
Borland Together 2008

Borland Together Modeling Guide

Micro Focus
575 Anton Blvd., Suite 510
Costa Mesa, CA 92626

Copyright (C) 2011 Micro Focus IP Development Limited. All Rights Reserved. Portions Copyright (C) 1998-2009
Borland Software Corporation (a Micro Focus company).

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are trademarks or registered trademarks of
Micro Focus IP Development Limited or its subsidiaries or affiliated companies in the United States, United Kingdom,
and other countries.

BORLAND, the Borland logo, and Borland product names are trademarks or registered trademarks of Borland Software
Corporation or its subsidiaries or affiliated companies in the United States, United Kingdom, and other countries.

All other marks are the property of their respective owners.

June 2011
PDF

2

Getting Started
Getting Started with Together

Together Overview ... 25
Together Documentation Set ... 27
Sample Projects and Cheat Sheets ... 28
Help on Help .. 29
Tour of Together .. 30

3

Concepts
Concepts

Together Basics ... 38
Together Project Overview ... 39
Package Overview .. 40
Together Diagram Overview ... 41
Diagram Format .. 42
Containment Metamodel ... 43
Model Element Overview .. 44
Model Shortcut Overview .. 45
Roundtrip Engineering Overview .. 46
Language Support .. 47
Generating Source Code Based on Model ... 48
Model Hyperlinking Overview ... 49
Model Annotation Overview .. 50
Together Capabilities Activation ... 51

Together Interoperability and Migration ... 54
Modeling Overview .. 56

Together Modeling .. 57
UML Modeling Overview .. 60

Supported UML Specifications ... 61
UML 2.0 Diagrams .. 62

UML 2.0 Activity Diagram Definition .. 63
UML 2.0 Class Diagram Definition .. 66
UML 2.0 Use Case Diagram Definition .. 68
UML 2.0 Component Diagram Definition ... 70
UML 2.0 Composite Structure Diagram Definition ... 71
UML 2.0 Deployment Diagram Definition .. 73
UML 2.0 State Machine Diagram Definition .. 74
Interaction (Sequence and Communication) Diagrams ... 77

UML 1.4 Diagrams .. 79
UML 1.4 Class Diagram Definition .. 80
Package and logical class diagrams ... 82
UML 1.4 Sequence Diagram Definition ... 83
UML 1.4 Collaboration Diagram Definition .. 85
UML 1.4 Use Case Diagram Definition .. 86
UML 1.4 Statechart Diagram Definition ... 88
UML 1.4 Activity Diagram Definition .. 90
UML 1.4 Component Diagram Definition ... 93
UML 1.4 Deployment Diagram Definition .. 94

Business Process Modeling ... 96
Data Modeling .. 100

Data Modeling Overview ... 101
Logical and Physical Data Models .. 102

Model Transformation Support .. 103
UML Profiles ... 105

UML Profiles Basics .. 106
Profile Definition Project ... 107
Supported Metamodels ... 108
Stereotype .. 109
Palette Contribution .. 110
Extension Link .. 111
Contribution Link ... 112

4

Modeling for EJB .. 113
Model Compare and Merge ... 114
Template Elements and Generics Overview .. 115
Model Import and Export Overview .. 116
OCL Support .. 118

About OCL Support in Together ... 119
OCL Constraints and Expressions .. 121
OCL on Non-Class Diagrams ... 122

Patterns and Templates ... 124
Patterns and Templates Overview .. 125
Pattern Definition Project .. 127
Pattern recognition .. 128
Templates ... 129

Quality Assurance .. 130
Code Audits .. 131
Model Audits ... 132
Code Metrics ... 133
Model Metrics .. 134
Metrics Graphical Representation .. 135
Exporting and Importing Audits and Metrics ... 137

Refactoring Overview ... 138
Requirements Management ... 139
Version Control in Together ... 140
Project Documentation ... 143

Documentation Generation Overview ... 144
Documentation Template .. 146

Documentation Generator Metamodel .. 147
Organization of a Documentation Template .. 149
Documentation Template Sections .. 151
Documentation Template Controls .. 154
Multi-frame Documentation Templates .. 157
Hyperlinks in Documentation .. 158
Javadoc Link References ... 159
Enable Conditions ... 160

5

Procedures
Procedures

Getting Started Procedures ... 164
Activating Together Capabilities ... 166
Adding a Single Model Element to a Diagram .. 167
Bookmarking Model Elements .. 168
Choosing a Together Perspective .. 169
Configuring Together Preferences on the Workspace and Diagram Levels 170
Creating a Browse-Through Sequence of Diagrams .. 171
Creating a Diagram ... 172
Creating a Project ... 174
Creating a Shortcut ... 175
Creating a Simple Link .. 176
Deleting a Diagram ... 177
Deleting Elements ... 178
Hiding and Showing Model Elements ... 179
Opening a Diagram ... 180
Opening a Diagram Element in the Source Code Editor .. 182
Printing Diagrams ... 183
Reusing Existing Source Code in Modeling Projects .. 184
Selecting Model Elements .. 185
Using Drag-and-Drop .. 186
Using Example Projects .. 187

Diagrams .. 188
Common Diagrams Procedures ... 189

Annotating a Diagram .. 190
Browsing a Diagram with Overview Pane ... 191
Changing the Default Diagrams Directory ... 192
Closing a Diagram ... 193
Creating a Diagram ... 194
Deleting a Diagram .. 196
Exporting a Diagram to an Image .. 197
Hyperlinking Diagrams .. 198
Opening a Diagram ... 200
Opening a Diagram Element in the Source Code Editor ... 202
Opening a Parent Diagram .. 203
Printing Diagram Elements .. 204
Printing Diagrams .. 205
Searching Model Elements .. 206
Searching Model with OCL queries ... 207

Customizing Appearance of Together Diagrams .. 208
Hiding and Showing Model Elements .. 209
Using a Class Diagram as a View ... 210
Zooming a Diagram ... 211

Populating Together Diagrams ... 212
Adding a Member to a Container ... 213
Adding a Single Model Element to a Diagram ... 214
Adding Multiple Elements to a Diagram .. 215
Creating a Link with Bending Points .. 216
Creating a Shortcut .. 217
Creating a Simple Link .. 218
Creating an Inner Classifier ... 219

Editing Together Diagrams ... 220

6

Aligning Model Elements ... 221
Assigning a Stereotype to an Element ... 222
Changing Type of an Association Link .. 223
Copying and Pasting Model Elements ... 224
Deleting Elements ... 225
Laying Out a Diagram Automatically ... 226
Laying out a Diagram for Printing .. 227
Moving Model Elements .. 228
Renaming a Diagram ... 229
Rerouting a Link .. 230
Resizing Model Elements .. 231
Selecting Model Elements ... 232
Working with Rulers Guides and Grid ... 233

Together Projects ... 234
Changing the Default Diagrams Directory .. 236
Choosing a Together Perspective .. 237
Configuring C++ Projects .. 238
Configuring IDL Projects ... 240
Converting UML 1.4 Project to UML 2.0 Project ... 241
Creating a Project ... 242
Enabling UML Profiles .. 243
Establishing cross-project references ... 244
Exporting a Project to XMI Format .. 245
Exporting a Project to XMI Format Using the Command Line .. 246
Generating Source Code from Design Project ... 247
Importing a Project in an IBM Rational Rose MDX Model .. 248
Importing a Project in IBM Rational Rose (MDL) Format ... 249
Importing a Project in IBM Rational Rose (MDL) From the Command Line 251
Importing a Project in IBM Rational Rose (MDX) From the Command Line 252
Importing a Project in XMI Format .. 253
Importing Java Modeling Projects Created in Together Edition for Eclipse 7.0 254
Importing Legacy Projects .. 255
Navigating between the Tree View, Diagram, and Source Code ... 257
Resolving Duplicates During an XMI Import ... 259
Reusing Existing Source Code in Modeling Projects .. 260
Showing libraries .. 261
Troubleshooting a Model .. 262
Using Example Projects .. 263
Working with a Package ... 264
XMI Export and Import of the Models with Cross-Project References .. 266

Together Profiles .. 268
A Typical User Scenario of Working With Profiles .. 269

Creating a Project .. 270
Defining Profile Properties ... 271
Creating Stereotypes ... 272
Adding Shortcuts to Metaclasses .. 273
Adding Attributes to Stereotypes ... 274
Setting Viewmap Properties for Stereotypes ... 276
Creating Palette Contributions ... 277
Deploying Profiles .. 278
Applying Profiles .. 279

Adding Attributes to Stereotypes .. 280
Adding Shortcuts to Metaclasses ... 282
Applying Profiles ... 283
Converting Profile-Specific Properties .. 284

7

Creating Palette Contributions .. 285
Creating Profile-Specific Constraints .. 286
Creating Stereotypes .. 287

Working with Required Stereotypes .. 288
Setting Viewmap Properties for Stereotypes ... 289
Adding Attributes to Stereotypes ... 290

Defining Profile Properties .. 292
Deploying Profiles ... 293
Enabling UML Profiles .. 294
Exporting and Importing Profiles ... 295
Opening Profile Definition ... 296
Setting Viewmap Properties for Stereotypes .. 297
Uninstalling Profiles ... 298
Verifying a Model Against Profile Constraints ... 299
Working with Required Stereotypes ... 300

Configuring Implementation Projects ... 301
Configuring C++ Projects .. 302
Configuring IDL Projects ... 304

Together UML 2.0 Diagrams .. 305
UML 2.0 Class Diagrams Procedures .. 306

Adding Owned Behavior to a Class ... 307
Changing the Appearance of Compartments .. 308
Changing the Appearance of Interfaces .. 309
Creating and Editing Properties ... 310
Creating Class By Template .. 311
Creating Data Types .. 312
Creating Enumerations and Enumeration Literals ... 313
Creating, Editing and Opening Header and Implementation Files in C++ Projects 314
Working with a Constructor ... 315
Working with a Field .. 316
Working with a Provided or Required Interface ... 318
Working with a Relationship .. 319
Working with Association classes and n-ary associations ... 320
Working with Inner Classes ... 321
Working with Instance Specifications .. 322

UML 2.0 Use Case Diagrams Procedures .. 324
Creating an Extension Point .. 325
Defining Includes and Extends Links ... 326
Setting Subject for a Use Case ... 327

UML 2.0 Interaction Diagrams Procedures ... 328
A Typical Scenario of Designing a UML 2.0 Interaction Diagram .. 329

Working with Interactions ... 330
Creating an Interaction Use .. 331
Associating a Lifeline with a Classifier ... 332
Defining Decomposition of a Lifeline .. 333
Working with a UML 2.0 Message .. 334
Working with a Combined Fragment .. 336
Creating a State Invariant ... 338

Associating a Lifeline with a Classifier ... 339
Associating a Lifeline with a Referenced Element ... 340
Copying and Pasting an Execution or Invocation Specification ... 341
Creating a Full-Screen Sequence or Communication Diagram from an Interaction 342
Creating a State Invariant .. 343
Creating an Interaction Use ... 344
Defining Decomposition of a Lifeline ... 345

8

Roundtrip Engineering with UML 2.0 Sequence Diagrams .. 346
Working with a Combined Fragment ... 348
Working with a UML 2.0 Message ... 350
Working with Interactions .. 352

UML 2.0 State Machine Diagrams Procedures .. 353
Associating a Transition or a State with a Behavior .. 354
Changing Regions Order in a State ... 355
Creating an OCL Guard Condition for a Transition ... 356
Creating and Editing States ... 357
Creating History Elements ... 359
Creating Members for State Machines, States, and Regions .. 360
Designing a UML 2.0 State Machine Diagram .. 361
Working with a Complex State .. 362
Working with Activities and State Machines Full Screen Diagrams .. 364

UML 2.0 Activity Diagrams Procedures .. 365
Creating Activity Parameters ... 366
Creating Pins ... 367
Designing a UML 2.0 Activity Diagram .. 368
Rotating Activity Partitions ... 369
Using Control Flow Link ... 370
Working with Activities and State Machines Full Screen Diagrams .. 371
Working with Activity Element .. 372
Working with an Object Flow or a Control Flow ... 373

UML 2.0 Component Diagrams Procedures ... 374
Designing a UML 2.0 Component Diagram ... 375
Working with a Provided or Required Interface ... 376
Working with Instance Specifications .. 377

UML 2.0 Deployment Diagrams Procedures .. 379
Designing a UML 2.0 Deployment Diagram .. 380
Working with Artifacts .. 381

UML 2.0 Composite Structure Diagrams Procedures ... 382
Creating a Port .. 383
Creating a Referenced Part ... 384
Creating an Internal Structure for a Node .. 385
Working with a Collaboration Use ... 386
Working with a Provided or Required Interface ... 387
Working with Instance Specifications .. 388

Template Elements ... 390
Creating Constraints .. 391
Creating Generic Template Elements in LiveSource Projects ... 392
Creating Template Elements ... 393
Defining Formal Parameters .. 394
Editing Constraint Expressions .. 395

Together UML 1.4 Diagrams .. 396
UML 1.4 Class Diagrams Procedures .. 397

Changing the Appearance of Compartments .. 398
Creating and Editing Constructors ... 399
Creating Class By Template .. 400
Expanding or Collapsing Compartments ... 401
Extending and Implementing Classes and Interfaces ... 402
Hiding and Showing Members ... 403
Instantiating a Classifier .. 404
Setting Abstract or Final for a Class or Interface ... 405
Setting Visibility for a Class or Interface .. 406
Setting Visibility for Members of a Class or Interface .. 407

9

Showing Different Modeling Views .. 408
Showing Interfaces as Small Circles (lollipops) ... 409
Working with a Constructor ... 410
Working with a Field .. 411
Working with a Relationship .. 413
Working with Association classes and n-ary associations ... 414
Working with Inner Classes ... 415

UML 1.4 Use Case Diagrams Procedures .. 416
Creating an Extension Point .. 417

UML 1.4 Interaction Diagrams Procedures ... 418
Adding a Conditional Block .. 419
Branching Message Links ... 420
Converting Between UML 1.4 Sequence and Collaboration Diagrams 421
Creating Slots .. 422
Generating an Incremental Sequence Diagram .. 423
Refining Collaboration Diagrams ... 424
Refining Sequence Diagrams .. 426
Roundtrip Engineering with Sequence Diagrams .. 429
Using AutoFix .. 431
Using AutoLink Labels ... 432
Working with a UML 1.4 Message ... 433
Working with Classes in Sequence/Collaboration Diagrams ... 435
Working with Operations in Sequence/Collaboration Diagrams .. 436

UML 1.4 Statechart Diagrams Procedures ... 438
Choosing a Target Class for the State Diagram or Activity Diagram ... 439
Creating a Deferred Event ... 440
Creating a Self-Transition .. 441
Creating History ... 442
Creating internal transitions ... 443
Creating Multiple Transitions ... 444
Setting Deep History .. 445
Specifying Entry and Exit Actions .. 446
Specifying entry/exit actions for a state ... 447
Working with a Complex State .. 448

UML 1.4 Activity Diagrams Procedures .. 450
Choosing a Target Class for the State Diagram or Activity Diagram ... 451
Creating a Deferred Event ... 452
Creating a Self-Transition .. 453
Creating an Activity for a State .. 454
Designing a UML 1.4 Activity Diagram .. 455
Specifying Entry and Exit Actions .. 456
Using Object Flow Link .. 457
Working with a Complex State .. 458

UML 1.4 Component Diagrams Procedures ... 460
Designing a UML 1.4 Component Diagram ... 461
Nesting Components ... 462

UML 1.4 Deployment Diagrams Procedures .. 463
Designing a UML 1.4 Deployment Diagram .. 464

Together Business Process Modeling ... 465
Attaching External WSDL File .. 466
Creating a BPMN Project .. 467
Exporting to BPEL/WSDL Files .. 468
Importing BPEL File .. 469
Importing BPMN Projects Created in Together 2006 for Eclipse .. 470
Performing Business Process Simulation ... 471

10

Specifying BPMN Preferences ... 472
Specifying Event and Trigger Type ... 473
Using BPMN Layout Features .. 474
Validating BPMN Diagrams .. 475
Working with Groups .. 476
Working with Projection Bars .. 478
Working With UML Links in a BPMN Project .. 479

Data Modeling Procedures .. 480
Activating ER Logical Diagram Profile .. 481
Creating a Data Modeling Project ... 482
Creating Connection Profile .. 483
Creating Foreign Key in a Physical Data Model ... 484
Creating Logical Data Model .. 485
Creating View Relationships in a Physical Data Model .. 486
Generating Data Model from SQL (DDL) Script ... 487
Generating DDL Script from a Data Modeling Project .. 488
Importing Data Model from Database ... 489
Transforming Logical Data Model to Physical Data Model ... 490

Model Driven Architecture ... 491
Adding a New Ant Task to the Composite Transformation ... 493
Applying Model-To-Model Transformations .. 494
Applying Model-To-Text Transformations ... 496
Applying XSL Transformations ... 497
Building MDA Projects from the Command Line .. 498
Configuring Model-To-Model Transformation Builder ... 499
Configuring Model-To-Text Transformation Builder .. 500
Creating a Composite Transformation .. 501

Adding a New Ant Task to the Composite Transformation .. 502
Creating a Model-To-Model Transformation ... 503
Creating a QVT Library ... 505
Creating an Example MDA Transformation Project .. 506
Creating an MDA Transformation Project ... 507
Creating an XSL Transformation ... 508
Creating Model-To-Text Transformations ... 509
Debugging Model-To-Model Transformations .. 510
Debugging Model-To-Text Transformations ... 511
Debugging XSL Transformations .. 512
Deploying Transformations ... 513
Manually Registering a Metamodel for Use with QVTO ... 514
Opening MDA Views ... 515
Running a Composite Transformation script .. 516
Running an Operational QVT ... 518
Running Compiled Transformations ... 520

Comparing and Merging Models .. 521
Comparing and Merging Shared Models .. 522
Comparing Models .. 523
Merging Models .. 524

Comparing Models .. 525
Together Object Constraint Language (OCL) .. 526

Creating an OCL Guard Condition for a Transition ... 527
Creating Constraints ... 528
Editing Constraint Expressions ... 529
Enabling Source Code Generation from OCL Constraint ... 530
OCL in Documentation Templates .. 531
Searching Model with OCL queries .. 532

11

Using OCL in Model Audits and Metrics ... 533
Working with a Combined Fragment .. 534
Working with Custom OCL Operations ... 536

Patterns and Templates ... 538
Adding a Pattern Part ... 539
Building Pattern ... 540
Creating Model Element by Pattern .. 541
Creating Pattern Definition .. 542
Deleting Patterns Instances .. 543
Editing Templates ... 544
Managing Pattern Definitions in the Pattern Registry ... 545
Recognizing Patterns .. 546
Using Conditions in Templates ... 547
Using the Class Template Editor .. 548
Using the Link Template Editor ... 549
Using the Package Template Editor ... 550
Validating Pattern Definition Projects ... 551
Verifying Pattern Instances ... 552
Working with the Pattern Instances .. 553

Creating Model Element by Pattern ... 554
Adding a Pattern Part .. 555
Verifying Pattern Instances .. 556
Recognizing Patterns .. 557
Deleting Patterns Instances ... 558

Working with the Templates .. 559
Editing Templates .. 560
Using the Class Template Editor ... 561
Using the Link Template Editor ... 562
Using the Package Template Editor .. 563
Using Conditions in Templates .. 564

Together Quality Assurance .. 565
Copying QA Results to Clipboard ... 567
Creating a Metrics Chart ... 568
Creating and Using Code QA Sets ... 569
Exporting and Importing Model Audits/Metrics ... 570
Exporting QA Results ... 571
Flagging Audits in Code .. 572
Generating QA Report .. 573
Grouping and Ungrouping .. 574
Hiding and Showing Audit Results .. 575
Navigating to Problems ... 576
Printing Audit Results ... 577
Refreshing QA Results ... 578
Running Audits and Metrics from the Command Line .. 579
Running Model Audits and Metrics ... 580
Running Model Audits and Metrics as Ant Tasks ... 581
Running Source Code Audits ... 583
Running Source Code Metrics .. 584
Saving and Loading Audit Results .. 585
Saving and Loading Metric Results .. 586
Searching QA Results .. 587
Specifying Quality Assurance Preferences ... 283
Using OCL in Model Audits and Metrics ... 589
Using QA History .. 590
Viewing and Finding QA Descriptions .. 591

12

Viewing Audit Results ... 592
Viewing Metric Results ... 593
Viewing Metrics as Graphs ... 595
Viewing Problem Detection Audits (Detection Metrics) .. 596

Using Version Control and Teams in Together .. 597
Comparing and Merging Shared Models .. 598
Setting Up ClearCase Support ... 599
Setting Up Repositories .. 600
Sharing Projects ... 602
Sharing Templates .. 604

Managing Requirements with Together .. 605
Creating Requirements Based on Use Case .. 606
Creating Traces from Requirements to Model Elements .. 607
Deleting Traces ... 608
Generating Documentation for Requirements .. 609
Modifying Requirement Preferences .. 610
Navigating from Model Elements to Requirements .. 611
Opening Requirements Views .. 612
Searching for Traced Elements .. 613
Synchronizing Traces ... 614
Viewing Element Traces ... 615

Generating Project Documentation ... 616
Configuring the Documentation Generation Facility ... 617
Generating HTML Documentation .. 618
Generating Project Documentation as Ant Task ... 619
Generating Project Documentation from Command Line ... 620
Generating Project Documentation Using Template .. 621

Together Documentation Templates Procedures .. 622
A Typical Scenario of Creating a Custom Documentation Template .. 624

Creating Custom Documentation Template .. 625
Creating Sections .. 626
Creating Stock Sections .. 627
Setting Section Properties ... 629
Setting Area Properties ... 630
Setting Template Properties .. 631
Creating Controls ... 632
Moving, Resizing and Aligning Controls .. 633

A Typical Scenario of Creating a Template for Multi-Frame Documentation 635
Creating Custom Documentation Template .. 636
Defining Frameset Structure .. 637
A Typical Scenario of Creating a Custom Documentation Template .. 638
Setting Call to Template Section Properties .. 639
Hyperlinking Documentation .. 640

Creating Controls .. 641
Creating Custom Documentation Template .. 642
Creating Formatting Styles for Documentation Templates ... 643
Creating Hypertext Links (Advanced) ... 644
Creating Javadoc Link References (Advanced) ... 645
Creating Sections ... 647
Creating Stock Sections ... 648
Defining Frameset Structure ... 650

Setting Template Properties .. 651
Setting Frame and Frameset Properties .. 652

Hyperlinking Controls to Element Documentation .. 653
Hyperlinking Documentation ... 655

13

Hyperlinking Controls to Element Documentation ... 656
Creating Hypertext Links (Advanced) .. 658
Image Mapping (Advanced) .. 659
Creating Javadoc Link References (Advanced) .. 660

Image Mapping (Advanced) .. 662
Moving, Resizing and Aligning Controls ... 663
OCL in Documentation Templates .. 665
Reusing documentation templates from TCC/TA 1.x ... 666
Setting Area Properties ... 667
Setting Call to Template Section Properties ... 668
Setting Frame and Frameset Properties .. 669
Setting Section Properties .. 670
Setting Template Properties ... 671
Using Word Documents in Documentation Templates ... 672

Interoperability and Migration ... 674
Converting Profile-Specific Properties .. 675
Importing a Project in an IBM Rational Rose MDX Model .. 676
Importing a Project in IBM Rational Rose (MDL) Format ... 677
Importing a Project in XMI Format .. 679
Importing Java Modeling Projects Created in Together Edition for Eclipse 7.0 680
Importing Legacy Projects .. 681
Reusing documentation templates from TCC/TA 1.x ... 683
XMI Export and Import of the Models with Cross-Project References .. 684

14

Reference
Reference

Together Glossary ... 690
Together Keyboard Shortcuts .. 692
Additional Resources ... 697
Components of the Together User Interface .. 698

Menus ... 700
Menus .. 701
Model Navigator ... 702
Model Package Explorer Context Menus .. 706
Common Diagram Context Commands ... 712
Package Context Menu ... 716
Common Element Context Commands ... 719
Common Link Context Commands .. 722

Model Bookmarks View .. 724
Compare Editor ... 725
Tool Palette ... 726
Diagram View .. 727
Metamodel Browser View ... 728
Model Package Explorer View .. 729
OCL Expressions View ... 730
Properties View ... 732
QVT Builder .. 736
QVT Editor .. 737
XSL Editor ... 738
Trace View .. 739
Trace Synchronizer View .. 740
Templates View .. 741
Last Validation Results View .. 742
Patterns and Template GUI Components ... 743

Pattern Explorer ... 744
Pattern Registry ... 745
Templates View ... 746
Last Validation Results View ... 747

Quality Assurance GUI Components .. 748
Audit View .. 749
Metric View .. 751
Model Audits View .. 752
Model Metrics View .. 753
Chart View ... 754

Together Projects ... 755
Project Properties ... 756
C++ Projects ... 758

Special Considerations for C++ Projects .. 759
C++ Language-Specific Properties of the Model Elements ... 763
C++ Project Properties .. 764

IDL Language-Specific Information .. 766
New Together Project Wizards ... 768

New Project Wizard Common Pages .. 769
New project Wizard C++ Language-Specific Options .. 770
New project Wizard IDL Language-Specific Options .. 772
New project Wizard Data Modeling Specific Options ... 774
Convert MDL Wizard ... 775

15

Import Together Project Wizard ... 776
Preferences .. 778

Together Preferences ... 779
Generate Documentation Preferences ... 780

Diagram Image Rotation .. 781
Generate HTML Preferences .. 782
HTML Output Options .. 784
RTF Output Options .. 785

Modeling Preferences ... 786
Business Process Preferences .. 788
Data Modeling Preferences ... 790
Diagram Preferences ... 791
EMF Model Compare Preferences .. 793
Export to UML2Tools Preferences .. 795
Interaction Diagrams 2.0 Preferences ... 796
Java Preferences ... 797
Layout Preferences ... 800
OCL ... 804

Predefined OCL Library Operations ... 806
Patterns Preferences ... 808
Print Preferences ... 809
UML Profiles Preferences .. 811

UML Profiles Preferences Constraints ... 813
UML Profiles Preferences View Management .. 814

QA Model ... 815
QA Source ... 816
Find Analyzer Dialog ... 818
Requirements .. 819

CaliberRM ... 820
Source Generation Preferences .. 821

C++ Source Generation Preferences ... 822
Java Source Generation Preferences .. 823

View Management Preferences .. 824
Modeling Resources Team Preferences .. 828
XML ... 829

XML Editor ... 830
Annotation ... 831
Code Assist .. 832
Folding ... 833
Formatter ... 834
Mark Occurrences ... 835
References .. 836
Relocation .. 837
Syntax Coloring ... 838
Templates .. 839
Typing .. 840

XSL ... 841
XSL .. 842
Annotation ... 843
OCL (Syntax Checking) ... 844
Code Assist .. 845
OCL (Syntax Coloring) .. 846
Syntax Coloring ... 847
Run/Debug .. 848

Profiles Reference ... 849

16

Profile Definition Properties .. 850
UML Profile for Business Modeling ... 852
Stereotype Options of UML Profile for Modeling In Color ... 854
UML Profile for Software Development Processes ... 855
EMF API for Together Profiles .. 858

Business Process Diagram .. 864
Mapping Elements .. 865
Mapping Exception Flow ... 866
Mapping Pools and Message Flows ... 868
Mapping Process Structure: Flows and Sequences ... 870
Elements That Are Not Transformed to BPEL .. 872
BPMN Validation View .. 873
BPMN Simulation View ... 874
BPMN Diagram Context Commands .. 875
BPMN Simulation-specific Properties ... 876
BPMN Diagram Toolbar .. 878
BPMN Simulation Report .. 880

UML 1.4 Reference .. 883
UML 1.4 Class Diagrams .. 884

UML 1.4 Class Diagram Elements .. 885
Attribute Context Menu .. 886
Attribute Properties .. 887
Class Context Menu .. 888
Class Diagram Context Menu .. 891
Class Diagram Properties .. 892
Class Diagram Relationships .. 893
Class, Inner Class, and Interface Properties ... 895
Dependency Link Properties ... 896
Extend/Include Link Properties .. 897
Generalization/Implementation Link Properties ... 898
LiveSource Rules .. 899
Object Context Menu ... 900
Object Properties ... 901
Operation Context Menu ... 902
Operation Properties ... 904
Package Properties ... 906

UML 1.4 Use Case Diagrams ... 907
UML 1.4 Use Case Diagram Elements .. 908
Actor Properties ... 909
Generalization Link Properties .. 910
Use Case Diagram Context Commands ... 911
Use Case Diagram Elements Context Menu ... 912
Extension Point .. 913
Use Case Properties ... 914

UML 1.4 Interaction Diagrams .. 915
UML 1.4 Interaction Diagram Elements ... 916
Conditional Block ... 917
UML 1.4 Message ... 918
Activation Bar .. 919
Nested Message .. 920
Message Link Properties ... 921

UML 1.4 Statechart Diagrams .. 922
UML 1.4 Statechart Diagram Elements ... 923
State .. 924
Transition ... 925

17

Deferred Event .. 926
UML 1.4 Activity Diagrams .. 927

UML 1.4 Activity Diagram Elements .. 928
Activity Diagram Context Commands .. 929
History Properties .. 930
Horizontal and Vertical Fork/Join Properties ... 931
Transition Link Properties .. 932

UML 1.4 Component Diagrams .. 933
UML 1.4 Component Diagram Elements ... 934

UML 1.4 Deployment Diagrams .. 935
UML 1.4 Deployment Diagram Elements .. 936

UML 2.0 Reference .. 937
UML 2.0 Class Diagrams .. 938

UML 2.0 Class Diagram Elements .. 939
Class Diagram Relationships .. 941
Class Diagram Properties .. 943
Association Class and N-ary Association .. 944
Dependency Link Properties ... 945
Generalization/Implementation Link Properties ... 946
Operation Context Menu ... 947

UML 2.0 Use Case Diagrams ... 949
UML 2.0 Use Case Diagram Elements .. 950
Extension Point .. 952

UML 2.0 Interaction Diagrams .. 953
UML 2.0 Sequence Diagram Elements ... 954
UML 2.0 Communication Diagram Elements .. 955
Interaction .. 956
UML 2.0 Message ... 957
Execution Specification and Invocation Specification .. 959
Operator and Operand for a Combined Fragment .. 960
Clipboard operations with execution and invocation specifications ... 962

UML 2.0 State Machine Diagrams .. 963
UML 2.0 State Machine Diagram Elements .. 964
State Machine Diagram Context Commands .. 966
State Machine Diagram Elements Properties .. 968
Transition ... 975
History Element (State Machine Diagrams) .. 976

UML 2.0 Activity Diagrams .. 977
UML 2.0 Activity Diagram Elements .. 978
UML 2.0 Activity Diagram Context Commands ... 980

UML 2.0 Component Diagrams .. 982
UML 2.0 Component Diagram Elements ... 983

UML 2.0 Deployment Diagrams .. 984
Deployment Diagram Context Commands .. 985
UML 2.0 Deployment Diagram Elements .. 987

UML 2.0 Composite Structure Diagrams .. 988
UML 2.0 Composite Structure Diagram Elements ... 989

Data Modeling Reference .. 990
ER Logical Diagram Elements .. 991
ER Physical Diagram Elements .. 992
Element Context Menu Commands of ER Logical Diagram ... 993
ER Physical Diagram Context Commands ... 994
Element Context Menu Commands of ER Physical Diagram ... 995
Links Context Menu Commands of ER Physical Diagram .. 996

MDA ... 997

18

QVT Language ... 998
QVTO Language ... 1008
XSL/OCL Language .. 1009
QVT Ant Tasks .. 1023
QVT Operational Ant Tasks .. 1025
Model-To-Text Ant Tasks ... 1027
XSL/OCL Ant Tasks .. 1028
QVT Operational Migration Notes ... 1029
QVT Operational Imperative Iterators ... 1037
QVT Operational Transformation Wizard Configuration Properties .. 1039
QVTO/OCL Collections and Operations ... 1040
MDA Example Projects ... 1044
EMF API for Together Models .. 1045
Model Compare/Merge ... 1050

Requirements Management ... 1052
Element Traces View .. 1053
Trace Synchronizer View .. 1054

Patterns and Templates ... 1055
Patterns and Template GUI Components ... 1056

Pattern Explorer ... 1057
Pattern Registry ... 1058

Apply Template Wizard ... 1059
Create Pattern from Elements .. 1060
Save As Template Wizard .. 1061
Templates View .. 1062
Templates View Context Menus ... 1063
Template Editors ... 1064

Class Template Editor ... 1065
Link Template Editor .. 1067
Package Template Editor .. 1068
Template Variable Types ... 1070

Template Properties ... 1071
Syntax and Conditions in Templates .. 1072
Last Validation Results View .. 1075
Supported Templates ... 1076

Link Templates .. 1077
Class and Package Templates .. 1079
J2EE, TagLibs, J2EE JMS Templates ... 1081
GoF Templates .. 1082
GoF Patterns ... 1083

Quality Assurance .. 1084
Model Audits and Metrics Descriptions ... 1085
Audit and Metric Sample Project .. 1091

Project Documentation ... 1094
Documentation Generation ... 1095

Gendoc Utility Syntax .. 1096
Genhtml Utility Syntax ... 1097

Documentation Template Designer .. 1098
Area Properties .. 1099
Call to Stock Section Properties .. 1101
Call to Template Properties ... 1102
Control Properties .. 1104
DG functions in Formulae Expressions ... 1106
DG Variables ... 1118
Documentation Template Designer ... 1120

19

Documentation Template Properties ... 1122
Element Iterator Properties .. 1124
Frameset Template Properties .. 1126
Folder Section Properties .. 1128
OCL Functions in formulae expressions .. 1130
Property Iterator Properties ... 1133
Static Section Properties ... 1135

Model Import and Export .. 1136
Import Together Project Wizard .. 1137
MDL Import Wizard ... 1139
MDL Projects Import Options .. 1140
MDX Import Wizard ... 1142
MDX Projects Import Options ... 1143
XMI Export Wizard .. 1144
XMI Import Wizard .. 1145

Version Control .. 1146
Sharing Design Elements: Special Considerations .. 1147
Sharing Packages: Special Considerations .. 1148
Sharing QA Sets and Audits and Metrics Results .. 1149

Dialogs ... 1150
Apply Transformation .. 1153

Select Destination .. 1154
Select Transformation ... 1155

BPEL4WS Export Wizard ... 1156
BPEL4WS Import Wizard ... 1157
Call to Stock Section Properties ... 1158
Call to Template Properties .. 1159
Create Pattern from Elements .. 1161
Create Requirement(s) Dialog Box ... 1162
Edit Audit .. 1163
Edit Hyperlinks for Diagram dialog box ... 1164
Edit Metric ... 1165
Edit Operation ... 1166
Edit Transformation Profile ... 1167
Element Iterator Properties ... 1168
Export Diagram to Image Wizard .. 1170
Export Pattern Conversion Profiles ... 1171
Export QA Results To A File ... 1172
Export Wizard: SQL/DDL Script from DB Schema ... 1173

Select Generation Objects page .. 1174
Select Generation Options page ... 1175
Save to File page ... 1177

Find Analyzer Dialog ... 1178
Frameset Template Properties Dialog Box ... 1179
Generate HTML Documentation dialog box ... 1180
Generate Documentation Using Template dialog box .. 1181
Generate Sequence Diagram dialog box .. 1182
Import Wizard: DB Schema from ER Logical Diagram Profile UML 2.0 Project 1183

Select Source and Target Objects page .. 1184
Select Options page .. 1185

Import Wizard: DB Schema from JDBC ... 1186
DB Schema from JDBC Import Wizard: Select Objects to Import page 1187
Connect to Database Dialog .. 1188

Import Wizard: DB schema from SQL script ... 1189
Select Objects to Import page ... 1190

20

Import Pattern Conversion Profiles ... 1191
Import Together Project Wizard .. 1192
Manage Traces Dialog .. 1194
Modeling Preferences ... 1195
New MDA Ant Task ... 1197

Choose Data Source Type .. 1198
Select Launch Configuration ... 1199
Select Launch Configuration Type .. 1200
Preview .. 1201

MDL Import Wizard ... 1202
MDX Import Wizard ... 1203
Model Search and OCL Model Search ... 1204
New Together Project Wizards ... 1205

New Project Wizard Common Pages .. 1206
New project Wizard C++ Language-Specific Options .. 1207
New project Wizard IDL Language-Specific Options .. 1209
New project Wizard Data Modeling Specific Options ... 1211
Convert MDL Wizard ... 1212

Print Audit dialog box .. 1213
Print Diagram Dialog Box ... 1214
Print Dialog ... 1215
Project Properties ... 1216
Project Specific Configuration ... 1218
Property Iterator Properties .. 1219
QA Builder Properties ... 1221
QA Search .. 1222
QVT Settings .. 1223
Run ... 1224

Model-To-Text Application ... 1225
Model-To-Text Transformation .. 1226
QVT Interpreter .. 1227
QVT Transformation .. 1229
XSL Transformation ... 1231
Launch BPMN Simulation .. 1232

Run QA ... 1233
Requirement Traces Search Dialog Box .. 1234
Select element dialog box ... 1235
Selection Manager .. 1236
Static Section Properties .. 1237
Template Properties Dialog Box ... 1238
Trace Synchronizer Dialog Box .. 1240
XMI Export Wizard .. 1241
XMI Import Wizard .. 1242

Legal Notices for Together ... 1243

21

22

Getting Started

23

Getting Started with Together
This section contains an introduction to modeling with Borland Together. The sample projects and Cheat Sheets
are designed to help you explore Together features while working with projects. Some of the special features include:
BPMN modeling, patterns, generating project documentation, reverse engineering and so forth.

In This Section
Together Overview
Provides a brief introduction to the feature set of Together. Use Together for building a UML model of your
application.

Together Documentation Set
Describes the documentation set for Together.

Sample Projects and Cheat Sheets
Provides a list of sample projects and cheat sheets.

Help on Help
Explains how to use the Together online Help and where to find additional resources.

Tour of Together
Tour of Together.

24

Together Overview
Welcome to Borland® Together®, the award-winning, design-driven environment for modeling applications.
Together includes features such as support for Unified Modeling Language (UML) 2.0, Object Constraint Language
(OCL), patterns, Quality Assurance audits and metrics, source code generation, IBM Rational Rose (MDL) format
import, XMI format import and export, and automated documentation generation.

Borland® Together® is a visual modeling platform designed to support architects; Java, C# and C++ developers;
UML™ and DSL designers; business process analysts; and data modelers in the accelerated delivery of high-quality
software applications.

Together® helps companies manage the complexity of today's software world by communicating ideas clearly,
utilizing automation for efficiency, and allowing organizations to leverage industry and internal standards. Together
improves business agility and lowers maintenance costs through the delivery of a platform-independent solution for
domain-specific languages (DSLs). The unique DSL Toolkit is designed to help organizations that have needs for
more specific solutions than Unified Modeling Language (UML)™ models by allowing project teams to create,
customize and deploy models within their own business domain and tailored to their own specific needs. DSLs
mprove the usability of modeling, eliminate unnecessary overhead, and optimize communication and efficiency
among project teams. Together allows companies to achieve the right mix of leveraging industry experience
embodied in standards and the freedom to tailor or invent what is needed.

Together benefits include the following:

♦ Leverage UML, BPMN, and ER modeling activities by generating Java, C++, C#, BPEL, and SQL DDL.

♦ Jump-start modeling activities by reverse-engineering Java, C++, BPEL, and SQL DDL.

♦ Increase productivity and quality by automating design and code reviews with audits and metrics at the model
and code level.

♦ Improve communication with fully customizable template-based document generation that can assemble
content from all model types and requirements.

♦ Leverage Model-Driven Architecture™(MDA) features including OMG’s Query View Transformation (QVT)
used in model-to-model transformations and support for OCL 2.0 with syntax highlighting, validation, code
sense, refactoring, debugging and expression evaluation.

♦ Integrate modeling and design activities and artifacts with Application Lifecycle Management (ALM) tools and
processes.

The following resources offer additional assistance, information, and services:

♦ For information on how to use this Help system, see Help on Help in the Related Concepts.

♦ Borland Together Home Page

♦ Borland Together Documentation

♦ Borland Together Support

♦ Borland Product Support

♦ Borland Services

♦ Borland University

If your Internet access is limited by network security, or if your computer is protected by a personal firewall, the Web-
based links in this Help system might not function properly.

25

http://www.borland.com/us/products/together/index.html
http://techpubs.borland.com/together/
http://support.borland.com/kbcategory.jspa?categoryID=48
http://support.borland.com/index.jspa
http://www.borland.com/us/services/index.html
http://borland.learn.com/learncenter.asp?id=178419

Related Concepts

Help on Help
Together Documentation Set

Related Reference

Together Glossary
Together Keyboard Shortcuts

26

Together Documentation Set
The Together documentation set consists of the following items:

Item Description Location

Release Notes (ReadMe) Late-breaking information including:

Last minute notes

System requirements

Installing and starting Together

Known issues and limitations

Borland Together Release Notes

Setting Up Licensing for Borland
Together.

Together licensing setup. Setting Up Licensing for Borland
Together

Online help General, context, and dynamic help for
Together including the following
comprehensive information most relevant to
the user:

— Conceptual topics — Getting Started and
Concepts

— Procedural topics — Working with
Projects, Creating and using profiles,
Working with diagrams, Working with
different types of modeling, Refactoring
procedures, Using OCL, Working with
patterns, Quality assurance, and
Documentation generation procedures.

— Reference topics — dialog boxes, wizards
and GUI elements

Together main menu:

Help Help Contents

Cheat Sheets Interactive tutorials that help you start using
basic product features. Each cheat sheet
helps you complete a single task.

A list of Together cheat sheets is available in
the Sample projects and cheat sheets topic.

The item on Together main menu:

Help Cheat Sheets

Related Concepts

Sample Projects and Cheat Sheets
Help on Help

27

http://techpubs.borland.com/together
http://techpubs.borland.com/together
http://techpubs.borland.com/together

Sample Projects and Cheat Sheets
Together ships with sample projects and cheat sheets that help you get acquainted with Together and its features.

The sample projects are available under File New Example.

Cheat sheets provided with Together are basically interactive tutorials that help you to start using some of the
Together features. Each cheat sheet helps you complete some task. For more information about cheat sheets refer
to Eclipse Workbench User Guide.

The cheat sheets are available under Help Cheat Sheets.

28

Help on Help
Together allows you to view various help topics that will assist you while you are completing your tasks.

Together Online Help
Together online Help includes conceptual overviews, procedural how-to's, and reference information, which allow
you to navigate from general to more specific information as needed.

Tip: When you use a link to navigate from one topic to another topic, the context of the Help topic you are viewing
might not be obvious. To find the context of a topic within the Contents pane, click the Show in Table of
Contents button on the toolbar of the Eclipse Help viewer.

Concepts
Concepts introduce the main features and methods that will help you learn and understand Together techniques.

At the end of most conceptual topics, you will find links to related, more detailed information.

How-To Procedures
The how-to procedures provide step-by-step instructions.

All procedures are listed under Procedures in the Contents pane of the Help window.

Reference Topics
The reference topics provide detailed information on subjects such as configuration options, GUI elements, dialog
boxes, and wizards references.

All of the reference topics are listed under the Reference section in the Contents pane of the Help window.

Context Sensitive Help
Context sensitive Help is available throughout the interface by selecting an item and pressing F1, or the Help button.

Typographic Conventions Used in the Help
The following typographic conventions are used throughout Together online Help.

Typographic conventions
Convention Used to indicate

Monospace type Source code, file and folder names, and text that you must type.

Boldface GUI elements and dialog boxes.

Italics Book titles and to emphasize new terms.

KEYCAPS Keyboard keys, for example, the CTRL or ENTER key.

Related Concepts

Together Documentation Set

29

Tour of Together
Together changes the user interface according to how you want to work with Together by providing several Together
perspectives to customize the Together-user experience. In Together you can choose one of the following Together
perspectives:

♦ Modeling including Business Process Modeling Notation (BPMN), BPMN Simulation, Model Driven
Architecture (MDA), Patterns and Templates, and TogetherQA group views

♦ DSL Toolkit

♦ Data Modeling

♦ CaliberRM

♦ RequisitePro

Views and Editors Associated with Each Together Perspective
The views associated with each Together Perspective vary according to the perspective selected. The views that
make up each Together Perspective are described below.

Together Modeling
The Modeling perspective is the default perspective for Together. The Modeling perspective provides the following
views:

View Description
Add linked results Shows results of applying the Add Linked command.
Code Generation Log Displays a log of the code generation process.
Generate Implementation Log Displays the log of the generating implementation code for a sequence

diagram.
Generate Sequence Diagram 1.4 Log Displays the log of the generating a sequence diagram in a UML 1.4

project.
Generate Sequence Diagram 2.0 Log Displays the log of the generating a sequence diagram in a UML 2.0

project.
Model Audits Displays the results of the model audits you run.
Model Bookmarks Lists bookmarked model elements.
Model Metrics Displays the results of the model metrics you run.
Model Navigator Provides the logical representation of the model of your project:

namespaces (packages) and diagram nodes.
Model Package Explorer Displays the UML content for all open projects
Diagram Editor Displays created and opened diagrams. When you use multiple diagrams,

the diagram editor provides a tab for each diagram.
Properties Displays the properties for a selected element. The properties for each

element are usually divided into different categories.
Profile Constraints Lists available profile constraints.
Profile Validation Displays results of the profile validation process.
BPMN Validation Lists all BPMN diagram-related errors, including diagram errors, export,

and simulation errors.
BPMN Simulation Provides simulation run progress information and tools to control the

simulation process.
Metamodel Browser Lists metamodels that can be selected as a source or a target of a Queries/

Views/Transformations (QVT) transformation.

30

OCL Expression Enables you to quickly evaluate OCL expressions in the explicitly specified
context (a Together or Eclipse Modeling Framework [EMF] model
element), or in the context of the current selection.

Last Validation Results Displays results of the latest validation of a pattern definition.
Pattern Explorer Enables you to logically organize patterns (using virtual trees, folders and

shortcuts), and manage recognized instances of patterns.
Pattern Registry Defines the virtual hierarchy of patterns.
Templates Displays currently available source code templates.
Audit Displays the results of the source code audits you run.
Metric Displays the results of the source code metrics you run.

DSL Toolkit
The DSL Toolkit perspective provides the following views and editors:

View/Editor Description
DSL Explorer Provides DSL project navigation, dragging and dropping of resources and templates

with model refactoring, adding and importing artifacts, and generate and validate
actions.

Metamodel Explorer Lists metamodels that can be selected as a source or target of a QVT transformation.
Generic Template Browser Lists currently available templates.
DSL Editor Used for editing DSL projects.
Domain Model Editor Used for editing domain models.
Diagram Definition Editor Used to manage general configuration properties and generation actions, advanced

properties, the tooling model, the mapping model, and all of the models involved with
a diagram.

Figure Gallery Editor Used to configure figure gallery details, provide a tree view of the figure gallery model,
and provide a composite viewer and editor for all models involved in a figure gallery.

Report Definition Editor Used to define a report.
Dynamic Templates Used to browse templates used for model code generation and to copy (override)

template files into the folder specified in the Dynamic Templates Path so that you
can customize the templates.

Operational QVT Traces Used to inspect the results of a Model-To-Model QVT transformation.
Problems Displays compilation errors.
Outline Displays outline of the structure of the currently active file in the editor area.
Properties Used to view and edit the properties of the currently selected item in the DSL

Explorer.

Data Modeling
The Data Modeling perspective provides the following views:

View Description
Navigation Contains Model Navigator and Navigator tabs, by default.
Diagram Editor Displays created and opened diagrams. When you use multiple diagrams, the diagram editor

provides a tab for each diagram.
Properties Displays the properties for a selected element. The properties for each element are usually

divided into four categories: Description, a textual description of the element; Hyperlinks, links to
other elements or external files and documents; Properties, UML properties; Requirement,
requirement information.

Tasks Shows tasks (reminders) that you either created or generated during the build process.

31

DDL Preview Data Description Language (DDL) expressions viewer.

CaliberRM
The CaliberRM has the following views.

View Description
CaliberRM Navigator Allows you to connect to and browse multiple CaliberRM repositories located on different

servers over the network.
Synchronizer Allows you to review and synchronize changes made to traced requirements or external

vendor objects.
CaliberRM Traces Displays information about the requirements and external vendor objects traced to and

from the requirement selected in the CaliberRM Navigator view.
Traceability Matrix Displays all the trace links for the selected requirement, baseline or project in a single matrix

view.
Requirement Grid Displays the summary information for a set of requirements.
Properties Displays property and attribute names and values for the requirements, traced objects,

requirement types, baselines, projects and server connections.

Note: For more information about CaliberRM, refer to the CaliberRM plugin help.

RequisitePro
The RequisitePro has the following views.

View Description
RequisitePro Navigator Allows you to connect to and browse RequisitePro repositories.
RequisitePro Traces Displays information about the requirements and external vendor objects traced to and

from the requirement selected in the RequisitePro Navigator view.
RequisitePro Discussion Provides the ability for users to discuss requirements by displaying the existing

discussions and allowing users to post replies.

Unlike Together 2006 R2, Together 2008 does not include integrations with requirement management products such
as RequisitePro. These integrations should be available separately from Borland.

Note: For complete information about RequisitePro, refer to the RequisitePro documentation.

Together provides menu items on the main menu with Together-specific commands, in addition to the views
associated with each perspective.

Project Menu

Menu Item Description
Documentation Generate HTML Opens the Generate HTML Documentation dialog box.
Documentation Generate Using Template Opens the Generate Documentation Using Template dialog box.

32

http://techpubs.borland.com/together/

Model Menu

Menu Item Description
Run Model Metrics Runs model metrics for the selected elements.
Run Model Audits Runs model audits for the selected elements.
Compare With Each Other as Model Elements Compares two or three selected model elements

against each other and shows differences in a
separate view.

Local Version Compares a shared resource with a version stored
on your disk.

Profile Uninstall Profile Uninstalls the selected profile.
Open Profile Definition Opens the profile definition project.
Deploy profile Starts the creating profile plug-in process.
Run Profile Constraints Runs profile-specific audits.
Convert properties Converts profile-specific properties of the projects created

in the previous version of Together to the new format. For
more information see Converting Profile-Specific
Properties topic in the Procedures section.

Preferences Opens the Profile preferences in the Modeling node.
Apply Transformation Provides QVT, eXtensible Stylesheet Language (XSL), and Model to Text transformation

specific commands.

Diagram Menu
The Diagram menu includes commands relevant to working with the diagram currently opened in the Diagram
editor. The commands include, but are not limited to, layout and align patterns, different levels of zoom, switching
grid and rulers, hiding and showing elements, and so forth.

Related Concepts

Together Capabilities Activation

Related Procedures

Activating Together Capabilities
Choosing a Together Perspective

Related Reference

Components of the Together User Interface

33

34

Concepts

35

Concepts
This section provides an overview of the features provided by Together.

In This Section
Together Basics
Basic information about Together features.

Together Interoperability and Migration
This section describes interoperability with the other editions and versions of Borland Together and migration
from the legacy versions.

Modeling Overview
Describes UML modeling in general.

UML Modeling Overview
Describes what modeling with Together means in general.

Business Process Modeling
This section describes the Business Process modeling basics.

Data Modeling
Describes data modeling in Together.

Model Transformation Support
Provides overview of MDA transformations in Together.

UML Profiles
Describes UML profiles in Together.

Modeling for EJB
Describes EJB modeling features of Together.

Model Compare and Merge
Describes model compare and merge functionality.

Template Elements and Generics Overview
This section gives an outline of template elements for the UML 2.0 modeling projects, and generics for
theLiveSource projects.

Model Import and Export Overview
Describes the features for importing and exporting entire models or parts of the models.

OCL Support
Overview of OCL support in Together.

Patterns and Templates
Overview of patterns and templates in Together.

Quality Assurance
Describes quality assurance facilities in Together.

Refactoring Overview
Describes the Together refactoring features.

Requirements Management
Describes requirement management features in Together.

Version Control in Together
This topic provides an overview of version control features in Together.

36

Project Documentation
This part describes the documentation generation facility and documentation template basics.

37

Together Basics
This section provides information about Together features.

In This Section
Together Project Overview
Describes the Together projects.

Package Overview
Describes Together namespaces and packages.

Together Diagram Overview
Describes the Together UML diagram.

Diagram Format
This section describes the XML-based diagram format that is common for all modeling tools of the Together
product line.

Containment Metamodel
Brief description of Together containment metamodel.

Model Element Overview
Describes the model elements.

Model Shortcut Overview
Describes the shortcuts on UML diagrams.

Roundtrip Engineering Overview
Describes the LiveSource feature.

Language Support
Describes the LiveSource support and limitations for the various languages.

Generating Source Code Based on Model
Describes generation of the source code from a modeling project feature.

Model Hyperlinking Overview
Describes the feature of model element hyperlinking.

Model Annotation Overview
Describes the feature for annotating UML diagrams.

Together Capabilities Activation
You can customize the Together capabilities based on your specific environment and requirements.

38

Together Project Overview
Work in Together is done in the context of a project. A project is a logical structure that holds all resources required
for your work. All projects located in the selected Workspace are listed in the Model Navigator.

You can set up project properties when the project is being created, and modify them further, using the
Properties dialog box.

The following is a list of projects that can be created in Together.

♦ BPMN from Together 2006 Business Process Project helps you import Business Project Modeling Notation
(BPMN) projects created in Together 2006 for Eclipse.

♦ Business Process Modeling Project enables you to create end-to-end business processes.

♦ C++ Modeling project is a UML 2.0 source code modeling project.

♦ Data Modeling project provides a complete data modeling solution.

♦ IDL Modeling project is a UML 2.0 source code modeling projects.

♦ Java Modeling project is either UML 1.4 or UML 2.0 source code modeling project.

♦ Java Modeling projects from Java projects creates a Java source code modeling project from pure Java
project.

♦ MDA Transformation project is a customized Eclipse plug-in project that enables you to develop various
transformations in Together.

♦ Pattern Definition project is a profiled UML 2.0 modeling project that allows you to create new patterns.

♦ Profile Definition project is a profiled modeling project that allows you to create new profiles.

♦ UML 1.4 project is a design project with no source code support.

♦ UML 2.0 from UML 1.4 converts both Java modeling and design projects from UML 1.4 to UML 2.0
specification.

♦ UML 2.0 project is a design project with no source code support.

Note: The project settings are initially specified on project creation. Further, you can update properties for the
existing project.

Related Procedures

Together Projects

Related Reference

Together Projects

39

Package Overview
The notion of a package has two facets: logical and physical.

♦ Logically, a model consists of one or more packages. A package is a model element used to group elements,
and provides a namespace for the grouped elements. A package can contain packageable elements (the
elements that can be directly owned by a package) and the other packages. A model itself is a package.

♦ Physically, a package is a folder containing the files that store diagrams and model elements.

Contents of a package can be displayed on a special type of the Class Diagram that is synchronized with the package
contents (that is, all the classifiers directly owned by this package automatically appear on the package diagram).
This diagram is essential for source code projects. Each package contains the single package diagram that is created
automatically and cannot be added explicitly.

The root package of a project (Model) is usually referenced as the default package. The package diagram of this
package is called the default diagram. This diagram is created and opened just after the modeling project creation.

By default, all properties of the package diagram, both visual and semantical, are preserved in the
default.txvpck diagram file. You can enable split package diagram persistence, which requires turning the
default setting off. To do this, right-click the project in the Model Navigator, choose Properties, and make sure the
Store package properties in package diagram files option is not checked. With this option off, only diagram-
specific information (visual information, such as layout) is retained in the default.txvpck diagram file, while
settings that you treat as package properties (semantical information, such as descriptions and custom properties)
are moved from the default.txvpck file into the default.txaPackage file. This allows you to track your
package changes using version control.

Related Concepts

Containment Metamodel
Package and logical class diagrams

Related Procedures

Working with a Package

40

Together Diagram Overview
Each modeling project contains a set of diagrams that are graphical representations of parts of the model. Diagrams
contain graphical elements (nodes connected by paths) that represent model elements.

Each diagram belongs to a certain diagram type (for example, UML 2.0 Class Diagram). The diagram type defines
the typical contents of the diagram (the kind of elements that are usually placed on this diagram) and the notation
used to represent the model elements. For example, a Class in a UML 2.0 project can be added to the Class Diagram
and to the Composite Structure Diagram and will have different representations there. Each diagram has the specific
Palette and context menu that allow you to create the model elements specific to this diagram type. These tools can
be customized.

Diagrams exist within the context of a project. You have to create or open a project before creating a new diagram.

The set of available diagram types depends on the type of project. For example, in a BPMN project, the only available
diagram is a BPMN diagram. In a UML 2.0 project you have a set of standard UML diagrams defined in UML2.0
specification. Along with the design diagrams that are explicitly created by the user, Together models have the so-
called Package diagrams. These diagrams have the ClassDiagram type, but they are generated automatically for
each package and show its contents.

Some diagrams are source-generating. These are: class diagrams and sequence and collaboration diagrams. The
contents of such diagrams are synchronized with the source code. Click a class or interface symbol on the diagram
to open the source code in the editor. Class and interface source code opens the respective class (or interface) in
a special tab in the editor, marked with the source class name. If the class is read-only, the tab is also marked with
the lock icon. Selecting a member within a class or interface symbol automatically navigates to the appropriate line
of the source code in the editor.

Related Concepts

Diagram Format

Related Procedures

Creating a Diagram

Related Reference

Tool Palette

41

Diagram Format
The diagrams created with Together are stored in XML-based files with the extension *.txv<diagram_type>.
For example, the file <name>.txvcls corresponds to a class diagram. Design elements are stored either in the
package files (default.txaPackage) or in separate XML-based format files with the
extension .txa<element_type>, depending on your choice when creating a project in the New Project wizard.

The XML-based diagram format is common for the entire product line of Borland Together modeling products
(Borland Together ControlCenter, Borland Together Edition for Microsoft Visual Studio .NET, Borland Enterprise
Studio for Java, Borland Together Architect, and Borland Together Designer 2005), which makes the diagrams
compatible across the product line. You can copy and reuse diagrams created in the different products.

The legacy text diagram format (df diagram files) used in TogetherControlCenter6.2 and previous versions is not
supported now. As such, the UML diagram files created with the text-based format should be converted to an XML-
based format, using the Import Together Project wizard.

Related Concepts

Together Interoperability and Migration

Related Procedures

Interoperability and Migration

42

Containment Metamodel
Together handles the logical and physical containment of design elements as follows:

♦ Design elements are created as children of packages.

♦ All elements shown on diagrams are shortcuts (or references) to actual model elements, therefore when you
create a new element on a diagram, Together creates this element in the package and adds its shortcut to the
diagram.

♦ Clipboard actions operate with references, if the source and target containers of the action are diagrams.

♦ You can optionally create design elements in separate files (standalone design elements) or in one file
(filemates).

♦ You can optionally split package diagram persistence so that diagram-specific property settings (visual
information, such as layout) are retained in the default.txvpck diagram file, while settings that you treat
as package properties (semantical information, such as descriptions and custom properties) are moved from
the default.txvpck file into the default.txaPackage file. This allows you to track your package changes
using version control.

Related Concepts

Model Shortcut Overview

43

Model Element Overview
Each model in a modeling project is a set of entities that are instances of metaclasses of the metamodel chosen for
the project. These instances are the Model Elements.

Each model element has a set of properties and a notation defined for its metaclass. For example, when you create
a UML 2.0 project, every element created in this project instantiates a metaclass from the UML 2.0 metamodel (that
is, each actor on a use case diagram in a UML 2.0 project is an instance of usecases/Actor, and each component
is an instance of components/Component).

The model elements that have the graphical notation and that can be explicitly placed on diagrams are nodes and
links.

In Together, model elements of the same metaclass may be either design or source code ones depending on the
container project type. The model language (design, Java, C++ and IDL) may affect the set and allowed values of
element properties. It also defines the model element storage; for example, an element of uml20/classes/class
metaclass may be stored in the *.txa* file if it is design one or in *.java, *.h, *.cpp, and similar files when
it is source code.

Related Concepts

Together Diagram Overview
Model Shortcut Overview
Containment Metamodel

Related Procedures

Populating Together Diagrams

Related Reference

Tool Palette

44

Model Shortcut Overview
A shortcut is a representation of a model element placed on a diagram. One can create multiple shortcuts to the
same element on different model diagrams. The modifications of the element itself can be made from any diagram
containing its shortcut and are propagated to all its shortcuts. The modifications of shortcut view properties made
from any diagram do not affect the representations of this element on other diagrams. A shortcut can be removed
from a diagram without removing the element from the model.

You can create shortcuts to the elements within the same project. To create a shortcut to an element from another
workspace project, add this project to the Model Path of the current project.

The small special symbol appears over a node to indicate a shortcut. For the package diagrams, it appears only if
this node belongs to a different namespace or package.

Select a shortcut on your diagram and choose Select in Model Navigator on the context menu to navigate to the
source element in the Model Navigator.

Related Procedures

Creating a Shortcut
Establishing cross-project references

45

Roundtrip Engineering Overview
One of the main Together features is the simultaneous roundtrip engineering, which is the ability to immediately
synchronize diagrams with their source code.

Roundtrip engineering is the combination of:

♦ Reverse engineering (drawing models from code)

♦ Forward engineering (generating code from visual models)

Simultaneous roundtrip engineering means that when you change a code-generating diagram, Together immediately
updates the corresponding source code, and when you change the code, Together updates the visual model. This
way diagrams are always synchronized with the source code that implements them. You can customize forward and
reverse engineering and/or source code formatting. This feature only applies to diagram types that generate source
code: class, sequence, and collaboration diagrams.

Together supports source code forward and reverse engineering with the following languages:

♦ Java 5

♦ Java 6 (syntax only, not new libraries or technologies)

♦ C++ (GNU and MS dialects)

♦ CORBA IDL 2.6

Refer to the Language Support section for details of the supported features and limitations.

Tip: To set up Java 5 support under Unix/Linux platform, see Getting Started with Eclipse and J2SE 5.0 topic in
the Getting Started section of the Java Development User Guide.

Related Concepts

Language Support

Related Procedures

Opening a Diagram Element in the Source Code Editor

Related Reference

LiveSource Rules

46

Language Support
Together supports Java, C++ (GNU and MS dialects), and CORBA IDL. 2.6. Most of the Together features work for
Java. Support for other languages is more limited. The limitations stem from the lack of object orientation for some
languages and the inapplicability of some of the features to different languages.

Basic functionality provides parsing of the syntactical constructs that map directly to UML objects (classes,
interfaces, methods, and so on). As of this writing, Together offers basic functionality for Java,
C++, and CORBA IDL.

Deep Parsing functionality that handles syntactical constructs within the method bodies, initialization of
variables, and so on. For example, deep parsing enables Together to generate sequence
diagrams from methods, perform audits and metrics.

The table below provides summary information on the features for the supported languages and brief notes about
language-specific properties.

Feature Java C++ CORBA IDL

Basic functionality yes yes yes

Deep parsing yes yes n/a

Textual templates yes yes yes

Properties yes no no

Syntax highlight yes yes yes

Formatter yes yes no

Metrics Full set Limited set no

Audits Full set Limited set no

Documentation generation yes yes yes

IDE functionality (Refactoring) via JDT via CDT no

You can find detailed language-specific information in the Reference.

Related Concepts

Roundtrip Engineering Overview

Related Reference

C++ Projects
IDL Language-Specific Information

47

Generating Source Code Based on Model
Together enables you to generate source code based on a language-neutral design project.

About source code generation
You can generate source code from the Class Diagrams of your UML 1.4 or 2.0 design project.

Name mapping
You can force Together to generate different names for your model elements in the source code. This feature is
especially useful, if your model names are not English. You can use names in other languages on your diagrams,
but keep names in Latin alphabet in your code. Name mapping is supported for Java target projects only.

If you enable this feature, the file codegen_java_map.xml is created in the model support folder of the source
design project. You can edit it with any XML or text editor. This file contains a mapping table, where each entry
(model element) has two names: one for the source design project (attribute name), and another one for the
destination implementation project (attribute alias).

Related Concepts

Roundtrip Engineering Overview

Related Procedures

Generating Source Code from Design Project

48

Model Hyperlinking Overview
You can create hyperlinks from diagrams or model elements to other system artifacts and browse directly to them.

Why use hyperlinking?
Use hyperlinks for the following purposes:

♦ Link diagrams that are generalities or overviews to specifics and details.

♦ Link diagrams or elements to external documentation.

Create a hyperlink from an existing diagram or one of its elements to any other diagram or model element, or create
a new diagram that will be hyperlinked to the current element.

You can also create hyperlinks from your diagrams to external documents such as files or URLs.

Hyperlink types
You can create hyperlinks to:

♦ An existing diagram or diagram element from any project in the workspace.

♦ A resource in the workspace.

♦ An external document (file or URL)

Browse-through sequence
Use case diagrams typically represent the context of a system and system requirements. Usually, you begin at a
high level and specify the main use cases of the system. Next, you determine the main system use cases at a more
granular level. As an example, a "Conduct Business" use case can have another level of detail that includes use
cases such as "Enter Customers" and "Enter Sales". Once you have achieved the desired level of granularity, it is
useful to have a convenient method of expanding or contracting the use cases to grasp the scope and relationships
of the system's use case views.

The hyperlinking feature of Together allows you to create browse-through sequences comprised of any number of
use cases or any other diagrams. By browsing the hyperlink sequence, you can follow the relationships between
the use case diagrams.

Together does not confine hyperlinking to such sequences, however. You can use hyperlinking to link diagrams and
elements based on your requirements. For example, you can create a hierarchical browse-through sequence of use
case diagrams, creating hyperlinks within the diagrams that follow a specific actor through all use cases that
reference the actor.

Related Procedures

Hyperlinking Diagrams
Creating a Browse-Through Sequence of Diagrams

49

Model Annotation Overview
The tools Palette for UML diagram elements displays note and note link buttons for all UML diagrams. Use these
elements to place annotation nodes and their links on the diagram.

Notes can be free floating or you can draw a note link to some other element to show that a note pertains specifically
to it.

You can attach a note link to another link.

The text of notes linked to class diagram elements does not appear in the source code.

Related Procedures

Annotating a Diagram

50

Together Capabilities Activation
Together provides many capabilities in areas such as BIRT, development, DSL development activities, and
modeling. You can specify the capabilities that should be enabled. This simplifies the Together user interface and
helps improve results and productivity.

For example, if the only modeling capability needed is UML 2.0 modeling, you can enable UML 2.0 modeling and
disable other types of modeling, so that menus, menu items, and wizards for all modeling capabilities except for
UML 2.0 modeling are not available.

If you need a menu, menu item, or wizard that is not available, make sure that the appropriate capability is enabled
in the Advanced Capabilities Settings dialog.

Together Capability Categories
The Together capabilities are grouped in the following categories:

♦ DSL Development

♦ Model to Model Transformations

♦ Model to Text Transformation

♦ Model Workflow

♦ Modeling

♦ Modeling Tools

♦ Reporting

♦ UML Modeling

Together Modeling Capabilities
The following list shows the Together capabilities and their default status (enabled or disabled) in Together Modeling
(classic Together modeling).

The DSL Development category contains the following Together capabilities:

♦ Diagram Definition (disabled by default)

♦ Domain Modeling (disabled by default)

♦ DSL Project (disabled by default)

The Model to Model Transformations category contains the following Together capabilities:

♦ Operational Mapping Language (QVT) (enabled by default)

♦ Operational QVT Debugging (enabled by default)

The Model to Text Transformations category contains the following Together capabilities:

♦ Template Authoring (enabled by default)

♦ Template Exploring (enabled by default)

♦ Template Exploring (Legacy) (disabled by default)

51

The Model Workflow category contains the following Together capabilities:

♦ Workflow Definition (enabled by default)

♦ Workflow Execution (enabled by default)

The Modeling category contains the following Together capabilities:

♦ Business Process Modeling (enabled by default)

♦ C++ Modeling (enabled by default)

♦ Data Modeling (enabled by default)

♦ Documentation (enabled by default)

♦ IDL Modeling (enabled by default)

♦ Java Modeling (enabled by default)

♦ Manage element persistence (disabled by default)

♦ MDL and MDX Imports (enabled by default)

♦ Model QA (enabled by default)

♦ Modeling profiles (enabled by default)

♦ Patterns (enabled by default)

♦ Source code QA (enabled by default)

♦ Together Project Import (enabled by default)

♦ Together QVT (enabled by default)

♦ UML 1.4 (enabled by default)

♦ UML 2.0 (enabled by default)

♦ XMI Import/Export (enabled by default)

♦ XSL (enabled by default)

The Model Tools category contains the following Together capabilities:

♦ Hyperlinks and Requirement Traces (Early Access) (enabled by default)

♦ Model Refactoring (Early Access) (enabled by default)

The Team category contains the following Together capabilities:

♦ CVS Support for Modeling (disabled by default)

The Reporting category contains the following Together capabilities:

♦ Model Reporting (enabled by default)

♦ Report Definition (enabled by default)

The UML Modeling category (disabled by default) contains the following Together capabilities:

♦ UML2 Diagramming (disabled by default)

♦ UML2 Model Development (disabled by default)

52

Related Procedures

Activating Together Capabilities

53

Together Interoperability and Migration
Together supports the possibility to exchange models created in the different products of Together product line and
in the other modeling tools.

Interoperability
Interoperability is supported in the following ways:

♦ Together opens projects created with the other tools of Together product line. So doing, Together considers
and processes the project roots and diagram formats.

♦ For the models created in the other tools, use the various types of import and export, such as XMI, MDL or
MDX.

♦ Also, transformations enable the users to exchange model information. Refer to the concept section “Model
Transformation Support” (listed under Related Information below) for details.

Migration from the legacyTogether products
Having created a number of projects in TCC/TA 1.x and in the other Together products, the user might want to
migrate these projects to the new version, preserving the useful features of the legacy projects.

Reusing legacy projects
Reusing the legacy *.tpr, *.tpx and *.jpx projects in Together is an important interoperability goal. However,
this task faces a number of problems related to the differences between the products, which are summarized in the
following table:

Legacy Projects New Projects

Support multiple modeling roots. All modeling information is stored in a single folder.

It is possible to specify package prefix for a root. The notion of package prefix does not exist.

Support two diagram formats (DF format and TXV format) Supports TXV format only.

Old containment metamodel stores diagrams and model
elements together.

New containment metamodel separates the diagram
information from the model elements.

Together resolves these problems by means of a new migration tool implemented as Import Together Project
Wizard, which takes a legacy project as input and produces one or more Together Eclipse projects.

The resulting projects meet the following common requirements:

♦ Folder structure of the resulting project is created considering the package prefixes if any.

