the current value of each data item referenced by
identifier-2 storing the result immediately into that data item.

In Format 2, the values of the operands preceding the word GIVING are added
together; that sum is then stored as the new value of each data item referenced
by identifier-3.

 ADD Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 267
 First Edition

In Formats 1 and 2, each identifier must refer to an elementary numeric item, except
that in Format 2, each identifier following the word GIVING may refer to either an
elementary numeric item or an elementary numeric edited item.

In Format 3, data items in identifier-1 are added to and stored in the corresponding
data items in identifier-2.

In Format 3, each identifier must refer to a group item.

Each literal must be a numeric literal.

Additional rules and explanations regarding features of the ADD statement that are
common to other arithmetic statements can be found in the discussion of common
rules (on page 192). See in particular the discussions of the ROUNDED phrase, the
size error condition, overlapping operands, modes of operation, composite size, and
incompatible data.

CORRESPONDING Phrase

[]ROUNDEDTOCORR
INGCORRESPOND -2identifier-1identifier









If the CORRESPONDING phrase is used, selected items within identifier-1 are
added to, and the result stored in, the corresponding items in identifier-2.

For the ADD statement with the CORRESPONDING phrase:

• The description of identifier-1 and identifier-2 must not contain level-number
66, 77, 78, or 88, the USAGE IS INDEX clause, or the USAGE IS POINTER
clause.

• Neither identifier-1 nor identifier-2 may be reference modified.

• identifier-1 or identifier-2 may be described with the OCCURS or REDEFINES
clauses or be subordinate to data items described with the OCCURS or
REDEFINES clauses. If identifier-1 or identifier-2 is a table element, then the
required subscripting must be specified as part of identifier-1 or identifier-2.
The specified subscripting will be applied to the selected subordinate
corresponding data items, respectively, for identifier-1 and identifier-2.

The rules that govern the selection of eligible subordinate data item pairs are as
follows:

1. The data items are not designated by the keyword FILLER and have the same
data-name and the same qualifiers up to but not including the original group
items, identifier-1 and identifier-2.

2. Both of the data items are elementary numeric data items.

3. A data item that is subordinate to identifier-1 or identifier-2 and contains a
REDEFINES, OCCURS, USAGE IS INDEX, or USAGE IS POINTER clause is
ignored, as well as those data items subordinate to the data item that contains the
REDEFINES, OCCURS, USAGE IS INDEX, or USAGE IS POINTER clause.

4. The name of each data item that satisfies the above conditions must be unique
after application of the implied qualifiers.

ADD Statement
Chapter 6: Procedure Division Statements

268 RM/COBOL Language Reference Manual
 First Edition

If any of the individual operations produces a size error condition, imperative-
statement-1 in the ON SIZE ERROR phrase is not executed until all of the individual
additions are completed.

CORR and CORRESPONDING are synonymous.

ADD Statement Examples

LARY) alue of SAbles the vY. *>(douY TO SALAR ADD SALAR

 END-ADD.
Y-PROC BANKRUPTC PERFORM

RROR ON SIZE E
YCOMPANY-PA GIVING

ERTS-PAY S-PAY, ALB-PAY, PAUL ADD JOHNS

HX). OTALS(MONTTO MONTH-TALS(DAYX) DAY-TOT
SPONDING ADD CORRE

 END-ADD.
IT-ROUTINEERFORM AUDZE ERROR P NOT ON SI
TINE ERROR-ROURROR GO TO ON SIZE E

 RD ROUNDEDTOTAL-RECORECORD TO SUB-TOTAL- ADD CORR

 ALTER Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 269
 First Edition

ALTER Statement
The ALTER statement modifies a predetermined sequence of operations.

[]{ }Lname-2procedure-name-1procedure- TOPROCEEDTOALTER

procedure-name-1 is the name of a paragraph that contains a single sentence
consisting of a GO TO statement without the DEPENDING phrase.

procedure-name-2 is the name of a paragraph or section in the Procedure Division.

Execution of the ALTER statement modifies the GO TO statement in the paragraph
named procedure-name-1, so that subsequent executions of the modified GO TO
statements cause transfer of control to procedure-name-2. Modified GO TO
statements in independent segments may, under some circumstances, be returned to
their initial states; see the rules for segmentation on page 186 in the Procedure Division.

A GO TO statement in a section whose segment-number is greater than or equal to
50 must not be referred to by an ALTER statement in a section with a different
segment-number.

ALTER Statement Examples

. TIALIZE-ITAPH TO INITCH-PARAGR ALTER SWI
E-IT.-INITIALIZ SET

TIALIZED. INI

TIALIZED.APH TO INITCH-PARAGR ALTER SWI
-RECORD.E EMPLOYEE INITIALIZ

.TIALIZE-IT INI
.TIALIZE-IT GO TO INI

APH.TCH-PARAGR SWI

IZE-IT.ET-INITIAL PERFORM S

M

M

M

CALL Statement
Chapter 6: Procedure Division Statements

270 RM/COBOL Language Reference Manual
 First Edition

CALL Statement
The CALL statement causes control to be transferred from one object program to
another, within the run unit.

Format 1: Call…On Overflow

[]

[]

[]CALL-END

OVERFLOWON

RETURNING
GIVING

OMITTED

OMITTED
CONTENTBY

OMITTEDREFERENCEBY

USING

CALL

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-2
-2identifier

-2identifier

literal-1
-1identifier

























































































































































L

L

L

L

Format 2: Call…On Exception

[]

[]

[]

[]CALL-END

EXCEPTIONONNOT

EXCEPTIONON

RETURNING
GIVING

OMITTED

OMITTED
CONTENTBY

OMITTEDREFERENCEBY

USING

CALL

-2-statementimperative

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-2
-2identifier

-2identifier

literal-1
-1identifier

























































































































































L

L

L

L

 CALL Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 271
 First Edition

The execution of a CALL statement causes control to pass to the program whose
name is specified by the value of literal-1 or identifier-1, termed the “called”
program. The program in which the CALL statement appears is the “calling”
program.

literal-1 must be a nonnumeric literal.

identifier-1 must be defined as an alphanumeric data item such that its value can be a
program-name.

The value of literal-1 or of the data item referenced by identifier-1 specifies a
program-name that is used to select a program for loading and execution. If the
program being called is a COBOL program, the program that is loaded and executed
may be selected because the program-name matches the program-name that appears
in the PROGRAM-ID paragraph of the called program. For this comparison, any
trailing spaces are ignored. Other techniques that are available for selecting the
called program are dependent on the runtime operating system, and are, therefore,
described in the RM/COBOL User’s Guide.

Called programs may contain CALL statements. However, a called program must
not contain a CALL statement that directly or indirectly calls the calling program. If
a CALL statement is executed within the range of a declarative, that CALL statement
cannot directly or indirectly reference any called program to which control has been
transferred and which has not completed execution.

The CALL statement may appear anywhere within a segmented program. When a
CALL statement appears in a section with a segment-number greater than or equal to
50, that segment is in its last used state when the EXIT PROGRAM statement returns
control to the calling program.

Two or more programs in the run unit may have the same program-name, and the
reference in a CALL statement to such a program-name is resolved by using the
scope of names conventions for program-names.

For example, when only two programs in the run unit have the same name as that
specified in a CALL statement:

1. One of those two programs must also be contained directly or indirectly either
within the separately compiled program, which includes that CALL statement,
or within the separately compiled program which itself directly or indirectly
contains the program that includes that CALL statement.

2. The other of those two programs must be a different separately compiled
program.

The mechanism used in this example is as follows:

1. If one of the two programs having the same name as that specified in the CALL
statement is directly contained within the program which includes that CALL
statement, that program is called.

2. If one of the two programs having the same name as that specified in the CALL
statement possesses the common attribute and is directly contained within
another program which directly or indirectly contains the program which
includes the CALL statement, that common program is called unless the calling
program is contained within that common program.

3. Otherwise, the separately compiled program is called.

If the called program does not possess the initial attribute, it and each program
directly or indirectly contained within it, is in its initial state the first time it is called
within a run unit and the first time it is called after a CANCEL to the called program.

CALL Statement
Chapter 6: Procedure Division Statements

272 RM/COBOL Language Reference Manual
 First Edition

On all other entries into the called program, the state of the program and each
program directly or indirectly contained within it remains unchanged from its state
when last exited.

If the called program possesses the initial attribute, it and each program directly or
indirectly contained within it, is placed into its initial state every time the called
program is called within a run unit.

Files associated with the internal file connectors of a called program are not in the
open mode when the program is in an initial state.

On all other entries into the called program, the states and positioning of all such files
is the same as when the called program was last exited.

The process of calling a program or exiting from a called program does not alter the
status or positioning of a file associated with any external file connector.

USING Phrase

[]

L

L

L

L





































































OMITTED

OMITTED
CONTENTBY

OMITTEDREFERENCEBY

USING

literal-2
-2identifier

literal-2
-2identifier

-2identifier

The operands specified by the USING phrase of the CALL statement indicate those
data items available to a calling program that may be referred to in the called
program. The order of appearance of the operands in the USING phrase of the
CALL statement and the USING phrase in the Procedure Division header is critical.
Corresponding operands refer to a single set of data that is available to the called and
calling programs. The correspondence is by position, not name. Index-names cannot
be made available to the calling program. Index-names in the called and calling
programs always refer to separate indexes, except for index-names with the external
attribute.

The USING phrase is included in the CALL statement only if there is a USING
phrase in the Procedure Division header of the called program. The number of
operands in the two USING phrases need not be the same. However, when the two
lists have a different number of operands, trailing operands for which there is no
corresponding operand in the other list are inaccessible to the called program.

The reserved word OMITTED may be specified to represent an inaccessible operand
in the list of operands in the USING phrase of the CALL statement.

In the called program, operands that are inaccessible, either because of omitted
trailing operands or use of the word OMITTED in the USING phrase of the CALL
statement in the calling program, have a null address. If the called program refers to
an inaccessible argument, other than with the ADDRESS special register or in the
USING or GIVING phrase of a CALL statement, a data reference error will occur.
The called program can check for inaccessible operands by using the ADDRESS
special register to test the address of the actual argument for equality to the figurative
constant NULL.

 CALL Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 273
 First Edition

Each operand in the USING phrase must have been defined as a data item in the File
Section, Working-Storage Section, Communication Section or Linkage Section, and
must be a level 01 data item, a level 77 data item, or an elementary data item.

The values of the parameters referenced in the USING phrase of the CALL statement
are made available to the called program at the time the CALL statement is executed.

Both the BY CONTENT and BY REFERENCE phrases are transitive across the
parameters that follow them until another BY CONTENT or BY REFERENCE
phrase is encountered. If neither the BY CONTENT nor the BY REFERENCE
phrase is specified prior to the first parameter, the BY REFERENCE phrase is
assumed for identifiers and the BY CONTENT phrase is assumed for literals.

Note Prior to v7.5 of RM/COBOL, both identifiers and literals were passed BY
REFERENCE when neither the BY CONTENT nor the BY REFERENCE phrase
had been explicitly specified. A configuration option has been added to retain the
prior behavior; see the SUPPRESS-LITERAL-BY-CONTENT keyword of the
COMPILER-OPTIONS configuration record in the RM/COBOL User’s Guide.

If the BY REFERENCE phrase is either specified or implied for an operand in the
USING list, the object program operates as if the associated data item in the called
program occupies the same storage area as the corresponding data item in the calling
program. The description of the data item in the called program must describe the
same number of character positions as described by the corresponding item in the
calling program.

If the BY CONTENT phrase is specified or implied for a parameter, the called
program cannot change the value of this parameter as referenced in the USING
phrase of the CALL statement, though the called program may change the value of
the data item referenced by the corresponding data-name in the Procedure Division
header of the called program. The data description of each parameter in the BY
CONTENT phrase of the CALL statement must be the same (that is, no conversion,
extension or truncation) as the data description of the corresponding parameter in the
USING phrase of the Procedure Division header.

When the ADDRESS special register is specified in the USING phrase, the result
value is always passed by content. The base address of a level 01 or 77 Linkage
Section item can only be changed by Formats 5 and 6 of the SET statement. Thus, if
the goal is to change the address of a Linkage Section item based on an argument
value, the calling program must pass by reference a pointer data item as an argument.
The called program may then modify the value of this pointer data item argument.
The calling program may then use the pointer data item after the CALL statement in
a Format 5 SET statement to set the address of the Linkage Section item.

When an identifier that refers to a level-number 01 or 77 Linkage Section data item
that represents a formal argument is specified in the USING phrase of a CALL
statement, the data item is resolved according to its description in the calling
program. This is an exception to the rule that formal arguments are resolved
according to their description in the Linkage Section of the called program. How the
data item is resolved mainly affects the length of the data item as seen in the called
program. For additional information on this special case of resolving Linkage
Section record-names, see Linkage Section (on page 98).

CALL Statement
Chapter 6: Procedure Division Statements

274 RM/COBOL Language Reference Manual
 First Edition

GIVING Phrase

-3identifier








RETURNING
GIVING

RETURNING is a synonym for GIVING.

The operand specified in the GIVING phrase of the CALL statement indicates a data
item available to a calling program that may be referred to in the called program for
purposes of returning a result from the called program. The GIVING argument is
functionally the same as any of the USING arguments, except that BY CONTENT
and OMITTED are not allowed. The purpose of the GIVING phrase is for source
program readability by indicating the return value argument.

The GIVING phrase is included in the CALL statement only if there is a GIVING
phrase in the Procedure Division header of the called program. If the GIVING
phrase is omitted in the CALL statement when calling a program that includes the
GIVING phrase in the Procedure Division header, then the GIVING operand is
inaccessible to the called program. If the GIVING phrase is included in a CALL
statement where the GIVING phrase is not included in the Procedure Division header
of the called program, it has no effect and is ignored. In this case, the operand of the
GIVING phrase in the calling program is unchanged after the called program
completes.

The ADDRESS special register may not be specified in the GIVING phrase, but an
identifier that refers to a pointer data item may be specified.

When an identifier that refers to a level-number 01 or 77 Linkage Section data item
that represents a formal argument is specified in the GIVING phrase of a CALL
statement, the data item is resolved according to its description in the calling
program. This is an exception to the rule that formal arguments are resolved
according to their description in the Linkage Section of the called program.

OVERFLOW, EXCEPTION, and NOT EXCEPTION
Phrases

-2-statementimperative

-1-statementimperative

-1-statementimperative

EXCEPTIONONNOT

EXCEPTIONON

OVERFLOWON

If, when a CALL statement is executed, the program specified by the CALL
statement can be made available for execution, control is transferred to the called
program. After control is returned from the called program, the ON OVERFLOW or
ON EXCEPTION phrase, if specified, is ignored and control is transferred to the end
of the CALL statement or, if the NOT ON EXCEPTION phrase is specified, to
imperative-statement-2. In the latter case, execution continues through imperative-
statement-2 according to the rules for each statement specified in that statement. If a
procedure branching or conditional statement that causes explicit transfer of control
is executed, control is transferred in accordance with the rules for that statement;
otherwise, upon completion of the execution of imperative-statement-2, control is
transferred to the end of the CALL statement.

 CALL Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 275
 First Edition

If, when a CALL statement is executed, it is determined that the program specified
by the CALL statement cannot be made available for execution, the NOT ON
EXCEPTION phrase, if specified, is ignored and one of the following two actions
occurs:

1. If either the ON OVERFLOW or the ON EXCEPTION phrase is specified,
control is transferred to imperative-statement-1. Execution then continues
according to the rules for each statement in imperative-statement-1. If a
procedure branching or conditional statement that causes explicit transfer of
control is encountered, control is transferred in accordance with the rules for that
statement; otherwise, upon completion of the execution of imperative-statement-
1, control is transferred to the end of the CALL statement.

2. If neither the ON OVERFLOW nor the ON EXCEPTION phrase is specified, a
runtime error message is produced and execution of the run unit is terminated.

Reasons for not making a called program available for execution include the
following:

• It cannot be found using the search patterns, which are described in the
RM/COBOL User’s Guide.

• Its format is not one of the legal formats for an RM/COBOL called program.

• There is insufficient available memory to load it.

CALL Statement Examples

ce. " per choi or "APP02ll "APP01"RG1. *>Ca CALL SUBP

D-IF. END-IF EN
10E GO TO 00ETRY-CHOICORM 0020-R ELSE PERF
 SUBPRG1"APP02" TO"02" MOVE HOICE-1 = ELSE IF C
PRG101" TO SUB MOVE "APP-1 = "01" IF CHOICE

0. 001

M

 E1-TOTAL. IVING TABLG TABLE1 GRDER" USIN CALL "REO

 END-CALL.
 TRUEED (IX) TOT SUB-LOADCEPTION SE NOT ON EX

-1 O TO RETRYARAGRAPH GM CANCEL-PION PERFOR ON EXCEPT
, ITEM-2,PE, ITEM-1UNCTION-TY USING F

ATUS-1 GIVING STTABLE (IX)AME OF SUB CALL SUBN
TRY-1. RE

UMN. SCREEN-COLEEN-LINE, ITTED, SCRBUFFER, OM SCREEN-
CRD" USING CALL "C$S

CALL PROGRAM Statement
Chapter 6: Procedure Division Statements

276 RM/COBOL Language Reference Manual
 First Edition

CALL PROGRAM Statement
The CALL PROGRAM statement transfers control from the current program to
another program, with implicit termination of the current program and no expectation
of return.

[]

[]CALL-END

EXCEPTIONON

OMITTED
USINGPROGRAMCALL

-1-statementimperative

literal-2
-2identifier

literal-1
-1identifier



































 L

literal-1 must be a nonnumeric literal.

identifier-1 must be defined as an alphanumeric data item such that its value can be a
program-name.

If the program specified by literal-1 or by the current value of the data item
identified by identifier-1 can be found and loaded, the USING operands, if any, are
copied to a save area in memory, the current run unit is canceled, and control is
transferred to the specified program, passing the saved USING operands as
parameters.

Cancellation of the run unit in which the CALL PROGRAM statement is executed
includes closing any files that are in an open mode and the release of all external
objects.

The specified program is entered as the main program of a completely new run unit
in the same way as a program started from the command line, except that the
argument list to this program is not restricted in the same way; see the RM/COBOL
User’s Guide for an explanation of the restrictions on the argument list for a main
program started from the command line. The main program of a run unit started with
the CALL PROGRAM statement may receive all the arguments passed by that
CALL PROGRAM statement.

The specified program is not under the control of a calling program. There is no
provision for return of control from the specified program to the program in which
the CALL PROGRAM statement is executed. If the specified program executes an
EXIT PROGRAM statement, execution of the program continues with the next
executable statement.

If the program referred to by literal-1 or by the current value of the data item
identified by identifier-1 cannot be found or loaded, the exception condition is raised
and control remains in the current program.

If the exception condition is raised and there is an ON EXCEPTION phrase, control
is transferred to imperative-statement-1 and execution continues according to the
rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement that causes explicit transfer of control is executed,
control is transferred in accordance with the rules for that statement; otherwise, upon
completion of execution of imperative-statement-1, control is transferred to the end
of the CALL PROGRAM statement.

The reason for the exception condition can be determined by executing an
ACCEPT . . . FROM EXCEPTION STATUS statement.

 CALL PROGRAM Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 277
 First Edition

If the exception condition is raised and there is no ON EXCEPTION phrase, the
exception condition is ignored.

Selection of the program to be activated by a CALL PROGRAM statement is done
using the same rules as are used for that purpose by the CALL statement, described
on page 270.

The USING phrase is subject to the same conditions and has the same purpose and
effect as described previously for the CALL statement.

CALL PROGRAM Statement Examples

 END-CALL.
N STOP RU

led." MENU2 fai "Chain to DISPLAY
ION ON EXCEPT

 MMON-DATA " USING CORAM "MENU2 CALL PROG

 END-CALL.
UN STOP R

TATUSIN-ERROR-SM 0030-CHA PERFOR
USPTION STAT FROM EXCE EX-STATUS ACCEPT

ION ON EXCEPT
AREA ARGUMENT-NAME USINGRAM CHAIN- CALL PROG

CANCEL Statement
Chapter 6: Procedure Division Statements

278 RM/COBOL Language Reference Manual
 First Edition

CANCEL Statement
The CANCEL statement ensures that the next time the referenced programs are
called they will be in their initial state. For a separately compiled program, the
CANCEL statement releases the memory areas occupied by the referenced programs.

L








literal-1
-1identifierCANCEL

literal-1 must be a nonnumeric literal.

identifier-1 must be defined as an alphanumeric data item such that its value can be a
program-name.

Subsequent to the execution of a CANCEL statement, the programs it refers to cease
to have a logical relationship to the run unit in which the CANCEL statement
appears. A subsequently executed CALL statement naming such a program results
in that program being initiated in its initial state. The memory areas associated with
the named programs are released so as to be made available for disposition by the
runtime system.

A program named in a CANCEL statement in another program must be callable by
that other program.

When an explicit or implicit CANCEL statement is executed, all programs contained
within the program referenced by the CANCEL statement are also canceled. The
result is the same as if a valid CANCEL statement were executed for each contained
program in the reverse order in which the programs appear in the separately
compiled program.

A program named in the CANCEL statement must not refer to any program that has
been called and has not yet executed an EXIT PROGRAM statement.

A logical relationship to a canceled subprogram is established only by execution of a
subsequent CALL statement. A called program is canceled either by being referred
to as the operand of a CANCEL statement, by the termination of the run unit of
which the program is a member or by execution of an EXIT PROGRAM statement
in a called program that possesses the initial attribute. See the discussion of the
PROGRAM-ID paragraph (on page 44).

No action is taken when a CANCEL statement is executed naming a program that
has not been called in this run unit or has been called and is at present canceled.
Control passes to the next statement.

The contents of data items in external data records described by a program are not
changed when that program is canceled.

During execution of an explicit or implicit CANCEL statement, an implicit CLOSE
statement without any optional phrases is executed for each file in an open mode that
is associated with an internal file connector in the program named in the explicit
CANCEL statement or implied in the implicit CANCEL statement. Any USE
procedures associated with any of these files are not executed.

 CANCEL Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 279
 First Edition

CANCEL Statement Examples

B02". UB01", "SU CANCEL "S

. AME-HOLDERBPROGRAM-N CANCEL SU

 END-IF.
UN STOP R

ry."cient memoY "Insuffi DISPLA
DUB-UNLOADE IF NOT S

ORM. END-PERF
 END-IF

ED TO TRUESUB-UNLOAD SET
 FALSE LE (IX) TO OF SUBTABSUB-LOADED SET

LE (IX) OF SUBTABEL SUBNAME CANC
(IX) SUBTABLE -LOADED OF IF SUB

X > 4 1 UNTIL I FROM 1 BYVARYING IX PERFORM
O FALSE.UNLOADED T SET SUB-

APH.CEL-PARAGR CAN

CLOSE Statement
Chapter 6: Procedure Division Statements

280 RM/COBOL Language Reference Manual
 First Edition

CLOSE Statement
The CLOSE statement terminates the processing of reels or units, and files with
optional rewind, lock, or both, or removal where applicable.

L





































































LOCK
REWINDNOWITH

REMOVALFOR
REWINDNOWITH

UNIT
REEL

CLOSE 1file-name-

The files referenced in the CLOSE statement need not all have the same organization
or access.

The NO REWIND, REEL, and UNIT phrases may only be specified for files that are
sequential organization.

The function of a CLOSE statement (with no options) is to cause the runtime system
to close the file. For files opened for OUTPUT, the runtime system also writes an
EOF as it closes the file.

If a STOP RUN statement is executed prior to closing the file, the runtime system
closes the file. Such a close is equivalent to the execution of a CLOSE statement
except that any associated USE procedure is not executed.

A CLOSE statement may be executed only for a file in an open mode.

Once a CLOSE statement without the REEL or UNIT phrase has been executed for a
file, no other statement (except the SORT or MERGE statement with the USING or
GIVING phrase) can be executed that references that file, either explicitly or
implicitly, unless an intervening OPEN statement for that file is executed.

The execution of a CLOSE statement causes the value of the file status data item, if
any, associated with file-name-1 to be updated.

 CLOSE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 281
 First Edition

REEL and UNIT Phrases









UNIT
REEL

The REEL and UNIT phrases are synonymous in this context. The CLOSE REEL
and CLOSE UNIT statements cause processing to be discontinued on the current
volume and to be continued on the next volume of a multivolume series. CLOSE
REEL and CLOSE UNIT on a single-volume file are ignored.

The REEL and UNIT phrases may only be specified for sequential organization files.

The action of the phrase for multivolume disk files and tape files depends on the
open mode:

• For files that are open OUTPUT, the current volume is closed. The next WRITE
statement will cause the record to be written to the next volume in the series. If
no next volume is described or available to the series, an error occurs.

• For files that are open INPUT or I-O, the current volume is closed. The next
READ statement will obtain the first record from the next volume in the series.
If no next volume exists for the file, the next READ statement causes an at end
condition.

NO REWIND Phrase

REWINDNOWITH

The NO REWIND phrase may be used to write and read multiple files on a tape with
a single file-name. The phrase suppresses the automatic rewinding of a tape volume
when a CLOSE statement, without the NO REWIND phrase, is executed.

The NO REWIND phrase may only be specified for sequential organization files.

Following a CLOSE file-name-1 WITH NO REWIND, an OPEN file-name-1 WITH
NO REWIND may be used to write or read the next file on the tape. For input, the
file must be closed without rewinding after reading all the records in the file;
otherwise, the open without rewinding will fail since the tape is not positioned at the
beginning of a file.

The NO REWIND phrase is ignored for files that are not on tape or directed to a
printer.

Specifying both the UNIT or REEL phrase and the NO REWIND phrase for a single
file-name within a CLOSE statement is an allowed syntactical form, but in such a
case the NO REWIND phrase has no meaning and is ignored at execution time.

CLOSE Statement
Chapter 6: Procedure Division Statements

282 RM/COBOL Language Reference Manual
 First Edition

REMOVAL Phrase

REMOVALFOR

The REMOVAL phrase may be used so that the operating system is notified that the
reel or unit is logically removed from this run unit. However, the reel or unit may be
accessed again, in its proper order of reels and units within the file, if a CLOSE
statement without the REEL or UNIT phrase is subsequently executed for this file
followed by the execution of an OPEN statement for the file.

The REMOVAL phrase may only be specified for sequential organization files.

The NO REWIND and REMOVAL phrases have no effect at object time if they do
not apply to the storage medium on which the file resides.

LOCK Phrase

LOCKWITH

The function of the CLOSE WITH LOCK statement is to perform the CLOSE
function and set a flag to prevent the file from being opened again during execution
of this program. In some runtime environments, the CLOSE WITH LOCK statement
frees system resources that would otherwise not be freed until the run unit terminates.

The execution of a CLOSE statement always releases any file lock or record locks
held by the run unit for file-name-1. The LOCK phrase of the CLOSE statement is
unrelated to file locking and record locking.

CLOSE Statement Examples

ILE. NSACTION-F CLOSE TRA

NT-FILE. LOCK, PRI-FILE WITH CLOSE LOG

OVAL. EL FOR REMUT-FILE RE CLOSE INP

IND. ITH NO REWE-FILE-1 W CLOSE TAP

 END-IF.
N STOP RU

ock." sed with le file clo "Data-bas DISPLAY
TUS = "38" IF DB-STA
DATA-BASE. OPEN I-O

H LOCK.A-BASE WIT CLOSE DAT

M

 COMPUTE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 283
 First Edition

COMPUTE Statement
The COMPUTE statement calculates the value of an arithmetic expression and
assigns the value to one or more data items.

[]{ }

[]

[]

[]COMPUTE-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDCOMPUTE

-2-statementimperative

-1-statementimperative

n-1-expressioarithmetic-1identifier =L

identifier-1 must refer to either an elementary numeric item or an elementary
numeric edited item.

An arithmetic expression consisting of a single identifier or literal provides a method
of setting the value of identifier-1 equal to the value of the single identifier or literal.

The COMPUTE statement allows the user to combine arithmetic operations without
the restrictions on composite of operands, receiving data items, or both, imposed by
the arithmetic statements ADD, SUBTRACT, MULTIPLY and DIVIDE.

Additional rules and explanations regarding features of the COMPUTE statement
that are common to other arithmetic statements can be found in the discussion of
common rules (on page 192). See in particular the discussions of the ROUNDED
phrase, the size error condition, overlapping operands, modes of operation,
composite size, and incompatible data.

COMPUTE Statement Examples

1.5.E-HOURS * * OVERTIM + WAGES
R-HOURS S * REGULADED = WAGEALARY ROUN COMPUTE S

TE. END-COMPU
N STOP RU

range."ue out of "Time val DISPLAY
RROR ON SIZE E

 60) + SEC) + MIN) *((HRS * 60ECONDS = (COMPUTE S

PUTE. GE END-COM0 TO AVERARROR MOVE ON SIZE E
OUNT-1OTAL-1 / CVERAGE = T COMPUTE A

ODS)).ER-OF-PERI (- NUMB
OD) **T-PER-PERI + INTERES (1 - (1

IOD) / ST-PER-PERL * INTEREL-PRINCIPA (INITIA
NC = AYMENT-TRU ROUNDED PAYMENT-RND COMPUTE P

00.T-APR / 12 INTERES
OUNDED =R-PERIOD RNTEREST-PE COMPUTE I

CONTINUE Statement
Chapter 6: Procedure Division Statements

284 RM/COBOL Language Reference Manual
 First Edition

CONTINUE Statement
The CONTINUE statement has no effect on the execution of the program.

CONTINUE

The CONTINUE statement may be used anywhere a conditional statement or an
imperative statement may be used.

The CONTINUE statement is most useful within a conditional phrase of another
statement when no action is desired when the condition occurs.

CONTINUE Statement Examples

 CONTINUE.

 END-IF.
YSIS -CASE-ANAL EXCEPTION PERFORM

 ELSE
E CONTINU

"Y"-RESULT = IF NORMAL

CCEPT. INUE END-A-CODE CONTPTION EXCP ON EXCE
LE ERASE EOTION UPDATRT-DESCRIP ACCEPT PA

 DELETE Statement (Relative and Indexed I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 285
 First Edition

DELETE Statement (Relative and Indexed I-O)
The DELETE statement logically removes a record from a mass storage file.

[]

[]

[]DELETE-END

KEYINVALIDNOT

KEYINVALID

RECORDDELETE

-2-statementimperative

-1-statementimperative

1file-name-

After the successful execution of a DELETE statement, the identified record has
been logically removed from the file and can no longer be accessed.

The execution of a DELETE statement does not affect the contents of the record area
associated with file-name-1 or the contents of the data item referenced by the data-
name specified in the DEPENDING ON phrase of the RECORD clause associated
with file-name-1.

The file referenced by file-name-1 must be open in the I-O mode at the time of
execution of this statement.

For a file in sequential access mode, the last input-output statement executed for
file-name-1 prior to the execution of the DELETE statement must have been a
successfully executed READ statement. The runtime system logically removes from
the file the record that was accessed by that READ statement.

For a file in random or dynamic access mode, except for an indexed file described
with the DUPLICATES phrase in the RECORD KEY clause, the runtime system
logically removes from the file the record identified by the contents of the key data
item associated with file-name-1. If the file does not contain the record specified by
the key, the invalid key condition exists. For a relative file, the key data item is the
relative key data item specified in the RELATIVE KEY phrase of the ACCESS
MODE clause of the file control entry for file-name-1. For an indexed file, the key
data item is the prime key data item specified in the RECORD KEY clause of the file
control entry for file-name-1.

For an indexed file described with the DUPLICATES phrase in the RECORD KEY
clause, the DELETE statement in the dynamic access mode is executed as if the file
were in the sequential access mode and the DELETE statement in the random access
mode is not allowed.

The execution of the DELETE statement causes the value of the specified file status
data item, if any, associated with file-name-1 to be updated.

The file position indicator is not affected by the execution of a DELETE statement.

The INVALID KEY phrase and the NOT INVALID KEY phrase must not be
specified for a DELETE statement that references a file which is in sequential
access mode.

The INVALID KEY phrase must be specified for a DELETE statement that
references a file which is not in sequential access mode and for which an applicable
USE procedure is not specified.

DELETE Statement (Relative and Indexed I-O)
Chapter 6: Procedure Division Statements

286 RM/COBOL Language Reference Manual
 First Edition

See the section on relative organization input-output (on page 219) or the section on
indexed organization input-output (on page 225) for additional information on the
invalid key condition and the use of the INVALID KEY and NOT INVALID KEY
phrases.

The record to be deleted by the execution of the DELETE statement must not be
locked by another run unit. For a shared input-output file, the run unit executing the
DELETE statement should obtain a record lock by preceding the DELETE statement
with a READ statement that locks the record to be deleted. If the run unit does not
already hold a lock on the record to be deleted, the runtime system will attempt to
obtain the lock. If the lock cannot be obtained because another run unit holds a lock
on the record, subsequent action of the program is as described for the READ
statement when attempting to lock a record already locked by another run unit. If the
lock cannot be obtained because this run unit holds a lock on the record through
another COBOL file-name, the DELETE statement is unsuccessful. For additional
information on coordinating file updates in a shared file environment, see File
Locking (on page 233) and Record Locking (on page 234).

After successful execution of the DELETE statement, any record lock held by the run
unit on the deleted record is released regardless of the record locking mode
applicable to file-name-1.

In single record locking modes when a different record than the one being deleted is
locked, that record lock is released upon execution of the DELETE statement.

In multiple record locking modes any record locks held by the run unit for
file-name-1 are not released upon execution of the DELETE statement, except for
the record lock on the deleted record.

DELETE Statement Examples

ND-DELETE.ROCEDURE E BAD-KEY-P PERFORM
EY INVALID KLE RECORD;VENTORY-FI DELETE IN

RECORD. ATUS-FILE DELETE ST

E. END-DELET
LERCCESS-HANDFORM DB-SUID KEY PER NOT INVAL
LER D-KEY-HAND DB-INVALIEY PERFORM INVALID K

CORDTA-BASE RE DELETE DA
TO DB-KEY.ELETE-KEY MOVE DB-D

 DELETE FILE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 287
 First Edition

DELETE FILE Statement
The DELETE FILE statement causes the removal of the referenced files from the
runtime file structure.

{ } []DELETE-ENDFILEDELETE L2file-name-

Each file referred to by file-name-1 is deleted from the runtime file structure
provided the following conditions are all true:

• The file is not in the open mode.

• The file was not previously closed with lock during this execution of the
program.

• The file exists.

• The runtime file system supports file deletion.

• The file is not protected from deletion by a mechanism of the runtime file
system.

• The fixed file attributes specified for the file match the actual fixed file attributes
of the existing file.

For each file referred to by file-name-1, the value of its file status data item, if any,
is updated.

When a DELETE FILE statement references a file that does not exist, the statement
executes successfully. Otherwise, a failure of deletion causes the execution of any
applicable USE procedure.

DELETE FILE Statement Examples

FILE-2. LE-1 TEMP-LE TEMP-FI DELETE FI

LETE. ILE END-DENSACTION-FLE OLD-TRA DELETE FI

DISABLE Statement
Chapter 6: Procedure Division Statements

288 RM/COBOL Language Reference Manual
 First Edition

DISABLE Statement
The DISABLE statement notifies the Message Control System (MCS) to inhibit data
transfer between specified output queues and destinations for output, between
specified sources and input queues for input or between the program and one
specified source or destination for input-output.

[]



































literal-1
-1identifiercd-name-1 KEYWITH

TERMINAL
OUTPUT

TERMINALO-I
TERMINALINPUT

DISABLE

cd-name-1 is defined below for each phrase.

identifier-1 must refer to a data item of category alphanumeric.

literal-1 must be a nonnumeric literal.

The DISABLE statement provides a logical disconnection between the MCS and the
specified sources or destinations. When this logical disconnection is already in
existence, or is to be handled by some other means external to this program, the
DISABLE statement is not required in this program. No action is taken when a
DISABLE statement is executed which specifies a source or destination that is
already disconnected, except that the value in the status key data item indicates this
condition. The logical path for the transfer of data between the object programs and
the MCS is not affected by the DISABLE statement.

The MCS ensures that the execution of a DISABLE statement causes the logical
disconnection at the earliest time the source or destination is inactive. The execution
of the DISABLE statement never causes the remaining portion of the message to be
terminated during transmission to or from a terminal.

A DISABLE statement that lacks an INPUT, OUTPUT, I-O or TERMINAL
keyword is treated according to the format of the description of the cd-name:

• A DISABLE statement that refers to an INPUT cd-name and does not specify
the INPUT keyword is treated as if the INPUT clause without the keyword
TERMINAL were specified.

• A DISABLE statement that refers to an OUTPUT cd-name and does not specify
the OUTPUT keyword is treated as if the OUTPUT clause were specified.

• A DISABLE statement that refers to an I-O cd-name and does not specify the
I-O keyword is treated as if the I-O TERMINAL clause were specified.

 DISABLE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 289
 First Edition

INPUT Phrase

[]TERMINALINPUT

cd-name-1 must reference an input CD when the INPUT phrase is specified.

When the INPUT phrase with the optional word TERMINAL is specified, the logical
paths between the source and all of its associated queues and subqueues are
deactivated. Only the contents of the data item referenced by data-name-7
(SYMBOLIC SOURCE) of the area referenced by cd-name-1 are meaningful.

When the INPUT phrase without the optional word TERMINAL is specified, the
logical paths for all of the enabled sources associated with the queues and subqueues
specified by the contents of data-name-1 (SYMBOLIC QUEUE) through data-
name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by cd-name-1 are
deactivated.

I-O TERMINAL Phrase

TERMINALO-I

cd-name-1 must reference an input-output CD when the I-O TERMINAL phrase
is specified.

When the I-O TERMINAL phrase is specified, the logical path between the source
and the program is deactivated. The source is defined by the contents of the data
item referenced by data-name-3 (SYMBOLIC TERMINAL) of the area referenced
by cd-name-1.

OUTPUT Phrase

OUTPUT

cd-name-1 must reference an output CD when the OUTPUT phrase is specified.

When the OUTPUT phrase is specified, the logical paths for all destinations,
specified by the contents of the data item referenced by data-name-5 (SYMBOLIC
DESTINATION) of the area referenced by cd-name-1, are deactivated.

TERMINAL Phrase

TERMINAL

cd-name-1 must reference either an input or an input-output CD. If cd-name-1 refers
to an input CD, the DISABLE statement is treated as if it specified the INPUT
TERMINAL phrase; if cd-name-1 refers to an I-O CD, the DISABLE statement is
treated as if it specified the I-O TERMINAL phrase.

DISABLE Statement
Chapter 6: Procedure Division Statements

290 RM/COBOL Language Reference Manual
 First Edition

WITH KEY Phrase









literal-1
-1identifierKEYWITH

In the WITH KEY phrase, literal-1 or the contents of the data item referenced by
identifier-1 are compared with a password built into the system. The DISABLE
statement is honored only if literal-1 or the contents of the data item referenced by
identifier-1 match the system password. When literal or the contents of the data item
referenced by identifier-1 do not match the system password, the value of the
STATUS KEY item in the area referenced by cd-name-1 is updated.

If the WITH KEY phrase is omitted, the DISABLE statement is honored only if a
password is not required by the system.

DISABLE Statement Example

-COM. NPUT INPUT DISABLE I

 PASSWORD. H KEY COM-LINE-1 WITUTPUT COM- DISABLE O

 DISPLAY . . . UPON Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 291
 First Edition

DISPLAY . . . UPON Statement
The DISPLAY . . . UPON statement causes individual data items to be displayed on
an appropriate hardware device.

Format 1: Display Upon System-Name

[]ADVANCINGNOWITH

UPONDISPLAY 
























1-I-O-name-low-volume
ame-3mnemonic-n

literal-1
-1identifier

L

The DISPLAY statement transfers the contents of each sending operand, identifier-1
or literal-1 to the hardware device in the order listed.

In a Format 1 DISPLAY statement, the contents of the data item referred to by
identifier-1 or the value of literal-1 is transmitted to the standard output device.
The presence of the UPON phrase may affect which output device is used. If
mnemonic-name-3 is used in the UPON phrase, it must have been defined in the
SPECIAL-NAMES paragraph of the Environment Division with the
low-volume-I-O-name-1 IS mnemonic-name-3 clause. The associated
low-volume-I-O-name-1 must be CONSOLE or SYSOUT.

The size of a data transfer is determined at program execution time; see the
RM/COBOL User’s Guide for details. If the size of the data item being transferred is
not the same as that determined, one of the following applies:

1. If the size of the data item being transferred exceeds the determined size, the
data beginning with the leftmost character is displayed aligned to the left on the
terminal screen for a length of the determined size, and then this rule is reapplied
to the remaining characters to the right until all the data has been transferred.

2. If the size of the data item being transferred is less than the determined size, the
transferred data is displayed aligned to the left on the terminal screen.

When the DISPLAY statement contains more than one operand, the size of the
sending item is the sum of the sizes of the operands, and the values of the operands
are transferred in the sequence in which the operands are encountered without
modifying the positioning of the cursor between the successive operands.

If the WITH NO ADVANCING phrase is not specified, the positioning of the
standard output device is reset to the leftmost position of the next line following the
transfer of the last operand of the DISPLAY statement.

If the WITH NO ADVANCING phrase is specified, the standard output device
remains positioned at the character position immediately following the last character
of the last operand displayed.

DISPLAY . . . UPON CONSOLE is treated as if CONSOLE IS CONSOLE was
specified in the SPECIAL-NAMES paragraph if CONSOLE has not been otherwise
defined.

DISPLAY . . . UPON SYSOUT is treated as if SYSOUT IS SYSOUT was specified
in the SPECIAL-NAMES paragraph if SYSOUT has not been otherwise defined.

DISPLAY . . . UPON Statement
Chapter 6: Procedure Division Statements

292 RM/COBOL Language Reference Manual
 First Edition

DISPLAY . . . UPON Statement Examples

. ADVANCING WITH NO
 TEM-OUTPUT" UPON SYSSTRING "] [" PROMPT- DISPLAY "

 CONSOLE. SSAGE UPONPERATOR-ME DISPLAY O

 DISPLAY Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 293
 First Edition

DISPLAY Statement (Terminal I-O)
A terminal I-O DISPLAY statement causes individual data items to be displayed on
the terminal screen. DISPLAY statement phrases allow the specification of the
position, form, and format of the displayed data.

Format 2: Display Terminal I-O

L



































































































































































































































































































































literal-6
-6identifier

literal-3
-3identifier

literal-5
-5identifier

literal-4
-4identifier

literal-2
-2identifier

literal-1
-1identifier

SIZE

VIDEO-REVERSE
REVERSED
REVERSE

BLOCKISMODE

POSITION
COL
COLUMN

LINE

AT

LOWLIGHT
LOW
HIGHLIGHT
HIGH

EOS
EOL

ERASE

CONVERT

CONTROL

BLINK
BELL
BEEP

WITHUNITDISPLAY

The DISPLAY statement transfers the contents of each sending operand, identifier-1
or literal-1 to the terminal screen in the order listed.

If a figurative constant is specified as one of the sending operands, only a single
occurrence of the figurative constant is displayed, except as specified in the rules for
the SIZE phrase on page 299.

identifier-2, identifier-3, identifier-5 and identifier-6 must be described as integer
numeric data items. literal-2, literal-3, literal-5 and literal-6 must be nonnegative
integer numeric literals.

identifier-4 must be a nonnumeric data item. literal-4 must be a nonnumeric literal.

Several terms are used to describe the detailed function of each phrase in a Format 2
DISPLAY statement:

1. The term “output field” describes a conceptual data item containing the data
transmitted to the terminal and displayed on the terminal screen. The size of this
data item is determined according to the rules described below (see the
discussion of the SIZE phrase that begins on page 299), and the type of this data
item is alphanumeric.

DISPLAY Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

294 RM/COBOL Language Reference Manual
 First Edition

2. The term “sending item” is synonymous with the data item identifier-1 or
literal-1.

3. The term “screen field” applies to the physical field presented on the screen
itself.

Table 28 shows the relationships of the various Format 2 DISPLAY statement
phrases to the characteristics of the output field and the screen field subject to control
by the program.

Table 28: DISPLAY Statement Phrases and Output and Screen Fields

Characteristic Phrases

Screen field position LINE, POSITION, ERASE, SIZE, UNIT, CONTROL

Screen field size identifier-1, CONVERT, SIZE, CONTROL

Visual attributes ERASE, HIGH, LOW, BLINK, REVERSE, CONTROL

Audio attribute BEEP, CONTROL

Output conversion CONVERT, CONTROL

Note that the CONTROL phrase may be used in many instances to allow dynamic
(that is, runtime as opposed to compile time) specification of characteristics.

Features that require support of the host operating system or terminal hardware may
not be supported in all circumstances. Any features that are not supported compile
correctly but are ignored at runtime. See the RM/COBOL User’s Guide for each
implementation environment in order to obtain specific details. Also note that some
phrases may require that character positions on the screen between fields be reserved
for attribute characters (typically, to support the HIGH, LOW, BLINK, REVERSE,
ERASE EOL and ERASE EOS phrases). It is the programmer’s responsibility to
allow for attribute characters by not juxtaposing fields that may require them.

The phrases following a sending operand apply only to that operand. When the
DISPLAY statement contains multiple sending operands and any of the phrases are
omitted for a particular operand, the defaults described below for that phrase are
applied to that operand.

BEEP Phrase









BELL
BEEP

BELL is a synonym for BEEP.

The presence of the BEEP phrase in a DISPLAY statement causes the audio alarm
signal to occur prior to the display of the data. If the BEEP phrase is omitted, no
signal is given.

 DISPLAY Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 295
 First Edition

BLINK Phrase

BLINK

The presence of the BLINK phrase causes the data to be displayed in a blinking
mode. If the BLINK phrase is not specified, the data is displayed in a nonblinking
mode.

CONTROL Phrase









literal-4
-4identifierCONTROL

The value of identifier-4 or literal-4 in the CONTROL phrase is used to specify a
dynamic option list. The value must be a character-string consisting of a series of
keywords delimited by commas; some keywords allow assignment of a value by
following the keyword with an equal sign and the value. Blanks are ignored in the
character-string. Lowercase letters are treated as uppercase letters within keywords.
Keywords specified override corresponding static options specified as phrases for the
same sending item. Keywords may be specified in any order. Keywords, which
specify options that do not apply to the statement, are ignored.

The keywords that affect a DISPLAY statement are BEEP, BLINK, CONVERT,
ERASE, ERASE EOL, ERASE EOS, HIGH, LOW, NO BEEP, NO BLINK, NO
CONVERT, NO ERASE, NO REVERSE, NO UNDERLINE, REVERSE and
UNDERLINE. The meanings of these keywords when they appear in the value of
the CONTROL phrase operand are the same as the corresponding phrases which may
be written as static options of the DISPLAY statement, with the addition of the
negative forms to allow suppression of statically declared options. The keyword
UNDERLINE is an exception. It is not recognized as a static option, but it may be
used in the value of the CONTROL phrase operand. When it is used, there it causes
the field on the screen to be shown in underline mode, provided the terminal supports
that mode. Additional keywords may be supported in environments that have
device-dependent functions (for example, color control); see the RM/COBOL User’s
Guide for the specific implementation.

The keywords are grouped by function such that only the rightmost appearance in the
control value of a keyword from a functional group actually affects the screen field.
The groupings are as follows:

1. Erasure: ERASE, ERASE EOL, ERASE EOS, NO ERASE

2. Alarm: BEEP, NO BEEP

3. Intensity: HIGH, LOW, OFF

4. Blinking: BLINK, NO BLINK

5. Video: REVERSE, NO REVERSE

6. Output data conversion: CONVERT, NO CONVERT

7. Underscoring: UNDERLINE

DISPLAY Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

296 RM/COBOL Language Reference Manual
 First Edition

CONVERT Phrase

CONVERT

The presence of the CONVERT phrase causes the contents of the sending item to be
converted before being moved to the output field and displayed.

If the sending item is numeric or numeric edited and CONVERT is specified, the
value of the sending item is converted from its internal form into display digits,
which are moved to the output field with leading zero digits removed. The display
digits are left justified in the output field, with a leading, separate minus sign
provided if the value is negative and an explicit decimal point provided if the sending
item is noninteger. The representation of this explicit decimal point is a period,
except that, if the DECIMAL-POINT IS COMMA clause is specified in the source
program, a comma is used instead. Unused character positions to the right of the
converted number in the output field are space filled. If the SIZE phrase specifies a
value too small for the converted number, the string resulting from the conversion is
truncated on the right.

If the sending item is nonnumeric, or if the CONVERT phrase is not specified, the
sending item is treated as an alphanumeric item and the contents of the sending item
are moved to the output field according to the rules of a simple alphanumeric move
(that is, left justified, with space fill to the right).

ERASE Phrase







EOS
EOLERASE

The presence of the ERASE phrase without either of the reserved words EOL or EOS
causes the entire screen of the terminal to be erased. The current line and current
position are set to 1.

The presence of the ERASE EOL phrase causes the portion of the line containing the
leftmost character of the screen field to be erased from the leftmost character of the
screen field to the rightmost character of that line.

The presence of the ERASE EOS phrase causes the portion of the screen to be erased
from the leftmost character of the screen field to the rightmost character of the
bottom line of the screen.

In all three cases above, erasure occurs before any data is displayed in the screen
field.

When the ERASE phrase is not specified, no erasure occurs before displaying the
data. The displayed data will replace any previous contents of the screen field and
the remainder of the screen will be undisturbed.

 DISPLAY Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 297
 First Edition

HIGH and LOW Phrases



















LOWLIGHT
LOW
HIGHLIGHT
HIGH

HIGHLIGHT is a synonym for HIGH. LOWLIGHT is a synonym for LOW.

The presence of the HIGH or LOW phrase causes the data to be displayed at the
specified intensity. When HIGH or LOW is not specified, the default intensity
is HIGH.

LINE and POSITION Phrases



























































literal-3
-3identifier

literal-5
-5identifier

POSITION
COL
COLUMN

LINE

AT

COLUMN and COL are synonyms for POSITION.

The screen field is positioned on the terminal screen by specifying the line and
position (that is, the character position within the line) of the leftmost character of the
screen field. The top line of the terminal screen is line 1, the line below line 1 is
line 2, and so forth. The rightmost character position of a line is immediately
followed by the leftmost character position (position 1) of the line below; a screen
field may overlap line boundaries on the terminal screen. The leftmost character of
the screen field refers to the leftmost character position of that portion of the screen
field that is on the topmost line containing a portion of the screen field. Similarly,
the rightmost character position of the screen field refers to the rightmost character
position of that portion of the screen field that is on the bottommost line containing a
portion of the screen field.

The current line and current position prior to the DISPLAY operation for each
identifier-1 may affect the position of the screen field as described in the rules below.
At the beginning of a run unit, the current line is the last (bottommost) line and the
current position is the leftmost (position 1) of that line. The current line and current
position are changed by each Format 3 ACCEPT and Format 2 DISPLAY operation
to be the line and position of the character immediately succeeding the rightmost
character of the screen field. If the ERASE phrase (without EOL or EOS) is
specified for the same identifier-1, the current line and current position are both set
to 1.

The value of identifier-5 or literal-5 in the LINE phrase specifies the line value for
the leftmost character of the screen field. The value of identifier-3 or literal-3 in
the POSITION phrase specifies the position value for the leftmost character of the
screen field.

DISPLAY Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

298 RM/COBOL Language Reference Manual
 First Edition

Determining Line and Position

If the POSITION phrase is omitted, the position value is set to 1 for the first
identifier-1 of a Format 2 DISPLAY statement; this value is also set to 1 if a UNIT
phrase is specified for the same identifier-1. It is set to zero in all other cases.

If the line value is zero, or if the LINE phrase is omitted, the line value is set
according to the following rules:

1. If an ERASE phrase (without EOL or EOS) is specified for the same
identifier-1, the line value is set to 1.

2. If the position value is not equal to zero, the line value is set to the current line
plus 1.

3. If the position value is equal to zero, the line value is set to the current line.

If the position value is greater than the maximum number of characters within a line,
the position value is reduced by the maximum number of characters within a line and
the line value is incremented by 1. This process is repeated until the position value is
not greater than the maximum number of characters within a line.

If the position value is equal to zero, the position value is set to the current position.

If the line value exceeds the number of lines on the screen, the contents of the screen
are scrolled up one line and the line value is set to the number of lines on the screen.

If the line of the rightmost character of the screen field exceeds the number of lines
on the screen, the contents of the screen are scrolled up the amount of the excess and
the line value is reduced by the amount of the excess.

The resulting line value and position value specify the position of the leftmost
character of the screen field.

MODE IS BLOCK Phrase

BLOCKISMODE

The presence of the MODE IS BLOCK phrase in a DISPLAY statement causes the
display of a group data item as a single field. This is the normal behavior of
RM/COBOL, so if the phrase is omitted, a group is still displayed as a single field.
The phrase is allowed for compatibility with other dialects of COBOL.

REVERSE Phrase













VIDEO-REVERSE
REVERSED
REVERSE

REVERSED and REVERSE-VIDEO are synonyms for REVERSE.

The presence of the REVERSE phrase causes the data to be displayed in a reverse
video mode. If the REVERSE phrase is not specified, the data is displayed in normal
video mode.

 DISPLAY Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 299
 First Edition

SIZE Phrase









literal-6
-6identifierSIZE

The value of identifier-6 or literal-6 in the SIZE phrase specifies the size of the
screen field and the output field.

If the SIZE phrase is not present or a value of zero is specified, the size of
identifier-1 or literal-1 is used. If identifier-1 or literal-1 is numeric or numeric
edited and the CONVERT phrase is specified for the same identifier-1 or literal-1,
the size is considered to be the number of digits (9’s and P’s) defined in the
PICTURE character-string or literal plus one if the item is signed and plus one if the
item is noninteger.

If literal-1 is a figurative constant and the SIZE phrase is specified, then the
figurative constant is repeated to match the specified size before being displayed.

UNIT Phrase









literal-2
-2identifierUNIT

The UNIT phrase, if specified, must be written first. The other phrases may be
written in any order.

The value of identifier-2 or literal-2 in the UNIT phrase specifies the terminal upon
which the data is to be displayed. If the UNIT phrase is omitted, the terminal that
started the run unit is used.

The UNIT phrase may be ignored by some runtime implementations except in its
effect on the default value of the POSITION phrase (described previously). This
situation will occur in all systems that do not allow the use of terminals other than
the one associated with the run unit execution.

DISPLAY Statement (Terminal I-O)
Chapter 6: Procedure Division Statements

300 RM/COBOL Language Reference Manual
 First Edition

DISPLAY Statement (Terminal I-O) Examples

 BLINK.BER, HIGH,; GATE-NUMN 1, ERASE POSITIO
 E FLT-LN, ate:", LINiving at gFlight arr DISPLAY "

MN 5. NE 12 COLUcode: " LIEnter job DISPLAY "

 ASE HIGH. LINE 1 ERENU-HEADER DISPLAY M

000" splays "00 5. *> diEROES SIZE DISPLAY Z

ter) ote charac"" (one quisplays ""UOTE. *> d DISPLAY Q

E EOL". HIGH, ERAS CONTROL "EPORT-LINE DISPLAY R

). ontrol (ix display-c CONTROL
 (ix),splay-size SIZE di
mn (ix),splay-colu COL di
 (ix),splay-line LINE di
a (ix),isplay-dat DISPLAY d

 DISPLAY Screen-Name Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 301
 First Edition

DISPLAY Screen-Name Statement
The DISPLAY Screen-Name statement moves data onto the terminal screen from
literals or from data items defined in the Data Division. The organization, placement
and visual attributes of the fields on the screen are defined in the Screen Section of
the Data Division.

Format 3: Display Screen-Name

L



































































































integer-2
-2identifier

integer-1
-1identifier

e-1screen-nam

NUMBERCOL
COLUMN

NUMBERLINE

ATDISPLAY

COL is a synonym for COLUMN.

A DISPLAY statement that specifies multiple screen names is equivalent to a series
of DISPLAY statements, one for each of the specified screen names.

Each screen-name-1 must be defined as an elementary or group entry in the Screen
Section of the Data Division. If screen-name-1 is an elementary item, it is treated as
if it were a group consisting of the single elementary item to which it refers.
identifier-1 and identifier-2, when used, must refer to elementary numeric integer
data items.

If the LINE phrase is specified, the value of integer-1 or the current value of the data
item referred to by identifier-1 is used as an increment to each of the explicit or
implicit LINE specifications within screen-name, thus shifting the screen downward
the specified number of lines.

A similar rule applies if the COLUMN phrase is specified: the value of integer-2 or
the current value of the data item referred to by identifier-2 is used as an increment to
each of the explicit or implicit COLUMN specifications within screen-name-1, thus
shifting the screen to the right the specified number of columns.

Each elementary item subordinate to screen-name-1 is acted on in response to a
DISPLAY statement. Areas of the screen not specifically changed by fields within
screen-name-1 remain unchanged. All the attributes meaningful for output
operations are effective. This excludes AUTO, FULL, REQUIRED and SECURE.
For fields defined with a VALUE clause, the literal is moved to the screen field. For
fields defined with a PICTURE clause that has a FROM or USING option, the value
of the associated item is moved to the screen field item and to the retained value. For
fields defined with a PICTURE clause that has the TO option and no FROM option,
the screen field and the retained value are filled with underline characters.

Numeric data items are always displayed with output conversion. (See the
discussion of the CONVERT phrase on page 296 for an explanation of output
conversion.)

The appearance of the screen is undefined and unpredictable when LINE or
COLUMN values are specified such that screen fields extend beyond the boundaries
of the physical screen, either horizontally or vertically.

DISPLAY Screen-Name Statement
Chapter 6: Procedure Division Statements

302 RM/COBOL Language Reference Manual
 First Edition

DISPLAY Screen-Name Statement Examples

 COLUMN 5. M LINE 10 NVOICE-FOR DISPLAY I

NE 9. CORD AT LIMPLOYEE-RE DISPLAY E

 EOB-LINE. -COL LINE AT COL EOBOB-SCREEN DISPLAY E

 DIVIDE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 303
 First Edition

DIVIDE Statement
The DIVIDE statement divides one numeric data item into another and stores the
quotient and remainder.

Format 1: Divide…Into

[]{ }

[]

[]

[]DIVIDE-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDINTODIVIDE

-2-statementimperative

-1-statementimperative

-2identifierliteral-1
-1identifier L









Format 2: Divide…Into…Giving

[]{ }

[]

[]

[]DIVIDE-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDGIVING

INTODIVIDE

-2-statementimperative

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-1
-1identifier

L

















Format 3: Divide…By…Giving

[]{ }

[]

[]

[]DIVIDE-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDGIVING

BYDIVIDE

-2-statementimperative

-1-statementimperative

-3identifier

literal-1
-1identifier

literal-2
-2identifier

L

















DIVIDE Statement
Chapter 6: Procedure Division Statements

304 RM/COBOL Language Reference Manual
 First Edition

Format 4: Divide…Into…Giving…Remainder

[]

[]

[]

[]DIVIDE-END

ERRORSIZEONNOT

ERRORSIZEON

REMAINDERROUNDEDGIVING

INTODIVIDE

-2-statementimperative

-1-statementimperative

-4identifier-3identifier

literal-2
-2identifier

literal-1
-1identifier

















Format 5: Divide…By…Giving…Remainder

[]

[]

[]

[]DIVIDE-END

ERRORSIZEONNOT

ERRORSIZEON

REMAINDERROUNDEDGIVING

BYDIVIDE

-2-statementimperative

-1-statementimperative

-4identifier-3identifier

literal-1
-1identifier

literal-2
-2identifier

















In Format 1, the value of identifier-1 or literal-1 is divided into the value of each
identifier-2. The value of each dividend (identifier-2) is replaced by this quotient.

In Format 2, the value of identifier-1 or literal-1 is divided into the value of
identifier-2 or literal-2 and the result is stored in each identifier-3.

In Format 3, the value of identifier-2 or literal-2 is divided by the value of
identifier-1 or literal-1 and the result is stored in each identifier-3.

In Format 4, the value of identifier-1 or literal-1 is divided into the value of
identifier-2 or literal-2; the result is stored in identifier-3, and the remainder is stored
in identifier-4.

In Format 5, the value of identifier-2 or literal-2 is divided by the value of
identifier-1 or literal-1; the result is stored in identifier-3, and the remainder is
stored in identifier-4.

Each identifier must refer to an elementary numeric item, except that any identifier
associated with the GIVING phrase may refer to either an elementary numeric item
or an elementary numeric edited item.

Each literal must be a numeric literal.

Additional rules and explanations regarding features of the DIVIDE statement that
are common to other arithmetic statements can be found in the discussion of common
rules (on page 192). See in particular the discussions of the ROUNDED phrase, the
size error condition, overlapping operands, modes of operation, composite size, and
incompatible data.

 DIVIDE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 305
 First Edition

REMAINDER Phrase

[] -4identifier-3identifier REMAINDERROUNDEDGIVING

Formats 4 and 5 are used when a remainder from the division operation is desired,
namely identifier-4. The remainder is defined as the result of subtracting the product
of the quotient (identifier-3) and the divisor from the dividend. If identifier-3 is
defined as a numeric edited item, the quotient used to calculate the remainder is an
intermediate field that contains the unedited quotient. If ROUNDED is used, the
quotient used to calculate the remainder is an intermediate field which contains the
quotient of the DIVIDE statement, truncated rather than rounded. The intermediate
field used in these calculations has the same number of digit positions and the same
scale as identifier-3.

In Formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4) is
defined by the calculation described above.

Appropriate decimal alignment and truncation (not rounding) is performed for the
content of the data item referenced by identifier-4, as needed. When the composite
of the quotient and dividend operands contains more than 19 digits, the accuracy of
the REMAINDER data item may be greater than that obtainable by the use of a
COMPUTE statement which duplicates the calculation described above.

When the ON SIZE ERROR phrase is used in Formats 4 and 5, the following rules
pertain:

1. If the size error condition occurs on the quotient, no remainder calculation is
meaningful. Thus, the contents of the data items referenced by both identifier-3
and identifier-4 remain unchanged.

2. If the size error condition occurs on the remainder, the contents of the data item
referenced by identifier-4 remain unchanged.

It is the user’s responsibility to determine which situation has actually occurred.

DIVIDE Statement
Chapter 6: Procedure Division Statements

306 RM/COBOL Language Reference Manual
 First Edition

DIVIDE Statement Examples

FTEs D. *> 10 L-WORK-LOA INTO TOTA DIVIDE 10

RK-LOAD.AVERAGE-WO GIVING
FTEs *> 6 -WORK-LOADINTO TOTAL DIVIDE 6

E. END-DIVID
W-ROUTINERM OVERFLORROR PERFO ON SIZE E

RK-LOADAVERAGE-WO GIVING
FTEs *> 2.5 OAD BY 2.5TAL-WORK-L DIVIDE TO

ER-1.ER REMAIND REMAIND
 ROUNDEDQUOTIENT-1 GIVING

D-1 TO DIVIDENVISOR-1 IN DIVIDE DI

E. END-DIVID
LAG ZE-ERROR-F "E" TO SIRROR MOVE ON SIZE E

ER-1ER REMAIND REMAIND
QUOTIENT-1 GIVING

1Y DIVISOR-VIDEND-1 B DIVIDE DI

 ENABLE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 307
 First Edition

ENABLE Statement
The ENABLE statement notifies the Message Control System (MCS) to allow data
transfer between specified output queues and destinations for output, between
specified sources and input queues for input or between the program and one
specified source or destination for input-output.

[]




































literal-1
-1identifier

cd-name-1 KEYWITH

TERMINAL
OUTPUT

TERMINALO-I
TERMINALINPUT

ENABLE

cd-name-1 is defined below for each phrase.

identifier-1 must refer to a data item of category alphanumeric.

literal-1 must be a nonnumeric literal.

The ENABLE statement provides a logical connection between the MCS and the
specified sources or destinations. When this logical connection is already in
existence, or is to be handled by a means external to this program, the ENABLE
statement is not required in this program. No action is taken when an ENABLE
statement is executed which specifies a source or destination that is already
connected, except that the value in the status key data item indicates this condition.
The logical path for the transfer of data between the object programs and the MCS is
not affected by the ENABLE statement.

An ENABLE statement that lacks an INPUT, OUTPUT, I-O or TERMINAL
keyword is treated according to the format of the description of the cd-name:

• An ENABLE statement that refers to an INPUT cd-name and does not specify
the INPUT keyword is treated as if the INPUT phrase without the keyword
TERMINAL were specified.

• An ENABLE statement that refers to an OUTPUT cd-name and does not specify
the OUTPUT keyword is treated as if the OUTPUT phrase were specified.

• An ENABLE statement that refers to an I-O cd-name and does not specify the
I-O keyword is treated as if the I-O TERMINAL phrase were specified.

ENABLE Statement
Chapter 6: Procedure Division Statements

308 RM/COBOL Language Reference Manual
 First Edition

INPUT Phrase

[]TERMINALINPUT

cd-name-1 must reference an input CD when the INPUT phrase is specified.

When the INPUT phrase with the optional word TERMINAL is specified, the logical
paths between the source and all of its associated queues and subqueues are
activated. Only the contents of the data item referenced by data-name-7
(SYMBOLIC SOURCE) of the area referenced by cd-name-1 are meaningful to
the MCS.

When the INPUT phrase without the optional word TERMINAL is specified, the
logical paths for all of the sources associated with the queues and subqueues
specified by the contents of data-name-1 (SYMBOLIC QUEUE) through
data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by cd-name-1
are activated.

I-O TERMINAL Phrase

TERMINALO-I

cd-name-1 must reference an input-output CD when the I-O TERMINAL phrase
is specified.

When the I-O TERMINAL phrase is specified, the logical path between the source
and the program is activated. The source is defined by the contents of the data item
referenced by data-name-3 (SYMBOLIC TERMINAL) of the area referenced by
cd-name-1.

OUTPUT Phrase

OUTPUT

cd-name-1 must reference an output CD when the OUTPUT phrase is specified.

When the OUTPUT phrase is specified, the logical paths for all destinations,
specified by the contents of the data item referenced by data-name-5 (SYMBOLIC
DESTINATION) of the area referenced by cd-name-1 are activated.

TERMINAL Phrase

TERMINAL

cd-name-1 must reference either an input or an input-output CD. If cd-name-1 refers
to an input CD, the ENABLE statement is treated as if it specified the INPUT
TERMINAL phrase; if cd-name-1 refers to an I-O CD, the ENABLE statement is
treated as if it specified the I-O TERMINAL phrase.

 ENABLE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 309
 First Edition

WITH KEY Phrase









literal-1
-1identifierKEYWITH

In the WITH KEY phrase, literal-1 or the contents of the data item referenced by
identifier-1 are compared with a password built into the system. The ENABLE
statement is honored only if literal-1 or the contents of the data item referenced by
identifier-1 match the system password. When literal-1 or the contents of the data
item referenced by identifier-1 do not match the system password, the value of the
status key item in the area referenced by cd-name-1 is updated.

If the WITH KEY phrase is omitted, the ENABLE statement is honored only if a
password is not required by the system.

ENABLE Statement Examples

T. AL COM-PORPUT TERMIN ENABLE IN

ASSWORD. KEY COM-PINE-1 WITHTPUT COM-L ENABLE OU

ENTER Statement
Chapter 6: Procedure Division Statements

310 RM/COBOL Language Reference Manual
 First Edition

ENTER Statement
The ENTER statement provides a means of allowing the use of more than one
language in the same program. In RM/COBOL, no other source language is allowed
in the source program.

[]me-1routine-naame-1language-nENTER

language-name-1 may be any COBOL word.

routine-name-1 is a COBOL word and may be referred to only in an ENTER
sentence.

The ENTER statement must appear only in a sentence by itself.

The sentence ENTER COBOL must follow the last statement of the other language
in order to indicate to the compiler where a return to COBOL source language takes
place. It must be followed by a separator period.

The statements of the other language are executed in the object program as if they
had been compiled into the object program following the ENTER statement.

No other languages may appear in a COBOL source program following an
ENTER statement.

routine-name-1 indicates the portion of other-language coding to be executed at this
point in the procedure sequence when the entered language cannot be written in-line.
If the other language statements are written in-line, routine-name-1 is not used.

The ENTER statement is accepted as commentary for compatibility with other
COBOL implementations. The CALL statement may be used to execute object
programs from other language processors.

ENTER Statement Examples

OL. ENTER COB
 ENT-GROUP.SING ARGUMROUTINE" U CALL "SUB

KAGE. ENTER LIN

UTINE-1. TRAN SUBRO ENTER FOR

 EVALUATE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 311
 First Edition

EVALUATE Statement
The EVALUATE statement describes a multibranch, multijoin structure. It can
cause multiple conditions to be evaluated. The subsequent action of the object
program depends on the results of these evaluations.

[]

[]

[]

[]EVALUATE-END

OTHERWHEN

THRU
THROUGHNOT

FALSE
TRUE

ANY

ALSO

THRU
THROUGHNOT

FALSE
TRUE

ANY

WHEN

FALSE
TRUE

ALSO

FALSE
TRUE

EVALUATE

-2-statementimperative

-1-statementimperative

n-4-expressioarithmetic
literal-6

-6identifier

n-3-expressioarithmetic
literal-5

-5identifier

2condition-

n-2-expressioarithmetic
literal-4

-4identifier

n-1-expressioarithmetic
literal-3

-3identifier

1condition-

-2expression
literal-2

-2identifier

-1expression
literal-1

-1identifier

L

LL

L



























































































































































































































































































































The operands or the words TRUE and FALSE which appear before the first WHEN
phrase of the EVALUATE statement are referred to individually as selection subjects
and collectively, for all those specified, as the set of selection subjects.

The operands or the words TRUE, FALSE and ANY which appear in a WHEN
phrase of an EVALUATE statement are referred to individually as selection objects
and collectively, for all those specified in a single WHEN phrase, as the set of
selection objects.

The words THROUGH and THRU are synonymous.

Two operands connected by a THROUGH phrase must be of the same class. The
two operands thus connected constitute a single selection object.

EVALUATE Statement
Chapter 6: Procedure Division Statements

312 RM/COBOL Language Reference Manual
 First Edition

The number of selection objects within each set of selection objects must be equal to
the number of selection subjects.

Each selection object within a set of selection objects must correspond to the
selection subject having the same ordinal position within the set of selection subjects
according to the following rules:

1. Identifiers, literals or arithmetic expressions appearing within a selection object
must be valid operands for comparison to the corresponding operand in the set of
selection subjects.

2. condition or the word TRUE or FALSE appearing as a selection object must
correspond to a conditional expression or the word TRUE or FALSE in the set
of selection subjects.

3. The word ANY may correspond to a selection subject of any type.

General Rules for the EVALUATE Statement

The general rules that apply to the EVALUATE statement are as follows:

1. The execution of the EVALUATE statement operates as if each selection subject
and selection object were evaluated and assigned a numeric or nonnumeric
value, a range of numeric or nonnumeric values, or a truth value. These values
are determined as follows:

a. Any selection subject specified by identifier-1, identifier-2, and any
selection object specified by identifier-3, identifier-5 without either the
NOT or the THROUGH phrase, are assigned the value and class of the data
item referenced by the identifier.

b. Any selection subject specified by literal-1, literal-2, and any selection
object specified by literal-3, literal-5 without either the NOT or the
THROUGH phrase, are assigned the value and class of the specified literal.
If literal-3 is the figurative constant ZERO, it is assigned the class of the
corresponding selection subject.

c. Any selection subject in which arith-expr-1, arith-expr-2 is specified as an
arithmetic expression and any selection object, without either the NOT or
the THROUGH phrase, in which arith-expr-3, arith-expr-5 is specified, are
assigned a numeric value according to the rules for evaluating an arithmetic
expression.

d. Any selection subject in which condition-1, condition-2 is specified as a
conditional expression and any selection object in which condition-3,
condition-4 is specified, are assigned a truth value according to the rules for
evaluating conditional expressions.

e. Any selection subject or any selection object specified by the word TRUE
or FALSE is assigned a truth value. The truth value “true” is assigned to
those items specified with the word TRUE, and the truth value “false” is
assigned to those items specified with the word FALSE.

f. Any selection object specified by the word ANY is not further evaluated.

g. If the THROUGH phrase is specified for a selection object, without the
NOT phrase, the range of values includes all permissible values of the
selection subject that are greater than or equal to the first operand and less
than or equal to the second operand according to the rules for comparison.

