Borland Together 2008

Borland Together Modeling Guide

Borland

Micro Focus
575 Anton Blvd., Suite 510
Costa Mesa, CA 92626

Copyright (C) 2011 Micro Focus IP Development Limited. All Rights Reserved. Portions Copyright (C) 1998-2009
Borland Software Corporation (a Micro Focus company).

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are trademarks or registered trademarks of
Micro Focus IP Development Limited or its subsidiaries or affiliated companies in the United States, United Kingdom,
and other countries.

BORLAND, the Borland logo, and Borland product names are trademarks or registered trademarks of Borland Software
Corporation or its subsidiaries or affiliated companies in the United States, United Kingdom, and other countries.

All other marks are the property of their respective owners.

June 2011
PDF

Getting Started

Getting Started with Together

Lo T 1 1T G @Y= 1SS 25
Together Documentation Stoooiiiiiiii ettt e e e e e e e e e e e e e e e e e s e eeeeeeeeas 27
Sample Projects and Cheat ShEetsooo i 28
L 1o 3o o T = | S 29

Tour of Together

Concepts

Concepts

TOGEENEI BASICS ...ttt e et e e e ettt e e e e n et e e e e b e e e e e e e n b ae e e e e e nreeas 38
Together ProjeCt OVEIVIEWoiuiiiiiiiiiiie et e e e e e e e e e e e 39
PACKAGE OVEIVIEW ...ttt ettt e e e bttt e e e e e s bttt e e e e sabe e e e e e e anbbeeeeeeanbeneeeeeanns 40
Together DIagram OVEIVIEWuiiie oottt e et e e e e s a et e e e e e e bbe e e e e e e nbeeeaeeeanreeas 41
DIagram FOIMALot ettt e e e e e bttt e e e e e aab et e e e s abbe e e e e e aanbeeeeaeeanns 42
Containment Metamodelooiii e 43
Model EIEMENT OVEIVIEWooiiiiiiiiii ittt e e s e et e e s anb et e e s aanneeeae s 44
MoOdel SNOMCUL OVEIVIEW ...ttt e et e ettt e e e s abb e e e e e s annnreeaens 45
Roundtrip ENGINEEIING OVEIVIEWo.uiiiiiiiiiiiieiiee ettt e e e st e e e e s abbeeeeeeeane 46

(=T o [UE=To T= IR U] o] oo o AN USRS 47
Generating Source Code Based on MOdel ... 48
Model HyperliNKiNG OVEIVIEWoiiuuiiiiiiiiiiiiiiee ettt e e e e st e e e e e s anbreeeeeeean 49
Model ANNOLAtION OVEIVIEWoiiiiiiiiiii ettt et e e s s e e e e s annneeeee s 50
Together Capabilities ACHVALIONoooiiii e 51
Together Interoperability and Migrationoooo e 54
T Te L= 1T o To T @Y= Y = PP UPPPPPRPRN 56
oo =] oL 1Y, (oo [=1 1 oo [RPN PSP 57
UML MOAEING OVEIVIEW ...ttt ettt e e e e ettt e e e e s sttt e e e s aabbe e e e e e aanbbeeeaesanbeeeaeeaane 60
Supported UML SpeCifiCatioNnscoiieiiiiiieeiiiee aean 61
| B = To | =T .4 PP PRPPPPPNS 62
UML 2.0 Activity Diagram Definitionc..oooiiiiiiii e 63

UML 2.0 Class Diagram Definitionccuueiiiiiiiii et 66

UML 2.0 Use Case Diagram Definition ... 68

UML 2.0 Component Diagram Definitioncooiiiiiiii e 70

UML 2.0 Composite Structure Diagram Definition ... 71

UML 2.0 Deployment Diagram Definition ..o 73

UML 2.0 State Machine Diagram Definition ... 74
Interaction (Sequence and Communication) Diagramscccueeeeeriiiiiiee e 77

LY | B I = To | =T .4 TP PRPPPPPPNS 79
UML 1.4 Class Diagram Definitioncuueiiiiiiiii e 80
Package and logical Class diagramsoooiiiiiiiiiiiiie e 82

UML 1.4 Sequence Diagram Definitionooooiiiiiiii e 83

UML 1.4 Collaboration Diagram Definitionooouuiiiiiiiiiii e 85

UML 1.4 Use Case Diagram Definition ..o e 86

UML 1.4 Statechart Diagram Definition ... 88

UML 1.4 Activity Diagram Definitionc..oooiiiiiii e 90

UML 1.4 Component Diagram Definitionoooiiiiiiii e 93

UML 1.4 Deployment Diagram Definition ... 94
BUSINESS ProCesS MOAEIINGccoiiiiiiiiiiiiiiiie ettt ettt e e e et e e e e s snbe e e e e e e anbeeeeeeeaanes 96
= 2= 1Y FoTe F=1 1 o o SRS 100
Data MOdeling OVEIVIEWcooiiiiiiiiie ittt e st e e s st e e e s nbe e e e e e annneeeee s 101
Logical and Physical Data MOEIS ... e 102
Model Transformation SUPPOIT ..o et eaaan 103
L0 I o o) 11 S PRSPPI 105
UML Profil€8 BASICSceiiiiiiiiiiiiiie ettt ettt e ettt e e st e e e s e e e e e s enneeeee s 106
Profile Definition PrOJECEo e e 107
Supported MetamOdElS ... e e e e e e e e e e e e aaeee s 108
=T (=To] 4] o1 PR 109
Palette ContriDULION ...t e e ee e an 110
EXEENSION LINK ..ottt ettt e e e e ettt e e e e e e bt et e e e e e e e bt e e e e e e e nreeeeeeeeaa 111

1070] o1 (41 o111 1] o 1 T | QPP PPT 112

oY [T 11 o i o gl = | P PPERRPR 113

Model ComMPAre aNd MEIGEcoeeieie e e e e e e e e e e e e e e e s e e e e st aata e e e e e eeeeeaaaaaaaaaaaeaeaanaan 114
Template Elements and GeNeriCS OVEIVIEWccooiiiiiiiiiiiiiiieee e e e e e e e e e s aeeeeeaaas 115
Model Import and EXPOrt OVEIVIEWoiiiiiiiiii ittt e e e e e e e e e e e s eereeaaaaeeeeaeaans 116
L0 10 I T o] o T o ST 118
About OCL Support in TOGEINET ... e e e aaaaaeaeeeas 119
OCL Constraints and EXPre@SSIONScccoiiiiiiiiiiiiiieiie e e e e e e e e s e e e e e e e aee e e e e s ssssanbresrereeeaaaaeeessananns 121
OCL 0N NON-Class DIaQramSuuuuiiiiiiiiiiiiiiieeie e te e e e e e e e e e e e e e s s e s sse s aaeeseeereettaaaaaaaaaasaeesasaanaas 122
Patterns and TEMPIALESuviiiiiiiiiii e et e e e e e e e e e s e s e et ra e e e aaaaaaaaaeaaaan 124
Patterns and Templates OVEIVIEWuuiiiiiiiiiiiiee e e e e e e e e e e e e e neeees 125
Pattern Definition ProOJECEoovviiii e e e e e e e e e e e e e e e 127

L= LY 0 Y=Y otoTo | a1 o RSSO 128

B IC=T 0] o] = L= PP 129

L@ TU =11y =TTV = o ot S 130
L0700 [T 8o 1 £ PP 131
T o L= N T 11 < PP 132
1070 To L= Y= 1y o URSR 133
T o L= I =Y 1 o TR 134
Metrics Graphical REPreSentationuuiiiiiiiiiiiiiiiiciee e 135
Exporting and Importing Audits and MEetriCSooooioii e 137

=] = [ox (o e [O AT =Y Yo EEEPPRRRR 138
Requirements ManagemENTuuiiiiiiiiiii e e e e e e e e e e e e e e e e e e e as bt e e e reraeaaaeeeeaaaaan 139
Version CoNrol iN TOGELNETuuveiiiiiiiii et e e e e e e e e e et e e e e e aaaaaeeeeeessaaaannnennrnnes 140
Project DOCUMENTALIONcciiiiii it e e e e e e e e e e e e e e e e eeeeeeeaseaanntarreaereeeaaaeeesanaanns 143
Documentation Generation OVEIVIEWuiiiiiiiiiiiiie et e e e e e s s e e e s nneeeeees 144
Documentation TEMPIALEceeiiiiiieii i e e e e e e e s e e s e e e e e aaeeeeeeaeannnnenes 146
Documentation Generator Metamodeloooiiiiiiiiiiiiiie e 147
Organization of a Documentation TemMPIatecccuuviiiiiiiiiiiiieiieeeeeeee e 149
Documentation Template SECHONScooiiiie e e e 151
Documentation Template CONTrolSccooiiiiie e e e e e e e e e 154
Multi-frame Documentation TEMPIALESc..uviiiiiiiiiiiice e 157
Hyperlinks in DOCUMENTAtIoON ... e e e aaae s 158
Javadoc Link REEIENCEScoiiiiiiiiiiie e e e e e e 159

= aF= o] (=R @7 o] o [1[o] o - T PR 160

Procedures

Procedures

Getting Started PrOCEAUIESeiiiiii e e e e e e e e e e e b e e e e e e e anneeeas 164
Activating Together Capabiliiesooi i ee e 166
Adding a Single Model Element to @ Diagramoooiiiiiiiiiiieiiee e 167
Bookmarking Model EIBMENLSooiiiiiiii e 168
Choosing @ Together PErspeCliVEoooiuiiiiiii e 169
Configuring Together Preferences on the Workspace and Diagram Levelsccccccccoiiiiiiiinnes 170
Creating a Browse-Through Sequence of Diagramscooiiiiiiieiiiiiie e 171
(07T (T aTo = T I 1 =To | =1 o O RPN 172
107 (=T (] g To J= T o o] (=T o PSR PET 174
Creating @ SNOMCUL ... et e et e e e e e b e e e e e annreeas 175
Creating @ SIMPIE LINKooo et e e e e e e e et e e e e e nneeas 176
DS i Te I T D =T = o o PRSPPI 177
Deleting EIBMENTS ...t e s e et e e e s eeea e 178
Hiding and Showing Model EIEMENTESooiuiiiiiiiii e 179
@1 o1 oTo Jr= T I =T | =1 1o EO SRR 180
Opening a Diagram Element in the Source Code EdItor ... 182
1 To D= To | =T o £ T PRSPPI 183
Reusing Existing Source Code in Modeling Projects ... 184
Selecting Model EIBMENTS ... e 185
USING Drag-and-DIrOPueeeiiiiiiieiie ettt ettt e ettt e e s e ae et e e e s bt e e e e s nnneeeaeaennneeeae s 186
USING EXAMPIE PrOJECLS ..ottt e st e e s e e e eeean 187
D E= o =] o £ SRR 188
Common Diagrams PrOCEAUIEScoiiiiiiiiiiiiie it e e e e e e e 189
ANNOAtING @ DIAGIAM ...t e s e e e e e e e an 190
Browsing a Diagram with OVerview Panecoooiiiiiiiiiiiiii e 191
Changing the Default Diagrams Dir€COrYcooiiiiiiiiiiiie e 192

O [o 1S g To = T I =T =1 o o A PO 193
Creating @ DIagram ... et e e e e e e e 194
Deleting @ DIAQIamoooi ettt e e e e e e a e e e 196
Exporting a Diagram t0 an IMageueiiiiiiiiiiii e 197
Hyperlinking DIagramso.eeeiiiii ettt e e e s e e e s as 198

@] oTT ol ol Tr= T D 1T Te =T 4 PP PRRRTO 200
Opening a Diagram Element in the Source Code Editorccuveiiiiiiiie, 202
Opening @ Parent DIagramoo e 203
Printing Diagram EIEMENTS ... 204
Printing DIGgrams ...ttt e e e as 205
Searching Model EIEMENTSueiiiiii e e 206
Searching Model With OCL QUETIEScoiiiiiiiiiie e 207
Customizing Appearance of Together Diagrams ... 208
Hiding and Showing Model EIEMENEScoooiiiiiiiiii e 209
Using a Class Diagram @S @ VIEWeoiiiiiiiiiiiiiii ettt 210

4 oTo] 11 o =T B IT= o] = o o H PP 211
Populating Together DIagramscooo e 212
Adding a Member t0 @ CONAINETcooiuiiiiiii e e 213
Adding a Single Model Element to @ Diagramcoooiiiiiiiiiiiiiii e 214
Adding Multiple Elements t0 @ DIiagramc.uueiiiiiiiiiiiiiee e 215
Creating a Link with Bending POINtSooiiiii e 216
Creating @ SNOICUL ...t 217
Creating @ SIMPIE LINKoooiii et e e e e e e neeeee 218
Creating an INNer ClasSifiero 219
Editing Together DIagramseeiiiiiiieee ettt e e s e e e neneeeeaeeas 220

AlIgNINg MOdEl EIBMENTScoeeiiiieieeeee et e e e e e e e e e e e e e e s e e aannnnns 221

Assigning a Stereotype to an Element ... 222
Changing Type of an ASSOCIation LiNKeeeiiiiiiiiiiiiiiieee e 223
Copying and Pasting Model EIEMENLSccooiiiiiiiiiiieeeeeee e 224
Deleting EIEMENTS ... oo e e e et e e e e e e e e raaaaaaas 225
Laying Out a Diagram AUutomMatiCallyoovviiiiiiieii e e e e 226
Laying out @ Diagram for Printingcoooiiiiiiiieee e a s 227
Moving Model EIEMENTScooe i e e e e e e e e e e e e e e e e e e a e e e e e e ereeeaaeas 228

(= aF=Ta T Te = I =T | = 1 o USSP 229
(=Y (o 01 11 a T = T I o PR 230
ReSiziNg MOl EIEMENLSoviiiiiiiiiiiiiiieee e e e e e e e e ereeeaaeas 231
Selecting Model EIEMENLES ... e e e e e e e e e 232
Working with Rulers Guides and Gridcooviiiiiiiiiiiiiicceeee s 233

B oY 1] 1 a1l o] (=Y ot R 234
Changing the Default Diagrams DIir€CIOIYcciiiiiiii e e e e e e e e e e e 236
Choosing @ Together PErspeCtiVEccoiii i e s e e e ae e e 237
(07e] a1iTe U TaTaTe [0% & ol o (o] = Tox £ SRR 238
ConfigUrNG IDL PrOJECLS ...ceiiiiiiiiiii ittt e e e e e e et e e e e e e e e e s s e e st a e aereraaaaaaaeeeeanan 240
Converting UML 1.4 Project t0 UML 2.0 PrOjJECEuviiiiiiiiiiieeieee ettt e e e e 241
107 ¢=Y= 1 0o = I d (0] 1= o1 (P USEUPPRRR 242
L aE=T o] [T Te T 1LY/ o) 11 P 243
Establishing Cross-project referenCeS ..o 244
Exporting a Project to XMI FOIMaLee it e e e e e e e 245
Exporting a Project to XMI Format Using the Command Lineccccocoiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 246
Generating Source Code from Design Projectcccooooiiiiieee e e e e e 247
Importing a Project in an IBM Rational Rose MDX Modelcooooiiiiiiiiiicieevee e 248
Importing a Project in IBM Rational Rose (MDL) Formatccooeeeiiiiieeee 249
Importing a Project in IBM Rational Rose (MDL) From the Command Linecoe. 251
Importing a Project in IBM Rational Rose (MDX) From the Command Linecccccciiivivinnenenn. 252
Importing @ Project in XMI FOrMALoveiiiiiiiiiiicc e e e e e e e as 253
Importing Java Modeling Projects Created in Together Edition for Eclipse 7.0ccocvvvvvvvvveeveennnn. 254
[aaToTel g ulgTo I =To F=Toy Y o ro] (=T e £ O 255
Navigating between the Tree View, Diagram, and Source Codecccooeeeiiieiiiiiiiiiiiceieceeeeeeeee 257
Resolving Duplicates During an XMI IMPOItccoooiiiiiiiiieeeeeeeee e 259
Reusing Existing Source Code in Modeling Projectsuuviiiiieeeiiiiiiiiieieeeee e 260
] Ao g o 1 o] = 4 = USSP 261
fL I (o181][] g T o] 110 T JE= TH 1Y, o Lo = PR 262
USING EX@MPIE PIOJECESooiiiiiii ittt e e e e e e e e e e r e et e e e e e e e e e saannnnrraaneeeeeas 263
WOrking With @ PACKAGEeviiiiiiiiiiiie ettt e e e e e e e e e e e e e e e s e e et a e e e e e e e e eeaaaaaaaeens 264
XMI Export and Import of the Models with Cross-Project Referencesccocccciiiiiiviieieneene e, 266
B oo 11 1 a1 o o) 1= 268
A Typical User Scenario of Working With Profiles ... 269
Creating @ PrOJECTcoi oot e e e e e e e et aaaaa e e e e e e r————— 270
Defining Profile PrOPEIIESccooiiei et e e e e e e e aaaae s 271
Creating StEIEOIYPESttt e e e e e e e e e e e e e et aaaaa e e e e e e e anaaanraae 272
Adding Shortcuts t0 MELACIASSEScoevviiiiiiieeci e a e e e e 273
Adding Attributes t0 StEreOtYPES ..o —— 274
Setting Viewmap Properties for Stereotypesooooviiiiiiiiiccer e 276
Creating Palette ContribUtiONSuviiiiiiiiii e 277
=Y o) (011 To I =] 1= RSP 278

F N o] 0] VA o T d {011 PESSRRRR 279
Adding AttribUtes t0 STErEOLYPESccoi e aaa s 280
Adding Shortcuts t0 MELACIASSEScoovviiiieiieee as 282
F N o] 0] VA e I d {11 PP 283
Converting Profile-Specific Properties ... e e e e e e 284

Creating Palette CoNtribULIONSuuiiiiiiicicc e a e e e e e e e e 285

Creating Profile-Specific CONSIraiNtS ..o e e e 286
Creating StErEOTYPES ...t e e e e e e e e e e e e e raataaaaaaeaaaaaaan 287
Working with Required StEreotyPesScccoeiiiiiiie e a e 288
Setting Viewmap Properties for Stereotypescoooeeiiiiiiiiccer e 289
Adding Attributes t0 StEreOtYPES ... —— 290
Defining Profile PrOPEITIESocvviiii ittt e et e e e e e e e aaeaee e e e e e s ssssnnnnnennes 292
(1T 0] (o) V41 o 1 d (] 1= PURRRRS 293
L aE=T o] [T Te T 1Y o) 11 PP 294
Exporting and Importing Profiles ... 295
Opening Profile DEfINITIONuuuiiiiiiiiiiiiec e e e e e e e aaaeaeeeeaaean 296
Setting Viewmap Properties for STEre0otyPEeSoovvviiiiiii i 297
Uninstalling Profilescoioi e aaeees 298
Verifying a Model Against Profile CONSIraintsceueiiiiiieiiiii e 299
Working with Required StEreOtyPESccooiiiiiiii e e e e e e e e aaaaaas 300
Configuring Implementation PrOJECESeuiiiiiiiiiee et e e e e eeeaeaeaas 301
(0701 a1iTe [0 TaTaTe I O% ol o (o] = Tox £ SRR 302
ConfigurING IDL PrOJECLS ...ceiiiiiiiiiii ittt et e e e e e e e e e e e e e s s e et araneeeeaaaaaaeeeeanan 304
Together UML 2.0 DIQQIamMSccciiieiiiiiiiciiiieie e e e e e e e e e e s st te e e e e aaeaeaesaassaanbestaaaeeeeaaaaeeesssasnnsnssassneeeees 305
UML 2.0 Class Diagrams ProCeAUIEScoooiiiiiiii ittt e e e e e e e e e e aaaaaaaaaaas 306
Adding Owned Behavior t0 @ ClaSSccceeiiiiiiiiee et e e e e e e e e e e e 307
Changing the Appearance of Compartments ...t 308
Changing the Appearance of INterfacescoocoioiii e 309
Creating and Editing Propertiest e e e e e e 310
Creating Class By TEMPIALEoocviiiie i e e e e 311
Creating Data TYPES ..uuviiiiiiieeeie i ettt e e s e e e et e e aae e e e e s sa e st e s beeaeeeeaaaeeaeeeeaaannnrane 312
Creating Enumerations and Enumeration Literalscccccoiiiiiiiiiiii e 313
Creating, Editing and Opening Header and Implementation Files in C++ Projects 314
Working With @ CONSITUCTION ... e s s e e e e ennans 315
WOrking With @ FI€ldccooe e r e e e e e e aaea e e e e e e e e aeean 316
Working with a Provided or Required INterfacecccccciiiiiiiiiiiiicceeeeeee e, 318
Working with @ RelationShipuuuiiiiiiiiiiiiiiciic e e e e e 319
Working with Association classes and n-ary associationsccccoeveccciiiiiiiiiieeie e, 320
Working With INNEI CIASSEScoiiiiii ittt e e e e e e e e e e e e e e s e e aenannns 321
Working with Instance SpecifiCationsccoooiiii e ——— 322
UML 2.0 Use Case Diagrams ProCeAUIEScoioiiiiiiiiiiiiiiieeee e et e e e e e e e e e e e e ennnnnreneeees 324
Creating an EXteNsioN POINTuuiiiiiiiiiiiiiece e e e 325
Defining Includes and EXtENAS LINKScccuiiiiiiiiiiecieeee et e e e e e e 326
Setting Subject FOr @ USE CaSEcvvviiiiiiiiiiiiiiieeee e 327
UML 2.0 Interaction Diagrams ProCeAUIESoooiiiiiiiiiiiiiieee e e e e e e e e aeeees 328
A Typical Scenario of Designing a UML 2.0 Interaction Diagramccccovveeieiieieeeeeeiiieccnns 329
Working With INtEractionscooiiiiiii e e e rraees 330
Creating an INteraction USEocoeoiiiiiiiiiee e e e s 331
Associating a Lifeline with @ Classifier ... 332

Defining Decomposition of @ LifeliNeceevviiiiiiiiiici e 333

Working with @ UML 2.0 MESSAQEcccoeieiiiiieteeeeee ettt e e e e e e e e e e eaaeeees 334

Working with @ Combined Fragment ... 336
Creating @ State INVAariantcoooii i 338
Associating a Lifeline with @ CIasSifierceiiiiiiiiiiiiie e 339
Associating a Lifeline with a Referenced EIementccoevviiiiiiiee e 340
Copying and Pasting an Execution or Invocation Specificationcccccccceveeiiiiiiiiiicciiiiieeee, 341
Creating a Full-Screen Sequence or Communication Diagram from an Interaction 342
Creating @ State INVAriaNntoooiii i ——————— 343
Creating an INteraction USEcooieeiiiiiii ittt e e e e e e e e e e e e e s e e nnnnrnees 344
Defining Decomposition of @ LIifeliNgcocoviiiiiiiii e 345

Roundtrip Engineering with UML 2.0 Sequence Diagramscccceeeeiiee i, 346

Working with a Combined Fragment ..o 348
Working With @ UML 2.0 MESSAGEcevviiiieeeiieiiie ettt e e e e e e e e e s st e e e e e e aaaeeeeaesanannans 350
Working With INtEracClioNScoeiiie s e e e e ennens 352
UML 2.0 State Machine Diagrams ProCEeAUIESuuuuuuuiumiimuiieriirsiierieerresrreeseererereeeeereeeeereern 353
Associating a Transition or a State with a Behavioro oo, 354
Changing Regions Orderin @ STateoovveiiii i 355
Creating an OCL Guard Condition for a Transitionccccccceeviieiiiieee 356
Creating and Editing StateScoiiiiiiiiii e —————————— 357
Creating History EIBMENESooiiiiiiieei et e e e e e e e e e e e e s e e e annnnnes 359
Creating Members for State Machines, States, and Regionsccccceevvviiiee i, 360
Designing a UML 2.0 State Machine Diagram ..., 361
Working with @ COmMPIEX STtcceiiiii e ae e e 362
Working with Activities and State Machines Full Screen Diagramsccccceeeviiiiieeiiiiieceeeiennnn, 364
UML 2.0 Activity Diagrams ProCEAUIEScceeiiiiii ittt e e e e e aeaee e 365
Creating Activity Parametersuueiiiiiiiiiiiiiiie e a e 366

(@7 (== (] o 0T U SPSPP 367
Designing @ UML 2.0 Activity DIiagrameuuiiimiiiiiiiieieeeee e ere e n e e aa e e e e e e e 368
Rotating Activity Partitionscoooiiiiie e 369
UsiNg Control FIOW LINKuuiiiiiieiiiiiie et e e e e e e e e e e e e s st aaeeeeaaaae s 370
Working with Activities and State Machines Full Screen Diagramsccccceeeviiiiiieiiiiieceeenennnn, 371
Working with ACtivity EIBMENToiiiieiieie e e e e e e e 372
Working with an Object Flow or a Control FIOW ... 373
UML 2.0 Component Diagrams ProCEAUIESeeiiiiiiieeeeieiieicccciiiieeeee e e e e e e e e e e e e e e s ssnnnnneeaeeees 374
Designing a UML 2.0 Component Diagramcccocciiiiiiiiiiiiiriece e e ee e e e e e e e 375
Working with a Provided or Required INterfacecccccciiiiiiiiiiiiiicececeee e, 376
Working with Instance SpecifiCationsccooiiii e —— 377
UML 2.0 Deployment Diagrams ProCEAUIEScouviiiiiiiiiieeee e 379
Designing a UML 2.0 Deployment Diagramccccccccuiiemiiiiiiiiiieiieieeeeeeeeeeeeeeseeaeaaaaaeaaaeaaeaaeeae s 380
WOrking With AtIfACESuviiiiiiiiiie e e e e e e e e e e e e e e e e aaanaans 381
UML 2.0 Composite Structure Diagrams ProCedUIESccciveeiiiiiiiiiiiiiiiieeieeeee e 382
(@7 == (] o = T o T (RSP 383
Creating @ ReferencCed Partooooiiiiiiii i a e e e e e e e e e e e annraees 384
Creating an Internal Structure for a NOE ..ot 385
Working with @ Collaboration USEuuuiiiiiiiiiiiiiiiciieeeeeeeee et 386
Working with a Provided or Required INterfacecccocciiiiiiiiiiiiiceeeeeeee e, 387
Working with Instance Specificationsccooiiii e —— 388

QI a0 o] F= T G 1= 0 g T=Y o1 £ 390
Creating CoONSIIAINTS ... e e e e e e e e e e e e e e eeeeaaaaaaeeeeeeeannennnnrene 391
Creating Generic Template Elements in LiveSource Projectscccccccvveiieeeiiiiieiccciiiiiieeee, 392
Creating Template EIEMENLSuuiiiiiiiiiiiiiice e eee s 393
Defining FOrmMal Parametersooiiiiiii oottt a e e e e e e e e e e aaae s 394
Editing Constraint EXPreSSIONScoiiiii it a e 395
Together UML 1.4 DIQQIamMSccciiieiiiiiiieiiiieeie e te e e e e e e e e e s et e e e e e e eaaeeeesaasssanbasaaaaeeeeaaaaeeesssannsnntnsnneeeeees 396
UML 1.4 Class Diagrams ProCeAUIEScoooii i 397
Changing the Appearance of Compartments ...t 398
Creating and Editing CONSIIUCIONScoiiiiiiiiiii i e e e e e e 399
Creating Class By TEMPIALEoooviiiii e a e e 400
Expanding or Collapsing CoOmMPartMENTSuuiiiiiiiiiiiiiieeee e e e e e e e e e e e e 401
Extending and Implementing Classes and INterfacesccocoovviiieiiiiiiiiiii i 402
Hiding and Showing MEMDETSoooiiii oo a e 403
Instantiating @ ClasSIfiruuuuiiiiiiiiiiieee e e 404
Setting Abstract or Final for a Class or INterfaceccccooo i, 405
Setting Visibility for @ Class or INTErfacecoooiiiiiii e 406
Setting Visibility for Members of a Class or Interfacecccccvvvviiiiiiii e, 407

Showing Different Modeling VIEWSc.ooiiiiiiiiii e 408

Showing Interfaces as Small Circles (IOllPOPS) ...cceeveiiieieice e 409
Working With @ CONSITUCTION ... e s e e e ee e snnnns 410
WOrking With @ FI€ldccooe eaean 411
Working with @ RelatioNShipuuuiiiiiiiiiiiiiiiciceee e e e e e e 413
Working with Association classes and n-ary assocCiationsccccccceeeiiiiiiieeeeeiiicrr e 414
Working With INNEI CIASSEScoiiiiei e e e e e e e e e e e e e e e e e e aaaannns 415
UML 1.4 Use Case Diagrams ProCEAUIEScoieiiiiiiiiiiiiiieeee e et e e e e e e e e e e e e e nnnnnreneeees 416
Creating an EXtension POINTuuiiiiiiiiiiiiccc e e 417
UML 1.4 Interaction Diagrams ProCeAUIESoooiiuiiiiiiiiiiieeee et r e e e e e e e e e e ae e 418
Adding a ConditioNal BIOCKcoiiiiiiiiiice e e e e e e e e e e e e e e 419
Branching MeSSage LiNKSceeiiiiiiiiiiiiiicc et a e e e e e e e e e e 420
Converting Between UML 1.4 Sequence and Collaboration Diagramsccccevveevveeeeeeennnnn. 421

L@ (== (] o 1R [] (=S EEPRR N 422
Generating an Incremental Sequence Diagramccoooiiiiiiiiiiiii e 423
Refining Collaboration DIiagramssueeeiiiiiiiiee et e e r e e e e aaae e 424
Refining Sequence DIagramsScccccuiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e aaaae s 426
Roundtrip Engineering with Sequence Diagramscueeeeeiiieeieee i a e 429
USING AULOF X ..t e e e e et e aaaaeeeeeeaeesaeaas e saanesnteasananeeeeeeeaaes 431
USIiNG AULOLINK LADEISoveeeiiiiiieeec e e e e e eeeeeae s 432
Working With @ UML 1.4 MESSAGEcevviieieeeeie ittt e e e e e e s e e e e e e aaae e e e e e s annnnns 433
Working with Classes in Sequence/Collaboration Diagramsccccccciiiiiiiiiiieiee e, 435
Working with Operations in Sequence/Collaboration Diagramscccccccveeeeeieiiiiiiiccccccciins 436
UML 1.4 Statechart Diagrams ProCedUIEScoooiiiiiieieeeeee et 438
Choosing a Target Class for the State Diagram or Activity Diagramoooeevcciniviinennnnen, 439
Creating @ Deferred EVENT ... e e e e e e e 440
Creating @ Self-TranSItioNcceiiiiii e e e e e e e e e e e aeeees 441
Creating HiStOrY ..o e e e e e e e r e e e e e e e e e e e e 442
Creating internal tranSitioNSooiiii i e e e e e e e e e e e s e nnnraae 443
Creating MUItple TranSitioNSuuiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e s s e s seenanennranes 444
Setting DEEP HISTOIY .oveeeiiiieeee eennnnranes 445
Specifying Entry and EXit ACHONS ... ———— 446
Specifying entry/exit actions for a state ..o ———— 447
Working with @ COmMPIEX SEAtEcccciiiii e 448
UML 1.4 Activity Diagrams ProCeAUIESccooiiiiiiiii ittt e e e ree e 450
Choosing a Target Class for the State Diagram or Activity Diagramccoeeevvcivvviinennnnen. 451
Creating @ Deferred EVENT ... e e e e e e e 452
Creating @ Self-TranSItioNcciiiiiii e e e e e e e e e e e e 453
Creating an Activity fOr @ Stateueeeiiiiiiiii e ———— 454
Designing @ UML 1.4 Activity DIiagrameuuiiiiiiiiiiiiiieeeee e r e e e e e e e e e e 455
Specifying Entry and EXit ACHONS ..o ————— 456
USING ODBJECE FIOW LINK .eeeiiiiiiiee ettt e e e e e e e e e e e e s e s ra e e e e e eeaaaeens 457
Working with @ COmMPIEX STtccceiiiii e 458
UML 1.4 Component Diagrams ProCEAUIEScuiiiiiiieeeiiiiieecccciiiittiee e e e e e e e e e e e e s e s s nveeeeeees 460
Designing a UML 1.4 Component Diagramcccccciiiiiiiiiiiiirieie et e e e e e e e e e 461
N1} (1Yo I @70] o ¢] o To] aT=Y o1 £SO 462
UML 1.4 Deployment Diagrams ProCEAUIESccuiiiiiiiiiiieeie e ee e 463
Designing a UML 1.4 Deployment Diagramcccccciuiiiiiiiiiiiiiiiriieiieeeeeeeeeeee e e e eaaaaaaaeaaaeeaeaaaeee s 464
Together Business ProCess MOUEIINGiiiiiieiiiiiiicie e e et e e e e e e e e e e eeaeaaaneeeeaeeeeenees 465
Attaching EXternal WSDL FilEuveieiiiiiiiiiieieeec e e e e e e e e e e e e e e e e e e 466
Creating @ BPIMN PrOJECTuuiiiiiiiiieiiie ettt e e e e e e e e e e s s e e e eeeaaaaeeeaeaaan 467
EXporting t0 BPEL/WSDL Fil€Suuuuiiiiiiiiiiiiieiiie ettt ettt ettt e e e e e e e e aaaaaaaeas 468
IMPOrtiNG BPEL File ...ttt e e e e e e e e e e e e e e e e e e e s s e ennnresraraeeeeeeeas 469
Importing BPMN Projects Created in Together 2006 for EClipSeccccvvviiiiiiiiiieieeeieececereeeee, 470
Performing Business Process Simulationc.uuuiiiiiiiiieieee e 471

10

Specifying BPIMN PreferenCesSccoooiiii ittt e s e s s se s e nnnes 472

Specifying Event and THQQEI TYPE .ooeeee ittt e e e e e e e e e s e st e e e e aaaaeeeeaenaanes 473
Using BPMN Layout FEALUIESccieii it s e e e e e e e e e e e et es 474
AV£= 11 To =TT Vo T =] LN I =T =T g P 475
WOrKING With GROUPS ...ccooiiiiiii i r e et e e e e e e e e e e e e e e e s e st s e s s e aeaanb e st assaesaeeereeeeaaeaaaaaeaeeens 476
Working With ProjeCtion Barsccoic oottt e e e e e e e e e e e e e eeeenannnn s 478
Working With UML Links in @ BPMN PrOJECEuuiiiiii it e e e s 479
(D= ez 1Y LoTe L= 1 g o [md foTot=Te LU =Y SRR 480
Activating ER Logical Diagram Profileooiiiiiieeeee e 481
Creating a Data Modeling PrOjJECEuviiiiiiiiiiicc e e e e e e e e e e e 482
Creating ConNecCtion Profileooo e e e e e e e e e e e e e 483
Creating Foreign Key in a Physical Data MOdeluuuiiiiiiiiiiiiiiiiiieeceeeeeeeeee e, 484
Creating Logical Data MOAEIoooviiiiiiiie 485
Creating View Relationships in a Physical Data Modelcoo oo 486
Generating Data Model from SQL (DDL) SCFIP ...coiieiiiiieiee et 487
Generating DDL Script from a Data Modeling Project ..o, 488
Importing Data Model from Database ... —————— 489
Transforming Logical Data Model to Physical Data Modelcccccvviiiiiiiiiiiiiiiiiceeeeeeeeeeeeeeee e, 490
Model Drven ArChIECIUNE ...ttt e st e e e s nnete e e e s annneeeeean 491
Adding a New Ant Task to the Composite Transformationcccccooiiiiiiiiiiiiie e, 493
Applying Model-To-Model Transformationsccoooiiiiiiiiiiiieeee e a e 494
Applying Model-To-Text Transformationsccc.uuiiiiiiiiieiec e a e 496
Applying XSL Transformationsccoiiiiiiiieeeeee e e e e e e e aaaaaaaeeas 497
Building MDA Projects from the Command LiNeccccuvuiiiiiiiiiiiiiiiiiiieiiieiieeeieeseeeeeeeeeeeeeeeeeeeeeeees 498
Configuring Model-To-Model Transformation BUIlAercooooiiiiiiiiiiiiieeeee e 499
Configuring Model-To-Text Transformation BUIlderccuviiiiiiiiiiiie e 500
Creating a Composite TransformMationccoeiiiiiii i e e e e e e e e 501
Adding a New Ant Task to the Composite Transformationccoovecciiiiiiiie e, 502
Creating a Model-To-Model Transformationccccuuuiiiiiiiiiiiee e e e 503
Creating @ QVT LIDIary ..ottt e e s et e e e et e e e e e b ae e e e e ennees 505
Creating an Example MDA Transformation Project ... 506
Creating an MDA Transformation ProjeCtcooo it e e 507
Creating an XSL Transformationcciiiiiiiiiiiiii et e e e e e e e e e e e e e e e s e 508
Creating Model-To-Text Transformationsooooiiiiiiiiiiieeee e a e e e 509
Debugging Model-To-Model Transformationsceveveiiieiieiicee e 510
Debugging Model-To-Text Transformationsoooiiiiiiiiiiiie e 511
Debugging XSL Transformationscccuuiiiiiiiiiiiee et e e e e e e e e e e e e e e ennnreneeees 512
Deploying TransfOrMatioNSuuiiiiiiiiiiiii e e e e e e e e e e e e e aaeaeeeeseeasnnnnennes 513
Manually Registering a Metamodel for Use with QVTOoooiiiiiiiiiiiiie e 514
OPENING MDA VIBWS ...ttt e e e e et e e et aeae e e e e s ae et teaaeeeeaaaaaeeeesaaaasnntsssaanreenaaaeeaeaasn 515
Running a Composite Transformation SCriptccccooiiiiiii e e e eeeees 516
Running an Operational QVTooi oot e e e st e e e e s e a e e e e e e annsreeeaeeaan 518
Running Compiled Transformationscccooiiiiiiieeee e 520
Comparing and Merging MOGEIScooiiiiiiiiie e e e e e e e e e e e s s e s raeareeeeaeas 521
Comparing and Merging Shared MOAEISuuiiiiiiiiiiiiiie e e e e e e e e e 522
1070 gaT o= aTo 1Y, oo =1 - PSEERRUR 523
Y o T To 1Y (o T =Y £SO 524
(©70] 0 a] 0= 15T Te 1Y, oo [T OO 525
Together Object Constraint Language (OCL)oooeeiiiiiii i e e 526
Creating an OCL Guard Condition for a Transitioncccccciiiiiiiiiiiice e 527
Creating CONSIIAINTSccce i e e e e e e e e e e e e e e ae e s e e b e aaeeereeeeaaaaaaeeeeaaaan 528
Editing Constraint EXPreSSIONScoiiiiiiii it e e e e e e e e e e 529
Enabling Source Code Generation from OCL Constraintcoooeeiiei i 530
OCL in Documentation TEMPIALEScooeiiiiiiiiiieeee e e e e e e e e e e e e e e eanes 531
Searching Model With OCL QUETIESeeiiiiiiiiiieic e e e e e e e e e e e e e e e e e e e 532

11

Using OCL in Model Audits and MEtriCSccooeiiiiiiiiicceee e 533

Working with a Combined Fragment ...t e e e e e e e e e e e e e e e e e 534
Working with Custom OCL OPErationsueeiiiiiieeeiiii i e e e e e s e e e e eeaaaee s 536
Patterns and TEMPIALESuuiiiiiiiiiieeee e e e e e e e e e e e e s e e e et r e e e e e aaaaaaaeaaaan 538
AddINg @ Pattern Partoooiiiii et a et aaaaaaaaaas 539
LU 1] To [T aTo N = (=Y o PR URS 540
Creating Model Element by Patternoooviiiiiiiiii e e e e e e e e e e 541
Creating Pattern DEfinitionuuiiiiiiiiiiii e e e e e e e e e s e e e e e aaaeeeeaaan 542
Deleting Patterns INSTANCEScoooeiiiiieicee e e e e e e e e s e s e e e e eaaeaaaeees 543
Lo 1T TR I =T g 0] F=1 (= R 544
Managing Pattern Definitions in the Pattern Registryeueeveiviiiiiiii e 545
[Y=ToTo e | a V4] g e [2= 1 (=1 4 1TSS 546
Using Conditions in TEMPIAIESuvuiiiiiiiiiiiiiiiie e e e e eeeeeeaeas 547
Using the Class Template EdIfOroooiiiie e e e e e aaeeas 548
Using the Link Template EQItOr s e e e e e e e e e 549
Using the Package Template EQItOrcooviiiiiiiiiiie e s 550
Validating Pattern Definition Projectscoooiiiiiii i a e e e e 551
Verifying Pattern INSTANCESoooiiiiii e e e e e e e e e e e s e e e aaas 552
Working with the Pattern INSTaNCESccoo oo 553
Creating Model Element by Patternoooveiiiii i 554
Adding @ Pattern Partooo o aaaaaae 555
Verifying Pattern INSLANCESovvviii i a e e e e e e e e e 556
XYoo To | T4 aTo TN =Y =T o 1 RPN 557
Deleting Patterns INSTANCESccooveiiii s e e e e e e e e e e e e e eeeeeanenees 558
Working with the TEMPIAIESvviiiiiiiieeeieeeee e e e e e e aa e s 559
[T 1) o TR I =T 4] 0] =1 (PSR 560
Using the Class Template EdIitOrcooooiiiiiiiie e 561
Using the Link Template EQIfOr ... e e e e e e e 562
Using the Package Template EdIfOr ... a e 563
Using Conditions in TEMPIAIESeuuiiiiiiiiiiiiciie e e e r e e e e e e s 564
Together QUALItY ASSUFANCEuuiiiiiiiiieieee ettt e e e e e st e e e e e e s nbb e e e e e e e snbaeeeaeeeennnreeeas 565
Copying QA ResuUlts 10 CHPDOAIcoooiiiiiiiiii e e e e e 567
Creating @ MEtriCs Chartcoooiiiiiie e e e e e e e e e e s e e e e e e aaaaaeeeeaaaan 568
Creating and Using Code QA SetScooiiiiiiiiiii e 569
Exporting and Importing Model AUdItS/MEIICScovvvvieiiieeeie e 570
EXPOrting QA RESUILS ..ottt e e e s st e e e e e s aab e e e e e e s aanrbeeeaaeeaans 571
[F= oo [1aTo A0 (o 11 =311 1K 7 oo [USRS 572
Generating QA REPOITcoo oottt e e e e st e e e e st e e e e e s ab et e e e e e snbeeeeeeennneeeas 573
[€1eT0 o aTe Jr=TaTo I U1 qTe o U] o] 1 oo SRR 574
Hiding and Showing AUdit RESUIESuuiiiiiiiiiie e e e e 575
N E= AV o b= i o IR (o o] o] =1 4 T PEEERRPRS 576
Printing AUAIt RESUIESot r e e e e e e e e e e e aaa e e e eaaees 577
Refreshing QA RESUIES ...ttt e e e s e e e e s sneneeeeaeean 578
Running Audits and Metrics from the Command Linecccccoiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 579
Running Model Audits @and MELHCSuuuiiiiiiiiiiiiieeie e e e e e e e e e e e e e e s e e e e enannnnrannes 580
Running Model Audits and Metrics @as ANt Taskscooeeveeiiiiiiii e 581
RUNNING SoUrce Code AUGILScociiieiiiicc e e e e e e e e e e e e e e e e e e e s se e s e s s ss e ennnansenrenrrennes 583
RUNNING SOUICE COdE IMELICSvvvviiiiiiiiiiie et e e e e e e e e e e aae e e e e s aeeannrnreereeees 584
Saving and Loading AUdit RESUIESuuuiiiiiiiiiiicc e e e e e e e e e e e 585
Saving and Loading Metric RESUILScoovviiiiiiiii e 586
Searching QA RESUIES ..ot e e e e et e e e e e s bt e e e e e e e nnaeeeas 587
Specifying Quality ASSUrance PreferenCesoc.uuiiii i 283
Using OCL in Model Audits and MEtICScoiiiiiiiiieiii e e e 589
USING QA HISTOTY ..ttt et e e et e e e e e et e e e e e e nn b e e e e e e e nnbeeeeeeeenneeeas 590
Viewing and Finding QA DeSCrIPLONSuuiiiiiiiiiiiiiiee e 591

12

VIieWiNg AUt RESUILSccooiiiiii it e e e e e e e e e e e e e e s e e s s berraarneeeeeeeaeas 592