♦ All diagrams are converted from the old containment metamodel to the new containment metamodel. If a model
root contains diagrams in DF format, these diagrams are converted to TXV format. If a model root contains
diagrams in both DF and TXV formats, then only TXV diagrams are considered.

♦ Optionally, you can create the resulting project with the design elements stored in different files. In this case,
the model elements of the source project are converted to standalone design elements.

♦ UML 2.0 projects created in Together Designer/Developer 2005 are converted taking into account the changes
in UML 2.0 specification support (converting State Machine and Activity diagrams).

54

Reusing artifacts
Due to different platform, Together does not support complete migration of the legacy custom artifacts. You can
reuse legacy documentation templates, but custom audits, metrics, patterns and diagrams, created in TCC/TA 1.x,
are not compatible with Together.

Instead Together provides the possibility to create your own artifacts and extensions using its functionality.

Modules You can create modules using Eclipse API and Together EMF API.

Use Eclipse API for IDE—related parts, and Together EMF API for
working with models.

Java-based patterns These patterns are not supported in Together. However, Together
supports creating design and source code patterns and templates. See
the related concepts.

Audits and Metrics You cannot reuse audits and metrics from TCC, but can create source
code audits and metrics of your own. Refer to the subsection “Using
API for creating your Audits and Metrics” in the Audit and Metric
Sample Project topic (listed under Related Information below).

Custom diagrams and custom properties Use profiles to customize diagrams and define custom properties.
Refer to the Profile Definition Project overview (listed under Related
Information below).

Related Concepts

Model Transformation Support
Diagram Format
Profile Definition Project
Patterns and Templates

Related Procedures

Reusing documentation templates from TCC/TA 1.x
Importing Legacy Projects

Related Reference

Audit and Metric Sample Project
Import Together Project Wizard
Audit and Metric Sample Project

55

Modeling Overview
The topics in this section provide an overview of modeling, and information on UML diagrams and supported
technologies.

In This Section
Together Modeling
Together provides different views into a common model, with each view suited to a different audience and
set of requirements.

56

Together Modeling
Together modeling provides a concise, easily communicated picture of a system that is to be created and deployed.
While you can work directly in a model itself, there are separate views available to make it easier to view, understand,
and manipulate the model.

“A model is a simplified representation of a system or phenomenon, as in the sciences or economics, with any
hypotheses required to describe the system or explain the phenomenon, often mathematically.” (Dictionary.com
Unabridged (v 1.1). Random House, Inc. 29 Aug. 2007)

A model is a means to communicate complex ideas, and can be simplified by ignoring certain details. A model can
be a plan or an “as-is” view. A model is an abstraction that makes it easier to communicate about complex things.

To maximize the benefits provided by Together, you should be familiar with the following concepts:

♦ Benefits of modeling

♦ Common modeling problems

♦ Together Models, views and users

♦ Model transformations

Benefits of modeling
Proper analysis requires that everyone has a common, complete, and accurate understanding of the problem, while
proper design requires that everyone has a common, complete, and accurate understanding of the solution. These
requirements apply throughout the project lifecycle. Any communication breakdown in these areas can result in
project delay, increased costs, and failure.

Modeling can be of benefit in all areas of software and process development. The benefits of modeling include the
following:

♦ Streamline and improve requirements analysis and validation

♦ Build agile applications using UML models that leverage industry-proven design methods, component- and
service-oriented architectures, and model-driven development practices

♦ Provide an environment that is a step beyond high-level programming languages, allowing developers to move
away from lower-level complexity and write higher-quality code

♦ Minimize the time and effort needed to define, understand, and create systems, applications, and processes

♦ Reduce the risk of project delays and failures

♦ Reduce costs by allowing reuse for multiple projects

♦ Enhance communication across the project lifecycle and among distributed teams

♦ Help communicate and integrate business and development requirements

Modeling allows you to shift the view of programs, applications, and processes from the system or machine view to
the problem domain view, and also to automate the translation from human to system or machine language.

Analysts use modeling to help agree on and document the task that needs to be accomplished. Modeling helps avoid
ambiguity and provides a “big picture” view of the task.

Architects use modeling to perform the following tasks:

♦ Design the overall application architecture. This includes mapping the design to the requirements, developing
and communicating the design, documenting the design and architecture, ensuring the quality of the design,
and providing architectural views.

57

♦ Leverage reuse of frameworks, libraries, and design patterns.

♦ Engineer a system that can be produced within business constraints (time and cost), staffing constraints
(knowledge, skills sets, and headcount), process constraints (quality and predictability), and technology
constraints (tools and existing systems).

♦ Engineer a system that can withstand change during the system's lifecycle, including new features, changing
requirements, and the updating of IT infrastructure.

Developers use modeling to perform the following tasks:

♦ Explore implementation options

♦ Provide strong refactoring support to improve code design without affecting functionality

♦ Improve code reviews by adhering to best practices and ensuring that code can be efficiently maintained,
modified, and reused

♦ Document the system, including understanding large code bases, dependencies, and interfaces

A large set of requirements can be difficult to understand as a whole. Models provide constructs to help organize
ideas, a common language for all team members, visualizations to help clarify complex ideas, and standards to
facilitate precise communication and provide focus for key abstractions.

Model-driven development can be used for many tasks, including the following:

♦ Repetitive and redundant source code

♦ Framework implementation

♦ Design patterns

♦ Configuration files

♦ Build labels

♦ Deployment variations (for example, Development, Test, and Production)

♦ Automation of deployment

♦ Targeting of complex distributed environments

♦ Test plans and test scripts

♦ Test automation

♦ Test verification and validation

Common problems in analysis and design
Several problems are frequently encountered during the analysis and design process. These include the following:

♦ It is difficult to communicate consistently and without ambiguity with text-only analysis and design.

♦ The notation and meaning of ad-hoc diagrams may not be apparent to all team members.

♦ Models cannot be connected to requirements with drawing tools.

♦ Traceability needs to be established and models must meet business requirements. These are manual
processes with drawing tools, and as such, these processes are time-consuming and error-prone.

♦ Models need to be persisted for collaborative teamwork, with change management practices that are consistent
with source code change control practices.

58

♦ The ability to create documentation from models is necessary. Using models to generate documentation
includes not only diagrams, but also the properties that are associated with the model elements.

♦ Model consistency must be ensured. A well-designed modeling tool helps users learn the model rules and
enforces these rules.

♦ An accurate representation is needed. Models can be used to automate design and implementation and can
feed other parts of the development lifecycle.

Models and views
There are several views available for a Together model. The model views should not be confused with the model
itself. You can create and modify a model in any view and all of your changes are propagated to the model itself and
all model views. A model view provides a window to the model itself, with the changes made to the model itself. All
changes to the model, regardless of the view in which the changes were made, are synchronized in all of the model
views. Users can choose the view that is best suited to their role and needs, and users can use the view of their
choice to view the latest iteration of a model and make any necessary changes to the model. For example, if you
are viewing a model diagram and make any changes, your changes are saved in the model itself when you save
your changes. If you or another user subsequently view the model in the tree view, your saved changes are displayed
in this view.

Any view, such as the diagram view or the tree view, is simply a view of a model, and is not a model in and of itself.
A view provides a representation of the entire scope of the underlying model. You can use any view to view and
modify a model. Together allows you to build a single unified model that can be viewed and modified in different
views and validated with OCL audits.

Domain Model Diagrams and UML Class Diagrams
A domain model diagram provides a view of the parts or terms that comprise a project. A domain model defines a
system or process in unambiguous terms so that everyone on a team can understand, define, and refine a system
or process. A domain model defines the scope and provides a model on which to develop and refine a system or
process.

A UML class diagram provides a view of the classes, class attributes, and class relationships for a system. A UML
class diagram can be used for purposes ranging from defining requirements to creating a detailed design. A UML
class diagram is used to define classes, interfaces, relationships, and inheritances.

Model Transformations
You can use model transformations to convert a model that conforms to a particular metamodel to a model that
conforms to another metamodel. You can specify multiple source models and multiple target models. A model
transformation is itself a model, in that the model transformation conforms to a metamodel. A model transformation
can produce new artifacts or modify existing artifacts.

Related Concepts

UML Modeling Overview
Model Transformation Support

Related Procedures

Creating a Model-To-Model Transformation

59

UML Modeling Overview
Effective modeling with Together simplifies the development stage of your project. Smooth integration to Together
provides developers with easy transition from models to source code.

The primary objective of modeling is to organize and visualize the structure and components of software intensive
systems. Models visually represent requirements, subsystems, logical and physical elements, and structural and
behavioral patterns.

While contemporary software practices stress the importance of developing models, Together extends the benefits
inherent to modeling by fully synchronizing diagrams and source code.

In This Section
Supported UML Specifications
Describes supported UML specifications.

UML 2.0 Diagrams
Gives a general notion of UML 2.0 diagrams supported by Together.

UML 1.4 Diagrams
Gives a general notion of UML 1.4 diagrams supported by Together.

60

Supported UML Specifications
The Object Management Group’s Unified Modeling Language (UML) is a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of distributed object systems.

Together supports UML to help you specify, visualize, and document models of your software systems, including
their structure and design.

Refer to UML documentation for the detailed information about UML semantics and notation. The UML (version):
Superstructure document defines the user level constructs required for UML. It is complemented by the UML
(version): Infrastructure document which defines the foundational language constructs required for UML. The two
complementary specifications constitute a complete specification for the UML modeling language.

UML 1.4 and UML 2.x
The set of available diagrams depends on your project type.

Design projects and Java projects support both UML 1.4 and UML 2.x specifications. C++ and IDL projects support
only UML 2.x.

Note: Because several of the features that UML 2.0 provides (such as documentation functionality and metrics) are
not yet implemented in UML 2.1, the UML 2.1 capabilities are disabled by default. To turn them on, select
Window Preferences... General Capabilities. Click Advanced... and select the UML2
Diagramming node under the UML Modeling feature.

The version of UML is selected when a project is created. It cannot be changed later.

UML In Color
“UML In Color” is an optional profile to support the modeling in color methodology. Color modeling makes it
possible to analyze a problem domain and easily spot certain classes during analysis. Together supports the use of
the four main groups of the color-modeling stereotypes:

♦ Role

♦ Moment-interval, Mi-detail

♦ Party, Place, Thing

♦ Description

When applying a stereotype to one of the diagram elements listed above, the view of the associated diagram element
changes on the diagram. The stereotype field displays directly above the name field for the element, and the color
of the element depends on the stereotype chosen. For each of these stereotypes you can choose a specific color
to make your model more understandable at a glance. Note that the other stereotypes do not have associated colors.

See also "Java Modeling in Color with UML: Enterprise Components and Process" by Coad, Lefebvre and De
Luca.

Related Concepts

UML Modeling Overview

61

UML 2.0 Diagrams
Together provides support for the most frequently needed diagrams and notations defined by the UML 2.0.

In This Section
UML 2.0 Activity Diagram Definition
Provides UML 2.0 activity diagram definition.

UML 2.0 Class Diagram Definition
Provides UML 2.0 class diagram definition and example, and notes about using class diagrams in the source
code projects.

UML 2.0 Use Case Diagram Definition
Provides UML 2.0 use case diagram definition.

UML 2.0 Component Diagram Definition
Provides UML 2.0 component diagram definition.

UML 2.0 Composite Structure Diagram Definition
Provides UML 2.0 composite structure diagram definition.

UML 2.0 Deployment Diagram Definition
Provides UML 2.0 deployment diagram definition.

UML 2.0 State Machine Diagram Definition
Provides UML 2.0 state machine diagram definition and example.

Interaction (Sequence and Communication) Diagrams
Describes UML 2.0 Interaction diagrams.

62

UML 2.0 Activity Diagram Definition

Definition
The activity diagram enables you to model the system behavior, including the sequence and conditions of execution
of the actions. Actions are the basic units of the system behavior.

An Activity diagram enables you to group and ungroup actions. If an action can be broken into a sequence of other
actions, you can create an activity to represent them.

In UML 2.0, activities consist of actions. An action represents a single step within an activity, that is, one that is not
further decomposed within the activity. An activity represents a behavior which is composed of individual elements
that are actions. An action is an executable activity node that is the fundamental unit of executable functionality in
an activity, as opposed to control and data flow among actions. The execution of an action represents some
transformation or processing in the modeled system, be it a computer system or otherwise.

The semantics of activities is based on token flow. By flow, we mean that the execution of one node affects and is
affected by the execution of other nodes, and such dependencies are represented by edges in the activity diagram.
Data and control flows are different in UML 2.0.

A control flow may have multiple sources (it joins several concurrent actions) or it may have multiple targets (it forks
into several concurrent actions).

Each flow within an activity can have its own termination, which is denoted by a flow final node. The flow final node
means that a certain flow within an activity is complete. Note that the flow final may not have any outgoing links.

Using decisions and merges, you can manage multiple outgoing and incoming control flows.

63

Sample Diagram

64

Related Procedures

UML 2.0 Activity Diagrams Procedures

Related Reference

UML 2.0 Activity Diagrams

65

UML 2.0 Class Diagram Definition
UML 2.0 Class diagrams feature the same capabilities as the UML 1.4 diagrams.

The UML 2.0 class diagrams offer new diagram elements such as ports, provided and required interfaces.

According to the UML 2.0 specification, an instance specification can instantiate one or more classifiers. You can
use classes, interfaces, or components as a classifier.

Interfaces
A class implements an interface via the same generalization/implementation link, as in UML 1.4 class diagram. In
addition to the implementation interfaces, there are provided and required interfaces. Interfaces can be represented
in class diagrams as rectangles or as circles. For the sake of clarity of your diagrams, you can show or conceal
interfaces.

UML 2.0 class diagram supports the ball-and socket notation for the provided and required interfaces. Choose Show
as circle command on the context menu of the interface to obtain a lollipop between the client class and the supplier
interface.

Tip: Applying a provided interface link between a class and an interface creates a regular generalization/
implementation link. To create provided interface, apply the provided interface link to a port on the client class.

Sample Diagram
The figure below shows a class diagram with some of the new elements.

66

Special Note for the LiveSource Projects
Using UML 2.0 class diagrams in the LiveSource projects is limited with certain restrictions, and are similar to UML
1.4 class diagrams.

Related Procedures

UML 2.0 Class Diagrams Procedures

Related Reference

UML 2.0 Class Diagrams

67

UML 2.0 Use Case Diagram Definition
Diagram courtesy of the Unified Modeling Language: Superstructure version 2.0. August 2003. p. 536.

Definition
Use case diagram describes required usages of a system, or what a system is supposed to do. The key concepts
that take part in a use case diagram are actors, use cases, and subjects. A subject represents a system under
consideration with which the actors and other subjects interact. The required behavior of the subject is described by
the use cases.

Sample Diagram
The following diagram shows an example of actors and use cases for an ATM system.

68

Related Procedures

UML 2.0 Use Case Diagrams Procedures

Related Reference

UML 2.0 Use Case Diagrams

69

UML 2.0 Component Diagram Definition
This topic describes the UML 2.0 Component Diagram.

Definition
According to the UML 2.0 specification, a component diagram can contain instance specifications. An instance
specification can be defined by one or more classifiers. You can use classes, interfaces, or components as a
classifiers. You can instantiate a classifier using the Object Inspector Properties Window, or the in-place editor.

Sample Diagram
The following component diagram specifies a set of constructs that can be used to define software systems of
arbitrary size and complexity.

Related Procedures

UML 2.0 Component Diagrams Procedures

Related Reference

UML 2.0 Component Diagrams

70

UML 2.0 Composite Structure Diagram Definition
Diagram courtesy of the Unified Modeling Language: Superstructure version 2.0. August 2003. p. 178.

Definition
Composite structure diagrams depict the internal structure of a classifier, including its interaction points to the other
parts of the system. It shows the configuration of parts that jointly perform the behavior of the containing classifier.

A collaboration describes a structure of collaborating parts (roles). A collaboration is attached to an operation or a
classifier through a Collaboration Use.

Classes and collaborations in the Composite Structure diagram can have internal structure and ports. Internal
structure is represented by a set of interconnected parts (roles) within the containing class or collaboration.
Participants of a collaboration or a class are linked by the connectors.

A port can appear either on a contained part, or on the boundary of the class.

The contained parts can be included by reference. Referenced parts are represented by the dotted rectangles.

Composite Structure diagram supports the ball-and-socket notation for the provided and required interfaces.
Interfaces can be shown or hidden in the diagram as needed.

71

Sample Diagram

Related Procedures

UML 2.0 Composite Structure Diagrams Procedures

Related Reference

UML 2.0 Composite Structure Diagrams

72

UML 2.0 Deployment Diagram Definition
This topic describes the UML 2.0 Deployment Diagram.

Definition
The deployment diagram specifies a set of constructs that can be used to define the execution architecture of systems
that represent the assignment of software artifacts to nodes. Nodes are connected through communication paths to
create network systems of arbitrary complexity. Nodes are typically defined in a nested manner, and represent either
hardware devices or software execution environments. Artifacts represent concrete elements in the physical world
that are the result of a development process.

Diagram courtesy of the Unified Modeling Language: Superstructure version 2.0. August 2003. pp. 207, 212.

Sample Diagram

Related Procedures

UML 2.0 Deployment Diagrams Procedures

Related Reference

UML 2.0 Deployment Diagrams

73

UML 2.0 State Machine Diagram Definition
States are the basic units of the state machines. In UML 2.0 states can have substates.

Execution of the diagram begins with the Initial node and finishes with Final or Terminate node or nodes. Refer to
UML 2.0 Specification for more information about these elements.

Definition
State Machine diagrams describe the logic behavior of the system, a part of the system, or the usage protocol of it.

On these diagrams you show the possible states of the objects and the transitions that cause a change in state.

State Machine diagrams in UML 2.0 are different in many aspects compared to Statechart diagrams in UML 1.4.

74

Sample Diagram

75

Related Procedures

UML 2.0 State Machine Diagrams Procedures

Related Reference

UML 2.0 State Machine Diagrams

76

Interaction (Sequence and Communication) Diagrams
Using Together you can create interactions for the detailed description and analysis of inter-process
communications. Interactions can be visually represented in your Together projects by means of the two most
common interaction diagrams: Sequence and Communication. On the other hand, interactions can exist in projects
without visual representation.

Whenever an interaction diagram is created, the corresponding interaction entity is added to the project. Interactions
are represented as nodes in the Model Navigator and can be placed inside classes and use cases.

You can view an interaction in two ways: as a sequence diagram, or as a communication diagram. An interaction
diagram contains a reference to the underlying interaction.

Unlike UML 1.4, it is not possible to switch a diagram that already exists from sequence to communication and vice
versa. However, it is possible to create a sequence diagram and a communication diagram based on the same
interaction.

Sequence diagram can contain shortcuts to other diagram elements. However, you cannot create shortcuts to the
elements nested in Interactions.

77

Related Procedures

UML 2.0 Interaction Diagrams Procedures

Related Reference

UML 2.0 Interaction Diagrams

78

UML 1.4 Diagrams
Together provides support for the most frequently needed diagrams and notations defined by the UML 1.4.

In This Section
UML 1.4 Class Diagram Definition
Provides UML 1.4 class diagram definition.

Package and logical class diagrams
There are two types of class diagrams used in Together: package and logical class diagrams.

UML 1.4 Sequence Diagram Definition
Provides UML 1.4 sequence diagram definition.

UML 1.4 Collaboration Diagram Definition
Provides UML 1.4 collaboration diagram definition.

UML 1.4 Use Case Diagram Definition
Provides UML 145 use case diagram definition.

UML 1.4 Statechart Diagram Definition
Provides UML 1.4 statechart diagram definition.

UML 1.4 Activity Diagram Definition
Provides UML 1.4 activity diagram definition.

UML 1.4 Component Diagram Definition
Provides UML 1.4 component diagram definition.

UML 1.4 Deployment Diagram Definition
Provides UML 1.4 Deployment Diagram definition.

79

UML 1.4 Class Diagram Definition
Using Together, you can create language-neutral class diagrams in design projects, or language-specific class
diagrams in implementation projects. For implementation projects, all diagram elements are immediately
synchronized with the source code.

Definition
A class diagram provides an overview of a system by showing its classes and the relationships among them. Class
diagrams are static: they display what interacts but not what happens during the interaction.

UML class notation is a rectangle divided into three parts: class name, fields, and methods. Names of abstract
classes and interfaces are in italics. Relationships between classes are the connecting links.

In Together, the rectangle is further divided with separate partitions for properties and inner classes.

Sample Diagram
The following class diagram models a customer order from a retail catalog. The central class is the Order.
Associated with it are the Customer making the purchase and the Payment. There are three types of payments:
Cash, Check, or Credit. The order contains OrderDetails (line items), each with its associated Item.

There are three kinds of relationships used in this example:

♦ Association: For example, an OrderDetail is a line item of each Order.

♦ Aggregation: In this diagram, Order has a collection of OrderDetails.

80

♦ Implementation: Payment is an interface for Cash, Check, and Credit.

Related Procedures

UML 1.4 Class Diagrams Procedures

Related Reference

UML 1.4 Class Diagrams

81

Package and logical class diagrams
The two types of class diagrams used in Together are package diagrams and logical class diagrams.

Package diagrams These diagrams are stored as XML files in the Model folder of the project with the file
extension .txvpck (for UML 1.4 projects), or .txvClassDiagram20 (for UML 2.0
projects)

Together creates a default package diagram for a project and for each subdirectory under
the project root. The default project diagram is named default. The default package
diagrams have default.txvpck and default.txvClassDiagram20 names
respectively.

Logical class diagrams These diagrams are stored as XML files with the file extension .txvcls (for UML 1.4
projects), or .txvClassDiagram20 (for UML 2.0 projects).

Related Concepts

UML 1.4 Class Diagram Definition
UML 2.0 Class Diagram Definition

82

UML 1.4 Sequence Diagram Definition
Class diagrams are static model views. In contrast, interaction diagrams are dynamic, describing how objects
collaborate.

Definition
A sequence diagram is an interaction diagram that details how operations are carried out: what messages are sent
and when. Sequence diagrams are organized according to time. The time progresses as you go down the page.
The objects involved in the operation are listed from left to right according to when they take part in the message
sequence.

Sample Diagram
Following is a Sequence Diagram for making a hotel reservation. The object initiating the sequence of messages is
a Reservation window (the UserInterface).

The UserInterface sends a makeReservation() message to a HotelChain. The HotelChain then sends
a makeReservation() message to a Hotel. If the Hotel has available rooms, then it makes a Reservation and
a Confirmation.

Each vertical dotted line is a lifeline, representing the time that an object exists. Each arrow is a message call. An
arrow goes from the sender to the top of the activation bar of the message on the receiver's lifeline. The activation
bar represents the duration of execution of the message.

In this diagram, the Hotel issues a self call to determine if a room is available. If so, then the Hotel creates a
Reservation and a Confirmation. The asterisk on the self call means iteration (to make sure there is available
room for each day of the stay in the hotel). The expression in square brackets, [], is a condition.

The diagram has a clarifying note, which is text inside a dog-eared rectangle. Notes can be included in any kind of
UML diagram.

83

Related Procedures

UML 1.4 Interaction Diagrams Procedures

Related Reference

UML 1.4 Interaction Diagrams

84

UML 1.4 Collaboration Diagram Definition
Class diagrams are static model views. In contrast, interaction diagrams are dynamic, describing how objects
collaborate.

Definition
Like sequence diagrams, collaboration diagrams are also interaction diagrams. Collaboration diagrams convey the
same information as sequence diagrams, but focus on object roles instead of the times that messages are sent.

Sample Diagram
Each message in a collaboration diagram has a sequence number. The top-level message is numbered 1. Messages
at the same level (sent during the same call) have the same decimal prefix but suffixes of 1, 2, etc. according to
when they occur.

Related Procedures

UML 1.4 Interaction Diagrams Procedures

Related Reference

UML 1.4 Interaction Diagrams

85

UML 1.4 Use Case Diagram Definition
Use case diagrams are helpful in three areas:

♦ Determining features (requirements): New use cases often generate new requirements as the system is
analyzed and the design takes shape.

♦ Communicating with clients: Notational simplicity makes use case diagrams a good way for developers to
communicate with clients.

♦ Generating test cases: The collection of scenarios for a use case may suggest a suite of test cases for those
scenarios.

Definition
Use Case Diagram describes what a system does from the viewpoint of an external observer. The emphasis is on
what a system does rather than how.

Use Case Diagrams are closely connected to scenarios. A scenario is an example of what happens when someone
interacts with the system.

Sample Diagram
Following is a scenario for a medical clinic:

A patient calls the clinic to make an appointment for a yearly checkup. The receptionist finds the nearest empty time
slot in the appointment book and schedules the appointment for that time slot.

A use case is a summary of scenarios for a single task or goal. An actor is who or what initiates the events involved
in that task. Actors are simply roles that people or objects play. The following diagram is the Make Appointment
use case for the medical clinic. The actor is a Patient. The connection between actor and use case is a
communication association (or communication for short).

Actors are stick figures. Use cases are ovals. Communications are lines that link actors to use cases.

A use case diagram is a collection of actors, use cases, and their communications. Following is an example of the
use case Make Appointment as part of a diagram with four actors and four use cases. Notice that a single use case
can have multiple actors.

86

Related Procedures

UML 1.4 Use Case Diagrams Procedures

Related Reference

UML 1.4 Use Case Diagrams

87

UML 1.4 Statechart Diagram Definition
This topic describes the UML 1.4 Statechart Diagram.

Definition
Objects have behaviors and states. The state of an object depends on its current activity or condition. A statechart
diagram shows the possible states of the object and the transitions that cause a change in state.

Sample Diagram
The following diagram models the login part of an online banking system. Logging in consists of entering a valid
social security number and personal ID number, then submitting the information for validation. Logging in can be
factored into four non-overlapping states: Getting SSN, Getting PIN, Validating, and Rejecting. Each
state provides a complete set of transitions that determines the subsequent state.

States are depicted as rounded rectangles. Transitions are arrows from one state to another. Events or conditions
that trigger transitions are written next to the arrows. This diagram has two self-transitions: Getting SSN and
Getting PIN. The initial state (shown as a black circle) is a dummy to start the action. Final states are also dummy
states that terminate the action.

88

The action that occurs as a result of an event or condition is expressed in the form /action. While in its Validating
state, the object does not wait for an outside event to trigger a transition. Instead, it performs an activity. The result
of that activity determines its subsequent state.

Related Procedures

UML 1.4 Statechart Diagrams Procedures

Related Reference

UML 1.4 Statechart Diagrams

89

UML 1.4 Activity Diagram Definition
This topic describes the UML 1.4 Activity Diagram.

Definition
Activity diagrams enable you to model system dynamics. An activity diagram is a flowchart that describes the flow
of control from one activity to the next. You can show sequential and/or concurrent steps of a process, model
business workflows, model the flow control of an operation, or the flow of an object as it passes though different
states at different points in a process. Unlike interaction diagrams (such as sequence and collaboration) that
emphasize the flow of control between objects, activity diagrams emphasize the flow of control between activities.
Activity diagrams and statechart diagrams are related. While a statechart diagram focuses attention on an object
undergoing a process (or on a process as an object), an activity diagram focuses on the flow of activities involved
in a single process. The activity diagram shows the how those activities depend on one another.

Activity diagrams can be divided into object swimlanes that determine which object is responsible for an activity. A
single transition comes out of each activity, connecting it to the next activity. A transition can branch into two or more
mutually exclusive transitions. Guard expressions (inside []) label the transitions coming out of a branch. A branch
and its subsequent merge marking the end of the branch appear in the diagram as hollow diamonds. A transition
may fork into two or more parallel activities. The fork and the subsequent join of the threads coming out of the fork
appear in the diagram as solid bars.

Sample Diagram
The Activity Diagram below uses the following process: "Withdraw money from a bank account through an ATM."

The three involved classes (people, and so on) of the activity are Customer, ATM, and Bank. The process begins
at the black start circle at the top and ends at the concentric white/black stop circle at the bottom. The activities are
shown as rounded rectangles.

90

91

Related Procedures

UML 1.4 Activity Diagrams Procedures

Related Reference

UML 1.4 Activity Diagrams

92

UML 1.4 Component Diagram Definition
Both component and deployment diagrams depict the physical architecture of a computer-based system. Component
diagrams show the dependencies and interactions between software components.

Definition
A component is a container of logical elements and represents things that participate in the execution of a system.
Component also uses the services of other components through one of its interfaces.

Components are typically used to visualize logical packages of source code (work product components), binary code
(deployment components), or executable files (execution components).

Sample Diagram
Following is a component diagram that shows the dependencies and interactions between software components for
a cash register program.

Related Procedures

UML 1.4 Component Diagrams Procedures

Related Reference

UML 1.4 Component Diagrams

93

UML 1.4 Deployment Diagram Definition
Both Component and Deployment Diagrams depict the physical architecture of a computer-based system.

Deployment Diagrams are made up of a graph of nodes connected by communication associations to show the
physical configuration of the software and hardware.

Components are physical units of packaging in software, including:

♦ External libraries

♦ Operating systems

♦ Virtual machines

Definition
The physical hardware is made up of nodes. Each component belongs on a node. Components are shown as
rectangles with two tabs at the upper left.

Sample Diagram
Following is a Deployment Diagram that shows the relationships of software and hardware components for a real
estate transaction.

94

Related Procedures

UML 1.4 Deployment Diagrams Procedures

Related Reference

UML 1.4 Deployment Diagrams

95

Business Process Modeling

Overview
Business Process Modeling Notation (BPMN) covers many types of business process modeling with various detail
levels and enables you to create end-to-end business processes. After you create a diagram in the BPMN project,
you can export the diagram to BPEL and WSDL files. You also can create a BPMN project from imported BPEL and
WSDL files.

Together enables you to perform a simulated run of the designed business process specifying simulation parameters
in the run configuration or using default parameters. During the simulation, Together calculates tasks execution
duration, execution cost and other parameters. When simulation is finished you can open a report with statistical
data on the selected business process.

By default, a business process modeling project is created with the enabled BPEL Modeling profile. This profile adds
properties necessary to create a BPEL file. You also can specify general options of business process modeling
(including the default profile).

When you create a BPMN diagram, it is created with a default pool. You can use the diagram immediately for
designing your process. A business process project can also contain the following elements that are invisible on the
diagram but can be seen in the Model navigator:

♦ Message

♦ Event Detail

♦ Rule

♦ Transaction

♦ Assignment

♦ Web Service

♦ Property

♦ Property Set

♦ Process

♦ Participant

♦ Input Set

♦ Output Set

The following diagram is an example of the BPMN diagram.

96

A diagram in the Business Process Modeling project can contain projection bars that mirror pools and lanes from
the diagram. The projection bars remain visible when the lanes are too long and the diagram have to be scrolled.
You can use the projection bars to select pools or lanes.

97

The Group element allows you to easily differentiate between sections of a BPMN diagram. You can easily divide a
BPMN diagram into logical parts using the Group element. A Group permanently keeps track of content, resizes on
element move, colors elements with selected color, etc.

Reusing BPMN Projects Created in Together 2006
To reuse BPMN projects created in Together 2006 for Eclipse, use BPMN Project from Together 2006 Business
Process Modeling project.

Note: You can open BPMN projects created in Together 2006 for Eclipse but they open as read-only and not
accessible via API.

98

Optional Install
Since Together 2008 Release 3, the Business Process Modeling feature set is not required to be installed. When
not present, the corresponding parts of the user interface and functionality are not available. Refer to the installation
instructions in the Release Notes document for additional info about the product installation process.

Note: It is not recommended to omit installing the Business Process Modeling feature set if there are existing
Business Process Modeling projects in the workspaces you plan to reuse or import.

Related Procedures

Performing Business Process Simulation

99

Data Modeling
Topics in this section provide a brief overview of data modeling in Together.

In This Section
Data Modeling Overview
Provides data modeling overview.

Logical and Physical Data Models
This section outlines the difference between the logical and physical data models.

100

Data Modeling Overview
Together provides a complete data modeling solution. With Together you can perform the following tasks

♦ Design logical models

♦ Design physical models

♦ Import DDL/SQL script to existing project

♦ Export logical model to physical model

♦ Export physical model to DDL/SQL script

♦ Import Data Model from Database to physical model

♦ Import logical models from Together Designer 2005

Related Concepts

Logical and Physical Data Models

Related Procedures

Data Modeling Procedures

Related Reference

Data Modeling Reference

101

Logical and Physical Data Models
A data model, which represents the business data, consists of both the logical and physical design. A logical model
is developed prior to the physical model and allows you to define how the information to be stored in the database
is organized. Thus, a logical model can be regarded as a blueprint that clearly defines data structures and
relationships between them.

The physical design addresses the technical implementation of the logical data model and shows how the information
is stored in a particular database. The physical model is bound to the target database server.

Because data modeling is a complicated process, Together enables you to separate the development of the logical
and physical models.

♦ Logical models are designed in UML 2.0 modeling projects with the help of ER Logical Diagram Profile. The
concept of entities and relationships in logical data modeling maps to the concept of classes and associations
in the UML 2.0 class diagram. When you enable this profile for a project, Together provides a set of ER Logical
Elements in the Palette, which you can use to create your logical model.

♦ Physical models are designed in Data Modeling projects.

Related Concepts

UML Profiles
Together Project Overview

Related Procedures

Data Modeling Procedures

102

Model Transformation Support
Together provides a complete set of Model Driven Architecture (MDA) capabilities based on the specially developed
Together Model Transformation Framework (TMF). The framework implements some of the most important concepts
underlying the Meta Object Facility (MOF) 2.0 Queries/Views/Transformations (QVT) specification and is based on
the Eclipse Modeling Framework (EMF).

In the scope of QVT, model transformation relates to MOF models. Together Model Transformation Framework
relates to EMF and Together models. Together models are accessible via an EMF API implemented as a set of
lightweight wrappers placed around Together model elements. The framework provides an imperative QVT language
for defining mappings between models and a transformation engine for interpreting the mapping definitions and
queries.

In Together, you can create, run and debug transformations within the project environment. When your
transformation is ready, you can apply it to models or model elements. The compiled transformation is deployed
within the Eclipse environment as a standard Java plug-in that you can share with users in your team. Currently,
Together supports the following transformation types:

♦ Model-To-Model transformation. Transforms a Together or EMF model into another Together or EMF model.
Model-To-Model transformations produce the target model and an auxiliary trace file with detailed information
about every transformation step performed. The target model opens in the corresponding model editor, the
trace file opens in the Trace view.

♦ Model-To-Text transformation. Transforms a Together or EMF model into an arbitrary text output using java.

♦ XSL/OCL transformation. Transforms a Together or EMF model into an arbitrary text output using an XSL/OCL
transformation script. The XSL/OCL script uses the OCL language. XSL uses the XPath language.

♦ Composite transformation is the Ant-based MDA transformation, which allows you to automatically (using Ant
tasks) apply multiple MDA transformations to the specified models, and in the specified order. For Model-To-
Model transformations, you can create transformation chains, where the output model of the preceding
transformation is passed (via Ant properties) to the input of the next transformation in the chain.

By using QVT Model-To-Model transformations, you can transform your Computation Independent Models (CIMs)
into Platform Independent Models (PIMs), and then to Platform Specific Models (PSMs). By using Model-To-Text
and XSL/OCL transformations, you can generate code from your PSMs.

The framework comes with a set of tools that helps you write, run, and debug transformations. For Model-To-Model
transformations, the QVT Editor provides basic QVT editing features (including code sensitive editing, syntax
checking and highlighting).

The Eclipse Debugger for QVT allows you to trace the execution of your QVT code step-by-step. The debugger
supports breakpoints (including StepOver, StepInto, and StepOut features), watches, and the Variables view. The
Trace view allows you to inspect the result of your transformation when it is completed.

For XSL/OCL transformations, Together provides a powerful and highly customizable XSL/OCL Editor that supports
XSL/OCL code sense, syntax highlighting, XSL structure outline, and error checking. The XSL Debugger, which
runs in the XSL/OCL Debugging perspective, supports breakpoints (including StepOver, StepInto, StepOut and
StepReturn features).

Together also provides a number of sample projects for each type of transformation.

Note: There are two different implementations of the OCL and QVT engines. The first version available since
Together 2006 refers to the OMG ptc/05-11-01 QVT Specification. Historically it is the primary engine to use
with Together models. The other engine Operational QVT deployed in Together 2008 refers to the
substantially revised OMG formal/08-04-03 QVT Specification and originally best suited for the DSL
Toolkit. Since Together 2008 R2 SP1, Operational QVT is adopted for use with Together models for both
read and write. Legacy QVT transformations developed in the context of the MDA Transformation project,
Operational QVT - in context of Operational QVT project.

103

Overview of the Operational QVT engine is provided in topic Reference MDA QVTO
Language.

The source artifacts (.qvt for legacy Together QVT and .qvto for Operational QVT) may
need adjustment when migrating between these engines because these engines have
differences in syntax and behavior. Please refer section Reference MDA QVTO
Migration Notes for migration guidelines. Note that the guide above operates only with pure
EMF models so the specific aspects of accessing Together models via EMP API, known from
working with Together QVT experience, should be taken into account. Please contact
support team in case of difficulties.

Normally there should be no problems using both QVT engines simultaneously, although the
UI may look a bit overloaded. It is recommended that you turn corresponding capabilities on
or off as needed (select Window Preferences, and then select the General node and
the Capabilities node).

Related Procedures

Creating an MDA Transformation Project
Creating a Model-To-Model Transformation
Creating Model-To-Text Transformations
Creating an XSL Transformation
Creating an Example MDA Transformation Project

Related Reference

QVTO Language
QVT Operational Migration Notes
MDA Example Projects

104

UML Profiles
Together includes several pre-installed profiles and allows you to create your own profile definitions using Profile
Definition project.

In This Section
UML Profiles Basics
Provides an overview of UML profiles.

Profile Definition Project
Provides an overview of Profile Definition project in Together.

Supported Metamodels
Provides a list of metamodels supported in Together.

Stereotype
Describes the stereotype element in the Profile Definition project.

Palette Contribution
Describes the stereotype element in the Profile Definition project.

Extension Link
Describes the Extension link element in the Profile Definition project.

Contribution Link
Describes the Contribution link element in the Profile Definition project.

105

UML Profiles Basics
UML is a standard modeling language for specifying, visualizing, constructing, and documenting the artifacts of
software systems, as well as for business modeling and other non-software systems. While the general modeling
concepts of UML are quite suitable for the majority of developers, in some situations, a further extension of these
concepts is useful to allow a more refined rendering of domain-specific concepts and techniques. UML extension
mechanisms address the definition of additional semantics of model elements that cannot be expressed directly
using UML constructs. This technique is known as UML Profiling.

Profiles provide mechanisms that allow metaclasses from existing metamodels to be extended so they can be
adapted for different purposes. All kinds of model elements can get stereotypes and tagged values that are defined
in the profile applied to the model.

The UML standard provides refinement mechanisms for profile creation, such as stereotypes, tagged values,
constraints, and notation icons that collectively specialize and tailor the UML for a specific domain or process. These
elements can be used to adapt the UML semantics without changing the UML metamodel. This means that you can
interpret the semantics of a profile in the context of the UML specification.

Related Concepts

Stereotype

106

Profile Definition Project
A Profile Definition project is a profiled modeling project that allows you to create new profile definitions.

One Profile Definition project corresponds to a single profile. Inside the Profile Definition project you can use some
packages to locate different elements. For example, you can put all enumerations to one package, all palette
contributions to another package, and all stereotypes to a third one. All the elements will be deployed to the same
profile.

The Profile Definition adds the following elements to the class diagram Tools Palette:

♦ Stereotype

♦ Palette Contribution

♦ Extension

♦ Contribution

Tip: Stereotype and Palette Contribution elements are also added to the diagram context menu: New Profile
Definition.

Note: Metaclasses referenced in a profile must be taken from the corresponding target UML metamodel that was
selected when creating the project.

Related Concepts

Interoperability and Migration

Related Procedures

Together Profiles

Related Reference

EMF API for Together Profiles

107

Supported Metamodels
In Together, you can create profiles to extend the following metamodels:

♦ BPMN

♦ ER Physical

♦ UML 1.4

♦ UML 2.0

Stereotypes, tagged values and OCL constraints declared in the profile must refer to the selected metamodel.

Related Concepts

Interoperability and Migration

Related Procedures

Together Profiles

Related Reference

EMF API for Together Profiles

108

Stereotype
A stereotype contains properties that extend a linked metaclass, and enables the use of platform- or domain-specific
terminology or notation in addition to the ones used for the extended metaclass.

A model element that has a stereotype is a special kind of element that conforms to a rigid specification, defined for
this stereotype in the profile definition.

The following important issues should be taken into consideration:

♦ A stereotype is created as a Class20 element in your project with the <stereotype> tag.

♦ A stereotype extends a metaclass through an Extension link.

♦ When an instance of a stereotype is created in the target diagram, it gets the attributes (tagged values) of the
stereotype in question.

♦ The following types of attributes (tagged values) of a stereotype are valid: Primitive, Enumeration, Metaclass.
Attributes of all the other types are ignored during deployment.

♦ Tagged values of a stereotype can be defined in two ways: as attributes of the valid types and as association
links drawn from a stereotype element to the valid attribute types.

♦ If a profile defines attributes with a default value for a given type that is different from the default value in the
underlying implementation, some side effects should be noted. For example, the default value for a Boolean
property is false and is not persisted in the model instance. If a Boolean property is set to true as the default
value in a profile definition and a user sets an instance value to false, its value is not persisted but interpreted
as the default value (true) when read back in. Similarly, instance values changed to empty/null will not be
persisted and will likewise be interpreted as the default value when read back in.

♦ If a tagged value of a stereotype is defined as an outgoing association, its name and multiplicity properties
have specific uses. The name property is set to the supplier role of the association link. If the supplier role is
not defined, the association name is used instead. For multiplicity values other than 1 or 0 to 1, the
multivalued attributes are created.

♦ A stereotype can extend another stereotype via Generalization and inherit its attributes and viewmap. Note
that the child stereotype inherits extensions from the parent stereotype and the parent viewmap (unless the
child stereotype defines its own viewmap).

♦ A stereotype has the extended metaclass property, which is defined in the Profile Definition node of the
Properties View.

♦ An abstract metaclass can be chosen as an extended metaclass. In this case, the new element will not appear
in any toolbar, but all the elements of the child metaclasses will get this stereotype in the list of predefined
stereotypes.

♦ If, after profile deployment, an element belonging to the type of the extended metaclass is used in the target
diagram, the extending stereotypes are added to the list of predefined stereotypes for this metaclass.

Related Procedures

Creating Stereotypes

109

Palette Contribution
A Palette Contribution enables you to add creation tools for stereotypes and pure metaclasses to the selected
Diagram Tools Palette.

A contributed stereotype is associated to a Palette Contribution by means of a Contribution link. It is also possible
to associate a Palette Contribution with a shortcut to a metaclass from the metamodel. This allows you to customize
the palette by adding some elements to the tool bars of different diagrams. For example, if you want to have the
ability to create classes from the component20 diagram toolbar, you can associate the shortcut to
uml20::classes::Class with a Palette Contribution in your profile definition.

A Palette Contribution can extend another Palette Contribution; when this is done, the child Palette Contribution
inherits all the parent diagrams, contributed stereotypes and pure metaclasses.

Related Procedures

Creating Palette Contributions

110

Extension Link
An extension link indicates that the properties of a parent metaclass are extended with the new properties through
a stereotype. An extension link is drawn from a stereotype to a metaclass shortcut whose properties are extended.

111

Contribution Link
A contribution link connects a Palette Contribution element with a Stereotype.

112

Modeling for EJB
The Enterprise JavaBeans (EJB) architecture is a component architecture for the development and deployment of
component-based distributed business applications. Together is shipped with EJB profiles that allow you to create
a specific UML model for EJB.

Together provides the following EJB Profiles:

Profile Name Description

Standard EJB Using the Standard EJB profile you can generate deployment descriptors that are EJB 2.0
compatible. This profile should always be selected for any work with EJB because it contains the
basic EJB elements.

Standard EJB (ver 2.1) Provides some additional elements. Also changes properties of some standard elements to comply
with EJB version 2.1.

Weblogic EJB Extension Provides WebLogic specific elements. Also changes properties of some other elements to generate
deployment descriptors that are compatible with BEA WebLogic 8.1.

EJB modeling can be thought of as a three-stage process:

1 Modeling in UML using the EJB profile
2 Generating Deployment descriptors while exporting to the Java project
3 Editing the Java project and deploying it to the application server (for example, BEA WebLogic)

Using Together, you can create an EJB model and export it to the Java project.

Note: Because WebLogic 8.1 supports the EJB 2.0 specification, do not enable WebLogic and EJB Standard profile
(ver. 2.1) simultaneously.

Related Concepts

UML Profiles Basics
Profile Definition Project

113

Model Compare and Merge
Together provides a comprehensive solution for comparing and merging models in your project.

EMF and UML Models Compare
Together supports two-way and three-way comparison of EMF or UML models, or model elements of the similar
type in a tree view.

In a two-way compare, the compared models are called Left and Right. Model Compare/Merge traverses the
compared models, going level by level down the containment tree. On each level, objects are matched using ID
features that you set in the ID Features page of the Preferences dialog box (Window Preferences
Modeling EMF Model Compare ID Features). After that, Model Compare/Merge compares values of attributes
and non-containment references.

You can export the compare results to an EMF XMI file.

Shared Models Compare
Together provides integration with version control systems and allows two-way and three-way comparison and
merge of shared (version controlled) models.

When comparing shared models, the Left model represents the local version while the Right model represents the
remote version. In a three-way compare, the third model is called Ancestor. It represents a common ancestor version
of the two versions taken from VCS.

Together utilizes standard Eclipse synchronization APIs and is able to compare models stored in any version control
system that supports the Eclipse Synchronize view.

Comparing and merging shared models requires one (for two-way comparison) or two (for three-way comparison)
remote versions of the compared model.

Together copies your local model to a temporary project, then applies changes reported by the repository provider,
and then displays these changes in the Synchronize view. Temporary models are read-only, and Together uses a
modal Model Compare dialog box, instead of the standard Compare editor.

Merging Models
The merging capability enables you to transfer elements from one model to another.

Related Procedures

Comparing and Merging Models

Related Reference

Model Compare/Merge

114

Template Elements and Generics Overview

Template elements
Together supports templates, as defined in the UML 2.0 superstructure specification. This support provides the ability
to show templates, template signature, parameters, and template bindings in the UML 2.0 diagram.

A templateable element may contain a template signature which specifies the formal template parameters. A
templateable element that contains a template signature is a template.

A template signature displays in a diagram as a rectangle in the top-right corner of the owing element. In the
Properties View of a template element, the isTemplate property is set to true.

A template binding represents a relationship between a templateable element and a template. A template binding
specifies the substitutions of actual parameters for the formal parameters of the template.

Generics
In the LiveSource projects, Together supports generic language constructs that describe specialization of templates
for a certain type. Such constructs display in a diagram as special entities. For C++ projects, this possibility is enabled
by default; for Java projects, generics are enabled by means of a special setting in the Project Properties dialog.

Consider the following example:

template<class T> Class A; // defines a template A with the parameter type T
class B;
A<int> *a // on the diagram A<int> will display an entity as a specialization of a template
A for the type <int>
A<float> *f // displays another entity for the floating type

Related Procedures

Creating Template Elements

115

Model Import and Export Overview
You can share model information with other systems by importing and exporting model information, or by sharing
project files:

Feature Description
Exporting diagrams to images You can save diagrams in several formats, including:

Bitmap image (BMP)

Enhanced windows metafile (EMF)

Graphics interchange (GIF)

JPEG file interchange (JPG)

Scalable Vector Graphics (SVG)
Importing IBM Rational Rose (MDL) models It is possible to convert models designed in IBM Rational Rose

2003 to the format of Together. The following file formats are
supported: .mdl, .ptl, .cat, and .sub.

Importing from MDX Together enables you to create projects around an IBM®
Rational® XDE .mdx file.

Importing from XMI

Exporting to XMI

XMI (XML Metadata Interchange) enables the exchange of
metadata information. Using XMI, you can exchange models
across languages and applications. For example, if you have
a modeling project created with a tool other than Together, you
can import it to Together as an XMI file for extension or as the
basis of a new project. Likewise, you can export Together
projects for use in other applications. The result in each case
is a single, portable .xml file.

XMI for UML 2.0 was introduced in IBM® Rational® Software
Architect and allows you to exchange models that comply with
UML 2.0 specification. The models are exchanged via files
with an .uml2 extension.

For import and export, Together supports the following UML
versions/platforms:

• XMI for UML 1.3 (Unisys Extension)

• XMI for UML 1.3 (with Unisys Extension recommended for
Together ControlCenter)

• XMI for UML 1.3 (with Unisys Extension recommended for
Rose)

• XMI for UML 1.4 (OMG)

• XMI for UML 2.0

• XMI for UML 2.0 compliant with OMG standard (XMI created
without usage of some non-OMG-standard tags such as
eAnnotations)

To import a project from Together ControlCenter, first use
Together ControlCenter and export the project to UML 1.3
(Unisys and Together Extensions) and then import it into
Together. In addition, always use XMI for UML 1.3 (with
Unisys Extension, recommended for TCC) when exporting a
Together project to be used in Together ControlCenter. XMI

116

export and import makes it possible to reuse multi-root
projects.

Importing from other versions of Together

Sharing with other versions of Together

You can reuse models created in other editions and versions
of Borland Together. This feature is known as
interoperability.

TVS projects and projects created in Together Editions prior
to version 7.0 cannot be imported to Together.

Export a Quality Assurance metric chart to image Create a chart and then export it to image.

Related Concepts

Together Interoperability and Migration

Related Procedures

Exporting a Diagram to an Image
Importing a Project in IBM Rational Rose (MDL) Format
Importing a Project in an IBM Rational Rose MDX Model
Importing a Project in XMI Format
Exporting a Project to XMI Format
XMI Export and Import of the Models with Cross-Project References
Creating a Metrics Chart

117

OCL Support
This section provides an overview of OCL in Together.

In This Section
About OCL Support in Together
This topic describes support for Object Constraint Language.

OCL Constraints and Expressions
Describes OCL constraints and expressions in Together.

OCL on Non-Class Diagrams
Describes OCL usage for non-class diagrams.

118

About OCL Support in Together
This topic describes support for Object Constraint Language.

About OCL
The Object Constraint Language (OCL) is a formal language that describes expressions on UML models. OCL
expressions specify operations or actions that, when executed, alter the state of the system. UML modelers can use
OCL to specify application-specific constraints in their models. UML modelers also can use OCL to specify queries
on the UML model, which are completely programming language independent. For more information about OCL,
refer to the OCL 2.0 specification.

Together allows you to use all the capabilities of OCL 2.0 to work with your model:

♦ Add the OCL constraints to the types defined in your model, providing them as constraint notes linked to the
context elements on the diagram. The constraint text opens in a powerful editor that provides syntax
highlighting, errors validation, and code completion functionality.

♦ Generate Java code from your model, optionally generating the code for OCL expressions used in the model.

♦ Use OCL as a query language operating with types defined in the metamodel. You can perform a Search In
Model by OCL query, write and run Model Audits and Metrics, and use OCL expressions in the documentation
templates for the documentation generator.

Note: Portions of this product include the Object Constraint Language Library, courtesy of Kent University, United
Kingdom. See http://www.cs.kent.ac.uk/projects/ocl/

Supported Diagram Types
OCL supports the diagrams listed in the following table.

Diagram types with OCL support
Diagram type UML version Support provided

All diagram types 2.0 Object constraints. The default language of constraints depends
on the context element type and project type.

Interaction (Sequence and Communication) 2.0 State invariant constraints for lifelines and constraints for the
operands of the combined fragments as OCL expressions.

Pre- and post- condition for the Interaction. These elements are
realized as inner constraint elements available via element's
Properties.

State Machine 2.0 Guard conditions of transitions as OCL expressions.

Pre- and post- conditions of a StateMachine, and a StateInvariant
for a State. These elements are realized as inner constraints
available via element's Properties.

Activity 2.0 Pre- and post- conditions for activity; local pre- and post-
conditions for an action.

119

http://www.cs.kent.ac.uk/projects/ocl/

Related Concepts

UML Modeling Overview

Related Procedures

Together Object Constraint Language (OCL)

Related Reference

Diagram View
EMF API for Together Profiles

120

OCL Constraints and Expressions
As the OMG's specification describes it, OCL is a formal language used to describe expressions on UML models.
These expressions typically specify invariant conditions that must hold for the system being modeled or queries over
objects described in a model.

The buttons on the diagram Palette allow you to create OCL constraints as design elements on diagrams, and link
these constraints with the desired context. The OCL Expressions view provides an OCL editor that lets you develop
and validate OCL expressions. Any OCL constraint contains an OCL expression.

OCL support for constraints provides syntax and error highlighting in the OCL Editor view. The text of the constraint
is validated when the constraint is linked to its context.

Related Concepts

UML Modeling Overview

Related Procedures

Together Object Constraint Language (OCL)

Related Reference

Diagram View

121

OCL on Non-Class Diagrams
Constraints on non-class diagrams fall into two categories:

♦ Inner constraints

♦ External constraints

The OCL editor provides syntax highlighting, errors validation and code completion functionality.

Inner constraints
The following properties are defined by creating nested constraints inside the elements. Generally, each property is
a property tab that contains two properties—language (OCL/text) and body (constraint body).

♦ guard in transition/internal transition

♦ precondition and postcondition in StateMachine, Activity, Interaction

♦ local precondition and local postcondition in Action

♦ state invariant in State

♦ Condition in Extends on a Use Case diagram

♦ state invariant and Interaction constraint on a Sequence diagram

♦ body, precondition, postcondition, and ownedRule in Operation

The OCL editor is available for the constraints inside the elements. You can expand the element node in the Model
Navigator and open a constraint in the editor.

Tip: For the properties of elements that can have class as their context, the OCL context is set automatically.

Constraint Context
Element with defined constraint Correct context for the constraint.
StateMachine Operation selected as a Specification association of this StateMachine

(a class is selected for the context property and specification is a
method of the selected class).

Activity Specification of the activity.
Action Specification of the activity that contains this action.
State and Transition Class selected in the context property of the StateMachine that

contains this State or Transition.
Operation Operation itself. Note that the operation has a valid OCL context only

if it is owned by Class or Interface. Operations owned by other
classifiers get no OCL context, and their constraints should have text
as a constraint language.

Interaction Context of this Interaction or Specification if it is defined.
State invariant and Interaction constraint Class selected as type of the Lifeline that contains this element. It can

be either a class directly selected as the type of the Lifeline or part
selected as the Lifeline representation.

Extends Context cannot be specified and constraint can only be defined as text
(language=text).

122

Tip: If a context for a constraint with language=ocl is not specified or cannot be specified, such constraints are
shown as invalid.

External constraints
In addition to the inner constraints described above, all the elements on the non-class diagrams that are Types
(various classifiers) can be furnished with external OCL constraints.

An external constraint is created as a Constraint element linked to the constrained element by the context link.

Unlike inner constraints, the external constraints always use the linked type as a context. Thus, the StateMachine
constraints may have the context of the assigned specification if it is an inner precondition, or the context of the
StateMachine itself if it is the external linked constraint.

Related Concepts

UML Modeling Overview

Related Procedures

Together Object Constraint Language (OCL)

Related Reference

Diagram View

123

Patterns and Templates
This section describes patterns and templates in Together.

In This Section
Patterns and Templates Overview
Overview of patterns and templates in Together.

Pattern Definition Project
Describes a pattern definition project in Together.

Pattern recognition
Describes how pattern recognition works.

Templates
Describes code templates in Together.

124

Patterns and Templates Overview
Patterns provide software developers with powerful reuse facilities. Rather than trying to tackle each design problem
from the very outset, you can use the predefined patterns supplied with Together. The hierarchy of patterns is defined
in the Pattern Registry. You can manage and logically arrange your patterns using the Pattern Organizer.

Patterns and templates are pluggable extensions for Together enabling you to:

♦ Create new and frequently used elements

♦ Modify existing elements

♦ Implement source code constructions and solutions in your project.

Code templates
Together supports code templates to provide backward compatibility with previous versions of Together. You can
use your legacy source code templates to create elements in the source-code projects. Code templates are text files
with the extension specific for Java that use macros to be substituted with real values when the templates are applied.
Therefore, code templates can be regarded as forms ready for "filling in" for a specific instance. A code template
consists of a template file containing source code, and a properties file that contains macro descriptions and their
default values. Templates in Together are mostly used in Java Modeling projects.

Patterns
Each pattern describes of a set of model elements, relations between them, and constraints applied to those
elements. Patterns are represented by special modeling projects covering all the aspects of patterns. Patterns, in
general, are independent of any programming or markup language. You can use them to create or modify any type
of element. However, concrete patterns are designed to work with elements of a specific type. Use Pattern Registry
to manage patterns.

Note: Together is shipped with some predefined patterns that cannot be deleted or otherwise edited.

Pattern instances
Pattern instances appear as a result of recognition of the existing model or creating new instances (along with model
elements playing pattern roles) in the model. Pattern instances contain information about the pattern name and the
role of each participant. They are shown in the Pattern Explorer view and under the Patterns node in the Model
Navigator.

When applied to a diagram, such patterns create their entities and are presented on the diagram itself, with the links
to the created entities. Such patterns enable further modification by means of adding new participants (new pattern
part). All patterns that appear in the Pattern Explorer are represented in the project model in the form of entities
with metaclass “pattern”. Visually, pattern instances are displayed as ovals (like collaboration occurrences). Pattern
entities have children links to pattern participants, which allow viewmap links on diagrams from pattern instances to
pattern participants. Actions on pattern instances in the model are the same as in pattern explorer.

During the lifetime of the pattern instance, the model can change (some elements from the instance may be deleted,
others may be changed so that they no longer satisfy the pattern definition) and the pattern instance can become
invalid. This is why you need to perform pattern instance validation regularly.

125

Related Concepts

Pattern Definition Project
Templates

Related Procedures

Patterns and Templates

Related Reference

Patterns and Templates
Pattern Registry
Pattern Explorer

126

Pattern Definition Project
Using a pattern support subsystem in Together, you can easily work with patterns via pattern definitions. You can
use well-known, predefined patterns. You can also define new ones and delete, rename, or edit existing ones. Using
Together, you can manage pattern instances by recognizing patterns in an existing model, creating elements by
pattern, creating new participants for particular roles for an existing pattern instance, and so on.

A pattern definition project is a profiled UML 2.0 modeling project with the following modifications that distinguish it
from a pure UML 2.0 project.

The following elements are allowed in a pattern definition project:

♦ Instance specifications

♦ Slots

♦ Pattern definition links (derived from a Kernel Association class, able to connect instance specifications)

♦ Constraints

♦ Value specifications

♦ Pattern constraint links (derived from a Binary link class, aimed to define constraint parameters)

♦ Class diagrams

♦ All other elements are prohibited

The following extensions are added to the allowed metaclasses:

♦ Instance Specification—able to aggregate pattern definition links.

♦ Slot—the following new properties are added: Use for recognition (Boolean) — Controls whether to use
this property on recognition. Use for generation (Boolean) — Controls whether to set this property on
creating elements by pattern. Is configurable (Boolean) — When set to true, indicates that by using the
“create by pattern” wizard, the user can modify the value of this property to be set on element creation. This
property should be false if Use for generation property is set to false.

♦ Constraint—able to aggregate pattern constraint link.

♦ Class diagram—patternPartWizardDefinition (Boolean) — When set to true, the new “create pattern
part” wizard will be generated for the instances of this pattern.

When you create new pattern instances from existing project elements, the creation process uses participants from
your current selection and enables you to modify the pattern properties. You can easily view and modify properties
of pattern instances using the standard Properties view. Any change that you make to a pattern property applies
immediately to the pattern participants (via refactoring).

All pattern definitions are stored in the com.borlang.tg.patterns\patterns subfolder of the Together plugins
folder. Each pattern definition is an archive file packed by zip utilities provided by the Java Development Kit (JDK).
Pattern definitions contain compilation results suitable for recognition and completion engines and for the whole
definition project so that definition editing can be done. Folder and shortcuts structure are stored in the
pattern.registry file in the same location.

Related Procedures

Creating Pattern Definition

Related Reference

Create Pattern from Elements

127

Pattern recognition
Pattern recognition identifies pattern instances from existing elements in the project. The identification process
determines pattern participants and parameters. You can start the pattern recognition process from the project's
context menu to perform pattern recognition, validation, and problem reporting.

Related Procedures

Recognizing Patterns

128

Templates
A template allows you to quickly and automatically create code, insert code, or transform existing code. There are
several different types of templates:

♦ Package: For modifying/creating specific groups of classes and members

♦ Class: For modifying existing classes or creating a new class

♦ Link: For modifying existing links or creating a new links on the Class diagram

You can use template extensions to create template instances. Template instances are managed by the template
manager, which also gives you the ability to manage existing template instances, or create new ones. A template
instance operates on existing elements using an associated template source. The template source contains a
template-specific specification of elements and constructions that are applied on the target elements. For example,
an instance of the Java class template uses its template source to specify imports, fields, methods, and inner-types
that are created when the template is applied to a target Java class.

You can create new template instances using the template wizard. The current selection of elements is analyzed
and then an appropriate template source is created using the data from the selected elements. For example, you
can create a new Java class template from an existing class. The wizard analyzes the selection and extracts imports,
fields, and methods from the selection. It then creates the template source. The template source is then associated
with the new template instance.

129

Quality Assurance
Quality Assurance in Together provides teams and managers with measures of the quality of their project. As with
any Quality Control, the team should understand what is measured, and why. Although audits and metrics are similar
in that they both analyze your project, they serve different purposes. Audits and metrics are run as separate
processes. Because the results of these two processes are different in nature, Together provides different features
for interpreting and organizing the results.

In This Section
Code Audits
Describes code audits in Together.

Model Audits
Describes model audits in Together.

Code Metrics
Describes code metrics in Together.

Model Metrics
Describes model metrics in Together.

Metrics Graphical Representation
Describes Bar graph and Kiviat chart representation of metrics.

Exporting and Importing Audits and Metrics
Introduces import and export of audits and metrics.

130

Code Audits
Together provides a wide variety of audits, ranging from design issues to naming conventions, along with descriptions
of what each audit looks for and how to fix violations. The process of running audits begins with your selecting the
specific rules to which your source code should conform. Together generates an audit report that displays only the
violations of those rules. You can examine each violation and decide whether to correct the source code. You can
create, save, and reuse sets of audits to run. Together ships with a predefined saved audit set and you can create
your own custom sets of audits to use.

Problem Detection Audits
For most violations, the audit report generated by Together indicates the line of code that causes the violation. For
some audits, however, such a line number is inappropriate. These are called problem detection audits. An example
is the Misplaced Class audit, in which the package of the class is deemed inappropriate because of the dependency
between the class and a different package. For problem detection audits, Together uses one or more of detection
metrics to analyze the code to determine audit violations.

Together audit reports show problem detection audits along with the other, line-oriented audits.

Bad Smell Audits
Together includes a group of audits known as "Bad Smell Audits" that detect some issues or convention violations
in source code (misplaced classes, attributes and methods, wrong inheritance usage), which require some code
refactoring.

Related Concepts

Quality Assurance

Related Procedures

Running Source Code Audits

131

Model Audits
Together supports a wide range of model audits. The list of available model audits can be viewed in the
Preferences dialog box. You can define, save, and reuse sets of model audits. Model audits are OCL queries that
produce Boolean results and that operate in the context of existing metamodels. You can also employ additional
OCL operations provided for the Borland metamodel, specified in the OCL operations and OCL library
operations tabs in the Preferences dialog box.

Together also contains a set of sample audits (the ideas of most of them are taken from Ambler and Fowler books).
These audits can be used as examples for custom rules creation. For a description of the predefined model audits
provided in Together, refer to “Model Audits and Metrics Descriptions.”

After you run model audits, the results are displayed in the Model Audits View. The view provides detailed
descriptions for all found errors and you can navigate to the corresponding problem element from this view by double-
clicking the error message.

Related Concepts

Quality Assurance
OCL

Related Procedures

Running Model Audits and Metrics

Related Reference

Model Audits and Metrics Descriptions
QA Model

132

Code Metrics
Metrics evaluate object model complexity and quantify your code. It is up to you to examine the results and decide
whether they are acceptable. Metrics results can highlight parts of code that need to be redesigned, or they can be
used for creating reports and for comparing the overall impact of changes in a project.

Together provides a wide variety of metrics, ranging from lines of code to comment ratio. When you run metrics in
Together, you first select which metrics are important for your project. You can use metrics results that Together
generates to determine which code needs to be redesigned, or you can use the results to create reports and compare
the overall impact of changes in a project. Together makes it easy to run metrics, view the results, and interpret the
findings.

Related Concepts

Quality Assurance

Related Procedures

Running Source Code Metrics

133

Model Metrics
Together supports a wide range of model metrics. The list of available model metrics can be viewed in the
Modeling QA Model node of the Preferences dialog box. You can define, save, and reuse sets of model metrics.
Model metrics are OCL queries that produce Integer results and that operate in the context of existing metamodels.
You can also employ additional OCL operations provided for the Borland metamodel, specified in the OCL
operations and OCL library operations tabs in the Modeling OCL page.

For a description of the predefined model metrics provided in Together, refer to “Model Audits and Metrics
Descriptions.”

After you run model metrics, the results are displayed in the Model Metrics view. You can navigate to the
corresponding elements listed in the Model Metrics view by double clicking the element name.

Related Concepts

Quality Assurance

Related Procedures

Running Model Audits and Metrics
Using OCL in Model Audits and Metrics

Related Reference

Model Audits and Metrics Descriptions
QA Source

134

Metrics Graphical Representation
Metrics results can also be viewed graphically. Two graphic views allow you to summarize metrics results: bar charts
and Kiviat charts. Both charts are invoked from the context menu of the table. Use the Kiviat chart for rows and the
bar chart for columns.

Bar Chart
The bar chart displays the results of a selected metric for all packages, classes, and/or operations.

The bar color reflects conformance to the limiting values of the metric in reference:

♦ Green represents values that fall within the permissible range.

♦ Red represents values that exceed the upper limit.

♦ Blue represents values that are lower than the minimal permissible value.

♦ A thin vertical red line represents the upper limit and a thin vertical blue line represents the lower limit.

Kiviat Chart
The Kiviat chart demonstrates the analysis results of the currently selected class or package for all the metrics that
have predefined limiting values. The metrics results are arranged along the axes that originate from the center of
the graph.

Each axis has a logarithmic scale with the logarithmic base being the axis metric upper limit so that all upper limit
values are equidistant from the center. In this way, limits and values are displayed using the following notation:

♦ Upper limits are represented by a red circle. Any points outside the red circle violate the upper limit.

♦ Lower limits are represented by blue shading, showing that any points inside the blue area violate the lower
limit. Note that blue shading does not show up in areas of the graph with lower limits of 1 or 0.

Tip: To see the value of an individual data point on the Kiviat graph, hover your mouse pointer over it to display a
popup.

♦ The actual metrics show up in the form of a star with metric values drawn as points.

♦ Green points represent acceptable values.

♦ Blue points represent values below the lower limit.

♦ Red points represent values exceeding the upper limit.

♦ Scale marks are displayed as clockwise directional ticks perpendicular to the Kiviat ray.

♦ Lower limit labels are displayed as counterclockwise directional blue ticks perpendicular to the Kiviat ray.

135

Related Concepts

Quality Assurance

Related Procedures

Running Source Code Metrics
Running Model Audits and Metrics
Creating a Metrics Chart

136

Exporting and Importing Audits and Metrics
Introduces import and export functionality for audits and metrics.

Source Code Audits and Metrics
Once you identified the QA rules the team needs to use, you can create specific QA Sets for source code audits and
metrics in Together. These QA sets can be saved to your local file system, or you can save them in the project.
Saving them with the project makes them easier to distribute to your team via the version control system (VCS).

The C++ and Java QA Source pages of the Preferences dialog box display the set of all available audits and metrics
for C++ and Java source code projects respectively. When you open a project, a default subset is active. Active
audits and metrics are indicated by check marks. You can select necessary audits and metrics and save the selected
set for future use. The quality assurance sets are saved with a .qa extension.

Model Audits and Metrics
You can import and export model metrics and audits all at once, including a set of named OCL queries on
metamodels, and other settings. Model audits and metrics can be saved to files with .ModelMetrics
and .ModelAudits extensions. When importing such a file, you completely replace your currently defined model
audits or metrics.

Related Procedures

Exporting and Importing Model Audits/Metrics
Creating and Using Code QA Sets

137

Refactoring Overview
Together leverages refactoring operations provided by the platform.

When refactoring is applied to source code, the changes propagate to the model. For example, when classes or
operations are renamed by means of refactoring, the hyperlinks to the renamed elements are preserved.

Refactoring is available for the model elements in Together projects by means of context menus. Refer to JDT
documentation for information on Java refactoring and to CDT documentation for information on C++ refactoring.

138

Requirements Management
Requirements Management allows you to create and manage traces between Together diagram elements and
Borland CaliberRM or Rational RequisitePro requirements.

Traceability is supported via CaliberRM and RequisitePro Integrations for Together, respectively. You can find more
information about working with specific requirements in online help provided with both integrations.

Together provides the following requirements management possibilities:

♦ Create and delete traces between requirements and Together diagram elements.

♦ Create requirements based on use case.

♦ Manage traces between requirements and model elements in the Element Traces view.

♦ Synchronize traces that are out of date using the Trace Synchronizer view.

♦ Navigate easily between traced elements and related requirements.

Note: Together 2007 and later versions of the product do not include integrations with requirements management
products. These integrations are available separately on demand. Corresponding parts of user interface and
functionality are not available when integration is not installed.

Related Procedures

Opening Requirements Views
Creating Traces from Requirements to Model Elements
Deleting Traces
Creating Requirements Based on Use Case
Viewing Element Traces
Synchronizing Traces
Navigating from Model Elements to Requirements

Related Reference

Element Traces View
Trace Synchronizer View

139

Version Control in Together
This topic provides an overview of version control features in Together.

Overview
Together uses a file-based approach to store models. This provides openness and choice when selecting a version
control system to manage your models.

Together supports several version control systems that can be integrated in Eclipse. They include but are not limited
to CVS, StarTeam, and ClearCase. Version control in Together enables several users to work with one modeling
project.

Together leverages the functionality provided by the Version Control System client and maps these menus from the
file resources level (as provided by the Version Control System provider) to model elements.
Together provides context menus to work with CVS, StarTeam, and ClearCase version control systems.

Visual team status indicators for items are also displayed in the model navigator.

Note: The Together teamwork-related functionality that is provided depends on how well the specific Version
Control System integrates with the basic Eclipse team support flow and UI. Therefore, some Version Control
System features may be not available or may work differently for a given Version Control System.