 EVALUATE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 313
 First Edition

h. If the NOT phrase is specified for a selection object, the values assigned to
that item are all permissible values of the selection subject not equal to the
value, or not included in the range of values, that would have been assigned
to the item had the NOT phrase not been specified.

2. The execution of the EVALUATE statement then proceeds as if the values
assigned to the selection subjects and selection objects were compared to
determine if any WHEN phrase satisfies the set of selection subjects. This
comparison proceeds as follows:

a. Each selection object within the set of selection objects for the first WHEN
phrase is compared to the selection subject having the same ordinal position
within the set of selection subjects.

b. One of the following conditions must be satisfied if the comparison is to be
satisfied:

1) If the items being compared are assigned numeric or nonnumeric
values, or a range of numeric or nonnumeric values, the comparison is
satisfied if the value, or one of the range of values, assigned to the
selection object is equal to the value assigned to the selection subject
according to the rules for comparison.

2) If the items being compared are assigned truth values, the comparison
is satisfied if the items are assigned the identical truth value.

3) If the selection object being compared is specified by the word ANY,
the comparison is always satisfied regardless of the value of the
selection subject.

c. If the above comparison is satisfied for every selection object within the set
of selection objects being compared, the WHEN phrase containing that set
of selection objects is selected as the one satisfying the set of selection
subjects.

d. If the above comparison is not satisfied for one or more selection objects
within the set of selection objects being compared, that set of selection
objects does not satisfy the set of selection subjects.

e. This procedure is repeated for subsequent sets of selection objects, in the
order of their appearance in the source program, until either a WHEN
phrase satisfying the set of selection subjects is selected or until all sets of
selection objects are exhausted.

3. After the comparison operation is completed, execution of the EVALUATE
statement proceeds as follows:

a. If a WHEN phrase is selected, execution continues with the first
imperative-statement-1 following the selected WHEN phrase.

b. If no WHEN phrase is selected and a WHEN OTHER phrase is specified,
execution continues with imperative-statement-2.

c. The scope of execution of the EVALUATE statement is terminated when
execution reaches the end of imperative-statement-1 of the selected WHEN
phrase or the end of imperative-statement-2, or when no WHEN phrase is
selected and no WHEN OTHER phrase is specified.

EVALUATE Statement
Chapter 6: Procedure Division Statements

314 RM/COBOL Language Reference Manual
 First Edition

EVALUATE Statement Examples

ATE. END-EVALU
ION-TYPE BAD-OPERATR PERFORM WHEN OTHE
RT-ITRFORM INSE-INSERT PE WHEN TYPE
TE-ITRFORM DELE-DELETE PE WHEN TYPE
TE-ITRFORM UPDA-UPDATE PE WHEN TYPE

TYPEOPERATION- EVALUATE

ATE. END-EVALU
OR-LEVELM BAD-DAY- PERFORR WHEN OTHE
PROCESSINGM WEEKEND- PERFORSO ANY WHEN 7 AL

SO ANY WHEN 6 AL
ROCESSINGM FRIDAY-P PERFORSO ANY WHEN 5 AL

G-PROCESSINM THURSDAYED" PERFORSO "DETAIL WHEN 4 AL
NG Y-PROCESSIM WEDNESDAED" PERFORSO "DETAIL WHEN 3 AL

PROCESSINGM TUESDAY-ED" PERFORSO "DETAIL WHEN 2 AL
ROCESSING MIDWEEK-P PERFORM
"SUMMARY"RU 4 ALSO WHEN 2 TH

ROCESSINGM MONDAY-P PERFORSO ANY WHEN 1 AL
-VALUEALSO LEVELDAY-VALUE EVALUATE

ATE. END-EVALU
ATE MONTH-UPD PERFORM
NTH-ENDHLY AND MO WHEN MONT
PDATE QUARTER-U PERFORM

D QUARTER-ENTERLY AND WHEN QUAR
DATE ANNUAL-UP PERFORM
EAR-ENDALLY AND Y WHEN ANNU

TRUE EVALUATE

 EXIT Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 315
 First Edition

EXIT Statement
The EXIT statement provides a common end point for a series of procedures. The
EXIT PROGRAM statement marks the logical end of a called program. The EXIT
PERFORM statement provides a means of exiting an in-line PERFORM (with or
without returning to any specified test). The EXIT PARAGRAPH or EXIT
SECTION statements provide a means of exiting a structured procedure without
executing any of the following statements within a procedure.

Format 1: Exit Paragraph

EXIT

Format 2: Exit Program

PROGRAMEXIT

Format 3: Exit In-Line Perform

[]CYCLEPERFORMEXIT

Format 4: Exit Paragraph or Section









SECTION
PARAGRAPHEXIT

The Format 1 EXIT statement must appear in a sentence by itself, and that sentence
must be the only sentence in the paragraph.

If a Format 2, Format 3, or Format 4 EXIT statement appears in a consecutive
sequence of imperative statements within a sentence, it must appear as the last
statement in that sequence.

The Format 2 EXIT PROGRAM statement must not appear in a declarative
procedure in which the GLOBAL phrase is specified.

The Format 1 EXIT statement allows the user to assign a procedure-name to a given
point in a program. Such an EXIT statement has no other effect on the compilation
or execution of the program. The Format 1 EXIT statement, together with its
paragraph-name, is equivalent to an empty paragraph.

If the Format 2 EXIT PROGRAM statement is executed in a program that is not
under the control of a calling program, the EXIT PROGRAM statement causes
execution of the program to continue with the next executable statement.

The execution of a Format 2 EXIT PROGRAM statement in a called program, which
does not possess the initial attribute, causes execution to continue with the next
executable statement following the CALL statement in the calling program. The
program state of the calling program is not altered and is identical to that which

EXIT Statement
Chapter 6: Procedure Division Statements

316 RM/COBOL Language Reference Manual
 First Edition

existed at the time it executed the CALL statement except that the contents of data
items and the contents of data files shared between the calling and called program
may have been changed. The program state of the called program is not altered
except that the ends of the ranges of all PERFORM statements executed by that
called program are considered to have been reached.

Besides the actions specified in the preceding paragraph, the execution of an EXIT
PROGRAM statement in a called program, which possesses the initial attribute, is
equivalent also to executing a CANCEL statement referencing that program.

The Format 3 EXIT PERFORM statement may be specified only in an in-line
PERFORM statement.

The execution of a Format 3 EXIT PERFORM statement without the CYCLE phrase
causes control to be passed to an implicit CONTINUE statement immediately
following the END-PERFORM phrase that matches the most closely preceding, and
as yet unterminated, in-line PERFORM statement.

The execution of a Format 3 EXIT PERFORM statement with the CYCLE phrase
causes control to be passed to an implicit CONTINUE statement immediately
preceding the END-PERFORM phrase that matches the most closely preceding, and
as yet unterminated, in-line PERFORM statement.

The Format 4 EXIT statement with the PARAGRAPH phrase may be specified only
in a paragraph.

The execution of a Format 4 EXIT statement with the PARAGRAPH phrase causes
control to be passed to an implicit CONTINUE statement immediately following the
last statement in the current paragraph.

The Format 4 EXIT statement with the SECTION phrase may be specified only in
a section.

The execution of a Format 4 EXIT statement with the SECTION phrase causes
control to be passed to an implicit CONTINUE statement within an implicit
paragraph immediately following the last statement in the current section.

Exit Statement Examples

 EXIT.
EXIT.KEND-PROC- WEE

CONT.KEND-PROC- WEE

KEND-PROC. WEE

EXIT.KEND-PROC-C THRU WEEEEKEND-PRO PERFORM W

M

M

M

 END-IF.
PROGRAM EXIT

TURN-CODE4096 TO RE MOVE
 THEN

D-TYPE = MY-RECOR-TYPE NOT IF RECORD

 GOBACK Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 317
 First Edition

GOBACK Statement
The GOBACK statement specifies the logical end of a called program.

GOBACK

The GOBACK statement is equivalent to the sequence:

EXIT PROGRAM.
STOP RUN.

The GOBACK statement must appear as the only statement, or as the last of a series
of imperative statements, in a sentence.

The GOBACK statement must not appear in a declarative procedure in which the
GLOBAL phrase is specified.

If control reaches a GOBACK statement while operating under the control of a
CALL statement, control returns to the point in the calling program immediately
following the CALL statement. For details, see the discussion of the Format 2 EXIT
PROGRAM statement in the section EXIT statement (on page 315).

If no CALL statement is active and the GOBACK statement is executed in the main
program, control returns to the invoker (which may be the operating system and thus
cause the end of the run unit).

GOBACK Statement Examples

 GOBACK.

 END-IF.
 GOBACK

RN-CODE96 TO RETU MOVE 40
 THEN

D-TYPE = MY-RECOR-TYPE NOT IF RECORD

GO TO Statement
Chapter 6: Procedure Division Statements

318 RM/COBOL Language Reference Manual
 First Edition

GO TO Statement
The GO TO statement causes control to be transferred from one part of the Procedure
Division to another.

Format 1: Go To (Alterable)

[]name-1procedure-TOGO

Format 2: Go To (Non-Alterable)

name-1procedure-TOGO

Format 3: Go To…Depending On

{ } -1identifiername-1procedure- ONDEPENDINGTOGO L

A Format 1 GO TO statement can only appear in a single statement paragraph and
can be altered with an ALTER statement.

When a paragraph is referenced by an ALTER statement, that paragraph can consist
only of a paragraph header followed by a Format 1 GO TO statement.

If procedure-name-1 is not specified in Format 1, an ALTER statement, referring to
the paragraph containing this GO TO statement, must be executed prior to the
execution of this GO TO statement; otherwise, the run unit is terminated with an
error message when the GO TO statement is executed.

When a Format 1 or 2 GO TO statement is executed, control is transferred to
procedure-name-1 or to another procedure-name if the GO TO statement has been
modified by an ALTER statement.

If a Format 2 GO TO statement appears in a consecutive sequence of imperative
statements within a sentence, it must appear as the last statement in that sequence.

DEPENDING ON Phrase

-1identifierONDEPENDING

When a Format 3 GO TO statement is executed, control is transferred to
procedure-name-1 depending on the value of identifier-1 being 1, 2, . . ., n. If
the value of identifier-1 is anything other than the positive or unsigned integers
1, 2, . . ., n, no transfer occurs and control passes to the next statement in the normal
sequence for execution.

identifier-1 must refer to a numeric integer elementary data item.

 GO TO Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 319
 First Edition

GO TO Statement Example

M

M

M

M

PROC.TE-1-DOWN- STA

OC.TE-1-UP-PR STA

 GO TO.

H.TE-1-SWITC STA

PROC.TE-1-DOWN-TCH TO STATATE-1-SWI ALTER S
 ELSE

OCTE-1-UP-PRTCH TO STATATE-1-SWI ALTER S
1-UP IF STATE-

PROC. TE-1-EXIT- GO TO STA

-PICK.NG ON USER DEPENDI
ICE-3 ICE-2, CHOICE-1, CHO GO TO CHO

IF Statement
Chapter 6: Procedure Division Statements

320 RM/COBOL Language Reference Manual
 First Edition

IF Statement
The IF statement causes a specified condition to be evaluated. The subsequent action
of the object program depends on whether the value of the condition is true or false.

[]IF-END

SENTENCENEXTELSE

SENTENCENEXTTHENIF


























2statement-

1statement-1condition-

statement-1 and statement-2 each represent either an imperative statement or a
conditional statement optionally preceded by an imperative statement.

The scope of an IF statement is terminated by any of the following:

• An END-IF phrase at the same level of nesting.

• A separator period.

• If nested, by an ELSE phrase associated with an IF statement at a higher level of
nesting.

• The next phrase of any statement in which the IF statement is contained.

When an IF statement is executed, the following transfers of control occur:

• If condition-1 is true, statement-1 is executed if specified. If statement-1
contains a procedure branching or conditional statement, control is explicitly
transferred in accordance with the rules of that statement. If statement-1 does
not contain a procedure branching or conditional statement, the ELSE phrase, if
specified, is ignored and control passes to the end of the IF statement.

• If condition-1 is true and the NEXT SENTENCE phrase is specified instead of
statement-1, the ELSE phrase, if specified, is ignored and control passes to the
next executable sentence.

• If condition-1 is false, statement-1 or its surrogate NEXT SENTENCE is
ignored, and statement-2, if specified, is executed. If statement-2 contains a
procedure branching or conditional statement, control is explicitly transferred in
accordance with the rules of that statement; otherwise, upon the completion of
statement-2 control passes to the end of the IF statement. If the ELSE
statement-2 phrase is not specified, statement-1 is ignored and control passes to
the end of the IF statement.

• If condition-1 is false, and the ELSE NEXT SENTENCE phrase is specified,
statement-1 is ignored, if specified, and control passes to the next executable
sentence.

Either statement-1 or statement-2 may contain an IF statement. When this occurs,
the IF statement is said to be nested.

IF statements within IF statements may be considered as paired IF and ELSE and
END-IF combinations, proceeding from left to right. Thus, any ELSE or END-IF
encountered is considered to apply to the most recent preceding IF that has not been
already paired with an ELSE or END-IF.

 IF Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 321
 First Edition

IF Statement Examples

 SENTENCE. ELSE NEXT
TO NUM; CHAR-STR THEN MOVE
 NUMERICHAR-STR IS ELSE IF C

TR; TO ALPHA-S CHAR-STR THEN MOVE
ABETICTR IS ALPH IF CHAR-S

. TO RE-SETOLD-NUM GO IF NUM =

 END-IF.
EDURE TEST-PROC PERFORM

 ELSE
 END-IF

RUN STOP
." ive errorsAY "Excess DISPL

0R-CNT >= 2 IF ERRO
TO ERROR-CN ADD 1 T
"TEST"STR NOT = IF ALPHA-

O NUM. T, ADD 1 TUPPER-LIMI IF NUM <

 END-IF.
 RE-SET PERFORM

 ELSE
O NUM ADD 1 T

 THEN
IT UPPER-LIM LESS THAN IF NUM IS

E. INT-ROUTINPERFORM PRSWITCH-ON IF PRINT-

INITIALIZE Statement
Chapter 6: Procedure Division Statements

322 RM/COBOL Language Reference Manual
 First Edition

INITIALIZE Statement
The INITIALIZE statement provides the ability to set selected types of data fields to
predetermined values; for example, numeric data to zeroes, alphanumeric data to
spaces, or data pointers to NULL.

{ } []

[]DEFAULTTOTHEN

BYDATAREPLACINGTHEN

VALUETOALL

FILLERWITHINITIALIZE











































L

L

literal-1
-2identifieramecategory-n

amecategory-n

-1identifier

where category-name is:





























EDITED-NUMERIC
NUMERIC

POINTER-DATA
EDITED-ICALPHANUMER

ICALPHANUMER
ALPHABETIC

identifier-1 must be of class alphabetic, alphanumeric, numeric, or data pointer.

For the category data-pointer specified in the REPLACING phrase, a SET statement
with identifier-2 or literal-1 as the sending operand and an item of the category data-
pointer as the receiving operand must be valid.

For each of the other categories specified in the REPLACING phrase, a MOVE
statement with identifier-2 or literal-1 as the sending item and an item of the
specified category as the receiving operand must be valid.

The same category cannot be repeated in a REPLACING phrase.

An index data item may not appear as an operand of an INITIALIZE statement.

The data description entry for the data item referenced by identifier-1 must not
contain a RENAMES clause.

General Rules for the INITIALIZE Statement

The general rules that apply to the INITIALIZE statement are as follows:

1. The data item referenced by identifier-1 represents the receiving item.

2. If the REPLACING phrase is specified, literal-1 or the data item referenced by
identifier-2 represents a possible sending item as specified in general rule 6.

3. The keywords in category-name correspond to a category of data as defined
in the discussion of the PICTURE clause (on page 112) or for DATA-
POINTER, by the USAGE IS POINTER clause. If ALL is specified in the
VALUE phrase, it is as if all of the categories listed in the syntax for
category-name were specified.

 INITIALIZE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 323
 First Edition

4. Whether identifier-1 references an elementary item or a group item, the effect of
the execution of the INITIALIZE statement is as though a series of implicit
MOVE or SET statements, each of which has an elementary data item as its
receiving-operand, were executed. The receiving-operands of these implicit
statements are defined in general rule 5 and the sending-operands are defined in
general rule 6.

If the category of a receiving operand is data-pointer, the implicit statement is:

SET receiving-operand TO sending-operand

Otherwise, the implicit statement is:

MOVE sending-operand TO receiving-operand

5. The receiving operand in each implicit MOVE or SET statement is determined
by applying the following steps in order:

a. First, an elementary data item is a possible receiving item if:

1) It is explicitly referenced by identifier-1; or

2) It is contained within the group data item referenced by identifier-1. If
the elementary data item is a table element, each occurrence of the
elementary data item is a possible receiving-operand.

b. Second, the following data items are excluded as receiving-operands:

1) Any identifiers that are not valid receiving operands of a MOVE
statement, except data items of category data-pointer. (For example,
index data items are excluded as receiving-operands.)

2) If the FILLER phrase is not specified, elementary data items with an
explicit or implicit FILLER clause. If the FILLER phrase is specified,
elementary data items with an explicit or implicit FILLER clause are
not excluded and may be initialized by the INITIALIZE statement.

3) Any elementary data item subordinate to identifier-1 whose data
description entry contains a REDEFINES clause or is subordinate to a
data item whose data description entry contains a REDEFINES clause.
However, identifier-1 may itself have a REDEFINES clause or be
subordinate to a data item with a REDEFINES clause.

c. Finally, each non-excluded possible receiving-operand is a receiving item if
at least one of the following is true:

1) The VALUE phrase is specified, the category of the elementary data
item is one of the categories specified or implied in the VALUE phrase,
and the VALUE clause is specified in the data description entry of the
elementary data item.

2) The REPLACING phrase is specified and the category of the
elementary data item is one of the categories specified in the
REPLACING phrase.

3) The DEFAULT phrase is specified or neither the REPLACING nor the
VALUE phrase is specified.

INITIALIZE Statement
Chapter 6: Procedure Division Statements

324 RM/COBOL Language Reference Manual
 First Edition

6. The sending-operand in each implicit MOVE or SET statement is determined as
follows:

a. If the data item being initialized qualifies as a receiving-operand because of
the VALUE phrase, the sending-operand is determined by the literal in the
VALUE clause specified in the data description entry of the receiving-
operand data item. If the data item is a table element, the literal in the
VALUE clause that corresponds to the occurrence being initialized
determines the sending-operand. For categories other than data-pointer,
the actual sending-operand is a literal that, when moved to the receiving-
operand with a MOVE statement, produces the same result as the initial
value of the data item as produced by the application of the VALUE clause.

b. If the data item being initialized does not qualify as a receiving-operand
because of the VALUE phrase, but does qualify because of the
REPLACING phrase, the sending-operand is the literal-1 or identifier-2
associated with the category specified in the REPLACING phrase that
matched the category of the receiving-operand.

c. If the data item does not qualify as a receiving-operand because of the
VALUE or REPLACING phrases, the sending-operand used depends on the
category of the receiving-operand as shown in Table 29.

Table 29: Default Initialization Values

Category of Receiving-Operand Sending-Operand

Alphabetic SPACES

Alphanumeric SPACES

Alphanumeric-edited SPACES

Data-pointer NULL

Numeric ZERO

Numeric-edited ZERO

7. The order of execution of these implicit MOVE and SET statements is the order,
left to right, of the specification of each identifier-1 in the INITIALIZE
statement. Within this sequence, whenever identifier-1 refers to a group data
item, affected elementary data items are initialized in the sequence of their
definition within the group data item. For a fixed-occurrence data item, all
occurrences of the affected elementary data items are initialized. For a variable-
occurrence data item, the number of occurrences initialized is determined by the
rules of the OCCURS clause for a receiving data item.

8. If identifier-1 occupies the same storage area as identifier-2, the result of the
execution of this statement is undefined, even if they are defined by the same
data description entry. For additional information, see Overlapping Operands
(on page 194).

 INITIALIZE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 325
 First Edition

INITIALIZE Statement Examples

-RECORD. -RECORD HRE EMPLOYEE INITIALIZ

". BY ALL "#MERIC DATA ALPHANU
ERO DATA BY ZNG NUMERIC REPLACI

-RECORDE EMPLOYEE INITIALIZ

00.00. DATA BY 1NG NUMERIC REPLACI
DE HR-RECOR INITIALIZ

 DEFAULT. THEN TO
 "#"ATA BY ALLPHABETIC DNUMERIC AL ALPHA

PLACING THEN RE
VALUE ALL TO
LLER WITH FI

-RECORD-RECORD HRE EMPLOYEE INITIALIZ

INSPECT Statement
Chapter 6: Procedure Division Statements

326 RM/COBOL Language Reference Manual
 First Edition

INSPECT Statement
The INSPECT statement provides the ability to tally (Format 1), replace (Format 2),
or tally and replace (Format 3) occurrences of single characters or groups of
characters in a data item.

Format 1: Inspect…Tallying

LL
LL

L







































































































































literal-2
-4identifier

literal-1
-3identifier

literal-2
-4identifier

-2identifier

-1identifier

INITIALAFTER
BEFORE

LEADING
ALL

INITIALAFTER
BEFORECHARACTERS

FOR

TALLYINGINSPECT

Format 2: Inspect…Replacing

L
LL

L



































































































































literal-2
-4identifier

literal-3
-5identifier

literal-1
-3identifier

literal-2
-4identifier

literal-3
-5identifier

-1identifier

INITIALAFTER
BEFOREBY

FIRST
LEADING
ALL

INITIALAFTER
BEFOREBYCHARACTERS

REPLACINGINSPECT

Format 3: Inspect…Tallying…Replacing

L
LL

L

LL
LL

L









































































































































































































































































literal-2
-4identifier

literal-3
-5identifier

literal-1
-3identifier

literal-2
-4identifier

literal-3
-5identifier

literal-2
-4identifier

literal-1
-3identifier

literal-2
-4identifier

-2identifier

-1identifier

INITIALAFTER
BEFOREBY

FIRST
LEADING
ALL

INITIALAFTER
BEFOREBYCHARACTERS

REPLACING

INITIALAFTER
BEFORE

LEADING
ALL

INITIALAFTER
BEFORECHARACTERS

FOR

TALLYINGINSPECT

Format 4: Inspect…Converting

L








































literal-2
-4identifier

literal-5
-7identifier

literal-4
-6identifier

-1identifier

INITIALAFTER
BEFORETO

CONVERTINGINSPECT

 INSPECT Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 327
 First Edition

identifier-1 must reference either a group item or any category of elementary items
that have DISPLAY usage.

identifier-3, . . ., identifier-n must reference an elementary item that has
DISPLAY usage.

Each literal must be a nonnumeric literal and may be any figurative constant except
those that begin with the word ALL. If literal-1, literal-2 or literal-4 is a figurative
constant, it refers to an implicit one-character data item.

No more than one BEFORE phrase and one AFTER phrase can be specified for any
one ALL, LEADING, CHARACTERS, FIRST or CONVERTING phrase.

For Formats 1 and 3:

• identifier-2 must reference an elementary numeric data item.

For Formats 2 and 3:

• The size of literal-3 or the data item referenced by identifier-5 must be equal to
the size of literal-1 or the data item referenced by identifier-3. When a
figurative constant is used as literal-3, the size of the figurative constant is equal
to the size of literal-1 or to the size of the data item referenced by identifier-3.

• When the CHARACTERS phrase is used, literal-2, literal-3, or the size of the
data item referenced by identifier-4, identifier-5 must be one character in length.

For Format 4:

• The size of literal-5 or the data item referenced by identifier-7 must be equal to
the size of literal-4 or the data item referenced by identifier-6. When a
figurative constant is used as literal-5, its size is equal to the size of literal-4 or
to the size of the data item referenced by identifier-6.

• The same character must not appear more than once either in literal-4 or in the
data item referenced by identifier-6.

General Rules for the INSPECT Statement

The general rules that apply to the INSPECT statement are as follows:

1. Inspection (which includes the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for tallying,
replacing, or both) begins at the leftmost character position of the data item
referenced by identifier-1, regardless of its class, and proceeds from left to right
to the rightmost character position as described in general rules 5 through 7.

2. For use in the INSPECT statement, the contents of the data item referenced by
identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 is
treated as follows:

a. If any identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or
identifier-7 refers to an alphabetic or alphanumeric data item, the INSPECT
statement treats the contents of each such data item as a character-string.

b. If any identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or
identifier-7 refers to an alphanumeric edited, numeric edited or unsigned
numeric data item, the data item is inspected as though it had been redefined
as alphanumeric (see general rule 2a) and the INSPECT statement had been
written to reference the redefined data item.

INSPECT Statement
Chapter 6: Procedure Division Statements

328 RM/COBOL Language Reference Manual
 First Edition

c. If any identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or
identifier-7 refers to a signed numeric data item, the data item is inspected
as though it had been moved to an unsigned numeric data item of the same
length (excluding any separate sign position) and then the rules in general
rule 2b had been applied. See the discussion of the MOVE statement (on
page 338). If identifier-1 is a signed numeric item, the original value of the
sign is retained upon completion of the INSPECT statement.

3. In general, rules 5 through 17, all references to literal-1, literal-2, literal-3,
literal-4, and literal-5 apply equally to the contents of the data item referenced
by identifier-3, identifier-4, identifier-5, identifier-6, and identifier-7,
respectively.

4. Subscripting associated with any identifier is evaluated only once as the first
operation in the execution of the INSPECT statement.

5. During inspection of the contents of the data item referenced by identifier-1,
each properly matched occurrence of literal-1 is tallied (Formats 1 and 3) or
replaced by literal-3 (Formats 2 and 3).

6. The comparison operation to determine the occurrences of literal-1 to be tallied
or to be replaced occurs as follows:

a. The operands of the TALLYING or REPLACING phrase are considered in
the order they are specified in the INSPECT statement from left to right.
The first literal-1 is compared to an equal number of contiguous characters,
starting with the leftmost character position in the data item referenced by
identifier-1. literal-1 matches that portion of the contents of the data item
referenced by identifier-1 if they are equal, character for character, and if
any of the following conditions are present:

1) Neither LEADING nor FIRST is specified.

2) The LEADING adjective applies to literal-1 and literal-1 is a leading
occurrence as defined in general rules 10 and 13.

3) The FIRST adjective applies to literal-1 and literal-1 is the first
occurrence as defined in general rule 13.

b. If no match occurs in the comparison of the first literal-1, the comparison is
repeated with each successive literal-1, if any, until either a match is found
or there is no next successive literal-1. In the latter case, the character
position in the data item referenced by identifier-1 immediately to the right
of the leftmost character position considered in the last comparison cycle is
considered the new leftmost character position, and the comparison cycle
begins again with the first literal-1.

c. Whenever a match occurs, tallying or replacing takes place as described in
general rules 10 and 13. The character position in the data item referenced
by identifier-1 immediately to the right of the rightmost character position
that participated in the match is now considered to be the leftmost character
position of the data item referenced by identifier-1, and the comparison
cycle starts again with the first literal-1.

d. The comparison operation continues until the rightmost character position
of the data item referenced by identifier-1 has participated in a match or has
been considered as the leftmost character position. When this occurs,
inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one-character operand
participates in the cycle described in general rules 6a through 6d above as if
it had been specified as literal-1, except that no comparison to the contents

 INSPECT Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 329
 First Edition

of the data item referenced by identifier-1 takes place. This implied
character is considered always to match the leftmost character of the
contents of the data item referenced by identifier-1 participating in the
current comparison cycle.

7. The comparison operation defined in general rule 6 is affected by the BEFORE
and AFTER phrases as follows:

a. If neither the BEFORE nor the AFTER phrase is specified, literal-1 or the
implied operand of the CHARACTERS phrase participates in the
comparison operation as described in general rule 6. literal-1 or the implied
operand of the CHARACTERS phrase is first eligible to participate in
matching at the leftmost character position of the data item referenced by
identifier-1.

b. If the BEFORE phrase is specified, the associated literal-1 or the implied
operand of the CHARACTERS phrase participates only in those
comparison cycles which involve that portion of the contents of the data
item referenced by identifier-1 from its leftmost character position up to, but
not including, the first occurrence of literal-2 within the contents of the data
item referenced by identifier-1. The position of this first occurrence is
determined before the first cycle of the comparison operation described in
general rule 6 is begun. If, on any comparison cycle, literal-1 or the implied
operand of the CHARACTERS phrase is not eligible to participate, it is
considered not to match the contents of the data item referenced by
identifier-1. If there is no occurrence of literal-2 within the contents of the
data item referenced by identifier-1, its associated literal-1 or the implied
operand of the CHARACTERS phrase participates in the comparison
operation as though the BEFORE phrase had not been specified.

c. If the AFTER phrase is specified, the associated literal-1 or the implied
operand of the CHARACTERS phrase may participate only in those
comparison cycles which involve that portion of the contents of the data
item referenced by identifier-1 from the character position immediately to
the right of the rightmost character position of the first occurrence of
literal-2 within the contents of the data item referenced by identifier-1 to
the rightmost character position of the data item referenced by identifier-1.
This is the character position at which literal-1 or the implied operand of the
CHARACTERS phrase is first eligible to participate in matching. The
position of this first occurrence is determined before the first cycle of the
comparison operation described in general rule 6 is begun. If, on any
comparison cycle, literal-1 or the implied operand of the CHARACTERS
phrase is not eligible to participate, it is considered not to match the contents
of the data item referenced by identifier-1. If there is no occurrence of
literal-2 within the contents of the data item referenced by identifier-1, its
associated literal-1 or the implied operand of the CHARACTERS phrase is
never eligible to participate in the comparison operation.

INSPECT Statement
Chapter 6: Procedure Division Statements

330 RM/COBOL Language Reference Manual
 First Edition

For Format 1:

8. The required words ALL and LEADING are adjectives that apply to each
succeeding literal-1 until the next adjective appears.

9. The contents of the data item referenced by identifier-2 is not initialized before
the execution of the INSPECT statement.

10. The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data item referenced by
identifier-2 are incremented by one for each occurrence of literal-1 matched
within the contents of the data item referenced by identifier-1.

b. If the LEADING phrase is specified, the contents of the data item
referenced by identifier-2 are incremented by one for the first and each
subsequent contiguous occurrence of literal-1 matched within the contents
of the data item referenced by identifier-1, provided that the leftmost such
occurrence is at the point where comparison began in the first comparison
cycle in which literal-1 was eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of the data item
referenced by identifier-2 are incremented by one for each character
matched, in the sense of general rule 6e, within the contents of the data item
referenced by identifier-1.

11. If identifier-1, identifier-3 or identifier-4 occupies the same storage area as
identifier-2, the result of the execution of this statement is undefined, even if it is
defined by the same data description entry.

For Format 2:

12. The required words ALL, LEADING and FIRST are adjectives that apply to
each succeeding BY phrase until the next adjective appears.

13. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched, in
the sense of general rule 6e, in the contents of the data item referenced by
identifier-1 is replaced by literal-3.

b. When the adjective ALL is specified, each occurrence of literal-1 matched
in the contents of the data item referenced by identifier-1 is replaced by
literal-3.

c. When the adjective LEADING is specified, the first and each successive
contiguous occurrence of literal-1 matched in the contents of the data item
referenced by identifier-1 is replaced by literal-3, provided that the leftmost
occurrence is at the point where comparison began in the first comparison
cycle in which literal-1 was eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of literal-1
matched within the contents of the data item referenced by identifier-1 is
replaced by literal-3. This rule applies to each successive specification of
the FIRST phrase regardless of the value of literal-1.

14. If identifier-3, identifier-4 or identifier-5 occupies the same storage area as
identifier-1, the result of the execution of this statement is undefined, even if it is
defined by the same data description entry.

 INSPECT Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 331
 First Edition

For Format 3:

15. A Format 3 INSPECT statement is interpreted and executed as though two
successive INSPECT statements specifying the same identifier-1 had been
written with the first statement being a Format 1 statement with TALLYING
phrases identical to those specified in the Format 3 statement, and the second
statement being a Format 2 statement with REPLACING phrases identical to
those specified in the Format 3 statement. The general rules given for matching
and counting apply to the Format 1 statement and the general rules given for
matching and replacing apply to the Format 2 statement. If any of the identifiers
in the Format 2 statement are subscripted, their subscripts are evaluated only
once before executing the Format 1 statement.

For Format 4:

16. A Format 4 INSPECT statement is interpreted and executed as though a Format
2 INSPECT statement specifying the same identifier-1 had been written with a
series of ALL phrases, one for each character of literal-4. The effect is as if
each of these ALL phrases referenced, as literal-1, a single character of literal-4
and referenced, as literal-3, the corresponding single character of literal-5.
Correspondence between the characters of literal-4 and the characters of
literal-5 is by ordinal position within the data item.

17. If identifier-4, identifier-6, or identifier-7 occupies the same storage area as
identifier-1, the result of the execution of this statement is undefined, even if it is
defined by the same data description entry.

INSPECT Statement Examples

2 = 1 0, COUNT- COUNT-1 =NALYST" ->ORD-1 = "A *> W
2 = 0 1, COUNT- COUNT-1 =ARGE" ->ORD-1 = "L *> W

L "L". ORE INITIANG "A" BEF FOR LEADI COUNT-2
L "A"ORE INITIANG "L" BEF FOR LEADI COUNT-1

YINGORD-1 TALL INSPECT W
.1, COUNT-2 TO COUNT- MOVE ZERO

 = "LETTER"1, WORD-1 COUNT-1 = ATTER" -> ORD-1 = "L *> W
= "SALEMI"1, WORD-1 COUNT-1 = ALAMI" -> ORD-1 = "S *> W
= "CALLER"2, WORD-1 COUNT-1 = ALLAR" -> ORD-1 = "C *> W

L "L".TER INITIA BY "E" AF ALL "A"
NGL" REPLACI FOR ALL " COUNT-1

YINGORD-1 TALL INSPECT W
1. TO COUNT- MOVE ZERO

HGNDGX" WORD-1 = "ANDAX" -> ORD-1 = "H *> W
GRXAX"WORD-1 = "RXAX" -> ORD-1 = "A *> W

AL "X".FORE INITI BY "G" BE ALL "A"
ACINGORD-1 REPL INSPECT W

INSPECT Statement
Chapter 6: Procedure Division Statements

332 RM/COBOL Language Reference Manual
 First Edition

CTIVE" -1 = "BDJE = 6, WORD-> COUNT-1DJECTIVE" ORD-1 = "A *> W

 BY "B".NG ALL "A" REPLACI
"J"R INITIAL CTERS AFTE FOR CHARA COUNT-1

YINGORD-1 TALL INSPECT W
1. TO COUNT- MOVE ZERO

 "RAQRYEZ"> WORD-1 =AWRXEB" -ORD-1 = "R *> W
" "YZACDWZR> WORD-1 =ZACDWBR" -ORD-1 = "Y *> W

 "RYYZQQY"> WORD-1 =XXBQWY" -ORD-1 = "R *> W

"R". R INITIAL Y "Q" AFTE"Z", "W" B "B" BY
,"X" BY "Y"ACING ALL ORD-1 REPL INSPECT W

89" = "A234567-> WORD-1 23456789" ORD-1 = "A *> W
BB"= "BBBBBBB-> WORD-1 23456789" ORD-1 = "1 *> W
CD"= "BBBBBAB-> WORD-1 2 XZABCD" ORD-1 = "1 *> W

".INITIAL "A BEFORE
"B"ACTERS BY ACING CHARORD-1 REPL INSPECT W

AL" = "DAY TOT-> WORD-1 ay Total" ORD-1 = "D *> W
= "NAME"-> WORD-1 ame" ORD-1 = "n *> W

".QRSTUVWXYZGHIJKLMNOP "ABCDEF
" TOqrstuvwxyzghijklmnop "abcdef

ERTINGORD-1 CONV INSPECT W

 MERGE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 333
 First Edition

MERGE Statement
The MERGE statement combines two or more identically sequenced files on a set of
specified keys, and during the process makes records available, in merged order, to
an output procedure or to an output file.

{ }

[]

{ }

{ } 













































L

L

LL

4file-name-

ame-2rocedure-npname-1procedure-

3file-name-2file-name-

ame-1alphabet-n

1data-name-1file-name-

GIVING
THRU
THROUGHISPROCEDUREOUTPUT

USING

ISSEQUENCECOLLATING

KEYDESCENDING
ASCENDINGONMERGE

A MERGE statement may appear anywhere in the Procedure Division except in the
declaratives portion.

file-name-1 must be described in a sort-merge file description entry in the Data
Division.

data-name-1 may be qualified. data-name-1 must reference either a record-name
associated with file-name-1 or a data item in a record associated with file-name-1. If
more than one record description entry is associated with file-name-1, the data items
referenced by different specifications of data-name-1 need not all be associated with
the same record description entry.

The data item referenced by data-name-1 must not be a group item that contains a
variable-occurrence data item.

file-name-2, file-name-3, and file-name-4 must be described in a file description
entry in the Data Division.

No two files specified in any one MERGE statement may reside on the same multiple
file reel (or reels). See the discussion of the I-O-CONTROL paragraph (on page 79).

File-names must not be repeated within the MERGE statement.

The words THRU and THROUGH are synonymous.

No pair of file-names in a MERGE statement may be specified in the same SAME
AREA, SAME RECORD AREA, SAME SORT AREA or SAME SORT-MERGE
AREA clause. (See the I-O-CONTROL paragraph.)

If the file referenced by file-name-1 contains variable-length records, the size of the
records contained in the files referenced by file-name-2 and file-name-3 must not be
shorter than the shortest record nor longer than the longest record described for
file-name-1. If the file referenced by file-name-1 contains fixed-length records, the
size of the records contained in the files referenced by file-name-2 and file-name-3
must not be longer than the longest record described for file-name-1.

If the GIVING phrase is specified and the file referenced by file-name-4 contains
variable-length records, the size of the records contained in the file referenced by
file-name-1 must not be shorter than the shortest record nor longer than the longest
record size specified for file-name-4. If the file referenced by file-name-4 contains

MERGE Statement
Chapter 6: Procedure Division Statements

334 RM/COBOL Language Reference Manual
 First Edition

fixed-length records, the size of the records contained in the file referenced by
file-name-1 must not be longer than the fixed record size specified for file-name-4.

General Rules for the MERGE Statement

The general rules applying to the MERGE statement are as follows:

1. The MERGE statement merges all records contained in the files referenced by
file-name-2 and file-name-3 and returns them to an output procedure, or to the
file referenced by file-name-4, in an order determined by the ASCENDING and
DESCENDING phrases and the values of the data items referenced by the
specifications of data-name-1.

2. The words ASCENDING and DESCENDING apply to each subsequent
occurrence of data-name-1 until another word ASCENDING or DESCENDING
is encountered.

3. The data items referenced by the specification of data-name-1 are the key data
items that determine the order in which records are returned from the file
referenced by file-name-1. The order of significance of the keys is the order in
which they are specified in the MERGE statement, without regard to their
association with ASCENDING or DESCENDING phrases. The first (or only)
key data item is the most significant. Further key data items, if any, are of
progressively lesser significance.

4. To determine the relative order in which two records are returned from the file
referenced by file-name-1, the contents of corresponding key data items are
compared according to the rules for comparison of operands in a relation
condition, starting with the most significant key data item.

a. If the contents of the corresponding key data items are not equal and the key
is associated with the ASCENDING phrase, the record containing the key
data item with the lower value is returned first.

b. If the contents of the corresponding key data item are not equal and the key
is associated with the DESCENDING phrase, the record containing the key
data item with the higher value is returned first.

c. If the contents of the corresponding key data items are equal, the
determination is made on the contents of the next most significant key data
item.

d. If the contents of all the key data items in one record are equal to the
contents of the corresponding key data items in another record, the records
are returned in the order in which their associated input files are specified
in the MERGE statement. If both records are associated with the same file,
the order of the records in that file is preserved.

5. The collating sequence that applies to the comparison of nonnumeric key data
items is determined at the beginning of the execution of the MERGE statement
in the following order of precedence:

a. The collating sequence established by the COLLATING SEQUENCE
phrase, if specified, in that MERGE statement

b. The collating sequence established as the program collating sequence

6. The results of the merge operation are undefined unless the records in the
files referenced by file-name-2 and file-name-3 are ordered as described in
the ASCENDING or DESCENDING KEY clauses associated with the
MERGE statement.

 MERGE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 335
 First Edition

7. All the records in the files referenced by file-name-2 and file-name-3 in the
USING phrase are transferred to the file referenced by file-name-1. At the start
of execution of the MERGE statement, the files referenced by file-name-2 and
file-name-3 must not be in the open mode. For each of the files referenced by
file-name-2 and file-name-3, the execution of the MERGE statement causes the
following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an
OPEN statement with the INPUT phrase had been executed. If an output
procedure is specified, this initiation is performed before control passes to
the output procedure.

b. The logical records are obtained and released to the merge operation. Each
record is obtained as if a READ statement with the NEXT and the AT END
phrases had been executed. If the file referenced by file-name-1 contains
fixed-length records, any record in the files referenced by file-name-2 and
file-name-3 containing fewer character positions than that specified for
file-name-1 is space-filled on the right beginning with the first character
position after the last character in the record when that record is released to
the file referenced by file-name-1.

c. The processing of the file is terminated. The termination is performed as if
a CLOSE statement without optional phrases had been executed. If an
output procedure is specified, this termination is not performed until after
control passes the last statement in the output procedure.

These implicit functions are performed such that any associated USE AFTER
EXCEPTION procedures are executed.

8. During the execution of any USE AFTER EXCEPTION procedure implicitly
invoked while executing the MERGE statement, no statements may be executed
which manipulate the file referenced by file-name-2, file-name-3, or file-name-4,
or which access the record area associated with file-name-2, file-name-3, or
file-name-4.

9. The output procedure may consist of any procedure needed to select, modify or
copy the records that are made available one at a time by the RETURN
statement in merged order from the file referenced by file-name-1. The range
includes all statements that are executed as the result of a transfer of control by
CALL, EXIT without the optional PROGRAM phrase, GO TO and PERFORM
statements in the range of the output procedure, as well as all statements in
declarative procedures that are executed as a result of the execution of
statements in the range of the output procedure. The range of the output
procedure must not cause the execution of any MERGE, RELEASE or SORT
statement.

10. If an output procedure is specified, control passes to it during execution of the
MERGE statement. The compiler inserts a return mechanism at the end of the
last statement in the output procedure. When control passes the last statement in
the output procedure, the return mechanism provides for termination of the
merge, and then passes control to the next executable statement after the
MERGE statement. Before entering the output procedure, the merge procedure
reaches a point at which it can select the next record in merged order when
requested. The RETURN statements in the output procedure are the requests for
the next record.

11. During the execution of the output procedure, no statement may be executed
manipulating the file referenced by, or accessing the record area associated with,
file-name-2 or file-name-3.

MERGE Statement
Chapter 6: Procedure Division Statements

336 RM/COBOL Language Reference Manual
 First Edition

12. If the GIVING phrase is specified, all the merged records are written on the file
referenced by file-name-4 as the implied output procedure for the MERGE
statement. At the start of the execution of the MERGE statement, the file
referenced by file-name-4 must not be in the open mode. For each of the files
referenced by file-name-4, the execution of the MERGE statement causes the
following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an
OPEN statement with the OUTPUT phrase had been executed.

b. The merged logical records are returned and written onto the file. Each
record is written as if a WRITE statement without any optional phrases had
been executed.

c. For a relative file, the relative key data item for the first record returned
contains the value 1; for the second record returned, the value 2; and so
forth. After execution of the MERGE statement, the contents of the relative
key data item indicate the last record returned to the file.

d. The processing of the file is terminated. The termination is performed as if
a CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE procedures
are executed; however, the execution of such a USE procedure must not cause
the execution of any statement manipulating the file referenced by, or accessing
the record area associated with, file-name-4. On the first attempt to write
beyond the externally defined boundaries of the file, any USE procedure
specified for the file is executed; if control is returned from that USE procedure
or if no such USE procedure is specified, the processing of the file is terminated
as described above.

13. Segmentation can be applied to programs containing the MERGE statement.
However, the following restrictions apply:

a. If the MERGE statement appears in a section that is not in an independent
segment, any output procedure referenced by that MERGE statement must
appear:

1) Totally within nonindependent segments, or

2) Wholly contained in a single independent segment.

b. If a MERGE statement appears in an independent segment, any output
procedure referenced by that MERGE statement must be contained:

1) Totally within nonindependent segments, or

2) Wholly within the same independent segment as that
MERGE statement.

 MERGE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 337
 First Edition

MERGE Statement Example

O DISK.2 ASSIGN TRTED-FILE- SELECT SO
O DISK.1 ASSIGN TRTED-FILE- SELECT SO
ORT-WORK.SSIGN TO SRGE-FILE A SELECT ME

E-CONTROL. FIL
SECTION.UT-OUTPUT INP
IVISION.IRONMENT D ENV

 *
ment.ERGE state * M

Manaual. Reference Language r RM/COBOLxamples fo * E
 *

MERGE01.GRAM-ID. PRO
.N DIVISIONNTIFICATIO IDE

SE "F". " WHEN FAL VALUE "T 88 EOF
). PIC X(01 EOF-FLAG 01

.GE SECTIONKING-STORA WOR
). PIC X(20DATA-1 02 SORTED-
) BINARY. PIC 9(05KEY-2 02 SORTED-
). PIC X(05KEY-1 02 SORTED-

.E-2-RECORDSORTED-FIL 01
E-2.SORTED-FIL FD

). PIC X(20DATA-1 02 SORTED-
) BINARY. PIC 9(05KEY-2 02 SORTED-
). PIC X(05KEY-1 02 SORTED-

.E-1-RECORDSORTED-FIL 01
E-1.SORTED-FIL FD

). PIC X(20ATA-1 02 MERGE-D
) BINARY. PIC 9(05EY-2 02 MERGE-K
). PIC X(05EY-1 02 MERGE-K

RD.MERGE-RECO 01
.MERGE-FILE SD

E SECTION. FIL
.A DIVISION DAT

ERGE01. PROGRAM M END

RM. END-PERFO
URN END-RET

RD MERGE-RECORD" USING WRITE-RECOEND CALL " NOT AT
 TRUESET EOF TO AT END
 RECORDMERGE-FILE RETURN

NTIL EOF PERFORM U
O FALSE. SET EOF T

-RECORDS. PUT

 STOP RUN.
ORDS.IS PUT-RECPROCEDURE OUTPUT
FILE-2-1 SORTED-ORTED-FILE USING S
-2 MERGE-KEYENDING KEY ON DESC
1MERGE-KEY-NDING KEY ON ASCE

GE-FILE MERGE MER
N1. MAI

ISION.CEDURE DIV PRO

MOVE Statement
Chapter 6: Procedure Division Statements

338 RM/COBOL Language Reference Manual
 First Edition

MOVE Statement
The MOVE statement transfers data, in accordance with the rules of editing, to one
or more data areas.

Format 1: Move…To

{ }L-2identifierliteral-1
-1identifier TOMOVE









Format 2: Move Corresponding

{ }L-2identifier-1identifier TOCORR
INGCORRESPONDMOVE









literal-1 or the data item referenced by identifier-1 represents the sending area;
identifier-2 (. . .) represents the receiving area (or areas).

An index data item must not appear as an operand of a MOVE statement.

The data designated by literal-1 or identifier-1 is moved to the data item referenced
by each identifier-2 in the order in which it is specified. The rules referring to
identifier-2 also apply to the other receiving areas.

Any length evaluation or subscripting associated with identifier-2 is evaluated
immediately before the data is moved to the respective data item. Any length
evaluation or subscripting associated with identifier-1 is evaluated only once,
immediately before data is moved to the first of the receiving operands. The result
of the statement

MOVE a (b) TO b, c (b)

is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO c (b).

Any move in which the receiving operand is an elementary item and the sending
operand is either a literal or an elementary item is an elementary move. Every
elementary item belongs to one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited or alphanumeric edited. These categories are
described in the PICTURE clause. Numeric literals belong to the category numeric,
and nonnumeric literals belong to the category alphanumeric. The figurative
constant ZERO, when moved to a numeric or numeric edited item, belongs to the
category numeric; in all other cases, it belongs to the category alphanumeric. The
figurative constant SPACE belongs to the category alphabetic. All other figurative
constants belong to the category alphanumeric.

 MOVE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 339
 First Edition

The following rules apply to an elementary move between these categories:

1. The figurative constant SPACE, or an alphanumeric edited or alphabetic data
item must not be moved to a numeric or numeric edited data item.

2. A numeric literal, the figurative constant ZERO, a numeric data item or a
numeric edited data item must not be moved to an alphabetic data item.

3. A noninteger numeric literal or a noninteger numeric data item must not be
moved to an alphanumeric or alphanumeric edited data item.

4. All other elementary moves are legal and are performed according to the rules
given below.

Any necessary conversion of data from one form of internal representation to another
takes place during legal elementary moves, along with any de-editing implied by the
sending data item or editing specified for the receiving data item:

1. When an alphanumeric edited or alphanumeric item is a receiving item,
alignment and any necessary space-filling takes place as defined in the
discussion of standard alignment rules (on page 167). If the size of the sending
item is greater than the size of the receiving item, the excess characters are
truncated on the right after the receiving item is filled. If the sending item is
described as being signed numeric, the operational sign is not moved; if the
operational sign occupies a separate character position (see the discussion of the
SIGN clause on page 126), that character is not moved and the size of the
sending item is considered to be one less than its actual size (in terms of standard
data format characters). If the sending item is numeric edited, no de-editing
takes place. If the usage of the sending operand is different from that of the
receiving operand, conversion of the sending operand to the internal
representation of the receiving operand takes place. If the PICTURE character-
string of the sending operand contains the symbol “P”, all digit positions
specified with this symbol are considered to contain the value zero and are
counted in the size of the sending item.

2. When a numeric or numeric edited item is the receiving item, alignment by
decimal point and any necessary zero filling takes place (see the discussion of
standard alignment rules) where zeroes are replaced because of editing
requirements.

When a signed item is the receiving item, the sign of the sending item is placed
in the receiving item (see the discussion of the SIGN clause). Conversion of the
representation of the sign takes place as necessary. If the sending item is
unsigned, a positive sign is generated for the receiving item.

When an unsigned numeric item is the receiving item, the absolute value
of the sending item is moved and no operational sign is generated for the
receiving item.

When the sending operand is described as being alphanumeric, data is moved as
if the sending operand were described as an unsigned numeric integer.

When a numeric edited data item is the sending item, conversion is implied to
establish the unedited numeric value of the operand, which may be signed; then
the unedited numeric value is moved to the receiving field. The implied
conversion deletes all characters other than the decimal digits 0, 1, . . . 9, sets the
operational sign negative if a minus sign is present in the sending item or
positive otherwise, and sets the scale according to the rightmost decimal point
present in the sending item or to the scale of the sending data item otherwise.
The representation of the decimal point used in this conversion is a period unless
the DECIMAL POINT IS COMMA clause is specified in the source program, in

MOVE Statement
Chapter 6: Procedure Division Statements

340 RM/COBOL Language Reference Manual
 First Edition

which case a comma is used. In this conversion, any decimal digit 0 that
matches an inserted character 0 in the sending item is excluded from the
resulting unedited numeric value.

3. When a receiving field is described as alphabetic, justification and any necessary
space-filling takes place. See the discussion of standard alignment rules (on
page 167).

If the size of the sending item is greater than the size of the receiving item, the
excess characters are truncated on the right after the receiving item is filled.

Any move that is not an elementary move is treated exactly as if it were an
alphanumeric to alphanumeric elementary move, except that there is no conversion
of data from one form of internal representation to another. In such a move, the
receiving area is filled without regard for the individual elementary or group items
contained within either the sending or receiving area, except as noted in the
OCCURS clause. When a group item is moved to an elementary item described with
the JUSTIFIED RIGHT clause, right justification occurs.

When a sending and receiving item share a part of their storage areas, the result of
the execution of such a statement is undefined.

Table 30 summarizes the legality of the various types of MOVE statements.

Table 30: Types of MOVE Statements and Their Legality

 Category of Receiving Data Items

Sending Data
Item

Alphabetic

Alphanumeric
Edited

Alphanumeric

Numeric Integer
Numeric Noninteger

Numeric Edited

Alphabetic
 �����

�����

Alphanumeric

Alphanumeric
Edited

�����
�����

Numeric Integer

������
������

Numeric
Noninteger ������

������
 �����
�����

Numeric Edited

������
������

 Allowed.

���
���

 Disallowed.

 MOVE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 341
 First Edition

CORRESPONDING Phrase

{ }L-2identifier-1identifier TOCORR
INGCORRESPOND









When the CORRESPONDING phrase is specified, all identifiers must refer to group
items. When a MOVE statement with a CORRESPONDING phrase specifies more
than one receiving group item (identifier-2), the effect is the same as if multiple
MOVE statements with CORRESPONDING phrases had been written, one for each
of the receiving group items (identifier-2), and each having the same sending group
item (identifier-1).

For the MOVE statement with the CORRESPONDING phrase:

• The description of identifier-1 and identifier-2 must not contain level-number
66, 77, 78, or 88 or the USAGE IS INDEX clause.

• Neither identifier-1 nor identifier-2 may be reference modified.

• identifier-1 or identifier-2 may be described with the OCCURS or REDEFINES
clauses or may be subordinate to data items described with the OCCURS or
REDEFINES clauses. If identifier-1 or identifier-2 is a table element, then the
required subscripting must be specified as part of identifier-1 or identifier-2.
The specified subscripting will be applied to the selected subordinate
corresponding data items, respectively, for identifier-1 and identifier-2.

For each individual MOVE statement with a CORRESPONDING phrase,
subordinate data item pairs are selected, one from the sending group item and one
from the receiving group item. Then for each such selected pair, data movement
occurs from the data item that is subordinate to the sending group item to the data
item that is subordinate to the receiving group item. The data movement that occurs
is the same as if individual MOVE statements had been written for each of the
selected pairs.

The rules that govern the selection of eligible subordinate data item pairs are as
follows:

1. The data items are not designated by the keyword FILLER and have the same
data-name and the same qualifiers up to but not including the original group
items, identifier-1 and identifier-2.

2. At least one of the data items is an elementary data item and the resulting move
is legal according to the move rules.

3. A data item that is subordinate to identifier-1 or identifier-2 and contains a
REDEFINES, OCCURS, USAGE IS INDEX, or USAGE IS POINTER clause is
ignored, as well as those data items subordinate to the data item that contains the
REDEFINES, OCCURS, USAGE IS INDEX, or USAGE IS POINTER clause.

4. The name of each data item that satisfies the above conditions must be unique
after application of the implied qualifiers.

When multiple receiving group identifiers (identifier-2, . . .) are listed, all
corresponding items in the first identifier-2 are moved prior to moving corresponding
items in the second and any subsequent receiving group identifiers.

CORRESPONDING and CORR are synonymous.

MOVE Statement
Chapter 6: Procedure Division Statements

342 RM/COBOL Language Reference Manual
 First Edition

MOVE Statement Examples

 L-INCOME. ME TO TOTA MOVE INCO

M. T, LINE-NU PAGE-COUN MOVE 1 TO

ER. TITLE-HEADtries" to mack Indus MOVE "Mar

ENSUS.OF CROSS-C PERSON
LABAMA), (I-A OF AOF ALABAMA PERSON

-RECORD TOON IN FILE MOVE PERS

 TO NUM-ED. MOVE NUM

S-ENTRY. PREVIOU
EXT-ENTRY 1, M) TO NE-ELT (N, MOVE TABL

IT. 7 TO DEFIC MOVE -36.

R. ION-DIVIDEES TO SECT MOVE QUOT

ER. TO COUN-T MOVE ZERO

 NUM-ED. -TER, NUM,ES TO COUN MOVE ZERO

 MULTIPLY Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 343
 First Edition

MULTIPLY Statement
The MULTIPLY statement causes numeric data items to be multiplied and stores
the result.

Format 1: Multiply…By

[]{ }

[]

[]

[]MULTIPLY-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDBYMULTIPLY

-2-statementimperative

-1-statementimperative

-2identifierliteral-1
-1identifier L









Format 2: Multiply…Giving

[]{ }

[]

[]

[]MULTIPLY-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDGIVING

BYMULTIPLY

-2-statementimperative

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-1
-1identifier

L

















In Format 1, the value of identifier-1 or literal-1 is multiplied by the value of each
identifier-2. The value of each multiplier (identifier-2) is replaced by this product.

In Format 2, the value of identifier-1 or literal-1 is multiplied by identifier-2 or
literal-2 and the result is stored in each identifier-3.

Each identifier must refer to a numeric elementary item, except that in Format 2, the
identifiers following the word GIVING may refer to either an elementary numeric
item or an elementary numeric edited item.

Each literal must be a numeric literal.

Additional rules and explanations regarding features of the MULTIPLY statement
that are common to other arithmetic statements can be found in the discussion of
common rules (on page 192). See in particular the discussions of the ROUNDED
phrase, the size error condition, overlapping operands, modes of operation,
composite size, and incompatible data.

MULTIPLY Statement
Chapter 6: Procedure Division Statements

344 RM/COBOL Language Reference Manual
 First Edition

MULTIPLY Statement Examples

) 0 * INCOMECOME := (1ME. *> IN10 BY INCO MULTIPLY

OUNDED.INTEREST R GIVING
T-RATE BY INTERESPRINCIPAL MULTIPLY

PLY. END-MULTI
-RATINGTO ECONOMY MOVE 0

RROR ON SIZE E
PENSES RATE BY EXINFLATION- MULTIPLY

 OPEN Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 345
 First Edition

OPEN Statement
The OPEN statement initiates the processing of files.

[]

[]

[] []{ }

[]{ }

[]{ }

L

L

L

L

L



















































LOCKWITHEXTEND

LOCKWITHO-I

REWINDNOWITHLOCKWITHOUTPUT

REWINDNOWITH
REVERSEDLOCKWITHINPUT

EXCLUSIVEOPEN

4file-name-

3file-name-

2file-name-

1file-name-

The successful execution of an OPEN statement determines the availability of the file
and results in the file being in an open mode. A file is available if it is physically
present and recognized by the runtime system. Table 31 shows the results of opening
available and unavailable files.

The successful execution of an OPEN statement makes the associated record area
available to the program. If the file connector associated with the file-name is an
external file connector, there is only one record area associated with the file
connector for the run unit.

The files referenced in the OPEN statement need not all have the same organization
or access.

The EXTEND phrase may only be specified for files with sequential access.

The REVERSED and NO REWIND phrases may only be specified for files that are
sequential organization.

The EXCLUSIVE phrase indicates that the open is to obtain exclusive access to each
file referenced in the OPEN statement until the file is closed. The EXCLUSIVE
phrase is redundant for any file for which the LOCK MODE IS EXCLUSIVE clause
is specified in its file control entry.

The LOCK phrase indicates that the open is to obtain exclusive access to the
associated file until the file is closed. The LOCK phrase is redundant if the
EXCLUSIVE phrase is specified in the same OPEN statement or if the LOCK
MODE IS EXCLUSIVE clause is specified in the file control entry for the file.

The successful execution of the OPEN statement sets the lock mode of the file using
the EXCLUSIVE and LOCK phrases of the OPEN statement, the LOCK MODE
clause, if specified, in the file control entry for the file, or configurable defaults for
each open mode. The section File Locking (on page 233) provides a general
discussion of lock mode. If the file is opened in shared input-output mode, record
locking will apply as described in the section Record Locking (on page 234). The
RM/COBOL User’s Guide contains additional information regarding system
dependent features of file and record locking, as well as information on configuration
of defaults.

OPEN Statement
Chapter 6: Procedure Division Statements

346 RM/COBOL Language Reference Manual
 First Edition

Table 31: Availability of a File

File Is Available Unavailable

INPUT Normal open. Open is unsuccessful.

INPUT
(OPTIONAL)

Normal open. Normal open; first read
causes at end condition or
invalid key condition.

I–O Normal open. Open is unsuccessful.

I–O (OPTIONAL) Normal open. Open causes file to be
created.

OUTPUT Normal open; file
contains no records.

Open causes file to be
created.

EXTEND Normal open. Open is unsuccessful.

EXTEND
(OPTIONAL)

Normal open. Open causes file to be
created.

Prior to the successful execution of an OPEN statement for a given file, no
statement can be executed that references that file, either explicitly or implicitly,
except that the file may be listed in the USING or GIVING phrases of a SORT or
MERGE statement.

An OPEN statement must be successfully executed prior to the execution of any of
the permissible input-output statements. In Table 32, a ■■■ symbol at an
intersection indicates that the specified statement, used in the access mode given for
that row, may be used with the open mode given at the top of the column.

A file may be opened with the INPUT, OUTPUT, EXTEND, and I–O phrases in the
same program. Following the initial execution of an OPEN statement for a file, each
subsequent OPEN statement execution for that same file must be preceded by the
execution of a CLOSE statement, without the LOCK, REEL or UNIT phrase, for
that file.

 OPEN Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 347
 First Edition

Table 32: Permissible Statements

 Open Mode

Access Statement Input Output I-O Extend

 READ

���
���

���
���

 WRITE

����
����

 ���
���

Sequential REWRITE

����
����

 ���
���

 ���
���

 START

���
���

���
���

 DELETE

����
����

 ���
���

 ���
���

 READ

 ���
���

 ���
���

 WRITE

����
����

���
���

Random REWRITE

����
����

���
���

���
���

 START

����
����

 ���
���

 ���
���

 ���
���

 DELETE

���� ��� ���
 READ

���
���

���
���

 WRITE

����
����

 ���
���

Dynamic REWRITE

����
����

 ���
���

 ���
���

 START

���
���

���
���

 DELETE

����
����

 ���
���

 ���
���

 May be used.

���
��� May not be used.

Execution of the OPEN statement does not obtain or release the first data record.

The file description entry for file-name-1, file-name-3 or file-name-4 must be
equivalent to that used when this file was created.

The execution of an OPEN statement causes the value of the specified file status data
item, if any, associated with the file to be updated.

OPEN Statement
Chapter 6: Procedure Division Statements

348 RM/COBOL Language Reference Manual
 First Edition

INPUT Phrase

[]














REWINDNOWITH
REVERSEDLOCKWITHINPUT 1file-name-

If a file opened with the INPUT phrase is an optional file that is not present, the
OPEN statement sets the file position indicator to indicate that an optional input file
is not present. Otherwise:

• When sequential or relative files are opened with the INPUT phrase, the file
position indicator is set to 1.

• When indexed files are opened with the INPUT phrase, the file position
indicator is set to the characters that have the lowest ordinal position in the
collating sequence associated with the file, and the prime record key is
established as the key of reference.

The REVERSED and NO REWIND phrases may only be specified if file-name-1
refers to a sequential organization file. Since the NO REWIND phrase is common to
the INPUT and OUTPUT phrases, it is discussed separately on page 350.

When the REVERSED phrase is specified, the file is positioned at its end by
execution of the OPEN statement. Subsequent READ statements for the file make
the data records of the file available in reverse order; that is, starting with the last
record.

The REVERSED phrase is applicable only to files whose storage medium is capable
of reverse motion. It is ignored when not applicable to the storage medium of the
file. The RM/COBOL User’s Guide contains specific information regarding support
for the REVERSED phrase.

OUTPUT Phrase

[] []{ }REWINDNOWITHLOCKWITHOUTPUT 2file-name-

Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time, the associated file contains no data records.

The NO REWIND phrase may only be specified if file-name-2 refers to a sequential
organization file. Since the NO REWIND phrase is common to the INPUT and
OUTPUT phrases, it is discussed separately on page 350.

I-O Phrase

[]{ }LOCKWITHO-I 3file-name-

The I–O phrase permits the opening of a mass storage file for both input and output
operations. If the referenced file does not exist and the OPTIONAL phrase is
specified in the SELECT clause for the referenced file, the file is created as a new
empty file as is done when the OUTPUT phrase is used.

The I–O phrase can be used only for mass storage files (files assigned to the DISC,
DISK, or RANDOM device-type).

 OPEN Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 349
 First Edition

When the I–O phrase is specified and the LABEL RECORDS clause indicates that
label records are present, the execution of the OPEN statement includes the
following:

• The labels are checked.

• New labels are written.

When sequential or relative files are opened with the I–O phrase, the file position
indicator is set to 1.

When indexed files are opened with the I–O phrase, the file position indicator is set
to the characters that have the lowest ordinal position in the collating sequence
associated with the file, and the prime record key is established as the key of
reference.

In 1985 mode, if the run unit does not have write access to the file, the execution of
an OPEN statement with the I–O phrase is unsuccessful and the I–O status value is
set to indicate this condition. In 1974 mode, if the run unit does not have write
access to the file, an OPEN statement with the I–O phrase is successful; however,
any attempt to execute a DELETE, REWRITE, or WRITE statement while in this
mode will be unsuccessful.

EXTEND Phrase

[]{ }LOCKWITHEXTEND 4file-name-

When the EXTEND phrase is specified, the OPEN statement positions the file
immediately following the last logical record of that file. Subsequent WRITE
statements referencing the file will add records to the file as though the file has been
opened with the OUTPUT phrase.

The EXTEND phrase may be specified only if file-name-4 refers to a file with
sequential access. The EXTEND phrase must not be specified for a file whose
device-type is INPUT.

The last record for a sequential file is the last record written in the file.

The last record for a relative file is the currently existing record with the highest
relative record number.

The last record for an indexed file is the currently existing record with the highest
prime key value according to the collating sequence of the file. If the indexed file is
described with the DUPLICATES phrase in the RECORD KEY clause of its file
control entry and the highest prime key value is duplicated within the records of the
file, then the last record is the currently existing record with the highest prime key
value that was chronologically last released to the file.

OPEN Statement
Chapter 6: Procedure Division Statements

350 RM/COBOL Language Reference Manual
 First Edition

NO REWIND Phrase

REWINDNOWITH

The NO REWIND phrase can be used only with sequential single reel or unit files.
The phrase is ignored if it does not apply to the storage medium on which the file
resides.

If the storage medium for the file permits rewinding, the following rules apply:

1. When the REVERSED, EXTEND or NO REWIND phrase is not specified,
execution of the OPEN statement causes the file to be positioned at its
beginning.

2. When the NO REWIND phrase is specified, execution of the OPEN statement
does not cause the file to be repositioned; the file must be already positioned at
its beginning prior to the execution of the OPEN statement.

OPEN Statement Examples

 ION-FILE. T TRANSACTUSIVE INPU OPEN EXCL

REWIND. E WITH NO UT LOG-FILUSIVE OUTP OPEN EXCL

 LOG-FILE. OPEN I-O

ILE. ND INPUT-F OPEN EXTE

ED. E-1 REVERST TAPE-FIL OPEN INPU

 WITH LOCK.DATA-BASE OPEN I-O

E. T DATA-BAS OPEN INPU

 PERFORM Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 351
 First Edition

PERFORM Statement
The PERFORM statement is used to transfer control explicitly to one or more
procedures and to return control implicitly whenever execution of the specified
procedure is complete. The PERFORM statement is also used to control execution
of one or more imperative statements that are within the scope of that PERFORM
statement.

Format 1: Perform (Once)

[]PERFORM-END

THRU
THROUGHPERFORM

-1-statementimperative

name-2procedure-name-1procedure-




























Format 2: Perform…Times

[]PERFORM-END

TIMES

THRU
THROUGHPERFORM

-1-statementimperative

integer-1
-1identifier

name-2procedure-name-1procedure-





































Format 3: Perform…Until

[]PERFORM-END

UNTILAFTER
BEFORETESTWITH

THRU
THROUGHPERFORM

-1-statementimperative

1condition-

name-2procedure-name-1procedure-














































PERFORM Statement
Chapter 6: Procedure Division Statements

352 RM/COBOL Language Reference Manual
 First Edition

Format 4: Perform…Varying

[]PERFORM-END

UNTIL

BYFROMAFTER

UNTIL

BYFROMVARYING

AFTER
BEFORETESTWITH

THRU
THROUGHPERFORM

-1-statementimperative

2condition-

literal-4
-7identifier

literal-3
-4index-name

-6identifier

-3index-name
-5identifier

1condition-

literal-2
-4identifier

literal-1
-2index-name

-3identifier

-1index-name
-2identifier

name-2procedure-name-1procedure-

L
























































































































If procedure-name-1 is omitted, imperative-statement-1 and the END-PERFORM
phrase must be specified; if procedure-name-1 is specified, imperative-statement-1
and the END-PERFORM phrase must not be specified.

If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the TEST
BEFORE phrase is assumed.

Each identifier represents a numeric elementary item described in the Data Division.
In Format 2, identifier-1 must be described as a numeric integer.

Each literal represents a numeric literal.

The words THRU and THROUGH are synonymous.

If an index-name is specified in the VARYING or AFTER phrase, then:

• The identifier in the associated FROM and BY phrases must reference an integer
data item.

• The literal in the associated FROM phrase must be a positive integer.

• The literal in the associated BY phrase must be a nonzero integer.

If an index-name is specified in the FROM phrase, then:

• The identifier in the associated VARYING or AFTER phrase must refer to an
integer data item.

• The identifier in the associated BY phrase must refer to an integer data item.

• The literal in the associated BY phrase must be an integer.

 PERFORM Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 353
 First Edition

literal-2 or literal-4 in the BY phrase must not be zero.

condition-1, condition-2, . . . may be any conditional expression.

When procedure-name-1 and procedure-name-2 are both specified and either is the
name of a procedure in the declaratives portion of the Procedure Division, both must
be procedure-names in the same declarative section.

The data items referenced by identifier-4 and identifier-7 must not have a zero value.

If an index-name is specified in the VARYING or AFTER phrase, and an identifier
is specified in the associated FROM phrase, the data item referenced by the identifier
must have a positive value.

When procedure-name-1 is specified, the PERFORM statement is referred to as an
out-of-line PERFORM statement; when procedure-name-1 is omitted, the
PERFORM statement is referred to as an in-line PERFORM statement.

The statements contained within the range of procedure-name-1 (through
procedure-name-2, if specified) for an out-of-line PERFORM statement or contained
within the PERFORM statement itself for an in-line PERFORM statement are
referred to as the specified set of statements.

The END-PERFORM phrase delimits the scope of the in-line PERFORM statement.

An in-line PERFORM statement functions according to the following general rules
for an otherwise identical out-of-line PERFORM statement, with the exception that
the statements contained within the in-line PERFORM statement are executed in
place of the statements contained within the range of procedure-name-1 (through
procedure-name-2, if specified). Unless specifically qualified by the terms in-line or
out-of-line, all the rules that apply to the out-of-line PERFORM statement also apply
to the in-line PERFORM statement.