ViIieWing MEtriC RESUILScoeiii e e e et e e r e e e e e e e e e e eeaeeaeaas 593
Viewing MetriCS @S Graphis ... e e e e e e e e e e e s e e s e e e a e aerereeeaaaas 595
Viewing Problem Detection Audits (Detection Metrics)coooovveeiiiiii e, 596
Using Version Control and Teams in TOGEehercooo e 597
Comparing and Merging Shared MOAEISuuiiiiiiiiiiiiiiiee e e e e e e e e e 598
Setting Up ClearCase SUPPOITcooei it r e e e e e e et e e aaaaaaaaaeeeeaeeaaesaasanessnnnnes 599
Setting UpP REPOSITOMIESeeiiiiiiiiiiieiiiiee e e e e e e e e e e e e e e s e e e e e e aaaaeeeeeeeeaaaaanes 600
] F= Ty g To N o 1= o2 USSP 602
] F= Ty g Yo I =T 0] o F= (= U PPERRRR 604
Managing Requirements with TOgetherccoo e 605
Creating Requirements Based 0N USE Caseccccuuiiiiiiiiiiiiiieeee e a e e e e e 606
Creating Traces from Requirements to Model EIementsoooiiiciiiiiiiieicceceeee e, 607
[T =Y (g T N =Tt SRR 608
Generating Documentation for REQUIrEMENESoeeiiiiiiiiiiiiiiieeee e 609
Modifying Requirement Prefe€renCesuuveiiiiiiiiiiiiiieee e 610
Navigating from Model Elements t0 REQUIrEMENESuuuiiiiiiiiiiiiiiiiiiiiieiieeeeeeee e e e e e e e e e 611
Opening REQUIFEMENTES VIEWSuuuiiiiiiiiiiiiiiiiieeie et e e e e e e e e e e e e e e e e st s e e e e e e e e eeaaaaaaaeaeeeeesaeaaans 612
Searching for Traced EIEMENLSuuuiiiiiiiiiiiiiiiice e e e e e e e e e e e e e e e e e e eennes 613
3V Tt gL e T4] o o N I =TT~ S PSSR 614
ViIieWing EIEMENT TIraCESccci ittt e e e e e e e e e e e e e s s e e e e e e e e e reaaaaaaaeens 615
Generating Project DOCUMENTAtIoNoooiiiieeeee e e e e e e e aaaaa e 616
Configuring the Documentation Generation Facilityccccvvvviiiiiiii e, 617
Generating HTML DOCUMENTAtIONcoiiiiiee enannes 618
Generating Project Documentation as ANt TASKccoeiiiiiiiiiiiiiiiiir e 619
Generating Project Documentation from Command Lineceueviiiiiiiiiiiiiiieie e, 620
Generating Project Documentation Using TemPIateccccccoiiiiiiiiiiieeeeenes 621
Together Documentation Templates ProCeAUIEScovvviiiiiiiiie e 622
A Typical Scenario of Creating a Custom Documentation Templatecoooovciciiiiiiieeeieee e, 624
Creating Custom Documentation TEMPIALeuuuuiiiiiiiiiiiiiiiiiiiiiieiieeeeee e eeeees 625
Creating SECHONS ...ttt e e e aaaa e e e e e e e e e e aa e e aan—anna——n 626
Creating StOCK SECLONSuviiiiiiiiiiiie e e et e e e e e e e e e e e e e e s e e s s s e enannennrnnes 627
Setting SeCtion Properties ..o e e e e —————————- 629
Setting Area ProPertiescoci oo e ——————————————— 630
Setting Template Properties e e e e e aeeees 631
Creating CONIIOISuviiiiiiiiiie et e e e e e e e e e aeeeeeese s s tabraaneeeaaaaeaeeeesaaannnnene 632
Moving, Resizing and Aligning CONIrOISuuiiiiiiiiiiiiiiie e a e e e e e 633

A Typical Scenario of Creating a Template for Multi-Frame Documentationcccccccvveveeeenennn. 635
Creating Custom Documentation TEMPIALeuuvviiiiiiiiiiiiiiiiiiiiiieeeeeeeee e e eeeees 636
Defining Frameset SITUCKUIEeeviiiiii e a e e 637

A Typical Scenario of Creating a Custom Documentation Templateccccceevieiiiiiiiiiiiiiinnnnnnn, 638
Setting Call to Template Section Properti€sccoeeiiiiiiiiciiiieeeeee et 639
Hyperlinking DOCUMENTALIONoeiiiiiieeiii e e e e e eaaae s 640

(07 ¢=Y=] aTo T O 0] o1 (o] - PSSR 641
Creating Custom Documentation TEMPIALEeeeviiiieeiiiiiiiieeee e e 642
Creating Formatting Styles for Documentation Templatescevevviiiiiiiiiiiii e, 643
Creating Hypertext Links (AAVANCEA)ccuuuiiiiiiiiieiiieiee et e e e e e e e e e e e e e e e e e e eennnes 644
Creating Javadoc Link References (Advanced) ... 645
L0 1=Y=] oo TR T=Tox (o] o 1< PP EUPURRRRR 647
Creating StOCK SECLONSuuiiiiiiiiiieeeeeee e e e e e e e aaa e e e e e e e e e e e e s s e e s aaennes 648
Defining Frameset SITUCIUMEvviiiiiiiiiicce e e e e e e e s e 650
Setting Template Properties e e e e aeeees 651
Setting Frame and Frameset Properti€sccccccoccuiiiieiiiniiiiiiiiiiiiiisiieeiseeseeseeeeeeeeeeeeeeeeeeeeeeees 652
Hyperlinking Controls to Element Documentationooooiiii i 653
Hyperlinking DOCUMENTAtIONccooiiiieeee e e e e e e e e e e e e e aaaeees 655

13

Hyperlinking Controls to Element Documentation ..o 656

Creating Hypertext Links (AAVANCEA)uuiiiiiiiiiiiieee e 658
Image Mapping (AAVANCEA)oooviiiiiiiiiiee e r e e e e e aaaaaaaaa e 659
Creating Javadoc Link References (Advanced)coooiiiiiiiiiiiieeeeeee e 660
Image Mapping (AAVANCEA)coooiiieeee e e e e e e e e e e e e st e e e e aaaeeeeeesannnnrbrraeeeeaeas 662
Moving, Resizing and Aligning CONIIOIScccuuuiiiiiiiiiiie e eeeees 663
OCL in Documentation TEMPIALESccooiiiiiiiiieeee e e e e e e e e e e e e e e e naaes 665
Reusing documentation templates from TCC/TA 1.X cevvviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee et 666
Setting Area Properties ... e e e e e aaaaaa s 667
Setting Call to Template SecCtion Propertiescuuiiiiiiieiieiiie e a e e 668
Setting Frame and Frameset Propertiesueeeeeiiiiiiiiiii i a e e 669
Setting SeCON Propertiesccoo oo e e e e e e e e 670
Setting Template Properties ...t e e e e e e e e e e e e e e e e 671
Using Word Documents in Documentation Templatesuuvciiiiiiiiiiicieicccc e 672
Ta1 (=T o] o =T =T o1 14 V2K=Ta o I 1Y, e =[] o PSSP 674
Converting Profile-Specific Properties ... e e e e e 675
Importing a Project in an IBM Rational Rose MDX Model ..o 676
Importing a Project in IBM Rational Rose (MDL) Formatccoooeeeiiiieeee, 677
Importing @ Project in XMI FOrMALoeeiiiiiiiiiiiec e e e e e ea e 679
Importing Java Modeling Projects Created in Together Edition for Eclipse 7.0ccoovvvvvvvvveevnennnn. 680
[ag] ool u il gTo J M=o F= Ty Y ol {o] (= o1 3PP 681
Reusing documentation templates from TCC/TA 1.X cevvviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeee e 683
XMI Export and Import of the Models with Cross-Project Referencesccocccciiiiiiiviieieniene e, 684

14

Reference

Reference

TOGEINET GIOSSAIY ...eeeiiieiiiteii ettt e e e e ettt e e e e e e bt et e e e e e e abbe e e e e e e e aanbe e e e e e e e nnnbeeeas 690
Together Keyboard ShOMCULSooiiii e e 692
AAItIONAI RESOUITESeeiiiiiiiiiiee ettt e e e ettt e e e e s bttt e e e s ab bttt e e e e aabbeeeeeeeanbreeeeeeannes 697
Components of the Together User INterface ... 698
Y TP 700
01T o 11O 701

1V ToTe L= I N F= 1Y T = L (o SRR 702

Model Package Explorer Context MENUS ... s 706
Common Diagram Context COMMANGASoiiiiiiiiiiie e 712
Package ConteXt MENU ..ottt e s e e s ennneee s 716
Common Element Context COMMANGASuiiiiiiiiiiiiie e 719
Common Link Context COMMEANGSoiiiiiiiiieiiiiee e e e 722

Model BOOKMAIKS VIBW ...ttt et e e e e e e e e e e e e e e e e e s e e e nneenneeeeees 724

107 0] 4o 0= 1 T8 =T 11 (o T OSSR 725
1o T =11 1 (= SR 726

DT E= o= 1o 0 BV =PSRRI 727
Metamodel BrOWSEE VIBW ..ottt e e e e ettt e e e e e e aaeaeeeeeaeeaaaannnnnnennee 728
Model Package EXPIOrEr VIBWcoi oottt e e es 729
OCL EXPrESSIONS VIBWeiiiiiiiiiiiiieieieee e e e e e e e e e e e e ettt et e e e eeeaeeeeaesaaa e e nnnsenseeeneeeeaaaaaaaeeeaaeeaaaaanns 730

o] o=y (=TT T YRS 732

L0 NV = TUT o [T PP 736

L0 NV I T 1 (o PRSP 737
DT I =011 (o SR 738

I = TSI oSS 739
Trace SYNCAIONIZEI VIEWoiiiiiiiiiiie ettt e e et e e e e s abbe e e e e e s aabreeeeeeanes 740

L= 0] 0] F= T C= S Y 1= SRR 741
Last Validation RESUIS VIBWueiiiiiiiiiiee e 742
Patterns and Template GUI COMPONENESoooiiiiiiiiiiiiee e 743
LY T (0] 0] = OSSP 744

PatterN REGISIIY ...ttt e e as 745

LI 0] 0] =T TS VA= SRR 746

Last Validation RESUIES VIEWooiiiiiiiii e 747

Quality Assurance GUI COMPONENTSoiiiiiiiiiiie it be e e e e 748
L0 Lo 11 Y= P RSSRR 749

IMEEFIC VIBW ..ttt et et oo oo et e e ettt ettt et e e e eeeaeeeeaaeaa e e nnennseeeeeeneeeeaaaeens 751

MoOdEl AUILS VIBW . r e e e e e e e e e e e e e e e s e et eeeeeeeeaaaaaeens 752

/T Yo [Y 1= g o= = PR 753

L0 0= =PRI 754
TOGEINET PrOJECES ...t e e et e e e e a e e e e e e n e e e e e e nneeas 755
PrOJECt PrOPEITIES ...coiiiiiiieeie ettt ettt e e e e e e et e e e e e e nneeeas 756
L7 o o (0] =T o] PP EPT 758
Special Considerations for C++ Projectsccuuiiiiiiiiii e 759

C++ Language-Specific Properties of the Model Elements ..., 763

CH+ ProjeCt Propertieseeeeiiiiiiiiiii et e e 764

IDL Language-Specific INfFOrmMation ... 766
New Together ProjeCt WIZards ...t 768
New Project Wizard COMMON PAGEScoiiuiiiiiiiaiiiiiieie ettt 769

New project Wizard C++ Language-Specific OptionSsooccuiiiiiiiiiiiiie e 770

New project Wizard IDL Language-Specific OptionScooiieiiiiiiiiiiiiie e 772

New project Wizard Data Modeling Specific Optionsooovviiiiiiiii, 774

CoNVEIrt MDL WIZAIAeiiiiiiiiieiieeei ettt ettt e e e e e e aaaaeeeeeaessaeaaa e nnnnnnnnnnnnes 775

15

Import Together ProjeCt WiIzardoooeieiieiiiiiie s e e e e e e e e e e e e eenennnnas 776

L (= 1= =Y Tt P PPRRRRR 778
B oY 1Y (gL o (=T £ (=Y o Tt P 779
Generate Documentation PreferenCeSocooiioieeeee e 780

[DIE=To | =10 0 [aaE=Te =3 o) =1 i{o] o PR 781
Generate HTML PreferenCeSuuvuieiiiiiiiieeieeee ettt 782
HTML OUIPUE OPLIONS ...t e e e e e e e e e e e e e e aae e e e e e e e snntnnreaneeeeaeas 784
L I O 101010 SO o] 1] 1= PR 785
MOAEIING PrefEre&NCEScce et e anannnnreneanes 786
BUSINESS ProCeSS PrefEr@NCEScoovviii ittt e e e e e 788
Data Modeling PrefE@r&NCESuuueiiiiiiiiiee et e e e e aaaaaae s 790
Diagram PreferenCeScooo ottt e aaaaas 791
EMF Model Compare PreferEenCeScooco ittt e e e e e e e e e e e s 793
Export t0 UML2TOOIS PreferenCeScccoiiieiccce ettt eeae s 795
Interaction Diagrams 2.0 PreferenCesScccuuiuiiiiiiiiiiiiieece e a e 796
B AT T o =) 1= =Y oY P EEEPRRR 797
LayOUL Pref@rENCES ...ttt e e e e e et e e e e et e e aaaaaaaaaaes 800
O L ittt ettt ettt ettt e et e e et teeeaaa——e e et tee e ettt ee e Reeeaanteeeeanteeeaanteeeataeeeataeeaanneeeanns 804
Predefined OCL Library OPerationscueeiiiiiiieiieeee e eee e e e e e e e e e 806
Patterns PrefE@rENCESuuiiiiiiii ittt e e e e e e e e e e e s e s s aeaereeeaes 808
T a LB o €= 1= =Y o o Y PSRRI 809
UML Profil€s PreferEnNCESuuiiiiiiiiiiii ettt e e e e e e e s e r e e e aaaae s 811
UML Profiles Preferences CONSIIraintscccccccuuuiiiiiiiiiiiiiiiiiiieiieeee e e e e e e e e e e e e e e e 813
UML Profiles Preferences View Managementccuuviiiiiiiiiiieie e 814

(07N 1Y o o = P EEEPRRRSPIN 815
QUA SOUICE ...ttt e e e e e oo e e et ettt te e et e e eaaaaeaeeeeeaa s s saseebssaanseeeeeaaaaaaeeessaaaaannnnnrnnes 816
[TaTo N o F= 1)Y= ol I -1 o T PR 818
=T o {11 =0 =T o1 £ PRP 819
L0711 0= 3] Y USSP 820
Source Generation PrefErenCEeSuiiiiiiiie it 821
C++ Source Generation PreferenCeSuuuuiiiiiiiiiiiiiiee e a e 822
Java Source Generation Preferencesoovvvvveieeiiii e 823
View Management PreferEnCES ...ttt e e e e e e e e e e e e e e e 824
Modeling Resources Team Prefe€rencCesoooooieeeiiiiii i 828
D, R 829
XML EQIOT .ottt et e et e e ettt e e snt e e e nt e e e aneeeeanteeeesaeeeanteeeenneeeeanseeeansenaeanseens 830
N] o = [) o SRS 831
(700 [0 =T 1 U PEEERRRN 832
oo 1o PR 833
o4 g 11 (=) SO 834
=T QO Lot od B 4 =g (o7 = PSR 835
=) 1= =Y [t PR 836
(= [o T T U OPPRP 837
YY1 = 5 O o] (o) 51 o NSO 838
LI 0] 0] =1 (P EEEPPRR 839
1010 o P PEEPRRRRSPIN 840
DT S 841
D1 OSSP 842
N] o = £ [) o PSSR 843
(@ 10 I 05 0] r=) @3 4 T=Tor 141 o | USSP 844
(700 [0 =T 1 P PEEPRRRN 845
(@10 I (517 01 r=) 7o) (o] 11 To) 1SS 846
531 5=) @70 (o] T [PSS EPPURRRRR 847
U] 7= o T OO PRP 848
ProfileS REFEIENCEcoeeeeee et e e e oo e e e e e e e et e et e e e e e e e e e e eaaaaaeaaeaeeaesaenaaans 849

16

Profile Definition PrOPEItIESuuuiiiiiiiiiiiiiiiee e e e e e e e e e e e e e e e e s e s eeaeeees 850

UML Profile for BuSINESS MOGEIINGuvviiiiiiiiiiiie ettt e e e e e e e e e e e e aeeees 852
Stereotype Options of UML Profile for Modeling In Colorcoooiiiiiiiiieeeeee e 854
UML Profile for Software Development PrOCESSESuuuiiiiiiiiieeiiiii ittt e e e e 855
EMF AP for TOQether Profil€Sovviiiiii ittt e e e 858
BUSINESS ProCeSS DIAQIamcociiiiiiiii ittt e e e et e e et e e e e e e e s e e as s et raaeeeeeaaaaeeeeesannanns 864
Y E=T o] o] 1T TN =1 [=T 0 1Y o1 £ PRSPPI 865
Y E=T o] o)1 aTo =5 Ced=T) o) I o P PEEERRPRS 866
Mapping Pools and MeSSage FIOWSuuuiiiiiiiiiiiiie et e e e e e e e e s 868
Mapping Process Structure: FIows and SEQUENCESuuueiiiiiiiiiieiieieeeeee e 870
Elements That Are Not Transformed 10 BPELcccooiiiiiiiiiiiiiiee et 872
BPMN Validation VIEWcoiiiiiiiiiiie ittt sttt e e s ettt et e e s e naae e e e e s annneeeeesannnneeeas 873
BPMN SImMUIGEION VIBWeeiiiiiiiiiii ettt et e st e e e ettt e e e s et b e e e e e enneeeee e e anreeas 874
BPMN Diagram Context COMMEANGSuuiiiiiiiiiiieeeeeeeie s ieecc e e e e e aaaaeaeeees e s sssasannsnsrrsreeeeeees 875
BPMN Simulation-Specific PrOPErtiesuuiiiiiiiiiiiiiii ettt e e e e e e e e e e e e s e e e snannennes 876
BPMN Diagram TOOIDACuuuiiiiiieieee ittt e e e e e e s s e e e e e e eaeeeesessannnteaaeeeeeaaaeeeeeesaaasnsnnes 878
BPMN Simulation REPOIT ...ttt e e e e e e e e e e s s e e e e e e e e aaaaaeeeeesasannnnrnnes 880
UML 1.4 REFEIEINCEeeeiiiiiiiiieiie ettt ettt e e ettt e e e s s bttt e e e s aab et e e e e s aabbeeeeeeaanbeeeeeesannbeeeaanns 883
UML 1.4 Class DIGQIamSuuuuiiiiiiiiieiee e e ee et ettt e et e e e e e e e s s e s st e s e e e e e eaaaaaeaeeeesaaaasnnssnrasaneeeeaes 884
UML 1.4 Class Diagram EIEMENLSccccoiiietee 885
ARLrDULE CONEXE MENU ... s e e e e e e s nnneaeeeeean 886

F N 11 010 (N o] o= = S P ERERRRR 887
Class CONEXE IMENUcooiiiiiiiiie et e e e e e e e e e et e e e e e e e e anbbeeeeeeeanneeeas 888
Class Diagram ConteXt MENUuuiiiiiiiieiee e e e e e s e r e e aaaa e e e s e e sannnsreaaeees 891
Class Diagram Propertiescoccciiiiiiiiiiii et e e e e e e e e e e e e 892
Class Diagram RelationShipsuuuiiiiiieiiiiiiieieeeeee e 893
Class, Inner Class, and Interface Propertiesccouueeieeiiiiiiieiieeee e 895
Dependency LINK PrOPEITIESoccvviiieiieeeee ettt e e e e e e e e e e aaa e e e e e e e e s 896
Extend/INclude LinK Propertiesccuuuiiiiiiiiiiiii ettt e e e e e e e e e e 897
Generalization/Implementation Link Properties ..o 898
LIVESOUICE RUIES ...ttt e e e e et e e e e e e nb e e e e e e e ennnreeas 899

(0] o] 1= Tox A ©70) 1 (= (B 1Y/ 1= o 10 P EUEEPRRRSPIN 900

(@] o)1= Tor A o o] 0=y 1= SRRSO 901
Operation CONEXE IMENU ... e aeseaassas s s s s ssnnnsnnnnnrenrrnnnnnne 902

(O oT=Ty= 11 To TN o o] o =Ty (oY SRR 904
= Tod = To LT o] o 1= =S REEER 906
UML 1.4 USE CaSE DIAQramsSuuuuiiiiiiiiiiiiiiiiee e e e e e e e e st e et e e e e e e aaae e e e e e s e s sa e nannanbreaaneeeeeeeaes 907
UML 1.4 Use Case Diagram EIemMeNtSuuviiiiiiiiiiec e 908
3 o] gl roT 01T o 1= PP PEESRRRR 909
Generalization LinK PrOPerti€Sueiiiiiiiiiiiiiiieieee e e e 910
Use Case Diagram Context COMMANGAScuvviiiiiiiiiiiiiiiiiiiriieieeeeeee e e et a e e aaaaaaaaaaaaaaaaaaaaaeaeeeeas 911
Use Case Diagram Elements Context MENUccuuviiiiiiiiiiiiiiccceee e 912
EXIENSION POINT ...ttt e sttt e e s et e e e e s ne e e e e s e nnneeeas 913
UL 0= TN o] 1= o 11T PR 914
(] e I [01 (=Y = Tox o] T D = e | = 41 P 915
UML 1.4 Interaction Diagram EI€MENESuuviiiiiiiiiieii e 916
1070] T 11 ([o] 0 =1 I =1 o o2 QU SRR 917
Y g I T 7= o = PR 918

y e 11V2= (o] oI = - | PRSP 919
=] (Yo 1Y =TT T [P 920
MeSSage LiNK PrOPEILIESuuuiiiiiiiiiiiiieii et e e e e e e e e e e e s e e s a e e e e eeeeaeas 921
UML 1.4 StateChart DIagramsuuuiiiiiiiiiiiiiieieeieeeie et ee e s e e e e e e e e e e e e e e et e e s s e s as s s s eaaassseranranssssrasseeereeees 922
UML 1.4 Statechart Diagram EIEmMENLSouuiiiiiiiiiiiiiiieiee e 923
Y=] (=Y TP 924
B2 L £ 1 o o RPN 925

17

DLy oY Yo I V7= o | TR 926

UML 1.4 ACHVItY DIGQIramSuuiiiiiiiieeee ittt e e e e e s et e e e e e e e e e e e s e st e e e e e aaeaeeesaasnnntrsaeeeeaeas 927
UML 1.4 Activity Diagram EIEMENESccccciieeeeeee e 928
Activity Diagram Context COmMMAaNAScooiiiiiiiiiiiiiieeeee e e e e e e e e e e e e e e e e 929
[TEY (o] VA o o] 0= T3 1= PSR 930
Horizontal and Vertical FOrk/JOIN Propertiescccccccciiiiiiiiiiiiiiiiiiieeieeeeeeeee e ee e e e aa e e e e e e e e e 931
Transition LiNK Propertiesuuuiiiiiiiiiiie ettt e e e e e e e e e re e e e e e e e e e e s e e aannnns 932

UML 1.4 Component DIiagramsScceeieiiiiiii ittt e e e e e e e e e e e e e e e s e e s s s s s nnnsenreeereeaeeees 933
UML 1.4 Component Diagram EIEMENTSccoooiiiiiiiieeeee e a e 934

UML 1.4 Deployment DIagramsSccccuuiuiiiiiiiiieiee e e s sttt e et e e e e e e e s e s s s st e e e e e eaaaaeeeseessnsnnreneeees 935
UML 1.4 Deployment Diagram EIEmMENTSoooeiiiiiiiieeeeeerr e a e 936

UML 2.0 REFEIEINCEeiiieiiiieeiee ettt ettt ettt e e e e sttt e e e sttt e e e e s aabe e e e e e e anbbeeeeeeaanbeeeeeeaannteeeaeens 937

UML 2.0 Class DIGQIamSuuuuiiiiiiiiieiee e e e e e ieeeci ettt e e e e e e e e e e s s s s st b s e e e eeeaaaaaeaesessaaaasanssntasareeeeaes 938
UML 2.0 Class Diagram EIEMENLEScccooiiiee et r e 939
Class Diagram RelationShipsuuuiiiiiiiiiiiiiiieiceeee e 941
Class Diagram Propertiescoccciiiiiiiiiiieie et e e e e e e e e e e e s 943
Association Class and N-ary ASSOCIAtioNcoooiiiiiiiii i 944
Dependency LinNK Properties ..ottt e e e e e e e e e et s e e e e e eeeenens 945
Generalization/Implementation Link Propertiescoooiiiiiiiieiceeeeee e 946
Operation CONEXE IMENU ... e e e e e e aa e e e e e e e e e e aaeesassa s s s s s ssnnsnnsnnrensrennnnnes 947

UML 2.0 USE CaSE DIAgramsSuuuuiiiiiiiiiiiiiiiiee e e e e e e e e e s st rae e e e e e e e aaaee e e e e s e s asnsnnanansssaaneneeeeeaeas 949
UML 2.0 Use Case Diagram EIemMeNtsuuviiiiiiiiiiii et 950
EXIENSION POINT ...ttt e e ettt e e e s et e e e e e st b e e e e e e nnneeeas 952

(WY I O [0] (=Y = Tod 1 To] g T I T= o | =T 1 41 PP 953
UML 2.0 Sequence Diagram EIEMENTSccoooiiiiiiiii i a e e e e 954
UML 2.0 Communication Diagram EIements ..o, 955
101 (== Tex 11 o PSSR 956
Y I O Y7 o = PR 957
Execution Specification and Invocation Specificationcccoiiiiiiiiie e, 959
Operator and Operand for a Combined Fragment ... 960
Clipboard operations with execution and invocation specificationscccccccviiriiiiiirieeennnn. 962

UML 2.0 State Maching Diagramscooiiiiiiiiiiiiiiieeieie e e e e e e e e e e e e e s s s ennnnreneeees 963
UML 2.0 State Machine Diagram EIEMENtScooevvviiiiiiiiiiiiii 964
State Machine Diagram Context Commandsooooiiiiiiiiiiiicicc e 966
State Machine Diagram Elements Propertiescocueeeiiiieeiiii i 968
B2 L £5 1 o o PSPPSR 975
History Element (State Machine Diagrams)ccovvvviiiiiiiiiiiie e, 976

UML 2.0 ACLIVItY DIQQIramSueiiiiiiiiiiieee et e e e e e e e e s e s e e e e e e e e e e s s e asaantnbaeaeeeaaaaeeeeaaannnensenes 977
UML 2.0 Activity Diagram EI€MENLScccceiiieiiiiiieeeeee e 978
UML 2.0 Activity Diagram Context COMMANGSuuuriiiiiiiiiiiiiiieiieeeereereeeiaeraaaaaaaaaaaaaeaaaaeeeens 980

UML 2.0 Component DIiagramsScceeeeiiiiiie ittt e e et e e e e e e e e e e e e e e s e e s e s s s annnnrenrsenreeaeeees 982
UML 2.0 Component Diagram EIEMENTScoooiiiiiiiieeeeeeee e a e 983

UML 2.0 Deployment DIagramsScccc.uuiiiiiiiiiieeee e e e e s seeinieeeee e e e e e e e e e s e s s e e eeeeaaaeeeesesssnnnnrenenees 984
Deployment Diagram Context COMMANGAScoviiiiiiiiieieee e e e e e e e e e e 985
UML 2.0 Deployment Diagram EIEMENLScoooiiiiiiiirteeeerr e 987

UML 2.0 Composite Structure Diagramsccoooiiiiiiiiiiieeeee e eee e e 988
UML 2.0 Composite Structure Diagram EIEMENTScoooiiiiiiiiiiiiieeeee e 989

(D= ez 1Y Lol L= 1 g o I =Y =T =) o o PSSR 990

ER Logical Diagram EIEMENTScoiiiiiiiiii ittt e e e e e e e e e e e e s ae e neeees 991

ER Physical Diagram EIEMENTSccooiiiiiiieeeee e e e e e e e e e e e e e s areeeeaeas 992

Element Context Menu Commands of ER Logical Diagramcccccevevieieeeeiiiiiiiccccciveveeeee 993

ER Physical Diagram Context COmMmMaNndSoooiiiiiiiiiiiiiiieieeee e eeeees 994

Element Context Menu Commands of ER Physical Diagramcccccccveeeeiiiiiiiiiicccceveeeeeeeee 995

Links Context Menu Commands of ER Physical Diagramccoooeciiiiiiiiieieeee e 996

D A ettt et e et e e e e a_ e e eeee e e ht et eee e e e bttt eee e e e Rttt e eeeaan ettt e e e e aanneeeeeeeannbaeeeeeannreeeeean 997

18

L@ L I IR T T =T [SR 998

L@ LY 1@ N 1= g T T =T TS 1008
XSL/OCL LANQUAGE ...eeeiiiiieeeeeeie ettt e e e e e e e e e et e e e eeea e e e s e e saastabaeaeeeeaaaaeeesasaasnntssananeeeaaaanes 1009
L@ N N o 1= T 4SSO 1023
QVT Operational ANt TASKScueeiiiiieeiiieesitiieesiee e sttee e ee e e sstteeessteeesssaeeessteeeasseeeeanseeeensseeeanseeeanses 1025
MOAEI-TO-TEXE ANE TASKS ...eeeiiieiiiiiiiiie ettt e e e s e e e e e s e e e e e e e e s nnbreeeaeeeanneees 1027
XSL/OCL ANE TASKS .eiieiiiiiiiee ettt ee ettt sttt e e sttt e e e s anbe e e e s aabb et e e e e annsteeeesannsbeeeeeannneeeanan 1028
QVT Operational Migration NOLEScooiiiiiiiiiiiiie e 1029
QVT Operational Imperative Ieratorsccuiiiiiiiiiii e 1037
QVT Operational Transformation Wizard Configuration Propertiesccccccovviiiiieiiiicine e, 1039
QVTO/OCL Collections and OPErationsSoocuueiieeeiiiiiiiee et e e e e s sreee e e e e s snbeeeae e e snnees 1040
MDA EXaMPIE PrOJECLS ...oceeee ittt e e e e e e e e e e s e e s et e e e e e e e aaaaeeeaeaaaan 1044
EMF API for TOgether MOEIScccoeiiiiiii e eeeeeees 1045
MOAEl COMPATE/IMEIGEvvviieiieiiiiiie ettt e e e e e e e e e e e e e e e s e s s e st e st aaaeeereaeeaaaaeaeeessananaannnns 1050
Requirements ManagemENTuuiiiiiiiiiiie e e e e e s e e e e e e e e e e s sa e a e rreaeeaaaaeeaaaan 1052
EIEMENT TTaCES VIBW ...ttt ettt e ettt e e sttt e e e s e ne e e e e s ansbee e e e e annnneeeeas 1053
Trace SYNCNIONIZET VIBWeueeeiiiiiieeee ettt e e e e e e e e e s et e e e e e aaaaeeeeeassaansnbesraneereeeaaaeeas 1054
Patterns and TEMPIALESuuiiiiiiiiiii e e e e e e e e e e e s s s e ar e e e e e aaaaaeeeeaaaaans 1055
Patterns and Template GUI COMPONENLSccooiiiiiiiiiiieeeeeee e e e e 1056
1LY ¢ T () (0] = SO 1057
Pattern REGISIIY ..o e e e e e e e e et e e e e e e e e e e e e e ———aes 1058
APPILY TemMPIate WIZArdcooiiiieee e e e e e e e e e e e e e e e s e s snanrraareeeeaeas 1059
Create Pattern from EIEMENTSooooiiiiiiii e e 1060
Save As Template WIzZardccooiiiiiie e e e e e e e e e e e e e aaaaaaaaaas 1061
LT 0] o] F= L CET Y AT PSP 1062
Templates VIeW CONEXE IMENUSooiiiiiiieecc e e e e e e e e e aaaaaaeaeas 1063
QLI 0] o] F= 1 G =T 1) (o] = EPRRP 1064
L0 b= E I =Y 0] o] F=) LT =[] (o RSO 1065
Link Template EdIitOr ..o e e e e e e e e e e 1067
Package Template EQITOrcoooiiiii e 1068
Template Variable TYPESoiiiiii ittt e e e e e e e e e e s a e e e eeaaaaaeeeesaaaanns 1070
=T a0] o] P21 CoYl o o] o=y 1T PSR 1071
Syntax and Conditions iN TEMPIALESeeeiiiiiiiiiiiiii e e e e e e e e e e 1072
Last Validation RESUIES VIEWuueiiiiiiiiiie et e e e e e e 1075
S T0 o] o To] g 1=Te I =T 1 g1] =1 (T PSSR 1076
gL =Y 9T 0] = (PP 1077
Class and Package TemPIatesccooociiiiiiiiiiiiecece e e e e aee e 1079
J2EE, TagLibs, J2EE JMS TemMPIAtEScveviiiiiieei it a e 1081
(€70 o =10 q] o] F=1 L= SRR 1082

L€ To] ol = Y1 (=T 4 o PR 1083
QUAIEY ASSUFAINCE ...ceieeeeieeie et e ettt s et et e e st e et eeeesteeeentaeeeasteeeanseeeeasseeeanseeesanteeeanseeesnnaeeenssenennsseeans 1084
Model Audits and Metrics DESCIHPLONSuviiiiiiiiiieec e a e e e e e e e 1085
Audit and Metric SAmMPIE ProjECEovvvviiiiiiieeee e e e e e e 1091
Project DOCUMENTALIONcoi it e e e e e e e e e e e e e eae e e e e e s s s ssanraranaeeeeaaaeeesanaannns 1094
Documentation GENEIAtiONc.oiiiiiiiiie ettt e e e s s e e e s s nnn e e e e e e anneeeeas 1095
7= Te (o ToR B 1111 VRS 1Y] €= OSSP 1096
Genhtml ULIlItYy SYNTAX ..uvviiiiiiiiiiiiiiieieee et a e e e e e e e e e e e e e s e s e e nnnnnnenrrnnes 1097
Documentation Template DESIGNETccco i eeeees 1098
E N (= T= B] o 1= (= U 1099
Call to StoCK SECHON PrOPEItIESveeeiiiiiiiiieeee e e e e e e e e e e e e e aeeees 1101

Call to Template Propertiesuuuuieiiiiiiiiiieeee e e e e e e e e e e e s e e e s aeeeeeees 1102
(070 a1 o] I ol ro] 01T o 1= PSR PPRRR Pt 1104

DG functions in Formulae EXPreSSiONScociiieiiiii oo 1106

DT =T =T o] TSP 1118
Documentation Template DESIGNETcooeiiiiiie e 1120

19

Documentation Template Propertiesccoooooiiiiiiieeeee e 1122

Element erator Propertiesuueeiiiiiiie ittt e e e e e e e e e e s eae e 1124
Frameset Template Properti€socuviiiiiiiii it 1126
Folder SECtON Propertiesuuuueiiiiiiiiiiiiiee et e e e e e e e e e e e e s e e e aeeeeees 1128
OCL Functions in formulage eXPreSSiONSccccuuiiiiiiiiiiieee e e e ie e e e e e e e e e e e s ssssnrenreeeeeees 1130
Property erator Propertiesooooi oot 1133
StaticC SECHON PrOPEITIES ...oooviiiiiiiii e e e e e e e e e r e e e eeeees 1135

1/ TeTo [T T aT oo =T a o I = o] o (P EERRRPR 1136
Import Together ProjeCt WIzZardcoooiiiiiiieeee et e e e e e e e e e e e aeee s 1137
1T g T o o] o YA 2= Y [EEREURRRR 1139
MDL Projects IMpPort OPLIONSccoiiiii ittt e e e e e e e e e e e e e s e e s a e e e e e e aaaeeeessanananns 1140
V1) T 4] oo o YA 2= T o S PEREPRR 1142
MDX Projects IMport OPLIONSuiiiiiiiiiiiiiiee s e e e e snnnens 1143
DAY L = oY i A = o PR 1144
DAY T oo g AT/ 2= PP 1145
V2= 5o o 0o o 1 { o | PSRRI 1146
Sharing Design Elements: Special Considerationscccccoe oo, 1147
Sharing Packages: Special ConSiderationscoooiiiiiiiiiiiiee e a e e 1148
Sharing QA Sets and Audits and Metrics RESUILScoooiiiiiiiiiiiiiii e 1149
[11 oo - P PPEEURRRR 1150
APPIY TranSfOrMALIONooiii i e e e e e e e e s e e e e et e e e e e e e e s s nnnnraaneeeeaeas 1153
SelECt DESHNALIONeeiiiiiieiie e e st e e e s e e e e are e e e e e anee 1154
SeleCt TransSfOrMAatiONooiiiiiiii et e e e e s s e e e e s st e eeeaeeeaneee 1155
BPELAWS EXPOIt WIZAIcceviieiiiiie ettt seee sttt e e sttt e st e e stte e e entaeaessaeeeannaeeesnnanaeannneas 1156
BPELAWS IMPOrt WIZArdcooiiiiiieiee ettt e et e s e s s e e e s s nnannnnns 1157
Call to StOCK SECLON PrOPEILIESuvviiiiiiiiiiiiiieiii ettt e e e e e e aaaaaaaaaeeas 1158
Call to Template Propertiesccccoceeiiiiiieeeee et e e e e e e aaaaaa e e e e e e e e aaaas 1159
Create Pattern from EIEMENTSooooiiiiiiii e 1161
Create Requirement(s) Dialog BOXuuuiiiiiiiiiiieii ettt e e e e e e e s e e e e e e aaaae e 1162
o L T T SRS 1163
Edit Hyperlinks for Diagram dialog DOXcoiiieiiiiiiiiiiieeeee e 1164
o 1 1Y = [T 1165
o[Q@ 0= = 1T o RPN 1166
Edit Transformation Profile ... 1167
Element erator ProPertiESuuiiiiiiii ittt e e e e e e e e e e e e e e e e s s e aanrnraeaeeees 1168
Export Diagram t0 IMage WIzZardoeeiiiiiieiiiiiiceeeeee e e e e e e e e 1170
Export Pattern Conversion Profiles ...t 1171
Export QA RESUIES TO A Fl© ...eeiiiiiieee et e as 1172
Export Wizard: SQL/DDL Script from DB SChemaccoiiiiiiiiiiiiiiei et 1173
Select Generation ODJECES PAGEuuvuiiiiiiieie i e e e e e e e e 1174
Select Generation OPtioNS PAGEccvviiiiiiiiiie e 1175

S T= Y= (o T a1 T= o =T TR PPRRRP 1177
[T To I N F= 1) V7= T -1 o Yo PSRRI 1178
Frameset Template Properties Dialog BOXuuuiiiiiiiiiiiii it 1179
Generate HTML Documentation dialog boX ... 1180
Generate Documentation Using Template dialog DOXuuuiiiiiiiiiiiiiiiiiiiieceeeeeee e, 1181
Generate Sequence Diagram dialog DOXeeiiiiiiiiiiiiiiicccceeeee e 1182
Import Wizard: DB Schema from ER Logical Diagram Profile UML 2.0 Projectooeeeeeee. 1183
Select Source and Target ObJEects PAGEooo oot ————- 1184

Y=Y [=Tot A O] o] 1 o] 30 o =T - R PPPIOt 1185
Import Wizard: DB Schema from JDBC ...t 1186
DB Schema from JDBC Import Wizard: Select Objects to Import pagecooeeeveeeeeeeeeeen. 1187
Connect to Database Dialogc...uuuiiiiiiiiiie e —————— 1188
Import Wizard: DB schema from SQL SCFIPtvuiiiiiiiii e 1189
Select Objects t0 IMPOrt PAGEoooo i 1190

20

Import Pattern Conversion Profilescooiiiiiiiieee e 1191

Import Together ProjeCt WIizZardcoooii it e e e e e e e e e aeee s 1192
Y =T aT=To [T I = Lot =Y I 1 -1 o T PSR 1194
MOAEIING PrEfErENCEScooeeeeeieee e e e e e e e e e e e e e s e e e e e eaaaaeeeeesaananns 1195
NEW MDA ANE TASK .eetieiiiiiiie ettt et e e et e e s e bt e e e e s nbee e e e eansbeeeeeensbeeeeeenneee 1197
ChooSE Data SOUICE TYPE ooiiiiiieeei e s e e s e s e e nansensraneaeeeeees 1198
Select Launch Configurationeeeeeeiiiiiiiiiiie e 1199
Select Launch Configuration TYPEcceeeiei i 1200
PIOVIBW ..ottt e e ettt e e e e a bt e e e e e ettt e e e e e e nbre e e e e e anbeeeeeeanreeas 1201
1T g T o o] 5 VAT 2= Y U SUERRRRRR 1202
V1) T 4] oo o AT 2= o S URERRR 1203
Model Search and OCL MOdel SEAICHooiiiiiiiiiiii e e 1204
New Together ProjeCt WIzZardsoooioiiiiiieeeee et e e e e e e e e e e e e e e e s e e snnnens 1205
New Project Wizard COmMMON PAQESovvviiiiiiiiiiiieccee e 1206
New project Wizard C++ Language-Specific Options ..., 1207
New project Wizard IDL Language-Specific Optionsococcviiiiiiiiiiieeceeee e 1209
New project Wizard Data Modeling Specific Optionscovvvviiiiiiiiiiiiiiiiiieeeeeeee e 1211
CoNVEIt MDL WIZAIQ ..ottt e et e e e e et e e e e e e snbe e e e e e e e annrees 1212
Print Audit dialog DOXcooice e e e e e e ———————— 1213
Print Diagram Dialog BOXccoiiiiiiii e e e e ———————————— 1214
10 D= 1 o SRR PPN 1215
o] [=ot o] o=y 1= PSP 1216
Project Specific ConfigUIrationccuuiiiiiiiiiiie e e e e e e e e e 1218
Property Herator Propertiesccccccciiiiiiiiiiieeee et e e e e e e e e e e e e e e e e s e e e s e e e n e sreeaeeees 1219
L@ U] Lo [= Tl =] 01T (=Y S 1221
LT T o o SR SUSSUSR 1222
L@ L IS T4 o 1= RS 1223
U S S 1224
Model-To-Text APPHCALIONuuiiiiiiiiii e e e e e e e e e e e e e aeeees 1225
Model-To-Text TransformMation ... e 1226

(O LY I 0 =1 4 o] (= USRS 1227
QVT TransfOrMAatioNc.uuiiiiiiiiiiiie e e e sttt e e e s sttt e e e e e e ssnbeeeeeeesanneeeeaeeen 1229
DS I I =T g 13 {4 4 g F= 1o) o SR 1231
Launch BPMN SimUIGLIONeeiiiiiiiiee et 1232
RUN QU A ettt ettt e ettt e ettt e et e e e e ste e e e s tee e e taee e ste e e e Reeeeanteeeenaeeeanteeeennteeearaeenn 1233
Requirement Traces Search Dialog BOXcooiiiiiiiiiiiiiicc e e 1234
Select element dialog DOXuuiiiiiiiiiiei e ——————————————————— 1235
S T=1[=Tor (o] TN 1Y =T g E= o =) SRR 1236
StatiC SECHON PrOPEILIESuuiiiiiiiiiiiiiei ettt re e e e e e e e e aaaaaaaaaaeas 1237
Template Properties Dialog BOXuuiiiiiiiieiiiec ittt e e e e e e e s rae e e e e e e e aaaaaae e s 1238
Trace Synchronizer Dialog BOXccccciiiiiiiiiiee et r e e e e aaaaa e 1240
DAY L = oY i AL = o PR 1241
DAY L T oo o AT/ 2= PR 1242
Legal NOtices fOr TOGEINET ... e e e e e e e e e e e e e aaaaeeeeaaannns 1243

21

22

Getting Started

23

Getting Started with Together

This section contains an introduction to modeling with Borland Together. The sample projects and Cheat Sheets
are designed to help you explore Together features while working with projects. Some of the special features include:
BPMN modeling, patterns, generating project documentation, reverse engineering and so forth.

In This Section
Together Overview
Provides a brief introduction to the feature set of Together. Use Together for building a UML model of your
application.

Together Documentation Set
Describes the documentation set for Together.

Sample Projects and Cheat Sheets
Provides a list of sample projects and cheat sheets.

Help on Help
Explains how to use the Together online Help and where to find additional resources.

Tour of Together
Tour of Together.

24

Together Overview

Welcome to Borland® Together®, the award-winning, design-driven environment for modeling applications.
Together includes features such as support for Unified Modeling Language (UML) 2.0, Object Constraint Language
(OCL), patterns, Quality Assurance audits and metrics, source code generation, IBM Rational Rose (MDL) format
import, XMI format import and export, and automated documentation generation.

Borland® Together® is a visual modeling platform designed to support architects; Java, C# and C++ developers;
UML™ and DSL designers; business process analysts; and data modelers in the accelerated delivery of high-quality
software applications.

Together® helps companies manage the complexity of today's software world by communicating ideas clearly,
utilizing automation for efficiency, and allowing organizations to leverage industry and internal standards. Together
improves business agility and lowers maintenance costs through the delivery of a platform-independent solution for
domain-specific languages (DSLs). The unique DSL Toolkit is designed to help organizations that have needs for
more specific solutions than Unified Modeling Language (UML)™ models by allowing project teams to create,
customize and deploy models within their own business domain and tailored to their own specific needs. DSLs
mprove the usability of modeling, eliminate unnecessary overhead, and optimize communication and efficiency
among project teams. Together allows companies to achieve the right mix of leveraging industry experience
embodied in standards and the freedom to tailor or invent what is needed.

Together benefits include the following:

¢ Leverage UML, BPMN, and ER modeling activities by generating Java, C++, C#, BPEL, and SQL DDL.
¢ Jump-start modeling activities by reverse-engineering Java, C++, BPEL, and SQL DDL.

¢ Increase productivity and quality by automating design and code reviews with audits and metrics at the model
and code level.

¢ Improve communication with fully customizable template-based document generation that can assemble
content from all model types and requirements.

¢ Leverage Model-Driven Architecture™(MDA) features including OMG’s Query View Transformation (QVT)
used in model-to-model transformations and support for OCL 2.0 with syntax highlighting, validation, code
sense, refactoring, debugging and expression evaluation.

¢ Integrate modeling and design activities and artifacts with Application Lifecycle Management (ALM) tools and
processes.

The following resources offer additional assistance, information, and services:

¢ For information on how to use this Help system, see Help on Help in the Related Concepts.

Borland Together Home Page

Borland Together Documentation

Borland Together Support

Borland Product Support

Borland Services

*® & & o o o

Borland University

If your Internet access is limited by network security, or if your computer is protected by a personal firewall, the Web-
based links in this Help system might not function properly.