Your version control system should be set up so that only one user can work with a shared model at a time. In case
several users edit the model at a time, use the model compare and merge functionality of Together. You can compare
the structure of your models and merge inconsistencies if necessary. Alternatively, you can revert to the saved
version of the model.

The model merge tooling provides a hierarchy comparison of two models with annotations to show what has been
added, what is missing, and what has been changed. However, the model merge does not provide a comparison of
changes in the layout, sizing, or ordering of model elements.

Note: For more information about each version control system, refer to the appropriate program documentation.

Note: Together 2007 and later versions of the product do not include integrations with version control systems
(StarTeam, ClearCase). These integrations are available separately. Eclipse clients for corresponding
versions control systems are not bundled with the Together product and must be additionally installed to the
same Eclipse instance as Together.

Models, views, and files
It is important to be aware of the relationship between models, views, and the files used to store models and views
in Together.

Task-aware features
Task-aware features of Together make it easier to work with modeling resources under version control by
automatically finding all the resources that need to be checked out for the modeling resource to be modified. To
enable task-aware features, use the following Team options for locking files and managing modeling resources:

Path to option Options
Preferences Team Star Team File Locking Clear file lock on check-in and Mark unlocked working

files read-only

This option also exists on a project level.

140

Preferences Team Modeling resources AutoCheckout modeling resource on edit.

While editing some model elements, a lock dialog box appears, which lists all resources that need to be locked. By
choosing Yes you apply a locking mechanism to the selected resources and they become writable. After modification,
when you are checking in the files, they will become unlocked and read-only. Each time you try to edit a read-only
file that is under version control, a dialog box appears suggesting that you lock the file for editing. To automatically
lock files on checkout, check the auto lock check box in the dialog box or use the Lock files on modification in
the Preferences Team Star Team File Locking page (this is a StarTeam Eclipse client option).

Note: The Preferences Team Star Team options are for a Version 10.1.0.24 of StarTeam and may be different
for other versions of StarTeam.

Note: The task-aware feature of Together cannot manage read-only files located inside a Package when this
package is moved or renamed. Eclipse does not let you automatically check out files in this situation. Use
Navigate to resources on the Team menu to select files for locking and then try to move or rename the
package again.

You can also use the Ignore default package diagrams option (Preferences Team Modeling Resources)
to specify that default package diagrams are not stored or synchronized. This option adds default.txvpck and
default.txvClassDiagram20 patterns to the ignored resources.

Together Version Control Recommendations

♦ Use an Eclipse Team Provider.

♦ Check in the .txaPackage file.

♦ Do not check in the default package diagram.

♦ Use version control locking at the package level.

♦ Consider the version control implications if you rename any diagrams or packages.

♦ Consult an expert if you need to resolve any merge conflicts.

Support for CVS edit/unedit commands
Together provides a number of additional variants of edit/unedit commands for diagrams and packages in the context
menu Team. These commands are available when the Capability Team CVS support for Modeling is enabled.
Commands help to perform version control operation on not the individual resources but the entire set of the related
resources.

For Diagram the available choices are:

Command Description
Edit/Unedit View Affects only the file of selected diagram (*.txv*)
Edit/Unedit View and Model Affects the file of selected diagram and also files (*.txv*/*.txa*)

containing elements shown on the diagrams regardless of their
package

Edit/Unedit View and package locally Affects the file of selected diagram and also files containing elements
shown on the diagrams from the same package

Edit/Unedit View and package recursively Affects the file of selected diagram and also files containing elements
shown on the diagrams from the same package and all its
subpackages

141

For the package

Command Description
Edit/Unedit Affects the diagram and model files (*.txv*/*.txa*) in the selected package
Edit/Unedit Recursively Affects the diagram and model files in the selected package and all its subpackages

recursively

Related Concepts

Together Capabilities Activation

Related Procedures

Using Version Control and Teams in Together

Related Reference

Common Diagram Context Commands
Package Context Menu

142

Project Documentation
This part describes the documentation generation facility and documentation template basics.

Related Concepts

Documentation Generation Overview
Documentation Template

Related Procedures

Generating HTML Documentation
Creating Custom Documentation Template

143

Documentation Generation Overview
Together enables you to create external documentation for the open projects, or from the command line. Use the
generated reports to illustrate your projects with the documentation in one of the available formats.

Documentation generation is available for all types of Together projects, including Business Process, Data Modeling,
Pattern Definition or Profile Definition projects.

The generated documentation can include the results of Audits, as well as the information extracted from the
integrated products (for example, from CaliberRM).

Documentation output formats
You can generate documentation in one of the following output formats:

♦ RTF

♦ HTML

♦ TXT

♦ PDF

♦ XSL-FO

By default, documentation is generated in HTML format.

Documentation files
All the documentation that Together generates is written to a single directory that you specify in the documentation
generation dialogs. By default, this is the out folder of your Eclipse workspace.

The generated documentation opens in the appropriate viewer, associated with the output format.

If a report is generated from an Ecore model, the top package name is used as the model file extension. If a report
is generated from a domain, the domain name is used as the model file extension.

Documentation templates
Project reports are created by applying documentation templates to Together projects. The templates contain
commands to the documentation generator; the projects provide the source of project-specific data. Documentation
templates are *.tpl text files with formatting instructions and tags for the commands.

Together comes with a set of predefined templates and also lets you create custom documentation templates, using
the built-in Documentation Template Designer.

Custom Together templates make it possible to use styles, headers and footers from the Word documents.

144

Related Concepts

Organization of a Documentation Template

Related Procedures

Generating HTML Documentation
Generating Project Documentation Using Template
Generating Project Documentation from Command Line
Configuring the Documentation Generation Facility
Creating Custom Documentation Template
Using Word Documents in Documentation Templates

Related Reference

Documentation Template Designer

145

Documentation Template
The documentation generator uses Together projects and templates to produce project reports. You can use
predefined templates that are delivered with the product, or create your own custom templates, using the Template
designer. This part discusses the structure of templates, its zones, sections and controls.

In This Section
Documentation Generator Metamodel
Documentation Generator makes use of its own metamodel that defines the hierarchy of metatypes.

Organization of a Documentation Template
This topic describes the organization of a documentation template and the correspondence between the
elements of a template and the generated output.

Documentation Template Sections
This topic describes sections of a documentation template.

Documentation Template Controls
Controls are the items in documentation templates that determine the contents of reports.

Multi-frame Documentation Templates
This topic describes multi-frame documentation templates structure.

Hyperlinks in Documentation
A hypertext link connects a link reference (starting point or source) to a link destination (target).

Javadoc Link References
Together supports Javadoc References (or JDRefs), which are the expressions associated with Javadoc
tags.

Enable Conditions
Enable conditions are Boolean expressions for turning section processing on or off.

146

Documentation Generator Metamodel
The Documentation Generator (DocGen) has its own metamodel described in the metamodel plugins
\com.borland.gendoc.core_8.1.0\templates\MetaModel.mm definition file.

It is a textual file that defines the metatypes hierarchy, how metatypes correspond to the model elements, the types
of elements another element can contain, and the properties of each metatype. The beginning of each model
definition file lists the properties that DocGen knows. These include DocGen-specific properties and others.
Properties are defined as follows:

property_name = "[name of property localization key]"
The remainder of each model definition file contains the metatype definitions. The major fields in the definitions are
as follows:

♦ name: metatype name

♦ extends: parent metatype

♦ full_name: the name displayed in the Documentation Template Designer

♦ metatype_filter: defines the correspondence between metatype and model element

♦ rwi_entity: the type of the related element in Together API

♦ properties: a list of properties available for this type; descendant metatypes inherit their properties from
parent metatype

♦ excluded_properties: items listed among the properties that are not documented when using the 'all
properties' scope in Property iterator

♦ contained_metatypes: metatypes that can be contained by this metatype

The name field for each type is always present. The existence of the other fields varies with the type. An example
of a metatype definition follows:

<metatype>
name=NODE
extends=ELEMENT rwi_entity=node
full_name="[gendoc/gen_doc_by_template1/full_name_NODE]”
properties = { %package }
contained_metatypes = { NODE; MEMBER; LINK }
</metatype>

An element iterator or folder can contain nested element iterators whose type is listed among its contained
metatypes, the contained metatypes of its parent, or indirectly through the contained metatypes of one of its
contained metatypes. For example, an element iterator with a DIAGRAM scope can contain nested element iterators
with the following scopes:

♦ hyperlink (inherited from ELEMENT)

♦ diagram reference

♦ diagram

♦ node

♦ link

♦ member (indirectly through the contained metatype, NODE)

147

Element properties are inherited. An element iterator can contain nested property iterators whose type is inherited
from its ancestor or listed directly among its properties. For example, an element iterator with a DIAGRAM scope
can contain nested property iterators for the following types of scopes: shapetype, name, documentation, annotation,
hyperlink, url (inherited from ELEMENT), package, stereotype, and alias.

Related Concepts

Organization of a Documentation Template

148

Organization of a Documentation Template
A documentation template is a *.tpl text file that contains instructions to the Documentation Generator. Project
reports are created by applying documentation templates to Together projects.

In this section you will learn about:

♦ Zones of a template

♦ Body of a template, and its representation in a generated report

♦ Root object metatype

♦ Current model elements

Zones of a template
Documentation templates consist of headers, footers, and body sections. The Documentation Template Designer
divides templates into five major zones:

♦ Page header

♦ Report header

♦ Body

♦ Report footer

♦ Page footer

The zones are horizontal bands that go across two panes. The scope pane, which is on the left, reveals the template
structure. The details pane on the right shows the contents of the zones, which include commands to the DocGen
engine. Context menus for each zone are different in the scope pane and in the details pane.

Headers and footers are at the top and the bottom of the Designer window. The report header and the report footer
apply only once per document. Page headers and footers apply once per page for RTF documentation; they are
ignored for HTML and text documentation.

The body zone of a template contains the commands that produce the body of the generated report. DocGen builds
a report into horizontal regions. Each region in the report corresponds to a section in the template that determines
the data for that region and how that data should appear.

Body of a template
The body of a documentation template is organized into a hierarchy of sections. Some sections in the body are
nested inside others. Some sections have siblings. Sections that are not nested within any others are children of the
root. The scope pane reveals the tree structure, indenting each section according to its level in the tree.

Root object metatype
Every section in the body of a template has a section scope. Scopes are based on metatypes that correspond to
the different types of model elements. The section scope of the body zone corresponds to the root object metatype.

The model itself is considered to be a special metatype, which is the default root metatype for a new template.

149

Current model element
Documentation Generator uses a dynamic current model element to go through a template and access specific
project information. The type of the current element is the metatype for the section that the engine is currently
processing. The value of the current element changes according to when the processing for the section takes place.

The body of a report is created starting from the root element, going in a “depth-first” fashion. In other words,
processing starts with the first root section, visiting it along with any of its nested subsections before continuing to
the next root section. This pattern is recursive: visit the sub-tree rooted at a section before going to the next sibling
section. For each sibling of a section, DocGen begins its processing with the same current element.

Related Concepts

Documentation Generation Overview
Documentation Template Sections
Documentation Template Controls

Related Procedures

Creating Custom Documentation Template

Related Reference

Documentation Template Designer
Area Properties

150

Documentation Template Sections
The body of a newly created template consists of a generic element iterator and a static section nested within. It
provides a minimal base for constructing the tree of sections. Every new section must be a sibling or a child of an
existing section.

There are six different types of body zone sections:

♦ Static sections

♦ Element iterators

♦ Element property iterators

♦ Folder sections

♦ Calls to stock sections

♦ Calls to template sections

Static section
Static sections contain the commands to the Documentation Generator for getting project data.

Of all kinds of body sections, only static sections contain controls for producing actual output. Headers and footers
can also contain controls. Folders and iterators, which cannot directly contain controls, must have at least one static
section nested somewhere within.

You can edit properties of a static section. Refer to the Static section reference for details.

Element iterators
Element iterators provide a way of looping through elements of a model. Each element iterator has its own metatype,
which must be consistent with the metatype of the iterator’s parent’s.

If you want an iterator to be able to access an entire model, choose Package as the metatype.

In an element iteration section, a new current element is calculated according to the current element of the parent
section and the metatype of the iterator. Documentation Generator loops through an element iteration section using
each possible new element as the current element for that iteration. The properties of an element iterator affect the
way a new current element is calculated and how it changes during iterations. If no elements are encountered
corresponding to the iterator’s metatype, no documentation is produced.

Element iterators can have headers and footers. If the section execution does not result in output, then the iterator’s
headers and footers are ignored.

Scope options determine which elements of the model this iterator will document. Each iterator works over the sub-
tree of the model that is rooted at the current element (the element that starts the iteration).

You can edit properties of an element iterator. Refer to the Element Iterator reference for details.

Element property iterators
Element property iterators are for looping through the properties of model elements.

Element iterators traverse model elements. Element property iterators traverse element properties instead of
elements.

151

A property iterator can reside inside an element iterator, folder, or property iterator. A property iterator must contain
at least one static section, folder section, or call to a stock section or template. A property iterator may also contain
an element iterator, or another property iterator.

A property iterator is described by its properties, such as its iteration scope and sorting. Refer to the Property
Iterator reference for details.

Folder sections
Folder sections group other sections together. A folder has at least one nested section, and it may have a header
or footer. In that sense, folders are similar to element iterators, except that DocGen executes folders only once.

Folders inherit their metatypes from their parents. The sections nested within a folder must be consistent with its
metatype. Folders provide a way to put section-level properties on their contents. This includes enabling conditions
for toggling its processing on and off.

Folders can have headers and footers. If the sections in a folder do not result in output, then the folder’s headers
and footers are ignored.

A folder section is described by its properties, such as its output style and enable condition. Refer to the Folder
section reference for details.

Calls to stock sections
Stock sections are reusable folders or iterators that reside in the template’s collection of stock sections. They are
not shared among different templates. When a call to a stock section is processed, it is the same as if the called
stock section were simply embedded at the position of the call.

Stock sections are especially convenient for frequently used constructs. You can insert a call to a stock section from
any section whose metatype is consistent with the metatype of the stock section. Stock sections may contain calls
to other stock sections, as well recursive calls to themselves.

You can edit properties of a call to stock section. Refer to the Call to stock section reference for details.

Calls to template sections
With a call to a template, DocGen can produce documentation using a different template without terminating the
current one.

When a template is called, the current element of the calling template becomes the root element of the called
template. A calling template can pass additional information to the called template through template parameters.

Calls to templates make it possible to construct a library for generating documentation for particular model elements
(class, actor, use case, and so on).

You can edit the properties of a call to a template section. Refer to the Call to template section reference for details.

152

Related Concepts

Documentation Generator Metamodel

Related Procedures

Creating Custom Documentation Template
Creating Sections

Related Reference

Static Section Properties
Element Iterator Properties
Property Iterator Properties
Folder Section Properties
Call to Stock Section Properties

153

Documentation Template Controls
Of the six kinds of body sections, only static sections contain controls for producing actual output. Headers and
footers can also contain controls. Folders and iterators, which cannot directly contain controls, must have at least
one static section nested somewhere within.

When you insert a new control, the Documentation Template Designer displays a dialog box for setting the control’s
properties. The template shows each control as a shaded rectangle in the details pane. You can change the
properties of a control after it is created.

The controls described in this section include:

♦ Label

♦ Image

♦ Panel

♦ Formula

♦ Data

♦ Include Text

Label, Image, and Panel Controls
The simplest kinds of controls are labels, panels, and images.

Label
A label generates static text that is independent of its containing section. The text does not depend on the metatype
of the section or where the section belongs in the template. Placing identical labels in a header and a static section
results in the same output as long as the header and static section are not skipped. Label properties include the
label’s text, style (font, color, and border), and if and how to hyperlink the output.

Image
Depending on its type, an image can be external to the project or it can be a project diagram. You can put an image
control in a static section to include an image of a diagram in the generated document. Documentation Generator,
while processing the section, will create an image only if the current model element represents a model diagram.

Panel
A panel is simply a container for other controls. Panels are convenient for grouping controls together to provide a
uniform style and precise alignment. You can set the panel’s background color, border, and style, and the parameters
that will be passed to the controls within the panel.

Data Controls
Data controls provide the major mechanism of placing data from a project into a report. When a data control is
processed, the actual data are obtained from the current model element.

The source of information for a data control can be one of the following:

Element Property A property of the current element. The Data Control dialog box displays a list of every
property belonging to the metatype of the current model element.

154

Generator’s Variable A variable used by DocGen. You can use this in report headers or footers to insert the
project name or the date and time the report is created.

Document Field A field of the report such as page number or bookmark. You can select Document Field to
insert page numbers and number of pages into page headers or footers. The Document
Field list is empty for report headers and footers.

Formula and Text Controls
Formulae provide a way to place data into a report that DocGen calculates when it processes the control. You must
enter the formula that DocGen evaluates to calculate that output. Both formula controls and text controls rely on
such formulas.

Formula controls
A formula is an expression that Documentation Generator can evaluate to a string. The expression can be a
combination of string literals, DG variables, and OCL or legacy RWI functions.

DG variables are special variables that are available to DocGen at runtime when it is producing a report. DG variables
include items such as current element, the date and time, and template parameters. Find the complete list of DG
variables, OCL functions and legacy RWI functions in the section Documentation Generator and Template Designer
Reference.

Supported formula types are Legacy and OCL. The syntax depends on the selected formula type, as shown in the
following table.

Supported formulae type Syntax
Legacy single quotes for string literals;

+ for string concatenation

-> for calls to functions via pointers
OCL OCL

The following examples demonstrate the usage of formulae expressions for the different formulae types.

Example 1:

From a section with a class metatype, put Package followed by the name of the containing package into the report:

Syntax Formulae expression
Legacy "Package " + getContainingPackage() -> getProperty("$name")
OCL context uml14::kernel::classes::Class

'Package '.concat(self.getContainingPackage().name)

Example 2

From a section with a generic class metatype, put Interface in the report if the current element is an interface and
put Class if it is not.

Syntax Formulae expression
Legacy if (hasProperty("$interface"), "Interface", "Class")
OCL context uml14::kernel::classes::Class

if self.interface then 'Interface' else 'Class' endif

155

Include Text controls
Include Text controls are used for copying text from other files into a template. When you insert an Include Text
control, you must enter an expression for the location of the text file. The expression can be hard-coded as a string
literal, or it can use a formula as described above. Include Text controls have formatting properties identical to those
for formula and label controls.

Related Concepts

Documentation Template Sections
Hyperlinks in Documentation

Related Procedures

Creating Controls
Hyperlinking Documentation

Related Reference

Control Properties

156

Multi-frame Documentation Templates
Multi-frame HTML documentation divides project reports into frames to give multiple views within the same browser
window. Multi-frame HTML documentation consists of two kinds of HTML files:

♦ A collection of HTML files to define the content for each frame

♦ A frameset file to specify the layout of frames

A frameset template consists of two major parts. One part describes the frameset file that can be defined through
the template properties. The other part, which is the body of the frameset template, contains calls to the templates
that provide the contents of the frames.

The body of a frameset template is similar to the body of an ordinary document template. A frameset template body
can contain any number of iteration sections (element iterators and property iterators), folder sections, and stock
section calls. However, static sections and headers and footers for folder sections and iterators are prohibited. Calls
to template sections replace static sections to produce the actual output.

The section properties of a call to template determine how the output for a template call can be used. With multi-
frame HTML documentation, calls to template sections typically generate separate files that can be loaded into a
frame of the resulting HTML project documentation.

When the Documentation Generator processes a frameset template, it produces the frameset HTML file and the
separate HTML files for the frame content. The Documentation Generator begins processing a frameset template
at its body. When it encounters a call to a template section, the engine suspends the current template execution,
loads the called template, and processes it to produce a separate HTML document. The root element for the called
template is the current model element of the calling template. After the called template's processing is completed,
the Documentation Generator resumes executing the calling template. After the body of the frameset template has
completed processing, the Documentation Generator produces the special HTML frameset file. This file corresponds
to the frameset structure specified in the template properties. The name of the frameset file matches the name of
the frameset template. It is the starting point of the generated documentation.

Related Concepts

Documentation Generation Overview

Related Procedures

A Typical Scenario of Creating a Template for Multi-Frame Documentation

Related Reference

Frameset Template Properties

157

Hyperlinks in Documentation
A hypertext link connects a link reference (starting point or source) to a link destination (target). The link reference
is a text or image in the HTML document. The link destination is a file (usually an HTML document or an anchor in
an HTML document). Document templates support both references and targets. Link references are properties of
controls. Link targets are properties of static sections, headers, and footers.

Any generated output that contains an anchor or bookmark can be a link target. Documentation templates have
facilities for inserting anchors at the “main documentation” of model elements.

It is occasionally necessary to provide link references to several different documents (or locations in HTML files)
created with the same model element. For example, along with the main documentation file created for a package,
there could be a different HTML document that simply lists all classes in the package. If this listing document were
in a separate “navigation” pane, it would serve as an index for the package. Clicking the package on a diagram (or
in some more general text) could load that listing document in the navigation frame. The Documentation Template
Designer enables you to target different documentation locations generated by the same model element.

Link references in multi-frame documentation can have multiple targets. Clicking on such a reference could
simultaneously load two different documents in two different frames. For example, suppose a diagram element
represents a package. Clicking on this element could load the image of the package diagram in one frame and the
main (textual) documentation for the package in another. Such link references are named compound.

Related Procedures

Hyperlinking Documentation

Related Reference

Control Properties

158

Javadoc Link References
Javadoc References (or JDRefs) are the expressions associated with Javadoc tags such as {@link} and
@see. You can use them to create link references inside documentation text ({@link}) as well as with some other
documenting tags. The Documentation Generator can convert JDRefs into real hypertext links. Each JDRef should
conform to the rules described in the standard Javadoc documentation. There are three types of Javadoc references.

♦ An element reference refers to an element of the model (such as method, class, or package). The general form
of an element reference is package.class#member label, where package.class#member is the
referenced model element and label is optional text to be displayed with the link. (If label is omitted, the name
of the referenced element is displayed.) The Documentation Generator can convert each element reference
into a hyperlink to the main documentation of the element.

♦ URL reference represents a link to a relative or absolute URL. The general form of an URL reference is label

♦ Text reference has the form "string" (a text string in double-quotes). A text reference is simply information that
does not represent a hyperlink.

A JDRef appears in one of two forms:

♦ inside {@link} tags embedded in documentation text. The JDRef is the value of the $doc property and other
Javadoc element’s properties.

♦ as the value of some Javadoc element’s properties such as see.

The Documentation Template Designer provides conversions for both cases. You need to specify the conversion in
the properties of the control.

Related Procedures

Creating Javadoc Link References (Advanced)

Related Reference

Control Properties

159

Enable Conditions
Enable conditions are Boolean expressions for turning section processing on or off. They are created using the OCL
or legacy notation.

An enable condition is evaluated before stepping into this section, so the properties of the metatype of a section are
not available to the Documentation Generator at the moment of expression evaluating. Enable conditions typically
have subexpressions that are calls to special DG functions returning DG options and template parameters. (See the
list of DG functions and variables in the Documentation Generator and Template Designer Reference.) They can
also use the properties of the upper-level section metatype. The results can be joined together with logical operators
under the usual precedence rules. The following table shows two examples of the enable conditions in the Legacy
and OCL notation:

Legacy OCL

getDGVariable('reportScope') !=
'current_diagram'

context OclAny

getDGVariable('reportScope') <>
'current_diagram'

getContainingNode() -> hasProperty
("$interface")

context uml::kernel::Element

self.getContainingNode().oclAsType
(uml14::kernel::classes::Class).interface

Related Concepts

OCL Support

Related Procedures

Creating Sections

Related Reference

DG functions in Formulae Expressions
Folder Section Properties
Static Section Properties

160

Procedures

161

Procedures
This section provides how-to information for the various areas of software development supported by Together.

In This Section
Getting Started Procedures
This section provides how-to information that will help you start using the product.

Diagrams
This section describes how to create Together diagrams, customize their appearance, and populate
diagrams with elements and shortcuts.

Together Projects
Provides how-to information on using Together projects.

Together Profiles
This section provides how-to information about Profiles in Together.

Configuring Implementation Projects
This part provides how-to information on setting Together preferences and options for the source code
projects.

Together UML 2.0 Diagrams
Provides how-to information on using Together UML diagrams.

Together UML 1.4 Diagrams
Provides how-to information on using Together UML diagrams.

Together Business Process Modeling
Provides how-to information about Together Business Process Modeling project.

Data Modeling Procedures
This section describes how to work with ER diagrams and create logical and physical data models.

Model Driven Architecture
This section provides how-to information on using the Together MDA feature.

Comparing and Merging Models
Describes how to compare models and model elements with each other, and perform history comparison
with the earlier versions of the model stored in Version Control Systems (VCS).

Together Object Constraint Language (OCL)
This section provides how-to information on using Together OCL facilities.

Patterns and Templates
This section provides how-to information on using patterns with Together.

Together Quality Assurance
This section provides how-to information on using Together Audits and Metrics.

Using Version Control and Teams in Together
This section describes the use of Version Control Systems (VCS) with Together.

Managing Requirements with Together
Provides how-to information on using Together for creating requirements, managing traces, generating
requirements documentation and more.

Generating Project Documentation
Provides how-to information on using Together Documentation Generation facilities.

162

Together Documentation Templates Procedures
This section provides how-to information on creating and editing custom documentation templates using the
Documentation Template Designer.

Interoperability and Migration
Provides how-to information on exchanging model information between the various products of the Together
product line.

163

Getting Started Procedures
This section provides how-to information on configuring Together, working with projects, and more.

In This Section
Activating Together Capabilities
You can use the Preferences or Advanced Capabilities Settings dialogs to enable or disable Together
capabilities

Adding a Single Model Element to a Diagram
How to create a single model element.

Bookmarking Model Elements
How to bookmark model elements for easy access.

Choosing a Together Perspective
How to choose a Together perspective.

Configuring Together Preferences on the Workspace and Diagram Levels
How to define Together preferences on the workspace and diagram levels.

Creating a Browse-Through Sequence of Diagrams
How to create a browse-through sequence of diagrams.

Creating a Diagram
How to create a diagram in a Together project.

Creating a Project
How to create a project in Together.

Creating a Shortcut
How to create a shortcut.

Creating a Simple Link
How to create a simple link.

Deleting a Diagram
How to delete a diagram.

Deleting Elements
How to delete an element from a diagram.

Hiding and Showing Model Elements
How to hide or show model elements.

Opening a Diagram
How to open an existing diagram in the Diagram Editor.

Opening a Diagram Element in the Source Code Editor
How to open a code-generating element in the Source Code Editor.

Printing Diagrams
Lists the steps for printing diagrams.

Reusing Existing Source Code in Modeling Projects
How to use existing source code in modeling projects.

Selecting Model Elements
How to select model elements.

Using Drag-and-Drop
How to use drag-and-drop.

164

Using Example Projects
How to use sample projects in Together.

165

Activating Together Capabilities

To enable or disable all Together capabilities in a category
1 Select Window Preferences to display the Preferences dialog.
2 Expand the General item in the tree view and select Capabilities. You can enable or disable complete

categories in the Capabilities area.
3 Click OK.

To enable or disable individual Together capabilities
1 Select Window Preferences to display the Preferences dialog.
2 Expand the General item in the tree view and select Capabilities.
3 Click the Advanced button to display the Advanced Capabilities Settings dialog. You can expand categories

in the Capabilities tree view to enable or disable specific Together capabilities. You can also click Restore
Defaults to restore the default Together capabilities settings, Enable All to enable all Together capabilities
settings, or Disable All to disable all Together capabilities settings.

4 Click OK.

Related Concepts

Together Capabilities Activation

166

Adding a Single Model Element to a Diagram
You can create a single node element using the diagram Palette, or the New command of the diagram context menu.

To create a single model element
1 Open a target diagram in the Diagram Editor .
2 On the Palette, click the icon for the element you want to place on the diagram. The button stays down.

Tip: Icons are identified with tooltips.

3 Click the diagram background in the place where you want to create the new element. This creates the new
element and activates the in-place editor for its name.

Tip: Alternatively, you can right-click the diagram background in the Diagram Editor , or the diagram node in the
Model Navigator, and choose New on the context menu. The submenu displays all of the basic elements that
can be added to the current diagram and the Shortcuts command.

Related Procedures

Adding Multiple Elements to a Diagram
Creating a Simple Link

167

Bookmarking Model Elements
Together allows you to bookmark model elements. Bookmarked elements are listed in the Model Bookmarks view.

To add or remove a bookmark
1 To add a bookmark, right-click an element on the diagram editor and choose Model Bookmarks Add

Bookmark.
2 To remove a bookmark, right-click an element on the diagram editor and choose Model Bookmarks Remove

Bookmark
Alternatively, you can use the context menu of the Model Bookmarks view to remove a bookmark.

To navigate to a bookmarked element
1 Open the Model Bookmarks view.
2 Right-click a bookmark and choose either Show in Model Navigator or Select on Diagram.

Note: Double-click a bookmark in the Model Bookmarks view to select the element on the
diagram.

Related Reference

Model Bookmarks View

168

Choosing a Together Perspective
Together changes the user interface according to how you want to work with Together by providing several
perspectives. By default, Together starts with the Modeling perspective.

Note: The way you have Together configured influences which perspectives and views you can choose from. For
example, clicking the Take me to the DSL workbench link from the Welcome page displays only the DSL
Workbench's default perspectives. In order to display a list of all the perspectives, check the Show all check
box in the Open Perspective dialog box. An additional Confirm Enablement dialog box might appear that
requires you to enable any necessary capabilities.

To choose a Together Perspective
1 On the main menu, choose Window Open Perspective Other. The Select Perspective dialog box opens.
2 Select one of the Together Perspectives from the list and click OK.

After you select a perspective, Together automatically customizes the interface to provide ready access to only the
relevant elements of the interface, and to show only the information in the model that best supports the chosen
perspective. Interface elements and/or model information that are not generally relevant to the perspective are
hidden. You can still access hidden information by changing the relevant configuration options and restoring hidden
panes manually, but you may find it easier to just switch perspectives.

Related Concepts

Together Capabilities Activation
Tour of Together

Related Procedures

Activating Together Capabilities

169

Configuring Together Preferences on the Workspace and Diagram
Levels
You can flexibly change configuration of Together. Use the Preferences dialog box to tune modeling features to
best fit your requirements.

The Preferences dialog window provides a number of diagram customization settings. You can configure the
appearance and layout of the diagrams, specify font properties, member format, and level of detail on the diagram
and workspace levels.

To configure Together settings on the workspace level
1 On the main menu, choose Window Preferences.
2 In the Preferences dialog window, expand the Modeling category.
3 Click the desired subcategory.
4 Edit configuration options as required.
5 Click OK to apply changes and close the dialog window.

You can configure certain diagram-specific options (Diagram, Layout, View management and Print) on the diagram
level.

To enable configuration changes on the diagram level
1 On the main menu, choose Diagram Preferences.
2 Set the checkbox Enable diagram-specific settings.
3 Click the desired subcategory (Diagram, Layout, View management and Print).
4 Edit configuration options as required.
5 Click OK to apply changes and close the dialog window.

To disable configuration changes on the diagram level
1 On the main menu, choose Diagram Preferences.
2 Clear the checkbox Enable diagram-specific settings.
3 Click OK to apply changes and close the dialog window.

Related Reference

Together Preferences

170

Creating a Browse-Through Sequence of Diagrams
You can link entire diagrams at one level of detail to the next diagram up or down in a sequence of increasing
granularity, or you can link from key use cases or actors to the next diagram.

To create a browse-through sequence
1 Open the main diagram of the sequence you are going to create.
2 Select the source model element, or right-click the diagram background to link the entire diagram.

Tip: It is recommended that you use some common approach for all links in your sequence.

3 Create a hyperlink to the next diagram or model element you would like to participate in the sequence. The titles
of source and destination model elements turn blue.

4 Open the destination diagram.
5 Repeat steps 3–5 for all parts of your sequence.
6 Optionally, create hyperlinks in the reverse motion.

Related Concepts

Model Hyperlinking Overview

Related Reference

UML 1.4 Use Case Diagrams
UML 2.0 Use Case Diagrams

171

Creating a Diagram
Diagrams exist within the context of a project. Create or open a project before creating any new diagrams.

To create a new diagram from the Model Package Explorer
1 In the Model Package Explorer view, right-click on a package or the project root.
2 From the context menu, select New Diagram. The New Diagram Wizard displays. See To create a diagram

using the New Diagram Wizard below for more information.

Alternatively, right-click the default diagram of a source package, select New Diagram, and choose the diagram
type from the submenu.

To create a new diagram from the Model Navigator
1 In the Model Navigator, right-click on a package or the project root.
2 From the context menu, select New Diagram and choose the diagram type from the submenu.

To create a new diagram using the Diagram Editor toolbar
1 Click the arrow to the right of the New Diagram icon on the diagram editor toolbar.
2 Choose the diagram type from the submenu.

or

1 Click directly on the New Diagram icon. The UML Diagram dialog opens.
2 In the resulting dialog, select a diagram type from the drop down list. Select the package where the new

diagram will be created. Click Browse to choose a package. Enter a name for the new diagram.
3 Click Finish.

To create a new diagram using the New Diagram Wizard
1 Select File New Diagram.
2 Specify the properties for the new diagram as follows:

♦ Location: By default, the new diagram is created in the package selected before the wizard displays.

♦ Type: Use the drop down list to select a diagram type. By default, the Class Diagram is selected.

♦ Name: Use the text field to type a name for the new diagram.

3 Click Finish.

To create a class diagram from a package diagram
1 On the package diagram, select classes that you would like to display in a separate class diagram.
2 On the main menu, select Model Generate Class Diagram.

172

Note: This action is available only when several classes are selected.

173

Creating a Project
Together provides several projects that you can work with. The projects in Together are created in the same manner.
While creating a project, you will specify different options depending on the type of project.

To create a Together Project
1 Select File New Project on the main menu. The New Project wizard displays.
2 Expand the Modeling node in the tree view list, and select the type of project you want to create. Click Next.
3 Follow the wizard steps to specify necessary options for a new project and click Finish to complete the wizard.

Related Concepts

Together Project Overview

Related Procedures

Together Projects

Related Reference

Together Projects

174

Creating a Shortcut
You can create a shortcut to a model element from the current project or from the projects connected by cross-
projects references, by using three methods:

♦ By choosing New Shortcut on the Diagram Editor context menu

♦ By dragging and dropping a shortcut from the Model Navigator

♦ By choosing Add as Shortcut on the Model Navigator context menu

To create a shortcut by using the Shortcuts dialog window
1 Right-click the diagram background.
2 Choose New Shortcuts on the context menu.

Tip: Use the CTRL+SHIFT+N keyboard shortcut

3 In the Shortcuts dialog window, choose the required element from the tree view of available contents.

Note: If the project has cross-project references to the other projects in the workspace, the
contents of these projects is available for being added as a shortcut.

4 Click Add to place the selected element to the list of the existing or ready-to-add elements.
5 When the list of ready-to-add elements is complete, click OK.

To create a shortcut by using drag-and-drop
1 Select the element in the Model Navigator.
2 Drag-and-drop the element onto the diagram.

To create a shortcut by using the Model Navigator context menu
1 Open the diagram where the shortcut will be added.
2 In the Model Navigator, select the element to be added to the current diagram as a shortcut.
3 Right-click the element in the Model Navigator and choose Add as Shortcut on the context menu.

Related Concepts

Model Shortcut Overview

Related Procedures

Establishing cross-project references
Adding a Single Model Element to a Diagram

175

Creating a Simple Link
You can create a link to another node, or a shortcut of an element of the same or another project (these projects
must be of the same UML version).

To create a simple link between two nodes
1 On the diagram Palette, click the button for the type of link you want to draw in the diagram. The button stays

down.
2 Click the source element.
3 Drag to the destination element and drop when the target element is highlighted.

Related Procedures

Rerouting a Link
Creating a Link with Bending Points
Creating Model Element by Pattern

Related Reference

Class Diagram Relationships

176

Deleting a Diagram
Warning: You cannot delete the default diagram created automatically for a package.

To delete a diagram
1 In the Package Explorer, select the diagram to be deleted.
2 On the context menu, choose Delete.
3 Confirm deletion, if required.

Related Procedures

Creating a Diagram
Closing a Diagram

177

Deleting Elements
All elements shown on diagrams are shortcuts to actual model elements. When deleting an element on a diagram,
you have the option to delete either the shortcut from view or delete the element from the model (except classes on
synchronized package diagrams). This behavior is configured in the Modeling Preferences.

To delete an element
1 Select the element on the diagram.
2 Choose Delete on the context menu of the element.

Tip: Alternatively, click the DELETE key.

3 Confirm deletion, if this behavior is selected in the Modeling Preferences.

To delete an element from View
1 Select the element on the diagram.
2 Choose Delete from View on the context menu of the element.
3 Confirm deletion, if this behavior is selected in the Modeling Preferences.

Related Procedures

Adding a Single Model Element to a Diagram

Related Reference

Modeling Preferences

178

Hiding and Showing Model Elements
You can control the visibility of elements on a diagram by using the Hide command (available on the context menu
for individual diagram elements) and the Show/Hide command (available on the diagram context menu).

To hide elements using the Diagram Editor
1 Open the Diagram Editor .
2 Do one of the following:

♦ Select the element on the diagram, right-click and choose Hide on the context menu.

♦ Select multiple elements on the diagram using CTRL+CLICK or by lassoing, and select Hide from the context
menu.

♦ Right-click the diagram background and choose Hide/Show on the context menu. The Show Hidden
dialog box opens, as discussed below.

To show or hide diagram elements using the Show Hidden dialog box
1 Right-click the diagram and choose Show/Hide on the context menu. The Show Hidden dialog box opens.
2 Select the element(s) that you want to hide from the Diagram Elements list.
3 To add elements in the Diagram Elements list to the Hidden Elements list, do one of the following:

♦ Double-click the element.

♦ Click the element once and click Add.

♦ Select multiple elements using CTRL+CLICK and click Add.

4 To remove items from the Hidden Elements list, do one of the following:

♦ Double-click the element.

♦ Click the element once and click Remove.

♦ Select multiple elements using CTRL+CLICK and click Remove.

♦ To remove all items from the Hidden Elements list, click Remove All.

5 Click OK to close the dialog box.

Related Procedures

Adding a Single Model Element to a Diagram

Related Reference

View Management Preferences

179

Opening a Diagram
You can open diagrams from the Model Navigator, Model Package Explorer, or by using the Diagram Editor toolbar.

In this section you will learn how to:

♦ open an existing diagram

♦ cancel a diagram's opening process

To open a diagram
1 In the Model Navigator view, navigate to the diagram you want to open.
2 Select the diagram node in the tree-view and do one of the following:

♦ Double-click the diagram

♦ Select Open from the context menu

♦ Select Open in Active Editor from the context menu (this replaces the contents of any currently opened
diagram)

You can use the Diagram Editor toolbar to open the parent diagram.

To terminate a diagram opening
1 Open diagram as described above.
2 In the Diagram opening information dialog, click Stop.

The Diagram Editor displays the diagram with those elements that have been loaded before termination. Under the
diagram title, a message appears informing the user that the diagram contents were only partially loaded.

Note: The layout of a diagram may get adjusted automatically when opened. This happens in order to take into
account changes which may have happened to the model elements shown on the diagram, or to the diagram
preferences controlling the elements presentation while the diagram was closed (off-line).

For example: Assume the diagram has a class and a link coming from its bottom edge to
some other class shown below. While the diagram was closed the class may have had a few
members removed or the font size set to be smaller. Any of these changes would cause the
height of the class to get smaller. That in turn needs the position of the link end to be adjusted.
Such a change would normally cause a diagram file to be resaved.

If the corresponding diagram file is under the version control that would cause an outgoing
change, which may be unwanted if the diagram was opened without the intention to edit it
during the current session, but rather simply to view and close.

With Together 2008 R3 an option is provided that allows user control whether or not such
changes should be saved (Windows Preferences Modeling Diagram If layout
is changed on diagram open). Save is the default state, which mimics previous Together
behavior: in this case the changes are silently saved. Other choice is Ignore. With this the
changes will not be saved immediately, but will be indicated with a '*' at the name shown on
the corresponding diagram editor Tab. If the diagram or underlying model has no other
changes intentionally made from UI, then when it is closed the changes are dropped. Note
that the '*' marker will disappear if further edits are made to the diagram as it indicates that

180

only automatic changes have been made; once intentional changes are made the marker
isn't needed as the automatic changes will be saved as well.

Related Procedures

Opening a Parent Diagram

Related Reference

Diagram Preferences

181

Opening a Diagram Element in the Source Code Editor
Based on the LiveSource technology, you can open elements for editing and synchronize your model with the source
code.

In this section you will learn how to:

♦ Open a source-generating element in the Editor

♦ Enable synchronization between diagram and source code.

To open a source-generating element in the Editor
1 Right-click an element in the diagram.
2 On the context menu, choose Open.

Tip: Alternatively, press F3 or just double-click the element.

To enable synchronizing source code with the model
1 On the main menu, choose Window Preferences Modeling Diagram.
2 Check the option Synchronize source code editor to diagram.

Tip: Alternatively, just click Link with Editor button on the diagram toolbar.

If the source code editor is opened for a class and a class member is selected, the editor for this class gets focus,
and the member is selected in the source.

Related Concepts

Roundtrip Engineering Overview

182

Printing Diagrams

To print a diagram or multiple diagrams
1 Open the diagram or select the tab in the Diagram Editor that displays the diagram.
2 Select File Print on the main menu. The Print Diagram dialog box is displayed.
3 Select the scope for printing.
4 If you check the option Print whole diagram as an image, the Print diagram as black and white image option

becomes enabled. Make your selections.
5 Click the Preview >>> button to see how the diagram or diagrams look with the current print settings.
6 Click the drop-down arrow to set the Preview Scale factor.
7 Click the Print Options button to define Together Print Preferences. You can use the scroll bars to scroll around

the diagram or to view other diagrams that were included in the scope.
8 Click Print to proceed to the standard print dialog box where you can select your printer.

Note: There is a known issue that the Java print library is not able to update the standard printer settings. Be sure
to check the paper and orientation and set them, if needed, to the settings in the Together Print Preferences.

Related Procedures

Print Preferences

183

Reusing Existing Source Code in Modeling Projects
Together allows you to convert your existing source code to UML models. Together provides two ways to use reverse
engineering:

♦ Convert the existing source while creating a new project

♦ Import the existing source code to a Java Modeling project

To import Java source code while creating a new project
1 On the main menu, choose File New Project.
2 Expand the Modeling node and select Java Modeling Project. Click Next
3 On the Java Modeling Project page, type the project's name. Click Next
4 On the Modeling Settings page, choose the desired metamodel (UML 2.0 or UML 1.4, UML 2.0 is default).

Uncheck the Store package properties in package diagram files if you like them being stored in txaPackage
files. Check Create design elements in separate files if you like to have each model element stored in its own
txa* file. Click Next

5 Skip the Profiles page unless you like to enable one or more profiles for your project. Click Next
6 On the Java Settings page, Source tab, click the Link Additional Source to Project button in the upper right

toolbar, use the Browse... button to specify the path to the existing source code folder. Click Finish. If you like
this linked folder to be the only source folder for your project, remove the default source folder using Remove
button.

7 Click Finish.

To import source code to the existing modeling project
1 Right-click a source folder of the target Java Modeling project in the Navigator view and select Import... on the

context menu.
2 In the Import wizard, select General File System and click Next.
3 Browse to the folder with source code to import.
4 Select sources you want to import or click Select all to import the entire folder.
5 Click Finish.

Related Procedures

Creating a Project

184

Selecting Model Elements
Most manipulations with diagram elements and links involve dragging the mouse or executing context menu
commands on the selected elements.

In this section you will learn how to:

♦ Select one or more elements

♦ Cancel selection

To select an element
1 Open a diagram in the Diagram Editor .
2 On the diagram Palette, click the Select button.
3 In the Diagram Editor , click any element or a member to select it.

To select multiple elements, do one of the following
1 Hold down the CTRL key and click each element individually, OR
2 Click the background and drag a lasso around an area to select all the elements it contains, OR
3 Press CTRL+A to select all elements on a diagram, OR
4 Right-click the diagram background and choose Select All on the context menu.

Note: To cancel a selection, press the ESC key.

Related Procedures

Aligning Model Elements

Related Reference

Together Keyboard Shortcuts

185

Using Drag-and-Drop
Drag-and-drop applies to the members as well as to the node elements. You can move or copy members (methods,
fields, properties, and so on) by using drag-and-drop in the Diagram Editor or in the Model Navigator. You can also
change the origin and destination for links on your diagrams using drag-and-drop.

Drag-and-drop functionality from the Model Navigator to the Diagram Editor and within the Model Navigator works
as follows:

♦ Selecting an element in the Model Navigator and using drag-and-drop to place the element onto the diagram
creates a shortcut.

♦ Using drag-and-drop while pressing the SHIFT key moves the element to the selected container.

♦ Using drag-and-drop while pressing the CTRL key copies the element to the selected container.

To move a link to a new destination
1 Select a link in the Diagram Editor .
2 Hover the cursor over the destination arrow.
3 Drag the arrow and drop it on the new destination. If the destination element is not in view, drag the link in the

appropriate direction, and the diagram will scroll with you.

Tip: Follow the same instructions to move the link source to an allowable location.

Related Procedures

Selecting Model Elements
Moving Model Elements

Related Reference

Together Keyboard Shortcuts

186

Using Example Projects
Together comes with a set of predefined sample projects.

To use a Together Example Project
1 Select File New Project on the main menu. The New Project wizard opens.
2 Expand the Examples node in the tree view list, and select the project you want. Click Next.
3 Follow the wizard steps to specify the necessary options for a new project and click Finish to complete the

wizard.

Tip: Alternatively, choose File New Example on the main menu.

Related Concepts

Together Project Overview

Related Procedures

Together Projects

Related Reference

Together Projects

187

Diagrams
This section describes how to create Together diagrams, customize their appearance, and populate diagrams with
elements and shortcuts.

In This Section
Common Diagrams Procedures
This section describes procedures that apply to all types of diagrams.

Customizing Appearance of Together Diagrams
Lists the Customizing Appearance of Together Diagrams Procedures.

Populating Together Diagrams
This topic provides How-To information about creating node elements, links and members in all types of
Together diagrams.

Editing Together Diagrams
Lists the Editing Together Diagrams Procedures.

188

Common Diagrams Procedures
This section describes procedures that apply to all types of diagrams.

In This Section
Annotating a Diagram
How to annotate a diagram.

Browsing a Diagram with Overview Pane
How to browse.

Changing the Default Diagrams Directory
Lists the steps for changing the default directory of the diagram files.

Closing a Diagram
How to close a diagram.

Creating a Diagram
How to create a diagram in a Together project.

Deleting a Diagram
How to delete a diagram.

Exporting a Diagram to an Image
How to export a diagram to an image.

Hyperlinking Diagrams
How to hyperlink diagrams.

Opening a Diagram
How to open an existing diagram in the Diagram Editor.

Opening a Diagram Element in the Source Code Editor
How to open a code-generating element in the Source Code Editor.

Opening a Parent Diagram
How to open a parent diagram of the current diagram.

Printing Diagram Elements
How to print one or more diagram elements.

Printing Diagrams
Lists the steps for printing diagrams.

Searching Model Elements
How to search model elements on diagrams.

Searching Model with OCL queries
How to search for model elements using OCL queries.

189

Annotating a Diagram

Use the following actions to annotate a diagram:
1 Draw a note
2 Draw a note link
3 Type comments

To draw a note
1 In the Diagram Editor , you can:

♦ Hyperlink the note to another diagram or element.

♦ Edit the text when its in-place editor is active.

♦ Edit the properties of a note using Properties View.

2 In the Properties View for the note, you can:

♦ Edit the text.

♦ Change the foreground and background colors.

♦ Change the text-only property.

To draw a note link
1 Click the Note Link button on the Palette.
2 In the Diagram Editor , click the source element.
3 Drag the link to the destination element.
4 Drop when the second element is highlighted.

Tip: You can use the Properties View to view both the client and supplier sides of the link.

To enter comments
1 To enter comments in the source code, use the Comment fields (Author, Since, Version) in the Properties View

for the class.
2 You can also enter source code comments directly into the code using the Editor.

Related Concepts

Model Annotation Overview

Related Procedures

Adding a Single Model Element to a Diagram
Creating a Shortcut

190

Browsing a Diagram with Overview Pane

To open the Overview pane
1 Open a diagram and click the Overview button. The pane expands to show a thumbnail image of the current

diagram.
2 Click the shaded area and drag it. This is a convenient way to scroll around the diagram.
3 Resize the Overview pane by clicking the upper-left corner of the pane and dragging it.
4 Close the Overview pane by clicking the diagram.

Related Procedures

Zooming a Diagram

191

Changing the Default Diagrams Directory
By default, Together diagram files are contained within the default design root folder, which is called the Model
Folder.

To change the default diagrams directory
1 Right-click the project root in the Model Navigator, or Model Package Explorer view, and select Properties. The

Properties dialog box displays.
2 Choose Design root path from the properties list on the left.
3 Specify the path in the Design root path field, and press OK.

Warning: The path name can contain only the folder name that the existing design root will be renamed to, not the
path to the folder.

192

Closing a Diagram

To close a diagram
1 Switch to the Diagram Editor .
2 Click the cross icon to close the current view.

Tip: Alternatively, choose File Close on the main menu, or CTRL+W.

Note: Closing a diagram does not remove it from your project.

Related Concepts

Together Diagram Overview

193

Creating a Diagram
Diagrams exist within the context of a project. Create or open a project before creating any new diagrams.

To create a new diagram from the Model Package Explorer
1 In the Model Package Explorer view, right-click on a package or the project root.
2 From the context menu, select New Diagram. The New Diagram Wizard displays. See To create a diagram

using the New Diagram Wizard below for more information.

Alternatively, right-click the default diagram of a source package, select New Diagram, and choose the diagram
type from the submenu.

To create a new diagram from the Model Navigator
1 In the Model Navigator, right-click on a package or the project root.
2 From the context menu, select New Diagram and choose the diagram type from the submenu.

To create a new diagram using the Diagram Editor toolbar
1 Click the arrow to the right of the New Diagram icon on the diagram editor toolbar.
2 Choose the diagram type from the submenu.

or

1 Click directly on the New Diagram icon. The UML Diagram dialog opens.
2 In the resulting dialog, select a diagram type from the drop down list. Select the package where the new

diagram will be created. Click Browse to choose a package. Enter a name for the new diagram.
3 Click Finish.

To create a new diagram using the New Diagram Wizard
1 Select File New Diagram.
2 Specify the properties for the new diagram as follows:

♦ Location: By default, the new diagram is created in the package selected before the wizard displays.

♦ Type: Use the drop down list to select a diagram type. By default, the Class Diagram is selected.

♦ Name: Use the text field to type a name for the new diagram.

3 Click Finish.

To create a class diagram from a package diagram
1 On the package diagram, select classes that you would like to display in a separate class diagram.
2 On the main menu, select Model Generate Class Diagram.

194

Note: This action is available only when several classes are selected.

195

Deleting a Diagram
Warning: You cannot delete the default diagram created automatically for a package.

To delete a diagram
1 In the Package Explorer, select the diagram to be deleted.
2 On the context menu, choose Delete.
3 Confirm deletion, if required.

Related Procedures

Creating a Diagram
Closing a Diagram

196

Exporting a Diagram to an Image

To export a diagram to an image
1 Place the focus on the diagram that you want to export in the Diagram Editor .
2 Choose File Export on the main menu. The Export wizard opens.
3 In the Select page of the wizard, choose Modeling Image (GIF, JPEG, Bitmap, EMF, SVG), and click

Next.
4 In the Export to Image page, specify the following settings:

♦ Destination file: enter the fully qualified name of the resulting file, or click the Browse button and navigate
to the desired location.

♦ Diagrams scope: click a radio button to select the diagrams or diagram elements to be exported.

♦ Format: select the desired format from the drop-down list.

♦ Scale: enter magnification factor.

♦ Export heading: check the option to save the image together with the diagram title.

♦ Open in viewer: check the option to launch the default image viewer.

Click Next to preview, or Finish to complete the export.

Related Concepts

Model Import and Export Overview

Related Reference

Export Diagram to Image Wizard

197

Hyperlinking Diagrams
Select Hyperlinks from the diagram context menu to create, view, remove, and browse hyperlinks.

Use the following techniques to create a hyperlink
1 Create a hyperlink to an existing diagram or element
2 Create a hyperlink to a new diagram
3 Create a hyperlink to an external URL or file
4 Browse hyperlinks
5 Remove a hyperlink

To create a hyperlink to an existing diagram or element
1 Open an existing diagram or create a new diagram from which to create the hyperlink.
2 Select the element that you want to link to another diagram or element.
3 To link the entire diagram, click the diagram background to deselect all elements.

Note: Do not select the actual package in the Model Navigator to create a hyperlink. Rather,
expand the package node, and select the desired diagram.

4 Right-click and choose Hyperlinks Edit. The Edit Hyperlinks dialog window (Selection Manager) opens.
5 Select the Model Elements tab to view the pane containing a tree view of the available project contents.
6 Select the diagram or element you want from the list, and click Add.
7 For element selection, expand diagram nodes in the Model Elements tab.
8 To remove an element from the selected list, select the element and click Remove.
9 Click OK to close the dialog box and create the link.

To create a hyperlink to a new diagram
1 Open a diagram in the Diagram Editor , or select it in the Model Navigator.
2 On the context menu, choose Hyperlinks New Diagram.
3 In the New Diagram dialog box, select the diagram type, enter the diagram name and click OK.

To create a hyperlink to an external URL or file
1 Open an existing diagram or create a new diagram from which to create the hyperlink.
2 Select the element that you want linked to the external document.

To link the entire diagram, click the diagram background to deselect all elements.

3 Right-click and choose Hyperlinks Edit. The Edit Hyperlinks dialog box opens.
4 Select the External Documents tab to view the Recently Used Documents list which contains a list of previously

selected files or URLs.
5 To add a file to the Recently Used Documents list:

1 Click Browse. The Open file dialog box opens.

198

2 Navigate to the appropriate file and click Open.

6 To add a URL to the Recently Used Documents list:

1 Click URL.
2 In the dialog box that opens, enter the appropriate URL and click OK.

Tip: You can create a hyperlink to an external document by entering a relative URL path.

7 To remove an element from the selected list, select the element and click Remove.
8 To clear the Recently used Documents list, click Clear.
9 Click OK to close the dialog box and create the link.

To browse hyperlinks
1 To view hyperlinks to a diagram, element or external document, right-click on the diagram background or

element, and choose Hyperlinks from the context menu. All hyperlinks created appear under the Hyperlinks
submenu. On a diagram, all names of diagram elements that are hyperlinked are displayed in blue font. When
you select a link from the submenu, the respective element appears selected in the Diagram Editor .

2 After you have defined hyperlinks for a selected diagram or element, use the context menus to browse to the
linked resources.

Note: Browsing to a linked diagram opens it in the Diagram Editor or makes it the current diagram
(if it is already open).

Browsing to a linked element causes its parent diagram to open or become
current, and the diagram scrolls to the linked element and selects it.

To remove a hyperlink
1 Open the diagram that displays the link you want to remove.
2 Choose Hyperlinks Edit from the diagram or element context menu. The Edit Hyperlinks dialog box opens.
3 In the selected list on the right of the dialog, click the hyperlink that you want removed.
4 Click Remove.
5 Click OK to close the dialog box.

Note: To remove a hyperlink from a specific element, select the element first. Then choose Hyperlinks Edit on
the context menu.

Related Concepts

Model Hyperlinking Overview

199

Opening a Diagram
You can open diagrams from the Model Navigator, Model Package Explorer, or by using the Diagram Editor toolbar.

In this section you will learn how to:

♦ open an existing diagram

♦ cancel a diagram's opening process

To open a diagram
1 In the Model Navigator view, navigate to the diagram you want to open.
2 Select the diagram node in the tree-view and do one of the following:

♦ Double-click the diagram

♦ Select Open from the context menu

♦ Select Open in Active Editor from the context menu (this replaces the contents of any currently opened
diagram)

You can use the Diagram Editor toolbar to open the parent diagram.

To terminate a diagram opening
1 Open diagram as described above.
2 In the Diagram opening information dialog, click Stop.

The Diagram Editor displays the diagram with those elements that have been loaded before termination. Under the
diagram title, a message appears informing the user that the diagram contents were only partially loaded.

Note: The layout of a diagram may get adjusted automatically when opened. This happens in order to take into
account changes which may have happened to the model elements shown on the diagram, or to the diagram
preferences controlling the elements presentation while the diagram was closed (off-line).

For example: Assume the diagram has a class and a link coming from its bottom edge to
some other class shown below. While the diagram was closed the class may have had a few
members removed or the font size set to be smaller. Any of these changes would cause the
height of the class to get smaller. That in turn needs the position of the link end to be adjusted.
Such a change would normally cause a diagram file to be resaved.

If the corresponding diagram file is under the version control that would cause an outgoing
change, which may be unwanted if the diagram was opened without the intention to edit it
during the current session, but rather simply to view and close.

With Together 2008 R3 an option is provided that allows user control whether or not such
changes should be saved (Windows Preferences Modeling Diagram If layout
is changed on diagram open). Save is the default state, which mimics previous Together
behavior: in this case the changes are silently saved. Other choice is Ignore. With this the
changes will not be saved immediately, but will be indicated with a '*' at the name shown on
the corresponding diagram editor Tab. If the diagram or underlying model has no other
changes intentionally made from UI, then when it is closed the changes are dropped. Note
that the '*' marker will disappear if further edits are made to the diagram as it indicates that

200

only automatic changes have been made; once intentional changes are made the marker
isn't needed as the automatic changes will be saved as well.

Related Procedures

Opening a Parent Diagram

Related Reference

Diagram Preferences

201

Opening a Diagram Element in the Source Code Editor
Based on the LiveSource technology, you can open elements for editing and synchronize your model with the source
code.

In this section you will learn how to:

♦ Open a source-generating element in the Editor

♦ Enable synchronization between diagram and source code.

To open a source-generating element in the Editor
1 Right-click an element in the diagram.
2 On the context menu, choose Open.

Tip: Alternatively, press F3 or just double-click the element.

To enable synchronizing source code with the model
1 On the main menu, choose Window Preferences Modeling Diagram.
2 Check the option Synchronize source code editor to diagram.

Tip: Alternatively, just click Link with Editor button on the diagram toolbar.

If the source code editor is opened for a class and a class member is selected, the editor for this class gets focus,
and the member is selected in the source.

Related Concepts

Roundtrip Engineering Overview

202

Opening a Parent Diagram
You can open a parent diagram from the Diagram Editor toolbar.

To open the parent diagram
1 Click the Open Parent Diagram button to open the parent of the active diagram.
2 If a diagram has no parent, the button is disabled.

Related Procedures

Opening a Diagram

203

Printing Diagram Elements

To print one or more diagram elements
1 Open the diagram or select the tab in the Diagram Editor that displays the diagram containing the diagram

elements you want to print.
2 Right-click the diagram element or multiple elements, and select Print from the context menu. The Print

Diagram dialog box displays.
3 When you select the Print whole diagram as an image option, it enables the Print diagram as black and

white image option. Make your selections.
4 At this point you can click Preview >>> button to see how the selected diagram element or elements look with

the current print settings. You can click the Print Options button to set up Together Print Preferences.
5 Click the drop-down arrow to choose the Preview Scale factor from the list of available scales to best fit the

printed image on the page.
6 Click Print to proceed to the standard print dialog where you can select your printer.

Related Procedures

Print Preferences

204

Printing Diagrams

To print a diagram or multiple diagrams
1 Open the diagram or select the tab in the Diagram Editor that displays the diagram.
2 Select File Print on the main menu. The Print Diagram dialog box is displayed.
3 Select the scope for printing.
4 If you check the option Print whole diagram as an image, the Print diagram as black and white image option

becomes enabled. Make your selections.
5 Click the Preview >>> button to see how the diagram or diagrams look with the current print settings.
6 Click the drop-down arrow to set the Preview Scale factor.
7 Click the Print Options button to define Together Print Preferences. You can use the scroll bars to scroll around

the diagram or to view other diagrams that were included in the scope.
8 Click Print to proceed to the standard print dialog box where you can select your printer.

Note: There is a known issue that the Java print library is not able to update the standard printer settings. Be sure
to check the paper and orientation and set them, if needed, to the settings in the Together Print Preferences.

Related Procedures

Print Preferences

205

Searching Model Elements
Together enables you to use its search facilities to locate model elements on model diagrams. This function enables
you to search the current diagram or all opened diagrams for the specified string in a certain scope. You can create
search strings using wildcards and regular expressions. The function is case-sensitive.

To find model elements that fall under specified criteria, perform the following steps
1 On the main menu, choose Search Model. The Search dialog box opens, with the Model Search tab

selected.
2 Specify the search string in the Search String field. Check the following options if necessary:

♦ Case sensitive: Searches for text that matches uppercase and lowercase characters

♦ Regular expression: Enables using regular expressions.

3 In the Search for section, click the appropriate radio button to select the name or any other property to search
for.

4 In the Scope section, click the appropriate radio button to select the search area. The possible options are
workspace, selected resources, the current project or a predefined working set.
To select a working set, click the Choose button. In the Select Working Set dialog, choose your working set
and click OK. If there are no available working sets, use the New button to create one.

5 Click Search.

Related Procedures

Searching Model with OCL queries

206

Searching Model with OCL queries
Together lets you search for models using OCL queries.

To find model elements that match the specified OCL query
1 On the main menu, choose Search Model.

The Search dialog box is displayed.

2 Click the OCL Model Search tab.
3 Specify the context for your expression in the Context field.

Tip: Use the drop-down list or the Content Assistant. To open the Content Assistant, click on the
Context field and press CTRL +SPACE. Choose your element from the list.

For example, to search for all UML 2.0 classes that have the stereotype MyStereotype, enter:

uml20::classes::Class

4 In the Invariant field, type the query expression.
For example, to complete your search for all UML 2.0 classes that have the stereotype MyStereotype, enter:

self.stereotypes->includes('MyStereotype')

5 In the Scope section, click the appropriate radio button to select the search area. The possible options are
workspace, selected resources, the current project or a predefined working set.
To select a working set, click the Choose button. In the Select Working Set dialog, choose your working set
and click OK. If there are no available working sets, use the New button to create one.

6 Click Search.

A tree with the list of matching elements opens. You can navigate to the corresponding diagram from this view by
double-clicking the selected element.

Related Concepts

OCL Support

Related Procedures

Searching Model Elements

207

Customizing Appearance of Together Diagrams
In This Section

Hiding and Showing Model Elements
How to hide or show model elements.

Using a Class Diagram as a View
How to use a class diagrams as a view.

Zooming a Diagram
How to zoom a diagram.

208

Hiding and Showing Model Elements
You can control the visibility of elements on a diagram by using the Hide command (available on the context menu
for individual diagram elements) and the Show/Hide command (available on the diagram context menu).

To hide elements using the Diagram Editor
1 Open the Diagram Editor .
2 Do one of the following:

♦ Select the element on the diagram, right-click and choose Hide on the context menu.

♦ Select multiple elements on the diagram using CTRL+CLICK or by lassoing, and select Hide from the context
menu.

♦ Right-click the diagram background and choose Hide/Show on the context menu. The Show Hidden
dialog box opens, as discussed below.

To show or hide diagram elements using the Show Hidden dialog box
1 Right-click the diagram and choose Show/Hide on the context menu. The Show Hidden dialog box opens.
2 Select the element(s) that you want to hide from the Diagram Elements list.
3 To add elements in the Diagram Elements list to the Hidden Elements list, do one of the following:

♦ Double-click the element.

♦ Click the element once and click Add.

♦ Select multiple elements using CTRL+CLICK and click Add.

4 To remove items from the Hidden Elements list, do one of the following:

♦ Double-click the element.

♦ Click the element once and click Remove.

♦ Select multiple elements using CTRL+CLICK and click Remove.

♦ To remove all items from the Hidden Elements list, click Remove All.

5 Click OK to close the dialog box.

Related Procedures

Adding a Single Model Element to a Diagram

Related Reference

View Management Preferences

209

Using a Class Diagram as a View
Class diagrams can also be used to create subviews of the project.

To use a class diagrams as a view
1 Create a new class diagram.
2 Create shortcuts to the original diagram to easily and quickly build subset views for easier management.

Tip: Using this feature, you can create views of distributed classes into one diagram, with Together automatically
displaying any relationships that the gathered classes may have with each other.

Note: In implementation projects, changes made here also update the source code, keeping diagram and source
code in sync.

Related Concepts

Roundtrip Engineering Overview

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

210

Zooming a Diagram
Use the zooming commands of the main menu, or toolbar buttons, to obtain the required magnification in the Diagram
Editor .

To specify the magnification in the Diagram Editor
1 On the main menu, choose Diagram.
2 Choose one of the available zooming commands on the menu: Zoom In, Zoom Out, Fit to Window, Actual

Size.

Tip: Alternatively, use the diagram Palette or keyboard shortcuts.

Related Reference

Together Keyboard Shortcuts

211

Populating Together Diagrams
This topic provides How-To information about creating node elements, links and members in all types of Together
diagrams.

In This Section
Adding a Member to a Container
How to add a member to a container.

Adding a Single Model Element to a Diagram
How to create a single model element.

Adding Multiple Elements to a Diagram
How to create multiple elements.

Creating a Link with Bending Points
How to create a link with bending points.

Creating a Shortcut
How to create a shortcut.

Creating a Simple Link
How to create a simple link.

Creating an Inner Classifier
How to create an inner classifier.

212

Adding a Member to a Container
You can add members to class diagram elements (containers) by using the respective context menu for the diagram
element in the Diagram Editor or Model Navigator, or by using the available shortcut keys.

To add a member to a container
1 Right-click the desired container element.
2 On the context menu, choose New <Member type>, where the Member type corresponds to the target

container.

Tip: You can also use keyboard shortcuts to add fields and methods to a container that allows
such members. Click CTRL+W (for fields) and CTRL+M (for methods and functions).

3 You can edit the member using the in-place editor, Properties View, or source code editor.

Related Procedures

Adding a Single Model Element to a Diagram

Related Reference

UML 1.4 Class Diagrams Procedures
UML 2.0 Class Diagrams

213

Adding a Single Model Element to a Diagram
You can create a single node element using the diagram Palette, or the New command of the diagram context menu.

To create a single model element
1 Open a target diagram in the Diagram Editor .
2 On the Palette, click the icon for the element you want to place on the diagram. The button stays down.

Tip: Icons are identified with tooltips.

3 Click the diagram background in the place where you want to create the new element. This creates the new
element and activates the in-place editor for its name.

Tip: Alternatively, you can right-click the diagram background in the Diagram Editor , or the diagram node in the
Model Navigator, and choose New on the context menu. The submenu displays all of the basic elements that
can be added to the current diagram and the Shortcuts command.

Related Procedures

Adding Multiple Elements to a Diagram
Creating a Simple Link

214

Adding Multiple Elements to a Diagram
You can place several elements of the same type on a diagram without returning to the Palette or by using the
diagram context menu. Each element will have a default name that can be edited with the in-place editor or in the
Properties View.

To create multiple elements
1 Holding down the CTRL key, click the Palette button for the element you want to create (the button stays down).

Release the CTRL key.
2 Click the desired location on the diagram background. The new element is placed on the diagram at the point

where you click.
3 Click the next location on the diagram background. The next new element is placed on the diagram.
4 Repeat the previous step until you have the desired number of elements of that type.
5 To stop multiple element creation, click the Pointer Palette button or press the ESC key to deselect the element

after closing the in-place editor of the last inserted element.

Tip: After making a selection on the Palette or doing the first of a multi-draw or multi-placement operation, you can
cancel the operation by clicking the Pointer button on the Palette or by pressing the ESC key.

Related Procedures

Adding a Single Model Element to a Diagram
Creating a Simple Link

Related Reference

Together Keyboard Shortcuts

215

Creating a Link with Bending Points
If your diagram is densely populated, you can draw bent links between the source and target elements to avoid other
elements that are in the way.

To create a link with bending points
1 Click the link button on the Palette.
2 Click the source element.
3 Drag the link line, clicking the diagram background each time you want to create a section of the link. Sections

on a link lie between two blue bullets. The bullets display whenever you select the link on the diagram.

Tip: You can cancel each section of a link pressing the BACKSPACE key.

4 Click the destination element to terminate the link.

Tip: After you have created a link, you can add bending points to it. Click on a specific point of the link, and drag it
to the position you want.

Related Procedures

Rerouting a Link
Creating a Simple Link

Related Reference

Class Diagram Relationships

216

Creating a Shortcut
You can create a shortcut to a model element from the current project or from the projects connected by cross-
projects references, by using three methods:

♦ By choosing New Shortcut on the Diagram Editor context menu

♦ By dragging and dropping a shortcut from the Model Navigator

♦ By choosing Add as Shortcut on the Model Navigator context menu

To create a shortcut by using the Shortcuts dialog window
1 Right-click the diagram background.
2 Choose New Shortcuts on the context menu.

Tip: Use the CTRL+SHIFT+N keyboard shortcut

3 In the Shortcuts dialog window, choose the required element from the tree view of available contents.

Note: If the project has cross-project references to the other projects in the workspace, the
contents of these projects is available for being added as a shortcut.

4 Click Add to place the selected element to the list of the existing or ready-to-add elements.
5 When the list of ready-to-add elements is complete, click OK.

To create a shortcut by using drag-and-drop
1 Select the element in the Model Navigator.
2 Drag-and-drop the element onto the diagram.

To create a shortcut by using the Model Navigator context menu
1 Open the diagram where the shortcut will be added.
2 In the Model Navigator, select the element to be added to the current diagram as a shortcut.
3 Right-click the element in the Model Navigator and choose Add as Shortcut on the context menu.

Related Concepts

Model Shortcut Overview

Related Procedures

Establishing cross-project references
Adding a Single Model Element to a Diagram

217

Creating a Simple Link
You can create a link to another node, or a shortcut of an element of the same or another project (these projects
must be of the same UML version).

To create a simple link between two nodes
1 On the diagram Palette, click the button for the type of link you want to draw in the diagram. The button stays

down.
2 Click the source element.
3 Drag to the destination element and drop when the target element is highlighted.

Related Procedures

Rerouting a Link
Creating a Link with Bending Points
Creating Model Element by Pattern

Related Reference

Class Diagram Relationships

218

Creating an Inner Classifier
This section includes instructions for adding inner classifiers to classes (including Windows classes, such as
Windows forms, Inherited forms, User Controls and so on), structures, and modules (collectively, containers) in
implementation projects.

You can add inner classifiers to class diagram elements (containers) using the respective context menu for the
diagram element in the Diagram Editor or Model Navigator. You can also select a classifier in the Palette and click
the container element in the Diagram Editor to add the inner classifier to the container element.

Tip: You can use drag-and-drop or clipboard operations to remove an inner classifier from the container element.