When the PERFORM statement is executed, control is transferred to the first
statement of the specified set of statements, except as indicated in the general rules
for Formats 2 through 4 as given below. This transfer of control occurs only once for
each execution of a PERFORM statement. For those cases when a transfer of control
to the specified set of statements does take place, an implicit transfer of control to the
end of the PERFORM statement is established as follows:

• If procedure-name-1 is a paragraph-name and procedure-name-2 is not
specified, the return is after the last statement of procedure-name-1.

• If procedure-name-1 is a section-name and procedure-name-2 is not specified,
the return is after the last statement of the last paragraph in procedure-name-1.

• If procedure-name-2 is specified and it is a paragraph-name, the return is after
the last statement of the paragraph.

• If procedure-name-2 is specified and it is a section-name, the return is after the
last statement of the last paragraph in the section.

• If an in-line PERFORM statement is specified, an execution of the PERFORM
statement is completed after the last statement contained within it has been
executed.

There is no necessary relationship between procedure-name-1 and procedure-name-2
except that a consecutive sequence of operations is to be executed beginning at the
procedure named procedure-name-1 and ending with the execution of the procedure
named procedure-name-2. In particular, GO TO and PERFORM statements may
occur between procedure-name-1 and the end of procedure-name-2. If there are two
or more logical paths to the return point, procedure-name-2 may be the name of a

PERFORM Statement
Chapter 6: Procedure Division Statements

354 RM/COBOL Language Reference Manual
 First Edition

paragraph consisting of the EXIT or CONTINUE statement, to which all of these
paths must lead.

If control passes to the specified set of statements by means other than a PERFORM
statement, control will pass through the last statement of the set to the next
executable statement as if no PERFORM statement referenced the set.

The PERFORM statements operate as described in the following paragraphs.

Format 1 is the basic PERFORM statement. The specified set of statements
referenced by this type of PERFORM statement is executed once and then control
passes to the end of the PERFORM statement.

Format 2 is the PERFORM . . . TIMES statement. The specified set of statements is
performed the number of times specified by integer-1 or by the initial value of the
data item referenced by identifier-1 for that execution. If, at the time of execution of
a PERFORM statement, the value of the data item referenced by identifier-1 is equal
to zero or is negative, control passes to the end of the PERFORM statement.
Following the execution of the specified set of statements the specified number of
times, control is transferred to the end of the PERFORM statement. During
execution of the PERFORM statement, references to identifier-1 cannot alter the
number of times the specified set of statements is to be executed from that which was
indicated by the initial value of the data item referenced by identifier-1.

Format 3 is the PERFORM . . . UNTIL statement. The specified set of statements is
performed until the condition specified by the UNTIL phrase is true. When the
condition is true, control is transferred to the end of the PERFORM statement. If
the condition is true when the PERFORM statement is entered and the TEST AFTER
phrase is not specified, control passes to the end of the PERFORM statement and
the specified set of statements is not executed. In the absence of the TEST AFTER
phrase (that is, TEST BEFORE is specified or implied), testing of the specified
condition occurs before each execution of the specified set of statements. When the
TEST AFTER phrase is specified, the specified set of statements is executed before
the specified condition is tested. Any subscripting or reference modification
associated with the operands in condition-1 is evaluated each time the condition
is tested.

Format 4 is the PERFORM . . . VARYING statement. This variation of the
PERFORM statement is used to augment the values referred to by one or more
identifiers or index-names in an orderly fashion during the execution of a
PERFORM statement. In the following discussion, every reference to identifier as
the object of the VARYING, AFTER and FROM (current value) phrases also refers
to index-names.

If index-name-1 or index-name-3 is specified, the value of the associated index at the
beginning of the PERFORM statement must be set to an occurrence number of an
element in the table. If index-name-2 or index-name-4 is specified, the value of the
data item referred to by identifier-2 or identifier-5 at the beginning of the PERFORM
statement must be equal to an occurrence number of an element in a table associated
with index-name-2 or index-name-4. Subsequent augmentation, as described below,
of index-name-1 or index-name-3 must not result in the associated index being set to
a value outside the range of the table associated with index-name-1 or index-name-3,
except that at the completion of the PERFORM statement the index associated with
index-name-1 may contain a value that is outside the range of the associated table by
one increment or decrement value.

If identifier-2 or identifier-5 is subscripted, the subscripts are evaluated each time the
contents of the data item referred to by the identifier are set or augmented. If
identifier-3, identifier-4, identifier-6 or identifier-7 is subscripted, the subscripts are
evaluated each time the contents of the data item referred to by the identifier are used

 PERFORM Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 355
 First Edition

in a setting or augmenting operation. Any subscripting or reference modification
associated with the operands specified in condition-1 or condition-2 is evaluated each
time the condition is tested.

The following paragraphs specify in detail the actions that occur as a result of
executing four of the simpler forms of a PERFORM . . . VARYING statement. The
actions that occur when more complex forms of the PERFORM . . . VARYING
statement are executed may be inferred by generalization from the simpler forms.

For a PERFORM . . . VARYING statement that does not have an AFTER phrase nor
a TEST AFTER phrase (that is, TEST BEFORE is specified or implied), the data
item referred to by identifier-2 is set to literal-1 or the current value of the data item
referred to by identifier-3 at the point of initial execution of the statement; then
condition-1 in the UNTIL phrase is tested. If it is false, the specified set of
statements is executed once. The value of the data item referred to by identifier-2 is
augmented by the specified increment or decrement value (literal-2 or the value of
the data item referred to by identifier-4 in the BY phrase) and condition-1 is retested,
with subsequent execution of the specified set of statements if it is found to be false.
The cycle continues until condition-1 is found to be true, at which time control is
transferred to the end of the PERFORM statement. If condition-1 is true at the
beginning of execution of the PERFORM statement, control is transferred to the end
of the PERFORM statement without executing the specified set of statements at all.

Figure 4 represents this sequence of actions.

Figure 4: PERFORM . . . VARYING Statement

This PERFORM . . . VARYING statement has no AFTER or TEST AFTER phrase.

Entrance

Set identifier-2 to its
current FROM value

condition-1 ExitTrue

False

Execute specified set
of statements

Augment identifier-2
with current BY value

PERFORM Statement
Chapter 6: Procedure Division Statements

356 RM/COBOL Language Reference Manual
 First Edition

When control reaches the end of this form of the PERFORM . . . VARYING
statement, the data item referred to by identifier-2 contains a value that exceeds the
setting last used by one increment or decrement value, unless condition-1 was true to
begin with, in which case it contains literal-1 or the current value of the data item
referred to by identifier-3.

For a PERFORM . . . VARYING statement that has one AFTER phrase but no TEST
AFTER phrase (that is, TEST BEFORE is specified or implied), the data item
referred to by identifier-2 is set to literal-1 or to the current value of the data item
referred to by identifier-3; then the data item referred to by identifier-5 is set to
literal-3 or to the current value of the data item referred to by identifier-6.
Subsequent actions form a nested set of two cycles. condition-1 is tested. If it is
true, control is transferred to the end of the PERFORM statement; if it is false,
condition-2 is tested. If condition-2 is false, the specified set of statements is
executed once, then the data item referred to by identifier-5 is augmented by literal-4
or by the current value of the data item referred to by identifier-7, and condition-2 is
retested with subsequent execution of the specified set of statements if it is found to
be false. This inner cycle of execution, testing, and augmentation continues until
condition-2 is found to be true, at which time the data item referred to by identifier-2
is augmented by literal-2 or by the current value of the data item referred to by
identifier-4, identifier-5 is set to literal-3 or to the current value of the data item
referred to by identifier-6, and condition-1 is retested with subsequent reevaluation of
condition-2 as long as condition-1 is found to be false. This outer cycle continues
until condition-1 is found to be true.

Figure 5 represents this sequence of actions.

 PERFORM Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 357
 First Edition

Figure 5: PERFORM . . . VARYING Statement

This PERFORM . . . VARYING statement has one AFTER phrase and no TEST
AFTER phrase.

Entrance

Set identifier-2 to its
current FROM value

condition-1 ExitTrue

False

Execute specified set
of statements

Augment identifier-5
with current BY value

Set identifier-5 to its
current FROM value

condition-2

False

True

Set identifier-5 to its
current FROM value

Augment identifier-2
with current BY value

When control reaches the end of this form of the PERFORM . . . VARYING
statement, the data item referred to by identifier-5 contains literal-3 or the current
value of the data item referred to by identifier-6. The data item referred to by
identifier-2 contains a value that exceeds the last used setting by one increment or
decrement value, unless condition-1 was true to begin with, in which case it contains
literal-1 or the current value of the data item referred to by identifier-3.

For a PERFORM . . . VARYING statement that does not have an AFTER phrase but
does have a TEST AFTER phrase, the data item referred to by identifier-2 is set to
literal-1 or the current value of the data item referred to by identifier-3 at the point of
initial execution of the statement; then the specified set of statements is executed
once and condition-1 in the UNTIL phrase is tested. If it is false, the value of the
data item referred to by identifier-2 is augmented by the specified increment or
decrement value (literal-2 or the value of the data item referred to by identifier-4)
and the specified set of statements is reexecuted with subsequent reevaluation of
condition-1. The cycle continues until condition-1 is found to be true, at which time

PERFORM Statement
Chapter 6: Procedure Division Statements

358 RM/COBOL Language Reference Manual
 First Edition

control is transferred to the end of the PERFORM statement. For this form of the
PERFORM . . . VARYING statement, the specified set of statements is always
executed at least once.

Figure 6 represents this sequence of actions.

Figure 6: PERFORM . . . VARYING Statement

This PERFORM . . . VARYING statement has a TEST AFTER phrase and no
AFTER phrase.

Entrance

Set identifier-2 to its
current FROM value

condition-1 ExitTrue

False

Augment identifier-2
with current BY value

Execute specified set
of statements

When control reaches the end of this form of the PERFORM . . . VARYING
statement, identifier-2 contains the same value it contained at the end of the most
recent execution of the specified set of statements.

For a PERFORM . . . VARYING statement that has one AFTER phrase and a TEST
AFTER phrase, the data item referred to by identifier-2 is set to literal-1 or the
current value of the data item referred to by identifier-3, then the data item referred to
by identifier-5 is set to literal-3 or the current value of the data item referred to by
identifier-6. The specified set of statements is executed once and condition-2 is
tested. If it is false, the data item referred to by identifier-5 is augmented by literal-4
or the current value of the data item referred to by identifier-7 and the specified set of
statements is reexecuted with subsequent reevaluation of condition-2. This inner
cycle of execution, testing and augmentation continues until condition-2 is found to
be true, at which time condition-1 is tested. If it is true, control is transferred to the
end of the PERFORM statement. If it is false, the data item referred to by
identifier-2 is augmented by literal-2 or the current value of the data item referred to
by identifier-4. identifier-5 is set to literal-3 or the current value of the data item
referred to by identifier-6; and the specified set of statements is reexecuted with

 PERFORM Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 359
 First Edition

subsequent reevaluation of condition-2. This outer cycle continues until both
condition-1 and condition-2 are found to be true.

Figure 7 represents this sequence of actions.

Figure 7: PERFORM . . . VARYING Statement

This PERFORM . . . VARYING statement has one AFTER phrase and a TEST
AFTER phrase.

Entrance

Set identifier-2 to its
current FROM value

condition-2

Exit

True

False

Execute specified set
of statements

Augment identifier-5
with current BY value

Set identifier-5 to its
current FROM value

condition-1

False

True

Augment identifier-2
with current BY value

When control reaches the end of this form of the PERFORM . . . VARYING
statement, each data item varied by an AFTER or VARYING phrase contains the
same value it contained at the end of the most recent execution of the specified set
of statements.

The preceding definition of the operation of a Format 4 PERFORM statement
complies with ANSI COBOL 1985. It should be noted that this definition differs

PERFORM Statement
Chapter 6: Procedure Division Statements

360 RM/COBOL Language Reference Manual
 First Edition

slightly from the definition in ANSI COBOL 1974, with which earlier versions of
RM/COBOL complied. The difference is in the point at which inner cycle loop
variables are reset to their FROM values.

It can have an effect only on Format 4 PERFORM statements that specify one or
more AFTER phrases and that specify an inner FROM operand that is dependent on
one of the higher-level loop operands. Most Format 4 PERFORM statements are not
of this form, and are, therefore, not affected by this change. In situations where it is
necessary to preserve compatibility with earlier versions of COBOL in this regard,
two courses of action are possible: either modify the text of the source program,
replacing the Format 4 PERFORM statement with an appropriate sequence of IF,
MOVE, ADD and Format 1 PERFORM statements; or make use of the Compile
Command option that causes the RM/COBOL compiler to treat Format 4 PERFORM
statements as before. The RM/COBOL User’s Guide contains further information on
this option and the language features it controls.

During the execution of the specified set of statements associated with the
PERFORM statement, any change to the VARYING variable (the data item referred
to by identifier-2 and index-name-1), the BY variable (the data item referred to by
identifier-4), the AFTER variable (the data item referred to by identifier-5 and
index-name-3), or the FROM variable (the data item referred to by identifier-3 and
index-name-2) are taken into consideration and affect the operation of the
PERFORM statement.

When the data items referred to by two identifiers are varied, the data item referred to
by identifier-5 goes through a complete cycle (FROM, BY, UNTIL) each time the
contents of the data item referred to by identifier-2 are varied. When the contents of
three or more data items referred to by identifiers are varied, the mechanism is the
same as for two identifiers except that the data item being varied by each AFTER
phrase goes through a complete cycle each time the data item being varied by the
preceding AFTER phrase is augmented.

The range of a PERFORM statement consists logically of all those statements that
are executed as a result of executing the PERFORM statement through execution of
the implicit transfer of control to the end of the PERFORM statement. The range
includes all statements that are executed as the result of a transfer of control by
CALL, EXIT, GO TO and PERFORM statements in the range of the PERFORM
statement, as well as all statements in declarative procedures that are executed as a
result of the execution of statements in the range of the PERFORM statement. The
statements in the range of a PERFORM statement need not appear consecutively in
the source program.

If the specified set of statements for one PERFORM statement includes another
PERFORM statement, the specified set of statements associated with the inner
PERFORM must itself be either totally included in, or totally excluded from, the
logical sequence referred to by the outer PERFORM statement. Thus an active
PERFORM statement, whose execution point begins within the range of another
active PERFORM statement, must not allow control to pass to the exit of the other
active PERFORM statement; furthermore, two or more such active PERFORM
statements may not have a common exit. This is illustrated in Figure 8, Figure 9, and
Figure 10.

 PERFORM Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 361
 First Edition

Figure 8: PERFORM Statement Examples

Performed statements totally included in logical sequence referred to by first
PERFORM.

x PERFORM a THRU m

a

d PERFORM f THRU j

f

j

m

Figure 9: PERFORM Statement Examples

Performed statements totally excluded from logical sequence referred to by first
PERFORM.

x PERFORM a THRU m

a

d PERFORM f THRU j

m

f

j

Figure 10: PERFORM Statement Examples

Second PERFORM excluded in logical sequence referred to by first PERFORM.

x PERFORM a THRU m

a

f

m

j

d PERFORM f THRU j

PERFORM Statement
Chapter 6: Procedure Division Statements

362 RM/COBOL Language Reference Manual
 First Edition

A PERFORM statement that appears in a section that is not in an independent
segment can have within its range, in addition to any declarative sections whose
execution is caused within that range, only one of the following:

• Sections, paragraphs, or both, wholly contained in one or more nonindependent
segments.

• Sections, paragraphs, or both, wholly contained in a single independent segment.

A PERFORM statement that appears in an independent segment can have within its
range, in addition to any declarative sections whose execution is caused within that
range, only one of the following:

• Sections, paragraphs, or both, wholly contained in one or more nonindependent
segments.

• Sections, paragraphs, or both, wholly contained in the same independent
segment as the PERFORM statement.

PERFORM Statement Examples

RE. ON-PROCEDUNTIALIZATI PERFORM I

. UGH GROUP5ROUP1 THRO PERFORM G

RM. END-PERFO
N STOP RU

w" un unit no "Ending r DISPLAY
 PERFORM

. NT-1 TIMESTEP-UP COU PERFORM S

RM. END-PERFO
T ITEM-COUNM-COUNT TO ADD ITE

 TIMES PERFORM 4

RM. END-PERFO
D END-REA

COUNT TO RECORD-END ADD 1 NOT AT
 TRUESET EOF TO AT END

PUT-FILE READ IN
NTIL EOF PERFORM U
O FALSE. SET EOF T

 COUNT = 0.NTIL ITEM-ST AFTER U WITH TE
URETEM-PROCED PERFORM I

RM. END-PERFO
-IX) E1-COL(T1 COL
1-IX) E1-LINE(T LINE
T1-IX) E1-FIELD(DISPLAY

X > 100 UNTIL T1-I
BY 1IX FROM 1 ARYING T1- PERFORM V

0. IL IX2 > 11 BY 1 UNT IX2 FROM AFTER
IL IX1 > 51 BY 1 UNT IX1 FROM VARYING

ALIZEABLE-INITI PERFORM T

 PURGE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 363
 First Edition

PURGE Statement
The PURGE statement eliminates from the Message Control System (MCS) a partial
message that has been released by one or more SEND statements.

cd-name-1PURGE

cd-name-1 must reference an output CD or an input-output CD.

Execution of a PURGE statement causes the MCS to eliminate any partial message
awaiting transmission to the destinations specified in the CD referred to by
cd-name-1.

Any message that has associated with it an EMI or EGI is not affected by the
execution of a PURGE statement.

The contents of the status key data item and the contents of the error key data item (if
applicable) of the area referenced by cd-name-1 are updated by the MCS.

PURGE Statement Examples

-LINE-1. PURGE COM

-LINE-2. PURGE COM

READ Statement
Chapter 6: Procedure Division Statements

364 RM/COBOL Language Reference Manual
 First Edition

READ Statement
For sequential access, the READ statement makes available the next or previous
logical record from a file. For random access, the READ statement makes available
a specified record from a mass storage file.

Format 1: Read Sequential Access

[]

[]

[]

[]READ-END

ENDATNOT

ENDAT

INTO
LOCKNOWITHRECORDPREVIOUS

NEXTREAD

-2-statementimperative

-1-statementimperative

-1identifier1file-name- 






















Format 2: Read Random Access

[]

[]

[]

[]READ-END

KEYINVALIDNOT

KEYINVALID

ISKEY

INTO
LOCKNOWITHRECORDREAD

-2-statementimperative

-1-statementimperative

name-1split-key-
1data-name-

-1identifier1file-name-






































The file referenced by file-name-1 must be open in the INPUT or I–O mode at the
time this statement is executed.

In a Format 1 READ statement, the NEXT phrase causes the next logical record to
be retrieved from the file, and the PREVIOUS phrase causes the previous logical
record to be retrieved. The PREVIOUS phrase may not be specified for a sequential
organization file.

For a file in which sequential access mode is specified, a Format 1 READ statement
must be used. If both the NEXT phrase and the PREVIOUS phrase are omitted from
a Format 1 READ statement for a file in sequential access mode, the default is
NEXT.

For a file in which dynamic access mode is specified and records are to be retrieved
sequentially using Format 1 READ statements, either the NEXT phrase or the
PREVIOUS phrase must be specified.

Format 2 is used for files in random access mode or for files in dynamic access mode
when records are to be retrieved randomly.

The INVALID KEY phrase or the AT END phrase must be specified if no applicable
USE procedure is specified for file-name-1.

 READ Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 365
 First Edition

The KEY phrase may be specified only when the organization of file-name-1 is
indexed. When the KEY phrase is present, data-name-1 or split-key-name-1 must be
the name of one of the record keys associated with file-name-1. data-name-1 or
split-key-name-1 may be qualified.

The setting of the file position indicator at the start of the execution of a Format 1
READ statement is used in determining the record to be made available according to
the following rules. Comparisons for records in sequential files relate to the record
number. Comparisons for records in relative files relate to the relative key number.
Comparisons for records in indexed files relate to the value of the current key of
reference, and the comparisons of key values are made according to the collating
sequence of the file.

1. If the file position indicator indicates that no valid next record has been
established, execution of the READ statement is unsuccessful.

2. If the file position indicator indicates that an optional input file is not present,
execution proceeds as described below for the case when no next record exists.

3. If the file position indicator was established by a previous OPEN or START
statement, and

a. PREVIOUS was not specified, the first existing record in the file whose
record number or key value is greater than or equal to the file position
indicator is selected.

b. PREVIOUS was specified, the first existing record in the file whose record
number or key value is less than or equal to the file position indicator is
selected.

4. If the file position indicator was established by a previous READ statement, and
the file is a sequential or relative file, or an indexed file whose current key of
reference does not allow duplicates, and

a. PREVIOUS was not specified, the first existing record in the file whose
record number or key value is greater than the file position indicator is
selected.

b. PREVIOUS was specified, the first existing record in the file whose record
number or key value is less than the file position indicator is selected.

5. For indexed files, if the file position indicator was established by a previous
READ statement, and the current key of reference does allow duplicates, and

a. PREVIOUS was not specified, the first record in the file whose key value is
either equal to the file position indicator and whose logical position within
the set of duplicates is immediately after the record that was made available
by that previous READ statement, or whose key value is greater than the
file position indicator, is selected.

b. PREVIOUS was specified, the first record in the file whose key value is
either equal to the file position indicator and whose logical position within
the set of duplicates is immediately before the record that was made
available by that previous READ statement, or whose key value is less than
the file position indicator, is selected.

If a record is found that satisfies these requirements, and there is no record lock
conflict for that record, it is made available in the record area for the file.

If no record is found that satisfies these requirements, the file position indicator is set
to indicate that no next record exists, and execution proceeds as described below for
the case when no next record exists.

READ Statement
Chapter 6: Procedure Division Statements

366 RM/COBOL Language Reference Manual
 First Edition

If a record is made available, the file position indicator is updated as follows:

• For sequential files, the file position indicator is set to the record number of the
record made available.

• For relative files, the file position indicator is set to the relative record number
of the record made available. If the RELATIVE KEY clause is specified for
file-name-1 and the number of significant digits in the relative record number of
the selected record is larger than the size of the relative key data item, the file
position indicator is set to indicate this condition and execution proceeds as
described below for the case when no next record exists.

• For indexed files, the file position indicator is set to the value of the current key
of reference of the record made available.

The execution of the READ statement causes the value of the file status data item, if
any, associated with file-name-1 to be updated.

When the logical records of a file are described with more than one record
description, they share the same storage area; this is equivalent to an implicit
redefinition of the area. If the number of character positions in the record that is
read is less than the minimum size specified by the record description entries for
file-name-1, the portion of the record area that is to the right of the last valid
character read is undefined. If the number of character positions in the record that is
read is greater than the maximum size specified by the record description entries for
file-name-1, the record is truncated on the right to the maximum size. In either case,
the READ statement is successful and an I–O status value is set indicating that a
record length conflict has occurred.

For a Format 1 READ statement, if the file position indicator indicates that no next
(or previous) logical record exists, or that an optional input file is not present, the
NOT AT END phrase, if specified, is ignored, and the following operations occur in
the order specified:

1. An I–O status value is derived from the setting of the file position indicator and
stored into the file status data item for the file, if there is one.

2. If the AT END phrase is specified in the Format 1 READ statement, control is
transferred to the imperative statement in the AT END phrase. Any USE
procedure associated with file-name-1 is not executed.

3. If the AT END phrase is not specified, the applicable USE procedure, if there is
one, is executed. Upon return from the USE procedure, control is transferred to
the end of the READ statement. If there is no applicable USE procedure, an
error message is produced and the run unit is terminated. The runtime can be
configured, as described for the DEFAULT-USE-PROCEDURE keyword of
the COMPILER-OPTIONS record in Chapter 10: Configuration of the
RM/COBOL User’s Guide, to assume that a default empty USE procedure is
applicable, thus causing execution to continue at the next executable statement
after the READ statement.

 READ Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 367
 First Edition

If the at end condition occurs, execution of the Format 1 READ statement is
unsuccessful. Following the unsuccessful execution of the READ statement, the
contents of the associated record area are undefined and the file position indicator is
set to indicate that no valid next record has been established. A further Format 1
READ statement for that file must not be executed without first executing one of the
following:

• A successful CLOSE statement followed by the execution of a successful OPEN
statement for that file

• A successful START statement for that file

• A successful Format 2 READ statement for that file

If an at end condition does not occur during the execution of a Format 1 READ
statement, the AT END phrase and its associated imperative statement are ignored, if
specified, and the following actions occur:

• The file position indicator is set and the I–O status value associated with the
file-name is updated and stored into the file status data item for the file, if there
is one.

• If an exception condition other than at end exists, control is transferred
according to rules of the USE procedure applicable to the file-name.

• If no exception condition exists, the record is made available in the record area
and any implicit move resulting from the presence of an INTO phrase is
executed. Control is transferred to the end of the READ statement or to
imperative-statement-2, if specified, in the NOT AT END phrase. In the latter
case, execution continues according to the rules for each statement specified in
imperative-statement-2. If a procedure branching or conditional statement that
causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-2, control is transferred to the end of the
READ statement.

For relative files if the RELATIVE KEY phrase is specified, the execution of a
Format 1 READ statement updates the contents of the relative key data item such
that it contains the relative record number of the record made available.

For relative files the execution of a Format 2 READ statement sets the file position
indicator to, and makes available, the record whose relative record number is
contained in the data item named in the RELATIVE KEY phrase for the file. If the
file does not contain such a record, the invalid key condition exists and execution of
the READ statement is unsuccessful.

For an indexed file being sequentially accessed using the NEXT phrase (specified
either implicitly or explicitly) in a Format 1 READ statement, records having the
same duplicate value in an alternate record key which is the key of reference are
made available in the same order in which they are released by execution of WRITE
statements, or by execution of REWRITE statements that create such duplicate
values. If the file is being sequentially accessed using the PREVIOUS phrase in a
Format 1 READ statement, the records with duplicate keys are made available in
reverse of the order that they are released or made duplicate.

In single record locking modes, any record lock held by the run unit for file-name-1
is released upon execution of the READ statement. The successful execution of the
READ statement may obtain a record lock on the accessed record, as described in the
discussion of the LOCK phrase (on page 368).

READ Statement
Chapter 6: Procedure Division Statements

368 RM/COBOL Language Reference Manual
 First Edition

In multiple record locking modes any record locks held by the run unit for
file-name-1 are not released upon execution of the READ statement.

KEY Phrase









name-1split-key-
1data-name-ISKEY

For an indexed file if the KEY phrase is specified in a Format 2 READ statement,
data-name-1 or split-key-name-1 is established as the key of reference for this
retrieval. If the dynamic access mode is specified, this key of reference is also used
for retrievals by any subsequent executions of Format 1 READ statements for the file
until a different key of reference is established for the file.

If the KEY phrase is not specified in a Format 2 READ statement, the prime record
key is established as the key of reference for this retrieval.

If the dynamic access mode is specified, this key of reference is also used for
retrievals by any subsequent executions of Format 1 READ statements for the file
until a different key of reference is established for the file.

For indexed files, the execution of a Format 2 READ statement causes the value of
the key of reference to be compared with the value contained in the corresponding
data item of the stored records in the file, until the first record having an equal value
is found. The file position indicator is positioned to this record which is then made
available. If no record can be so identified, the invalid key condition exists and
execution of the READ statement is unsuccessful.

For relative files, the KEY phrase cannot be specified.

LOCK Phrase

[] LOCKNOWITH

The LOCK phrase may be specified to control record locking for a shared input-
output file. If the file is not a shared input-output file, the LOCK phrase is ignored
and the execution of the READ statement does not attempt to obtain a lock on the
record accessed. For a file open in the INPUT mode, the execution of the READ
statement never attempts to obtain a lock on the record accessed.

In manual record locking modes, the READ statement only attempts to lock the
record accessed when the LOCK phrase, without the NO option, is specified. If the
record accessed by the READ statement is to be subsequently rewritten or deleted,
the LOCK phrase, without the NO option, should be specified in a READ statement
executed in manual record locking modes. For a READ statement that is executed in
manual record locking modes, the NO LOCK phrase is redundant.

In automatic record locking modes, the READ statement automatically attempts
to lock the record accessed except when the NO LOCK phrase is specified.
Specifying NO LOCK will reduce file contention in a shared file environment when
the record accessed by the READ statement is not to be subsequently rewritten or
deleted. In automatic record locking modes, the LOCK phrase, without the NO
option, is redundant.

 READ Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 369
 First Edition

When a READ statement attempts to obtain a record lock and the record accessed is
already locked by another concurrently executing run unit, the subsequent action
depends on the form of the program:

• If the program declares both a file status data item for file-name-1 and an
applicable USE procedure for file-name-1, the READ statement completes
unsuccessfully with an I–O status value that indicates a locked record conflict
and the USE procedure is performed. The status of the file position indicator in
this case is described in the RM/COBOL User’s Guide.

• If the conditions in the above paragraph are not satisfied, the runtime system
waits for the other run unit to unlock the record before completing the READ
statement execution for this run unit.

If the record is already locked by this run unit through another COBOL file-name
that refers to the same physical file, the READ statement will not wait but will
complete unsuccessfully regardless of whether both a file status data item and
applicable USE procedure are defined in the program.

If the record is already locked by this run unit through file-name-1, the READ
statement completes successfully and the lock status of the accessed record is not
changed.

When a READ statement does not attempt to obtain a lock on the record accessed,
the lock status of the record is not significant. The current contents of the record are
obtained at the time of the execution of the READ statement without indication of its
locked or unlocked status.

See Record Locking (on page 234) for additional information on record locking.

INTO Phrase

-1identifierINTO

If the INTO phrase is specified, the record being read is moved from the record area
to the area specified by identifier-1 according to the rules specified for the MOVE
statement without the CORRESPONDING phrase. The size of the current record is
determined by rules specified in the RECORD clause. If the file description entry
contains a RECORD IS VARYING clause, the implied move is a group move. The
implied move does not occur if the execution of the READ statement was
unsuccessful. Any subscripting associated with identifier-1 is evaluated after the
record has been read and immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available in both the input
record area and the data area associated with identifier-1.

The INTO phrase must not be used when the input file contains logical records of
various sizes as indicated by their record descriptions. The storage area associated
with identifier-1 and the record area associated with file-name-1 must not be the
same storage area.

READ Statement
Chapter 6: Procedure Division Statements

370 RM/COBOL Language Reference Manual
 First Edition

INVALID KEY and NOT INVALID KEY Phrases

-2-statementimperative

-1-statementimperative

KEYINVALIDNOT

KEYINVALID

The causes of the invalid key condition for a READ statement execution have been
indicated in the preceding text. See the discussions of relative organization input-
output (on page 219) and indexed organization input-output (on page 225) for
additional information on the invalid key condition and the use of the INVALID
KEY clause.

READ Statement Examples

 LE RECORD.SACTION-FI READ TRAN

 END-READ.
G-RECORDPROCESS-LOD PERFORM NOT AT EN

RUET EOF TO T AT END SE
AVE O RECORD-SRECORD INTFILE NEXT READ LOG-

 END-READ.
ed."file reachinning-of-SPLAY "Beg AT END DI
H LOCK RECORD WIT PREVIOUS NTORY-FILE READ INVE

PROCEDURE.RFORM EOF- AT END PE
 TH NO LOCK RECORD WI-BASE NEXT READ DATA

 END-READ.
ROCEDURE BAD-KEY-PEY PERFORM INVALID K

 RECORDNTORY-FILE READ INVE

 END-READ.
EASS-WORK-ARFORM PROCEID KEY PER NOT INVAL

 "Bad key"EY DISPLAY INVALID K
-WORK-AREANTO RECORD NO LOCK I-BASE WITH READ DATA

 RECEIVE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 371
 First Edition

RECEIVE Statement
The RECEIVE statement makes available to the program a message or a message
segment and pertinent information about that data.

[]

[]

[]RECEIVE-END

DATAWITH

DATANO

INTOSEGMENT
MESSAGERECEIVE

-2-statementimperative

-1-statementimperative

-1identifiercd-name-1








cd-name-1 must reference an input CD or an input-output CD.

If cd-name-1 references an input CD, the contents of the data items specified by
data-name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC
SUB-QUEUE-3) of the area referenced by cd-name-1 designate the queue structure
containing the message.

If cd-name-1 references an input-output CD, the contents of the data item specified
by data-name-3 (SYMBOLIC TERMINAL) of the area referenced by cd-name-1
designates the source of the message.

The message, message segment, or portion of a message or segment, is transferred to
the receiving character positions of the area referenced by identifier-1 aligned to the
left without space fill.

The data items identified by cd-name-1 are appropriately updated by the MCS at
each execution of a RECEIVE statement.

A single execution of a RECEIVE statement never returns to the data item referenced
by identifier-1 more than a single message (when the MESSAGE phrase is used) or a
single segment (when the SEGMENT phrase is used). However, the MCS does not
return any portion of a message to the object program until the entire message is
available to the MCS, even when the SEGMENT phrase of the RECEIVE statement
is specified.

Once the execution of a RECEIVE statement has returned a portion of a message,
only subsequent execution of RECEIVE statements in that run unit can cause the
remaining portion of the message to be returned.

NO DATA and WITH DATA Phrases

-2-statementimperative

-1-statementimperative

DATAWITH

DATANO

When, during the execution of a RECEIVE statement, the MCS makes data available
in the data item referenced by identifier-1, the NO DATA phrase, if specified, is
ignored and control is transferred to the end of the RECEIVE statement or, if the
WITH DATA phrase is specified, to imperative-statement-2. In the latter case,
execution continues according to the rules for each statement in imperative-
statement-2. If a procedure branching or conditional statement that causes explicit

RECEIVE Statement
Chapter 6: Procedure Division Statements

372 RM/COBOL Language Reference Manual
 First Edition

transfer of control is executed, control is transferred in accordance with the rules for
that statement; otherwise, upon completion of the execution of imperative-statement-
2, control is transferred to the end of the RECEIVE statement.

When, during the execution of a RECEIVE statement, the MCS does not make data
available in the data item referenced by identifier-1, one of the following actions
occurs:

• If the NO DATA phrase is specified in the RECEIVE statement, the RECEIVE
operation is terminated with the indication that action is complete and control is
transferred to imperative-statement-1. Execution then continues according to the
rules for each statement in imperative-statement-1. If a procedure branching or
conditional statement that causes explicit transfer of control is executed, control
is transferred in accordance with the rules for that statement; otherwise, upon
completion of the execution of imperative-statement-1, control is transferred to
the end of the RECEIVE statement and the WITH DATA phrase, if specified, is
ignored.

• If the NO DATA phrase is not specified in the RECEIVE statement, execution
of the object program is suspended until data is made available in the data item
referenced by identifier-1.

• If one or more queues or subqueues are unknown to the MCS, the appropriate
status key value is stored and control is then transferred as if data had been made
available.

MESSAGE Phrase

MESSAGE

If the MESSAGE phrase is used, end of segment indicators are ignored, and the
following rules apply to data transfer:

1. If a message is the same size as the area referenced by identifier-1, the message
is stored in the area referenced by identifier-1.

2. If a message size is less than the area referenced by identifier-1, the message is
aligned to the leftmost character position of the area referenced by identifier-1
with no space fill.

3. If the message size is greater than the area referenced by identifier-1, the
message fills the area referenced by identifier-1 left to right starting with the
leftmost character of the message. The remainder of the message can be
transferred to the area referenced by identifier-1 with subsequent RECEIVE
statements that specify the same queue structure. The remainder of the message
is treated as a new message.

4. If an end of group indicator is associated with the text accessed by the
RECEIVE statement, the existence of an end of message indicator is implied.

 RECEIVE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 373
 First Edition

SEGMENT Phrase

SEGMENT

If the SEGMENT phrase is used, the following rules apply:

1. If a segment is the same size as the area referenced by identifier-1, the segment
is stored in the area referenced by identifier-1.

2. If the segment size is less than the area referenced by identifier-1, the segment is
aligned to the leftmost character position of the area referenced by identifier-1
with no space fill.

3. If a segment size is greater than the area referenced by identifier-1, the segment
fills the area referenced by identifier-1 left to right starting with the leftmost
character of the segment. The remainder of the segment can be transferred to the
area referenced by identifier-1 with subsequent RECEIVE statements that
specify the same queue structure. The remainder of the segment is treated as a
new segment.

4. If the text to be accessed by the RECEIVE statement has associated with it an
end of message indicator or end of group indicator, the existence of an end of
segment indicator associated with the text is implied and the text is treated as a
message segment.

RECEIVE Statement Examples

VE. END-RECEI
DURESAGE-PROCEROCESS-MES PERFORM P WITH DATA

OCEDUREMESSAGE-PRERFORM NO- NO DATA P
UFFER MESSAGE-BSSAGE INTOOM-PORT ME RECEIVE C

VE. END-RECEI
BUFFERO SEGMENT--SEGMENT T DEFAULT

OVE NO DATA M
-BUFFER TO SEGMENTSEGMENT INOM-LINE-2 RECEIVE C

RELEASE Statement
Chapter 6: Procedure Division Statements

374 RM/COBOL Language Reference Manual
 First Edition

RELEASE Statement
The RELEASE statement transfers records to the initial phase of a sort operation.

















literal-1
-1identifiere-1record-nam FROMRELEASE

A RELEASE statement may be used only within the range of an input procedure
associated with a SORT statement for a file whose sort-merge file description entry
contains record-name-1.

record-name-1 must be the name of a logical record in the associated sort-merge file
description entry and may be qualified.

record-name-1 and identifier-1 must not refer to the same storage area.

The execution of a RELEASE statement causes the record named by record-name-1
to be released to the initial phase of a sort operation.

When control passes from the input procedure, the file consists of all those records
that were placed in it by the execution of RELEASE statements.

FROM Phrase









literal-1
-1identifierFROM

If the FROM phrase is used, literal-1 or the contents of identifier-1 are moved to
record-name-1, then the contents of record-name-1 are released to the sort file.
Moving takes place according to the rules specified for the MOVE statement (on
page 338) without the CORRESPONDING phrase. The information in the record
area is no longer available, but the information in the data area associated with
identifier-1 is available.

RELEASE Statement Example

UT-FILE. CLOSE INP
RM. END-PERFO
D END-REA

RD INPUT-RECOCORD FROM SE SORT-RE RELEA
END NOT AT

O TRUENPUT-EOF T SET I
T ENDPUT-FILE A READ IN
-EOFNTIL INPUT PERFORM U
LE.T INPUT-FI OPEN INPU
LSE.-EOF TO FA SET INPUT

OCEDURE.T-INPUT-PR SOR

 RETURN Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 375
 First Edition

RETURN Statement
The RETURN statement obtains either sorted records from the final phase of a sort
operation or merged records during a merge operation.

[]

[]

[]

[]RETURN-END

ENDATNOT

ENDAT

INTORECORDRETURN

-2-statementimperative

-1-statementimperative

-1identifier1file-name-

file-name-1 must be described by a sort-merge file description entry in the Data
Division.

A RETURN statement may be used only within the range of an output procedure
associated with a SORT or MERGE statement for file-name-1.

The INTO phrase must not be used when the input file contains logical records of
various sizes as indicated by their record descriptions. The storage area associated
with identifier-1 and the record area associated with file-name-1 must not be the
same storage area.

When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents of any data items,
which lie beyond the range of the current data record, are undefined at the
completion of the execution of the RETURN statement.

The execution of the RETURN statement causes the next record, in the order
specified by the keys listed in the SORT or MERGE statement, to be made available
for processing in the record area associated with file-name-1.

If no next record exists in the file referenced by file-name-1, the at end condition
exists and control is transferred to imperative-statement-1 in the AT END phrase.
Execution continues according to the rules for each statement in imperative-
statement-1. If a procedure branching or conditional statement that causes explicit
transfer of control is executed, control is transferred in accordance with the rules for
that statement; otherwise, upon completion of the execution of imperative-statement-
1, control is transferred to the end of the RETURN statement and the NOT AT END
phrase, if specified, is ignored.

When the at end condition occurs, execution of the RETURN statement is
unsuccessful and the contents of the record area associated with file-name-1 are
undefined. After the execution of imperative-statement-1 in the AT END phrase, no
further RETURN statements may be executed as part of the current output procedure.

If the at end condition does not occur during the execution of a RETURN
statement, then after the record is made available and after executing any implicit
move resulting from the presence of an INTO phrase, control is transferred to
imperative-statement-2 in the NOT AT END phrase, if specified; otherwise,
control is transferred to the end of the RETURN statement.

If the INTO phrase is specified, the current record is moved from the input area to
the area specified by identifier-1 according to the rules for the MOVE statement
without the CORRESPONDING phrase. The implied MOVE does not occur if there
is an at end condition. Any subscripting associated with identifier-1 is evaluated

RETURN Statement
Chapter 6: Procedure Division Statements

376 RM/COBOL Language Reference Manual
 First Edition

after the record has been returned and immediately before it is moved to the data
item.

When the INTO phrase is used, the data is available in both the input record area and
the data area associated with identifier-1.

RETURN Statement Example

PUT-FILE. CLOSE OUT
RM. END-PERFO
URN END-RET

CORD OUTPUT-RE WRITE
END NOT AT

OF TO TRUESET SORT-E AT END
ECORD O OUTPUT-RRECORD INTSORT-FILE RETURN

EOFNTIL SORT- PERFORM U
SE.EOF TO FAL SET SORT-
FILE.UT OUTPUT- OPEN OUTP
DURE.TPUT-PROCET-MERGE-OU SOR

 REWRITE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 377
 First Edition

REWRITE Statement
The REWRITE statement logically replaces a record existing in a mass storage file.

[]

[]

[]REWRITE-END

KEYINVALIDNOT

KEYINVALID

FROMREWRITE

-2-statementimperative

-1-statementimperative

literal-1
-1identifiere-1record-nam 

















record-name-1 and identifier-1 must not refer to the same storage area.

record-name-1 is the name of a logical record in the File Section of the Data
Division and may be qualified.

The file associated with record-name-1 must be a mass storage file and must be open
in the I-O mode at the time of execution of this statement.

The INVALID KEY and the NOT INVALID KEY phrases must not be specified for
a REWRITE statement which references a sequential file or a relative file in
sequential access mode.

The INVALID KEY phrase must be specified in the REWRITE statement for files in
the random or dynamic access mode for which an appropriate USE procedure is not
specified.

For indexed files the INVALID KEY phrase must be specified in the REWRITE
statement for files for which an appropriate USE procedure is not specified.

For files in the sequential access mode, the last input-output statement executed for
the associated file prior to the execution of the REWRITE statement must have been
a successfully executed READ statement. The runtime system replaces the record
that was accessed by that READ statement.

When an indexed file is described with the DUPLICATES phrase in the RECORD
KEY clause, the REWRITE statement in the dynamic access mode is executed as if
the file were in the sequential access mode and the REWRITE statement in the
random access mode is not allowed.

The file position indicator is not affected by the execution of a REWRITE statement.

The execution of the REWRITE statement causes the value of the file status data
item, if any, associated with the file to be updated.

The record to be replaced by the execution of the REWRITE statement must not be
locked by another run unit. For a shared input-output file, the run unit executing the
REWRITE statement should obtain a record lock by preceding the REWRITE
statement with a READ statement that locks the record to be replaced. If the run unit
does not already hold a lock on the record to be replaced, the runtime system will
attempt to obtain the lock. If the lock cannot be obtained because another run unit
holds a lock on the record, subsequent action of the program is as described for the
READ statement when attempting to lock a record already locked by another run
unit. If the lock cannot be obtained because this run unit holds a lock on the record
through another COBOL file-name, the REWRITE statement is unsuccessful. For
additional information on coordinating file updates in a shared file environment, see
File Locking (on page 233) and Record Locking (on page 234).

REWRITE Statement
Chapter 6: Procedure Division Statements

378 RM/COBOL Language Reference Manual
 First Edition

In single record locking modes, any record lock held by the run unit for the file
associated with record-name-1 is released after execution of the REWRITE
statement.

In multiple record locking modes, record locks are not released except for the record
lock obtained by the runtime system when the record to be replaced was not locked
by the run unit prior to execution of the REWRITE statement.

For a relative file accessed in a random or dynamic access mode, the runtime system
replaces the record specified by the contents of the relative key data item of the file.
If the file does not contain the record selected by that key value, the invalid key
condition exists.

For an indexed file accessed in the sequential access mode, the record to be replaced
is selected by the value of the prime record key. When the REWRITE statement is
executed, the value of the prime record key of the record to be replaced must be
equal to the value of the prime record key of the last record read from the file. When
the DUPLICATES phrase is specified in the RECORD KEY clause of the file
control entry for the file, the record to be replaced is the one accessed by the
previously executed READ statement.

For an indexed file in the random or dynamic access mode, the record to be replaced
is selected by the prime record key.

For an indexed file, execution of the REWRITE statement for a record that has an
alternate record key occurs as follows:

• When the value of a specific alternate record key is not changed, the order of
retrieval when that key is the key of reference remains unchanged.

• When the value of a specific alternate record key is changed, the subsequent
order of retrieval of that record may be changed when that specific alternate
record key is the key of reference. When duplicate key values are permitted, the
record is logically positioned last within the set of duplicate records containing
the same alternate record key value as the alternate record key value that was
placed in the record.

For indexed files the invalid key condition exists under any of the following
circumstances:

• When the access mode of the file is sequential and the value of the prime record
key of the record to be replaced is not equal to the value of the prime record key
of the last record read from the file.

• When the access mode of the file is dynamic or random and the value of the
prime record key of the record to be replaced is not equal to the value of the
prime record key of any record existing in the file.

• When the value of an alternate record key of the record to be replaced, for which
duplicates are not allowed, equals the value of the corresponding data item of a
record already existing in the file.

When the invalid key condition is recognized for both relative and indexed files, the
execution of the REWRITE statement is unsuccessful, the updating operation does
not take place, the contents of the record area are unaffected, and the I-O status value
of the file associated with record-name-1 is set to a value indicating the cause of the
condition.

 REWRITE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 379
 First Edition

Transfer of control following the successful or unsuccessful execution of the
REWRITE operation depends on the presence or absence of the optional INVALID
KEY and NOT INVALID KEY phrases in the REWRITE statement. See the
discussion of invalid key conditions on pages 223 and 230.

See the discussions of relative organization input-output (on page 219) and indexed
organization input-output (on page 225) for additional information on the invalid key
condition and the use of the INVALID KEY phrase.

For sequential files, if the number of character positions in the record referenced by
record-name-1 is not equal to the number of character positions in the record being
replaced, the execution of the REWRITE statement is unsuccessful, the updating
operation does not take place, the contents of the record area are unaffected, and the
I-O status value of the file associated with record-name-1 is set to a value indicating
the cause of the condition.

For relative and indexed files, the number of character positions in the record
referenced by record-name-1 need not be the same as the number of character
positions in the record being replaced. However, if it is larger than the largest or
smaller than the smallest number of character positions allowed by the RECORD IS
VARYING clause associated with the file, the execution of the REWRITE statement
is unsuccessful, the updating operation does not take place, the contents of the record
area are unaffected, and the I-O status value of the file associated with record-name-
1 is set to a value indicating the cause of the condition.

FROM Phrase









literal-1
-1identifierFROM

The execution of a REWRITE statement with the FROM phrase is equivalent to the
execution of a move from identifier-1 or literal-1 to record-name-1 followed by the
execution of the same REWRITE statement without the FROM phrase. The contents
of the record area prior to the execution of the implicit MOVE statement have no
effect on the execution of the REWRITE statement.

REWRITE Statement Examples

E. OF LOG-FILOG-RECORD REWRITE L

TE. END-REWRI
 OF-BATCH" FROM "END-OG-RECORD REWRITE L

TE. END-REWRI
 EY-HANDLER INVALID-KEY PERFORM INVALID K

ECORDNVENTORY-R REWRITE I

TE. END-REWRI
 D-REWRITE -RECORD EN INVENTORY REWRITE

EY INVALID K
EF DATA-BASB-RECORD O REWRITE D

SEARCH Statement
Chapter 6: Procedure Division Statements

380 RM/COBOL Language Reference Manual
 First Edition

SEARCH Statement
The SEARCH statement is used to search a table for a table element that satisfies the
specified condition and to adjust the associated index-name to indicate that table
element.

Format 1: Search (Serial)

[]

[]SEARCH-END

SENTENCENEXTWHEN

ENDAT

VARYINGSEARCH

L

































-2-statementimperative1condition-

-1-statementimperative

-1index-name
-2identifier-1identifier

Format 2: Search All (Binary)

[]

[]SEARCH-END

SENTENCENEXT

IS
TOEQUALIS

AND

IS
TOEQUALIS

WHEN

ENDAT

ALLSEARCH

































































=







































=

-2-statementimperative

name-2condition-
n-2-expressioarithmetic

literal-2
-4identifier

2data-name-

name-1condition-
n-1-expressioarithmetic

literal-1
-3identifier

1data-name-

-1-statementimperative

-1identifier

L

In both Formats 1 and 2, identifier-1 must not be subscripted or reference modified,
but its description must contain an OCCURS clause with an INDEXED BY phrase.
The description of identifier-1 in Format 2 must also contain the KEY IS phrase in its
OCCURS clause.

identifier-2, when specified, must be described as USAGE IS INDEX or as a
numeric elementary item without any positions to the right of the assumed
decimal point.

In Format 1, condition-1 may be any conditional expression.

In Format 2, all referenced condition-names must be defined as having only a single
value. The data-name associated with a condition-name must appear in the KEY

 SEARCH Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 381
 First Edition

phrase of the OCCURS clause of identifier-1. Each data-name may be qualified.
Each data-name must be subscripted by the first index-name associated with
identifier-1 along with other indexes or literals as required, and must be referenced in
the KEY phrase of the OCCURS clause of identifier-1. identifier-3, identifier-4, or
identifiers specified in arithmetic-expr-1 or arithmetic-expr-2 must not be referenced
in the KEY phrase of the OCCURS clause of identifier-1 or be subscripted by the
first index-name associated with identifier-1.

In Format 2, when multiple keys are defined and a data-name in the KEY phrase
of the OCCURS clause of identifier-1 is referenced, or when a condition-name
associated with a data-name in the KEY phrase of the OCCURS clause of
identifier-1 is referenced, all preceding data-names in the KEY phrase of the
OCCURS clause of identifier-1 or their associated condition-names must also be
referenced.

General Rules for the SEARCH Statement

The following general rules apply to the SEARCH statement:

1. If Format 1 is used, a serial type of search operation takes place, starting at the
current index setting.

a. If, at the start of the execution of the search, the index-name associated with
identifier-1 contains a value that corresponds to an occurrence number that
is greater than the highest permissible occurrence number for identifier-1,
the search is terminated immediately. Then, if the AT END phrase is
specified, imperative-statement-1 is executed; if the AT END phrase is not
specified, control passes to the end of the SEARCH statement.

b. If, at the start of the execution of the search, the index-name associated with
identifier-1 contains a value that corresponds to an occurrence number
that is not greater than the highest permissible occurrence number for
identifier-1, the SEARCH statement operates by evaluating the conditions in
the WHEN phrases in the order in which they are written, making use of the
index settings to determine the occurrence of those items to be tested. If
none of the conditions are satisfied, the index-name for identifier-1 is
incremented, and the process is repeated unless the index is out of range (in
which case the search terminates as indicated in rule 1a). If one of the
conditions is satisfied, the search terminates immediately and control passes
to the imperative statement associated with that condition, if present, or if
the NEXT SENTENCE phrase is associated with that condition, the control
passes to the next executable sentence.

The index-name remains set at the value that causes the condition to be satisfied.

2. In a Format 2 search, the results of the SEARCH ALL operation are predictable
only when both of these conditions exist:

a. The data in the table is ordered in the same manner as described in the
ASCENDING/DESCENDING KEY clause associated with the description
of identifier-1.

b. The contents of the key (or keys) referenced in the WHEN clause are
sufficient to identify a unique table element.

3. If Format 2 of the SEARCH statement is used, a binary search technique is
applied. The value of the index-name for identifier-1 is varied in alternating
directions and in progressively smaller steps until either a value is found for
which all the conditions of the WHEN phrase are satisfied or it is determined
that no value allows all of the conditions to be satisfied. In the latter case,

SEARCH Statement
Chapter 6: Procedure Division Statements

382 RM/COBOL Language Reference Manual
 First Edition

control is passed to imperative-statement-1 in the AT END phrase, if specified,
or to the end of the SEARCH statement if there is no AT END phrase; in either
case, the final setting of the index is not predictable. If a setting of the index is
found for which all of the conditions are satisfied, control passes to imperative-
statement-2, if specified, or if the NEXT SENTENCE phrase is specified, to the
next executable sentence; in either case, the final setting of the index is the one
for which the conditions are all satisfied. Regardless of the outcome of the
SEARCH statement, the initial setting of the index is not significant.

4. After execution of imperative-statement-1, imperative-statement-2, and so forth,
that does not contain an explicit transfer of control, control passes to the end of
the SEARCH statement.

5. In Format 2, the index-name that is used for the search operation is the first (or
only) index-name that appears in the INDEXED BY phrase of identifier-1. Any
other index-names for identifier-1 remain unchanged.

6. In Format 1, if the VARYING phrase is not used, the index-name that is used for
the search operation is the first (or only) index-name that appears in the
INDEXED BY phrase of identifier-1. Any other index-names for identifier-1
remain unchanged.

7. In Format 1, if the VARYING index-name-1 phrase is specified, and if index-
name-1 appears in the INDEXED BY phrase in the OCCURS clause referenced
by identifier-1, that index-name is used for this search. If this is not the case, or
if the VARYING identifier-2 phrase is specified, the first (or only) index-name
given in the INDEXED BY phrase in the OCCURS clause referenced by
identifier-1 is used for the search. In addition, the following operations occur:

a. If the VARYING index-name-1 phrase is used, and if index-name-1 appears
in the INDEXED BY phrase in the OCCURS clause referenced by another
table entry, the occurrence number represented by index-name-1 is
incremented by the same amount as, and at the same time as, the occurrence
number represented by the index-name associated with identifier-1 is
incremented.

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is an index
data item, the data item referenced by identifier-2 is incremented by the
same amount as, and at the same time as, the index associated with
identifier-1 is incremented. If identifier-2 is not an index data item, the data
item referenced by identifier-2 is incremented by the value 1 at the same
time as the index referenced by the index-name associated with identifier-1
is incremented.

8. If identifier-1 references a data item subordinate to a data item that contains an
OCCURS clause, an index-name must be associated with each dimension of the
table through the INDEXED BY phrase of the OCCURS clause. Only the
setting of the index-name associated with identifier-1 (and the data item
identifier-2 or index-name-1, if present) is modified by the execution of the
SEARCH statement. To search a multidimensional table it is necessary to
execute a SEARCH statement several times. Prior to each execution of a
SEARCH statement, SET statements must be executed whenever index-names
must be adjusted to appropriate settings.

A representation of the action of a Format 1 SEARCH statement containing two
WHEN phrases is shown in Figure 11.

 SEARCH Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 383
 First Edition

Figure 11: SEARCH Statement

1 These operations are options included only when specified in the SEARCH statement.
2 Each of these control transfers is to the end of the SEARCH statement unless the

imperative statement contains an explicit transfer.

Entrance

Index >
Maximum Occurrence

Number?

True (AT END) 1

False

Increment index-name for
identifier-1 (index-name-1
if applicable)

imperative-
statement-1














condition-1
True

False

imperative-
statement-2

condition-2
True

False

imperative-
statement-2

1

1

2

Increment index-name-1
(for a different table) or
identifier-2

1

This Format 1 SEARCH statement contains two WHEN phrases.

SEARCH Statement
Chapter 6: Procedure Division Statements

384 RM/COBOL Language Reference Manual
 First Edition

SEARCH Statement Examples

H. END-SEARC
FFERCAPITAL-BU""" COL 5 apital is he state c " and t

 ""","ATE-COUNT)UFFER(1:ST STATE-B
 """e state ofnds for th """ sta

BBREV(IX1)"" STATE-Aeviation " "The abbr DISPLAY
.X1 setting current INote: usesFERS *> SETUP-BUF PERFORM

T-NAMEX1) = INPUE-ABBREV(I WHEN STAT
T) """."STATE-COUN-BUFFER(1: STATE
 """capital ofthe state " is

TAL-COUNT)FER(1:CAPIAPITAL-BUFcity """ C "The
 DISPLAY

.X1 setting current INote: usesFERS *> SETUP-BUF PERFORM
UT-NAMEIX1) = INPE-CAPITAL(WHEN STAT

AL-BUFFER CAPIT
OL 5l is """ Cthe capita "and
X1) ""","E-ABBREV(Is """ STAT """ i
T)STATE-COUN-BUFFER(1: STATE

te of """or the staeviation f "The abbr DISPLAY
. X1 setting current INote: usesFERS *> SETUP-BUF PERFORM

NAME) = INPUT-E-NAME(IX1 WHEN STAT
"ame table.he state ns not in t """ i

-NAME """ INPUT "The name DISPLAY
 AT END

NG IX1ABLE VARYIATE-NAME-T SEARCH ST
O 1. SET IX1 T

AB PROMPT.PUT-NAME T ACCEPT IN

H. END-SEARC
FFERCAPITAL-BU""" COL 5 apital is he state c " and t

 ""","ATE-COUNT)UFFER(1:ST STATE-B
 """e state ofnds for th """ sta

BBREV(IX1)"" STATE-Aeviation " "The abbr DISPLAY
. X1 setting current INote: usesFERS *> SETUP-BUF PERFORM

-ABBREVX1) = CURRE-ABBREV(I WHEN STAT
e table." state namnot in the """ is

BREV"" CURR-ABeviation " "The abbr DISPLAY
 AT END

ME-TABLEL STATE-NA SEARCH AL
.TAB PROMPTRR-ABBREV ACCEPT CU

 SEND Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 385
 First Edition

SEND Statement
The SEND statement causes a message, a message segment, or a portion of a
message or segment to be released to one or more output queues maintained by the
Message Control System (MCS).

Format 1: Send (Simple)









literal-1
-1identifiercd-name-1 FROMSEND

Format 2: Send (Advancing/Replacing)

[]LINEREPLACING

PAGE

LINES
LINE

ADVANCINGAFTER
BEFORE

EGI
EMI
ESIWITHFROMSEND















































































































ame-2mnemonic-n

integer-1
-3identifier

-2identifier

literal-1
-1identifiercd-name-1

cd-name-1 must reference an output CD or an input-output CD.

identifier-2 must reference a one-character integer without an operational sign.

When identifier-3 is used in the ADVANCING phrase, it must be the name of an
elementary integer item.

When the mnemonic-name phrase is used, the name must be identified with a
feature-name that is a channel-name. See the syntax and rules for
mnemonic-name-2 that are discussed in Mnemonic-Name Clause (on page 61).

integer-1 or the value of the data item referenced by identifier-3 may be zero.

General Rules for the SEND Statement

The following general rules apply to both formats of the SEND statement:

1. When a receiving communication device (printer, display screen, card punch,
and so forth) is oriented to a fixed line size:

a. Each message or message segment begins at the leftmost character position
of the physical line.

b. A message or message segment that is smaller than the physical line size is
released so as to appear space-filled to the right.

c. Excess characters of a message or message segment are not truncated.
Characters are packed to a size equal to that of the physical line and then

SEND Statement
Chapter 6: Procedure Division Statements

386 RM/COBOL Language Reference Manual
 First Edition

output to the device. The process continues on the next line with the excess
characters.

2. When a receiving communication device (paper tape punch, another computer,
and so forth) is oriented to handle variable-length messages, each message or
message segment begins on the next available character position of the
communication device.

3. As part of the execution of a SEND statement, the MCS interprets the content of
the text length data item of the area referenced by cd-name-1 to be the user’s
indication of the number of leftmost character positions of the data item
referenced by identifier-1 from which data is to be transferred.

If the content of the text length data item of the area referenced by cd-name-1 is
zero, no characters of the data item referenced by identifier-1 are transferred.

If the content of the text length data item of the area referenced by cd-name-1
is outside the range of zero through the size of the data item referenced by
identifier-1 inclusive, an error is indicated by the value of the status key data
item of the area referenced by cd-name-1, and no data is transferred.

4. As part of the execution of a SEND statement, the content of the status key data
item of the area referenced by cd-name-1 is updated by the MCS.

5. The effect of having special control characters within the contents of the data
item referenced by identifier-1 is undefined.

6. A single execution of a SEND statement represented by Format 1 releases only a
single portion of a message segment or a single portion of a message to the
MCS. A single execution of a SEND statement represented by Format 2 never
releases to the MCS more than a single message or a single message segment as
indicated by the content of the data item referenced by identifier-2 or by the
specified indicator ESI, EMI or EGI.

However, the MCS does not transmit any portion of a message to a
communication device until the entire message has been released to the MCS.

7. During the execution of the run unit, the disposition of a portion of a message
which is not terminated by an EMI or EGI or which has not been eliminated by
the execution of a PURGE statement is undefined.

However, the message does not logically exist for the MCS and hence cannot be
sent to a destination.

8. Once the execution of a SEND statement has released a portion of a message to
the MCS, only subsequent executions of SEND statements in the same run unit
can cause the remaining portion of the message to be released.

For Format 2:

9. The content of the data item referenced by identifier-2 indicates that the content
of the data item referenced by identifier-1, when specified, is to have an
associated end of segment indicator, end of message indicator, end of group
indicator or no indicator (which implies a portion of a message or a portion of a
segment). If identifier-1 is not specified, only the indicator is transmitted to the
MCS. See Table 31.

Any character other than ‘1’, ‘2’ or ‘3’ is interpreted as ‘0’.

If the content of the data item referenced by identifier-2 is other than ‘1’, ‘2’
or ‘3’, and identifier-1 is not specified, an error is indicated by the value in the
data item referenced by data-name-3 (STATUS KEY) of the area referenced by
cd-name-1, and no data is transferred.

 SEND Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 387
 First Edition

Table 33: Data Item Contents

If the content of the data
item referenced by
identifier-2 is

then the content of data
item referenced by
identifier-1 has associated
with it

which means

‘0’ No indicator. No indicator.

‘1’ ESI End of segment.

‘2’ EMI End of message.

‘3’ EGI End of group.

10. The WITH EGI phrase indicates to the MCS that the group of messages is
complete.

The WITH EMI phrase indicates to the MCS that the message is complete.

The WITH ESI phrase indicates to the MCS that the message segment is
complete.

The MCS recognizes these indications and uses them to maintain segment,
message and group control.

11. The hierarchy of ending indicators is EGI, EMI and ESI. An EGI need not be
preceded by ESI or EMI. An EMI need not be preceded by an ESI.

ADVANCING Phrase













































































PAGE

LINES
LINE

ADVANCINGAFTER
BEFORE

ame-2mnemonic-n

integer-1
-3identifier

The ADVANCING phrase allows control of the vertical positioning of each message
or message segment on a communication device where vertical positioning is
applicable. If vertical positioning is not applicable on the device, the ADVANCING
phrase is ignored.

If identifier-2 is specified and the content of the data item referenced by identifier-2
is zero, the ADVANCING phrase is ignored.

On a device where vertical positioning is applicable and the ADVANCING phrase is
not specified, the default advance is one line.

If vertical positioning is applicable, the following rules apply to the ADVANCING
phrase:

1. If identifier-3 or integer-1 is specified, characters transmitted to the
communication device are repositioned vertically downward the number of lines
equal to the value associated with the data item referenced by identifier-3 or
integer-1.

2. If mnemonic-name-2 is specified, characters transmitted to the communication
device are positioned downward to the next occurrence of the channel indicator
for the channel number associated with mnemonic-name-2. If the
communication device does not support channel skipping, advancing defaults to
ADVANCING 1 LINE.

SEND Statement
Chapter 6: Procedure Division Statements

388 RM/COBOL Language Reference Manual
 First Edition

3. If the BEFORE phrase is used, the message or message segment is represented
on the communication device before vertical repositioning.

4. If the AFTER phrase is used, the message or message segment is represented on
the communication device after vertical repositioning.

5. If PAGE is specified, characters transmitted to the communication device are
represented before or after (depending on the phrase used) the device is
repositioned to the next page. If PAGE is specified but has no meaning with a
specific device, advancing defaults to ADVANCING 1 LINE.

6. When the receiving communication device is a character imaging device on
which it is possible to present more than one character at the same position, and
the device permits the choice of either the second or subsequent characters
appearing superimposed on characters already displayed at that position or each
character appearing in place of the characters previously transmitted to that line,
then:

a. If the REPLACING phrase is specified, the characters transmitted by the
SEND statement replace all characters that may have previously been
transmitted to the same line beginning with the leftmost character position
of the line.

b. If the REPLACING phrase is not specified, the characters transmitted by the
SEND statement appear superimposed upon the characters that may have
previously been transmitted to the same line beginning with the leftmost
character position of the line.

7. When the receiving communication device does not support the replacement of
characters, regardless of whether the REPLACING phrase is specified, the
characters transmitted by the SEND statement appear superimposed upon the
characters that may have previously been transmitted to the same line, beginning
with the leftmost character position of the line.

8. When the receiving communication device does not support the superimposition
of more than one character at the same position, regardless of whether the
REPLACING phrase is specified, the characters transmitted by the SEND
statement replace all characters that may have previously been transmitted to the
same line, beginning with the leftmost character position of the line.

SEND Statement Examples

. our PIN: "M "Enter yLINE-1 FRO SEND COM-

 LINES.DVANCING 3 AFTER A
H ESI BUFFER WITM SEGMENT-LINE-2 FRO SEND COM-

 SET Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 389
 First Edition

SET Statement
The SET statement is used to establish reference points for table handling operations,
alter the status of external switches, and alter the value of conditional variables.

Format 1: Set Index

LL
































integer-1
-2identifier

-2index-name

-1identifier
-1index-name TOSET

Format 2: Set Index Up/Down

{ } LL
























integer-2
-3identifier-3index-name BYDOWN

UPSET

Format 3: Set Switch On/Off

{ } LL
















OFF
ONTOSET ame-1mnemonic-n

Format 4: Set Condition-Name True/False

{ } LL
















FALSE
TRUETOSET name-1condition-

Format 5: Set Pointer

LL








































































NULLS
NULL

OF
INADDRESS

TOOF
INADDRESSSET -6identifier

-5identifier

-4identifier

1data-name-

Format 6: Set Pointer Up/Down

LL


















































































-8identifier

integer-3
-7identifier

-4identifier

1data-name-

OF
INLENGTH

BYDOWN
UPOF

INADDRESSSET

SET Statement
Chapter 6: Procedure Division Statements

390 RM/COBOL Language Reference Manual
 First Edition

identifier-1 and identifier-2 must name either index data items, or elementary items
described as an integer.

identifier-3 and identifier-7 must refer to elementary data items described as an
integer.

integer-1 and integer-2 may be signed. integer-1 must be positive.

mnemonic-name-1 must be identified in the SPECIAL-NAMES paragraph of the
Environment Division as one of the permissible switch-names SWITCH-1,
SWITCH-2, . . ., SWITCH-8, or UPSI-0, UPSI-1, . . ., UPSI-7.

condition-name-1 must be associated with a conditional variable.

data-name-1 must be the name of a level 01 or level 77 data description entry that is
described in the Linkage Section.

identifier-4 and identifier-6 must refer to elementary data items described with
POINTER usage.

In Format 4, if the TRUE phrase is specified, the Format 2 VALUE clause (on
page 135) described for the condition-name must either not specify a relational
operator prior to the first listed literal or that first relational operator must be one that
includes an equality relation. For additional information regarding the use of a
relational operator in the VALUE clause and the existence of a true value for
purposes of the SET statement, see Condition-Name Rules (Format 2 VALUE
Clause) on page 137.

In Format 4, if the FALSE phrase is specified, the FALSE phrase must be specified
in the VALUE clause of the data description entry for condition-name-1.

General Rules for the SET Statement

The general rules that apply to the SET statement are as follows:

Index-names are considered related to a given table and are defined by being
specified in the INDEXED BY clause.

If index-name-2 is specified, the value of the index before the execution of the
SET statement must correspond to an occurrence number of an element in the
associated table.

If index-name-3 is specified, the value of the index both before and after the
execution of the SET statement must correspond to an occurrence number of an
element in the associated table. If index-name-1 is specified, the value of the index
after the execution of the SET statement must correspond to an occurrence number of
an element in the associated table. The value of the index associated with an index-
name after the execution of a PERFORM statement may be undefined.

In Format 1, the following action occurs:

• index-name-1 is set to a value causing it to refer to the table element that
corresponds in occurrence number to the table element referenced by index-
name-2, identifier-2 or integer-1. If identifier-2 is an index data item, see the
note below.

• If identifier-1 is an index data item, it may be set equal to the contents of either
index-name-2 or identifier-2, where identifier-2 is also an index data item.

• If identifier-1 is not an index data item, it may be set only to an occurrence
number that corresponds to the value of index-name-2. Neither identifier-2 nor
integer-1 can be used in this case.

 SET Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 391
 First Edition

• The process is repeated if specified. Any subscripting associated with
identifier-1 is evaluated immediately before the value of the respective data item
is changed.

In Format 2, the contents of each index-name-3 are incremented (UP BY) or
decremented (DOWN BY) by a value that corresponds to the number of occurrences
represented by the value of integer-2 or of the data item referenced by identifier-3.
Each time the value of identifier-3 is used as it was at the beginning of the execution
of the statement.

Note Standard COBOL does not require conversion of an index value (that is,
the character offset within the table to a specific occurrence of a table element)
to or from the occurrence number in either case. It is an error to code the following
sequence when index-name-4 and index-name-5 are not associated with the
same table:

SET index-data-item TO index-name-4.
SET index-name-5 TO index-data-item.

Generally, RM/COBOL cannot detect such errors. It treats index data items as if
they contained occurrence numbers and converts to or from index values as
necessary in SET statements. Programs that depend on this conversion will not
necessarily execute correctly on other implementations of standard COBOL.

Table 34 shows the validity of various operand combinations in the SET statement.

Table 34: SET Statement Operand Validity

 Receiving Item

Sending Item Integer Data Item Index-Name Index Data Item

Integer Literal No Valid No

Integer Data Item No Valid No

Index-Name Valid Valid Valid 1

Index Data Item No Valid 1 Valid 2
1 No conversion is required in standard COBOL, but RM/COBOL converts between

occurrence number for index data items and index value for index-names.
2 No conversion takes place.

In Format 3, the status of each external switch associated with the specified
mnemonic-name-1 is modified such that the truth value resultant from evaluation
of a condition-name associated with that switch reflects an on status if the ON phrase
is specified, or an off status if the OFF phrase is specified.

In Format 4 if the TRUE phrase is specified, the literal in the VALUE clause
associated with condition-name-1 is placed in the conditional variable according to
the rules for the VALUE clause. If more than one literal is specified in the VALUE
clause, the conditional variable is set to the value of the first literal that appears in the
VALUE clause.

In Format 4 if the FALSE phrase is specified, the literal in the FALSE phrase of the
VALUE clause associated with condition-name-1 is placed in the conditional
variable according to the rules for the VALUE clause.

If multiple condition-names are specified in Format 4, the results are the same as if a
separate SET statement had been written for each condition-name-1 in the same
order as specified in the SET statement.

SET Statement
Chapter 6: Procedure Division Statements

392 RM/COBOL Language Reference Manual
 First Edition

In Format 5, the sending value represents the address of a data item. If identifier-6 is
specified, the sending value is the value of the pointer data item referred to by
identifier-6. If ADDRESS OF identifier-5 is specified, the sending value represents
the address of the data item referred to by identifier-5. If NULL or NULLS is
specified, the sending value is the null pointer value, which is not the address of any
data item.