25

http://www.borland.com/us/products/together/index.html
http://techpubs.borland.com/together/
http://support.borland.com/kbcategory.jspa?categoryID=48
http://support.borland.com/index.jspa
http://www.borland.com/us/services/index.html
http://borland.learn.com/learncenter.asp?id=178419

Related Concepts

Help on Help
Together Documentation Set

Related Reference

Together Glossary
Together Keyboard Shortcuts

26

Together Documentation Set

The Together documentation set consists of the following items:

Item Description Location

Release Notes (ReadMe) Late-breaking information including: Borland Together Release Notes

Last minute notes
System requirements
Installing and starting Together

Known issues and limitations

Setting Up Licensing for Borland Together licensing setup. Setting Up Licensing for Borland
Together. Together
Online help General, context, and dynamic help for Together main menu:

Together including the following
comprehensive information most relevant to
the user:

Help k Help Contents

— Conceptual topics — Getting Started and
Concepts

— Procedural topics — Working with
Projects, Creating and using profiles,
Working with diagrams, Working with
different types of modeling, Refactoring
procedures, Using OCL, Working with
patterns, Quality assurance, and
Documentation generation procedures.

— Reference topics — dialog boxes, wizards
and GUI elements

Cheat Sheets Interactive tutorials that help you start using The item on Together main menu:
basic product features. Each cheat sheet
helps you complete a single task. Help b Cheat Sheets

A list of Together cheat sheets is available in
the Sample projects and cheat sheets topic.

Related Concepts

Sample Projects and Cheat Sheets
Help on Help

27

http://techpubs.borland.com/together
http://techpubs.borland.com/together
http://techpubs.borland.com/together

Sample Projects and Cheat Sheets
Together ships with sample projects and cheat sheets that help you get acquainted with Together and its features.
The sample projects are available under File ¥ New k Example.

Cheat sheets provided with Together are basically interactive tutorials that help you to start using some of the
Together features. Each cheat sheet helps you complete some task. For more information about cheat sheets refer
to Eclipse Workbench User Guide.

The cheat sheets are available under Help ¥ Cheat Sheets.

28

Help on Help

Together allows you to view various help topics that will assist you while you are completing your tasks.

Together Online Help
Together online Help includes conceptual overviews, procedural how-to's, and reference information, which allow
you to navigate from general to more specific information as needed.

Tip: When you use a link to navigate from one topic to another topic, the context of the Help topic you are viewing
might not be obvious. To find the context of a topic within the Contents pane, click the Show in Table of
Contents button on the toolbar of the Eclipse Help viewer.

Concepts
Concepts introduce the main features and methods that will help you learn and understand Together techniques.

At the end of most conceptual topics, you will find links to related, more detailed information.

How-To Procedures
The how-to procedures provide step-by-step instructions.

All procedures are listed under Procedures in the Contents pane of the Help window.

Reference Topics

The reference topics provide detailed information on subjects such as configuration options, GUI elements, dialog
boxes, and wizards references.

All of the reference topics are listed under the Reference section in the Contents pane of the Help window.

Context Sensitive Help

Context sensitive Help is available throughout the interface by selecting an item and pressing F1, or the Help button.

Typographic Conventions Used in the Help
The following typographic conventions are used throughout Together online Help.

Typographic conventions
Convention Used to indicate

Monospace type Source code, file and folder names, and text that you must type.

Boldface GUI elements and dialog boxes.
Italics Book titles and to emphasize new terms.
KEYCAPS Keyboard keys, for example, the CTRL or ENTER key.

Related Concepts

Together Documentation Set

29

Tour of Together

Together changes the user interface according to how you want to work with Together by providing several Together
perspectives to customize the Together-user experience. In Together you can choose one of the following Together
perspectives:

¢ Modeling including Business Process Modeling Notation (BPMN), BPMN Simulation, Model Driven
Architecture (MDA), Patterns and Templates, and TogetherQA group views

DSL Toolkit
Data Modeling
CaliberRM

* & o o

RequisitePro

Views and Editors Associated with Each Together Perspective

The views associated with each Together Perspective vary according to the perspective selected. The views that
make up each Together Perspective are described below.

Together Modeling

The Modeling perspective is the default perspective for Together. The Modeling perspective provides the following
views:

View Description

Add linked results Shows results of applying the Add Linked command.

Code Generation Log Displays a log of the code generation process.

Generate Implementation Log Displays the log of the generating implementation code for a sequence
diagram.

Generate Sequence Diagram 1.4 Log Displays the log of the generating a sequence diagram in a UML 1.4
project.

Generate Sequence Diagram 2.0 Log Displays the log of the generating a sequence diagram in a UML 2.0
project.

Model Audits Displays the results of the model audits you run.

Model Bookmarks Lists bookmarked model elements.

Model Metrics Displays the results of the model metrics you run.

Model Navigator Provides the logical representation of the model of your project:
namespaces (packages) and diagram nodes.

Model Package Explorer Displays the UML content for all open projects

Diagram Editor Displays created and opened diagrams. When you use multiple diagrams,
the diagram editor provides a tab for each diagram.

Properties Displays the properties for a selected element. The properties for each
element are usually divided into different categories.

Profile Constraints Lists available profile constraints.

Profile Validation Displays results of the profile validation process.

BPMN Validation Lists all BPMN diagram-related errors, including diagram errors, export,
and simulation errors.

BPMN Simulation Provides simulation run progress information and tools to control the
simulation process.

Metamodel Browser Lists metamodels that can be selected as a source or a target of a Queries/

Views/Transformations (QVT) transformation.

30

OCL Expression

Last Validation Results
Pattern Explorer

Pattern Registry
Templates
Audit

Metric

DSL Toolkit

Enables you to quickly evaluate OCL expressions in the explicitly specified
context (a Together or Eclipse Modeling Framework [EMF] model
element), or in the context of the current selection.

Displays results of the latest validation of a pattern definition.

Enables you to logically organize patterns (using virtual trees, folders and
shortcuts), and manage recognized instances of patterns.

Defines the virtual hierarchy of patterns.

Displays currently available source code templates.

Displays the results of the source code audits you run.

Displays the results of the source code metrics you run.

The DSL Toolkit perspective provides the following views and editors:

View/Editor
DSL Explorer

Metamodel Explorer

Generic Template Browser

DSL Editor
Domain Model Editor

Diagram Definition Editor

Figure Gallery Editor

Report Definition Editor
Dynamic Templates

Operational QVT Traces
Problems

Outline

Properties

Data Modeling

Description

Provides DSL project navigation, dragging and dropping of resources and templates
with model refactoring, adding and importing artifacts, and generate and validate
actions.

Lists metamodels that can be selected as a source or target of a QVT transformation.
Lists currently available templates.

Used for editing DSL projects.

Used for editing domain models.

Used to manage general configuration properties and generation actions, advanced
properties, the tooling model, the mapping model, and all of the models involved with
a diagram.

Used to configure figure gallery details, provide a tree view of the figure gallery model,
and provide a composite viewer and editor for all models involved in a figure gallery.
Used to define a report.

Used to browse templates used for model code generation and to copy (override)
template files into the folder specified in the Dynamic Templates Path so that you
can customize the templates.

Used to inspect the results of a Model-To-Model QVT transformation.

Displays compilation errors.

Displays outline of the structure of the currently active file in the editor area.

Used to view and edit the properties of the currently selected item in the DSL
Explorer.

The Data Modeling perspective provides the following views:

View
Navigation

Description
Contains Model Navigator and Navigator tabs, by default.

Diagram Editor Displays created and opened diagrams. When you use multiple diagrams, the diagram editor
provides a tab for each diagram.

Properties

Displays the properties for a selected element. The properties for each element are usually

divided into four categories: Description, a textual description of the element; Hyperlinks, links to
other elements or external files and documents; Properties, UML properties; Requirement,
requirement information.

Tasks

Shows tasks (reminders) that you either created or generated during the build process.

31

DDL Preview Data Description Language (DDL) expressions viewer.

CaliberRM

The CaliberRM has the following views.

View Description

CaliberRM Navigator Allows you to connect to and browse multiple CaliberRM repositories located on different
servers over the network.

Synchronizer Allows you to review and synchronize changes made to traced requirements or external
vendor objects.

CaliberRM Traces Displays information about the requirements and external vendor objects traced to and
from the requirement selected in the CaliberRM Navigator view.

Traceability Matrix Displays all the trace links for the selected requirement, baseline or project in a single matrix

view.
Requirement Grid Displays the summary information for a set of requirements.
Properties Displays property and attribute names and values for the requirements, traced objects,

requirement types, baselines, projects and server connections.

Note: For more information about CaliberRM, refer to the CaliberRM plugin help.

RequisitePro

The RequisitePro has the following views.

View Description
RequisitePro Navigator Allows you to connect to and browse RequisitePro repositories.
RequisitePro Traces Displays information about the requirements and external vendor objects traced to and

from the requirement selected in the RequisitePro Navigator view.
RequisitePro Discussion Provides the ability for users to discuss requirements by displaying the existing
discussions and allowing users to post replies.

Unlike Together 2006 R2, Together 2008 does not include integrations with requirement management products such
as RequisitePro. These integrations should be available separately from Borland.

Note: For complete information about RequisitePro, refer to the RequisitePro documentation.

Together provides menu items on the main menu with Together-specific commands, in addition to the views
associated with each perspective.

Project Menu

Menu Item Description

Documentation ¥ Generate HTML Opens the Generate HTML Documentation dialog box.
Documentation k Generate Using Template Opens the Generate Documentation Using Template dialog box.

32

http://techpubs.borland.com/together/

Model Menu

Menu Item Description

Run Model Metrics Runs model metrics for the selected elements.

Run Model Audits Runs model audits for the selected elements.

Compare With Each Other as Model Elements Compares two or three selected model elements
against each other and shows differences in a
separate view.

Local Version Compares a shared resource with a version stored
on your disk.

Profile Uninstall Profile Uninstalls the selected profile.

Open Profile Definition Opens the profile definition project.

Deploy profile Starts the creating profile plug-in process.

Run Profile Constraints Runs profile-specific audits.

Convert properties Converts profile-specific properties of the projects created

in the previous version of Together to the new format. For
more information see Converting Profile-Specific
Properties topic in the Procedures section.
Preferences Opens the Profile preferences in the Modeling node.
Apply Transformation Provides QVT, eXtensible Stylesheet Language (XSL), and Model to Text transformation
specific commands.

Diagram Menu

The Diagram menu includes commands relevant to working with the diagram currently opened in the Diagram
editor. The commands include, but are not limited to, layout and align patterns, different levels of zoom, switching
grid and rulers, hiding and showing elements, and so forth.

Related Concepts

Together Capabilities Activation

Related Procedures

Activating Together Capabilities
Choosing a Together Perspective

Related Reference

Components of the Together User Interface

33

34

Concepts

35

Concepts

This section provides an overview of the features provided by Together.

In This Section
Together Basics
Basic information about Together features.

Together Interoperability and Migration

This section describes interoperability with the other editions and versions of Borland Together and migration
from the legacy versions.

Modeling Overview
Describes UML modeling in general.

UML Modeling Overview
Describes what modeling with Together means in general.

Business Process Modeling
This section describes the Business Process modeling basics.

Data Modeling
Describes data modeling in Together.

Model Transformation Support
Provides overview of MDA transformations in Together.

UML Profiles
Describes UML profiles in Together.

Modeling for EJB
Describes EJB modeling features of Together.

Model Compare and Merge
Describes model compare and merge functionality.

Template Elements and Generics Overview

This section gives an outline of template elements for the UML 2.0 modeling projects, and generics for
theLiveSource projects.

Model Import and Export Overview
Describes the features for importing and exporting entire models or parts of the models.

OCL Support
Overview of OCL support in Together.

Patterns and Templates
Overview of patterns and templates in Together.

Quality Assurance
Describes quality assurance facilities in Together.

Refactoring Overview
Describes the Together refactoring features.

Requirements Management
Describes requirement management features in Together.

Version Control in Together
This topic provides an overview of version control features in Together.

36

Project Documentation
This part describes the documentation generation facility and documentation template basics.

37

Together Basics

This section provides information about Together features.

In This Section
Together Project Overview
Describes the Together projects.

Package Overview
Describes Together namespaces and packages.

Together Diagram Overview
Describes the Together UML diagram.

Diagram Format
This section describes the XML-based diagram format that is common for all modeling tools of the Together
product line.

Containment Metamodel
Brief description of Together containment metamodel.

Model Element Overview
Describes the model elements.

Model Shortcut Overview
Describes the shortcuts on UML diagrams.

Roundtrip Engineering Overview
Describes the LiveSource feature.

Language Support
Describes the LiveSource support and limitations for the various languages.

Generating Source Code Based on Model
Describes generation of the source code from a modeling project feature.

Model Hyperlinking Overview
Describes the feature of model element hyperlinking.

Model Annotation Overview
Describes the feature for annotating UML diagrams.

Together Capabilities Activation
You can customize the Together capabilities based on your specific environment and requirements.

38

Together Project Overview

Work in Together is done in the context of a project. A project is a logical structure that holds all resources required
for your work. All projects located in the selected Workspace are listed in the Model Navigator.

You can set up project properties when the project is being created, and modify them further, using the
Properties dialog box.

The following is a list of projects that can be created in Together.

L4

®* & & O o o o

* & & o

BPMN from Together 2006 Business Process Project helps you import Business Project Modeling Notation
(BPMN) projects created in Together 2006 for Eclipse.

Business Process Modeling Project enables you to create end-to-end business processes.
C++ Modeling project is a UML 2.0 source code modeling project.

Data Modeling project provides a complete data modeling solution.

IDL Modeling project is a UML 2.0 source code modeling projects.

Java Modeling project is either UML 1.4 or UML 2.0 source code modeling project.

Java Modeling projects from Java projects creates a Java source code modeling project from pure Java
project.

MDA Transformation project is a customized Eclipse plug-in project that enables you to develop various
transformations in Together.

Pattern Definition project is a profiled UML 2.0 modeling project that allows you to create new patterns.
Profile Definition project is a profiled modeling project that allows you to create new profiles.
UML 1.4 project is a design project with no source code support.

UML 2.0 from UML 1.4 converts both Java modeling and design projects from UML 1.4 to UML 2.0
specification.

UML 2.0 project is a design project with no source code support.

Note: The project settings are initially specified on project creation. Further, you can update properties for the

existing project.

Related Procedures

Together Projects

Related Reference

Together Projects

39

Package Overview
The notion of a package has two facets: logical and physical.

¢ Logically, a model consists of one or more packages. A package is a model element used to group elements,
and provides a namespace for the grouped elements. A package can contain packageable elements (the
elements that can be directly owned by a package) and the other packages. A model itself is a package.

¢ Physically, a package is a folder containing the files that store diagrams and model elements.

Contents of a package can be displayed on a special type of the Class Diagram that is synchronized with the package
contents (that is, all the classifiers directly owned by this package automatically appear on the package diagram).
This diagram is essential for source code projects. Each package contains the single package diagram that is created
automatically and cannot be added explicitly.

The root package of a project (Model) is usually referenced as the default package. The package diagram of this
package is called the default diagram. This diagram is created and opened just after the modeling project creation.

By default, all properties of the package diagram, both visual and semantical, are preserved in the

default. txvpck diagram file. You can enable split package diagram persistence, which requires turning the
default setting off. To do this, right-click the project in the Model Navigator, choose Properties, and make sure the
Store package properties in package diagram files option is not checked. With this option off, only diagram-
specific information (visual information, such as layout) is retained in the default. txvpck diagram file, while
settings that you treat as package properties (semantical information, such as descriptions and custom properties)
are moved from the default. txvpck file into the default.txaPackage file. This allows you to track your
package changes using version control.

Related Concepts

Containment Metamodel
Package and logical class diagrams

Related Procedures

Working with a Package

40

Together Diagram Overview

Each modeling project contains a set of diagrams that are graphical representations of parts of the model. Diagrams
contain graphical elements (nodes connected by paths) that represent model elements.

Each diagram belongs to a certain diagram type (for example, UML 2.0 Class Diagram). The diagram type defines
the typical contents of the diagram (the kind of elements that are usually placed on this diagram) and the notation
used to represent the model elements. For example, a Class in a UML 2.0 project can be added to the Class Diagram
and to the Composite Structure Diagram and will have different representations there. Each diagram has the specific
Palette and context menu that allow you to create the model elements specific to this diagram type. These tools can
be customized.

Diagrams exist within the context of a project. You have to create or open a project before creating a new diagram.

The set of available diagram types depends on the type of project. For example, in a BPMN project, the only available
diagram is a BPMN diagram. In a UML 2.0 project you have a set of standard UML diagrams defined in UML2.0
specification. Along with the design diagrams that are explicitly created by the user, Together models have the so-
called Package diagrams. These diagrams have the ClassDiagram type, but they are generated automatically for
each package and show its contents.

Some diagrams are source-generating. These are: class diagrams and sequence and collaboration diagrams. The
contents of such diagrams are synchronized with the source code. Click a class or interface symbol on the diagram
to open the source code in the editor. Class and interface source code opens the respective class (or interface) in
a special tab in the editor, marked with the source class name. If the class is read-only, the tab is also marked with
the lock icon. Selecting a member within a class or interface symbol automatically navigates to the appropriate line
of the source code in the editor.

Related Concepts
Diagram Format

Related Procedures

Creating a Diagram

Related Reference

Tool Palette

41

Diagram Format

The diagrams created with Together are stored in XML-based files with the extension * . txv<diagram type>.
For example, the file <name>. txvcls corresponds to a class diagram. Design elements are stored either in the
package files (default.txaPackage) or in separate XML-based format files with the

extension . txa<element type>, depending on your choice when creating a project in the New Project wizard.

The XML-based diagram format is common for the entire product line of Borland Together modeling products
(Borland Together ControlCenter, Borland Together Edition for Microsoft Visual Studio .NET, Borland Enterprise
Studio for Java, Borland Together Architect, and Borland Together Designer 2005), which makes the diagrams
compatible across the product line. You can copy and reuse diagrams created in the different products.

The legacy text diagram format (df diagram files) used in TogetherControlCenter6.2 and previous versions is not
supported now. As such, the UML diagram files created with the text-based format should be converted to an XML-
based format, using the Import Together Project wizard.

Related Concepts

Together Interoperability and Migration

Related Procedures

Interoperability and Migration

42

Containment Metamodel
Together handles the logical and physical containment of design elements as follows:

¢ Design elements are created as children of packages.

¢ All elements shown on diagrams are shortcuts (or references) to actual model elements, therefore when you
create a new element on a diagram, Together creates this element in the package and adds its shortcut to the
diagram.

¢ Clipboard actions operate with references, if the source and target containers of the action are diagrams.

You can optionally create design elements in separate files (standalone design elements) or in one file
(filemates).

¢ You can optionally split package diagram persistence so that diagram-specific property settings (visual
information, such as layout) are retained in the default. txvpck diagram file, while settings that you treat
as package properties (semantical information, such as descriptions and custom properties) are moved from
thedefault. txvpckfileintothe default. txaPackage file. This allows you to track your package changes
using version control.

Related Concepts

Model Shortcut Overview

43

Model Element Overview

Each model in a modeling project is a set of entities that are instances of metaclasses of the metamodel chosen for
the project. These instances are the Model Elements.

Each model element has a set of properties and a notation defined for its metaclass. For example, when you create
a UML 2.0 project, every element created in this project instantiates a metaclass from the UML 2.0 metamodel (that
is, each actor on a use case diagram in a UML 2.0 project is an instance of usecases/Actor, and each component
is an instance of components/Component).

The model elements that have the graphical notation and that can be explicitly placed on diagrams are nodes and
links.

In Together, model elements of the same metaclass may be either design or source code ones depending on the
container project type. The model language (design, Java, C++ and IDL) may affect the set and allowed values of
element properties. It also defines the model element storage; for example, an element of umi20/classes/class
metaclass may be stored in the *. txa* file if it is design one or in * .java, *.h, *.cpp, and similar files when
it is source code.

Related Concepts

Together Diagram Overview
Model Shortcut Overview
Containment Metamodel

Related Procedures

Populating Together Diagrams

Related Reference

Tool Palette

44

Model Shortcut Overview

A shortcut is a representation of a model element placed on a diagram. One can create multiple shortcuts to the
same element on different model diagrams. The modifications of the element itself can be made from any diagram
containing its shortcut and are propagated to all its shortcuts. The modifications of shortcut view properties made
from any diagram do not affect the representations of this element on other diagrams. A shortcut can be removed
from a diagram without removing the element from the model.

You can create shortcuts to the elements within the same project. To create a shortcut to an element from another
workspace project, add this project to the Model Path of the current project.

The small special symbol appears over a node to indicate a shortcut. For the package diagrams, it appears only if
this node belongs to a different namespace or package.

Select a shortcut on your diagram and choose Select in Model Navigator on the context menu to navigate to the
source element in the Model Navigator.
Related Procedures

Creating a Shortcut
Establishing cross-project references

45

Roundtrip Engineering Overview

One of the main Together features is the simultaneous roundtrip engineering, which is the ability to immediately
synchronize diagrams with their source code.

Roundtrip engineering is the combination of:

¢ Reverse engineering (drawing models from code)

¢ Forward engineering (generating code from visual models)

Simultaneous roundtrip engineering means that when you change a code-generating diagram, Together immediately
updates the corresponding source code, and when you change the code, Together updates the visual model. This
way diagrams are always synchronized with the source code that implements them. You can customize forward and
reverse engineering and/or source code formatting. This feature only applies to diagram types that generate source
code: class, sequence, and collaboration diagrams.

Together supports source code forward and reverse engineering with the following languages:
¢ Javab
¢ Java 6 (syntax only, not new libraries or technologies)
¢ C++ (GNU and MS dialects)
¢ CORBAIDL 2.6

Refer to the Language Support section for details of the supported features and limitations.
Tip: To set up Java 5 support under Unix/Linux platform, see Getting Started with Eclipse and J2SE 5.0 topic in

the Getting Started section of the Java Development User Guide.

Related Concepts
Language Support

Related Procedures

Opening a Diagram Element in the Source Code Editor

Related Reference

LiveSource Rules

46

Language Support

Together supports Java, C++ (GNU and MS dialects), and CORBA IDL. 2.6. Most of the Together features work for
Java. Support for other languages is more limited. The limitations stem from the lack of object orientation for some
languages and the inapplicability of some of the features to different languages.

Basic functionality provides parsing of the syntactical constructs that map directly to UML objects (classes,
interfaces, methods, and so on). As of this writing, Together offers basic functionality for Java,
C++, and CORBA IDL.

Deep Parsing functionality that handles syntactical constructs within the method bodies, initialization of
variables, and so on. For example, deep parsing enables Together to generate sequence
diagrams from methods, perform audits and metrics.

The table below provides summary information on the features for the supported languages and brief notes about
language-specific properties.

Feature Java C++ CORBA IDL
Basic functionality yes yes yes

Deep parsing yes yes n/a

Textual templates yes yes yes
Properties yes no no

Syntax highlight yes yes yes
Formatter yes yes no

Metrics Full set Limited set no

Audits Full set Limited set no
Documentation generation yes yes yes

IDE functionality (Refactoring) via JDT via CDT no

You can find detailed language-specific information in the Reference.

Related Concepts

Roundtrip Engineering Overview

Related Reference

C++ Projects
IDL Language-Specific Information

47

Generating Source Code Based on Model

Together enables you to generate source code based on a language-neutral design project.

About source code generation

You can generate source code from the Class Diagrams of your UML 1.4 or 2.0 design project.

Name mapping

You can force Together to generate different names for your model elements in the source code. This feature is
especially useful, if your model names are not English. You can use names in other languages on your diagrams,
but keep names in Latin alphabet in your code. Name mapping is supported for Java target projects only.

If you enable this feature, the file codegen java map.xml is created in the model support folder of the source
design project. You can edit it with any XML or text editor. This file contains a mapping table, where each entry
(model element) has two names: one for the source design project (attribute name), and another one for the
destination implementation project (attribute alias).

Related Concepts

Roundtrip Engineering Overview

Related Procedures

Generating Source Code from Design Project

48

Model Hyperlinking Overview

You can create hyperlinks from diagrams or model elements to other system artifacts and browse directly to them.

Why use hyperlinking?
Use hyperlinks for the following purposes:
¢ Link diagrams that are generalities or overviews to specifics and details.

¢ Link diagrams or elements to external documentation.

Create a hyperlink from an existing diagram or one of its elements to any other diagram or model element, or create
a new diagram that will be hyperlinked to the current element.

You can also create hyperlinks from your diagrams to external documents such as files or URLs.

Hyperlink types

You can create hyperlinks to:
¢ An existing diagram or diagram element from any project in the workspace.
¢ Avresource in the workspace.

¢ An external document (file or URL)

Browse-through sequence

Use case diagrams typically represent the context of a system and system requirements. Usually, you begin at a
high level and specify the main use cases of the system. Next, you determine the main system use cases at a more
granular level. As an example, a "Conduct Business" use case can have another level of detail that includes use
cases such as "Enter Customers" and "Enter Sales". Once you have achieved the desired level of granularity, it is
useful to have a convenient method of expanding or contracting the use cases to grasp the scope and relationships
of the system's use case views.

The hyperlinking feature of Together allows you to create browse-through sequences comprised of any number of
use cases or any other diagrams. By browsing the hyperlink sequence, you can follow the relationships between
the use case diagrams.

Together does not confine hyperlinking to such sequences, however. You can use hyperlinking to link diagrams and
elements based on your requirements. For example, you can create a hierarchical browse-through sequence of use
case diagrams, creating hyperlinks within the diagrams that follow a specific actor through all use cases that
reference the actor.

Related Procedures

Hyperlinking Diagrams
Creating a Browse-Through Sequence of Diagrams

49

Model Annotation Overview

The tools Palette for UML diagram elements displays note and note link buttons for all UML diagrams. Use these
elements to place annotation nodes and their links on the diagram.

Notes can be free floating or you can draw a note link to some other element to show that a note pertains specifically
to it.

You can attach a note link to another link.

The text of notes linked to class diagram elements does not appear in the source code.

Related Procedures

Annotating a Diagram

50

Together Capabilities Activation

Together provides many capabilities in areas such as BIRT, development, DSL development activities, and
modeling. You can specify the capabilities that should be enabled. This simplifies the Together user interface and
helps improve results and productivity.

For example, if the only modeling capability needed is UML 2.0 modeling, you can enable UML 2.0 modeling and
disable other types of modeling, so that menus, menu items, and wizards for all modeling capabilities except for
UML 2.0 modeling are not available.

If you need a menu, menu item, or wizard that is not available, make sure that the appropriate capability is enabled
in the Advanced Capabilities Settings dialog.

Together Capability Categories

The Together capabilities are grouped in the following categories:
¢ DSL Development
¢ Model to Model Transformations

Model to Text Transformation

Model Workflow

Modeling

Modeling Tools

Reporting

UML Modeling

* & & & o o

Together Modeling Capabilities

The following list shows the Together capabilities and their default status (enabled or disabled) in Together Modeling
(classic Together modeling).

The DSL Development category contains the following Together capabilities:

¢ Diagram Definition (disabled by default)
¢ Domain Modeling (disabled by default)
¢ DSL Project (disabled by default)

The Model to Model Transformations category contains the following Together capabilities:

¢ Operational Mapping Language (QVT) (enabled by default)
¢ Operational QVT Debugging (enabled by default)

The Model to Text Transformations category contains the following Together capabilities:
¢ Template Authoring (enabled by default)
¢ Template Exploring (enabled by default)
¢ Template Exploring (Legacy) (disabled by default)

51

The Model Workflow category contains the following Together capabilities:

¢
¢

Workflow Definition (enabled by default)

Workflow Execution (enabled by default)

The Modeling category contains the following Together capabilities:

<&

® & & & 6 O O O O O O O O > > o o

Business Process Modeling (enabled by default)
C++ Modeling (enabled by default)

Data Modeling (enabled by default)
Documentation (enabled by default)

IDL Modeling (enabled by default)

Java Modeling (enabled by default)

Manage element persistence (disabled by default)
MDL and MDX Imports (enabled by default)
Model QA (enabled by default)

Modeling profiles (enabled by default)

Patterns (enabled by default)

Source code QA (enabled by default)

Together Project Import (enabled by default)
Together QVT (enabled by default)

UML 1.4 (enabled by default)

UML 2.0 (enabled by default)

XMI Import/Export (enabled by default)

XSL (enabled by default)

The Model Tools category contains the following Together capabilities:

¢
¢

Hyperlinks and Requirement Traces (Early Access) (enabled by default)

Model Refactoring (Early Access) (enabled by default)

The Team category contains the following Together capabilities:

¢

CVS Support for Modeling (disabled by default)

The Reporting category contains the following Together capabilities:

¢
¢

The UML Modeling category (disabled by default) contains the following Together capabilities:

¢
¢

Model Reporting (enabled by default)
Report Definition (enabled by default)

UML2 Diagramming (disabled by default)
UML2 Model Development (disabled by default)

52

Related Procedures

Activating Together Capabilities

53

Together Interoperability and Migration

Together supports the possibility to exchange models created in the different products of Together product line and
in the other modeling tools.

Interoperability
Interoperability is supported in the following ways:
¢ Together opens projects created with the other tools of Together product line. So doing, Together considers
and processes the project roots and diagram formats.

¢ For the models created in the other tools, use the various types of import and export, such as XMI, MDL or
MDX.

¢ Also, transformations enable the users to exchange model information. Refer to the concept section “Model
Transformation Support” (listed under Related Information below) for details.

Migration from the legacyTogether products

Having created a number of projects in TCC/TA 1.x and in the other Together products, the user might want to
migrate these projects to the new version, preserving the useful features of the legacy projects.

Reusing legacy projects

Reusing the legacy * . tpr, *.tpxand *.jpx projects in Together is an important interoperability goal. However,
this task faces a number of problems related to the differences between the products, which are summarized in the
following table:

Legacy Projects New Projects
Support multiple modeling roots. All modeling information is stored in a single folder.
It is possible to specify package prefix for a root. The notion of package prefix does not exist.

Support two diagram formats (DF format and TXV format) Supports TXV format only.

Old containment metamodel stores diagrams and model New containment metamodel separates the diagram
elements together. information from the model elements.

Together resolves these problems by means of a new migration tool implemented as Import Together Project
Wizard, which takes a legacy project as input and produces one or more Together Eclipse projects.

The resulting projects meet the following common requirements:
¢ Folder structure of the resulting project is created considering the package prefixes if any.

¢ Alldiagrams are converted from the old containment metamodel to the new containment metamodel. If a model
root contains diagrams in DF format, these diagrams are converted to TXv format. If a model root contains
diagrams in both DF and TxV formats, then only Txv diagrams are considered.

¢ Optionally, you can create the resulting project with the design elements stored in different files. In this case,
the model elements of the source project are converted to standalone design elements.

¢ UML 2.0 projects created in Together Designer/Developer 2005 are converted taking into account the changes
in UML 2.0 specification support (converting State Machine and Activity diagrams).

54

Reusing artifacts

Due to different platform, Together does not support complete migration of the legacy custom artifacts. You can
reuse legacy documentation templates, but custom audits, metrics, patterns and diagrams, created in TCC/TA 1.x,
are not compatible with Together.

Instead Together provides the possibility to create your own artifacts and extensions using its functionality.

Modules You can create modules using Eclipse APl and Together EMF API.

Use Eclipse API for IDE—related parts, and Together EMF API for
working with models.

Java-based patterns These patterns are not supported in Together. However, Together
supports creating design and source code patterns and templates. See
the related concepts.

Audits and Metrics You cannot reuse audits and metrics from TCC, but can create source
code audits and metrics of your own. Refer to the subsection “Using
API for creating your Audits and Metrics” in the Audit and Metric
Sample Project topic (listed under Related Information below).

Custom diagrams and custom properties Use profiles to customize diagrams and define custom properties.
Refer to the Profile Definition Project overview (listed under Related
Information below).

Related Concepts

Model Transformation Support
Diagram Format

Profile Definition Project
Patterns and Templates

Related Procedures

Reusing documentation templates from TCC/TA 1.x
Importing Legacy Projects

Related Reference

Audit and Metric Sample Project
Import Together Project Wizard
Audit and Metric Sample Project

55

Modeling Overview
The topics in this section provide an overview of modeling, and information on UML diagrams and supported
technologies.

In This Section

Together Modeling
Together provides different views into a common model, with each view suited to a different audience and

set of requirements.

56

Together Modeling

Together modeling provides a concise, easily communicated picture of a system that is to be created and deployed.
While you can work directly in a model itself, there are separate views available to make it easier to view, understand,
and manipulate the model.

“A model is a simplified representation of a system or phenomenon, as in the sciences or economics, with any
hypotheses required to describe the system or explain the phenomenon, often mathematically.” (Dictionary.com
Unabridged (v 1.1). Random House, Inc. 29 Aug. 2007)

A model is a means to communicate complex ideas, and can be simplified by ignoring certain details. A model can
be a plan or an “as-is” view. A model is an abstraction that makes it easier to communicate about complex things.

To maximize the benefits provided by Together, you should be familiar with the following concepts:
Benefits of modeling
Common modeling problems

Together Models, views and users

* & & o

Model transformations

Benefits of modeling

Proper analysis requires that everyone has a common, complete, and accurate understanding of the problem, while
proper design requires that everyone has a common, complete, and accurate understanding of the solution. These
requirements apply throughout the project lifecycle. Any communication breakdown in these areas can result in
project delay, increased costs, and failure.

Modeling can be of benefit in all areas of software and process development. The benefits of modeling include the
following:

¢ Streamline and improve requirements analysis and validation

¢ Build agile applications using UML models that leverage industry-proven design methods, component- and
service-oriented architectures, and model-driven development practices

¢ Provide an environment that is a step beyond high-level programming languages, allowing developers to move
away from lower-level complexity and write higher-quality code

Minimize the time and effort needed to define, understand, and create systems, applications, and processes
Reduce the risk of project delays and failures
Reduce costs by allowing reuse for multiple projects

Enhance communication across the project lifecycle and among distributed teams

* & & o o

Help communicate and integrate business and development requirements

Modeling allows you to shift the view of programs, applications, and processes from the system or machine view to
the problem domain view, and also to automate the translation from human to system or machine language.

Analysts use modeling to help agree on and document the task that needs to be accomplished. Modeling helps avoid
ambiguity and provides a “big picture” view of the task.

Architects use modeling to perform the following tasks:

¢ Design the overall application architecture. This includes mapping the design to the requirements, developing
and communicating the design, documenting the design and architecture, ensuring the quality of the design,
and providing architectural views.

57

Leverage reuse of frameworks, libraries, and design patterns.

Engineer a system that can be produced within business constraints (time and cost), staffing constraints
(knowledge, skills sets, and headcount), process constraints (quality and predictability), and technology
constraints (tools and existing systems).

Engineer a system that can withstand change during the system's lifecycle, including new features, changing
requirements, and the updating of IT infrastructure.

Developers use modeling to perform the following tasks:

¢

Explore implementation options
Provide strong refactoring support to improve code design without affecting functionality

Improve code reviews by adhering to best practices and ensuring that code can be efficiently maintained,
modified, and reused

Document the system, including understanding large code bases, dependencies, and interfaces

A large set of requirements can be difficult to understand as a whole. Models provide constructs to help organize
ideas, a common language for all team members, visualizations to help clarify complex ideas, and standards to
facilitate precise communication and provide focus for key abstractions.

Model-driven development can be used for many tasks, including the following:

<>

® & & 6 6 O O o o o

Repetitive and redundant source code

Framework implementation

Design patterns

Configuration files

Build labels

Deployment variations (for example, Development, Test, and Production)
Automation of deployment

Targeting of complex distributed environments

Test plans and test scripts

Test automation

Test verification and validation

Common problems in analysis and design

Several problems are frequently encountered during the analysis and design process. These include the following:

L4

¢
¢
¢

It is difficult to communicate consistently and without ambiguity with text-only analysis and design.
The notation and meaning of ad-hoc diagrams may not be apparent to all team members.
Models cannot be connected to requirements with drawing tools.

Traceability needs to be established and models must meet business requirements. These are manual
processes with drawing tools, and as such, these processes are time-consuming and error-prone.

Models need to be persisted for collaborative teamwork, with change management practices that are consistent
with source code change control practices.

58

¢ The ability to create documentation from models is necessary. Using models to generate documentation
includes not only diagrams, but also the properties that are associated with the model elements.

¢ Model consistency must be ensured. A well-designed modeling tool helps users learn the model rules and
enforces these rules.

¢ An accurate representation is needed. Models can be used to automate design and implementation and can
feed other parts of the development lifecycle.

Models and views

There are several views available for a Together model. The model views should not be confused with the model
itself. You can create and modify a model in any view and all of your changes are propagated to the model itself and
all model views. A model view provides a window to the model itself, with the changes made to the model itself. All
changes to the model, regardless of the view in which the changes were made, are synchronized in all of the model
views. Users can choose the view that is best suited to their role and needs, and users can use the view of their
choice to view the latest iteration of a model and make any necessary changes to the model. For example, if you
are viewing a model diagram and make any changes, your changes are saved in the model itself when you save
your changes. If you or another user subsequently view the model in the tree view, your saved changes are displayed
in this view.

Any view, such as the diagram view or the tree view, is simply a view of a model, and is not a model in and of itself.
A view provides a representation of the entire scope of the underlying model. You can use any view to view and
modify a model. Together allows you to build a single unified model that can be viewed and modified in different
views and validated with OCL audits.

Domain Model Diagrams and UML Class Diagrams

A domain model diagram provides a view of the parts or terms that comprise a project. A domain model defines a
system or process in unambiguous terms so that everyone on a team can understand, define, and refine a system
or process. A domain model defines the scope and provides a model on which to develop and refine a system or
process.

A UML class diagram provides a view of the classes, class attributes, and class relationships for a system. A UML
class diagram can be used for purposes ranging from defining requirements to creating a detailed design. A UML
class diagram is used to define classes, interfaces, relationships, and inheritances.

Model Transformations

You can use model transformations to convert a model that conforms to a particular metamodel to a model that
conforms to another metamodel. You can specify multiple source models and multiple target models. A model
transformation is itself a model, in that the model transformation conforms to a metamodel. A model transformation
can produce new artifacts or modify existing artifacts.

Related Concepts

UML Modeling Overview
Model Transformation Support

Related Procedures

Creating a Model-To-Model Transformation

59

UML Modeling Overview

Effective modeling with Together simplifies the development stage of your project. Smooth integration to Together
provides developers with easy transition from models to source code.

The primary objective of modeling is to organize and visualize the structure and components of software intensive
systems. Models visually represent requirements, subsystems, logical and physical elements, and structural and
behavioral patterns.

While contemporary software practices stress the importance of developing models, Together extends the benefits
inherent to modeling by fully synchronizing diagrams and source code.

In This Section
Supported UML Specifications
Describes supported UML specifications.

UML 2.0 Diagrams
Gives a general notion of UML 2.0 diagrams supported by Together.

UML 1.4 Diagrams
Gives a general notion of UML 1.4 diagrams supported by Together.

60

Supported UML Specifications

The Object Management Group’s Unified Modeling Language (UML) is a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of distributed object systems.

Together supports UML to help you specify, visualize, and document models of your software systems, including
their structure and design.

Refer to UML documentation for the detailed information about UML semantics and notation. The UML (version):
Superstructure document defines the user level constructs required for UML. It is complemented by the UML
(version): Infrastructure document which defines the foundational language constructs required for UML. The two
complementary specifications constitute a complete specification for the UML modeling language.

UML 1.4 and UML 2.x

The set of available diagrams depends on your project type.
Design projects and Java projects support both UML 1.4 and UML 2.x specifications. C++ and IDL projects support
only UML 2.x.

Note: Because several of the features that UML 2.0 provides (such as documentation functionality and metrics) are
not yet implemented in UML 2.1, the UML 2.1 capabilities are disabled by default. To turn them on, select
Window F Preferences... ¥ General k Capabilities. Click Advanced... and select the UML2
Diagramming node under the UML Modeling feature.

The version of UML is selected when a project is created. It cannot be changed later.

UML In Color

“UML In Color” is an optional profile to support the modeling in color methodology. Color modeling makes it
possible to analyze a problem domain and easily spot certain classes during analysis. Together supports the use of
the four main groups of the color-modeling stereotypes:

¢ Role

¢ Moment-interval, Mi-detail
¢ Party, Place, Thing
¢

Description

When applying a stereotype to one of the diagram elements listed above, the view of the associated diagram element
changes on the diagram. The stereotype field displays directly above the name field for the element, and the color
of the element depends on the stereotype chosen. For each of these stereotypes you can choose a specific color

to make your model more understandable at a glance. Note that the other stereotypes do not have associated colors.

See also "Java Modeling in Color with UML: Enterprise Components and Process" by Coad, Lefebvre and De
Luca.
Related Concepts

UML Modeling Overview

61

UML 2.0 Diagrams

Together provides support for the most frequently needed diagrams and notations defined by the UML 2.0.

In This Section
UML 2.0 Activity Diagram Definition
Provides UML 2.0 activity diagram definition.

UML 2.0 Class Diagram Definition
Provides UML 2.0 class diagram definition and example, and notes about using class diagrams in the source
code projects.

UML 2.0 Use Case Diagram Definition
Provides UML 2.0 use case diagram definition.

UML 2.0 Component Diagram Definition
Provides UML 2.0 component diagram definition.

UML 2.0 Composite Structure Diagram Definition
Provides UML 2.0 composite structure diagram definition.

UML 2.0 Deployment Diagram Definition
Provides UML 2.0 deployment diagram definition.

UML 2.0 State Machine Diagram Definition
Provides UML 2.0 state machine diagram definition and example.

Interaction (Sequence and Communication) Diagrams
Describes UML 2.0 Interaction diagrams.

62

UML 2.0 Activity Diagram Definition

Definition

The activity diagram enables you to model the system behavior, including the sequence and conditions of execution
of the actions. Actions are the basic units of the system behavior.

An Activity diagram enables you to group and ungroup actions. If an action can be broken into a sequence of other
actions, you can create an activity to represent them.

In UML 2.0, activities consist of actions. An action represents a single step within an activity, that is, one that is not
further decomposed within the activity. An activity represents a behavior which is composed of individual elements
that are actions. An action is an executable activity node that is the fundamental unit of executable functionality in
an activity, as opposed to control and data flow among actions. The execution of an action represents some
transformation or processing in the modeled system, be it a computer system or otherwise.

The semantics of activities is based on token flow. By flow, we mean that the execution of one node affects and is
affected by the execution of other nodes, and such dependencies are represented by edges in the activity diagram.
Data and control flows are different in UML 2.0.

A control flow may have multiple sources (it joins several concurrent actions) or it may have multiple targets (it forks
into several concurrent actions).

Each flow within an activity can have its own termination, which is denoted by a flow final node. The flow final node
means that a certain flow within an activity is complete. Note that the flow final may not have any outgoing links.

Using decisions and merges, you can manage multiple outgoing and incoming control flows.

63

Sample Diagram

Catalog Mailing

2 ® —~|Catalog

&7 |prints an or
after May 1

Catalog Printed

[Cu:umpile Mailing List]

5

Print Labels
[ﬂttach Lahels@

> Mail Catalugs®

® Initial State ® Control Elow
@ Send Signal Action @ Action

® Accept Time Event Action ® Accept Event Action

@ Join Final State

64

Creating Addresses

addresses

setaddresses

H completesddressee |

©

® Input Pin

Related Procedures

UML 2.0 Activity Diagrams Procedures

Related Reference
UML 2.0 Activity Diagrams

Output Pin

@)
® Flow Final
O

Activity

65

UML 2.0 Class Diagram Definition

UML 2.0 Class diagrams feature the same capabilities as the UML 1.4 diagrams.
The UML 2.0 class diagrams offer new diagram elements such as ports, provided and required interfaces.

According to the UML 2.0 specification, an instance specification can instantiate one or more classifiers. You can
use classes, interfaces, or components as a classifier.

Interfaces

A class implements an interface via the same generalization/implementation link, as in UML 1.4 class diagram. In
addition to the implementation interfaces, there are provided and required interfaces. Interfaces can be represented
in class diagrams as rectangles or as circles. For the sake of clarity of your diagrams, you can show or conceal

interfaces.

UML 2.0 class diagram supports the ball-and socket notation for the provided and required interfaces. Choose Show
as circle command on the context menu of the interface to obtain a lollipop between the client class and the supplier
interface.

Tip: Applying a provided interface link between a class and an interface creates a regular generalization/
implementation link. To create provided interface, apply the provided interface link to a port on the client class.

Sample Diagram

The figure below shows a class diagram with some of the new elements.

L4 cpu Lo Keyboard
g O]

@)

]

® 4 @ [:||-é Monitor
L& Printer
_ Q@

@ Interface @ Provided Interface
® Port

66

Special Note for the LiveSource Projects

Using UML 2.0 class diagrams in the LiveSource projects is limited with certain restrictions, and are similar to UML
1.4 class diagrams.

Related Procedures

UML 2.0 Class Diagrams Procedures

Related Reference
UML 2.0 Class Diagrams

67

UML 2.0 Use Case Diagram Definition

Diagram courtesy of the Unified Modeling Language: Superstructure version 2.0. August 2003. p. 536.

Definition

Use case diagram describes required usages of a system, or what a system is supposed to do. The key concepts
that take part in a use case diagram are actors, use cases, and subjects. A subject represents a system under
consideration with which the actors and other subjects interact. The required behavior of the subject is described by

the use cases.

Sample Diagram

The following diagram shows an example of actors and use cases for an ATM system.

0.1

1 0.1
I Transfer Funds

_ustamer

Deposit Money

E % 1 ol - : Bank
Reqister ATM ak Bank
1

0.1

Audrninistrak
riniskrator Read Log

68

Related Procedures

UML 2.0 Use Case Diagrams Procedures

Related Reference
UML 2.0 Use Case Diagrams

69

UML 2.0 Component Diagram Definition

This topic describes the UML 2.0 Component Diagram.