To create an inner classifier using the context menu
1 Right-click the container element.
2 Choose Add <Inner classifier type>

To create an inner classifier using the clipboard operations
1 Use the clipboard operations to either cut or copy an existing classifier.
2 Select the container element.
3 Use the clipboard operations to paste the selected classifier into the container element.

To create an inner classifier using drag-and-drop
1 Select an existing classifier in the Diagram Editor .
2 Drag-and-drop it onto an existing container in the Diagram Editor . A border highlights the location that Together

recognizes as a valid destination for the inner classifier.

Related Procedures

Adding a Single Model Element to a Diagram

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

219

Editing Together Diagrams
In This Section

Aligning Model Elements
How to align model elements.

Assigning a Stereotype to an Element
How to specify and define an element stereotype.

Changing Type of an Association Link
How to change the type of an Association link.

Copying and Pasting Model Elements
How to copy and paste model elements.

Deleting Elements
How to delete an element from a diagram.

Laying Out a Diagram Automatically
How to lay out a diagram automatically.

Laying out a Diagram for Printing
How to use optimized layout for printing.

Moving Model Elements
How to move model elements.

Renaming a Diagram
How to rename a diagram.

Rerouting a Link
How to reroute a link.

Resizing Model Elements
How to change a size of a model element.

Selecting Model Elements
How to select model elements.

Working with Rulers Guides and Grid
How to use ruler guides and grids in your diagram.

220

Aligning Model Elements
You can automatically rearrange all or selected model elements on a diagram according to the order you specify.
The following options are available:

♦ Top

♦ Bottom

♦ Right

♦ Left

♦ Center Horizontally

♦ Center Vertically

To align model elements on a diagram
1 Select several nodes or inner classifiers on a diagram.
2 On the main menu, choose Diagram Align <option>.

Tip: Alternatively, use the diagram Palette buttons.

Related Procedures

Laying Out a Diagram Automatically

221

Assigning a Stereotype to an Element
You can assign a stereotype in the diagram by using the in-place editor, or the Properties View.

To assign a stereotype by using the in-place editor
1 Double-click the stereotype name to activate the in-place editor.
2 Enter the new name.
3 Press ENTER.

To assign a stereotype by using the Properties View
1 Select an element on your diagram.
2 In the Properties View, select the Stereotype field.
3 Click the value editor button.
4 In the Edit Property Values dialog, click the Add button and enter the required stereotype.

Related Reference

Stereotype Options of UML Profile for Modeling In Color

222

Changing Type of an Association Link
Use the following techniques to change the type of an Association link

♦ Set the link type by using the Properties View

♦ Set the link type by using the context menu

To set the Association link type by using the Properties View
1 Select a link on the diagram.
2 Open the Properties View.
3 In the Properties View, select the Type field.
4 Click the drop-down arrow and select the appropriate property from the list. Your available choices are

association, aggregation, or composition.

To set the Association link type by using the context menu
1 Right-click an Association link on the diagram.
2 Choose Link Type on the context menu.
3 Choose Association, Aggregation, or Composition.

Related Procedures

Creating a Simple Link

Related Reference

Class Diagram Relationships

223

Copying and Pasting Model Elements
The move and copy operations are performed by drag-and-drop, context menu commands, or keyboard shortcut
keys.

Note: You can move or copy an entire diagram. In this case, all elements addressed on this diagram are not copied,
and a new diagram contains shortcuts to these elements.

To copy and paste one or more elements
1 Select the desired element or elements.
2 To copy the selection, do any of the following:

♦ Right-click and choose Copy on the context menu

♦ Press CTRL+C on the keyboard

3 To paste the selection, do any of the following:

♦ Right-click the target location and choose Paste on the context menu

♦ Select the target location and press CTRL+V

Note: Pasting elements from one package to another also maps relationships of those elements to the target
package. By default, a prompt appears warning users of this before the paste is complete. To disable this
warning, select Window Preferences from the main menu, choose the Modeling node, and uncheck the
Show warning about relationships when elements copied option.

Related Procedures

Adding a Single Model Element to a Diagram
Together Keyboard Shortcuts

224

Deleting Elements
All elements shown on diagrams are shortcuts to actual model elements. When deleting an element on a diagram,
you have the option to delete either the shortcut from view or delete the element from the model (except classes on
synchronized package diagrams). This behavior is configured in the Modeling Preferences.

To delete an element
1 Select the element on the diagram.
2 Choose Delete on the context menu of the element.

Tip: Alternatively, click the DELETE key.

3 Confirm deletion, if this behavior is selected in the Modeling Preferences.

To delete an element from View
1 Select the element on the diagram.
2 Choose Delete from View on the context menu of the element.
3 Confirm deletion, if this behavior is selected in the Modeling Preferences.

Related Procedures

Adding a Single Model Element to a Diagram

Related Reference

Modeling Preferences

225

Laying Out a Diagram Automatically

To lay out a diagram by using one of the algorithms
1 Right-click the diagram background.
2 On the context menu, select Layout, and choose a command from the submenu.

There are several Layout commands on the Layout submenu:

♦ Do Full Layout: Sets the layout of all elements according to the layout algorithm defined for the current
diagram.

♦ Layout for Printing: Sets the layout of all elements using the Together algorithm, regardless of the option
selected on any level.

♦ Route All Links: Streamlines the links removing bending points.

♦ Optimize Sizes: Enlarges or shrinks all elements on the diagram to the optimal size.

Note: Individual diagram elements also have the Route Links and Optimize Size layout
commands on their respective context menus. The Route Links command streamlines
the links and removes any bending points. The Optimize Size command enlarges or
shrinks the element to the optimal size, leaving enough space for its label and any sub
elements it may contain.

Tip: To enable the layout of the inner substructure in diagrams, check the Recursive option ((level) Diagram
Layout General) in the Options dialog window.

To set up the diagram layout
1 On the main menu, choose Window Preferences Modeling Layout.
2 Select the desired layout for links in the Links layout section.
3 Choose the desired algorithm from the Algorithm drop-down list, and specify the algorithm-specific options (if

any).
4 To enable layout of the inner substructure in diagrams, check the Recursive option.

You can now observe results of layout tuning when you apply one of the Layout commands to the diagram.

The context menu available in the Diagram Editor provides access to the automated layout optimization features in
Together.

Related Procedures

Aligning Model Elements

226

Laying out a Diagram for Printing
Together has automated layout optimization for printing diagrams. Using automated layout for printing ensures that
all diagram elements fall within page borders.

Invoke automated layout immediately before printing a diagram.

To lay out you diagram elements for printing
1 Right-click the diagram background.
2 On the context menu, choose Layout Layout All for Printing.

Tip: You can revert to your manual layout after a Layout and optimize operation by using Undo. For example, you
might invoke Layout and optimize, print the diagram, then call Undo to restore your manual layout.

Related Procedures

Print Preferences

227

Moving Model Elements
Create your own layout by selecting and moving single or multiple diagram elements.

You can:

♦ Select a single element and drag it to a new position.

♦ Select multiple elements and change their location.

♦ Manually reroute links.

♦ Use Cut and Paste operations.

Note: If you drag an element outside the borders of the Diagram Editor , the diagram automatically scrolls to follow
the dragging.

Tip: Manual layouts are saved when you close a diagram or project and are restored when you next open it. Manual
layouts are not preserved when you run one of the auto-layout commands (Do Full Layout or Optimize
Sizes).

To move one or more elements
1 Select the element or elements to be moved.
2 Drag-and-drop the selection to the target location.

Tip: If you have selected several model elements in certain diagrams (State Machine, Use Case, Activity or
Business Process), use the heading area of one of the selected elements to drag the entire group. Any attempt
to drag by an internal area of an element results in switching the Diagram Editor to the Select mode and losing
the current selection. However, if you hold the mouse button down and press ESC, the new selection will be
canceled and the current selection will be preserved.

Related Procedures

Selecting Model Elements

Related Reference

Together Keyboard Shortcuts

228

Renaming a Diagram
Warning: The automatically created package diagram cannot be renamed.

To rename a diagram
1 In the Properties View, double-click the diagram name to initiate the inline editor.
2 Enter a new name.
3 Press Enter.

To rename a diagram using the Model Navigator
1 Select the diagram in the Model Navigator.
2 Press F2 or right-click and choose Rename on the context menu.
3 Enter a new name.
4 Press ENTER.

Related Procedures

Creating a Diagram

229

Rerouting a Link

To reroute a link
1 Select a link.
2 Drag and drop the client or supplier end of the link to the destination object.
3 To change the direction of the link, click a place on the link where you want to reroute the link.
4 Drag the line. Together automatically reshapes the link the way you want.

Tip: Model elements have the Layout Route All Links command on diagram context menus.

Related Concepts

Model Element Overview

Related Procedures

Laying Out a Diagram Automatically

230

Resizing Model Elements
You can resize diagram elements automatically or manually. When new items are added to an element that has
never been manually resized, the element automatically grows to enclose the new items.

To resize an element manually
1 Click an element. The selected element is highlighted with bullets.
2 Drag one of the bullets in the direction you want to expand.

When the element contents change (for example, when members are added or deleted, and the element size is too
small to display all members) scroll bars are displayed to the right of compartments.

To optimize a node element size
1 Right-click an element.
2 Choose Layout Optimize Size.

To optimize the elements on an entire diagram
1 Right-click the diagram background.
2 Choose Layout Optimize Size.

Related Procedures

Laying Out a Diagram Automatically

231

Selecting Model Elements
Most manipulations with diagram elements and links involve dragging the mouse or executing context menu
commands on the selected elements.

In this section you will learn how to:

♦ Select one or more elements

♦ Cancel selection

To select an element
1 Open a diagram in the Diagram Editor .
2 On the diagram Palette, click the Select button.
3 In the Diagram Editor , click any element or a member to select it.

To select multiple elements, do one of the following
1 Hold down the CTRL key and click each element individually, OR
2 Click the background and drag a lasso around an area to select all the elements it contains, OR
3 Press CTRL+A to select all elements on a diagram, OR
4 Right-click the diagram background and choose Select All on the context menu.

Note: To cancel a selection, press the ESC key.

Related Procedures

Aligning Model Elements

Related Reference

Together Keyboard Shortcuts

232

Working with Rulers Guides and Grid
Together provides means to use ruler guides in the Diagram Editor for aligning purposes.

To add or remove a ruler guide
1 To add a ruler guide, click either the vertical or horizontal ruler. The guide appears at the click point.

Note: Alternatively, right-click a ruler and choose Create Guide. The guide is created at the zero
point of the ruler.

2 To remove a ruler guide, click a guide on the ruler, drag it out of the ruler space until your pointer becomes a
normal select shape, and release your mouse button.
After you created several guides, you can connect your elements to ruler guides. If you connect several elements
to a guide, all elements move when you move the guide.

Aligning elements with ruler guides
1 Move or resize an element on the diagram to place one side of the element close to a rule guide.
2 Drop the element when the guide highlights.
3 Repeat the previous steps to connect other elements to the guide.
4 Move the guide. Notice how all connected elements move with the connected ruler guide.

Note: To disconnect an element from the guide, simply move the element from the guide.
You can optionally display or hide a design grid on the diagram background and have elements “snap” to the
nearest grid coordinate when you place or move them. Grid options are configured in the Diagram page of the
Preferences dialog box.

To show the grid
1 Open Preferences dialog box.
2 Choose the Modeling Diagram category, Rulers, Grid, and Snapping group.
3 Adjust the options.

Note: Grid display and snap are enabled by default.

Related Reference

Diagram Preferences

233

Together Projects
This section provides how-to information on using Together projects.

In This Section
Changing the Default Diagrams Directory
Lists the steps for changing the default directory of the diagram files.

Choosing a Together Perspective
How to choose a Together perspective.

Configuring C++ Projects
How to define C++ project structure and language-specific options.

Configuring IDL Projects
How to define IDL project structure and language-specific options.

Converting UML 1.4 Project to UML 2.0 Project
How to convert a UML 1.4 Project to a UML 2.0 project.

Creating a Project
How to create a project in Together.

Enabling UML Profiles
Describes how to enable profile support for a project.

Establishing cross-project references
Describes how to establish cross-project references between the projects located in the same workspace.

Exporting a Project to XMI Format
How to export a project to XMI format.

Exporting a Project to XMI Format Using the Command Line
How to export a project to XMI format using the command line.

Generating Source Code from Design Project
How to create a source code project from design project in Together.

Importing a Project in an IBM Rational Rose MDX Model
How to import .mdx projects.

Importing a Project in IBM Rational Rose (MDL) Format
How to import .mdl projects.

Importing a Project in IBM Rational Rose (MDL) From the Command Line
How to import .mdl projects using the command line utility.

Importing a Project in IBM Rational Rose (MDX) From the Command Line
How to import Rational projects using the command line utility.

Importing a Project in XMI Format
How to import XMI data.

Importing Java Modeling Projects Created in Together Edition for Eclipse 7.0
How to import a project created in TEC 7.0.

Importing Legacy Projects
How to import a legacy project and handle multiple project roots.

Navigating between the Tree View, Diagram, and Source Code
How to synchronize the Tree View, Diagram, and source code.

234

Resolving Duplicates During an XMI Import
How to resolve duplicates while importing an XMI project.

Reusing Existing Source Code in Modeling Projects
How to use existing source code in modeling projects.

Showing libraries
Describes how to show classes or packages from the standard Java libraries in a class diagram.

Troubleshooting a Model
How to troubleshoot a model.

Using Example Projects
How to use sample projects in Together.

Working with a Package
How to work with a package.

XMI Export and Import of the Models with Cross-Project References
You can import and export multi-root projects using XMI. Note that XMI imports and exports are implemented
differently for UML 1.4 and Java modeling projects, and for UML 2.0 projects.

235

Changing the Default Diagrams Directory
By default, Together diagram files are contained within the default design root folder, which is called the Model
Folder.

To change the default diagrams directory
1 Right-click the project root in the Model Navigator, or Model Package Explorer view, and select Properties. The

Properties dialog box displays.
2 Choose Design root path from the properties list on the left.
3 Specify the path in the Design root path field, and press OK.

Warning: The path name can contain only the folder name that the existing design root will be renamed to, not the
path to the folder.

236

Choosing a Together Perspective
Together changes the user interface according to how you want to work with Together by providing several
perspectives. By default, Together starts with the Modeling perspective.

Note: The way you have Together configured influences which perspectives and views you can choose from. For
example, clicking the Take me to the DSL workbench link from the Welcome page displays only the DSL
Workbench's default perspectives. In order to display a list of all the perspectives, check the Show all check
box in the Open Perspective dialog box. An additional Confirm Enablement dialog box might appear that
requires you to enable any necessary capabilities.

To choose a Together Perspective
1 On the main menu, choose Window Open Perspective Other. The Select Perspective dialog box opens.
2 Select one of the Together Perspectives from the list and click OK.

After you select a perspective, Together automatically customizes the interface to provide ready access to only the
relevant elements of the interface, and to show only the information in the model that best supports the chosen
perspective. Interface elements and/or model information that are not generally relevant to the perspective are
hidden. You can still access hidden information by changing the relevant configuration options and restoring hidden
panes manually, but you may find it easier to just switch perspectives.

Related Concepts

Together Capabilities Activation
Tour of Together

Related Procedures

Activating Together Capabilities

237

Configuring C++ Projects
In this section, you will learn how to define the project structure and processing options:

♦ Access C++ project properties

♦ Define source path

♦ Define entry points

♦ Include search paths

♦ Define C++ processing settings (for example, skip standard includes option, or suffixes for the C++ files)

♦ Define indexer

♦ Enable C++ formatting

♦ Set up formatting options

To configure a C++ project
1 Select the desired project in the Model Navigator.
2 On the main menu, choose Project Properties.

Tip: Alternatively, choose Properties on the context menu of the project.

The Properties for <project> dialog opens. Select the Project Properties page.

3 In the Project source path tab, click the Link Additional Source to Project button.
4 In the Link Additional Source dialog, specify the linked folder location and name, and click OK.

Tip: Use the context menu of the linked folder to remove it, mark it read-only, or filter it.

5 Configure parsing entry points using the Configure Entry points dialog.
6 In the Include paths tab, click Add.
7 In the Add Include Folder dialog, enter the folder name or click Browse and navigate to the folder you want

to add.
8 In the C++ Processing Settings tab, select your C++ project options.

♦ To skip standard includes, check the Skip standard includes option.

♦ If you want to use the preinclude file, specify its name in the Preinclude file name field.

9 Select the C/C++ indexer page, and select an indexer from the list. Among the available indexers, you can
choose the Borland indexer.

To enable C++ formatter
1 On the main menu, choose Window Preferences
2 Under the C/C++ category, select the Code Formatter page.
3 From the list of available formatters, select Together C++ Code Formatter.

238

To set up formatting options
1 Under your Together installation, expand the plugins folder.
2 In the com.borland.tg.cdtintegration plugin, open the formatter.properties file.
3 Use the documentation provided with the file to edit as required.

Related Reference

New project Wizard C++ Language-Specific Options
C++ Projects

239

Configuring IDL Projects
In this section you will learn how to define the project structure and processing options:

♦ Access IDL project properties

♦ Define source path

♦ Include search paths

♦ Define IDL processing settings

To configure an IDL project
1 Select a project in the Model Navigator.
2 On the main menu, choose Project Properties.

Tip: Alternatively, choose Properties on the context menu of the project.

3 In the Project source path tab, click the Link Additional Source to Project button.
4 In the Link Additional Source dialog, specify the linked folder location and name, and click OK.

Tip: Use the context menu of the linked folder to remove it, mark it read-only, or filter it.

5 In the Include paths tab, click Add.
6 In the Add Include Folder dialog, enter the folder name or click Browse and navigate to the folder.
7 In the IDL Processing Settings tab, select your IDL project options. Refer to the IDL Language-Specific Options

section for details.

Related Reference

New project Wizard IDL Language-Specific Options
IDL Language-Specific Information

240

Converting UML 1.4 Project to UML 2.0 Project
This topic describes how to convert a UML 1.4 project to a UML 2.0 project. If you want to preserve any cross-project
dependencies during the conversion, observe the following:

♦ Ensure that all dependent projects are part of the current workspace and are opened.

♦ Select Window Preferences Modeling UML 1.4 to UML 2.0 Converter and ensure that the Enable
referenced projects support option is checked.

♦ Using the procedure that follows, convert each project separately, beginning with those that do not reference
other projects. Projects that are referenced by other projects should be converted first.

To convert an existing UML 1.4 project to a UML 2.0 project
1 On the main menu, choose File New Project. The New Project wizard opens.
2 Expand the Together node in the tree view list, and select UML 2.0 from 1.4 Project. Click Next.
3 Type the new UML 2.0 project name and specify other project-related options. Click Next.
4 Select the UML 1.4 project you want to convert. If necessary, specify mappings between referenced UML 1.4

projects and existing UML 2.0 projects near the bottom section of the dialog that shows a list of all UML 1.4
projects currently referenced by the selected project. Automatic mappings are normally created during any
previous conversions.

5 Click Next.
6 Click Finish to complete the wizard.

The selected UML 1.4 project is converted to a newly created UML 2.0 project.

Related Procedures

Reusing Existing Source Code in Modeling Projects
Working with a Package
Creating a Diagram

241

Creating a Project
Together provides several projects that you can work with. The projects in Together are created in the same manner.
While creating a project, you will specify different options depending on the type of project.

To create a Together Project
1 Select File New Project on the main menu. The New Project wizard displays.
2 Expand the Modeling node in the tree view list, and select the type of project you want to create. Click Next.
3 Follow the wizard steps to specify necessary options for a new project and click Finish to complete the wizard.

Related Concepts

Together Project Overview

Related Procedures

Together Projects

Related Reference

Together Projects

242

Enabling UML Profiles
There are several ways to enable UML profiles for Together projects.

To enable UML profiles support while creating a project
1 On the main menu, choose File New Project. The New Project wizard opens.
2 Expand the Modeling node in the tree view list, and select the UML project you want to create (UML 2.0 or UML

1.4). Click Next.
3 Follow the wizard to the Profiles screen. The Profiles screen of the wizard lists available profiles.
4 Select one or more profiles you want to enable and click Next to continue creating a new project with the New

Project wizard.

To enable UML profiles support for existing projects
1 In the Model Navigator, right-click the root project folder, and select Properties on the context menu. The

Properties for <project> dialog box displays.
2 From the list on the left, select UML Profiles.
3 Select any of the UML profiles that you want to enable. More than one can be activated.
4 Click OK.

Note: You can also access the Properties for <project> dialog box through the Model Package Explorer view
and Navigator view.

To specify the default set of UML profiles enabled for all new workspace projects
1 Choose Window Preferences on the main menu.
2 In the left pane of the Preferences dialog box, expand the Modeling node.
3 Select the UML Profiles node.
4 Select the profiles you want to enable for UML 1.4 and UML 2.0 projects.

Note: The selected UML profiles are automatically enabled for projects created after you changed profile
preferences. Profiles support of existing projects is not changed.

243

Establishing cross-project references
You can establish references between the projects of a similar type within your workspace. This capability is enabled
in the Model Path page of the Project Properties dialog. When cross-project referencing is enabled, the imported
project is included in the original project as read-only root and becomes visible in the selection dialogs. Consequently,
any changes in the referenced projects are propagated across the target project as well. For example, renaming
elements in the referenced project is immediately reflected in the target project.

To enable cross-project references
1 Select the desired project in the Model Navigator.
2 On the main menu, choose Project Properties. The Properties for <Project Name> dialog opens.

Tip: Right-click on the project node and choose Properties on the context menu.

3 Select Model Path node.
4 In the Model Path page, click Add Project button. The Select Projects to Import dialog opens, displaying the

list of available projects in the workspace.

Note: Only the projects of similar types are included in the list.

5 Check one or more projects in the field Available Projects in the Workspace and click OK.
6 Click OK to confirm your settings and close the Project Properties dialog.

Warning: Avoid establishing recurrent references.

Tip: The Project references tab of the Project Properties dialog is a part of Eclipse functionality, and does not
have any effect on the Together cross-project references.

Related Concepts

Together Project Overview

Related Procedures

Creating a Project

Related Reference

Project Properties

244

Exporting a Project to XMI Format
You can export projects or sections of projects created in Together for use by other applications/languages using
XMI. Together supports several XMI formats. The availability of formats depends on the types of projects currently
opened in Together.

To export a project to XMI format
1 Select File Export on the main menu. The Export dialog box opens.
2 Under Modeling, choose XMI File and click Next.
3 In the Export Project to XMI FIle dialog box, specify the following:

♦ Select the project to export. For UML 1.4 and Java modeling projects, you can also expand the project to
select only a portion of it. You cannot proceed until a project or package is selected.

♦ Select the XML and UML version you want the file to support under Select XMI Type. A UML 2.0 project
can be exported to XMI for UML 2.0 only.

♦ Select an appropriate XMI Encoding requirement in the XMI Encoding list.

♦ Specify the destination in the Select the export destination field. You can include the path as well as
the name of the file that will be created, or you can accept the default. For UML versions 1.3-1.4, the name
consists of <project_folder>\out\xmi\<project_name><number>.xml. For the first file
generated under this name, <number>=1. Thereafter, <number> increases by one for each file saved
under the same name. Note that .xml is automatically added as the file extension. For UML version 2.0,
the name consists of <project_folder>\out\xmi\<project_name>.uml2.

4 Click Finish to generate the XMI file.

A dialog box opens indicating that the XMI export is completed. If there are any warnings produced during XMI
export, the XMI Export dialog box notifies you to refer to the Task view. To open the Task view, select Window
 Show View Other Basic Tasks from the main menu.

Note: For UML 2.0 projects with applied profiles or projects that contain any stereotypes or primitive types, the
following files are created during the export process in addition to the model .uml2 file:

<model name>.profile.uml2 – for stereotypes and primitive types

<profile name>.profile.uml2 – for applied profiles

Related Concepts

Model Import and Export Overview

Related Procedures

XMI Export and Import of the Models with Cross-Project References

Related Reference

XMI Export Wizard

245

Exporting a Project to XMI Format Using the Command Line
Together provides a comand-line method for an XMI export of UML 1.4, UML 2.0, and Java Modeling projects. Use
the XMIExport.cmd on the Windows platform or XMIExport.sh on the UNIX platforms.

To export a project to XMI format under Windows
1 Locate the XMIExport.cmd file in the Together installation folder.
2 Run the XMIExport.cmd file with necessary parameters.

Note: For usage instructions and command-line parameters, run XMIExport.cmd -help or XMIExport.sh -
help.

Related Concepts

Model Import and Export Overview

Related Reference

XMI Export Wizard

246

Generating Source Code from Design Project
Together provides several projects that you can work with.

To generate source code from a design project
1 Select File Export on the main menu. The Export wizard is displayed.
2 Select either Generate C++ Project or Generate Java Project in the list. Click Next.
3 Select the modeling project you want to use for source generation. Click Next.
4 Specify source code generation options and click Next.
5 Specify a new code generation project name. Click Finish for a C++ Project. Click Next to specify Java-related

options for a Java project.
6 Click Finish to complete the wizard.

A new code generation project is created from the selected modeling project.

Related Concepts

Together Interoperability and Migration

247

Importing a Project in an IBM Rational Rose MDX Model
Together enables you to create projects around an IBM® Rational® XDE .mdx file.

Note: Together design projects that are created on the basis of the imported MDX models always comply with the
UML 2.0 specification.

To create a project from an MDX model
1 On the main menu, choose File Import. The New Project wizard opens.
2 Select Project from MDX file and click Next.
3 Specify the path to the MDX file you want to import or click Browse to locate the file. You can also specify the

following:

♦ Use the Scale factor field to specify the element dimensions coefficient. By default, the scale factor is
0.03.

♦ Preserve diagram nodes and bounds: If this option is selected, user-defined bounds are preserved in
the resulting diagrams. Otherwise the default values are applied.

4 Click Next.
5 Specify new project name. Click Next.
6 Specify the diagram to start with. Click Next.
7 Select one or more profiles you want to enable for this project. Click Next.
8 Select any referenced projects.
9 Click Finish to complete the wizard. A new project will be created with elements from the MDX file.

Note: If a profile was applied to the Rational XDE model while importing the MDX model to Together, the properties
from this profile are imported as custom properties.

Related Concepts

Model Import and Export Overview

Related Reference

MDX Import Wizard
MDX Projects Import Options

248

Importing a Project in IBM Rational Rose (MDL) Format
Together enables you to create projects around IBM® Rational® Rose model files (.mdl, .ptl, .cat, .sub).

Note: You can import a set of petal and subunit files.

Warning: Together projects created on the basis of the imported MDL models always comply with the UML 1.4
specification.

To create a design project from an IBM Rational Rose (MDL) project
1 On the main menu, choose File Import. The New Project wizard opens.
2 Select Project from MDL file and click Next.
3 Click either Add or Add Folder to designate the MDL project path. This step specifies the name (or names) of

the Rational Rose project file (or files) to be imported (several model files can be imported at once). Click
Remove to delete the selected file or files from the Paths list. Click Remove all to delete all files from the Paths
list.

Note: Avoid adding a model file along with its subunit to the import list because this results in
invalid project.

4 Use the Scale factor field to specify the element dimensions coefficient. By default, the scale factor is 0.3.
5 Specify the following options for the project:

♦ Convert Rose default colors: If this option is selected, the default Rational Rose colors will be replaced
with the default Together colors.

♦ Preserve diagram nodes and bounds: If this option is selected, user-defined bounds are preserved in
the resulting diagrams. Otherwise the default values are applied.

♦ Convert Rose actors: This option enables you to choose mapping for the Rose actors. If the option is
selected, the Rose actors are mapped to Together actors. If the option is not selected, the Rose actors
are mapped to the classes with the Actor stereotype, such as Actor, Business Actor, Business Worker, or
Physical Worker.

♦ Generate source code: If this option is selected, a new Java Modeling project is created; otherwise, a
Modeling project is created from imported MDL.

6 Click Finish.
7 When prompted, supply a name for your project and click Finish.
8 Follow the remaining steps in the wizard to specify options for your new project, and click Finish to complete

the wizard.

After the import process is complete, you can view the project structure in the Model Navigator view. The
mdlimport.log file is generated by default and lists any errors encountered during the import process.

Note: After entering a project name, you can click Finish without completing the remaining steps of the wizard. The
project is created using the remainder of default settings.

249

Related Concepts

Model Import and Export Overview

Related Procedures

Generating Source Code from Design Project

Related Reference

Together Projects
MDL Projects Import Options
MDL Import Wizard

250

Importing a Project in IBM Rational Rose (MDL) From the Command
Line
Together enables you to create projects around IBM® Rational® Rose model files (.mdl, .ptl, .cat, .sub)
by executing the import wizard from the command line.

To execute an MDL import from the command line
1 Navigate to plugins\com.borland.tg.mdlimport_8.1.0 in the Together installation folder.
2 Execute 'java -cp mdlimport.jar com.borland.tg.mdlimport.CmdLineImporter

<parameters>'.

For example, Java -cp mdlimport.jar com.borland.tg.mdlimport.CmdLineImporter -d c:
\myproject -project myproject -modelfile mymodel.mdl.

Related Concepts

Model Import and Export Overview

Related Procedures

MDL Projects Import Options

251

Importing a Project in IBM Rational Rose (MDX) From the Command
Line
Together enables you to create projects around IBM® Rational® XDE model *.mdx files by executing the MDL
import wizard from the command line with specific parameters.

To execute an mdx import from command line
1 Navigate to plugins\com.borland.tg.mdlimport_8.1.0 in the Together installation folder.
2 Execute 'java -cp mdlimport.jar com.borland.tg.mdlimport.CmdLineImporter

<parameters>'.

Note: For parameter values, refer to MDX Project Import Options.

Related Concepts

Model Import and Export Overview

Related Reference

MDX Projects Import Options

252

Importing a Project in XMI Format
You can import projects or sections of projects that were created in other modeling tools and saved in XMI format.

Note: For UML 1.4 and Java Modeling projects only, XMI 1.1/1.2 imports are supported. Attempting to import an
XMI 1.0 file results in an empty project.

To import a project from an XMI file
1 Select File Import on the main menu. The Import dialog box opens.
2 Select XMI File and click Next.
3 In the Import Project from XMI File dialog box, specify the following:

♦ The Together project to which your XMI data will be imported in the Select destination project field.

♦ The full path to the .xml, .xmi, or .uml2 file you want to import in the Select source .xmi file field.

4 Click Finish.

Note: A .xml or .xmi file can be imported to UML 1.4 and Java Modeling projects; a .uml2 file can
be imported to UML 2.0 projects.

After you are notified that the import process is complete, you can view the results in the Model Navigator.

Note: When importing UML 2.0 models with profile files related to the model, for the models originally exported from
Together for Eclipse, select model .uml2 file as a source and make sure that all the profile files are located
in the same folder with the model file.

If there are any warnings produced during XMI import, the XMI Import dialog notifies you to refer to the Task view.
To open the Task view, select Window Show View Other Basic Tasks from the main menu.

Related Concepts

Model Import and Export Overview

Related Procedures

XMI Export and Import of the Models with Cross-Project References

253

Importing Java Modeling Projects Created in Together Edition for
Eclipse 7.0
You can import projects created in Together Edition for Eclipse 7.0.

The general procedure for importing a project created in Together Edition for Eclipse 7.0
consists of the following steps:
1 Importing your existing project into a workspace
2 Creating a Java modeling project from a Java project

To import an existing project from TEC 7.0
1 Select File Import on the main menu.
2 Select Existing Projects into Workspace and click Next.
3 In the Import Projects dialog box, specify the path to your project's root directory and select one or more projects

you want to import.
4 Click Finish when you specified all necessary options.

The new Java project is created and opened in your workspace.

Note: The name of the imported project cannot be changed during the import process. Therefore, the projects are
created with the same name as the imported projects.

To create a Java modeling project from a Java project
1 Select File New Project on the main menu. The New Project wizard opens.
2 Expand the Together node in the tree view list and select Java Modeling projects from Java projects. Click

Next.
3 Select the Java project you created from the project created in Together Edition for Eclipse. Click Next.
4 Specify other project-related options.
5 Click Finish when you specified all necessary options.

Related Concepts

Together Interoperability and Migration

254

Importing Legacy Projects
Together allows you to import projects from some of the previously released Together products. Considering the
differences between the products, Together suggests two ways to accomplish this import. You can merge all roots
of a legacy multi-rooted project into a single root, or you can create a separate project for each root of the source
project.

♦ The Merge option is recommended for typical cases of when the input project has one design root and several
source code roots.

♦ The Separate projects option is recommended when your input project has nonstandard configuration with
several design roots, which you would like to preserve as separate projects.

To import a legacy project merging all source roots into a single project
1 Select File Import on the main menu
2 In the Import Wizard, select Modeling Together Project and click Next. The second page of the wizard opens.
3 Click Browse to specify the fully qualified name of the project you want to import.
4 In the Design elements storage policy section, choose whether the design elements of the resulting project

will be stored as standalone design elements or as filemates.
5 In the Migration type section, select the Merge all roots contents into the new project option.
6 Click Next. The third page of the wizard opens.
7 Specify the name of the target project. The default project name is constructed from the names of the last two

folders of the source project file location.
8 Click Finish to import the selected project.

Warning: TVS projects and projects created in Together Editions for Eclipse prior to version 7.0 cannot be imported
to Together.

To create separate projects for each selected root
1 Select File Import on the main menu
2 In the Import Wizard, select Modeling Together Project and click Next. The second page of the wizard opens.
3 Click Browse to specify the fully qualified name of the project you want to import.
4 In the Design elements storage policy section, choose whether the design elements of the resulting project

will be stored as standalone design elements or as filemates.
5 In the Migration type section, select the Create a separate project for each root option.
6 On the third page of the wizard, the Root location table displays the list of folders of the source project. Select

each root from the list and define the way you want to handle the root and its contents:

♦ In the Together project name field, specify the name of the target project for the selected root. The default
name is constructed from the package prefix, if any. If there is no package prefix, the project name is
created from the names of the last two folders of the root location.

♦ The read-only Content type and Diagram format fields display the corresponding information for the
selected root.

♦ In the Decision field, choose the way to handle information of the selected root. If the root contains design
files, you can either copy them to the target location or skip the root. If the root contains source code files,

255

you have the choice to copy it as is, copy and convert it to design language, or skip the root. The option
Copy and convert to design language is the default choice for the roots that contain Java files.

♦ In the Dependencies to be preserved while importing field, you can specify whether the import handles
links and references between projects created for the currently selected root and projects created for other
roots. All dependencies are processed by default. However, if you are aware of any one-way dependencies
between the original roots, and the selected root does not refer to any elements from other roots, uncheck
those corresponding projects listed in the field to save CPU resources and complete the import faster.

7 Click Next. The fourth page of the wizard opens.
8 Specify the name of the master project that contains references to all projects created in the course of the

migration. The default name of the master project is based on the source project name.

Note: The master project is created to demonstrate the contents and structure of the source
project. It is read-only and not intended for editing. Use the real projects to create or edit
contents and establish dependencies.

9 Click Finish to import the selected project.

All resulting projects belong to the same type, which is defined by the properties of the source project and your choice
in the Decision field of the Import Wizard. Java modeling projects are created if there is at least one Java source
root for which the Copy option is selected. UML 1.4 modeling projects are created if there are no Java source roots,
or if such roots exist but the Decision field is set to Skip or Convert to design language.

Related Concepts

Together Interoperability and Migration

Related Reference

Import Together Project Wizard

256

Navigating between the Tree View, Diagram, and Source Code
Together provides constant synchronization between different aspects of your project:

♦ Model hierarchy, presented in the tree view (Model Navigator View)

♦ Model graphical representation in the Diagram Editor

♦ Source code (for implementation projects)

Tip: You can also use the Refresh function of the Model Tree View to update the entire model, and the Refresh
function of the Diagram Editor.

You can navigate between the Model Tree, Diagram Editor, and source code in the
following directions:
1 Navigate to the Diagram Editor from the Model Tree View.
2 Navigate to a model element from the Model Tree View to the Diagram Editor.
3 Navigate from the Diagram Editor to the Model Tree View.
4 Navigate from a lifeline to its classifier in the Model Navigator View or a Class diagram.
5 Navigate from source code to the Tree View.
6 Navigate from the Model Tree View or Diagram Editor to source code (for implementation projects).

To navigate to the Diagram Editor from the Model Navigator View
1 In the Model Navigator View, right-click the diagram node.
2 Choose Select on Diagram.

Alternatively, double-click the diagram node in the Model Navigator View.

To navigate to a model element from the Model Navigator View to the Diagram Editor
1 Right-click a model element in the Model Navigator View.
2 Choose Select on Diagram on the context menu.

Note: Click the Link with Editor button on the Model Navigator toolbar and all elements selected
in the Model Navigator will be automatically selected on diagrams.

To navigate from the Diagram Editor to the Model Navigator View
1 Right-click the selected element or diagram background in the Diagram Editor.
2 Choose Select in Model Tree on the context menu.

To navigate from a lifeline to its classifier in the Model Navigator View or a Class diagram
1 Right-click the selected lifeline on a UML 2.0 Sequence diagram in the Diagram Editor.
2 Choose Select Type in Model Navigator View to navigate to the classifier in the Model Navigator View,

257

OR

Choose Select Type On Diagram to navigate to the classifier on a Class diagram in the Diagram Editor.

To navigate from source code to the Model Navigator View
1 Right-click the line that contains the element you want.
2 On the context menu of the selection, choose Select in Model Tree.

The corresponding element is highlighted in the Model Navigator View.

To navigate from the Model Navigator View or Diagram Editor to source code (for
implementation projects)
1 Right-click a model element or a node member.
2 Choose Open on the context menu.

Note: This command is available for source code-generating elements.

Click the Link with Editor button on the Model Editor toolbar and corresponding definitions will be automatically
selected in the source code editor when you select model elements. Likewise, corresponding model elements will
be selected when definitions are selected in the source code editor.

Related Concepts

Roundtrip Engineering Overview

Related Procedures

Troubleshooting a Model

258

Resolving Duplicates During an XMI Import

To resolve duplicates when importing an XMI file
1 If a duplicate package exists in the XMI file, the Confirmation dialog opens.
2 Select whether to rename the imported package or replace a package in the current project with the imported

package.

Further behavior depends on the project type:

UML 1.4 and Java Modeling projects: When you choose rename, the name of the imported entity is automatically
updated, adding a numeric value to the end. For example, if you have a project that contains a package named
"problem_domain," and the imported XMI file also contains a package with the same name, choosing rename will
rename the imported package "problem_domain1." Choosing replace will automatically replace the entity in the
current project with the imported entity.

UML 2.0 projects: During XMI import, if an entity exists in the XMI file and it has the same name as an entity in the
project, a new entity is created. For each imported package that has the same name as a package in the project, a
new package is created and an incremental number is added to the package name.

Related Concepts

Model Import and Export Overview

Related Reference

XMI Export Wizard

259

Reusing Existing Source Code in Modeling Projects
Together allows you to convert your existing source code to UML models. Together provides two ways to use reverse
engineering:

♦ Convert the existing source while creating a new project

♦ Import the existing source code to a Java Modeling project

To import Java source code while creating a new project
1 On the main menu, choose File New Project.
2 Expand the Modeling node and select Java Modeling Project. Click Next
3 On the Java Modeling Project page, type the project's name. Click Next
4 On the Modeling Settings page, choose the desired metamodel (UML 2.0 or UML 1.4, UML 2.0 is default).

Uncheck the Store package properties in package diagram files if you like them being stored in txaPackage
files. Check Create design elements in separate files if you like to have each model element stored in its own
txa* file. Click Next

5 Skip the Profiles page unless you like to enable one or more profiles for your project. Click Next
6 On the Java Settings page, Source tab, click the Link Additional Source to Project button in the upper right

toolbar, use the Browse... button to specify the path to the existing source code folder. Click Finish. If you like
this linked folder to be the only source folder for your project, remove the default source folder using Remove
button.

7 Click Finish.

To import source code to the existing modeling project
1 Right-click a source folder of the target Java Modeling project in the Navigator view and select Import... on the

context menu.
2 In the Import wizard, select General File System and click Next.
3 Browse to the folder with source code to import.
4 Select sources you want to import or click Select all to import the entire folder.
5 Click Finish.

Related Procedures

Creating a Project

260

Showing libraries
When you create a project, you can define directories with any number of search paths whose content you want to
show in diagrams. For example, you can show entities that reside in the standard Java libraries. Such resources
exist for the project, but Together does not include them in the generated HTML documentation for the project.

To show classes or packages from the standard Java libraries in a class diagram
1 Open or create a class diagram.
2 Right-click on the background and choose New > Shortcut. The Shortcuts dialog opens displaying available

model elements.
3 Under the Model Elements tab, expand the libraries node, and navigate to the resource you want to add. Click

Add. Repeat until you have added all the resources you want.
4 Click OK to close the dialog.

Tip: If the resource you are looking for is not shown, it is probably not in the Java build paths defined in Project
Properties. You can add resources to the Java build paths at any time by using the Navigator view (Navigator
view is not the same as Model Navigator View). Right-click the project in the Navigator view, and select
Properties from the context menu. In the dialog that displays, select Java Build Path. Add the appropriate
paths to your project by using the different tabs listed on the Java Build Path page.

Note: The new command available from the context menu, New, is disabled for classes that have been added from
libraries (or compiled source code) to the diagram.

261

Troubleshooting a Model
You can also reload your project from the source code.

Use the following techniques to troubleshoot your model:
1 Refresh a model
2 Reload a model
3 Fix a model

To refresh a model
1 Open the Diagram View.
2 Press F6.

To reload a model
1 Open the Model View.
2 Right-click the project root node and choose Reload on the context menu.

Note: Use the Reload command as a workaround for issues that might appear while making changes in Together
that cause some elements on the diagram to stop responding. The command is also helpful if you get certain
errors from Together, such as <undefined value>.

Tip: Usually, when these problems occur, the elements also disappear from the Together Structure View Class
View and the corresponding source code is underlined in blue in the Together Editor. Together cannot always
properly handle such elements that become broken. To restore broken elements to a normal state, edit the
code in the text editor according to the recommendation shown in the Together Editor. In these cases, it is best
to refresh the model using Reload to prevent further problems.

To fix a model
1 For interaction diagrams, regenerate them from the source code.
2 For all types of diagrams, check that none of the necessary elements are hidden.

Related Procedures

Navigating between the Tree View, Diagram, and Source Code

262

Using Example Projects
Together comes with a set of predefined sample projects.

To use a Together Example Project
1 Select File New Project on the main menu. The New Project wizard opens.
2 Expand the Examples node in the tree view list, and select the project you want. Click Next.
3 Follow the wizard steps to specify the necessary options for a new project and click Finish to complete the

wizard.

Tip: Alternatively, choose File New Example on the main menu.

Related Concepts

Together Project Overview

Related Procedures

Together Projects

Related Reference

Together Projects

263

Working with a Package
By default, a package element on diagram displays the package contents.

You can accomplish the following tasks for a package:
1 Open a package
2 Modify package contents
3 Delete a package
4 Rename a package
5 Move a package

To open a package
1 Select the package in the Diagram Editor or in the Model Navigator.
2 Choose the Open or Open in Active Editor command on the package context menu.

Tip: Alternatively, double-click the package element on the diagram.

To modify package contents
1 To add an element, choose New <element> on the package context menu.

Tip: You can use the context menu of a nested element in a package to add its fields and
subelements directly without opening it in diagram.

2 To delete an element from a package, press the DELETE key.

To delete a package
1 Select the package in the Diagram Editor or in the Model Navigator.
2 Choose Delete on its context menu.

Warning: Deleting a package also deletes all of its contents.

To rename a package
1 Select the package in the Diagram Editor or in the Model Navigator.
2 To rename the package, including changing its name in all of its source files, do one of the following:

♦ Choose Rename on the context menu of the package in the Diagram Editor or in the Model Navigator.

♦ Press F2 to invoke the in-place editor for the package element in the Diagram Editor or in the Model
Navigator.

264

♦ Edit the Name field in the Properties View

To move a package
1 Select the package in the Diagram Editor or in the Model Navigator.
2 Drag the package and drop it to the target location.

Warning: It is not recommended to undo move operations for packages.

To split package diagram persistence
1 Right-click the project in the Model Navigator and choose Properties.
2 Make sure the Store package properties in package diagram files option is not checked (this option is on

by default).
The default setting specifies that all properties of the package diagram, both visual and semantical, are
preserved in the default.txvpck diagram file. With this option off, only diagram-specific information (visual
information, such as layout) is retained in the default.txvpck diagram file, while settings that you treat as
package properties (semantical information, such as descriptions and custom properties) are moved from the
default.txvpck file into the default.txaPackage file. This allows you to track your package changes
using version control.

3 Click OK.

Note: Changing this option from Project Properties dialog converts the project files. This option
can also be set using the New Project Wizard.

Related Concepts

Package Overview

265

XMI Export and Import of the Models with Cross-Project References
You can import and export multi-root projects using XMI. Note that XMI import and export is implemented differently
for UML 1.4 and Java modeling projects, and for UML 2.0 projects.

♦ UML 1.4 and Java modeling projects: When a project that contains cross-project references is exported to
an XMI file, the main project root and referenced roots are exported to the same XMI file. The Use prefix of
imported root option of the Export Wizard enables you to reproduce the package structure of each root in
top-level packages named as the root prefixes. If the option is unchecked, all same-named packages from the
different roots are merged. When an XMI file is imported, the resulting project contains all packages and
elements from the main model and referenced roots.

♦ UML 2.0 projects: When a project that contains cross-project references is exported to an XMI file,
*.imports.uml2 special files are created for each referenced root. The exported XMI file contains references
to these files. When an XMI file is imported, the resulting project contains the main model only. If the referenced
roots still exist in the workspace, the resulting UML 2.0 model recognizes them. References to the elements
from these roots can be resolved only if the unique identifiers (UINs) of the elements have not been changed
since export. Note that when an element is moved, its container is changed, and this can change the UIN.

To export a UML 1.4 and Java modeling project with cross-project references
1 On the main menu, choose File Export.
2 On the first page of the Export Wizard, select XMI file under Modeling and click Next.
3 On the second page of the wizard:

♦ Select the project to be exported;

♦ Select the XMI type and encoding;

♦ Specify the export destination;

♦ Check the Use prefix of imported root option if you want to reproduce the package structure of each
root in top-level packages named as the root prefixes. By default, this option is unchecked.

4 Click Finish.

Tip: Package prefixes of the referenced roots are never used if you perform an export via the XMIExport.cmd
command line utility.

To export a UML 2.0 project with cross-project references
1 On the main menu, choose File Export.
2 On the first page of the Export Wizard, select XMI file under Modeling and click Next.
3 On the second page of the wizard:

♦ Select XMI for UML 2.0 as the project to be exported

♦ Specify export destination

4 Click Finish.

266

Related Concepts

Together Interoperability and Migration
Model Import and Export Overview

Related Procedures

Importing a Project in XMI Format
Exporting a Project to XMI Format

267

Together Profiles
Together allows you to model diagrams using several preinstalled profiles as well as profiles created with Profile
Definition projects.

In This Section
A Typical User Scenario of Working With Profiles
General information on how to create a profile definition.

Adding Attributes to Stereotypes
How to add attributes (tagged values) to stereotypes, and define inspector grouping.

Adding Shortcuts to Metaclasses
How to create shortcuts to metaclasses.

Applying Profiles
How to apply a profile.

Converting Profile-Specific Properties
How to reuse a project with a profile, created and applied in Together 2006.

Creating Palette Contributions
How to create a palette contribution in the profile.

Creating Profile-Specific Constraints
How to create profile-specific constraints.

Creating Stereotypes
How to create stereotypes in your profile.

Defining Profile Properties
How to specify profile definition properties

Deploying Profiles
How to deploy a profile.

Enabling UML Profiles
Describes how to enable profile support for a project.

Exporting and Importing Profiles
How to import and export profile plugins.

Opening Profile Definition
How to view and modify definitions of the custom profiles and profiles that come bundled with Together.

Setting Viewmap Properties for Stereotypes
How to specify a visual representation of the elements in the created profile.

Uninstalling Profiles
How to uninstall a profile and correctly remove it from the platform.

Verifying a Model Against Profile Constraints
How to verify a model against the specified constraints, provided that a profile is applied to this model.

Working with Required Stereotypes
How to define required stereotypes and filter their manifestation in diagrams.

268

A Typical User Scenario of Working With Profiles

To create, deploy and apply a new profile definition, perform the following general steps:
1 Create a Profile Definition project. While creating a Profile Definition project, specify a UML version that the

profile is targeted for (UML 2.0 by default). Metaclasses referenced in a profile must be taken from the
corresponding target UML metamodel.

Creating a Project
2 Open the default class diagram of your Profile Definition project and edit the profile properties:

Defining Profile Properties
3 Create Stereotypes:

Creating Stereotypes
4 Edit Stereotypes (edit properties, create shortcuts to metaclasses):

Adding Shortcuts to Metaclasses
5 Add attributes (tagged values) to the stereotypes:

Adding Attributes to Stereotypes
6 Define view properties for the stereotypes:

Setting Viewmap Properties for Stereotypes
7 Create Palette Contributions; fill them with the contributed stereotypes or pure metaclasses.

Creating Palette Contributions
8 Deploy profile:

Deploying Profiles
9 Apply profile:

Applying Profiles

Related Concepts

UML Profiles Basics

Related Procedures

Together Profiles

269

Creating a Project
Together provides several projects that you can work with. The projects in Together are created in the same manner.
While creating a project, you will specify different options depending on the type of project.

To create a Together Project
1 Select File New Project on the main menu. The New Project wizard displays.
2 Expand the Modeling node in the tree view list, and select the type of project you want to create. Click Next.
3 Follow the wizard steps to specify necessary options for a new project and click Finish to complete the wizard.

Related Concepts

Together Project Overview

Related Procedures

Together Projects

Related Reference

Together Projects

270

Defining Profile Properties
When a Profile Definition project is created, you can specify or edit profile properties that are accessible via the
default package diagram of the Profile Definition project. These properties are:

♦ Textual profile description

♦ Namespace, which identifies the profile

To specify profile definition properties
1 Open the default package diagram of the Profile Definition project.
2 On the context menu of the diagram, choose Properties. The Properties View opens.
3 In the Properties View, select the Profile Definition tab.
4 Click the description field and enter the description text. Optionally, click the Edit button.
5 Click the namespace field and enter a valid string.

Related Reference

Profile Definition Properties

271

Creating Stereotypes

To create a Stereotype
1 Using the Profile Definition palette, add a Stereotype node to the diagram background.
2 In the Properties View, choose Profile Definition node.
3 In the Extended metaclass field, click the Edit button.

In the dialog box that opens, select the desired metaclasses from the Model Elements pane. Use the Add and
Remove buttons to make up a list of extended metaclasses. Click OK when you are finished.

4 If necessary, specify the required stereotype property:

Working with Required Stereotypes
5 Define view properties.

Tip: View properties are not available for the stereotypes that extend across multiple
metaclasses.

Setting Viewmap Properties for Stereotypes
6 Add attributes (tagged values) to the stereotype:

Adding Attributes to Stereotypes
7 Using Contribution link, connect the Stereotype to the desired Palette Contribution.

Related Procedures

Working with Required Stereotypes
Setting Viewmap Properties for Stereotypes
Adding Attributes to Stereotypes

272

Adding Shortcuts to Metaclasses
When creating your profile definition project, you can use shortcuts to metatypes from the metamodel root. Shortcuts
to metaclasses can be created in several ways, some of which are similar to adding any other shortcut to your
diagram.

To use the Shortcuts dialog box
1 Right-click the diagram background and select Shortcuts New. The Shortcuts dialog box opens.
2 Expand the metamodels node, choose the desired metaclass, and click Add.
3 Use the Add and Remove buttons to make up a list of extended metaclasses.
4 Click OK when you are finished.

To use cut, copy, and paste operations
1 Cut, copy, or drag a metaclass in the Model Navigator
2 Paste and drop it to any diagram that is not a package diagram.

To use the drag-and-drop operation to create a shortcut on a package diagram, press and hold the CTRL and SHIFT
keys while dragging an element from the Model Navigator to your package.

Related Procedures

Profile Definition Properties

273

Adding Attributes to Stereotypes
In this section you will learn how to add attributes to stereotypes, and how to define attribute properties, groupings
and descriptions. After applying a profile, stereotype attributes become visible in the Properties View of the elements
with this stereotype.

You can add attributes to stereotypes in one of the following ways:

♦ Using the Properties View

♦ Using outgoing association links

To add attributes (tagged values) to a stereotype using the Properties View
1 Right-click on the selected stereotype in a profile definition diagram, and choose New Attribute on the context

menu. Add as many attributes as required.
2 Select an attribute in the stereotype node. Its properties are displayed in the Properties View.
3 In the Properties tab:

♦ Choose the name field and enter the attribute name.

♦ Click the type field and specify the valid type using the combobox for primitive types or the selection
manager dialog for the enumerations and metaclasses.

Note: Invalid types are ignored during profile deployment.

4 In the Profile Definition tab, click the inspector group field, and select the inspector group from the list of
existing groups, or create a new one. After applying the profile, the attribute is displayed in a separate tab (group)
of the Properties View.

5 In the Description tab, choose the Edit tab and enter description text. After applying the profile, this description
shows up as a tooltip in the tab (group) of the Properties View.

After the attribute is added to the stereotype, the tagged value name is equal to the attribute name. Multiplicity of
the tagged value is equal to the attribute's multiplicity.

Note: If a profile defines attributes with a default value for a given type that is different from the default value in the
underlying implementation, some side effects should be noted. For example, the default value for a Boolean
property is false and is not persisted in the model instance. If a Boolean property is set to true as the
default value in a profile definition and a user sets an instance value to false, its value is not persisted but
interpreted as the default value (true) when read back in. Similarly, instance values changed to empty/null
will not be persisted and will likewise be interpreted as the default value when read back in.

To add attributes (tagged values) to a stereotype using outgoing association links
1 On the profile definition diagram, create shortcuts to certain types (Primitive types, Enumerations or

Metaclasses). Note that invalid types are ignored during profile deployment.
2 In the Class Diagram group of the Tool Palette, select the Association link and draw it from the stereotype to a

shortcut to the type that you have chosen.
3 Select the created association link. Its properties are displayed in the Properties View.
4 In the Supplier tab, specify the following properties: supplier multiplicity, supplier role

274

5 If necessary, specify the inspector group and description, as described in the steps 4 and 5 of the previous
procedure.

After the attribute is added to the stereotype, the supplier role (if specified) is used as the tagged value name. If the
supplier role is not specified, the link name or default name is used as a tagged value name. Multiplicity of the tagged
value is equal to the supplier multiplicity. If the upper value of the supplier multiplicity is greater than 1, the attribute
is treated as multivalued.

Note: When the attribute of a metaclass type or the association to a metaclass shortcut is added to a stereotype,
this attribute or association receives the viewmap and icon properties specified in the Profile Definition section
of the Properties View. These properties allow you to select the viewmap and icon for the link that appears
when this profile-specific property is set in the target project for the element with this stereotype.

Related Reference

Profile Definition Properties

275

Setting Viewmap Properties for Stereotypes
You can specify a visual representation of the elements in the profile you create. Values in the icon and viewmap
properties affect the way the elements are displayed on your diagram.

Note: Viewmap property values are different for stereotypes that extend links.

To set viewmap and icon properties
1 Select a stereotype rectangle. The Properties view displays the properties of the selected stereotype.
2 In the Profile Definition node of the Properties view, choose the extended metaclass field and click the Edit

button.
3 In the selection manager dialog, navigate to the a metaclass and click Add. You can select several extended

metaclasses. Click OK when you are finished.

Tip: The viewmap property is available for the stereotypes that extend one metaclass only.

4 After a value for the extended metaclass property is provided, viewmap and icon properties are displayed.
5 Select the viewmap field and click the Edit button. This opens the Viewmap Editor dialog box. Note that

viewmap depends on the type of the extended metaclass. There are different sets of viewmap properties for
the links and nodes.

6 Specify the viewmap properties. For a stereotype that extends a node, select color to specify color for the
element, or select svg to browse for an svg file. If you choose svg, you can also specify the figure from those
described in the selected svg file and specify whether the graphical node with the selected .svg figure will be
resizable. For a stereotype that extends a link, specify values for Source decoration, Target decoration,
Foreground, Background, and Line style options.

7 Click OK to save the changes and close the dialog box.

276

Creating Palette Contributions
In this section you will learn how to create a new tool, assign target diagrams and define the tool icon.

A Palette Contribution is defined by the two basic notions:

♦ its target diagram

♦ contributed stereotypes or pure metaclasses

To create a Palette Contribution
1 Using the Profile Definition tool, add a Palette Contribution node to the diagram background.
2 In the Properties View, choose Profile Definition node.
3 In the diagrams field, define the diagram types where you want the new creation tools to appear. Click the

Edit button and in the Select Diagrams dialog box that opens, check the desired diagram types.
4 In the icon field, click the Edit button. In the Select Icon dialog box that opens, navigate to the *.gif file you

want using the Copy From File System button.

Tip: This dialog lets you arrange your icons in an orderly way. Use the Create New Directory
button to create a special folder for storing icons, and populate it with the required images.
This is useful for the large shared projects.

5 Using the Contribution link, define the contributed stereotype set:

♦ Linking to a stereotype defines the contributed stereotype

♦ Linking to a metaclass shortcut defines the contributed pure metaclass

Related Concepts

UML Profiles Basics

Related Procedures

Together Profiles

277

Deploying Profiles
After you create one or more profiles, you can create profile plugins to share them with your team members.

To deploy a created profile
1 Select the Profile Definition project or any project element in the Diagram Editor or Navigator view.
2 Choose Model Profile Deploy profile. The Deploy Profile wizard opens.
3 In the Profile Content Project Settings page, update project and plugin settings as required and click Next.
4 In the Behavior page, define the way the new profile will be deployed. Follow the notes of the wizard. Click

Next.
5 In the Target Directory page, select the directory where the plugin will be deployed. You can choose from the

default location, linked folders or an external location outside of the Eclipse platform. Click Finish.
6 Any errors that occur during the profile validation are reported in the Profile Validation Results view. You can

navigate from an error message to the respective profile definition element and correct the error. When you are
ready, click the Deploy button in the view.

7 After the profile plugin is deployed, you will be prompted to restart the workbench and make the new profile
available in the list of supported profiles. Click Yes to restart.

Note: Because the profiles are internationalized on creation, you can edit the .properties file inside your new
profile plugin to provide any strings.

Related Procedures

Uninstalling Profiles

278

Applying Profiles
Profile plugins that you create can be distributed among your team members.

If you have just created a profile plugin, you need to restart Together for the changes to take effect and for the plugin
to become available in the program.

To enable a created profile
1 Select the Navigator view tab. If this view is not open, select Window Show View Navigator on the main

menu.
2 In the Navigator view, right-click the root project folder, and select Properties from the context menu. The

Properties dialog box displays.
3 From the list on the left, select UML Profiles.
4 Select the profile you created. More than one can be activated.
5 Click OK.

Note: There is no binary compatibility of compiled profiles across the various operating systems and versions of
Together. You can copy a deployed profile to the plugins folder on another computer if the operating system
and Together version are the same.

Related Procedures

UML Profiles Basics
Profile Definition Project
A Typical User Scenario of Working With Profiles

279

Adding Attributes to Stereotypes
In this section you will learn how to add attributes to stereotypes, and how to define attribute properties, groupings
and descriptions. After applying a profile, stereotype attributes become visible in the Properties View of the elements
with this stereotype.

You can add attributes to stereotypes in one of the following ways:

♦ Using the Properties View

♦ Using outgoing association links

To add attributes (tagged values) to a stereotype using the Properties View
1 Right-click on the selected stereotype in a profile definition diagram, and choose New Attribute on the context

menu. Add as many attributes as required.
2 Select an attribute in the stereotype node. Its properties are displayed in the Properties View.
3 In the Properties tab:

♦ Choose the name field and enter the attribute name.

♦ Click the type field and specify the valid type using the combobox for primitive types or the selection
manager dialog for the enumerations and metaclasses.

Note: Invalid types are ignored during profile deployment.

4 In the Profile Definition tab, click the inspector group field, and select the inspector group from the list of
existing groups, or create a new one. After applying the profile, the attribute is displayed in a separate tab (group)
of the Properties View.

5 In the Description tab, choose the Edit tab and enter description text. After applying the profile, this description
shows up as a tooltip in the tab (group) of the Properties View.

After the attribute is added to the stereotype, the tagged value name is equal to the attribute name. Multiplicity of
the tagged value is equal to the attribute's multiplicity.

Note: If a profile defines attributes with a default value for a given type that is different from the default value in the
underlying implementation, some side effects should be noted. For example, the default value for a Boolean
property is false and is not persisted in the model instance. If a Boolean property is set to true as the
default value in a profile definition and a user sets an instance value to false, its value is not persisted but
interpreted as the default value (true) when read back in. Similarly, instance values changed to empty/null
will not be persisted and will likewise be interpreted as the default value when read back in.

To add attributes (tagged values) to a stereotype using outgoing association links
1 On the profile definition diagram, create shortcuts to certain types (Primitive types, Enumerations or

Metaclasses). Note that invalid types are ignored during profile deployment.
2 In the Class Diagram group of the Tool Palette, select the Association link and draw it from the stereotype to a

shortcut to the type that you have chosen.
3 Select the created association link. Its properties are displayed in the Properties View.
4 In the Supplier tab, specify the following properties: supplier multiplicity, supplier role

280

5 If necessary, specify the inspector group and description, as described in the steps 4 and 5 of the previous
procedure.

After the attribute is added to the stereotype, the supplier role (if specified) is used as the tagged value name. If the
supplier role is not specified, the link name or default name is used as a tagged value name. Multiplicity of the tagged
value is equal to the supplier multiplicity. If the upper value of the supplier multiplicity is greater than 1, the attribute
is treated as multivalued.

Note: When the attribute of a metaclass type or the association to a metaclass shortcut is added to a stereotype,
this attribute or association receives the viewmap and icon properties specified in the Profile Definition section
of the Properties View. These properties allow you to select the viewmap and icon for the link that appears
when this profile-specific property is set in the target project for the element with this stereotype.

Related Reference

Profile Definition Properties

281

Adding Shortcuts to Metaclasses
When creating your profile definition project, you can use shortcuts to metatypes from the metamodel root. Shortcuts
to metaclasses can be created in several ways, some of which are similar to adding any other shortcut to your
diagram.

To use the Shortcuts dialog box
1 Right-click the diagram background and select Shortcuts New. The Shortcuts dialog box opens.
2 Expand the metamodels node, choose the desired metaclass, and click Add.
3 Use the Add and Remove buttons to make up a list of extended metaclasses.
4 Click OK when you are finished.

To use cut, copy, and paste operations
1 Cut, copy, or drag a metaclass in the Model Navigator
2 Paste and drop it to any diagram that is not a package diagram.

To use the drag-and-drop operation to create a shortcut on a package diagram, press and hold the CTRL and SHIFT
keys while dragging an element from the Model Navigator to your package.

Related Procedures

Profile Definition Properties

282

Applying Profiles
Profile plugins that you create can be distributed among your team members.

If you have just created a profile plugin, you need to restart Together for the changes to take effect and for the plugin
to become available in the program.

To enable a created profile
1 Select the Navigator view tab. If this view is not open, select Window Show View Navigator on the main

menu.
2 In the Navigator view, right-click the root project folder, and select Properties from the context menu. The

Properties dialog box displays.
3 From the list on the left, select UML Profiles.
4 Select the profile you created. More than one can be activated.
5 Click OK.

Note: There is no binary compatibility of compiled profiles across the various operating systems and versions of
Together. You can copy a deployed profile to the plugins folder on another computer if the operating system
and Together version are the same.

Related Procedures

UML Profiles Basics
Profile Definition Project
A Typical User Scenario of Working With Profiles

283

Converting Profile-Specific Properties
The converting profiles function helps you reuse projects from Together 2006 in which custom profiles were applied.

This feature is useful for the following scenario:

1 In Together 2006, a profile has been created and deployed. This results in creating a profile plugin.
2 This profile plugin is applied to a certain modeling project.
3 The same profile definition is reused and deployed in Together 2006 R2. This results in creating another profile

plugin, which has different properties names.
4 The same modeling project is opened in Together 2006 R2. On an attempt to apply the new profile plugin to

this project, the profile-specific properties will loose their values unless they are properly converted.

To convert profile-specific properties
1 On the main menu, choose Model Profile Convert Properties.
2 If there are no profile-specific properties in the project, no action is performed.

Related Concepts

UML Profiles

284

Creating Palette Contributions
In this section you will learn how to create a new tool, assign target diagrams and define the tool icon.

A Palette Contribution is defined by the two basic notions:

♦ its target diagram

♦ contributed stereotypes or pure metaclasses

To create a Palette Contribution
1 Using the Profile Definition tool, add a Palette Contribution node to the diagram background.
2 In the Properties View, choose Profile Definition node.
3 In the diagrams field, define the diagram types where you want the new creation tools to appear. Click the

Edit button and in the Select Diagrams dialog box that opens, check the desired diagram types.
4 In the icon field, click the Edit button. In the Select Icon dialog box that opens, navigate to the *.gif file you

want using the Copy From File System button.

Tip: This dialog lets you arrange your icons in an orderly way. Use the Create New Directory
button to create a special folder for storing icons, and populate it with the required images.
This is useful for the large shared projects.

5 Using the Contribution link, define the contributed stereotype set:

♦ Linking to a stereotype defines the contributed stereotype

♦ Linking to a metaclass shortcut defines the contributed pure metaclass

Related Concepts

UML Profiles Basics

Related Procedures

Together Profiles

285

Creating Profile-Specific Constraints
When defining your profile, you can create a set of specific audits available only for projects with the applied profile.
Such audits can be created as constraints linked to metaclasses in the profile definition project. Note that a constraint
context can be represented only by a metaclass from the target metamodel.

For the following procedure, a stereotype MyStereotype has been defined for uml20::classes::Class, and
you want to verify that the class with this stereotype only extends class with the same stereotype.

To provide the audit, do the following in your profile definition project:
1 Create a shortcut to the uml20::classes::Class metaclass.
2 Create a constraint element.
3 Link the created constraint with the metaclass shortcut (it gets the context uml20::classes::Class).
4 Type the following in the body of the constraint: inv:stereotypes->includes('MyStereotype')

implies generalizations->forAll(general.stereotypes->includes('MyStereotype'))
5 Deploy the profile.

After the profile is applied to some project, it is possible to run profile-specific audits via the Model Profile Run
Profile Constrains command.

Note: The description and name properties of the constraint element, specified in the Properties View, are used
in the new audit. The value of the description property is used as the audit description, and the constraint
name and invariant name are used as the audit name.

Related Concepts

UML Profiles Basics

Related Procedures

Together Profiles

286

Creating Stereotypes

To create a Stereotype
1 Using the Profile Definition palette, add a Stereotype node to the diagram background.
2 In the Properties View, choose Profile Definition node.
3 In the Extended metaclass field, click the Edit button.

In the dialog box that opens, select the desired metaclasses from the Model Elements pane. Use the Add and
Remove buttons to make up a list of extended metaclasses. Click OK when you are finished.

4 If necessary, specify the required stereotype property:

Working with Required Stereotypes
5 Define view properties.

Tip: View properties are not available for the stereotypes that extend across multiple
metaclasses.

Setting Viewmap Properties for Stereotypes
6 Add attributes (tagged values) to the stereotype:

Adding Attributes to Stereotypes
7 Using Contribution link, connect the Stereotype to the desired Palette Contribution.

Related Procedures

Working with Required Stereotypes
Setting Viewmap Properties for Stereotypes
Adding Attributes to Stereotypes

287

Working with Required Stereotypes
In this section you will learn how to create a required stereotype and how to manage stereotypes in diagrams after
applying or removing the parent profile of a stereotype.

To create a required stereotype
1 In a Profile Definition, select a stereotype that extends a metaclass.
2 Select an extension link. In the Model Navigator, expand the stereotype node and click the extension link.

Tip: Alternatively, add a shortcut to the parent metaclass to the Profile Definition. The extension
link to the extending stereotype is drawn automatically.

3 In the Properties View of the extension link, select the Profile Definition tab.
4 Set the is required property to true. The extension link in the diagram gets the {isRequired} label, and the

bind with profile field appears in the Properties View.
5 Set the bind with profile field as required:

♦ If the field is set to true, after applying the profile to a project, the appropriate elements get the required
stereotype. After the parent profile is turned off, this stereotype is removed from the elements.

♦ If the field is set to false, after applying the profile to a project, the appropriate elements get the required
stereotype. After the parent profile is turned off, this stereotype is preserved.

Tip: This feature is useful for the large team projects and helps avoid confusion that might be caused by applying
custom profiles.

To filter out required stereotypes in diagrams
1 On the main menu, choose Window Preferences Modeling Profiles View Management.
2 Click the tab that corresponds to the appropriate metamodel.
3 In the list of available profiles, check the stereotypes you would like to hide in diagrams.
4 Apply the changes and close the dialog.

Related Concepts

UML Profiles Basics

Related Procedures

Creating Stereotypes

Related Reference

Profile Definition Properties
UML Profiles Preferences View Management

288

Setting Viewmap Properties for Stereotypes
You can specify a visual representation of the elements in the profile you create. Values in the icon and viewmap
properties affect the way the elements are displayed on your diagram.

Note: Viewmap property values are different for stereotypes that extend links.

To set viewmap and icon properties
1 Select a stereotype rectangle. The Properties view displays the properties of the selected stereotype.
2 In the Profile Definition node of the Properties view, choose the extended metaclass field and click the Edit

button.
3 In the selection manager dialog, navigate to the a metaclass and click Add. You can select several extended

metaclasses. Click OK when you are finished.

Tip: The viewmap property is available for the stereotypes that extend one metaclass only.

4 After a value for the extended metaclass property is provided, viewmap and icon properties are displayed.
5 Select the viewmap field and click the Edit button. This opens the Viewmap Editor dialog box. Note that

viewmap depends on the type of the extended metaclass. There are different sets of viewmap properties for
the links and nodes.

6 Specify the viewmap properties. For a stereotype that extends a node, select color to specify color for the
element, or select svg to browse for an svg file. If you choose svg, you can also specify the figure from those
described in the selected svg file and specify whether the graphical node with the selected .svg figure will be
resizable. For a stereotype that extends a link, specify values for Source decoration, Target decoration,
Foreground, Background, and Line style options.

7 Click OK to save the changes and close the dialog box.

289

Adding Attributes to Stereotypes
In this section you will learn how to add attributes to stereotypes, and how to define attribute properties, groupings
and descriptions. After applying a profile, stereotype attributes become visible in the Properties View of the elements
with this stereotype.