In Format 5, the receiving data item is either a pointer data item or the base address
of a based linkage record. If identifier-4 is specified, the receiving data item is a
pointer data item into which the sending value is stored. If ADDRESS OF data-
name-1 is specified, the receiving data item is a system-defined base address pointer
data item for the based linkage record. In the latter case, the object program
subsequently operates as if the based linkage record identified by data-name-1 were
located at the address represented by the sending value.

In Format 6, the UP phrase increments and the DOWN phrase decrements the offset
field of a pointer receiving data item identified by identifier-4 or the base address of
a based linkage record identified by data-name-1 by a given number of character
positions. The number of character positions to increment or decrement the
receiving value is given by integer-3, the value of the data item referred to by
identifier-7, or the value returned by the LENGTH special register for identifier-8.
If the receiving item initially has a null value, the Format 6 SET statement has no
effect. If after the operation of the Format 6 SET statement, the offset exceeds the
length field of the receiving pointer value no action is taken. However, if that
resultant pointer value is used unchanged to reference a based linkage record, the
run unit will be terminated with a data reference error 104. Note that, because the
offset field of a pointer value is an unsigned quantity, setting it down below zero
will generally result in a large positive number that exceeds the length field of the
pointer value. Again, no error occurs until a later attempt is made to use the resultant
pointer value.

SET Statement Examples

O SUB1. IX3 IX4 TX2 TO IX3, SET IX1 I

 DOWN BY 2., IX3 IX4 X2 UP BY 1 SET IX1 I

H TO ON. TAIL-SWITCTO OFF, DERY-SWITCH SET SUMMA

LSE. ND-1 TO FAO TRUE, CO SET EOF T

 P2. SET P1 TO

1. ECORD TO PSS OF BL-R SET ADDRE

F G1. ADDRESS O SET P1 TO

 NULL. SET P2 TO

 OF T1(1). BY LENGTH SET P1 UP

1. BY COUNT-ECORD DOWNSS OF BL-R SET ADDRE

 SORT Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 393
 First Edition

SORT Statement
The SORT statement creates a sort file by executing an input procedure or by
transferring records from another file, sorts the records in the sort file on a set of
specified keys, and in the final phase of the sort operation, makes available each
record from the sort file, in sorted order, to an output procedure or to an output file.

{ }

[]

[]

{ }

{ } 











































































L

L

LL

3file-name-

name-4procedure-name-3procedure-

2file-name-

name-2procedure-name-1procedure-

ame-1alphabet-n

1data-name-1file-name-

GIVING
THRU
THROUGHISPROCEDUREOUTPUT

USING
THRU
THROUGHISPROCEDUREINPUT

ISSEQUENCECOLLATING

ORDERINDUPLICATESWITH

KEYDESCENDING
ASCENDINGONSORT

A SORT statement may appear anywhere in the Procedure Division except in the
declaratives portion.

file-name-1 must be described in a sort-merge file description entry in the Data
Division.

data-name-1 may be qualified.

data-name-1 must reference either a record-name associated with file-name-1 or a
data item in a record associated with file-name-1. If more than one record
description entry is associated with file-name-1, the data items referenced by
different specifications of data-name-1 need not all be associated with the same
record description entry.

The data item referenced by data-name-1 must not be a group item that contains a
variable-occurrence data item.

file-name-2 and file-name-3 must be described in a file description entry in the
Data Division.

The files referenced by file-name-2 and file-name-3 may reside on the same multiple
file reel (or reels). See the discussion of the I-O-CONTROL paragraph (on page 79).

No pair of file-names in the same SORT statement may be specified in the same
SAME SORT AREA or SAME SORT-MERGE AREA clause. (See the
I-O-CONTROL paragraph.)

The words THRU and THROUGH are synonymous.

SORT Statement
Chapter 6: Procedure Division Statements

394 RM/COBOL Language Reference Manual
 First Edition

If the USING phrase is specified and the file referenced by file-name-1 contains
variable-length records, the size of the records contained in the file referenced by
file-name-2 must not be shorter than the shortest record nor longer than the longest
record described for file-name-1. If the file referenced by file-name-1 contains
fixed-length records, the size of the records contained in the file referenced by
file-name-2 must not be longer than the fixed record size specified for the file
referenced by file-name-1.

If the GIVING phrase is specified and the file referenced by file-name-3 contains
variable-length records, the size of the records contained in the file referenced by
file-name-1 must not be shorter than the shortest record nor longer than the longest
record described for file-name-3. If the file referenced by file-name-3 contains
fixed-length records, the size of the records contained in the file referenced by
file-name-1 must not be longer than the fixed record size specified for the file
referenced by file-name-3.

General Rules for the SORT Statement

The general rules that apply to the SORT statement are as follows:

1. The SORT statement releases all the records in the file referenced by file-name-2
or released by an input procedure to the file referenced by file-name-1, and
returns them to an output procedure, or to the file referenced by file-name-3, in
an order determined by the ASCENDING and DESCENDING phrases and the
values of the data items referenced by the specifications of data-name-1.

2. The words ASCENDING and DESCENDING apply to each subsequent
occurrence of data-name-1 until another word ASCENDING or DESCENDING
is encountered.

3. The data items referenced by the specifications of data-name-1 are the key data
items that determine the order in which records are returned from the file
referenced by file-name-1. The order of significance of the keys is the order in
which they are specified in the SORT statement, without regard to their
association with ASCENDING or DESCENDING phrases. The first (or only)
key data item is the most significant. Further key data items, if any, are of
progressively lesser significance.

4. To determine the relative order in which two records are returned from the file
referenced by file-name-1, the contents of corresponding key data items are
compared according to the rules for comparison of operands in a relation
condition, starting with the most significant key data item.

a. If the contents of the corresponding key data items are not equal and the key
is associated with the ASCENDING phrase, the record containing the key
data item with the lower value is returned first.

b. If the contents of the corresponding key data items are not equal and the key
is associated with the DESCENDING phrase, the record containing the key
data item with the higher value is returned first.

c. If the contents of the corresponding key data items are equal, the
determination is made on the contents of the next most significant key
data item.

 SORT Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 395
 First Edition

5. If the DUPLICATES phrase is specified and the contents of all the key data
items in one record are equal to the contents of the corresponding key data items
in one or more other records, the order of the return of such duplicate-key
records is:

a. When an input procedure is not specified, the order of the associated input
files is specified in the SORT statement. Within a given input file the order
is that in which the records are accessed from that file.

b. When an input procedure is specified, the order in which these records are
released by that input procedure.

6. If the DUPLICATES phrase is not specified, the order in which duplicate-key
records are returned is not predictable.

7. The collating sequence that applies to the comparison of nonnumeric key data
items is determined at the beginning of the execution of the SORT statement in
the following order of precedence:

a. The collating sequence established by the COLLATING SEQUENCE
phrase, if specified, in the SORT statement.

b. The collating sequence established as the program collating sequence.

8. The execution of the SORT statement consists of three distinct phases as
follows:

a. Records are made available to the file referenced by file-name-1. This is
achieved either by the execution of RELEASE statements in the input
procedure or by the implicit execution of READ statements for file-name-2.
When this phase commences, the file referenced by file-name-2 must not be
in the open mode. When this phase terminates, the file referenced by
file-name-2 is not in the open mode.

b. The file referenced by file-name-1 is sequenced. No processing of the files
referenced by file-name-2 and file-name-3 takes place during this phase.

c. The records of the file referenced by file-name-1 are made available in
sorted order. The sorted records are either written to the file referenced by
file-name-3 or, by the execution of a RETURN statement, are made
available for processing by the output procedure. When this phase
commences, the file referenced by file-name-3 must not be in the open
mode. When this phase terminates, the file referenced by file-name-3 is
not in the open mode.

9. The input procedure may consist of any procedure needed to select, modify or
copy the records that are made available one at a time by the RELEASE
statement to the file referenced by file-name-1. The range includes all
statements that are executed as the result of a transfer of control by CALL, EXIT
without the optional PROGRAM phrase, GO TO and PERFORM statements in
the range of the input procedure, as well as all statements in declarative
procedures that are executed as a result of the execution of statements in the
range of the input procedure. The range of the input procedure must not cause
the execution of any MERGE, RETURN or SORT statement.

10. If an input procedure is specified, control is passed to the input procedure before
the file referenced by file-name-1 is sequenced by the SORT statement. The
compiler inserts a return mechanism at the end of the last statement in the input
procedure and when control passes the last statement in the input procedure, the
records that have been released to the file referenced by file-name-1 are sorted.

SORT Statement
Chapter 6: Procedure Division Statements

396 RM/COBOL Language Reference Manual
 First Edition

11. If the USING phrase is specified, all the records in the file (or files) referenced
by file-name-2 are transferred to the file referenced by file-name-1. For each of
the files referenced by file-name-2 the execution of the SORT statement causes
the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an
OPEN statement with the INPUT phrase had been executed.

b. The logical records are obtained and released to the sort operation. Each
record is obtained as if a READ statement with the NEXT the AT END
phrases had been executed. If the file referenced by file-name-1 contains
fixed-length records, any record in the file referenced by file-name-2
containing fewer character positions than that specified for file-name-1 is
space-filled on the right beginning with the first character position after the
last character in the record when that record is released to the file referenced
by file-name-1.

c. For a relative file, the contents of the relative key data item are undefined
after the execution of the SORT statement if file-name-2 is not referenced in
the GIVING phrase.

d. The processing of the file is terminated. The termination is performed as if
a CLOSE statement without optional phrases had been executed. This
termination is performed before the file referenced by file-name-1 is
sequenced by the SORT statement.

These implicit functions are performed such that any associated USE procedures
are executed; however, the execution of such a USE procedure must not cause
the execution of any statement manipulating the file referenced by file-name-2 or
accessing the record area associated with file-name-2.

12. The output procedure may consist of any procedure needed to select, modify or
copy the records that are made available one at a time by the RETURN
statement in sorted order from the file referenced by file-name-1. The range
includes all statements that are executed as the result of a transfer of control by
CALL, EXIT without the optional PROGRAM phrase, GO TO and PERFORM
statements in the range of the output procedure, as well as all statements in
declarative procedures that are executed as a result of the execution of
statements in the range of the output procedure. The range of the output
procedure must not cause the execution of any MERGE, RELEASE, or SORT
statement.

13. If an output procedure is specified, control passes to it after the file referenced
by file-name-1 has been sequenced by the SORT statement. The compiler
inserts a return mechanism at the end of the last statement in the output
procedure and when control passes the last statement in the output procedure, the
return mechanism provides for termination of the sort and then passes control to
the next executable statement after the SORT statement. Before entering the
output procedure, the sort procedure reaches a point at which it can select the
next record in sorted order when requested. The RETURN statements in the
output procedure are the requests for the next record.

 SORT Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 397
 First Edition

14. If the GIVING phrase is specified, all the sorted records are written on the file
referenced by file-name-3 as the implied output procedure for the SORT
statement. At the start of execution of the SORT statement, the file referenced
by file-name-3 must not be in the open mode. For each of the files referenced by
file-name-3, the execution of the SORT statement causes the following actions
to be taken:

a. The processing of the file is initiated. The initiation is performed as if an
OPEN statement with the OUTPUT phrase had been executed. The
initiation occurs after the execution of the input procedure, if there is one.

b. The sorted logical records are returned and written onto the file. Each
record is written as if a WRITE statement without any optional phrases had
been executed.

c. For a relative file, the relative key data item for the first record returned
contains the value 1; for the second record returned, the value 2, and so
forth. After execution of the SORT statement, the contents of the relative
key data item indicate the last record returned to the file.

d. The processing of the file is terminated. The termination is performed as if
a CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE procedures
are executed. However, the execution of such a USE procedure must not cause
the execution of any statement manipulating the file referenced by, or accessing
the record area associated with, file-name-3. On the first attempt to write
beyond the externally defined boundaries of the file, any USE procedure
specified for the file is executed. If control is returned from that USE procedure
or if no such USE procedure is specified, the processing of the file is terminated
as described above.

15. Segmentation can be applied to programs containing the SORT statement.
However, the following restrictions apply:

a. If a SORT statement appears in a section that is not in an independent
segment, any input procedures or output procedures referenced by that
SORT statement must appear:

1) Totally within nonindependent segments, or

2) Wholly contained in a single independent segment.

b. If a SORT statement appears in an independent segment, any input
procedures or output procedures referenced by that SORT statement must
be contained:

1) Totally within nonindependent segments, or

2) Wholly within the same independent segment as that SORT statement.

SORT Statement
Chapter 6: Procedure Division Statements

398 RM/COBOL Language Reference Manual
 First Edition

SORT Statement Example

"." FALSE "F VALUE "T 88 EOF
 PIC X. EOF-FLAG 01
.GE SECTIONKING-STORA WOR

) BINARY. PIC 9(05Y-2 02 SORT-KE
). PIC X(20TA-1 02 SORT-DA
). PIC X(05Y-1 02 SORT-KE

D.SORT-RECOR 01
SORT-FILE. SD
E SECTION. FIL

.A DIVISION DAT

RT-WORK.SIGN TO SORT-FILE AS SELECT SO
E-CONTROL. FIL

SECTION.UT-OUTPUT INP
IVISION.IRONMENT D ENV

 *
ent.ORT statem * S

Manaual. Reference Language r RM/COBOLxamples fo * E
 *

SORT01.GRAM-ID. PRO
.N DIVISIONNTIFICATIO IDE

RM. END-PERFO
 END-IF

CORDSE SORT-RE RELEA
EOF IF NOT

 EOF-FLAG RT-RECORD," USING SOEAD-RECORD CALL "R
 EOFFTER UNTILITH TEST A PERFORM W

-RECORDS. GET

 STOP RUN.
ORDS.IS PUT-RECPROCEDURE OUTPUT
RDSS GET-RECOROCEDURE I INPUT P

N ORDERPLICATES I WITH DU
2 SORT-KEY-ENDING KEY ON DESC

SORT-KEY-1NDING KEY ON ASCE
-FILE SORT SORT

N1. MAI
ISION.CEDURE DIV PRO

ORT01. PROGRAM S END

RM. END-PERFO
URN END-RET

RD SORT-RECOORD" USING"WRITE-REC CALL
END NOT AT

 TRUESET EOF TO AT END
RECORDSORT-FILE RETURN

NTIL EOF PERFORM U
O FALSE. SET EOF T

-RECORDS. PUT

 START Statement (Relative and Indexed I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 399
 First Edition

START Statement (Relative and Indexed I-O)
The START statement provides a method of setting the file position indicator for a
relative or indexed file and provides a means of determining whether a record exists.

[]
[]

[]
[]

[]

[]

[]START-END

KEYINVALIDNOT

KEYINVALID

SIZEWITH

LASTIS
FIRSTIS

IS
TOEQUALORTHANLESSIS

IS
TOEQUALORTHANGREATERIS

NOTIS
THANGREATERNOTIS

IS
TOEQUALIS

NOTIS
THANLESSNOTIS

KEYSTART

-2-statementimperative

-1-statementimperative

integer-1
-1identifier

name-1split-key-
1data-name-

1file-name-





























































































































=<

=>

>

=

<

Note The required relational characters >, < and = are not underlined to avoid
confusion with other symbols.

file-name-1 must be the name of a relative or indexed file.

file-name-1 must be the name of a file with sequential or dynamic access.

data-name-1 or split-key-name-1 may be qualified.

split-key-name-1 and the SIZE phrase may be specified only for indexed files.

identifier-1 must refer to an elementary integer data item.

The INVALID KEY phrase must be specified if no applicable USE procedure is
specified for file-name-1.

If file-name-1 is the name of a relative file, then data-name-1, if specified, must be
the data item specified in the RELATIVE KEY phrase of the associated file control
entry.

If file-name-1 is the name of an indexed file then data-name-1, if specified, may
reference any one of the data items specified as the record keys associated with
file-name-1 or it may reference any data item of category alphanumeric whose
leftmost character position corresponds to the leftmost character position of a record
key data item and whose length is not greater than the length of that record key.

START Statement (Relative and Indexed I-O)
Chapter 6: Procedure Division Statements

400 RM/COBOL Language Reference Manual
 First Edition

If file-name-1 is the name of an indexed file, split-key-name-1, if specified, may refer
to any one of the split keys specified as the record keys associated with file-name-1.

file-name-1 must be open in the INPUT or I-O mode at the time the START
statement is executed.

If the KEY phrase is not specified, the relational operator IS EQUAL TO is implied
and, for an indexed file, the key of reference is the prime record key of the file.

The type of comparison specified by the relational operator in the KEY phrase of a
START statement occurs between a key associated with a record in the file to which
file-name-1 refers and a data item.

• If file-name-1 refers to a relative file, the data item used in the comparison is the
relative key associated with file-name-1. All numeric comparison rules apply.

• If file-name-1 refers to an indexed file, the data item used in the comparison is
either the prime record key associated with file-name-1 or, if the KEY phrase is
specified, the data item or split key to which the KEY phrase refers. The
comparison is made on the ascending key of reference according to the collating
sequence of the file. If the operands of the comparison are of unequal size,
comparison proceeds as though the longer one were truncated on the right such
that its length is equal to that of the shorter. The size of the comparison is
further modified by the SIZE phrase, if specified. All other nonnumeric
comparison rules apply, except that the presence of the PROGRAM
COLLATING SEQUENCE clause has no effect on the comparison.

When FIRST or LAST are specified in the KEY phrase instead of a relational
operator, no comparison takes place and the value of the relative key data item for a
relative file or the value of the key of reference data item for an indexed file is not
used in setting the file position indicator.

For a relative file the file position indicator is modified as follows:

• If the relational operator specifies that the key must be “equal to”, “greater than”
or “greater than or equal to” the data item, then the file position indicator is set
to the lowest relative record number of a record currently existing in the file
whose key satisfies the comparison.

• If the relational operator specifies that the key must be “less than” or “less than
or equal to” the data item, then the file position indicator is set to the highest
relative record number of a record currently existing in the file whose key
satisfies the comparison.

• If FIRST is specified, the file position indicator is set to the lowest relative
record number of a record currently existing in the file.

• If LAST is specified, the file position indicator is set to the highest relative
record number of a record currently existing in the file.

For an indexed file, the file position indicator is modified as follows:

• If the relational operator specifies that the key must be “equal to”, “greater than”
or “greater than or equal to” the data item, then the file position indicator is set
to the value of the key of reference of the first logical record currently existing in
the file whose key satisfies the comparison.

• If the relational operator specifies that the key must be “less than” the data item,
then the file position indicator is set to the value of the key of reference of the
last logical record currently existing in the file whose key satisfies the
comparison.

 START Statement (Relative and Indexed I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 401
 First Edition

• If the relational operator specifies that the key must be “less than or equal to” the
data item, then the file position indicator is set to the value of the key of
reference of the first record whose key equals the data item. If no record with
the specified key value currently exists in the file, then the file position indicator
is set to the value of the key of reference of the last logical record currently
existing in the file whose key satisfies the comparison.

• If FIRST is specified, the file position indicator is set to the lowest value of the
key of reference of a record existing in the file according to the collating
sequence of the file.

• If LAST is specified, the file position indicator is set to the highest value of the
key of reference of a record existing in the file according to the collating
sequence of the file.

If there are no records currently existing in the file or if the comparison is not
satisfied by any record currently existing in the file, an invalid key condition exists.
The invalid key condition also exists if file-name-1 refers to an optional input file
that is not present. When the invalid key condition exists, the execution of the
START statement is unsuccessful, the file position indicator is set to indicate that no
valid next record has been established, and, for indexed files, the key of reference
becomes undefined.

The execution of the START statement causes the value of the file status data item
associated with file-name-1, if there is one, to be updated. It does not alter either
the contents of the record area or the contents of the data item referenced by the
data-name specified in the DEPENDING ON phrase of the RECORD clause
associated with file-name-1.

For indexed files, a key of reference is established as follows:

• If the KEY phrase is not specified, the prime record key for the file becomes the
key of reference.

• If the KEY phrase is specified and data-name-1 or split-key-name-1 is one of the
record keys of the file, that record key becomes the key of reference.

• If the KEY phrase is specified and data-name-1 is not one of the record keys of
the file, the record key whose leftmost character position coincides with the
leftmost character position of the data item referenced by data-name-1 becomes
the key of reference.

For indexed files, the key of reference is used to select the data item that participates
in the key comparison described above, and it is used for subsequent sequential
(Format 1) READ statements.

In single record locking modes, any record lock held by the run unit for file-name-1
is released upon execution of the START statement. The START statement does not
obtain a record lock and does not indicate the lock status of the record that satisfies
the comparison.

In multiple record locking modes, any record locks held by the run unit for
file-name-1 are not released upon execution of the START statement.

START Statement (Relative and Indexed I-O)
Chapter 6: Procedure Division Statements

402 RM/COBOL Language Reference Manual
 First Edition

SIZE Phrase









integer-1
-1identifierSIZEWITH

The SIZE phrase modifies the length of the data item used in the comparison to a key
associated with a record in the indexed file to which file-name-1 refers. Since there
is no comparison to a data item for the FIRST and LAST options, the SIZE phrase
has no effect when specified with those options. The SIZE phrase is not allowed if
file-name-1 refers to a relative file.

When the SIZE phrase is omitted, the size of the data item specified in the KEY
phrase, or the size of the prime record key for file-name-1 when the KEY phrase is
omitted, is used as the size in the comparison described above.

When the SIZE phrase is present, integer-1 or the value of the data item to which
identifier-1 refers is used as the size in the comparison described above.

integer-1 or the value of the data item to which identifier-1 refers must be greater
than or equal to one and less than or equal to the length of the record key specified by
the KEY phrase, if present, or the length of the prime record key for file-name-1, if
the KEY phrase is omitted.

Note Specification of the SIZE phrase overrides the size of a data item specified by
data-name-1 when that data item is not a record key of the file.

INVALID KEY and NOT INVALID KEY Phrases

-2-statementimperative

-1-statementimperative

KEYINVALIDNOT

KEYINVALID

The causes of the invalid key condition for the START statement are indicated in the
preceding text. Transfer of control following the execution of the START operation
depends on the presence or absence of the INVALID KEY and NOT INVALID KEY
phrases. See the discussions of relative organization input-output (on page 219) and
indexed organization input-output (on page 225) for additional information regarding
the invalid key condition and the effect of the INVALID KEY phrases.

 START Statement (Relative and Indexed I-O)
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 403
 First Edition

START Statement (Relative and Indexed I-O) Examples

. END-START
file."inventory resent in "Key 10 p DISPLAY

ID KEY NOT INVAL
 ory file." in inventot present "Key 10 n DISPLAY

 KEYE; INVALIDENTORY-FIL START INV
Y-KEY.O INVENTOR MOVE 10 T

 SF-KEY. EY IS LASTTUS-FILE K START STA

. END-START
LERCCESS-HANDFORM DB-SUID KEY PER NOT INVAL
LER D-KEY-HAND DB-INVALIEY PERFORM INVALID K

 SIZE 10 >= DB-KEYA-BASE KEY START DAT
O DB-KEY.TART-KEY T MOVE DB-S

STOP Statement
Chapter 6: Procedure Division Statements

404 RM/COBOL Language Reference Manual
 First Edition

STOP Statement
The STOP statement causes a permanent or temporary suspension of the execution of
the object program.














































literal-1
-2identifier

integer-1
-1identifier

RUN

STOP

The implicit or explicit usage of both identifier-1 and identifier-2 must be DISPLAY.

literal-1 may be numeric or nonnumeric or may be any figurative constant.

If a STOP RUN statement appears in a consecutive sequence of imperative
statements within a sentence, it must appear as the last statement in that sequence.

If the RUN phrase is used:

• The execution of the entire run unit is terminated.

• integer-1 or the value of the data item referenced by identifier-1 may be zero.

• When identifier-1 is used in the RUN phrase, it must be the name of an
elementary integer data item.

• The value of the data item referenced by identifier-1 or the value of integer-1
is used to set the RETURN-CODE special register. When the run unit is
terminated by a STOP RUN or GOBACK statement, the value in the
RETURN-CODE special register is made available to the operating system.
See the RM/COBOL Use’s Guide for details on using that value.

There is an implicit interaction between the STOP RUN statement and the
RETURN-CODE special register. See the discussion of the RETURN-CODE
special register (on page 15).

If STOP identifier-2 or literal-1 is specified, the value of the operand is displayed at
the terminal associated with this run unit and execution of the run unit is suspended
until the message is acknowledged. After the message is acknowledged, execution
continues with the next executable statement.

STOP Statement Examples

 STOP RUN.

1. STOP RUN

E. STATUS-COD STOP RUN

ure.". of Proced STOP "End

 STRING Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 405
 First Edition

STRING Statement
The STRING statement concatenates the partial or complete contents of one or more
data items into a single data item.

[]

[]

[]

[]STRING-END

OVERFLOWONNOT

OVERFLOWON

POINTERWITH

INTO

SIZE
BYDELIMITEDSTRING

-2-statementimperative

-1-statementimperative

-4identifier

-3identifier

literal-2
-2identifier

literal-1
-1identifier LL

































literal-1 and literal-2 may be any figurative constant except those that begin with the
word ALL. When figurative constants are used in a STRING statement, they behave
as single character nonnumeric literals.

All literals must be nonnumeric literals, and the explicit or implicit usage of each
identifier, except identifier-4, must be DISPLAY.

identifier-3 must not be reference modified; it must not represent an edited data item;
and it must not be described with the JUSTIFIED clause.

identifier-4 must represent an elementary numeric integer data item of sufficient size
to contain a value equal to the size plus 1 of the area referenced by identifier-3. The
symbol P may not be used in the PICTURE character-string of identifier-4.

When identifier-1 or identifier-2 is an elementary numeric data item, it must be
described as an integer without the symbol P in its PICTURE character-string.

identifier-1 or literal-1 represents the sending item. identifier-3 in the INTO phrase
represents the receiving item.

When the STRING statement is executed, characters from literal-1 or from the
contents of the data item referenced by identifier-1 are transferred to the data item
referenced by identifier-3 in accordance with the rules for alphanumeric to
alphanumeric moves, except that no space filling is provided.

When characters are transferred to the data item referenced by identifier-3, the moves
behave as though the characters were moved one at a time from the source into the
character position of the data item referenced by identifier-3 designated by the value
associated with identifier-4, and then identifier-4 was increased by one prior to the
move of the next character. The value associated with identifier-4 is changed during
execution of the STRING statement according to the rules set forth in the POINTER
phrase description.

At the end of the execution of the STRING statement, only the portion of the
data item referenced by identifier-3 that was referenced during the execution
of the STRING statement is changed. All other portions of the data item referenced
by identifier-3 contain data that was present before this execution of the
STRING statement.

STRING Statement
Chapter 6: Procedure Division Statements

406 RM/COBOL Language Reference Manual
 First Edition

DELIMITED Phrase













SIZE
BYDELIMITED literal-2

-2identifier

If the DELIMITED phrase is specified without the SIZE phrase, the contents of the
data item referenced by identifier-1 or the value of literal-1 are transferred to the
receiving data item in the sequence specified in the STRING statement beginning
with the leftmost character and continuing from left to right until the end of the
sending data item is reached, or the end of the receiving data item is reached, or until
the character (or characters) specified by literal-2, or by the content of the data item
referenced by identifier-2 is encountered. The character (or characters) specified by
literal-2 or by the data item referenced by identifier-2 is not transferred.

If the DELIMITED phrase is specified with the SIZE phrase, the entire contents of
literal-1 or the contents of the data item referenced by identifier-1 are transferred, in
the sequence specified in the STRING statement, to the data item referenced by
identifier-3 until all data has been transferred or the end of the data item referenced
by identifier-3 has been reached.

POINTER Phrase

-4identifierPOINTERWITH

If the POINTER phrase is specified, the data item referenced by identifier-4 must
have a positive value at the time execution of the STRING statement begins.

If the POINTER phrase is not specified, the effect is as if the user had specified
identifier-4 referencing a data item with an initial value of 1.

OVERFLOW and NOT OVERFLOW Phrases

-2-statementimperative

-1-statementimperative

OVERFLOWONNOT

OVERFLOWON

Before each move of a character from the current sending item to the receiving item,
if the value associated with the data item referenced by identifier-4 is either less than
one or exceeds the number of character positions in the receiving item, an overflow
condition exists.

If an overflow condition arises, no (further) data is transferred from the sending item
to the receiving item, the NOT ON OVERFLOW phrase, if present, is ignored, and
control is transferred either to the end of the STRING statement, or, if the ON
OVERFLOW phrase is present, to imperative-statement-1. In the latter case,
execution continues according to the rules for each statement specified in
imperative-statement-1. If a procedure branching or conditional statement that
causes explicit transfer of control is encountered, control is transferred in accordance
with the rules for that statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the STRING statement.

 STRING Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 407
 First Edition

If the STRING statement executes without an overflow condition arising, the ON
OVERFLOW phrase, if present, is ignored and control is transferred either to the end
of the STRING statement, or, if the NOT ON OVERFLOW phrase is present, to
imperative-statement-2. In the latter case, execution continues according to the rules
for each statement specified in imperative-statement-2. If a procedure branching or
conditional statement that causes explicit transfer of control is encountered, control is
transferred in accordance with the rules for that statement; otherwise, upon
completion of the execution of imperative-statement-2, control is transferred to the
end of the STRING statement.

STRING Statement Examples

G. END-STRIN
N STOP RU

 error." "Overflow DISPLAY
OW ON OVERFL
ELD-GROUP INTO FI

Y SIZEELIMITED B ";" D
ED BY "."-2 DELIMIT FIELD
Y SIZEELIMITED B ";" D

PACES MITED BY SELD-1 DELI STRING FI

MN-CURSOR.INTER COLU WITH PO
TLE-RECORD INTO TI

ZEITED BY SI DELIM
VALUE "," YEAR- DAY-VALUE SPACE
BY SPACES DELIMITED NTH-VALUE STRING MO

SUBTRACT Statement
Chapter 6: Procedure Division Statements

408 RM/COBOL Language Reference Manual
 First Edition

SUBTRACT Statement
The SUBTRACT statement is used to subtract one, or the sum of two or more,
numeric data items from a numeric data item and store the result.

Format 1: Subtract…From

[]{ }

[]

[]

[]SUBTRACT-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDFROMSUBTRACT

-2-statementimperative

-1-statementimperative

-3identifierliteral-1
-1identifier LL









Format 2: Subtract…Giving

[]{ }

[]

[]

[]SUBTRACT-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDGIVING

FROMSUBTRACT

-2-statementimperative

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-1
-1identifier

L

L
















Format 3: Subtract Corresponding

[]

[]

[]

[]SUBTRACT-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDFROMCORR
INGCORRESPONDSUBTRACT

-2-statementimperative

-1-statementimperative

-2identifier-1identifier








In Format 1, all literals or identifiers preceding the word FROM are added together
and the sum is stored in a temporary data item. The value of this temporary data item
is subtracted from the value of the data item specified by identifier-3, storing the
result into the data item specified by identifier-3, and repeating this process for each
successive occurrence of identifier-3 in the left-to-right order in which identifier-3
is specified.

 SUBTRACT Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 409
 First Edition

In Format 2, all literals or identifiers preceding the word FROM are added together,
the sum is subtracted from literal-2 or identifier-2 and the result of the subtraction is
stored as the new value of identifier-3.

If Format 3 is used, data items in identifier-1 are subtracted from and stored into
corresponding data items in identifier-2.

Each identifier must refer to a numeric elementary item except that:

• In Format 2, the identifier following the word GIVING must refer to either an
elementary numeric item or an elementary numeric edited item.

• In Format 3, the identifiers must refer to group items.

Each literal must be a numeric literal.

Additional rules and explanations regarding features of the SUBTRACT statement
that are common to other arithmetic statements can be found in the discussion of
common rules beginning on page 192. See in particular the discussions of the
ROUNDED phrase, the size error condition, overlapping operands, modes of
operation, composite size, and incompatible data.

CORRESPONDING Phrase

[]ROUNDEDFROMCORR
INGCORRESPOND -2identifier-1identifier









If the CORRESPONDING phrase is used, selected items within identifier-1 are
subtracted from, and the result stored in, the corresponding items in identifier-2.

For the SUBTRACT statement with the CORRESPONDING phrase:

• The description of identifier-1 and identifier-2 must not contain level-number
66, 77, 78, or 88, or the USAGE IS INDEX clause.

• Neither identifier-1 nor identifier-2 may be reference modified.

• identifier-1 or identifier-2 may be described with the OCCURS or REDEFINES
clauses or be subordinate to data items described with the OCCURS or
REDEFINES clauses. If identifier-1 or identifier-2 is a table element, then the
required subscripting must be specified as part of identifier-1 or identifier-2.
The specified subscripting will be applied to the selected subordinate
corresponding data items, respectively, for identifier-1 and identifier-2.

SUBTRACT Statement
Chapter 6: Procedure Division Statements

410 RM/COBOL Language Reference Manual
 First Edition

The rules that govern the selection of eligible subordinate data item pairs are as
follows:

1. The data items are not designated by the keyword FILLER and have the same
data-name-1 and the same qualifiers up to but not including the original group
items, identifier-1 and identifier-2.

2. Both of the data items are elementary numeric data items.

3. A data item that is subordinate to identifier-1 or identifier-2 and contains a
REDEFINES, OCCURS, USAGE IS INDEX, or USAGE IS POINTER clause is
ignored, as well as those data items subordinate to the data item that contains the
REDEFINES, OCCURS, USAGE IS INDEX, or USAGE IS POINTER clause.

4. The name of each data item that satisfies the above conditions must be unique
after application of the implied qualifiers.

If any of the individual operations produces a size error condition,
imperative-statement-1 in the ON SIZE ERROR phrase is not executed until all
of the individual subtractions are completed.

CORR is an abbreviation for CORRESPONDING.

SUBTRACT Statement Examples

 INCOME. TAXES FROM SUBTRACT

LLY-1. GIVING TALY-COUNTER1 FROM TAL SUBTRACT

DLER. ERROR-HANRROR GO TO ON SIZE E
UNDEDINCIPAL RO FROM PR

LTYREST, PENA2.68, INTE SUBTRACT

 Y-ON-HAND.M INVENTOR-SALES FROCORR DAILY SUBTRACT

 UNLOCK Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 411
 First Edition

UNLOCK Statement
The UNLOCK statement releases all record locks held by the run unit for a shared
input-output file.







RECORDS
RECORDUNLOCK 1file-name-

The file to which file-name-1 refers must be in an open mode at the time the
UNLOCK statement is executed.

In all record locking modes any record locks held by the run unit for file-name-1 are
released upon execution of the UNLOCK statement.

If no record in the file is locked, execution of the UNLOCK statement is successful
and no action is taken except for updating the file status data item.

The file position indicator is not affected by the execution of the UNLOCK
statement. The file status data item associated with the file, if one exists, is updated.

The UNLOCK statement may not be used to unlock records locked by other run
units.

See Record Locking (on page 234) for additional information on record locking and
unlocking.

UNLOCK Statement Examples

CORDS. TA-BASE RE UNLOCK DA

LE. VENTORY-FI UNLOCK IN

UNSTRING Statement
Chapter 6: Procedure Division Statements

412 RM/COBOL Language Reference Manual
 First Edition

UNSTRING Statement
The UNSTRING statement causes contiguous data in a sending field to be separated
and placed in multiple receiving fields.

[] []

[] []{ }

[]

[]

[]

[]

[]UNSTRING-END

OVERFLOWONNOT

OVERFLOWON

INTALLYING

POINTERWITH

INCOUNTINDELIMITERINTO

ALLORALLBYDELIMITED

UNSTRING

-2-statementimperative

-1-statementimperative

-8identifier

-7identifier

-6identifier-5identifier-4identifier

literal-2
-3identifier

literal-1
-2identifier

-1identifier

L

L 
































literal-1 and literal-2 must be nonnumeric literals and may be any figurative constant
except those that begin with the word ALL.

identifier-1, identifier-2, identifier-3 and identifier-5 must reference data items
described implicitly or explicitly as category alphanumeric.

identifier-1 must not be reference modified.

identifier-4 may be described as alphabetic, alphanumeric, or numeric (except that
the symbol “P” may not be used in the PICTURE character-string), and must be
described as usage is DISPLAY.

identifier-6, identifier-7 and identifier-8 must be described as elementary numeric
integer data items (except that the symbol “P” may not be used in the PICTURE
character-string).

The DELIMITER IN phrase and the COUNT IN phrase may be specified only if the
DELIMITED BY phrase is specified.

When a figurative constant is used as the delimiter, it stands for a single character
nonnumeric literal.

When the ALL phrase is specified, one occurrence or two or more contiguous
occurrences of literal-1 (figurative constant or not) or the contents of the data item
referenced by identifier-2 are treated as if they were only one occurrence, and one
occurrence of literal-1 or the data item referenced by identifier-2 is moved to the
receiving data item.

When the ALL phrase is not specified and any examination encounters two
contiguous delimiters, the current receiving area is space filled if it is described as
alphabetic or alphanumeric, or zero filled if it is described as numeric.

literal-1 or the contents of the data item referenced by identifier-2 can contain any
character in the character set of the computer.

 UNSTRING Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 413
 First Edition

Each literal-1 or the data item referenced by identifier-2 represents one delimiter.
When a delimiter contains two or more characters, all of the characters must be
present in contiguous positions of the sending item, and in the order given, to be
recognized as a delimiter.

When two or more delimiters are specified in the DELIMITED BY phrase, an OR
condition exists between them. Each delimiter is compared to the sending field. If a
match occurs, the character (or characters) in the sending field is considered to be a
single delimiter. No character (or characters) in the sending field can be considered a
part of more than one delimiter. Each delimiter is applied to the sending field in the
sequence specified in the UNSTRING statement.

When the UNSTRING statement is initiated, the current receiving area is the data
item referenced by identifier-4. Data is transferred from the data item referenced by
identifier-1 to the data item referenced by identifier-4 according to the following
rules:

1. If the POINTER phrase is specified, the string of characters referenced by
identifier-1 is examined beginning with the relative character position indicated
by the contents of the data item referenced by identifier-7. If the POINTER
phrase is not specified, the string of characters is examined beginning with the
leftmost character position.

2. If the DELIMITED BY phrase is specified, the examination proceeds left to
right until either a delimiter specified by the value of literal-1 or the data item
referenced by identifier-2 is encountered. If the DELIMITED BY phrase is not
specified, the number of characters examined is equal to the size of the current
receiving area. However, if the sign of the receiving item is defined as
occupying a separate character position, the number of characters examined is
one less than the size of the current receiving area. If the end of the data item
referenced by identifier-1 is encountered before the delimiting condition is met,
the examination terminates with the last character examined.

3. The characters thus examined (excluding the delimiting characters, if any) are
treated as an elementary alphanumeric data item, and are moved into the current
receiving area according to the rules for the MOVE statement (on page 338).

4. If the DELIMITER IN phrase is specified, the delimiting character (or
characters) are treated as an elementary alphanumeric data item, and are moved
into the data item referenced by identifier-5 according to the rules for the MOVE
statement. If the delimiting condition is the end of the data item referenced by
identifier-1, the data item referenced by identifier-5 is space filled.

5. If the COUNT IN phrase is specified, a value equal to the number of characters
thus examined (excluding the delimiter characters, if there are any) is moved
into the area referenced by identifier-6 according to the rules for an elementary
move.

6. If the DELIMITED BY phrase is specified, the string of characters is further
examined beginning with the first character to the right of the delimiter. If the
DELIMITED BY phrase is not specified, the string of characters is further
examined beginning with the character to the right of the last character
transferred.

7. After data is transferred to the data item referenced by identifier-4 in the INTO
phrase, the current receiving area is the data item referenced by the next
recurrence of identifier-4. Steps 2 through 6 above are then repeated until all the
characters are exhausted in the data item referenced by identifier-1, or until there
are no more receiving areas.

UNSTRING Statement
Chapter 6: Procedure Division Statements

414 RM/COBOL Language Reference Manual
 First Edition

The initialization of the contents of the data items associated with the POINTER
phrase or the TALLYING phrase is the responsibility of the user.

The contents of the data item referenced by identifier-7 are incremented by one for
each character examined in the data item referenced by identifier-1. When the
execution of an UNSTRING statement with a POINTER phrase is completed, the
contents of the data item referenced by identifier-7 contain a value equal to the initial
value plus the number of characters examined in the data item referenced by
identifier-1.

When the execution of an UNSTRING statement with a TALLYING phrase is
completed, the data item referenced by identifier-8 contains a value equal to its initial
value plus the number of data receiving items acted upon.

Either of the following situations causes an overflow condition:

• An UNSTRING statement is initiated, and the value in the data item referenced
by identifier-7 is less than 1 or greater than the size of the data item referenced
by identifier-1.

• If, during the execution of an UNSTRING statement, all data receiving areas
have been acted upon, and the data item referenced by identifier-1 contains
characters that have not been examined.

If an overflow condition arises, the UNSTRING operation is terminated, the NOT
ON OVERFLOW phrase, if present, is ignored, and control is transferred either to
the end of the UNSTRING statement, or, if the ON OVERFLOW phrase is present,
to imperative-statement-1. In the latter case, execution continues according to the
rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement that causes explicit transfer of control is
encountered, control is transferred in accordance with the rules for that statement;
otherwise, upon completion of the execution of imperative-statement-1, control is
transferred to the end of the UNSTRING statement.

If the UNSTRING operation completes without an overflow condition arising, the
ON OVERFLOW phrase, if present, is ignored and control is transferred either to the
end of the UNSTRING statement, or, if the NOT ON OVERFLOW phrase is
present, to imperative-statement-2. In the latter case, execution continues according
to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement that causes explicit transfer of control is
encountered, control is transferred in accordance with the rules for that statement;
otherwise, upon completion of the execution of imperative-statement-2, control is
transferred to the end of the UNSTRING statement.

UNSTRING Statement Example

ING. END-UNSTR
N STOP RU

." parameter fields in "Too many DISPLAY
OW ON OVERFL

-COUNTG IN FIELD TALLYIN
ELIM-3MITER IN DELD-3 DELI FI
ELIM-2MITER IN DELD-2 DELI FI
ELIM-1MITER IN DELD-1 DELI INTO FI

R "." D BY ";" O1 DELIMITEPARAMETER- UNSTRING
COUNT. TO FIELD- MOVE ZERO

 USE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 415
 First Edition

USE Statement
See the discussion of the USE statement (on page 189).

WRITE Statement
Chapter 6: Procedure Division Statements

416 RM/COBOL Language Reference Manual
 First Edition

WRITE Statement
The WRITE statement releases a logical record for an output or input-output file.
For a sequential file, it can also be used for vertical positioning of lines within a
logical page.

Format 1: Write Sequential File

[]

[]WRITE-END

EOP
PAGE-OF-ENDATNOT

EOP
PAGE-OF-ENDAT

PAGE

PAGENEXTONLINETO

LINES
LINE

ADVANCINGAFTER
BEFORE

FROMWRITE























































































































































-2-statementimperative

-1-statementimperative

ame-2mnemonic-n

integer-2
-3identifier

integer-1
-2identifier

literal-1
-1identifiere-1record-nam

Format 2: Write Relative and Indexed File

[]

[]

[]WRITE-END

KEYINVALIDNOT

KEYINVALID

FROMWRITE

-2-statementimperative

-1-statementimperative

literal-1
-1identifiere-1record-nam 

















In a Format 1 WRITE statement, record-name-1 must refer to a record associated
with a sequential organization file.

In a Format 2 WRITE statement, record-name-1 must refer to a record associated
with a relative or indexed organization file.

record-name-1 and identifier-1 must not reference the same storage area.

record-name-1 is the name of a logical record in the File Section of the Data
Division and may be qualified.

When identifier-2 is used in the ADVANCING phrase, it must be the name of an
elementary integer data item.

 WRITE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 417
 First Edition

integer-1 or the value of the data item referenced by identifier-2 may be zero.

identifier-3 must reference an unsigned integer data item.

In a Format 2 WRITE statement, the INVALID KEY phrase must be specified if an
applicable USE procedure is not specified for the associated file.

If the access mode is sequential, the associated file must be open in the OUTPUT or
EXTEND mode at the time of the execution of this statement.

If the access mode is random or dynamic, the associated file must be open in the
OUTPUT or I-O mode at the time of the execution of this statement.

The file position indicator is unaffected by the execution of a WRITE statement.

The execution of the WRITE statement causes the value of the file status data item, if
any, associated with the file to be updated.

The maximum record size for a file is established at the time the file is created and
must not subsequently be changed.

The number of character positions on a mass storage device required to store a
logical record in a file may or may not be equal to the number of character positions
defined by the logical description of that record in the program.

The execution of the WRITE statement releases a logical record to the operating
system. The contents of the record area are not changed.

When an attempt is made to write beyond the externally defined boundaries of a
sequential file, an exception condition exists. The following action takes place:

• The value of the file status data item, if any, of the associated file is set to a
value indicating a boundary violation.

• If a USE declarative is explicitly or implicitly specified for the file, that
declarative procedure is executed.

• If a USE declarative is not explicitly or implicitly specified for the file, an error
message is displayed and the run unit is terminated.

When a relative file is opened in the output mode, records may be placed into the file
by one of the following:

• If the access mode is sequential, the WRITE statement causes a record to be
released to the associated file. The first record has a relative record number of 1,
and subsequent records have relative record numbers 2, 3, 4, If a relative
key data item has been specified in the file control entry for the associated file,
the relative record number of the record just released is placed into the relative
key data item by the runtime system during execution of the WRITE statement.

• If the access mode is random or dynamic, prior to the execution of the WRITE
statement the value of the relative key data item must be initialized in the
program with the relative record number to be associated with the record in the
record area. That record is then released to the associated file by execution of
the WRITE statement.

When a relative file is opened in the I-O mode and the access mode is random or
dynamic, records are to be inserted in the associated file. The value of the relative
key data item must be initialized by the program with the relative record number to
be associated with the record in the record area. Execution of a WRITE statement
then causes the contents of the record area to be released to the associated file.

WRITE Statement
Chapter 6: Procedure Division Statements

418 RM/COBOL Language Reference Manual
 First Edition

For an indexed file, the data item specified as the prime record key must be set by the
program to the desired value prior to the execution of the WRITE statement.
Records may be placed into the file by one of the following:

• If the access mode is sequential, records must be released in strictly ascending
order of prime record key values according to the collating sequence of the file,
except that, if the DUPLICATES phrase is specified in the RECORD KEY
clause, records with duplicate prime record key values may be released. If the
access mode is random or dynamic, records may be released to the system in any
program-specified order.

• When the DUPLICATES phrase is specified for a record key of an indexed file,
the value of the record key may be nonunique. In this case, the indexed file
provides storage of records such that when records are accessed sequentially, the
order of retrieval of those records is the order in which they are released to the
runtime system.

In single record locking modes any record lock held by the run unit for the file
associated with record-name-1 is released upon execution of the WRITE statement.

In multiple record locking modes any record locks held by the run unit for
file-name-1 are not released upon execution of the WRITE statement.

FROM Phrase









literal-1
-1identifierFROM

The result of the execution of the WRITE statement with the FROM phrase is
equivalent to the execution of a move from identifier-1 or literal-1 to record-name-1
followed by the same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit MOVE
statement have no effect on the execution of this WRITE statement.

 WRITE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 419
 First Edition

ADVANCING Phrase

[]







































































PAGE

PAGENEXTONLINETO

LINES
LINE

ADVANCINGAFTER
BEFORE

ame-2mnemonic-n

integer-2
-3identifier

integer-1
-2identifier

The ADVANCING phrase allows control of the vertical positioning of each line on a
representation of a printed page. If the ADVANCING phrase is not used, automatic
advancing occurs as if the user had specified AFTER ADVANCING 1 LINE. If the
ADVANCING phrase is used, advancing is provided as follows:

• If identifier-2 is specified, the representation of the printed page is advanced the
number of lines equal to the current value associated with identifier-2, which
must be positive or zero.

• If integer-1 is specified, the representation of the printed page is advanced the
number of lines equal to the value of integer-1.

• When mnemonic-name-2 is used, the name must be identified with a feature-
name that is a channel-name in the SPECIAL-NAMES paragraph of the
Environment Division. The representation of the printed page is advanced to the
next occurrence of the channel indicator for the channel number associated with
mnemonic-name-2. If the print device does not support channel skipping,
advancing defaults to ADVANCING 1 LINE. The mnemonic-name phrase may
not be used when writing a record to a file whose file description entry contains
a LINAGE clause.

• If the BEFORE phrase is used, the line is presented before the representation of
the printed page is advanced.

• If the AFTER phrase is used, the line is presented after the representation of the
printed page is advanced.

• If PAGE is specified, the record is presented on the logical page before or
after (depending on the phrase used) the device is repositioned to the next
logical page.

• If the TO LINE phrase without the NEXT PAGE phrase is specified, the
representation of the printed page is positioned to the line within the current
page body corresponding to integer-2 or the value of the data item referenced by
identifier-3.

• If the TO LINE phrase with the NEXT PAGE phrase is specified, the
representation of the printed page is positioned to the line within the next logical
page body corresponding to integer-2 or the value of the data item referenced by
identifier-3.

• If PAGE is specified and the LINAGE clause is specified in the associated file
description entry, the record is presented on the logical page before or after
(depending on the phrase used) the device is repositioned to the next logical
page. The repositioning is to the first line that can be written on the next logical
page as specified in the LINAGE clause.

WRITE Statement
Chapter 6: Procedure Division Statements

420 RM/COBOL Language Reference Manual
 First Edition

• If PAGE is specified and the LINAGE clause is not specified in the associated
file description entry, the record is repositioned to the next physical page. If
physical page has no meaning in conjunction with a specific device, advancing
occurs as if the user had specified BEFORE or AFTER (depending on the phrase
used) ADVANCING 1 LINE.

END-OF-PAGE and NOT END-OF-PAGE Phrases

-2-statementimperative

-1-statementimperative

















EOP
PAGE-OF-ENDATNOT

EOP
PAGE-OF-ENDAT

If the END-OF-PAGE phrase, the NOT END-OF-PAGE phrase or the
ADVANCING TO LINE phrase is specified, the LINAGE clause must be
specified in the file description entry for the associated file.

The words END-OF-PAGE and EOP are synonymous.

An end-of-page condition occurs when the execution of a WRITE statement with the
END-OF-PAGE phrase causes printing or spacing within the footing area of a page
body. This occurs when the execution of such a WRITE statement causes the
LINAGE-COUNTER to equal or exceed the value specified by integer-8 or the data
item referenced by data-name-5 of the LINAGE clause. In this case, the WRITE
statement is executed and then imperative-statement-1 in the END-OF-PAGE phrase
is executed. A NOT END-OF-PAGE phrase, if present, is ignored.

An automatic page overflow condition occurs when the execution of a WRITE
statement (with or without an END-OF-PAGE phrase) cannot be fully
accommodated within the current page body. An automatic page overflow condition
does not occur as a result of the execution of a WRITE statement containing a NEXT
PAGE phrase.

An automatic page overflow condition occurs when the execution of a WRITE
statement causes the LINAGE-COUNTER to exceed the value specified by
integer-7 or the data item referenced by data-name-4 of the LINAGE clause. In this
case, the record is presented on the logical page before or after (depending on the
phrase used) the device is repositioned to the first line that can be written on the next
logical page as specified in the LINAGE clause. imperative-statement-1 in the
END-OF-PAGE phrase, if specified, is executed after the record is written and the
device has been repositioned.

A page overflow condition occurs when the execution of a WRITE statement causes
the LINAGE-COUNTER to simultaneously exceed the value of both integer-8 and
the data item referenced by data-name-5 of the LINAGE clause and integer-7 or the
data item referenced by data-name-4 of the LINAGE clause.

If the execution of a WRITE statement with the TO LINE phrase would cause the
record to be presented on a line outside the current page body if the NEXT PAGE
phrase is not specified, or outside the next page body if the NEXT PAGE phrase is
specified, the execution of the WRITE statement is unsuccessful. Furthermore, if the
execution of the WRITE statement with identifier-2 or integer-1 LINES phrase
would cause the LINAGE-COUNTER associated with record-name-1 to have a
negative or zero value, the execution of the WRITE statement is unsuccessful. If the
execution of the WRITE statement is unsuccessful for one of these reasons, an

 WRITE Statement
Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 421
 First Edition

exception condition exists, the contents of the record area and of LINAGE-
COUNTER are unchanged, and the following actions take place:

• If the file with which record-name-1 is associated has a file status data item, its
value is set to a value indicating a page boundary violation.

• If a USE procedure is explicitly or implicitly specified for the file associated
with record-name-1, that declarative procedure is executed.

• If a USE procedure is not explicitly or implicitly specified for the file associated
with record-name-1, control is transferred to the next executable statement.

INVALID KEY and NOT INVALID KEY Phrases

-2-statementimperative

-1-statementimperative

KEYINVALIDNOT

KEYINVALID

The invalid key condition exists under one of the following circumstances:

• When a relative file has random or dynamic access mode and the relative key
data item specifies a record that already exists in the file.

• When the access mode is sequential for an indexed file opened in the output
mode, and the value of the prime record key is not greater than the value of the
prime record key of the previous record, except that, if the DUPLICATES
phrase is specified in the RECORD KEY clause of the file control entry, the
value of the prime record key may be equal to the value of the prime record key
of the previous record.

• When an indexed file is opened in the output or I-O mode, and the value of the
prime record key is equal to the value of the prime record key of a record
already existing in the file and the DUPLICATES phrase is not specified in the
RECORD KEY clause of the file control entry.

• When an indexed file is opened in the output or I-O mode, and the value of an
alternate record key for which duplicates are not allowed equals the
corresponding data item of a record already existing in the file.

• When an attempt is made to write beyond the externally defined boundaries of
the file.

When the invalid key condition is recognized, the execution of the WRITE statement
is unsuccessful, the contents of the record area are unaffected and the file status data
item, if any, of the associated file is set to a value indicating the cause of the
condition.

Transfer of control following the successful or unsuccessful execution of a Format 2
WRITE statement depends on the presence or absence of the optional INVALID
KEY and NOT INVALID KEY phrases in the WRITE statement. This topic is
presented in detail in the discussions of invalid key conditions on pages 223 and 230.

WRITE Statement
Chapter 6: Procedure Division Statements

422 RM/COBOL Language Reference Manual
 First Edition

WRITE Statement Examples

N-FILE. TRANSACTIORECORD OF WRITE TR-

AGE.DVANCING P AFTER A
NE M TITLE-LIRECORD FRO WRITE PF-

HANNEL-1.DVANCING C AFTER A
 PRINT-FILERECORD OF WRITE PF-

. END-WRITE
NTO PAGE-COU ADD 1 T

-PAGE AT END-OF
O LINE 10DVANCING T AFTER A

INE M DETAIL-LRECORD FRO WRITE RF-

. END-WRITE
ROCEDURE BAD-KEY-PEY PERFORM INVALID K

DATA-BASERECORD OF WRITE DB-

. END-WRITE
"5 written.PLAY "Key ID KEY DIS NOT INVAL
."t accepted "Key 5 noEY DISPLAY INVALID K
RY-ITEM EW-INVENTOORD FROM NENTORY-REC WRITE INV

-KEY. INVENTORY MOVE 5 TO

 Reserved Words
Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 423
 First Edition

Appendix A: Reserved Words

This appendix lists all RM/COBOL reserved words. Some words are reserved only
for use in the Debug and Report Writer modules; since these modules are not
implemented in this version of RM/COBOL, such words do not appear elsewhere in
the syntax formats.

Reserved Words
The DERESERVE keyword of the COMPILER-OPTIONS configuration record,
which is described in Chapter 10: Configuration of the RM/COBOL User’s Guide,
can be used to make a reserved word a user-defined word whenever it occurs in the
source program, but then the language feature provided by the construct in which the
word appears is not available for programs compiled with that particular
configuration setting.

A
ACCEPT
ACCESS
ADD
ADDRESS 1
ADVANCING
AFTER
ALL
ALPHABET 1
ALPHABETIC
ALPHABETIC-LOWER 1
ALPHABETIC-UPPER 1
ALPHANUMERIC 1
ALPHANUMERIC-EDITED 1
ALSO 1
ALTER
ALTERNATE
AND

ANY 1
ARE
AREA
AREAS
ASCENDING 1
ASSIGN
AT
AUTHOR

B
BEEP
BEFORE
BELL 1
BINARY
BLANK
BLINK
BLOCK
BOTTOM 1
BY

1 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command
(see the RM/COBOL User's Guide for details on this option). In such cases, this word is treated as a user-defined word
whenever it occurs in the source program.

Reserved Words
Appendix A: Reserved Words

424 RM/COBOL Language Reference Manual
 First Edition

C
CALL
CANCEL
CD 1

CENTURY-DATE 1
CENTURY-DAY 1
CF 1
CH 1
CHARACTER
CHARACTERS
CLASS 1
CLOCK-UNITS 1
CLOSE
COBOL 1
CODE 1
CODE-SET
COL 1

COLLATING
COLUMN 1
COMMA
COMMON 1
COMMUNICATION 1

COMP

COMP-1

COMP-3
COMP-4 1
COMP-5 1
COMP-6
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-3
COMPUTATIONAL-4 1
COMPUTATIONAL-5 1
COMPUTATIONAL-6
COMPUTE
CONFIGURATION
CONTAINS
CONTENT 1
CONTINUE 1
CONTROL 1
CONTROLS 1
CONVERT
CONVERTING 1
COPY
CORR
CORRESPONDING
COUNT 1

COUNT-MAX 1
COUNT-MIN 1
CURRENCY
CURSOR 1

D
DATA
DATA-POINTER 1
DATE
DATE-AND-TIME 1
DATE-COMPILED 1
DATE-WRITTEN
DAY
DAY-AND-TIME 1
DAY-OF-WEEK 1
DE 1
DEBUG-CONTENTS 1
DEBUG-ITEM 1
DEBUG-LINE 1
DEBUG-NAME 1
DEBUG-SUB-1 1
DEBUG-SUB-2 1
DEBUG-SUB-3 1
DEBUGGING 1
DECIMAL-POINT
DECLARATIVES
DEFAULT 1
DELETE
DELIMITED 1
DELIMITER 1
DEPENDING
DESCENDING 1
DESTINATION 1
DETAIL 1
DISABLE 1
DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC

E
ECHO
EGI 1
ELSE
EMI 1
ENABLE 1
END
END-ACCEPT 1
END-ADD 1
END-CALL 1
END-COMPUTE 1
END-DELETE 1
END-DIVIDE 1
END-EVALUATE 1

1 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command
(see the RM/COBOL User's Guide for details on this option). In such cases, this word is treated as a user-defined word
whenever it occurs in the source program.

 Reserved Words
Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 425
 First Edition

END-IF 1
END-MULTIPLY 1
END-OF-PAGE 1
END-PERFORM 1
END-READ 1
END-RECEIVE 1
END-RETURN 1
END-REWRITE 1
END-SEARCH 1
END-START 1
END-STRING 1
END-SUBTRACT 1
END-UNSTRING 1
END-WRITE 1
ENTER 1
ENVIRONMENT
EOP 1
EQUAL
ERASE
ERROR
ESCAPE 1
ESI 1
EVALUATE 1
EVERY 1
EXCEPTION
EXCLUSIVE 1
EXIT
EXTEND
EXTERNAL 1

F
FALSE 1
FD
FILE
FILE-CONTROL
FILLER
FINAL 1
FIRST
FIXED 1
FOOTING 1
FOR
FROM
FUNCTION 1

G
GENERATE 1
GIVING
GLOBAL 1
GO
GOBACK 1
GREATER
GROUP 1

H
HEADING 1
HIGH
HIGH-VALUE
HIGH-VALUES
HIGHLIGHT 1

I
I-O
I-O-CONTROL
ID 1
IDENTIFICATION
IF
IN
INDEX
INDEXED
INDICATE 1
INITIAL
INITIALIZE 1
INITIATE 1
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID
IS
J
JUST
JUSTIFIED

K
KEY

1 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command
(see the RM/COBOL User's Guide for details on this option). In such cases, this word is treated as a user-defined word
whenever it occurs in the source program.

Reserved Words
Appendix A: Reserved Words

426 RM/COBOL Language Reference Manual
 First Edition

L
LABEL
LAST 1
LEADING
LEFT
LENGTH 1
LESS
LIKE 1
LIMIT 1
LIMITS 1
LINAGE 1
LINAGE-COUNTER 1
LINE
LINE-COUNTER 1
LINES
LINKAGE
LOCK
LOW
LOWLIGHT 1
LOW-VALUE
LOW-VALUES

M
MEMORY
MERGE 1
MESSAGE 1
MODE
MODULES
MOVE
MULTIPLY

N
NATIVE
NEGATIVE 1
NEXT
NO
NOT
NULL 1
NULLS 1
NUMBER 1
NUMERIC
NUMERIC-EDITED 1

O
OBJECT-COMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN

OPTIONAL 1
OR
ORDER 1
ORGANIZATION
OTHER 1
OUTPUT
OVERFLOW

P
PACKED-DECIMAL 1
PADDING 1
PAGE
PAGE-COUNTER 1
PERFORM
PF 1
PH 1
PIC
PICTURE
PLUS 1
POINTER 1
POSITION
POSITIVE 1
PRINTING 1
PROCEDURE
PROCEDURES 1
PROCEED
PROGRAM
PROGRAM-ID
PROMPT
PURGE 1

Q
QUEUE 1
QUOTE
QUOTES

R
RANDOM
RD 1
READ
RECEIVE 1
RECORD
RECORDING 1
RECORDS
REDEFINES

REEL
REFERENCE 1
REFERENCES 1
RELATIVE
RELEASE 1
REMAINDER

1 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command
(see the RM/COBOL User's Guide for details on this option). In such cases, this word is treated as a user-defined word
whenever it occurs in the source program.

 Reserved Words
Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 427
 First Edition

REMARKS 1
REMOVAL 1
RENAMES
REPLACE 1
REPLACING
REPORT 1
REPORTING 1
REPORTS 1
RERUN 1
RESERVE
RESET 1
RETURN 1
RETURN-CODE 1

RETURNING 1
REVERSE
REVERSE-VIDEO 1
REVERSED 1
REWIND
REWRITE
RF 1
RH 1
RIGHT
ROUNDED
RUN

S
SAME
SCREEN 1
SD 1
SEARCH 1
SECTION
SECURE 1
SECURITY
SEGMENT 1
SEGMENT-LIMIT 1
SELECT
SEND 1
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET
SIGN
SIZE
SORT 1
SORT-MERGE 1
SOURCE 1
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES

STANDARD
STANDARD-1
STANDARD-2 1
START
STATUS
STOP
STRING 1
SUB-QUEUE-1 1
SUB-QUEUE-2 1
SUB-QUEUE-3 1
SUBTRACT
SUM 1
SUPPRESS 1
SYMBOLIC 1
SYNC
SYNCHRONIZED

T
TAB
TABLE 1
TALLYING
TAPE 1
TERMINAL 1
TERMINATE 1
TEST 1
TEXT 1
THAN
THEN 1
THROUGH
THRU
TIME
TIMES
TO
TOP 1
TRAILING
TRUE 1
TYPE 1

U
UNIT
UNLOCK
UNSTRING 1
UNTIL
UP
UPDATE
UPON 1
USAGE
USE
USING

1 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command
(see the RM/COBOL User's Guide for details on this option). In such cases, this word is treated as a user-defined word
whenever it occurs in the source program.

Reserved Words
Appendix A: Reserved Words

428 RM/COBOL Language Reference Manual
 First Edition

V
VALUE
VALUES
VARIABLE 1
VARYING

W
WHEN
WHEN-COMPILED 1
WITH
WORDS
WORKING-STORAGE
WRITE

Z
ZERO
ZEROES
ZEROS

V
VALUE
VALUES
VARIABLE 1
VARYING

W
WHEN
WHEN-COMPILED 1
WITH
WORDS
WORKING-STORAGE
WRITE

Z
ZERO
ZEROES
ZEROS

1 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command
(see the RM/COBOL User's Guide for details on this option). In such cases, this word is treated as a user-defined word
whenever it occurs in the source program.

 Context-Sensitive Words
Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 429
 First Edition

Context-Sensitive Words
The words listed in Table 35 are context-sensitive words and are reserved in the
specified language construct or context. If a context-sensitive word is used where the
context-sensitive word is permitted in the general format, the word is treated as a
keyword; otherwise, it is treated as a user-defined word.

Table 35: Context-Sensitive Words

Context-Sensitive Word Language Construct or Context

AUTO 2 screen description entry

AUTO-SKIP 2 screen description entry
ACCEPT statement

AUTOMATIC 2 LOCK MODE clause

BACKGROUND 2 screen description entry

BACKGROUND-COLOR 2 screen description entry

CARD-PUNCH ASSIGN clause in file control entry (device-name)

CARD-READER ASSIGN clause in file control entry (device-name)

CASE-INSENSITIVE 2 LIKE relational-operator

CASE-SENSITIVE 2 LIKE relational-operator

CASSETTE ASSIGN clause in file control entry (device-name)

CONSOLE ASSIGN clause in file control entry (device-name)
CONSOLE IS mnemonic-name clause in Special-

Names paragraph (low-volume-I-O-name)
CONSOLE IS CRT clause in Special-Names paragraph

CRT 2 CONSOLE IS CRT clause in Special-Names paragraph
CRT STATUS clause in Special-Names paragraph

CYCLE 2 EXIT statement (Format 3)

DISC ASSIGN clause in file control entry (device-name)

DISK ASSIGN clause in file control entry (device-name)

EOL ERASE clause in screen description entry and
ERASE phrase in ACCEPT and DISPLAY statements

EOS ERASE clause in screen description entry and
ERASE phrase in ACCEPT and DISPLAY statements

FOREGROUND 2 screen description entry

FOREGROUND-COLOR 2 screen description entry

FULL 2 screen description entry
2 This word is not considered to be a context-sensitive word if the RM/COBOL (74) 2.0
compatibility option is present in the Compile Command (see the RM/COBOL User’s
Guide for details on this option). When that option is present, this word is treated as a
user-defined word whenever it occurs in the source program.

Context-Sensitive Words
Appendix A: Reserved Words

430 RM/COBOL Language Reference Manual
 First Edition

Table 35: Context-Sensitive Words (Cont.)

Context-Sensitive Word Language Construct or Context

KEYBOARD ASSIGN clause in file control entry (device-name)

LISTING ASSIGN clause in file control entry (device-name)

MAGNETIC-TAPE ASSIGN clause in file control entry (device-name)

MANUAL 2 LOCK MODE clause

MULTIPLE 2 LOCK MODE clause and
I-O-CONTROL paragraph

PARAGRAPH 2 EXIT statement (Format 4)

PREVIOUS 2 READ statement (Format 1)

PRINT ASSIGN clause in file control entry (device-name)

PRINTER ASSIGN clause in file control entry (device-name)

PRINTER-1 ASSIGN clause in file control entry (device-name)

REQUIRED 2 screen description entry

SORT-WORK ASSIGN clause in file control entry (device-name)

TRIMMED 2 LIKE relational-operator

UNDERLINE 2 screen description entry

YYYYDDD 2 FROM DAY phrase of ACCEPT statement (Format 2)

YYYYMMDD 2 FROM DATE phrase of ACCEPT statement (Format 2)

The DERESERVE keyword of the COMPILER-OPTIONS configuration record,
which is described in Chapter 10: Configuration of the RM/COBOL User’s Guide,
can be used to make a context-sensitive word a user-defined word whenever it occurs
in the source program, but then the language feature provided by the construct in
which the word appears is not available for programs compiled with that particular
configuration setting.

 Special Symbols
Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 431
 First Edition

Special Symbols
The following lists all special symbols except those used in PICTURE
character-strings.

. (

; ”

) +

’ *

- **

/ >

= >=

< <=

, = =

: *>

&

Nonreserved System-Names
Appendix A: Reserved Words

432 RM/COBOL Language Reference Manual
 First Edition

Nonreserved System-Names
Table 36 contains system-names that are used in the SPECIAL-NAMES paragraph
of the Environment Division to define mnemonic-names and alphabet-names. They
are not reserved.

Table 36: System-Names Used in the SPECIAL-NAMES Paragraph

System-Name Meaning

C01 Channel 1 ADVANCING for SEND, WRITE statements.

C02 Channel 2 ADVANCING for SEND, WRITE statements.

C03 Channel 3 ADVANCING for SEND, WRITE statements.

C04 Channel 4 ADVANCING for SEND, WRITE statements.

C05 Channel 5 ADVANCING for SEND, WRITE statements.

C06 Channel 6 ADVANCING for SEND, WRITE statements.

C07 Channel 7 ADVANCING for SEND, WRITE statements.

C08 Channel 8 ADVANCING for SEND, WRITE statements.

C09 Channel 9 ADVANCING for SEND, WRITE statements.

C10 Channel 10 ADVANCING for SEND, WRITE statements.

C11 Channel 11 ADVANCING for SEND, WRITE statements.

C12 Channel 12 ADVANCING for SEND, WRITE statements.

CONSOLE Standard system input-output device (primary terminal).

EBCDIC Alphabet code-name for EBCDIC as defined by IBM.

SWITCH-1 Switch 1, switch-status conditions and SET statement.

SWITCH-2 Switch 2, switch-status conditions and SET statement.

SWITCH-3 Switch 3, switch-status conditions and SET statement.

SWITCH-4 Switch 4, switch-status conditions and SET statement.

SWITCH-5 Switch 5, switch-status conditions and SET statement.

SWITCH-6 Switch 6, switch-status conditions and SET statement.

SWITCH-7 Switch 7, switch-status conditions and SET statement.

SWITCH-8 Switch 8, switch-status conditions and SET statement.

SYSIN Standard system input device or file.

SYSOUT Standard system output device or file.

UPSI-0 Switch 1, switch-status conditions and SET statement.

UPSI-1 Switch 2, switch-status conditions and SET statement.

UPSI-2 Switch 3, switch-status conditions and SET statement.

UPSI-3 Switch 4, switch-status conditions and SET statement.

UPSI-4 Switch 5, switch-status conditions and SET statement.

UPSI-5 Switch 6, switch-status conditions and SET statement.

UPSI-6 Switch 7, switch-status conditions and SET statement.

UPSI-7 Switch 8, switch-status conditions and SET statement.

 Nonreserved System-Names
Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 433
 First Edition

Table 37 contains system-names that are used in the FILE-CONTROL paragraph of
the Environment Division to specify a device type for files. They are not reserved.

Table 37: System-Names for Device Types

System-Name Meaning

CARD-PUNCH Any sequential output-only device.

CARD-READER Any sequential input-only device.

CASSETTE Any sequential input and output device.

CONSOLE Any sequential input and output device.

DISC Any mass storage device.

DISK Any mass storage device.

KEYBOARD Any sequential input-only device.

LISTING Any sequential print output device.

MAGNETIC-TAPE Any sequential input and output device.

PRINT Any sequential print output device.

PRINTER Any sequential print output device.

PRINTER-1 Any sequential print output device.

SORT-WORK Any input and output device for temporary work files
(declares file to be a SORT-MERGE file).

Table 38 contains system-names that are used in the FILE-CONTROL paragraph of
the Environment Division to specify the record delimiting technique for sequential
files. They are not reserved.

Table 38: System-Names for Record Delimiting Techniques

System-Name Meaning

BINARY-SEQUENTIAL Binary sequential.

LINE-SEQUENTIAL Line sequential.

Table 39 contains system-names that are used in the file description entry of the Data
Division to specify label information for files. They are not reserved.

Table 39: System-Names for Labels

System-Name Meaning

FILE-ID Specifies file access name.