Definition

According to the UML 2.0 specification, a component diagram can contain instance specifications. An instance
specification can be defined by one or more classifiers. You can use classes, interfaces, or components as a
classifiers. You can instantiate a classifier using the Object Inspector Properties Window, or the in-place editor.

Sample Diagram

The following component diagram specifies a set of constructs that can be used to define software systems of
arbitrary size and complexity.

wl =

Customer Administration

@ «Components I
«subsystems» —
Customer Administration Subsystem
@ «components @ «cnmpnnent»gl

Security

- Q

DataEncryption

| «Ccomponent=
@| Customer
| @ Customer[1]
é—ﬂ}é CustomerData[1]
: : Security[1]
CustomerAdm|nistration

DataAccess

OrderInformation[1] |

@ Subsystem
@ Component

Related Procedures

@ Interface @ Port @ Delegation Connector

@ Dependency Part Required

UML 2.0 Component Diagrams Procedures

Related Reference

UML 2.0 Component Diagrams

70

Interface

@ Provided Interface

UML 2.0 Composite Structure Diagram Definition

Diagram courtesy of the Unified Modeling Language: Superstructure version 2.0. August 2003. p. 178.

Definition

Composite structure diagrams depict the internal structure of a classifier, including its interaction points to the other
parts of the system. It shows the configuration of parts that jointly perform the behavior of the containing classifier.

A collaboration describes a structure of collaborating parts (roles). A collaboration is attached to an operation or a
classifier through a Collaboration Use.

Classes and collaborations in the Composite Structure diagram can have internal structure and ports. Internal
structure is represented by a set of interconnected parts (roles) within the containing class or collaboration.
Participants of a collaboration or a class are linked by the connectors.

A port can appear either on a contained part, or on the boundary of the class.
The contained parts can be included by reference. Referenced parts are represented by the dotted rectangles.

Composite Structure diagram supports the ball-and-socket notation for the provided and required interfaces.
Interfaces can be shown or hidden in the diagram as needed.

71

Sample Diagram

o - BrokeredSale H"-xh
. "\
/ BLier T - Seller “n\
o Broker[1] | — — — ‘Wholesale:Sale @— Producer[1] "
’ 1
|
| Seller
\.I‘. fr‘" g’ -

i RetailiSale ™ __ __ __ __ 1 | Consurner[1]
. *-...._____../

Seller[1]
k\.‘ { 5 l

@ Collaboration Occurrence ® Connector
@ Role Binding

Related Procedures

UML 2.0 Composite Structure Diagrams Procedures

Related Reference

UML 2.0 Composite Structure Diagrams

72

UML 2.0 Deployment Diagram Definition

This topic describes the UML 2.0 Deployment Diagram.

Definition

The deployment diagram specifies a set of constructs that can be used to define the execution architecture of systems
that represent the assignment of software artifacts to nodes. Nodes are connected through communication paths to
create network systems of arbitrary complexity. Nodes are typically defined in a nested manner, and represent either
hardware devices or software execution environments. Artifacts represent concrete elements in the physical world
that are the result of a development process.

Diagram courtesy of the Unified Modeling Language: Superstructure version 2.0. August 2003. pp. 207, 212.

Sample Diagram

AppSetver 1 DataBaseServer

: ’T\ - — Deployment k Eoé‘ﬂmunication a
a ﬁ

| adeploy:

a]
|
— = el
Shopping&pp.eat . jar = . — T k
— — A
_— —
— 4~
—_ i
—_— - -~
—_ —
— = —
«artifacts B . — T «artifacts rry A
ShoppingCart.jar = Crder.jar
r _| — — — =
|)
Dependency _ — — —l
«deplovment specs adeployment specs
ShoppingdppDese. sl CrderDesk. xml
[——
- —
—_ -
—_ - .
T - o - ~L
— — —
— -
Deployment Specification IA
[n

Related Procedures

UML 2.0 Deployment Diagrams Procedures

Related Reference

UML 2.0 Deployment Diagrams

73

UML 2.0 State Machine Diagram Definition

States are the basic units of the state machines. In UML 2.0 states can have substates.

Execution of the diagram begins with the Initial node and finishes with Final or Terminate node or nodes. Refer to
UML 2.0 Specification for more information about these elements.

Definition
State Machine diagrams describe the logic behavior of the system, a part of the system, or the usage protocol of it.
On these diagrams you show the possible states of the objects and the transitions that cause a change in state.

State Machine diagrams in UML 2.0 are different in many aspects compared to Statechart diagrams in UML 1.4.

74

Sample Diagram

AT

i St
Feadsmount:ReadsmountS

[CutCfService] [Yerify Transaction ReleaseCard]

|

|

Feads mountshi

?

selectimavnt]

| |

erterAmount

75

Related Procedures

UML 2.0 State Machine Diagrams Procedures

Related Reference
UML 2.0 State Machine Diagrams

76

Interaction (Sequence and Communication) Diagrams

Using Together you can create interactions for the detailed description and analysis of inter-process
communications. Interactions can be visually represented in your Together projects by means of the two most
common interaction diagrams: Sequence and Communication. On the other hand, interactions can exist in projects
without visual representation.

Whenever an interaction diagram is created, the corresponding interaction entity is added to the project. Interactions
are represented as nodes in the Model Navigator and can be placed inside classes and use cases.

You can view an interaction in two ways: as a sequence diagram, or as a communication diagram. An interaction
diagram contains a reference to the underlying interaction.

Unlike UML 1.4, it is not possible to switch a diagram that already exists from sequence to communication and vice
versa. However, it is possible to create a sequence diagram and a communication diagram based on the same
interaction.

Sequence diagram can contain shortcuts to other diagram elements. However, you cannot create shortcuts to the
elements nested in Interactions.

77

sd Interaction |

= C
{x=0} .
- 11" ref
Checkall
+
1¥=2}
—
opt
E: +
2.1 paint -

Related Procedures

UML 2.0 Interaction Diagrams Procedures

Related Reference

UML 2.0 Interaction Diagrams

78

UML 1.4 Diagrams

Together provides support for the most frequently needed diagrams and notations defined by the UML 1.4.

In This Section
UML 1.4 Class Diagram Definition
Provides UML 1.4 class diagram definition.

Package and logical class diagrams
There are two types of class diagrams used in Together: package and logical class diagrams.

UML 1.4 Sequence Diagram Definition
Provides UML 1.4 sequence diagram definition.

UML 1.4 Collaboration Diagram Definition
Provides UML 1.4 collaboration diagram definition.

UML 1.4 Use Case Diagram Definition
Provides UML 145 use case diagram definition.

UML 1.4 Statechart Diagram Definition
Provides UML 1.4 statechart diagram definition.

UML 1.4 Activity Diagram Definition
Provides UML 1.4 activity diagram definition.

UML 1.4 Component Diagram Definition
Provides UML 1.4 component diagram definition.

UML 1.4 Deployment Diagram Definition
Provides UML 1.4 Deployment Diagram definition.

79

UML 1.4 Class Diagram Definition

Using Together, you can create language-neutral class diagrams in design projects, or language-specific class
diagrams in implementation projects. For implementation projects, all diagram elements are immediately
synchronized with the source code.

Definition

A class diagram provides an overview of a system by showing its classes and the relationships among them. Class
diagrams are static: they display what interacts but not what happens during the interaction.

UML class notation is a rectangle divided into three parts: class name, fields, and methods. Names of abstract
classes and interfaces are in italics. Relationships between classes are the connecting links.

In Together, the rectangle is further divided with separate partitions for properties and inner classes.

Sample Diagram

The following class diagram models a customer order from a retail catalog. The central class is the Order.
Associated with it are the Customer making the purchase and the Payment. There are three types of payments:
Cash, Check, or Credit. The order contains OrderDetails (line items), each with its associated Item.

Customer Order @
date
name 1 0"
address @ StEI't'f: @
1) o 1. " calcT
B calcTotal
ayment e (2)}— GlcTotalWeight
amount
@
I /_‘I"_\ I
| @
[| [Line item 1..*

Credit Cash Check OrderDetail Item
number name quanity 0. 1 |shippingWeight
lype cashTendered | |po0kip taxStatus description
expDate IcSubTotal tPriceFor() tit

- calc5ubTo E;ga riceForlduantity
authorized authonized | | o1 -\Weght getWeight

@ Interfacs @ Class Mame @ Methods @ Role Name @ Mavigability
@ Association @ Figlds @ Implementation Multiplicity

There are three kinds of relationships used in this example:

¢ Association: For example, an OrderDetail is a line item of each Order.

¢ Aggregation: In this diagram, Order has a collection of OrderDetails.

80

¢ Implementation: Payment is an interface for Cash, Check, and Credit.

Related Procedures

UML 1.4 Class Diagrams Procedures

Related Reference
UML 1.4 Class Diagrams

81

Package and logical class diagrams

The two types of class diagrams used in Together are package diagrams and logical class diagrams.

Package diagrams These diagrams are stored as XML files in the Model folder of the project with the file
extension . txvpck (for UML 1.4 projects), or . txvClassDiagram20 (for UML 2.0
projects)

Together creates a default package diagram for a project and for each subdirectory under
the project root. The default project diagram is named default. The default package
diagrams have default.txvpck and default.txvClassDiagram20 names
respectively.

Logical class diagrams These diagrams are stored as XML files with the file extension . txvcls (for UML 1.4
projects), or . txvClassDiagram20 (for UML 2.0 projects).

Related Concepts

UML 1.4 Class Diagram Definition
UML 2.0 Class Diagram Definition

82

UML 1.4 Sequence Diagram Definition

Class diagrams are static model views. In contrast, interaction diagrams are dynamic, describing how objects
collaborate.

Definition

A sequence diagram is an interaction diagram that details how operations are carried out: what messages are sent
and when. Sequence diagrams are organized according to time. The time progresses as you go down the page.
The objects involved in the operation are listed from left to right according to when they take part in the message
sequence.

Sample Diagram

Following is a Sequence Diagram for making a hotel reservation. The object initiating the sequence of messages is
a Reservation window (the Userlinterface).

window
Usennterface

aChain aHotel
HotelChain Hotel

makeﬁes@ﬂtiw{};widﬁ I makeReservation])void

I
*JE@G[?Q each day] IsRoom=avallable():boolsan

aReservation
Reservation

isFoom

5p 000000
- aMotice

) : 1 T ™ confirmation
|f @ room is available|

for sach day of the 9133-:,
- | -
I I I
8) | | |
I I I

make a reservation and
send & confirmation.

@ Object @ Iteration @ Creation ® Deletion @ Mote

(2) Message (&) Condition (6) Activation Bar Lifeline

The UserInterface sends a makeReservation () message to a HotelChain. The HotelChain then sends
amakeReservation () message toa Hotel. If the Hotel has available rooms, then it makes a Reservation and
aConfirmation.

Each vertical dotted line is a lifeline, representing the time that an object exists. Each arrow is a message call. An
arrow goes from the sender to the top of the activation bar of the message on the receiver's lifeline. The activation
bar represents the duration of execution of the message.

In this diagram, the Hotel issues a self call to determine if a room is available. If so, then the Hotel creates a
Reservation and a Confirmation. The asterisk on the self call means iteration (to make sure there is available
room for each day of the stay in the hotel). The expression in square brackets, [1, is a condition.

The diagram has a clarifying note, which is text inside a dog-eared rectangle. Notes can be included in any kind of
UML diagram.

83

Related Procedures

UML 1.4 Interaction Diagrams Procedures

Related Reference

UML 1.4 Interaction Diagrams

84

UML 1.4 Collaboration Diagram Definition

Class diagrams are static model views. In contrast, interaction diagrams are dynamic, describing how objects
collaborate.

Definition

Like sequence diagrams, collaboration diagrams are also interaction diagrams. Collaboration diagrams convey the
same information as sequence diagrams, but focus on object roles instead of the times that messages are sent.

Sample Diagram

Each message in a collaboration diagram has a sequence number. The top-level message is numbered 1. Messages
at the same level (sent during the same call) have the same decimal prefix but suffixes of 1, 2, etc. according to
when they occur.

window:Userlnterface

%, 1.1:makeReservation{):void @

aChain:HotelChain
2

{, 1.1.1:makeReservation(}:void

aHotel:Hotel 1.71.2:[isRoom] aReservation:Reseration 11121 aMotice:Confirmation

—= —=

@J@n

1.1.1.1:"[for each day] isRoom = available(boolean —=

@ Message @ Ohject @ Sequence Mumber @ Iteration @ Self Link

Related Procedures

UML 1.4 Interaction Diagrams Procedures

Related Reference

UML 1.4 Interaction Diagrams

85

UML 1.4 Use Case Diagram Definition
Use case diagrams are helpful in three areas:

¢ Determining features (requirements): New use cases often generate new requirements as the system is
analyzed and the design takes shape.

¢ Communicating with clients: Notational simplicity makes use case diagrams a good way for developers to
communicate with clients.

¢ Generating test cases: The collection of scenarios for a use case may suggest a suite of test cases for those
scenarios.

Definition

Use Case Diagram describes what a system does from the viewpoint of an external observer. The emphasis is on
what a system does rather than how.

Use Case Diagrams are closely connected to scenarios. A scenario is an example of what happens when someone
interacts with the system.

Sample Diagram
Following is a scenario for a medical clinic:

A patient calls the clinic to make an appointment for a yearly checkup. The receptionist finds the nearest empty time
slot in the appointment book and schedules the appointment for that time slot.

A use case is a summary of scenarios for a single task or goal. An actor is who or what initiates the events involved
in that task. Actors are simply roles that people or objects play. The following diagram is the Make Appointment
use case for the medical clinic. The actor is a Patient. The connection between actor and use case is a
communication association (or communication for short).

®

®

Make
9 Appointment
Patient

@ Aclor @ Use Case

@ Communication

Actors are stick figures. Use cases are ovals. Communications are lines that link actors to use cases.

A use case diagram is a collection of actors, use cases, and their communications. Following is an example of the
use case Make Appointment as part of a diagram with four actors and four use cases. Notice that a single use case
can have multiple actors.

86

Cancel Appointment
Make Appointrment

Scheduler

Patient Doctor

Pay Bill

Related Procedures

UML 1.4 Use Case Diagrams Procedures

Related Reference
UML 1.4 Use Case Diagrams

87

UML 1.4 Statechart Diagram Definition

This topic describes the UML 1.4 Statechart Diagram.

Definition

Objects have behaviors and states. The state of an object depends on its current activity or condition. A statechart
diagram shows the possible states of the object and the transitions that cause a change in state.

Sample Diagram

The following diagram models the login part of an online banking system. Logging in consists of entering a valid
social security number and personal ID number, then submitting the information for validation. Logging in can be
factored into four non-overlapping states: Getting SSN, Getting PIN, Validating, and Rejecting. Each
state provides a complete set of transitions that determines the subsequent state.

fCursor to SSM

Geatting 55N

RetryiClear SSM, FIN eniries

Submit 3

Fress Tab or move
cursar to PIN fisld!

Fress Shift+Talb or Cursor to PIN

move cursor to SSM field!

|=]
Press key[key = Tab)/ Curser 1o SSN

Display key
Getting FIN 3) Validating Rejecting |
Subrmit dofvalidate [[not valid)/
SSN and PIN | Display error
4 message
Pess hey[hey@ﬁhiMTathiﬁp%dﬂt
Fa—
L O
[walid)/Start CancelQuit
transaction

@ Initial State @ Stlate @ Event ® Activity
@ Transition @ Action @ Guard . Final State

States are depicted as rounded rectangles. Transitions are arrows from one state to another. Events or conditions
that trigger transitions are written next to the arrows. This diagram has two self-transitions: Getting SSN and
Getting PIN. Theinitial state (shown as a black circle) is a dummy to start the action. Final states are also dummy
states that terminate the action.

88

The action that occurs as a result of an event or condition is expressed in the form /action. While in its Validating

state, the object does not wait for an outside event to trigger a transition. Instead, it performs an activity. The result
of that activity determines its subsequent state.

Related Procedures

UML 1.4 Statechart Diagrams Procedures

Related Reference

UML 1.4 Statechart Diagrams

89

UML 1.4 Activity Diagram Definition

This topic describes the UML 1.4 Activity Diagram.

Definition

Activity diagrams enable you to model system dynamics. An activity diagram is a flowchart that describes the flow
of control from one activity to the next. You can show sequential and/or concurrent steps of a process, model
business workflows, model the flow control of an operation, or the flow of an object as it passes though different
states at different points in a process. Unlike interaction diagrams (such as sequence and collaboration) that
emphasize the flow of control between objects, activity diagrams emphasize the flow of control between activities.
Activity diagrams and statechart diagrams are related. While a statechart diagram focuses attention on an object
undergoing a process (or on a process as an object), an activity diagram focuses on the flow of activities involved
in a single process. The activity diagram shows the how those activities depend on one another.

Activity diagrams can be divided into object swimlanes that determine which object is responsible for an activity. A
single transition comes out of each activity, connecting it to the next activity. A transition can branch into two or more
mutually exclusive transitions. Guard expressions (inside []) label the transitions coming out of a branch. A branch
and its subsequent merge marking the end of the branch appear in the diagram as hollow diamonds. A transition
may fork into two or more parallel activities. The fork and the subsequent join of the threads coming out of the fork
appear in the diagram as solid bars.

Sample Diagram
The Activity Diagram below uses the following process: "Withdraw money from a bank account through an ATM."

The three involved classes (people, and so on) of the activity are Customer, ATM, and Bank. The process begins
at the black start circle at the top and ends at the concentric white/black stop circle at the bottom. The activities are
shown as rounded rectangles.

90

(9) Merge

I
|
1
I
.___..I__ "
8|2 “
au.
-] o [
nm_m = 1 =
A L= = i _.n_l_.
I
> i L&)
= I
I |= € 1
]
AE & |
ala
c|E i
=L |
™ 1
@ I
o
=
iy
nil]

Show Balance
Eject Card

(3) Activity

Take Monay
From Slot
Take Card

@ Swimlane

Customer
Insert Card
Enter PIN
Enter Amount

nd

.J:::in

@ Transisiton @Guard Expression

(2) Start

91

Related Procedures

UML 1.4 Activity Diagrams Procedures

Related Reference
UML 1.4 Activity Diagrams

92

UML 1.4 Component Diagram Definition

Both component and deployment diagrams depict the physical architecture of a computer-based system. Component
diagrams show the dependencies and interactions between software components.

Definition

A component is a container of logical elements and represents things that participate in the execution of a system.
Component also uses the services of other components through one of its interfaces.

Components are typically used to visualize logical packages of source code (work product components), binary code
(deployment components), or executable files (execution components).

Sample Diagram

Following is a component diagram that shows the dependencies and interactions between software components for
a cash register program.

1 1
Scanning Subsystam POS ClientManager
Scanner @(— —t= POS_client
—@

©

U=

|
— ®
Inventory Subsystem
M
Product]
O

@ Dependency @ Interface @ Component

@ Subsystem @ Interaction

i

Related Procedures

UML 1.4 Component Diagrams Procedures

Related Reference

UML 1.4 Component Diagrams

93

UML 1.4 Deployment Diagram Definition

Both Component and Deployment Diagrams depict the physical architecture of a computer-based system.

Deployment Diagrams are made up of a graph of nodes connected by communication associations to show the
physical configuration of the software and hardware.

Components are physical units of packaging in software, including:
¢ External libraries
¢ Operating systems

¢ Virtual machines

Definition

The physical hardware is made up of nodes. Each component belongs on a node. Components are shown as
rectangles with two tabs at the upper left.

Sample Diagram

Following is a Deployment Diagram that shows the relationships of software and hardware components for a real
estate transaction.

Bank Server Real Estate Server

«Database» Mo Listi wSlorages
CustomerDB wr:f:t?;_l sing | o MultipleListings
T | | 2

L — — — — — 1

IMortgageApplicalon [Listing
' ul i

-®
i ®

l—'—| TCP/IP
TCRIP Buyerlnterface

@ Interface @ Component @ Mode @ Dependency @ Connection

94

Related Procedures

UML 1.4 Deployment Diagrams Procedures

Related Reference

UML 1.4 Deployment Diagrams

95

Business Process Modeling

Overview

Business Process Modeling Notation (BPMN) covers many types of business process modeling with various detail
levels and enables you to create end-to-end business processes. After you create a diagram in the BPMN project,
you can export the diagram to BPEL and WSDL files. You also can create a BPMN project from imported BPEL and
WSDL files.

Together enables you to perform a simulated run of the designed business process specifying simulation parameters
in the run configuration or using default parameters. During the simulation, Together calculates tasks execution
duration, execution cost and other parameters. When simulation is finished you can open a report with statistical
data on the selected business process.

By default, a business process modeling project is created with the enabled BPEL Modeling profile. This profile adds
properties necessary to create a BPEL file. You also can specify general options of business process modeling
(including the default profile).

When you create a BPMN diagram, it is created with a default pool. You can use the diagram immediately for
designing your process. A business process project can also contain the following elements that are invisible on the
diagram but can be seen in the Model navigator:

Message

<>

Event Detail
Rule
Transaction
Assignment
Web Service
Property
Property Set
Process
Participant
Input Set
Output Set

® & & & 6 O O O o o o

The following diagram is an example of the BPMN diagram.

96

Mo testing is
bpws:yes needed

StartOfGoTo TargetpfGoTo

Passed Ready For
exam

EndOFPreE:xamination

Ready ta
exanm /

StartOfPrefxamination

Are there any resultd of pre-examination?

Take your test Testing Results

Are the resuks good?

Mot passed

bpwsino
Trw anain laber
«

It can be resohved

A diagram in the Business Process Modeling project can contain projection bars that mirror pools and lanes from
the diagram. The projection bars remain visible when the lanes are too long and the diagram have to be scrolled.
You can use the projection bars to select pools or lanes.

97

H o : o . [P, L= B =Y &
- i<y @ GE- [e i By KB Sy DD D 100% [i

g &7
= | e | P R e e e
| ssasae
(=) [i
[¥ -
| == Fla, i |
£l -+ = T Send Dockaor i
- 12 % Request [,
) : o full I
[\E llress Ocours |
I wlank tcr see dockar |
[[i
o || | |
'|_-‘= Flo. — ! | I
: I | ' |
i I | e e =
: o ! o Handle &y ailability i
= =] = | ['
= Art = E ' ECEivE i | Send Receive |
L B =3 Dackor | Aveailability Dockar b
...... i) 1 Requast | Request Availabilicy [
m E g 1
...... 2 | et | i 7 "
= Co... : ! !
A ® | | | | l
- i] -
5 | I
- Are wou avaﬁable? I'mn available | IE'II k
i } '
=k i | ! |
= | | I
. . ' |
5 2 ! Receive .
% |E 5 Q T awvailability L
fat o
Request :
I
=

The Group element allows you to easily differentiate between sections of a BPMN diagram. You can easily divide a
BPMN diagram into logical parts using the Group element. A Group permanently keeps track of content, resizes on
element move, colors elements with selected color, etc.

Reusing BPMN Projects Created in Together 2006

To reuse BPMN projects created in Together 2006 for Eclipse, use BPMN Project from Together 2006 Business
Process Modeling project.

Note: You can open BPMN projects created in Together 2006 for Eclipse but they open as read-only and not
accessible via API.

98

Optional Install

Since Together 2008 Release 3, the Business Process Modeling feature set is not required to be installed. When
not present, the corresponding parts of the user interface and functionality are not available. Refer to the installation
instructions in the Release Notes document for additional info about the product installation process.

Note: It is not recommended to omit installing the Business Process Modeling feature set if there are existing
Business Process Modeling projects in the workspaces you plan to reuse or import.

Related Procedures

Performing Business Process Simulation

99

Data Modeling
Topics in this section provide a brief overview of data modeling in Together.
In This Section

Data Modeling Overview
Provides data modeling overview.

Logical and Physical Data Models
This section outlines the difference between the logical and physical data models.

100

Data Modeling Overview

Together provides a complete data modeling solution. With Together you can perform the following tasks
¢ Design logical models
¢ Design physical models
¢ Import DDL/SQL script to existing project

Export logical model to physical model

Export physical model to DDL/SQL script

Import Data Model from Database to physical model

* & & o

Import logical models from Together Designer 2005

Related Concepts
Logical and Physical Data Models

Related Procedures

Data Modeling Procedures

Related Reference

Data Modeling Reference

101

Logical and Physical Data Models

A data model, which represents the business data, consists of both the logical and physical design. A logical model
is developed prior to the physical model and allows you to define how the information to be stored in the database
is organized. Thus, a logical model can be regarded as a blueprint that clearly defines data structures and
relationships between them.

The physical design addresses the technical implementation of the logical data model and shows how the information
is stored in a particular database. The physical model is bound to the target database server.

Because data modeling is a complicated process, Together enables you to separate the development of the logical
and physical models.

¢ Logical models are designed in UML 2.0 modeling projects with the help of ER Logical Diagram Profile. The
concept of entities and relationships in logical data modeling maps to the concept of classes and associations
in the UML 2.0 class diagram. When you enable this profile for a project, Together provides a set of ER Logical
Elements in the Palette, which you can use to create your logical model.

¢ Physical models are designed in Data Modeling projects.

Related Concepts

UML Profiles
Together Project Overview

Related Procedures

Data Modeling Procedures

102

Model Transformation Support

Together provides a complete set of Model Driven Architecture (MDA) capabilities based on the specially developed
Together Model Transformation Framework (TMF). The framework implements some of the mostimportant concepts
underlying the Meta Object Facility (MOF) 2.0 Queries/Views/Transformations (QVT) specification and is based on
the Eclipse Modeling Framework (EMF).

In the scope of QVT, model transformation relates to MOF models. Together Model Transformation Framework
relates to EMF and Together models. Together models are accessible via an EMF APl implemented as a set of
lightweight wrappers placed around Together model elements. The framework provides an imperative QVT language
for defining mappings between models and a transformation engine for interpreting the mapping definitions and
queries.

In Together, you can create, run and debug transformations within the project environment. When your
transformation is ready, you can apply it to models or model elements. The compiled transformation is deployed
within the Eclipse environment as a standard Java plug-in that you can share with users in your team. Currently,
Together supports the following transformation types:

¢ Model-To-Model transformation. Transforms a Together or EMF model into another Together or EMF model.
Model-To-Model transformations produce the target model and an auxiliary trace file with detailed information
about every transformation step performed. The target model opens in the corresponding model editor, the
trace file opens in the Trace view.

Model-To-Text transformation. Transforms a Together or EMF model into an arbitrary text output using java.

XSL/OCL transformation. Transforms a Together or EMF model into an arbitrary text output using an XSL/OCL
transformation script. The XSL/OCL script uses the OCL language. XSL uses the XPath language.

¢ Composite transformation is the Ant-based MDA transformation, which allows you to automatically (using Ant
tasks) apply multiple MDA transformations to the specified models, and in the specified order. For Model-To-
Model transformations, you can create transformation chains, where the output model of the preceding
transformation is passed (via Ant properties) to the input of the next transformation in the chain.

By using QVT Model-To-Model transformations, you can transform your Computation Independent Models (CIMs)
into Platform Independent Models (PIMs), and then to Platform Specific Models (PSMs). By using Model-To-Text
and XSL/OCL transformations, you can generate code from your PSMs.

The framework comes with a set of tools that helps you write, run, and debug transformations. For Model-To-Model
transformations, the QVT Editor provides basic QVT editing features (including code sensitive editing, syntax
checking and highlighting).

The Eclipse Debugger for QVT allows you to trace the execution of your QVT code step-by-step. The debugger
supports breakpoints (including StepOver, Stepinto, and StepOut features), watches, and the Variables view. The
Trace view allows you to inspect the result of your transformation when it is completed.

For XSL/OCL transformations, Together provides a powerful and highly customizable XSL/OCL Editor that supports
XSL/OCL code sense, syntax highlighting, XSL structure outline, and error checking. The XSL Debugger, which
runs in the XSL/OCL Debugging perspective, supports breakpoints (including StepOver, Steplnto, StepOut and
StepReturn features).

Together also provides a number of sample projects for each type of transformation.

Note: There are two different implementations of the OCL and QVT engines. The first version available since
Together 2006 refers to the OMG ptc/05-11-01 QVT Specification. Historically it is the primary engine to use
with Together models. The other engine Operational QVT deployed in Together 2008 refers to the
substantially revised OMG formal/08-04-03 QVT Specification and originally best suited for the DSL
Toolkit. Since Together 2008 R2 SP1, Operational QVT is adopted for use with Together models for both
read and write. Legacy QVT transformations developed in the context of the MDA Transformation project,
Operational QVT - in context of Operational QVT project.

103

Overview of the Operational QVT engine is provided in topic Reference ¥ MDA ¥ QVTO
Language.

The source artifacts (. gvt for legacy Together QVT and . gvto for Operational QVT) may
need adjustment when migrating between these engines because these engines have
differences in syntax and behavior. Please refer section Reference ¥ MDA k¢ QVTO
Migration Notes for migration guidelines. Note that the guide above operates only with pure
EMF models so the specific aspects of accessing Together models via EMP API, known from
working with Together QVT experience, should be taken into account. Please contact
support team in case of difficulties.

Normally there should be no problems using both QVT engines simultaneously, although the
Ul may look a bit overloaded. It is recommended that you turn corresponding capabilities on
or off as needed (select Window k Preferences, and then select the General node and
the Capabilities node).

Related Procedures

Creating an MDA Transformation Project

Creating a Model-To-Model Transformation
Creating Model-To-Text Transformations

Creating an XSL Transformation

Creating an Example MDA Transformation Project

Related Reference

QVTO Language
QVT Operational Migration Notes
MDA Example Projects

104

UML Profiles

Together includes several pre-installed profiles and allows you to create your own profile definitions using Profile
Definition project.

In This Section
UML Profiles Basics
Provides an overview of UML profiles.

Profile Definition Project
Provides an overview of Profile Definition project in Together.

Supported Metamodels
Provides a list of metamodels supported in Together.

Stereotype
Describes the stereotype element in the Profile Definition project.

Palette Contribution
Describes the stereotype element in the Profile Definition project.

Extension Link
Describes the Extension link element in the Profile Definition project.

Contribution Link
Describes the Contribution link element in the Profile Definition project.

105

UML Profiles Basics

UML is a standard modeling language for specifying, visualizing, constructing, and documenting the artifacts of
software systems, as well as for business modeling and other non-software systems. While the general modeling
concepts of UML are quite suitable for the majority of developers, in some situations, a further extension of these
concepts is useful to allow a more refined rendering of domain-specific concepts and techniques. UML extension
mechanisms address the definition of additional semantics of model elements that cannot be expressed directly
using UML constructs. This technique is known as UML Profiling.

Profiles provide mechanisms that allow metaclasses from existing metamodels to be extended so they can be
adapted for different purposes. All kinds of model elements can get stereotypes and tagged values that are defined
in the profile applied to the model.

The UML standard provides refinement mechanisms for profile creation, such as stereotypes, tagged values,
constraints, and notation icons that collectively specialize and tailor the UML for a specific domain or process. These
elements can be used to adapt the UML semantics without changing the UML metamodel. This means that you can
interpret the semantics of a profile in the context of the UML specification.

Related Concepts
Stereotype

106

Profile Definition Project

A Profile Definition project is a profiled modeling project that allows you to create new profile definitions.

One Profile Definition project corresponds to a single profile. Inside the Profile Definition project you can use some
packages to locate different elements. For example, you can put all enumerations to one package, all palette
contributions to another package, and all stereotypes to a third one. All the elements will be deployed to the same
profile.

The Profile Definition adds the following elements to the class diagram Tools Palette:
¢ Stereotype
¢ Palette Contribution
¢ Extension
¢

Contribution

Tip: Stereotype and Palette Contribution elements are also added to the diagram context menu: New k Profile
Definition.

Note: Metaclasses referenced in a profile must be taken from the corresponding target UML metamodel that was
selected when creating the project.

Related Concepts

Interoperability and Migration

Related Procedures

Together Profiles

Related Reference
EMF API for Together Profiles

107

Supported Metamodels

In Together, you can create profiles to extend the following metamodels:
¢ BPMN
¢ ER Physical
¢ UML14
¢ UML20

Stereotypes, tagged values and OCL constraints declared in the profile must refer to the selected metamodel.

Related Concepts

Interoperability and Migration

Related Procedures

Together Profiles

Related Reference
EMF API for Together Profiles

108

Stereotype

A stereotype contains properties that extend a linked metaclass, and enables the use of platform- or domain-specific
terminology or notation in addition to the ones used for the extended metaclass.

A model element that has a stereotype is a special kind of element that conforms to a rigid specification, defined for
this stereotype in the profile definition.

The following important issues should be taken into consideration:

¢
¢
¢

A stereotype is created as a Class20 element in your project with the <stereotype> tag.
A stereotype extends a metaclass through an Extension link.

When an instance of a stereotype is created in the target diagram, it gets the attributes (tagged values) of the
stereotype in question.

The following types of attributes (tagged values) of a stereotype are valid: Primitive, Enumeration, Metaclass.
Attributes of all the other types are ignored during deployment.

Tagged values of a stereotype can be defined in two ways: as attributes of the valid types and as association
links drawn from a stereotype element to the valid attribute types.

If a profile defines attributes with a default value for a given type that is different from the default value in the
underlying implementation, some side effects should be noted. For example, the default value for a Boolean
property is false and is not persisted in the model instance. If a Boolean property is set to t rue as the default
value in a profile definition and a user sets an instance value to false, its value is not persisted but interpreted
as the default value (true) when read back in. Similarly, instance values changed to empty/null will not be
persisted and will likewise be interpreted as the default value when read back in.

If a tagged value of a stereotype is defined as an outgoing association, its name and multiplicity properties
have specific uses. The name property is set to the supplier role of the association link. If the supplier role is
not defined, the association name is used instead. For multiplicity values other than 1 or 0 to 1, the
multivalued attributes are created.

A stereotype can extend another stereotype via Generalization and inherit its attributes and viewmap. Note
that the child stereotype inherits extensions from the parent stereotype and the parent viewmap (unless the
child stereotype defines its own viewmap).

A stereotype has the extended metaclass property, which is defined in the Profile Definition node of the
Properties View.

An abstract metaclass can be chosen as an extended metaclass. In this case, the new element will not appear
in any toolbar, but all the elements of the child metaclasses will get this stereotype in the list of predefined
stereotypes.

If, after profile deployment, an element belonging to the type of the extended metaclass is used in the target
diagram, the extending stereotypes are added to the list of predefined stereotypes for this metaclass.

Related Procedures

Creating Stereotypes

109

Palette Contribution

A Palette Contribution enables you to add creation tools for stereotypes and pure metaclasses to the selected
Diagram Tools Palette.

A contributed stereotype is associated to a Palette Contribution by means of a Contribution link. It is also possible
to associate a Palette Contribution with a shortcut to a metaclass from the metamodel. This allows you to customize
the palette by adding some elements to the tool bars of different diagrams. For example, if you want to have the
ability to create classes from the component20 diagram toolbar, you can associate the shortcut to
uml20::classes: :Class with a Palette Contribution in your profile definition.

A Palette Contribution can extend another Palette Contribution; when this is done, the child Palette Contribution
inherits all the parent diagrams, contributed stereotypes and pure metaclasses.

Related Procedures

Creating Palette Contributions

110

Extension Link

An extension link indicates that the properties of a parent metaclass are extended with the new properties through
a stereotype. An extension link is drawn from a stereotype to a metaclass shortcut whose properties are extended.

111

Contribution Link

A contribution link connects a Palette Contribution element with a Stereotype.

112

Modeling for EJB

The Enterprise JavaBeans (EJB) architecture is a component architecture for the development and deployment of
component-based distributed business applications. Together is shipped with EJB profiles that allow you to create
a specific UML model for EJB.

Together provides the following EJB Profiles:

Profile Name Description

Standard EJB Using the Standard EJB profile you can generate deployment descriptors that are EJB 2.0
compatible. This profile should always be selected for any work with EJB because it contains the
basic EJB elements.

Standard EJB (ver 2.1) Provides some additional elements. Also changes properties of some standard elements to comply
with EJB version 2.1.

Weblogic EJB Extension Provides WebLogic specific elements. Also changes properties of some other elements to generate
deployment descriptors that are compatible with BEA WebLogic 8.1.

EJB modeling can be thought of as a three-stage process:

1 Modeling in UML using the EJB profile
2 Generating Deployment descriptors while exporting to the Java project
3 Editing the Java project and deploying it to the application server (for example, BEA WebLogic)

Using Together, you can create an EJB model and export it to the Java project.

Note: Because WebLogic 8.1 supports the EJB 2.0 specification, do not enable WebLogic and EJB Standard profile
(ver. 2.1) simultaneously.

Related Concepts

UML Profiles Basics
Profile Definition Project

113

Model Compare and Merge

Together provides a comprehensive solution for comparing and merging models in your project.

EMF and UML Models Compare

Together supports two-way and three-way comparison of EMF or UML models, or model elements of the similar
type in a tree view.

In a two-way compare, the compared models are called Leff and Right. Model Compare/Merge traverses the
compared models, going level by level down the containment tree. On each level, objects are matched using ID
features that you set in the ID Features page of the Preferences dialog box (Window Fk Preferences k
Modeling ¥ EMF Model Compare k ID Features). After that, Model Compare/Merge compares values of attributes
and non-containment references.

You can export the compare results to an EMF XMl file.

Shared Models Compare

Together provides integration with version control systems and allows two-way and three-way comparison and
merge of shared (version controlled) models.

When comparing shared models, the Left model represents the local version while the Right model represents the
remote version. In a three-way compare, the third model is called Ancestor. It represents a common ancestor version
of the two versions taken from VCS.

Together utilizes standard Eclipse synchronization APIs and is able to compare models stored in any version control
system that supports the Eclipse Synchronize view.

Comparing and merging shared models requires one (for two-way comparison) or two (for three-way comparison)
remote versions of the compared model.

Together copies your local model to a temporary project, then applies changes reported by the repository provider,
and then displays these changes in the Synchronize view. Temporary models are read-only, and Together uses a
modal Model Compare dialog box, instead of the standard Compare editor.

Merging Models

The merging capability enables you to transfer elements from one model to another.

Related Procedures

Comparing and Merging Models

Related Reference

Model Compare/Merge

114

Template Elements and Generics Overview

Template elements

Together supports templates, as defined in the UML 2.0 superstructure specification. This support provides the ability
to show templates, template signature, parameters, and template bindings in the UML 2.0 diagram.

A templateable element may contain a template signature which specifies the formal template parameters. A
templateable element that contains a template signature is a template.

A template signature displays in a diagram as a rectangle in the top-right corner of the owing element. In the
Properties View of a template element, the i sTemplate property is set to true.

A template binding represents a relationship between a templateable element and a template. A template binding
specifies the substitutions of actual parameters for the formal parameters of the template.

Generics

In the LiveSource projects, Together supports generic language constructs that describe specialization of templates
for a certain type. Such constructs display in a diagram as special entities. For C++ projects, this possibility is enabled
by default; for Java projects, generics are enabled by means of a special setting in the Project Properties dialog.

Consider the following example:
template<class T> Class A; // defines a template A with the parameter type T
class B;
A<int> *a // on the diagram A<int> will display an entity as a specialization of a template

A for the type <int>
A<float> *f // displays another entity for the floating type

Related Procedures

Creating Template Elements

115

Model Import and Export Overview

You can share model information with other systems by importing and exporting model information, or by sharing
project files:

Feature Description
Exporting diagrams to images You can save diagrams in several formats, including:
Bitmap image (BMP)
Enhanced windows metafile (EMF)
Graphics interchange (GIF)
JPEG file interchange (JPG)

Scalable Vector Graphics (SVG)

Importing IBM Rational Rose (MDL) models Itis possible to convert models designed in IBM Rational Rose
2003 to the format of Together. The following file formats are
supported: .md1, .ptl, .cat,and .sub.

Importing from MDX Together enables you to create projects around an IBM®
Rational® XDE .mdx file.
Importing from XMl XMI (XML Metadata Interchange) enables the exchange of

metadata information. Using XMI, you can exchange models
across languages and applications. For example, if you have
a modeling project created with a tool other than Together, you
can import it to Together as an XMl file for extension or as the
basis of a new project. Likewise, you can export Together
projects for use in other applications. The result in each case
is a single, portable .xml file.

XMI for UML 2.0 was introduced in IBM® Rational® Software
Architect and allows you to exchange models that comply with
UML 2.0 specification. The models are exchanged via files
with an .uml2 extension.

Exporting to XMI

For import and export, Together supports the following UML
versions/platforms:

* XMI for UML 1.3 (Unisys Extension)

* XMI for UML 1.3 (with Unisys Extension recommended for
Together ControlCenter)

* XMI for UML 1.3 (with Unisys Extension recommended for
Rose)

* XMl for UML 1.4 (OMG)
* XMl for UML 2.0

* XMl for UML 2.0 compliant with OMG standard (XMl created
without usage of some non-OMG-standard tags such as
eAnnotations)

To import a project from Together ControlCenter, first use
Together ControlCenter and export the project to UML 1.3
(Unisys and Together Extensions) and then import it into
Together. In addition, always use XMI for UML 1.3 (with
Unisys Extension, recommended for TCC) when exporting a
Together project to be used in Together ControlCenter. XMl

116

export and import makes it possible to reuse multi-root
projects.
Importing from other versions of Together You can reuse models created in other editions and versions
of Borland Together. This feature is known as

Sharing with other versions of Together interoperability.

TVS projects and projects created in Together Editions prior
to version 7.0 cannot be imported to Together.
Export a Quality Assurance metric chart to image Create a chart and then export it to image.

Related Concepts

Together Interoperability and Migration

Related Procedures

Exporting a Diagram to an Image

Importing a Project in IBM Rational Rose (MDL) Format

Importing a Project in an IBM Rational Rose MDX Model

Importing a Project in XMI Format

Exporting a Project to XMI Format

XMI Export and Import of the Models with Cross-Project References
Creating a Metrics Chart

117

OCL Support

This section provides an overview of OCL in Together.

In This Section
About OCL Support in Together
This topic describes support for Object Constraint Language.

OCL Constraints and Expressions
Describes OCL constraints and expressions in Together.

OCL on Non-Class Diagrams
Describes OCL usage for non-class diagrams.

118

About OCL Support in Together

This topic describes support for Object Constraint Language.

About OCL

The Object Constraint Language (OCL) is a formal language that describes expressions on UML models. OCL
expressions specify operations or actions that, when executed, alter the state of the system. UML modelers can use
OCL to specify application-specific constraints in their models. UML modelers also can use OCL to specify queries
on the UML model, which are completely programming language independent. For more information about OCL,
refer to the OCL 2.0 specification.

Together allows you to use all the capabilities of OCL 2.0 to work with your model:

¢ Add the OCL constraints to the types defined in your model, providing them as constraint notes linked to the
context elements on the diagram. The constraint text opens in a powerful editor that provides syntax
highlighting, errors validation, and code completion functionality.

Generate Java code from your model, optionally generating the code for OCL expressions used in the model.
Use OCL as a query language operating with types defined in the metamodel. You can perform a Search In

Model by OCL query, write and run Model Audits and Metrics, and use OCL expressions in the documentation
templates for the documentation generator.

Note: Portions of this product include the Object Constraint Language Library, courtesy of Kent University, United
Kingdom. See _http://www.cs.kent.ac.uk/projects/ocl/

Supported Diagram Types
OCL supports the diagrams listed in the following table.
Diagram types with OCL support
Diagram type UML version Support provided

All diagram types 2.0 Object constraints. The default language of constraints depends
on the context element type and project type.

Interaction (Sequence and Communication) 2.0 State invariant constraints for lifelines and constraints for the
operands of the combined fragments as OCL expressions.

Pre- and post- condition for the Interaction. These elements are
realized as inner constraint elements available via element's
Properties.

State Machine 2.0 Guard conditions of transitions as OCL expressions.

Pre- and post- conditions of a StateMachine, and a Statelnvariant
for a State. These elements are realized as inner constraints
available via element's Properties.

Activity 2.0 Pre- and post- conditions for activity; local pre- and post-
conditions for an action.

119

http://www.cs.kent.ac.uk/projects/ocl/

Related Concepts
UML Modeling Overview

Related Procedures

Together Object Constraint Language (OCL)

Related Reference

Diagram View
EMF API for Together Profiles

120

OCL Constraints and Expressions

As the OMG's specification describes it, OCL is a formal language used to describe expressions on UML models.
These expressions typically specify invariant conditions that must hold for the system being modeled or queries over
objects described in a model.

The buttons on the diagram Palette allow you to create OCL constraints as design elements on diagrams, and link
these constraints with the desired context. The OCL Expressions view provides an OCL editor that lets you develop
and validate OCL expressions. Any OCL constraint contains an OCL expression.

OCL support for constraints provides syntax and error highlighting in the OCL Editor view. The text of the constraint
is validated when the constraint is linked to its context.

Related Concepts
UML Modeling Overview

Related Procedures

Together Object Constraint Language (OCL)

Related Reference

Diagram View

121

OCL on Non-Class Diagrams

Constraints on non-class diagrams fall into two categories:

¢
¢

Inner constraints

External constraints

The OCL editor provides syntax highlighting, errors validation and code completion functionality.

Inner constraints

The following properties are defined by creating nested constraints inside the elements. Generally, each property is
a property tab that contains two properties—language (OCL/text) and body (constraint body).