You can add attributes to stereotypes in one of the following ways:

♦ Using the Properties View

♦ Using outgoing association links

To add attributes (tagged values) to a stereotype using the Properties View
1 Right-click on the selected stereotype in a profile definition diagram, and choose New Attribute on the context

menu. Add as many attributes as required.
2 Select an attribute in the stereotype node. Its properties are displayed in the Properties View.
3 In the Properties tab:

♦ Choose the name field and enter the attribute name.

♦ Click the type field and specify the valid type using the combobox for primitive types or the selection
manager dialog for the enumerations and metaclasses.

Note: Invalid types are ignored during profile deployment.

4 In the Profile Definition tab, click the inspector group field, and select the inspector group from the list of
existing groups, or create a new one. After applying the profile, the attribute is displayed in a separate tab (group)
of the Properties View.

5 In the Description tab, choose the Edit tab and enter description text. After applying the profile, this description
shows up as a tooltip in the tab (group) of the Properties View.

After the attribute is added to the stereotype, the tagged value name is equal to the attribute name. Multiplicity of
the tagged value is equal to the attribute's multiplicity.

Note: If a profile defines attributes with a default value for a given type that is different from the default value in the
underlying implementation, some side effects should be noted. For example, the default value for a Boolean
property is false and is not persisted in the model instance. If a Boolean property is set to true as the
default value in a profile definition and a user sets an instance value to false, its value is not persisted but
interpreted as the default value (true) when read back in. Similarly, instance values changed to empty/null
will not be persisted and will likewise be interpreted as the default value when read back in.

To add attributes (tagged values) to a stereotype using outgoing association links
1 On the profile definition diagram, create shortcuts to certain types (Primitive types, Enumerations or

Metaclasses). Note that invalid types are ignored during profile deployment.
2 In the Class Diagram group of the Tool Palette, select the Association link and draw it from the stereotype to a

shortcut to the type that you have chosen.
3 Select the created association link. Its properties are displayed in the Properties View.
4 In the Supplier tab, specify the following properties: supplier multiplicity, supplier role

290

5 If necessary, specify the inspector group and description, as described in the steps 4 and 5 of the previous
procedure.

After the attribute is added to the stereotype, the supplier role (if specified) is used as the tagged value name. If the
supplier role is not specified, the link name or default name is used as a tagged value name. Multiplicity of the tagged
value is equal to the supplier multiplicity. If the upper value of the supplier multiplicity is greater than 1, the attribute
is treated as multivalued.

Note: When the attribute of a metaclass type or the association to a metaclass shortcut is added to a stereotype,
this attribute or association receives the viewmap and icon properties specified in the Profile Definition section
of the Properties View. These properties allow you to select the viewmap and icon for the link that appears
when this profile-specific property is set in the target project for the element with this stereotype.

Related Reference

Profile Definition Properties

291

Defining Profile Properties
When a Profile Definition project is created, you can specify or edit profile properties that are accessible via the
default package diagram of the Profile Definition project. These properties are:

♦ Textual profile description

♦ Namespace, which identifies the profile

To specify profile definition properties
1 Open the default package diagram of the Profile Definition project.
2 On the context menu of the diagram, choose Properties. The Properties View opens.
3 In the Properties View, select the Profile Definition tab.
4 Click the description field and enter the description text. Optionally, click the Edit button.
5 Click the namespace field and enter a valid string.

Related Reference

Profile Definition Properties

292

Deploying Profiles
After you create one or more profiles, you can create profile plugins to share them with your team members.

To deploy a created profile
1 Select the Profile Definition project or any project element in the Diagram Editor or Navigator view.
2 Choose Model Profile Deploy profile. The Deploy Profile wizard opens.
3 In the Profile Content Project Settings page, update project and plugin settings as required and click Next.
4 In the Behavior page, define the way the new profile will be deployed. Follow the notes of the wizard. Click

Next.
5 In the Target Directory page, select the directory where the plugin will be deployed. You can choose from the

default location, linked folders or an external location outside of the Eclipse platform. Click Finish.
6 Any errors that occur during the profile validation are reported in the Profile Validation Results view. You can

navigate from an error message to the respective profile definition element and correct the error. When you are
ready, click the Deploy button in the view.

7 After the profile plugin is deployed, you will be prompted to restart the workbench and make the new profile
available in the list of supported profiles. Click Yes to restart.

Note: Because the profiles are internationalized on creation, you can edit the .properties file inside your new
profile plugin to provide any strings.

Related Procedures

Uninstalling Profiles

293

Enabling UML Profiles
There are several ways to enable UML profiles for Together projects.

To enable UML profiles support while creating a project
1 On the main menu, choose File New Project. The New Project wizard opens.
2 Expand the Modeling node in the tree view list, and select the UML project you want to create (UML 2.0 or UML

1.4). Click Next.
3 Follow the wizard to the Profiles screen. The Profiles screen of the wizard lists available profiles.
4 Select one or more profiles you want to enable and click Next to continue creating a new project with the New

Project wizard.

To enable UML profiles support for existing projects
1 In the Model Navigator, right-click the root project folder, and select Properties on the context menu. The

Properties for <project> dialog box displays.
2 From the list on the left, select UML Profiles.
3 Select any of the UML profiles that you want to enable. More than one can be activated.
4 Click OK.

Note: You can also access the Properties for <project> dialog box through the Model Package Explorer view
and Navigator view.

To specify the default set of UML profiles enabled for all new workspace projects
1 Choose Window Preferences on the main menu.
2 In the left pane of the Preferences dialog box, expand the Modeling node.
3 Select the UML Profiles node.
4 Select the profiles you want to enable for UML 1.4 and UML 2.0 projects.

Note: The selected UML profiles are automatically enabled for projects created after you changed profile
preferences. Profiles support of existing projects is not changed.

294

Exporting and Importing Profiles
In this section you will learn how to export and import profile plugins.

To export profiles
1 On the main menu, choose File Export.
2 In the Export dialog, under the Modeling node, choose Profile Plug-ins and click Next .
3 In the list of available profiles, check the ones to be exported.
4 Specify the target directory, entering its fully qualified name in the text field or clicking the Browse button.
5 Click Finish.

Note: When exporting, you do not have to copy default values for properties to the target directory. The data from
the other model should provide similar functionality with default values if it has a similar active profile.

With XMI exports, default values are stored in the profile itself (the defaultValue property of
the stereotype attribute). For example, when you export a Together model with a profile
applied, two files are created: model.uml and model.profile.uml. The profile's default
values are stored in the latter, and ownership of the profile default values are repeated.

To import profiles
1 On the main menu, choose File Import.
2 In the Import dialog, under the Modeling node, choose Profile Plug-ins and click Next .
3 In the Search profile plug-ins in directory field, specify the source directory where the plug-ins you want are

stored. The list of available profiles is displayed.
4 In the list of profiles encountered in the specified folder, check the ones to be imported, and click Next.
5 Specify the target directory.

♦ If you click the Target plug-ins directory radio button, the selected profile plug-ins will be imported to the
default directory.

♦ If you click the Linked directory radio button, the selected profile plug-ins will be imported to the linked
directory of your choice. Optionally, you can link new directories using the Link New Directory button.

6 Click Finish.

Related Procedures

UML Profiles Basics

295

Opening Profile Definition
In this section you will learn how to view and modify definitions of the custom profiles and profiles that come bundled
with Together. A profile definition opens as a UML 2.0 project.

To open a profile definition
1 On the main menu, choose Model Profile Open Profile Definition.

The Open Profile Definition dialog displays the list of profiles that declare their definitions.

2 Check the profile you want and click Finish. The selected profile definition opens as a UML 2.0 project.

Related Concepts

Profile Definition Project

Related Procedures

UML Profiles Basics

296

Setting Viewmap Properties for Stereotypes
You can specify a visual representation of the elements in the profile you create. Values in the icon and viewmap
properties affect the way the elements are displayed on your diagram.

Note: Viewmap property values are different for stereotypes that extend links.

To set viewmap and icon properties
1 Select a stereotype rectangle. The Properties view displays the properties of the selected stereotype.
2 In the Profile Definition node of the Properties view, choose the extended metaclass field and click the Edit

button.
3 In the selection manager dialog, navigate to the a metaclass and click Add. You can select several extended

metaclasses. Click OK when you are finished.

Tip: The viewmap property is available for the stereotypes that extend one metaclass only.

4 After a value for the extended metaclass property is provided, viewmap and icon properties are displayed.
5 Select the viewmap field and click the Edit button. This opens the Viewmap Editor dialog box. Note that

viewmap depends on the type of the extended metaclass. There are different sets of viewmap properties for
the links and nodes.

6 Specify the viewmap properties. For a stereotype that extends a node, select color to specify color for the
element, or select svg to browse for an svg file. If you choose svg, you can also specify the figure from those
described in the selected svg file and specify whether the graphical node with the selected .svg figure will be
resizable. For a stereotype that extends a link, specify values for Source decoration, Target decoration,
Foreground, Background, and Line style options.

7 Click OK to save the changes and close the dialog box.

297

Uninstalling Profiles
The uninstalling profile feature enables you to correctly remove the unused profile plugins, which involves detaching
them from all projects in your workspace and deleting them from the file system.

To uninstall a profile
1 On the main menu, choose Model Profile Uninstall Profile.
2 Select the profiles to be uninstalled.

Related Procedures

UML Profiles Basics

298

Verifying a Model Against Profile Constraints
Verification of a profile involves defining the necessary constraints within the target metamodel, and an actual
verification of a model against the selected constraints.

To verify a model against an applied profile
1 On the main menu, choose Window Preferences Profile Constraints, and choose the desired

constraints in the appropriate metamodel.
2 On the main menu, choose Model Profile Run Constraints.

Note: You can specify a scope for profile constraints after choosing Model Profile Run
Constraints. The possible constraint restrictions are selected resource (single selection),
package (shallow or deep), and project. The Profile Constraint history contains the project
name. The project name is qualified with an actual item.

The results of verification display in the Profile Constraints view. You can navigate from any entry in the table to
the respective element in diagram.

Related Procedures

UML Profiles Basics

Related Reference

UML Profiles Preferences Constraints

299

Working with Required Stereotypes
In this section you will learn how to create a required stereotype and how to manage stereotypes in diagrams after
applying or removing the parent profile of a stereotype.

To create a required stereotype
1 In a Profile Definition, select a stereotype that extends a metaclass.
2 Select an extension link. In the Model Navigator, expand the stereotype node and click the extension link.

Tip: Alternatively, add a shortcut to the parent metaclass to the Profile Definition. The extension
link to the extending stereotype is drawn automatically.

3 In the Properties View of the extension link, select the Profile Definition tab.
4 Set the is required property to true. The extension link in the diagram gets the {isRequired} label, and the

bind with profile field appears in the Properties View.
5 Set the bind with profile field as required:

♦ If the field is set to true, after applying the profile to a project, the appropriate elements get the required
stereotype. After the parent profile is turned off, this stereotype is removed from the elements.

♦ If the field is set to false, after applying the profile to a project, the appropriate elements get the required
stereotype. After the parent profile is turned off, this stereotype is preserved.

Tip: This feature is useful for the large team projects and helps avoid confusion that might be caused by applying
custom profiles.

To filter out required stereotypes in diagrams
1 On the main menu, choose Window Preferences Modeling Profiles View Management.
2 Click the tab that corresponds to the appropriate metamodel.
3 In the list of available profiles, check the stereotypes you would like to hide in diagrams.
4 Apply the changes and close the dialog.

Related Concepts

UML Profiles Basics

Related Procedures

Creating Stereotypes

Related Reference

Profile Definition Properties
UML Profiles Preferences View Management

300

Configuring Implementation Projects
This part provides how-to information on setting Together preferences and options for the implementation projects.

In This Section
Configuring C++ Projects
How to define C++ project structure and language-specific options.

Configuring IDL Projects
How to define IDL project structure and language-specific options.

301

Configuring C++ Projects
In this section, you will learn how to define the project structure and processing options:

♦ Access C++ project properties

♦ Define source path

♦ Define entry points

♦ Include search paths

♦ Define C++ processing settings (for example, skip standard includes option, or suffixes for the C++ files)

♦ Define indexer

♦ Enable C++ formatting

♦ Set up formatting options

To configure a C++ project
1 Select the desired project in the Model Navigator.
2 On the main menu, choose Project Properties.

Tip: Alternatively, choose Properties on the context menu of the project.

The Properties for <project> dialog opens. Select the Project Properties page.

3 In the Project source path tab, click the Link Additional Source to Project button.
4 In the Link Additional Source dialog, specify the linked folder location and name, and click OK.

Tip: Use the context menu of the linked folder to remove it, mark it read-only, or filter it.

5 Configure parsing entry points using the Configure Entry points dialog.
6 In the Include paths tab, click Add.
7 In the Add Include Folder dialog, enter the folder name or click Browse and navigate to the folder you want

to add.
8 In the C++ Processing Settings tab, select your C++ project options.

♦ To skip standard includes, check the Skip standard includes option.

♦ If you want to use the preinclude file, specify its name in the Preinclude file name field.

9 Select the C/C++ indexer page, and select an indexer from the list. Among the available indexers, you can
choose the Borland indexer.

To enable C++ formatter
1 On the main menu, choose Window Preferences
2 Under the C/C++ category, select the Code Formatter page.
3 From the list of available formatters, select Together C++ Code Formatter.

302

To set up formatting options
1 Under your Together installation, expand the plugins folder.
2 In the com.borland.tg.cdtintegration plugin, open the formatter.properties file.
3 Use the documentation provided with the file to edit as required.

Related Reference

New project Wizard C++ Language-Specific Options
C++ Projects

303

Configuring IDL Projects
In this section you will learn how to define the project structure and processing options:

♦ Access IDL project properties

♦ Define source path

♦ Include search paths

♦ Define IDL processing settings

To configure an IDL project
1 Select a project in the Model Navigator.
2 On the main menu, choose Project Properties.

Tip: Alternatively, choose Properties on the context menu of the project.

3 In the Project source path tab, click the Link Additional Source to Project button.
4 In the Link Additional Source dialog, specify the linked folder location and name, and click OK.

Tip: Use the context menu of the linked folder to remove it, mark it read-only, or filter it.

5 In the Include paths tab, click Add.
6 In the Add Include Folder dialog, enter the folder name or click Browse and navigate to the folder.
7 In the IDL Processing Settings tab, select your IDL project options. Refer to the IDL Language-Specific Options

section for details.

Related Reference

New project Wizard IDL Language-Specific Options
IDL Language-Specific Information

304

Together UML 2.0 Diagrams
This section provides how-to information on using Together UML diagrams.

In This Section
UML 2.0 Class Diagrams Procedures
Lists the UML 2.0 Class Diagrams Procedures.

UML 2.0 Use Case Diagrams Procedures
Lists the UML 2.0 Use Case Diagrams Procedures.

UML 2.0 Interaction Diagrams Procedures
Lists the UML 2.0 Interaction Diagrams Procedures.

UML 2.0 State Machine Diagrams Procedures
Lists the UML 2.0 State Machine Diagrams Procedures.

UML 2.0 Activity Diagrams Procedures
Lists the UML 2.0 Activity Diagrams Procedures.

UML 2.0 Component Diagrams Procedures
Lists the UML 2.0 Component Diagrams Procedures.

UML 2.0 Deployment Diagrams Procedures
Lists the UML 2.0 Deployment Diagrams Procedures.

UML 2.0 Composite Structure Diagrams Procedures
Lists the UML 2.0 Composite Structure Diagrams Procedures.

Template Elements
This section describes how to create template elements in diagrams and define formal parameters.

305

UML 2.0 Class Diagrams Procedures
In This Section

Adding Owned Behavior to a Class
Lists the steps for adding a classifier behavior to a class.

Changing the Appearance of Compartments
About changing the appearance of the class compartments in diagrams.

Changing the Appearance of Interfaces
About changing the appearance of interfaces.

Creating and Editing Properties
How to activate Java Beans and create/delete properties.

Creating Class By Template
How to create an element by template.

Creating Data Types
How to create and extend a data type.

Creating Enumerations and Enumeration Literals
Lists the steps for creating an enumeration and extending an enumeration literal.

Creating, Editing and Opening Header and Implementation Files in C++ Projects
How to create header and implementation files of C++ classes and interfaces, and how to open these files
from the Diagram Editor.

Working with a Constructor
How to create a constructor and define constructor parameters.

Working with a Field
How to rename a field, and how to define its visibility and stereotype.

Working with a Provided or Required Interface
How to work with the provided and required interfaces. These procedures are common to UML 2.0 Class,
Component and Composite Structure diagrams.

Working with a Relationship
How to work with a relationship link (common for UML 1.4 and 2.0).

Working with Association classes and n-ary associations
How to create and delete association classes and n-ary associations.

Working with Inner Classes
Lists the steps for creating inner classes.

Working with Instance Specifications
Lists the steps for instantiating classifiers using the Properties View or the in-place editor.

306

Adding Owned Behavior to a Class
You can add behavior to a class. Behavior is defined by an activity, state machine or interaction.

Note: This feature is available in the design projects only.

To add a classifier behavior to a class
1 Select a class in a diagram.
2 In the Properties View, click the classifier behavior field.
3 In the Select Behavior for Classifier Behavior Property dialog, select the desired element in the Model

Elements pane.
4 Use the Add and Remove buttons to make up a list of Selected Elements.
5 Click OK when you are finished.

The owned behaviors can be added to a classifier by pasting a behavior into the classifier (for example, cutting an
activity and pasting it to a class) or via the Context menu. This way, the interaction can be added to the class, and
activity and interaction can be added to the use case.

Related Concepts

UML 2.0 Class Diagram Definition

Related Procedures

UML 1.4 Class Diagrams Procedures

307

Changing the Appearance of Compartments
You can collapse or expand compartments for the different members of class, interface, and package elements. Use
the Preferences dialog to set viewing preferences for compartment controls. Adding compartment controls is
particularly useful when you have large container elements with content that does not need to be visible at all times.

To show compartment controls
1 On the main menu, choose Window Preferences.
2 Open the Modeling View Management page.
3 Check the Always show Attributes and Operations compartments option.

To collapse or expand compartments
1 Select the class (or interface) on the diagram.
2 Click the “+” or “-” in the left corner of the compartment.

Related Reference

UML 2.0 Class Diagrams
UML 1.4 Class Diagrams

308

Changing the Appearance of Interfaces
Note: This feature is available in the design projects only.

To show an interface as a circle using the context menu
1 Right-click the interface element in the Diagram View or Model View.
2 Choose Show as circle.

Tip: This menu item works as a toggle. Right-click again and choose Show as circle to show the interface element
as a rectangle.

Note: Interfaces shown as small circles do not show their members in the Diagram View. Use the Model View to
view the members.

To show an interface as a circle using the Properties View
1 Select the interface element in the Diagram View or Model View.
2 Press F4 to open the Properties View.
3 Set the Circle view property as True.

Tip: Choose False for the Circle view property to show the interface element as a rectangle.

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

309

Creating and Editing Properties
If recognizing Java Beans is enabled, creating a property results in creating a property attribute and its accessor
methods in the source code. Properties display in a class icon in the Properties compartment. Optionally, you can
show the participants of a property (its attribute and the getter and setter methods) in the Attributes and Operations
compartments of the class icon, respectively. The participants are hidden by default.

When the Java Beans Properties Support is activated, using the cut, copy, paste, clone, or delete commands on a
property member applies to the property attribute and to its getters and setters. If recognizing Java Beans is disabled,
special care is required when editing or deleting properties. If you edit the property type using the in-place editor,
the relevant types in the accessor methods will not be synchronized. The same result occurs when a property is
deleted; that is, the accessor methods stay in place and should be deleted individually.

Note: This feature is available in the implementation projects only.

To activate or deactivate Java Beans
1 On the main menu, choose Window Preferences. The Preferences dialog opens.
2 Under the Modeling node, select Java.
3 Check the Recognize Java Bean Properties option. Refer to the Java Preferences description for details.

To add a property member to a class element
1 Select the target class in the diagram.
2 On the context menu, choose New Property.

To show property participants
1 On the main menu, choose Window Preferences. The Preferences dialog opens.
2 Under the Modeling node, select Java.
3 Uncheck the Hide Java Bean Properties Participants option. Refer to the Java Preferences description for

details.

Related Procedures

Java Preferences

310

Creating Class By Template
Use the Class By Template button on the Palette diagram to implement source code constructions or solutions in
your model.

Note: This feature is available in the implementation projects only.

To create a class by template
1 Select Class by Template in the Tools Palette.
2 Click on the diagram background. The Apply template dialog box opens.
3 Select the appropriate template from the Templates tree.
4 Set each value field within the Parameters area, or click Finish to apply default values.

Related Procedures

Apply Template Wizard

311

Creating Data Types
Data types are created as regular diagram elements, using the Tool Palette or New Data Type command on the
diagram context menu. You can add attributes and operations to data types using the context menu.

Note: This feature is available in the design projects only.

To extend a data type
1 Select a data type in a diagram.
2 In the Properties View, select the extends field and click the chooser button.
3 In the Select Data type for Extends Property dialog, select the desired element in the Model Elements pane.
4 Use Add and Remove buttons to make up a list of Selected Elements.
5 Click OK when you are finished.

Related Concepts

UML 2.0 Class Diagram Definition

Related Procedures

Adding Owned Behavior to a Class

312

Creating Enumerations and Enumeration Literals
Enumerations are created as regular diagram elements, using the Tool Palette or the New Enumeration command
on the diagram context menu.

To add an enumeration literal
1 Select an enumeration in the diagram.
2 On the context menu, choose New Enumeration literal. The new literal is added to the enumeration element.
3 In the Properties View, select the name field and enter the enumeration name. The name of the literal is

displayed in diagram.
4 In the specification field enter the value that is displayed in the diagram next to the enumeration name, delimited

by the equal sign.

To extend an enumeration
1 Select an enumeration in the diagram.
2 In the Properties View, select the extends field and click the chooser button.
3 In the Select Enumeration for Extends Property dialog, select the enumeration element you want in the Model

Elements pane.
4 Use the Add and Remove buttons to make up a list of Selected Elements.
5 Click OK when you are finished.

Related Concepts

UML 2.0 Class Diagram Definition

Related Procedures

UML 1.4 Class Diagrams Procedures

313

Creating, Editing and Opening Header and Implementation Files in
C++ Projects
C++ header files are automatically created when a class, interface or enumeration is added to a diagram. Creating
an implementation file becomes possible when anything that is defined outside the header (for example, an operation
or constructor) exists in the class.

To create an implementation file
1 Select a class in the diagram.
2 Right-click the selection and choose New on the context menu.
3 On the submenu, choose the member that you want (operation, constructor or destructor).
4 Right-click the member and choose Create member definition on the context menu.

An implementation file is created. If the implementation file already exists, the new member definition is added to
this file. The implementation file opens in the separate tab of the editor.

To open a header file for editing
1 Select a class in the diagram.
2 Double-click the selected node.

To open an implementation file for editing
1 Select a class in the diagram.
2 Right-click the member and choose Edit member definition on the context menu.

Related Procedures

Special Considerations for C++ Projects

314

Working with a Constructor
You can create as many constructors in a class as needed using the New Constructor command of the context
menu of a class.

In implementation projects, each new constructor is created with its unique set of parameters. In addition to creating
parameters automatically, you can define the custom set of parameters using the Properties View.

In design projects, a constructor is created as an operation with the <<create>> stereotype.

Tip: You can move, copy and paste constructors and destructors between the container classes the same way as
you would do the other members.

To define the constructor parameters
1 Select a constructor in a class.
2 In the Properties View, click the Browse button in the parameters field.
3 In the Select Parameters for Operation dialog that opens, click Add. A parameter is added with the default

values. Edit the values as required, or use the defaults.
Use the Add and Remove buttons to make up the list of parameters, and click OK when you are finished.

Tip: Alternatively, type the list of parameters in the text area. Use a comma as a delimiter.

Related Reference

UML 2.0 Class Diagrams
UML 1.4 Class Diagrams

315

Working with a Field
You can edit members using the Properties View, or the in-place editor of the Diagram Editor or Model Navigator.
In the implementation projects, you can also use the source code editor to modify the members. In this section you
will learn how to:

♦ rename a field

♦ define a visibility modifier

♦ define a stereotype

♦ define modifiers, initial values, and associated objects

♦ handle multi-declarations

To rename a field
1 Choose a field.
2 Enter the new name in the in-place editor of the Diagram Editor or Model Navigator, or use the name text field

in the Properties View.

To define the visibility modifier
1 Choose a field.
2 Enter the visibility symbol in the in-place editor in the Diagram Editor , or select one from the visibility combobox

in the Properties View.

To define the stereotype of a field
1 Choose a field.
2 Use the in-place editor in the Diagram Editor , or use the stereotype combobox of the Properties View.

To define modifiers, initial values, associated objects and so on
1 Choose a field.
2 Use the Properties View or the source code editor (for implementation projects).

When you do this, the model and the source code are kept in sync.

Note: You can type the Value property, an equal sign (=), and the Name property (for example, EXCLUDE=2) when
adding an Enum literal with the inplace editor.

To use multi-declarations in the source code, consider the following:
1 In the source code of the Java and IDL projects, it is possible to declare several fields in one line. This notation

is represented in the diagram as a number of separate entries in the Fields section in a class icon.
2 You can rename the fields, change modifiers, set initial values and so on, and all modifications will be applied

to the respective field in the diagram icon.

316

3 You can copy and move such fields in a diagram (using the context menu commands or drag-and-drop), and
the pasted field will appear in the target container separately.

In C++ projects, editing multi-declarations in the Diagram Editor or Properties View is not allowed.

Related Procedures

Navigating between the Tree View, Diagram, and Source Code
Adding a Single Model Element to a Diagram

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

317

Working with a Provided or Required Interface

To create a provided interface
1 Create class and interface node elements using the Palette buttons.
2 On the diagram Palette, click the Provided Interface button.
3 Click the client class and drag the mouse to the interface node.

To create a required interface
1 Create class and interface node elements using the Palette buttons.
2 On the diagram Palette, click the Required Interface button.
3 Click the client class and drag the mouse to the interface node.

Related Procedures

Changing the Appearance of Interfaces

Related Reference

UML 2.0 Class Diagrams
UML 2.0 Component Diagrams
UML 2.0 Composite Structure Diagrams

318

Working with a Relationship
Refer to the Getting Started Procedures to learn how to draw a link. This section describes how to change the link
type and properties.

To change the type of an association link
1 Select an Association Link on the diagram.
2 In the Properties View, select the Link tab and click the associates type field.
3 Choose the link type (association, aggregation, or composition) from the drop-down list.

To set the directed property of an association link
1 Select the association link that you want on the diagram. The properties for the link appear in the Properties

View.
2 In the Link tab of the Properties View, select the directed field.
3 Click the drop-down arrow and select the value for this Boolean property.

Related Procedures

Getting Started Procedures
Creating a Simple Link
Changing Type of an Association Link

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

319

Working with Association classes and n-ary associations
Association classes appear in diagrams as three related elements:

♦ Association class itself (represented by a class icon)

♦ N-ary association class link (represented by a diamond)

♦ Association connector (represented by a link between both)

To create an association class
1 On the diagram Palette, select the Association Class button.
2 Click the diagram background. This adds a regular class icon for the association class, connected with the

diamond icon that represents the Association Class Link Aspect.
3 Create participant classes.
4 Using the Association End button, connect the diamond icon with the participant classes.

The source code of an association class now contains appropriate tags for the association class itself, and for each
of the association end classes.

To delete an association class
1 Right-click an association class or its diamond icon.
2 Choose Delete on the context menu.

The whole association class construct is now deleted from the diagram.

Related Reference

Class Diagram Relationships
UML 2.0 Class Diagrams
UML 1.4 Class Diagrams

320

Working with Inner Classes
Both inner classes and inner interfaces in diagrams display within their own compartment field within the class. To
create an inner class, do one of the following:

When the class already exists
1 Drag it over the target class.
2 Drop it.

Using the context menu
1 Right-click the parent class.
2 Select New Inner Class from the context menu.

Using Cut, Copy, and Paste
1 Use the clipboard operations to either cut or copy an existing inner class.
2 Select the parent class.
3 Use the clipboard operations to paste the selected class into the parent class.

Tip: Classes do not keep the same visibility after they are removed from the parent class.

321

Working with Instance Specifications
According to the UML 2.0 specification, an instance specification can instantiate one or more classifiers. You can
instantiate a classifier using the instantiates property in the Properties View or the in-place editor.

To instantiate a classifier using the Properties View
1 Select an instance specification in your diagram.
2 In the Properties node of the Properties View, select the instantiates field.
3 Click the chooser button.
4 In the Choose Classifier for 'instantiates' property, select the classifiers from the available contents, using

the Add/Remove buttons.
5 Click OK to save your changes.

To instantiate a classifier using the in-place editor
1 Select an instance specification in your diagram.
2 Press F2 to open the in-place editor. Alternatively, click twice on the instance specification name.
3 Type the name of an existing classifier, delimited by a colon, next to the instance specification name. For

example, InstanceSpecifcation1:Class1.
4 Press Enter.

To define the features of an instance specification, you can insert slots into an instance specification element,
associate the slots with the attributes of the instantiated classifiers, set the value, and define the slot stereotype.

To add a slot to an instance specification element
1 Add an instance specification element to your diagram.
2 Right-click the instance specification element and choose New Slot on the context menu.

To associate a slot with a structural feature
1 Select a slot in an instance specification element.
2 Click the Properties tab of the Properties View.
3 In the defining feature field, select the attribute you want from the list of attributes owned by the classifiers,

which is instantiated by the instance specification (or their parents).

To set the slot value, do one of the following:
1 In the Properties View of the slot, select the value field, click the Editor button, and type the string in the Edit

property values editor, OR
2 Invoke the in-place editor for the slot and type the value next to the slot name, delimited by an equal sign.

322

Related Procedures

UML 2.0 Component Diagrams Procedures
UML 2.0 Composite Structure Diagrams Procedures
UML 2.0 Class Diagrams Procedures

323

UML 2.0 Use Case Diagrams Procedures
This section outlines the procedures related to UML 2.0 Use Case diagrams.

In This Section
Creating an Extension Point
How to create an extension point.

Defining Includes and Extends Links
Describes how to define the condition properties of Includes and Extends links.

Setting Subject for a Use Case
Lists the steps for setting a subject for a Use Case.

324

Creating an Extension Point

To create an extension point
1 Right-click the use case element.
2 Choose Add Extension Point on the context menu.
3 Type in a name.

Related Reference

UML 1.4 Use Case Diagrams
UML 2.0 Use Case Diagrams

325

Defining Includes and Extends Links
Includes and Extends links are created between Use Cases. The created links are marked with their stereotype.

To define condition properties of an Extends link
1 Select Extends link in the diagram.
2 In the Properties View, expand the condition node.
3 In the language field, choose the condition type (OCL or plain text).
4 In the body field, specify the condition text.

Tip: Alternatively, you can double-click on the condition element in the diagram and enter the condition text in the
editor window.

Related Procedures

Setting Subject for a Use Case
Together Object Constraint Language (OCL)

326

Setting Subject for a Use Case

To set a subject for a Use Case
1 Select a Use Case in the diagram.
2 In the Properties View, expand the Common properties node and select the subject field.
3 Click on the chooser button.
4 In the Select Classifier for Subject Property dialog, select the desired classifiers from the metamodel. Use

the Add and Remove buttons to create the list of selected elements.
5 Click OK.

327

UML 2.0 Interaction Diagrams Procedures
This section outlines the procedures related to UML 2.0 Sequence and Communication diagrams.

In This Section
A Typical Scenario of Designing a UML 2.0 Interaction Diagram
How to design a UML 2.0 sequence or communication diagram.

Associating a Lifeline with a Classifier
How to associate a lifeline with a classifier.

Associating a Lifeline with a Referenced Element
How to associate a lifeline with a referenced element.

Copying and Pasting an Execution or Invocation Specification
How to copy and paste an execution or invocation specification.

Creating a Full-Screen Sequence or Communication Diagram from an Interaction
How to create a full-screen sequence or a communication diagram from an interaction.

Creating a State Invariant
How to create a state invariant.

Creating an Interaction Use
How to create an interaction use.

Defining Decomposition of a Lifeline
How to define decomposition of a lifeline.

Roundtrip Engineering with UML 2.0 Sequence Diagrams
This section demonstrates how to create and edit a sequence diagram that generates source code in a UML
2.0 project.

Working with a Combined Fragment
How to work with a combined fragment.

Working with a UML 2.0 Message
About working with UML 2.0 messages.

Working with Interactions
How to create an interaction, open it in a sequence or collaboration diagram and associate it with a class.

328

A Typical Scenario of Designing a UML 2.0 Interaction Diagram
Use the following tips and techniques when you design a UML 2.0 Sequence or Communication Diagram. Usually
you create interaction diagrams after class diagrams.

Whenever an interaction diagram is created, the corresponding interaction is added to the project. Interactions are
represented as nodes in the Model Navigator.

You can view an interaction in two ways: as a Sequence Diagram or as a Communication Diagram. Any actions
performed with either view are automatically reflected in the other views. Adding or deleting an element in an
interaction results in the modification of the corresponding interaction diagram, and vice versa. An interaction
diagram contains a reference to the underlying interaction.

Note: Unlike UML 1.4, it is not possible to switch a diagram that already exists from sequence to communication
and vice versa. However, it is possible to create a sequence diagram and a communication diagram based
on the same interaction.

To design a UML 2.0 Sequence Diagram, perform the following general actions:
1 Create an interaction with one or more lifelines, and open it in a sequence diagram. Associate the interaction

with a class and operation.

Working with Interactions
2 Create an interaction use.

Creating an Interaction Use
3 Associate a lifeline with a classifier.

Associating a Lifeline with a Classifier
4 Define the decomposition of a lifeline.

Defining Decomposition of a Lifeline
5 Repeat the steps to create all required lifelines.
6 Link the created lifelines by using messages.

Working with a UML 2.0 Message
7 Add combined fragments to the lifeline.

Working with a Combined Fragment
8 Add state invariants.

Creating a State Invariant

Related Reference

UML 2.0 Interaction Diagrams

329

Working with Interactions
You can start designing your sequence or communication diagram with creating an interaction. An interaction can
be opened in a sequence or communication diagram.

In this section you will learn how to:

♦ Create an interaction

♦ Open an interaction in a sequence or communication diagram

♦ Define context and specification for an interaction

To create an interaction
1 In the Model Navigator, right-click a project or a package node.
2 On the context menu, choose New Interaction diagram elements Interaction.

To open an interaction in diagram
1 Select an interaction in the Model Navigator.
2 On the context menu, choose Open full screen communication diagram or Open full screen sequence

diagram.

To define context and specification for an interaction
1 Select an interaction in the Model Navigator.

Tip: Alternatively, click on the interaction diagram background.

2 In the Properties View, select the Properties tab.
3 In the context field, click the chooser button and in the Choose referenced classifier dialog, select a context.
4 In the specification field, click the chooser button and in the Choose operation dialog, select the operation

for the specified context.

Related Reference

UML 2.0 Interaction Diagrams

330

Creating an Interaction Use

To create an interaction use
1 In the diagram Palette, choose the Interaction Use button.
2 Click on the target lifeline.
3 In the Properties View for the newly created interaction use, choose the Properties tab.
4 In the interaction name field, click the chooser button.

Tip: Alternatively, just type the interaction name.

5 In the Choose Referenced Interaction dialog box, select the interaction and click OK.

An interaction use is initially created attached to a lifeline. You can further expand it over several lifelines, as well
as detach it from and reattach it to lifelines.

Related Reference

UML 2.0 Interaction Diagrams

331

Associating a Lifeline with a Classifier
In this section you will learn how to:

♦ Associate a lifeline with an existing classifier using the lifeline context menu

♦ Associate a lifeline with a new classifier using the context menu

♦ Associate a lifeline with a classifier using the Properties View

To associate a lifeline with a classifier using the lifeline context menu
1 Select a lifeline on an Interaction diagram.
2 Right-click the lifeline and select Choose Type <connectable element's type> on the context menu.
3 If the desired type is not in the list, choose More. The Choose represented connectable element's type dialog

box opens.
Select a classifier to be associated with the lifeline from the tree of available model elements, and click OK.

To associate a lifeline with a new type using the lifeline context menu
1 Select a lifeline on an Interaction diagram.
2 Right-click the lifeline and select New Type on the context menu.
3 Select Class or Interface on the submenu. The new connectable element adds to the model.

To associate a lifeline with a classifier using the Properties View
1 Select a lifeline on an Interaction diagram.
2 In the Properties View of the lifeline, select type field.
3 Enter the classifier name in the text area, or click the file chooser button. The Choose represented connectable

element's type dialog box opens.
Select a classifier to be associated with the lifeline from the tree of available model elements, and click OK.

Related Procedures

Instantiating a Classifier

Related Reference

UML 2.0 Interaction Diagrams

332

Defining Decomposition of a Lifeline

To define decomposition for a lifeline
1 Select the desired lifeline in the Model Navigator or the Diagram Editor .
2 In the Properties View, select the decomposition field.
3 Click the chooser button.
4 In the Choose Referenced Interaction dialog box, select the desired interaction.
5 Click OK.

Tip: Decomposition, type, stereotype, and referenced element properties are also reflected in the
corresponding Communication diagram.

Related Reference

UML 2.0 Interaction Diagrams

333

Working with a UML 2.0 Message
This section describes techniques for working with messages in sequence and communication diagrams. Although
the two diagram types are equivalent, the techniques for dealing with messages differ.

In this section you will learn how to:

♦ Show or hide reply messages

♦ Create nested messages (Sequence diagram)

♦ Create a message from a lifeline back to itself

♦ Create a message link that corresponds to an operation call

♦ Create an asynchronous call, which enables you to extend or reduce the time of invocation specification and
execution specification independently

♦ Create a found execution on a lifeline (that is, a message that comes from an object that is not shown on the
diagram [Sequence diagram])

To show or hide reply messages
1 Select a call message on a diagram.
2 In the Properties View, set the show reply message value to true to show reply messages or to false to

hide reply messages.

To create a nested message
1 Choose the Message icon on the diagram Palette.
2 Click an execution specification to originate the message and drag the link to the target lifeline.

Note: The nested message inherits the numbering of the parent message. For example, if the
parent message has the number 1, its first nested message is 1.1.

To create a message from a lifeline back to itself
1 Choose the Message icon on the diagram Palette.
2 Double-click the target lifeline.

To create a message link that corresponds to an operation call
1 Create a message link between two lifelines in an interaction.
2 Make sure that the target lifeline has its type defined and the associated classifier contains at least one operation.
3 In the Properties tab of the Properties View, select the signature field and click the chooser button.
4 In the Choose Operation dialog box, select an operation.
5 Click OK.

The message link is named according to the name of the operation.

334

To de-synchronize invocation specification and execution specification
1 Select an invocation specification on a lifeline.
2 Click the sort property in the Properties View and select asynchCall in the list.

To create a found execution
1 In the Palette, click the Found execution button.
2 Click on a place of a lifeline. An execution specification bar is created in the target lifeline.

Related Procedures

Working with Instance Specifications

Related Reference

UML 2.0 Interaction Diagrams
UML 2.0 Message
Execution Specification and Invocation Specification

335

Working with a Combined Fragment
In this section you will learn how to:

♦ Create a combined fragment

♦ Create nested combined fragments

♦ Create nested operators

♦ Sever nested operators

♦ Create operands

♦ Expand combined fragments across several lifelines

♦ Detach a combined fragment from a lifeline

To create a combined fragment
1 Choose the Combined Fragment button in the diagram Palette, and click on the target lifeline.
2 In the New Combined Fragment dialog box that opens, choose an operator from the list of available operators

and set the combined fragment options (operator name, arguments, or number of operands).
3 Click OK.

The combined fragment is added to the target lifeline or execution specification. Each new combined fragment has
a different color to distinguish it from the other combined fragments within the same cluster of nested frames.

To create a nested combined fragment
1 Choose the Combined Fragment button in the diagram Palette.
2 Click on the target combined fragment that already exists in a lifeline.

Note: Each new node has a different color that is selected at random. You can work with the inner frames in the
same way as with the outer frames: move along a lifeline, spread them over several lifelines, detach and tie
frames. Note that drawing a message link from a frame automatically expands it, together with its outer
frames, if any.

To create nested operators
1 Select a combined fragment.
2 In the other operators field of the Properties View, click the chooser button. The Interaction Operators dialog

box opens, displaying the list of already defined operators in the current combined fragment.
3 Click the Add button. A new line is displayed below the existing entry in the list of operators.
4 If a certain operator enables arguments, enter them in the adjacent field in the Arguments column. Use a comma

as a delimiter.
5 Use the Add and Remove buttons to compile your list of the nested operators. Use the Up and Down buttons

to specify the proper order of nested operators.
6 Click OK to apply changes.

The nested operators are now listed in the descriptor of the combined fragment in the specified order.

336

To sever operators
1 Right-click a combined fragment that contains nested operators.
2 On the context menu, choose Sever operators between.
3 On the submenu, select the pair of operators between which the combined fragment will be divided.

A nested combined fragment is now created.

To combine with an outer fragment
1 Right-click an inner fragment.
2 On the context menu, choose Combine with an outer fragment.

To create an operand
1 Select a combined fragment or an operand in the Model Navigator or in the Diagram Editor .
2 On the context menu of the selection, choose New Interaction Operand.
3 In the Interaction constraint tab of the Properties View, select the language to be used for describing the

constraint. To do this, click the Language drop-down list and choose OCL or plain text.
4 Type the constraint expression.
5 Add as many operands as required.
6 Apply changes.

A new operand is now created. If the operand was created from the context menu of a combined fragment, it will be
added to the end of the combined fragment. If the operand was created from the context menu of an operand, it will
be added just before this operand. Constraint text is displayed in the operand section of the combined fragment.

To expand a combined fragment across several lifelines
1 Select the combined fragment.

Tip: You can expand both outer and inner combined fragments.

2 Click the anchor icon and drag it to the target lifeline.

The fragment now spans across lifelines, with the mounting links on each lifeline.

To detach a combined fragment from a lifeline
1 Select the mounting link of a combined fragment.
2 Choose Delete on the context menu.

Tip: You cannot delete the only mounting link of a combined fragment. A combined fragment must be attached to
at least one lifeline.

Related Reference

Operator and Operand for a Combined Fragment

337

Creating a State Invariant
A state invariant is a constraint placed on a lifeline. This constraint is evaluated at runtime prior to execution of the
next execution specification. State invariants are represented in the interaction diagrams in two ways: as OCL
expressions or as references to the state diagrams. You can use the state invariants to provide comments to your
interaction diagrams and to connect interactions with states.

Together provides validation of the state invariants represented as OCL expressions. An OCL editor with highlighting
and validation is provided for typing your OCL expression.

The typed OCL expression is correct only if the context is specified for it. The context of the State Invariant connected
to the LifeLine is the type of the part this LifeLine represents. If no type is set, the OCL expression is reported as
invalid with OCL as the language of the expression. If no correct context can be specified, select text as the
expression language.

To create a state invariant as an OCL expression:
1 On the diagram Tools Palette, click the state invariant button.
2 Click the target lifeline or execution specification.
3 In the Properties view of the state invariant, expand the Common properties node.
4 In the invariant kind field, choose OCL expression from the list. The shape of the state invariant diagram element

changes to braces.
5 In the OCL invariant view that opens, select the language of the comment from the Language list. The possible

options are OCL and plain text.
6 Type your expression text and apply changes.

To connect a state invariant to a state:
1 On the diagram Tools Palette, click the state invariant button.
2 Click the target lifeline or execution specification.
3 In the Properties view of the state invariant, expand the Common properties node.
4 In the invariant kind field, choose States/Regions from the list.
5 In the States/Regions field, click the Edit button.
6 In the Choose States and/or Regions dialog box, select the states and/or regions from the model. Use the

Add button to add them to the Selected list.
7 Click OK to save your changes.
8 Alternatively, you can type the state or region name using the in-place editor. If the state or region belongs to

a different package, specify its fully qualified name.

Related Concepts

About OCL Support in Together

Related Reference

UML 2.0 Interaction Diagrams

338

Associating a Lifeline with a Classifier
In this section you will learn how to:

♦ Associate a lifeline with an existing classifier using the lifeline context menu

♦ Associate a lifeline with a new classifier using the context menu

♦ Associate a lifeline with a classifier using the Properties View

To associate a lifeline with a classifier using the lifeline context menu
1 Select a lifeline on an Interaction diagram.
2 Right-click the lifeline and select Choose Type <connectable element's type> on the context menu.
3 If the desired type is not in the list, choose More. The Choose represented connectable element's type dialog

box opens.
Select a classifier to be associated with the lifeline from the tree of available model elements, and click OK.

To associate a lifeline with a new type using the lifeline context menu
1 Select a lifeline on an Interaction diagram.
2 Right-click the lifeline and select New Type on the context menu.
3 Select Class or Interface on the submenu. The new connectable element adds to the model.

To associate a lifeline with a classifier using the Properties View
1 Select a lifeline on an Interaction diagram.
2 In the Properties View of the lifeline, select type field.
3 Enter the classifier name in the text area, or click the file chooser button. The Choose represented connectable

element's type dialog box opens.
Select a classifier to be associated with the lifeline from the tree of available model elements, and click OK.

Related Procedures

Instantiating a Classifier

Related Reference

UML 2.0 Interaction Diagrams

339

Associating a Lifeline with a Referenced Element

To associate a lifeline with a referenced element
1 Make sure that your Interaction context or Interaction specification contains the referenced elements that should

be represented by the lifelines.
2 Select the desired lifeline in the Model Navigator or the Diagram Editor .
3 In the Properties View, select the represents field.
4 Click the chooser button.
5 In the Choose Represented Connectable Element dialog box, select the desired part from the project or

Favorites.
6 Click OK.

To navigate to a referenced interaction
1 Right-click on an interaction use that refers to another interaction.
2 On the context menu, choose Select.
3 Choose the desired destination on the submenu.

Related Reference

UML 2.0 Interaction Diagrams

340

Copying and Pasting an Execution or Invocation Specification
Clipboard operations are supported for the execution and invocation specifications.

To copy and paste an execution or invocation specification
1 Cut, Copy, and Paste commands are available on the context menu of an execution specification and invocation

specification. It is possible to copy or move these elements within the same diagram or to another diagram.
2 When an execution or invocation specification is copied, it means that the entire branch of messages is copied

also. Pasting the clipboard contents to a target lifeline results in changing the message numbers according to
the numbering of messages in the target lifeline.

3 If you paste an invocation or execution specification to another diagram, the entire outgoing bunch of messages
will be pasted also, with all the respective lifelines. If the target diagram does not contain lifelines for this
execution specification, they will be created automatically.

Tip: It is also possible to move and copy message branches using the drag-and-drop technique. To move an
execution or invocation specification, drag-and-drop it to the target location. To create a copy, drag-and-drop
while holding the CTRL key down.

Related Procedures

Working with a UML 2.0 Message

Related Reference

UML 2.0 Interaction Diagrams

341

Creating a Full-Screen Sequence or Communication Diagram from
an Interaction

To create a full-screen sequence or a communication diagram from an interaction
1 In the Diagram Editor or in the Model Navigator, choose an Interaction element.
2 Right-click the Interaction node and choose Open Full-Screen Sequence diagram or Open Full-Screen

Communication diagram.

If such a diagram does not exist, it will be created and will open in the Diagram Editor .

Related Reference

UML 2.0 Interaction Diagrams

342

Creating a State Invariant
A state invariant is a constraint placed on a lifeline. This constraint is evaluated at runtime prior to execution of the
next execution specification. State invariants are represented in the interaction diagrams in two ways: as OCL
expressions or as references to the state diagrams. You can use the state invariants to provide comments to your
interaction diagrams and to connect interactions with states.

Together provides validation of the state invariants represented as OCL expressions. An OCL editor with highlighting
and validation is provided for typing your OCL expression.

The typed OCL expression is correct only if the context is specified for it. The context of the State Invariant connected
to the LifeLine is the type of the part this LifeLine represents. If no type is set, the OCL expression is reported as
invalid with OCL as the language of the expression. If no correct context can be specified, select text as the
expression language.

To create a state invariant as an OCL expression:
1 On the diagram Tools Palette, click the state invariant button.
2 Click the target lifeline or execution specification.
3 In the Properties view of the state invariant, expand the Common properties node.
4 In the invariant kind field, choose OCL expression from the list. The shape of the state invariant diagram element

changes to braces.
5 In the OCL invariant view that opens, select the language of the comment from the Language list. The possible

options are OCL and plain text.
6 Type your expression text and apply changes.

To connect a state invariant to a state:
1 On the diagram Tools Palette, click the state invariant button.
2 Click the target lifeline or execution specification.
3 In the Properties view of the state invariant, expand the Common properties node.
4 In the invariant kind field, choose States/Regions from the list.
5 In the States/Regions field, click the Edit button.
6 In the Choose States and/or Regions dialog box, select the states and/or regions from the model. Use the

Add button to add them to the Selected list.
7 Click OK to save your changes.
8 Alternatively, you can type the state or region name using the in-place editor. If the state or region belongs to

a different package, specify its fully qualified name.

Related Concepts

About OCL Support in Together

Related Reference

UML 2.0 Interaction Diagrams

343

Creating an Interaction Use

To create an interaction use
1 In the diagram Palette, choose the Interaction Use button.
2 Click on the target lifeline.
3 In the Properties View for the newly created interaction use, choose the Properties tab.
4 In the interaction name field, click the chooser button.

Tip: Alternatively, just type the interaction name.

5 In the Choose Referenced Interaction dialog box, select the interaction and click OK.

An interaction use is initially created attached to a lifeline. You can further expand it over several lifelines, as well
as detach it from and reattach it to lifelines.

Related Reference

UML 2.0 Interaction Diagrams

344

Defining Decomposition of a Lifeline

To define decomposition for a lifeline
1 Select the desired lifeline in the Model Navigator or the Diagram Editor .
2 In the Properties View, select the decomposition field.
3 Click the chooser button.
4 In the Choose Referenced Interaction dialog box, select the desired interaction.
5 Click OK.

Tip: Decomposition, type, stereotype, and referenced element properties are also reflected in the
corresponding Communication diagram.

Related Reference

UML 2.0 Interaction Diagrams

345

Roundtrip Engineering with UML 2.0 Sequence Diagrams
This section demonstrates a sample procedure if creating and editing a UML 2.0 sequence diagram that generates
source code. To generate source code from a sequence diagram, you will:

♦ Create an implementation project and a class with the main() method.

♦ Generate a sequence diagram from the main method of the class.

♦ Create source-generating elements on the sequence diagram.

♦ Create messages. All the messages will have the same source and destination.

To create a project and class
1 Create a UML 2.0 source code project, and add a new class diagram.
2 Create a new class on the diagram.
3 Right-click on the class, and choose New Operation on the context menu. The in-place editor activates.
4 Create an operation. For example, add a main class method by entering the following code in the in-place editor:

main(args: String[]):void
5 Press ENTER. The new main() method is created.

To generate a sequence diagram from the main method
1 Right-click on the main method, and choose Generate Sequence Diagram from the context menu. The

Generate Sequence Diagram wizard displays.
2 Click Next, accepting the default settings for the first page of the wizard.
3 Click Finish, accepting the default settings for the second page of the wizard. The sequence diagram opens in

a new diagram tab of the Diagram Editor . The lifeline gets the name self.

Tip: By default, the generated diagram gets the name [Class_name].[method_name];

To create source-generating elements on the sequence diagram
1 Create a for statement in the self lifeline:

— On the Tools Palette of the diagram, choose the Combined Fragment button and click on the execution
specification of the message #1.

— In the New Combined Fragment dialog, select for and click OK.

— Select an operand in the combined fragment. In the Properties View of the operand, click the Interaction
Constraint tab.

— In the language field, select plain text. In the body field, enter the following code: int i = 0; i < 4; i
++
The label displays in the operand of the combined fragment as: [int i = 0; i < 4; i++]

2 Add a new lifeline to the sequence diagram:
— Click the Lifeline button on the Palette, and click on the diagram to create a new object with the name
Frame.

346

3 Associate the new lifeline with a type:
— Right-click on the Frame lifeline, and choose Choose type More from the context menu. The Choose
represented connectable element's type dialog box displays.

— Expand the libraries node and navigate to javax > swing. Select JFrame from the list, and click OK. The
name of the selected class displays on the frame object.

To create messages on a sequence diagram
1 Draw a message link from the Execution Specification to the lifeline of the Frame lifeline. As you click the target

lifeline, the Choose operation dialog opens.
2 Select JFrame constructor (JFrame:void) from the list. The message label becomes: 1.1: JFrame().

In the Properties View of the message, set creation property to true. The message changes visually to the
creation type. Note that the message link now points to the frame object, which means that the object is being
created.

3 Draw a new message. Its label is Message Link 1.2. In the Choose operation dialog, expand the JFrame node,
scroll through the list, and select setDefaultCloseOperation(int):void. Click OK.

4 In the arguments field of the Properties View of the message 1.2, enter JFrame.EXIT_ON_CLOSE. The
message label becomes: 1.2: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)

5 Draw Message Link 1.3. In the Choose operation dialog expand the Component node, scroll through the list,
and select with the operation setSize(int,int):void. In the arguments field of the Properties View enter
600,400. The message label becomes: 1.3: setSize(600,400)

6 Draw Message Link 1.4. In the Choose operation dialog expand the Component node, scroll through the list,
and select with the operation setLocation(int,int):void . In the arguments field of the Properties View,
enter (50*i,50*i). The message label becomes: 1.4: setLocation(50*i,50*i)

7 Draw Message Link 1.5. In the Choose operation dialog, expand the Component node, scroll through the list,
and select with the operation show(). The message becomes: 1.5:show():void

To generate implementation code for a sequence diagram
1 Right-click on the background of the sequence diagram, and choose Generate Implementation from the

context menu. The first page of the Sequence diagram refactoring wizard displays. Warning messages display,
if applicable. Click Next to display the second page of the wizard.

2 The second page of the wizard displays changes that are necessary to perform refactoring. Notice the sections
on the page highlighting the original source code to be replaced and the refactored source code to replace it.
Click Finish.
Open implementation code of the Class1 in the Editor. Message labels, for which implementation code has been
generated, display in bold on the diagram. If code generation fails for certain messages, those messages do
not display in bold.

3 On the sequence diagram, double-click one of the message links displayed in bold, and observe that the Editor
scrolls to the point of appropriate method invocation.

4 In the Editor, add an import statement for javax.swing.

Related Reference

UML 2.0 Interaction Diagrams

347

Working with a Combined Fragment
In this section you will learn how to:

♦ Create a combined fragment

♦ Create nested combined fragments

♦ Create nested operators

♦ Sever nested operators

♦ Create operands

♦ Expand combined fragments across several lifelines

♦ Detach a combined fragment from a lifeline

To create a combined fragment
1 Choose the Combined Fragment button in the diagram Palette, and click on the target lifeline.
2 In the New Combined Fragment dialog box that opens, choose an operator from the list of available operators

and set the combined fragment options (operator name, arguments, or number of operands).
3 Click OK.

The combined fragment is added to the target lifeline or execution specification. Each new combined fragment has
a different color to distinguish it from the other combined fragments within the same cluster of nested frames.

To create a nested combined fragment
1 Choose the Combined Fragment button in the diagram Palette.
2 Click on the target combined fragment that already exists in a lifeline.

Note: Each new node has a different color that is selected at random. You can work with the inner frames in the
same way as with the outer frames: move along a lifeline, spread them over several lifelines, detach and tie
frames. Note that drawing a message link from a frame automatically expands it, together with its outer
frames, if any.

To create nested operators
1 Select a combined fragment.
2 In the other operators field of the Properties View, click the chooser button. The Interaction Operators dialog

box opens, displaying the list of already defined operators in the current combined fragment.
3 Click the Add button. A new line is displayed below the existing entry in the list of operators.
4 If a certain operator enables arguments, enter them in the adjacent field in the Arguments column. Use a comma

as a delimiter.
5 Use the Add and Remove buttons to compile your list of the nested operators. Use the Up and Down buttons

to specify the proper order of nested operators.
6 Click OK to apply changes.

The nested operators are now listed in the descriptor of the combined fragment in the specified order.

348

To sever operators
1 Right-click a combined fragment that contains nested operators.
2 On the context menu, choose Sever operators between.
3 On the submenu, select the pair of operators between which the combined fragment will be divided.

A nested combined fragment is now created.

To combine with an outer fragment
1 Right-click an inner fragment.
2 On the context menu, choose Combine with an outer fragment.

To create an operand
1 Select a combined fragment or an operand in the Model Navigator or in the Diagram Editor .
2 On the context menu of the selection, choose New Interaction Operand.
3 In the Interaction constraint tab of the Properties View, select the language to be used for describing the

constraint. To do this, click the Language drop-down list and choose OCL or plain text.
4 Type the constraint expression.
5 Add as many operands as required.
6 Apply changes.

A new operand is now created. If the operand was created from the context menu of a combined fragment, it will be
added to the end of the combined fragment. If the operand was created from the context menu of an operand, it will
be added just before this operand. Constraint text is displayed in the operand section of the combined fragment.

To expand a combined fragment across several lifelines
1 Select the combined fragment.

Tip: You can expand both outer and inner combined fragments.

2 Click the anchor icon and drag it to the target lifeline.

The fragment now spans across lifelines, with the mounting links on each lifeline.

To detach a combined fragment from a lifeline
1 Select the mounting link of a combined fragment.
2 Choose Delete on the context menu.

Tip: You cannot delete the only mounting link of a combined fragment. A combined fragment must be attached to
at least one lifeline.

Related Reference

Operator and Operand for a Combined Fragment

349

Working with a UML 2.0 Message
This section describes techniques for working with messages in sequence and communication diagrams. Although
the two diagram types are equivalent, the techniques for dealing with messages differ.

In this section you will learn how to:

♦ Show or hide reply messages

♦ Create nested messages (Sequence diagram)

♦ Create a message from a lifeline back to itself

♦ Create a message link that corresponds to an operation call

♦ Create an asynchronous call, which enables you to extend or reduce the time of invocation specification and
execution specification independently

♦ Create a found execution on a lifeline (that is, a message that comes from an object that is not shown on the
diagram [Sequence diagram])

To show or hide reply messages
1 Select a call message on a diagram.
2 In the Properties View, set the show reply message value to true to show reply messages or to false to

hide reply messages.

To create a nested message
1 Choose the Message icon on the diagram Palette.
2 Click an execution specification to originate the message and drag the link to the target lifeline.

Note: The nested message inherits the numbering of the parent message. For example, if the
parent message has the number 1, its first nested message is 1.1.

To create a message from a lifeline back to itself
1 Choose the Message icon on the diagram Palette.
2 Double-click the target lifeline.

To create a message link that corresponds to an operation call
1 Create a message link between two lifelines in an interaction.
2 Make sure that the target lifeline has its type defined and the associated classifier contains at least one operation.
3 In the Properties tab of the Properties View, select the signature field and click the chooser button.
4 In the Choose Operation dialog box, select an operation.
5 Click OK.

The message link is named according to the name of the operation.

350

To de-synchronize invocation specification and execution specification
1 Select an invocation specification on a lifeline.
2 Click the sort property in the Properties View and select asynchCall in the list.

To create a found execution
1 In the Palette, click the Found execution button.
2 Click on a place of a lifeline. An execution specification bar is created in the target lifeline.

Related Procedures

Working with Instance Specifications

Related Reference

UML 2.0 Interaction Diagrams
UML 2.0 Message
Execution Specification and Invocation Specification

351

Working with Interactions
You can start designing your sequence or communication diagram with creating an interaction. An interaction can
be opened in a sequence or communication diagram.

In this section you will learn how to:

♦ Create an interaction

♦ Open an interaction in a sequence or communication diagram

♦ Define context and specification for an interaction

To create an interaction
1 In the Model Navigator, right-click a project or a package node.
2 On the context menu, choose New Interaction diagram elements Interaction.

To open an interaction in diagram
1 Select an interaction in the Model Navigator.
2 On the context menu, choose Open full screen communication diagram or Open full screen sequence

diagram.

To define context and specification for an interaction
1 Select an interaction in the Model Navigator.

Tip: Alternatively, click on the interaction diagram background.

2 In the Properties View, select the Properties tab.
3 In the context field, click the chooser button and in the Choose referenced classifier dialog, select a context.
4 In the specification field, click the chooser button and in the Choose operation dialog, select the operation

for the specified context.

Related Reference

UML 2.0 Interaction Diagrams

352

UML 2.0 State Machine Diagrams Procedures
In This Section

Associating a Transition or a State with a Behavior
How to associate a transition with an activity (UML 2.0 State Machine Diagram).

Changing Regions Order in a State
Describes how to rotate regions either in horizontal or vertical order.

Creating an OCL Guard Condition for a Transition
How to create a guard condition for a transition.

Creating and Editing States
How to create and edit states in a state diagram.

Creating History Elements
How to create a history.

Creating Members for State Machines, States, and Regions
How to create a member for a state.

Designing a UML 2.0 State Machine Diagram
How to design a UML 2.0 state machine diagram.

Working with a Complex State
How to create a composite (nested) state (UML 1.4 Activity Diagram, UML 1.4 State Diagram, UML 2.0 State
Machine Diagram).

Working with Activities and State Machines Full Screen Diagrams
How to open an activity or a state machine in a full-screen view.

353

Associating a Transition or a State with a Behavior
You can associate an activity (created on a UML 2.0 Activity Diagram) with a state (upon entering the state, while
doing the state activity, and upon exiting the state), or with a transition between states.

To associate a transition with an activity
1 Select a transition or a state on a UML 2.0 State Machine diagram.
2 In the Common properties tab of the Properties view, click the Effect (for a transition) or Do Behavior, Entry

Behavior or Exit Behavior (for a state) field.
3 Click the chooser button to open the Select Behavior for property dialog box.
4 In the model tree view, locate your chosen activity and click Add.
5 Click OK to save the changes.

Related Procedures

Creating an OCL Guard Condition for a Transition

Related Reference

UML 2.0 State Machine Diagrams
State

354

Changing Regions Order in a State
If you have several regions in your State or State Machine, you can rotate them to place them either in horizontal or
vertical order.

To change regions order
1 Right-click a State or a State Machine on your diagram
2 Select either Order Regions Vertically or Order Regions Horizontally.

Related Concepts

UML 2.0 State Machine Diagram Definition

Related Reference

UML 2.0 State Machine Diagrams

355

Creating an OCL Guard Condition for a Transition
An OCL expression can restrict a StateMachine transition by acting as a guard to that transition. In an OCL guard
condition, the StateMachine must have a context that is a Classifier. The expression, which is evaluated when the
guard's transition is attempted, is of type Boolean.

To create a guard condition for a transition
1 Select a transition on a diagram.
2 Select the guard tab in the Properties view.
3 Specify the language for your guard condition (OCL by default).
4 Select the body field and click the Edit button.
5 Type the condition expression and click OK to apply changes.

Related Concepts

About OCL Support in Together

Related Reference

UML 2.0 State Machine Diagrams

356

Creating and Editing States
Note: Because all State Diagram elements are created inside State Machines, create at least one State Machine

before attempting to create other elements.

To create a state
1 On the Palette, click the State button.
2 Click the diagram background.

Alternatively, right-click a region of the StateMachine element and select New State from the context menu.

When a new state is placed on a diagram, you can use the Properties View to edit its properties.

♦ Configure standard properties of the element.

♦ In the State Invariant tab, select the language of the expression from the Language list box. The possible
options are OCL and plain text.

♦ In the Properties page, configure the behavior of the state by setting these additional properties:

Field Description

Composite Set to True if there is one or more regions in this state (not editable)

Orthogonal Set to True if there are two or more regions in this state (not editable)

Simple Set to True if there are no regions in this state (not editable)

Do Behavior Specify the activity to be performed during execution of the current state by using the
Properties View. This activity may be selected from any Activity diagram of the project.

Entry Behavior Specify the activity to be performed when the current state starts executing by using the
Properties View. This activity may be selected from any Activity diagram of the project.

Exit Behavior Specify the activity to be performed when the current state finishes executing by using the
Properties View. This activity may be selected from any Activity diagram of the project.

Note: You may place a state inside of the existing state. It is possible to hide individual states. For example, you
can hide the content of composite states for better understanding of the whole diagram.

To make a state a submachine state
1 Select a state you want to make a submachine state.
2 In the Properties View of the state, click the submachine property and choose any model state machine.

For your convenience a StateMachine element can be opened in a separate Diagram Editor view.

To open a StateMachine element in a separate Diagram Editor view
1 Right-click a StateMachine element in the Diagram Editor .
2 Select Open Full Screen in New Diagram.

357

To define the do activity, entry or exit activities of a state
1 Select a state and click the appropriate field in the Properties view.
2 Click the Edit button. This opens the Select Activity20 for property dialog box.
3 Locate your chosen activity and use the Add and Remove buttons to add and remove activities.
4 Click OK to save your changes.

Related Concepts

About OCL Support in Together
UML 2.0 State Machine Diagram Definition

Related Procedures

Changing Regions Order in a State

Related Reference

UML 2.0 State Machine Diagrams

358

Creating History Elements
The Shallow History and Deep History elements are placed on regions of the states. Refer to the UML 2.0
Specification for more information about these elements.

You can create none or one Deep History, and none or one Shallow History elements in each region.

To add a history to a state, do one of the following:
1 Right-click a region in a state, point to New, and select one of the History elements on the shortcut menu, OR
2 Click one of the History elements on the Palette and then click the target state region.

Related Concepts

UML 2.0 State Machine Diagram Definition

Related Procedures

Changing Regions Order in a State

Related Reference

UML 2.0 State Machine Diagrams

359

Creating Members for State Machines, States, and Regions

To create a member for a state
1 Open the Diagram View.
2 Right-click an existing state and choose New (member) on the context menu.

The following members are available:

♦ Internal transition (also available on the context menu) – A shorthand for handling events without leaving
a state and dispatching its exit/entry activities.

♦ Region (also available on the context menu) – Use regions inside the states to group the substates. The
regions may have different visibility settings and history elements. Each state has one region immediately
after creation, although it can be deleted.

♦ Reference to Entry point and Reference to Exit point – Use references to entry/exit points as sources/
targets of transitions, respectively.

In the Regions, you can create all the elements that are available for the States except Internal transition.

In addition to regions, you can create the following members for State Machines:

♦ Entry point – Execution of the state starts at this point. It is possible to create several entry points for one
state, which makes sense if there are substates.

♦ Exit point – Execution of the state finishes at this point. It is possible to create several exit points for one
state, which makes sense if there are substates.

Related Reference

UML 2.0 State Machine Diagrams

360

Designing a UML 2.0 State Machine Diagram
Following are tips and techniques that you can use when working with a UML 2.0 State Machine Diagram.

To design a UML 2.0 State Machine Diagram
1 Create initial and final nodes.
2 Create main states and substates.
3 Create regions.
4 Create entry and exit points.
5 Create pins.
6 Create transitions.
7 Create history nodes.
8 You can optionally create shortcuts to related elements of other diagrams.

Related Procedures

Creating a Shortcut

Related Reference

UML 2.0 State Machine Diagrams

361

Working with a Complex State
The techniques in this section apply to models of particularly complex composite states. These procedures are
common for the State and Activity diagrams.

Create a composite state by nesting one or more levels of states within one state and draw transitions among the
nested elements. You can place the following elements in a state:

♦ activity

♦ signal sending

♦ signal receipt

♦ start/end states

♦ history

Tip: You can nest multiple levels of states inside one state. For especially complex state modeling, however, you
may find it more convenient to create different diagrams, model each of the state levels individually, and then
hyperlink the diagrams sequentially.

Use the following techniques to create a composite (nested) state
1 Create a nested state using drag-and-drop.
2 Create a nested state using the context menu of the state element.

To create a nested state using drag-and-drop
1 Place a state element on the diagram background.
2 Drag a new state on top of an existing state.
3 Drop a new state.

To create a nested state using the context menu of the state element
1 Right-click the state (region) that will be the container.
2 Select New State on the context menu.

Tip: Using the Shortcuts command on the context menu of the diagram, you can reuse existing elements from the
other state diagrams. Right-click the diagram and choose New Shortcuts, navigate within the pane containing
the tree view of the available project contents to the existing diagram, and select its elements, states, histories,
forks, and/or joins.

362

Related Concepts

Model Hyperlinking Overview

Related Procedures

Creating a Shortcut

Related Reference

UML 1.4 Activity Diagrams
UML 1.4 Statechart Diagrams
UML 2.0 State Machine Diagrams

363

Working with Activities and State Machines Full Screen Diagrams
It is possible to work with the individual activities and state machines in specific diagrams. You can open an activity
or a state machine in a full-screen view, and the element is expanded to the whole diagram. The new diagram has
the same name as the selected element. This kind of activity or state machine is transparent, which makes it possible
to view the grid. You cannot move the container activity or state machine, but the nested elements are still selectable
and movable.

To create a full-screen diagram for an activity or a state machine
1 Select the desired element in the diagram or in the Model Navigator.
2 On the context menu of the selection, choose Open Full Screen in New Diagram.

364

UML 2.0 Activity Diagrams Procedures
In This Section

Creating Activity Parameters
Lists the steps for adding activity parameters to an activity.

Creating Pins
How to create a pin.

Designing a UML 2.0 Activity Diagram
How to design a UML 2.0 Activity Diagram.

Rotating Activity Partitions
How to change the orientation of activity partitions.

Using Control Flow Link
Lists the steps for creating control flow links.

Working with Activities and State Machines Full Screen Diagrams
How to open an activity or a state machine in a full-screen view.

Working with Activity Element
Because all activity diagram elements are enclosed into the Activity element, you should create at least one
Activity to start modeling in the Activity diagram.

Working with an Object Flow or a Control Flow
How to work with an object flow or a control flow.

365

Creating Activity Parameters

To add an activity parameter to an activity
1 On the Palette, click the Activity Parameter button.
2 Click the target activity.

or
1 Right-click an activity
2 Select New Activity Parameter on the context menu.

An Activity Parameter node is added to the activity as a rectangle. Note that the activity parameter node is attached
to its activity. You can move the node only along the activity borders.

366

Creating Pins
Actions may require some input and produce some output. The input and output are defined by the input and output
pins.

To add an input pin, output pin, or value pin, do one of the following:
1 Right-click an action
2 Select New, and choose either Input Pin or Output Pin or Value Pin on the context menu.

OR
1 In the Tools Palette, choose one of the pins
2 Click the target action.

The created pin is added to the target action as a square. Note that the pins are attached to their actions and can
be dragged only along the action borders.

367

Designing a UML 2.0 Activity Diagram
Use the following tips and techniques when you design a UML 2.0 Activity Diagram. Usually you create Activity
Diagrams after State Machine Diagrams.

To design a UML 2.0 Activity Diagram, follow this general procedure:
1 Create one or more activities. You can place several activities on a single diagram, or create a separate diagram

for each.