Nonreserved System-Names
Appendix A: Reserved Words

434 RM/COBOL Language Reference Manual
 First Edition

Table 40 contains system-names that are used as color-names in the screen
description entry to specify foreground and background colors. They are not
reserved.

Table 40: System-Names for Colors

Color-Name Color Integer Meaning

BLACK 0 The color black.

BLUE 1 The color blue.

GREEN 2 The color green.

CYAN 3 The color cyan.

RED 4 The color red.

MAGENTA 5 The color magenta.

BROWN 6 The color brown.

WHITE 7 The color white.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 435
 First Edition

Appendix B: Compiler
Messages

This appendix lists the informational, warning and error messages that may be
generated during compilation. These classes of messages are defined as follows:

1. I indicates an information-only message. Information messages often follow a
warning or error message to provide additional information.

2. W indicates a warning. Warning messages are generated when an error occurs
during compilation that does not interrupt compilation and that will not prevent
program execution.

3. E indicates a severe error. Error messages are generated if the error detected
during compilation may cause the program to fail during execution.

Compiler Messages
Italics indicate text replaced by compiler-generated values.

The compiler messages are divided into the following groups:

• Compiler Messages 001 - 100 (on page 436)

• Compiler Messages 101 - 200 (on page 449)

• Compiler Messages 201 - 300 (on page 462)

• Compiler Messages 301 - 400 (on page 475)

• Compiler Messages 401 - 500 (on page 487)

• Compiler Messages 501 - 600 (on page 500)

• Compiler Messages 601 - 700 (on page 505)

• Compiler Messages 701 - 800 (on page 513)

Compiler Messages
Appendix B: Compiler Messages

436 RM/COBOL Language Reference Manual
 First Edition

Compiler Messages 001 — 100

0001: I Data-name specified in DATA RECORDS clause is:
data-name-1

Indicates the data-name of the particular data record that is the subject of the
previous summary error message.

0002: I Previous diagnostic message occurred at line line-number-1

Provides error-threading facilities by pointing to the line location of errors generated
during compilation. Only the text of the message is printed.

0003: I Above message caused by line line-number-1

Indicates the approximate line number of the first occurrence of the summary error
message printed just prior to this message.

0004: I Data-name specified in RECORD KEY clause is: data-name-1

Indicates the data-name of the particular record key that is the subject of the previous
summary error message.

0005: I Scan resumed.

Scanning was suppressed at the previous error and resumes at the indicated point in
the source program.

0006: I (scan suppressed).

This message is printed following any error messages that cause the compiler to
suspend source scanning. Only the text of the message is printed.

0007: I Data-name specified in KEY phrase of OCCURS clause is:
data-name-1

Indicates the data-name for the particular table key that is the subject of the previous
summary message.

0008: I ALPHABET literal phrase specifies duplicate character for
alphabet-name: alphabet-name-1

The alphabet-name is defined with a literal phrase that lists a duplicate character, and
the alphabet-name was used in a context that does not allow such a definition. A
prior error message indicates how the alphabet-name was used.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 437
 First Edition

0009: I First duplicate character occurs at position position-number-1
[= character-value-1]

An alphabet-name has one or more duplicate characters defined, and the alphabet-
name was used in a context that does not allow such a definition. The first or only
duplicated character is included in this message. Informative message 8 is always
produced prior to this message to provide the alphabet-name.

0015: W Configured binary allocation sizes not supported by specified
version of runtime.

The indicated data description entry describes a binary data item with a number of
digits such that the configured allocation size for that many digits results in a conflict
with the maximum object version specified for the compilation. Binary allocation
sizes other than two, four, or eight, or sixteen bytes require at least object version 8.
A binary allocation size of sixteen requires at least object version 7. When this
warning occurs, the compiler allocates the data item with a size compatible with the
object version specified.

0016: W Configured binary allocation sizes do not support the
precision specified by the PICTURE character-string.

The indicated data description entry describes a binary data item with a number of
digits such that no configured allocation size supports that many digits. When this
warning occurs, the compiler uses the traditional RM allocation scheme of two, four,
eight, or sixteen bytes depending on the number of digits in the data item.

0017: W Signed literal is associated with unsigned data item; absolute
value of literal used.

A signed literal is associated with an unsigned data item. For example, a signed
literal is the sending item in a MOVE statement where one or more of the receiving
items is an unsigned data item. Since unsigned data items always receive the
absolute value of any sending item, the sign in the literal is extraneous and may
indicate a program logic error. This warning may indicate that the description of the
unsigned data item should be changed to that of a signed data item by including an S
symbol in its PICTURE character-string.

0018: W Length of literal associated with THRU or ALSO phrase of
ALPHABET clause exceeds one character.

More than one character was given for a literal in the ALPHABET clause. It is
assumed that each of the characters of the literal was meant to be listed individually
in the order given in the source program.

0019: W Level-number 01 or 77 must start in area A of source
program.

Level-number 01 or 77 is found in area B. These level-numbers should be in area A,
and are treated as if they appeared in area A.

Compiler Messages
Appendix B: Compiler Messages

438 RM/COBOL Language Reference Manual
 First Edition

0020: W Record associated with CD entry has wrong size.

A record description entry following an input CD entry implicitly redefines the
record area and must be 87 characters in length. A record description entry
following an input I-O entry implicitly redefines the record area and must be 33
characters in length. Record entries for output may vary in length, depending on the
DESTINATION TABLE OCCURS clause. However, all record entries within a
single output CD entry must be the same length.

0021: W CD entry needs more data-names.

Not all 11 data-names for Option 2 of the communication description entry for input
or all 6 data-names for Option 2 of the communication description entry for I-O have
been listed. Data entries will be used in the order listed.

0022: W Separator period needed to end COPY or REPLACE
statement.

A COPY or REPLACE statement is missing its closing period. A closing period
is assumed.

0023: W CURRENCY SIGN literal length exceeds one character.

The literal specified in the CURRENCY SIGN clause is longer than one character in
length. Only the first character will be used.

0024: W Header or level indicator is in wrong order within Data
Division.

The indicated Data Division division header, section header, paragraph header, or
level indicator is not in the required order for a COBOL source program. Scanning
continues without regard to proper order.

0025: W Literal length must not exceed one character.

A character type operand (INSPECT . . . CHARACTERS or ACCEPT . . .
PROMPT) specifies more than one character. For ACCEPT . . . PROMPT, only the
first character will be used. For INSPECT . . . CHARACTERS, the entire operand
will be used.

0026: W Declarative procedure refers to nondeclarative procedure:
procedure-name-1

A procedure-name specified in the declaratives is not defined in the declaratives.
Standard COBOL does not allow references from the declaratives to the imperatives.
If later defined, the procedure-name reference will be allowed by RM/COBOL and
will execute correctly.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 439
 First Edition

0027: W DEPENDING ON phrase expected in variable occurrence
OCCURS clause.

When Format 2 of the OCCURS clause is used, it is expected that the DEPENDING
ON phrase will also be included in the clause.

0028: W Header is in wrong order within Environment Division.

The indicated Environment Division division header, section header, or paragraph
header is not in the required order for a COBOL source program. Scanning
continues without regard to proper order.

0029: W DATA RECORDS data-name not defined for file: file-name-1

The DATA RECORD/RECORDS clause in the file description entry (FD) for
the indicated file lists a data-name that is not defined as a level 01 record-name
of the file.

0030: W PADDING CHARACTER literal or data item length exceeds
one character








.

me-1: file-na

The data-name or literal specified in the PADDING clause should be one character in
length. Only the first character of the specified operand is used.

0031: W VALUE OF LABEL data-name is not defined in Working-
Storage Section for file: file-name-1

The file label data item of the indicated file-name is not defined in the Working-
Storage Section as required by the standard. There is no effect on the object
program.

0032: W RECORD KEY data item must not be variable size group for
file: file-name-1

The record key data-name refers to a data item that is defined as variable in length.

0033: W Records of sort-merge file are too small for USING file or too
large for GIVING file.

The record size of the indicated file-name is not appropriate for the context. In a
SORT or MERGE statement, the maximum record size of a USING file is greater
than the maximum record size of the sort-merge file or the maximum record size of
the sort-merge file is greater than the maximum record size of the GIVING file;
records will be truncated during the sort or merge operation if the actual record
length is greater than the maximum record length of the sort-merge or GIVING file.

Compiler Messages
Appendix B: Compiler Messages

440 RM/COBOL Language Reference Manual
 First Edition

0034: W RECORD DEPENDING data item must be unsigned integer for
file: file-name-1

The numeric data item in the DEPENDING ON phrase of the RECORD clause in the
file description entry for the indicated file-name is defined with a sign.

0035: W RELATIVE KEY data item must be unsigned integer for file:
file-name-1

The relative key declared for the indicated file-name is a signed numeric integer.
The standard requires an unsigned numeric integer. The program may be executed,
but negative values, if they occur, may cause undesired results.

0036: W FILE STATUS data-name must not be defined in File Section
for file: file-name-1

The file status data item declared for the indicated file-name is defined in the File
Section of the Data Division. The standard rules against this situation. The program
will execute, but unpredictable results may occur if, for example, the file status data
item is defined within the record area associated with the file.

0037: W Clause conflicts with VALUE clause specified for group.

The indicated data description clause is wrong because a containing group has a
VALUE IS clause.

0038: W GO TO, STOP RUN, or GOBACK must be last statement in
sequence of imperative statements.

The imperative sequence contains a GOBACK, GO TO, or STOP RUN statement,
which is not the last statement in the sequence. A GOBACK, GO TO or STOP RUN
statement must be followed by a period separator or, if contained within another
statement, a scope terminator of the containing statement.

0039: W Indicator area contains wrong character.

The nonblank character in the indicator area (column 7) is not an * (comment),
/ (new page comment), – (continuation), or D (debug line). The character is treated
as a blank.

0040: W Integer has value that exceeds maximum permitted for
this use.

The integer indicated requires more than 16 bits to represent its value. RM/COBOL
is limited to 16-bit words for the representation of some integer values. The value
65535 is used.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 441
 First Edition

0041: W LABEL RECORDS ARE OMITTED and VALUE OF clause must
not be specified in same file description.

The VALUE OF and LABEL RECORDS OMITTED clauses are specified for the
same file. There is no effect on the object program.

0042: W Unsigned integer expected in MEMORY SIZE clause.
Nonnumeric or signed literal is not permitted here.

The literal specified in the MEMORY clause of the OBJECT-COMPUTER
paragraph is not unsigned numeric. There is no effect on the object program.

0043: W Unsigned integer expected in MEMORY SIZE clause.
Noninteger literal is not permitted here.

The literal specified in the MEMORY clause of the OBJECT-COMPUTER
paragraph is not an integer. There is no effect on the object program.

0044: W Repeated period space separator is not permitted.

A period space separator is repeated where only one period space separator is
allowed. The unneeded separator is ignored by the compiler.

0045: W Imperative statement expected but scope terminator was
found. CONTINUE statement assumed.

An imperative statement is required at the indicated source location, but a scope
terminator was specified instead. The compiler assumes a CONTINUE statement
was intended.

0046: W Repeated phrase in ACCEPT or DISPLAY statement is not
permitted.

An option phrase is specified more than once or the default option has been specified
in violation of syntactic rules. The indicated or later occurrence is ignored.

0047: W PERFORM independent segment THRU fixed segment is not
permitted.

The EXIT paragraph of the performed procedure (or procedures) is in a fixed
segment (segment number less than 50) and the PERFORM statement is in an
independent segment. Only sections or paragraphs wholly contained in the fixed
segment or wholly contained in the same independent segment should be used.

0048: W PERFORM exit procedure ends with unconditional transfer of
control: procedure-name-1

A procedure specified as the exit of a PERFORM statement contains an
unconditional GOBACK, GO TO or STOP RUN statement as its last statement.
Therefore, the procedure cannot reach its exit so as to return control to the
controlling PERFORM statement. PERFORM statements which reference such a

Compiler Messages
Appendix B: Compiler Messages

442 RM/COBOL Language Reference Manual
 First Edition

procedure as the exit procedure are equivalent to a GO TO statement referencing the
same entry procedure as specified by the PERFORM statement.

0049: W Procedure-name expected in area A.

A procedure-name is required in area A because of a preceding section header.

0050: W Procedure-name contains wrong character.

A procedure-name contains a decimal point. The decimal point character is ignored.

0051: W EXTERNAL clause requires specification of device-name in
ASSIGN clause. DISK assumed.

The ASSIGN clause for a sequential organization file omitted the device-name or
specified an unknown device-name and the file is described as EXTERNAL. Since
other programs, unknown to this compilation, may access the external file in the I-O
mode, the compiler must assume a mass storage device. If a non-mass storage device
is intended, specify the appropriate device-name in the ASSIGN clause.

0052: W Space separator expected.

A literal and a user-defined word have no separator between them.

0053: W Space character expected after punctuation character.

A comma or semicolon character occurs in the source program without a following
space. The comma or semicolon is treated as if the space was present.

0054: W Sort-merge file control entry must contain only SELECT and
ASSIGN clauses.

A sort-merge file is declared with file control clauses that are not allowed. The
clauses are ignored unless they specify illegal options (for example, nonsequential
organization).

0055: W ASCENDING or DESCENDING phrase expected. ASCENDING
assumed.

The ASCENDING or DESCENDING key comparison is omitted or misspelled. If
simply omitted, ASCENDING will be assumed. If misspelled, a syntax error will
also occur.

0056: W TIMES, UNTIL, and VARYING phrases are nonstandard in
SORT or MERGE statement.

Non-standard phrases are specified in the INPUT or OUTPUT procedure declaration
of a SORT or MERGE statement.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 443
 First Edition

0057: W User-defined word length exceeds 240 characters.

A user-defined word is longer than 240 characters in length and has been truncated.
The truncated name may still be referenced, subject to uniqueness of reference rules
for the truncated name. Data-names and file-names with the external attribute are
truncated to 30 characters in the object program.

0058: W Repeated file-name or open mode in USE statement is not
permitted.

A multiple USE declarative exists for the indicated file-name or open mode. When
multiple USE declaratives are declared, the last one declared is in effect for the
object program, except that a USE declarative for a file-name will take precedence
over a USE declarative for an open mode.

0059: W Value of numeric literal in VALUE clause exceeds capacity of
PICTURE character-string.

The numeric literal specified in the VALUE clause for a numeric data item
is incorrect for initialization of the data item as described by its PICTURE
character-string, but is within the range of values allowed by the data item.
Truncation of nonzero low-order digits was required; or, for a BINARY,
COMPUTATIONAL-1, COMP-1, COMPUTATIONAL-4, COMP-4,
COMPUTATIONAL-5, or COMP-5 usage data item, more digits were specified
than allowed by the PICTURE character-string but the value can still be expressed
within the number of bytes allocated for the data item.

0060: W Verb must start in area B of source program.

A verb was found in area A of the source program. The verb is treated as if it
occurred in area B.

0061: W Clause must start in area B of source program.

A clause begins in area A of a source record. The clause is treated as if it began in
area B.

0062: W Pair of delimiting quotes are not same character.

A hexadecimal literal is not delimited by a matched pair of single or double quotation
marks. The compiler assumes that the single or double quotation mark found, even
though it does not match the beginning quotation mark, was intended as the ending
delimiter for the hexadecimal literal.

0063: W Phrase is not valid for data type being accepted or displayed.

The indicated ACCEPT or DISPLAY option is not allowed for the operand being
accepted or displayed. For example, the CONVERT option requires a numeric or
edited operand. The option is ignored.

Compiler Messages
Appendix B: Compiler Messages

444 RM/COBOL Language Reference Manual
 First Edition

0064: W Phrase is valid only for USAGE IS DISPLAY operand.

One or more of the ACCEPT or DISPLAY options are not allowed for nondisplay
(computational) numeric operands. For DISPLAY of a nondisplay data item, the
CONVERT phrase is required and is assumed. For ACCEPT of a nondisplay data
item, the ECHO phrase is not allowed and is ignored unless the UPDATE phrase is
also present.

0065: W Integer value must not be equal to zero.

An integer with the value zero is not allowed in the indicated context. The program
may or may not execute correctly. For example, if an index-name is set to the
value zero it will contain a value that is not valid for subscripting but a subsequent
SET . . . UP BY 1 statement will cause the index-name to contain a valid value for
the first occurrence.

0066: W Neither GREATER OR EQUAL (>=) nor LESS THAN OR
EQUAL (<=) may be preceded by NOT.

The reserved word NOT should not be used with the relational operators >= and <=
or with their spelled-out equivalents. Such cases are treated as < and >, respectively.

0067: W RECORD DELIMITER clause specified with fixed-length
records for file: file-name-1

A RECORD DELIMITER clause with the STANDARD-1 option has been specified
for a file whose records are not variable length.

0068: W Repeated character in CLASS clause is not permitted.

A character has been specified more than once in a CLASS clause. Specifying the
same character more than once in a CLASS clause is redundant.

0069: W Nonconforming nonstandard language element found in
statement, clause, or header. RM extension to COBOL.

The indicated language element is not defined in the standard COBOL language. It
is an extension that is defined and supported by Liant, but which may not be
supported in other COBOL dialects. This message is only generated when the
flagging of extensions is requested by specification of a compiler option.

0070: W Nonconforming standard language element found in
statement, clause, or header.

The indicated language element is defined in the standard COBOL language but
at a level above the requested level. This message is only generated when the
flagging of COBOL subsets or optional modules is requested by specification of a
compiler option.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 445
 First Edition

0071: W Obsolete language element found in statement, clause, or
header.

The indicated language element is defined in the standard COBOL language, but has
been designated for deletion from the standard language in a future revision. This
message is only generated when the flagging of obsolete elements is requested by
specification of a compiler option.

0072: W Pseudo-text delimiter must not be continued.

The two characters of a pseudo-text delimiter should be contiguous within the same
source record. They are treated as if they were contiguous.

0073: W Pseudo-text operand expected for REPLACE statement.

The two operands of a BY phrase in a REPLACE statement should be pseudo-text
operands. Operands that are not written as pseudo-text operands are treated by the
compiler like the nonpseudo-text operands of a REPLACING phrase in a COPY
statement.

0074: W Statement cannot be executed because preceding statement
transfers control.

The indicated statement can never be executed because it is immediately preceded by
another statement that transfers control unconditionally to another statement in the
program.

0075: W Data item containing file access name must have fixed length
for file: file-name-1

The data-name specified in the ASSIGN clause or VALUE OF FILE-ID clause for
the indicated file-name is a variable length data item (that is, a group that contains a
data item described with the OCCURS . . . DEPENDING clause). The maximum
length of the group will be used to resolve the file access name for the file. The
value of the data item specified in the DEPENDING ON phrase of the OCCURS
clause will not be used to determine the length of the group when used for this
purpose.

0076: W Device-name is not supported by this implementation.

The indicated word is not recognized as a valid device-name known to this
implementation. An unspecified device type is assumed. The unspecified device
type is changed to mass storage if any clause (for example, ORGANIZATION IS
INDEXED) or statement (for example, OPEN I-O) referencing the file so requires.
Otherwise, the file may reside on either mass storage or non-mass storage media.

0077: W Contained program has wrong structure.

The indicated syntax is not allowed in a program nested within another program.
Clauses that typically affect the remainder of the program are ignored. Declarations
of mnemonic-names, alphabet-names, symbolic-characters, and class-names are
accepted and used for the remainder of the compilation of the separately compiled

Compiler Messages
Appendix B: Compiler Messages

446 RM/COBOL Language Reference Manual
 First Edition

program that contains the nested program, including programs not nested within the
program that was diagnosed with this warning.

If nested programs were not desired, add the END PROGRAM headers or use the
Compile Command Option to set the object version level to 1 or 2. (See Chapter 6:
Compiling of the RM/COBOL User’s Guide.) Since nested programs are not
supported prior to version 3, restricting the object version level to 1 or 2 causes the
compiler to assume that—even in the absence of END PROGRAM headers—the
source file contains a sequence of source programs rather than nested source
programs.

0078: W END PROGRAM header expected.

An END PROGRAM header is required because a nested program has been scanned
and the matching END PROGRAM header has not been found, either for the nested
program itself or for each of its containing programs.

If nested program were not desired, use the Compile Command Option to set the
object version level to 1 or 2 (See Chapter 6: Compiling of the RM/COBOL User’s
Guide.) This causes the compiler to assume that—even in the absence of END
PROGRAM headers—the source file contains a sequence of source programs rather
than nested source programs.

0079: W Program-name is not unique within this separately compiled
program.

A nested program specifies the same program-name as another program within the
separately compiled program containing that nested program. When source
programs are nested, a particular program-name may only occur once in the
PROGRAM-ID paragraph of any program contained in the separately compiled
program.

0080: E Figurative constant preceded by ALL is not permitted.

Use of the “ALL” form of a figurative constant is not allowed in the indicated
context.

0081: E Numeric literal in ALPHABET clause exceeds 256, maximum
number of characters in native character set.

The integer used in the ALPHABET clause of the SPECIAL-NAMES paragraph
must represent an ordinal position in the native character set. The number of
characters in the native character set is 256.

0082: E Alphabet-name associated with COLLATING SEQUENCE
clause or phrase must not have duplicate character.

A character has been specified more than once in the ALPHABET clause that defines
the alphabet-name specified in the COLLATING SEQUENCE clause of the File-
Control entry or in the COLLATING SEQUENCE phrase of the SORT and MERGE
statements. Since a character can have only one collating position, a character must
not be repeated in the definition of an alphabet-name specified as a collating
sequence. Refer to the “ASCII Position” and “U.S. Character” columns in
Appendix J: Code-Set Translation Tables of the RM/COBOL User’s Guide.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 447
 First Edition

Informational messages 8 and 9 (see pages 436 and 437) are generated at the end of
the program listing to provide the alphabet-name and duplicated character.

0083: E Class-name in CLASS clause is not unique.

The indicated user-defined word has already been defined for some other purpose
and cannot be used to define a class-name.

0084: E Class-name in class condition is not defined by CLASS
clause.

The context suggests that a class-name is intended at the indicated position, but the
specified user-defined word is undefined.

0085: E Alphabet-name in ALPHABET clause is not unique.

The indicated user-defined word has already been defined for some other purpose
and cannot be used to define an alphabet-name.

0086: E Alphabet-name expected.

The context requires an alphabet-name, but the indicated user-defined word is not an
alphabet-name.

0087: E Alphabet-name is not defined by ALPHABET clause.

The indicated context requires an alphabet-name, but the given user-defined word is
undefined.

0088: E Wrong code-name in ALPHABET clause.

An unrecognized type is given in the ALPHABET clause of the SPECIAL-NAMES
paragraph. Valid alphabet types are STANDARD-1, EBCDIC, NATIVE or a literal
phrase.

0089: E ALTER in nondeclarative procedure must not refer to
declarative procedure: procedure-name-1

An ALTER statement in the nondeclaratives region is wrong because the procedure-
name of the procedure to be altered, the paragraph containing the alterable GO TO
statement, refers to a declarative procedure.

0090: E ALTER of independent segment must be in same independent
segment.

An ALTER statement is wrong because the procedure-name of the procedure to be
altered, the paragraph containing the alterable GO TO statement, refers to a
procedure defined in an independent segment which has a different segment number
than the segment containing the ALTER statement.

Compiler Messages
Appendix B: Compiler Messages

448 RM/COBOL Language Reference Manual
 First Edition

0091: E ALTER must refer to alterable paragraph that contains only a
GO TO sentence.

An ALTER statement is wrong because the procedure-name of the procedure to be
altered, the paragraph containing the alterable GO TO statement, does not refer to a
paragraph containing only a single Format 1 GO TO statement.

0092: E ALTER refers to procedure-name that is not unique:
procedure-name-1

An ALTER statement is wrong because the procedure-name of the procedure to be
altered, the paragraph containing the alterable GO TO statement, refers to two or
more procedures. Qualification of the paragraph-name by its section-name is
required to yield a unique reference.

0093: E ALTER refers to procedure-name that is not defined:
procedure-name-1

An ALTER statement is wrong because the procedure-name of the procedure to be
altered, the paragraph containing the alterable GO TO statement, refers to a
procedure that is undefined. The procedure-name may be incorrectly qualified.

0094: E GO TO statement omits procedure-name. No ALTER
statement found for paragraph: procedure-name-1

A GO TO statement with the procedure-name omitted is not the object of any
ALTER statement and, therefore, can never be executed successfully.

0095: E Continuation of nonnumeric literal must begin with
quotation mark.

A nonnumeric literal is continued but does not have the required opening quotation
mark on the continuation line.

0096: E Nonnumeric literal expected.

The context requires a nonnumeric literal.

0097: E Nonnumeric literal length exceeds 65535 characters.

A nonnumeric literal greater than 65535 characters in length is specified by the
source program. Standard COBOL requires support of literals up to 160 characters
in length. RM/COBOL supports literals up to 65535 characters in length.

0098: E Nonnumeric literal must end with quotation mark.

A nonnumeric literal is not continued and does not have the required closing
quotation mark.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 449
 First Edition

0099: E Header or level indicator expected in area A of source
program.

Context requires an entry in area A at the indicated point in the source program.

0100: E Arithmetic expression has wrong combination of operands
and symbols.

The syntax of the arithmetic expression is wrong. The permissible combinations of
variables, numeric literals, arithmetic operators and parentheses are given in Table 17
on page 195.

Compiler Messages 101 — 200

0101: E ASSIGN clause required in file control entry.

No ASSIGN clause was found in the file control entry that begins with a SELECT
clause and ends with a period. The ASSIGN clause is required in a file control entry.

0102: E AT END phrase required in RETURN statement.

The AT END clause is required in a RETURN statement, but was not found.

0103: E BLANK WHEN ZERO clause requires elementary numeric or
numeric edited data item with USAGE IS DISPLAY.

The BLANK WHEN ZERO clause is specified in a data description entry in conflict
with other clauses specified in the same entry.

0104: E Repeated clause in CD entry is not permitted.

A clause in the communication description entry has been specified more than once.

0105: E INITIAL clause must not be specified in program having
USING or GIVING phrase in Procedure Division header.

The INITIAL clause of the communication description entry may not be used in a
program that specifies the USING or GIVING phrases in the Procedure Division
header.

0106: E Repeated INITIAL clause in program is not permitted.

More than one communication description entry with the INITIAL clause has been
specified in the source program. Only one CD FOR INITIAL INPUT or one CD
FOR INITIAL I-O is allowed in a program.

Compiler Messages
Appendix B: Compiler Messages

450 RM/COBOL Language Reference Manual
 First Edition

0107: E Input CD entry has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the Format 1 (FOR INPUT) communication description entry as given
in the source program.

0108: E I-O CD entry has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the Format 3 (FOR I-O) communication description entry as given in
the source program.

0109: E Output CD entry has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the Format 2 (FOR OUTPUT) communication description entry as
given in the source program.

0110: E Cd-name is not unique.

A cd-name has previously been defined and cannot be used again.

0111: E Cd-name of input or I-O CD entry expected.

An INPUT or I-O cd-name must be specified in the context of the statement as given
in the source program. An INPUT cd-name is required with ACCEPT MESSAGE
COUNT, ENABLE INPUT and DISABLE INPUT statements. An INPUT or I-O
cd-name is required with RECEIVE statements.

0112: E Cd-name of output or I-O CD entry expected.

An OUTPUT or I-O cd-name must be specified in the context of the statement as
given in the source program. An OUTPUT cd-name is required with ENABLE
OUTPUT and DISABLE OUTPUT statements. An OUTPUT or I-O cd-name is
required with SEND statements.

0113: E Cd-name is not permitted here.

The context does not allow a cd-name reference.

0114: E Associated CD entry contains error.

There is an error in the communication description entry associated with the
indicated cd-name.

0115: E Cd-name is not defined by CD entry in program.

The cd-name specified in a SEND, RECEIVE, ACCEPT, ENABLE or DISABLE
statement is not defined in the current program. A communication description entry
is required in the context of the statement indicated in the source program. Only
cd-names declared in the Data Division associated with the Procedure Division may

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 451
 First Edition

be specified in the Procedure Division (that is, cd-names are always local names,
never global).

0116: E Length of record associated with CD entry exceeds 65280
characters.

The maximum CD record size has been exceeded. Only the first 65280 characters
will be used.

0117: E CD entry needs FOR INPUT, FOR OUTPUT, or FOR I-O clause.

The INPUT, OUTPUT or I-O clause is required in the communication description
entry.

0118: E Mnemonic-name in ADVANCING phrase must be associated
with channel-name in SPECIAL-NAMES paragraph.

The indicated user-defined word must be identified with a feature-name that is a
channel-name in the SPECIAL-NAMES paragraph of the Environment Division.

0119: E Operand data type not permitted for this class condition.

The specified class condition conflicts with the data type of the item being tested.
An alphabetic data item may not be specified in the NUMERIC class test. A numeric
data item may not be specified in the ALPHABETIC, ALPHABETIC-LOWER, or
ALPHABETIC-UPPER class tests.

0120: E CODE-SET clause in FD entry must specify same alphabet as
CODE-SET clause in file control entry.

A code-set was previously defined in the file control entry for the indicated file and
does not match the code-set in the file description entry. The code-set should be
specified only once, but if specified in both the file control entry and file description
entry, the specifications must be consistent.

0121: E CODE-SET clause requires all signed data items for file to
specify SIGN IS SEPARATE CHARACTER.

A file that is defined with a CODE-SET clause must have a SIGN SEPARATE
clause in all signed numeric data descriptions in the record descriptions associated
with the file.

0122: E CODE-SET clause requires all data items for file to have
USAGE IS DISPLAY.

A file that is defined with a CODE-SET clause must not have any numeric data items
defined with a USAGE IS clause except USAGE IS DISPLAY in the record
descriptions associated with the file.

Compiler Messages
Appendix B: Compiler Messages

452 RM/COBOL Language Reference Manual
 First Edition

0123: E Only one PROGRAM COLLATING SEQUENCE clause is
permitted.

More than one PROGRAM COLLATING SEQUENCE clause has been specified in
the source program. Only one is allowed.

0124: E COLLATING SEQUENCE clause permitted only in indexed file
control entry.

The COLLATING SEQUENCE clause may be specified for indexed organization
files only. Relative and sequential file control entries may not include the
COLLATING SEQUENCE clause.

0125: E Composite of operands contains more than 30 decimal digits.

The composite of operands specified in the indicated statement contains more than
30 digits. The total integer positions plus the total fractional positions must not
exceed 30 for the specified operands. For additional information, see the discussion
of composite size (on page 192).

0126: E Associated conditional variable has error in its data
description entry.

The condition-name indicated is associated with a conditional variable that has an
error in its description.

0127: E User-defined word previously defined for use that does not
permit its use as condition-name.

The indicated user-defined word has already been defined and cannot be redefined as
a condition-name.

0128: E Condition-name is not permitted here.

The context does not allow a condition-name, but the identifier indicated is that of a
condition-name.

0129: E Data description entry for condition-name must specify single
value for use in SEARCH ALL statement.

A condition-name specified in a SEARCH ALL statement must have a single value
associated with it, but the indicated condition-name has multiple values associated
with it.

0130: E Literal in VALUE clause has wrong category for data type of
associated conditional-variable.

The value literal specified for a condition-name has a type which conflicts with the
type of the associated conditional variable.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 453
 First Edition

0131: E Condition has wrong combination of conditions, logical
operators, and parentheses.

The syntax of a conditional expression is incorrect. The syntax given in the source is
not that of a relation, class, sign, condition-name or switch-status condition. This
syntax error may be caused by failure to follow the separator rules of COBOL, which
require spaces around the special characters used in relation conditions.

0132: E COPY statement exceeds maximum nesting level of 9 active
COPY statements.

The maximum copy nesting level of nine has been exceeded. Only five copy files
may be open, but the maximum nesting level of nine can be exceeded when COPY
statements are the last statement in a COPY file. In such cases, the COPY file is
closed before opening the next COPY file, but the COPY statement is still
considered to be nested.

0133: E Text-name or file-name in COPY statement is not accessible
to compiler.

The text-name and, optionally, the library-name specified in a COPY statement refer
to a copy text file that could not be accessed. The file could not be opened, either
because it was not found or because of one of the following reasons:

1. The compiler user does not have the necessary privileges to open the file.

2. The nesting level of five open copy files has been exceeded.

3. The copy text contains a COPY statement which copies itself, either directly or
indirectly.

To be found, a copy text file must either be in the current working directory at the
time of the compilation or be locatable, as described in the “Locating RM/COBOL
Files on UNIX” and “Locating RM/COBOL Files on Windows” sections in Chapters
2 and 3, respectively, of the RM/COBOL User’s Guide. The compiler uses the
RMPATH environment variable to specify the directory search sequence for copy
text files. You may need to specify the ALLOW-EXTENDED-CHARACTERS,
EXPANDED-PATH-SEARCH, RESOLVE-LEADING-NAME, and RESOLVE-
SUBSEQUENT-NAMES keywords for the RUN-FILES-ATTR configuration record
to modify how a copy text file is located depending on how the text-name or library-
name is specified in the source program.

0134: E CORRESPONDING operand must be group data item not
defined with RENAMES clause.

The context requires an identifier of a group data item that satisfies the rules for
CORRESPONDING. The identifier indicated is either not a group or is a group with
no subordinate named data items (for example, a group defined by RENAMES).

Compiler Messages
Appendix B: Compiler Messages

454 RM/COBOL Language Reference Manual
 First Edition

0135: E CORRESPONDING operands have no corresponding numeric
data items.

The two groups specified in an ADD CORRESPONDING or SUBTRACT
CORRESPONDING statement have no corresponding numeric items. These
statements require at least one pair of corresponding numeric items.

0136: E CURRENCY SIGN literal contains wrong character.

The literal specified in the CURRENCY SIGN clause specifies a character that is not
allowed for the currency symbol.

0137: E Data description entry has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the data description entry or screen description entry as given in the
source program.

0138: E Data Division has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the Data Division as given in the source program.

0139: E User-defined word or literal expected.

The context requires a reference to a data item or literal but the indicated character-
string or separator does not reference data.

0140: E Data item described in Linkage Section is not addressable
from USING phrase of Procedure Division header.

The indicated identifier refers to a data item or condition-name defined in the
Linkage Section of the Data Division but its data-name or the data-name of its
conditional variable is not listed in the USING phrase of the Procedure Division
header nor is the data item or condition-name defined subordinate to a data-name
listed in the USING phrase of the Procedure Division header nor is it a redefinition
or rename of such a name. Thus, the identifier refers to a data item that would not be
addressable by the program at object time.

Note Message 140 only occurs when the object version is restricted to less than 8.
Object version 8 supports the ability to make any Linkage Section data item
addressable by use of the Format 5 SET statement. For object version 8 or greater, if
a Linkage Section data item is referenced and the base address is never set within the
program, message 665 (on page 508) will occur.

0141: E Repeated clause in data description entry is not permitted.

The indicated data description clause is repeated for the same subject or is redundant
with the same clause specified for a parent of the data description entry.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 455
 First Edition

0142: E User-defined word previously defined for use that does not
permit its use as data-name.

The indicated user-defined word is already defined for a purpose that conflicts with
its use as a data-name.

0143: E Data item length exceeds 65280 characters.

The indicated data item has a size greater than 65280 characters. Such items may be
specified only in a MOVE statement or in the USING phrase of a CALL statement.

0145: E Alphanumeric data item expected.

The context requires an alphanumeric data item.

0146: E Elementary data item expected.

The indicated identifier does not refer to an elementary data item as required by the
context in which it is specified. The identifier refers to a group data item and group
data items are not allowed in this context.

0147: E Data item with DISPLAY usage expected.

The context requires a data item with DISPLAY usage.

0148: E Data item described with JUSTIFIED clause is not permitted.

The JUSTIFIED clause cannot be used in the data description entry of the data-name
specified in the indicated context.

0149: E Numeric integer data item or literal expected.

The context requires a numeric integer data item.

0150: E Numeric or numeric edited data item expected.

The context requires a numeric or a numeric edited data item.

0151: E Numeric data item or literal expected. Numeric edited data
item is not permitted here.

The context requires a numeric data item; a numeric edited data item is not allowed.

0152: E Literal in VALUE clause has wrong category for data item
described by data description entry.

The literal type specified in the VALUE literal for a data description entry conflicts
with the data type of the item as described by other clauses.

Compiler Messages
Appendix B: Compiler Messages

456 RM/COBOL Language Reference Manual
 First Edition

0153: E END DECLARATIVES header expected.

An END header was found while scanning the declaratives portion of the Procedure
Division, but it was not the END DECLARATIVES header.

0154: E GO TO or ALTER statement in nondeclarative procedure must
not refer to declarative procedure: procedure-name-1

A GO TO or ALTER statement in the imperatives refers to a procedure-name
defined in the declaratives. All GO TO and ALTER statements in the imperatives
must refer to procedure-names defined in the imperatives.

0155: E Section header must follow DECLARATIVES header.

The declaratives must begin with a section definition.

0156: E Segment-number in declaratives section header exceeds 49.

A segment-number greater than 49 is given in the declaratives. Independent
segments are not allowed in the declaratives. The last valid segment-number is
used instead.

0157: E Statement is not permitted in declarative procedure or in
GLOBAL declarative procedure.

The indicated statement clashes with the declaratives context in which it is specified.
A SORT or MERGE statement is not allowed anywhere in the declaratives portion of
the Procedure Division. An EXIT PROGRAM or GOBACK statement is not
allowed in a declarative procedure in which the GLOBAL phrase is specified.

0158: E Level-number less than or equal to level-number in previous
elementary data description entry expected.

The previous data description entry defined an elementary data item, but the
indicated level-number is not less than or equal to the level-number of the previous
entry.

0159: E Environment Division has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the Environment Division as given in the source program.

0160: E EQUAL (=) relational operator required in WHEN phrase of
SEARCH ALL statement.

The condition specified is not an equal relation. In a SEARCH ALL statement, only
a condition-name or an equal relation is allowed.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 457
 First Edition

0161: E Data description entry for condition-name must have WHEN
SET TO FALSE phrase.

A condition-name cannot be set to false unless the WHEN SET TO FALSE phrase is
specified in the data description entry for the condition-name.

0162: E File description entry (FD entry) has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the file description entry as given in the source program.

0163: E BOTTOM data item must be unsigned integer for file:
file-name-1

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause
for the indicated file does not refer to an elementary unsigned numeric data item.

0164: E BOTTOM data-name has error in its data description entry for
file: file-name-1

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause
for the indicated file has an error in its data description.

0165: E BOTTOM operand must refer to data item for file: file-name-1

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause
for the indicated file is not a valid data item described in the Data Division.

0166: E BOTTOM data item must not be table element for file:
file-name-1

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause
for the indicated file cannot be defined with an OCCURS clause.

0167: E BOTTOM data-name is not unique for file: file-name-1

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause
for the indicated file is defined more than once and is not adequately qualified.

0168: E BOTTOM data-name is not defined for file: file-name-1

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause
for the indicated file has not been defined. An elementary unsigned numeric data
entry in the Data Division is required.

Compiler Messages
Appendix B: Compiler Messages

458 RM/COBOL Language Reference Manual
 First Edition

0169: E BOTTOM data item is wrong linkage item or is not external
item for file: file-name-1

• The data-name specified in the LINES AT BOTTOM phrase of the LINAGE
clause for the indicated file has been defined in the Linkage Section. The data-
name is not listed in the Procedure Division USING phrase, nor is it defined
subordinate to such a data-name. The data-name should be included as a
USING parameter or defined outside the Linkage Section.

Note If the object version is not restricted to less than 8, this message will not
be produced under the condition described above. Instead, the item will be
considered a based linkage item. Message 665 will occur if the base address of
the linkage record is never set within the program (see page 508).

• Or, the indicated file-name names an external file connector but the data-name
specified in the LINES AT BOTTOM phrase of the LINAGE clause does not
possess the external attribute as required.

0170: E Open mode not permitted for file with CODE-SET clause that
specifies alphabet with duplicate character.

A file with a CODE-SET clause specifies an alphabet-name that has a character used
more than once. A file opened for any mode other than INPUT cannot refer to an
alphabet-name that has a character listed more than once. Refer to the “ASCII
Position” and “U.S. Character” columns in Appendix J: Code-Set Translation Tables
of the RM/COBOL User’s Guide for the exact correlation of ordinal position to
native character. Informational messages 8 and 9 (see pages 436 and 437) are
generated at the end of the program listing to provide the alphabet-name and
duplicated character.

0171: E Repeated clause in file control entry is not permitted.

A file control clause is repeated for the same file.

0172: E File control entry has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the file control entry as given in the source program.

0173: E Missing or wrong file description entry for file: file-name-1

The file description for the indicated file-name is either missing or has an error. No
record area is defined for the file.

0174: E Device-name specified for file-name does not permit this
operation.

The device associated with file-name does not allow the indicated operation. The
device type is determined by the device-name specified in the ASSIGN clause of the
file control entry.

 Compiler Messages
Appendix B: Compiler Messages

RM/COBOL Language Reference Manual 459
 First Edition

0175: E File access name data item must be alphanumeric for file:
file-name -1

The category of the data item declared as the file access name in the ASSIGN clause
or VALUE OF FILE-ID clause for the indicated file-name is not alphanumeric as
required.

0176: E File access name data-name has error in its data description
for file: file-name-1

The data-name declared as the file access name in the ASSIGN clause or VALUE
OF FILE-ID clause for the indicated file-name refers to a data item that has an error
in its description.

0177: E File access name data-name must refer to data item for file:
file-name-1

The data-name declared as the file access name in the ASSIGN clause or VALUE
OF FILE-ID clause for the indicated file-name does not refer to a data item as
required.

0178: E File access name data item must not be table element for file:
file-name-1

The data-name declared as the file access name in the ASSIGN clause or VALUE
OF FILE-ID clause for the indicated file-name refers to a data item that is described
with the OCCURS clause or is subordinate to an item described with the OCCURS
clause. Since this would require subscripting, it is not allowed.

0179: E File access name data-name is not unique for file: file-name-1

The data-name declared as the file access name in the ASSIGN clause or VALUE
OF FILE-ID clause for the indicated file-name refers to two or more data items; the
qualification is ambiguous.

0180: E File access name data-name is not defined for file: file-name-1

The data-name declared as the file access name in the ASSIGN clause or VALUE
OF FILE-ID clause for the indicated file-name is undefined.

0181: E File access name data-name is wrong linkage item for file:
file-name-1

The data-name declared as the file access name in the ASSIGN clause or VALUE
OF FILE-ID clause for the indicated file-name refers to a data item defined in the
Linkage Section but is neither specified in the Procedure Division USING phrase nor
is it subordinate to an item specified in the Procedure Division USING phrase.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

Compiler Messages
Appendix B: Compiler Messages

460 RM/COBOL Language Reference Manual
 First Edition

0182: E FOOTING data item must be unsigned integer for file:
file-name-1

The data-name specified in the FOOTING phrase of the LINAGE clause for the
indicated file does not refer to an elementary unsigned numeric data item.

0183: E FOOTING data-name has error in its data description entry for
file: file-name-1

The data-name specified in the FOOTING phrase of the LINAGE clause for the
indicated file has an error in its data description.

0184: E FOOTING operand must refer to data item for file: file-name-1

The data-name specified in the FOOTING phrase of the LINAGE clause for the
indicated file is not a valid data item described in the Data Division.

0185: E FOOTING data item must not be table element for file:
file-name-1

The data-name specified in the FOOTING phrase of the LINAGE clause for the
indicated file cannot be defined with an OCCURS clause.

0186: E FOOTING data-name is not unique for file: file-name-1

The data-name specified in the FOOTING phrase of the LINAGE clause for the
indicated file is defined more than once and is not adequately qualified.

0187: E FOOTING data-name is not defined for file: file-name-1

The data-name specified in the FOOTING phrase of the LINAGE clause for the
indicated file has not been defined. An elementary unsigned numeric data entry in
the Data Division is required.

0188: E FOOTING data item is wrong linkage item or is not external
item for file: file-name-1

• The data-name specified in the FOOTING phrase of the LINAGE clause for the
indicated file has been defined in the Linkage Section. The data-name is not
listed in the Procedure Division USING phrase, nor is it defined subordinate to
such a data-name. The data-name should be included as a USING parameter or
defined outside the Linkage Section.

Note If the object version is not restricted to less than 8, this message will not
be produced under the condition described above. Instead, the item will be
considered a based linkage item. Message 665 will occur if the base address of
the linkage record is never set within the program (see page 508).

• Or, the indicated file-name names an external file connector but the data-name
specified in the FOOTING phrase of the LINAGE clause does not possess the
external attribute as required.

 Compiler Messages
Appendix B: Compiler Messages

RM/COBOL Language Reference Manual 461
First Edition

0189: E LABEL RECORDS clause must specify STANDARD or
OMITTED option.

The LABEL RECORDS clause specifies an unrecognized label option. The label
must be described as STANDARD or OMITTED.

0190: E VALUE OF data-name has error in its data description for file:
file-name-1

The data-name declared in the VALUE OF clause for the indicated file-name refers
to a data item that has an error in its description.

0191: E VALUE OF operand must refer to data item for file: file-name-1

The data-name declared in the VALUE OF clause for the indicated file-name refers
to a nondata item such as an alphabet-name or condition-name.

0192: E VALUE OF data item must not be table element for file:
file-name-1

The data-name declared in the VALUE OF clause for the indicated file-name refers
to a data item that is described with the OCCURS clause or is subordinate to an item
described with the OCCURS clause.

0193: E VALUE OF data-name is not unique for file: file-name-1

The data-name declared in the VALUE OF clause for the indicated file-name refers
to two or more data items; the qualification is ambiguous.

0194: E VALUE OF data-name is not defined for file: file-name-1

The data-name declared in the VALUE OF clause for the indicated file-name is
undefined.

0195: E VALUE OF data item is wrong linkage item for file: file-name-1

The data-name declared in the VALUE OF clause of the file description entry is
defined in the Linkage Section but is not listed in the Procedure Division USING
phrase, and is not defined subordinate to such a data-name. The data-name should be
included as a USING parameter or defined outside the Linkage Section.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0196: E LINAGE data item must be unsigned integer for file:
file-name-1

The data-name specified in the LINAGE IS clause does not refer to an elementary
unsigned numeric data item.

Compiler Messages
Appendix B: Compiler Messages

462 RM/COBOL Language Reference Manual
 First Edition

0197: E LINAGE data-name has error in its data description entry for
file: file-name-1

The data-name specified in the LINAGE IS clause for the indicated file has an error
in its data description.

0198: E LINAGE operand must refer to data item for file: file-name-1

The data-name specified in the LINAGE IS clause for the indicated file is not a valid
data item described in the Data Division.

0199: E LINAGE data item must not be table element for file:
file-name-1

The data-name specified in the LINAGE IS clause for the indicated file cannot be
defined with an OCCURS clause.

0200: E LINAGE data-name is not unique for file: file-name-1

The data-name specified in the LINAGE IS clause for the indicated file is defined
more than once and is not adequately qualified.

Compiler Messages 201 — 300

0201: E LINAGE data-name is not defined for file: file-name-1

The data-name specified in the LINAGE IS clause has not been defined. An
elementary unsigned numeric data entry in the Data Division is required.

0202: E LINAGE data item is wrong linkage item or is not external item
for file: file-name-1

• The data-name specified in the LINAGE IS clause has been defined in the
Linkage Section. The data-name is not listed in the Procedure Division USING
phrase, and is not defined subordinate to such a data-name. The data-name
should be included as a USING parameter or defined outside the Linkage
Section.

Note If the object version is not restricted to less than 8, this message will not
be produced under the condition described above. Instead, the item will be
considered a based linkage item. Message 665 will occur if the base address of
the linkage record is never set within the program (see page 508).

• Or, the indicated file-name names an external file connector but the data-name
specified in the LINAGE IS clause does not possess the external attribute as
required.

0203: E Repeated FD or SD entry for file-name is not permitted.

The indicated file-name has already been defined in an FD or SD entry and cannot be
defined again.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 463
 First Edition

0204: E Repeated clause in file description entry is not permitted.

The indicated file description clause is repeated for the same file.

0205: E User-defined word previously defined for use that does not
permit its use as file-name.

The indicated user-defined word is already defined for some other purpose and
cannot be defined as a file-name.

0206: E File-name is not permitted here.

The indicated context does not allow a file-name reference. If the indicated context
is the first operand of a REWRITE or WRITE statement, a record-name of a file is
required instead of the file-name.

0207: E File-name has error in its file control or file description entry.

The indicated file-name has an error in its description.

0208: E File-name expected.

The context requires a file-name.

0209: E File-name is not defined by file control entry.

The indicated file-name is not defined. This includes qualification errors such as an
attempt to qualify a file-name.

This error may also indicate that the file-name is defined outside the current program,
but is wrong for one of these reasons: the file-name is not global; the file-name is
global but is not defined in a program which contains the current program; or a file-
name described in the same program is required in this context.

0210: E RECORD KEY data item extends beyond minimum record size
for file: file-name-1

The data-name declared for a record key of the indicated file-name refers to a data
item that extends outside the minimum record size for the file. All record keys must
be totally contained within the minimum record size.

0211: E RECORD KEY data item is not defined in record associated
with file: file-name-1

The data-name declared for a record key of the indicated file-name refers to a data
item that is not defined in a record associated with the file-name. All record keys
must be defined within a record associated with the file.

Compiler Messages
Appendix B: Compiler Messages

464 RM/COBOL Language Reference Manual
 First Edition

0212: E RECORD KEY data item has same offset as another record
key for file: file-name-1

The data-name declared for a record key of the indicated file-name refers to a data
item that has the same leftmost character offset as another record key of that file-
name. No two keys may share the same leftmost character position.

0213: E RECORD KEY data item length exceeds 255 characters for
file: file-name-1

The data-name declared for a record key of the indicated file-name refers to a data
item with a length of more than 255 characters.

0214: E RECORD KEY data item must be alphanumeric or unsigned
numeric DISPLAY item for file: file-name-1

The data-name declared as a record key of the indicated file-name refers to a data
item that does not have an allowed data type. A record key data item must be
category alphanumeric or an unsigned numeric data item with DISPLAY usage.

0215: E RECORD KEY data-name has error in its data description
entry for file: file-name-1

The data-name declared for a record key of the indicated file-name refers to a data
item that has an error in its description.

0216: E RECORD KEY operand must refer to data item for file:
file-name-1

The data-name declared for a record key of the indicated file-name refers to a
nondata item.

0217: E RECORD KEY data item must not be table element for file:
file-name-1

The data-name declared for a record key of the indicated file-name refers to a data
item which is described with the OCCURS clause or is subordinate to an item
described with the OCCURS clause. Record keys may not be table items.

0218: E RECORD KEY data-name is not unique for file: file-name-1

The data-name declared for a record key of the indicated file-name refers to two or
more data items; the qualification is ambiguous.

0219: E RECORD KEY data-name is not defined for file: file-name-1

The data-name declared for a record key of the indicated file-name is undefined.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 465
 First Edition

0220: E RECORD DEPENDING data-name must be defined in
Working-Storage or Linkage Section for file: file-name-1

The data-name used in the DEPENDING ON phrase of the RECORD IS VARYING
clause has been defined in the wrong section of the Data Division. It must be defined
in the Working-Storage Section or the Linkage Section.

0221: E RECORD DEPENDING data item must be able to contain
maximum record size for file: file-name-1

The data-name used in the DEPENDING ON phrase of the RECORD IS VARYING
clause has not been defined to be large enough to hold the number that represents the
maximum number of characters needed for the record. The data item description
should be changed so that it can contain the value of the maximum record size for
the file.

0222: E RECORD DEPENDING data item must be unsigned integer for
file: file-name-1

The data-name specified in the DEPENDING ON phrase of the RECORD IS
VARYING clause must be defined as an elementary unsigned integer.

0223: E Record description sizes conflict with RECORD clause
specification for file: file-name-1

The declaration of the file record size in the RECORD clause does not match the size
described by the record description entry or entries given. This includes
specification of the RECORD IS VARYING format when only fixed-length records
are described.

This error also occurs for a file described with the EXTERNAL clause and without a
RECORD clause when there are multiple record descriptions of differing lengths.
COBOL requires that if the RECORD clause is not specified for an external file, all
the record description entries associated with the file connector must be the same
length. This rule is one of the rules for the RECORD clause (on page 95).

0224: E RECORD DEPENDING data-name has error in its data
description for file: file-name-1

There is an error in the data description of the data-name used in the DEPENDING
ON phrase of the RECORD IS VARYING clause.

0225: E RECORD DEPENDING operand must refer to data item for file:
file-name-1

The data-name specified in the DEPENDING ON phrase of the RECORD IS
VARYING clause is not defined as an elementary numeric data item.

Compiler Messages
Appendix B: Compiler Messages

466 RM/COBOL Language Reference Manual
 First Edition

0226: E RECORD DEPENDING data item must not be table element for
file: file-name-1

The data-name specified in the DEPENDING ON phrase of the RECORD IS
VARYING clause cannot be defined with an OCCURS clause or be subordinate to
an OCCURS clause.

0227: E RECORD DEPENDING data-name is not unique for file:
file-name-1

The data-name specified in the DEPENDING ON phrase of the RECORD IS
VARYING clause is defined more than once and is not adequately qualified.

0228: E RECORD DEPENDING data-name is not defined for file:
file-name-1

The data-name specified in the DEPENDING ON phrase of the RECORD IS
VARYING clause has not been defined.

0229: E RECORD DEPENDING data item is wrong linkage item for file:
file-name-1

The data-name specified in the DEPENDING ON phrase of the RECORD IS
VARYING clause for the indicated file-name is defined in the Linkage Section. The
data-name is not listed in the Procedure Division USING phrase, nor is it defined
subordinate to such a data-name. The data-name should be included as a USING
parameter or defined outside the Linkage Section.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0230: E Record length exceeds 65280 characters







.

me-1: file-na

The maximum file record size allowed is 65280 characters.

0231: E RELATIVE KEY data item must not be defined in record area
for file: file-name-1

The data-name declared for the relative key of the indicated file-name refers to a data
item defined in a record associated with file-name.

0232: E RELATIVE KEY data item must be unsigned integer for file:
file-name-1

The data-name declared for the relative key of the indicated file-name refers to a data
item that is not a numeric integer.

 Compiler Messages
Appendix B: Compiler Messages

RM/COBOL Language Reference Manual 467
First Edition

0233: E RELATIVE KEY data-name has error in its data description
entry for file: file-name-1

The data-name declared for the relative key of the indicated file-name refers to a data
item that has an error in its description.

0234: E RELATIVE KEY operand must refer to data item for file:
file-name-1

The data-name declared for the relative key of the indicated file-name refers to a
nondata item.

0235: E RELATIVE KEY data item must not be table element for file:
file-name-1

The data-name declared for the relative key of the indicated file-name refers to a data
item which is described with the OCCURS clause or is subordinate to an item
described with the OCCURS clause.

0236: E RELATIVE KEY data-name is not unique for file: file-name-1

The data-name declared for the relative key of the indicated file-name refers to two
or more data items; the qualification is ambiguous.

0237: E RELATIVE KEY data-name is not defined for file: file-name-1

The data-name declared for the relative key of the indicated file-name is undefined.

0238: E RELATIVE KEY data item is wrong linkage item or is not
external item for file: file-name-1

The data-name declared for the relative key of the indicated file-name refers to a
linkage data item that is not subordinate to an item in the Procedure Division header
USING phrase.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0239: E FILE STATUS data item must have length of two characters
for file: file-name-1

The data-name declared for the file status data item of the indicated file-name refers
to a data item that is not two characters in length.

0240: E FILE STATUS data item must be alphanumeric for file:
file-name-1

The data-name declared for the file status data item of the indicated file-name refers
to a data item that is not of the category alphanumeric.

Compiler Messages
Appendix B: Compiler Messages

468 RM/COBOL Language Reference Manual
 First Edition

0241: E FILE STATUS data-name has error in its data description for
file: file-name-1

The data-name declared for the file status data item of the indicated file-name refers
to a data item that has an error in its description.

0242: E FILE STATUS operand must refer to data item for file:
file-name-1

The data-name declared for the file status data item of the indicated file-name refers
to a nondata item.

0243: E FILE STATUS data item must not be table element for file:
file-name-1

The data-name declared for the file status data item of the indicated file-name refers
to a data item which is described with the OCCURS clause or is subordinate to an
item described with the OCCURS clause. The file status data item may not be a
table item.

0244: E FILE STATUS data-name is not unique for file: file-name-1

The data-name declared for the file status data item of the indicated file-name refers
to two or more data items; the qualification is ambiguous.

0245: E FILE STATUS data-name is not defined for file: file-name-1

The data-name declared for the file status data item of the indicated file-name refers
to an undefined data item.

0246: E FILE STATUS data item is wrong linkage item for file:
file-name-1

The data-name declared for the file status data item of the indicated file-name refers
to a linkage data item that is not subordinate to an item in the Procedure Division
header USING phrase.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0247: E TOP data item must be unsigned integer for file: file-name-1

The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file does not refer to an elementary unsigned numeric data item.

0248: E TOP data-name has error in its data description entry for file:
file-name-1

The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file has an error in its data description.

 Compiler Messages
Appendix B: Compiler Messages

RM/COBOL Language Reference Manual 469
First Edition

0249: E TOP operand must refer to data item for file: file-name-1

The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file does not refer to a valid data item described in the Data Division.

0250: E TOP data item must not be table element for file: file-name-1

The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file cannot be defined with an OCCURS clause.

0251: E TOP data-name is not unique for file: file-name-1

The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file is defined more than once and is not adequately qualified.

0252: E TOP data-name is not defined for file: file-name-1

The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file has not been defined. An elementary unsigned numeric data entry in
the Data Division is required.

0253: E TOP data item is wrong linkage item or is not external item for
file: file-name-1

• The data-name specified in the LINES AT TOP phrase of the LINAGE clause
for the indicated file has been defined in the Linkage Section. The data-name is
not listed in the Procedure Division USING phrase, nor is it defined subordinate
to such a data-name. The data-name should be included as a USING parameter
or defined outside the Linkage Section.

Note If the object version is not restricted to less than 8, this message will not
be produced under the condition described above. Instead, the item will be
considered a based linkage item. Message 665 will occur if the base address of
the linkage record is never set within the program (see page 508).

• Or, the indicated file-name names an external file connector and the data-name
specified in the LINES AT TOP phrase of the LINAGE clause does not possess
the external attribute as required.

0255: E Data-name in USING or GIVING phrase of Procedure Division
header must not be described with REDEFINES clause.

The description of an operand that is specified in the USING or GIVING phrase in
the Procedure Division header may not include a REDEFINES clause. The name of
the original definition must be specified instead.

0256: E USAGE clause must not specify different usage than USAGE
clause specified in containing group entry.

The USAGE clause indicated contradicts the USAGE clause for the group to which
the subject item belongs.

Compiler Messages
Appendix B: Compiler Messages

470 RM/COBOL Language Reference Manual
 First Edition

0257: E VALUE clause must not be specified in data description entry
when containing group entry has VALUE clause.

The VALUE clause indicated is given for a data item that belongs to a group for
which a VALUE clause was also specified.

0258: E Hexadecimal literal has wrong character.

The indicated character within a hexadecimal literal is not a valid hexadecimal digit.
The allowable characters are: 0 through 9, A through F, and a through f.

0259: E Identification Division has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the Identification Division as given in the source program.

0260: E Identifier has error in its data description entry.

The indicated identifier refers to an item that has an error in its description.

0261: E Identifier is not unique.

The identifier refers to two or more items; the qualification is ambiguous.

0262: E Identifier expected. Literal is not permitted here.

The context requires an identifier instead of a literal.

0263: E Identifier is not defined.

The identifier is undefined. This includes qualification errors such as incorrect
qualifiers.

This error may also indicate that the identifier is defined outside of—but is not
accessible to—the current program because it either does not have the global
attribute or is not defined in a program that contains the current program.

0264: E PERFORM statement must not refer to procedure in different
independent segment.

The procedure-name must not refer to a different independent segment than the
independent segment containing the PERFORM statement.

0265: E Index data item is not permitted as conditional variable.

The associated conditional variable is an index data item.

0266: E Index data item is not permitted here.

The context does not allow an index data item.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 471
 First Edition

0267: E Neither index-name nor index data item is permitted here.

The context does not allow index-names or index data items.

0268: E User-defined word previously defined for use that does not
permit its use as index-name.

The index-name is already defined and cannot be redefined.

0269: E Index-name is not permitted here.

The context does not allow index-names.

0270: E Index-name may access another table only if both tables have
same element size.

An index-name cannot be used with a table other than the one with which it is
associated unless there is an exact match in the number of character positions in both
tables.

0271: E Value of integer that specifies minimum is greater than value
of integer that specifies maximum.

The second integer is less than the first integer in the pair of integers indicated.

0272: E Integer expected. Nonnumeric literal is not permitted here.

The context requires an integer numeric literal, but a nonnumeric literal was found.

0273: E Unsigned integer expected. Signed integer is not permitted
here.

The context requires an unsigned integer, but a signed integer was found.

0274: E Integer value that exceeds 65535 is not permitted here.

The indicated integer has a value too large for the context in which it was used. The
maximum integer value in such contexts is 65535.

0275: E Nonzero integer value expected.

The context requires a nonzero integer.

0276: E I-O-CONTROL paragraph has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the I-O-CONTROL paragraph as given in the source program.

Compiler Messages
Appendix B: Compiler Messages

472 RM/COBOL Language Reference Manual
 First Edition

0277: E Expected file-name that does not refer to sort-merge file.

The context requires a file-name that refers to an I-O file; that is, a file-name of a
sequential, relative, or indexed organization file not defined as a sort-merge file.

0278: E Expected record-name of file that is not sort-merge file.

The context requires a record-name associated with an I-O file; that is, a sequential,
relative or indexed organization file record-name not defined as a sort-merge record.
The record-name may be qualified by the file-name of the file with which it is
associated, but may not be subscripted or reference modified.

0279: E JUSTIFIED clause is not permitted for any data item that is
group, numeric, edited, index, or pointer data.

The JUSTIFIED clause is given in the data description entry in conflict with other
data description clauses specified for the same subject.

0280: E Sort-merge key is not defined in record associated with
sort-merge file.

The indicated data-name is not associated with the sort-merge file specified in this
statement. That is, the data-name is not defined as a record of the file nor is it
defined subordinate to a record of the file. Thus, the data-name does not refer to data
that can be used as a key for the SORT or MERGE operation.

0281: E Sort-merge key must not be table element.

The indicated sort-merge key data-name is described with the OCCURS clause or is
defined subordinate to an item described with the OCCURS clause. That is, the data-
name refers to a table data item and thus cannot be used as a key for the SORT or
MERGE operation.

0282: E Sort-merge key must not be variable size group.

The indicated sort-merge key data-name refers to a group which contains a data item
described with Format 2 of the OCCURS clause. That is, the data-name refers to a
variable length data item and thus cannot be used as a key for the SORT or MERGE
operation.

0283: E Level-number must be 01-49, 66, 77, 78, or 88.

The compiler expected a valid level-number at the indicated place in the source, but
did not find one of the valid level-number values, which are 01 through 49, 66, 77,
78, and 88.

0284: E Level-number 77 data description entry must describe
elementary data item.

A level-number 77 data description entry did not describe an elementary data item.
A PICTURE clause or a USAGE IS INDEX clause is required in level-number 77
data description entries.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 473
 First Edition

0285: E Level-number 88 condition-name expected.

The indicated item is not a level-number 88 conditional variable condition-name.
The format of the SET statement used requires a conditional variable
condition-name.

0286: E ADVANCING mnemonic-name must not be specified when
file-name is described with LINAGE clause.

The ADVANCING mnemonic-name phrase of the WRITE statement cannot be used
for a file that is described with a LINAGE clause.

0287: E ADVANCING TO LINE and AT END-OF-PAGE phrases
permitted only when file-name described with LINAGE clause.

The ADVANCING TO LINE and END-OF-PAGE phrases of the WRITE statement
are allowed only when the file is described with the LINAGE clause.

0288: E Data-name must have level-number 01 or 77 data description
entry in Linkage Section.

A data-name in the USING or GIVING phrase of the Procedure Division header does
not refer to a data item described with level-number 01 or 77.

0289: E Data-name must be described in Linkage Section.

A data-name in the Procedure Division USING header phrase does not reference a
data item defined in the Linkage Section of the program.

0290: E Level-number 01 or 77 expected in Linkage Section.

An entry in the Linkage Section of the Data Division is neither a record description
entry (level-number 01) nor a 77 level description entry (level-number 77).

0291: E Literal expected. Identifier is not permitted here.

The context requires a literal.

0292: E MEMORY SIZE clause requires either WORDS, CHARACTERS,
or MODULES option.

There is a syntax error in the MEMORY clause of the OBJECT-COMPUTER
paragraph. A memory size option was incorrect or omitted. The allowable options
are WORDS, CHARACTERS or MODULES.

0293: E Repeated file-name in MERGE statement is not permitted.

A file-name is repeated within a MERGE statement. File-names must not be
repeated within the MERGE statement.

Compiler Messages
Appendix B: Compiler Messages

474 RM/COBOL Language Reference Manual
 First Edition

0294: E USING phrase of MERGE statement requires two or more
file-names.

Two or more USING files are required for a MERGE statement, but only one
is given.

0295: E User-defined word previously defined for use that does not
permit its use as mnemonic-name.

The user-defined word is already defined and cannot be redefined as a
mnemonic-name.

0296: E Alphanumeric edited or alphabetic data item must not be
moved to numeric or numeric edited data item.

The MOVE statement is wrong because it attempts to move an alphanumeric edited
or alphabetic data item to a numeric edited or numeric data item.

0297: E Noninteger numeric data item must not be moved to
alphabetic, alphanumeric, or alphanumeric edited data item.

The MOVE statement is wrong because it attempts to move a noninteger numeric
data item to a nonnumeric data item.

0298: E Numeric edited data item must not be moved to alphabetic
data item.

The MOVE statement is wrong because it attempts to move a numeric edited data
item to an alphabetic data item.

0299: E Numeric data item must not be moved to alphabetic data item.

The MOVE statement is wrong because it attempts to move a numeric data item to
an alphabetic data item.

0300: E Zero length literal is not permitted. This may be caused by
extraneous plus sign, minus sign, or period.

The indicated literal has zero length. For a numeric literal, this means no digit
positions are defined. For a nonnumeric literal, this means that there are no
characters enclosed in the quotation marks. This error may also result from the
presence of an extraneous plus sign, minus sign or period in the source text.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 475
 First Edition

Compiler Messages 301 — 400

0301: E Numeric literal exceeds 30 decimal digits.

The indicated numeric literal defines more than 30 digit positions.

0302: E Level-number must be greater than level-number in previous
data description with OCCURS DEPENDING ON clause.

The indicated level-number is wrong because it is less than or equal to the level-
number of an item described with the OCCURS . . . DEPENDING clause and is not
the beginning of a new record description entry.

0303: E Data item having OCCURS DEPENDING ON clause must not
be subordinate to data item having OCCURS clause.

The OCCURS . . . DEPENDING clause is specified subordinate to a data item
described with the OCCURS clause.

0304: E OCCURS DEPENDING in redefinition is not permitted.

The OCCURS . . . DEPENDING clause is specified for a data item which is
described with the REDEFINES clause or is subordinate to an item described with
the REDEFINES clause.

0305: E More than 2046 external items are specified in separately
compiled program, including any contained programs.

The implementation limit of 2046 external items in a single separately compiled
program, including any of its contained programs, has been exceeded in the
current program.

0306: E Pseudo-text-1 may not be empty. One or more text words are
required here.

The left pseudo-text operand in a BY phrase must not be empty.

0307: E Open mode INPUT, OUTPUT, I-O, or EXTEND option expected.

A wrong open mode is specified. The allowed open mode options are EXTEND,
INPUT, I-O and OUTPUT.

0308: E Combination of operands in SET statement is wrong.

The combination of operands specified is wrong because of their data types and the
context. See Table 34 on page 391 for valid combinations.

Compiler Messages
Appendix B: Compiler Messages

476 RM/COBOL Language Reference Manual
 First Edition

0309: E Positive integer expected. Negative integer is not permitted
here.

The indicated integer cannot be negative.

0310: E Paragraph-name and section-name must not be same
user-defined word.

A paragraph and a section must not be given the same name.

0311: E Cannot refer to paragraph-name that is not unique within
section.

The specified paragraph is defined more than once within the specified section.

0312: E PERFORM procedure-names must be in same declarative
section: procedure-name-1

A PERFORM statement is wrong because either the entry or exit procedure-name
refers to a procedure in a declaratives section and the other refers to a procedure not
in the same declaratives section.

0313: E PERFORM entry procedure-name must not be in different
independent segment: procedure-name-1

A PERFORM statement in an independent segment is wrong because the entry
procedure-name refers to a procedure in a different independent segment.

0314: E PERFORM entry procedure-name is not unique:
procedure-name-1

A PERFORM statement is wrong because the entry procedure-name is ambiguous.
Qualification is required to yield a unique reference.

0315: E PERFORM entry procedure-name is not defined:
procedure-name-1

A PERFORM statement is wrong because the entry procedure-name is undefined.
This includes qualification errors such as a qualified section-name.

0316: E PERFORM exit procedure-name must be in same independent
segment as entry: procedure-name-1

A PERFORM statement is wrong because its exit procedure-name refers to a
procedure in a different independent segment than the segment containing the
entry procedure.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 477
 First Edition

0317: E PERFORM exit procedure-name is not unique:
procedure-name-1

A PERFORM statement is wrong because the exit procedure-name is ambiguous.
Qualification is required to yield a unique reference.

0318: E PERFORM exit procedure-name is not defined:
procedure-name-1

A PERFORM statement is wrong because the exit procedure-name is undefined.
This includes qualification errors such as a qualified section-name.

0319: E Period space separator expected.

The context requires a period space separator at the indicated point in the
source program.

0320: E BLANK WHEN ZERO clause must not be specified with
PICTURE character-string containing symbols '*' or 'S'.

The BLANK WHEN ZERO clause is used to describe a data item that specifies
asterisk zero suppression or an operational sign in its PICTURE character-string.

0321: E Wrong character in PICTURE character-string.

The indicated character in the PICTURE character-string is not a valid PICTURE
character.

0322: E PICTURE clause must not be specified for index or pointer
data item.

The PICTURE clause has been used to describe an index (USAGE IS INDEX) or
pointer (USAGE IS POINTER) data item. These types of data items do not allow a
PICTURE clause.

0323: E Letter 'R' is missing from 'CR' symbol in PICTURE
character-string.

The PICTURE character-string contains a “C” not followed by “R”.

0324: E PICTURE character-string describes data item with length that
exceeds 65280 characters.

The number of character positions described by the PICTURE character-string for a
single data item cannot exceed 65280 character positions.

Compiler Messages
Appendix B: Compiler Messages

478 RM/COBOL Language Reference Manual
 First Edition

0325: E Letter 'B' is missing from 'DB' symbol in PICTURE
character-string.

The PICTURE character-string contains a “D” not followed by “B”.

0326: E Ending pseudo-text delimiter is missing.

The nearest preceding pseudo-text delimiter was an opening pseudo-text delimiter for
which no closing pseudo-text delimiter has been found.

0327: E Repeated character in first literal of INSPECT CONVERTING
statement is not permitted.

A character must not appear more than once in a CONVERTING literal.

0328: E Fixed insertion currency must be first symbol in PICTURE
character-string.

The PICTURE character-string contains a fixed insertion currency symbol which is
not the leftmost character in the character-string, except for either a ‘+’ or a ‘–’
symbol.