L4

* & & o oo o

guard in transition/internal transition

precondition and postcondition in StateMachine, Activity, Interaction
local precondition and local postcondition in Action

state invariant in State

Condition in Extends on a Use Case diagram

state invariant and Interaction constraint on a Sequence diagram

body, precondition, postcondition, and ownedRule in Operation

The OCL editor is available for the constraints inside the elements. You can expand the element node in the Model
Navigator and open a constraint in the editor.

Tip: For the properties of elements that can have class as their context, the OCL context is set automatically.
Constraint Context
Element with defined constraint Correct context for the constraint.
StateMachine Operation selected as a Specification association of this StateMachine

(a class is selected for the context property and specification is a
method of the selected class).

Activity Specification of the activity.
Action Specification of the activity that contains this action.
State and Transition Class selected in the context property of the StateMachine that

contains this State or Transition.

Operation Operation itself. Note that the operation has a valid OCL context only

if it is owned by Class or Interface. Operations owned by other
classifiers get no OCL context, and their constraints should have text
as a constraint language.

Interaction Context of this Interaction or Specification if it is defined.
State invariant and Interaction constraint Class selected as type of the Lifeline that contains this element. It can

be either a class directly selected as the type of the Lifeline or part
selected as the Lifeline representation.

Extends Context cannot be specified and constraint can only be defined as text

(language=text).

122

Tip: If a context for a constraint with 1anguage=oc1 is not specified or cannot be specified, such constraints are
shown as invalid.

External constraints

In addition to the inner constraints described above, all the elements on the non-class diagrams that are Types
(various classifiers) can be furnished with external OCL constraints.

An external constraint is created as a Constraint element linked to the constrained element by the context link.

Unlike inner constraints, the external constraints always use the linked type as a context. Thus, the StateMachine
constraints may have the context of the assigned specification if it is an inner precondition, or the context of the
StateMachine itself if it is the external linked constraint.

Related Concepts

UML Modeling Overview

Related Procedures

Together Object Constraint Language (OCL)

Related Reference

Diagram View

123

Patterns and Templates

This section describes patterns and templates in Together.

In This Section
Patterns and Templates Overview
Overview of patterns and templates in Together.

Pattern Definition Project
Describes a pattern definition project in Together.

Pattern recognition
Describes how pattern recognition works.

Templates
Describes code templates in Together.

124

Patterns and Templates Overview

Patterns provide software developers with powerful reuse facilities. Rather than trying to tackle each design problem
from the very outset, you can use the predefined patterns supplied with Together. The hierarchy of patterns is defined
in the Pattern Registry. You can manage and logically arrange your patterns using the Pattern Organizer.

Patterns and templates are pluggable extensions for Together enabling you to:
¢ Create new and frequently used elements
¢ Modify existing elements

¢ Implement source code constructions and solutions in your project.

Code templates

Together supports code templates to provide backward compatibility with previous versions of Together. You can
use your legacy source code templates to create elements in the source-code projects. Code templates are text files
with the extension specific for Java that use macros to be substituted with real values when the templates are applied.
Therefore, code templates can be regarded as forms ready for "filling in" for a specific instance. A code template
consists of a template file containing source code, and a properties file that contains macro descriptions and their
default values. Templates in Together are mostly used in Java Modeling projects.

Patterns

Each pattern describes of a set of model elements, relations between them, and constraints applied to those
elements. Patterns are represented by special modeling projects covering all the aspects of patterns. Patterns, in
general, are independent of any programming or markup language. You can use them to create or modify any type
of element. However, concrete patterns are designed to work with elements of a specific type. Use Pattern Registry
to manage patterns.

Note: Together is shipped with some predefined patterns that cannot be deleted or otherwise edited.

Pattern instances

Pattern instances appear as a result of recognition of the existing model or creating new instances (along with model
elements playing pattern roles) in the model. Pattern instances contain information about the pattern name and the
role of each participant. They are shown in the Pattern Explorer view and under the Patterns node in the Model
Navigator.

When applied to a diagram, such patterns create their entities and are presented on the diagram itself, with the links
to the created entities. Such patterns enable further modification by means of adding new participants (new pattern
part). All patterns that appear in the Pattern Explorer are represented in the project model in the form of entities
with metaclass “pattern”. Visually, pattern instances are displayed as ovals (like collaboration occurrences). Pattern
entities have children links to pattern participants, which allow viewmap links on diagrams from pattern instances to
pattern participants. Actions on pattern instances in the model are the same as in pattern explorer.

During the lifetime of the pattern instance, the model can change (some elements from the instance may be deleted,
others may be changed so that they no longer satisfy the pattern definition) and the pattern instance can become
invalid. This is why you need to perform pattern instance validation regularly.

125

Related Concepts

Pattern Definition Project
Templates

Related Procedures

Patterns and Templates

Related Reference

Patterns and Templates
Pattern Registry
Pattern Explorer

126

Pattern Definition Project

Using a pattern support subsystem in Together, you can easily work with patterns via pattern definitions. You can
use well-known, predefined patterns. You can also define new ones and delete, rename, or edit existing ones. Using
Together, you can manage pattern instances by recognizing patterns in an existing model, creating elements by
pattern, creating new participants for particular roles for an existing pattern instance, and so on.

A pattern definition project is a profiled UML 2.0 modeling project with the following modifications that distinguish it
from a pure UML 2.0 project.

The following elements are allowed in a pattern definition project:
¢ Instance specifications
Slots
Pattern definition links (derived from a Kernel Association class, able to connect instance specifications)
Constraints
Value specifications
Pattern constraint links (derived from a Binary link class, aimed to define constraint parameters)

Class diagrams

®* & & 6 o oo o

All other elements are prohibited

The following extensions are added to the allowed metaclasses:

¢ Instance Specification—able to aggregate pattern definition links.

¢ Slot—the following new properties are added: Use for recognition (Boolean)— Controls whether to use
this property on recognition. Use for generation (Boolean) — Controls whether to set this property on
creating elements by pattern. Is configurable (Boolean) — When set to true, indicates that by using the
“create by pattern” wizard, the user can modify the value of this property to be set on element creation. This
property should be false if Use for generation property is set to false.

Constraint—able to aggregate pattern constraint link.

Class diagram—patternPartWizardDefinition (Boolean) — When set to true, the new “create pattern
part” wizard will be generated for the instances of this pattern.

When you create new pattern instances from existing project elements, the creation process uses participants from
your current selection and enables you to modify the pattern properties. You can easily view and modify properties
of pattern instances using the standard Properties view. Any change that you make to a pattern property applies
immediately to the pattern participants (via refactoring).

All pattern definitions are stored in the com.borlang. tg.patterns\patterns subfolder of the Together plugins
folder. Each pattern definition is an archive file packed by zip utilities provided by the Java Development Kit (JDK).
Pattern definitions contain compilation results suitable for recognition and completion engines and for the whole
definition project so that definition editing can be done. Folder and shortcuts structure are stored in the
pattern.registry file in the same location.

Related Procedures

Creating Pattern Definition

Related Reference

Create Pattern from Elements

127

Pattern recognition

Pattern recognition identifies pattern instances from existing elements in the project. The identification process
determines pattern participants and parameters. You can start the pattern recognition process from the project's
context menu to perform pattern recognition, validation, and problem reporting.

Related Procedures

Recognizing Patterns

128

Templates

A template allows you to quickly and automatically create code, insert code, or transform existing code. There are
several different types of templates:

¢ Package: For modifying/creating specific groups of classes and members
¢ Class: For modifying existing classes or creating a new class

¢ Link: For modifying existing links or creating a new links on the Class diagram

You can use template extensions to create template instances. Template instances are managed by the template
manager, which also gives you the ability to manage existing template instances, or create new ones. A template
instance operates on existing elements using an associated template source. The template source contains a
template-specific specification of elements and constructions that are applied on the target elements. For example,
an instance of the Java class template uses its template source to specify imports, fields, methods, and inner-types
that are created when the template is applied to a target Java class.

You can create new template instances using the template wizard. The current selection of elements is analyzed
and then an appropriate template source is created using the data from the selected elements. For example, you
can create a new Java class template from an existing class. The wizard analyzes the selection and extracts imports,
fields, and methods from the selection. It then creates the template source. The template source is then associated
with the new template instance.

129

Quality Assurance

Quality Assurance in Together provides teams and managers with measures of the quality of their project. As with
any Quality Control, the team should understand what is measured, and why. Although audits and metrics are similar
in that they both analyze your project, they serve different purposes. Audits and metrics are run as separate
processes. Because the results of these two processes are different in nature, Together provides different features
for interpreting and organizing the results.

In This Section
Code Audits
Describes code audits in Together.

Model Audits
Describes model audits in Together.

Code Metrics
Describes code metrics in Together.

Model Metrics
Describes model metrics in Together.

Metrics Graphical Representation
Describes Bar graph and Kiviat chart representation of metrics.

Exporting and Importing Audits and Metrics
Introduces import and export of audits and metrics.

130

Code Audits

Together provides a wide variety of audits, ranging from design issues to naming conventions, along with descriptions
of what each audit looks for and how to fix violations. The process of running audits begins with your selecting the
specific rules to which your source code should conform. Together generates an audit report that displays only the
violations of those rules. You can examine each violation and decide whether to correct the source code. You can
create, save, and reuse sets of audits to run. Together ships with a predefined saved audit set and you can create
your own custom sets of audits to use.

Problem Detection Audits

For most violations, the audit report generated by Together indicates the line of code that causes the violation. For
some audits, however, such a line number is inappropriate. These are called problem detection audits. An example
is the Misplaced Class audit, in which the package of the class is deemed inappropriate because of the dependency
between the class and a different package. For problem detection audits, Together uses one or more of detection
metrics to analyze the code to determine audit violations.

Together audit reports show problem detection audits along with the other, line-oriented audits.

Bad Smell Audits

Together includes a group of audits known as "Bad Smell Audits" that detect some issues or convention violations
in source code (misplaced classes, attributes and methods, wrong inheritance usage), which require some code
refactoring.

Related Concepts

Quality Assurance

Related Procedures

Running Source Code Audits

131

Model Audits

Together supports a wide range of model audits. The list of available model audits can be viewed in the
Preferences dialog box. You can define, save, and reuse sets of model audits. Model audits are OCL queries that
produce Boolean results and that operate in the context of existing metamodels. You can also employ additional
OCL operations provided for the Borland metamodel, specified in the OCL operations and OCL library
operations tabs in the Preferences dialog box.

Together also contains a set of sample audits (the ideas of most of them are taken from Ambler and Fowler books).
These audits can be used as examples for custom rules creation. For a description of the predefined model audits
provided in Together, refer to “Model Audits and Metrics Descriptions.”

After you run model audits, the results are displayed in the Model Audits View. The view provides detailed
descriptions for all found errors and you can navigate to the corresponding problem element from this view by double-
clicking the error message.

Related Concepts

Quality Assurance
OCL

Related Procedures

Running Model Audits and Metrics

Related Reference

Model Audits and Metrics Descriptions
QA Model

132

Code Metrics

Metrics evaluate object model complexity and quantify your code. It is up to you to examine the results and decide
whether they are acceptable. Metrics results can highlight parts of code that need to be redesigned, or they can be
used for creating reports and for comparing the overall impact of changes in a project.

Together provides a wide variety of metrics, ranging from lines of code to comment ratio. When you run metrics in
Together, you first select which metrics are important for your project. You can use metrics results that Together

generates to determine which code needs to be redesigned, or you can use the results to create reports and compare
the overall impact of changes in a project. Together makes it easy to run metrics, view the results, and interpret the

findings.

Related Concepts

Quality Assurance

Related Procedures

Running Source Code Metrics

133

Model Metrics

Together supports a wide range of model metrics. The list of available model metrics can be viewed in the
Modeling ¥ QA Model node of the Preferences dialog box. You can define, save, and reuse sets of model metrics.
Model metrics are OCL queries that produce Integer results and that operate in the context of existing metamodels.
You can also employ additional OCL operations provided for the Borland metamodel, specified in the OCL
operations and OCL library operations tabs in the Modeling ¥ OCL page.

For a description of the predefined model metrics provided in Together, refer to “Model Audits and Metrics
Descriptions.”

After you run model metrics, the results are displayed in the Model Metrics view. You can navigate to the
corresponding elements listed in the Model Metrics view by double clicking the element name.

Related Concepts

Quality Assurance

Related Procedures

Running Model Audits and Metrics
Using OCL in Model Audits and Metrics

Related Reference

Model Audits and Metrics Descriptions
QA Source

134

Metrics Graphical Representation

Metrics results can also be viewed graphically. Two graphic views allow you to summarize metrics results: bar charts
and Kiviat charts. Both charts are invoked from the context menu of the table. Use the Kiviat chart for rows and the
bar chart for columns.

Bar Chart
The bar chart displays the results of a selected metric for all packages, classes, and/or operations.
The bar color reflects conformance to the limiting values of the metric in reference:

¢ Green represents values that fall within the permissible range.

¢ Red represents values that exceed the upper limit.

¢ Blue represents values that are lower than the minimal permissible value.

¢

A thin vertical red line represents the upper limit and a thin vertical blue line represents the lower limit.

Kiviat Chart

The Kiviat chart demonstrates the analysis results of the currently selected class or package for all the metrics that
have predefined limiting values. The metrics results are arranged along the axes that originate from the center of
the graph.

Each axis has a logarithmic scale with the logarithmic base being the axis metric upper limit so that all upper limit
values are equidistant from the center. In this way, limits and values are displayed using the following notation:

¢ Upper limits are represented by a red circle. Any points outside the red circle violate the upper limit.

¢ Lower limits are represented by blue shading, showing that any points inside the blue area violate the lower
limit. Note that blue shading does not show up in areas of the graph with lower limits of 1 or 0.

Tip: To see the value of an individual data point on the Kiviat graph, hover your mouse pointer over it to display a
popup.

The actual metrics show up in the form of a star with metric values drawn as points.

Green points represent acceptable values.

Blue points represent values below the lower limit.

Red points represent values exceeding the upper limit.

Scale marks are displayed as clockwise directional ticks perpendicular to the Kiviat ray.

*® & & & o o

Lower limit labels are displayed as counterclockwise directional blue ticks perpendicular to the Kiviat ray.

135

Related Concepts

Quality Assurance

Related Procedures

Running Source Code Metrics
Running Model Audits and Metrics

Creating a Metrics Chart

136

Exporting and Importing Audits and Metrics

Introduces import and export functionality for audits and metrics.

Source Code Audits and Metrics

Once you identified the QA rules the team needs to use, you can create specific QA Sets for source code audits and
metrics in Together. These QA sets can be saved to your local file system, or you can save them in the project.
Saving them with the project makes them easier to distribute to your team via the version control system (VCS).

The C++ and Java QA Source pages of the Preferences dialog box display the set of all available audits and metrics
for C++ and Java source code projects respectively. When you open a project, a default subset is active. Active
audits and metrics are indicated by check marks. You can select necessary audits and metrics and save the selected
set for future use. The quality assurance sets are saved with a . ga extension.

Model Audits and Metrics

You can import and export model metrics and audits all at once, including a set of named OCL queries on
metamodels, and other settings. Model audits and metrics can be saved to files with .ModelMetrics

and .ModelAudits extensions. When importing such a file, you completely replace your currently defined model
audits or metrics.

Related Procedures

Exporting and Importing Model Audits/Metrics
Creating and Using Code QA Sets

137

Refactoring Overview

Together leverages refactoring operations provided by the platform.

When refactoring is applied to source code, the changes propagate to the model. For example, when classes or
operations are renamed by means of refactoring, the hyperlinks to the renamed elements are preserved.

Refactoring is available for the model elements in Together projects by means of context menus. Refer to JDT
documentation for information on Java refactoring and to CDT documentation for information on C++ refactoring.

138

Requirements Management

Requirements Management allows you to create and manage traces between Together diagram elements and
Borland CaliberRM or Rational RequisitePro requirements.

Traceability is supported via CaliberRM and RequisitePro Integrations for Together, respectively. You can find more
information about working with specific requirements in online help provided with both integrations.

Together provides the following requirements management possibilities:

¢ Create and delete traces between requirements and Together diagram elements.
Create requirements based on use case.
Manage traces between requirements and model elements in the Element Traces view.

Synchronize traces that are out of date using the Trace Synchronizer view.

* & & o

Navigate easily between traced elements and related requirements.

Note: Together 2007 and later versions of the product do not include integrations with requirements management
products. These integrations are available separately on demand. Corresponding parts of user interface and
functionality are not available when integration is not installed.

Related Procedures

Opening Requirements Views

Creating Traces from Requirements to Model Elements
Deleting Traces

Creating Requirements Based on Use Case

Viewing Element Traces

Synchronizing Traces

Navigating from Model Elements to Requirements

Related Reference

Element Traces View
Trace Synchronizer View

139

Version Control in Together

This topic provides an overview of version control features in Together.

Overview

Together uses a file-based approach to store models. This provides openness and choice when selecting a version
control system to manage your models.

Together supports several version control systems that can be integrated in Eclipse. They include but are not limited
to CVS, StarTeam, and ClearCase. Version control in Together enables several users to work with one modeling
project.

Together leverages the functionality provided by the Version Control System client and maps these menus from the
file resources level (as provided by the Version Control System provider) to model elements.
Together provides context menus to work with CVS, StarTeam, and ClearCase version control systems.

Visual team status indicators for items are also displayed in the model navigator.

Note: The Together teamwork-related functionality that is provided depends on how well the specific Version
Control System integrates with the basic Eclipse team support flow and Ul. Therefore, some Version Control
System features may be not available or may work differently for a given Version Control System.

Your version control system should be set up so that only one user can work with a shared model at a time. In case
several users edit the model at a time, use the model compare and merge functionality of Together. You can compare
the structure of your models and merge inconsistencies if necessary. Alternatively, you can revert to the saved
version of the model.

The model merge tooling provides a hierarchy comparison of two models with annotations to show what has been
added, what is missing, and what has been changed. However, the model merge does not provide a comparison of
changes in the layout, sizing, or ordering of model elements.

Note: For more information about each version control system, refer to the appropriate program documentation.

Note: Together 2007 and later versions of the product do not include integrations with version control systems
(StarTeam, ClearCase). These integrations are available separately. Eclipse clients for corresponding
versions control systems are not bundled with the Together product and must be additionally installed to the
same Eclipse instance as Together.

Models, views, and files

It is important to be aware of the relationship between models, views, and the files used to store models and views
in Together.

Task-aware features

Task-aware features of Together make it easier to work with modeling resources under version control by
automatically finding all the resources that need to be checked out for the modeling resource to be modified. To
enable task-aware features, use the following Team options for locking files and managing modeling resources:

Path to option Options

Preferences k Team k Star Team k File k Locking Clear file lock on check-in and Mark unlocked working
files read-only

This option also exists on a project level.

140

Preferences k Team k Modeling resources AutoCheckout modeling resource on edit.

While editing some model elements, a lock dialog box appears, which lists all resources that need to be locked. By
choosing Yes you apply a locking mechanism to the selected resources and they become writable. After modification,
when you are checking in the files, they will become unlocked and read-only. Each time you try to edit a read-only
file that is under version control, a dialog box appears suggesting that you lock the file for editing. To automatically
lock files on checkout, check the auto lock check box in the dialog box or use the Lock files on modification in
the Preferences k¥ Team Bk Star Team F File ¢ Locking page (this is a StarTeam Eclipse client option).

Note: The Preferences k Team k Star Team options are for a Version 10.1.0.24 of StarTeam and may be different
for other versions of StarTeam.

Note: The task-aware feature of Together cannot manage read-only files located inside a Package when this
package is moved or renamed. Eclipse does not let you automatically check out files in this situation. Use
Navigate to resources on the Team menu to select files for locking and then try to move or rename the
package again.

You can also use the Ignore default package diagrams option (Preferences k¥ Team F Modeling Resources)
to specify that default package diagrams are not stored or synchronized. This option adds default.txvpck and
default.txvClassDiagram20 patterns to the ignored resources.

Together Version Control Recommendations

Use an Eclipse Team Provider.

Check in the .txaPackage file.

Do not check in the default package diagram.
Use version control locking at the package level.

Consider the version control implications if you rename any diagrams or packages.

* & & o o o

Consult an expert if you need to resolve any merge conflicts.

Support for CVS edit/unedit commands

Together provides a number of additional variants of edit/'unedit commands for diagrams and packages in the context
menu Team. These commands are available when the Capability Team k CVS support for Modeling is enabled.
Commands help to perform version control operation on not the individual resources but the entire set of the related
resources.

For Diagram the available choices are:

Command Description

Edit/Unedit View Affects only the file of selected diagram (*.txv*)

Edit/Unedit View and Model Affects the file of selected diagram and also files (*.txv*/*.txa*)
containing elements shown on the diagrams regardless of their
package

Edit/Unedit View and package locally Affects the file of selected diagram and also files containing elements

shown on the diagrams from the same package

Edit/Unedit View and package recursively Affects the file of selected diagram and also files containing elements
shown on the diagrams from the same package and all its
subpackages

141

For the package

Command Description

Edit/Unedit Affects the diagram and model files (*.txv*/*.txa*) in the selected package

Edit/Unedit Recursively Affects the diagram and model files in the selected package and all its subpackages
recursively

Related Concepts

Together Capabilities Activation

Related Procedures

Using Version Control and Teams in Together

Related Reference

Common Diagram Context Commands
Package Context Menu

142

Project Documentation

This part describes the documentation generation facility and documentation template basics.

Related Concepts

Documentation Generation Overview
Documentation Template

Related Procedures

Generating HTML Documentation
Creating Custom Documentation Template

143

Documentation Generation Overview

Together enables you to create external documentation for the open projects, or from the command line. Use the
generated reports to illustrate your projects with the documentation in one of the available formats.

Documentation generation is available for all types of Together projects, including Business Process, Data Modeling,
Pattern Definition or Profile Definition projects.

The generated documentation can include the results of Audits, as well as the information extracted from the
integrated products (for example, from CaliberRM).

Documentation output formats

You can generate documentation in one of the following output formats:

¢ RTF
HTML
TXT
PDF
XSL-FO

* & o o

By default, documentation is generated in HTML format.

Documentation files

All the documentation that Together generates is written to a single directory that you specify in the documentation
generation dialogs. By default, this is the out folder of your Eclipse workspace.

The generated documentation opens in the appropriate viewer, associated with the output format.

If a report is generated from an Ecore model, the top package name is used as the model file extension. If a report
is generated from a domain, the domain name is used as the model file extension.

Documentation templates

Project reports are created by applying documentation templates to Together projects. The templates contain
commands to the documentation generator; the projects provide the source of project-specific data. Documentation
templates are * . tpl text files with formatting instructions and tags for the commands.

Together comes with a set of predefined templates and also lets you create custom documentation templates, using
the built-in Documentation Template Designer.

Custom Together templates make it possible to use styles, headers and footers from the Word documents.

144

Related Concepts

Organization of a Documentation Template

Related Procedures

Generating HTML Documentation

Generating Project Documentation Using Template
Generating Project Documentation from Command Line
Configuring the Documentation Generation Facility
Creating Custom Documentation Template

Using Word Documents in Documentation Templates

Related Reference

Documentation Template Designer

145

Documentation Template

The documentation generator uses Together projects and templates to produce project reports. You can use
predefined templates that are delivered with the product, or create your own custom templates, using the Template
designer. This part discusses the structure of templates, its zones, sections and controls.

In This Section
Documentation Generator Metamodel
Documentation Generator makes use of its own metamodel that defines the hierarchy of metatypes.

Organization of a Documentation Template
This topic describes the organization of a documentation template and the correspondence between the
elements of a template and the generated output.

Documentation Template Sections
This topic describes sections of a documentation template.

Documentation Template Controls
Controls are the items in documentation templates that determine the contents of reports.

Multi-frame Documentation Templates
This topic describes multi-frame documentation templates structure.

Hyperlinks in Documentation
A hypertext link connects a link reference (starting point or source) to a link destination (target).

Javadoc Link References
Together supports Javadoc References (or JDRefs), which are the expressions associated with Javadoc
tags.

Enable Conditions
Enable conditions are Boolean expressions for turning section processing on or off.

146

Documentation Generator Metamodel

The Documentation Generator (DocGen) has its own metamodel described in the metamodel plugins
\com.borland.gendoc.core 8.1.0\templates\MetaModel .mm definition file.

It is a textual file that defines the metatypes hierarchy, how metatypes correspond to the model elements, the types
of elements another element can contain, and the properties of each metatype. The beginning of each model
definition file lists the properties that DocGen knows. These include DocGen-specific properties and others.
Properties are defined as follows:

property name = "[name of property localization key]"

The remainder of each model definition file contains the metatype definitions. The major fields in the definitions are
as follows:

¢ name: metatype name

extends: parent metatype

full name: the name displayed in the Documentation Template Designer

metatype filter: defines the correspondence between metatype and model element

rwi entity: the type of the related element in Together API

* & & o o

properties: a list of properties available for this type; descendant metatypes inherit their properties from

parent metatype

¢ excluded properties:items listed among the properties that are not documented when using the "all
properties' scope in Property iterator

¢ contained metatypes: metatypes that can be contained by this metatype

The name field for each type is always present. The existence of the other fields varies with the type. An example
of a metatype definition follows:

<metatype>

name=NODE

extends=ELEMENT rwi entity=node

full name="[gendoc/gen doc_by templatel/full name NODE]”

properties = $package }
contained_metatypes = { NODE; MEMBER; LINK }
</metatype>

An element iterator or folder can contain nested element iterators whose type is listed among its contained
metatypes, the contained metatypes of its parent, or indirectly through the contained metatypes of one of its
contained metatypes. For example, an element iterator with a DIAGRAM scope can contain nested element iterators
with the following scopes:

¢ hyperlink (inherited from ELEMENT)
diagram reference

diagram

node

link

* & & o o

member (indirectly through the contained metatype, NODE)

147

Element properties are inherited. An element iterator can contain nested property iterators whose type is inherited
from its ancestor or listed directly among its properties. For example, an element iterator with a DIAGRAM scope
can contain nested property iterators for the following types of scopes: shapetype, name, documentation, annotation,
hyperlink, url (inherited from ELEMENT), package, stereotype, and alias.

Related Concepts

Organization of a Documentation Template

148

Organization of a Documentation Template

A documentation template is a *. tpl text file that contains instructions to the Documentation Generator. Project
reports are created by applying documentation templates to Together projects.

In this section you will learn about:

¢ Zones of a template

¢ Body of a template, and its representation in a generated report
¢ Root object metatype
¢

Current model elements

Zones of a template

Documentation templates consist of headers, footers, and body sections. The Documentation Template Designer
divides templates into five major zones:

¢ Page header
Report header
Body

Report footer

* & & o

Page footer

The zones are horizontal bands that go across two panes. The scope pane, which is on the left, reveals the template
structure. The details pane on the right shows the contents of the zones, which include commands to the DocGen
engine. Context menus for each zone are different in the scope pane and in the details pane.

Headers and footers are at the top and the bottom of the Designer window. The report header and the report footer
apply only once per document. Page headers and footers apply once per page for RTF documentation; they are
ignored for HTML and text documentation.

The body zone of a template contains the commands that produce the body of the generated report. DocGen builds
a report into horizontal regions. Each region in the report corresponds to a section in the template that determines
the data for that region and how that data should appear.

Body of a template

The body of a documentation template is organized into a hierarchy of sections. Some sections in the body are
nested inside others. Some sections have siblings. Sections that are not nested within any others are children of the
root. The scope pane reveals the tree structure, indenting each section according to its level in the tree.

Root object metatype

Every section in the body of a template has a section scope. Scopes are based on metatypes that correspond to
the different types of model elements. The section scope of the body zone corresponds to the root object metatype.

The model itself is considered to be a special metatype, which is the default root metatype for a new template.

149

Current model element

Documentation Generator uses a dynamic current model element to go through a template and access specific
project information. The type of the current element is the metatype for the section that the engine is currently
processing. The value of the current element changes according to when the processing for the section takes place.

The body of a report is created starting from the root element, going in a “depth-first” fashion. In other words,
processing starts with the first root section, visiting it along with any of its nested subsections before continuing to
the next root section. This pattern is recursive: visit the sub-tree rooted at a section before going to the next sibling
section. For each sibling of a section, DocGen begins its processing with the same current element.

Related Concepts

Documentation Generation Overview
Documentation Template Sections
Documentation Template Controls

Related Procedures

Creating Custom Documentation Template

Related Reference

Documentation Template Designer
Area Properties

150

Documentation Template Sections

The body of a newly created template consists of a generic element iterator and a static section nested within. It
provides a minimal base for constructing the tree of sections. Every new section must be a sibling or a child of an
existing section.

There are six different types of body zone sections:
¢ Static sections

Element iterators

Element property iterators

Folder sections

Calls to stock sections

* & & o o

Calls to template sections

Static section
Static sections contain the commands to the Documentation Generator for getting project data.

Of all kinds of body sections, only static sections contain controls for producing actual output. Headers and footers
can also contain controls. Folders and iterators, which cannot directly contain controls, must have at least one static
section nested somewhere within.

You can edit properties of a static section. Refer to the Static section reference for details.

Element iterators

Element iterators provide a way of looping through elements of a model. Each element iterator has its own metatype,
which must be consistent with the metatype of the iterator’s parent’s.

If you want an iterator to be able to access an entire model, choose Package as the metatype.

In an element iteration section, a new current element is calculated according to the current element of the parent
section and the metatype of the iterator. Documentation Generator loops through an element iteration section using
each possible new element as the current element for that iteration. The properties of an element iterator affect the
way a new current element is calculated and how it changes during iterations. If no elements are encountered
corresponding to the iterator’'s metatype, no documentation is produced.

Element iterators can have headers and footers. If the section execution does not result in output, then the iterator’s
headers and footers are ignored.

Scope options determine which elements of the model this iterator will document. Each iterator works over the sub-
tree of the model that is rooted at the current element (the element that starts the iteration).

You can edit properties of an element iterator. Refer to the Element Ilterator reference for details.

Element property iterators
Element property iterators are for looping through the properties of model elements.

Element iterators traverse model elements. Element property iterators traverse element properties instead of
elements.

151

A property iterator can reside inside an element iterator, folder, or property iterator. A property iterator must contain
at least one static section, folder section, or call to a stock section or template. A property iterator may also contain
an element iterator, or another property iterator.

A property iterator is described by its properties, such as its iteration scope and sorting. Refer to the Property
Iterator reference for details.

Folder sections

Folder sections group other sections together. A folder has at least one nested section, and it may have a header
or footer. In that sense, folders are similar to element iterators, except that DocGen executes folders only once.

Folders inherit their metatypes from their parents. The sections nested within a folder must be consistent with its
metatype. Folders provide a way to put section-level properties on their contents. This includes enabling conditions
for toggling its processing on and off.

Folders can have headers and footers. If the sections in a folder do not result in output, then the folder’s headers
and footers are ignored.

A folder section is described by its properties, such as its output style and enable condition. Refer to the Folder
section reference for details.

Calls to stock sections

Stock sections are reusable folders or iterators that reside in the template’s collection of stock sections. They are
not shared among different templates. When a call to a stock section is processed, it is the same as if the called
stock section were simply embedded at the position of the call.

Stock sections are especially convenient for frequently used constructs. You can insert a call to a stock section from
any section whose metatype is consistent with the metatype of the stock section. Stock sections may contain calls
to other stock sections, as well recursive calls to themselves.

You can edit properties of a call to stock section. Refer to the Call to stock section reference for details.

Calls to template sections

With a call to a template, DocGen can produce documentation using a different template without terminating the
current one.

When a template is called, the current element of the calling template becomes the root element of the called
template. A calling template can pass additional information to the called template through template parameters.

Calls to templates make it possible to construct a library for generating documentation for particular model elements
(class, actor, use case, and so on).

You can edit the properties of a call to a template section. Refer to the Call to template section reference for details.

152

Related Concepts

Documentation Generator Metamodel

Related Procedures

Creating Custom Documentation Template
Creating Sections

Related Reference

Static Section Properties
Element lterator Properties
Property lterator Properties
Folder Section Properties

Call to Stock Section Properties

153

Documentation Template Controls

Of the six kinds of body sections, only static sections contain controls for producing actual output. Headers and
footers can also contain controls. Folders and iterators, which cannot directly contain controls, must have at least
one static section nested somewhere within.

When you insert a new control, the Documentation Template Designer displays a dialog box for setting the control’s
properties. The template shows each control as a shaded rectangle in the details pane. You can change the
properties of a control after it is created.

The controls described in this section include:
¢ Label

Image

Panel

Formula

Data

Include Text

* & & o o

Label, Image, and Panel Controls

The simplest kinds of controls are labels, panels, and images.

Label

A label generates static text that is independent of its containing section. The text does not depend on the metatype
of the section or where the section belongs in the template. Placing identical labels in a header and a static section
results in the same output as long as the header and static section are not skipped. Label properties include the
label’s text, style (font, color, and border), and if and how to hyperlink the output.

Image

Depending on its type, an image can be external to the project or it can be a project diagram. You can put an image
control in a static section to include an image of a diagram in the generated document. Documentation Generator,
while processing the section, will create an image only if the current model element represents a model diagram.

Panel

A panel is simply a container for other controls. Panels are convenient for grouping controls together to provide a
uniform style and precise alignment. You can set the panel’s background color, border, and style, and the parameters
that will be passed to the controls within the panel.

Data Controls

Data controls provide the major mechanism of placing data from a project into a report. When a data control is
processed, the actual data are obtained from the current model element.

The source of information for a data control can be one of the following:

Element Property A property of the current element. The Data Control dialog box displays a list of every
property belonging to the metatype of the current model element.

154

Generator’s Variable A variable used by DocGen. You can use this in report headers or footers to insert the
project name or the date and time the report is created.

Document Field A field of the report such as page number or bookmark. You can select Document Field to
insert page numbers and number of pages into page headers or footers. The Document
Field list is empty for report headers and footers.

Formula and Text Controls

Formulae provide a way to place data into a report that DocGen calculates when it processes the control. You must
enter the formula that DocGen evaluates to calculate that output. Both formula controls and text controls rely on
such formulas.

Formula controls

A formula is an expression that Documentation Generator can evaluate to a string. The expression can be a
combination of string literals, DG variables, and OCL or legacy RWI functions.

DG variables are special variables that are available to DocGen at runtime when it is producing a report. DG variables
include items such as current element, the date and time, and template parameters. Find the complete list of DG
variables, OCL functions and legacy RWI functions in the section Documentation Generator and Template Designer
Reference.

Supported formula types are Legacy and OCL. The syntax depends on the selected formula type, as shown in the
following table.

Supported formulae type Syntax
Legacy single quotes for string literals;

+ for string concatenation
-> for calls to functions via pointers
OCL OCL
The following examples demonstrate the usage of formulae expressions for the different formulae types.
Example 1:
From a section with a class metatype, put Package followed by the name of the containing package into the report:
Syntax Formulae expression

Legacy "Package " + getContainingPackage() —-> getProperty ("S$name")
OCL context umll4::kernel::classes::Class

'Package '.concat(self.getContainingPackage () .name)

Example 2

From a section with a generic class metatype, put Interface in the report if the current element is an interface and
put Class if it is not.

Syntax Formulae expression
Legacy if (hasProperty ("$interface"), "Interface", "Class")
OCL context umll4d::kernel::classes::Class

if self.interface then 'Interface' else 'Class' endif

155

Include Text controls

Include Text controls are used for copying text from other files into a template. When you insert an Include Text
control, you must enter an expression for the location of the text file. The expression can be hard-coded as a string
literal, or it can use a formula as described above. Include Text controls have formatting properties identical to those
for formula and label controls.

Related Concepts

Documentation Template Sections
Hyperlinks in Documentation

Related Procedures

Creating Controls
Hyperlinking Documentation

Related Reference

Control Properties

156

Multi-frame Documentation Templates

Multi-frame HTML documentation divides project reports into frames to give multiple views within the same browser
window. Multi-frame HTML documentation consists of two kinds of HTML files:

¢ A collection of HTML files to define the content for each frame

¢ A frameset file to specify the layout of frames

A frameset template consists of two major parts. One part describes the frameset file that can be defined through
the template properties. The other part, which is the body of the frameset template, contains calls to the templates
that provide the contents of the frames.

The body of a frameset template is similar to the body of an ordinary document template. A frameset template body
can contain any number of iteration sections (element iterators and property iterators), folder sections, and stock
section calls. However, static sections and headers and footers for folder sections and iterators are prohibited. Calls
to template sections replace static sections to produce the actual output.

The section properties of a call to template determine how the output for a template call can be used. With multi-
frame HTML documentation, calls to template sections typically generate separate files that can be loaded into a
frame of the resulting HTML project documentation.

When the Documentation Generator processes a frameset template, it produces the frameset HTML file and the
separate HTML files for the frame content. The Documentation Generator begins processing a frameset template
at its body. When it encounters a call to a template section, the engine suspends the current template execution,
loads the called template, and processes it to produce a separate HTML document. The root element for the called
template is the current model element of the calling template. After the called template's processing is completed,
the Documentation Generator resumes executing the calling template. After the body of the frameset template has
completed processing, the Documentation Generator produces the special HTML frameset file. This file corresponds
to the frameset structure specified in the template properties. The name of the frameset file matches the name of
the frameset template. It is the starting point of the generated documentation.

Related Concepts

Documentation Generation Overview

Related Procedures

A Typical Scenario of Creating a Template for Multi-Frame Documentation

Related Reference

Frameset Template Properties

157

Hyperlinks in Documentation

A hypertext link connects a link reference (starting point or source) to a link destination (target). The link reference
is a text or image in the HTML document. The link destination is a file (usually an HTML document or an anchor in
an HTML document). Document templates support both references and targets. Link references are properties of
controls. Link targets are properties of static sections, headers, and footers.

Any generated output that contains an anchor or bookmark can be a link target. Documentation templates have
facilities for inserting anchors at the “main documentation” of model elements.

It is occasionally necessary to provide link references to several different documents (or locations in HTML files)
created with the same model element. For example, along with the main documentation file created for a package,
there could be a different HTML document that simply lists all classes in the package. If this listing document were
in a separate “navigation” pane, it would serve as an index for the package. Clicking the package on a diagram (or
in some more general text) could load that listing document in the navigation frame. The Documentation Template
Designer enables you to target different documentation locations generated by the same model element.

Link references in multi-frame documentation can have multiple targets. Clicking on such a reference could
simultaneously load two different documents in two different frames. For example, suppose a diagram element
represents a package. Clicking on this element could load the image of the package diagram in one frame and the
main (textual) documentation for the package in another. Such link references are named compound.

Related Procedures

Hyperlinking Documentation

Related Reference

Control Properties

158

Javadoc Link References

Javadoc References (or JDRefs) are the expressions associated with Javadoc tags suchas {@1link} and

@see. You can use them to create link references inside documentation text ({@1ink}) as well as with some other
documenting tags. The Documentation Generator can convert JDRefs into real hypertext links. Each JDRef should
conform to the rules described in the standard Javadoc documentation. There are three types of Javadoc references.

¢ Anelement reference refers to an element of the model (such as method, class, or package). The general form
of an element reference is package.class#member label, where package.class#member is the
referenced model element and label is optional text to be displayed with the link. (If label is omitted, the name
of the referenced element is displayed.) The Documentation Generator can convert each element reference
into a hyperlink to the main documentation of the element.

¢ URL reference represents a link to a relative or absolute URL. The general form of an URL reference is label

¢ Textreference has the form "string" (a text string in double-quotes). A text reference is simply information that
does not represent a hyperlink.

A JDRef appears in one of two forms:

¢ inside {@1ink} tags embedded in documentation text. The JDRef is the value of the $Sdoc property and other
Javadoc element’s properties.

¢ as the value of some Javadoc element’s properties such as see.

The Documentation Template Designer provides conversions for both cases. You need to specify the conversion in
the properties of the control.

Related Procedures

Creating Javadoc Link References (Advanced)

Related Reference

Control Properties

159

Enable Conditions
Enable conditions are Boolean expressions for turning section processing on or off. They are created using the OCL
or legacy notation.

An enable condition is evaluated before stepping into this section, so the properties of the metatype of a section are
not available to the Documentation Generator at the moment of expression evaluating. Enable conditions typically
have subexpressions that are calls to special DG functions returning DG options and template parameters. (See the
list of DG functions and variables in the Documentation Generator and Template Designer Reference.) They can

also use the properties of the upper-level section metatype. The results can be joined together with logical operators
under the usual precedence rules. The following table shows two examples of the enable conditions in the Legacy

and OCL notation:

Legacy OoCL

getDGVariable ('reportScope') != context OclAny
'current diagram'’

getDGVariable ('reportScope') <>
'current diagram'

getContainingNode () -> hasProperty context uml::kernel::Element
("Sinterface")

self.getContainingNode () .oclAsType
(umll4::kernel::classes::Class) .interface

Related Concepts
OCL Support

Related Procedures

Creating Sections

Related Reference

DG functions in Formulae Expressions
Folder Section Properties
Static Section Properties

160

Procedures

161

Procedures

This section provides how-to information for the various areas of software development supported by Together.

In This Section
Getting Started Procedures
This section provides how-to information that will help you start using the product.

Diagrams
This section describes how to create Together diagrams, customize their appearance, and populate
diagrams with elements and shortcuts.

Together Projects
Provides how-to information on using Together projects.

Together Profiles
This section provides how-to information about Profiles in Together.

Configuring Implementation Projects
This part provides how-to information on setting Together preferences and options for the source code
projects.

Together UML 2.0 Diagrams
Provides how-to information on using Together UML diagrams.

Together UML 1.4 Diagrams
Provides how-to information on using Together UML diagrams.

Together Business Process Modeling
Provides how-to information about Together Business Process Modeling project.

Data Modeling Procedures
This section describes how to work with ER diagrams and create logical and physical data models.

Model Driven Architecture
This section provides how-to information on using the Together MDA feature.

Comparing and Merging Models
Describes how to compare models and model elements with each other, and perform history comparison
with the earlier versions of the model stored in Version Control Systems (VCS).

Together Object Constraint Language (OCL)
This section provides how-to information on using Together OCL facilities.

Patterns and Templates
This section provides how-to information on using patterns with Together.

Together Quality Assurance
This section provides how-to information on using Together Audits and Metrics.

Using Version Control and Teams in Together
This section describes the use of Version Control Systems (VCS) with Together.

Managing Requirements with Together
Provides how-to information on using Together for creating requirements, managing traces, generating
requirements documentation and more.

Generating Project Documentation
Provides how-to information on using Together Documentation Generation facilities.

162

Together Documentation Templates Procedures

This section provides how-to information on creating and editing custom documentation templates using the
Documentation Template Designer.

Interoperability and Migration

Provides how-to information on exchanging model information between the various products of the Together
product line.

163

Getting Started Procedures

This section provides how-to information on configuring Together, working with projects, and more.

In This Section
Activating Together Capabilities

You can use the Preferences or Advanced Capabilities Settings dialogs to enable or disable Together
capabilities

Adding a Single Model Element to a Diagram
How to create a single model element.

Bookmarking Model Elements
How to bookmark model elements for easy access.

Choosing a Together Perspective
How to choose a Together perspective.

Configuring Together Preferences on the Workspace and Diagram Levels
How to define Together preferences on the workspace and diagram levels.

Creating a Browse-Through Sequence of Diagrams
How to create a browse-through sequence of diagrams.

Creating a Diagram
How to create a diagram in a Together project.

Creating a Project
How to create a project in Together.

Creating a Shortcut
How to create a shortcut.

Creating a Simple Link
How to create a simple link.

Deleting a Diagram
How to delete a diagram.

Deleting Elements
How to delete an element from a diagram.

Hiding and Showing Model Elements
How to hide or show model elements.

Opening a Diagram
How to open an existing diagram in the Diagram Editor.

Opening a Diagram Element in the Source Code Editor
How to open a code-generating element in the Source Code Editor.

Printing Diagrams
Lists the steps for printing diagrams.

Reusing Existing Source Code in Modeling Projects
How to use existing source code in modeling projects.

Selecting Model Elements
How to select model elements.

Using Drag-and-Drop
How to use drag-and-drop.

164

Using Example Projects
How to use sample projects in Together.

165

Activating Together Capabilities

To enable or disable all Together capabilities in a category

1 Select Window k Preferences to display the Preferences dialog.

2 Expand the General item in the tree view and select Capabilities. You can enable or disable complete
categories in the Capabilities area.

3 Click OK.

To enable or disable individual Together capabilities

1 Select Window k Preferences to display the Preferences dialog.
Expand the General item in the tree view and select Capabilities.

Click the Advanced button to display the Advanced Capabilities Settings dialog. You can expand categories
in the Capabilities tree view to enable or disable specific Together capabilities. You can also click Restore
Defaults to restore the default Together capabilities settings, Enable All to enable all Together capabilities
settings, or Disable All to disable all Together capabilities settings.

4 Click OK.

Related Concepts

Together Capabilities Activation

166

Adding a Single Model Element to a Diagram

You can create a single node element using the diagram Palette, or the New command of the diagram context menu.

To create a single model element
1 Open a target diagram in the Diagram Editor .

2 On the Palette, click the icon for the element you want to place on the diagram. The button stays down.

Tip: Icons are identified with tooltips.

3 Click the diagram background in the place where you want to create the new element. This creates the new
element and activates the in-place editor for its name.

Tip: Alternatively, you can right-click the diagram background in the Diagram Editor , or the diagram node in the
Model Navigator, and choose New on the context menu. The submenu displays all of the basic elements that
can be added to the current diagram and the Shortcuts command.

Related Procedures

Adding Multiple Elements to a Diagram
Creating a Simple Link

167

Bookmarking Model Elements

Together allows you to bookmark model elements. Bookmarked elements are listed in the Model Bookmarks view.