Warning: You cannot create nested activities.

2 Usually activities are linked to states or transitions on State Machine Diagrams. Switch to your State Machine
Diagrams and associate the activities you just created with states and transitions.

Tip: After you do this, you may find that some more activities must be created, or the same activity
can be used in several places.

3 Switch back to the Activity Diagram. Think about flows in your activities. You can have an object flow (for
transferring data), a control flow, both or even several flows in each activity.

4 Create starting and finishing points for every flow. Each flow can have the following starting points:

♦ Initial node

♦ Activity parameter (for object flow)

♦ Accept event action

♦ Accept time event action

Each flow finishes with a Activity Final or Flow Final node.

If your activity has several starting points, they can be used simultaneously.

5 Create object nodes. You do not link object nodes to classes on your Class Diagrams. However, you can use
hyperlinks for better understanding of your diagrams.

6 Create action nodes for your flows. Flows can share actions.

Warning: You cannot create nested actions.

7 For object flows, add pins to actions. Connect actions and pins by flow links.
8 Add pre- and post- conditions. You can create plain text or OCL conditions.
9 You can optionally create shortcuts to related elements of other diagrams.

Related Procedures

Creating a Shortcut

Related Reference

UML 2.0 Activity Diagrams

368

Rotating Activity Partitions
By default, activity partitions are created horizontally aligned. You can rotate those elements to fit your diagram.

To rotate activity partitions
1 Create one or more activity partitions within activities.
2 Right-click the Activity with activity partitions and select Rotate Activity Partitions.

Related Procedures

Creating a Shortcut

Related Reference

UML 2.0 Activity Diagrams

369

Using Control Flow Link
A transition link represents a control flow. It can be drawn between the following elements on the state or activity
diagrams. It can also be drawn from an initial node, or to an activity final or final flow element from those elements
listed below.

♦ state

♦ activity invocation

♦ decision

♦ fork/join

♦ history

To create a control link between two elements
1 Click the Control Flow link button on the tools palette.
2 On the Diagram, click the source element.
3 Drag the link to the destination element.
4 Drop when the second element is highlighted.

After the link has been drawn on the diagram, use the Properties view to update the link. Properties set for the link
are shown on the diagram.

Related Reference

UML 2.0 Activity Diagram Elements

370

Working with Activities and State Machines Full Screen Diagrams
It is possible to work with the individual activities and state machines in specific diagrams. You can open an activity
or a state machine in a full-screen view, and the element is expanded to the whole diagram. The new diagram has
the same name as the selected element. This kind of activity or state machine is transparent, which makes it possible
to view the grid. You cannot move the container activity or state machine, but the nested elements are still selectable
and movable.

To create a full-screen diagram for an activity or a state machine
1 Select the desired element in the diagram or in the Model Navigator.
2 On the context menu of the selection, choose Open Full Screen in New Diagram.

371

Working with Activity Element
Because all activity diagram elements are enclosed into the Activity element, you should create at least one Activity
to start modeling in the Activity diagram.

To create an activity element
1 On the Palette, click the Activity button.
2 Click the diagram background.

For your convenience, an Activity element can be opened in a separate Diagram Editor view.

To open an activity element in a separate Diagram Editor view
1 Right-click an activity element in the Diagram Editor
2 Select Open Full Screen in New Diagram.

372

Working with an Object Flow or a Control Flow
You can create control flow or object flow as an ordinary link between the two node elements. The valid nodes are
highlighted when the link is established.

You can scroll to the target element if it is out of direct reach, or you can use the context menu command to avoid
scrolling.

There are certain limitations stipulated by UML 2.0 specifications:

♦ An object flow link must have an object on at least one of its ends.

♦ It is impossible to connect two actions with an object flow except through an output pin on the source action.

♦ Control flow link may not connect objects and/or activity parameters.

Use the following techniques with an object flow or a control flow:
1 Create a flow. Flows are created as the regular links.
2 Create a fork or a join.
3 Create a decision or a merge.

To create a fork or a join
1 Identify the actions involved. If necessary, place all of the actions on the diagram first. Lay them out however

you want.
2 Place either a fork or a join on the diagram. Resize as needed.
3 If depicting multiple sources, draw a control flow from each of the source actions to the join, and from the join

to the target action. If depicting multiple targets, draw a control flow from the source action to the fork, and from
the fork to each of the target actions.

To create a decision or a merge
1 Identify the actions involved. If necessary, place all of the actions on the diagram first. Lay them out however

you want.
2 Place either a decision or a merge on the diagram. Resize as needed.
3 If merging multiple actions, draw a control flow from each of the source actions to the merge, and from the merge

to the target action. If making a decision, draw a control flow from the source action to the decision, and from
the decision to each of the target actions.

Related Procedures

Creating a Simple Link

Related Reference

UML 2.0 Activity Diagrams

373

UML 2.0 Component Diagrams Procedures
In This Section

Designing a UML 2.0 Component Diagram
How to design a UML 2.0 Component Diagram.

Working with a Provided or Required Interface
How to work with the provided and required interfaces. These procedures are common to UML 2.0 Class,
Component and Composite Structure diagrams.

Working with Instance Specifications
Lists the steps for instantiating classifiers using the Properties View or the in-place editor.

374

Designing a UML 2.0 Component Diagram
You can use the following tips and techniques when working with UML 2.0 Component Diagrams. It might be
convenient to begin creating a model with Component Diagrams if you are modeling a large system, such as a
distributed, client-server software system, with numerous interconnected modules. You use Component Diagrams
for modeling a logical structure of your system, and you use Deployment Diagrams for modeling a physical structure.

To design a UML 2.0 Component Diagram
1 Create a hierarchy of components. The largest component can be the whole system or its major part (for

example, server application, IDE, service).

Tip: You can create nested component nodes. There are two methods for creating a nested
component node. You can select an existing component and add a child component inside.
Alternatively, you can create two separate components and connect them with an
Association-Composition link.

2 In the hierarchy of components, you can end up by adding concrete classes and instance specifications. You
can create them on a Component Diagram directly or create them on a Class Diagram and put shortcuts on a
Component Diagram.

3 Create interfaces. Each component can have a provided interface and a required interface.
4 Optionally, create artifacts. Usually, you describe physical artifacts of your system on Deployment Diagrams.

But if a component is closely connected with its physical store, add and link an artifact to a Component Diagram.

Tip: You can create nested artifacts.

5 Optionally, create ports for your components. You can attach a port to a component and link it with several
classes or components inside. In this case, when a message arrives, this port decides which class must handle
it.

6 Draw links between elements.
7 You can optionally create shortcuts to related elements of other diagrams.

Related Procedures

Working with a Provided or Required Interface
Creating a Shortcut

Related Reference

UML 2.0 Component Diagrams

375

Working with a Provided or Required Interface

To create a provided interface
1 Create class and interface node elements using the Palette buttons.
2 On the diagram Palette, click the Provided Interface button.
3 Click the client class and drag the mouse to the interface node.

To create a required interface
1 Create class and interface node elements using the Palette buttons.
2 On the diagram Palette, click the Required Interface button.
3 Click the client class and drag the mouse to the interface node.

Related Procedures

Changing the Appearance of Interfaces

Related Reference

UML 2.0 Class Diagrams
UML 2.0 Component Diagrams
UML 2.0 Composite Structure Diagrams

376

Working with Instance Specifications
According to the UML 2.0 specification, an instance specification can instantiate one or more classifiers. You can
instantiate a classifier using the instantiates property in the Properties View or the in-place editor.

To instantiate a classifier using the Properties View
1 Select an instance specification in your diagram.
2 In the Properties node of the Properties View, select the instantiates field.
3 Click the chooser button.
4 In the Choose Classifier for 'instantiates' property, select the classifiers from the available contents, using

the Add/Remove buttons.
5 Click OK to save your changes.

To instantiate a classifier using the in-place editor
1 Select an instance specification in your diagram.
2 Press F2 to open the in-place editor. Alternatively, click twice on the instance specification name.
3 Type the name of an existing classifier, delimited by a colon, next to the instance specification name. For

example, InstanceSpecifcation1:Class1.
4 Press Enter.

To define the features of an instance specification, you can insert slots into an instance specification element,
associate the slots with the attributes of the instantiated classifiers, set the value, and define the slot stereotype.

To add a slot to an instance specification element
1 Add an instance specification element to your diagram.
2 Right-click the instance specification element and choose New Slot on the context menu.

To associate a slot with a structural feature
1 Select a slot in an instance specification element.
2 Click the Properties tab of the Properties View.
3 In the defining feature field, select the attribute you want from the list of attributes owned by the classifiers,

which is instantiated by the instance specification (or their parents).

To set the slot value, do one of the following:
1 In the Properties View of the slot, select the value field, click the Editor button, and type the string in the Edit

property values editor, OR
2 Invoke the in-place editor for the slot and type the value next to the slot name, delimited by an equal sign.

377

Related Procedures

UML 2.0 Component Diagrams Procedures
UML 2.0 Composite Structure Diagrams Procedures
UML 2.0 Class Diagrams Procedures

378

UML 2.0 Deployment Diagrams Procedures
This section provides how-to information about designing UML 2.0 deployment diagrams.

In This Section
Designing a UML 2.0 Deployment Diagram
How to design a UML 2.0 Deployment Diagram.

Working with Artifacts
Lists the steps for adding an operation to an artifact, specifying the parameters of the operation, and
deploying the artifact to a target node.

379

Designing a UML 2.0 Deployment Diagram
You can use the following tips and techniques when you design a UML 2.0 Deployment Diagram. It might be
convenient to begin creating a model with Deployment Diagrams if you are modeling a large system that is comprised
of multiple modules, especially if these modules reside on different computers. You use Deployment Diagrams for
modeling a physical structure of your system, and you use Component Diagrams for modeling a logical structure.

To design a UML 2.0 Deployment Diagram, follow this general procedure
1 Create a hierarchy of execution environments, devices, and nodes. Execution environments usually represent

a software environment that is used to execute your system, such as an operating system. Devices usually
represent hardware equipment, such as a printer, a hard disk, or a computer. Nodes represent the remaining
physical entities, such as a file.

Tip: You can create nested execution environments, devices, and nodes. For example, you can
add a node inside of an execution environment, or a node inside of a device.

2 Create artifacts.
3 Create deployment and instance specifications. By doing this, you arrange physical locations of objects and

other entities of your system.
4 Add operations to artifacts.
5 After an operation is added, you can define its properties in the Properties View, which includes parameters,

stereotype, multiplicity and more.
6 You can optionally create shortcuts to related elements of other diagrams.

To deploy an artifact to a target node
1 In the diagram Palette, choose the deployment button.
2 Drag-and-drop the deployment link from a node to an artifact.

To define parameters of an operation
1 Select the desired operation in an artifact.
2 In the Properties View, expand the General node and choose Parameters field.
3 Click the chooser button to open Add/Remove Parameters dialog box.
4 Click Add. This creates an entry in the parameters list.
5 Enter the parameter's name, type, multiplicity, default value, and direction. Note that parameter type can be

selected from the list of predefined types, or from the model.
6 Using the Add and Remove buttons, create the list of parameters.
7 Click OK when ready.

Related Procedures

Creating a Shortcut

Related Reference

UML 2.0 Deployment Diagrams

380

Working with Artifacts
An artifact represents a physical entity and is depicted in a diagram as a rectangle with the <<artifact>>
stereotype. An artifact may have properties that define its features, and operations that can be performed on its
instances.

Physically, the artifacts can be model files, source files, scripts, binary executable files, a table in a database system,
a development deliverable, a word-processing document, or a mail message.

A deployed artifact is one that has been deployed to a node used as a deployment target. Deployed artifacts are
connected with the target node by deployment links.

Tip: You can create complex artifacts by nesting artifact icons.

To add operation to an artifact
1 Right-click an artifact icon in the diagram.
2 Choose New Operation on the context menu.

After an operation is added, you can define its properties in the Properties View.

To define parameters of an operation
1 Select the desired operation in an artifact.
2 In the Properties View, expand the Common properties node and click the parameters field.
3 Click the Edit button to open the Select Parameters for Operation dialog box.
4 Click Add. This creates an entry in the parameters list.
5 Enter the parameter's name, type, direction kind, multiplicity, default value. Note that the parameter type and

direction kind can be selected from the list of predefined values.
6 Repeat steps 4–5 to create the list of parameters and click OK when you are finished.

To deploy an artifact to a target node
1 Click the deployment button in the Palette.
2 Click the element to be deployed. The valid source is highlighted.
3 Drag-and-drop the deployment link to a target node. The valid target is highlighted.

381

UML 2.0 Composite Structure Diagrams Procedures
In This Section

Creating a Port
How to create a port.

Creating a Referenced Part
How to create a referenced part.

Creating an Internal Structure for a Node
How to create an internal structure for a node.

Working with a Collaboration Use
How to work with a collaboration use.

Working with a Provided or Required Interface
How to work with the provided and required interfaces. These procedures are common to UML 2.0 Class,
Component and Composite Structure diagrams.

Working with Instance Specifications
Lists the steps for instantiating classifiers using the Properties View or the in-place editor.

382

Creating a Port

To create a port:
1 Choose the port icon on the Palette.
2 Click the target class or part.
3 Create as many ports as required.

Related Reference

UML 2.0 Composite Structure Diagrams

383

Creating a Referenced Part

To create a referenced part:
1 Open the Diagram View.
2 Do one of the following:

♦ Use the referenced part button on the diagram Palette.

♦ Right-click a target container and choose New Referenced part on the context menu.

♦ Select a part, open the Model Navigator, and check the option aggregated by reference.

Related Reference

UML 2.0 Composite Structure Diagrams

384

Creating an Internal Structure for a Node

To create an internal structure for a node
1 Choose the part icon on the diagram Palette.
2 Click the valid container (class or collaboration).
3 Repeat these steps to create as many participants as needed.

Tip: Choose the part icon on thePalette diagram while holding down the CTRL key. Each click on
a valid container produces a new part.

4 Link the collaborating parts by connectors.
5 Use the Properties View to set up the properties of the part.

Related Reference

UML 2.0 Composite Structure Diagrams

385

Working with a Collaboration Use

To create a collaboration use
1 On the Tools Palette, choose the Collaboration Use button.
2 Click the target container.
3 Specify the name of the Collaboration Use.

To link to a collaboration type
1 Select a Collaboration Use element.
2 Specify the type of Collaboration Use using one of the following methods:

♦ In the type field of the Collaboration Use in the Tools Palette, click the chooser button, and select the
collaboration, which the Collaboration Use instantiates, from the model.

♦ Next to the name of the Collaboration Use, insert a colon and the name of the collaboration, which the
Collaboration Use instantiates.

The type of collaboration use is now indicated next to its name.

To bind the roles (parts) of the different classifiers via the collaboration use
1 Create a collaboration use and define its type.
2 Create one or more parts in the collaboration that represents the type.
3 Right-click the target collaboration use and choose Bind new role on its context menu.
4 In the Select Destination dialog box that opens, choose the role to be bound in the target classifier.

A role link is now created from the collaboration use to the role in the target classifier. The role link is now marked
with the name of the role selected in the collaboration.

Note: Each role can be used for binding only once. With the next invocation of the Bind new role command, the list
of available roles no longer displays the ones previously used.

To define an owner
1 Right-click a collaboration use and choose Properties on its context menu.
2 In the owning classifier field of the Properties View, click the chooser button.
3 In the Select Owning Classifier dialog box, navigate to the owner class or collaboration and click OK.

A link is now created between the owner as supplier and the collaboration use as the client. The link is marked with
the <<occurrence>> label.

Related Reference

UML 2.0 Composite Structure Diagrams

386

Working with a Provided or Required Interface

To create a provided interface
1 Create class and interface node elements using the Palette buttons.
2 On the diagram Palette, click the Provided Interface button.
3 Click the client class and drag the mouse to the interface node.

To create a required interface
1 Create class and interface node elements using the Palette buttons.
2 On the diagram Palette, click the Required Interface button.
3 Click the client class and drag the mouse to the interface node.

Related Procedures

Changing the Appearance of Interfaces

Related Reference

UML 2.0 Class Diagrams
UML 2.0 Component Diagrams
UML 2.0 Composite Structure Diagrams

387

Working with Instance Specifications
According to the UML 2.0 specification, an instance specification can instantiate one or more classifiers. You can
instantiate a classifier using the instantiates property in the Properties View or the in-place editor.

To instantiate a classifier using the Properties View
1 Select an instance specification in your diagram.
2 In the Properties node of the Properties View, select the instantiates field.
3 Click the chooser button.
4 In the Choose Classifier for 'instantiates' property, select the classifiers from the available contents, using

the Add/Remove buttons.
5 Click OK to save your changes.

To instantiate a classifier using the in-place editor
1 Select an instance specification in your diagram.
2 Press F2 to open the in-place editor. Alternatively, click twice on the instance specification name.
3 Type the name of an existing classifier, delimited by a colon, next to the instance specification name. For

example, InstanceSpecifcation1:Class1.
4 Press Enter.

To define the features of an instance specification, you can insert slots into an instance specification element,
associate the slots with the attributes of the instantiated classifiers, set the value, and define the slot stereotype.

To add a slot to an instance specification element
1 Add an instance specification element to your diagram.
2 Right-click the instance specification element and choose New Slot on the context menu.

To associate a slot with a structural feature
1 Select a slot in an instance specification element.
2 Click the Properties tab of the Properties View.
3 In the defining feature field, select the attribute you want from the list of attributes owned by the classifiers,

which is instantiated by the instance specification (or their parents).

To set the slot value, do one of the following:
1 In the Properties View of the slot, select the value field, click the Editor button, and type the string in the Edit

property values editor, OR
2 Invoke the in-place editor for the slot and type the value next to the slot name, delimited by an equal sign.

388

Related Procedures

UML 2.0 Component Diagrams Procedures
UML 2.0 Composite Structure Diagrams Procedures
UML 2.0 Class Diagrams Procedures

389

Template Elements
This section describes how to create template elements in diagrams and define formal parameters.

In This Section
Creating Constraints
This topic describes how to create an OCL constraint.

Creating Generic Template Elements in LiveSource Projects
This topic provides how-to information about creating generic template elements in C++ and Java projects.

Creating Template Elements
This topic provides how-to information about creating template elements. This procedure is common for
UML 2.0 diagrams.

Defining Formal Parameters
This topic provides how-to information about adding formal parameters to templates. This procedure is
common for UML 2.0 diagrams.

Editing Constraint Expressions
How to edit a constraint expression.

390

Creating Constraints
You can create constraints for all elements of the UML 2.0 diagrams. To describe a constraint, you can use plain
text or OCL.

To create a constraint in a UML 2.0 diagram
1 Click the Constraint Link button on the diagram Palette and point to the model element that defines the context

of your constraint (such as Class, Attribute or Operation), then hold down the left mouse button and draw the
link to the place where you want to create the Constraint element.

2 Release the mouse button to insert the element.
The element displays with the in-place editor open.

3 Type the constraint expression, save your changes, and close the Constraint editor.
Tip: Alternatively, use one of the following methods:

♦ On the context menu of an element, choose New Linked Constraint and enter the constraint
expression.

♦ Use the Constraint and Constraint link buttons on the Tools Palette to place a constraint node on the
diagram and link it to the context element.

Related Concepts

About OCL Support in Together

391

Creating Generic Template Elements in LiveSource Projects
In this topic you will learn how to:

♦ Enable template specialization in a Java project

♦ Create a template specialization using the Properties View

♦ Create a template specialization using the Class by Template dialog.

To enable template specialization in a Java project
1 Select a Java project node in the Model Navigator.
2 On the main menu, choose Project Properties.
3 In the UML Template Specialization category of the Project Properties dialog, check the Enable template

specialization option.

To create a template specialization element using the Properties View
1 Create a class or interface in a diagram.
2 In the Properties View of the class, select the template parameters field.
3 Enter one or more parameters in the text area. Use commas to separate multiple parameters.

To create a template specialization element using the Class by Template dialog
1 Right-click on the diagram background and choose New Class by Template on the context menu.
2 In the Templates list, locate the Default Template <> template and click Finish.

Related Concepts

Template Elements and Generics Overview

392

Creating Template Elements
In this topic you will learn how to:

♦ Add a template signature to a templateable element

♦ Bind a templateable element to a template.

Note: These tasks are common for all UML 2.0 diagrams.

To create a template element using the Tools Palette
1 Add a template signature to a templateable element using the Template Signature button on the Palette and

clicking on the target model element in diagram. The template signature rectangle is added to the element.
2 Define formal parameters in the Formal Template Parameters dialog using the Add and Remove buttons.

Specify each parameter's name, metaclass and constraint. Use the Up and Down buttons to define the order
of parameters in the template signature.

3 Bind a templateable element to a template using the Template Binding button and drawing a link from a
template to the template signature.

You can achieve the same goal using the Properties View.

To create a template element using the Properties View
1 In the Properties View of the selected model element, set the isTemplate field to true.
2 Click the template binding field to open the Select Template Signature dialog.
3 In the dialog, select the desired templates to be bound to the element. Use the Add and Remove buttons to

make up the list of bound templates. Click OK.

Related Concepts

Template Elements and Generics Overview

Related Procedures

Defining Formal Parameters

Related Reference

Selection Manager

393

Defining Formal Parameters
Note: This task is common for all UML 2.0 diagrams.

To define formal parameters of a template using the Properties View
1 Select a template signature in the diagram.
2 In the Properties View, click the formal parameters field.
3 In the Formal Template Parameters dialog that opens, define formal parameters using the Add and

Remove buttons. Specify each parameter's name, metaclass and constraint. Use the Up and Down buttons to
define the order of parameters in the template signature.

This can also be accomplished using the Properties View.

Related Concepts

Template Elements and Generics Overview

Related Procedures

Creating Template Elements

Related Reference

Selection Manager

394

Editing Constraint Expressions
Constraint expressions are represented in plain text or in the OCL language. You can use the Editor view or the
OCL tab of the Properties View to create or modify the constraint body.

To edit a constraint expression in the Editor view
1 Double-click a constraint element. The constraint test opens in its own tab of the Editor view.
2 In the Language drop-down list in the upper-right corner of the view, select the desired language of the

expression.

Note: If OCL is selected, the OCL editor provides syntax control and error highlighting. A red or
green mark to the right indicates the validity of the OCL expression.

3 Apply changes.

To edit a constraint expression in the Properties View
1 Select a constraint element in diagram.
2 In the Properties View, select the OCL tab.
3 In the language field, select the desired language of the expression.
4 In the body field, enter the expression in the text area, or click the Edit button and enter text in the Enter

constraint dialog box.

Tip: Alternatively, select a constraint element and press F2. Edit the constraint in the editor.

Related Concepts

About OCL Support in Together

Related Procedures

Creating Constraints

Related Reference

Diagram View

395

Together UML 1.4 Diagrams
This section provides how-to information on using Together UML diagrams.

In This Section
UML 1.4 Class Diagrams Procedures
Lists the UML 1.4 Class Diagrams Procedures.

UML 1.4 Use Case Diagrams Procedures
Lists the UML 1.4 Use Case Diagrams Procedures.

UML 1.4 Interaction Diagrams Procedures
Lists the UML 1.4 Interaction Diagrams Procedures.

UML 1.4 Statechart Diagrams Procedures
Lists the UML 1.4 Statechart Diagrams Procedures.

UML 1.4 Activity Diagrams Procedures
Lists the UML 1.4 Activity Diagrams Procedures.

UML 1.4 Component Diagrams Procedures
Lists the UML 1.4 Component Diagrams Procedures.

UML 1.4 Deployment Diagrams Procedures
Lists the UML 1.4 Deployment Diagrams Procedures.

396

UML 1.4 Class Diagrams Procedures
In This Section

Changing the Appearance of Compartments
About changing the appearance of the class compartments in diagrams.

Creating and Editing Constructors
Lists the steps for adding a constructor to a class and then editing the constructor.

Creating Class By Template
How to create an element by template.

Expanding or Collapsing Compartments
Lists the steps for expanding or collapsing compartments for members.

Extending and Implementing Classes and Interfaces
Describes how to extend a class or implement an interface.

Hiding and Showing Members
Describes the features of the Hide / Show command.

Instantiating a Classifier
How to instantiate a classifier.

Setting Abstract or Final for a Class or Interface
Lists the steps for setting Abstract or Final for a class or interface.

Setting Visibility for a Class or Interface
How to define visibility for a Java class or interface.

Setting Visibility for Members of a Class or Interface
Describes how to set the visibility modifiers for a class or interface.

Showing Different Modeling Views
Describes the different options for changing your modeling views.

Showing Interfaces as Small Circles (lollipops)
Lists the steps for displaying interfaces as circles.

Working with a Constructor
How to create a constructor and define constructor parameters.

Working with a Field
How to rename a field, and how to define its visibility and stereotype.

Working with a Relationship
How to work with a relationship link (common for UML 1.4 and 2.0).

Working with Association classes and n-ary associations
How to create and delete association classes and n-ary associations.

Working with Inner Classes
Lists the steps for creating inner classes.

397

Changing the Appearance of Compartments
You can collapse or expand compartments for the different members of class, interface, and package elements. Use
the Preferences dialog to set viewing preferences for compartment controls. Adding compartment controls is
particularly useful when you have large container elements with content that does not need to be visible at all times.

To show compartment controls
1 On the main menu, choose Window Preferences.
2 Open the Modeling View Management page.
3 Check the Always show Attributes and Operations compartments option.

To collapse or expand compartments
1 Select the class (or interface) on the diagram.
2 Click the “+” or “-” in the left corner of the compartment.

Related Reference

UML 2.0 Class Diagrams
UML 1.4 Class Diagrams

398

Creating and Editing Constructors

To add a constructor to a class
1 Right-click the class.
2 Select New > Constructor from the context menu.

You can edit the constructor by using in-place editing or by using its Properties view.

Use drag and drop to move constructors between class elements on the diagram. The constructor name
automatically updates to reflect the current class.

399

Creating Class By Template
Use the Class By Template button on the Palette diagram to implement source code constructions or solutions in
your model.

Note: This feature is available in the implementation projects only.

To create a class by template
1 Select Class by Template in the Tools Palette.
2 Click on the diagram background. The Apply template dialog box opens.
3 Select the appropriate template from the Templates tree.
4 Set each value field within the Parameters area, or click Finish to apply default values.

Related Procedures

Apply Template Wizard

400

Expanding or Collapsing Compartments

To expand or collapse compartments for members
1 Select the class or interface.
2 Click the "+" or "-" in the section's upper left corner.

Related Procedures

Hiding and Showing Members

401

Extending and Implementing Classes and Interfaces
Use the Properties View or the Generalization/Implementation Link button to extend a class or implement an
interface. A generalization/implementation link displays between the two elements for classes/interfaces located in
the same package or diagram. However, for classes and interfaces that reside in the different packages, the base
class name displays in the upper right corner of the corresponding class. You must use the Properties View to
designate a base class if the base class (or interface) resides in a different package than the extending/implementing
class.

A class may implement more than one interface. To show this on the diagram, draw Generalization/Implementation
links from the class to each interface. You may also indicate this by updating the implements property for the class
in the Properties View.

To choose an extending class or implement an interface using the Properties View
1 Right-click on the class.
2 In the Properties View, select the extends field or implements field.
3 In the Model elements tab, select the class or interface, and click Add.
4 Click OK.

402

Hiding and Showing Members
You can use the Hide / Show command for class or interface elements. This command gives you a more granular
control over the class or interface element's hidden members.

It is also possible to use the Show Hidden command accessible via the diagram context menu to open the Show
Hidden dialog. For more information on using the Show Hidden dialog and Show Hidden command via the diagram
context menu, see Hiding and Showing Model Elements. Note that this topic is specific to using the Show Hidden
command available on the class and interface element context menu.

To hide a member of a class or interface element
1 Select the member on the diagram. You can select more than one at a time by using CTRL+Click.
2 Open the context menu for your selection, and choose Hide. The selected members are hidden from the class

or interface element.

To show the hidden members
1 Select the class or interface containing the hidden members and right-click to open the context menu.
2 Choose Hide / Show Reveal hidden members from the context menu. All of the previously hidden members

are displayed on the class or interface element.

The Reveal hidden members command and the Hide / Show command provide the following options:

Option Description

Attributes Selecting Attributes from the submenu hides only the attributes of the class. The Hide / Show command for
Attributes works as a toggle. To redisplay hidden attributes, right-click the class where the attributes are
hidden, and select Hide / Show Attributes from the context menu.

Operations Selecting Operations from the submenu hides only the operations of the class. The Hide / Show command
for Operations works as a toggle. To redisplay hidden operations, right-click the class where the operations
are hidden, and select Hide / Show Operations from the context menu.

Properties Selecting Properties from the submenu hides only the properties of the class. The Hide / Show command
for Properties works as a toggle. To redisplay hidden properties, right-click the class where the properties
are hidden, and select Hide / Show Properties from the context menu.

Inner Classes Selecting Inner Classes from the submenu hides only the inner classes of the class. The Hide / Show
command for Inner Classes works as a toggle. To redisplay a hidden inner class, right-click the class where
it was hidden, and select Hide / Show Inner Classes from the context menu.

Inner Interfaces Selecting Inner Interfaces from the submenu hides only inner interfaces of the class. The Hide / Show
command for Inner Interfaces works as a toggle. To redisplay a hidden inner interface, right-click the class
where it was hidden, and select Hide / Show Inner Interfaces from the context menu.

All Selecting All from the submenu hides attributes, operations, properties, inner classes, and inner interfaces
of the class. The Hide / Show command for All works as a toggle. To redisplay hidden class elements, right-
click the class where the elements are hidden, and select Hide / Show All from the context menu.

Related Procedures

Hiding and Showing Model Elements

403

Instantiating a Classifier
You can create an object that instantiates a class or interface from the same project or from a referenced project.
You can create such links by using the Properties View or by using a Dependency link.

To instantiate a classifier
1 Select an object in a class diagram.
2 In the Properties View of the object, choose the Instantiates field.
3 Click the Chooser button. The Choose Type to Instantiate dialog box opens.
4 In this dialog box, choose a classifier (class or interface).

Tip: Alternatively, draw a Dependency link from this object to a classifier.

Related Procedures

Working with Instance Specifications

404

Setting Abstract or Final for a Class or Interface

To set Abstract or Final for a Class or Interface
1 From the Diagram editor, right-click the class or interface.
2 Select Modifiers from the context menu.
3 Choose either Final or Abstract.

Note: Setting a class modifier to Abstract italicizes the class name on the diagram.

405

Setting Visibility for a Class or Interface

To define the visibility modifier for a class or interface
1 In the Diagram Editor , right-click a class or interface.
2 Select Properties on the context menu.
3 In the Properties tab, check the public option to set the public modifier.

406

Setting Visibility for Members of a Class or Interface
You can set visibility modifiers for members of a class or interface by using the context menu for each element, or
by using the Properties View.

Visibility modifiers include:

♦ public

♦ private

♦ protected

♦ package local

To set visibility for a member
1 Right-click a member in the Diagram editor.
2 Choose Modifiers on the context menu and select from Public, Protected, Private, or Package Local.

Tip: Values such as visibility can also be set by double-clicking the member on the diagram and entering Java
format directly into the in-place editor: private int attr1, for instance, and -attribute:int=10 would
set an attribute's initial value to 10.

Alternatively, use the Properties view for the member
1 Select the member on the diagram. The Properties View displays the associated properties for the member

selected.
2 Use the visibility field drop-down list in the Properties View.

Note: You can also use the Properties view to designate members as static.

407

Showing Different Modeling Views
By default, the Diagram Editor reflects the classic UML modeling view. Visibility modifiers are represented on the
diagram in the following ways:

♦ static: members are underlined.

♦ public: members have a '+' symbol before the name.

♦ private: members have a '-' symbol before the name.

To show icons on class and package diagrams
1 From the main menu, select Window Preferences. The Preferences dialog opens.
2 From the options list on the left, expand Modeling node, and select View Management.
3 In the Show Icons for section, define the following options to better distinguish metaclasses of elements with

similar looks:

♦ Element shown as a label inside another element

♦ Diagrams

♦ Classifier shown as Class

Refer to the View Management Preferences for detailed description of these options.

To show visibility modifiers
1 From the main menu, select Window Preferences. The Preferences dialog opens.
2 From the options list on the left, expand Modeling node, and select View Management.
3 In the Detail level section, click the Implementation radio-button.
4 Apply changes.

Related Reference

View Management Preferences

408

Showing Interfaces as Small Circles (lollipops)
Interfaces can be represented as rectangles or small circles ("lollipops") on your diagrams. You can change the
representation of the interface element in your View Management preferences.

Note: Interfaces shown as small circles do not show their members in the Diagram editor. Instead, use the Model
Package Explorer or Model Navigator to view the members.

To show an interface as a circle
1 Choose Window Preferences from the main menu. The Preferences window opens.
2 Expand Modeling and select View Management.
3 Check the Show Simple Java Interfaces option.
4 Click OK to close the dialog and apply the changes.

409

Working with a Constructor
You can create as many constructors in a class as needed using the New Constructor command of the context
menu of a class.

In implementation projects, each new constructor is created with its unique set of parameters. In addition to creating
parameters automatically, you can define the custom set of parameters using the Properties View.

In design projects, a constructor is created as an operation with the <<create>> stereotype.

Tip: You can move, copy and paste constructors and destructors between the container classes the same way as
you would do the other members.

To define the constructor parameters
1 Select a constructor in a class.
2 In the Properties View, click the Browse button in the parameters field.
3 In the Select Parameters for Operation dialog that opens, click Add. A parameter is added with the default

values. Edit the values as required, or use the defaults.
Use the Add and Remove buttons to make up the list of parameters, and click OK when you are finished.

Tip: Alternatively, type the list of parameters in the text area. Use a comma as a delimiter.

Related Reference

UML 2.0 Class Diagrams
UML 1.4 Class Diagrams

410

Working with a Field
You can edit members using the Properties View, or the in-place editor of the Diagram Editor or Model Navigator.
In the implementation projects, you can also use the source code editor to modify the members. In this section you
will learn how to:

♦ rename a field

♦ define a visibility modifier

♦ define a stereotype

♦ define modifiers, initial values, and associated objects

♦ handle multi-declarations

To rename a field
1 Choose a field.
2 Enter the new name in the in-place editor of the Diagram Editor or Model Navigator, or use the name text field

in the Properties View.

To define the visibility modifier
1 Choose a field.
2 Enter the visibility symbol in the in-place editor in the Diagram Editor , or select one from the visibility combobox

in the Properties View.

To define the stereotype of a field
1 Choose a field.
2 Use the in-place editor in the Diagram Editor , or use the stereotype combobox of the Properties View.

To define modifiers, initial values, associated objects and so on
1 Choose a field.
2 Use the Properties View or the source code editor (for implementation projects).

When you do this, the model and the source code are kept in sync.

Note: You can type the Value property, an equal sign (=), and the Name property (for example, EXCLUDE=2) when
adding an Enum literal with the inplace editor.

To use multi-declarations in the source code, consider the following:
1 In the source code of the Java and IDL projects, it is possible to declare several fields in one line. This notation

is represented in the diagram as a number of separate entries in the Fields section in a class icon.
2 You can rename the fields, change modifiers, set initial values and so on, and all modifications will be applied

to the respective field in the diagram icon.

411

3 You can copy and move such fields in a diagram (using the context menu commands or drag-and-drop), and
the pasted field will appear in the target container separately.

In C++ projects, editing multi-declarations in the Diagram Editor or Properties View is not allowed.

Related Procedures

Navigating between the Tree View, Diagram, and Source Code
Adding a Single Model Element to a Diagram

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

412

Working with a Relationship
Refer to the Getting Started Procedures to learn how to draw a link. This section describes how to change the link
type and properties.

To change the type of an association link
1 Select an Association Link on the diagram.
2 In the Properties View, select the Link tab and click the associates type field.
3 Choose the link type (association, aggregation, or composition) from the drop-down list.

To set the directed property of an association link
1 Select the association link that you want on the diagram. The properties for the link appear in the Properties

View.
2 In the Link tab of the Properties View, select the directed field.
3 Click the drop-down arrow and select the value for this Boolean property.

Related Procedures

Getting Started Procedures
Creating a Simple Link
Changing Type of an Association Link

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

413

Working with Association classes and n-ary associations
Association classes appear in diagrams as three related elements:

♦ Association class itself (represented by a class icon)

♦ N-ary association class link (represented by a diamond)

♦ Association connector (represented by a link between both)

To create an association class
1 On the diagram Palette, select the Association Class button.
2 Click the diagram background. This adds a regular class icon for the association class, connected with the

diamond icon that represents the Association Class Link Aspect.
3 Create participant classes.
4 Using the Association End button, connect the diamond icon with the participant classes.

The source code of an association class now contains appropriate tags for the association class itself, and for each
of the association end classes.

To delete an association class
1 Right-click an association class or its diamond icon.
2 Choose Delete on the context menu.

The whole association class construct is now deleted from the diagram.

Related Reference

Class Diagram Relationships
UML 2.0 Class Diagrams
UML 1.4 Class Diagrams

414

Working with Inner Classes
Both inner classes and inner interfaces in diagrams display within their own compartment field within the class. To
create an inner class, do one of the following:

When the class already exists
1 Drag it over the target class.
2 Drop it.

Using the context menu
1 Right-click the parent class.
2 Select New Inner Class from the context menu.

Using Cut, Copy, and Paste
1 Use the clipboard operations to either cut or copy an existing inner class.
2 Select the parent class.
3 Use the clipboard operations to paste the selected class into the parent class.

Tip: Classes do not keep the same visibility after they are removed from the parent class.

415

UML 1.4 Use Case Diagrams Procedures
In This Section

Creating an Extension Point
How to create an extension point.

416

Creating an Extension Point

To create an extension point
1 Right-click the use case element.
2 Choose Add Extension Point on the context menu.
3 Type in a name.

Related Reference

UML 1.4 Use Case Diagrams
UML 2.0 Use Case Diagrams

417

UML 1.4 Interaction Diagrams Procedures
In This Section

Adding a Conditional Block
How to add a conditional block.

Branching Message Links
How to branch message links.

Converting Between UML 1.4 Sequence and Collaboration Diagrams
How to convert between sequence and collaboration diagrams.

Creating Slots
How to create a slot and define its feature and value.

Generating an Incremental Sequence Diagram
How to generate an incremental sequence diagram.

Refining Collaboration Diagrams
How to refine collaboration diagrams.

Refining Sequence Diagrams
This section describes techniques that enable you to present your sequence diagram in the most
comprehensible way.

Roundtrip Engineering with Sequence Diagrams
This section demonstrates how to create and edit a sequence diagram that generates source code in a UML
1.4 project.

Using AutoFix
Provides the steps for automatically synchronizing changes using the AutoFix command.

Using AutoLink Labels
The AutoLink Labels command displays a dialog if there are operations on the diagram that were previously
saved and unlinked using the Autofix dialog.

Working with a UML 1.4 Message
About working with UML 1.4 messages.

Working with Classes in Sequence/Collaboration Diagrams
Provides techniques for creating classes, linking and unlinking classes, and showing classes in sequence
or collaboration diagrams.

Working with Operations in Sequence/Collaboration Diagrams
How to create, link, unlink and show operations while working with sequence or collaboration diagrams.

418

Adding a Conditional Block
You can create one or more statement blocks on an activation bar of an object. The following statement blocks are
available:

♦ If

♦ Else

♦ Else-If

♦ For

♦ While

♦ Do

♦ Try

♦ Catch

♦ Finally

♦ Switch

Note: When the statement blocks are created, you can update them using the Properties View or the in-place editor.
The available properties fields depend on the type of the statement block. For example, the type field is not
available for the statement blocks switch, finally and catch.

To add a statement block to the activation bar
1 Right-click an activation bar on a sequence diagram.
2 Choose New on the context menu.
3 On the submenu, select a conditional block.
4 In the in-place editor that opens, enter the body of the block statement, and press ENTER.

To edit a conditional block
1 Select a statement block in the diagram.
2 Open the Properties View.
3 Modify the editable fields as required. For example, select a new type of the statement block from the drop-

down list in the type field.

Related Reference

UML 1.4 Interaction Diagrams

419

Branching Message Links
This section describes how to branch messages that start from the same location on the lifeline.

To branch a message link with the previous one
1 Select a message link on the sequence diagram.
2 Drag the message source to the source of the message you would like to branch with.
3 Drop the message source when a green circle mark appears.

To remove branching
1 Select the message link that you want to unbranch, and grab the bending point at the message number.
2 Drag and drop the message to the new source.

Related Procedures

Working with a UML 1.4 Message

Related Reference

UML 1.4 Interaction Diagrams

420

Converting Between UML 1.4 Sequence and Collaboration
Diagrams
You can convert between sequence and collaboration diagrams. However, when you create a new diagram, you
must specify that it is either a sequence diagram or a collaboration diagram.

To convert between sequence and collaboration diagrams
1 Right-click the diagram background.
2 If the diagram is a sequence diagram, choose Show as Collaboration on the context menu. If the diagram is

a collaboration diagram, choose Show as Sequence.
3 Repeat this process to switch back and forth.

After you convert from a sequence diagram to a collaboration diagram for the first time, or if you have added new
objects to the sequence diagram between conversions, it is recommended that you perform a full layout on the
collaboration diagram.

Related Reference

UML 1.4 Interaction Diagrams

421

Creating Slots
To define the features of an object, you can insert slots into the object element, associate the slots with the attributes
of the instantiated classifiers, and set values.

To add a slot to an object element
1 Add an object element to your diagram.
2 Right-click the object element on your diagram, and choose New Slot on the context menu.

To associate a slot with a structural feature and define the slot's value
1 Select a slot and open its Properties View.
2 In the defining feature field, type a value in a String format.
3 In the value field, enter the desired string.

422

Generating an Incremental Sequence Diagram
You can generate incremental sequence diagrams from a previously generated sequence diagram. In some cases,
you can generate a sequence diagram with a low nesting value, such as 3 or 5. The nesting value limits how deep
the parser traverses the source code calling sequence.

To generate an incremental sequence diagram from a previously generated sequence
diagram
1 After you review the sequence diagram, you may decide that you want to see additional objects and messages

that are currently not shown on the diagram because of the nesting value constraint.
2 In this case, select the Generate Sequence Diagram command from the context menu of an activation block.

The nested messages and objects calling from that method are displayed on the diagram.

Related Procedures

Roundtrip Engineering with Sequence Diagrams

Related Reference

UML 1.4 Interaction Diagrams

423

Refining Collaboration Diagrams
This section provides techniques for refining collaboration diagrams. For information on sequence diagrams, see
Refining Sequence Diagrams.

When working with the collaboration diagrams, consider the following:

♦ When you draw a message between objects, a generic link line displays between the objects, and a list of
messages is created above it. The link line is present as long as there is at least one message between the
objects.

♦ As you add messages, they display in time-ordered sequence from top to bottom of the messages list. You
can select messages and edit their properties in the message Properties View just as you do in a sequence
diagram.

♦ The collaboration diagram adds the capability of showing relationships between objects. In addition to the
default link, you can add links to show association and aggregation relationships. These links are not available
in the sequence diagram.

♦ Together allows you to quickly convert between sequence and collaboration diagrams. However, whenever
you create a new diagram, you must specify that it is either a sequence or collaboration diagram, and Together
tracks it as such. The diagram displays in the Model Package Explorer and Model Navigator as the type of
origin, and opens in that view. For example, if you create a collaboration diagram, it will always display in the
Model Package Explorer and Model Navigator and open in the Diagram editor as a collaboration diagram.
However, you can view it as a sequence diagram.

♦ By default, message links are represented on a collaboration diagram as having an atomic delivery. This
indicates the duration required to send the message is atomic, which means that nothing else can happen
during the message transaction. If the message link requires some time to arrive, during which something else
can occur, then designate the message link as non-atomic using the Non-atomic delivery command.

To convert between sequence and collaboration diagrams
1 Right-click on the diagram background.
2 From the context menu, select Show as Sequence.
3 Repeat this process to toggle between the two diagrams.

Note: You can also switch between diagrams using the context menu for the diagram in the Model Package Explorer
or Model Navigator.

To create a message from an object back to itself
1 Click on the link button on the diagram's toolbar.
2 Click on the object where you want the message to appear.
3 Drag the link away from the object.
4 Drag the link back to the object and drop when the object is highlighted.

To associate a self-message link with an operation in its super class
1 Create a message link between two objects. The object that receives the message must be associated with a

class.

424

2 Right-click the link and select Choose Operation on the context menu. The operations of the recipient object's
class are listed in the drop-down list.

3 Select the operation and click OK. This renames the message link to the operation's name.

To create a message link that calls an operation
1 Create a message link between two objects. The object that receives the message must be associated with a

class.
2 Right-click the link and select Choose Operation on the context menu. The operations of the recipient object's

class are listed in the drop-down list.
3 Select the operation and click OK. This renames the message link to the operation's name.

To designate a message link as non-atomic
1 Right-click on the link.
2 Select Non-atomic Delivery from the context menu.

Related Procedures

Refining Sequence Diagrams

425

Refining Sequence Diagrams
This section describes techniques that enable you to present your interaction diagram in the most comprehensible
way:

♦ Switching between sequence and collaboration diagrams. Together allows you to quickly convert between
sequence and collaboration diagrams. Whenever you create a new diagram, you must specify that it is either
a sequence or collaboration diagram, and Together tracks it as such. The diagram displays in the Model
Navigator as the type of origin, and opens in that view. For example, if you create a sequence diagram, it will
always display in the Model Navigator and open in the Diagram Editor as a sequence diagram. However, you
can view it as a collaboration diagram.

♦ Creating a Message-to-self.

♦ Specifying a Default Return Link. To manually draw a return link, use the Palette of the sequence diagram.
To avoid drawing a default return link, use the Properties View to create a default return link for you.

♦ Setting Creation Messages. Objects display with a default lifeline when placed on the diagram. Their tops
align vertically. If you draw a message link to an object and then check the creation type of the message, the
created object will move downward to show that it exists at a point later in time from its creator.

♦ Specifying Non-Atomic Delivery. By default, message links are drawn on the diagram horizontally. This
indicates the duration required to send the message is atomic, which means that nothing else can happen
during the message transaction. If the message link requires some time to arrive, during which something else
can occur, then designate the message link as non-atomic using the Non-atomic delivery command.

♦ Reordering and Moving Message Links. To change the sequential order of messages, you can use the
drag-and-drop technique, or the Properties View.

♦ Adjusting the Size of Object Lifelines. You can increase or decrease the length of an object's lifeline.

♦ Changing the Order of a Sequence Diagram. You can change the order of object lifelines while preserving
the messages that exist between these lifelines.

♦ Setting a Destruction Message. Together indicates the destruction of a created object by rendering a bold
X on a diagram.

♦ Nesting messages. You can nest messages by originating message links from an activation icon. The nested
message inherits the numbering of the parent message. For example, if the parent message has the sequence
number 1, its nested message has a sequence number 1.1.

To toggle between sequence and collaboration diagrams
1 Right-click on the diagram background.
2 From the context menu, select Show as Collaboration.
3 Repeat this process to toggle between the two diagrams.

Note: You can also switch between diagrams using the context menu for the diagram in the Model Package Explorer
or Model Navigator.

To create a message from an object back to itself
1 Open the object.
2 Click the object's lifeline at the point where you want the message to appear.

426

To associate a self-message link with an operation in its super class
1 Right-click the link.
2 Choose Select Overridden Operation on the context menu.

To specify a default return link
1 Select the message link on the sequence diagram. The Properties View displays the associated link properties.
2 In the Properties View, select the return message field. By default, this field displays false.
3 To display a default return link, click the drop-down arrow for the return message field, and select true.

To set the creation type for a message link
1 Right-click the link.
2 Select Type Creation from the context menu.

To designate a message link as non-atomic
1 Right-click the link.
2 Select Non-atomic Delivery from the context menu.

To reorder message links
1 Select a link.
2 Drag the message link up or down along the lifeline. The sequence numbers of the message links are

automatically updated. Alternatively, use the sequence number property of a link in the Properties View to
reorder message links.

Note: If you select multiple message links (pressing the CTRL key), the links selected are moved with their
increments intact.

Note: Moving a creation message below a second message pointing to the same object removes the creation type
from the message. Moving a destruction message above another message pointing to the same object
removes the destruction type from the message.

To change the size of the object lifeline
1 Select the bottommost message of the lifeline.
2 Drag the message link upward or downward.

To change the order of the object's lifelines
1 Select the object.
2 Drag the object horizontally to the position that you want.

427

Note: You cannot move Objects vertically along the Y-axis except as described in "Adjusting the Size of Object
Lifelines" above.

To set the destruction type for a message link
1 Right-click the link.
2 Select Type Destruction from the context menu.

To create nested messages
1 Click the activation bar of the message link.
2 Create a new link originating from the activation bar.

Note: It is also possible to create message links back to the parent activation.

Related Procedures

Refining Collaboration Diagrams

428

Roundtrip Engineering with Sequence Diagrams
This section demonstrates how to create and edit a UML 1.4 sequence diagram that generates source code. To
generate source code from a sequence diagram, you will:

1 Create a project and class that contains the operation that you want
2 Generate a sequence diagram from the main method
3 Create source-generating elements on the sequence diagram
4 Create a message
5 Generate source code for the sequence diagram

To create a project and class
1 Create a UML 1.4 Java modeling project, and add a new class diagram.
2 Create a new class on the diagram.
3 Right-click on the class, and choose New Operation on the context menu. The in-place editor activates.
4 Create an operation. For example, add a main class method by entering the following code in the in-place editor:

main(args: String[]):void
5 Press ENTER. The new main() method is created.

To generate a sequence diagram from the main method
1 Right-click the main method, and choose Generate Sequence Diagram from the context menu. The Generate

Sequence Diagram wizard is displayed.
2 Click Next, accepting the default settings for the first page of the wizard.
3 Click Finish, accepting the default settings for the second page of the wizard. The sequence diagram opens in

a new diagram tab of the Diagram Editor .

Tip: By default, the generated diagram gets the name [Class_name].[method_name]

To create source-generating elements on the sequence diagram
1 Right-click the activation rectangle of message #1, and choose New For Block from the context menu.
2 The in-place editor is activated. Using the in-place editor, enter the following code: int i = 0; i < 4; i+

+
3 The label displays on the activation bar as: for(int i = 0; i < 4; i++)
4 Add an object to the sequence diagram. Click the Object button on the Palette, and click the diagram to create

a new object with the name Frame.
5 Right-click the frame object, and choose Select Class More from the context menu. The Select Class dialog

box is displayed.
6 In the Model elements list, expand the following nodes: libraries > javax > swing. Select JFrame from the

list, and click Add>> .
7 Click OK to close the dialog. The name of the selected class is displayed on the frame object.

429

To create messages on a sequence diagram
1 Draw a message link from the for(int i = 0; i < 4; i++) statement block to the lifeline of the Frame

object. Message Link 1.1 is created.

Note: All of the messages created in the following steps should also have the same source and
destination.

2 Right-click Message Link 1.1, and choose Select Operation from the context menu. Select the JFrame
constructor (JFrame:void) from the list. The message label becomes: 1.1: <constructor>()//
Message Link1. The message changes visually to the creation type. Note that the message link now points
to the frame object, which means that the object is being created.

3 Draw a new message. Its label is Message Link 1.2. Right-click the message link, and choose Select
Operation More from the context menu. The Select Operation dialog is displayed. Expand the JFrame
node, scroll through the list, and select setDefaultCloseOperation(int):void. Click OK. The message
label becomes: 1.2:setDefaultCloseOperation(int):void //Message Link2

4 In this step, we specify the parameters used on invoking an operation in the source code. These arguments
can be entered in the arguments field in the Properties View of a message link.
In the arguments field of the Properties View of the message 1.2, enter JFrame.EXIT_ON_CLOSE. The
message label becomes: 1.2: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE):void //
Message Link2

5 Draw Message Link 1.3. Similar to Step 3, use the Select Operation dialog (Select Operation More), expand
the Component node, and select the setSize(int,int):void method. In the arguments field of the
Properties View enter 600,400. The message label becomes: 1.3: setSize(600,400):void //
Message Link3

6 Draw Message Link 1.4. Use the Select Operation dialog, expand the Component node, and select the
setLocation(int,int):void method. Invoke the in-place editor for the message, and enter (50*i,
50*i) after the closing curly brace. The message label becomes: 1.4: setLocation(50*i,
50*i):void //Message Link4

7 Draw Message Link 1.5. Using the Select Operation dialog, expand the Window node, and select the show
()method from the list. The message becomes: 1.5:show():void //Message Link5

To generate implementation code for sequence diagram
1 Right-click the background of the sequence diagram, and choose Generate Implementation from the context

menu. The first page of the Sequence diagram refactoring wizard is displayed. Warning messages display, if
applicable. Click Next to display the second page of the wizard.

2 The second page of the wizard displays changes that are necessary to perform refactoring. Notice the sections
on the page highlighting the original source code to be replaced and the refactored source code to replace it.
Click Finish.
Open the implementation code of the Class1 in the Editor. Message labels, for which implementation code has
been generated, are displayed in bold on the diagram. If code generation fails for certain messages, those
messages are not displayed in bold.

3 On the sequence diagram, double-click one of the message links displayed in bold, and observe that the Editor
scrolls to the point of appropriate method invocation.

4 In the Editor, add an import statement for javax.swing.

Related Reference

UML 1.4 Interaction Diagrams

430

Using AutoFix
Together automatically synchronizes changes between sequence/collaboration diagrams and class diagrams. Most
problems on the sequence/collaboration diagrams will be highlighted on the diagram in red.

Red highlighting may not show every problem with a sequence/collaboration diagram. The AutoFix command runs
a more comprehensive check to identify problems that may not be highlighted. Use the AutoFix command to resolve
such issues.

The AutoFix command provides a dialog that describes any problems found. Select the problem to correct, and use
the options listed in the "Available Solutions" list to fix the problem.

To use the AutoFix command
1 Right-click the background of a sequence or collaboration diagram, and select AutoFix. The Solve

Problems dialog box is displayed.
2 A description of the problem is displayed in the list on the left. Select the problem from the list. The Solution

Description field and Available Solutions field display appropriate descriptions and solutions.
3 Select an available solution from the list. For example, choose Select Method from the list.
4 Click Select Method to continue. The Select Operation dialog box is displayed.
5 Select an operation to link, and click OK to close the dialog.
6 Under Solution Actions, click Accept.
7 Click Finish.

431

Using AutoLink Labels
The AutoLink Labels command displays a dialog if there are operations on the diagram that were previously saved
and unlinked using the Autofix dialog.

For example, if you have a message linked to an operation in a class, but you decide to delete the operation from
the class, the sequence/collaboration diagram link becomes highlighted in red.

To correct this problem
1 Right-click the diagram background, and select AutoFix. The Solve Problems dialog is displayed.
2 In the dialog, select Unlink and Save Text.
3 Click Accept Solutions, and click Finish. Operations that are saved and unlinked are no longer highlighted in

red on the sequence/collaboration diagram. They are enclosed in single quotes.

Later, you may decide to relink the message to a new operation.

To relink a message to a new operation
1 Right-click the diagram background, and select AutoLink Labels. The Convert Labels to Operations dialog is

displayed.
2 Select the appropriate message to link from the list on the left.
3 Choose one of the actions from the Available Solutions list. For example, choose "Select Method" from the list.
4 Under Solution Actions, click Select Method. The Select Operation dialog is displayed.
5 Select an operation, and click OK.
6 Click Finish. The diagram is updated linking the message to the selected operation.

Related Procedures

Using AutoFix

432

Working with a UML 1.4 Message
This section describes techniques for working with messages in Sequence and Collaboration diagrams. Although
the two diagram types are equivalent, the techniques for dealing with messages differ.

In a Collaboration diagram, all messages between the two objects are displayed as a generic link line, and a list of
messages is created above it. The link line is present as long as there is at least one message between the objects.
Messages display in time-ordered sequence from top to bottom of the messages list. In addition to the message
links, you can add links that show association and aggregation relationships. These links do not display if you view
the diagram as a sequence diagram.

When you draw messages between objects in a sequence diagram, each message is represented by its own link
line. Messages in sequence diagrams have more editable properties than messages in collaboration diagrams.

In this section you will learn how to
1 Create a self message
2 Reorder a message link
3 Specify the creation of an object with a message
4 Specify the destruction of an object with a message
5 Specify a return link by using the Tool Palette (Toolbox)
6 Specify a return link by using the Object Inspector (Properties Window)

To create a self message
1 Click the Self Message button on the Palette.
2 For a Sequence diagram, click the lifeline of the object at the point where you want the message to appear.

Clicking the object places the message-to-self first on the lifeline.
For a Collaboration diagram, click the object.

To reorder a message link
1 Open a diagram.
2 To reorder messages, perform one of the following actions:

♦ Drag message links up and down the object lifeline in the Diagram Editor . Reordering automatically
updates the message link numbers.

♦ Change the Sequence Number field in the Properties View.

♦ In the Diagram Editor , use the in-place editor to change the sequence number.

To specify the creation of an object with a message
1 Select a message link in the Sequence diagram.
2 In the Properties View of the message link, click the Creation field.
3 Choose True from the list box.

433

The message link points to the recipient object icon rather than to its lifeline. The created object moves downward
along the lifeline to show that it exists at a point later in time from its creator.

By default, the Creation property is set to False in the Properties Window.

To specify the destruction of an object with a message
1 Select a message link in the Sequence diagram.
2 In the Properties View of the message link, click the Destruction field.
3 Choose True from the list box.

The object is destroyed.

By default, the Destruction property is set to False in the Properties View.

To specify a return link by using the Palette
1 Click the Return link button in the Palette.
2 On the sequence diagram, click the object lifeline element at the supplier end of the message link to draw the

return link.

To specify a return link by using the Properties View
1 Select the message link on the sequence diagram.
2 In the Properties View, click the drop-down arrow for the Return Arrow field and select True.

Related Procedures

Rerouting a Link

Related Reference

UML 1.4 Interaction Diagrams

434

Working with Classes in Sequence/Collaboration Diagrams
This section provides techniques for creating classes, linking and unlinking classes, and showing classes in
sequence or collaboration diagrams.

To create a new class or interface
1 Select an actor or object on the sequence diagram.
2 Right-click the element and choose New Class or New Interface. The New Object's Class dialog is

displayed.
3 Enter information required by the dialog to create a new class, and then click Finish.

To link an actor or object to a class
1 Select the actor or object on the sequence diagram.

Tip: You can associate multiple objects with the same class. Use CTRL + CLICK to select the
elements.

2 Choose Select Class on the context menu. The Select Class command expands to display a submenu that
shows any classes that are "local" to the diagram and the More option to reveal inherited operations of the
recipient class.

3 Select a class from the list, or More. This renames the actor or object to the chosen class name.
4 If you choose to associate a classifier to an object that is already instantiated with a different classifier, the

Solve Problems dialog appears. Use this dialog to decide what to do with the linked operations that do not
exist in the new classifier (options include unlink operation, save as text, and select another method).

To unlink a Class/Interface from an Actor or Object
1 Select the actor or object on the sequence diagram.
2 Choose Unlink Class from the context menu.

To show a class associated with an Actor or Object
1 Select the actor or object on the sequence diagram.
2 Choose Show Class from the context menu.
3 On the submenu, choose a view (for example, Model Navigator).

Note: To show the source code of a class in the editor, double-click the element in the sequence diagram. The
source code is displayed highlighting the class name.

435

Working with Operations in Sequence/Collaboration Diagrams
This section provides techniques for creating, linking and showing operations while working with sequence or
collaboration diagrams.

Use the context menu of the link to create a new operation or constructor. Double-clicking the message link displays
the source code. This option is disabled if the object is associated with a read-only class.

After you create the operation, you can double-click the message link label on the diagram and enable the in-place
editor to modify the operation; or as an alternative, you can modify the operation using the Properties view.

Tip: The maximum length of a message link label is 400 pixels. If your message label is longer than this, it displays
on the diagram with an ellipse at the end to indicate that the message link holds more information. You can
click the message link label to reveal the entire message.

To create a new operation or constructor
1 Create a message link between two objects. The supplier object must be associated with a class.
2 Right-click the link and choose New Operation or New Constructor. When creating a new operation, a

dialog is displayed where you can designate the name, modifiers, return type, and parameters for the new
operation. At a minimum, enter the name for the operation, and click Finish. Together uses the data entered in
the dialog to create the operation in the class and update the link properties with the new operation.

Tip: Creating a new constructor on the message link sets the link type to creation.

To create a message link that calls an operation
1 Create a message link between two objects. The supplier object must be associated with a class.
2 Select the message link on a sequence diagram.
3 Right-click the link and choose Select Operation from the context menu. The Select Operation command

expands to display a submenu that shows any operations that are "local" to the diagram and the More option
for browsing operations that you can associate with the object.

4 Choose an operation from the list, or select More to associate an operation that is not local to the diagram. This
renames the message link to the chosen operation's name.

After the operation has been associated with a message link, double-click the message link to display the source
code of this operation in the editor.

Note: After a message link has been associated with an operation, you can rename the operation directly on the
class diagram or in the source code, and the sequence/collaboration diagram displays the new name.

To unlink an operation from a message link
1 Select the link on the sequence diagram.
2 Right-click the link, and select Unlink Operation from the context menu.

To show an operation
1 Right-click the message link.

436

2 Select Show Operation In Model Navigator.

437

UML 1.4 Statechart Diagrams Procedures
This section outlines the procedures related to UML 1.4 Statechart diagrams.

In This Section
Choosing a Target Class for the State Diagram or Activity Diagram
How to designate a target class to a state or activity diagram.

Creating a Deferred Event
How to create a deferred event (UML 1.4 Activity and UML 1.4 Statechart diagrams).

Creating a Self-Transition
How to create a self-transition.

Creating History
Lists the steps for creating history for states.

Creating internal transitions
Lists the steps for creating internal transitions.

Creating Multiple Transitions
How to create multiple transitions.

Setting Deep History
Lists the steps for setting deep history for history elements.

Specifying Entry and Exit Actions
How to specify entry and exit actions.

Specifying entry/exit actions for a state
Lists the steps for performing entry and exit actions as internal transitions.

Working with a Complex State
How to create a composite (nested) state (UML 1.4 Activity Diagram, UML 1.4 State Diagram, UML 2.0 State
Machine Diagram).

438

Choosing a Target Class for the State Diagram or Activity Diagram
Use the Properties View of a state or activity diagram to designate a target class.

To choose a target class for a diagram
1 Create a state or activity diagram within a package.
2 In the Properties View of the diagram, select the context field, and click the Browse button to open the Select

Class for 'context' Property dialog.
3 In the Select Class for 'context' Property dialog, navigate to the target class for the diagram using the tree-

view provided in the Model Elements tab.
4 Double-click the target class, or click OK.

439

Creating a Deferred Event
You can add a deferred event to a state or activity element.

To create a deferred event
1 Select the desired state or activity element in the diagram or in the Model Navigator.
2 Right-click the element, and select New Deferred Event on the context menu.

Related Reference

Deferred Event
UML 1.4 Activity Diagrams
UML 1.4 Statechart Diagrams

440

Creating a Self-Transition

To create a self-transition
1 Draw a transition from the state or activity element and drag the link away from the element.
2 Drag the link back to the element and drop it.

Alternatively:
1 Draw a transition between two activities (or states).
2 Drag the opposite end of the link line back to the desired activity (or state).

Related Procedures

Creating a Simple Link

Related Reference

UML 1.4 Activity Diagrams
UML 1.4 Statechart Diagrams
Tool Palette

441

Creating History

To create history for a state
1 Right-click on the state element.
2 From the context menu, choose New > History.
3 Tip: Alternatively, choose the history button in the Tool Palette and click on the target state.

Related Procedures

Setting Deep History

442

Creating internal transitions
An internal transition is a shorthand for handling events without leaving a state or activity and dispatching its exit/
entry actions.

To create an internal transition
1 Select the desired state or activity on the diagram.
2 From the context menu of the selection, choose New Internal Transition.

443

Creating Multiple Transitions
A Transition can have multiple sources (it is a join from several concurrent states) or it can have multiple targets (it
is a fork to several concurrent States).

You can show multiple transitions with either a vertical or horizontal orientation in your state and activity diagrams.
Both the state and activity tools palette provide separate horizontal and vertical fork/join buttons for each orientation.
The two orientations are semantically identical.

To create multiple transitions
1 Identify the nodes involved. If necessary, place all of the states on the diagram first, and lay them out as you

want.
2 Place either a horizontal or vertical fork/join on the diagram. Resize as needed.
3 If depicting multiple sources, draw transitions from each of the source nodes to the fork/join.
4 If depicting multiple targets, draw a transition from the source node to the fork/join; next, draw transitions from

the fork/join to each of the target nodes.

444

Setting Deep History

To designate deep history for a history element
1 Right-click the history element.
2 From the context menu, choose Properties.
3 Set the deep field to "true".

445

Specifying Entry and Exit Actions
You can create entry and exit actions for the states and activities as stereotyped internal transitions.

To specify entry and exit actions using the in-place editor
1 Create an internal transition in a state or activity.
2 Double-click the internal transition to enable in-place editing.
3 Rename the internal transition using the following syntax:

stereotype/actionName(argument)

For example:

exit/setState(idle)

To specify entry and exit actions using the Properties View
1 Create the internal transition in a state or activity.
2 Make sure that a context is defined for the diagram, and the target class has at least one operation.
3 In the Properties View of the internal transition, specify the following properties:

♦ action expression: Enter the expression in the text area, or click the Browse button and in the Select
Operation for the 'action expression' property dialog, select an operation from the list operations in
the target class of the diagram.

♦ name: Specify the name of the event.

♦ event arguments: Enter one or arguments. Use a comma as a delimiter.

Related Procedures

Choosing a Target Class for the State Diagram or Activity Diagram

446

Specifying entry/exit actions for a state
Entry and exit actions are executed upon entering or leaving a state, respectively. You can create entry and exit
actions in Together state diagrams as stereotyped internal transitions. Use one of the following methods to specify
entry/exit actions for a state.

Using the in-place editor:
1 Create an internal transition in the appropriate state.
2 Double-click the internal transition to enable in-place editing.
3 Rename the transition using the following syntax:

Name(event_arguments)[guard_condition]/action_expression^send_clause

Using the Properties view:
1 Right-click on the internal transition.
2 From the context menu, select Properties.
3 Set the event name, event arguments, and action expression properties in the Properties view.

447

Working with a Complex State
The techniques in this section apply to models of particularly complex composite states. These procedures are
common for the State and Activity diagrams.

Create a composite state by nesting one or more levels of states within one state and draw transitions among the
nested elements. You can place the following elements in a state:

♦ activity

♦ signal sending

♦ signal receipt

♦ start/end states

♦ history

Tip: You can nest multiple levels of states inside one state. For especially complex state modeling, however, you
may find it more convenient to create different diagrams, model each of the state levels individually, and then
hyperlink the diagrams sequentially.

Use the following techniques to create a composite (nested) state
1 Create a nested state using drag-and-drop.
2 Create a nested state using the context menu of the state element.

To create a nested state using drag-and-drop
1 Place a state element on the diagram background.
2 Drag a new state on top of an existing state.
3 Drop a new state.

To create a nested state using the context menu of the state element
1 Right-click the state (region) that will be the container.
2 Select New State on the context menu.

Tip: Using the Shortcuts command on the context menu of the diagram, you can reuse existing elements from the
other state diagrams. Right-click the diagram and choose New Shortcuts, navigate within the pane containing
the tree view of the available project contents to the existing diagram, and select its elements, states, histories,
forks, and/or joins.

448

Related Concepts

Model Hyperlinking Overview

Related Procedures

Creating a Shortcut

Related Reference

UML 1.4 Activity Diagrams
UML 1.4 Statechart Diagrams
UML 2.0 State Machine Diagrams

449

UML 1.4 Activity Diagrams Procedures
In This Section

Choosing a Target Class for the State Diagram or Activity Diagram
How to designate a target class to a state or activity diagram.

Creating a Deferred Event
How to create a deferred event (UML 1.4 Activity and UML 1.4 Statechart diagrams).

Creating a Self-Transition
How to create a self-transition.

Creating an Activity for a State
How to create an activity for a state (UML 1.4 Activity diagram).

Designing a UML 1.4 Activity Diagram
How to design a UML 1.4 Activity Diagram.

Specifying Entry and Exit Actions
How to specify entry and exit actions.

Using Object Flow Link
Lists the steps for creating object flow links.

Working with a Complex State
How to create a composite (nested) state (UML 1.4 Activity Diagram, UML 1.4 State Diagram, UML 2.0 State
Machine Diagram).

450

Choosing a Target Class for the State Diagram or Activity Diagram
Use the Properties View of a state or activity diagram to designate a target class.

To choose a target class for a diagram
1 Create a state or activity diagram within a package.
2 In the Properties View of the diagram, select the context field, and click the Browse button to open the Select

Class for 'context' Property dialog.
3 In the Select Class for 'context' Property dialog, navigate to the target class for the diagram using the tree-

view provided in the Model Elements tab.
4 Double-click the target class, or click OK.

451

Creating a Deferred Event
You can add a deferred event to a state or activity element.

To create a deferred event
1 Select the desired state or activity element in the diagram or in the Model Navigator.
2 Right-click the element, and select New Deferred Event on the context menu.

Related Reference

Deferred Event
UML 1.4 Activity Diagrams
UML 1.4 Statechart Diagrams

452

Creating a Self-Transition

To create a self-transition
1 Draw a transition from the state or activity element and drag the link away from the element.
2 Drag the link back to the element and drop it.

Alternatively:
1 Draw a transition between two activities (or states).
2 Drag the opposite end of the link line back to the desired activity (or state).

Related Procedures

Creating a Simple Link

Related Reference

UML 1.4 Activity Diagrams
UML 1.4 Statechart Diagrams
Tool Palette

453

Creating an Activity for a State

To create an activity for a state
1 Open the Diagram View.
2 Right-click a state and choose Add Activity on the context menu.

A new activity is created inside of a state.

Related Reference

UML 1.4 Activity Diagrams

454

Designing a UML 1.4 Activity Diagram
Use the following tips and techniques when you design a UML 1.4 Activity Diagram.

To design a UML 1.4 Activity Diagram
1 Create one or more swimlanes. You can place several swimlanes on a single diagram or create a separate

diagram for each.

Warning: You cannot create nested swimlanes.

2 Create one or more activities. You can place several activities on a single swimlane or create a separate
swimlane for each.

Warning: You cannot create nested activities.

3 For convenient browsing, first model the main flow. Next, cover branching, concurrent flows, and object flows.

Tip: Use separate diagrams as needed and then hyperlink them.

4 Create Start, End, Signal Receipt, and Signal Sending elements for your swimlanes.
If your activity has several Start points, they can be used simultaneously.

5 Create object nodes. Do not link object nodes to classes on your Class Diagrams. However, you can use
hyperlinks for better understanding of your diagrams.