0329: E Fixed insertion sign must be first or last symbol in PICTURE
character-string.

The PICTURE character-string contains a fixed insertion sign character that is not
the leftmost or rightmost character in the character-string.

0330: E PICTURE character-string has wrong combination of symbols
'.', 'P', and 'V'.

The PICTURE character-string contains combinations of scaling characters (P,
decimal-point, V) such that the decimal point position is defined in more than one
place.

0331: E Symbol in PICTURE character-string is wrong for nonnumeric
data item.

The PICTURE character-string was nonnumeric up to the indicated character that is
not permitted in a nonnumeric PICTURE character-string.

0332: E PICTURE character-string for numeric or numeric edited data
item exceeds 30 decimal digits.

The PICTURE character-string defines a numeric or numeric edited data item with
more than 30 digit positions.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 479
 First Edition

0333: E PICTURE character-string symbol combination wrong for
PICTURE precedence rules.

The indicated character in a numeric or numeric edited PICTURE character-string
violates the precedence rules. See Table 9 on page 123.

0334: E PICTURE character-string for numeric or numeric edited data
item must include digit positions.

The PICTURE character-string defines a numeric or numeric edited data item
without any digit positions.

0335: E PICTURE character-string must not have digit positions both
to left and right of symbols 'P'.

The PICTURE character-string defines digit positions both to the left and right of
P characters.

0336: E Symbols 'CR', 'DB', 'S', 'V', and '.' must occur only once in
PICTURE character-string.

The indicated character in the PICTURE character-string is repeated when it must
occur as a single character.

0337: E Symbol is not permitted in PICTURE character-string for
signed numeric item.

The indicated character in the PICTURE character-string is not allowed in a signed
numeric data item (that is, a character-string starting with S).

0338: E PICTURE character-string and USAGE clause are not
compatible.

The PICTURE character-string describes a data item that conflicts with the USAGE
declared for the data item (for example, nonnumeric picture with COMP usage).

0339: E Section-name header required because declaratives specified
in same program.

The nondeclarative portion of the Procedure Division must be sectioned when
declaratives are defined.

0340: E Procedure-name is not unique: procedure-name-1

The indicated procedure reference is ambiguous and requires qualification to yield a
unique procedure reference.

Compiler Messages
Appendix B: Compiler Messages

480 RM/COBOL Language Reference Manual
 First Edition

0341: E Procedure-name required in GO TO statement that is not
alterable.

The indicated Format 1 GO TO statement does not occur in a single statement
paragraph (alterable paragraph) and, therefore, must be followed by a procedure-
name. This error may indicate that the procedure-name specified is a reserved word.

0342: E Procedure-name is not defined: procedure-name-1

The indicated procedure reference is not defined. This includes qualification errors
such as a qualified section-name.

0343: E Alphabet-name specified for PROGRAM COLLATING
SEQUENCE must not have duplicate character.

The alphabet-name specified in the PROGRAM COLLATING SEQUENCE clause
refers to an alphabet defined with a duplicate character. Since a character can only
have one collating position, a character must not be repeated in the definition of an
alphabet-name specified as a collating sequence. Refer to the “ASCII Position” and
“U.S. Character” columns in Appendix J: Code-Set Translation Tables of the
RM/COBOL User’s Guide for the exact correlation of ordinal position to native
character. Informational messages 8 and 9 (see pages 436 and 437) are generated at
the end of the program listing to provide the alphabet-name and duplicated character.

0344: E Data defined in program has combined length that exceeds 4
gigabytes.

The program defined data in excess of four gigabytes. The program has overflowed
the compiler limit of 4GB for read/write data. Besides data areas defined in the Data
Division of the program, this includes compiler generated temporary data areas such
as exit temps for procedures, arithmetic expression evaluation temporaries,
INSPECT temporaries, and CALL BY CONTENT argument temporaries. If the
error occurs before the end of the Data Division, the program defined data exceeds
the limit, which is usually caused by one or more large tables (OCCURS clause). If
the error occurs after the end of the program, the sum of the data defined by the
program plus the temporary data generated by the compiler exceeds the limit.

0345: E Object code generated by procedural statements exceeds
compiler limit of 16MB in a single segment.

The program required object instructions—generated for Procedure Division
statements—that were in excess of 16 megabytes for a single segment.
Approximately 10 bytes are generated per simple source statement. The program
should be divided into two or more separate programs. Alternatively, segmentation
can be used in the Procedure Division so that no single segment exceeds the
16MB limit.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 481
 First Edition

0346: E Program-name in END PROGRAM header must equal
program-name in PROGRAM-ID paragraph.

The program-name specified in the END PROGRAM header does not match the
program-name specified in the PROGRAM-ID paragraph of the Identification
Division.

0347: E Statement does not permit data item described with symbol
'P' in its PICTURE character-string.

Use of a data item described with the scaling position character P in its PICTURE
character-string is not allowed in the context of the indicated statement in the source
program.

0348: E Qualification of section-name is not permitted.

A section-name is qualified in the source program. Section-names must be unique in
the set of procedure-names for a given source program and cannot be qualified.

0349: E File-name described with ACCESS MODE RANDOM clause is
not permitted here.

The context does not allow a file defined with RANDOM access mode. The
indicated file-name must be described with SEQUENTIAL or DYNAMIC access
mode.

0350: E ASSIGN clause for file: must specify RANDOM, DISK, or
DISC.

The context requires a file assigned to a mass-storage device-name, which is
RANDOM, DISK or DISC.

0351: E KEY phrase is permitted only for random or dynamic access
indexed file without NEXT or PREVIOUS phrases.

The KEY phrase is not allowed in the indicated READ statement because either
file-name-1 does not refer to an indexed organization file, file-name-1 refers to a file
that has sequential access mode, or the NEXT or PREVIOUS phrase is specified in
the same READ statement.

0352: E Record description entry must begin with level-number 01.

The level-number of a record entry is not 01.

0353: E File description entry must be followed by one or more record
description entries.

The context requires a record entry description at the indicated point in the
source program.

Compiler Messages
Appendix B: Compiler Messages

482 RM/COBOL Language Reference Manual
 First Edition

0354: E Number of record keys or record key segments exceeds 255.

More than 255 record keys are defined for a file or more than 255 record key
segments are defined for a file. RM/COBOL allows at most 255 record keys or
record key segments.

0355: E RECORD KEY and ALTERNATE RECORD KEY clauses
permitted only in indexed file control entry.

The RECORD KEY clause is given for a file that is not indexed organization.

0356: E Identifier must refer to record key or to data item aligned on
record key associated with file-name.

Context requires a data-name that is a record key of the associated file-name or, for a
START statement, a data-name that refers to a data item whose leftmost character
position is the same as the leftmost character position of a record key of the
associated file-name.

0357: E RECORD KEY clause is required in indexed file control entry.

An indexed organization file must be described with the RECORD KEY clause. A
prime record key is required for indexed files.

0358: E REDEFINES clause not permitted for level-number 01 entries
in this section.

The REDEFINES clause may not be used in level-number 01 entries of the File
Section or Communication Section. When multiple level-number 01 entries are
subordinate to a file description entry (FD) or communication-description-entry (CD)
in these sections, all but the first entry implicitly redefine the first entry.

0359: E REDEFINES cannot specify this data-name.

The data-name specified in a REDEFINES clause is wrong because it is neither
that of the last allocated data item nor the data-name of the last redefinition at the
same level.

0360: E REDEFINES cannot specify data-name described with
OCCURS clause.

The data item to be redefined cannot be described with an OCCURS clause.

0361: E Size of redefinition exceeds size of item referred to by
REDEFINES clause.

The indicated data-name defines an area of storage larger than the area it is
redefining and is not described with level-number 01.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 483
 First Edition

0362: E VALUE clause is not permitted in redefinition.

The VALUE clause is used to describe a data item which is also described with the
REDEFINES clause or which is subordinate to a data item described with the
REDEFINES clause.

0363: E REDEFINES is not permitted for group containing variable
occurrence data item.

A data item that is variable length because the Format 2 of the OCCURS clause
cannot be redefined.

0364: E Nonnumeric to numeric relation requires the numeric object
to be DISPLAY usage.

The indicated relation condition compares a nonnumeric value to a numeric value,
but the numeric object is not DISPLAY usage as required for such a relation
condition.

0365: E Nonnumeric to numeric relation requires the numeric object
to be an integer.

The indicated relation condition compares a nonnumeric value to a numeric value,
but the numeric object is not an integer as required for such a relation condition.

0366: E Relational operator is not permitted in START statement.

The context does not allow the indicated relation.

0367: E Data item, literal, or arithmetic expression expected for object
of relational operator.

The conditional expression is syntactically incorrect because a conditional expression
was found where an arithmetic expression, nonnumeric data item or nonnumeric
literal was required as the object of a preceding relation operator.

0368: E Relational operator expected.

The context requires a relation operator.

0369: E Relational operator specified without subject data item, literal,
or arithmetic expression.

The conditional expression is syntactically incorrect because a relation condition
with no subject was specified and the relation is not a valid abbreviated relation
condition.

Compiler Messages
Appendix B: Compiler Messages

484 RM/COBOL Language Reference Manual
 First Edition

0370: E RELATIVE KEY phrase permitted only in relative file control
entry.

The RELATIVE KEY phrase is specified for a file that does not have relative
organization. The RELATIVE KEY phrase is not allowed in an indexed or
sequential file control entry.

0371: E RELATIVE KEY phrase required for relative file referred to in
START statement or with random or dynamic access.

A relative organization file with random or dynamic access must be described with
the RELATIVE KEY phrase. Also, if a START statement refers to a relative file, the
RELATIVE KEY phrase must be specified for that file.

0372: E RENAMES clause must not refer to data-name described with
level-number 01, 66, or 77.

The object data-name of a RENAMES clause is wrong because it is described with
level-number 01, 66 or 77.

0373: E RENAMES clause must not refer to data-name described with
OCCURS clause.

The object data-name of a RENAMES clause is wrong because it is described with
the OCCURS clause or is subordinate to a data item described with the OCCURS
clause.

0374: E Second data item in THRU phrase of RENAMES clause must
not begin to left of first data item in that phrase.

The beginning of the area described by data-name-3 begins to the left of the area
described by data-name-2 in a RENAMES data-name-2 THRU data-name-3 clause.

0375: E Second data item in THRU phrase of RENAMES clause must
end to right of first data item in that phrase.

The end of the area described by data-name-3 is not to the right of the area described
by data-name-2 in a RENAMES data-name-2 THRU data-name-3 clause.

0376: E RENAMES of group containing variable occurrence data item
is not permitted.

The object data-name of a RENAMES clause is described such that it is variable
length as defined in the OCCURS clause.

0377: E Repeated RERUN clause for file-name is not permitted.

A RERUN statement has been repeated for the same file.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 485
 First Edition

0378: E ON phrase required for this format of RERUN clause.

An ON phrase is needed in the RERUN clause when either an END OF REEL or
END OF UNIT phrase is used and the file-name associated with the END OF REEL
or END OF UNIT is not an output file, or when the condition-name format of the
RERUN clause is used.

0379: E Rerun-name required in ON phrase for this format of RERUN
clause.

The ON phrase with the rerun-name option must be specified if either the RECORDS
or CLOCK-UNITS phrase is used.

0380: E RERUN clause has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the RERUN clause of the I-O-CONTROL paragraph as given in the
source program.

0381: E RESERVE clause integer value exceeds 255.

The integer given in the RESERVE AREAS clause specifies that more than 255
input-output areas be reserved.

0382: E Computer-name must be user-defined word instead of
reserved word.

The indicated computer-name is a reserved word; a user-defined word must be given
for the computer-name.

0383: E Text-name must not be reserved word. Nonnumeric literal
may be used to avoid this conflict.

The indicated text-name is a reserved word; a user-defined word must be given for
the text-name.

0384: E User-defined word expected instead of reserved word.

Context requires a user-defined word at the indicated position in the source program,
but a reserved word was found.

0385: E Right parenthesis missing in PICTURE character-string.

The PICTURE character-string contains a repeat count that is not properly
terminated with a right parenthesis. The right parenthesis is missing, possibly
because it is within the identification area (columns 73 through 80) of the source
record or because text follows the integer specifying the count.

Compiler Messages
Appendix B: Compiler Messages

486 RM/COBOL Language Reference Manual
 First Edition

0386: E File-name may not be specified more than once in SAME
AREA clause.

The indicated file-name is specified more than once in a SAME AREA clause.

0387: E All file-names in SAME AREA clause must also occur in any
associated SAME RECORD AREA clause: file-name-1

The indicated file-name is specified in a SAME AREA clause with another file-name
that is also specified in a SAME RECORD AREA clause. The indicated file-name is
not specified in the SAME RECORD AREA clause as required.

0388: E All file-names in SAME AREA clause must also occur in
any associated SAME SORT/SORT-MERGE AREA clause:
file-name-1

The indicated file-name is specified in a SAME AREA clause with another file-name
that is also specified in a SAME SORT AREA clause. The indicated file-name is not
specified in the SAME SORT AREA clause as required.

0389: E Sort-merge file-name must not be specified in SAME AREA
clause.

The indicated file-name refers to a sort-merge file and is, therefore, not allowed in a
SAME AREA clause.

0390: E File-name must not be specified more than once in SAME
RECORD AREA clause.

The indicated file-name is specified more than once in a SAME RECORD AREA
clause.

0391: E Repeated sort-merge file-name in SAME SORT AREA clause
is not permitted.

The indicated file-name is a sort-merge file that is specified more than once in a
SAME SORT AREA clause or SAME SORT-MERGE AREA clause.

0392: E At least one file-name in SAME SORT AREA clause must be
sort-merge file-name.

The indicated SAME SORT AREA clause or SAME SORT-MERGE AREA clause
does not contain a sort-merge file-name as required.

0393: E Sort-merge file description entry (SD entry) has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the sort-merge file description entry as given in the source program.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 487
 First Edition

0394: E Section header is not permitted in Procedure Division that
begins with paragraph header.

A section definition is not allowed here because the Procedure Division did not begin
with a section. The section definition is accepted.

0395: E Section-name is not unique.

The indicated user-defined word is already defined as a section-name or a
paragraph-name and, therefore, cannot be defined as a new section-name.

0396: E Section-name expected.

Context requires a section-name. A paragraph-name may not be used as a qualifier.

0397: E Repeated SEGMENT-LIMIT clause is not permitted.

The SEGMENT-LIMIT clause has been defined more than once.

0398: E Segment-number specified in SEGMENT-LIMIT clause must
be 01 - 49.

The segment-number in the SEGMENT-LIMIT clause must be within the range of
1 through 49.

0399: E Segment-number exceeds 127.

The indicated segment-number is larger than the limit of 127. The last valid
segment-number is used instead.

0400: E Random or dynamic access is not permitted for sequential
organization file or for EXTEND open mode.

The context requires a sequential access file. A sequential organization file must be
described implicitly or explicitly as having sequential access. The EXTEND open
mode may only be specified for files described implicitly or explicitly as having
sequential access.

Compiler Messages 401 — 500

0401: E File-name of sequential organization file is not permitted here.

The context does not allow a sequential organization file.

0402: E File-name of sequential organization file expected.

The context requires a sequential organization file.

Compiler Messages
Appendix B: Compiler Messages

488 RM/COBOL Language Reference Manual
 First Edition

0403: E SIGN clause not permitted with unsigned PICTURE character-
string or usage other than DISPLAY.

The SIGN clause is given in conflict with other data description entries.

0404: E LEADING or TRAILING option expected in SIGN clause.

The SIGN clause specifies an unrecognized option. The valid options are LEADING
and TRAILING.

0405: E Sort-merge file-name expected.

The context requires a file-name that refers to a sort-merge file.

0406: E Record-name associated with sort-merge file expected.

The context requires a record-name associated with a sort-merge file. The record-
name may be qualified by the file-name of the sort-merge file with which it is
associated, but may not be subscripted or reference modified.

0407: E Sort-merge file must have sequential organization.

The file-name following an SD level-indicator must reference a sequential
organization file.

0408: E Clauses specified in wrong order within SPECIAL-NAMES
paragraph.

The clauses in the SPECIAL-NAMES paragraph are not listed in the order shown in
the paragraph skeleton. The required order is mnemonic-names, ALPHABET,
SYMBOLIC CHARACTERS, CLASS, CURRENCY SIGN and DECIMAL-POINT.
Clauses not needed may be omitted.

0409: E SPECIAL-NAMES paragraph has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the SPECIAL-NAMES paragraph as given in the source program.

0410: E Alphabet-name, class-name, or mnemonic-name is not
permitted here.

The context does not allow a special-name such as a mnemonic-name or alphabet-
name as given.

0411: E Data-name must not refer to data item that is longer than
associated record key.

The data-name given in the START statement relation for an indexed organization
file does not reference a data item that is subordinate to its associated record key.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 489
 First Edition

0412: E Data-name must refer to data item that is alphanumeric or
unsigned numeric with DISPLAY usage.

The data-name given in the START statement relation for an indexed organization
file does not reference a data item with an allowed data type. The data item must be
described as category alphanumeric or as an unsigned numeric data item with
DISPLAY usage.

0413: E Data-name must refer to relative key data item.

The data-name given in the START statement relation for a relative organization file
is not the relative key data-name as required.

0414: E Statement has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the Procedure Division verbs as given in the source program.

0415: E Identifier may not refer to table element.

The context does not allow a subscripted reference. The data item specified here
must not be described with the OCCURS clause or be subordinate to an item
described with the OCCURS clause.

0416: E Data item used as subscript must not be table element.

A data-name specified as a subscript is described with the OCCURS clause or is
subordinate to a data item described with the OCCURS clause.

0417: E Too many subscripts for table element or missing right
parenthesis.

The syntax of the subscripting for the identifier is incorrect. Either too many
subscripts are specified or the right parenthesis is missing, possibly because it is in
the identification area (columns 73–80) of the source record.

0418: E Identifier refers to table element and thus must be
subscripted.

The indicated data-name must be subscripted to provide a unique reference.

0419: E Identifier needs more subscripts to form unique reference.

Too few subscripts were specified for the identifier. The data-name portion of the
identifier refers to a table element which, in order to specify a unique reference,
requires more subscripts than were specified.

Compiler Messages
Appendix B: Compiler Messages

490 RM/COBOL Language Reference Manual
 First Edition

0420: E Literal subscript value exceeds number of table elements.

The indicated literal subscript is greater than the maximum number of table elements
that are defined in the OCCURS clause for the specified table. A relative subscript
literal is limited to one less than the number of elements.

0421: E Switch-status condition-name expected.

The indicated context requires a switch condition-name, but a user word for some
other entity was specified, such as a data-name, file-name or alphabet-name.

0422: E Switch-status condition-name is not defined.

The indicated context requires a switch condition-name, but an undefined user word
was specified.

0423: E Mnemonic-name associated with external switch expected.

The indicated mnemonic-name is not associated with an external switch as required
by the context. SWITCH-1 through SWITCH-8 or the synonyms UPSI-0 through
UPSI-7 may be specified in the SPECIAL-NAMES paragraph to associate a
mnemonic-name with an external switch.

0424: E Repeated ON STATUS or OFF STATUS phrase in switch-name
clause is not permitted.

Two ON STATUS or OFF STATUS condition-names are defined in the same
SPECIAL-NAMES clause for a switch implementor-name. The language syntax
requires an ON/OFF or OFF/ON pair or a single ON or OFF status declaration.

0425: E ON STATUS or OFF STATUS phrase expected.

At least one ON or OFF STATUS condition-name must be associated with a
switch-name.

0426: E User-defined word must begin with letter or digit.

A user-defined word must begin with a letter or digit.

0427: E User-defined word must contain at least one letter.

A data-name must contain at least one letter character.

0428: E Integer in SYMBOLIC CHARACTERS clause exceeds 256 or
character code set size.

The integer specified in the SYMBOLIC CHARACTERS clause of the SPECIAL-
NAMES paragraph represents the ordinal position of the character in the native
character set or of the character set specified by alphabet-name in the IN phrase.
Valid integer values for the native character set are 1 through 256. Valid integer

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 491
 First Edition

values for an alphabet-name are dependent on the number of characters included in
the description.

0429: E Symbolic-character already declared.

The user-defined word in the indicated SYMBOLIC CHARACTERS clause has
been previously defined and cannot be used again.

0430: E User-defined word following ALL must be symbolic-character.

A symbolic-character name is required following the indicated figurative constant
ALL.

0431: E Symbolic-character is not defined by SYMBOLIC
CHARACTERS clause.

The indicated name following the figurative constant ALL is presumed to be a
user-defined symbolic name but is not defined in a SYMBOLIC CHARACTERS
clause.

0432: E SYNCHRONIZED clause is not permitted for group.

The SYNCHRONIZED clause was specified in conflict with other data description
clauses specified in the same entry.

0433: E Identifier must not be subscripted by first index-name
associated with table being searched.

The indicated identifier is subscripted by the first index-name of the table being
searched by this SEARCH statement. In this context (for example, the VARYING
phrase), such subscripting is disallowed.

0434: E OCCURS DEPENDING ON data-name must not be defined
within table for table: table-name-1

The data-name for the DEPENDING ON phrase of the OCCURS clause cannot be in
the variable-length portion of the table. This may occur with implicit redefinition of
the table item.

0435: E OCCURS DEPENDING ON data item must be numeric integer
for table: table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for
the indicated table does not refer to a data item described as a numeric integer.

0436: E OCCURS DEPENDING ON data-name has error in its data
description entry for table: table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for
the indicated table refers to a data item that has an error in its description.

Compiler Messages
Appendix B: Compiler Messages

492 RM/COBOL Language Reference Manual
 First Edition

0437: E OCCURS DEPENDING ON must refer to data item for table:
table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for
the indicated table refers to a nondata item.

0438: E OCCURS DEPENDING ON data item must not be table
element for table: table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for
the indicated table refers to a data item described with the OCCURS clause or which
is subordinate to a data item described with the OCCURS clause.

0439: E OCCURS DEPENDING ON data-name is not unique for table:
table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for
the indicated table refers to two or more data items; the qualification is ambiguous.

0440: E OCCURS DEPENDING ON data-name is not defined for table:
table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for
the indicated table is undefined.

0441: E OCCURS DEPENDING ON data item is wrong linkage item for
table: table-name-1

The data-name for the DEPENDING ON phrase of the OCCURS clause is defined in
the Linkage Section. The data-name is not listed in the Procedure Division USING
phrase nor is it defined subordinate to such a data-name. The data-name should be
included as a USING parameter or defined outside the Linkage Section.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0442: E Table element length exceeds 65280 characters.

The maximum table element size has been exceeded. Up to 65280 characters may
be defined.

0443: E More AND phrases than KEY phrases for table being
searched is not permitted.

Too many AND phrases in the SEARCH ALL statement have been specified for the
number of keys declared for the specified table.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 493
 First Edition

0444: E OCCURS KEY data item must be defined in table for table:
table-name-1

The indicated table key data-name is not associated with the data entry containing the
OCCURS clause or is not subordinate to the entry containing the OCCURS clause.

0445: E Wrong key specification in SEARCH ALL statement.

The data items to be compared in the SEARCH ALL statement are not given in the
same order as they appear in the OCCURS clause of the specified table, or an item
which is not a key of the table has been listed.

0446: E OCCURS KEY data-name has error in its data description
entry for table: table-name-1

The data-name in the KEY IS phrase of the OCCURS clause has an error in its
data description.

0447: E OCCURS KEY operand must refer to data item for table:
table-name-1

The data-name specified in the KEY IS phrase of the OCCURS clause is not a valid
data item described in the Data Division.

0448: E OCCURS KEY data item must be same dimension as table for
table: table-name-1

The data-name specified in the KEY IS phrase of the OCCURS clause is defined
such that it requires a different number of subscripts than the table defined by the
OCCURS clause.

0449: E OCCURS KEY data-name is not unique for table: table-name-1

The data-name specified in the KEY IS phrase of the OCCURS clause is defined
more than once and is not adequately qualified.

0450: E OCCURS KEY data-name is not defined for table:
table-name-1

The data-name specified in the KEY IS phrase of the OCCURS clause has not
been defined.

0451: E Identifier must refer to data item with OCCURS clause in its
data description entry.

The indicated identifier does not refer to a table, that is, a data item described with
the OCCURS clause in its data description entry. For the SEARCH and SEARCH
ALL statements, the data item to be searched must be a table. For the COUNT,
COUNT-MAX, and COUNT-MIN special registers, the operand must be a table.

Compiler Messages
Appendix B: Compiler Messages

494 RM/COBOL Language Reference Manual
 First Edition

0452: E Identifier must refer to data item with INDEXED BY phrase in
its data description entry.

The table specified in the SEARCH or SEARCH ALL statement does not contain an
INDEXED BY phrase in the OCCURS clause as required.

0453: E Identifier must refer to data item with KEY phrase in its data
description entry.

The table specified in the SEARCH ALL statement does not have a KEY IS phrase
as required.

0454: E Library-name must not be reserved word. Nonnumeric literal
may be used to avoid this conflict.

In the COPY statement, a reserved word was used to specify the library-name.

0455: E Library-name contains wrong character.

A wrong character was found in the library-name of the COPY statement.

0456: E Text-name contains wrong character.

The text-name in a COPY statement contains a wrong character.

0457: E Data item or literal must be unsigned integer.

The indicated literal must be specified as an unsigned integer or the indicated
identifier must refer to a data item described as an unsigned integer.

0458: E USAGE clause has wrong format.

An unrecognized usage option is specified. The valid usage options are BINARY,
COMP, COMPUTATIONAL, COMPUTATIONAL-1, COMPUTATIONAL-3,
COMPUTATIONAL-4, COMPUTATIONAL-5, COMPUTATIONAL-6, COMP-1,
COMP-3, COMP-4, COMP-5, COMP-6, DISPLAY, INDEX, PACKED-DECIMAL,
and POINTER.

0459: E USING phrase in Procedure Division header exceeds 255
data-names.

The maximum number of operands in the USING phrase of the Procedure Division
header has been exceeded. No more than 255 data-names may be specified.

0460: E Repeated data-name in USING phrase of Procedure Division
header is not permitted.

A data-name is specified more than once in the USING phrase of the Procedure
Division header.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 495
 First Edition

0461: E VALUE clause is not permitted for index data item.

The VALUE clause is specified in conflict with other data description clauses
specified in the same entry.

0462: E Numeric literal in VALUE clause must have value within range
indicated by PICTURE clause.

The numeric literal specified in the VALUE clause for a numeric data item is
incorrect for initialization of the data item as described by its PICTURE character-
string because truncation of nonzero high-order digits was required.

0463: E Nonnumeric value in VALUE clause must not exceed size
indicated by PICTURE clause.

The nonnumeric literal specified in the VALUE clause for an elementary nonnumeric
data item contains too many characters for initialization of the data item. Characters
were truncated from the low-order (rightmost) end of the literal value.

This error also occurs when the nonnumeric literal specified as the true or false value
in a level-number 88 condition-name data description entry contains more characters
than the associated elementary conditional-variable.

0464: E Fixed size portion of variable size group exceeds 65280
characters.

The fixed-size portion of a group that has a variable-length table subordinate to it
cannot be defined to be larger than 65280 character positions.

0465: E Verb expected.

The context requires a verb at the indicated position in the source program.

0466: E Level-number 01 or 77 expected in Working-Storage Section.

An entry in the Working-Storage Section of the Data Division is neither a
record description entry (level-number 01) nor a 77 level description entry
(level-number 77).

0467: E Identifier or condition-name must be subscripted by first
index-name of table being searched.

The indicated reference to a table key data-name or condition-name is not
subscripted with the first or only index-name of the table specified in the SEARCH
ALL statement. Since only the first index-name of the table will be varied by the
execution of the SEARCH ALL statement, the desired results cannot be obtained
unless the subscripting is changed to include the first index-name of the table.

Compiler Messages
Appendix B: Compiler Messages

496 RM/COBOL Language Reference Manual
 First Edition

0468: E Paragraph has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within
the context of the paragraph as given in the source program.

0469: E Scope terminator does not match preceding unterminated
verb.

The indicated scope terminator does not match a previously unmatched verb. For
example, an ELSE is specified which is not paired with a previously unpaired IF.
This error frequently occurs as a result of previous errors that caused the verb with
which the scope terminator was meant to be paired to be either ignored by the
compiler or already implicitly terminated by another scope terminator.

0470: E Data-name required in level-number 01 data description entry
with GLOBAL or EXTERNAL clause.

The indicated data description entry must include a data-name since it is a record of a
file described with either the GLOBAL or EXTERNAL clauses. FILLER or
omission of the data-name is not allowed in level-number 01 record description
entries for these files.

0471: E Identifier in SEARCH statement must be neither subscripted
nor reference modified.

The indicated subscripting or reference modification is prohibited in the context in
which it occurs. Although the item may be a table element and normally requires
subscripting, the subscripting is prohibited in this context.

0472: E Paragraph generates object code that exceeds 32512 bytes.

The indicated Procedure Division paragraph has caused the generation of more than
32512 bytes of object code. The paragraph must be divided into two or more
paragraphs by insertion of paragraph-names in the source program.

0473: E Sentence generates object code that exceeds 32512 bytes.

The indicated sentence has caused the generation of more than 32512 bytes of object
code. The sentence must be divided into two or more sentences by insertion of the
period space separator or by replacing a portion of the sentence with a PERFORM
statement which refers to a paragraph or section containing the replaced statements.

0474: E DELIMITER IN and COUNT IN phrases require DELIMITED BY
phrase in UNSTRING statement.

The DELIMITER IN and COUNT IN phrases are not allowed when the
DELIMITED BY phrase is not specified in an UNSTRING statement.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 497
 First Edition

0475: E Mnemonic-name must be associated with low-volume-I-O-
name in SPECIAL-NAMES paragraph.

The indicated user-defined word is not a mnemonic-name defined in the
SPECIAL-NAMES paragraph as being associated with a low-volume-I-O-name
(for example, CONSOLE). The context requires a mnemonic-name associated with
a low-volume-I-O-name: the mnemonic-name in the indicated context may not be
associated with a switch-name or with a feature-name.

0476: E Identifier in INTO phrase of STRING statement must not refer
to edited data item.

The indicated identifier refers to an edited data item in a context which does not
allow edited data items.

0477: E Two or more file-names in MERGE statement must not be
specified in one MULTIPLE FILE TAPE clause.

Two or more files specified in a MERGE statement are listed in the same
MULTIPLE FILE TAPE clause in the I-O-CONTROL paragraph.

0478: E Two or more file-names in MERGE statement must not be
specified in one SAME AREA or SAME RECORD AREA
clause.

Two or more files specified in a MERGE statement are listed in the same SAME
AREA or SAME RECORD AREA clause in the I-O-CONTROL paragraph.

0479: E Sort-merge key data item extends beyond minimum record
size for sort-merge file.

A data-name specified in a KEY phrase of a SORT or MERGE statement refers to
a data item that is not totally contained within the minimum record length of the
sort-merge file.

0480: E Minimum record length conflicts with variable length sort-
merge file or GIVING file.

The minimum record length of a USING file is less than the minimum record length
of a sort-merge file with variable-length records or the minimum record length of the
sort-merge file is less than the minimum record length of a GIVING file with
variable-length records.

0481: E PADDING CHARACTER clause only permitted in sequential
file control entry.

The PADDING CHARACTER clause may be specified only for sequential files.

Compiler Messages
Appendix B: Compiler Messages

498 RM/COBOL Language Reference Manual
 First Edition

0482: E RECORD DELIMITER clause only permitted in sequential file
control entry.

The RECORD DELIMITER clause may be specified only for sequential files.

0483: E Conditional operator expected.

The context suggests that a class-name is intended at the indicated position, but the
specified identifier is not a class-name.

0484: E CLASS clause has error in definition of class-name.

There is an error in the declaration of the specified class-name.

0485: E Cd-name of I-O CD entry expected.

An I-O cd-name must be specified in the context of the statement as given in the
source program. An I-O cd-name is required with the DISABLE I-O and ENABLE
I-O statements.

0486: E PADDING CHARACTER data item must be alphanumeric for
file: file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated
file-name must refer to a data item of category alphanumeric.

0487: E PADDING CHARACTER data-name has error in its data
description entry for file: file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated
file-name refers to a data item that has an error in its description.

0488: E PADDING CHARACTER operand must refer to data item for
file: file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated
file-name refers to a nondata item.

0489: E PADDING CHARACTER data item must not be table element
for file: file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated
file-name refers to a data item that is described with the OCCURS clause or is
subordinate to an item described with the OCCURS clause. The padding character
data item may not be a table item.

 Compiler Messages
Appendix B: Compiler Messages

RM/COBOL Language Reference Manual 499
First Edition

0490: E PADDING CHARACTER data-name is not unique for file:
file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated
file-name refers to two or more data items; the qualification is ambiguous.

0491: E PADDING CHARACTER data-name is not defined for file:
file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated
file-name is undefined.

0492: E PADDING CHARACTER data item is wrong linkage item or is
not external item for file: file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated
file-name refers to a linkage data item that is not subordinate to an item in the
Procedure Division header USING phrase.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0493: E Selection object is incompatible with corresponding selection
subject.

When a selection object is specified by a condition or by the words TRUE or
FALSE, the corresponding selection subject must also be a condition or either of the
words TRUE or FALSE; it may not be an identifier, a literal or an arithmetic
expression. When a selection object is an identifier, literal or arithmetic expression,
the corresponding selection subject must also be an identifier, a literal or an
arithmetic expression.

0494: E Operands of THROUGH phrase must have same class for
selection subject or object.

The two operands connected by a THROUGH phrase must be of the same class:
numeric, alphanumeric or alphabetic.

0495: E REPLACING phrase of INITIALIZE statement must not repeat
any given category.

The REPLACING phrase of the INITIALIZE statement specifies the same category
in different BY phrases. Any given category must not be specified more than once in
the REPLACING phrase.

0496: E Integer expected. Identifier is not permitted here.

The context requires an integer numeric literal, but an identifier was found.

Compiler Messages
Appendix B: Compiler Messages

500 RM/COBOL Language Reference Manual
 First Edition

0498: E Negative numeric literal is not permitted.

The context does not allow the use of a negative numeric literal.

0499: E Reference modification is not permitted here.

The context does not allow the use of a reference modification specification.

0500: E Leftmost-character-position or length in reference modifier
exceeds length of data item.

The value of the indicated numeric literal is too large for its use in a reference
modification specification. The offset and length values may not exceed the length
of the data item being reference modified. If both the offset and length are specified
as literals, their sum less 1 may not exceed the length of the data item being reference
modified.

Compiler Messages 501 — 600

0501: E Source language feature not supported by specified object
version in Z option.

The indicated language feature is incompatible with the requested runtime object
version. The requested object version is determined by the Z Compile Command
Option. The language feature must be removed from the source program or the value
specified in the Z Option must be increased to a level that includes the feature. In the
latter case, the resulting object will only run on systems with a runtime that supports
at least the specified object version. The RM/COBOL User’s Guide explains the
language features supported by the various object versions.

0502: E Colon required after leftmost-character-position in reference
modifier.

A colon separator is required following the left operand of a reference modification
specification.

0504: E Unique data-name required when EXTERNAL or GLOBAL
clause is present in data description entry.

The indicated clause may not be specified in the current data description entry since
either the description does not specify a data-name (that is, is implicitly or explicitly
FILLER) or the data-name is the same as another data-name described with the same
clause.

0505: E Clause and level-number conflict.

The indicated clause clashes with the level-number of the data description entry in
which it is specified. An EXTERNAL or GLOBAL clause may not be specified
in a data description entry if the level-number is other than 01. An EXTERNAL
clause may be specified in the FILE SECTION only in a file description (FD) entry.
An OCCURS clause may be specified in a data description entry only when the

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 501
 First Edition

level-number is 02 through 49, except that RM/COBOL allows the OCCURS clause
with level-number 01 in the Working-Storage Section.

0506: E Clause is not permitted when file-name specified in
MULTIPLE FILE TAPE clause.

The indicated clause may not be specified in a file description entry for a file that is
listed in any MULTIPLE FILE TAPE clause in the I-O-CONTROL paragraph.

0507: E Clause is not permitted when file-name specified in SAME
AREA or SAME RECORD AREA clause.

The indicated clause may not be specified for the current file description entry or
record description entry for a file since the file is listed in a SAME clause in the
I-O-CONTROL paragraph. For the EXTERNAL clause, the file may not be listed in
any SAME AREA, SAME RECORD AREA or SAME SORT AREA clause. For the
GLOBAL clause, the file may not be listed in any SAME RECORD AREA clause.

0508: E EXTERNAL and GLOBAL clauses are only permitted in File
and Working-Storage Sections.

The indicated clause may not be specified in the current section of the Data Division.

0509: E EXTERNAL and REDEFINES clauses not permitted in same
data description entry.

The EXTERNAL clause is specified with the REDEFINES clause. These clauses are
mutually exclusive within a single data description entry.

0511: E COMMON clause permitted only if program is contained
within another program.

The indicated syntax is allowed only within a nested program, and the current
program is not contained within another program.

0512: E LINE or COLUMN option required in AT phrase of ACCEPT or
DISPLAY screen-name statement.

The AT keyword in a Format 5 ACCEPT statement or a Format 3 DISPLAY
statement is not followed by LINE, COLUMN or COL.

0513: E Clause permitted only at elementary level in Screen Section.

The relation between the current level number and the preceding level number
implies that the preceding item is a group, but the preceding item description
includes attributes allowed only at the elementary level.

Compiler Messages
Appendix B: Compiler Messages

502 RM/COBOL Language Reference Manual
 First Edition

0514: E Color integer value must be in range 0 (black) through 7
(white).

The integer specified in a BACKGROUND-COLOR or FOREGROUND-COLOR
clause is not in the range 0 to 7 as required.

0515: E Integer expected. Literal with digits to right of decimal point
is not permitted here.

The context requires an integer numeric literal, but a numeric literal with digits to the
right of the decimal point was found.

0519: E COLUMN NUMBER data item is wrong linkage item for
screen-name: screen-name-1

The data-name specified in the COLUMN clause of the indicated Screen Section
data item is defined in the Linkage Section. The data-name is not listed in the
Procedure Division USING phrase, nor is it defined subordinate to such a data-name.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0520: E Repeated screen description clause is not permitted.

A Screen Section attribute has been specified more than once.

0526: E LINE NUMBER data item is wrong linkage item for screen-
name: screen-name-1

The data-name specified in the LINE clause of the indicated Screen Section data item
is defined in the Linkage Section. The data-name is not listed in the Procedure
Division USING phrase, nor is it defined subordinate to such a data-name.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0527: E Screen-name expected.

If the first primary operand of a DISPLAY statement is a screen-name, all
subsequent primary operands of that DISPLAY statement must also be screen-
names.

0528: E Screen-name is not permitted here.

The screen-name is specified in the source program where a screen-name is not
allowed. Screen-names may be specified only as certain operands of ACCEPT and
DISPLAY statements.

 Compiler Messages
Appendix B: Compiler Messages

RM/COBOL Language Reference Manual 503
First Edition

0529: E Split-key-name is not permitted here.

The split-key-name is specified in the source program where a split-key-name is not
allowed. Split-key-names may be specified only as certain operands of READ and
START statements.

0533: E Subscript data item is wrong linkage item for screen-name:
screen-name-1

The data-name specified as a subscript in the description of the indicated Screen
Section data item is defined in the Linkage Section. The data-name is not listed in
the Procedure Division USING phrase, nor is it defined subordinate to such a
data-name.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0534: E FROM, TO, or USING phrase expected following PICTURE
character-string in screen description entry.

In the Screen Section, the PICTURE character-string in a PICTURE clause must be
followed by a TO, FROM or USING phrase.

0535: E PICTURE and VALUE clause not permitted in same screen
description entry.

In the Screen Section, an item description cannot contain both a PICTURE and a
VALUE clause.

0541: E USING/FROM data item is wrong linkage item for screen-
name: screen-name-1

The data-name specified as a source item (FROM or USING) in the description of
the indicated Screen Section data item is defined in the Linkage Section. The data-
name is not listed in the Procedure Division USING phrase, nor is it defined
subordinate to such a data-name.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0544: E SIZE phrase in START statement not permitted for relative
file.

The SIZE phrase is specified in a START statement for a relative file. The SIZE
phrase is meaningful only for indexed files.

Compiler Messages
Appendix B: Compiler Messages

504 RM/COBOL Language Reference Manual
 First Edition

0545: E SIZE phrase in START statement specifies integer value that
exceeds key size.

The SIZE phrase specifies an integer value that is greater than the length of the key
data item specified in the same START statement. The integer value must not
exceed the key size since the SIZE phrase is meaningful only for limiting the
comparison to a size less than or equal to the length of the key data item.

0546: W VALUE OF FILE-ID clause specifies different file access name
than ASSIGN clause.

The file description entry VALUE OF FILE-ID clause specifies a different file
access name literal or data-name than specified in the file control entry ASSIGN
clause. The file access name should be specified in only one of these two
alternatives, but if specified in both they must agree. The ASSIGN clause
specification takes precedence when this warning occurs.

0547: E TO data item is wrong linkage item for screen-name:
screen-name-1

The data-name specified as a target item (TO or USING) in the description of the
indicated Screen Section data item is defined in the Linkage Section. The data-name
is not listed in the Procedure Division USING phrase, nor is it defined subordinate to
such a data-name.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0548: E Level-number 01 or 77 expected in Screen Section.

An entry in the Screen Section of the Data Division is neither a record description
entry (level-number 01) nor a 77 level description entry (level-number 77).

0549: W Screen-name in ACCEPT statement has no input screen
items.

A screen-name specified as an operand in an ACCEPT statement has no subordinate
elementary fields that specify a TO or USING attribute.

0567: E Operand size must be one character.

The indicated operand must be a single character literal or refer to a single character
data item.

0568: E Operand sizes must match.

The indicated operand and the preceding operand have different lengths but are
required to be the same size.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 505
 First Edition

Compiler Messages 601 — 700

0630: E COPY statement is not permitted within COPY statement.

The indicated COPY statement is embedded within another COPY statement. Such
nesting of COPY statements is not permitted. This error may be the result of
omitting the required period that should have been present to end the preceding
COPY statement.

0631: E End of source file encountered while scanning REPLACING
phrase of COPY statement.

The COPY statement is incomplete because the end of the current source file was
encountered before the required period that ends the COPY statement was found.
The COPY statement must be complete within one source file.

0633: W Screen description clause is not permitted with VALUE
clause.

The screen description entry contains the VALUE clause and another clause that is
mutually exclusive with the VALUE clause. The AUTO, BLANK WHEN ZERO,
FULL, JUSTIFIED, PICTURE, REQUIRED, and SECURE clauses must not be
specified in a screen description entry that also specifies the VALUE clause.

Note The VALUE clause may be implicitly specified by a nonnumeric literal.

0636: W Duplicate split keys are not permitted. Split-key-name is:
split-key-name-1

The indicated split-key-name duplicates another key. That is, it has the same number
of segments as another key and each segment has the same offset and length as the
corresponding segments of the other split-key. Such duplicates are not allowed
because they cannot be uniquely ordered and result in redundant indexes for the file.

0637: W No data items for this identifier are eligible for initialization.

The indicated identifier in an INITIALIZE statement has no data items that qualify
for initialization according to the rules of the INITIALIZE statement.

0638: E Data-name required in RENAMES clause.

The user-defined word in the RENAMES clause must be a data-name, but another
type of user-defined word was found.

0639: E Repeated file-name in MULTIPLE FILE TAPE clause is not
permitted.

A given file-name may only be specified once in a MULTIPLE FILE TAPE clause
but the indicated file-name has already been specified in a MULTIPLE FILE
TAPE clause.

Compiler Messages
Appendix B: Compiler Messages

506 RM/COBOL Language Reference Manual
 First Edition

0640: W ALPHABETIC in INITIALIZE statement but there are no
alphabetic data items in receiving items.

The INITIALIZE statement specifies the REPLACING ALPHABETIC DATA
phrase but none of the receiving items are alphabetic data items or groups that
contain alphabetic data items. Therefore, no initialization results from the
specification of this phrase. When the REPLACING phrase is specified without the
VALUE or DEFAULT phrases, only data items that belong to the category or
categories specified in the REPLACING phrase are initialized.

0641: W ALPHANUMERIC in INITIALIZE statement but there are no
alphanumeric data items in receiving items.

The INITIALIZE statement specifies the REPLACING ALPHANUMERIC DATA
phrase but none of the receiving items are alphanumeric data items or groups that
contain alphanumeric data items. Therefore, no initialization results from the
specification of this phrase. When the REPLACING phrase is specified without the
VALUE or DEFAULT phrases, only data items that belong to the category or
categories specified in the REPLACING phrase are initialized.

0642: W NUMERIC in INITIALIZE statement but there are no numeric
data items in receiving items.

The INITIALIZE statement specifies the REPLACING NUMERIC DATA phrase
but none of the receiving items are numeric data items or groups that contain numeric
data items. Therefore, no initialization results from the specification of this phrase.
When the REPLACING phrase is specified without the VALUE or DEFAULT
phrases, only data items that belong to the category or categories specified in the
REPLACING phrase are initialized.

0643: W ALPHANUMERIC-EDITED in INITIALIZE statement but there
are no alphanumeric edited data items in receiving items.

The INITIALIZE statement specifies the REPLACING ALPHANUMERIC-
EDITED DATA phrase but none of the receiving items are alphanumeric edited data
items or groups that contain alphanumeric edited data items. Therefore, no
initialization results from the specification of this phrase. When the REPLACING
phrase is specified without the VALUE or DEFAULT phrases, only data items that
belong to the category or categories specified in the REPLACING phrase are
initialized.

0644: W NUMERIC-EDITED in INITIALIZE statement but there are no
numeric edited data items in receiving items.

The INITIALIZE statement specifies the REPLACING NUMERIC-EDITED DATA
phrase but none of the receiving items are numeric edited data items or groups that
contain numeric edited data items. Therefore, no initialization results from the
specification of this phrase. When the REPLACING phrase is specified without the
VALUE or DEFAULT phrases, only data items that belong to the category or
categories specified in the REPLACING phrase are initialized.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 507
 First Edition

0645: W Program-name length exceeds 30 characters.

A program-name must not exceed 30 characters in length. Only the first 30
characters of the specified program-name are retained to identify the object program.

0651: W Negative literal moved to unsigned receiving data item;
absolute value of literal used.

The indicated receiving data item in a MOVE statement is unsigned numeric,
alphanumeric, or alphanumeric edited, but the sending item is a negative literal. The
absolute value of the literal will be moved to the indicated receiving item. It is likely
that a signed numeric receiving data item should be specified in the source program
in place of the indicated receiving data item.

0652: W Negative literal in relation with unsigned data item; condition
does not depend on data item value.

In the indicated relation condition, one operand is a negative numeric literal and the
other operand is an unsigned numeric data item. Since a negative numeric literal is
always less than an unsigned numeric value, the relation result is independent of the
value of the data item. This probably indicates a coding error. Either the numeric
data item should be described as signed or the literal should not be negative.

0653: W Sending nonnumeric literal value is not compatible with
receiving numeric or numeric edited data item.

The indicated receiving item is a numeric or numeric edited data item. The sending
item is a nonnumeric literal that contains characters other than decimal digits.
COBOL defines such a move only when the sending item is a string of decimal digits
representing a positive integer value. The literal must not contain a sign
representation, decimal point, currency symbol, space, or comma. Note that the
figurative constants, LOW-VALUES and HIGH-VALUES, are normally not valid
sending items for a numeric or numeric edited receiving item. Only when the
program collating sequence is defined such that LOW-VALUES or HIGH-VALUES
represent a decimal digit is such a move defined in COBOL.

0657: E Data item has zero size or group is not yet completed. Value
of 0 assumed.

For the indicated constant-expression LENGTH OF data-name-1 operator, the
referenced data-name-1 has zero length at the time the operator is evaluated. The
common cause of this error is specifying a data-name-1 for a group that has not been
allocated yet because a level-number that is less than or equal to the level-number
of data-name-1 has not yet been scanned. The level-number 78 data description
entry containing this reference must be moved after a data description entry with a
level-number less than or equal to the level-number used in the description of
data-name-1.

Compiler Messages
Appendix B: Compiler Messages

508 RM/COBOL Language Reference Manual
 First Edition

0662: E Symbol table size exceeds capacity of object version 7; object
version has been forced to 8.

The Z Compile Command Option or the OBJECT-VERSION keyword of the
COMPILER-OPTIONS configuration record has been used to force the object
version to less than 8, the Y Compile Command Option or the SYMBOL-TABLE-
OUTPUT keyword of the COMPILER-OPTIONS configuration record has been
specified to indicate that the symbol table should be written to the object file for
debugging purposes, and the program used more than 64K of name space. Object
versions less than 8 did not support a debugging symbol table that required more
than 64K of name space. The compiler forces the object version to 8 so that the
symbol table can be properly output to the object file.

0663: E Pointer data item is not permitted here.

A pointer data item, literal, or special register has been used where it is not permitted.
Pointer items may only be used in the VALUE clause of a data description entry that
specifies USAGE IS POINTER, in a relation condition with another pointer item, in
the USING and GIVING phrases of the Procedure Division header or of the CALL
statement, or in Formats 5 and 6 of the SET statement.

0664: E Pointer data item expected here.

The indicated context requires a pointer item, but the item found by the compiler is
not a pointer data item, an ADDRESS special register, nor the figurative constant
NULL (NULLS).

0665: E The base address was never set for the referenced based
linkage record: data-name-1

The indicated data-name-1 is defined in the Linkage Section and is not a formal
argument of the program, that is, it is not listed in the USING or GIVING phrases of
the Procedure Division header, nor is it a redefinition or renaming of such an item.
data-name-1 or a data item subordinate to it has been referenced in the program, but
the base address of the record has never been set with a Format 5 SET statement. If
the statement that made the reference were executed during the run unit, the run unit
would be terminated with data reference error 108 since the record will have a null
base address.

0666: E Special register not permitted here. An identifier is required.

A special register has been referenced where an identifier is required, and the special
register is not one that can be a receiving operand.

0669: E Reserved word “reserved-word” expected.

The context requires a specific reserved word or one of a specific set of words.
The required word or one of the set of words is given in quotation marks in the
message text.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 509
 First Edition

0670: E Statement is permitted only within a paragraph.

The indicated statement requires a paragraph, but no paragraph-name was specified
at the beginning of the Procedure Division.

0671: E Statement is permitted only within an in-line PERFORM
statement.

The indicated statement requires an in-line PERFORM statement, but is specified
outside of any in-line PERFORM statement.

0672: E Statement is permitted only within a section.

The indicated statement requires a section, but is not specified within a section.

0673: E LIKE conditional variable must be a nonnumeric data item.

The conditional variable data item for which a level-number 88 condition-name is
associated that uses the LIKE relational operator is described as a numeric data item.
The conditional variable in this case must be described as a nonnumeric data item.

0674: E LIKE condition subject must be a nonnumeric data item or
literal.

The subject of a LIKE relation condition must be a nonnumeric data item or
nonnumeric literal. The subject of a LIKE condition must not be a numeric data item
or numeric literal.

0675: E LIKE condition subject must not be a pointer data item.

The subject of a LIKE relation condition must not be a pointer data item.

0676: E LIKE condition pattern must be nonnumeric data item,
nonnumeric literal, or pointer data item.

The pattern of a LIKE relation condition must be a nonnumeric data item,
nonnumeric literal or a pointer data item. The pattern of a LIKE relation condition
must not be a numeric data item or a numeric literal.

0677: E Numeric to nonnumeric relation requires the numeric subject
to be DISPLAY usage.

The indicated relation condition compares a numeric value to a nonnumeric value,
but the numeric subject is not DISPLAY usage as required for such a relation
condition.

Compiler Messages
Appendix B: Compiler Messages

510 RM/COBOL Language Reference Manual
 First Edition

0678: E Numeric to nonnumeric relation requires the numeric subject
to be an integer.

The indicated relation condition compares a numeric value to a nonnumeric value,
but the numeric subject is not an integer as required for such a relation condition.

0679: E Relation object must not be a pointer when relation subject is
not a pointer.

The indicated relation condition compares a non-pointer value to a pointer value, but
only a pointer value may be compared to another pointer value.

0680: E Relation subject must not be a pointer when relation object is
not a pointer.

The indicated relation condition compares a pointer value to a non-pointer value, but
a pointer value may only be compared to another pointer value.

0681: E Table element requires subscripting before reference
modification.

Reference modification has been specified for a table element without the required
subscripting specification. The subscripting for a table element data item must be
supplied first (leftmost) and then reference modification, if desired, may be specified
in a COBOL identifier.

0682: E Pattern class character range cannot include multi-character
escape.

A class character range of the form s-e in a pattern cannot specify a multi-character
escape for either s or e. A multi-character escape specifies a set of matching
characters and thus is not allowed as the starting or ending point of a class character
range of the form s-e.

0683: E Pattern class character range cannot be hyphen '-' except at
beginning or end of positive character group.

Within a character class expression of a pattern, a hyphen cannot be used to represent
itself except at the beginning or end of a positive character range. This is necessary
to allow the hyphen to be interpreted as specifying a character range of the form s-e
or character class subtraction.

0684: E Pattern class character range cannot be opening bracket '['.

Within a character class expression of a pattern, the opening bracket character ‘[’
may not be used as a character range character. To include an opening bracket, it
must be escaped as ‘\[’.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 511
 First Edition

0685: E Pattern class character range cannot specify decreasing
range.

Within a character class expression of a pattern, a character range of the form s-e
must specify an increasing range. That is, the character range character e must not
be less than the character range character s.

0686: E Pattern character class subtraction cannot be followed by
additional class specification.

Within a character class expression of a pattern, a character class subtraction must be
specified last (rightmost) in the expression. The closing bracket of the character
class expression containing the subtraction expression must immediately follow the
subtraction expression.

0687: E Pattern escape sequence (initiated by '\') is not valid.

Within a pattern regular expression, an escape sequence initiated by a backslash (‘\’)
is not a valid single-character escape, multi-character escape, or category escape.
The indicated escape sequence is reserved for possible future definition and,
therefore, is not currently defined nor allowed.

0688: E Pattern compilation requires more memory than is available.

The pattern regular expression is either too large or too complex to compile in the
amount of memory available. The pattern must be made smaller or simpler. It is
possible that making more memory available to the pattern compilation process by
embedding the pattern in a smaller or simpler COBOL program will allow the
original pattern to compile.

0689: E Pattern quantifier opened with '{' is missing the closing
brace '}'.

The pattern regular expression contains a quantifier opened with a brace (‘{’), but the
required closing brace (‘}’) is not present.

0690: E Pattern character class expression is missing the closing
bracket ']'.

The pattern regular expression contains a character class expression opened with a
bracket (‘[’), but the required closing bracket (‘]’) is not present.

0691: E Pattern parenthesized subexpression is missing the closing
parenthesis ')'.

The pattern regular expression contains a parenthesized subexpression opened with a
parenthesis (‘(’), but the required closing parenthesis (‘)’) is not present.

Compiler Messages
Appendix B: Compiler Messages

512 RM/COBOL Language Reference Manual
 First Edition

0692: E Pattern category escape '\p{' or '\P{' is missing the closing
brace '}'.

The pattern regular expression contains a category escape, but the required closing
brace (‘}’) is not present.

0693: E Pattern category escape '\p{' or '\P{' is missing the opening
brace '{'.

The pattern regular expression contains a category escape, but the required opening
brace (‘{’) is not present.

0694: E Pattern category escape '\p{' or '\P{' contains an unknown
category specification.

The pattern regular expression contains a category escape, but the category
specification provided between the braces is not recognized. Valid category escape
specifications consist of one uppercase letter followed, optionally, by one lowercase
letter. Only certain combinations are defined and allowed, as specified in the
documentation for a pattern regular expression. Additionally, category escapes may
specify a block escape of the form IsBlockName, where BlockName is the
Unicode block name (with all white space stripped out) of a block of characters.

0695: E Pattern quantifier maximum count is less than the minimum
count.

Within a pattern regular expression, a quantifier of the form “{n,m}” is specified
where m, the maximum count, is less than n, the minimum count. The maximum
count must not be less than the minimum count.

0696: E Pattern quantifier maximum count is missing; at least one
decimal digit was expected.

Within a pattern regular expression, a quantifier of the form “{n,m}” is specified
where m, the maximum count, has no decimal digits. Possibly, a quantifier of the
form “{n,}” was intended and the closing brace was incorrectly entered.

0697: E Pattern quantifier maximum count is too large (> 65535).

Within a pattern regular expression, a quantifier of the form “{n,m}” is specified
where m, the maximum count, is greater than 65535. The maximum count must be
less than or equal to 65535.

0698: E Pattern quantifier minimum count is missing; at least one
decimal digit was expected.

Within a pattern regular expression, a quantifier of the form “{n}”, “{n,}” or
“{n,m}” is specified where n, the minimum or exact count, has no decimal digits.
Possibly, a quantifier of the form “{n}” or “{n,}” was intended and the closing brace
or comma was incorrectly entered.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 513
 First Edition

0699: E Pattern quantifier minimum count is too large (> 65535).

Within a pattern regular expression, a quantifier of the form “{n}”, “{n,}” or
“{n,m}” is specified where n, the minimum or exact count, is greater than 65535.
The minimum count must be less than or equal to 65535.

0700: E Pattern contains an unexpected closing brace '}'.

Within a pattern regular expression, an unexpected closing brace was encountered. If
a closing brace is intended as a match character, it must be specified as the single-
character escape ‘\}’. Otherwise, a corresponding opening brace for a quantifier is
required prior to a closing brace.

Compiler Messages 701 — 800

0701: E Pattern contains an unexpected closing bracket ']'.

Within a pattern regular expression, an unexpected closing bracket was encountered.
If a closing bracket is intended as a match character, it must be specified as the
single-character escape ‘\]’. Otherwise, a corresponding opening bracket for a
character class expression is required prior to a closing bracket.

0702: E Pattern contains an unexpected closing parenthesis ')'.

Within a pattern regular expression, an unexpected closing parenthesis was
encountered. If a closing parenthesis is intended as a match character, it must be
specified as the single-character escape ‘\)’. Otherwise, a corresponding opening
parenthesis for a parenthesized subexpression is required prior to a closing
parenthesis.

0703: E Pattern contains an unexpected quantifier '*' that is not
preceded by a valid atom.

Within a pattern regular expression, an unexpected asterisk was encountered. If an
asterisk is intended as a match character, it must be specified as the single-character
escape ‘*’. Otherwise, a valid atom of the regular expression must precede the
asterisk. If the atom already specifies another quantifier, the atom must be
parenthesized before another quantifier may be applied.

0704: E Pattern contains an unexpected quantifier '+' that is not
preceded by a valid atom.

Within a pattern regular expression, an unexpected plus sign was encountered. If a
plus sign is intended as a match character, it must be specified as the single-character
escape ‘\+’. Otherwise, a valid atom of the regular expression must precede the plus
sign. If the atom already specifies another quantifier, the atom must be parenthesized
before another quantifier may be applied.

Compiler Messages
Appendix B: Compiler Messages

514 RM/COBOL Language Reference Manual
 First Edition

0705: E Pattern contains an unexpected quantifier '?' that is not
preceded by a valid atom.

Within a pattern regular expression, an unexpected question mark was encountered.
If a question mark is intended as a match character, it must be specified as the
single-character escape ‘\?’. Otherwise, a valid atom of the regular expression must
precede the question mark. If the atom already specifies another quantifier, the atom
must be parenthesized before another quantifier may be applied.

0706: E Pattern contains an unexpected quantifier '{' that is not
preceded by a valid atom.

Within a pattern regular expression, an unexpected opening brace was encountered.
If an opening brace is intended as a match character, it must be specified as the
single-character escape ‘\{’. Otherwise, a valid atom of the regular expression must
precede the opening brace. If the atom already specifies another quantifier, the atom
must be parenthesized before another quantifier may be applied.

0707: E Pattern is too large or complex to compile.

The pattern regular expression is either too large or too complex to compile because
it generates a state machine description that is greater than 65535 bytes in length,
which is the maximum supported by the implementation. The pattern must be made
smaller or simpler. Patterns on the order of 5,000 to 10,000 characters in length
should compile without exceeding this limit.

0720: E Relational operator specified with first condition value does
not define a true value.

A true value cannot be determined for use in the SET statement because the specified
level-number 88 condition-name is defined with a relational operator for the first
value given in the associated Format 2 VALUE clause and that relational operator
does not define a true value. Only relational operators that include an equality
relation define a true value. Thus, the relational operators NOT EQUAL, LESS
THAN, GREATER THAN, and LIKE, when used with the first value in the Format
2 VALUE clause, do not define a true value for the condition-name. The true value
may be defined by listing it first in the Format 2 VALUE clause without a relational
operator or by using a relational operator that includes an equality relation such as
EQUAL, NOT LESS THAN, or NOT GREATER THAN.

0721: W DATA-POINTER in INITIALIZE statement but there are no data
pointer data items in receiving items.

The INITIALIZE statement specifies the REPLACING DATA-POINTER DATA
phrase but none of the receiving items are data pointer data items or groups that
contain data pointer data items. Therefore, no initialization results from the
specification of this phrase. When the REPLACING phrase is specified without the
VALUE or DEFAULT phrases, only data items that belong to the category or
categories specified in the REPLACING phrase are initialized.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 515
 First Edition

0722: E One or more data categories as described for category-name
are required here.

The REPLACING phrase has been specified in an INITIALIZE statement, but is not
followed by a recognized category from the category-name list. The REPLACING
phrase of the INITIALIZE statement requires that one or more categories be
specified.

0723: W Repeated category in INITIALIZE statement category-name list
is not permitted.

A category-name construct in the VALUE or REPLACING phrases of the
INITIALIZE statement permits only unique categories. The compiler ignores, after
producing this message, a repeated category within one category-name construct.

0724: W FILLER phrase conflicts with configured suppression of
FILLER identifiers in symbol table.

The FILLER phrase in the INITIALIZE statement has been specified, but the source
program is being compiled with SUPPRESS-FILLER-IN-SYMBOL-TABLE=YES
configured in the COMPILER-OPTIONS configuration record. When FILLER data
items are suppressed from the symbol table, they are not available to the compiler for
reference by the FILLER phrase of the INITIALIZE statement.

0727: E CRT STATUS clause must not be repeated.

The CRT STATUS clause has been specified more than once in the SPECIAL-
NAMES paragraph of the program. Only the first occurrence is accepted by the
compiler.

0728: E CRT STATUS data item must be numeric integer.

The data-name specified in the CRT STATUS clause of the SPECIAL-NAMES
paragraph does not refer to a data item described as a numeric integer. RM/COBOL
requires a numeric integer data item for the CRT status data item.

0729: E CRT STATUS data-name has an error in its data description
entry.

The data-name specified in the CRT STATUS clause of the SPECIAL-NAMES
paragraph refers to a data item with an error in its data description entry. The error in
the CRT STATUS data item data description must be fixed so that the compiler can
verify that it is suitable to be a CRT STATUS data item.

0730: E CRT STATUS operand must refer to data item.

The data-name specified in the CRT STATUS clause of the SPECIAL-NAMES
paragraph does not refer to a data item. Instead, it refers to an index-name,
condition-name, constant-name or other such non-data items. The CRT STATUS
data-name must refer to data item described as a numeric integer.

Compiler Messages
Appendix B: Compiler Messages

516 RM/COBOL Language Reference Manual
 First Edition

0731: E CRT STATUS data item must not be table element.

The data-name specified in the CRT STATUS clause of the SPECIAL-NAMES
paragraph refers to a data item that is a table element, that is, is described with or
subordinate to an OCCURS clause, which is not allowed.

0732: E CRT STATUS data-name is not unique.

The data-name, including any qualification provided, specified in the CRT STATUS
clause of the SPECIAL-NAMES paragraph refers to two or more data items. Either
additional qualification is necessary or one or more of the duplicate data items must
be removed from the Data Division of the program so that the reference will refer to
a unique data item.

0733: E CRT STATUS data-name is not defined.

The data-name specified in the CRT STATUS clause of the SPECIAL-NAMES
paragraph is undefined. When a simple unqualified data-name is specified, this error
does not occur because the compiler creates an implicit data item. When a qualified
data-name is specified, this error does occur because the compiler does not attempt to
create the containing group and cannot insert a data item in an existing group.

0734: E CRT STATUS data item is wrong linkage item.

The data-name specified in the CRT STATUS clause refers to a data item defined in
the Linkage Section but is neither specified in the Procedure Division USING phrase
nor is it subordinate to an item specified in the Procedure Division USING phrase.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 will occur if the base address of the linkage record
is never set within the program (see page 508).

0735: E CURSOR clause must not be repeated.

The CURSOR clause has been specified more than once in the SPECIAL-NAMES
paragraph of the program. Only the first occurrence is accepted by the compiler.

0736: E CURSOR data item must have a size of four or six characters.

The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph
refers to a data item that is not one of the two allowed sizes of four or six characters.

0737: E CURSOR data item must be DISPLAY usage and, if numeric,
an unsigned integer.

The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph
refers to a data item that is not the type of item that is allowed for the cursor data
item. The usage must be DISPLAY, and if the data item is numeric, it must be
described as an unsigned integer.

 Compiler Messages
Appendix B: Compiler Messages

RM/COBOL Language Reference Manual 517
First Edition

0738: E CURSOR data-name has an error in its data description entry.

The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph
refers to a data item with an error in its data description entry. The error in the
CURSOR data item data description must be fixed so that the compiler can verify
that it is suitable to be a CURSOR data item.

0739: E CURSOR operand must refer to data item.

The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph
does not refer to a data item. Instead, it refers to an index-name, condition-name,
constant-name or other such non-data items. The CURSOR data-name must refer to
a data item described as a numeric integer.

0740: E CURSOR data item must not be table element.

The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph
refers to a data item that is a table element, that is, is described with or subordinate to
an OCCURS clause, which is not allowed.

0741: E CURSOR data-name is not unique.

The data-name, including any qualification provided, specified in the CURSOR
clause of the SPECIAL-NAMES paragraph refers to two or more data items. Either
additional qualification is necessary or one or more of the duplicate data items must
be removed from the Data Division of the program so that the reference will refer to
a unique data item.

0742: E CURSOR data-name is not defined.

The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph
is undefined. When a simple unqualified data-name is specified, this error does not
occur because the compiler creates an implicit data item. When a qualified data-
name is specified, this error does occur because the compiler does not attempt to
create the containing group and cannot insert a data item in an existing group.

0743: E CURSOR data item is wrong linkage item.

The data-name specified in the CRT STATUS clause refers to a data item defined in
the Linkage Section but is neither specified in the Procedure Division USING phrase
nor is it subordinate to an item specified in the Procedure Division USING phrase.

Note This message will not be produced under the condition described above,
because object version 12 is required for the CURSOR clause and object versions 8
and higher support based linkage items, so the item will be considered a based
linkage item. Message 665 will occur if the base address of the linkage record is
never set within the program (see page 508).

Compiler Messages
Appendix B: Compiler Messages

518 RM/COBOL Language Reference Manual
 First Edition

0744: E Debugging line number overflow for object version < 12 in Z
option.

Object version 12 or higher is required for support of debugging line numbers in
programs that contain more than 65535 lines in the Procedure Division or a
Procedure Division header that has a line number greater than 65535. Either specify
the Q Compile Command Option to suppress debugging line numbers or specify a
value of 12 or higher in the Z Compile Command Option.

0745: E Program overflow because of excessive file parameters for
object version < 12 in Z option.

The source program specifies more file parameters, such as file access data-names or
literals, RELATIVE KEY data-names, PADDING CHARACTER data-names or
literals, RECORD SIZE DEPENDING ON data-names, and LINAGE data-names
than can be supported in object versions prior to object version 12, but the Z Compile
Command Option limits the object version to less than 12. Either allow object
version 12 with option Z or reduce the number of file parameters in the program.
Prior to object version 12, the runtime system could accommodate about 8,000 file
parameters.

0746: E Program overflow because of excessive file parameters.

The source program specifies more file parameters, such as file access data-names or
literals, RELATIVE KEY data-names, PADDING CHARACTER data-names or
literals, RECORD SIZE DEPENDING ON data-names, and LINAGE data-names
than can be supported. Reduce the number of file parameters in the program. The
runtime system, for object versions 12 and higher, can accommodate about 16,000
file parameters.

0747: E Symbol table name space overflow (Y option).

The symbol table name space, that is, the area for storing the name values, exceeds
the compiler limit. The Y Compile Command Option for storing the symbol table in
the object for debugging cannot be used or the program must be subdivided into two
or more smaller programs.

0748: E Program overflow because of excessive procedures
(paragraphs or sections).

The source program has too many procedures (paragraphs or sections) defined. The
program must be subdivided into two or more smaller programs. The current
compiler limit is 8190 procedures in any one program. This limit is dependent only
on the definition of the procedure, not whether the procedure is ever performed.
Procedures that end in an unconditional transfer of control, such as with a GO TO or
STOP RUN statement, do not count toward the limit.

 Compiler Messages
Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 519
 First Edition

0749: E Program overflow because of excessive INSPECT
temporaries.

The source program has overflowed the INSPECT statement temporaries. INSPECT
statement temporaries are shared with procedure exit temporaries, so the program has
a combination of procedures and INSPECT statements that is too large to compile.

0750: E Program overflow because of excessive unique data
references.

The source program has too many unique data references to compile.

0751: E Program overflow because of excessive literals.

The source program has too many unique literal values to compile. Literals specified
in VALUE phrases in the Data Division do not count towards this compiler limit,
except when the VALUE phrase is a condition-name and the condition-name is
referenced in the program.

0752: E Program overflow because of excessive index-name
references.

The source program has too many unique index-name references to compile.

0753: E Program overflow because of read-only area exceeding 4GB.

The read-only area, which consists of procedural object code instructions, literal
values, and various tables has exceeded four gigabytes of memory for the program.
The program is too large to compile.

0754: E Program overflow because of file table exceeding 64KB.

The source program declares and references more than 16,384 files, so the file table
size exceeds the compiler limit of 65535 bytes. The compiler only adds files to the
file table when they are referenced in the program, so files that have only a file-
control-entry and a file-description-entry do not count towards this limit. However,
in the current compiler implementation, the limit on file parameters, error 0745 or
0746, occurs before this error can be caused by a source program.

0755: E Program overflow because of global file USE table exceeding
compiler limit.

The source program has too many files declared with the global attribute or too many
USE procedures with the global attribute.

Compiler Messages
Appendix B: Compiler Messages

520 RM/COBOL Language Reference Manual
 First Edition

0756: E Program overflow because of excessive segmentation.

The program has too many segments or partial segments. Partial segments occur
when a segment number is repeated after a different segment number has occurred.
The compiler must build tables describing the segmentation and these tables have
limited size. This error can be eliminated by reducing the complexity of the
segmentation, for example, by consolidating segments lexically within the source
program.

0757: E A program-name has already been specified for this program
and cannot be specified again.

A PROGRAM-ID paragraph has been previously scanned in this program. The
program-name has already been declared for the program and cannot be declared
again. Only the first program-name declaration is used. The multiple PROGRAM-
ID paragraphs should be eliminated so that there is only one declaration of the
program-name for a program.

0758: E Nonnumeric value in VALUE clause must not exceed size of
the group: data-name-1

The nonnumeric literal specified in the VALUE clause for a group data item contains
too many characters for initialization of the data item. Characters were truncated
from the low-order (rightmost) end of the literal value.