To add or remove a bookmark

1 To add a bookmark, right-click an element on the diagram editor and choose Model Bookmarks ¥k Add
Bookmark.

2 Toremove a bookmark, right-click an element on the diagram editor and choose Model Bookmarks ¥ Remove
Bookmark

Alternatively, you can use the context menu of the Model Bookmarks view to remove a bookmark.

To navigate to a bookmarked element

1 Open the Model Bookmarks view.
2 Right-click a bookmark and choose either Show in Model Navigator or Select on Diagram.

Note: Double-click a bookmark in the Model Bookmarks view to select the element on the
diagram.

Related Reference

Model Bookmarks View

168

Choosing a Together Perspective

Together changes the user interface according to how you want to work with Together by providing several
perspectives. By default, Together starts with the Modeling perspective.

Note: The way you have Together configured influences which perspectives and views you can choose from. For
example, clicking the Take me to the DSL workbench link from the Welcome page displays only the DSL
Workbench's default perspectives. In order to display a list of all the perspectives, check the Show all check
box in the Open Perspective dialog box. An additional Confirm Enablement dialog box might appear that
requires you to enable any necessary capabilities.

To choose a Together Perspective

1 On the main menu, choose Window k Open Perspective k Other. The Select Perspective dialog box opens.
2 Select one of the Together Perspectives from the list and click OK.

After you select a perspective, Together automatically customizes the interface to provide ready access to only the
relevant elements of the interface, and to show only the information in the model that best supports the chosen
perspective. Interface elements and/or model information that are not generally relevant to the perspective are
hidden. You can still access hidden information by changing the relevant configuration options and restoring hidden
panes manually, but you may find it easier to just switch perspectives.

Related Concepts

Together Capabilities Activation
Tour of Together

Related Procedures

Activating Together Capabilities

169

Configuring Together Preferences on the Workspace and Diagram
Levels

You can flexibly change configuration of Together. Use the Preferences dialog box to tune modeling features to
best fit your requirements.

The Preferences dialog window provides a number of diagram customization settings. You can configure the
appearance and layout of the diagrams, specify font properties, member format, and level of detail on the diagram
and workspace levels.

To configure Together settings on the workspace level

On the main menu, choose Window k Preferences.

In the Preferences dialog window, expand the Modeling category.
Click the desired subcategory.

Edit configuration options as required.

a b ON -

Click OK to apply changes and close the dialog window.

You can configure certain diagram-specific options (Diagram, Layout, View management and Print) on the diagram
level.

To enable configuration changes on the diagram level

On the main menu, choose Diagram F Preferences.

Set the checkbox Enable diagram-specific settings.

Click the desired subcategory (Diagram, Layout, View management and Print).
Edit configuration options as required.

a A O N -

Click OK to apply changes and close the dialog window.

To disable configuration changes on the diagram level

1 On the main menu, choose Diagram k Preferences.
2 Clear the checkbox Enable diagram-specific settings.
3 Click OK to apply changes and close the dialog window.

Related Reference

Together Preferences

170

Creating a Browse-Through Sequence of Diagrams

You can link entire diagrams at one level of detail to the next diagram up or down in a sequence of increasing
granularity, or you can link from key use cases or actors to the next diagram.

To create a browse-through sequence

1 Open the main diagram of the sequence you are going to create.
2 Select the source model element, or right-click the diagram background to link the entire diagram.

Tip: It is recommended that you use some common approach for all links in your sequence.

3 Create a hyperlink to the next diagram or model element you would like to participate in the sequence. The titles
of source and destination model elements turn blue.

4 Open the destination diagram.
Repeat steps 3-5 for all parts of your sequence.
Optionally, create hyperlinks in the reverse motion.

Related Concepts
Model Hyperlinking Overview

Related Reference

UML 1.4 Use Case Diagrams
UML 2.0 Use Case Diagrams

171

Creating a Diagram

Diagrams exist within the context of a project. Create or open a project before creating any new diagrams.

To create a new diagram from the Model Package Explorer

1 In the Model Package Explorer view, right-click on a package or the project root.

2 From the context menu, select New Diagram. The New Diagram Wizard displays. See To create a diagram
using the New Diagram Wizard below for more information.

Alternatively, right-click the default diagram of a source package, select New Diagram, and choose the diagram
type from the submenu.
To create a new diagram from the Model Navigator

1 In the Model Navigator, right-click on a package or the project root.
2 From the context menu, select New Diagram and choose the diagram type from the submenu.

To create a new diagram using the Diagram Editor toolbar

1 Click the arrow to the right of the New Diagram icon on the diagram editor toolbar.
2 Choose the diagram type from the submenu.
or

1 Click directly on the New Diagram icon. The UML Diagram dialog opens.

2 In the resulting dialog, select a diagram type from the drop down list. Select the package where the new
diagram will be created. Click Browse to choose a package. Enter a name for the new diagram.

3 Click Finish.

To create a new diagram using the New Diagram Wizard

1 Select File ¥ New F Diagram.
2 Specify the properties for the new diagram as follows:

¢ Location: By default, the new diagram is created in the package selected before the wizard displays.
¢ Type: Use the drop down list to select a diagram type. By default, the Class Diagram is selected.

¢ Name: Use the text field to type a name for the new diagram.

3 Click Finish.

To create a class diagram from a package diagram

1 On the package diagram, select classes that you would like to display in a separate class diagram.
2 On the main menu, select Model # Generate Class Diagram.

172

Note: This action is available only when several classes are selected.

173

Creating a Project

Together provides several projects that you can work with. The projects in Together are created in the same manner.
While creating a project, you will specify different options depending on the type of project.

To create a Together Project

1 Select File ¥ New F Project on the main menu. The New Project wizard displays.
2 Expand the Modeling node in the tree view list, and select the type of project you want to create. Click Next.
3 Follow the wizard steps to specify necessary options for a new project and click Finish to complete the wizard.

Related Concepts

Together Project Overview

Related Procedures

Together Projects

Related Reference

Together Projects

174

Creating a Shortcut

You can create a shortcut to a model element from the current project or from the projects connected by cross-
projects references, by using three methods:

¢ By choosing New Shortcut on the Diagram Editor context menu
¢ By dragging and dropping a shortcut from the Model Navigator

¢ By choosing Add as Shortcut on the Model Navigator context menu

To create a shortcut by using the Shortcuts dialog window

—

Right-click the diagram background.

N

Choose New F Shortcuts on the context menu.

Tip: Use the CTRL+SHIFT+N keyboard shortcut

3 In the Shortcuts dialog window, choose the required element from the tree view of available contents.

Note: If the project has cross-project references to the other projects in the workspace, the
contents of these projects is available for being added as a shortcut.

H

Click Add to place the selected element to the list of the existing or ready-to-add elements.

a

When the list of ready-to-add elements is complete, click OK.

To create a shortcut by using drag-and-drop

1 Select the element in the Model Navigator.
2 Drag-and-drop the element onto the diagram.

To create a shortcut by using the Model Navigator context menu

1 Open the diagram where the shortcut will be added.
2 In the Model Navigator, select the element to be added to the current diagram as a shortcut.
3 Right-click the element in the Model Navigator and choose Add as Shortcut on the context menu.

Related Concepts

Model Shortcut Overview

Related Procedures

Establishing cross-project references
Adding a Single Model Element to a Diagram

175

Creating a Simple Link

You can create a link to another node, or a shortcut of an element of the same or another project (these projects
must be of the same UML version).

To create a simple link between two nodes
1 On the diagram Palette, click the button for the type of link you want to draw in the diagram. The button stays
down.
Click the source element.
Drag to the destination element and drop when the target element is highlighted.

Related Procedures

Rerouting a Link
Creating a Link with Bending Points
Creating Model Element by Pattern

Related Reference

Class Diagram Relationships

176

Deleting a Diagram

Warning: You cannot delete the default diagram created automatically for a package.

To delete a diagram

1 Inthe Package Explorer, select the diagram to be deleted.
2 On the context menu, choose Delete.
3 Confirm deletion, if required.

Related Procedures

Creating a Diagram
Closing a Diagram

177

Deleting Elements

All elements shown on diagrams are shortcuts to actual model elements. When deleting an element on a diagram,
you have the option to delete either the shortcut from view or delete the element from the model (except classes on
synchronized package diagrams). This behavior is configured in the Modeling Preferences.

To delete an element

1 Select the element on the diagram.
2 Choose Delete on the context menu of the element.

Tip: Alternatively, click the DELETE key.

3 Confirm deletion, if this behavior is selected in the Modeling Preferences.

To delete an element from View

1 Select the element on the diagram.
2 Choose Delete from View on the context menu of the element.
3 Confirm deletion, if this behavior is selected in the Modeling Preferences.

Related Procedures

Adding a Single Model Element to a Diagram

Related Reference

Modeling Preferences

178

Hiding and Showing Model Elements

You can control the visibility of elements on a diagram by using the Hide command (available on the context menu
for individual diagram elements) and the Show/Hide command (available on the diagram context menu).

To hide elements using the Diagram Editor
1 Open the Diagram Editor .
2 Do one of the following:
¢ Select the element on the diagram, right-click and choose Hide on the context menu.

¢ Select multiple elements on the diagram using CTRL+CLICK or by lassoing, and select Hide from the context
menu.

¢ Right-click the diagram background and choose Hide/Show on the context menu. The Show Hidden
dialog box opens, as discussed below.

To show or hide diagram elements using the Show Hidden dialog box

1 Right-click the diagram and choose Show/Hide on the context menu. The Show Hidden dialog box opens.
Select the element(s) that you want to hide from the Diagram Elements list.
To add elements in the Diagram Elements list to the Hidden Elements list, do one of the following:
¢ Double-click the element.
¢ Click the element once and click Add.

¢ Select multiple elements using CTRL+CLICK and click Add.

4 To remove items from the Hidden Elements list, do one of the following:
Double-click the element.
Click the element once and click Remove.

Select multiple elements using CTRL+CLICK and click Remove.

* & & o

To remove all items from the Hidden Elements list, click Remove All.

5 Click OK to close the dialog box.

Related Procedures
Adding a Single Model Element to a Diagram

Related Reference

View Management Preferences

179

Opening a Diagram
You can open diagrams from the Model Navigator, Model Package Explorer, or by using the Diagram Editor toolbar.

In this section you will learn how to:
4 open an existing diagram

¢ cancel a diagram's opening process

To open a diagram

1 In the Model Navigator view, navigate to the diagram you want to open.
2 Select the diagram node in the tree-view and do one of the following:

¢ Double-click the diagram
¢ Select Open from the context menu

¢ Select Open in Active Editor from the context menu (this replaces the contents of any currently opened
diagram)

You can use the Diagram Editor toolbar to open the parent diagram.

To terminate a diagram opening

1 Open diagram as described above.
2 |n the Diagram opening information dialog, click Stop.

The Diagram Editor displays the diagram with those elements that have been loaded before termination. Under the
diagram title, a message appears informing the user that the diagram contents were only partially loaded.

Note: The layout of a diagram may get adjusted automatically when opened. This happens in order to take into
account changes which may have happened to the model elements shown on the diagram, or to the diagram
preferences controlling the elements presentation while the diagram was closed (off-line).

For example: Assume the diagram has a class and a link coming from its bottom edge to
some other class shown below. While the diagram was closed the class may have had a few
members removed or the font size set to be smaller. Any of these changes would cause the
height of the class to get smaller. That in turn needs the position of the link end to be adjusted.
Such a change would normally cause a diagram file to be resaved.

If the corresponding diagram file is under the version control that would cause an outgoing
change, which may be unwanted if the diagram was opened without the intention to edit it
during the current session, but rather simply to view and close.

With Together 2008 R3 an option is provided that allows user control whether or not such
changes should be saved (Windows k Preferences k Modeling ¥ Diagram F If layout
is changed on diagram open). Save is the default state, which mimics previous Together
behavior: in this case the changes are silently saved. Other choice is Ignore. With this the
changes will not be saved immediately, but will be indicated with a ™' at the name shown on
the corresponding diagram editor Tab. If the diagram or underlying model has no other
changes intentionally made from Ul, then when it is closed the changes are dropped. Note
that the ™' marker will disappear if further edits are made to the diagram as it indicates that

180

only automatic changes have been made; once intentional changes are made the marker
isn't needed as the automatic changes will be saved as well.

Related Procedures

Opening a Parent Diagram

Related Reference

Diagram Preferences

181

Opening a Diagram Element in the Source Code Editor

Based on the LiveSource technology, you can open elements for editing and synchronize your model with the source
code.

In this section you will learn how to:

¢ Open a source-generating element in the Editor

¢ Enable synchronization between diagram and source code.

To open a source-generating element in the Editor

1 Right-click an element in the diagram.
2 On the context menu, choose Open.

Tip: Alternatively, press F3 or just double-click the element.

To enable synchronizing source code with the model

1 On the main menu, choose Window F Preferences k Modeling k¥ Diagram.
2 Check the option Synchronize source code editor to diagram.

Tip: Alternatively, just click Link with Editor button on the diagram toolbar.
If the source code editor is opened for a class and a class member is selected, the editor for this class gets focus,
and the member is selected in the source.

Related Concepts

Roundtrip Engineering Overview

182

Printing Diagrams

To print a diagram or multiple diagrams

1 Open the diagram or select the tab in the Diagram Editor that displays the diagram.
2 Select File ¥ Print on the main menu. The Print Diagram dialog box is displayed.
3 Select the scope for printing.
4

If you check the option Print whole diagram as an image, the Print diagram as black and white image option
becomes enabled. Make your selections.

o

Click the Preview >>> button to see how the diagram or diagrams look with the current print settings.
Click the drop-down arrow to set the Preview Scale factor.

Click the Print Options button to define Together Print Preferences. You can use the scroll bars to scroll around
the diagram or to view other diagrams that were included in the scope.

8 Click Print to proceed to the standard print dialog box where you can select your printer.

Note: There is a known issue that the Java print library is not able to update the standard printer settings. Be sure
to check the paper and orientation and set them, if needed, to the settings in the Together Print Preferences.

Related Procedures

Print Preferences

183

Reusing Existing Source Code in Modeling Projects

Together allows you to convert your existing source code to UML models. Together provides two ways to use reverse
engineering:

¢ Convert the existing source while creating a new project

Import the existing source code to a Java Modeling project

To import Java source code while creating a new project

1
2
3
4

On the main menu, choose File ¥ New F Project.
Expand the Modeling node and select Java Modeling Project. Click Next
On the Java Modeling Project page, type the project's name. Click Next

On the Modeling Settings page, choose the desired metamodel (UML 2.0 or UML 1.4, UML 2.0 is default).
Uncheck the Store package properties in package diagram files if you like them being stored in txaPackage
files. Check Create design elements in separate files if you like to have each model element stored in its own
txa* file. Click Next

Skip the Profiles page unless you like to enable one or more profiles for your project. Click Next

On the Java Settings page, Source tab, click the Link Additional Source to Project button in the upper right
toolbar, use the Browse... button to specify the path to the existing source code folder. Click Finish. If you like
this linked folder to be the only source folder for your project, remove the default source folder using Remove
button.

Click Finish.

To import source code to the existing modeling project

a A W DN

Right-click a source folder of the target Java Modeling project in the Navigator view and select Import... on the
context menu.

In the Import wizard, select General F File System and click Next.

Browse to the folder with source code to import.

Select sources you want to import or click Select all to import the entire folder.
Click Finish.

Related Procedures

Creating a Project

184

Selecting Model Elements

Most manipulations with diagram elements and links involve dragging the mouse or executing context menu
commands on the selected elements.

In this section you will learn how to:
¢ Select one or more elements

¢ Cancel selection

To select an element

1 Open a diagram in the Diagram Editor .
2 On the diagram Palette, click the Select button.
3 In the Diagram Editor , click any element or a member to select it.

To select multiple elements, do one of the following

Hold down the CTRL key and click each element individually, OR
Click the background and drag a lasso around an area to select all the elements it contains, OR
Press CTRL+A to select all elements on a diagram, OR

A WODN -

Right-click the diagram background and choose Select All on the context menu.

Note: To cancel a selection, press the ESC key.

Related Procedures

Aligning Model Elements

Related Reference

Together Keyboard Shortcuts

185

Using Drag-and-Drop

Drag-and-drop applies to the members as well as to the node elements. You can move or copy members (methods,
fields, properties, and so on) by using drag-and-drop in the Diagram Editor or in the Model Navigator. You can also
change the origin and destination for links on your diagrams using drag-and-drop.

Drag-and-drop functionality from the Model Navigator to the Diagram Editor and within the Model Navigator works
as follows:

¢ Selecting an element in the Model Navigator and using drag-and-drop to place the element onto the diagram
creates a shortcut.

Using drag-and-drop while pressing the SHIFT key moves the element to the selected container.

Using drag-and-drop while pressing the CTRL key copies the element to the selected container.

To move a link to a new destination

1 Select a link in the Diagram Editor .
Hover the cursor over the destination arrow.

Drag the arrow and drop it on the new destination. If the destination element is not in view, drag the link in the
appropriate direction, and the diagram will scroll with you.

Tip: Follow the same instructions to move the link source to an allowable location.

Related Procedures

Selecting Model Elements
Moving Model Elements

Related Reference

Together Keyboard Shortcuts

186

Using Example Projects

Together comes with a set of predefined sample projects.

To use a Together Example Project

1 Select File ¥ New F Project on the main menu. The New Project wizard opens.
2 Expand the Examples node in the tree view list, and select the project you want. Click Next.

3 Follow the wizard steps to specify the necessary options for a new project and click Finish to complete the
wizard.

Tip: Alternatively, choose File ¥ New k Example on the main menu.

Related Concepts

Together Project Overview

Related Procedures

Together Projects

Related Reference

Together Projects

187

Diagrams

This section describes how to create Together diagrams, customize their appearance, and populate diagrams with
elements and shortcuts.

In This Section
Common Diagrams Procedures
This section describes procedures that apply to all types of diagrams.

Customizing Appearance of Together Diagrams
Lists the Customizing Appearance of Together Diagrams Procedures.

Populating Together Diagrams
This topic provides How-To information about creating node elements, links and members in all types of
Together diagrams.

Editing Together Diagrams
Lists the Editing Together Diagrams Procedures.

188

Common Diagrams Procedures

This section describes procedures that apply to all types of diagrams.

In This Section
Annotating a Diagram
How to annotate a diagram.

Browsing a Diagram with Overview Pane
How to browse.

Changing the Default Diagrams Directory
Lists the steps for changing the default directory of the diagram files.

Closing a Diagram
How to close a diagram.

Creating a Diagram
How to create a diagram in a Together project.

Deleting a Diagram
How to delete a diagram.

Exporting a Diagram to an Image
How to export a diagram to an image.

Hyperlinking Diagrams
How to hyperlink diagrams.

Opening a Diagram
How to open an existing diagram in the Diagram Editor.

Opening a Diagram Element in the Source Code Editor
How to open a code-generating element in the Source Code Editor.

Opening a Parent Diagram
How to open a parent diagram of the current diagram.

Printing Diagram Elements
How to print one or more diagram elements.

Printing Diagrams
Lists the steps for printing diagrams.

Searching Model Elements
How to search model elements on diagrams.

Searching Model with OCL queries
How to search for model elements using OCL queries.

189

Annotating a Diagram

Use the following actions to annotate a diagram:

1 Draw a note
2 Draw a note link
3 Type comments

To draw a note
1 In the Diagram Editor , you can:

¢ Hyperlink the note to another diagram or element.
¢ Edit the text when its in-place editor is active.

¢ Edit the properties of a note using Properties View.

2 |n the Properties View for the note, you can:
¢ Edit the text.

4 Change the foreground and background colors.

¢ Change the text-only property.

To draw a note link

Click the Note Link button on the Palette.
In the Diagram Editor , click the source element.
Drag the link to the destination element.

A WODN -

Drop when the second element is highlighted.

Tip: You can use the Properties View to view both the client and supplier sides of the link.

To enter comments

1 To enter comments in the source code, use the Comment fields (Author, Since, Version) in the Properties View
for the class.

2 You can also enter source code comments directly into the code using the Editor.

Related Concepts

Model Annotation Overview

Related Procedures

Adding a Single Model Element to a Diagram
Creating a Shortcut

190

Browsing a Diagram with Overview Pane

To open the Overview pane
1 Open a diagram and click the Overview button. The pane expands to show a thumbnail image of the current
diagram.
Click the shaded area and drag it. This is a convenient way to scroll around the diagram.
Resize the Overview pane by clicking the upper-left corner of the pane and dragging it.
Close the Overview pane by clicking the diagram.

Related Procedures

Zooming a Diagram

191

Changing the Default Diagrams Directory

By default, Together diagram files are contained within the default design root folder, which is called the Model
Folder.

To change the default diagrams directory

1 Right-click the project root in the Model Navigator, or Model Package Explorer view, and select Properties. The
Properties dialog box displays.
Choose Design root path from the properties list on the left.
Specify the path in the Design root path field, and press OK.

Warning: The path name can contain only the folder name that the existing design root will be renamed to, not the
path to the folder.

192

Closing a Diagram

To close a diagram

1 Switch to the Diagram Editor .
2 Click the cross icon to close the current view.

Tip: Alternatively, choose File k Close on the main menu, or CTRL+W.
Note: Closing a diagram does not remove it from your project.

Related Concepts

Together Diagram Overview

193

Creating a Diagram

Diagrams exist within the context of a project. Create or open a project before creating any new diagrams.

To create a new diagram from the Model Package Explorer

1 In the Model Package Explorer view, right-click on a package or the project root.

2 From the context menu, select New Diagram. The New Diagram Wizard displays. See To create a diagram
using the New Diagram Wizard below for more information.

Alternatively, right-click the default diagram of a source package, select New Diagram, and choose the diagram
type from the submenu.
To create a new diagram from the Model Navigator

1 In the Model Navigator, right-click on a package or the project root.
2 From the context menu, select New Diagram and choose the diagram type from the submenu.

To create a new diagram using the Diagram Editor toolbar

1 Click the arrow to the right of the New Diagram icon on the diagram editor toolbar.
2 Choose the diagram type from the submenu.
or

1 Click directly on the New Diagram icon. The UML Diagram dialog opens.

2 In the resulting dialog, select a diagram type from the drop down list. Select the package where the new
diagram will be created. Click Browse to choose a package. Enter a name for the new diagram.

3 Click Finish.

To create a new diagram using the New Diagram Wizard

1 Select File ¥ New F Diagram.
2 Specify the properties for the new diagram as follows:

¢ Location: By default, the new diagram is created in the package selected before the wizard displays.
¢ Type: Use the drop down list to select a diagram type. By default, the Class Diagram is selected.

¢ Name: Use the text field to type a name for the new diagram.

3 Click Finish.

To create a class diagram from a package diagram

1 On the package diagram, select classes that you would like to display in a separate class diagram.
2 On the main menu, select Model # Generate Class Diagram.

194

Note: This action is available only when several classes are selected.

195

Deleting a Diagram

Warning: You cannot delete the default diagram created automatically for a package.

To delete a diagram

1 Inthe Package Explorer, select the diagram to be deleted.
2 On the context menu, choose Delete.
3 Confirm deletion, if required.

Related Procedures

Creating a Diagram
Closing a Diagram

196

Exporting a Diagram to an Image

To export a diagram to an image

1 Place the focus on the diagram that you want to export in the Diagram Editor .

Choose File ¥ Export on the main menu. The Export wizard opens.
In the Select page of the wizard, choose Modeling ¥ Image (GIF, JPEG, Bitmap, EMF, SVG), and click

Next.

4 In the Export to Image page, specify the following settings:

¢

* & & o o

Destination file: enter the fully qualified name of the resulting file, or click the Browse button and navigate
to the desired location.

Diagrams scope: click a radio button to select the diagrams or diagram elements to be exported.
Format: select the desired format from the drop-down list.

Scale: enter magnification factor.

Export heading: check the option to save the image together with the diagram title.

Open in viewer: check the option to launch the default image viewer.

Click Next to preview, or Finish to complete the export.

Related Concepts

Model Import and Export Overview

Related Reference

Export Diagram to Image Wizard

197

Hyperlinking Diagrams

Select Hyperlinks from the diagram context menu to create, view, remove, and browse hyperlinks.

Use the following techniques to create a hyperlink

Create a hyperlink to an existing diagram or element
Create a hyperlink to a new diagram

Create a hyperlink to an external URL or file

Browse hyperlinks

a H O N -

Remove a hyperlink

To create a hyperlink to an existing diagram or element

1 Open an existing diagram or create a new diagram from which to create the hyperlink.
2 Select the element that you want to link to another diagram or element.
3 To link the entire diagram, click the diagram background to deselect all elements.

Note: Do not select the actual package in the Model Navigator to create a hyperlink. Rather,
expand the package node, and select the desired diagram.
Right-click and choose Hyperlinks ¥ Edit. The Edit Hyperlinks dialog window (Selection Manager) opens.
Select the Model Elements tab to view the pane containing a tree view of the available project contents.
Select the diagram or element you want from the list, and click Add.
For element selection, expand diagram nodes in the Model Elements tab.
To remove an element from the selected list, select the element and click Remove.

© 00 N o a b

Click OK to close the dialog box and create the link.

To create a hyperlink to a new diagram

1 Open a diagram in the Diagram Editor , or select it in the Model Navigator.
2 On the context menu, choose Hyperlinks B New Diagram.
3 In the New Diagram dialog box, select the diagram type, enter the diagram name and click OK.

To create a hyperlink to an external URL or file

1 Open an existing diagram or create a new diagram from which to create the hyperlink.
2 Select the element that you want linked to the external document.
To link the entire diagram, click the diagram background to deselect all elements.
Right-click and choose Hyperlinks k Edit. The Edit Hyperlinks dialog box opens.

Select the External Documents tab to view the Recently Used Documents list which contains a list of previously
selected files or URLs.

5 To add a file to the Recently Used Documents list:

1 Click Browse. The Open file dialog box opens.

198

2 Navigate to the appropriate file and click Open.

To add a URL to the Recently Used Documents list:

1 Click URL.
2 |n the dialog box that opens, enter the appropriate URL and click OK.

Tip: You can create a hyperlink to an external document by entering a relative URL path.

To remove an element from the selected list, select the element and click Remove.
To clear the Recently used Documents list, click Clear.
Click OK to close the dialog box and create the link.

To browse hyperlinks

1

To view hyperlinks to a diagram, element or external document, right-click on the diagram background or
element, and choose Hyperlinks from the context menu. All hyperlinks created appear under the Hyperlinks
submenu. On a diagram, all names of diagram elements that are hyperlinked are displayed in blue font. When
you select a link from the submenu, the respective element appears selected in the Diagram Editor .

After you have defined hyperlinks for a selected diagram or element, use the context menus to browse to the
linked resources.

Note: Browsing to a linked diagram opens it in the Diagram Editor or makes it the current diagram
(if it is already open).

Browsing to a linked element causes its parent diagram to open or become
current, and the diagram scrolls to the linked element and selects it.

To remove a hyperlink

a A WN -

Open the diagram that displays the link you want to remove.

Choose Hyperlinks Fk Edit from the diagram or element context menu. The Edit Hyperlinks dialog box opens.
In the selected list on the right of the dialog, click the hyperlink that you want removed.

Click Remove.

Click OK to close the dialog box.

Note: To remove a hyperlink from a specific element, select the element first. Then choose Hyperlinks k Edit on

the context menu.

Related Concepts

Model Hyperlinking Overview

199

Opening a Diagram
You can open diagrams from the Model Navigator, Model Package Explorer, or by using the Diagram Editor toolbar.

In this section you will learn how to:
4 open an existing diagram

¢ cancel a diagram's opening process

To open a diagram

1 In the Model Navigator view, navigate to the diagram you want to open.
2 Select the diagram node in the tree-view and do one of the following:

¢ Double-click the diagram
¢ Select Open from the context menu

¢ Select Open in Active Editor from the context menu (this replaces the contents of any currently opened
diagram)

You can use the Diagram Editor toolbar to open the parent diagram.

To terminate a diagram opening

1 Open diagram as described above.
2 |n the Diagram opening information dialog, click Stop.

The Diagram Editor displays the diagram with those elements that have been loaded before termination. Under the
diagram title, a message appears informing the user that the diagram contents were only partially loaded.

Note: The layout of a diagram may get adjusted automatically when opened. This happens in order to take into
account changes which may have happened to the model elements shown on the diagram, or to the diagram
preferences controlling the elements presentation while the diagram was closed (off-line).

For example: Assume the diagram has a class and a link coming from its bottom edge to
some other class shown below. While the diagram was closed the class may have had a few
members removed or the font size set to be smaller. Any of these changes would cause the
height of the class to get smaller. That in turn needs the position of the link end to be adjusted.
Such a change would normally cause a diagram file to be resaved.

If the corresponding diagram file is under the version control that would cause an outgoing
change, which may be unwanted if the diagram was opened without the intention to edit it
during the current session, but rather simply to view and close.

With Together 2008 R3 an option is provided that allows user control whether or not such
changes should be saved (Windows k Preferences k Modeling ¥ Diagram F If layout
is changed on diagram open). Save is the default state, which mimics previous Together
behavior: in this case the changes are silently saved. Other choice is Ignore. With this the
changes will not be saved immediately, but will be indicated with a ™' at the name shown on
the corresponding diagram editor Tab. If the diagram or underlying model has no other
changes intentionally made from Ul, then when it is closed the changes are dropped. Note
that the ™' marker will disappear if further edits are made to the diagram as it indicates that

200

only automatic changes have been made; once intentional changes are made the marker
isn't needed as the automatic changes will be saved as well.

Related Procedures

Opening a Parent Diagram

Related Reference

Diagram Preferences

201

Opening a Diagram Element in the Source Code Editor

Based on the LiveSource technology, you can open elements for editing and synchronize your model with the source
code.

In this section you will learn how to:

¢ Open a source-generating element in the Editor

¢ Enable synchronization between diagram and source code.

To open a source-generating element in the Editor

1 Right-click an element in the diagram.
2 On the context menu, choose Open.

Tip: Alternatively, press F3 or just double-click the element.

To enable synchronizing source code with the model

1 On the main menu, choose Window F Preferences k Modeling k¥ Diagram.
2 Check the option Synchronize source code editor to diagram.

Tip: Alternatively, just click Link with Editor button on the diagram toolbar.
If the source code editor is opened for a class and a class member is selected, the editor for this class gets focus,
and the member is selected in the source.

Related Concepts

Roundtrip Engineering Overview

202

Opening a Parent Diagram

You can open a parent diagram from the Diagram Editor toolbar.

To open the parent diagram

1 Click the Open Parent Diagram button to open the parent of the active diagram.

2 |f a diagram has no parent, the button is disabled.

Related Procedures

Opening a Diagram

203

Printing Diagram Elements

To print one or more diagram elements

1

Open the diagram or select the tab in the Diagram Editor that displays the diagram containing the diagram
elements you want to print.

Right-click the diagram element or multiple elements, and select Print from the context menu. The Print
Diagram dialog box displays.

When you select the Print whole diagram as an image option, it enables the Print diagram as black and
white image option. Make your selections.

At this point you can click Preview >>> button to see how the selected diagram element or elements look with
the current print settings. You can click the Print Options button to set up Together Print Preferences.

Click the drop-down arrow to choose the Preview Scale factor from the list of available scales to best fit the
printed image on the page.

Click Print to proceed to the standard print dialog where you can select your printer.

Related Procedures

Print Preferences

204

Printing Diagrams

To print a diagram or multiple diagrams

1 Open the diagram or select the tab in the Diagram Editor that displays the diagram.
2 Select File ¥ Print on the main menu. The Print Diagram dialog box is displayed.
3 Select the scope for printing.
4

If you check the option Print whole diagram as an image, the Print diagram as black and white image option
becomes enabled. Make your selections.

o

Click the Preview >>> button to see how the diagram or diagrams look with the current print settings.
Click the drop-down arrow to set the Preview Scale factor.

Click the Print Options button to define Together Print Preferences. You can use the scroll bars to scroll around
the diagram or to view other diagrams that were included in the scope.

8 Click Print to proceed to the standard print dialog box where you can select your printer.

Note: There is a known issue that the Java print library is not able to update the standard printer settings. Be sure
to check the paper and orientation and set them, if needed, to the settings in the Together Print Preferences.

Related Procedures

Print Preferences

205

Searching Model Elements

Together enables you to use its search facilities to locate model elements on model diagrams. This function enables
you to search the current diagram or all opened diagrams for the specified string in a certain scope. You can create
search strings using wildcards and regular expressions. The function is case-sensitive.

To find model elements that fall under specified criteria, perform the following steps

1

On the main menu, choose Search k Model. The Search dialog box opens, with the Model Search tab
selected.

Specify the search string in the Search String field. Check the following options if necessary:
¢ Case sensitive: Searches for text that matches uppercase and lowercase characters

4 Regular expression: Enables using regular expressions.

In the Search for section, click the appropriate radio button to select the name or any other property to search
for.

In the Scope section, click the appropriate radio button to select the search area. The possible options are
workspace, selected resources, the current project or a predefined working set.

To select a working set, click the Choose button. In the Select Working Set dialog, choose your working set
and click OK. If there are no available working sets, use the New button to create one.

Click Search.

Related Procedures

Searching Model with OCL queries

206

Searching Model with OCL queries

Together lets you search for models using OCL queries.

To find model elements that match the specified OCL query

1

6

On the main menu, choose Search ¥ Model.
The Search dialog box is displayed.

Click the OCL Model Search tab.
Specify the context for your expression in the Context field.

Tip: Use the drop-down list or the Content Assistant. To open the Content Assistant, click on the
Context field and press CTRL +SPACE. Choose your element from the list.

For example, to search for all UML 2.0 classes that have the stereotype MyStereotype, enter:

uml20::classes::Class

In the Invariant field, type the query expression.
For example, to complete your search for all UML 2.0 classes that have the stereotype MyStereotype, enter:

self.stereotypes->includes ('MyStereotype')

In the Scope section, click the appropriate radio button to select the search area. The possible options are
workspace, selected resources, the current project or a predefined working set.

To select a working set, click the Choose button. In the Select Working Set dialog, choose your working set
and click OK. If there are no available working sets, use the New button to create one.

Click Search.

A tree with the list of matching elements opens. You can navigate to the corresponding diagram from this view by
double-clicking the selected element.

Related Concepts

OCL Support

Related Procedures

Searching Model Elements

207

Customizing Appearance of Together Diagrams

In This Section
Hiding and Showing Model Elements
How to hide or show model elements.

Using a Class Diagram as a View
How to use a class diagrams as a view.

Zooming a Diagram
How to zoom a diagram.

208

Hiding and Showing Model Elements

You can control the visibility of elements on a diagram by using the Hide command (available on the context menu
for individual diagram elements) and the Show/Hide command (available on the diagram context menu).

To hide elements using the Diagram Editor
1 Open the Diagram Editor .
2 Do one of the following:
¢ Select the element on the diagram, right-click and choose Hide on the context menu.

¢ Select multiple elements on the diagram using CTRL+CLICK or by lassoing, and select Hide from the context
menu.

¢ Right-click the diagram background and choose Hide/Show on the context menu. The Show Hidden
dialog box opens, as discussed below.

To show or hide diagram elements using the Show Hidden dialog box

1 Right-click the diagram and choose Show/Hide on the context menu. The Show Hidden dialog box opens.
Select the element(s) that you want to hide from the Diagram Elements list.
To add elements in the Diagram Elements list to the Hidden Elements list, do one of the following:
¢ Double-click the element.
¢ Click the element once and click Add.

¢ Select multiple elements using CTRL+CLICK and click Add.

4 To remove items from the Hidden Elements list, do one of the following:
Double-click the element.
Click the element once and click Remove.

Select multiple elements using CTRL+CLICK and click Remove.

* & & o

To remove all items from the Hidden Elements list, click Remove All.

5 Click OK to close the dialog box.

Related Procedures
Adding a Single Model Element to a Diagram

Related Reference

View Management Preferences

209

Using a Class Diagram as a View

Class diagrams can also be used to create subviews of the project.

To use a class diagrams as a view

1 Create a new class diagram.
2 Create shortcuts to the original diagram to easily and quickly build subset views for easier management.

Tip: Using this feature, you can create views of distributed classes into one diagram, with Together automatically
displaying any relationships that the gathered classes may have with each other.

Note: In implementation projects, changes made here also update the source code, keeping diagram and source
code in sync.

Related Concepts

Roundtrip Engineering Overview

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

210

Zooming a Diagram

Use the zooming commands of the main menu, or toolbar buttons, to obtain the required magnification in the Diagram
Editor .

To specify the magnification in the Diagram Editor

1 On the main menu, choose Diagram.

2 Choose one of the available zooming commands on the menu: Zoom In, Zoom Out, Fit to Window, Actual
Size.

Tip: Alternatively, use the diagram Palette or keyboard shortcuts.

Related Reference

Together Keyboard Shortcuts

211

Populating Together Diagrams

This topic provides How-To information about creating node elements, links and members in all types of Together
diagrams.

In This Section
Adding a Member to a Container
How to add a member to a container.

Adding a Single Model Element to a Diagram
How to create a single model element.

Adding Multiple Elements to a Diagram
How to create multiple elements.

Creating a Link with Bending Points
How to create a link with bending points.

Creating a Shortcut
How to create a shortcut.

Creating a Simple Link
How to create a simple link.

Creating an Inner Classifier
How to create an inner classifier.

212

Adding a Member to a Container

You can add members to class diagram elements (containers) by using the respective context menu for the diagram
element in the Diagram Editor or Model Navigator, or by using the available shortcut keys.

To add a member to a container

1 Right-click the desired container element.

2 On the context menu, choose New k <Member type>, where the Member type corresponds to the target
container.

Tip: You can also use keyboard shortcuts to add fields and methods to a container that allows
such members. Click CTRL+W (for fields) and CTRL+M (for methods and functions).

3 You can edit the member using the in-place editor, Properties View, or source code editor.

Related Procedures

Adding a Single Model Element to a Diagram

Related Reference

UML 1.4 Class Diagrams Procedures
UML 2.0 Class Diagrams

213

Adding a Single Model Element to a Diagram

You can create a single node element using the diagram Palette, or the New command of the diagram context menu.

To create a single model element
1 Open a target diagram in the Diagram Editor .

2 On the Palette, click the icon for the element you want to place on the diagram. The button stays down.

Tip: Icons are identified with tooltips.

3 Click the diagram background in the place where you want to create the new element. This creates the new
element and activates the in-place editor for its name.

Tip: Alternatively, you can right-click the diagram background in the Diagram Editor , or the diagram node in the
Model Navigator, and choose New on the context menu. The submenu displays all of the basic elements that
can be added to the current diagram and the Shortcuts command.

Related Procedures

Adding Multiple Elements to a Diagram
Creating a Simple Link

214

Adding Multiple Elements to a Diagram

You can place several elements of the same type on a diagram without returning to the Palette or by using the
diagram context menu. Each element will have a default name that can be edited with the in-place editor or in the
Properties View.

To create multiple elements
1 Holding down the CTRL key, click the Palette button for the element you want to create (the button stays down).
Release the CTRL key.

2 Click the desired location on the diagram background. The new element is placed on the diagram at the point
where you click.

3 Click the next location on the diagram background. The next new element is placed on the diagram.
Repeat the previous step until you have the desired number of elements of that type.

To stop multiple element creation, click the Pointer Palette button or press the ESC key to deselect the element
after closing the in-place editor of the last inserted element.

Tip: After making a selection on the Palette or doing the first of a multi-draw or multi-placement operation, you can
cancel the operation by clicking the Pointer button on the Palette or by pressing the ESC key.

Related Procedures

Adding a Single Model Element to a Diagram
Creating a Simple Link

Related Reference

Together Keyboard Shortcuts

215

Creating a Link with Bending Points

If your diagram is densely populated, you can draw bent links between the source and target elements to avoid other
elements that are in the way.

To create a link with bending points

1 Click the link button on the Palette.
Click the source element.

Drag the link line, clicking the diagram background each time you want to create a section of the link. Sections
on a link lie between two blue bullets. The bullets display whenever you select the link on the diagram.

Tip: You can cancel each section of a link pressing the BACKSPACE key.

4 Click the destination element to terminate the link.

Tip: After you have created a link, you can add bending points to it. Click on a specific point of the link, and drag it
to the position you want.

Related Procedures

Rerouting a Link
Creating a Simple Link

Related Reference

Class Diagram Relationships

216

Creating a Shortcut

You can create a shortcut to a model element from the current project or from the projects connected by cross-
projects references, by using three methods:

¢ By choosing New Shortcut on the Diagram Editor context menu
¢ By dragging and dropping a shortcut from the Model Navigator

¢ By choosing Add as Shortcut on the Model Navigator context menu

To create a shortcut by using the Shortcuts dialog window

—

Right-click the diagram background.

N

Choose New F Shortcuts on the context menu.

Tip: Use the CTRL+SHIFT+N keyboard shortcut

3 In the Shortcuts dialog window, choose the required element from the tree view of available contents.

Note: If the project has cross-project references to the other projects in the workspace, the
contents of these projects is available for being added as a shortcut.

H

Click Add to place the selected element to the list of the existing or ready-to-add elements.

a

When the list of ready-to-add elements is complete, click OK.

To create a shortcut by using drag-and-drop

1 Select the element in the Model Navigator.
2 Drag-and-drop the element onto the diagram.

To create a shortcut by using the Model Navigator context menu

1 Open the diagram where the shortcut will be added.
2 In the Model Navigator, select the element to be added to the current diagram as a shortcut.
3 Right-click the element in the Model Navigator and choose Add as Shortcut on the context menu.

Related Concepts

Model Shortcut Overview

Related Procedures

Establishing cross-project references
Adding a Single Model Element to a Diagram

217

Creating a Simple Link

You can create a link to another node, or a shortcut of an element of the same or another project (these projects
must be of the same UML version).

To create a simple link between two nodes
1 On the diagram Palette, click the button for the type of link you want to draw in the diagram. The button stays
down.
Click the source element.
Drag to the destination element and drop when the target element is highlighted.

Related Procedures

Rerouting a Link
Creating a Link with Bending Points
Creating Model Element by Pattern

Related Reference

Class Diagram Relationships

218

Creating an Inner Classifier

This section includes instructions for adding inner classifiers to classes (including Windows classes, such as
Windows forms, Inherited forms, User Controls and so on), structures, and modules (collectively, containers) in
implementation projects.

You can add inner classifiers to class diagram elements (containers) using the respective context menu for the
diagram element in the Diagram Editor or Model Navigator. You can also select a classifier in the Palette and click
the container element in the Diagram Editor to add the inner classifier to the container element.

Tip: You can use drag-and-drop or clipboard operations to remove an inner classifier from the container element.

To create an inner classifier using the context menu

1 Right-click the container element.
2 Choose Add F <Inner classifier type>

To create an inner classifier using the clipboard operations

1 Use the clipboard operations to either cut or copy an existing classifier.
2 Select the container element.
3 Use the clipboard operations to paste the selected classifier into the container element.

To create an inner classifier using drag-and-drop

1 Select an existing classifier in the Diagram Editor .

2 Drag-and-drop it onto an existing container in the Diagram Editor . A border highlights the location that Together
recognizes as a valid destination for the inner classifier.

Related Procedures

Adding a Single Model Element to a Diagram

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

219

Editing Together Diagrams

In This Section
Aligning Model Elements
How to align model elements.

Assigning a Stereotype to an Element
How to specify and define an element stereotype.

Changing Type of an Association Link
How to change the type of an Association link.

Copying and Pasting Model Elements
How to copy and paste model elements.

Deleting Elements
How to delete an element from a diagram.

Laying Out a Diagram Automatically
How to lay out a diagram automatically.

Laying out a Diagram for Printing
How to use optimized layout for printing.

Moving Model Elements
How to move model elements.

Renaming a Diagram
How to rename a diagram.

Rerouting a Link
How to reroute a link.

Resizing Model Elements
How to change a size of a model element.

Selecting Model Elements
How to select model elements.

Working with Rulers Guides and Grid
How to use ruler guides and grids in your diagram.

220

Aligning Model Elements

You can automatically rearrange all or selected model elements on a diagram according to the order you specify.
The following options are available:

¢ Top
Bottom
Right
Left

Center Horizontally

* & & o o

Center Vertically

To align model elements on a diagram

1 Select several nodes or inner classifiers on a diagram.
2 On the main menu, choose Diagram F Align k¥ <option>.

Tip: Alternatively, use the diagram Palette buttons.

Related Procedures

Laying Out a Diagram Automatically

221

Assigning a Stereotype to an Element

You can assign a stereotype in the diagram by using the in-place editor, or the Properties View.

To assign a stereotype by using the in-place editor

1 Double-click the stereotype name to activate the in-place editor.
2 Enter the new name.
3 Press ENTER.

To assign a stereotype by using the Properties View

Select an element on your diagram.
In the Properties View, select the Stereotype field.
Click the value editor button.

A WODN -

In the Edit Property Values dialog, click the Add button and enter the required stereotype.

Related Reference

Stereotype Options of UML Profile for Modeling In Color

222

Changing Type of an Association Link
Use the following techniques to change the type of an Association link

¢ Set the link type by using the Properties View
¢ Setthe link type by using the context menu

To set the Association link type by using the Properties View

Select a link on the diagram.
Open the Properties View.
In the Properties View, select the Type field.

A WO DN -

Click the drop-down arrow and select the appropriate property from the list. Your available choices are
association, aggregation, or composition.

To set the Association link type by using the context menu

1 Right-click an Association link on the diagram.
2 Choose Link Type on the context menu.
3 Choose Association, Aggregation, or Composition.