6 Create state nodes for your swimlanes.

Tip: You can create nested states.

7 Optionally, create a History node.
8 Connect nodes by links.
9 You can optionally create shortcuts to related elements of other diagrams.

Related Procedures

Creating a Shortcut

Related Reference

UML 1.4 Activity Diagrams

455

Specifying Entry and Exit Actions
You can create entry and exit actions for the states and activities as stereotyped internal transitions.

To specify entry and exit actions using the in-place editor
1 Create an internal transition in a state or activity.
2 Double-click the internal transition to enable in-place editing.
3 Rename the internal transition using the following syntax:

stereotype/actionName(argument)

For example:

exit/setState(idle)

To specify entry and exit actions using the Properties View
1 Create the internal transition in a state or activity.
2 Make sure that a context is defined for the diagram, and the target class has at least one operation.
3 In the Properties View of the internal transition, specify the following properties:

♦ action expression: Enter the expression in the text area, or click the Browse button and in the Select
Operation for the 'action expression' property dialog, select an operation from the list operations in
the target class of the diagram.

♦ name: Specify the name of the event.

♦ event arguments: Enter one or arguments. Use a comma as a delimiter.

Related Procedures

Choosing a Target Class for the State Diagram or Activity Diagram

456

Using Object Flow Link
An object flow relationship can be drawn:

♦ from an Activity to an Object

♦ from a SignalSending element to an Object

♦ from an Object to a SignalReceipt element

♦ from/to an Object

♦ to/from a Fork/Join

To create an object flow link between two elements
1 On the Diagram, click the source element.
2 Drag the link to the destination element.
3 Drop when the second element is highlighted.

Related Procedures

Using Control Flow Link

457

Working with a Complex State
The techniques in this section apply to models of particularly complex composite states. These procedures are
common for the State and Activity diagrams.

Create a composite state by nesting one or more levels of states within one state and draw transitions among the
nested elements. You can place the following elements in a state:

♦ activity

♦ signal sending

♦ signal receipt

♦ start/end states

♦ history

Tip: You can nest multiple levels of states inside one state. For especially complex state modeling, however, you
may find it more convenient to create different diagrams, model each of the state levels individually, and then
hyperlink the diagrams sequentially.

Use the following techniques to create a composite (nested) state
1 Create a nested state using drag-and-drop.
2 Create a nested state using the context menu of the state element.

To create a nested state using drag-and-drop
1 Place a state element on the diagram background.
2 Drag a new state on top of an existing state.
3 Drop a new state.

To create a nested state using the context menu of the state element
1 Right-click the state (region) that will be the container.
2 Select New State on the context menu.

Tip: Using the Shortcuts command on the context menu of the diagram, you can reuse existing elements from the
other state diagrams. Right-click the diagram and choose New Shortcuts, navigate within the pane containing
the tree view of the available project contents to the existing diagram, and select its elements, states, histories,
forks, and/or joins.

458

Related Concepts

Model Hyperlinking Overview

Related Procedures

Creating a Shortcut

Related Reference

UML 1.4 Activity Diagrams
UML 1.4 Statechart Diagrams
UML 2.0 State Machine Diagrams

459

UML 1.4 Component Diagrams Procedures
In This Section

Designing a UML 1.4 Component Diagram
How to design a UML 1.4 Component Diagram.

Nesting Components
Lists the steps for nesting components.

460

Designing a UML 1.4 Component Diagram
The following tips and techniques can be used when working with UML 1.4 Component Diagrams. It can be
convenient to start the creation of a model with Component Diagrams if you are modeling a large system (for
example, a distributed, client-server software system, with numerous interconnected modules). Use Component
Diagrams for modeling a logical structure of your system, and use Deployment Diagrams for modeling a physical
structure.

To design a UML 1.4 Component Diagram
1 Create a hierarchy of Subsystems.
2 Create a hierarchy of Components. The largest component can be the whole system or its major part (for

example, server application, IDE, service).
3 Create interfaces. Each component can have an interface.
4 Draw links between elements.
5 You can optionally create shortcuts to related elements of other diagrams.

Related Procedures

Creating a Shortcut

Related Reference

UML 1.4 Component Diagrams

461

Nesting Components
A component represents a modular and replaceable part of the system that complies to an interface. Examples of
components include class libraries or binary programs. A component is used to package other logical elements, and
represents things that participate in the execution of a system. Components also use the services of another
component via one of its interfaces. Usually, components are used to visualize logical packages of source code
(work product components), binary code (deployment components) or executable files (executions components).

To nest a component
1 Place a component element on the diagram background.
2 Drag the new component on top of an existing subsystem or existing component.
3 Drop the new component.

Related Concepts

UML 1.4 Component Diagram Definition

462

UML 1.4 Deployment Diagrams Procedures
In This Section

Designing a UML 1.4 Deployment Diagram
How to design a UML 1.4 Deployment Diagram.

463

Designing a UML 1.4 Deployment Diagram
Use the following tips and techniques when you design a UML 1.4 Deployment Diagram. It can be convenient to
start the creation of a model with Deployment Diagrams if you are modeling a large system that is comprised of
multiple modules, especially if these modules reside on different computers. Use Deployment Diagrams for modeling
a physical structure of your system, and use Component Diagrams for modeling a logical structure.

To design a UML 1.4 Deployment Diagram
1 Create a hierarchy of Nodes.

Tip: You can create nested Nodes.

2 Create a hierarchy of Components. The largest component can be the whole system or its major part (for
example, server application, IDE, service).

Tip: You can create nested Components. There are two methods for creating a nested
component:

You can select an existing component and add a child component inside.

Alternatively, you can create two separate components and connect them with an
Association-Composition link.

3 Represent how Components reside on Nodes. You can represent this in two ways:

♦ Use a supports link between the component and node. The supports link is a dependency link with the
stereotype field set to support.

♦ Graphically nest the Component within the Node.

4 Optionally, create Objects.
5 Create Interfaces. Each component can have an interface.
6 Indicate a temporary relationship between a Component and Node. Objects and components can migrate from

one component instance to another component instance, and respectively from one node instance to another
node instance. In such a case, the object (component) will be on its component (node) only temporarily. To
indicate this, use the dependency relationship with a becomes stereotype.

7 You can optionally create shortcuts to related elements of other diagrams.

Related Procedures

Creating a Shortcut

Related Reference

UML 1.4 Deployment Diagrams

464

Together Business Process Modeling
This section provides how-to information on creating Business Process models with Together.

In This Section
Attaching External WSDL File
How to attach an external WSDL file to any process on your business process diagram.

Creating a BPMN Project
This topic describes how to create a new BPMN project in Together.

Exporting to BPEL/WSDL Files
How to export a BPMN diagram to BPEL/WSDL files.

Importing BPEL File
This topic describes how to import a BPEL file to a BPMN project in Together.

Importing BPMN Projects Created in Together 2006 for Eclipse
This topic describes how to import BPMN projects created in the previous version of Together.

Performing Business Process Simulation
This topic describes how to set up and run business process simulation.

Specifying BPMN Preferences
This topic describes how to set BPMN preferences.

Specifying Event and Trigger Type
How to change the type of event.

Using BPMN Layout Features
You can use layout features available for BPMN diagrams as well as grouping while designing a business
process diagram.

Validating BPMN Diagrams
How to validate your BPMN diagram before export.

Working with Groups
This topic describes how to work with the group element.

Working with Projection Bars
This topic describes the projection bars functionality.

Working With UML Links in a BPMN Project
This topic describes how to set up and use UML links in the BPMN project.

465

Attaching External WSDL File
You can attach an external WSDL file to any participant on your business process diagram using the wsdl path
property with chooser.

Note: Attaching an external WSDL file to the default pool or to all pools on a diagram will prevent the export process.

To attach a WSDL file to the participant of your process
1 Place your WSDL file inside the current project node (Eclipse will see external files after a Refresh is performed

in the Navigator view).
2 Select the WSDL path property of the participant in the Properties View and click the Edit button.
3 Select the WSDL file in the WSDL path dialog box.
4 Click OK to save the changes.

Only valid files can be attached. If the program does not let you add the selected WSDL file, the file is not valid
according to WSDL or BPMN specifications and cannot be used for correct export. After the file is added, it will be
used for the BPEL mapping with the selected WSDL file for the process (no additional WSDL file will be generated
in this case).

The TargetNamespace and NamespacePrefix properties are updated automatically (and the fields become
read-only). Web Service Interfaces and Operations are available in the list boxes for the appropriate fields of the
WebService element inside the Properties view.

When the WSDL file is removed from the WSDL path property of the process, previously entered values are restored
and the native WSDL file can be generated for the BPEL file again.

Related Concepts

Business Process Modeling

466

Creating a BPMN Project
BPMN projects are created in Together with the help of the New Project wizard.

To create a BPMN project
1 Select File New Project on the main menu. The New Project wizard is displayed.
2 Expand the Modeling node in the tree view list, and select Business Process Modeling Project. Click Next.
3 Specify a name for a new BPMN project and the project location. Click Next.
4 Specify whether to create a BPMN diagram and specify the diagram's name. Click Next.
5 Select one or more profiles you want to enable for the created BPMN project and click Next.
6 Select referenced projects and click Finish to complete the wizard.

Note: To create a BPMN project with default parameters, click Finish after specifying the name
of the project.

Related Concepts

Business Process Modeling

Related Reference

Business Process Diagram

467

Exporting to BPEL/WSDL Files
A Business Process diagram with an enabled BPEL profile can be exported to BPEL (Business Process Execution
Language) for Web services for further deployment.

To export a Business Process diagram to BPEL/WSDL files
1 Open a Business Process Modeling project with the diagram you want to export.
2 Select File Export on the main menu.
3 Select BPEL4WS File under the Modeling node.
4 Select the diagram you want to export and the path to the export directory in the Export to BPEL/WSDL dialog

box.
5 Check Open file in Active BPEL Designer if you want to open the generated BPEL file in the new view as the

Active BPEL Designer file.

Note: You can export BPEL/WSDL files to the current workspace project when Active BPEL
Designer is already installed.

6 Click Finish to complete the procedure.

If the process is successful, your BPEL and WSDL files are created in the specified directory.

Note: Before a business process diagram is exported to BPEL/WSDL files, a diagram validation is performed.

Warning: If you want to open the export result in Active BPEL Designer, make sure your export result is located
within one project opened in the workspace.

After you export your project to BPEL4WS, you can use Active BPEL Designer to work with BPEL files.

To install Active BPEL Designer in Together
1 Download and install Active BPEL Designer. See related links for the download location.
2 Copy plug-ins with names that start with com.activee from the Designer installation\eclipse

\plugins folder to the Together installation\plugins folder.
3 Run Together with the -cleanup command line argument.

Related Concepts

Business Process Modeling

Related Procedures

Validating BPMN Diagrams

468

Importing BPEL File
BPEL files are imported to a Together BPMN project. A new BPMN diagram is created to represent the imported
business process.

To import BPEL file
1 Select File Import on the main menu. The Import wizard is displayed.
2 Expand the Modeling node in the tree view list, and select BPEL Import. Click Next.
3 Select the BPEL file you want to import or click Browse to locate it.
4 Click Add or Add folder to add one or more WSDL files.
5 Specify a new diagram name in the Diagram name text box and select a BPMN project in which the new diagram

will be created. Click Finish to import the selected BPEL file.

Related Concepts

Business Process Modeling

469

Importing BPMN Projects Created in Together 2006 for Eclipse
BPMN projects created in Together 2006 for Eclipse are not compatible with Together. You must perform a
conversion before working with BPMN projects from Together 2006 for Eclipse.

To import a BPMN project created in Together 2006 for Eclipse
1 Switch to the workspace with old BPMN projects or import the old BPMN projects to the current workspace

using the standard Eclipse tools.

Note: After you can see your old BPMN projects in the Model Navigator, you can open the
projects but you cannot modify the projects.

2 Select File New Project on the main menu. The New Project wizard is displayed.
3 Expand the Together node in the tree view list, and select BPMN from Together 2006 Business Process

Project. Click Next.
4 Specify a name for a new BPMN project and the project location. Click Next.
5 Select the project you want to convert and click Next.

Related Concepts

Business Process Modeling

470

Performing Business Process Simulation
Together enables you to perform a simulated run of the designed business process. Simulation parameters are
specified in the run configuration.

Note: Together automatically validates the diagram before performing a simulation.

To perform a simulated run of the business process
1 From the main menu, choose Run Run. The Run dialog box opens.
2 Click Launch BPMN Simulation and click to create a new launch configuration.
3 Specify run options and click Run.

Alternatively, right-click the BPMN diagram background and select .

Note: The Simulate command is available only for BPMN projects with enabled BPMN
Simulation profile. When simulation is performed using the Simulate command on the
context menu, simulation is run with default parameters.

To perform the step by step simulation
1 From the main menu, choose Run Run. The Run dialog box opens.
2 Click Launch BPMN Simulation and click to create a new launch configuration.
3 When specifying run options, select Start with step by step execution. Click Run to start the simulation

process.
The simulation stops after executing one step. To proceed to the next step, click Next simulation step in the
BPMN Simulation view.

Related Procedures

Validating BPMN Diagrams
Creating a BPMN Project
Specifying BPMN Preferences

Related Reference

Launch BPMN Simulation
BPMN Validation View

471

Specifying BPMN Preferences

To set Business Process Modeling preferences
1 From the main menu, choose Window Preferences. The Preferences dialog box opens.
2 Expand the Modeling node and click Business Process.

To assign the default profile for BPMN diagram
1 From the main menu, choose Window Preferences. The Preferences dialog box opens.
2 Expand the Modeling node and click Profiles.
3 Click the BPMN tab and select the profiles you want to be enabled for a newly created BPMN project.

Related Reference

Business Process Preferences

472

Specifying Event and Trigger Type

To change the event type
1 Select an event.
2 In the Properties View, select the , intermediate, or end value for the type property.

Note: By default, events are created with start type.

When the program detects an incorrect element type, it highlights the element.

To automatically correct the element type
1 Right-click the highlighted element.
2 Select Fix Element Type on the context menu.

To specify the trigger type
1 Select an event.
2 In the Properties View, select the trigger type property.
3 Select the trigger type from the list in the Value column.

Note: There are ten triggers: None, Cancel, Compensation, Error, Link, Message, Multiple, Rule,
Terminate, and Timer. There are also some constraints for event types and triggers (for
example, a Compensation event cannot be a start event).

Related Concepts

Business Process Modeling

Related Procedures

Together Business Process Modeling

473

Using BPMN Layout Features

To align diagram elements using the diagram editor toolbar
1 Select one or more diagram elements, and click the drop-down arrow to the right of the Align Left button.
2 Choose one of the options to align the elements.

Note: The Layout all command performs the following:

♦ All pools are aligned and distributed with the constant distance between them.

♦ Sequence Flow links are aligned horizontally and directed from left to right.

Related Concepts

Business Process Modeling

474

Validating BPMN Diagrams
You can validate your BPMN diagram to check BPMN general rules, constraints to be met to make BPEL export
possible, and prerequisites for simulation. Validation is performed for the entire diagram.

You can perform validation with or without export-specific errors and warnings.

Note: Validation is profile-sensitive. For example, there will be no validation for simulation action if simulation profile
is turned off (default).

To validate a BPMN diagram for specification compliance
1 Open a Business Process Modeling project with the diagram you want to validate.
2 Right-click the diagram background and select Validate BPMN diagram.

To validate a BPMN diagram for BPEL4WS export
1 Open a Business Process Modeling diagram you want to validate.
2 Right-click the diagram background and select Validate for BPEL4WS export.

To navigate to an element that contains an error
1 Right-click an item in the BPMN Validation view.
2 Choose either Select in Model Navigator or choose Select on Diagram.

Note: Alternatively, double-click an item in the BPMN Validation view to select an element on
the diagram.

To validate a BPMN diagram for simulation
1 Open a Business Process Modeling diagram you want to validate.
2 Right-click the diagram background and select Validate for Simulation.

Any errors that occurred during the validation for simulation are displayed in the same BPMN Validation view.

Note: Warnings in the BPMN Validation view denote some minor errors that should be corrected. Some warnings
are provided for information only and do not stop the generation process (for example, add/remove links,
type update, and properties update result in warnings). Errors in the BPMN Validation view imply that
generation cannot be performed without correction. For example, errors can occur when unsupported
elements and incorrect symbols are used in some names.

Related Reference

BPMN Validation View

475

Working with Groups
A Group on a BPMN diagram is a logical element that helps you to visualize the division of a BPMN diagram into
logical parts.

To create a Group element on a BPMN diagram
1 Scroll to the Artifacts group on the Palette.
2 Click the Group element and then click the diagram. A new group is created inside the BusinessProcessDiagram

element.

Note: Alternatively, use the context menu to create a group. Right-click the diagram background
and select New Group.

To add elements to or remove elements from the Group
1 Select the group that you want to edit.
2 Click the Elements tab in the Properties view.
3 Click the grouped elements property and click in the Value column. The selection dialog box opens.

Alternatively, right-click a group boundary on the diagram and select Group Elements Edit.

4 To add the elements, select the model elements in the left column and click Add.
5 To remove elements from the group, select the elements in the right column and click Remove. Alternatively,

click Remove All to remove all elements from the group.
6 Click OK to save the changes and close the dialog box.

Note: You also can add elements to the group by just dragging and dropping an element to a
Group border.

To distinguish more clearly between different groups on a diagram, you can change the view of the group.

To change group colors
1 Select the group whose view you want to change.
2 Select the View tab in the Properties view.
3 To change the color of group elements, select the background color option, click and select the color

you want to use.
4 To change the color of the group boundary, select the foreground color option, click and select the color

you want to use.

To change the group title style
1 Select the group you want to edit the style for.
2 Select the View tab in the Properties view.
3 Select the font option, click and select the font and size you want to use.

476

To select group members and navigate between a group and the group members
1 To select all members of a group, right-click the group and choose Select Group Content.
2 To navigate to an element in a group, right-click the group border, choose Grouped Elements, and then choose

the element you want to select in the editor.
3 To navigate from an element to a group, right-click the element, choose Groups, and then choose the group

you want to select.

Related Concepts

Business Process Modeling

477

Working with Projection Bars
Projection bars on the Business Process Modeling diagram provide placeholders for pools and lanes on the diagram
and remain visible even if the pools are too long and you have to scroll through the diagram. To select a pool or lane
on the diagram, click a pool or lane element in a projection bar.

To show or hide projection bars
1 From the main menu choose Window Preferences.
2 Expand the Modeling node and click Diagram in the left pane.
3 Check or clear the Show projection bars option in the Other group.

Alternatively, right-click either the projection bars or a ruler and click the Show projection bars option.

Related Concepts

Business Process Modeling

478

Working With UML Links in a BPMN Project
Together provides UML links for a BPMN project with an enabled UML Links profile. The UML links feature helps
you to use Class/Interface elements and their methods as values for the WSDL portType and operations. UML links
are available for participant and service-related tasks (Send, Receive, User, Service).

To connect and remove a UML service
1 Locate a Participant of a process or a service-related task you want to work with in the Model Navigator.
2 Expand the node and right-click a WebService element. To create a Web Service, right-click an element and

select New Web Service.

Note: When the UML Links profile is enabled, you can see a UML Services menu with submenus.

3 To connect a UML service, click UML Services Connect UML Service.
To remove a connection, click UML Services Remove Link to Service.

To locate a linked UML element
1 Locate a Participant of a process or a service-related task of the diagram you want to work with in the Model

Navigator.
2 Expand the node and right-click a WebService element.

Note: When the UML Links profile is enabled, you can see a UML Services menu with submenus.

3 To locate a UML element on a diagram, click UML Services Select Service on Diagram.
To locate a UML element in the Model Navigator, click UML Services Select Service in Model Tree.

Note: When UML links exist, menu item names change and use UML element names instead of Service.

Related Concepts

Business Process Modeling

479

Data Modeling Procedures
This section describes how to work with ER diagrams and create logical and physical data models.

In This Section
Activating ER Logical Diagram Profile
How to activate ER Logical profile.

Creating a Data Modeling Project
How to create a data modeling project.

Creating Connection Profile
How to create a new connection to a database server.

Creating Foreign Key in a Physical Data Model
How to create a foreign key in an ER physical diagram.

Creating Logical Data Model
How to create elements in an ER Logical Diagram.

Creating View Relationships in a Physical Data Model
How to create a view relationship in a Physical Data Model.

Generating Data Model from SQL (DDL) Script
Lists the steps for generating a data model from an SQL script.

Generating DDL Script from a Data Modeling Project
How to generate a DDL Script from a Data Modeling Project.

Importing Data Model from Database
How to import data objects from a remote database into a Data Modeling project.

Transforming Logical Data Model to Physical Data Model
How to transform your Logical Data Model defined in an ER Logical diagram to a Physical Data Model.

480

Activating ER Logical Diagram Profile
This profile is available in UML 2.0 design projects. When this profile is activated, ER Logical Diagram elements are
added to the Class Diagram Palette.

To activate ER Logical Diagram Profile
1 Select project in the Model Navigator or in the Navigator.
2 On the main menu, choose Project Properties.
3 On the Profiles page, check the ER Logical Diagram Profile check box.

Related Procedures

Creating a Project
Enabling UML Profiles
Data Modeling

481

Creating a Data Modeling Project
This section describes how to create a data modeling project for the development of a physical data model.

To create a data modeling project
1 On the main menu, choose File New Project Modeling Data Modeling Project.
2 On the first page of the New Project wizard, specify the project name and location. Click Next.
3 On the Project Settings page, select the target database server from the drop-down list. Check the Default

schema option, if required, and specify the schema name. Click Next.
4 Follow the wizard to specify necessary options, and click Finish.
5 When you first create a data modeling project in a workspace, you will be prompted to associate the project with

the Data Modeling perspective. You can confirm and memorize your decision.

Related Procedures

Creating a Project

Related Reference

New project Wizard Data Modeling Specific Options

482

Creating Connection Profile
Together supports a number of database servers. You can create connection profiles for each of the supported
servers.

To create a new connection profile
1 On the main menu, choose File Import.
2 Expand the Modeling node, select DB Schema from JDBC and click Next.
3 In the Import DB Schema from JDBC Connection dialog, click Connect.
4 In the Connect to Database dialog that opens, select a database server, and click New.
5 Specify the connection parameters and click Test.
6 Click Apply.

Related Concepts

Data Modeling Overview

Related Procedures

Importing Data Model from Database

Related Reference

Connect to Database Dialog

483

Creating Foreign Key in a Physical Data Model
Warning: You cannot create a foreign key between tables from different schemata.

To create a foreign key
1 Create two tables in a schema diagram.
2 Draw a foreign key link between the child table and the parent table using the Foreign Key link button from the

diagram Palette.
3 In the foreign key properties, locate the parent key field and select either PK Constraint or Unique

Constraint from the parent table.

Note: Once the parent key property is specified, the Propagate Attributes context menu command becomes
enabled. If not, make sure that at least one column is added to the Constraint selected as parent key. Use
the columns field in Constraint Properties to add columns to the constraint. The foreign key columns
propagated to the child tables display in red.

Related Concepts

Data Modeling Overview

484

Creating Logical Data Model
After your project is created and the ER Logical Diagram profile is activated, you can see the ER Logical Diagram
Elements group on the diagram Palette.

Note that you can create only top-level ER logical elements (Entity, View, Subtype Cluster) and ER relationships
using the Palette. For creating attributes, key groups, and so on, use the New context menu of their respective
containers.

You can create ER Logical model elements the same way as any other diagram element.

To create a top-level element
1 Create a UML 2.0 project and activate the ER Logical Diagram Profile for it.
2 Create a new or open an existing Class20 diagram.
3 Click a button on the ER Logical Diagram Elements group in the Tools Palette and click the diagram background.

Note: The Properties View for ER elements contain an ER group where you can edit specific properties of the data
modeling elements.

Related Concepts

Data Modeling Overview

Related Reference

ER Logical Diagram Elements
ER Physical Diagram Context Commands

485

Creating View Relationships in a Physical Data Model

To create a view relationship
1 In a schema diagram, create Table and View node elements.
2 Using the View relationship link button from the diagram Palette, draw a view relationship between a view and

a table or between a view and another view.
3 Use the Propagate Attributes or Propagate Attributes to All context menu commands to propagate the view

columns to a view or the entire view hierarchy.

Related Concepts

Data Modeling Overview

486

Generating Data Model from SQL (DDL) Script
After you have created a Data Modeling Project, you can reverse engineer a source SQL file from an existing file
system to a database schema. The content of this file should contain a DDL statement (for example, CREATE
TABLE). Every valid DDL statement will be translated into a corresponding physical data model object.

To import an SQL script
1 On the main menu, choose File Import.
2 In the Import wizard that opens, expand the Modeling node.
3 Select DB schema from SQL script and click Next.
4 In the File field, specify the path to the existing file. Select whether to open source SQL file in an SQL editor.
5 In the Server field, select the target database server. Its parser will be used to import the selected SQL file.
6 In the Target project field, specify the target Data Modeling project, where DB schema will be created.
7 Specify the target schema name.
8 Click Finish to start the import process. The new schema with the specified name is created in the selected

project.

Related Concepts

Data Modeling Overview

487

Generating DDL Script from a Data Modeling Project
After you have designed a physical data model in your Data Modeling project, you can export it to a DDL statement
and save in a *.sql or *ddl file. You can generate DDL only for one schema at a time. Each schema object is
translated to a valid DDL statement with specific options depending on the current project RDBMS (database server).

To generate DDL script
1 In the Model Navigator view, select a schema that you want to export.
2 Select File Export on the main menu. The Export wizard is displayed.
3 Select the DDL/SQL script and click Next.
4 The Source Data Modeling project and schema that you selected in step 1 are selected by default. You can

change the source schema by selecting one from the available schemata in all Data Modeling projects in your
workspace.

5 The objects list contains tables and views in the selected schema. Select tables and views to be exported and
click Next.

6 Select generation options that apply to the selected objects. Click Next. Note: You can preview the result by
pressing the Preview button. This opens the DDL Preview dialog box with read-only contents.

7 Select a target file in which the generated script will be saved. You can make corrections in the result file after
generation if necessary. Specify whether to open the resulting SQL file in the Eclipse SQL editor.

8 Click Finish to close the wizard and start the export process.

Tip: SQL keywords are highlighted in the editor. You can control the list of highlighted keywords by editing the
$TogetherArchitect_Home$/eclipse/plugins/com.borland.selena.dbmodeling_8.1.0/
keywords.xml file.

Related Concepts

Data Modeling Overview

488

Importing Data Model from Database
You can import a data model from a remote database using a JDBC connection. To reverse engineer a database,
you need JDBC driver and JDBC connection parameters for your database.

To import a data model from a database
1 Choose File Import on the main menu. The Import wizard is displayed.
2 Expand the Modeling node and select DB schema from JDBC as the import source. Click Next.
3 Click Connect to establish a connection to the database. The Connect to Database dialog box displays.
4 In the Source tree view, select a connection profile. If necessary, create a new one.
5 Click Connect. If the connection is successful, you will see the source objects tree. Otherwise, an error message

is displayed.
6 Select objects in the source objects tree to import them.
7 Specify the target Data Modeling project where the source object will be imported.
8 Click Finish to start the import process. New schemata are created in the selected project.

Related Concepts

Data Modeling Overview

Related Procedures

Creating Connection Profile

489

Transforming Logical Data Model to Physical Data Model
After you have created a Logical Data Model (with the help of ER Logical Diagram profile), you can convert it into a
schema in an existing Data Modeling project.

To convert a Logical Data model to a schema
1 Select File Import on the main menu. The Import wizard is displayed.
2 Select DB Schema from ER Logical Diagram Profile UML 2.0 project. Click Next.
3 In the Source tree, select ER Logical Diagram elements. Select a valid UML project with ER Logical Diagram

Profile.
4 Select the target Data Modeling project from the list where the schema will be created.
5 Select the target schema name (the name of the source file is used by default). Click Next.
6 Select transformation option.
7 Click Finish to start the import process. New schema with the specified name is created in the specified project.

Related Concepts

Data Modeling Overview

490

Model Driven Architecture
Topics in this section cover the most common tasks associated with developing model transformations.

In This Section
Adding a New Ant Task to the Composite Transformation
How to add a new Ant task to your Composite transformation.

Applying Model-To-Model Transformations
How to apply a Model-To-Model transformation.

Applying Model-To-Text Transformations
How to apply a Model-To-Text transformation.

Applying XSL Transformations
How to apply an XSL transformation.

Building MDA Projects from the Command Line
How to build an MDA Transformation project from the command line.

Configuring Model-To-Model Transformation Builder
How to configure the project builder for a Model-To-Model transformation.

Configuring Model-To-Text Transformation Builder
How to configure the project builder for Model-To-Text transformation.

Creating a Composite Transformation
How to create a Composite transformation.

Creating a Model-To-Model Transformation
How to create a Model-To-Model transformation.

Creating a QVT Library
How to create a QVT library.

Creating an Example MDA Transformation Project
How to create an example MDA Transformation project.

Creating an MDA Transformation Project
How to create an MDA transformation project.

Creating an XSL Transformation
How to create an XSL transformation.

Creating Model-To-Text Transformations
How to create a Model-To-Text transformation.

Debugging Model-To-Model Transformations
How to debug Model-To-Model transformations.

Debugging Model-To-Text Transformations
How to debug Model-To-Text transformations.

Debugging XSL Transformations
How to debug XSL transformations.

Deploying Transformations
How to deploy compiled QVT transformations.

Manually Registering a Metamodel for Use with QVTO
How to manually register a Metamodel for Use with Operational QVT.

491

Opening MDA Views
How to open views related to MDA perspective.

Running a Composite Transformation script
How to run a Composite transformation script.

Running an Operational QVT
How to run an Operational QVT

Running Compiled Transformations
How to run compiled transformations.

492

Adding a New Ant Task to the Composite Transformation

To add a new Ant task to the Composite transformation
1 Open the composite transformation script in the Ant Editor, right-click in the editor area where you want to

insert the task, and choose Create MDA Ant Task from the context menu.
The New MDA Ant Task wizard is displayed.

Note: If you create a new Composite transformation, click the Add... button on the Composite
Transformation Content screen of the New Composite Transformation wizard.

2 Choose the Enter data manually option if you want to enter your task parameters manually.
The Select launch configuration type wizard screen is displayed.

Tip: Choose the Select existing launch configuration option to copy task parameters from an
existing launch configuration to your task script.

3 Select the launch configuration type that matches your transformation and click the Enter launch configuration
data button.
The Edit Launch Configuration dialog box is displayed.

Note: The Edit Launch Configuration dialog box is used here only to collect required task
parameters, and no actual launch configuration is created.

4 Specify task parameters for the selected transformation type and click OK to return to the wizard. Click Next.
The Preview wizard screen is displayed.

5 Check the result task script, and click Finish to insert it into your composite transformation script.

Related Concepts

Model Transformation Support

Related Procedures

Creating a Composite Transformation

Related Reference

QVT Ant Tasks
Model-To-Text Ant Tasks

493

Applying Model-To-Model Transformations
Use the Apply Transformation wizard to run the transformation on a particular model or model element.

To apply a Model-To-Model transformation to a model or a model element
1 Select a model or model element in the appropriate editor or navigator view and then choose Model Apply

Transformation QVT From Workspace... from the main menu.

Note: If you want to apply a compiled transformation, choose the Compiled... menu item instead
of From Workspace....

The Select Transformation page of the Apply Transformation Wizard is displayed.

2 Select your transformation file and check the Run in interpreted mode check box if you want to use QVT
Interpreter to run your the QVT code. Click Next.
The Select Destination wizard page is displayed.

Note: The Run in interpreted mode check box is disabled for Java-less projects.

3 Specify the target type, the URI of the target model, and the location of the trace file.
For Existing container target type, specify the feature to which you want to place the transformation result,
and whether you want to clear the existing feature contents before saving the result. Click Next.

The Configuration Properties page displays. Note, that this page is displayed only if the applied QVT script
accepts configuration properties.

4 Specify values for the configuration properties defined in your QVT script and click Finish.
The generated target model and trace files appear at the specified location.

If you need to run the transformation repeatedly (for example, for testing purposes), create the Eclipse Launch
Configuration for your transformation project, run it once and then press CTRL+F11 any time you need to reapply the
transformation.

To create and run the Eclipse Launch Configuration for a Model-To-Model transformation
1 Select Run Run... from the menu. The Run dialog opens.
2 Select the QVT Interpreter configuration type and click New. The interpreter performs QVT. Select QVT

Transformation if you want to execute Java generated by this QVT .
3 Specify the configuration name and URIs for input and output models and the trace file.
4 Click Run. The generated target model and trace files appear at the specified location.

494

Related Concepts

Model Transformation Support

Related Procedures

Creating a Model-To-Model Transformation
Debugging Model-To-Model Transformations
Deploying Transformations

Related Reference

Apply Transformation
Trace View

495

Applying Model-To-Text Transformations
Use the Apply Transformation wizard to run the transformation on a particular model or model element.

To apply a Model-To-Text transformation to a model or a model element
1 Select a model or model element in the Model Navigator or in the Diagram Editor, and then choose Model

 Apply Transformation Model-To-Text From Workspace... from the menu or use the context menu.

Note: If you want to apply a compiled transformation, choose the Compiled... menu item instead
of From Workspace.....

The Select Transformation to apply page of the Apply Transformation Wizard is displayed.

2 Choose your Java transformation file (or your compiled transformation if you chose to apply the compiled
transformation) and click Next.
The Specify output folder wizard page is displayed.

3 Specify the folder where you want to save the transformation results and click Finish.
The transformation output appears at the specified location.

If you need to run the transformation repeatedly (for example, for testing purposes), create the Eclipse Launch
Configuration for your transformation project, run it once and then press CTRL+F11 any time you need to reapply the
transformation.

To create and run the Eclipse Launch Configuration for a Model-To-Text transformation
1 Choose Run Run... from the menu.

The Run dialog box is displayed.

2 Select the Model-To-Text Transformation configuration type and click New.
3 Specify the configuration name, Java transformation file, source model URI and the location for the

transformation results.
4 Click Run.

Transformation results are displayed at the specified location.

Related Concepts

Model Transformation Support

Related Procedures

Creating Model-To-Text Transformations
Debugging Model-To-Text Transformations
Deploying Transformations

Related Reference

Apply Transformation

496

Applying XSL Transformations
Use the Apply Transformation wizard to run the transformation on a particular model or model element.

To apply an XSL transformation to a model or a model element
1 Select a model or model element in the Model Navigator or in the Diagram Editor, and then choose Model

 Apply Transformation XSL From Workspace... from the menu or use the context menu.

Note: If you want to apply a transformation that is stored outside your workspace, choose
Model Apply Transformation XSL From File System... instead.

The Select Transformation page of the Apply Transformation Wizard is displayed.

2 Choose your XSL transformation file and click Next.
The Target file wizard page is displayed.

3 In the Target file field, specify where you want to save the transformation results. Check the Open result in
editor check box if you want to view the result file in the associated editor. Click Next.
The Specify Parameters wizard page is displayed.

4 Use the Add... button to define parameters and their values that you want to pass to your transformation. Click
Finish.
The transformation output appears in the specified location.

If you need to run the transformation repeatedly (for example, for testing purposes), you can create the Eclipse
Launch Configuration for your transformation project, run it once and then press CTRL+F11 any time you need to
reapply the transformation.

To create and run the Eclipse Launch Configuration for an XSL transformation
1 Choose Run Run... from the menu.

The Run dialog box is displayed.

2 Select the XSL Transformation configuration type and click New.
3 Specify the configuration name, XSL transformation file, source model URI and the location for the

transformation results. If your transformation accepts parameters, specify them in the Parameters section of
the dialog box.

4 Click Run.

Transformation results appear in the specified location.

Related Concepts

Model Transformation Support

Related Procedures

Creating an XSL Transformation
Debugging XSL Transformations

Related Reference

Apply Transformation

497

Building MDA Projects from the Command Line
The MDA transformation framework uses the com.borland.tg.mda.project.BuildApplication Eclipse
application for building or cleaning MDA Transformation projects from the command line or in the batch mode.

To build MDA Projects from the command line
1 Use the following command:

Together -data <workspace> -application com.borland.tg.mda.project.BuildApplication
<build | clean>

2 This command launches an instance of Together and then builds or cleans projects in the specified
workspace. Errors generated by MDA, Java, or other builders are printed in the console window. If any errors
occur during the build, the application returns nonzero exit code.

Related Concepts

Model Transformation Support

Related Procedures

Creating an MDA Transformation Project
Creating a Model-To-Model Transformation
Creating Model-To-Text Transformations

Related Reference

QVT Language
QVT Builder

498

Configuring Model-To-Model Transformation Builder
Before you can run a compiled transformation, you need to configure the corresponding transformation builder. Each
type of transformation runs on a specific builder: QVT Transformation Builder or Model-To-Text Transformation
Builder.

To configure QVT Transformation Builder
1 In the Navigator or Model Navigator, right-click your transformation project node and choose Properties from

the context menu.
2 Choose Builders in the left pane and click New.

The Choose configuration type dialog box is displayed.

3 Choose Compiled Model-To-Model Transformation and click OK.
The Properties for New_Builder dialog box is displayed.

4 On the Transformation tab, specify the transformation ID, source model URI, and the location of the target
folder.

5 On the Build Options tab, specify a working set of workspace resources. Any change to the specified resources
will start the builder.

6 Save your changes and close the dialog box.

Related Concepts

Model Transformation Support

Related Procedures

Running Compiled Transformations

Related Reference

QVT Builder
Apply Transformation

499

Configuring Model-To-Text Transformation Builder
Before you can run a compiled Model-To-Text transformation, you need to configure the Model-To-Text
transformation builder.

To configure Model-To-Text Transformation Builder
1 In the Navigator or Model Navigator, right-click your transformation project node and choose Properties from

the context menu.
2 Choose Builders in the left pane and click New.

The Choose configuration type dialog box is displayed.

3 Choose Compiled Model-To-Text Transformation and click OK.
The Properties for New_Builder dialog box is displayed.

4 On the Transformation tab, specify the transformation ID, source model URI, and the location of the target
folder.

5 On the Build Options tab, specify a working set of workspace resources. Any change to the specified resources
will start the builder.

6 Save your changes and close the dialog box.

Related Concepts

Model Transformation Support

Related Procedures

Running Compiled Transformations

Related Reference

QVT Builder
Apply Transformation

500

Creating a Composite Transformation

To create a Composite transformation
1 Create an MDA Transformation project.
2 In Navigator or Model Navigator, right-click the project root and choose New Other... from the context

menu.
The New wizard is displayed.

3 Select Modeling Composite Transformation in the list of wizards tree and click Next.
The New Composite Transformation wizard displays.

4 On the MDA Composite Transformation wizard screen, specify the folder where you want to store the
composite transformation script and the name of the script file. Click Next.
The Composite Transformation Content wizard screen is displayed.

5 In the Project name and Default task name fields, specify the ANT project name and the name of the default
package. These parameters are inserted in the XML header of your ANT script and open in the Ant view.

6 Add one or more ANT tasks to your script and click Finish.

Adding a New Ant Task to the Composite Transformation

Note: You can add or modify your ANT tasks at any time later using the Ant Editor.

Related Concepts

Model Transformation Support

Related Procedures

Creating an MDA Transformation Project

Related Reference

QVT Ant Tasks
Model-To-Text Ant Tasks

501

Adding a New Ant Task to the Composite Transformation

To add a new Ant task to the Composite transformation
1 Open the composite transformation script in the Ant Editor, right-click in the editor area where you want to

insert the task, and choose Create MDA Ant Task from the context menu.
The New MDA Ant Task wizard is displayed.

Note: If you create a new Composite transformation, click the Add... button on the Composite
Transformation Content screen of the New Composite Transformation wizard.

2 Choose the Enter data manually option if you want to enter your task parameters manually.
The Select launch configuration type wizard screen is displayed.

Tip: Choose the Select existing launch configuration option to copy task parameters from an
existing launch configuration to your task script.

3 Select the launch configuration type that matches your transformation and click the Enter launch configuration
data button.
The Edit Launch Configuration dialog box is displayed.

Note: The Edit Launch Configuration dialog box is used here only to collect required task
parameters, and no actual launch configuration is created.

4 Specify task parameters for the selected transformation type and click OK to return to the wizard. Click Next.
The Preview wizard screen is displayed.

5 Check the result task script, and click Finish to insert it into your composite transformation script.

Related Concepts

Model Transformation Support

Related Procedures

Creating a Composite Transformation

Related Reference

QVT Ant Tasks
Model-To-Text Ant Tasks

502

Creating a Model-To-Model Transformation

To create a Model-To-Model transformation
1 Create an MDA Transformation project.
2 In Navigator or Model Navigator, right-click the project root and choose New QVT Transformation from

the context menu.
The New QVT Transformation wizard is displayed.

3 On the Transformation Input wizard screen, choose a metamodel element that you want to use as the
transformation input. You can expand Together project nodes to choose the input element from metamodels
used in Together projects or expand the metamodels node to select an EMF class. Click Next.
The Transformation Output wizard screen is displayed.

Note: If you want to create an inplace transformation, check the Create inplace transformation
check box. The Transformation Output wizard screen will not open.

4 Choose a metamodel element you want to use as your transformation output and click Next.
The New File wizard screen is displayed.

5 Specify the transformation file name. Click Next.
The Import Metamodels wizard screen is displayed.

6 Check the check boxes next to the auxiliary metamodels that you want to import into your transformation project
and click Next.
The Import Libraries screen is displayed.

7 Choose the libraries or compiled transformations that you want to use in your transformation and click Next.
Together provides a number of pre-installed libraries that you can use. You can also create your own library.

Note: You can find a list of methods defined in the pre-installed libraries on the OCL library
operations tab of the OCL Preferences dialog box (Window Preferences...
Modeling OCL OCL library operations).

The Transformation ID screen is displayed.

Note: The screen opens only when you create a QVT transformation in the MDA project that
contains Java code.

8 Review the transformation ID assigned to your transformation and edit it, if necessary.
9 Click Finish to create the transformation.

The transformation file opens in the QVT Editor.

503

Related Concepts

Model Transformation Support

Related Procedures

Creating an MDA Transformation Project
Applying Model-To-Model Transformations
Debugging Model-To-Model Transformations
Deploying Transformations

Related Reference

QVT Language
QVT Editor

504

Creating a QVT Library

To create a QVT library
1 Create an MDA Transformation project.
2 In Navigator or Model Navigator, right-click the project root and choose New QVT Library from the context

menu.
The New QVT Library wizard is displayed.

3 Enter or select a Java source container where you want to store your library and specify the library file name
(*.qvt). Click Next.
The Import Metamodels wizard screen is displayed.

4 Check the check boxes next to metamodel elements that you want to use as the library input. You can expand
Together project nodes to choose input elements from metamodels used in Together projects or expand the
metamodels node to select EMF classes. Click Next.
The Import Libraries page is displayed.

5 Check the check boxes next to the libraries and transformations available in your workspace that you want to
import into your QVT library and click Next.
The Library ID page is displayed.

6 Specify the identifier that you want to use when referencing the compiled library and click Finish.
The created library opens in the QVT Editor.

Related Concepts

Model Transformation Support

Related Procedures

Creating an MDA Transformation Project
Applying Model-To-Model Transformations
Deploying Transformations

Related Reference

QVT Language
QVT Editor

505

Creating an Example MDA Transformation Project

To create an MDA Sample Transformation Project
1 Choose File New Example from the menu.

The New Example wizard is displayed.

2 Expand the MDA node in the tree view list and select the example project you want to create.
3 Click Next.

The Transformation Sample Wizard is displayed.

4 Leave the project name as it is and click Finish.
5 The example project is created in your workspace.

Related Concepts

Model Transformation Support

Related Procedures

Creating an MDA Transformation Project

Related Reference

MDA Example Projects

506

Creating an MDA Transformation Project

To create a new MDA Transformation project
1 Choose File New Project... from the main menu.

The New Project wizard is displayed.

2 Expand the Modeling node in the tree view list, select MDA Transformation Project, and then click Next.
The Transformation Project wizard screen is displayed.

3 Specify the project name and location, and then click Next.

Note: If you want to add a Model-To-Text transformation to your project, or compile your project
transformations later, check the Create a plug-in project check box and then define your
plug-in project settings on the Transformation Project Content wizard screen. Otherwise,
Together will not generate Java code for your project transformations and you can run them
in the interpreted mode only.

The Transformations wizard screen is displayed.

4 If you want to add a transformation to your new project, check the Create Transformation in the new
Transformation Project check box, select the required transformation type, and follow the wizard instructions
for the selected transformation type. If you want to create an empty project, leave the page as it is and click
Finish.
The new MDA Transformation Project opens in the Together Modeling perspective.

Related Concepts

Model Transformation Support

Related Procedures

Creating a Model-To-Model Transformation
Creating Model-To-Text Transformations
Building MDA Projects from the Command Line

507

Creating an XSL Transformation

To create an XSL transformation
1 Create an MDA Transformation project.
2 In Navigator or Model Navigator, right-click the project root and choose New XSL Transformation from

the context menu.
The Transformation Input screen of the New XSL Transformation wizard is displayed.

3 Choose a metamodel element that you want to use for your transformation input and click Next.
The New File screen is displayed.

4 Select the parent folder and the name for the XSL transformation file.
5 Click Finish to create the transformation.

The XSL transformation file opens in the XSL Editor.

Related Concepts

Model Transformation Support

508

Creating Model-To-Text Transformations

To create a Model-To-Text transformation
1 Create a plug-in Transformation project or use an existing transformation project.
2 In Navigator or Model Navigator, right-click the project root and choose New Model-To-Text

Transformation from the context menu.
The New Transformation Class screen of the New Model-To-Text Transformation wizard is displayed.

3 In the Source folder field, specify the folder within your plug-in project that contains generated Java source
files.
In the Class name specify a fully qualified name of the Java class that you want to create.

In the Package name filed, specify the name of the package that contains the class.

Check the Use JET check box if you want to use JET.

In the Transformation ID field, specify a unique ID assigned to the transformation. Click Next.

The Transformation Input screen is displayed.

4 Choose a metamodel element that you want to use for your transformation input.
You can expand the Together project nodes to select the metamodel element from the metamodels that are
used in the projects or expand the metamodels node to select an EMF class.

5 Click Finish to create the transformation.
The created class is opened in the Java Editor.

Related Concepts

Model Transformation Support

Related Procedures

Creating an MDA Transformation Project
Applying Model-To-Text Transformations
Debugging Model-To-Text Transformations
Deploying Transformations

509

Debugging Model-To-Model Transformations

To debug a Model-To-Model transformation
1 Open the transformation file in the QVT Editor.
2 Double-click the gray area on the left of the editor pane against the line where you want to set a breakpoint.
3 Choose Run Debug... from the main menu.

The Debug dialog box is displayed.

4 Under QVT Interpreter, create the launch configuration for your transformation:
On the Transformation tab, specify the configuration name, transformation module, source model URI, target
model, and whether you want to generate a trace file.

Note: If you check the Clear contents check box for Inplace or Existing container target types,
only files created during the debugging process will be cleared.

On the Configuration tab, set values for transformation properties, if needed.

5 Click the Debug button.
The debugging session starts and then immediately stops at the first breakpoint that you set. Use the Debug
and Console views to control the debugging process or switch to the Debugging perspective when prompted.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Model Transformations
Creating an MDA Transformation Project

Related Reference

QVT Editor

510

Debugging Model-To-Text Transformations
Note: Together uses Eclipse Java Debugger for Model-To-Text transformations.

To debug a Model-To-Text transformation
1 Open the generated transformation file in the Java Editor.
2 Double-click the gray area on the left of the editor pane against the line where you want to set a breakpoint.
3 Choose Run Debug... from the main menu.

The Debug dialog box is displayed.

4 Under Model-To-Text Application, create the launch configuration for your transformation:
On the Transformation tab, specify the configuration name, transformation file, source model URI, target folder
for transformation results, and whether you want to monitor changes in the target folder during the debugging
process.

On the Workspace tab, specify which additional projects you want to import to the temporary debugging
workspace.

5 Click the Debug button.
Together launches a “headless” instance of Eclipse that runs in the background. The projects required for the
transformation are imported into the temporary debugging workspace.

6 The debugging session starts and then immediately stops at the first breakpoint that you set. Use the Debug
and Console views to control the debugging process or switch to the Debugging perspective when prompted.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Model Transformations
Creating an MDA Transformation Project

511

Debugging XSL Transformations

To debug an XSL transformation file
1 Open the transformation file in the XSL Editor.
2 Double-click the gray area on the left of the editor pane against the line where you want to set a breakpoint.
3 Select Run > Debug... from the menu. The Debug dialog is displayed.

4 Under XSL Transformation, choose the launch configuration you have created for your transformation and
click Debug.
The Extensible Stylesheet Debug perspective opens.

5 The debugging session will be started and immediately stopped at the first breakpoint specified.
6 As necessary, use standard debugger commands F5 = StepInto, F6 = StepOver, F7 = StepReturn, CTRL-R = run

to line, F8 = Resume.

Related Concepts

Model Transformation Support

Related Procedures

Applying XSL Transformations

Related Reference

XSL Editor

512

Deploying Transformations
Note: You cannot deploy Java-less transformations.

To deploy compiled QVT and Model-To-Text transformations
1 Choose File Export from the menu.

The Select page of the Export wizard is displayed.

2 Select the Deployable Plug-ins and Fragments item and click Next.
The Deployable Plug-ins and Fragments page of the Export wizard is displayed.

3 In the Available Plug-ins and Fragments window, check the check boxes against the transformations that you
want to export.

4 In the Export Destination area, specify the Eclipse installation directory.
5 Click Finish.

Restart Together with —clean option to load the newly created transformation plug-in.

Related Procedures

Running Compiled Transformations

Related Reference

QVT Builder
Apply Transformation

513

Manually Registering a Metamodel for Use with QVTO
In addition to using deployed metamodels, you can also use metamodels from a workspace with Operational QVT.
Metamodels should be defined in ecore models and then registered in the QVTO project properties.

To manually register a metamodel for use with QVTO
1 In the Model Navigator view, right-click the project node and select Properties.
2 In the QVT Settings/Metamodel Mappings, click Add, select the target ecore model URI, and specify the

source model URI, which refers to the model in QVT. Click OK and close the project properties dialog.
3 After the new metamodel is available to QVT, reopen any open editors to use the newly registered metamodel.

Related Concepts

Model Transformation Support

Related Procedures

Running an Operational QVT

514

Opening MDA Views

To open MDA views:
1 Choose Window Show View Other...
2 In the Show View dialog box, expand MDA node.
3 Select Metamodel Browser and OCL Expressions views and click OK.
4 The views open in the Eclipse framework.

To open the Trace view
1 In the Navigator view, double-click a .trace file that you want to open in the Trace view.
2 The view displays the selected trace file.

Related Concepts

Model Transformation Support

Related Procedures

Creating an MDA Transformation Project

Related Reference

Metamodel Browser View

515

Running a Composite Transformation script

To run a Composite transformation script
1 Choose Run External Tools External Tools... from the menu.

The External Tools dialog box is displayed.

2 Select the Ant Build node and click the New button to create a new launch configuration.
The new configuration is added to the Ant Build node.

3 On the Main tab in the Name field, specify the name of the run configuration.
4 Under the Buildfile, click the Browse Workspace... button.

The Choose Location dialog box is displayed.

5 Click the project that contains the composite transformation build file in the left pane and then select the required
Ant build file (.xml) in the right pane. Click OK to close the dialog box.

6 On the JRE tab, select the Run in the same JRE as the workspace option.
7 Click the Run button to run the Ant build file.

To run an individual task in the Composite transformation script
1 Choose Window Show view Other...

The Show View dialog box is displayed.

2 Expand the Ant node, select the Ant item, and click OK.
The Ant view is displayed.

3 Drag and drop your composite transformation script file into the Ant view.
The script file is displayed in the Ant view tree under the name specified in the project name property.

4 Expand the script file node, click the Ant task that you want to run and choose the Run As Ant Build... item
from the context menu.
The Modify attributes and launch dialog box is displayed.

Note: If you have created Ant configurations for your script file, the Ant Configuration
Selection dialog box is displayed instead. Select the configuration created for your script
file and click OK to open the Modify attributes and launch dialog box.

5 On the Targets tab, check the check box next to the tasks that you want to run.
6 On the JRE tab, select the Run in the same JRE as the workspace option.
7 Click the Run button to run the specified Ant task(s).

516

Related Concepts

Model Transformation Support

Related Procedures

Creating a Composite Transformation

Related Reference

QVT Ant Tasks
QVT Ant Tasks

517

Running an Operational QVT

To run an operational QVT
1 Create a new run configuration by choosing Run Run Configurations... from the main menu.

The Run manager dialog opens.

2 Right-click Operation QVT Interpreter and choose New.
Type a descriptive title in Name.

3 Click Browse next to Transformation module and select the desired QVTO file. You can optionally specify a
trace file that lists transformation mappings.
Enable Generate trace file and click Browse file.

4 Click Browse next to Model URI for each input model.
Select your model and click OK.

Tip: For Together models, the process of entering URIs is automated. However, you can enter
the model URI manually. This URI must follow the together:/ + projectName +
#model:project:: + packageName convention. For example, if a UML20 project is
named u2, the URI is together:/u2#model:project::u2, which selects the UML20
model's root package as the input scope.

5 Click Browse next to Model URI for each output model.
Select your model and click OK. You can optionally select a model feature by clicking Select.

Warning: Enabling Clear contents erases data in the target model.

Note: If the QVT includes more input or output models, additional models might be selected.

6 The Configuration tab contains a list of any defined configuration properties in the QVT script. If properties are
not defined in the QVT, the list is empty.
Declarations for configuration properties resemble configuration property modelName : String;
Enter appropriate data in Value.

Note: Because raw string values are specified here, the launch configuration validates each
passed value according to the property type and rejects invalid values. Because this check
is not always sufficient, the configuration performs an additional validation at execution
time. If the specified value is invalid (for example, if the configuration property type has
been changed in the QVT script while the launch configuration retains the previous value
for it), a QVT runtime exception occurs at the point of the configuration property initialization
and the execution ends. If no value is set for a configuration property at execution time,
the property defaults to a null value at initialization. Currently, only primitive types supported
by QVT are supported for configuration properties.

7 Refer to the Common tab for general runtime configuration options. This content is inherited from the Eclipse
platform.

8 Click Apply to save the configuration and Run to perform the transformation.

518

Related Concepts

Model Transformation Support

Related Procedures

Manually Registering a Metamodel for Use with QVTO

519

Running Compiled Transformations
You can run compiled transformations using:

♦ QVT Transformation External Tool Builders, which run transformations as a part of the project build.

♦ The Apply Transformation wizard for Model-To-Text or Model-To-Model transformation.

Note: You need to deploy your compiled transformation before you can run it.

To run a compiled transformation using transformation builders
1 Right-click your project root and choose Properties from the context menu.

The Properties dialog box is displayed.

2 Click Builders and then click the New... button on the Builders page.
The Choose configuration type dialog box is displayed.

3 Select the Compiled Model-To-Text Transformation or Compiled QVT Transformation item and click OK.
The Edit launch configuration properties dialog box is displayed.

4 In the Name field, specify the name of the new builder.
5 Click the Browse... button next to the Transformation id field and select your transformation file in the Select

Transformation dialog box.
6 Click the Browse... button next to the Source model URI field and choose the source model in the Workspace

Contents dialog box.
7 For the Model-To-Model transformation, click the Browse... button next to the Target folder field and choose

the folder where you want to store the transformation results.
8 For the Model-To-Text transformation, in the Target model area specify the target type, URI of the target model,

and location of the trace file.
9 Click OK to close the dialog box.

The compiled transformation runs as a part of the project build.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Text Transformations
Applying Model-To-Model Transformations
Deploying Transformations

520

Comparing and Merging Models
Describes how to compare models and model elements with each other, and perform history comparison with the
earlier versions of the model stored in VCS.

In This Section
Comparing and Merging Shared Models
How to compare and merge models shared with VCS.

Comparing Models
How to compare two or three models against each other and review differences.

Merging Models
How to merge models using the Compare editor.

521

Comparing and Merging Shared Models
Use the Synchronize view to compare shared models.

To compare and merge shared models
1 In the Team Synchronize view, select a model or model element version stored in the repository that you want

to compare with the local version.
2 Choose Model Compare With Local Version from the main menu.

Tip: Alternatively, right-click a model or model element and choose Open In Model Compare
Dialog from the context menu.

The comparison results display in the Model Compare dialog box.

3 Review the differences, apply your changes, and then commit the model to the repository using menu
commands specific to your VCS.

Note: When merging a shared model, you can change your local version only. Together models consist of a large
number of files, so you need to have all of these files locally.

Warning: Together performs merge on the model level, and existing file conflicts may still remain after the model
merge. To commit these changes, use the "forced commit" mechanism provided by your version control
system, (for example, the "Override and Commit" option in CVS).

Related Concepts

Model Compare and Merge

Related Procedures

Merging Models

Related Reference

Model Compare/Merge
EMF Model Compare Preferences

522

Comparing Models
You can compare two or three models against each other and review differences.

To compare models
1 In the Model Navigator or Navigator view, select two or three models or model elements.
2 Choose Compare With Each Other (as Models) from the context menu.

The comparison results display in the Compare editor.

Related Concepts

Model Compare and Merge

Related Procedures

Merging Models

Related Reference

Model Compare/Merge
EMF Model Compare Preferences

523

Merging Models
How to merge models using the Compare editor.

Warning: Source code elements merged using the Compare editor become design elements after merging.

To merge models
1 Compare models or model elements.

Comparing Models
2 Double-click the first difference displayed in the Structure Compare section of the Compare editor.

The difference details are displayed in the Substructure/Properties Merge section of the Compare editor.

Tip: Use the Show Containment References button on the editor toolbar to toggle views of the
comparison results.

3 In the Substructure Merge tab, select an element of the input model and click the Copy to the Left or Copy
to the Right button to copy it to the target model.

4 In the Properties Merge tab, select a property of the input model and click the Copy to the Left or Copy to
the Right button to copy it to the target model.

Tip: You can undo and redo operations, using the Undo and Redo toolbar buttons, or keyboard shortcuts CTRL
+Z and CTRL+SHIFT+Z.

Related Concepts

Model Compare and Merge

Related Procedures

Comparing Models

Related Reference

Model Compare/Merge
EMF Model Compare Preferences

524

Comparing Models
You can compare two or three models against each other and review differences.

To compare models
1 In the Model Navigator or Navigator view, select two or three models or model elements.
2 Choose Compare With Each Other (as Models) from the context menu.

The comparison results display in the Compare editor.

Related Concepts

Model Compare and Merge

Related Procedures

Merging Models

Related Reference

Model Compare/Merge
EMF Model Compare Preferences

525

Together Object Constraint Language (OCL)
This section provides how-to information on using Together OCL facilities.

In This Section
Creating an OCL Guard Condition for a Transition
How to create a guard condition for a transition.

Creating Constraints
This topic describes how to create an OCL constraint.

Editing Constraint Expressions
How to edit a constraint expression.

Enabling Source Code Generation from OCL Constraint
How to use OCL constraints when you generate Java or C++ code from a design project.

OCL in Documentation Templates
How to use OCL expressions in the templates for generating project documentation.

Searching Model with OCL queries
How to search for model elements using OCL queries.

Using OCL in Model Audits and Metrics
How to use OCL expressions in Audits and Metrics.

Working with a Combined Fragment
How to work with a combined fragment.

Working with Custom OCL Operations
How to create, edit, import and export OCL operations.

526

Creating an OCL Guard Condition for a Transition
An OCL expression can restrict a StateMachine transition by acting as a guard to that transition. In an OCL guard
condition, the StateMachine must have a context that is a Classifier. The expression, which is evaluated when the
guard's transition is attempted, is of type Boolean.

To create a guard condition for a transition
1 Select a transition on a diagram.
2 Select the guard tab in the Properties view.
3 Specify the language for your guard condition (OCL by default).
4 Select the body field and click the Edit button.
5 Type the condition expression and click OK to apply changes.

Related Concepts

About OCL Support in Together

Related Reference

UML 2.0 State Machine Diagrams

527

Creating Constraints
You can create constraints for all elements of the UML 2.0 diagrams. To describe a constraint, you can use plain
text or OCL.

To create a constraint in a UML 2.0 diagram
1 Click the Constraint Link button on the diagram Palette and point to the model element that defines the context

of your constraint (such as Class, Attribute or Operation), then hold down the left mouse button and draw the
link to the place where you want to create the Constraint element.

2 Release the mouse button to insert the element.
The element displays with the in-place editor open.

3 Type the constraint expression, save your changes, and close the Constraint editor.
Tip: Alternatively, use one of the following methods:

♦ On the context menu of an element, choose New Linked Constraint and enter the constraint
expression.

♦ Use the Constraint and Constraint link buttons on the Tools Palette to place a constraint node on the
diagram and link it to the context element.

Related Concepts

About OCL Support in Together

528

Editing Constraint Expressions
Constraint expressions are represented in plain text or in the OCL language. You can use the Editor view or the
OCL tab of the Properties View to create or modify the constraint body.

To edit a constraint expression in the Editor view
1 Double-click a constraint element. The constraint test opens in its own tab of the Editor view.
2 In the Language drop-down list in the upper-right corner of the view, select the desired language of the

expression.

Note: If OCL is selected, the OCL editor provides syntax control and error highlighting. A red or
green mark to the right indicates the validity of the OCL expression.

3 Apply changes.

To edit a constraint expression in the Properties View
1 Select a constraint element in diagram.
2 In the Properties View, select the OCL tab.
3 In the language field, select the desired language of the expression.
4 In the body field, enter the expression in the text area, or click the Edit button and enter text in the Enter

constraint dialog box.

Tip: Alternatively, select a constraint element and press F2. Edit the constraint in the editor.

Related Concepts

About OCL Support in Together

Related Procedures

Creating Constraints

Related Reference

Diagram View

529

Enabling Source Code Generation from OCL Constraint
After your design project is finished, you can generate Java or C++ code from it. When generating Java, you can
use your OCL constraints.

To enable or disable OCL constraints processing
1 Click Window Preferences on the main menu.
2 Expand the Modeling node and then the Source Generation node and select Java.
3 Select 5.0 in the Source compatibility list.

Note: Because java asserts are generated for some expressions, it is recommended to select
java5 as the target java.

4 Switch to the OCL tab and select whether to generate invariants and pre/post conditions.
5 Click OK to save the changes and exit the dialog box.

Note: All the listed settings can be made in the Export wizard (File Export Modeling
GenerateJavaProject) if you select the Enable project-specific settings option in the Generation
Options tab.

Related Concepts

About OCL Support in Together

530

OCL in Documentation Templates
Together allows you to compose model queries and define enable conditions using OCL syntax, and then use them
in a template for generating documentation. OCL or Legacy type expressions can be entered in the template
element's properties dialog box using the provided Expression Editor. Where applicable, the editor is either opened
in the tab or you can use the Edit Expression button to open the editor.

In addition to the standard OCL operations, the special native OCL extensions are provided for the functions that
are specific for Documentation Generation. Native OCL extensions tend to have the same signature and meaning
as the legacy Documentation Generation functions have. Code sense suggests these operations along with the
standard OCL ones.

To add an expression to your template
1 Open a template where you want to add an OCL expression.
2 In the Properties dialog box, open the tab where you want to type the expression. If the Expression Editor is

not opened in the tab, click the Edit Expression button.
3 Specify the context for your expression in the Context field.
4 In the Body area, you can type the expression text. The code sense, syntax highlighting and validating are

available.
5 Click OK to save the expression in the template.

Related Concepts

Documentation Template Controls
About OCL Support in Together
Enable Conditions

531

Searching Model with OCL queries
Together lets you search for models using OCL queries.

To find model elements that match the specified OCL query
1 On the main menu, choose Search Model.

The Search dialog box is displayed.

2 Click the OCL Model Search tab.
3 Specify the context for your expression in the Context field.

Tip: Use the drop-down list or the Content Assistant. To open the Content Assistant, click on the
Context field and press CTRL +SPACE. Choose your element from the list.

For example, to search for all UML 2.0 classes that have the stereotype MyStereotype, enter:

uml20::classes::Class

4 In the Invariant field, type the query expression.
For example, to complete your search for all UML 2.0 classes that have the stereotype MyStereotype, enter:

self.stereotypes->includes('MyStereotype')

5 In the Scope section, click the appropriate radio button to select the search area. The possible options are
workspace, selected resources, the current project or a predefined working set.
To select a working set, click the Choose button. In the Select Working Set dialog, choose your working set
and click OK. If there are no available working sets, use the New button to create one.

6 Click Search.

A tree with the list of matching elements opens. You can navigate to the corresponding diagram from this view by
double-clicking the selected element.

Related Concepts

OCL Support

Related Procedures

Searching Model Elements

532

Using OCL in Model Audits and Metrics
You can run audits and metrics in your design model using OCL expressions.

You can create custom OCL audits and metrics that operate with metamodel types and run them against the model
that is an instance of the same metamodel. Together also contains a set of sample audits (see the following
procedure to access them). The ideas of most of them are taken from Ambler and Fowler books. These audits can
be used as examples for custom rules creation. For a description of the predefined model audits and metrics provided
in Together, refer to “Model Audits and Metrics Descriptions.”

To define audits and metrics
1 Choose Window Preferences... from the menu.

The Preferences dialog box is displayed.

2 Expand the Modeling node and select QA Model.
3 Select either the Audits or Metrics tab.
4 Click New to add an audit or metric. The Edit Audit or Edit Metric dialog box is displayed, respectively.
5 Specify your audit or metric name, description, severity, and select the context of the OCL expression. The code

for your new audit or metric is displayed in the standard OCL editor in the Body text area.

The audit expression should be a valid invariant that returns Boolean. Each metric expression should return an
Integer value.

To run defined audits and metrics
1 In the diagram, select model elements against which you want to run audits or metrics.
2 Select Model Run Model Audits or Model Run Model Metrics from the main menu.

The results are displayed in the Model Audit or Model Metrics view, respectively.

Note: The scope depends on the current selection made on the diagram. If the project default diagram is selected,
the entire project will be checked. If a single element is selected, only this element will be checked.

Note: If the first operand of an audit returns false, the second operand is not computed and errors are logged. This
ensures precise execution semantics and is necessary because the second operand computation may have
side effects and may call mapping operations.

Related Concepts

OCL Support
Model Metrics

Related Procedures

Running Model Audits and Metrics

Related Reference

Model Audits and Metrics Descriptions
OCL

533

Working with a Combined Fragment
In this section you will learn how to:

♦ Create a combined fragment

♦ Create nested combined fragments

♦ Create nested operators

♦ Sever nested operators

♦ Create operands

♦ Expand combined fragments across several lifelines

♦ Detach a combined fragment from a lifeline

To create a combined fragment
1 Choose the Combined Fragment button in the diagram Palette, and click on the target lifeline.
2 In the New Combined Fragment dialog box that opens, choose an operator from the list of available operators

and set the combined fragment options (operator name, arguments, or number of operands).
3 Click OK.

The combined fragment is added to the target lifeline or execution specification. Each new combined fragment has
a different color to distinguish it from the other combined fragments within the same cluster of nested frames.

To create a nested combined fragment
1 Choose the Combined Fragment button in the diagram Palette.
2 Click on the target combined fragment that already exists in a lifeline.

Note: Each new node has a different color that is selected at random. You can work with the inner frames in the
same way as with the outer frames: move along a lifeline, spread them over several lifelines, detach and tie
frames. Note that drawing a message link from a frame automatically expands it, together with its outer
frames, if any.

To create nested operators
1 Select a combined fragment.
2 In the other operators field of the Properties View, click the chooser button. The Interaction Operators dialog

box opens, displaying the list of already defined operators in the current combined fragment.
3 Click the Add button. A new line is displayed below the existing entry in the list of operators.
4 If a certain operator enables arguments, enter them in the adjacent field in the Arguments column. Use a comma

as a delimiter.
5 Use the Add and Remove buttons to compile your list of the nested operators. Use the Up and Down buttons

to specify the proper order of nested operators.
6 Click OK to apply changes.

The nested operators are now listed in the descriptor of the combined fragment in the specified order.

534

To sever operators
1 Right-click a combined fragment that contains nested operators.
2 On the context menu, choose Sever operators between.
3 On the submenu, select the pair of operators between which the combined fragment will be divided.

A nested combined fragment is now created.

To combine with an outer fragment
1 Right-click an inner fragment.
2 On the context menu, choose Combine with an outer fragment.

To create an operand
1 Select a combined fragment or an operand in the Model Navigator or in the Diagram Editor .
2 On the context menu of the selection, choose New Interaction Operand.
3 In the Interaction constraint tab of the Properties View, select the language to be used for describing the

constraint. To do this, click the Language drop-down list and choose OCL or plain text.
4 Type the constraint expression.
5 Add as many operands as required.
6 Apply changes.

A new operand is now created. If the operand was created from the context menu of a combined fragment, it will be
added to the end of the combined fragment. If the operand was created from the context menu of an operand, it will
be added just before this operand. Constraint text is displayed in the operand section of the combined fragment.

To expand a combined fragment across several lifelines
1 Select the combined fragment.

Tip: You can expand both outer and inner combined fragments.

2 Click the anchor icon and drag it to the target lifeline.

The fragment now spans across lifelines, with the mounting links on each lifeline.

To detach a combined fragment from a lifeline
1 Select the mounting link of a combined fragment.
2 Choose Delete on the context menu.

Tip: You cannot delete the only mounting link of a combined fragment. A combined fragment must be attached to
at least one lifeline.

Related Reference

Operator and Operand for a Combined Fragment

535

Working with Custom OCL Operations
Custom OCL operations can be used in OCL queries throughout Together—including in audits, metrics, search
expressions, and gendoc templates. In this section you will learn how to perform the following actions with the custom
OCL operations:

♦ Create

♦ Delete

♦ Edit

♦ Export

♦ Import

♦ Clone

To create a custom OCL operation
1 On the main menu, choose Window Preferences.
2 In the Preferences dialog, choose Modeling OCL and open the OCL Operations tab.
3 On the toolbar of the tab, click the New button.
4 In the Edit Operation dialog that opens, choose a context and enter the valid OCL expression as the body of

the operation.
5 Click OK.

To delete an OCL operation
1 On the main menu, choose Window Preferences.
2 In the Preferences dialog, choose Modeling OCL and open the OCL Operations tab.
3 Select the operation to be deleted.
4 On the toolbar of the tab, click the Remove button.

To edit an OCL operation
1 On the main menu, choose Window Preferences.
2 In the Preferences dialog, choose Modeling OCL and open the OCL Operations tab.
3 Select the operation to be modified.
4 On the toolbar of the tab, click the Edit button.
5 In the Edit Operation dialog that opens, update the context and the body of the operation.
6 Click OK.