This error also occurs when the nonnumeric literal for the true or false value in a
level-number 88 condition-name data description entry contains more characters than
the associated group conditional-variable.

The diagnostic occurs as a summary error since the group size is not known until all
subordinate data items have been scanned. The line number of the offending
VALUE clause is provided in a subsequent message.

 Glossary of Terms

 RM/COBOL Language Reference Manual 521
 First Edition

Glossary of Terms

The terms in this glossary are defined in accordance with their meaning in
RM/COBOL, and may not have the same meaning for other languages.

These definitions are also intended as either reference or introductory material to be
reviewed prior to reading the detailed language specifications. For this reason, these
definitions are, in most instances, brief and do not include detailed syntactical rules.
Complete specifications for elements defined in this section can be located in the
chapters and appendixes of this document.

Terms and Definitions
66-Level-Description-Entry. A data description entry with the level-number 66 that
describes a data item as a renaming of previously described data items.

77-Level-Description-Entry. A data description entry with the level-number 77 that
describes a noncontiguous data item with the level-number 77.

78-Level-Description-Entry. A data description entry with the level-number 78 that
describes a constant-name.

88-Level-Description-Entry. A data description entry with the level-number 88 that
describes a condition-name.

Abbreviated Combined Relation Condition. The combined condition that results
from the explicit omission of a common subject or a common subject and common
relational operator in a consecutive sequence of relation conditions.

Access Mode. The manner in which records are to be operated upon within a file.
COBOL supports three access modes: sequential, random, and dynamic.

Actual Argument. A data item named in the USING or GIVING phrases of a
CALL statement. Both the calling and the called program may refer to these data
items. The called program refers to the actual argument by using the name of the
corresponding formal argument.

Actual Decimal Point. The physical representation, using the decimal point
character period (.) or comma (,), of the decimal point position in a data item.

Alphabetic Character. A letter or a space character.

Alphabet-Name. A user-defined word, in the SPECIAL-NAMES paragraph of the
Environment Division, that assigns a name to a specific character set, collating
sequence, or both.

Glossary of Terms

522 RM/COBOL Language Reference Manual
 First Edition

Alphanumeric Character. Any character in the character set of the computer.

Alternate Record Key. A key, other than the prime record key, whose contents
identify a record within an indexed file.

ANSI. An acronym for American National Standards Institute when modifying the
word COBOL; in this case, ANSI COBOL indicates the standard definition of
COBOL as opposed to the RM/COBOL implementor-defined implementation of
COBOL.

In the context of Microsoft Windows, ANSI is used to modify the word codepage to
indicate the Windows standard codepages as opposed to the OEM codepages
previously used in MS-DOS and still supported by Windows for some purposes.
This use of ANSI is a historical misnomer that came about because codepage 1252
(the “ANSI” codepage for the Western countries) was originally based on an ANSI
draft, which became ISO Standard 8859-1. However, in adding code points to the
range reserved for control codes in the ISO standard, the Windows codepage 1252
and subsequent Windows codepages originally based on the ISO 8859-x series
deviated from ISO standards.

Arithmetic Expression. An identifier of a numeric elementary item, a numeric
literal, such identifiers and literals separated by arithmetic operators, two arithmetic
expressions separated by an arithmetic operator, or an arithmetic expression enclosed
in parentheses.

Arithmetic Operation. The process caused by the execution of an arithmetic
statement, or the evaluation of an arithmetic expression, that results in a
mathematically correct solution to the arguments presented.

Arithmetic Operator. A single character or fixed two-character combination that
belongs to the following set:

Character Meaning

+ Addition
– Subtraction
* Multiplication
/ Division
** Exponentiation

Arithmetic Statement. A statement that causes an arithmetic operation to be run.
The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT statements.

Ascending Key. A key upon the values of which data is ordered starting with the
lowest value of key up to the highest value of key in accordance with the rules for
comparing data items.

Assumed Decimal Point. A decimal point position that does not involve the
existence of an actual character in a data item. The assumed decimal point has
logical meaning with no physical representation.

At End Condition. A condition caused:

1. During the running of a READ statement for a sequentially accessed file,
when no next logical record exists in the file, or when the number of
significant digits in the relative record number is larger than the size of the
relative key data item, or when an optional input file is not present.

2. During the running of a RETURN statement, when no next logical record
exists for the associated sort or merge file.

 Glossary of Terms

 RM/COBOL Language Reference Manual 523
 First Edition

3. During the running of a SEARCH statement, when the search operation
ends without satisfying the condition specified in any of the associated
WHEN phrases.

Automatic Multiple. A record locking mode in which the READ statement
executed in shared input-output mode automatically obtains a lock on the record
accessed except when the NO LOCK phrase is specified. Multiple record locks for
the logical file may be held by the run unit. The record locks are released only by
execution of a CLOSE or UNLOCK statement, except that the successful execution
of a DELETE statement releases the lock on the deleted record.

Automatic Record Locking Modes. Record locking modes in which the READ
statement executed in shared input-output mode automatically obtains a lock on the
record accessed except when the NO LOCK phrase is specified. The automatic
record locking modes are automatic single and automatic multiple.

Automatic Single. A record locking mode in which the READ statement executed
in shared input-output mode automatically obtains a lock on the record accessed
except when the NO LOCK phrase is specified. Only a single record for the logical
file is locked by the run unit since the next input-output operation on the file releases
any existing record lock.

Based Linkage Record. A record-description-entry or 77-level-description-entry
described in the Linkage Section that receives its base address by use of a Format 5
SET statement. Linkage records are not allocated storage during compilation. A
based linkage record is assigned (Format 5) or reassigned (Format 6) to a storage
location by use of the SET statement that specifies the ADDRESS OF data-name-1
as the receiving item, where data-name-1 names the based linkage record. Based
linkage records may include formal arguments of the program.

Binary Allocation Override. An integer specified in parentheses following one of
the binary usage words BINARY, COMP-4, COMPUTATIONAL-4, COMP-5, or
COMPUTATIONAL-5 in the USAGE clause. The integer must be in the range one
through sixteen and specifies the number of character positions (bytes) of storage to
allocate for the binary data item being described. A binary allocation override may
also follow COMP or COMPUTATIONAL if the compiler has been configured for
treating this usage type as binary.

Binary Sequential. A record delimiting technique that allows packed-decimal and
binary data items in the record. For fixed-length record files, no record delimiter is
needed or used. For variable-length record files, a record length header and trailer
are stored with the record on the external storage medium.

Block. A physical unit of data that is normally composed of one or more logical
records. For mass storage files, a block may contain a portion of a logical record.
The size of a block has no direct relationship to the size of the file within which the
block is contained or to the size of the logical record(s) that are either contained
within the block or that overlap the block. The term is synonymous with physical
record.

Bottom Margin. An empty area that follows the page body.

Called Program. A program that is the object of a CALL statement combined at
object time with the calling program to produce a run unit.

Calling Program. A program that starts a CALL to another program.

Cd-Name. A user-defined word that names an MCS interface area described
in a communication description entry within the Communication Section of the
Data Division.

Glossary of Terms

524 RM/COBOL Language Reference Manual
 First Edition

Channel-Name. A feature-name that names a channel on a printer carriage control
tape or program.

Character. The basic indivisible unit of the language.

Character Position. The amount of physical storage required to store a single
standard data format character whose usage is DISPLAY. (See Appendix C:
Internal Data Formats of the RM/COBOL User’s Guide for further characteristics of
physical storage.)

Character-String. A sequence of adjacent characters that form a COBOL word, a
literal, a PICTURE character-string, or a comment-entry.

Class Condition. The proposition, for which a truth value can be determined, that
the content of an item is wholly alphabetic or is wholly numeric or consists
exclusively of those characters listed in the definition of a class-name.

Class-Name. A user-defined word defined in the SPECIAL-NAMES paragraph of
the Environment division that assigns a name to the proposition for which a truth
value can be defined, that the content of a data item consists exclusively of those
characters listed in the definition of the class-name.

Clause. A clause is an ordered set of consecutive COBOL character-strings whose
purpose is to specify an attribute of an entry.

COBOL Character Set. The complete COBOL character set consists of the
characters listed below.

Character Meaning

0, 1, . . . , 9 Digit
A, B, . . . , Z Uppercase letter
a, b, . . . , z Lowercase letter
 Space
+ Plus sign
– Minus sign (hyphen)
* Asterisk
/ Slant (solidus)
= Equal sign
$ Currency sign (represented as ¤ in the International Reference
 Version of International Standard, ISO 646-1973)
, Comma (decimal point)
; Semicolon
. Period (decimal point, full stop)
“ Quotation mark (double quotation)
’ Apostrophe (single quotation)
(Left parenthesis
) Right parenthesis
> Greater than symbol
< Less than symbol
: Colon
& Ampersand

Note When the computer character set includes lowercase letters, they may be used
in character-strings. Except when used in nonnumeric literals and some PICTURE
symbols, each lowercase letter is equivalent to the corresponding uppercase letter.

COBOL Word. A character-string of not more than 240 characters that forms a
user-defined word, a system-name, a context-sensitive word, or a reserved word.

 Glossary of Terms

 RM/COBOL Language Reference Manual 525
 First Edition

Code-Name. A system-name that names a character code set or collating sequence
or both.

Codepage. A definition of a character set, specifying the mapping from a 256-
codepoint character set to Unicode. There are different codepages for different
language groups. Microsoft Windows supports both a system ANSI codepage and a
system OEM codepage. The terms “ANSI codepage” and “OEM codepage” do not
uniquely define a character set, since different countries using different
internationalized versions of Windows use different codepages for both the ANSI
and the OEM codepage. A complete discussion of codepages can be found at
http://www.microsoft.com/typography/unicode/cscp.htm.

Collating Sequence. The sequence in which the characters that are acceptable to a
computer are ordered for purposes of sorting, merging, comparing, and for
processing indexed files sequentially.

Column. A character position within a print line or screen line. The columns are
numbered from 1, by 1, starting at the farthest left character position of the line and
extending to the farthest right position of the line.

Combined Condition. A condition that is the result of connecting two or more
conditions with the ‘AND’ or the ‘OR’ logical operator.

Comment Line. A source program line represented by an asterisk (*) in the
indicator area of the line and any characters from the character set of the computer in
area A and area B of that line. The comment line serves only for documentation in a
program. A special form of comment line represented by a slant (/) in the indicator
area of the line and any characters from the character set of the computer in area A
and area B of that line causes page ejection prior to printing the comment.

Comment-Entry. An entry in the Identification Division that may be any
combination of characters from the character set of the computer.

Common Program. A program that despite being directly contained within another
program, may be called from any program directly or indirectly contained in that
other program.

Communication Description Entry. An entry in the Communication Section of the
Data Division that is composed of the level indicator CD, followed by a cd-name,
and then followed by a set of clauses as required. It describes the interface between
the message control system (MCS) and the COBOL program.

Communication Device. A mechanism, hardware or hardware plus software,
capable of sending data to a queue or receiving data from a queue or both. This
mechanism may be a computer or a peripheral device. One or more programs,
containing communication description entries and residing within the same
computer, define one or more of these mechanisms.

Communication Section. The section of the Data Division that describes the
interface areas between the message control system (MCS) and the program,
composed of one or more communication description areas.

Compile Time. The time at which a COBOL source program is translated, by a
COBOL compiler, to a COBOL object program.

Compiler Directing Statement. A statement, beginning with a compiler directing
verb, which causes the compiler to take a specific action during compilation. The
compiler directing statements are the COPY, ENTER, REPLACE, and USE
statements.

Complex Condition. A condition in which one or more logical operators act upon
one or more conditions.

http://www.microsoft.com/typography/unicode/cscp.htm

Glossary of Terms

526 RM/COBOL Language Reference Manual
 First Edition

Composite of Operands. A hypothetical data item resulting from the
superimposition of specified operands in a statement aligned on their decimal points.
This data item must not contain more than 30 decimal digits.

Computer-Name. A system-name that identifies the computer upon which the
program is to be compiled or run.

Concatenation Expression. A concatenation expression operates on two
nonnumeric literals to concatenate their values. Concatenation expressions simplify
the continuation of long nonnumeric literals. They also allow the construction of a
single literal from combinations of nonnumeric literal forms, such as quoted strings,
hexadecimal strings, figurative constants (including symbolic-characters), and
constant-names that refer to nonnumeric literal values.

Condition. A status of a program at execution time for which a truth value can be
determined. Where the term ‘condition’ (condition-1, condition-2, . . .) appears in
these language specifications in or in reference to ‘condition’ (condition-1,
condition-2, . . .) of a general format, it is a conditional expression consisting of
either a simple condition optionally parenthesized, or a combined condition
consisting of the syntactically correct combination of simple conditions, logical
operators, and parentheses, for which a truth value can be determined.

Conditional Expression. A simple condition or a complex condition specified in an
EVALUATE, IF, PERFORM, or SEARCH statement.

Conditional Phrase. A conditional phrase specifies the action to be taken upon
determination of the truth value of a condition resulting from the execution of a
conditional statement.

Conditional Statement. A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of the object program is
dependent on this truth value. Contrast with Imperative Statement (on page 531).

Conditional Variable. A data item one or more values of which has a condition-
name assigned to it.

Condition-Name. A user-defined word that assigns a name to a subset of values that
a conditional variable may assume; or a user-defined word assigned to a status of an
implementor-defined switch or device. When ‘condition-name’ is used in the general
formats, it represents a unique data item reference consisting of a syntactically
correct combination of a condition-name, together with qualifiers and subscripts, as
required for uniqueness of reference.

Condition-Name Condition. The proposition, for which a truth value can be
determined, that the value of a conditional variable is a member of the set of values
attributed to a condition-name associated with the conditional variable.

Configuration Section. A section of the Environment Division that describes
overall specifications of source and object programs.

Constant-Expression. A constant-name that has already been defined with an
integer value other than the one being defined in the current 78-level-description-
entry, a numeric integer literal, a NEXT, LENGTH OF, or START OF, or DATE-
COMPILED operator, such constant-names, literals and operators preceded by the
constant-expression operator NOT, such constant-names, literals and operators
separated by constant-expression operators (+, -, *, /, **, AND, OR, EXCLUSIVE
OR), two constant expressions separated by a constant-expression operator, or a
constant-expression enclosed in parentheses. Constant-expressions are evaluated in
strict left to right order with no precedence other than expressions within parentheses
are evaluated first.

 Glossary of Terms

 RM/COBOL Language Reference Manual 527
 First Edition

Constant-Name. A user-defined word that assigns a name to a literal value in a
level-number 78 data description entry. After the constant-name is defined, it may
be used wherever a literal is shown in the general formats unless otherwise
prohibited. A constant-name with an integer literal value may also be used wherever
an integer, level-number, or segment-number is shown in the general formats. A
constant-name with an integer value may be used as the repeat count in a PICTURE
character-string. The effect of a constant-name reference is the same as if the literal
value assigned to the constant-name were written instead.

Context-Sensitive Word. A COBOL word that is reserved in a specified language
construct or context. If a context-sensitive word is used where the context-sensitive
word is permitted in the specified language construct or context, the word is treated
as a keyword; otherwise, it is treated as a user-defined word.

Contiguous Items. Items that are described by consecutive entries in the Data
Division, and that bear a definite hierarchical relationship to each other.

Counter. A data item used for storing numbers or number representations in a
manner that permits these numbers to be increased or decreased by the value of
another number, or to be changed or reset to zero or to an arbitrary positive or
negative value.

Currency Sign. The character ‘$’ of the COBOL character set.

Currency Symbol. The character defined by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in a
COBOL source program, the currency symbol is identical to the currency sign.

Current Record. In file processing, the record that is available in the record area
associated with a file.

Current Volume Pointer. A conceptual entity that points to the current volume of a
sequential file.

Data Clause. A clause, specified in a data description entry in the Data Division of
a COBOL program, which provides information describing a particular attribute of a
data item.

Data Description Entry. An entry, in the Data Division of a COBOL program, that
is composed of a level-number followed by a data-name, condition-name, or
constant-name, if required, and then followed by a set of data clauses, as required.

Data Item. A unit of data (excluding literals) defined by the COBOL program.

Data-Name. A user-defined word that names a data item described in a data
description entry. When used in the general formats, ‘data-name’ represents a word
that must not be reference-modified, subscripted, or qualified unless specifically
permitted by the rules of the format.

Debugging Line. A debugging line is any line with a ‘D’ in the indicator area of the
line.

Declarative Sentence. A compiler directing sentence consisting of a single USE
statement stopped by the separator period.

Declaratives. A set of one or more special purpose sections, written at the beginning
of the Procedure Division, the first of which is preceded by the key word
DECLARATIVES and the last of which is followed by the key words END
DECLARATIVES. A declarative is composed of a section header, followed by a
USE compiler directing sentence, followed by a set of zero, one, or more associated
paragraphs.

Glossary of Terms

528 RM/COBOL Language Reference Manual
 First Edition

De-Edit. The logical removal of all editing characters from a numeric edited data
item in order to determine the unedited numeric value of the item.

Delimited Scope Statement. Any statement that includes its explicit scope
terminator.

Delimiter. A character or a sequence of adjacent characters that identify the end of a
string of characters and separate that string of characters from the following string of
characters. A delimiter is not part of the string of characters that it delimits.

Descending Key. A key upon the values of which data is ordered starting with the
highest value of key down to the lowest value of key, in accordance with the rules for
comparing data items.

Destination. The symbolic identification of the receiver of a transmission from a
queue.

Device Name. A system-name that names a class of input-output devices. Each
class is characterized by the statements, open modes, and file organizations it
supports.

Digit Position. A digit position is the amount of physical storage required to store a
single digit. This amount may vary depending on the usage specified in the data
description entry that defines the data item. If the data description entry specifies
that usage is DISPLAY, then a digit position is synonymous with a character
position. (See Appendix C: Internal Data Formats of the RM/COBOL User’s Guide
for further characteristics of physical storage.)

Division. A collection of zero, one, or more sections or paragraphs, called the
division body, which are formed and combined in accordance with a specific set of
rules. Each division consists of the division header and the related division body.
There are four divisions in a COBOL program: Identification, Environment, Data,
and Procedure.

Division Header. A combination of words, followed by a separator period, which
indicates the beginning of a division. The division headers in a COBOL program are
as follows:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION [USING {data-name-1} ...].

Dynamic Access. An access mode in which specific logical records can be obtained
from or placed into a mass storage file in a nonsequential manner and obtained from
a file in a sequential manner during the scope of the same OPEN statement.
Compare with definitions for Sequential Access (on page 542) and Random Access
(on page 540).

 Glossary of Terms

 RM/COBOL Language Reference Manual 529
 First Edition

Editing Character. A single character or a fixed two-character combination
belonging to the following set:

Character Meaning

B Space
0 Zero
+ Plus
– Minus
CR Credit
DB Debit
Z Zero suppress
* Check protect
$ Currency sign
, Comma (decimal point)
. Period (decimal point)
/ Slant (solidus)

Elementary Item. A data item that is described as not being further logically
subdivided.

End of Procedure Division. The physical position of a COBOL source program
after which no further procedures appear.

End Program Header. A combination of words, followed by a separator period,
which indicates the end of a COBOL source program. The end program header is:

.







literal-1

me-1program-na
PROGRAMEND

Entry. Any descriptive set of consecutive clauses ended by a separator period and
written in the Identification Division, Environment Division, or Data Division of a
COBOL program.

Environment Clause. A clause that appears as part of an Environment Division
entry.

Exclusive File. A file that is open with a lock mode of exclusive. An exclusive
input-output or output file may not be open concurrently by any other run unit. An
exclusive input file may not be open concurrently by any other run unit except in the
input mode.

Exclusive Mode. A lock mode in which, for extend, input-output and output modes,
access to the file is denied to any other run unit and, for input mode, access is denied
to any other run unit that attempts to open the file for extend or input-output mode.
A file cannot be successfully opened in exclusive mode if any other run unit has the
file open in a conflicting mode.

Execution Time. The time at which an object program is run. The term is
synonymous with object time.

Explicit Scope Terminator. A reserved word that ends the scope of a particular
Procedure Division statement.

Expression. An arithmetic or conditional expression.

Extend Mode. The state of a file after running an OPEN statement, with the
EXTEND phrase specified, for that file and before running a CLOSE statement
without the REEL or UNIT phrase for that file.

Glossary of Terms

530 RM/COBOL Language Reference Manual
 First Edition

External Attribute. The attribute of a data item obtained by specification of the
EXTERNAL clause in the data description entry of the data item or of a data item to
which the subject data item is subordinate.

External Data. The data described in a program as external data items and external
file connectors.

External Data Item. A data item that is described as part of an external record in
one or more programs of a run unit and which itself may be referred to from any
program in which it is described.

External Data Record. A logical record that is described in one or more programs
of a run unit and whose constituent data items may be referred to from any program
in which they are described.

External File Connector. A file connector that is accessible to one or more object
programs in the run unit.

External Switch. A hardware or software device, defined and named by the
implementor, which is used to indicate that one of two alternate states exists.

Feature-Name. A system-name that names a channel on a printer carriage control
tape or program.

Figurative Constant. A compiler-generated value referred by the use of certain
reserved words.

File. A collection of logical records.

File Access Name. The name communicated to the operating system to identify a
physical file. The file access name may be explicitly specified in the ASSIGN clause
of the file control entry or the VALUE OF FILE-ID clause of the file description
entry. If not explicitly specified, the file access name defaults to the COBOL file-
name. The runtime system may further modify the file access name before it is
communicated to the operating system as explained in the RM/COBOL User’s
Guide.

File Attribute Conflict Condition. An unsuccessful attempt has been made to run
an input-output operation on a file and the file attributes, as specified for that file in
the program, do not match the fixed attributes for that file.

File Clause. A clause that appears as part of any of the following Data Division
entries: file description entry (FD entry) and sort-merge file description entry
(SD entry.)

File Connector. A storage area that contains information about a file and is used as
the linkage between a file-name and a physical file and between a file-name and its
associated record area.

File Control Entry. A SELECT clause and all its subordinate clauses that declare
the relevant physical attributes of a file.

File Description Entry. An entry in the File Section of the Data Division that is
composed of the level indicator FD, followed by a file-name, and then followed by a
set of file clauses as required.

File Organization. The permanent logical file structure established at the time that a
file is created.

 Glossary of Terms

 RM/COBOL Language Reference Manual 531
 First Edition

File Position Indicator. A conceptual entity that contains the value of the current
key within the key of reference for an indexed file, or the record number of the
current record for a sequential file, or the relative record number of the current record
for a relative file, or indicates that no next logical record exists, or that the number of
significant digits in the relative record number is larger than the size of the relative
key data item, or that an optional input file is not present, or that the at end condition
already exists, or that no valid next record has been established.

File Section. The section of the Data Division that contains file description entries
and sort-merge file description entries together with their associated record
descriptions.

FILE-CONTROL. The name of an Environment Division paragraph in which the
data files for a given source program are declared.

File-Name. A user-defined word that names a file connector described in a file
description entry or a sort-merge file description entry within the File Section of the
Data Division.

Fixed File Attributes. Information about a file that is established when a file is
created and cannot subsequently be changed during the existence of the file. These
attributes include the organization of the file (sequential, relative, or indexed), the
prime record key, the alternate record keys, the minimum and maximum record size,
the record type (fixed or variable), the collating sequence of the keys for indexed
files, the minimum and maximum physical record size, the padding character, and
the record delimiter.

Fixed-Length Record. A record associated with a file whose file description or
sort-merge description entry requires that all records contain the same number of
character positions.

Footing Area. The position of the page body adjacent to the bottom margin.

Formal Argument. A record-description-entry or 77-level-description-entry
described in the Linkage Section that is named in the USING or GIVING phrases of
the Procedure Division header. Formal arguments describe data items available from
a calling program. Formal arguments are linkage records that receive their base
address from the actual arguments passed in a CALL statement. The called program
may override the actual argument address by using Format 5 of the SET statement,
effectively converting the formal argument to a based linkage record.

Format. A specific arrangement of a set of data.

Global Name. A name that is declared in only one program but which may be
referred to from that program and from any program contained within that program.
Condition-names, data-names, file-names, record-names, and some special registers
may be global names.

Group Item. A data item that is composed of subordinate data items.

High Order End. The farthest left character of a string of characters.

Identifier. A syntactically correct combination of a data-name, with its qualifiers,
subscripts, and reference modifiers, as required for uniqueness of reference, that
names a data item. The rules for ‘identifier’ associated with the general formats may,
however, specifically prohibit qualification, subscripting, or reference modification.

Imperative Statement. A statement that either begins with an imperative verb and
specifies an unconditional action to be taken or is a conditional statement that is
delimited by its explicit scope terminator (delimited scope statement). The
imperative verbs are listed in Chapter 1: Language Structure (on page 5). An

Glossary of Terms

532 RM/COBOL Language Reference Manual
 First Edition

imperative statement may consist of a sequence of imperative statements. Contrast
with Conditional Statement (on page 526).

Implicit Scope Terminator. A separator period that ends the scope of any
preceding unterminated statement, or a phrase of a statement that by its occurrence
indicates the end of the scope of any statement contained within the preceding
phrase.

Index. A computer storage area or register, the content of which represents the
identification of a particular element in a table.

Index Data Item. A data item in which the values associated with an index-name
can be stored in a machine dependent form.

Indexed File. A file with indexed organization.

Indexed Organization. The permanent logical file structure in which each record is
identified by the value of one or more keys within that record. Compare with
definitions for Relative Organization (on page 541) and Sequential Organization (on
page 543).

Index-Name. A user-defined word that names an index associated with a specific
table.

Initial Program. A program that is placed into an initial state every time the
program is called in a run unit.

Initial State. The state of a program when it is first called in a run unit.

In-Line Comment. An in-line comment begins with the two contiguous characters
*> preceded by a separator space, and ends with the last character position of the
line. The in-line comment serves only for documentation in a program. The
characters following the *> may be any characters from the character-set of the
computer.

Input File. A file that is opened in the input mode.

Input Mode. The state of a file after running an OPEN statement, with the INPUT
phrase specified, for that file and before running a CLOSE statement without the
REEL or UNIT phrase for that file.

Input Procedure. A set of statements, to which control is given during the
execution of a SORT statement, for controlling the release of specified records to
be sorted.

Input-Output File. A file that is opened in the I-O mode.

Input-Output Section. The section of the Environment Division that names the
files and the external media required by an object program and which provides
information required for transmission and handling of data during running of the
object program.

Input-Output Statement. A statement that causes files to be processed by
performing operations upon individual records or upon the file as a unit. The input-
output statements are: ACCEPT, CLOSE, DELETE, DELETE FILE, DISABLE,
DISPLAY, ENABLE, OPEN, PURGE, READ, RECEIVE, REWRITE, SEND, SET
(with the TO ON or TO OFF phrase), START, UNLOCK, and WRITE.

Integer. A numeric literal or a numeric data item that does not include any digit
position to the right of the assumed decimal point. When the term ‘integer’ appears
in general formats, integer must not be a numeric data item, and must not be signed,
nor zero unless explicitly allowed by the rules of that format.

 Glossary of Terms

 RM/COBOL Language Reference Manual 533
 First Edition

Internal Data. The data described in a program excluding all external data items
and external file connectors. Items described in the Linkage Section of a program
are treated as internal data.

Internal Data Item. A data item that is described in one program in a run unit. An
internal data item may have a global name.

Internal File Connector. A file connector that is accessible to only one object
program in the run unit.

Intra-Record Data Structure. The entire collection of groups and elementary data
items from a logical record, which is defined by an adjacent subset of the data
description entries that describe that record. These data description entries include
all entries whose level-number is greater than the level-number of the first data
description entry describing the intra-record data structure.

Invalid Key Condition. A condition, at object time, caused when a specific value of
the key associated with an indexed or relative file is determined to be invalid.

I-O Mode. The state of a file after running an OPEN statement, with the I-O phrase
specified, for that file and before running a CLOSE statement without the REEL or
UNIT phrase for that file.

I-O Status. A conceptual entity that contains the two-character value indicating the
resulting status of an input-output operation. This value is made available to the
program by use of the FILE STATUS clause in the file control entry for the file.

I-O-CONTROL. The name of an Environment Division paragraph in which object
program requirements for rerun points, sharing of same areas by several data files,
and multiple file storage on a single input-output device are specified.

I-O-CONTROL Entry. An entry in the I-O-CONTROL paragraph of the
Environment Division, which contains clauses that provide information required
for the transmission and handling of data on named files during the running of
a program.

ISO. An acronym for International Standards Organization, the body that approves
standards for the international community, such as for computer languages
(RM/COBOL is based on ISO Standard 1989-1985, which matches ANSI Standard
X3.23-1985) and character sets (for example, ISO Standard 8859-1).

Key. A data item that identifies the location of a record, or a set of data items that
serve to identify the ordering of data.

Key of Reference. The key, either prime or alternate, currently being used to access
records within an indexed file.

Keyword. A reserved word whose presence is required when the format in which
the word appears is used in a source program.

Language-Name. A system-name that specifies a particular programming language.

Letter. A character belonging to one of the following two sets:

1. uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T,
U, V, W, X, Y, Z;

2. lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x,
y, z.

Level Indicator. Two letters that identify a specific type of file or a position in a
hierarchy. The level indicators in the Data Division are: CD, FD, and SD.

Glossary of Terms

534 RM/COBOL Language Reference Manual
 First Edition

Level-Number. A user-defined word, expressed as a one or two digit number,
which indicates the hierarchical position of a data item or the special properties of a
data description entry. Level-numbers in the range 1 through 49 indicate the position
of a data item in the hierarchical structure of a logical record. Level-numbers in the
range 1 through 9 may be written either as a single digit or as a zero followed by a
significant digit. Level-numbers 66, 77, 78, and 88 identify special properties of a
data description entry.

Library Text. A sequence of text words, comment lines, the separator space, or the
separator pseudo-text delimiter in a COBOL library.

Library-Name. A user-defined word that names a COBOL library that is to be used
by the compiler for a given source program compilation.

LIKE Relation Condition. A special case of a relation condition that matches a
subject data item to a pattern specified by a regular expression.

LINAGE-COUNTER. A special register whose value points to the current position
within the page body.

Line Sequential. A record delimiting technique that matches the technique used by
the standard system editor. In most systems, this technique uses a sequence of one or
more control characters appended to the record on the external storage medium.
Therefore, files using this technique and containing packed decimal or binary data
items cannot be reliably decomposed into the original output records during input.

Linkage Section. The section in the Data Division that describes formal arguments
and based linkage records. Data description entries in the Linkage Section are not
allocated storage during compilation, but describe data items available from a calling
program or from having their base address set or modified by Formats 5 or 6 of the
SET statement. All data items described in the Linkage Section initially have a null
base address. In most cases, a reference to a Linkage Section data item will
terminate the run unit with a data reference error unless the base address has been
changed to a valid address by one of the following means:

• The data item is a formal argument, or is subordinate to a formal argument,
that received a base address from an actual argument in a calling program.

• The data item is a based linkage record, or is subordinate to a based linkage
record, for which the base address has been set to a value other than NULL
by Format 5 of the SET statement.

Literal. A character-string whose value is implied by the ordered set of characters
comprising the string.

Lock Mode. The manner in which a file is to be protected from concurrent access
by other run units. RM/COBOL supports lock modes of exclusive and shared. For a
shared input-output file, automatic multiple, automatic single, manual multiple or
manual single record locking will apply.

Logical Operator. One of the reserved words AND, OR, or NOT. In the formation
of a condition, either AND, or OR, or both, can be used as logical connectives. NOT
can be used for logical negation.

Logical Page. A conceptual entity consisting of the top margin, the page body, and
the bottom margin.

Logical Record. The most inclusive data item. The level-number for a record is 01.
A record may be either an elementary item or a group item. When not further
qualified, the term record refers to a logical record.

Low Order End. The farthest right character of a string of characters.

 Glossary of Terms

 RM/COBOL Language Reference Manual 535
 First Edition

Low-Volume-I-O-Name. A system-name that names a low volume input-output
device.

Manual Multiple. A record locking mode in which only a READ statement that
specifies the LOCK phrase and is executed in shared input-output mode obtains a
lock on the record accessed. Multiple record locks for the logical file may be held by
the run unit. The record locks are released only by execution of a CLOSE or
UNLOCK statement, except that the successful execution of a DELETE statement
releases the lock on the deleted record.

Manual Record Locking Modes. Record locking modes in which only a READ
statement that specifies the LOCK phrase and is executed in shared input-output
mode obtains a lock on the record accessed. The manual record locking modes are
manual single and manual multiple.

Manual Single. A record locking mode in which only a READ statement that
specifies the LOCK phrase and is executed in shared input-output mode obtains a
lock on the record accessed. Only a single record for the logical file is locked by the
run unit since the next input-output operation on the file releases any existing record
lock.

Mass Storage. A storage medium in which data may be organized and maintained
in both a sequential and nonsequential manner.

Mass Storage Control System (MSCS). An input-output control system that
directs, or controls, the processing of mass storage files.

Mass Storage File. A collection of records that is assigned to a mass storage
medium.

MCS (Message Control System). A communication control system that supports
the processing of messages.

Merge File. A collection of records to be merged by a MERGE statement. The
merge file is created and can be used only by the merge function.

Message. Data associated with an end of message indicator or an end of group
indicator.

Message Control System (MCS). A communication control system that supports
the processing of messages.

Message Count. The count of the number of complete messages that exist in the
designated queue of messages.

Message Indicators. EGI (end of group indicator), EMI (end of message indicator),
and ESI (end of segment indicator) are conceptual indications that serve to notify the
message control system that a specific condition exists (end of group, end of
message, or end of segment). Within the hierarchy of EGI, EMI, and ESI, an EGI is
conceptually equivalent to an ESI, EMI, and EGI. An EMI is conceptually
equivalent to an ESI and EMI. Therefore, a message segment may be terminated by
an ESI, EMI, or EGI; or, a message may be terminated by an EMI or EGI.

Message Segment. Data that forms a logical subdivision of a message, normally
associated with an end of segment indicator.

Mnemonic-Name. A user-defined word that is associated in the Environment
Division with a specific feature-name, switch-name, or low-volume-I-O-name.

MSCS (Mass Storage Control System). An input-output control system that
directs, or controls, the processing of mass storage files.

Glossary of Terms

536 RM/COBOL Language Reference Manual
 First Edition

Multiple Record Locking Modes. Record locking modes in which locked records
are not unlocked except by the explicit execution of a CLOSE or an UNLOCK
statement that refers to the file. Multiple records may be locked in the file by the run
unit. The multiple record locking modes are automatic multiple and manual
multiple.

Native Character Set. The implementor-defined character set associated with the
computer specified in the OBJECT-COMPUTER paragraph.

Native Collating Sequence. The implementor-defined collating sequence associated
with the computer specified in the OBJECT-COMPUTER paragraph.

Negated Combined Condition. The ‘NOT’ logical operator immediately followed
by a parenthesized combined condition.

Negated Simple Condition. The ‘NOT’ logical operator immediately followed by a
simple condition.

Next Executable Sentence. The next sentence to which control will be transferred
after running of the current statement is complete.

Next Executable Statement. The next statement to which control will be
transferred after running of the current statement is complete.

Next Record. The record that logically follows the current record of a file.

Noncontiguous Item. Elementary data items, in the Working-Storage and Linkage
Sections, which bear no hierarchic relationship to other data items.

Nonnumeric Item. A data item whose description permits its content to be
composed of any combination of characters taken from the character set of the
computer. Certain categories of nonnumeric items may be formed from more
restricted character sets.

Nonnumeric Literal. A literal bounded by quotation marks. The string of
characters may include any character in the character set of the computer.

Null. The state of a pointer indicating that it contains no address.

Numeric Character. A character that belongs to the following set of digits: 0, 1, 2,
3, 4, 5, 6, 7, 8, 9.

Numeric Item. A data item whose description restricts its content to a value
represented by characters chosen from the digits ‘0’ through ‘9’; if signed, the item
may also contain a ‘+’, ‘–’, or other representation of an operational sign.

Numeric Literal. A literal composed of one or more numeric characters that may
contain either a decimal point, or an algebraic sign, or both. The decimal point must
not be the farthest right character. The algebraic sign, if present, must be the farthest
left character.

Object Computer Entry. An entry in the OBJECT-COMPUTER paragraph of the
Environment Division, which contains clauses that describe the computer
environment in which the object program is to be run.

Object of Entry. A set of operands and reserved words, within a Data Division
entry of a COBOL program, that immediately follows the subject of the entry.

Object Program. A set or group of executable machine language instructions and
other material designed to interact with data to provide problem solutions. In this
context, an object program is generally the machine language result of the operation
of a COBOL compiler on a source program. Where there is no danger of ambiguity,
the word ‘program’ alone may be used in place of the phrase ‘object program’.

 Glossary of Terms

 RM/COBOL Language Reference Manual 537
 First Edition

Object Time. The time at which an object program is run. The term is synonymous
with execution time.

OBJECT-COMPUTER. The name of an Environment Division paragraph in
which the computer environment, within which the object program is run, is
described.

Obsolete Element. A COBOL language element in ANSI COBOL that is to be
deleted from the next revision of ANSI COBOL.

OEM. An acronym for Original Equipment Manufacturer, which is a misleading
term for a company that has a special relationship with computer producers. OEMs
buy computers in bulk and customize them for a particular application. They then
sell the customized computer under their own name. The term is really a misnomer
because OEMs are not the original manufacturers—they are the computer
customizers.

When used to modify codepage or character sets, as in OEM codepage, the term
refers to the codepages used under MS-DOS and IBM PC DOS. These codepages
defined country specific character sets, but did not follow any well-accepted
standard. MS-Windows supports a system OEM codepage as well as a system ANSI
codepage.

Open Mode. The state of a file after running an OPEN statement for that file and
before running a CLOSE statement without the REEL or UNIT phrase for that file.
The particular open mode is specified in the OPEN statement as either INPUT,
OUTPUT, I-O, or EXTEND.

Operand. Whereas the general definition of operand is ‘that component which is
operated upon’, for the purposes of this document, any lowercase word (or words)
that appears in a statement or entry format may be considered to be an operand and,
as such, is an implied reference to the data indicated by the operand.

Operational Sign. An algebraic sign, associated with a numeric data item or a
numeric literal, to indicate whether its value is positive or negative.

Optional File. A file that is declared as being not necessarily present each time the
object program is run. The object program causes an interrogation for the presence
or absence of the file.

Optional Word. A reserved word that is included in a specific format only to
improve the readability of the language and whose presence is optional to the user
when the format in which the word appears is used in a source program.

Output File. A file that is opened in either the output mode or extend mode.

Output Mode. The state of a file after running an OPEN statement, with the
OUTPUT or EXTEND phrase specified, for that file and before running a CLOSE
statement without the REEL or UNIT phrase for that file.

Output Procedure. A set of statements to which control is given during the running
of a SORT statement after the sort function is completed, or during the running of a
MERGE statement after the merge function reaches a point at which it can select the
next record in merged order when requested.

Padding Character. An alphanumeric character used to fill the unused character
positions in a physical record.

Page Body. That part of the logical page in which lines can be written and/or
spaced.

http://www.webopedia.com/TERM/O/computer.html
http://www.webopedia.com/TERM/O/application.html

Glossary of Terms

538 RM/COBOL Language Reference Manual
 First Edition

Paragraph. In the Procedure Division, a paragraph-name followed by a separator
period and by zero, one, or more sentences. In the Identification and Environment
Divisions, a paragraph header followed by zero, one, or more entries.

Paragraph Header. A reserved word, followed by the separator period, which
indicates the beginning of a paragraph in the Identification and Environment
Divisions. The permissible paragraph headers in the Identification Division are as
follows:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.
REMARKS.

The permissible paragraph headers in the Environment Division are as follows:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

Paragraph-Name. A user-defined word that identifies and begins a paragraph in the
Procedure Division.

Pattern. The object of a LIKE relation condition that specifies the regular
expression used for testing the subject for a match.

Phrase. A phrase is an ordered set of one or more consecutive COBOL character-
strings that form a portion of a COBOL procedural statement or of a COBOL clause.

Physical Page. A device dependent concept defined by the action taken by a printer
when a new page is requested.

Physical Record. The term is synonymous with block.

Pointer Data Item. A data item in which the address of another data item may be
stored in a machine dependent form. The area of memory addressed by a pointer
data item can be accessed by setting the base address of a based linkage record to the
value of the pointer in a Format 5 SET statement.

Previous Record. The record that logically precedes the current record of a file.

Prime Record Key. The primary record key for an indexed file specified by the
RECORD KEY clause of the file control entry. Except when the DUPLICATES
phrase is specified, the contents of the prime record key uniquely identify a record
within an indexed file. The prime record key is the default key when the KEY
phrase is omitted in a Format 2 READ statement or in a START statement.

Procedure. A paragraph or group of logically successive paragraphs, or a section or
group of logically successive sections, within the Procedure Division.

Procedure Branching Statement. A statement that causes the explicit transfer of
control to a statement other than the next operable statement in the sequence in which
the statements are written in the source program. The procedure branching
statements are: ALTER, CALL, CALL PROGRAM, EXIT, EXIT PROGRAM,
GOBACK, GO TO, MERGE (with the OUTPUT PROCEDURE phrase),

 Glossary of Terms

 RM/COBOL Language Reference Manual 539
 First Edition

PERFORM and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE
phrase).

Procedure-Name. A user-defined word that is used to name a paragraph or section
in the Procedure Division. It consists of a paragraph-name (which may be qualified)
or a section-name.

Program Identification Entry. An entry in the PROGRAM-ID paragraph of the
Identification Division, which contains clauses that specify the program-name and
assign selected program attributes to the program.

Program-Name. In the Identification Division and the end program header, a
user-defined word that identifies a COBOL source program.

Pseudo-Text. A sequence of text words, comment lines, or the separator space in a
source program or COBOL library bounded by, but not including, pseudo-text
delimiters.

Pseudo-Text Delimiter. Two adjacent equal sign (=) characters used to delimit
pseudo-text.

Punctuation Character. A character that belongs to the following set:

Character Meaning

, Comma
; Semicolon
: Colon
. Period (full stop)
“ Quotation mark
’ Apostrophe
(Left parenthesis
) Right parenthesis
 Space
= Equal sign

Qualified Data-Name. An identifier that is composed of a data-name followed by
one or more set of either of the connectives OF and IN followed by a data-name
qualifier.

Qualifier.

1. A data-name or a name associated with a level indicator that is used in a
reference either together with another data-name, which is the name of an
item that is subordinate to the qualifier, or together with a condition-name.

2. A screen-name that is used in a reference together with another screen-
name, which is the name of an item that is subordinate to the qualifier.

3. A section-name that is used in a reference together with a paragraph-name
specified in that section.

4. A library-name that is used in a reference together with a text-name
associated with that library.

5. A file-name that is used in a reference together with the special register
LINAGE-COUNTER associated with that file.

Queue. A logical collection of messages awaiting transmission or processing.

Queue Name. A symbolic name that indicates to the message control system the
logical path by which a message or a portion of a completed message may be
accessible in a queue.

Glossary of Terms

540 RM/COBOL Language Reference Manual
 First Edition

Random Access. An access mode in which the program-specified value of a key
data item identifies the logical record that is obtained from, deleted from, or placed
into a relative or indexed file. Compare with definitions for Dynamic Access (on
page 528) and Sequential Access (on page 542).

Record. The most inclusive data item. The level-number for a record is 01. A
record may be either an elementary item or a group item. The term is synonymous
with logical record unless otherwise qualified (as in physical record).

Record Area. A storage area allocated for processing the record described in a
record description entry in the File Section of the Data Division. In the File Section,
the current number of character positions in the record area is determined by the
explicit or implicit RECORD clause.

Record Delimiting Technique. The method of determining the length of a record
on the external storage medium for a sequential file.

Record Description. The total set of data description entries associated with a
particular record. The term is synonymous with record description entry.

Record Description Entry. The total set of data description entries associated with
a particular record. The term is synonymous with record description.

Record Key. A key whose contents identify a record within an indexed file. Within
an indexed file, a record key is either the prime record key or an alternate record key.

Record Locking Mode. The manner in which records are to be locked and unlocked
within a shared input-output file. The record locking modes are automatic multiple,
automatic single, manual multiple and manual single. Because automatic and
manual specify how records are locked and single and multiple specify how records
are unlocked, these modes are sometimes specified in the text as one of the
following:

• Automatic record locking modes: automatic single and automatic multiple

• Manual record locking modes: manual single and manual multiple

• Multiple record locking modes: automatic multiple and manual multiple

• Single record locking modes: automatic single and manual single

Record Number. The ordinal number of a record in the file whose organization
is sequential.

Record-Name. A user-defined word that names a record described in a record
description entry in the Data Division of a COBOL program.

Reel. A discrete portion of a storage medium, the dimensions of which are
determined by the physical medium, that contains part of a file, all of a file, or any
number of files. The term is synonymous with unit and volume.

Reference Modifier. The farthest left-character-position and length used to
establish and refer to a data item.

Regular Expression. A simple form of an expression that uses meta-characters as
operators to define a pattern. The regular expressions used in RM/COBOL LIKE
conditions match regulars expressions defined by XML Schema (on page 546).
Regular expressions are explained beginning on page 201. A summary of regular
expression grammar is given on page 208.

Relation. The term is synonymous with relational operator.

 Glossary of Terms

 RM/COBOL Language Reference Manual 541
 First Edition

Relation Character. A character that belongs to the following set:

Character Meaning

> Greater than
< Less than
= Equal to

Relation Condition. The proposition, for which a truth value can be determined,
that the value of an arithmetic expression, data item, nonnumeric literal, or index-
name has a specific relationship to the value of another arithmetic expression, data
item, nonnumeric literal, or index-name.

Relational Operator. A reserved word, a relation character, a group of consecutive
reserved words, or a group of consecutive reserved words and relation characters
used in the construction of a relation condition. The permissible operators and their
meanings are as follows:

Relational Operator Meaning

IS [NOT] GREATER THAN Greater than or not greater than
IS [NOT] >
IS [NOT] LESS THAN Less than or not less than
IS [NOT] <
IS [NOT] EQUAL TO Equal to or not equal to
IS [NOT] =
IS GREATER THAN OR EQUAL TO Greater than or equal to
IS >=
IS LESS THAN OR EQUAL TO Less than or equal to
IS <=

Relative File. A file with relative organization.

Relative Key. A key whose contents identify a logical record in a relative file.

Relative Organization. The permanent logical file structure in which each record is
uniquely identified by an integer value greater than zero, which specifies the logical
ordinal position of the record in the file. Compare with definitions for Indexed
Organization (on page 532) and Sequential Organization (on page 543).

Relative Record Number. The ordinal number of a record in a file whose
organization is relative. This number is treated as a numeric literal, which is an
integer.

Reserved Word. A COBOL word specified in the list of words that may be used in
a COBOL source program, but that must not appear in the program as user-defined
words or system-names. For a list of reserved words, see Appendix A: Reserved
Words (on page 423).

Resource. A facility or service, controlled by the operating system, which can be
used by a running program.

Resultant Identifier. A user-defined data item that is to contain the result of an
arithmetic operation.

Routine-Name. A user-defined word that identifies a procedure written in a
language other than COBOL.

Run Unit. One or more object programs that interact with one another and that
function, at object time, as an entity to provide problem solutions.

Glossary of Terms

542 RM/COBOL Language Reference Manual
 First Edition

Screen Clause. A clause, specified in a screen description entry in the Screen
Section of the Data Division of a COBOL program, that provides information
describing a particular attribute of a screen item.

Screen Description Entry. An entry, in the Screen Section of the Data Division of a
COBOL program, that is composed of a level-number followed by a screen-name, if
required, and then followed by a set of screen clauses, as required.

Screen Item. A unit of data, including its associated screen attributes, defined by the
COBOL program in the Screen Section of the Data Division.

Screen Section. The section of the Data Division that describes screen items,
composed of screen records.

Screen-Name. A user-defined word that names a screen item described in a screen
description entry.

Section. A set of zero, one, or more paragraphs or entries, called a section body, the
first of which is preceded by a section header. Each section consists of the section
header and the related section body.

Section Header. A combination of words followed by a separator period that
indicates the beginning of a section in the Environment, Data, and Procedure
Divisions. In the Environment and Data Divisions, a section header is composed of
reserved words followed by a separator period. The permissible section headers in
the Environment Division are as follows:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the Data Division are as follows:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
COMMUNICATION SECTION.
SCREEN SECTION.

In the Procedure Division, a section header is composed of a section-name, followed
by the reserved word SECTION, followed by a segment-number (optional), and
followed by a separator period.

Section-Name. A user-defined word that names a section in the Procedure Division.

Segment-Number. A user-defined word that classifies sections in the Procedure
Division for purposes of segmentation. Segment-numbers may contain only the
characters ‘0’, ‘1’, . . ., ‘9’. A segment-number may be expressed either as a one or
two digit number.

Sentence. A sequence of one or more statements, the last of which is ended by a
separator period.

Separately Compiled Program. A program that, together with its contained
programs, is compiled separately from all other programs.

Separator. A character or two adjacent characters used to delimit character-strings.

Sequential Access. An access mode in which logical records are obtained from or
placed into a file in a consecutive predecessor-to-successor logical record sequence
determined by the order of records in the file. Compare with definitions for Dynamic
Access (on page 528) and Random Access (on page 540).

 Glossary of Terms

 RM/COBOL Language Reference Manual 543
 First Edition

Sequential File. A file with sequential organization.

Sequential Organization. The permanent logical file structure in which a record is
identified by a predecessor-successor relationship established when the record is
placed into the file. Compare with definitions for Indexed Organization (on
page 532) and Relative Organization (on page 541).

Shared File. A file that is open with a lock mode of shared.

Shared File Environment. An execution environment for COBOL programs in
which concurrently executing run units may asynchronously access the same
physical files. Examples of such environments are multitasking operating systems
and network file systems (such as local area networks, which are often called LANs).

Shared Mode. A lock mode in which the file may be in an open mode concurrently
by more than one run unit. When shared input-output mode applies, record locking
also applies in order to coordinate access to and updating of individual records. A
file cannot be successfully opened in shared mode if any other run unit has the file
open in a conflicting exclusive mode.

Sign Condition. The proposition, for which a truth value can be determined, that the
algebraic value of a data item or an arithmetic expression is either less than, greater
than, or equal to zero.

Simple Condition. Any single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status condition
sign condition
(simple-condition)

Single Record Locking Modes. Record locking modes in which locked records are
to be unlocked implicitly by the execution of any input-output statement that refers to
the file. Thus, only at most a single record at a time is locked in the file by the run
unit. The single record locking modes are automatic single and manual single.

Sort File. A collection of records to be sorted by a SORT statement. The sort file is
created and can be used by the sort function only.

Sort-Merge File Description Entry. An entry in the File Section of the Data
Division that is composed of the level indicator SD, followed by a file-name, and
then followed by a set of file clauses as required.

Source. The symbolic identification of the originator of a transmission to a queue.

Source Computer Entry. An entry in the SOURCE-COMPUTER paragraph of the
Environment Division, which contains clauses that describe the computer
environment in which the source program is to be compiled.

Source Format. A format that provides a standard method for describing COBOL
source programs.

Source Program. Although it is recognized that a source program may be
represented by other forms and symbols, in this document it always refers to a
syntactically correct set of COBOL statements. A COBOL source program
commences with the Identification Division; a COPY statement; or a REPLACE
statement. A COBOL source program is ended by the end program header, if
specified, or by the absence of additional source program lines.

Glossary of Terms

544 RM/COBOL Language Reference Manual
 First Edition

SOURCE-COMPUTER. The name of an Environment Division paragraph in
which the computer environment, within which the source program is compiled, is
described.

Special Character. A character that belongs to the following set:

Character Meaning

+ Plus sign (unary plus operator; addition operator)
– Minus sign (unary minus operator; subtraction operator)
* Asterisk (multiplication operator)
/ Slant (solidus) (division operator)
= Equal sign (relation operator; assignment operator)
$ Currency sign
, Comma (decimal point)
; Semicolon
. Period (decimal point, full stop)
“ Quotation mark (nonnumeric literal delimiter)
’ Apostrophe (nonnumeric literal delimiter)
(Left parenthesis (subscripting; reference modification)
) Right parenthesis (subscripting; reference modification)
> Greater than symbol (relation operator)
< Less than symbol (relation operator)
: Colon (reference modification)
& Ampersand (literal concatenation operator)

Special Character Word. A reserved word that is an arithmetic operator or a
relation character.

Special Names Entry. An entry in the SPECIAL-NAMES paragraph of the
Environment Division, which provides means for specifying the currency sign;
choosing the decimal point; specifying symbolic characters; relating feature-names,
switch-names, and low-volume-I-O-names to user-specified mnemonic-names;
relating alphabet-names to character sets or collating sequences; and relating class-
names to sets of characters.

Special Registers. Certain compiler generated storage areas whose primary use is to
store information produced in conjunction with the use of specific COBOL features.

SPECIAL-NAMES. The name of an Environment Division paragraph, which
provides means for specifying the currency sign; choosing the decimal point;
specifying symbolic characters; relating feature-names, switch-names, and low-
volume-I-O-names to user-specified mnemonic-names; relating alphabet-names to
character sets or collating sequences; and relating class-names to sets of characters.

Split Key. A record key of an indexed file that is the concatenation of one or more
data items with a record associated with the file. The data items need not be
contiguous within the record. The split key is specified in READ and START
statements with a split-key-name.

Split-Key-Name. A user-defined word that names a concatenation of one or more
data items within a record associated with an indexed file. The concatenation of the
data items forms a single record key for that file. A split-key-name may be specified
only in a READ or START statement.

Standard Data Format. The concept used in describing data in a COBOL Data
Division under which the characteristics or properties of the data are expressed in a
form oriented to the appearance of the data on a printed page of infinite length and
breadth, rather than a form oriented to the manner in which the data is stored
internally in the computer or on a particular medium.

 Glossary of Terms

 RM/COBOL Language Reference Manual 545
 First Edition

Statement. A syntactically valid combination of words, literals, and separators,
beginning with a verb, written in a COBOL source program.

Subject of Entry. An operand or reserved word that appears immediately following
the level indicator or the level-number in a Data Division entry.

Subprogram. A program that is the object of a CALL statement combined at object
time with the calling program to produce a run unit. The term is synonymous with
called program.

Sub-Queue. A logical hierarchical division of a queue.

Subscript. An occurrence number represented by either an integer, a data-name
optionally followed by an integer with the operator + or –, or an index-name
optionally followed by an integer with the operator + or –, which identifies a
particular element in a table.

Subscripted Data-Name. An identifier that is composed of a data-name followed
by one or more subscripts enclosed in parentheses.

Switch-Name. A system-name that names a switch in the operating environment.

Switch-Status Condition. The proposition, for which a truth value can be
determined that a switch, capable of being set to an ‘on’ or ‘off’ status, has been set
to a specific status.

Symbolic-Character. A user-defined word that specifies a user-defined figurative
constant.

System-Name. A COBOL word that is used to communicate with the operating
environment.

Table. A set of logically consecutive items of data that are defined in the Data
Division of a COBOL program by means of the OCCURS clause.

Table Element. A data item that belongs to the set of repeated items comprising a
table.

Table-Name. A data-name that includes the OCCURS clause in its data description
entry.

Terminal. The originator of a transmission to a queue or the receiver of a
transmission from a queue.

Text Word. A character or a sequence of adjacent characters between margin A and
margin R in a COBOL library, source program, or in pseudo-text that is:

1. A separator, except for: space; a pseudo-text delimiter; and the opening and
closing delimiters for nonnumeric literals. The right parenthesis and left
parenthesis characters, regardless of context within the library, source
program, or pseudo-text, are always considered text words.

2. A literal including, in the case of nonnumeric literals, the opening quotation
mark and the closing quotation mark that bound the literal.

3. Any other sequence of adjacent COBOL characters except comment lines
and the word ‘COPY’, bounded by separators, which is neither a separator
nor a literal.

Text-Name. A user-defined word that identifies library text.

Top Margin. An empty area that precedes the page body.

Truth Value. The representation of the result of the evaluation of a condition in
terms of one of two values: true, false.

Glossary of Terms

546 RM/COBOL Language Reference Manual
 First Edition

Unary Operator. A plus (+) or a minus (–) sign, which precedes a variable or a left
parenthesis in an arithmetic expression and which has the effect of multiplying the
expression by +1 or –1, respectively.

Unicode. Unicode provides a unique number for every character, no matter what the
platform, no matter what the program, no matter what the language. Information
about Unicode is available at http://www.unicode.org.

Unit. A discrete portion of a storage medium, the dimensions of which are
determined by the physical medium, that contains part of a file, all of a file, or any
number of files. The term is synonymous with reel and volume.

Unsuccessful Execution. The attempted running of a statement that does not result
in the running of all the operations specified by that statement. The unsuccessful
execution of a statement does not affect any data referred by that statement, but may
affect status indicators.

User-Defined Word. A COBOL word that must be supplied by the user to satisfy
the format of a clause or statement.

Variable. A data item whose value may be changed by execution of the object
program. A variable used in an arithmetic-expression must be a numeric elementary
item.

Variable-Length Record. A record associated with a file whose file description or
sort-merge description entry permits records to contain a varying number of
character positions.

Variable-Occurrence Data Item. A variable-occurrence data item is a table
element that is repeated a variable number of times. Such an item must contain an
OCCURS DEPENDING ON clause in its data description entry, or be subordinate to
such an item.

Verb. A word that expresses an action to be taken by a COBOL compiler or object
program.

Volume. A discrete portion of a storage medium, the dimensions of which are
determined by the physical medium, that contains part of a file, all of a file, or any
number of files. The term is synonymous with reel and unit.

Word. A character-string of not more than 30 characters that forms a user-defined
word, a system-name, or a reserved word.

Working-Storage Section. The section of the Data Division that describes working
storage data items, composed either of noncontiguous items or working storage
records or of both.

XML. The abbreviation denoting the eXtensible Markup Language, a language for
specifying documents. The specification for XML is available at
http://www.w3.org/TR/2000/REC-xml-20001006.

XML Schema. The specification that describes a definition language for XML
documents. The specification is available at http://www.w3.org/XML/Schema.

Zero-Length Item. An item whose minimum permitted length is zero and whose
length at execution time is zero.

http://www.unicode.org/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/XML/Schema

 Index

 RM/COBOL Language Reference Manual 547
 First Edition

Index

6
66-level-description-entry 10, 109

format 105, 125
glossary term 521

7
77-level-description-entry 10, 109

format 103
glossary term 521

78-level-description-entry 9, 109
format 105
glossary term 521

8
88-level-description-entry 10, 109

format 105
glossary term 521

A
Abbreviated combined relation condition 212

glossary term 521
ACCEPT . . . FROM statement 243
ACCEPT MESSAGE COUNT statement 262
ACCEPT Screen-Name statement 263
ACCEPT statement (terminal I-O) 247
Access mode. See also Dynamic access, Random access,

and Sequential access.
for indexed file organization 226
for relative file organization 219
for sequential file organization 214
glossary term 521

ACCESS MODE clause, file control entry 67
Actual argument

CALL statement 99, 181, 272
glossary term 521
Linkage Section 13, 83, 98, 99

Actual decimal point
editing symbol, (.) 117
glossary term 521

ADD statement 192, 266

ADDRESS phrase, SET statement 389
ADDRESS special register 13, 98, 181, 198, 272, 274
ADVANCING phrase

SEND statement 387
WRITE statement 419

AFTER phrase
INSPECT statement 329
PERFORM statement 354
SEND statement 388
WRITE statement 419

ALL literal, figurative constant 18, 19
ALL phrase

INSPECT REPLACING statement 330
INSPECT TALLYING statement 330
UNSTRING statement 412

ALL TO VALUE phrase, INITIALIZE statement 322
ALPHABET clause 54

code name alphabets 56
literal alphabets 57

Alphabetic character
alphabetic data item 114
class condition 210
CONTROL phrase, ACCEPT statement 250
CURRENCY SIGN clause 60
glossary term 521
PICTURE character-string 115
user-defined words 8, 35

Alphabetic class 167
ALPHABETIC class condition, conditional

expressions 209
Alphabetic data item 114
ALPHABETIC phrase, INITIALIZE statement 322
ALPHABETIC-LOWER class condition, conditional

expressions 209
ALPHABETIC-UPPER class condition, conditional

expressions 209
Alphabet-name

ALPHABET clause 54
CODE-SET clause 70, 89
glossary term 521
MERGE statement 333
PROGRAM COLLATING SEQUENCE clause 52
scope 31
SORT statement 393
SYMBOLIC CHARACTERS clause 63
user-defined word type 9

Alphanumeric character
glossary term 522
regular expressions, Perl language 204

Alphanumeric class 167
Alphanumeric data item 114, 201
Alphanumeric edited data item 114
ALPHANUMERIC phrase, INITIALIZE statement 322
ALPHANUMERIC-EDITED phrase, INITIALIZE

statement 322
ALSO phrase, EVALUATE statement 311
ALTER statement 269

restrictions 188
ALTERNATE phrase, RESERVE clause, file control

entry 66, 77

Index

548 RM/COBOL Language Reference Manual
 First Edition

Alternate record key 76, 226
glossary term 522
NEXT phrase, Format 1 READ statement 367
REWRITE statement 378
WRITE statement 421

ALTERNATE RECORD KEY clause, file control
entry 76, 226

American Standard Code for Information Interchange.
See ASCII.

AND logical operator
abbreviated combined relation conditions 212
combined conditions 212
constant-expressions 138

ANY, selection object 312
Area A, illustrated and rules defined 20
Area B, illustrated and rules defined 20
Argument, actual

CALL statement 99, 181, 272
glossary term 521
Linkage Section 13, 83, 98, 99

Argument, formal
glossary term 531
Linkage Section 83, 98, 173
procedure division header 181

Arithmetic expressions 195
COMPUTE statement 283
EVALUATE statement 311
glossary term 522
parentheses, using in 6, 195, 196
reference modification 172
relate condition 197
SEARCH statement (ALL) 380
Sign condition 210

Arithmetic operation 192-194, 197
glossary term 522

Arithmetic operators 138, 196
glossary term 522

Arithmetic statements 23, 192
ADD statement 266
COMP usage 129-131
COMPUTE statement 283
DIVIDE statement 303
glossary term 522
MULTIPLY statement 343
subscripting 171
SUBTRACT statement 408

Ascending key
glossary term 522
OCCURS clause, KEY phrase 111

ASCENDING phrase
MERGE statement 334
OCCURS clause 110
SORT statement 394

ASCII
STANDARD-1 alphabet 54, 56
translation 58

ASSIGN clause
file control entry 69
sort-merge file control entry 78

Assumed decimal point
data alignment 167
glossary term 522
PICTURE character-string symbol, V 116

At end condition
glossary term 522
indexed file 228, 232
relative file 221, 224
sequential file 216, 218

AT END phrase
indexed file 232
READ statement 366
relative file 224
RETURN statement 375
SEARCH statement (ALL) 382
SEARCH statement (serial) 381
sequential file 218

AUTHOR paragraph 45
AUTO clause, screen description entry 157
AUTO phrase, ACCEPT statement 249
Automatic multiple 235

glossary term 523
AUTOMATIC phrase, LOCK MODE clause, file

control entry 72
Automatic record locking modes 72, 235

glossary term 523
Automatic single 72, 235

glossary term 523
AUTO-SKIP phrase, ACCEPT statement 249

B
BACKGROUND clause, screen description entry 157
BACKGROUND-COLOR clause, screen description

entry 157
Base address

based linkage 98
SET statement 389

Based linkage record 98
glossary term 523

BEEP clause, screen description entry 158
BEEP phrase

ACCEPT statement 249
DISPLAY statement 294

BEFORE phrase
INSPECT statement 329
SEND statement 388
WRITE statement 419

BEFORE TIME phrase, ACCEPT statement 259
BELL clause, screen description entry 158
BELL phrase, ACCEPT statement 249
Binary allocation override 129, 132, 180

glossary term 523
parentheses, using in 6, 131, 132

Binary sequential
glossary term 523
record delimiting technique 73, 74

BINARY usage, data description entry 131
BINARY-ALLOCATION keyword, COMPILER-

OPTIONS configuration record 132, 180

 Index

 RM/COBOL Language Reference Manual 549
 First Edition

BINARY-ALLOCATION-SIGNED keyword,
COMPILER-OPTIONS configuration record
132, 180

BINARY-SEQUENTIAL record delimiting technique
nonreserved system-names 433
RECORD DELIMITER clause 74
system-names 12

BLANK LINE clause, screen description entry 158
Blank lines, source format 21
BLANK REMAINDER clause, screen description

entry 159
BLANK SCREEN clause, screen description entry 159
BLANK WHEN ZERO clause

data description entry 107
screen description entry 159

BLINK clause, screen description entry 160
BLINK phrase

ACCEPT statement 250
DISPLAY statement 295

Block
BLOCK CONTAINS clause 88
glossary term 523

BLOCK CONTAINS clause, file description entry 88
Bottom margin 92, 94

glossary term 523
BY CONTENT phrase, CALL statement 273
BY phrase

COPY statement 35, 38
INSPECT statement 330
PERFORM statement 355
REPLACE statement 39
SET statement 389

BY REFERENCE phrase, CALL statement 273

C
C$CARG subprogram 100
C$CompilePattern subprogram 201
C$MemoryAllocate subprogram 134
C01-C12 channel-names

nonreserved system-names 432
SPECIAL-NAMES paragraph 61
system-names 12

CALL PROGRAM statement 276
CALL statement 270
Called program

CALL statement 271
glossary term 523

Calling program
CALL statement 271
glossary term 523

CANCEL statement 278
CARD-PUNCH device-name

ASSIGN clause 69
nonreserved system-names 433
system-names 12

CARD-READER device-name
ASSIGN clause 69
nonreserved system-names 433
system-names 12

CASE-INSENSITIVE phrase, LIKE relation
condition 201

CASE-SENSITIVE phrase, LIKE relation condition 201
CASSETTE device-name

ASSIGN clause 69
nonreserved system-names 433
system-names 12

CD. See Communication description entry.
Cd-name

ACCEPT MESSAGE COUNT statement 262
communication description entry 140
DISABLE statement 288
ENABLE statement 307
glossary term 523
PURGE statement 363
RECEIVE statement 371
scope 31
SEND statement 385
user-defined word type 9

CENTURY-DATE phrase, ACCEPT FROM
statement 244

CENTURY-DAY phrase, ACCEPT FROM
statement 244

Channel-name, glossary term 524
Channel-names, C01-C12

nonreserved system-names 432
SPECIAL-NAMES paragraph 61
system-names 12

Character 5
glossary term 524

Character code set, ALPHABET clause 54
Character position, glossary term 524
Character set 5

list of 6
CHARACTERS phrase

INSPECT REPLACING statement 330
INSPECT TALLYING statement 330

Characters, special 16
Character-strings 7, 112

COBOL words
length of 7
user-defined 7-11

comment-entry 20
glossary term 524
literals, figurative constants, rules for determining

string length 18
PICTURE 20

in PICTURE clause (data description entry) 112
in PICTURE clause (screen description entry) 164

separators 5
CLASS clause 58
Class condition 58, 209

glossary term 524
Classes of data 167
Class-name

CLASS clause 58
class condition 209
glossary term 524
scope 31
user-defined word type 9

Clause
glossary term 524
program structure 26

Index

550 RM/COBOL Language Reference Manual
 First Edition

CLOSE statement 280
implicit CLOSE on CANCEL 278

COBOL character set 6
glossary term 524

COBOL words
context-sensitive 7, 16, 429-430
disjoint sets 7
glossary term 524
reserved 7, 13, 423-428
system-names 7, 11-12, 432-434
user-defined 7, 8-10

Code-name
ALPHABET clause 54
alphabets 56
EBCDIC 12, 432
glossary term 525
nonreserved system-names 432-434
system-names 7, 11-12

CODE-SET clause
file control entry 70
file description entry 89

Collating sequence 52, 71
ALPHABET clause 54
comparison of nonnumeric operands 199
glossary term 525
indexed file 71
MERGE statement 334
SORT statement 395

COLLATING SEQUENCE clause
file control entry 71
PROGRAM OBJECT-COMPUTER paragraph 52

COLLATING SEQUENCE phrase
MERGE statement 334
SORT statement 395

Colons, using as separators 7
Color-name

BACKGROUND clause 157
FOREGROUND clause 161
nonreserved system-names 434

Column
COLUMN (COL) phrase

ACCEPT statement (terminal I-O) 256
DISPLAY statement (terminal I-O) 297

COLUMN clause, screen description entry 160
glossary term 525
LINE and POSITION phrases

ACCEPT statement (terminal I-O) 256
DISPLAY statement (terminal I-O) 297

COLUMN (COL) phrase
ACCEPT Screen-Name statement 263
ACCEPT statement (terminal I-O) 256
DISPLAY Screen-Name statement 301
DISPLAY statement (terminal I-O) 297

COLUMN clause, screen description entry 160
Combined condition 212

glossary term 525
Comma

DECIMAL-POINT clause, SPECIAL-NAMES
paragraph 61

numeric literals 16
PICTURE character-string 117
using as separators 6

Comment lines 5, 21
glossary term 525
source format 22
with asterisk 22

Comment-entry 20, 43
AUTHOR paragraph 45
DATE-COMPILED paragraph 45
DATE-WRITTEN paragraph 45
glossary term 525
INSTALLATION paragraph 45
REMARKS paragraph 45
SECURITY paragraph 45

Comments 20
in-line 22

COMMON clause, PROGRAM-ID paragraph 44
Common program 30, 44

glossary term 525
Common rules, procedure division 192
Communication description entry 140

glossary term 525
Communication device

glossary term 525
relationship to Message Control System, object

program 239
Communication facility 238
Communication Section

Data Division 84, 100
glossary term 525

Communication statements
DISABLE 288
ENABLE 307
PURGE 363
RECEIVE 371
SEND 385

Comparison
index-names and index data items 200
nonnumeric operands 199
numeric operands 199
pointer data items 200

Compile time, glossary term 525
Compiler directing statement

COPY 35
ENTER 310
glossary term 525
REPLACE 39
USE 189

Compiler, messages 435
001 - 100 436
101 - 200 449
201 - 300 462
301 - 400 475
401 - 500 487
501 - 600 500
601 - 700 505
701 - 800 513

 Index

 RM/COBOL Language Reference Manual 551
 First Edition

COMPILER-OPTIONS configuration record
BINARY-ALLOCATION keyword 132, 180
BINARY-ALLOCATION-SIGNED keyword 132, 180
COMPUTATIONAL-TYPE keyword 129-131
DEFAULT-USE-PROCEDURE keyword 191, 218,

223-225, 230-232, 366
DERESERVE keyword 423, 430
ENTRY-LINKAGE-SETTINGS keyword 99
LISTING-DATE-FORMAT keyword 45
LISTING-DATE-SEPARATOR keyword 45
OBJECT-VERSION keyword 508
SUPPRESS-FILLER-IN-SYMBOL-TABLE

keyword 515
SUPPRESS-LITERAL-BY-CONTENT keyword 273
SYMBOL-TABLE-OUTPUT keyword 508

Complex condition 211
glossary term 525

Composite of operands 197, 283, 452
glossary term 526

Composite size 192
COMPUTATIONAL usage 130
COMPUTATIONAL-1 usage 131
COMPUTATIONAL-3 usage 131
COMPUTATIONAL-4 usage 131
COMPUTATIONAL-5 usage 132
COMPUTATIONAL-6 usage 133
COMPUTATIONAL-TYPE keyword, COMPILER-

OPTIONS configuration record 129-131
COMPUTE statement 192, 283
Computer-name 51, 52

glossary term 526
Concatenation expression

continuation 21
definition 19
glossary term 526

Concatenation operator 16, 19
Condition evaluation rules 213
Conditional

phrases 24
glossary term 526

sentences 25
statements 23

glossary term 526
Conditional expressions 197. See also Conditions.

complex 211
glossary term 526
simple 197

Conditional variable
condition-name condition 211
condition-name VALUE clause 137
Format 3 data description entry 106
glossary term 526

Condition-name 31, 105, 135
conditional variable condition 211
data description entry 105
global 28, 29, 108
glossary term 526
qualification 168
references 173
rules (Format 2 VALUE clause) 137
scope 32
switch-status 53, 61

switch-status condition 211
tests 61
user-defined word type 9

Condition-name condition
conditional expressions 211
glossary term 526

Conditions
abbreviated combined 212, 521
class 209, 524
combined 212, 525
complex 211, 525
conditional expressions 197, 211, 526
condition-name 211, 526
evaluation rules 213
glossary term 526
LIKE (relation condition) 200, 534
negated 212, 536
parentheses, using in 6, 197
relation 197, 541
sign 210, 543
simple 197, 543
switch-status 211, 545

Configuration Section 51
glossary term 526

Connectives 13
CONSOLE device-name

ASSIGN clause 69
nonreserved system-names 432-434
system-names 12

CONSOLE IS CRT clause 59
CONSOLE low-volume-I-O-name 62

ACCEPT statement 243
DISPLAY statement 291
nonreserved system-names 432-434
system-names 12

Constant-expressions
DATE-COMPILED phrase 139
format 137
glossary term 526
logical operators 138
parentheses, using in 6, 138
rules 137
VALUE clause 135, 137

Constant-name 105, 135
data description entry 105
global 29
glossary term 527
rules (Format 3 VALUE clause) 137
scope 32
user-defined word type 9

Contained program
directly 28
indirectly 28

Context-sensitive words 7, 16, 429
glossary term 527

Contiguous items
glossary term 527
record description entry 102

Continuation line 21
CONTINUE statement 284
Continued line, source format 21

Index

552 RM/COBOL Language Reference Manual
 First Edition

CONTROL phrase
ACCEPT statement 248, 250
DISPLAY statement 294, 295

Conventions and symbols 2
CONVERT phrase

ACCEPT statement 251
DISPLAY statement 296

CONVERTING phrase, INSPECT statement 326
COPY statement 35

BY phrase 35, 38
REPLACING phrase 35, 36
SUPPRESS phrase 35, 36

CORRESPONDING phrase
ADD statement 267
MOVE statement 341
SUBTRACT statement 409

COUNT clause, input CD entry 143
COUNT phrase, UNSTRING statement 413
COUNT special register 13
Counter, glossary term 527
COUNT-MAX special register 14
COUNT-MIN special register 14
Critical error conditions

indexed 227
relative 220
sequential 215

CRT STATUS clause 59
cs. See Currency sign.
Currency sign. See also Currency symbol.