Related Procedures

Creating a Simple Link

Related Reference

Class Diagram Relationships

223

Copying and Pasting Model Elements

The move and copy operations are performed by drag-and-drop, context menu commands, or keyboard shortcut
keys.

Note: You can move or copy an entire diagram. In this case, all elements addressed on this diagram are not copied,
and a new diagram contains shortcuts to these elements.

To copy and paste one or more elements
1 Select the desired element or elements.

2 To copy the selection, do any of the following:

¢ Right-click and choose Copy on the context menu

¢ Press CTRL+C on the keyboard

3 To paste the selection, do any of the following:
¢ Right-click the target location and choose Paste on the context menu

¢ Select the target location and press CTRL+V

Note: Pasting elements from one package to another also maps relationships of those elements to the target
package. By default, a prompt appears warning users of this before the paste is complete. To disable this
warning, select Window k Preferences from the main menu, choose the Modeling node, and uncheck the
Show warning about relationships when elements copied option.

Related Procedures

Adding a Single Model Element to a Diagram
Together Keyboard Shortcuts

224

Deleting Elements

All elements shown on diagrams are shortcuts to actual model elements. When deleting an element on a diagram,
you have the option to delete either the shortcut from view or delete the element from the model (except classes on
synchronized package diagrams). This behavior is configured in the Modeling Preferences.

To delete an element

1 Select the element on the diagram.
2 Choose Delete on the context menu of the element.

Tip: Alternatively, click the DELETE key.

3 Confirm deletion, if this behavior is selected in the Modeling Preferences.

To delete an element from View

1 Select the element on the diagram.
2 Choose Delete from View on the context menu of the element.
3 Confirm deletion, if this behavior is selected in the Modeling Preferences.

Related Procedures

Adding a Single Model Element to a Diagram

Related Reference

Modeling Preferences

225

Laying Out a Diagram Automatically

To lay out a diagram by using one of the algorithms

1 Right-click the diagram background.
2 On the context menu, select Layout, and choose a command from the submenu.
There are several Layout commands on the Layout submenu:

¢ Do Full Layout: Sets the layout of all elements according to the layout algorithm defined for the current
diagram.

¢ Layout for Printing: Sets the layout of all elements using the Together algorithm, regardless of the option
selected on any level.

Route All Links: Streamlines the links removing bending points.

Optimize Sizes: Enlarges or shrinks all elements on the diagram to the optimal size.

Note: Individual diagram elements also have the Route Links and Optimize Size layout
commands on their respective context menus. The Route Links command streamlines
the links and removes any bending points. The Optimize Size command enlarges or
shrinks the element to the optimal size, leaving enough space for its label and any sub
elements it may contain.

Tip: To enable the layout of the inner substructure in diagrams, check the Recursive option ((level) k¥ Diagram k
Layout k General) in the Options dialog window.

To set up the diagram layout

1 On the main menu, choose Window k Preferences k Modeling k Layout.
Select the desired layout for links in the Links layout section.
Choose the desired algorithm from the Algorithm drop-down list, and specify the algorithm-specific options (if
any).

4 To enable layout of the inner substructure in diagrams, check the Recursive option.

You can now observe results of layout tuning when you apply one of the Layout commands to the diagram.

The context menu available in the Diagram Editor provides access to the automated layout optimization features in
Together.

Related Procedures

Aligning Model Elements

226

Laying out a Diagram for Printing

Together has automated layout optimization for printing diagrams. Using automated layout for printing ensures that
all diagram elements fall within page borders.

Invoke automated layout immediately before printing a diagram.

To lay out you diagram elements for printing

1 Right-click the diagram background.
2 On the context menu, choose Layout k Layout All for Printing.

Tip: You can revert to your manual layout after a Layout and optimize operation by using Undo. For example, you
might invoke Layout and optimize, print the diagram, then call Undo to restore your manual layout.

Related Procedures

Print Preferences

227

Moving Model Elements

Create your own layout by selecting and moving single or multiple diagram elements.
You can:

¢ Select a single element and drag it to a new position.

¢ Select multiple elements and change their location.
¢ Manually reroute links.
¢

Use Cut and Paste operations.

Note: If you drag an element outside the borders of the Diagram Editor , the diagram automatically scrolls to follow
the dragging.

Tip: Manual layouts are saved when you close a diagram or project and are restored when you next open it. Manual
layouts are not preserved when you run one of the auto-layout commands (Do Full Layout or Optimize
Sizes).

To move one or more elements

1 Select the element or elements to be moved.
2 Drag-and-drop the selection to the target location.

Tip: If you have selected several model elements in certain diagrams (State Machine, Use Case, Activity or
Business Process), use the heading area of one of the selected elements to drag the entire group. Any attempt
to drag by an internal area of an element results in switching the Diagram Editor to the Select mode and losing
the current selection. However, if you hold the mouse button down and press ESC, the new selection will be
canceled and the current selection will be preserved.

Related Procedures

Selecting Model Elements

Related Reference

Together Keyboard Shortcuts

228

Renaming a Diagram

Warning: The automatically created package diagram cannot be renamed.

To rename a diagram

1 In the Properties View, double-click the diagram name to initiate the inline editor.
2 Enter a new name.
3 Press Enter.

To rename a diagram using the Model Navigator

1 Select the diagram in the Model Navigator.

2 Press F2 or right-click and choose Rename on the context menu.
3 Enter a new name.

4 Press ENTER.

Related Procedures

Creating a Diagram

229

Rerouting a Link

To reroute a link

1 Select a link.

2 Drag and drop the client or supplier end of the link to the destination object.

3 To change the direction of the link, click a place on the link where you want to reroute the link.
4 Drag the line. Together automatically reshapes the link the way you want.

Tip: Model elements have the Layout k Route All Links command on diagram context menus.

Related Concepts

Model Element Overview

Related Procedures

Laying Out a Diagram Automatically

230

Resizing Model Elements

You can resize diagram elements automatically or manually. When new items are added to an element that has
never been manually resized, the element automatically grows to enclose the new items.

To resize an element manually

1 Click an element. The selected element is highlighted with bullets.
2 Drag one of the bullets in the direction you want to expand.

When the element contents change (for example, when members are added or deleted, and the element size is too
small to display all members) scroll bars are displayed to the right of compartments.

To optimize a node element size

1 Right-click an element.
2 Choose Layout k Optimize Size.

To optimize the elements on an entire diagram

1 Right-click the diagram background.
2 Choose Layout k Optimize Size.

Related Procedures

Laying Out a Diagram Automatically

231

Selecting Model Elements

Most manipulations with diagram elements and links involve dragging the mouse or executing context menu
commands on the selected elements.

In this section you will learn how to:
¢ Select one or more elements

¢ Cancel selection

To select an element

1 Open a diagram in the Diagram Editor .
2 On the diagram Palette, click the Select button.
3 In the Diagram Editor , click any element or a member to select it.

To select multiple elements, do one of the following

Hold down the CTRL key and click each element individually, OR
Click the background and drag a lasso around an area to select all the elements it contains, OR
Press CTRL+A to select all elements on a diagram, OR

A WODN -

Right-click the diagram background and choose Select All on the context menu.

Note: To cancel a selection, press the ESC key.

Related Procedures

Aligning Model Elements

Related Reference

Together Keyboard Shortcuts

232

Working with Rulers Guides and Grid

Together provides means to use ruler guides in the Diagram Editor for aligning purposes.

To add or remove a ruler guide

1 To add a ruler guide, click either the vertical or horizontal ruler. The guide appears at the click point.

Note: Alternatively, right-click a ruler and choose Create Guide. The guide is created at the zero
point of the ruler.

2 Toremove a ruler guide, click a guide on the ruler, drag it out of the ruler space until your pointer becomes a
normal select shape, and release your mouse button.

After you created several guides, you can connect your elements to ruler guides. If you connect several elements
to a guide, all elements move when you move the guide.

Aligning elements with ruler guides

1 Move or resize an element on the diagram to place one side of the element close to a rule guide.
2 Drop the element when the guide highlights.

3 Repeat the previous steps to connect other elements to the guide.

4 Move the guide. Notice how all connected elements move with the connected ruler guide.

Note: To disconnect an element from the guide, simply move the element from the guide.

You can optionally display or hide a design grid on the diagram background and have elements “snap” to the
nearest grid coordinate when you place or move them. Grid options are configured in the Diagram page of the
Preferences dialog box.

To show the grid

1 Open Preferences dialog box.
2 Choose the Modeling ¥ Diagram category, Rulers, Grid, and Snapping group.
3 Adjust the options.

Note: Grid display and snap are enabled by default.

Related Reference

Diagram Preferences

233

Together Projects

This section provides how-to information on using Together projects.

In This Section
Changing the Default Diagrams Directory
Lists the steps for changing the default directory of the diagram files.

Choosing a Together Perspective
How to choose a Together perspective.

Configuring C++ Projects
How to define C++ project structure and language-specific options.

Configuring IDL Projects
How to define IDL project structure and language-specific options.

Converting UML 1.4 Project to UML 2.0 Project
How to convert a UML 1.4 Project to a UML 2.0 project.

Creating a Project
How to create a project in Together.

Enabling UML Profiles
Describes how to enable profile support for a project.

Establishing cross-project references
Describes how to establish cross-project references between the projects located in the same workspace.

Exporting a Project to XMI Format
How to export a project to XMI format.

Exporting a Project to XMI Format Using the Command Line
How to export a project to XMI format using the command line.

Generating Source Code from Design Project
How to create a source code project from design project in Together.

Importing a Project in an IBM Rational Rose MDX Model
How to import .mdx projects.

Importing a Project in IBM Rational Rose (MDL) Format
How to import .mdl projects.

Importing a Project in IBM Rational Rose (MDL) From the Command Line
How to import .mdl projects using the command line utility.

Importing a Project in IBM Rational Rose (MDX) From the Command Line
How to import Rational projects using the command line utility.

Importing a Project in XMI Format
How to import XMI data.

Importing Java Modeling Projects Created in Together Edition for Eclipse 7.0
How to import a project created in TEC 7.0.

Importing Legacy Projects
How to import a legacy project and handle multiple project roots.

Navigating between the Tree View, Diagram, and Source Code
How to synchronize the Tree View, Diagram, and source code.

234

Resolving Duplicates During an XMI Import
How to resolve duplicates while importing an XMI project.

Reusing Existing Source Code in Modeling Projects
How to use existing source code in modeling projects.

Showing libraries
Describes how to show classes or packages from the standard Java libraries in a class diagram.

Troubleshooting a Model
How to troubleshoot a model.

Using Example Projects
How to use sample projects in Together.

Working with a Package
How to work with a package.

XMI Export and Import of the Models with Cross-Project References
You can import and export multi-root projects using XMI. Note that XMI imports and exports are implemented
differently for UML 1.4 and Java modeling projects, and for UML 2.0 projects.

235

Changing the Default Diagrams Directory

By default, Together diagram files are contained within the default design root folder, which is called the Model
Folder.

To change the default diagrams directory

1 Right-click the project root in the Model Navigator, or Model Package Explorer view, and select Properties. The
Properties dialog box displays.
Choose Design root path from the properties list on the left.
Specify the path in the Design root path field, and press OK.

Warning: The path name can contain only the folder name that the existing design root will be renamed to, not the
path to the folder.

236

Choosing a Together Perspective

Together changes the user interface according to how you want to work with Together by providing several
perspectives. By default, Together starts with the Modeling perspective.

Note: The way you have Together configured influences which perspectives and views you can choose from. For
example, clicking the Take me to the DSL workbench link from the Welcome page displays only the DSL
Workbench's default perspectives. In order to display a list of all the perspectives, check the Show all check
box in the Open Perspective dialog box. An additional Confirm Enablement dialog box might appear that
requires you to enable any necessary capabilities.

To choose a Together Perspective

1 On the main menu, choose Window k Open Perspective k Other. The Select Perspective dialog box opens.
2 Select one of the Together Perspectives from the list and click OK.

After you select a perspective, Together automatically customizes the interface to provide ready access to only the
relevant elements of the interface, and to show only the information in the model that best supports the chosen
perspective. Interface elements and/or model information that are not generally relevant to the perspective are
hidden. You can still access hidden information by changing the relevant configuration options and restoring hidden
panes manually, but you may find it easier to just switch perspectives.

Related Concepts

Together Capabilities Activation
Tour of Together

Related Procedures

Activating Together Capabilities

237

Configuring C++ Projects

In this section, you will learn how to define the project structure and processing options:

L4

* & & & o oo o

Access C++ project properties

Define source path

Define entry points

Include search paths

Define C++ processing settings (for example, skip standard includes option, or suffixes for the C++ files)
Define indexer

Enable C++ formatting

Set up formatting options

To configure a C++ project

Select the desired project in the Model Navigator.
On the main menu, choose Project Properties.

Tip: Alternatively, choose Properties on the context menu of the project.

The Properties for <project> dialog opens. Select the Project Properties page.

In the Project source path tab, click the Link Additional Source to Project button.
In the Link Additional Source dialog, specify the linked folder location and name, and click OK.

Tip: Use the context menu of the linked folder to remove it, mark it read-only, or filter it.

Configure parsing entry points using the Configure Entry points dialog.
In the Include paths tab, click Add.

In the Add Include Folder dialog, enter the folder name or click Browse and navigate to the folder you want
to add.

In the C++ Processing Settings tab, select your C++ project options.

¢ To skip standard includes, check the Skip standard includes option.

¢ If you want to use the preinclude file, specify its name in the Preinclude file name field.

Select the C/C++ indexer page, and select an indexer from the list. Among the available indexers, you can
choose the Borland indexer.

To enable C++ formatter

1

On the main menu, choose Window F Preferences
Under the C/C++ category, select the Code Formatter page.
From the list of available formatters, select Together C++ Code Formatter.

238

To set up formatting options
1 Under your Together installation, expand the plugins folder.

2 Inthe com.borland.tg.cdtintegration plugin, open the formatter.properties file.
3 Use the documentation provided with the file to edit as required.

Related Reference

New project Wizard C++ Language-Specific Options
C++ Projects

239

Configuring IDL Projects

In this section you will learn how to define the project structure and processing options:

L4

¢
¢
¢

To

Access IDL project properties
Define source path
Include search paths

Define IDL processing settings

configure an IDL project
Select a project in the Model Navigator.

On the main menu, choose Project Properties.

Tip: Alternatively, choose Properties on the context menu of the project.

In the Project source path tab, click the Link Additional Source to Project button.
In the Link Additional Source dialog, specify the linked folder location and name, and click OK.

Tip: Use the context menu of the linked folder to remove it, mark it read-only, or filter it.

In the Include paths tab, click Add.
In the Add Include Folder dialog, enter the folder name or click Browse and navigate to the folder.

Inthe IDL Processing Settings tab, select your IDL project options. Refer to the IDL Language-Specific Options
section for details.

Related Reference

New project Wizard IDL Language-Specific Options

IDL Language-Specific Information

240

Converting UML 1.4 Project to UML 2.0 Project

This topic describes how to convert a UML 1.4 project to a UML 2.0 project. If you want to preserve any cross-project
dependencies during the conversion, observe the following:

¢
¢

¢

To

A ODN -

Ensure that all dependent projects are part of the current workspace and are opened.

Select Window F Preferences F Modeling ¥ UML 1.4 to UML 2.0 Converter and ensure that the Enable
referenced projects support option is checked.

Using the procedure that follows, convert each project separately, beginning with those that do not reference
other projects. Projects that are referenced by other projects should be converted first.

convert an existing UML 1.4 project to a UML 2.0 project

On the main menu, choose File ¥ New k Project. The New Project wizard opens.
Expand the Together node in the tree view list, and select UML 2.0 from 1.4 Project. Click Next.
Type the new UML 2.0 project name and specify other project-related options. Click Next.

Select the UML 1.4 project you want to convert. If necessary, specify mappings between referenced UML 1.4
projects and existing UML 2.0 projects near the bottom section of the dialog that shows a list of all UML 1.4
projects currently referenced by the selected project. Automatic mappings are normally created during any
previous conversions.

Click Next.
Click Finish to complete the wizard.

The selected UML 1.4 project is converted to a newly created UML 2.0 project.

Related Procedures

Reusing Existing Source Code in Modeling Projects
Working with a Package
Creating a Diagram

241

Creating a Project

Together provides several projects that you can work with. The projects in Together are created in the same manner.
While creating a project, you will specify different options depending on the type of project.

To create a Together Project

1 Select File ¥ New F Project on the main menu. The New Project wizard displays.
2 Expand the Modeling node in the tree view list, and select the type of project you want to create. Click Next.
3 Follow the wizard steps to specify necessary options for a new project and click Finish to complete the wizard.

Related Concepts

Together Project Overview

Related Procedures

Together Projects

Related Reference

Together Projects

242

Enabling UML Profiles

There are several ways to enable UML profiles for Together projects.

To enable UML profiles support while creating a project

1 On the main menu, choose File ¥ New F Project. The New Project wizard opens.

2 Expand the Modeling node in the tree view list, and select the UML project you want to create (UML 2.0 or UML
1.4). Click Next.

3 Follow the wizard to the Profiles screen. The Profiles screen of the wizard lists available profiles.

4 Select one or more profiles you want to enable and click Next to continue creating a new project with the New
Project wizard.

To enable UML profiles support for existing projects
1 In the Model Navigator, right-click the root project folder, and select Properties on the context menu. The
Properties for <project> dialog box displays.
2 From the list on the left, select UML Profiles.
3 Select any of the UML profiles that you want to enable. More than one can be activated.
4 Click OK.

Note: You can also access the Properties for <project> dialog box through the Model Package Explorer view
and Navigator view.

To specify the default set of UML profiles enabled for all new workspace projects

1 Choose Window k Preferences on the main menu.

2 In the left pane of the Preferences dialog box, expand the Modeling node.
3 Select the UML Profiles node.

4 Select the profiles you want to enable for UML 1.4 and UML 2.0 projects.

Note: The selected UML profiles are automatically enabled for projects created after you changed profile
preferences. Profiles support of existing projects is not changed.

243

Establishing cross-project references

You can establish references between the projects of a similar type within your workspace. This capability is enabled
in the Model Path page of the Project Properties dialog. When cross-project referencing is enabled, the imported
projectis included in the original project as read-only root and becomes visible in the selection dialogs. Consequently,
any changes in the referenced projects are propagated across the target project as well. For example, renaming
elements in the referenced project is immediately reflected in the target project.

To enable cross-project references

1
2

Select the desired project in the Model Navigator.
On the main menu, choose Project Properties. The Properties for <Project Name> dialog opens.

Tip: Right-click on the project node and choose Properties on the context menu.

Select Model Path node.

In the Model Path page, click Add Project button. The Select Projects to Import dialog opens, displaying the
list of available projects in the workspace.

Note: Only the projects of similar types are included in the list.

Check one or more projects in the field Available Projects in the Workspace and click OK.
Click OK to confirm your settings and close the Project Properties dialog.

Warning: Avoid establishing recurrent references.

Tip: The Project references tab of the Project Properties dialog is a part of Eclipse functionality, and does not

have any effect on the Together cross-project references.

Related Concepts

Together Project Overview

Related Procedures

Creating a Project

Related Reference

Project Properties

244

Exporting a Project to XMI Format

You can export projects or sections of projects created in Together for use by other applications/languages using
XMI. Together supports several XMI formats. The availability of formats depends on the types of projects currently
opened in Together.

To export a project to XMI format

1 Select File ¥ Export on the main menu. The Export dialog box opens.
2 Under Modeling, choose XMI File and click Next.
3 In the Export Project to XMI Flle dialog box, specify the following:
¢ Select the project to export. For UML 1.4 and Java modeling projects, you can also expand the project to
select only a portion of it. You cannot proceed until a project or package is selected.

¢ Select the XML and UML version you want the file to support under Select XMI Type. A UML 2.0 project
can be exported to XMl for UML 2.0 only.

Select an appropriate XMI Encoding requirement in the XMI Encoding list.

Specify the destination in the Select the export destination field. You can include the path as well as
the name of the file that will be created, or you can accept the default. For UML versions 1.3-1.4, the name
consists of <project folder>\out\xmi\<project name><number>.xml. For the first file
generated under this name, <number>=1. Thereafter, <number> increases by one for each file saved
under the same name. Note that . xm1 is automatically added as the file extension. For UML version 2.0,
the name consists of <project folder>\out\xmi\<project name>.uml2.

4 Click Finish to generate the XMl file.

A dialog box opens indicating that the XMI export is completed. If there are any warnings produced during XMI
export, the XMI Export dialog box notifies you to refer to the Task view. To open the Task view, select Window
F Show View k Other F Basic F Tasks from the main menu.

Note: For UML 2.0 projects with applied profiles or projects that contain any stereotypes or primitive types, the
following files are created during the export process in addition to the model .umi2 file:
<model name>.profile.uml2 — for stereotypes and primitive types

<profile name>.profile.uml2 — for applied profiles

Related Concepts

Model Import and Export Overview

Related Procedures

XMI Export and Import of the Models with Cross-Project References

Related Reference
XMI Export Wizard

245

Exporting a Project to XMl Format Using the Command Line

Together provides a comand-line method for an XMl export of UML 1.4, UML 2.0, and Java Modeling projects. Use
the XMIExport.cmd on the Windows platform or XMIExport.sh on the UNIX platforms.

To export a project to XMI format under Windows

1 Locate the XMIExport.cmd file in the Together installation folder.
2 Run the XMIExport.cmd file with necessary parameters.

Note: For usage instructions and command-line parameters, run XMIExport.cmd -help or XMIExport.sh -
help.

Related Concepts
Model Import and Export Overview

Related Reference
XMI Export Wizard

246

Generating Source Code from Design Project

Together provides several projects that you can work with.

To generate source code from a design project

Select File ¥ Export on the main menu. The Export wizard is displayed.

Select either Generate C++ Project or Generate Java Project in the list. Click Next.
Select the modeling project you want to use for source generation. Click Next.
Specify source code generation options and click Next.

Specify a new code generation project name. Click Finish for a C++ Project. Click Next to specify Java-related
options for a Java project.

a Hh ON -

6 Click Finish to complete the wizard.
A new code generation project is created from the selected modeling project.

Related Concepts

Together Interoperability and Migration

247

Importing a Project in an IBM Rational Rose MDX Model

Together enables you to create projects around an IBM® Rational® XDE .mdx file.

Note: Together design projects that are created on the basis of the imported MDX models always comply with the

UML 2.0 specification.

To create a project from an MDX model

1

© 0 N o a b

On the main menu, choose File ¥ Import. The New Project wizard opens.
Select Project from MDX file and click Next.
Specify the path to the MDX file you want to import or click Browse to locate the file. You can also specify the
following:
¢ Use the Scale factor field to specify the element dimensions coefficient. By default, the scale factor is
0.03.

¢ Preserve diagram nodes and bounds: If this option is selected, user-defined bounds are preserved in
the resulting diagrams. Otherwise the default values are applied.

Click Next.

Specify new project name. Click Next.

Specify the diagram to start with. Click Next.

Select one or more profiles you want to enable for this project. Click Next.

Select any referenced projects.

Click Finish to complete the wizard. A new project will be created with elements from the MDX file.

Note: [f a profile was applied to the Rational XDE model while importing the MDX model to Together, the properties

from this profile are imported as custom properties.

Related Concepts

Model Import and Export Overview

Related Reference

MDX Import Wizard

MDX Projects Import Options

248

Importing a Project in IBM Rational Rose (MDL) Format

Together enables you to create projects around IBM® Rational® Rose model files (.mdl, .ptl, .cat, .sub).

Note: You can import a set of petal and subunit files.

Warning: Together projects created on the basis of the imported MDL models always comply with the UML 1.4

specification.

To create a design project from an IBM Rational Rose (MDL) project

1

On the main menu, choose File ¥ Import. The New Project wizard opens.
Select Project from MDL file and click Next.

Click either Add or Add Folder to designate the MDL project path. This step specifies the name (or names) of
the Rational Rose project file (or files) to be imported (several model files can be imported at once). Click
Remove to delete the selected file or files from the Paths list. Click Remove all to delete all files from the Paths
list.

Note: Avoid adding a model file along with its subunit to the import list because this results in
invalid project.
Use the Scale factor field to specify the element dimensions coefficient. By default, the scale factor is 0.3.
Specify the following options for the project:
¢ Convert Rose default colors: If this option is selected, the default Rational Rose colors will be replaced
with the default Together colors.

¢ Preserve diagram nodes and bounds: If this option is selected, user-defined bounds are preserved in
the resulting diagrams. Otherwise the default values are applied.

4 Convert Rose actors: This option enables you to choose mapping for the Rose actors. If the option is
selected, the Rose actors are mapped to Together actors. If the option is not selected, the Rose actors
are mapped to the classes with the Actor stereotype, such as Actor, Business Actor, Business Worker, or
Physical Worker.

¢ Generate source code: If this option is selected, a new Java Modeling project is created; otherwise, a
Modeling project is created from imported MDL.

Click Finish.
When prompted, supply a name for your project and click Finish.

Follow the remaining steps in the wizard to specify options for your new project, and click Finish to complete
the wizard.

After the import process is complete, you can view the project structure in the Model Navigator view. The
mdlimport.log file is generated by default and lists any errors encountered during the import process.

Note: After entering a project name, you can click Finish without completing the remaining steps of the wizard. The

project is created using the remainder of default settings.

249

Related Concepts

Model Import and Export Overview

Related Procedures

Generating Source Code from Design Project

Related Reference

Together Projects
MDL Projects Import Options
MDL Import Wizard

250

Importing a Project in IBM Rational Rose (MDL) From the Command
Line

Together enables you to create projects around IBM® Rational® Rose model files (.md1, .ptl, .cat, .sub)
by executing the import wizard from the command line.

To execute an MDL import from the command line

1 Navigate to plugins\com.borland.tg.mdlimport 8.1.0 inthe Together installation folder.

2 Execute 'java -cp mdlimport.jar com.borland.tg.mdlimport.CmdLineImporter
<parameters>'

For example, Java -cp mdlimport.jar com.borland.tg.mdlimport.CmdLineImporter -d c:
\myproject -project myproject -modelfile mymodel.mdl.

Related Concepts

Model Import and Export Overview

Related Procedures

MDL Projects Import Options

251

Importing a Project in IBM Rational Rose (MDX) From the Command
Line

Together enables you to create projects around IBM® Rational® XDE model * .mdx files by executing the MDL
import wizard from the command line with specific parameters.

To execute an mdx import from command line

1 Navigate to plugins\com.borland.tg.mdlimport 8.1.0 inthe Together installation folder.

2 Execute 'java -cp mdlimport.jar com.borland.tg.mdlimport.CmdLineImporter
<parameters>"'.

Note: For parameter values, refer to MDX Project Import Options.

Related Concepts

Model Import and Export Overview

Related Reference

MDX Projects Import Options

252

Importing a Project in XMI Format

You can import projects or sections of projects that were created in other modeling tools and saved in XMI format.

Note: For UML 1.4 and Java Modeling projects only, XMI 1.1/1.2 imports are supported. Attempting to import an
XMI 1.0 file results in an empty project.

To import a project from an XMl file

—

Select File ¥ Import on the main menu. The Import dialog box opens.
Select XMI File and click Next.

In the Import Project from XMI File dialog box, specify the following:

w N

¢ The Together project to which your XMI data will be imported in the Select destination project field.

¢ The full path to the .xml, .xmi, or .uml2 file you want to import in the Select source .xmi file field.

4 Click Finish.

Note: A .xml or .xmi file can be imported to UML 1.4 and Java Modeling projects; a .umi2 file can
be imported to UML 2.0 projects.

After you are notified that the import process is complete, you can view the results in the Model Navigator.

Note: When importing UML 2.0 models with profile files related to the model, for the models originally exported from

Together for Eclipse, select model .umi2 file as a source and make sure that all the profile files are located
in the same folder with the model file.

If there are any warnings produced during XMl import, the XMI Import dialog notifies you to refer to the Task view.
To open the Task view, select Window ¢ Show View F Other k Basic F Tasks from the main menu.

Related Concepts

Model Import and Export Overview

Related Procedures

XMI Export and Import of the Models with Cross-Project References

253

Importing Java Modeling Projects Created in Together Edition for
Eclipse 7.0

You can import projects created in Together Edition for Eclipse 7.0.

The general procedure for importing a project created in Together Edition for Eclipse 7.0
consists of the following steps:

1 Importing your existing project into a workspace

2 Creating a Java modeling project from a Java project

To import an existing project from TEC 7.0

1 Select File ¥ Import on the main menu.
2 Select Existing Projects into Workspace and click Next.

3 Inthe Import Projects dialog box, specify the path to your project's root directory and select one or more projects
you want to import.

4 Click Finish when you specified all necessary options.
The new Java project is created and opened in your workspace.

Note: The name of the imported project cannot be changed during the import process. Therefore, the projects are
created with the same name as the imported projects.

To create a Java modeling project from a Java project

1 Select File ¥ New F Project on the main menu. The New Project wizard opens.

2 Expand the Together node in the tree view list and select Java Modeling projects from Java projects. Click
Next.

3 Select the Java project you created from the project created in Together Edition for Eclipse. Click Next.
Specify other project-related options.
Click Finish when you specified all necessary options.

Related Concepts

Together Interoperability and Migration

254

Importing Legacy Projects

Together allows you to import projects from some of the previously released Together products. Considering the
differences between the products, Together suggests two ways to accomplish this import. You can merge all roots
of a legacy multi-rooted project into a single root, or you can create a separate project for each root of the source
project.

L4

¢

The Merge option is recommended for typical cases of when the input project has one design root and several
source code roots.

The Separate projects option is recommended when your input project has nonstandard configuration with
several design roots, which you would like to preserve as separate projects.

To import a legacy project merging all source roots into a single project

1
2
3
4

(5]

Select File ¥ Import on the main menu
In the Import Wizard, select Modeling Together Project and click Next. The second page of the wizard opens.
Click Browse to specify the fully qualified name of the project you want to import.

In the Design elements storage policy section, choose whether the design elements of the resulting project
will be stored as standalone design elements or as filemates.

In the Migration type section, select the Merge all roots contents into the new project option.
Click Next. The third page of the wizard opens.

Specify the name of the target project. The default project name is constructed from the names of the last two
folders of the source project file location.

Click Finish to import the selected project.

Warning: TVS projects and projects created in Together Editions for Eclipse prior to version 7.0 cannot be imported

to Together.

To create separate projects for each selected root

1
2
3
4

(5]

Select File ¥ Import on the main menu
In the Import Wizard, select Modeling Together Project and click Next. The second page of the wizard opens.
Click Browse to specify the fully qualified name of the project you want to import.

In the Design elements storage policy section, choose whether the design elements of the resulting project
will be stored as standalone design elements or as filemates.

In the Migration type section, select the Create a separate project for each root option.
On the third page of the wizard, the Root location table displays the list of folders of the source project. Select
each root from the list and define the way you want to handle the root and its contents:

¢ Inthe Together project name field, specify the name of the target project for the selected root. The default
name is constructed from the package prefix, if any. If there is no package prefix, the project name is
created from the names of the last two folders of the root location.

¢ The read-only Content type and Diagram format fields display the corresponding information for the
selected root.

¢ Inthe Decision field, choose the way to handle information of the selected root. If the root contains design
files, you can either copy them to the target location or skip the root. If the root contains source code files,

255

you have the choice to copy it as is, copy and convert it to design language, or skip the root. The option
Copy and convert to design language is the default choice for the roots that contain Java files.

¢ Inthe Dependencies to be preserved while importing field, you can specify whether the import handles
links and references between projects created for the currently selected root and projects created for other
roots. All dependencies are processed by default. However, if you are aware of any one-way dependencies
between the original roots, and the selected root does not refer to any elements from other roots, uncheck
those corresponding projects listed in the field to save CPU resources and complete the import faster.

7 Click Next. The fourth page of the wizard opens.
8 Specify the name of the master project that contains references to all projects created in the course of the
migration. The default name of the master project is based on the source project name.

Note: The master project is created to demonstrate the contents and structure of the source

project. It is read-only and not intended for editing. Use the real projects to create or edit
contents and establish dependencies.

9 Click Finish to import the selected project.

All resulting projects belong to the same type, which is defined by the properties of the source project and your choice
in the Decision field of the Import Wizard. Java modeling projects are created if there is at least one Java source
root for which the Copy option is selected. UML 1.4 modeling projects are created if there are no Java source roots,
or if such roots exist but the Decision field is set to Skip or Convert to design language.

Related Concepts

Together Interoperability and Migration

Related Reference

Import Together Project Wizard

256

Navigating between the Tree View, Diagram, and Source Code
Together provides constant synchronization between different aspects of your project:

¢ Model hierarchy, presented in the tree view (Model Navigator View)
¢ Model graphical representation in the Diagram Editor

¢ Source code (for implementation projects)

Tip: You can also use the Refresh function of the Model Tree View to update the entire model, and the Refresh
function of the Diagram Editor.

You can navigate between the Model Tree, Diagram Editor, and source code in the
following directions:

Navigate to the Diagram Editor from the Model Tree View.

Navigate to a model element from the Model Tree View to the Diagram Editor.
Navigate from the Diagram Editor to the Model Tree View.

Navigate from a lifeline to its classifier in the Model Navigator View or a Class diagram.
Navigate from source code to the Tree View.

O O A WODN -

Navigate from the Model Tree View or Diagram Editor to source code (for implementation projects).

To navigate to the Diagram Editor from the Model Navigator View

1 In the Model Navigator View, right-click the diagram node.
2 Choose Select on Diagram.

Alternatively, double-click the diagram node in the Model Navigator View.

To navigate to a model element from the Model Navigator View to the Diagram Editor

1 Right-click a model element in the Model Navigator View.
2 Choose Select on Diagram on the context menu.

Note: Click the Link with Editor button on the Model Navigator toolbar and all elements selected
in the Model Navigator will be automatically selected on diagrams.

To navigate from the Diagram Editor to the Model Navigator View

1 Right-click the selected element or diagram background in the Diagram Editor.
2 Choose Select in Model Tree on the context menu.

To navigate from a lifeline to its classifier in the Model Navigator View or a Class diagram

1 Right-click the selected lifeline on a UML 2.0 Sequence diagram in the Diagram Editor.
2 Choose Select ¥ Type in Model Navigator View to navigate to the classifier in the Model Navigator View,

257

OR

Choose Select k¥ Type On Diagram to navigate to the classifier on a Class diagram in the Diagram Editor.

To navigate from source code to the Model Navigator View
1 Right-click the line that contains the element you want.

2 On the context menu of the selection, choose Select in Model Tree.

The corresponding element is highlighted in the Model Navigator View.

To navigate from the Model Navigator View or Diagram Editor to source code (for
implementation projects)

1 Right-click a model element or a node member.
2 Choose Open on the context menu.

Note: This command is available for source code-generating elements.

Click the Link with Editor button on the Model Editor toolbar and corresponding definitions will be automatically
selected in the source code editor when you select model elements. Likewise, corresponding model elements will
be selected when definitions are selected in the source code editor.

Related Concepts

Roundtrip Engineering Overview

Related Procedures

Troubleshooting a Model

258

Resolving Duplicates During an XMl Import

To resolve duplicates when importing an XMl file

1 If a duplicate package exists in the XMl file, the Confirmation dialog opens.

2 Select whether to rename the imported package or replace a package in the current project with the imported
package.

Further behavior depends on the project type:

UML 1.4 and Java Modeling projects: When you choose rename, the name of the imported entity is automatically
updated, adding a numeric value to the end. For example, if you have a project that contains a package named
"problem_domain," and the imported XMl file also contains a package with the same name, choosing rename will
rename the imported package "problem_domain1." Choosing replace will automatically replace the entity in the
current project with the imported entity.

UML 2.0 projects: During XMl import, if an entity exists in the XMI file and it has the same name as an entity in the
project, a new entity is created. For each imported package that has the same name as a package in the project, a
new package is created and an incremental number is added to the package name.

Related Concepts

Model Import and Export Overview

Related Reference
XMI Export Wizard

259

Reusing Existing Source Code in Modeling Projects

Together allows you to convert your existing source code to UML models. Together provides two ways to use reverse
engineering:

¢ Convert the existing source while creating a new project

Import the existing source code to a Java Modeling project

To import Java source code while creating a new project

1
2
3
4

On the main menu, choose File ¥ New F Project.
Expand the Modeling node and select Java Modeling Project. Click Next
On the Java Modeling Project page, type the project's name. Click Next

On the Modeling Settings page, choose the desired metamodel (UML 2.0 or UML 1.4, UML 2.0 is default).
Uncheck the Store package properties in package diagram files if you like them being stored in txaPackage
files. Check Create design elements in separate files if you like to have each model element stored in its own
txa* file. Click Next

Skip the Profiles page unless you like to enable one or more profiles for your project. Click Next

On the Java Settings page, Source tab, click the Link Additional Source to Project button in the upper right
toolbar, use the Browse... button to specify the path to the existing source code folder. Click Finish. If you like
this linked folder to be the only source folder for your project, remove the default source folder using Remove
button.

Click Finish.

To import source code to the existing modeling project

a A W DN

Right-click a source folder of the target Java Modeling project in the Navigator view and select Import... on the
context menu.

In the Import wizard, select General F File System and click Next.

Browse to the folder with source code to import.

Select sources you want to import or click Select all to import the entire folder.
Click Finish.

Related Procedures

Creating a Project

260

Showing libraries

When you create a project, you can define directories with any number of search paths whose content you want to
show in diagrams. For example, you can show entities that reside in the standard Java libraries. Such resources
exist for the project, but Together does not include them in the generated HTML documentation for the project.

To show classes or packages from the standard Java libraries in a class diagram

1 Open or create a class diagram.

2 Right-click on the background and choose New > Shortcut. The Shortcuts dialog opens displaying available
model elements.

3 Under the Model Elements tab, expand the libraries node, and navigate to the resource you want to add. Click
Add. Repeat until you have added all the resources you want.

4 Click OK to close the dialog.

Tip: If the resource you are looking for is not shown, it is probably not in the Java build paths defined in Project
Properties. You can add resources to the Java build paths at any time by using the Navigator view (Navigator
view is not the same as Model Navigator View). Right-click the project in the Navigator view, and select
Properties from the context menu. In the dialog that displays, select Java Build Path. Add the appropriate
paths to your project by using the different tabs listed on the Java Build Path page.

Note: The new command available from the context menu, New, is disabled for classes that have been added from
libraries (or compiled source code) to the diagram.

261

Troubleshooting a Model

You can also reload your project from the source code.

Use the following techniques to troubleshoot your model:

1 Refresh a model
2 Reload a model
3 Fix a model

To refresh a model

1 Open the Diagram View.
2 Press F6.

To reload a model

1 Open the Model View.
2 Right-click the project root node and choose Reload on the context menu.

Note: Use the Reload command as a workaround for issues that might appear while making changes in Together
that cause some elements on the diagram to stop responding. The command is also helpful if you get certain
errors from Together, such as <undefined value>.

Tip: Usually, when these problems occur, the elements also disappear from the Together Structure View Class
View and the corresponding source code is underlined in blue in the Together Editor. Together cannot always
properly handle such elements that become broken. To restore broken elements to a normal state, edit the
code in the text editor according to the recommendation shown in the Together Editor. In these cases, it is best
to refresh the model using Reload to prevent further problems.

To fix a model

1 For interaction diagrams, regenerate them from the source code.
2 For all types of diagrams, check that none of the necessary elements are hidden.

Related Procedures

Navigating between the Tree View, Diagram, and Source Code

262

Using Example Projects

Together comes with a set of predefined sample projects.

To use a Together Example Project

1 Select File ¥ New F Project on the main menu. The New Project wizard opens.
2 Expand the Examples node in the tree view list, and select the project you want. Click Next.

3 Follow the wizard steps to specify the necessary options for a new project and click Finish to complete the
wizard.

Tip: Alternatively, choose File ¥ New k Example on the main menu.

Related Concepts

Together Project Overview

Related Procedures

Together Projects

Related Reference

Together Projects

263

Working with a Package

By default, a package element on diagram displays the package contents.

You can accomplish the following tasks for a package:

Open a package

Modify package contents
Delete a package
Rename a package

a H O N -

Move a package

To open a package

1 Select the package in the Diagram Editor or in the Model Navigator.
2 Choose the Open or Open in Active Editor command on the package context menu.

Tip: Alternatively, double-click the package element on the diagram.

To modify package contents

1 To add an element, choose New <element> on the package context menu.

Tip: You can use the context menu of a nested element in a package to add its fields and
subelements directly without opening it in diagram.

2 To delete an element from a package, press the DELETE key.

To delete a package
1 Select the package in the Diagram Editor or in the Model Navigator.

2 Choose Delete on its context menu.

Warning: Deleting a package also deletes all of its contents.

To rename a package

1 Select the package in the Diagram Editor or in the Model Navigator.
2 Torename the package, including changing its name in all of its source files, do one of the following:

¢ Choose Rename on the context menu of the package in the Diagram Editor or in the Model Navigator.

¢ Press F2 to invoke the in-place editor for the package element in the Diagram Editor or in the Model
Navigator.

264

¢ Edit the Name field in the Properties View

To move a package

1 Select the package in the Diagram Editor or in the Model Navigator.
2 Drag the package and drop it to the target location.

Warning: It is not recommended to undo move operations for packages.

To split package diagram persistence

1 Right-click the project in the Model Navigator and choose Properties.
2 Make sure the Store package properties in package diagram files option is not checked (this option is on
by default).

The default setting specifies that all properties of the package diagram, both visual and semantical, are
preserved in the default. txvpck diagram file. With this option off, only diagram-specific information (visual
information, such as layout) is retained in the default. txvpck diagram file, while settings that you treat as
package properties (semantical information, such as descriptions and custom properties) are moved from the
default.txvpck file into the default.txaPackage file. This allows you to track your package changes

using version control.
3 Click OK.

Note: Changing this option from Project Properties dialog converts the project files. This option
can also be set using the New Project Wizard.

Related Concepts

Package Overview

265

XMI Export and Import of the Models with Cross-Project References

You can import and export multi-root projects using XMI. Note that XMI import and export is implemented differently
for UML 1.4 and Java modeling projects, and for UML 2.0 projects.

¢ UML 1.4 and Java modeling projects: When a project that contains cross-project references is exported to
an XMl file, the main project root and referenced roots are exported to the same XMl file. The Use prefix of
imported root option of the Export Wizard enables you to reproduce the package structure of each root in
top-level packages named as the root prefixes. If the option is unchecked, all same-named packages from the
different roots are merged. When an XMl file is imported, the resulting project contains all packages and
elements from the main model and referenced roots.

¢ UML 2.0 projects: When a project that contains cross-project references is exported to an XMl file,
* imports.uml?2 special files are created for each referenced root. The exported XMl file contains references
to these files. When an XMl file is imported, the resulting project contains the main model only. If the referenced
roots still exist in the workspace, the resulting UML 2.0 model recognizes them. References to the elements
from these roots can be resolved only if the unique identifiers (UINs) of the elements have not been changed
since export. Note that when an element is moved, its container is changed, and this can change the UIN.

To export a UML 1.4 and Java modeling project with cross-project references

1 On the main menu, choose File Export.
2 On the first page of the Export Wizard, select XMI file under Modeling and click Next.
3 On the second page of the wizard:

¢ Select the project to be exported;

¢ Select the XMI type and encoding;

¢ Specify the export destination;

¢ Check the Use prefix of imported root option if you want to reproduce the package structure of each

root in top-level packages named as the root prefixes. By default, this option is unchecked.

4 Click Finish.

Tip: Package prefixes of the referenced roots are never used if you perform an export via the XMIExport.cmd
command line utility.

To export a UML 2.0 project with cross-project references

—

On the main menu, choose File Export.

N

On the first page of the Export Wizard, select XMl file under Modeling and click Next.
3 On the second page of the wizard:

¢ Select XMI for UML 2.0 as the project to be exported
¢ Specify export destination

4 Click Finish.

266

Related Concepts

Together Interoperability and Migration

Model Import and Export Overview

Related Procedures

Importing a Project in XMI Format
Exporting a Project to XMI Format

267

Together Profiles

Together allows you to model diagrams using several preinstalled profiles as well as profiles created with Profile
Definition projects.

In This Section
A Typical User Scenario of Working With Profiles
General information on how to create a profile definition.

Adding Attributes to Stereotypes
How to add attributes (tagged values) to stereotypes, and define inspector grouping.

Adding Shortcuts to Metaclasses
How to create shortcuts to metaclasses.

Applying Profiles
How to apply a profile.

Converting Profile-Specific Properties
How to reuse a project with a profile, created and applied in Together 2006.

Creating Palette Contributions
How to create a palette contribution in the profile.

Creating Profile-Specific Constraints
How to create profile-specific constraints.

Creating Stereotypes
How to create stereotypes in your profile.

Defining Profile Properties
How to specify profile definition properties

Deploying Profiles
How to deploy a profile.

Enabling UML Profiles
Describes how to enable profile support for a project.

Exporting and Importing Profiles
How to import and export profile plugins.

Opening Profile Definition
How to view and modify definitions of the custom profiles and profiles that come bundled with Together.

Setting Viewmap Properties for Stereotypes
How to specify a visual representation of the elements in the created profile.

Uninstalling Profiles
How to uninstall a profile and correctly remove it from the platform.

Verifying a Model Against Profile Constraints
How to verify a model against the specified constraints, provided that a profile is applied to this model.

Working with Required Stereotypes
How to define required stereotypes and filter their manifestation in diagrams.

268

A Typical User Scenario of Working With Profiles

To create, deploy and apply a new profile definition, perform the following general steps:

1

Create a Profile Definition project. While creating a Profile Definition project, specify a UML version that the
profile is targeted for (UML 2.0 by default). Metaclasses referenced in a profile must be taken from the

corresponding target UML metamodel.

Creating a Project

Open the default class diagram of your Profile Definition project and edit the profile properties:

Defining Profile Properties

Create Stereotypes:

Creating Stereotypes
Edit Stereotypes (edit properties, create shortcuts to metaclasses):

Adding Shortcuts to Metaclasses
Add attributes (tagged values) to the stereotypes:

Adding Attributes to Stereotypes
Define view properties for the stereotypes:

Setting Viewmap Properties for Stereotypes
Create Palette Contributions; fill them with the contributed stereotypes or pure metaclasses.

Creating Palette Contributions

Deploy profile:
Deploying Profiles

Apply profile:
Applying Profiles

Related Concepts

UML Profiles Basics

Related Procedures

Together Profiles

269

Creating a Project

Together provides several projects that you can work with. The projects in Together are created in the same manner.
While creating a project, you will specify different options depending on the type of project.

To create a Together Project

1 Select File ¥ New F Project on the main menu. The New Project wizard displays.
2 Expand the Modeling node in the tree view list, and select the type of project you want to create. Click Next.
3 Follow the wizard steps to specify necessary options for a new project and click Finish to complete the wizard.

Related Concepts

Together Project Overview

Related Procedures

Together Projects

Related Reference

Together Projects

270

Defining Profile Properties

When a Profile Definition project is created, you can specify or edit profile properties that are accessible via the
default package diagram of the Profile Definition project. These properties are:

¢ Textual profile description

¢ Namespace, which identifies the profile

To specify profile definition properties

Open the default package diagram of the Profile Definition project.

On the context menu of the diagram, choose Properties. The Properties View opens.

In the Properties View, select the Profile Definition tab.

Click the description field and enter the description text. Optionally, click the Edit button.

a Hh ON -

Click the namespace field and enter a valid string.

Related Reference

Profile Definition Properties

271

Creating Stereotypes

To create a Stereotype

1 Using the Profile Definition palette, add a Stereotype node to the diagram background.
In the Properties View, choose Profile Definition node.
In the Extended metaclass field, click the Edit button.

In the dialog box that opens, select the desired metaclasses from the Model Elements pane. Use the Add and
Remove buttons to make up a list of extended metaclasses. Click OK when you are finished.

4 If necessary, specify the required stereotype property:

Working with Required Stereotypes

(5]

Define view properties.

Tip: View properties are not available for the stereotypes that extend across multiple
metaclasses.

Setting Viewmap Properties for Stereotypes

(2]

Add attributes (tagged values) to the stereotype:
Adding Attributes to Stereotypes

7 Using Contribution link, connect the Stereotype to the desired Palette Contribution.

Related Procedures

Working with Required Stereotypes
Setting Viewmap Properties for Stereotypes
Adding Attributes to Stereotypes

272

Adding Shortcuts to Metaclasses

When creating your profile definition project, you can use shortcuts to metatypes from the metamodel root. Shortcuts
to metaclasses can be created in several ways, some of which are similar to adding any other shortcut to your
diagram.

To use the Shortcuts dialog box

Right-click the diagram background and select Shortcuts # New. The Shortcuts dialog box opens.
Expand the metamodels node, choose the desired metaclass, and click Add.

Use the Add and Remove buttons to make up a list of extended metaclasses.

Click OK when you are finished.

A WODN -

To use cut, copy, and paste operations

1 Cut, copy, or drag a metaclass in the Model Navigator
2 Paste and drop it to any diagram that is not a package diagram.

To use the drag-and-drop operation to create a shortcut on a package diagram, press and hold the CTRL and SHIFT
keys while dragging an element from the Model Navigator to your package.

Related Procedures

Profile Definition Properties

273

Adding Attributes to Stereotypes

In this section you will learn how to add attributes to stereotypes, and how to define attribute properties, groupings
and descriptions. After applying a profile, stereotype attributes become visible in the Properties View of the elements
with this stereotype.

You can add attributes to stereotypes in one of the following ways:

¢ Using the Properties View

¢ Using outgoing association links

To add attributes (tagged values) to a stereotype using the Properties View
1 Right-click on the selected stereotype in a profile definition diagram, and choose New k Attribute on the context
menu. Add as many attributes as required.
Select an attribute in the stereotype node. Its properties are displayed in the Properties View.
In the Properties tab:

¢ Choose the name field and enter the attribute name.

¢ Click the type field and specify the valid type using the combobox for primitive types or the selection
manager dialog for the enumerations and metaclasses.

Note: Invalid types are ignored during profile deployment.

4 In the Profile Definition tab, click the inspector group field, and select the inspector group from the list of
existing groups, or create a new one. After applying the profile, the attribute is displayed in a separate tab (group)
of the Properties View.

5 Inthe Description tab, choose the Edit tab and enter description text. After applying the profile, this description
shows up as a tooltip in the tab (group) of the Properties View.

After the attribute is added to the stereotype, the tagged value name is equal to the attribute name. Multiplicity of
the tagged value is equal to the attribute's multiplicity.

Note: If a profile defines attributes with a default value for a given type that is different from the default value in the
underlying implementation, some side effects should be noted. For example, the default value for a Boolean
property is false and is not persisted in the model instance. If a Boolean property is set to true as the
default value in a profile definition and a user sets an instance value to false, its value is not persisted but
interpreted as the default value (t rue) when read back in. Similarly, instance values changed to empty/null
will not be persisted and will likewise be interpreted as the default value when read back in.

To add attributes (tagged values) to a stereotype using outgoing association links
1 On the profile definition diagram, create shortcuts to certain types (Primitive types, Enumerations or
Metaclasses). Note that invalid types are ignored during profile deployment.

2 In the Class Diagram group of the Tool Palette, select the Association link and draw it from the stereotype to a
shortcut to the type that you have chosen.

Select the created association link. lts properties are displayed in the Properties View.
In the Supplier tab, specify the following properties: supplier multiplicity, supplier role

274

5 If necessary, specify the inspector group and description, as described in the steps 4 and 5 of the previous
procedure.

After the attribute is added to the stereotype, the supplier role (if specified) is used as the tagged value name. If the
supplier role is not specified, the link name or default name is used as a tagged value name. Multiplicity of the tagged

value is equal to the supplier multiplicity. If the upper value of the supplier multiplicity is greater than 1, the attribute
is treated as multivalued.

Note: When the attribute of a metaclass type or the association to a metaclass shortcut is added to a stereotype,
this attribute or association receives the viewmap and icon properties specified in the Profile Definition section
of the Properties View. These properties allow you to select the viewmap and icon for the link that appears
when this profile-specific property is set in the target project for the element with this stereotype.

Related Reference

Profile Definition Properties

275

Setting Viewmap Properties for Stereotypes

You can specify a visual representation of the elements in the profile you create. Values in the icon and viewmap
properties affect the way the elements are displayed on your diagram.

Note: Viewmap property values are different for stereotypes that extend links.

To set viewmap and icon properties

1 Select a stereotype rectangle. The Properties view displays the properties of the selected stereotype.

2 |n the Profile Definition node of the Properties view, choose the extended metaclass field and click the Edit
button.

3 In the selection manager dialog, navigate to the a metaclass and click Add. You can select several extended
metaclasses. Click OK when you are finished.

Tip: The viewmap property is available for the stereotypes that extend one metaclass only.

After a value for the extended metaclass property is provided, viewmap and icon properties are displayed.

Select the viewmap field and click the Edit button. This opens the Viewmap Editor dialog box. Note that
viewmap depends on the type of the extended metaclass. There are different sets of viewmap properties for
the links and nodes.

6 Specify the viewmap properties. For a stereotype that extends a node, select color to specify color for the
element, or select svg to browse for an svg file. If you choose svg, you can also specify the figure from those
described in the selected svg file and specify whether the graphical node with the selected . svg figure will be
resizable. For a stereotype that extends a link, specify values for Source decoration, Target decoration,
Foreground, Background, and Line style options.

7 Click OK to save the changes and close the dialog box.

276

Creating Palette Contributions
In this section you will learn how to create a new tool, assign target diagrams and define the tool icon.
A Palette Contribution is defined by the two basic notions:

¢ its target diagram

¢ contributed stereotypes or pure metaclasses

To create a Palette Contribution

1 Using the Profile Definition tool, add a Palette Contribution node to the diagram background.
In the Properties View, choose Profile Definition node.

In the diagrams field, define the diagram types where you want the new creation tools to appear. Click the
Edit button and in the Select Diagrams dialog box that opens, check the desired diagram types.

4 Inthe icon field, click the Edit button. In the Select Icon dialog box that opens, navigate to the * . gi f file you
want using the Copy From File System button.

Tip: This dialog lets you arrange your icons in an orderly way. Use the Create New Directory
button to create a special folder for storing icons, and populate it with the required images.
This is useful for the large shared projects.

5 Using the Contribution link, define the contributed stereotype set:

¢ Linking to a stereotype defines the contributed stereotype

¢ Linking to a metaclass shortcut defines the contributed pure metaclass

Related Concepts
UML Profiles Basics

Related Procedures

Together Profiles

277

Deploying Profiles

After you create one or more profiles, you can create profile plugins to share them with your team members.

To deploy a created profile

1 Select the Profile Definition project or any project element in the Diagram Editor or Navigator view.

2 Choose Model k Profile ¥ Deploy profile. The Deploy Profile wizard opens.

3 In the Profile Content Project Settings page, update project and plugin settings as required and click Next.
4

In the Behavior page, define the way the new profile will be deployed. Follow the notes of the wizard. Click
Next.

5 In the Target Directory page, select the directory where the plugin will be deployed. You can choose from the
default location, linked folders or an external location outside of the Eclipse platform. Click Finish.

6 Any errors that occur during the profile validation are reported in the Profile Validation Results view. You can
navigate from an error message to the respective profile definition element and correct the error. When you are
ready, click the Deploy button in the view.

7 After the profile plugin is deployed, you will be prompted to restart the workbench and make the new profile
available in the list of supported profiles. Click Yes to restart.

Note: Because the profiles are internationalized on creation, you can edit the .properties file inside your new
profile plugin to provide any strings.

Related Procedures

Uninstalling Profiles

278

Applying Profiles
Profile plugins that you create can be distributed among your team members.

If you have just created a profile plugin, you need to restart Together for the changes to take effect and for the plugin
to become available in the program.

To enable a created profile
1 Select the Navigator view tab. If this view is not open, select Window ¥ Show View F Navigator on the main
menu.

2 |n the Navigator view, right-click the root project folder, and select Properties from the context menu. The
Properties dialog box displays.

From the list on the left, select UML Profiles.
Select the profile you created. More than one can be activated.
Click OK.

Note: There is no binary compatibility of compiled profiles across the various operating systems and versions of
Together. You can copy a deployed profile to the plugins folder on another computer if the operating system
and Together version are the same.

Related Procedures

UML Profiles Basics
Profile Definition Project
A Typical User Scenario of Working With Profiles

279

Adding Attributes to Stereotypes

In this section you will learn how to add attributes to stereotypes, and how to define attribute properties, groupings
and descriptions. After applying a profile, stereotype attributes become visible in the Properties View of the elements
with this stereotype.

You can add attributes to stereotypes in one of the following ways:

¢ Using the Properties View

¢ Using outgoing association links

To add attributes (tagged values) to a stereotype using the Properties View
1 Right-click on the selected stereotype in a profile definition diagram, and choose New k Attribute on the context
menu. Add as many attributes as required.
Select an attribute in the stereotype node. Its properties are displayed in the Properties View.
In the Properties tab:

¢ Choose the name field and enter the attribute name.

¢ Click the type field and specify the valid type using the combobox for primitive types or the selection
manager dialog for the enumerations and metaclasses.

Note: Invalid types are ignored during profile deployment.

4 In the Profile Definition tab, click the inspector group field, and select the inspector group from the list of
existing groups, or create a new one. After applying the profile, the attribute is displayed in a separate tab (group)
of the Properties View.

5 Inthe Description tab, choose the Edit tab and enter description text. After applying the profile, this description
shows up as a tooltip in the tab (group) of the Properties View.

After the attribute is added to the stereotype, the tagged value name is equal to the attribute name. Multiplicity of
the tagged value is equal to the attribute's multiplicity.

Note: If a profile defines attributes with a default value for a given type that is different from the default value in the
underlying implementation, some side effects should be noted. For example, the default value for a Boolean
property is false and is not persisted in the model instance. If a Boolean property is set to true as the
default value in a profile definition and a user sets an instance value to false, its value is not persisted but
interpreted as the default value (t rue) when read back in. Similarly, instance values changed to empty/null
will not be persisted and will likewise be interpreted as the default value when read back in.

To add attributes (tagged values) to a stereotype using outgoing association links
1 On the profile definition diagram, create shortcuts to certain types (Primitive types, Enumerations or
Metaclasses). Note that invalid types are ignored during profile deployment.

2 In the Class Diagram group of the Tool Palette, select the Association link and draw it from the stereotype to a
shortcut to the type that you have chosen.

Select the created association link. lts properties are displayed in the Properties View.
In the Supplier tab, specify the following properties: supplier multiplicity, supplier role

280

5 If necessary, specify the inspector group and description, as described in the steps 4 and 5 of the previous
procedure.

After the attribute is added to the stereotype, the supplier role (if specified) is used as the tagged value name. If the
supplier role is not specified, the link name or default name is used as a tagged value name. Multiplicity of the tagged

value is equal to the supplier multiplicity. If the upper value of the supplier multiplicity is greater than 1, the attribute
is treated as multivalued.

Note: When the attribute of a metaclass type or the association to a metaclass shortcut is added to a stereotype,
this attribute or association receives the viewmap and icon properties specified in the Profile Definition section
of the Properties View. These properties allow you to select the viewmap and icon for the link that appears
when this profile-specific property is set in the target project for the element with this stereotype.

Related Reference

Profile Definition Properties

281

Adding Shortcuts to Metaclasses

When creating your profile definition project, you can use shortcuts to metatypes from the metamodel root. Shortcuts
to metaclasses can be created in several ways, some of which are similar to adding any other shortcut to your
diagram.

To use the Shortcuts dialog box

Right-click the diagram background and select Shortcuts # New. The Shortcuts dialog box opens.
Expand the metamodels node, choose the desired metaclass, and click Add.

Use the Add and Remove buttons to make up a list of extended metaclasses.

Click OK when you are finished.

A WODN -

To use cut, copy, and paste operations

1 Cut, copy, or drag a metaclass in the Model Navigator
2 Paste and drop it to any diagram that is not a package diagram.

To use the drag-and-drop operation to create a shortcut on a package diagram, press and hold the CTRL and SHIFT
keys while dragging an element from the Model Navigator to your package.

Related Procedures

Profile Definition Properties

282

Applying Profiles
Profile plugins that you create can be distributed among your team members.

If you have just created a profile plugin, you need to restart Together for the changes to take effect and for the plugin
to become available in the program.

To enable a created profile
1 Select the Navigator view tab. If this view is not open, select Window ¥ Show View F Navigator on the main
menu.

2 |n the Navigator view, right-click the root project folder, and select Properties from the context menu. The
Properties dialog box displays.

From the list on the left, select UML Profiles.
Select the profile you created. More than one can be activated.
Click OK.

Note: There is no binary compatibility of compiled profiles across the various operating systems and versions of
Together. You can copy a deployed profile to the plugins folder on another computer if the operating system
and Together version are the same.

Related Procedures

UML Profiles Basics
Profile Definition Project
A Typical User Scenario of Working With Profiles

283

Converting Profile-Specific Properties
The converting profiles function helps you reuse projects from Together 2006 in which custom profiles were applied.

This feature is useful for the following scenario:

—

In Together 2006, a profile has been created and deployed. This results in creating a profile plugin.

N

This profile plugin is applied to a certain modeling project.

3 The same profile definition is reused and deployed in Together 2006 R2. This results in creating another profile
plugin, which has different properties names.

The same modeling project is opened in Together 2006 R2. On an attempt to apply the new profile plugin to
this project, the profile-specific properties will loose their values unless they are properly converted.

»

To convert profile-specific properties

1 On the main menu, choose Model k Profile ¥ Convert Properties.
2 If there are no profile-specific properties in the project, no action is performed.

Related Concepts
UML Profiles

284

Creating Palette Contributions
In this section you will learn how to create a new tool, assign target diagrams and define the tool icon.
A Palette Contribution is defined by the two basic notions:

¢ its target diagram

¢ contributed stereotypes or pure metaclasses

To create a Palette Contribution

1 Using the Profile Definition tool, add a Palette Contribution node to the diagram background.
In the Properties View, choose Profile Definition node.

In the diagrams field, define the diagram types where you want the new creation tools to appear. Click the
Edit button and in the Select Diagrams dialog box that opens, check the desired diagram types.

4 Inthe icon field, click the Edit button. In the Select Icon dialog box that opens, navigate to the * . gi f file you
want using the Copy From File System button.

Tip: This dialog lets you arrange your icons in an orderly way. Use the Create New Directory
button to create a special folder for storing icons, and populate it with the required images.
This is useful for the large shared projects.

5 Using the Contribution link, define the contributed stereotype set:

¢ Linking to a stereotype defines the contributed stereotype

¢ Linking to a metaclass shortcut defines the contributed pure metaclass

Related Concepts
UML Profiles Basics

Related Procedures

Together Profiles

285

Creating Profile-Specific Constraints

When defining your profile, you can create a set of specific audits available only for projects with the applied profile.
Such audits can be created as constraints linked to metaclasses in the profile definition project. Note that a constraint
context can be represented only by a metaclass from the target metamodel.

For the following procedure, a stereotype MyStereotype has been defined for um120: :classes::Class, and
you want to verify that the class with this stereotype only extends class with the same stereotype.

To provide the audit, do the following in your profile definition project:

1 Create a shortcuttothe uml120::classes::Class metaclass.

2 Create a constraint element.

3 Link the created constraint with the metaclass shortcut (it gets the context uml20::classes::Class).
4

Type the following in the body of the constraint: inv:stereotypes->includes ('MyStereotype')
implies generalizations->forAll (general.stereotypes->includes ('MyStereotype'))

5 Deploy the profile.

After the profile is applied to some project, it is possible to run profile-specific audits via the Model ¥ Profile ¥ Run
Profile Constrains command.

Note: The description and name properties of the constraint element, specified in the Properties View, are used
in the new audit. The value of the description property is used as the audit description, and the constraint
name and invariant name are used as the audit name.

Related Concepts
UML Profiles Basics

Related Procedures

Together Profiles

286

Creating Stereotypes

To create a Stereotype

1 Using the Profile Definition palette, add a Stereotype node to the diagram background.
In the Properties View, choose Profile Definition node.
In the Extended metaclass field, click the Edit button.

In the dialog box that opens, select the desired metaclasses from the Model Elements pane. Use the Add and
Remove buttons to make up a list of extended metaclasses. Click OK when you are finished.

4 If necessary, specify the required stereotype property:

Working with Required Stereotypes

(5]

Define view properties.

Tip: View properties are not available for the stereotypes that extend across multiple
metaclasses.

Setting Viewmap Properties for Stereotypes

(2]

Add attributes (tagged values) to the stereotype:
Adding Attributes to Stereotypes

7 Using Contribution link, connect the Stereotype to the desired Palette Contribution.

Related Procedures

Working with Required Stereotypes
Setting Viewmap Properties for Stereotypes
Adding Attributes to Stereotypes

287

Working with Required Stereotypes

In this section you will learn how to create a required stereotype and how to manage stereotypes in diagrams after
applying or removing the parent profile of a stereotype.

To create a required stereotype

1 In a Profile Definition, select a stereotype that extends a metaclass.

N

Select an extension link. In the Model Navigator, expand the stereotype node and click the extension link.

Tip: Alternatively, add a shortcut to the parent metaclass to the Profile Definition. The extension
link to the extending stereotype is drawn automatically.

w

In the Properties View of the extension link, select the Profile Definition tab.

»

Set the is required property to t rue. The extension link in the diagram gets the {isRequired} label, and the
bind with profile field appears in the Properties View.

5 Set the bind with profile field as required:
¢ Ifthe field is set to true, after applying the profile to a project, the appropriate elements get the required
stereotype. After the parent profile is turned off, this stereotype is removed from the elements.

¢ Ifthefield is setto false, after applying the profile to a project, the appropriate elements get the required
stereotype. After the parent profile is turned off, this stereotype is preserved.

Tip: This feature is useful for the large team projects and helps avoid confusion that might be caused by applying
custom profiles.

To filter out required stereotypes in diagrams

On the main menu, choose Window k Preferences F Modeling k Profiles ¥ View Management.
Click the tab that corresponds to the appropriate metamodel.
In the list of available profiles, check the stereotypes you would like to hide in diagrams.

A WO DN =

Apply the changes and close the dialog.

Related Concepts
UML Profiles Basics

Related Procedures

Creating Stereotypes

Related Reference

Profile Definition Properties
UML Profiles Preferences View Management

288

Setting Viewmap Properties for Stereotypes

You can specify a visual representation of the elements in the profile you create. Values in the icon and viewmap
properties affect the way the elements are displayed on your diagram.

Note: Viewmap property values are different for stereotypes that extend links.

To set viewmap and icon properties

1 Select a stereotype rectangle. The Properties view displays the properties of the selected stereotype.

2 |n the Profile Definition node of the Properties view, choose the extended metaclass field and click the Edit
button.

3 In the selection manager dialog, navigate to the a metaclass and click Add. You can select several extended
metaclasses. Click OK when you are finished.

Tip: The viewmap property is available for the stereotypes that extend one metaclass only.

After a value for the extended metaclass property is provided, viewmap and icon properties are displayed.

Select the viewmap field and click the Edit button. This opens the Viewmap Editor dialog box. Note that
viewmap depends on the type of the extended metaclass. There are different sets of viewmap properties for
the links and nodes.

6 Specify the viewmap properties. For a stereotype that extends a node, select color to specify color for the
element, or select svg to browse for an svg file. If you choose svg, you can also specify the figure from those
described in the selected svg file and specify whether the graphical node with the selected . svg figure will be
resizable. For a stereotype that extends a link, specify values for Source decoration, Target decoration,
Foreground, Background, and Line style options.

7 Click OK to save the changes and close the dialog box.

289

Adding Attributes to Stereotypes

In this section you will learn how to add attributes to stereotypes, and how to define attribute properties, groupings
and descriptions. After applying a profile, stereotype attributes become visible in the Properties View of the elements
with this stereotype.

You can add attributes to stereotypes in one of the following ways:

¢ Using the Properties View

¢ Using outgoing association links

To add attributes (tagged values) to a stereotype using the Properties View
1 Right-click on the selected stereotype in a profile definition diagram, and choose New k Attribute on the context
menu. Add as many attributes as required.
Select an attribute in the stereotype node. Its properties are displayed in the Properties View.
In the Properties tab:

¢ Choose the name field and enter the attribute name.

¢ Click the type field and specify the valid type using the combobox for primitive types or the selection
manager dialog for the enumerations and metaclasses.

Note: Invalid types are ignored during profile deployment.

4 In the Profile Definition tab, click the inspector group field, and select the inspector group from the list of
existing groups, or create a new one. After applying the profile, the attribute is displayed in a separate tab (group)
of the Properties View.

5 Inthe Description tab, choose the Edit tab and enter description text. After applying the profile, this description
shows up as a tooltip in the tab (group) of the Properties View.

After the attribute is added to the stereotype, the tagged value name is equal to the attribute name. Multiplicity of
the tagged value is equal to the attribute's multiplicity.

Note: If a profile defines attributes with a default value for a given type that is different from the default value in the
underlying implementation, some side effects should be noted. For example, the default value for a Boolean
property is false and is not persisted in the model instance. If a Boolean property is set to true as the
default value in a profile definition and a user sets an instance value to false, its value is not persisted but
interpreted as the default value (t rue) when read back in. Similarly, instance values changed to empty/null
will not be persisted and will likewise be interpreted as the default value when read back in.

To add attributes (tagged values) to a stereotype using outgoing association links
1 On the profile definition diagram, create shortcuts to certain types (Primitive types, Enumerations or
Metaclasses). Note that invalid types are ignored during profile deployment.

2 In the Class Diagram group of the Tool Palette, select the Association link and draw it from the stereotype to a
shortcut to the type that you have chosen.

Select the created association link. lts properties are displayed in the Properties View.
In the Supplier tab, specify the following properties: supplier multiplicity, supplier role

290

5 If necessary, specify the inspector group and description, as described in the steps 4 and 5 of the previous
procedure.

After the attribute is added to the stereotype, the supplier role (if specified) is used as the tagged value name. If the
supplier role is not specified, the link name or default name is used as a tagged value name. Multiplicity of the tagged

value is equal to the supplier multiplicity. If the upper value of the supplier multiplicity is greater than 1, the attribute
is treated as multivalued.

Note: When the attribute of a metaclass type or the association to a metaclass shortcut is added to a stereotype,
this attribute or association receives the viewmap and icon properties specified in the Profile Definition section
of the Properties View. These properties allow you to select the viewmap and icon for the link that appears
when this profile-specific property is set in the target project for the element with this stereotype.

Related Reference

Profile Definition Properties

291

Defining Profile Properties

When a Profile Definition project is created, you can specify or edit profile properties that are accessible via the
default package diagram of the Profile Definition project. These properties are:

¢ Textual profile description

¢ Namespace, which identifies the profile

To specify profile definition properties

Open the default package diagram of the Profile Definition project.

On the context menu of the diagram, choose Properties. The Properties View opens.

In the Properties View, select the Profile Definition tab.

Click the description field and enter the description text. Optionally, click the Edit button.

a Hh ON -

Click the namespace field and enter a valid string.

Related Reference

Profile Definition Properties

292

Deploying Profiles

After you create one or more profiles, you can create profile plugins to share them with your team members.

To deploy a created profile

1 Select the Profile Definition project or any project element in the Diagram Editor or Navigator view.

2 Choose Model k Profile ¥ Deploy profile. The Deploy Profile wizard opens.

3 In the Profile Content Project Settings page, update project and plugin settings as required and click Next.
4

In the Behavior page, define the way the new profile will be deployed. Follow the notes of the wizard. Click
Next.

5 In the Target Directory page, select the directory where the plugin will be deployed. You can choose from the
default location, linked folders or an external location outside of the Eclipse platform. Click Finish.

6 Any errors that occur during the profile validation are reported in the Profile Validation Results view. You can
navigate from an error message to the respective profile definition element and correct the error. When you are
ready, click the Deploy button in the view.

7 After the profile plugin is deployed, you will be prompted to restart the workbench and make the new profile
available in the list of supported profiles. Click Yes to restart.

Note: Because the profiles are internationalized on creation, you can edit the .properties file inside your new
profile plugin to provide any strings.

Related Procedures

Uninstalling Profiles

293

Enabling UML Profiles

There are several ways to enable UML profiles for Together projects.

To enable UML profiles support while creating a project

1 On the main menu, choose File ¥ New F Project. The New Project wizard opens.

2 Expand the Modeling node in the tree view list, and select the UML project you want to create (UML 2.0 or UML
1.4). Click Next.

3 Follow the wizard to the Profiles screen. The Profiles screen of the wizard lists available profiles.

4 Select one or more profiles you want to enable and click Next to continue creating a new project with the New
Project wizard.

To enable UML profiles support for existing projects
1 In the Model Navigator, right-click the root project folder, and select Properties on the context menu. The
Properties for <project> dialog box displays.
2 From the list on the left, select UML Profiles.
3 Select any of the UML profiles that you want to enable. More than one can be activated.
4 Click OK.

Note: You can also access the Properties for <project> dialog box through the Model Package Explorer view
and Navigator view.

To specify the default set of UML profiles enabled for all new workspace projects

1 Choose Window k Preferences on the main menu.

2 In the left pane of the Preferences dialog box, expand the Modeling node.
3 Select the UML Profiles node.

4 Select the profiles you want to enable for UML 1.4 and UML 2.0 projects.

Note: The selected UML profiles are automatically enabled for projects created after you changed profile
preferences. Profiles support of existing projects is not changed.

294

Exporting and Importing Profiles

In this section you will learn how to export and import profile plugins.

To export profiles

On the main menu, choose File ¥ Export.

In the Export dialog, under the Modeling node, choose Profile Plug-ins and click Next .

In the list of available profiles, check the ones to be exported.

Specify the target directory, entering its fully qualified name in the text field or clicking the Browse button.
Click Finish.

a Hh ON -

Note: When exporting, you do not have to copy default values for properties to the target directory. The data from
the other model should provide similar functionality with default values if it has a similar active profile.

With XMI exports, default values are stored in the profile itself (the defaultValue property of
the stereotype attribute). For example, when you export a Together model with a profile
applied, two files are created: model .uml and model.profile.uml. The profile's default
values are stored in the latter, and ownership of the profile default values are repeated.

To import profiles

1 On the main menu, choose File ¥ Import.
In the Import dialog, under the Modeling node, choose Profile Plug-ins and click Next .

In the Search profile plug-ins in directory field, specify the source directory where the plug-ins you want are
stored. The list of available profiles is displayed.

In the list of profiles encountered in the specified folder, check the ones to be imported, and click Next.
Specify the target directory.

¢ Ifyou click the Target plug-ins directory radio button, the selected profile plug-ins will be imported to the
default directory.

¢ If you click the Linked directory radio button, the selected profile plug-ins will be imported to the linked
directory of your choice. Optionally, you can link new directories using the Link New Directory button.

6 Click Finish.

Related Procedures

UML Profiles Basics

295

Opening Profile Definition

In this section you will learn how to view and modify definitions of the custom profiles and profiles that come bundled
with Together. A profile definition opens as a UML 2.0 project.

To open a profile definition

1 On the main menu, choose Model k Profile ¥ Open Profile Definition.
The Open Profile Definition dialog displays the list of profiles that declare their definitions.

2 Check the profile you want and click Finish. The selected profile definition opens as a UML 2.0 project.

Related Concepts

Profile Definition Project

Related Procedures
UML Profiles Basics

296

Setting Viewmap Properties for Stereotypes

You can specify a visual representation of the elements in the profile you create. Values in the icon and viewmap
properties affect the way the elements are displayed on your diagram.

Note: Viewmap property values are different for stereotypes that extend links.

To set viewmap and icon properties

1 Select a stereotype rectangle. The Properties view displays the properties of the selected stereotype.

2 |n the Profile Definition node of the Properties view, choose the extended metaclass field and click the Edit
button.

3 In the selection manager dialog, navigate to the a metaclass and click Add. You can select several extended
metaclasses. Click OK when you are finished.

Tip: The viewmap property is available for the stereotypes that extend one metaclass only.

After a value for the extended metaclass property is provided, viewmap and icon properties are displayed.

Select the viewmap field and click the Edit button. This opens the Viewmap Editor dialog box. Note that
viewmap depends on the type of the extended metaclass. There are different sets of viewmap properties for
the links and nodes.

6 Specify the viewmap properties. For a stereotype that extends a node, select color to specify color for the
element, or select svg to browse for an svg file. If you choose svg, you can also specify the figure from those
described in the selected svg file and specify whether the graphical node with the selected . svg figure will be
resizable. For a stereotype that extends a link, specify values for Source decoration, Target decoration,
Foreground, Background, and Line style options.

7 Click OK to save the changes and close the dialog box.

297

Uninstalling Profiles

The uninstalling profile feature enables you to correctly remove the unused profile plugins, which involves detaching
them from all projects in your workspace and deleting them from the file system.

To uninstall a profile
1 On the main menu, choose Model F Profile k Uninstall Profile.

2 Select the profiles to be uninstalled.

Related Procedures

UML Profiles Basics

298

Verifying a Model Against Profile Constraints

Verification of a profile involves defining the necessary constraints within the target metamodel, and an actual
verification of a model against the selected constraints.

To verify a model against an applied profile
1 On the main menu, choose Window F Preferences F Profile ¢ Constraints, and choose the desired
constraints in the appropriate metamodel.
2 On the main menu, choose Model k Profile ¥ Run Constraints.

Note: You can specify a scope for profile constraints after choosing Model k Profile k Run
Constraints. The possible constraint restrictions are selected resource (single selection),
package (shallow or deep), and project. The Profile Constraint history contains the project
name. The project name is qualified with an actual item.

The results of verification display in the Profile Constraints view. You can navigate from any entry in the table to
the respective element in diagram.

Related Procedures
UML Profiles Basics

Related Reference

UML Profiles Preferences Constraints

299

Working with Required Stereotypes

In this section you will learn how to create a required stereotype and how to manage stereotypes in diagrams after
applying or removing the parent profile of a stereotype.

To create a required stereotype

1 In a Profile Definition, select a stereotype that extends a metaclass.

N

Select an extension link. In the Model Navigator, expand the stereotype node and click the extension link.

Tip: Alternatively, add a shortcut to the parent metaclass to the Profile Definition. The extension
link to the extending stereotype is drawn automatically.

w

In the Properties View of the extension link, select the Profile Definition tab.

»

Set the is required property to t rue. The extension link in the diagram gets the {isRequired} label, and the
bind with profile field appears in the Properties View.

5 Set the bind with profile field as required:
¢ Ifthe field is set to true, after applying the profile to a project, the appropriate elements get the required
stereotype. After the parent profile is turned off, this stereotype is removed from the elements.

¢ Ifthefield is setto false, after applying the profile to a project, the appropriate elements get the required
stereotype. After the parent profile is turned off, this stereotype is preserved.

Tip: This feature is useful for the large team projects and helps avoid confusion that might be caused by applying
custom profiles.

To filter out required stereotypes in diagrams

On the main menu, choose Window k Preferences F Modeling k Profiles ¥ View Management.
Click the tab that corresponds to the appropriate metamodel.
In the list of available profiles, check the stereotypes you would like to hide in diagrams.

A WO DN =

Apply the changes and close the dialog.

Related Concepts
UML Profiles Basics

Related Procedures

Creating Stereotypes

Related Reference

Profile Definition Properties
UML Profiles Preferences View Management

300

Configuring Implementation Projects

This part provides how-to information on setting Together preferences and options for the implementation projects.

In This Section
Configuring C++ Projects
How to define C++ project structure and language-specific options.

Configuring IDL Projects
How to define IDL project structure and language-specific options.

301

Configuring C++ Projects

In this section, you will learn how to define the project structure and processing options:

L4

* & & & o oo o

Access C++ project properties

Define source path

Define entry points

Include search paths

Define C++ processing settings (for example, skip standard includes option, or suffixes for the C++ files)
Define indexer

Enable C++ formatting

Set up formatting options

To configure a C++ project

Select the desired project in the Model Navigator.
On the main menu, choose Project Properties.

Tip: Alternatively, choose Properties on the context menu of the project.

The Properties for <project> dialog opens. Select the Project Properties page.

In the Project source path tab, click the Link Additional Source to Project button.
In the Link Additional Source dialog, specify the linked folder location and name, and click OK.

Tip: Use the context menu of the linked folder to remove it, mark it read-only, or filter it.

Configure parsing entry points using the Configure Entry points dialog.
In the Include paths tab, click Add.

In the Add Include Folder dialog, enter the folder name or click Browse and navigate to the folder you want
to add.

In the C++ Processing Settings tab, select your C++ project options.

¢ To skip standard includes, check the Skip standard includes option.

¢ If you want to use the preinclude file, specify its name in the Preinclude file name field.

Select the C/C++ indexer page, and select an indexer from the list. Among the available indexers, you can
choose the Borland indexer.

To enable C++ formatter

1

On the main menu, choose Window F Preferences
Under the C/C++ category, select the Code Formatter page.
From the list of available formatters, select Together C++ Code Formatter.

302

To set up formatting options
1 Under your Together installation, expand the plugins folder.

2 Inthe com.borland.tg.cdtintegration plugin, open the formatter.properties file.
3 Use the documentation provided with the file to edit as required.

Related Reference

New project Wizard C++ Language-Specific Options
C++ Projects

303

Configuring IDL Projects

In this section you will learn how to define the project structure and processing options:

L4

¢
¢
¢

To

Access IDL project properties
Define source path
Include search paths

Define IDL processing settings

configure an IDL project
Select a project in the Model Navigator.

On the main menu, choose Project Properties.

Tip: Alternatively, choose Properties on the context menu of the project.

In the Project source path tab, click the Link Additional Source to Project button.
In the Link Additional Source dialog, specify the linked folder location and name, and click OK.

Tip: Use the context menu of the linked folder to remove it, mark it read-only, or filter it.

In the Include paths tab, click Add.
In the Add Include Folder dialog, enter the folder name or click Browse and navigate to the folder.

Inthe IDL Processing Settings tab, select your IDL project options. Refer to the IDL Language-Specific Options
section for details.

Related Reference

New project Wizard IDL Language-Specific Options

IDL Language-Specific Information

304

Together UML 2.0 Diagrams

This section provides how-to information on using Together UML diagrams.

In This Section
UML 2.0 Class Diagrams Procedures
Lists the UML 2.0 Class Diagrams Procedures.

UML 2.0 Use Case Diagrams Procedures
Lists the UML 2.0 Use Case Diagrams Procedures.

UML 2.0 Interaction Diagrams Procedures
Lists the UML 2.0 Interaction Diagrams Procedures.

UML 2.0 State Machine Diagrams Procedures
Lists the UML 2.0 State Machine Diagrams Procedures.

UML 2.0 Activity Diagrams Procedures
Lists the UML 2.0 Activity Diagrams Procedures.

UML 2.0 Component Diagrams Procedures
Lists the UML 2.0 Component Diagrams Procedures.

UML 2.0 Deployment Diagrams Procedures
Lists the UML 2.0 Deployment Diagrams Procedures.

UML 2.0 Composite Structure Diagrams Procedures
Lists the UML 2.0 Composite Structure Diagrams Procedures.

Template Elements
This section describes how to create template elements in diagrams and define formal parameters.

305

UML 2.0 Class Diagrams Procedures

In This Section
Adding Owned Behavior to a Class
Lists the steps for adding a classifier behavior to a class.

Changing the Appearance of Compartments
About changing the appearance of the class compartments in diagrams.

Changing the Appearance of Interfaces
About changing the appearance of interfaces.

Creating and Editing Properties
How to activate Java Beans and create/delete properties.

Creating Class By Template
How to create an element by template.

Creating Data Types
How to create and extend a data type.

Creating Enumerations and Enumeration Literals
Lists the steps for creating an enumeration and extending an enumeration literal.

Creating, Editing and Opening Header and Implementation Files in C++ Projects
How to create header and implementation files of C++ classes and interfaces, and how to open these files
from the Diagram Editor.

Working with a Constructor
How to create a constructor and define constructor parameters.

Working with a Field
How to rename a field, and how to define its visibility and stereotype.

Working with a Provided or Required Interface
How to work with the provided and required interfaces. These procedures are common to UML 2.0 Class,
Component and Composite Structure diagrams.

Working with a Relationship
How to work with a relationship link (common for UML 1.4 and 2.0).

Working with Association classes and n-ary associations
How to create and delete association classes and n-ary associations.

Working with Inner Classes
Lists the steps for creating inner classes.

Working with Instance Specifications
Lists the steps for instantiating classifiers using the Properties View or the in-place editor.

306

Adding Owned Behavior to a Class

You can add behavior to a class. Behavior is defined by an activity, state machine or interaction.

Note: This feature is available in the design projects only.

To add a classifier behavior to a class

1 Select a class in a diagram.
In the Properties View, click the classifier behavior field.

In the Select Behavior for Classifier Behavior Property dialog, select the desired element in the Model
Elements pane.

4 Use the Add and Remove buttons to make up a list of Selected Elements.
Click OK when you are finished.

The owned behaviors can be added to a classifier by pasting a behavior into the classifier (for example, cutting an
activity and pasting it to a class) or via the Context menu. This way, the interaction can be added to the class, and
activity and interaction can be added to the use case.

Related Concepts

UML 2.0 Class Diagram Definition

Related Procedures

UML 1.4 Class Diagrams Procedures

307

Changing the Appearance of Compartments

You can collapse or expand compartments for the different members of class, interface, and package elements. Use
the Preferences dialog to set viewing preferences for compartment controls. Adding compartment controls is
particularly useful when you have large container elements with content that does not need to be visible at all times.

To show compartment controls

1 On the main menu, choose Window F Preferences.
2 Open the Modeling k View Management page.
3 Check the Always show Attributes and Operations compartments option.

To collapse or expand compartments

1 Select the class (or interface) on the diagram.
2 Click the “+” or “~” in the left corner of the compartment.

Related Reference

UML 2.0 Class Diagrams
UML 1.4 Class Diagrams

308

Changing the Appearance of Interfaces

Note: This feature is available in the design projects only.

To show an interface as a circle using the context menu

1 Right-click the interface element in the Diagram View or Model View.
2 Choose Show as circle.

Tip: This menu item works as a toggle. Right-click again and choose Show as circle to show the interface element
as a rectangle.

Note: Interfaces shown as small circles do not show their members in the Diagram View. Use the Model View to
view the members.

To show an interface as a circle using the Properties View

1 Select the interface element in the Diagram View or Model View.
2 Press F4 to open the Properties View.
3 Set the Circle view property as True.

Tip: Choose False for the Circle view property to show the interface element as a rectangle.

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

309

Creating and Editing Properties

If recognizing Java Beans is enabled, creating a property results in creating a property attribute and its accessor
methods in the source code. Properties display in a class icon in the Properties compartment. Optionally, you can
show the participants of a property (its attribute and the getter and setter methods) in the Attributes and Operations
compartments of the class icon, respectively. The participants are hidden by default.

When the Java Beans Properties Support is activated, using the cut, copy, paste, clone, or delete commands on a
property member applies to the property attribute and to its getters and setters. If recognizing Java Beans is disabled,
special care is required when editing or deleting properties. If you edit the property type using the in-place editor,
the relevant types in the accessor methods will not be synchronized. The same result occurs when a property is
deleted; that is, the accessor methods stay in place and should be deleted individually.

Note: This feature is available in the implementation projects only.

To activate or deactivate Java Beans

1 On the main menu, choose Window k Preferences. The Preferences dialog opens.
2 Under the Modeling node, select Java.
3 Check the Recognize Java Bean Properties option. Refer to the Java Preferences description for details.

To add a property member to a class element

1 Select the target class in the diagram.
2 On the context menu, choose New F Property.

To show property participants

1 On the main menu, choose Window k Preferences. The Preferences dialog opens.
2 Under the Modeling node, select Java.

3 Uncheck the Hide Java Bean Properties Participants option. Refer to the Java Preferences description for
details.

Related Procedures

Java Preferences

310

Creating Class By Template

Use the Class By Template button on the Palette diagram to implement source code constructions or solutions in
your model.

Note: This feature is available in the implementation projects only.

To create a class by template

Select Class by Template in the Tools Palette.
Click on the diagram background. The Apply template dialog box opens.
Select the appropriate template from the Templates tree.

A WODN -

Set each value field within the Parameters area, or click Finish to apply default values.

Related Procedures

Apply Template Wizard

311

Creating Data Types

Data types are created as regular diagram elements, using the Tool Palette or New Data Type command on the
diagram context menu. You can add attributes and operations to data types using the context menu.

Note: This feature is available in the design projects only.

To extend a data type

Select a data type in a diagram.

In the Properties View, select the extends field and click the chooser button.

In the Select Data type for Extends Property dialog, select the desired element in the Model Elements pane.
Use Add and Remove buttons to make up a list of Selected Elements.

Click OK when you are finished.

a b ON -

Related Concepts
UML 2.0 Class Diagram Definition

Related Procedures

Adding Owned Behavior to a Class

312

Creating Enumerations and Enumeration Literals

Enumerations are created as regular diagram elements, using the Tool Palette or the New Enumeration command
on the diagram context menu.

To add an enumeration literal

1 Select an enumeration in the diagram.
On the context menu, choose New Enumeration literal. The new literal is added to the enumeration element.

In the Properties View, select the name field and enter the enumeration name. The name of the literal is
displayed in diagram.

4 Inthe specification field enter the value that is displayed in the diagram next to the enumeration name, delimited
by the equal sign.

To extend an enumeration

1 Select an enumeration in the diagram.
In the Properties View, select the extends field and click the chooser button.

In the Select Enumeration for Extends Property dialog, select the enumeration element you want in the Model
Elements pane.

4 Use the Add and Remove buttons to make up a list of Selected Elements.
Click OK when you are finished.

Related Concepts
UML 2.0 Class Diagram Definition

Related Procedures

UML 1.4 Class Diagrams Procedures

313

Creating, Editing and Opening Header and Implementation Files in
C++ Projects

C++ header files are automatically created when a class, interface or enumeration is added to a diagram. Creating
an implementation file becomes possible when anything that is defined outside the header (for example, an operation
or constructor) exists in the class.

To create an implementation file

1 Select a class in the diagram.

2 Right-click the selection and choose New on the context menu.

3 On the submenu, choose the member that you want (operation, constructor or destructor).
4 Right-click the member and choose Create member definition on the context menu.

An implementation file is created. If the implementation file already exists, the new member definition is added to
this file. The implementation file opens in the separate tab of the editor.

To open a header file for editing

1 Select a class in the diagram.
2 Double-click the selected node.

To open an implementation file for editing

1 Select a class in the diagram.
2 Right-click the member and choose Edit member definition on the context menu.

Related Procedures

Special Considerations for C++ Projects

314

Working with a Constructor

You can create as many constructors in a class as needed using the New ¥ Constructor command of the context
menu of a class.

In implementation projects, each new constructor is created with its unique set of parameters. In addition to creating
parameters automatically, you can define the custom set of parameters using the Properties View.

In design projects, a constructor is created as an operation with the <<create>> stereotype.

Tip: You can move, copy and paste constructors and destructors between the container classes the same way as
you would do th