CURRENCY SIGN clause, SPECIAL-NAMES
paragraph 60

glossary term 527
PICTURE character-string 118

CURRENCY SIGN clause 60
PICTURE character-string 118
SPECIAL-NAMES paragraph 60

Currency symbol. See also Currency sign.
CURRENCY-SIGN clause, SPECIAL-NAMES

paragraph 60
glossary term 527
PICTURE character-string 118

Current record
glossary term 527
READ statement 364

Current volume pointer
CLOSE statement, REEL and UNIT phrases 281
glossary term 527

CURSOR clause 60
CURSOR phrase, ACCEPT statement 252
CYCLE phrase, EXIT PERFORM statement 316

D
Data

external 107
structure, classes of 167

DATA BY phrase, INITIALIZE statement 322
Data clause

BLANK WHEN ZERO 107
data-name or FILLER 107
EXTERNAL 107
GLOBAL 108

glossary term 527
JUSTIFIED 109
level-number 109
OCCURS 110
PICTURE 112
REDEFINES 124
RENAMES 105, 125
SIGN 126
SYNCHRONIZED 128
USAGE 129
VALUE 135

Data description entry 103
BLANK WHEN ZERO clause 107
condition-name declaration 105
constant-name declaration 105
data-name or FILLER clause 107
EXTERNAL clause 107
GLOBAL clause 108
glossary term 527
JUSTIFIED clause 109
level-number 109
OCCURS clause 13, 103, 110
PICTURE clause 112
REDEFINES clause 124
RENAMES clause 105, 125
rules

condition-name 137
constant-name 137
VALUE clause 136

SIGN clause 126
SYNCHRONIZED clause 128
USAGE clause 129
VALUE clause 135

Data Division 83
77-level description entry 103
communication description entry 140
Communication Section 84, 100
data description entry 103, 104
data structures 167

classes of data 167
standard alignment rules 167

file description clauses 88
file description entry 86
File Section 83, 86
header 85
identifier 173
Linkage Section 83, 98
record description entry 102
reference modification 172, 194
screen description entry 153

screen field format 155
screen group format 153
screen literal format 154

Screen Section 84, 101
sort-merge file description entry 87
subscripting 170
table handling 174

references to table items 176
table definition 174

uniqueness of reference 168
qualification 168

Working-Storage Section 83, 98

 Index

 RM/COBOL Language Reference Manual 553
 First Edition

Data item
data pointer 115, 134, 136, 322
external 107
file status 214, 219, 226
glossary term 527
internal 29
variable-occurrence 110

DATA phrase, RECEIVE statement 371
Data pointer 115, 134, 136, 322
DATA RECORDS clause, file description entry 89
Data-name

global 28, 90, 108
glossary term 527
or FILLER clause 107
scope 32
user-defined word type 10

DATA-POINTER phrase, INITIALIZE statement 322
Date

ACCEPT FROM CENTURY-DATE statement 244
ACCEPT FROM CENTURY-DAY statement 244
ACCEPT FROM DATE statement 244
ACCEPT FROM DATE-AND-TIME statement 245
ACCEPT FROM DATE-COMPILED statement 245
listing format configuration 45
listing separator configuration 45

DATE phrase, ACCEPT FROM statement 244
DATE-AND-TIME phrase, ACCEPT FROM

statement 245
DATE-COMPILED paragraph 45
DATE-COMPILED phrase

ACCEPT FROM statement 245
constant-expressions 139

DATE-WRITTEN paragraph 45
Day

ACCEPT FROM DAY statement 245
ACCEPT FROM DAY-AND-TIME statement 245
ACCEPT FROM DAY-OF-WEEK statement 245

DAY phrase, ACCEPT FROM statement 245
DAY-AND-TIME phrase, ACCEPT FROM statement

245
DAY-OF-WEEK phrase, ACCEPT FROM statement

245
Debugging lines

DEBUGGING MODE clause, SOURCE-COMPUTER
paragraph 51

glossary term 527
source format 20, 22, 38

DEBUGGING MODE clause, SOURCE-COMPUTER
paragraph 51

Decimal point
DECIMAL-POINT clause, SPECIAL-NAMES

paragraph 16, 61
numeric literals 16
PICTURE character-string 117

DECIMAL-POINT clause, SPECIAL-NAMES
paragraph 61

ACCEPT statement
input conversion 251
output conversion 260

DISPLAY statement, output conversion 296
numeric literals 16
PICTURE character-string 117

Declarative sentence
DECLARATIVES, Procedure Division format 182
glossary term 527
USE statement 189

Declaratives
glossary term 527
Procedure Division format 182

De-edit
glossary term 528
MOVE statement 339

DEFAULT phrase, INITIALIZE statement 323
DEFAULT-USE-PROCEDURE keyword, COMPILER-

OPTIONS configuration record 191, 218, 223-225,
230-232, 366

DELETE FILE statement 287
DELETE statement (relative and indexed I-O) 285
DELIMITED phrase

STRING statement 406
UNSTRING statement 413

Delimited scope statement 23-25
glossary term 528

Delimiter
glossary term 528
pseudo-text 7

DELIMITER phrase, UNSTRING statement 413
DEPENDING ON phrase

GO TO statement 318
RECORD VARYING clause 95

DERESERVE keyword, COMPILER-OPTIONS
configuration record 423, 430

Descending key
glossary term 528
OCCURS clause, KEY phrase 111

DESCENDING phrase
MERGE statement 334
OCCURS clause 110
SORT statement 394

Destination
glossary term 528
output communication description entry 146

DESTINATION clause, output CD entry 146
DESTINATION COUNT clause, output CD entry 146
Determining line and position 256, 298
Determining the method of scheduling 240
Device-name

ASSIGN clause
file control entry 69
sort-merge file control entry 78

glossary term 528
nonreserved system-names 433
system-names 12

Digit position, glossary term 528
Directive sentences 25
Directive statements 23
Directly contained program 28
DISABLE statement 288
DISC device-name

ASSIGN clause 69
nonreserved system-names 433
system-names 12

Disjoint sets 7

Index

554 RM/COBOL Language Reference Manual
 First Edition

DISK device-name
ASSIGN clause 69
nonreserved system-names 433
system-names 12

DISPLAY . . . UPON statement 291
DISPLAY device-name

ASSIGN clause 69
system-names 12

DISPLAY Screen-Name statement 301
DISPLAY statement (terminal I-O) 293
DISPLAY usage

data description entry 133
screen description entry 166

DIVIDE statement 192, 303
Division header

Data Division 85
Environment Division 48
glossary term 528
Identification Division 43
Procedure Division 179

Divisions 26. See also Division header.
Data 26, 83
Environment 26, 47
glossary term 528
Identification 26, 43
Procedure 26, 179

DOWN BY phrase, SET statement 389
DUPLICATES phrase

ALTERNATE RECORD KEY clause, file control
entry 76

DELETE statement 285
I-O status value 43 229
RECORD KEY clause, file control entry 76
REWRITE statement 377, 378
SORT statement 395
WRITE statement 418, 421

Dynamic access
glossary term 528
mode

for indexed file organization 226
for relative file organization 219

E
EBCDIC code-name 55, 57

nonreserved system-names 432
system-names 12
translation 58

ECHO phrase, ACCEPT statement 253
Editing (PICTURE clause)

fixed insertion 119
floating insertion 120
general rules 118
simple insertion 119
special insertion 119
zero suppression 121

Editing characters 115
glossary term 529

Elementary items 102
glossary term 529

ELSE phrase, IF statement 320
ENABLE statement 307

Enabling and disabling queues 242
END KEY clause

input CD entry 143
input-output CD entry 147

End of procedure division, glossary term 529
End program header 14, 27, 34

glossary term 529
END-OF-PAGE phrase, WRITE statement 420
ENTER statement 310
Entry

glossary term 529
program structure 26

ENTRY-LINKAGE-SETTINGS keyword, COMPILER-
OPTIONS configuration record 99

Environment clause, glossary term 529
Environment Division 47

Configuration Section 51
OBJECT-COMPUTER paragraph 52
SOURCE-COMPUTER paragraph 51
SPECIAL-NAMES paragraph 53

Input-Output Section 64
FILE-CONTROL paragraph 65
I-O-CONTROL paragraph 79

EOP phrase. See END-OF-PAGE phrase.
EQUAL relation condition, conditional expressions 197
ERASE clause, screen description entry 161
ERASE phrase

ACCEPT statement 253
DISPLAY statement 296

ERROR KEY clause, output CD entry 146
Error key values 152
ERROR phrase, USE statement 189
Escape condition, ACCEPT Screen-Name statement 265
ESCAPE KEY, ACCEPT statement 245
ESCAPE phrase

ACCEPT (terminal I-O)statement 253
ACCEPT Screen-Name statement 265

EVALUATE statement 197, 311
EXCEPTION phrase

ACCEPT statement 253
CALL PROGRAM statement 276
CALL statement 274
USE statement 189

EXCEPTION STATUS, ACCEPT statement 245
Exclusive file

file locking 233
glossary term 529

Exclusive mode
file locking 72, 233
glossary term 529

EXCLUSIVE OR logical operator,
constant-expressions 138

EXCLUSIVE phrase
LOCK MODE clause, file control entry 72
OPEN statement 345

file locking 233
Execution time 184

glossary term 529
EXIT statement 315
Explicit scope terminator

glossary term 529
in Procedure Division statements 25

 Index

 RM/COBOL Language Reference Manual 555
 First Edition

Exponentiation
arithmetic-expressions 197
constant-expressions 138

Expressions
arithmetic 195
concatenation 19
conditional 197, 211
constant 137
glossary term 529
regular 201

Extend mode
glossary term 529
OPEN statement 349

EXTEND phrase
OPEN statement 345, 349
USE statement 190

Extended Binary Coded Decimal Interchange Code.
See EBCDIC code-name.

EXTERNAL clause
data description entry 107
file description entry 90

External data 107
glossary term 530

External data item
EXTERNAL clause, data description entry 107
glossary term 530

External data record, glossary term 530
External file connector

EXTERNAL clause, file description entry 90
glossary term 530

External objects 29
External switch

glossary term 530
mnemonic-names 62
SET statement (ON/OFF) 391
switch-names 12
switch-status condition 211

F
FALSE phrase

SET statement 389
VALUE clause 135

FALSE, selection subject or object 312
FD. See File description entry.
Feature-name 11

glossary term 530
SPECIAL-NAMES paragraph 61
system-names 12

Figurative constants 17
glossary term 530
symbolic-characters 63

File
file control entry 65
file description entry 86
glossary term 530
procedure division input-output

indexed 225
relative 219
sequential 214

sort-merge file control entry 78
sort-merge file description entry 87

File access name
ASSIGN clause

file control entry 69
sort-merge file control entry 78

glossary term 530
VALUE OF clause 97

File attribute conflict condition
DELETE FILE statement 287
glossary term 530
I-O status 39

indexed 229
relative 222
sequential 217

File availability 346
File clause

BLOCK CONTAINS 88
CODE-SET 89
DATA RECORDS 89
EXTERNAL 90
GLOBAL 90
glossary term 530
LABEL 90
LINAGE 91
RECORD 95
VALUE OF 97

File connector 28
external 90
glossary term 530

File control entry
ACCESS MODE clause 67
ALTERNATE RECORD KEY clause 76
ASSIGN clause 69

sort-merge file control entry 78
CODE-SET clause 70
COLLATING SEQUENCE clause 71
FILE STATUS clause 71
glossary term 530
LOCK MODE clause 72
ORGANIZATION clause 73
PADDING CHARACTER clause 74
RECORD DELIMITER clause 74
RECORD KEY clause 76
RESERVE clause 66, 77
SELECT clause 66, 78
sequential, relative, and indexed file organization 65
sort-merge file control entry 78

File description entry 86
BLOCK CONTAINS clause 88
CODE-SET clause 89
DATA RECORDS clause 89
EXTERNAL clause 90
GLOBAL clause 90
glossary term 530
LABEL RECORDS clause 90
LINAGE clause 91
RECORD clause 95
VALUE OF clause 97

File locking 233
CLOSE statement 282
LOCK MODE clause, file control entry 72
OPEN statement 345

Index

556 RM/COBOL Language Reference Manual
 First Edition

File organization
file control entry 65
glossary term 530
indexed 73, 225
ORGANIZATION clause, file control entry 73
relative 73, 219
sequential 73, 214

File position indicator
CLOSE statement 280
glossary term 531
indexed file 226
OPEN statement

input mode 348
I-O mode 349

READ statement 365
relative file 219
sequential file 214
START statement (relative and indexed I-O) 400

File Section
Data Division 83, 86
glossary term 531

FILE STATUS clause, file control entry 71
File status data item

indexed file 226
relative file 219
sequential file 214

FILE-CONTROL paragraph 65
glossary term 531
Input-Output Section 64

FILE-ID label-name
nonreserved system-names 433
system-names 12
VALUE OF clause 97

File-name 31
CLOSE statement 280
DELETE FILE statement 287
DELETE statement (relative and indexed I-O) 285
file control entry 67
file description entry 86-87
global 29, 90
glossary term 531
MERGE statement 333
MULTIPLE FILE TAPE clause 82
OPEN statement 345
qualifier 168
READ statement 364
RERUN clause 79
RETURN statement 375
SAME clause 80
scope 32
SORT statement 393
sort-merge description entry 87
START statement (relative and indexed I-O) 399
UNLOCK statement 411
USE statement 189
user-defined word type 10

FILLER clause
data description entry 107
screen description entry 153

FILLER phrase, INITIALIZE statement 323

FIRST phrase
INSPECT REPLACING statement 330
START statement 399

Fixed file attributes, glossary term 531
Fixed insertion editing 119
Fixed overlayable segment 186
Fixed permanent segment 186
Fixed portion 186
Fixed-length record 96

glossary term 531
Floating insertion editing 120
Footing area 91, 94

glossary term 531
FOR REMOVAL phrase, CLOSE statement 282
FORCE-USER-MODE keyword, RUN-FILES-ATTR

configuration record 233-234
FOREGROUND clause, screen description entry 161
FOREGROUND-COLOR clause, screen description

entry 161
Formal argument

glossary term 531
Linkage Section 83, 98, 173
procedure division header 181

Format
glossary term 531
source, program structure 20

FROM phrase
ACCEPT statement 243
PERFORM statement 354
PICTURE clause, screen description entry 164
RELEASE statement 374
REWRITE statement 379
SEND statement 385
SUBTRACT statement 408
WRITE statement 418

FULL clause, screen description entry 162

G
GIVING phrase

ADD statement 266
CALL statement 274
DIVIDE statement 304
MERGE statement 336
MULTIPLY statement 343
Procedure Division header 180
SORT statement 397
SUBTRACT statement 408

Global
condition-name 108
data-name 108
file-name 90
index-name 33

GLOBAL clause
data description entry 108
file description entry 90

Global name
file description entry 90
GLOBAL clause, data description enty 108
glossary term 531
inter-program identification module 28

GLOBAL phrase, USE statement 191

 Index

 RM/COBOL Language Reference Manual 557
 First Edition

GO TO statement 318
GOBACK statement 317
GREATER relation condition, conditional

expressions 197
Group item

glossary term 531
record description entry 102
variable length 111

H
High order end 199

glossary term 531
HIGH phrase

ACCEPT statement 255
DISPLAY statement 297

HIGHLIGHT clause, screen description entry 162
HIGHLIGHT phrase, ACCEPT statement 255
HIGH-VALUE (HIGH-VALUES) figurative constant

18, 55

I
Identification area, source format 20
Identification Division

program identification 43
AUTHOR, INSTALLATION, DATE-WRITTEN,

SECURITY and REMARKS paragraphs 45
DATE-COMPILED paragraph 45
PROGRAM-ID paragraph 44

Identifier
data-name 173
glossary term 531

IF statement 197, 320
Imperative

sentences 25
statements 23-25
verbs, list of 24

Imperative statements 23-25
glossary term 531

Implicit scope terminator
glossary term 532
in Procedure Division statements 25

Incompatible data 195
Independent enqueueing and dequeueing 241
Independent segments 187
Index data item

comparison with index-name 200
data description entry 134
glossary term 532

INDEX usage, data description entry 134
Index, glossary term 532
INDEXED BY phrase, OCCURS clause 110

defining index-names 112
Indexed file

access modes 226
alphabets 58
file control entry 65
glossary term 532

Indexed organization input-output 225
CLOSE statement 280
DELETE FILE statement 287
DELETE statement 285
file description entry 86
indexed file control entry 65
OPEN statement 345
READ statement 364
REWRITE statement 377
START statement 399
UNLOCK statement 411
WRITE statement 416

Indexed organization, glossary term 532
Index-name

comparisons 200
DESTINATION TABLE clause 140
glossary term 532
Linkage Section 83
OCCURS clause 110
PERFORM statement 351
scope 33
SEARCH statement (ALL) 381
SEARCH statement (serial) 381
SET statement 389
subscripts 171
user-defined word type 10

Indicator area 20
Indirectly contained program 28
Initial attribute 316
INITIAL clause

communication description entry 140, 141
PROGRAM-ID paragraph 44

Initial program 30, 33, 44
glossary term 532

Initial state 33, 98
glossary term 532

Initial state of a program
ALTER statements 33
GO TO statements 33
internal file connectors 33
PERFORM statements 33
VALUE clause 33

INITIALIZE statement 322
File Section 86
Linkage Section 99
POINTER usage 134
VALUE phrase 135

In-line comment
glossary term 532
source format 22

Input code set 56
INPUT device-name

ASSIGN clause 69
system-names 12

Input file 62
glossary term 532

Input mode
CLOSE statement 280
glossary term 532
OPEN statement 348

Index

558 RM/COBOL Language Reference Manual
 First Edition

INPUT phrase
DISABLE statement 289
ENABLE statement 308
OPEN statement 348
USE statement 190

Input procedure
glossary term 532
INPUT PROCEDURE phrase, SORT statement 395

Input-output areas, RESERVE clause 77
INPUT-OUTPUT device-name

ASSIGN clause 69
system-names 12

Input-output file
DELETE statement 286
glossary term 532
LOCK phrase, READ statement 368
REWRITE statement 377
UNLOCK statement 411
WRITE statement 416

Input-Output Section 64
glossary term 532

Input-output statements
ACCEPT (terminal I-O) 247
ACCEPT . . . FROM 243
ACCEPT MESSAGE COUNT 262
ACCEPT Screen-Name 263
CLOSE 280
DELETE (relative and indexed I-O) 285
DELETE FILE 287
DISABLE 288
DISPLAY 291
DISPLAY (terminal-I-O) 293
DISPLAY Screen-Name 301
ENABLE 307
glossary term 532
OPEN 345
PURGE 363
READ 364
RECEIVE 371
REWRITE 377
SEND 385
SET . . . TO ON/OFF 389
START (relative and indexed I-O) 399
UNLOCK 411
WRITE 416

Insertion editing
fixed 119
floating 120
simple 119
special 119

INSPECT statement 326
INSTALLATION paragraph 45
Integer 16

constant-expressions 137
glossary term 532

Interactive terminal I-O 237
Internal data 29

glossary term 533
Internal data item 29

glossary term 533
Internal file connector 29

glossary term 533

Internal objects 29
Inter-program communication 28
Intersecting sets 7
INTO phrase 97

READ statement 369
RECEIVE statement 371
RETURN statement 375
STRING statement 405
UNSTRING statement 413

Intra-record data structure, glossary term 533
Invalid key condition

glossary term 533
indexed file 228, 230
relative file 221, 223

INVALID KEY phrase
DELETE statement 286
indexed file 230
READ statement 370
relative file 223
REWRITE statement 379
START statement (relative and indexed I-O) 402
WRITE statement 421

Invocation of the object program by the Message
Control System 240

Invoking the object program 239
I-O mode

glossary term 533
OPEN statement 348

I-O phrase
OPEN statement 348
USE statement 190

I-O status
FILE STATUS, file control entry 71
glossary term 533

I-O status values
indexed file 226
relative file 219
sequential file 214

I-O TERMINAL phrase
DISABLE statement 289
ENABLE statement 308

I-O-CONTROL entry
glossary term 533
MULTIPLE FILE TAPE clause 82
RERUN clause 79
SAME clause 80

I-O-CONTROL paragraph
glossary term 533
Input-Output Section 64, 79

J
JUSTIFIED clause

data description entry 109
screen description entry 162

 Index

 RM/COBOL Language Reference Manual 559
 First Edition

K
Key

file control entry 76
alternate 76
prime 76

glossary term 533
OCCURS clause, KEY phrase 111

Key of reference
glossary term 533
OPEN statement

input mode 348
I-O mode 349

READ statement 368
START statement 401

KEY phrase
DISABLE statement 290
ENABLE statement 309
MERGE statement 333
OCCURS clause 110
READ statement 368
SORT statement 393
START statement (relative and indexed I-O) 400

KEYBOARD device-name
ASSIGN clause 69
nonreserved system-names 433
system-names 12

Keyword
glossary term 533
reserved word 13

L
LABEL label-name

system-names 12
VALUE OF clause 97

LABEL RECORDS clause, file description entry 90
Language structure 5
Language-name

ENTER statement 310
glossary term 533

LAST phrase, START statement 399
LEADING phrase

INSPECT REPLACING statement 330
INSPECT TALLYING statement 330
SIGN clause 126

LENGTH operator, constant-expressions 138
LENGTH special register 14, 392
LESS relation condition, conditional expressions 197
Letters

glossary term 533
in character sets 5

Level indicator 86
CD 100
FD 87
glossary term 533
SD 87

Level-number
data description entry 102, 109
glossary term 534
user-defined word type 10

Library text
COPY statement 22, 35
glossary term 534
REPLACING phrase, COPY statement 36

Library-name
COPY statement 35
glossary term 534
scope 31
user-defined word type 10

LIKE relation condition
conditional expressions 197, 200
glossary term 534

LINAGE clause, file description entry 91
LINAGE-COUNTER

glossary term 534
special register 14, 87, 92, 170

LINE clause, screen description entry 163
LINE phrase

ACCEPT Screen-Name statement 263
ACCEPT statement (terminal I-O) 256
DISPLAY Screen-Name statement 301
DISPLAY statement (terminal I-O) 297

Line sequential
glossary term 534
record delimiting technique 73, 75

Lines
blank 21
comment 22
continuation 21
continued 21
debugging 20, 22, 38
in-line comment 22

LINE-SEQUENTIAL record delimiting technique
nonreserved system-names 433
RECORD DELIMITER clause 75
system-names 12

Linkage Section
Data Division 83, 98
glossary term 534

LISTING device-name
ASSIGN clause 69
nonreserved system-names 433
system-names 12

LISTING-DATE-FORMAT keyword, COMPILER-
OPTIONS configuration record 45

LISTING-DATE-SEPARATOR keyword, COMPILER-
OPTIONS configuration record 45

Literal alphabets 57
Literals 16

and figurative constants 17
glossary term 534
nonnumeric 17
numeric 16

Local names 28
Lock mode

file locking 233
glossary term 534
record locking 234

LOCK MODE clause
file control entry 72
file locking 233
record locking 234

Index

560 RM/COBOL Language Reference Manual
 First Edition

LOCK phrase
CLOSE statement 282
OPEN statement 345

file locking 233
READ statement 368

automatic record locking 235
manual record locking 236

Logic error condition
indexed file 229
relative file 222
sequential file 217

Logical operator
AND 212
glossary term 534
meanings 211
NOT 212
OR 212

Logical page 91
glossary term 534

Logical record
ACCESS MODE clause 68
BLOCK CONTAINS clause 88
EXTEND phrase, OPEN statement 349
FILLER clause 107
glossary term 534
level-number 109
MERGE statement 335
organization input-output 216, 221, 228
PADDING CHARACTER clause 74
READ statement 364
RECORD clause 96
RELEASE statement 374
RENAMES clause 125
RETURN statement 375
REWRITE statement 377
SAME RECORD AREA clause 81
SORT statement 396
START statement (relative and indexed I-O) 400
WRITE statement 416

Low order end 199
glossary term 534

LOW phrase
ACCEPT statement 255
DISPLAY statement 297

Lowercase letters, character set 5
LOWLIGHT clause, screen description entry 162
LOWLIGHT phrase, ACCEPT statement 255
LOW-VALUE (LOW-VALUES) figurative constant 18,

55
Low-volume-I-O-name

ACCEPT statement 243
DISPLAY statement 291
glossary term 535
nonreserved system-names 432
SPECIAL-NAMES paragraph 62
system-names 12

M
MAGNETIC-TAPE device-name

ASSIGN clause 69
nonreserved system-names 433
system-names 12

Manual multiple
glossary term 535
record locking 72, 236

MANUAL phrase, LOCK MODE clause, file control
entry 72

Manual record locking modes 72, 236
glossary term 535

Manual single
glossary term 535
record locking 72, 236

Mass storage control system, glossary term 535
Mass storage file, glossary term 535
Mass storage, glossary term 535
MCS. See Message Control System.
Memory allocation 134
MEMORY clause 52
Merge

alphabet-name 56
MERGE statement 333
RETURN statement 375
sort-merge file control entry 78
sort-merge file description entry 87

MERGE device-name, system-names 12
Merge file

glossary term 535
sort-merge file control entry 78

MERGE statement 333
restrictions 189

Message Control System 9, 84, 140
communication facility 238
DISABLE statement 288
ENABLE statement 307
glossary term 535
interface area 140
PURGE statement 363
RECEIVE statement 371
SEND statement 385

MESSAGE COUNT clause, input CD entry 143
MESSAGE COUNT phrase, ACCEPT statement 262
Message count, glossary term 535
MESSAGE DATE clause

input CD entry 143
input-output CD entry 147

Message indicators 241
glossary term 535
SEND statement 385

MESSAGE phrase, RECEIVE statement 372
Message segments

communication 241
glossary term 535

MESSAGE TIME clause
input CD entry 143
input-output CD entry 147

 Index

 RM/COBOL Language Reference Manual 561
 First Edition

Messages
communication 241
compiler 435
glossary term 535

Mnemonic-name
ACCEPT statement 243
DISPLAY statement 291
scope 31
SEND statement 387
SET statement 390
SPECIAL-NAMES paragraph 61
user-defined word type 10
WRITE statement 419

MODE
ACCESS clause, file control entry 67
DEBUGGING clause, SOURCE-COMPUTER

paragraph 51
LOCK clause, file control entry 72

MODE IS BLOCK phrase, ACCEPT statement 257
MODE IS BLOCK phrase, DISPLAY statement 298
Modes

access 67, 214, 219, 226. See also Dynamic access,
Random access, and Sequential access.

file locking 72, 233
of operation, arithmetic statements 192
record locking 72, 235

MOVE statement 338
MULTIPLE FILE TAPE clause, I-O-CONTROL entry

82
MULTIPLE phrase, LOCK MODE clause, file control

entry 72
Multiple record locking modes 72, 234, 237

glossary term 536
MULTIPLY statement 192, 343

N
Names

global 28
local 28

Native character set 52
glossary term 536

NATIVE code-name 54
Native collating sequence 52

glossary term 536
Negated condition 212

negated combined, glossary term 536
negated simple, glossary term 536

NEGATIVE sign condition, conditional expressions 210
Nested source programs 28
Next executable sentence 185

glossary term 536
Next executable statement 185

glossary term 536
NEXT operator, constant-expressions 138
NEXT PAGE phrase, WRITE statement 419
NEXT phrase, READ statement 364
Next record

file position indicator, organization input-output 214,
219, 226

glossary term 536
MERGE statement 335

READ statement 365
RETURN statement 375
START statement 401

NEXT SENTENCE phrase
ACCEPT statement 253
IF statement 320
SEARCH statement (ALL) 382
SEARCH statement (serial) 381

NO ADVANCING phrase, DISPLAY statement 291
NO BEEP phrase, ACCEPT statement 249
NO BELL phrase, ACCEPT statement 249
NO DATA phrase, RECEIVE statement 371
NO HIGHLIGHT clause, screen description entry 162
NO LOCK phrase, READ statement 368
NO REWIND phrase

CLOSE statement 281
OPEN statement 345, 350

Noncontiguous items
glossary term 536
record description entry 98, 103

Nonnumeric item 264
glossary term 536

Nonnumeric literal continuation 21
Nonnumeric literals 17

glossary term 536
NOT AT END phrase

indexed file 232
READ statement 367
relative file 225
RETURN statement 375
sequential file 218

NOT END-OF-PAGE phrase, WRITE statement 420
NOT ESCAPE phrase

ACCEPT Screen-Name statement 265
ACCEPT statement (terminal I-O) 253

NOT EXCEPTION phrase
ACCEPT statement 253
CALL statement 274

NOT INVALID KEY phrase
DELETE statement 286
indexed file 231
READ statement 370
relative file 224
REWRITE statement 379
START statement (relative and indexed I-O) 402
WRITE statement 421

NOT logical operator
abbreviated combined relation conditions 212
constant-expressions 138
negated conditions 212

NOT OPTIONAL phrase, SELECT clause, file
control entry 67

NOT OVERFLOW phrase
STRING statement 406
UNSTRING statement 414

NOT SIZE ERROR phrase
ADD statement 267
common rules 194
COMPUTE statement 283
DIVIDE statement 304
MULTIPLY statement 343
SUBTRACT statement 409

Index

562 RM/COBOL Language Reference Manual
 First Edition

NULL (NULLS) figurative constant 18, 198, 272, 389
Null, glossary term 536
Numeric character 114, 116, 118

glossary term 536
PICTURE character-string 120
user-defined words 8
zero suppression editing 121

Numeric class 167
NUMERIC class condition

COMPUTATIONAL usage 130
COMPUTATIONAL-3 usage 131
COMPUTATIONAL-6 usage 133
conditional expressions 209
DISPLAY usage 133

Numeric data item 114
Numeric edited data item 115
Numeric item

glossary term 536
operational sign 126

Numeric literals 16
glossary term 536

NUMERIC phrase, INITIALIZE statement 322
NUMERIC SIGN clause, SPECIAL-NAMES paragraph

62, 126
NUMERIC-EDITED phrase, INITIALIZE statement 322

O
Object computer entry 52

glossary term 536
Object of entry, glossary term 536
Object program 43, 47, 83, 179, 239

glossary term 536
Object time, glossary term 537
OBJECT-COMPUTER paragraph 52

glossary term 537
Objects

external 29
internal 29

OBJECT-VERSION keyword, COMPILER-OPTIONS
configuration record 508

Obsolete element, glossary term 537
OCCURS clause, data description entry 13, 103,

110, 138
OFF phrase

ACCEPT statement 255
REPLACE statement 39
SET statement 389

OMITTED phrase
CALL PROGRAM statement 277
CALL statement 272
LABEL RECORDS clause 90

ON phrase, SET statement 389
Open mode, glossary term 537
OPEN statement 345
Operand

glossary term 537
overlapping operands 194

Operational sign
glossary term 537
NUMERIC SIGN clause, SPECIAL-NAMES

paragraph 62, 126

Optional file
glossary term 537
I-O status 216, 221, 228, 348

OPTIONAL phrase, SELECT clause, file control
entry 67

Optional words 13
glossary term 537

OR logical operator
abbreviated combined relation conditions 212
combined conditions 212
constant-expressions 138

Organization
indexed file 225
relative file 219
sequential file 214

ORGANIZATION clause, file control entry 73
Organization of this guide 1
Output code set 56
OUTPUT device-name

ASSIGN clause 69
system-names 12

Output file 62
glossary term 537
MERGE statement 333
SORT statement 393

Output mode
glossary term 537
OPEN statement 348

OUTPUT phrase
DISABLE statement 289
ENABLE statement 308
OPEN statement 348
USE statement 190

Output procedure
glossary term 537
MERGE statement 185, 187, 189, 238, 333
SORT statement 185, 187, 189, 238, 393

OUTPUT PROCEDURE phrase
MERGE statement 335
SORT statement 396

OVERFLOW phrase
CALL statement 274
STRING statement 406
UNSTRING statement 414

Overlapping operands 194

P
PACKED-DECIMAL usage, data description entry 131
PADDING CHARACTER clause, file control entry 74
Padding characters 74

glossary term 537
Page body 91

glossary term 537
PAGE phrase

SEND statement 388
WRITE statement 419

Paragraph 26, 183
glossary term 538

 Index

 RM/COBOL Language Reference Manual 563
 First Edition

Paragraph header
AUTHOR 43
DATE-COMPILED 43
DATE-WRITTEN 43
FILE-CONTROL 50
glossary term 538
INSTALLATION 43
I-O-CONTROL 50
OBJECT-COMPUTER 48
PROGRAM-ID 43
REMARKS 43
SECURITY 43
SOURCE-COMPUTER 48
SPECIAL-NAMES 48

PARAGRAPH phrase, EXIT PARAGRAPH
statement 316

Paragraph-name
glossary term 538
Procedure Division paragraph 182
qualification 184
scope 31
user-defined word type 10

Parentheses
arithmetic expressions 6, 195, 196
as separators 6
binary allocation override 6, 131, 132
conditions 6, 197
constant-expressions 6, 138
reference modifiers 6, 172
subscripts 6, 170

Patterns
glossary term 538
LIKE relation condition 198
regular expressions 201

PERFORM phrase, EXIT PERFORM statement 316
PERFORM statement 351

conditional expressions 197
restrictions 188

Period 61
DECIMAL POINT IS COMMA clause,

SPECIAL-NAMES paragraph 61
numeric literals 16
PICTURE character-string 117

Permanent error condition
indexed file 229
relative file 221
sequential file 216

Permanent segments 52
Phrase

conditional 24
glossary term 538

Physical page 91, 420
glossary term 538

Physical record 88, 233
glossary term 538

PICTURE character-strings 20
in PICTURE clause (data description entry) 112, 126
in PICTURE clause (screen description entry) 164

PICTURE clause
data description entry 105, 112
editing rules 118
screen description entry 164

Picture symbol precedence 122
Pointer data items

comparison 200
data description entry 134
glossary term 538
INITIALIZE statement 322
LIKE relation condition 201
NULL (NULLS) figurative constant 18
pattern 201
SET statement 389
usage 134

POINTER phrase
STRING statement 406
UNSTRING statement 413

POINTER usage, data description entry 134
POSITION phrase

ACCEPT statement (terminal I-O) 256
DISPLAY statement (terminal I-O) 297
MULTIPLE FILE TAPE clause, I-O-CONTROL

entry 82
POSITIVE sign condition, conditional expressions 210
PREVIOUS phrase, READ statement 364
Previous record, glossary term 538
Prime record key

DUPLICATES phrase, REWRITE statement 378
glossary term 538
KEY phrase, READ statement 368
OPEN statement

INPUT phrase 348
I-O phrase 349

ORGANIZATION clause, file control entry 73
RECORD KEY clause, file control entry 76, 225
START statement (relative and indexed I-O) 400

SIZE phrase 402
WRITE statement 418

PRINT device-name
ASSIGN clause 69
nonreserved system-names 433
system-names 12

PRINTER device-name
ASSIGN clause 69
nonreserved system-names 433
system-names 12

PRINTER-1 device-name
ASSIGN clause 69
nonreserved system-names 433
system-names 12

Procedure branching statements
ALTER 269
CALL 270
CALL PROGRAM 276
EXIT 315
EXIT PROGRAM 315
glossary term 538
GO TO 318
GOBACK 317
MERGE 333
PERFORM 351
SORT 393

Index

564 RM/COBOL Language Reference Manual
 First Edition

Procedure Division
common rules 192
communication facility 238

message segments 241
messages 241

conditional expressions 197
header

GIVING phrase 180
RETURNING phrase 180
USING phrase 179

indexed input/output 225
interactive input/output 237
order of execution 184
paragraph 183
procedure references 184
procedures 183
record locking 234
relative input/output 219
section 183
segmentation 186
sequential input/output 214
sort-merge 238
statement 184
structure 182
transfers of control, implicit and explicit 185

Procedure references 184
Procedure-name

ALTER statement 269
glossary term 539
GO TO statement 318
MERGE statement 333
PERFORM statement 351
procedures 183
SORT statement 393

Procedures 183
glossary term 538

Program
common 30
initial 30

Program collating sequence 52
MERGE statement 334
SORT statement 395

PROGRAM COLLATING SEQUENCE clause 52
Program identification entry 44

glossary term 539
PROGRAM phrase, EXIT PROGRAM statement 315
Program structure 20

sentences, imperative 25
statements, verbs 23

PROGRAM-ID paragraph 44
PROGRAM-ID special register 14
Program-name 32

CALL PROGRAM statement 276
CALL statement 271
CANCEL statement 278
END PROGRAM header 34
glossary term 539
PROGRAM-ID paragraph 14, 44
scope 31
user-defined word type 10

PROMPT phrase, ACCEPT statement 257

Pseudo-text
COPY statement 35, 36
glossary term 539
REPLACE statement 39, 40

Pseudo-text delimiter 7
COPY statement 35
glossary term 539
REPLACE statement 39

Punctuation
characters 6, 20, 204, 205

Punctuation character, glossary term 539
PURGE statement 363

Q
Qualification 32, 168

condition-names 169
data-names 169
LINAGE-COUNTER 169
paragraph-names 184
screen-name 169
split-key-name 169
text-name 35-36

Qualified data-name 170
glossary term 539

Qualifier, glossary term 539
QUEUE clause, input CD entry 142
Queue hierarchy 242
Queue name 242

glossary term 539
Queues

communication 241
glossary term 539

Quotation marks, using as separators 6
QUOTE (QUOTES) figurative constant 18

R
Random access

glossary term 540
mode

for indexed file organization 226
for relative file organization 219

RANDOM device-name
ASSIGN clause 69
system-names 12

READ statement 97, 364
RECEIVE statement 371
Record area 95

glossary term 540
RECORD clause, file description entry 95
RECORD DELIMITER clause, file control entry 74
Record delimiting techniques 11

binary sequential 74
glossary term 540
line sequential 75
STANDARD-1 75

 Index

 RM/COBOL Language Reference Manual 565
 First Edition

Record description entry 102
Communication Section 100
File Section 86
glossary term 540
Linkage Section 98
Working-Storage Section 98

Record description, glossary term 540
RECORD KEY clause, file control entry 76
Record key, glossary term 540
Record locking 234

CLOSE statement 282
DELETE statement 286
LOCK MODE clause, file control entry 72
modes

automatic 72, 235
manual 72, 236
multiple 72, 237
single 72, 236

READ statement 368
REWRITE statement 377
UNLOCK statement 411
WRITE statement 417

Record locking mode
automatic 72, 235
glossary term 540
manual 72, 236
multiple 72, 237
single 72, 236

Record number, glossary term 540
Record, glossary term 540
Record-name

global 28
glossary term 540
RELEASE statement (sort) 374
REWRITE statement 377
scope 32
user-defined word type 10
WRITE statement 416

REDEFINES clause, data description entry 124
REEL phrase, CLOSE statement 281
Reel, glossary term 540
Reference modification 172, 194
Reference modifiers

glossary term 540
parentheses, using in 6, 172

References to table items 176
Regular expressions 201

glossary term 540
Relation character, glossary term 541
Relation condition 137, 197

glossary term 541
Relation, glossary term 540
Relational operator 16, 137

condition-name 105
glossary term 541
meanings 198
SEARCH statement (ALL) 380
START (relative and indexed I-O) statement 399

Relationship of the object program to the message
control system and communication devices 239

Relative file
access modes 219
file control entry 65
glossary term 541

Relative key
file control entry 67
glossary term 541

RELATIVE KEY phrase, ACCESS MODE clause,
file control entry 67

Relative organization input-output 219
CLOSE statement 280
DELETE FILE statement 287
DELETE statement 285
file description entry 86
OPEN statement 345
READ statement 364
relative file control entry 65
REWRITE statement 377
START statement 399
UNLOCK statement 411
WRITE statement 416

Relative organization, glossary term 541
Relative record number, glossary term 541
RELEASE statement 96, 111, 374
REMAINDER phrase, DIVIDE statement 305
REMARKS paragraph 45
REMOVAL phrase, CLOSE statement 282
RENAMES clause, data description entry 105, 125
REPLACE statement 39
REPLACING phrase

COPY statement 35, 36
INITIALIZE statement 322
INSPECT statement 326
SEND statement 388

REQUIRED clause, screen description entry 165
RERUN clause, I-O-CONTROL entry 79
Rerun-name, RERUN clause 50, 64, 79
RESERVE clause, file control entry 77
Reserved words 7, 13

context-sensitive 16, 429
glossary term 541
list of 423-428
special symbols 431

Resource, glossary term 541
Restrictions on program flow 188
Resultant identifier, glossary term 541
RETURN statement 97, 375
RETURN-CODE special register 15
RETURNING phrase

CALL statement 274
Procedure Division header 180

REVERSE clause, screen description entry 165
REVERSE phrase

ACCEPT statement 258
DISPLAY statement 298

REVERSED clause, screen description entry 165
REVERSED phrase

ACCEPT statement 258
DISPLAY statement 298
OPEN statement 345, 348

Index

566 RM/COBOL Language Reference Manual
 First Edition

REVERSE-VIDEO clause
DISPLAY statement 298
screen description entry 165

REVERSE-VIDEO phrase, ACCEPT statement 258
REWIND phrase. See NO REWIND phrase.
REWRITE statement 96, 111, 377
ROUNDED phrase 193

ADD statement 267
common rules 193
COMPUTE statement 283
DIVIDE statement 304, 305
MULTIPLY statement 343
SUBTRACT statement 409

Routine-name
ENTER statement 310
glossary term 541
user-defined word type 10

RUN phrase, STOP statement 404
Run unit

CALL PROGRAM statement 276
CALL statement 270
glossary term 541
inter-program communication 28

RUN-FILES-ATTR configuration record, FORCE-
USER-MODE keyword 233-234

S
SAME clause, I-O-CONTROL entry 80
Scheduled initiation of the object program 240
Scope of

names 31
statements 25

Scope terminator 24-25
Screen clause

AUTO 157
BACKGROUND 157
BACKGROUND-COLOR 157
BELL 158
BLANK LINE 158
BLANK REMAINDER 159
BLANK SCREEN 159
BLANK WHEN ZERO 159
BLINK 160
COLUMN 160
ERASE 161
FOREGROUND 161
FOREGROUND-COLOR 161
FULL 162
glossary term 542
HIGHLIGHT 162
JUSTIFIED 162
LINE 163
LOWLIGHT 162
PICTURE 164
REQUIRED 165
REVERSE 165
SECURE 165
SIGN 166
UNDERLINE 166
USAGE 166
VALUE 166

Screen description entry 153
AUTO clause 157
BACKGROUND clause 157
BACKGROUND-COLOR clause 157
BELL clause 158
BLANK LINE clause 158
BLANK REMAINDER clause 159
BLANK SCREEN clause 159
BLANK WHEN ZERO clause 159
BLINK clause 160
COLUMN clause 160
ERASE clause 161
FOREGROUND clause 161
FOREGROUND-COLOR clause 161
FULL clause 162
glossary term 542
HIGHLIGHT clause 162
JUSTIFIED clause 162
LINE clause 163
LOWLIGHT 162
PICTURE clause 164
REQUIRED clause 165
REVERSE clause 165
SECURE clause 165
SIGN clause 166
UNDERLINE clause 166
USAGE clause 166
VALUE clause 166

Screen item, glossary term 542
Screen Section

Data Division 84, 101
glossary term 542

Screen-name
ACCEPT Screen-Name statement 263
DISPLAY Screen-Name statement 301
glossary term 542
qualification 168
scope 31
user-defined word type 10

SD. See Sort-merge file description entry.
SEARCH statement 197, 380
Section header

Data Division
Communication Section 85, 100
File Section 85, 86
Linkage Section 85, 98
Screen Section 85, 101
Working-Storage Section 85, 98

Environment Division
Configuration Section 48, 51
Input-Output Section 50, 64

glossary term 542
Procedure Division, section-name section 182

 Index

 RM/COBOL Language Reference Manual 567
 First Edition

SECTION phrase
Communication Section header 100
Configuration Section header 51
EXIT SECTION statement 316
File Section header 86
Input-Output Section header 64
Linkage Section header 98
Procedure Division Section header 179
Screen Section header 101
Working-Storage Section header 98

Section-name
glossary term 542
qualification 184
scope 31
section header 182
user-defined word type 10

Sections 26
glossary term 542

SECURE clause, screen description entry 165
SECURE phrase, ACCEPT statement 255
SECURITY paragraph 45
SEGMENT phrase, RECEIVE statement 373
Segmentation 186
Segmentation classification 188
SEGMENT-LIMIT clause 52
Segment-number

glossary term 542
section header 182
segmentation 186
SEGMENT-LIMIT clause 52
user-defined word type 11

Segments 186
message 241

SELECT clause
file control entry 66
sort-merge file control entry 78

Selection object, EVALUATE statement 311
Selection subject, EVALUATE statement 311
SEND statement 385
Sentences 25

conditional 25
directive 25
glossary term 542
imperative 25

SEPARATE CHARACTER phrase, SIGN clause 126
Separately compiled program, glossary term 542
Separators

colons 7
glossary term 542
list of 5
parentheses 6
pseudo-text delimiter 7
quotation marks 6
rules for forming 6

SEQUENCE clause
indexed file COLLATING 71
MERGE COLLATING 334
PROGRAM COLLATING 52
SORT COLLATING 395

Sequence number, illustrated 20

Sequential access
glossary term 542
mode

for indexed file organization 226
for relative file organization 219
for sequential file organization 214

Sequential file
access modes 214
file control entry 65
glossary term 543

Sequential organization input-output 214
CLOSE statement 280
DELETE FILE statement 287
file description entry 86
OPEN statement 345
READ statement 364
REWRITE statement 377
sequential file control entry 65
UNLOCK statement 411
WRITE statement 416

Sequential organization, glossary term 543
SET statement 389
Shared file 233

glossary term 543
Shared file environment 233-234

glossary term 543
Shared mode

file locking 72, 233, 234
glossary term 543

Sharing in a run unit
data 30
files 30

Sign, NUMERIC SIGN clause, SPECIAL-NAMES
paragraph 62, 126

SIGN clause
data description entry 126
screen description entry 166

Sign condition 210
glossary term 543

Simple condition 197
glossary term 543

Simple insertion editing 119
Single record locking modes 72, 234, 236

glossary term 543
Size error condition

ADD statement 267
common rules 193
COMPUTER statement 283
DIVIDE statement 304
MULTIPLY statement 343
SUBTRACT statement 409

SIZE ERROR phrase
ADD statement 267
common rules 193
COMPUTE statement 283
DIVIDE statement 304
MULTIPLY statement 343
SUBTRACT statement 409

SIZE operator, constant-expressions 138

Index

568 RM/COBOL Language Reference Manual
 First Edition

SIZE phrase
ACCEPT statement 258
DISPLAY statement 299
START statement (relative and indexed I-O) 402

SIZE, MEMORY clause 52
SORT device-name, system-names 12
Sort file 78

glossary term 543
SORT statement 393

restrictions 189
Sort-merge 238

alphabet-name 56
MERGE statement 333
RELEASE statement 374
RETURN statement 375
SORT statement 393
sort-merge file control entry 78
sort-merge file description entry 87

SORT-MERGE device-name, system-names 12
Sort-merge file control entry

ASSIGN clause 78
SELECT clause 78

Sort-merge file description entry 87
DATA RECORDS clause 89
glossary term 543
RECORD clause 95

SORT-WORK device-name
ASSIGN clause 69
nonreserved system-names 433
system-names 12

SOURCE clause, input CD entry 143
Source computer entry, glossary term 543
Source format 20

glossary term 543
Source program

general format 27
glossary term 543

Source, glossary term 543
SOURCE-COMPUTER paragraph 51

glossary term 544
SPACE (SPACES) figurative constant 17
Special character word, glossary term 544
Special characters 16

glossary term 544
Special insertion editing 119
Special names entry, glossary term 544
Special registers 13, 168

ADDRESS 13, 98, 181, 198, 272, 274
COUNT 13
COUNT-MAX 14
COUNT-MIN 14
glossary term 544
LENGTH 14, 392
LINAGE-COUNTER 14, 87, 92, 170
PROGRAM-ID 14
RETURN-CODE 15
WHEN-COMPILED 15

Special symbols 431
SPECIAL-NAMES paragraph 53

glossary term 544

Split key, glossary term 544
Split-key-name

ALTERNATE RECORD KEY clause 76
global 29, 90
glossary term 544
READ statement 364, 368
RECORD KEY clause 76
scope 32
START statement 399
user-defined word type 11

Standard alignment rules 167
Standard data format, glossary term 544
STANDARD phrase, LABEL RECORDS clause 90
STANDARD-1

code-name 54
record delimiting technique 75

STANDARD-2, code-name 54
START operator, constant-expressions 139
START statement (relative and indexed I-O) 399
Statements 23

conditional 23
delimited scope 23-25
directive 23, 25
glossary term 545
imperative 23-25
nesting 25

STATUS clause. See FILE STATUS clause.
STATUS KEY clause

input CD entry 143
input-output CD entry 147
output CD entry 146

Status values. See I-O status values.
STOP statement 404
STRING statement 405
Subject of entry, glossary term 545
Subprogram

CALL statement 271
glossary term 545

Sub-queue, glossary term 545
SUB-QUEUE-1 clause, input CD entry 142
SUB-QUEUE-2 clause, input CD entry 143
SUB-QUEUE-3 clause, input CD entry 143
Subscripted data item, glossary term 545
Subscripting 170
Subscripts 170

evaluation 192
glossary term 545
parentheses, using in 6, 170

SUBTRACT statement 192, 408
SUPPRESS phrase

COPY statement 35, 36
SUPPRESS-FILLER-IN-SYMBOL-TABLE keyword,

COMPILER-OPTIONS configuration record 515
Suppression editing 121
SUPPRESS-LITERAL-BY-CONTENT keyword,

COMPILER-OPTIONS configuration record 273
SWITCH-1-SWITCH-8 switch-names

nonreserved system-names 432
SPECIAL-NAMES paragraph 61
system-names 12

 Index

 RM/COBOL Language Reference Manual 569
 First Edition

Switch-name 11
glossary term 545
SPECIAL-NAMES paragraph 61
SWITCH-1-SWITCH-8 and UPSI-0-UPSI-7 432

Switch-status condition 211
glossary term 545

Switch-status, SET statement (ON/OFF) 390, 391
SYMBOLIC CHARACTERS clause 63
SYMBOLIC DESTINATION clause, output CD entry

146
SYMBOLIC QUEUE clause, input CD entry 142
SYMBOLIC SOURCE clause, input CD entry 143
SYMBOLIC SUB-QUEUE-1 clause, input CD entry 142
SYMBOLIC SUB-QUEUE-2 clause, input CD entry 143
SYMBOLIC SUB-QUEUE-3 clause, input CD entry 143
SYMBOLIC TERMINAL clause, input-output CD

entry 147
Symbolic-character

figurative constant 18
glossary term 545
scope 31
SYMBOLIC CHARACTERS clause 63
user-defined word type 11

Symbols and conventions 2
Symbols, special 431
SYMBOL-TABLE-OUTPUT keyword, COMPILER-

OPTIONS configuration record 508
SYNCHRONIZED clause, data description entry 128
SYSIN low-volume-I-O-name

ACCEPT statement 243
nonreserved system-names 432
SPECIAL-NAMES 62
system-names 12

SYSOUT low-volume-I-O-name
DISPLAY statement 291
nonreserved system-names 432
SPECIAL-NAMES 62
system-names 12

System-names
defined 7, 11
file control entry 433
glossary term 545
nonreserved, list of 432-434
SPECIAL-NAMES paragraph 432

T
TAB phrase, ACCEPT statement 259
Table definition 174
Table element, glossary term 545
Table handling 174
Table items, referencing 176
Table, glossary term 545
Table-name, glossary term 545
TALLYING phrase

INSPECT statement 326
UNSTRING statement 414

TAPE device-name
ASSIGN clause 69
system-names 12

TERMINAL clause, input-output CD entry 147
TERMINAL phrase

DISABLE statement 289
ENABLE statement 308

Terminal, glossary term 545
TEST AFTER phrase

PERFORM statement 352
PERFORM UNTIL statement 354
PERFORM VARYING AFTER statement 358
PERFORM VARYING statement 357

TEST BEFORE phrase
PERFORM statement 352
PERFORM UNTIL statement 354
PERFORM VARYING AFTER statement 356
PERFORM VARYING statement 355

TEXT LENGTH clause
input CD entry 143
input-output CD entry 147
output CD entry 146

Text word 36
glossary term 545

Text-name
COPY statement 35
glossary term 545
qualification 35
scope 31
user-defined word type 11

THROUGH phrase
EVALUATE statement 311
PERFORM statement 353

Time of day
ACCEPT FROM TIME statement 246
DATE-AND-TIME phrase, ACCEPT FROM

statement 245
DAY-AND-TIME phrase, ACCEPT FROM

statement 245
TIME phrase, ACCEPT statement 259
Time-out, ACCEPT statement, TIME phrase 259
TIMES phrase, PERFORM statement 354
TO LINE phrase, WRITE statement 419
TO phrase, PICTURE clause, screen description

entry 164
TO VALUE phrase, INITIALIZE statement 322
Top margin 92

glossary term 545
TRAILING phrase, SIGN clause 126
Transfers of control, explicit and implicit 185
Translation

CODE-SET clause (sequential I-O) 70
EBCDIC 58

TRIMMED phrase, LIKE relation condition 200
TRUE phrase, SET statement 389
TRUE, selection subject or object 312
Truth value 197

glossary term 545

Index

570 RM/COBOL Language Reference Manual
 First Edition

U
Unary operator 195-197

glossary term 546
UNDERLINE clause, screen description entry 166
Unicode, 205

glossary term 546
LIKE condition 200-205

Uniqueness of reference
qualification 168
reference-modification 172
subscripting 170

UNIT phrase
ACCEPT statement 259
CLOSE statement 281
DISPLAY statement 299

Unit, glossary term 546
UNLOCK statement 411
UNSTRING statement 412
Unsuccessful execution, glossary term 546
UNTIL phrase, PERFORM statement 354
UP BY phrase, SET statement 389
UPDATE phrase, ACCEPT statement 260
Uppercase letters, character set 5
UPSI-0-UPSI-7 switch-names

nonreserved system-names 432
SPECIAL-NAMES paragraph 61
system-names 12

USAGE clause
data description entry 129, 180
screen description entry 166

USE statement 189
User-defined words

glossary term 546
rules 9
types 8

USING phrase
CALL PROGRAM statement 277
CALL statement 272
MERGE statement 335
PICTURE clause, screen description entry 164
Procedure Division header 179
SORT statement 396

V
VALUE clause

data description entry 135
screen description entry 166

VALUE OF clause, file description entry 97
VALUE phrase, INITIALIZE statement 135, 322
Variable length 111
Variable, glossary term 546
Variable-length record 96

glossary term 546
Variable-occurrence data item 110

glossary term 546
VARYING phrase

PERFORM statement 354
RECORD clause 95
SEARCH statement (serial) 382

Verbs 23
conditional 24
glossary term 546
imperative 24

Volume 281
glossary term 546

W
WHEN OTHER phrase, EVALUATE statement 313
WHEN phrase

EVALUATE statement 311
SEARCH statement (ALL) 381
SEARCH statement (serial) 381

WHEN-COMPILED special register 15
WITH DATA phrase, RECEIVE statement 371
WITH DEBUGGING MODE clause, SOURCE-

COMPUTER paragraph 51
WITH FILLER phrase, INITIALIZE statement 323
WITH KEY phrase

DISABLE statement 290
ENABLE statement 309

WITH LOCK phrase
CLOSE statement 282
OPEN statement 345
READ statement 368

WITH NO ADVANCING phrase, DISPLAY
statement 291

WITH NO LOCK phrase, READ statement 368
WITH NO REWIND phrase

CLOSE statement 281
OPEN statement 350

Words
COBOL, defined 7
context-sensitive 7, 16, 429
glossary term 546
reserved 7, 13, 423-428
system-names 7, 11, 432-434
user-defined 7, 8-10

Working-Storage Section
Data Division 83, 98
glossary term 546

WRITE statement 96, 111, 416

X
XML

glossary term 546
LIKE relation condition 200-205

XML schema
glossary term 546
LIKE relation condition 200-205

 Index

 RM/COBOL Language Reference Manual 571
 First Edition

Y
YYYYDDD phrase, ACCEPT FROM

statement 244-245
context-sensitive words 430

YYYYMMDDD phrase, ACCEPT FROM
statement 244-245

context-sensitive words 430

Z
ZERO (ZERO, ZEROES) figurative constant 17
ZERO sign condition, conditional expressions 210
Zero suppression editing 121
Zero-length item, glossary term 546

Index

572 RM/COBOL Language Reference Manual
 First Edition

	RM/COBOL Language Reference Manual
	Copyright
	Document Release History
	Contents
	Preface
	Chapter 1: Language Structure
	Chapter 2: Identification Division
	Chapter 3: Environment Division
	Chapter 4: Data Division
	Chapter 5: Procedure Division
	Chapter 6: Procedure Division Statements
	Appendix A: Reserved Words
	Appendix B: Compiler Messages
	Glossary of Terms
	Index
	List of Figures
	List of Tables

	Preface
	Organization of Information
	Conventions and Symbols
	Related Publications

	Chapter 1: Language Structure
	Character Set
	Separators
	Character-Strings
	COBOL Words
	User-Defined Words
	System-Names
	Reserved Words
	Context-Sensitive Words

	Literals
	Numeric Literals
	Nonnumeric Literals
	Figurative Constants
	Concatenation Expressions

	PICTURE Character-Strings
	Comment-Entry

	Program Structure
	Source Format
	Continuation of Lines
	Blank Lines
	Comment Lines
	In-Line Comments
	Debugging Lines
	Statements
	Directive Statements
	Conditional Statements
	Imperative Statements
	Delimited Scope Statements

	Sentences
	Clauses and Entries
	Paragraphs
	Sections
	Divisions
	Source Program General Format

	Inter-Program Communication
	Nested Source Programs
	File Connector
	Global Names and Local Names
	External Objects and Internal Objects
	Common Programs and Initial Programs
	Sharing Data in a Run Unit
	Sharing Files in a Run Unit
	Scope of Names
	Program-Names
	Condition-Names, Constant-Names, Data-Names, �File-Names, Record-Names, and Split-Key-Names
	Index-Names

	Initial State of a Program
	End Program Header
	COPY Statement
	REPLACE Statement

	Chapter 2: Identification Division
	Identification Division Structure
	Program Identification
	PROGRAM-ID Paragraph
	AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY, and REMARKS Paragraphs
	DATE-COMPILED Paragraph

	Chapter 3: Environment Division
	Environment Division Structure
	Configuration Section
	SOURCE-COMPUTER Paragraph
	OBJECT-COMPUTER Paragraph
	SPECIAL-NAMES Paragraph
	ALPHABET Clause
	CLASS Clause
	CONSOLE IS CRT Clause
	CRT STATUS Clause
	CURRENCY SIGN Clause
	CURSOR Clause
	DECIMAL-POINT Clause
	Mnemonic-Name Clause
	NUMERIC SIGN Clause
	SYMBOLIC CHARACTERS Clause

	Input-Output Section
	FILE-CONTROL Paragraph
	File Control Entry
	Sort-Merge File Control Entry

	I-O-CONTROL Paragraph
	RERUN Clause
	SAME Clause
	MULTIPLE FILE Clause

	Chapter 4: Data Division
	Data Division Structure
	File Section
	File Description Entry
	Sort-Merge File Description Entry

	File Description Clauses
	BLOCK CONTAINS Clause
	CODE-SET Clause
	DATA RECORDS Clause
	EXTERNAL Clause
	GLOBAL Clause
	LABEL RECORDS Clause
	LINAGE Clause
	RECORD Clause
	VALUE OF Clause

	Working-Storage Section
	Linkage Section
	Communication Section
	Screen Section
	Record Description Entry
	Level-Numbers
	Elementary Items

	77-Level Description Entry
	Data Description Entry
	Condition-Name Data Description Entry
	Constant-Name Data Description Entry
	BLANK WHEN ZERO Clause
	Data-Name or FILLER Clause
	EXTERNAL Clause
	GLOBAL Clause
	JUSTIFIED Clause
	Level-Number
	OCCURS Clause
	PICTURE Clause
	Implied PICTURE Clause
	PICTURE Character-String (Data Categories)
	Symbols Used in a PICTURE Character-String
	Editing Rules
	PICTURE Symbol Precedence

	REDEFINES Clause
	RENAMES Clause
	SIGN Clause
	SYNCHRONIZED Clause
	USAGE Clause
	COMPUTATIONAL Usage
	COMPUTATIONAL-1 Usage
	COMPUTATIONAL-3 or PACKED-DECIMAL Usage
	COMPUTATIONAL-4 or BINARY Usage
	COMPUTATIONAL-5 Usage
	COMPUTATIONAL-6 Usage
	DISPLAY Usage
	INDEX Usage
	POINTER Usage

	VALUE Clause
	Data Item Initialization Rules (Format 1 VALUE Clause)
	Condition-Name Rules (Format 2 VALUE Clause)
	Constant-Name Rules (Format 3 VALUE Clause)

	Communication Description Entry
	Input CD General Rules
	Output CD General Rules
	Input-Output CD General Rules
	Status Key Conditions
	Error Key Values

	Screen Description Entry
	AUTO Clause
	BACKGROUND Clause
	BELL Clause
	BLANK LINE Clause
	BLANK REMAINDER Clause
	BLANK SCREEN Clause
	BLANK WHEN ZERO Clause
	BLINK Clause
	COLUMN Clause
	ERASE Clause
	FOREGROUND Clause
	FULL Clause
	HIGHLIGHT and LOWLIGHT Clauses
	JUSTIFIED Clause
	LINE Clause
	PICTURE Clause
	REQUIRED Clause
	REVERSE Clause
	SECURE Clause
	SIGN Clause
	UNDERLINE Clause
	USAGE Clause
	VALUE Clause

	Data Structures
	Classes of Data
	Standard Alignment Rules

	Uniqueness of Reference
	Qualification
	Subscripting
	Reference Modification
	Identifier
	Condition-Name

	Table Handling
	Table Definition
	References to Table Items

	Chapter 5: Procedure Division
	Procedure Division Header
	Procedure Division Structure
	Procedures
	Execution
	Procedure References
	Explicit and Implicit Transfers of Control
	Segmentation
	Segments
	Fixed Portion
	Independent Segments

	Segmentation Classification
	Segmentation Control
	Restrictions on Program Flow
	ALTER Statement Restrictions
	PERFORM Statement Restrictions
	MERGE Statement Restrictions
	SORT Statement Restrictions

	USE Statement
	Common Rules
	Subscript Evaluation
	Arithmetic Statements
	Modes of Operation
	Composite Size
	ROUNDED Phrase
	Size Error Condition

	Overlapping Operands
	Incompatible Data

	Arithmetic Expressions
	Arithmetic Operators
	Formation and Evaluation Rules

	Conditional Expressions
	Simple Conditions
	Relation Condition
	Class Condition
	Sign Condition
	Condition-Name Condition (Conditional Variable)
	Switch-Status Condition

	Complex Conditions
	Negated Conditions
	Combined Conditions
	Abbreviated Combined Relation Conditions

	Condition Evaluation Rules

	Sequential Organization Input-Output
	Function
	Organization
	Access Mode
	File Position Indicator
	I-O Status
	At End Condition

	Relative Organization Input-Output
	Function
	Organization
	Access Modes
	File Position Indicator
	I-O Status
	Invalid Key Condition
	At End Condition

	Indexed Organization Input-Output
	Function
	Organization
	Access Modes
	File Position Indicator
	I-O Status
	Invalid Key Condition
	At End Condition

	File Locking
	Record Locking
	Record Locking Modes
	Automatic Record Locking Modes
	Manual Record Locking Modes
	Single Record Locking Modes
	Multiple Record Locking Modes

	Interactive Terminal I-O
	Sort-Merge
	Communication Facility
	Message Control System
	Object Program
	Relationship of the Object Program to the Message Control System and Communication Devices
	Invoking the Object Program
	Scheduled Initiation of the Object Program
	Invocation of the Object Program by the Message Control System
	Determining the Method of Scheduling
	Concept of Messages and Message Segments
	Concept of Queues
	Independent Enqueueing and Dequeueing
	Enabling and Disabling Queues
	Queue Hierarchy

	Chapter 6: Procedure Division Statements
	ACCEPT . . . FROM Statement
	ACCEPT Statement (Terminal I-O)
	AUTO Phrase
	NO BEEP Phrase
	BLINK Phrase
	CONTROL Phrase
	CONVERT Phrase
	CURSOR Phrase
	ECHO Phrase
	ERASE Phrase
	ON EXCEPTION and NOT ON EXCEPTION Phrases
	HIGH, LOW and OFF Phrases
	LINE and POSITION Phrases
	Determining Line and Position

	MODE IS BLOCK Phrase
	PROMPT Phrase
	REVERSE Phrase
	SIZE Phrase
	TAB Phrase
	TIME Phrase
	UNIT Phrase
	UPDATE Phrase

	ACCEPT MESSAGE COUNT Statement
	ACCEPT Screen-Name Statement
	ADD Statement
	CORRESPONDING Phrase

	ALTER Statement
	CALL Statement
	USING Phrase
	GIVING Phrase
	OVERFLOW, EXCEPTION, and NOT EXCEPTION Phrases

	CALL PROGRAM Statement
	CANCEL Statement
	CLOSE Statement
	REEL and UNIT Phrases
	NO REWIND Phrase
	REMOVAL Phrase
	LOCK Phrase

	COMPUTE Statement
	CONTINUE Statement
	DELETE Statement (Relative and Indexed I-O)
	DELETE FILE Statement
	DISABLE Statement
	INPUT Phrase
	I-O TERMINAL Phrase
	OUTPUT Phrase
	TERMINAL Phrase
	WITH KEY Phrase

	DISPLAY . . . UPON Statement
	DISPLAY Statement (Terminal I-O)
	BEEP Phrase
	BLINK Phrase
	CONTROL Phrase
	CONVERT Phrase
	ERASE Phrase
	HIGH and LOW Phrases
	LINE and POSITION Phrases
	Determining Line and Position

	MODE IS BLOCK Phrase
	REVERSE Phrase
	SIZE Phrase
	UNIT Phrase

	DISPLAY Screen-Name Statement
	DIVIDE Statement
	REMAINDER Phrase

	ENABLE Statement
	INPUT Phrase
	I-O TERMINAL Phrase
	OUTPUT Phrase
	TERMINAL Phrase
	WITH KEY Phrase

	ENTER Statement
	EVALUATE Statement
	EXIT Statement
	GOBACK Statement
	GO TO Statement
	DEPENDING ON Phrase

	IF Statement
	INITIALIZE Statement
	INSPECT Statement
	MERGE Statement
	MOVE Statement
	CORRESPONDING Phrase

	MULTIPLY Statement
	OPEN Statement
	INPUT Phrase
	OUTPUT Phrase
	I-O Phrase
	EXTEND Phrase
	NO REWIND Phrase

	PERFORM Statement
	PURGE Statement
	READ Statement
	KEY Phrase
	LOCK Phrase
	INTO Phrase
	INVALID KEY and NOT INVALID KEY Phrases

	RECEIVE Statement
	NO DATA and WITH DATA Phrases
	MESSAGE Phrase
	SEGMENT Phrase

	RELEASE Statement
	FROM Phrase

	RETURN Statement
	REWRITE Statement
	FROM Phrase

	SEARCH Statement
	SEND Statement
	ADVANCING Phrase

	SET Statement
	SORT Statement
	START Statement (Relative and Indexed I-O)
	SIZE Phrase
	INVALID KEY and NOT INVALID KEY Phrases

	STOP Statement
	STRING Statement
	DELIMITED Phrase
	POINTER Phrase
	OVERFLOW and NOT OVERFLOW Phrases

	SUBTRACT Statement
	CORRESPONDING Phrase

	UNLOCK Statement
	UNSTRING Statement
	USE Statement
	WRITE Statement
	FROM Phrase
	ADVANCING Phrase
	END-OF-PAGE and NOT END-OF-PAGE Phrases
	INVALID KEY and NOT INVALID KEY Phrases

	Appendix A: Reserved Words
	Reserved Words
	Context-Sensitive Words
	Special Symbols
	Nonreserved System-Names

	Appendix B: Compiler Messages
	Compiler Messages
	Compiler Messages 001 — 100
	Compiler Messages 101 — 200
	Compiler Messages 201 — 300
	Compiler Messages 301 — 400
	Compiler Messages 401 — 500
	Compiler Messages 501 — 600
	Compiler Messages 601 — 700
	Compiler Messages 701 — 800

	Glossary of Terms
	Terms and Definitions

	Index