Tip: Alternatively, you can update the body of the operation in the OCL text area.

To export an OCL operation
1 On the main menu, choose Window Preferences.

536

2 In the Preferences dialog, choose Modeling OCL and open the OCL Operations tab.
3 Select the operation to be exported.
4 On the toolbar of the tab, click the Export button.
5 In the export dialog that opens, navigate to your target location and save the operation as type

*.oclOperations.

To import an OCL operation
1 On the main menu, choose Window Preferences.
2 In the Preferences dialog, choose Modeling OCL and open the OCL Operations tab.
3 On the toolbar of the tab, click the Import button.
4 In the import dialog that opens, find the file of type *.oclOperations that you want to import, and click OK.

To clone an OCL operation
1 On the main menu, choose Window Preferences.
2 In the Preferences dialog, choose Modeling OCL and open the OCL Operations tab.
3 Select the operation to be copied.
4 On the toolbar of the tab, click the Clone button.

Related Concepts

OCL Support

Related Procedures

Together Object Constraint Language (OCL)

Related Reference

OCL

537

Patterns and Templates
This section provides how-to information on using patterns with Together.

In This Section
Adding a Pattern Part
How to add a part to a pattern.

Building Pattern
How to build a pattern from a pattern definition project.

Creating Model Element by Pattern
How to create elements by pattern.

Creating Pattern Definition
How to create a pattern definition project on the basis of the selected model elements.

Deleting Patterns Instances
How to delete pattern instances from the model.

Editing Templates
How to edit templates.

Managing Pattern Definitions in the Pattern Registry
How to use the Pattern Registry to create, edit and export pattern definitions.

Recognizing Patterns
How to recognize patterns in a project.

Using Conditions in Templates
Describes how to use conditional logic to control the output of templates.

Using the Class Template Editor
Describes how to use the Templates view to edit class templates.

Using the Link Template Editor
Lists the steps for editing a link template.

Using the Package Template Editor
Describes how to use the Templates view to edit a package template.

Validating Pattern Definition Projects
How to validate a pattern definition project.

Verifying Pattern Instances
How to verify a pattern instance and delete invalid instances.

Working with the Pattern Instances
How to use pattern instances (create elements by pattern, verify pattern instances, add pattern parts).

Working with the Templates
How to work with code templates.

538

Adding a Pattern Part

To add a part to a pattern
1 Right-click an oval that represents the pattern instance in the diagram.
2 On the context menu of the pattern instance, choose Create pattern part.
3 On the submenu of this menu node, select a part to be created. The Create Pattern Part wizard opens.
4 On the first page of the wizard, specify the target package where the part will be created. Click Next.
5 On the second page of the wizard, specify properties for the new pattern part, using the Set values section.
6 Click Finish.

Related Concepts

Patterns and Templates

Related Reference

Pattern Explorer

539

Building Pattern
In this section, you will learn how to build a pattern from a pattern definition project.

To build a pattern from a pattern definition project
1 Right-click your pattern definition project in the Model Navigator, and choose Patterns Build pattern on the

context menu.
2 Specify the name of the pattern and select a folder in the pattern registry (in the local workspace-specific part)

where the shortcut to the new pattern will be created.
3 Click Finish to start the compilation process.

Note: During the compilation process, the project validation is performed. If an error preventing the project from
compiling is found, the compilation is aborted and errors are displayed in the Pattern definition validation
results view.

540

Creating Model Element by Pattern

To create model elements by pattern
1 On the main menu, choose File New Other.
2 Expand the Modeling node and select Model element by pattern.
3 Select patterns to apply and click Next. You can optionally define the values for user-editable properties of the

pattern and select whether to add a pattern instance into the model. If you choose to add a pattern instance,
the new entity is displayed in the Patterns root on your project and in the Pattern Explorer, and the oval is
displayed in the diagram.

4 Click Finish to create elements based on the selected pattern definition.

Tip: If your diagram looks entangled after adding pattern instances, use the Layout Layout All command on the
diagram context menu.

Related Concepts

Patterns and Templates

Related Reference

Pattern Explorer

541

Creating Pattern Definition
New pattern definition projects are created the same way as any other project in Together. While creating a new
project, select Pattern definition under the Together node. The project is created with an empty model for you to
design your pattern from scratch.

Together suggests a simplified way to create a pattern definition project by exporting a selection of model elements
to a pattern definition.

Note: Patterns can be created only for UML 2.0 projects.

To create a pattern definition project from selected model elements
1 Select the elements you want to transform to a pattern definition.
2 Right-click the selection and choose Export Pattern definition from the context menu.
3 In the Create pattern from elements dialog, specify the name of the pattern definition and the target category.

You can choose to display the existing patterns and select the transformation profile as necessary. Click
Next.

4 In the Set role names page, edit the role names of the elements involved in the pattern definition, or accept
defaults. Click Next.

5 In the Set default values page, specify the default values for each role. Click Finish.

The newly created model will be filled with images (represented as InstanceSpecifications) of selected elements
of the source model. Properties of the source model elements are represented by Slots.

The new pattern definition is displayed in the Pattern Registry view.

Related Procedures

Creating a Project

Related Reference

Pattern Registry
Create Pattern from Elements

542

Deleting Patterns Instances
You can delete elements of the patterns using the Diagram Editor , the Model Navigator, or the Pattern Explorer.

To delete a pattern instance
1 In the Diagram Editor or Model Navigator, select the pattern instance to be deleted.
2 On the context menu, choose Delete to delete the selected pattern instance from the diagram and model.

Tip: Alternatively, select a pattern instance in the Pattern Explorer and choose Delete instances on the context
menu. The selected instance is deleted from the model.

To delete all instances of a pattern
1 In the Pattern Explorer, select a pattern node.
2 On the context menu of the selection, choose Delete instances.

Related Concepts

Patterns and Templates

Related Reference

Pattern Explorer
Pattern Registry

543

Editing Templates
You can edit templates through the Templates view. To open the Templates view:

From the main menu, choose Window Show View Templates. If Templates is not a menu option, choose
Window Show View Other Patterns and Templates Templates.

To rename a template
1 On the Templates view, right-click a template and select Rename. This opens the Rename Template dialog

box.
2 Enter the new name and click OK.

To modify a template
1 In the Templates view, right-click a Template.
2 Select Open. This opens the Template editor.
3 Make your edits.

There are three separate editors: one for link templates, one for class templates, and one for package templates.
Some edits are entered in a text box, others through a dialog that opens when you click Edit.

To restore a template that you have changed to its original state
1 In the Templates view, right-click a template.
2 Select Restore.

Note: This option is available only after changes to a template have been saved.

To delete a template
1 In the Templates view, right-click a template.
2 Select Delete.
3 Confirm the deletion in the Delete dialog box.

You can restore templates that you have deleted. You can do this only at the category level, which means all
templates deleted from the category are restored simultaneously. You cannot restore deleted templates individually.

To restore deleted templates
1 In the Templates view, right-click the category for the deleted template.
2 Choose Restore deleted from the context menu.

Related Concepts

Patterns and Templates

544

Managing Pattern Definitions in the Pattern Registry
In this section you will learn how to:

♦ Open the Pattern Registry

♦ Create a new pattern from the registry

♦ Edit pattern definitions from the registry

♦ Export pattern definitions as a plugin

To open a Pattern Registry
1 Select Window Show view Other from the main menu.
2 Expand the Patterns and Templates node and select Pattern Registry.

To create a new pattern from the registry
1 Right-click the Workspace folder in the Pattern Registry and choose New Pattern on the context menu.
2 Specify a name for the new pattern and select a pattern definition project that will be compiled to a pattern.

To edit a definition from the registry
1 Right-click a pattern in the Pattern Registry.
2 Choose Edit Definition on the context menu.

To export a definition as a plugin
1 Click the Export... button on the toolbar of the Pattern Registry.
2 Specify necessary parameters for a new plugin and select patterns you want to include in the plugin.
3 Click Finish to create a new Eclipse extension plugin.

545

Recognizing Patterns
You can examine your project for patterns.

To recognize patterns in a project
1 Select a project in the Model Navigator.
2 On the context menu of the project, choose Patterns Recognize Patterns.

The Recognize Patterns wizard opens.

3 In the Choose Pattern Definitions page, choose definitions of the patterns you want to find in the project. To
do this, select patterns in the tree of available patterns, and click Next.

4 In the Recognition Scope page, select model elements. Use the Add and Remove buttons to make up the list
of model elements to be examined. Click Next.

5 Observe the list of recognized patterns, or repeat the process with the other patterns and scope.

Warning: For the large projects, recognizing patterns increases memory consumption, which can result in the “out
of memory” exception. Change the JVM parameters to increase memory limit. To do that, restart the
application with the following Eclipse command line argument: -vmagrs -Xmx600M. This adds 600 MB
of RAM. Depending on your hardware configuration, you can try the different additional memory values.

Recognition results are presented in a dialog box allowing you to choose instances that should be created and stored
in the project model. After some of them are selected, new model entities are created in a special model node called
"Patterns" and grouped by pattern definition instances in the Pattern Explorer view. References to pattern instances
from a model can be created on any diagram by using the Add shortcut command.

Related Concepts

Pattern recognition

546

Using Conditions in Templates
When using the template editor to write the code snippets and syntax for fields, methods and classes, you can write
conditional logic to control what is created when the template is applied.

The following example shows how conditional logic applies to the Applet template.

To apply conditional logic to the Applet template
1 From the main menu, choose Window Show View Other Patterns and Templates Templates to

display the Templates view.
2 Expand the Local Templates node, then Java Package, and then Standard.
3 Double-click the Applet template to open the template editor.
4 Click the Variables tab. Notice the Boolean variable named init, which controls the code generation by the

Applet template.
5 Click the Units tab. Notice that init, the Boolean variable declared on the Variables tab, controls the creation

of the methods init() and destroy().

Note: Variable names declared on the Variables tab must be preceded by a $ symbol. Otherwise, they are treated
as normal text.

Related Reference

Syntax and Conditions in Templates

547

Using the Class Template Editor

To edit class templates in the Templates view
1 Open the Templates view: From the main menu, choose Window Show View Other Patterns and

Templates Templates.
2 Right-click a template in the Java Class templates section, and select Open.

By opening and exploring the default templates that come with Together, you can get a better understanding of how
easy it is to create your own class templates.

Related Procedures

Using Conditions in Templates

Related Reference

Template Variable Types

548

Using the Link Template Editor
You can edit link templates though the Templates view.

To edit a link template
1 Open the Templates view: From the main menu, choose Window Show View Other Patterns and

Templates Templates.
2 Expand the Local Templates node and the Java Link node.
3 Right-click the template in this section and select Open. The link template editor opens.

Related Procedures

Using Conditions in Templates

549

Using the Package Template Editor
You can edit package templates though the Templates view.

To edit a package template
1 Open the Templates view: From the main menu, choose Window Show View Other Patterns and

Templates Templates.
2 Right-click a template in the Java Package templates section and select Open.

Related Procedures

Using Conditions in Templates
Editing Templates

Related Reference

Template Variable Types

550

Validating Pattern Definition Projects
To avoid errors and inconsistencies, you need to check if the pattern you designed is valid and can be compiled
before creating a pattern definition from your Pattern Definition project.

Pattern validation checks for the following:

♦ Every instance specification in the project has a non-null classifier assigned via InstantiatesLink. The
classifier is a class from the “metamodels” root of the model.

♦ Every slot of every instance in the project has a defining feature that can be found as an attribute of the class
representing the metaclassifier of the slot’s owning instance specification.

♦ Slots are assigned only those values that are acceptable for corresponding features.

♦ Every instance specification representing a link must be tied by an aggregation-shaped link
(PatternDefinitionAssociationLink with property instanceAggregated set to true) to an
instance of a non-link metaclass.

♦ Every link instance must have two participants attached to it by means of
PatternDefinitionAssociationLink with property instanceAggregated set to false. The link
stereotype must be set to client or supplier.

♦ The link client and supplier attached to a link instance by association links must comply to the metamodel
description (classifiers of the link participants must inherit metaclasses mentioned in the descriptions of the
corresponding link participant role).

♦ No cyclical aggregations are allowed in the pattern definition model.

♦ Each constraint in the pattern definition project must have the constraintType property set to the name of
one of the available constraints.

♦ Each constraint must be linked by ConstraintParameterLinks to all parameters that this constraint is
checked against. Each such link must have its parameter role set in the parameterRole property. Roles of
the parameter links must not duplicate one another, and all parameters of the constraint should be defined.

♦ The union of all participant sets selected for pattern parts should not be equal to the set of all participants in
the definition.

To validate a pattern definition
1 In the Model Navigator view, select your Pattern definition project
2 Right-click the selection and choose Patterns Check pattern definition project validity from the context

menu.

The validation results are displayed in the Pattern definition validation results view.

Related Reference

Last Validation Results View

551

Verifying Pattern Instances
If modification of a pattern instance violates its validity, the pattern instance is displayed red in the diagram.
Verification of a pattern instance helps update relationships between the pattern and participants, and makes the
pattern valid, if possible. In case such an update is not possible, Together displays a warning message.

To verify a pattern instance
1 Select a pattern oval in the diagram and right-click it.
2 On the context menu, choose Patterns Verify pattern.

Tip: Alternatively, choose Verify pattern on the context menu of the pattern in the Pattern
Explorer.

You might want to get rid of invalid pattern instances. Use the Pattern Explorer context menu command.

To delete invalid pattern instances
1 In the Pattern Explorer, right-click a pattern node.
2 On the context menu of the node, choose Clear Invalid Instances.

Related Concepts

Patterns and Templates

Related Reference

Pattern Explorer

552

Working with the Pattern Instances

Managing pattern instances involves the following procedures
1 Create a pattern instance in diagram:

Creating Model Element by Pattern
2 Create additional parts in a pattern:

Adding a Pattern Part
3 Check validity of a pattern instance:

Verifying Pattern Instances
4 Examine a diagram for patterns:

Recognizing Patterns
5 Delete pattern instances:

Deleting Patterns Instances

Related Concepts

Patterns and Templates

Related Reference

Pattern Explorer

553

Creating Model Element by Pattern

To create model elements by pattern
1 On the main menu, choose File New Other.
2 Expand the Modeling node and select Model element by pattern.
3 Select patterns to apply and click Next. You can optionally define the values for user-editable properties of the

pattern and select whether to add a pattern instance into the model. If you choose to add a pattern instance,
the new entity is displayed in the Patterns root on your project and in the Pattern Explorer, and the oval is
displayed in the diagram.

4 Click Finish to create elements based on the selected pattern definition.

Tip: If your diagram looks entangled after adding pattern instances, use the Layout Layout All command on the
diagram context menu.

Related Concepts

Patterns and Templates

Related Reference

Pattern Explorer

554

Adding a Pattern Part

To add a part to a pattern
1 Right-click an oval that represents the pattern instance in the diagram.
2 On the context menu of the pattern instance, choose Create pattern part.
3 On the submenu of this menu node, select a part to be created. The Create Pattern Part wizard opens.
4 On the first page of the wizard, specify the target package where the part will be created. Click Next.
5 On the second page of the wizard, specify properties for the new pattern part, using the Set values section.
6 Click Finish.

Related Concepts

Patterns and Templates

Related Reference

Pattern Explorer

555

Verifying Pattern Instances
If modification of a pattern instance violates its validity, the pattern instance is displayed red in the diagram.
Verification of a pattern instance helps update relationships between the pattern and participants, and makes the
pattern valid, if possible. In case such an update is not possible, Together displays a warning message.

To verify a pattern instance
1 Select a pattern oval in the diagram and right-click it.
2 On the context menu, choose Patterns Verify pattern.

Tip: Alternatively, choose Verify pattern on the context menu of the pattern in the Pattern
Explorer.

You might want to get rid of invalid pattern instances. Use the Pattern Explorer context menu command.

To delete invalid pattern instances
1 In the Pattern Explorer, right-click a pattern node.
2 On the context menu of the node, choose Clear Invalid Instances.

Related Concepts

Patterns and Templates

Related Reference

Pattern Explorer

556

Recognizing Patterns
You can examine your project for patterns.

To recognize patterns in a project
1 Select a project in the Model Navigator.
2 On the context menu of the project, choose Patterns Recognize Patterns.

The Recognize Patterns wizard opens.

3 In the Choose Pattern Definitions page, choose definitions of the patterns you want to find in the project. To
do this, select patterns in the tree of available patterns, and click Next.

4 In the Recognition Scope page, select model elements. Use the Add and Remove buttons to make up the list
of model elements to be examined. Click Next.

5 Observe the list of recognized patterns, or repeat the process with the other patterns and scope.

Warning: For the large projects, recognizing patterns increases memory consumption, which can result in the “out
of memory” exception. Change the JVM parameters to increase memory limit. To do that, restart the
application with the following Eclipse command line argument: -vmagrs -Xmx600M. This adds 600 MB
of RAM. Depending on your hardware configuration, you can try the different additional memory values.

Recognition results are presented in a dialog box allowing you to choose instances that should be created and stored
in the project model. After some of them are selected, new model entities are created in a special model node called
"Patterns" and grouped by pattern definition instances in the Pattern Explorer view. References to pattern instances
from a model can be created on any diagram by using the Add shortcut command.

Related Concepts

Pattern recognition

557

Deleting Patterns Instances
You can delete elements of the patterns using the Diagram Editor , the Model Navigator, or the Pattern Explorer.

To delete a pattern instance
1 In the Diagram Editor or Model Navigator, select the pattern instance to be deleted.
2 On the context menu, choose Delete to delete the selected pattern instance from the diagram and model.

Tip: Alternatively, select a pattern instance in the Pattern Explorer and choose Delete instances on the context
menu. The selected instance is deleted from the model.

To delete all instances of a pattern
1 In the Pattern Explorer, select a pattern node.
2 On the context menu of the selection, choose Delete instances.

Related Concepts

Patterns and Templates

Related Reference

Pattern Explorer
Pattern Registry

558

Working with the Templates

Working with templates involves the following procedures
1 Edit, rename, delete and restore templates:

Editing Templates
2 Use the class template editor:

Using the Class Template Editor
3 Use the link template editor:

Using the Link Template Editor
4 Use the package template editor:

Using the Package Template Editor
5 Create conditional code templates:

Using Conditions in Templates

Related Concepts

Patterns and Templates

Related Reference

Templates View

559

Editing Templates
You can edit templates through the Templates view. To open the Templates view:

From the main menu, choose Window Show View Templates. If Templates is not a menu option, choose
Window Show View Other Patterns and Templates Templates.

To rename a template
1 On the Templates view, right-click a template and select Rename. This opens the Rename Template dialog

box.
2 Enter the new name and click OK.

To modify a template
1 In the Templates view, right-click a Template.
2 Select Open. This opens the Template editor.
3 Make your edits.

There are three separate editors: one for link templates, one for class templates, and one for package templates.
Some edits are entered in a text box, others through a dialog that opens when you click Edit.

To restore a template that you have changed to its original state
1 In the Templates view, right-click a template.
2 Select Restore.

Note: This option is available only after changes to a template have been saved.

To delete a template
1 In the Templates view, right-click a template.
2 Select Delete.
3 Confirm the deletion in the Delete dialog box.

You can restore templates that you have deleted. You can do this only at the category level, which means all
templates deleted from the category are restored simultaneously. You cannot restore deleted templates individually.

To restore deleted templates
1 In the Templates view, right-click the category for the deleted template.
2 Choose Restore deleted from the context menu.

Related Concepts

Patterns and Templates

560

Using the Class Template Editor

To edit class templates in the Templates view
1 Open the Templates view: From the main menu, choose Window Show View Other Patterns and

Templates Templates.
2 Right-click a template in the Java Class templates section, and select Open.

By opening and exploring the default templates that come with Together, you can get a better understanding of how
easy it is to create your own class templates.

Related Procedures

Using Conditions in Templates

Related Reference

Template Variable Types

561

Using the Link Template Editor
You can edit link templates though the Templates view.

To edit a link template
1 Open the Templates view: From the main menu, choose Window Show View Other Patterns and

Templates Templates.
2 Expand the Local Templates node and the Java Link node.
3 Right-click the template in this section and select Open. The link template editor opens.

Related Procedures

Using Conditions in Templates

562

Using the Package Template Editor
You can edit package templates though the Templates view.

To edit a package template
1 Open the Templates view: From the main menu, choose Window Show View Other Patterns and

Templates Templates.
2 Right-click a template in the Java Package templates section and select Open.

Related Procedures

Using Conditions in Templates
Editing Templates

Related Reference

Template Variable Types

563

Using Conditions in Templates
When using the template editor to write the code snippets and syntax for fields, methods and classes, you can write
conditional logic to control what is created when the template is applied.

The following example shows how conditional logic applies to the Applet template.

To apply conditional logic to the Applet template
1 From the main menu, choose Window Show View Other Patterns and Templates Templates to

display the Templates view.
2 Expand the Local Templates node, then Java Package, and then Standard.
3 Double-click the Applet template to open the template editor.
4 Click the Variables tab. Notice the Boolean variable named init, which controls the code generation by the

Applet template.
5 Click the Units tab. Notice that init, the Boolean variable declared on the Variables tab, controls the creation

of the methods init() and destroy().

Note: Variable names declared on the Variables tab must be preceded by a $ symbol. Otherwise, they are treated
as normal text.

Related Reference

Syntax and Conditions in Templates

564

Together Quality Assurance
This section provides how-to information on using Together Audits and Metrics.

In This Section
Copying QA Results to Clipboard
How to copy QA results to the clipboard.

Creating a Metrics Chart
How to create a chart for Quality Assurance metric results.

Creating and Using Code QA Sets
How to create and use your own QA sets.

Exporting and Importing Model Audits/Metrics
How to export and import model audits and metrics.

Exporting QA Results
How to export audit and metric results to XML or HTML files to share them with team members or to review
them later.

Flagging Audits in Code
How to flag audits in code.

Generating QA Report
How to create a QA report on you audits or metrics data.

Grouping and Ungrouping
How to group and ungroup audit results.

Hiding and Showing Audit Results
How to hide and unhide audit results.

Navigating to Problems
How to navigate to problems listed in QA results.

Printing Audit Results
How to print audit results.

Refreshing QA Results
How to refresh the QA results table.

Running Audits and Metrics from the Command Line
How to run audits and metrics from the command line.

Running Model Audits and Metrics
How to run model audits and metrics.

Running Model Audits and Metrics as Ant Tasks
How to use an Ant Task to run model audits and metrics.

Running Source Code Audits
How to run audits.

Running Source Code Metrics
How to run source code metrics.

Saving and Loading Audit Results
How to save and load audit results.

Saving and Loading Metric Results
How to save and load metric results.

565

Searching QA Results
How to search in the source code QA results.

Specifying Quality Assurance Preferences
How to perform quality assurance tasks.

Using OCL in Model Audits and Metrics
How to use OCL expressions in Audits and Metrics.

Using QA History
How to use QA results history.

Viewing and Finding QA Descriptions
How to view and search source code QA results descriptions.

Viewing Audit Results
How to view audit results.

Viewing Metric Results
How to view metric results.

Viewing Metrics as Graphs
How to view metrics as graphs.

Viewing Problem Detection Audits (Detection Metrics)
How to view Problem Detection Audits.

566

Copying QA Results to Clipboard

To quickly copy the currently displayed QA results and paste them into any document
1 Select one or more QA results by using CTRL+CLICK.
2 Right-click any of the highlighted results and choose Copy.
3 Open any document and use the clipboard Paste option (or CTRL+V) to paste the copied text.

Your results will be pasted in formats similar to the following:

Audits:

Statement is unreachable
\33151\Chill.hpp:22

Metrics:

Resource SaleDM Metric:AC: Metric:AHF: Metric:AID: 0 Metric:AIF: Metric:AIUR:
 Metric:ALD: 4 Metric:AOFD: Metric:AUF: Metric:CBO: Metric:CC: 1 Metric:CF:
 Metric:CIW: Metric:CL: Metric:CM: Metric:COC: Metric:CR: Metric:ChC:
 Metric:DAC: Metric:DD: Metric:DOIH: Metric:FO: Metric:HDiff: Metric:HEff:
 Metric:HPLen: Metric:IUR: Metric:LCOM3: Metric:LOC: 10 Metric:MHF:
 Metric:MIC: Metric:MIF: Metric:MNOB: 0 Metric:MNOL: Metric:MPC: 6
 Metric:MSOO: Metric:NAM: Metric:NCC: Metric:NIC: 0 Metric:NOA: Metric:NOAM:
 Metric:NOC: Metric:NOCC: Metric:NOCP: Metric:NOED: Metric:NOIS: Metric:NOLV:
 0 Metric:NOM: Metric:NOO: Metric:NOOM: Metric:NOP: 1 Metric:NOPA:
 Metric:NORM: Metric:PC: Metric:PF: Metric:PIS: Metric:PS: Metric:PUR:
 Metric:RFC: Metric:TCC: Metric:WCM: Metric:WMPC1: Metric:WOC:

Related Procedures

Running Source Code Metrics
Running Source Code Audits

567

Creating a Metrics Chart
You can create a chart in the Metric Results Pane.

Metrics charts are created in temporary files, which are deleted when the charts are closed. However, you can save
graphical information in text files, export it to any graphical format, and include graphics in the project that way.

To create a bar chart
1 Select a column that contains the result for a particular metric.
2 Right-click the column and choose Bar Graph.

To create a Kiviat chart
1 Select the row that contains the results for a particular element.
2 Right-click the row and choose Kiviat Graph.

To auto-update a Kiviat chart while browsing metric results
1 After the Kiviat chart is created, switch to the Metrics view.
2 Right-click any row and choose Link Kiviat Graph. The Kiviat chart will update every time you change the

highlighted row in the Metrics view.
3 To disable the auto-update, right-click any row in the Metrics view and choose Unlink Kiviat Graph.

Note: The Link Kiviat Graph menu command is available when the Kiviat chart is created based
on the source code modeling project.

To save a chart as an image
1 In the chart view pull-down menu, choose Save Image As BMP Picture... or Save Image As SVG Picture...
2 In the Save Chart As Image dialog box, navigate to the target location and click Save.

To print a chart
1 Browse to the chart you want to print.
2 In the chart view pull-down menu, choose Print....

Related Concepts

Quality Assurance

Related Procedures

Viewing Metric Results

568

Creating and Using Code QA Sets
For code audits and metrics, Together uses a default set of values.

To create and use your own set of values
1 Select Window Preferences on the main menu.
2 Expand the Modeling node, expand the QA Source node and select either C++ or Java.

Alternatively, right-click the QA results table (after you have run audits or metrics) and select Preferences.

To create a set of audits or metrics
1 Select either the Audits or Metrics tab.
2 Use the check boxes to select categories to include in your set. Use Select All or Clear All to select or deselect

all boxes at once.
3 Use the editor in the lower section of each tab to edit the parameters.
4 Click Save and choose a location for the set. To share this QA set, you can save it with your project and share

it using version control. The file is saved with a .qa extension.

Note: This new set now becomes the default set that is used when you run a QA task.

Note: To load an existing set of audits or metrics, click Load the set of options from a file in either C++ or Java
under the QA Source page of the Preferences dialog box.

Related Procedures

Using Version Control and Teams in Together
Running Source Code Audits
Running Source Code Metrics
Using OCL in Model Audits and Metrics

Related Reference

Quality Assurance

569

Exporting and Importing Model Audits/Metrics

To export model audits or metrics to a file
1 Choose Window Preferences on the main menu.
2 Expand the Modeling node and select the QA Model node.

Alternatively, right-click the QA results table (after you have run model audits or metrics) and select
Preferences.

3 Select either the Audits or Metrics tab.
4 Use the check boxes to select categories that you want to export.

Tip: Use Select All or Clear All to select or deselect all the boxes at once.

5 Use the OCL editor in the lower section of each tab to edit the parameters.

Tip: You can edit the context and values of each audit or metric. The editor provides code
highlighting and validation features.

6 Click Export and choose the location of the exported file. To share your customized audits and metrics, you
can save it in your project and share it using the version control.
The exported file has an .modelMetrics or .modelAudits extension and contains the full information about
your audits or metrics, including names, query bodies, and severity.

To import model audits or metrics
1 Choose Window Preferences on the main menu.
2 Expand the Modeling node and select the QA Model node.

Alternatively, right-click the QA results table (after you have run model audits or metrics) and select
Preferences.

3 Select either the Audits or Metrics tab.
4 Click Import and choose a previously exported file with an .modelMetrics or .modelAudits extension.

Warning: The audits or metrics in the imported file completely overwrite your current audits or
metrics settings, including names, OCL query bodies, and severity.

Related Procedures

Using Version Control and Teams in Together
Running Source Code Audits
Running Source Code Metrics
Using OCL in Model Audits and Metrics

Related Reference

Quality Assurance

570

Exporting QA Results
In this topic, you will learn how to export audit and metric results to XML or HTML files so that you can share them
with team members or review them later.

To export the audit or metric results to a separate file
1 Select the rows of the table that you want to save. Do not select anything if you want to print the entire list.
2 Right-click the results view and choose Export. The Export QA results to file dialog box displays.
3 Type the path and file name you want to use or click Browse to specify the path. By default, the QA results are

saved in the current project directory under the /out/qa/ folder.

Note: You do not need to add an extension to the file name.

4 Select the type of the file you want to export the results to in the Type list and specify auxiliary export options.

Note: The available formats include Text file (comma separated), Text file (tab separated),
HTML file, Summary HTML report (only for Audit export), and Save in loadable
format for further importing the results to Together.

Tip: For large scale projects, use the HTML format, which lets you export results to multiple
connected HTML files.

5 Click OK.

Related Procedures

Running Source Code Audits

571

Flagging Audits in Code
For online audits, the affected source code can be flagged in the Editor view.

To flag audit results
1 In the Model Package Explorer view, right-click a project.
2 Select Properties from the context menu.
3 Select QA Builder in the pane on the left.
4 Check Run incremental QA Builder in the right pane. (This option can also be set after you run audits to flag

the results.)
5 Click OK.
6 Run audits.
7 Double-click any result in the Audit results table to open the code in the Editor view. Results are indicated by

the icons in the editor view's marker bar on the left. Possible Quick Fix solutions are offered for certain items
(indicated by the light bulb icon).

Note: For more information on using Quick Fix, refer to the documentation set provided with your IDE.

You can also activate the QA Builder automatically for each new project created using the Quality Assurance
Preference pages.

To add the QA Builder to new projects automatically
1 Choose Window Preferences from the main menu.

The Preferences dialog box is displayed.

2 Choose Modeling QA Source.
3 Check the Add QA Builder to new projects automatically check box and click OK.

Related Procedures

Running Source Code Audits

572

Generating QA Report
After you run audits or metrics, you can generate reports based on the findings.

To generate QA reports
1 Right-click the QA results table and select Export Results.
2 In the Save as field, type the path and the name for the new report.

Note: Directories and files that do not exist will be created during the process.

3 In the Type field, select the output format. For a list of all possible file formats, see “Audit View” and “Metric
View” in the Reference section.

4 Click OK.

Related Procedures

Running Source Code Metrics
Running Source Code Audits
Exporting QA Results
Running Audits and Metrics from the Command Line

Related Reference

Audit View
Metric View

573

Grouping and Ungrouping
You can group the results of generated audits using one of four different categories:

♦ Severity

♦ Description

♦ Resource

♦ In Folder

To group audit results
1 Right-click the audit results table.
2 Select Group by and a category.
3 Together groups the results based on your choice.

To ungroup audit results
1 Right-click the audit results table.
2 Select UnGroup.

Related Procedures

Running Source Code Audits

574

Hiding and Showing Audit Results
You can hide or show specific audit results using the following criteria:

♦ Row(s)

♦ Description

♦ Resource

♦ Folder

To hide results
1 Right-click the audit results table.
2 Select Hide Selected.
3 Select a category from the submenu.
4 Together hides that category based on the audit row selected.

Tip: Use SHIFT+CLICK or CTRL+CLICK to select more than one audit row.

To show hidden results
1 Right-click the audit results table.
2 Select Show All Hidden.

Related Procedures

Running Source Code Audits

575

Navigating to Problems
You can jump directly from problems identified in the QA results table to the corresponding section of your code.

To navigate to the corresponding section of your code from the QA results table
1 Right-click the result.
2 Select Go To.

Alternatively, double-click the result in the table.

This will open the source file in the editor and highlight the problem line. If the source file is already open in the
editor, it brings that tab to the front.

Related Procedures

Running Source Code Metrics
Running Source Code Audits

576

Printing Audit Results
You can print the entire table of audit violations using the Print command on the Audit view context menu.

Warning: This feature is available for implementation projects only.

To print the list of audit violations
1 Navigate to the audit results you want to print.
2 Right-click the Audit view field. The system Print dialog box opens.
3 If necessary, adjust the page and printer settings.
4 Click Print to send the file to the printer.

Related Concepts

Quality Assurance

Related Procedures

Viewing Audit Results

Related Reference

Print Audit dialog box

577

Refreshing QA Results

To rerun the same QA check on selected resources from the QA results table, perform one
of the following
1 Right-click the results table and select Refresh.
2 Click Refresh on the Audit view toolbar.

Related Procedures

Running Source Code Metrics
Running Source Code Audits

578

Running Audits and Metrics from the Command Line
Use the audit.cmd, metric.cmd, model-audit.cmd, and model-metric.cmd command files to run source
code and model audits and metrics from the command line and store the results in a file of the desired format. The
command files are located in the Together installation folder.

Before you run audits or metrics from the command line, make sure that the path to the JDK/JRE installation folder
is added to the PATH environment variable, and the target project is opened. If the target project is located in
workspace other than %ECLIPSEHOME%/workspace, make sure to pass -data workspacePath to the launcher,
or change %TG_WORKSPACE% parameter in cmd file.

To run source code and model audits and metrics on platforms other than Windows, use the following shell script
files: audit.sh, metric.sh, metric-report.sh, model-audit.sh, and model-metric.sh.

Note: Search Linux help for instructions on how to run the files on those platforms.

To run audits or metrics from the command line (for Windows):
1 Click the Start button and then choose Run....

The Windows command prompt is displayed.

2 Change the current directory to the Together installation folder (for example, cd C:\Borland\Together).
3 To display the list of available command line options for the required command file, enter audit ––help or

metric ––help for source code audits or metrics, or model-audit ––help or model-metric ––help
for model audits or metrics respectively.

4 Compose the command line using the options listed. Specify the audit or metric target, the location of the result
file, and the file format.

5 Click ENTER to run the specified audit or metric.

Related Concepts

Exporting and Importing Audits and Metrics

Related Procedures

Running Source Code Metrics
Running Source Code Audits

579

Running Model Audits and Metrics

To run model audits or metrics
1 Select one or more model elements you want to run model audits or metrics against.
2 Choose Model Run Model Audits or Model Run Model Metrics from the main menu.

Note: Model audits and metrics are performed recursively; that is, the program analyzes the selected element and
all elements that are children of the selected one.

After you run model audits or metrics, the results are displayed in the Model Audits or Model Metrics view,
respectively.

Related Concepts

Quality Assurance
Model Audits

Related Procedures

Running Source Code Metrics
Running Source Code Audits
Using OCL in Model Audits and Metrics
Running Audits and Metrics from the Command Line
Running Model Audits and Metrics as Ant Tasks

Related Reference

Model Audits View
Model Metrics View

580

Running Model Audits and Metrics as Ant Tasks
You can run model audits and metrics as Ant tasks. These tasks can be run either from the Eclipse user interface
or the command line.

To create an Ant build script
1 Create an Ant build file with content similar to the following script:

<project default="build.modelQA">
 <target name="build.modelQA">
 <tg-audits file="c:/testout/audits.xmi">
 <project name="OCL Sample"/>
 <project name="AreaService Sample"/>
 </tg-audits>
 <tg-metrics file="c:/testout/metrics.xmi">
 <project name="OCL Sample"/>
 <project name="AreaService Sample"/>
 </tg-metrics>
 </target>
</project>

Ant tasks used to run audits and metrics are named tg-audits and tg-metrics, respectively. In this
example, c:/testout/audits.xmi and c:/testout/metrics.xmi are output files and OCL Sample and
AreaService Sample are the names of the Together modeling projects you run audits for.

2 Run the build file from either the Eclipse user interface or the command line.

To run audits and metrics as an Ant task from the Eclipse user interface
1 You must make sure that the script will be run in the same JRE as your workspace. To do this, right-click your

build file in the Navigator View and choose Run As Ant Build.... In the Edit Configuration dialog, open the
JRE tab and select the Run in the same JRE as the workspace option. This step must be completed before
you run the build script for the first time. You do not have to perform this action every time.

2 Run the build file by right-clicking it in the Navigator View and choosing Run As Ant Build.

To run audits and metrics as an Ant task from the command line
1 In a command shell, run a command similar to the following one:

java -Xms128m -Xmx1024m -XX:MaxPermSize=256m -jar
./plugins/org.eclipse.equinox.launcher_1.0.101.R34x_v20080819.jar -data
<WORKSPACE_PATH> -nosplash -consolelog -application
org.eclipse.ant.core.antRunner -f <BUILDFILE>

where <WORKSPACE_PATH> is the path to your workspace and <BUILDFILE> is the path to your build file.

2 For more guidance in creating a shell command, refer to one of the root command line launchers provided at
product installation for an example.

581

To work with the output
1 After the script outputs the results to an audits.xmi file (for audits) and a metrics.xmi file (for metrics), you

can import the results into the corresponding view (Model Audits view for audits, Model Metrics view for metrics).
From these views, you can also export the results into other formats, such as HTML.

2 If you want to transform the results into a proprietary HTML format or any other format, write a transformation
in Java that uses EMF. Refer to the com.borland.selena.ocl.gdm plug-in for the Ecore and Java classes
of the audits metamodel (registered by the http:///com/borland/selena/audits.ecore URI). The
same metamodel is used for metrics.

Note: The audits and metrics results do not contain model element information, such as the name
of an element. Rather, the results refer to model elements by their unique identifier.
Because of this, such a transformation would probably require the corresponding Together
models on which you ran the audits and metrics. These models can be accessed by using
the EMF API for Together models.

Note: Ant scripts for the audits and metrics of legacy models cannot be migrated to new DSL Toolkit audits and
metrics.

Related Procedures

Running Model Audits and Metrics
Saving and Loading Audit Results
Saving and Loading Metric Results
Running Source Code Audits
Running Source Code Metrics
Exporting QA Results

Related Reference

Quality Assurance

582

Running Source Code Audits
Together adds a full range of QA audits to run against your code. The results can be compiled in a separate QA
report or in a document generation you perform for your project. In Together, audits can be run on several levels of
your development:

♦ Project: Run audits on all packages and classes/interfaces in a project.

♦ Package: Run audits on all the classes/interfaces within a package.

♦ Class: Run audits on only a particular class/interface.

To run audits
1 In the Model Package Explorer, Model Navigator, or Packages view, right-click any of the resources listed

above.

Note: You can choose multiple elements in multiple projects or multiple projects.

2 Choose QA Source Audits....
The Run QA dialog is displayed.

3 Select which resources to process from the list. Click Preferences to choose which audit categories/properties
you want to run against the selection, or accept the current QA set.

4 Click OK to run the audits.
The results are displayed in the Audit view.

Related Procedures

Generating QA Report
Running Audits and Metrics from the Command Line

Related Reference

QA Source
Audit View

583

Running Source Code Metrics
Together adds a full range of QA metrics to run against your code. The results can be compiled in a separate QA
report or in a document generation you perform for your project. In Together, metrics can be run on several levels
of your development:

♦ Project: Run metrics on all packages and classes/interfaces in a project.

♦ Package: Run metrics on all the classes/interfaces within a package.

♦ Class: Run metrics on only a particular class/interface.

To run code metrics
1 In the Model Package Explorer, Model Navigator, or Packages views, select any of the resources mentioned

above.

Note: You can choose multiple elements in multiple projects or multiple projects.

2 Choose QA Source Metrics....
The Run QA dialog box is displayed.

3 Select which resources to process from the list.
4 Click Preferences to choose which audit categories/properties you want to run against the selection, or accept

the current QA set.
5 Click OK to run the selected metrics.

The results are displayed in the Metric view.

Related Procedures

Generating QA Report
Running Audits and Metrics from the Command Line
QA Model

Related Reference

Metric View
Model Metrics View

584

Saving and Loading Audit Results
After you have run audits on a project or part of a project, you can save those results and view them whenever you
like.

To save a set of audit results
1 Right-click on the Audit results table.
2 Select Export. The Export QA results to file dialog box opens.
3 Enter the path and file name you want to use. You can also click Browse to specify the path. By default, the

audit results file is saved in the corresponding project directory under the out/qa directory.

Note: You do not need to add an extension to the file name. Together will still open the file when
you next load the results.

4 For the file Type, select Save in loadable format from the drop down list.

Note: Other formats include Text file (comma separated), Text file (tab separated), HTML file,
and Summary HTML report.

5 Click OK.

To load a set of audit results
1 Right-click a project, package, class, or interface in the Model Package Explorer or Model Navigator. (You can

also select this command from the Audit View context menu.)
2 Select your saved audit results file.
3 Click Open.
4 View the results in the Audit results table.

Alternatively

1 Right-click on the Audit results table.
2 Select your saved audit results file.
3 Click Open.
4 View the results in the Audit results table.

Related Procedures

Running Source Code Audits

585

Saving and Loading Metric Results
After you have run metrics on a project or part of a project, you can save those results and view them whenever you
like.

To save a set of metric results
1 Right-click the Metric results table and select Export Metric Results. The Export QA results to file dialog box

opens.
2 Enter the path and file name you want to use. You can also click Browse to specify the path. By default, the

metric results file is saved in the corresponding project directory under the out/qa directory.

Note: You do not need to add an extension to the file name. Together will still open the file when
you next load the results.

3 For the file Type, select Save in loadable XMI format from the drop down list.

Note: Other formats include Text file (comma separated), Text file (tab separated), and HTML
file.

4 Click OK.

To load a set of metric results
1 Right-click the Metric results table and select Load Metric Results.
2 Select your saved metric results file.
3 Click Open.
4 View the results in the Metric results table.

Related Procedures

Running Source Code Metrics

586

Searching QA Results
You can search through source code QA results for specified text.

To search the generated QA results for specified text
1 Right-click within the results table.
2 Select Search in....
3 In the Search in field of the Search dialog box, specify which column to search. (In a metrics search, this is

limited to Resource.)
4 Select which direction to move in the results table while searching.
5 Enter the text you are looking for.
6 Click Search.
7 The first row that matches the criteria is highlighted. Click Search again to move to the next matching row.

Related Procedures

Running Source Code Metrics
Running Source Code Audits

Related Reference

QA Search

587

Specifying Quality Assurance Preferences
Together provides a full range of code and model audits and metrics to run against your project. You can perform
the following:

♦ Select which audits and metrics values to run against your project.

♦ Save customized "QA sets" to run against future builds.

♦ Create reports based on QA results.

♦ Include QA results in project documentation.

♦ View QA results as Kiviat or bar graphs.

♦ Sort, search, and copy your QA results.

♦ Alter the values used for quality assurance.

Note: Model audits and metrics results display in the Model Audits View and Model Metrics View. Code audits and
metrics results are displayed in the Audits View and Metrics View. The actions available in Audits View and
Metrics View, or in Model Audits View and Model Metrics View, are similar.

To open Quality Assurance preferences
1 Choose Window Preferences... from the main menu.
2 Choose Window Preferences... Modeling QA Model for model audits and metrics or Window

Preferences... Modeling QA Source C++ (or Java) for source code audits and metrics.

The Quality Assurance Preferences contain lists of audits and metrics that you can select as well as tools for saving
and loading (exporting and importing for model) QA sets.

Related Procedures

Activating Together Capabilities
Running Source Code Audits
Running Source Code Metrics
Running Model Audits and Metrics

Related Reference

QA Model
QA Source

588

Using OCL in Model Audits and Metrics
You can run audits and metrics in your design model using OCL expressions.

You can create custom OCL audits and metrics that operate with metamodel types and run them against the model
that is an instance of the same metamodel. Together also contains a set of sample audits (see the following
procedure to access them). The ideas of most of them are taken from Ambler and Fowler books. These audits can
be used as examples for custom rules creation. For a description of the predefined model audits and metrics provided
in Together, refer to “Model Audits and Metrics Descriptions.”

To define audits and metrics
1 Choose Window Preferences... from the menu.

The Preferences dialog box is displayed.

2 Expand the Modeling node and select QA Model.
3 Select either the Audits or Metrics tab.
4 Click New to add an audit or metric. The Edit Audit or Edit Metric dialog box is displayed, respectively.
5 Specify your audit or metric name, description, severity, and select the context of the OCL expression. The code

for your new audit or metric is displayed in the standard OCL editor in the Body text area.

The audit expression should be a valid invariant that returns Boolean. Each metric expression should return an
Integer value.

To run defined audits and metrics
1 In the diagram, select model elements against which you want to run audits or metrics.
2 Select Model Run Model Audits or Model Run Model Metrics from the main menu.

The results are displayed in the Model Audit or Model Metrics view, respectively.

Note: The scope depends on the current selection made on the diagram. If the project default diagram is selected,
the entire project will be checked. If a single element is selected, only this element will be checked.

Note: If the first operand of an audit returns false, the second operand is not computed and errors are logged. This
ensures precise execution semantics and is necessary because the second operand computation may have
side effects and may call mapping operations.

Related Concepts

OCL Support
Model Metrics

Related Procedures

Running Model Audits and Metrics

Related Reference

Model Audits and Metrics Descriptions
OCL

589

Using QA History
Each time you run QA, Together keeps a history of the results.

To use the QA results history
1 On the Audit or Metric view toolbar, locate the icon that looks like a clock.
2 Click the down arrow next to the icon to see a list of previous results.

Note: This list only applies to your current session of Together. Once you close the application,
the list is deleted. You can also clear the history by selecting the Clear History command
beneath the list.

3 Select an item in the list to display those results in the table.

Related Procedures

Running Source Code Metrics
Running Source Code Audits

590

Viewing and Finding QA Descriptions
After running source code audits or metrics, you can view the related description for each result.

To view the related description for each result
1 Right-click the result row.
2 Select Description. A description of the related audit or metric opens in the help browser.

To find a particular audit or metric
1 Choose Window Preferences from the main menu.

The Preferences dialog is displayed.

2 Choose Modeling QA Source C++ or Modeling QA Source Java, depending on your project type.
3 Click Find an analyzer.

The Find Analyzer dialog box is displayed.

4 Enter a string to search for in the Choose an analyzer field at the top of the dialog.
The results are displayed in the lower portion of the dialog.

5 Double-click any of the results to display the appropriate audit or metric in the Quality Assurance list.
6 Double-click a result to view its description in the help browser.

Related Procedures

Running Source Code Metrics
Running Source Code Audits

591

Viewing Audit Results
When viewing audit results, you can compare and organize items in the results report.

The results report is tightly connected with the diagram elements and the source code. Using the report, you can
navigate to the specific location of the violation.

Use the following techniques when viewing audit results
1 Sort all the items according to the values for a specific column
2 Group items according to the current column
3 Navigate to the specific location of the violation

To sort all the items according to the values for a specific column
1 Switch to the audit results table.
2 Click the column heading. The arrow in the heading displays whether sorting is ascending or descending.

To group items according to the current column
1 Right-click the Audit results table and choose Group By. This enables you to organize the results by changing

the relationship of rows and columns.
2 To ungroup the results, right-click the table, and choose Ungroup.

To navigate to the specific location of the violation
1 Select any element in the results report.
2 Choose Open on the context menu or simply double-click the row to navigate directly to the location of the

violation (a line of the source code for source code projects and a model element for design projects).

Related Concepts

Quality Assurance

Related Procedures

Running Source Code Audits

592

Viewing Metric Results

Use the following techniques when viewing metric results
1 Sort results by column
2 Filter results
3 Update results
4 Navigate to the source code
5 View the metric description

To sort results by column
1 Select the desired column in the metrics result table.
2 Click the column header to change the sorting order.

To filter results
1 You can filter the displayed results to improve the meaningfulness of the results report.
2 Use the following toolbar buttons to show and hide elements:

Button

Namespaces

Classes

Methods

Child elements

Note: Filtering is available only for source code metric results.

To update results
1 You can update or refresh the results table.
2 Use the following Tool Palette Toolbox buttons:

Button Description

Refresh Recalculate the results that are currently displayed

Restart Open the Metrics dialog window, define new settings and start new metrics analysis.

To navigate to the location of the violation
1 Select the row in the results table that is of interest to you.

593

2 Right-click and choose Open on the context menu to navigate directly to it (a line of the source code for source
code projects and a model element for design projects).

To view the metric description
1 Select the column in the results table that corresponds to the metrics of interest to you.
2 Right-click and choose Show description on the context menu.

Note: Description is available only for source code metric results.

Related Concepts

Quality Assurance
Running Source Code Metrics

594

Viewing Metrics as Graphs
Together can create visual representations of your metrics results.

♦ As Kiviat graphs are created for each resource, select the resource row you want to chart.

♦ When you choose Refresh from the Metric results table context menu, the graph clears. Follow the steps below
to regenerate the graph based on the new results.

To view the metrics results as graphs for any row in the results table
1 For the Kiviat graph, right-click the row and select Kiviat Graph. The graph opens in a new view.

♦ If the information is crowded or overlaps, expand the window.

♦ To see the value of an individual data point on the Kiviat graph, hover over it to display a popup.

♦ Red dots represent values above the maximum for the metric.

♦ Blue dots represent values below the minimum for the metric.

♦ Green dots represent values that fall within the required range of the metric.

The graph view pull-down menu allows you to save your Kiviat graph as an image file or print the graph.

2 For the bar graph, right-click on the metric and select Bar Graph. The graph opens in a new view.

♦ If the information is crowded or overlaps, expand the window.

♦ The bar graph displays only those branches in the results that are expanded, so if you have the project
node collapsed, you will see only one bar representing the project.

The graph view pull-down menu allows you to save your bar graph as an image file or to print the graph.

Related Procedures

Refreshing QA Results
Running Source Code Metrics

595

Viewing Problem Detection Audits (Detection Metrics)
Some source code audits, known as problem detection audits, are based on a group of metrics. These indicate
possible design problems that are broader in scope than individual audits can reveal. For more information on
problem detection audits, see “Code Audits” in the Concepts section. You can recognize these audits because they
have no data in the Location column.

To view the detection metrics
1 Right-click on the selected result.
2 Select Detection Metrics.

The metrics table for the selected result opens. You can view the list and results of the metrics used for that
audit.

Note: Problem detection audits and metrics are available only for source code projects.

Related Concepts

Code Audits

Related Reference

Metric View

596

Using Version Control and Teams in Together
This section describes the use of Version Control Systems (VCS) with Together. You can use VCS to keep track of
changes and store versions of the work you do.

In This Section
Comparing and Merging Shared Models
How to compare and merge models shared with VCS.

Setting Up ClearCase Support
How to set up Together environment to work with ClearCase.

Setting Up Repositories
How to set up repositories in Together.

Sharing Projects
Describes the sharing project procedures and tips.

Sharing Templates
How to share templates.

597

Comparing and Merging Shared Models
Use the Synchronize view to compare shared models.

To compare and merge shared models
1 In the Team Synchronize view, select a model or model element version stored in the repository that you want

to compare with the local version.
2 Choose Model Compare With Local Version from the main menu.

Tip: Alternatively, right-click a model or model element and choose Open In Model Compare
Dialog from the context menu.

The comparison results display in the Model Compare dialog box.

3 Review the differences, apply your changes, and then commit the model to the repository using menu
commands specific to your VCS.

Note: When merging a shared model, you can change your local version only. Together models consist of a large
number of files, so you need to have all of these files locally.

Warning: Together performs merge on the model level, and existing file conflicts may still remain after the model
merge. To commit these changes, use the "forced commit" mechanism provided by your version control
system, (for example, the "Override and Commit" option in CVS).

Related Concepts

Model Compare and Merge

Related Procedures

Merging Models

Related Reference

Model Compare/Merge
EMF Model Compare Preferences

598

Setting Up ClearCase Support
The following steps describe how to set up Together to work with ClearCase.

To open a custom toolbar for working with ClearCase
1 From the main menu, select Window Customize Perspective. The Select Perspective dialog box opens.
2 Click the Command tab and check the ClearCase for Modeling option.
3 Restart Together for the changes to take effect.

To turn on ClearCase icon decorators
1 From the main menu, select Window Preferences.
2 Expand the General node.
3 Expand the Appearance node and select the Label Decorations node.
4 Check the ClearCase SCM Adapter for Modeling Views option.

Related Concepts

Version Control in Together

Related Procedures

Sharing Projects
Sharing Templates

599

Setting Up Repositories
The following steps describe how to set up CVS repositories for use in Together. This is a prerequisite to sharing
projects.

To open the CVS Repository Exploring Perspective
1 From the main menu, select Window Open Perspective Other. The Select Perspective dialog box

opens.
2 Choose CVS Repository Exploring from the list, and click OK.

Using this perspective, you can add repositories for various VCS systems.

Before you share a project, you need to define the repositories that Together will use. Prior to this, the CVS
Repositories view is blank. Use the Add CVS Repository wizard to define a repository.

To define a repository
1 Right-click in an empty area of the CVS Repositories view, and select New Repository Location. The Add

CVS Repository wizard opens.
2 Provide the information required by the wizard as listed below. When finished, click Next.

This list provides option descriptions.

♦ Host – Type the host name for your CVS server. For example, if your login command begins with: CVS
-d :pserver:/jane.doe@CVS-host, enter: CVS-host

♦ Repository path – Enter the CVS repository as you would in the pserver section of the CVS login
command. For example, if your login command begins with: CVS -d :pserver:/jane.doe@CVS-
host/repository_alias, enter: /repository_alias

♦ User – Enter the user name. For example, if your login command begins with: CVS -d :pserver:/
jane.doe@CVS-host/repository_alias, enter: jane.doe

♦ Password – Enter your valid password.

♦ Connection type – Choose from the list: pserver, ext, extssh

♦ Use Default Port and Use Port – Select Use Port to define a custom port for the connection. Use Default
Port is enabled by default.

♦ Validate Connection on Finish – This option is checked by default. Leaving the option checked allows
you to attempt to connect with the host server to ensure that all information was entered correctly.

♦ Save Password – Check to save your password locally on your computer. Note the warning message
about the password file at the bottom of the wizard.

3 Click Finish. The CVS Repositories view is updated with the new CVS repository location.
For instructions on sharing a project, refer to Sharing Projects topic. Consult the documentation set provided
with your IDE for complete details on using version control. From the main menu, choose Help Help
Contents. You can find more information on CVS at http://ximbiot.com/cvs/wiki/index.php?title=Main_Page .

600

http://ximbiot.com/cvs/wiki/index.php?title=Main_Page

Related Concepts

Version Control in Together

Related Procedures

Sharing Projects
Sharing Templates

601

Sharing Projects
Before you can share a project, you need to define a repository location. If you have not already, you may do so by
following the steps in “Setting up Repositories” topic. Or you can proceed with step one below and set up your
repository in step two.

Note: When viewed in the Model Package Explorer (with filters off), a Java or Java Modeling Project contains at
least two resource divisions:

♦ The first is your normal source code project structure: the directories/packages you have created and your
source code.

♦ The second section is the Together Model directory. This contains the actual diagram files generated and used
by Together and includes the .project and .classpath files.

To share a project using a project's context menu in the Model Package Explorer, Model
Navigator or Navigator view
1 Right-click the project, and select Team Share Project.
2 In the first Share Project dialog box, choose a version control system. If using StarTeam, consult the StarTeam

User Guide (located in the Contents section of this help viewer). Otherwise, choose CVS, and click Next to
continue.

3 Choose whether you want to use the existing repository location or create a new repository location. If you
choose to create a new location, the Share Project wizard opens as described in “Setting Up Repositories.”
Click Next.

4 In the new dialog, choose either to use the project name as the module name, specify a different module name,
or to use an existing module. Click Next.

5 In the final screen, the wizard explains your status in the process. Click Finish, and the wizard imports your
project to the repository.
From now on, when using the Team command from this project's context menu, the Update and Commit
commands are enabled. Respectively, these options commit your changes to the repository and refresh your
view with changes made by other team members.

Recommendations and Tips

♦ Use the AutoCheckout modeling resource on edit option on the Modeling resources page of the
Team preferences to check out model files when Together attempts to change the corresponding model
entities. This mode requires a VCS provider to mark files that are not checked out as read-only. For
example, you can configure StarTeam for Eclipse (Window Preferences Team StarTeam
File) by checking the Mark unlocked working files read-only and Exclusively lock files on
checkout. In this case every unlocked file is marked as read-only and upon any attempt to modify this file
in the Java Editor, Diagram Editor or Model Navigator, Eclipse asks StarTeam to check out the file and
StarTeam displays a dialog box asking you to lock the file. You can also check the Auto lock read-only
files option to avoid this dialog. If the file cannot be locked (set in the manual mode) or a server refuses
to do it, all changes will be reverted to the previous state. If AutoCheckout modeling resource on
edit is deselected but a VCS provider is configured to mark working files as read-only, all element context
modification actions in the Diagram Editor and Model Navigator are disabled until the read-only flag is
cleaned from the working files.

♦ For sharing Together model projects with ClearCase, use the ClearCase Adapter for Modeling wizard.

♦ Any source files/design diagrams that you created before you shared the project should be added to the
repository.

602

♦ The project's project file can be shared, but only if the team will use the exact same project name.

♦ You should not version control the default package diagrams (those files with the .txvpck extension)
because these change frequently and are easily regenerated automatically by Together if they are missing.
To exclude the default package diagrams from sharing, choose Preferences Team Modeling
resources and check Ignore default package diagrams.

♦ You can include the .classpath file if you are using variables to point to libraries, or if you are sure that
each team member will have the libraries in exactly the same place (for Windows, this includes the drive
letter).

♦ You can specify directories and files that you do not want to share: from the main menu, select Window
 Preferences Team Ignored Resources. Add "*.txvpck" and the Commit and Update actions will

ignore these default package diagrams.

Note: Respectively, each team member would also have to set this up locally.

Refer to the documentation set provided with your program for additional details on using version control.

Related Concepts

Version Control in Together

Related Procedures

Setting Up Repositories
Sharing Templates

Related Reference

Sharing Design Elements: Special Considerations

603

Sharing Templates
By default, Together stores its ready-to-use templates in the Local Templates directory. If you change these
templates, your changes will be available only locally.

Use the Templates view to store templates that you want to share with your team.

To store and share your templates using the Templates view
1 Open the Templates view (Window Show View Other, expand Patterns and Templates node and

choose Templates).
The Templates view displays.

2 Right-click the Local Templates node.
3 Choose New. From the submenu, choose the type of template you want to create (for example, class template,

which is used here as an example).

Tip: Alternatively, you can right-click a design element for which you want to create a template
in the Model Navigator or Diagram view and choose the Save As Template... context menu
option.

The Save Template wizard is displayed.

4 Select the shared project where you want to store the template in the Location list.
5 Specify the name of the new template in the Name field.

This creates a template directory within your project. When you return to the Templates view, you should be
able to see your project. The new template is displayed under your project node, in the Java Class node
within the Misc category.

6 Right-click the Java Class node and select Create Category... to add subsections to the node.

The created categories are displayed in the location list under the project. Use categories to organize, manage,
and share your templates. After you have shared the project, use the Team context menu command in the
Templates view to add, commit, and update templates using VCS.

Related Concepts

Version Control in Together

Related Procedures

Sharing Projects

Related Reference

Sharing Design Elements: Special Considerations

604

Managing Requirements with Together
This section provides how-to information on using Together for creating requirements, managing traces, generating
requirements documentation and more.

In This Section
Creating Requirements Based on Use Case
This topic describes how to create CaliberRM or RequisitePro requirements from use case diagrams.

Creating Traces from Requirements to Model Elements
How to create traces from requirements to model elements.

Deleting Traces
How to delete traces.

Generating Documentation for Requirements
How to create documentation based on your requirements.

Modifying Requirement Preferences
How to modify requirement and CaliberRM specific preferences.

Navigating from Model Elements to Requirements
How to navigate from a model element to the traced requirement.

Opening Requirements Views
How to open Requirements views.

Searching for Traced Elements
How to search for traced elements.

Synchronizing Traces
How to synchronize traces.

Viewing Element Traces
How to view element traces.

605

Creating Requirements Based on Use Case
This topic describes how to create CaliberRM or RequisitePro requirements from use case diagrams.

You can create traced requirements directly from Use Case model elements. Before creating requirements, make
sure that you have set up Create traces between Requirement and Use Case as enabled in Requirements
Preferences. Set up other related requirements preferences to suit your needs.

To create a requirement based on use case
1 Open a Use Case Diagram from which you want to create a new requirement.
2 In the diagram, right-click a use case element and choose Requirements Create Requirement(s)....
3 The Create Requirement dialog box is displayed. In the dialog box, select an appropriate requirement under

which a new requirement will be created.
4 Click OK. The new requirement receives the name of the traced use case element. The name of the traced

element will be displayed in green.

Tip: You can select multiple use case elements in the Diagram Editor or Model Navigator (using SHIFT and
CTRL keys) and create requirements for them. When you select the traced use case element on the diagram,
you can see a trace to the requirement in the Element Traces view.

Related Concepts

Requirements Management

Related Reference

Element Traces View

606

Creating Traces from Requirements to Model Elements
There are several ways to create a trace between a Together model element and a requirement.

To create a trace from an element to a requirement using the Together Diagram editor
1 Open the diagram from which you want to create a trace to a requirement.
2 Right-click the appropriate element and choose Requirements Manage Traces from the context menu.
3 In the Manage Traces dialog box, select the tab with requirements of a particular vendor and expand the project

nodes to locate the appropriate requirement.
4 Select the requirement and click Add. The selection moves to the Selected pane.
5 Click OK.

To create a trace from an element to a requirement using the Model Navigator
1 In the Model Navigator view, right-click an element and choose Requirements Manage Traces from the

context menu.
2 In the Manage Traces dialog box, select the tab with requirements of a particular vendor and expand the project

nodes to locate the appropriate requirement.
3 Select the requirement and click Add. The selection moves to the Selected pane.
4 Click OK.

Related Concepts

Requirements Management

Related Procedures

Deleting Traces

Related Reference

Manage Traces Dialog

607

Deleting Traces

To delete a trace using the Diagram editor
1 Open the diagram in which you want to remove a trace.
2 In the diagram, right-click the appropriate element and select Requirements Manage Traces from the

context menu.
3 In the Selected pane of the Manage Traces dialog box, select the traces you want to remove and click

Remove. To remove all traces, click Remove All.
4 Click OK.

To delete a trace using the Element Traces view
1 Open the diagram in which you want to remove a trace.
2 Open the Element Traces view.
3 In the diagram, select the appropriate element. Traced requirements and/or model elements are displayed in

the Element Traces view.
4 Right-click a trace you want to remove and select Remove from the context menu.
5 Click OK.

Warning: Traces are deleted without confirmation. You might be prompted to log on to the repository that stores
the traced requirements.

Related Concepts

Requirements Management

Related Procedures

Creating Traces from Requirements to Model Elements

Related Reference

Manage Traces Dialog

608

Generating Documentation for Requirements
You can generate documentation from the requirement point of view using one of the default Together templates.

To generate documentation for requirements
1 Choose File Export and then select Documentation Using Template in the Export dialog box.

Alternatively, choose Project Documentation Documentation Using Template.

Click Next.

2 In the opened step of the wizard select the Requirements Online Report template in the Default list and specify
other options.

3 Click Finish to generate documentation.

Related Concepts

Requirements Management

Related Reference

Trace Synchronizer View
Element Traces View

609

Modifying Requirement Preferences
The Requirements preferences control how Together creates requirements from Use Case diagram elements (and
vice versa) and how it updates traces on a traced element move.

To modify the Requirements preferences
1 Select Window Preferences from the main menu. The Preferences dialog box is displayed.
2 In the dialog box, expand Modeling and select Requirements. The Requirements Preferences are displayed.
3 Modify the preferences and close the dialog saving your settings.

The Requirements preferences also include a section specific to CaliberRM. When converting legacy traces imported
from TCC to the current format, use these preferences to specify which CaliberRM server stores the imported data.

To modify the CaliberRM Requirements preferences:
1 Select Window Preferences from the main menu. The Preferences dialog box is displayed.
2 In the dialog box, expand Modeling, then Requirements and then select CaliberRM. The CaliberRM

Requirements Preferences are displayed.
3 Modify the preferences and close the dialog saving your settings.

Related Reference

CaliberRM

610

Navigating from Model Elements to Requirements

To navigate from a model element to a requirement
1 Right-click a traced model element in either the Diagram editor or Model Navigator view. In the Model

Navigator, traces are displayed with a decorator; on the diagram, the names of traces are displayed in green.
2 Point to Requirements and select the traced requirement you want to view.
3 The requirement is selected in the CaliberRM Navigator or RequisitePro view, depending on the requirement

type.

Related Concepts

Requirements Management

Related Procedures

Viewing Element Traces

611

Opening Requirements Views
You can manage traces between requirements and model elements using dedicated Requirements views.

To open the Requirements views
1 On the main menu, click Window Show View Other.
2 In the Show View dialog box, expand Requirements.
3 Using the SHIFT or CTRL key, select Trace Synchronizer and Element Traces views under the

Requirements folder.
4 Click OK.
5 The new views open in the Eclipse framework.

Tip: For ease of use you can redock the views by clicking and dragging the title bars.

Related Concepts

Requirements Management

Related Reference

Trace Synchronizer View
Element Traces View

612

Searching for Traced Elements
You can search for specific elements that have traces to requirements or find all traced elements in the defined
search scope using the Requirement Traces Search dialog.

To find specific traced elements
1 Choose Search Requirement Traces Search... from the menu.

The Search dialog is displayed.

2 Select the Requirement Traces Search tab.
3 In the Containing Text field, define a search string.
4 Check the Case Sensitive check box if you want your search to be case-sensitive.
5 If your search string contains regular expressions, check the Regular expression check box.
6 In the Available Attributes field, select in which trace attributes you want to search (server name, project name

or requirement name).
7 In the Available Integrations, select the Integration plug-ins (CaliberRM and/or RequisitePro) requirements

you want to search.
8 In the Scope area, define the search scope (workspace, enclosing projects or a working set).
9 Click Search.

The search results are displayed in the Search view.

To find all traced elements
1 Choose Search Requirement Traces Search... from the menu.

The Search dialog is displayed.

2 Select the Requirement Traces Search tab.
3 Click OK. The list of found desynchronized traces is displayed in the Trace Synchronizer view.
4 Check the Search All Traced Elements check box.
5 In the Scope area, define the search scope (workspace, enclosing projects or a working set).
6 Click Search.

The search results are displayed in the Search view.

Related Concepts

Requirements Management

Related Reference

Requirement Traces Search Dialog Box

613

Synchronizing Traces

To synchronize traces for a diagram element using Diagram Editor
1 In the Diagram editor, right-click a traced element for which you want to synchronize traces and choose

Requirements Synchronize Traces.
2 The Trace Synchronizer view opens displaying the list of the traces associated with the selected element.

During the operation, you might be asked to provide your login credentials to access the requirements project.
3 In the view, sort the list by Status to find problematic traces.
4 Review the list and individually decide how to handle each problematic trace. The details on every

synchronization problem are given in the Status summary field. You can update a local trace from the
repository, restore a local copy of the trace, or delete an obsolete trace.

5 Right-click a trace or select multiple traces and choose an appropriate option from the context menu.
6 To monitor changes in the view, use the Refresh button.

To synchronize traces for a requirement or a model element using Trace Synchronizer
view
1 In the Trace Synchronizer view, click the Synchronize button. The Trace Synchronizer dialog box is

displayed.
2 In the dialog box, define where to search for desynchronized traces. You can search either within requirements

or model elements. To search in requirements, click the Requirements tab to define the search scope. You
can select a CaliberRM requirement, requirement type, baseline or a server connection. During the operation,
you might be asked to provide your login credentials to access the requirements project. To search in model
elements, click the Model Elements tab to define the search scope. You can select a single model element
within any modeling project available in your current Eclipse workspace.

3 Click OK. The list of found desynchronized traces is displayed in the Trace Synchronizer view.
4 Review the list and individually decide how to handle each problematic trace. The details on every

synchronization problem are given in the Status summary field. You can update a local trace from the
repository, restore a local copy of the trace, or delete an obsolete trace.

5 Right-click a trace or select multiple traces and choose an appropriate option from the context menu.
6 To monitor the changes in the defined search scope, use the Refresh button.

Related Concepts

Requirements Management

Related Procedures

Opening Requirements Views

Related Reference

Trace Synchronizer View
Trace Synchronizer Dialog Box

614

Viewing Element Traces

To view element traces using Element Traces view
1 Select a traced model element in either the Diagram editor or Model Navigator. In the Model Navigator, traces

are displayed with a decorator; on the diagram, the names of traces are displayed in green.
2 Open the Element Traces view. The list of traces to and from the selected element is displayed in the view.
3 Using the context menu, you can open a traced requirement in the CaliberRM Navigator or RequisitePro view

(depending on the requirement type) or delete a trace.

Related Concepts

Requirements Management

Related Procedures

Deleting Traces
Navigating from Model Elements to Requirements

Related Reference

Element Traces View

615

Generating Project Documentation
This section provides how-to information on using Together Documentation Generation facilities.

In This Section
Configuring the Documentation Generation Facility
How to configure the Documentation Generation facility.

Generating HTML Documentation
How to generate project documentation in HTML format, by the predefined template.

Generating Project Documentation as Ant Task
How to generate project documentation using Ant.

Generating Project Documentation from Command Line
How to generate project documentation using batch process.

Generating Project Documentation Using Template
How to generate project documentation in any supported format, using the desired template.

616

Configuring the Documentation Generation Facility

To configure the documentation generation facility
1 On the main menu, choose Window Preferences Generate Documentation.
2 Under the Generate HTML category, enter the options for HTML documentation:

classes and members to be included in the documentation

tags to be included in the documentation

documentation title, window title, header, and footer.

3 Under the HTML Output category, choose the option of processing line breaks.
4 Under the RTF Output category, set up text formatting options

Related Concepts

Documentation Generation Overview

Related Reference

Generate Documentation Preferences

617

Generating HTML Documentation
In this section you will learn how to generate project documentation in HTML format using the default template
supplied with the product.

To generate HTML project documentation
1 Select Project Documentation Generate HTMLon the main menu.
2 In the Generate HTML Documentation dialog box that opens, specify the output folder, and select your

preferred Scope and Options settings.
3 Click Finish to generate documentation.

Related Concepts

Documentation Generation Overview

Related Procedures

Configuring the Documentation Generation Facility

Related Reference

Documentation Generation
Generate HTML Documentation dialog box

618

Generating Project Documentation as Ant Task

To generate project documentation as an Ant task
1 Create a new Ant buildfile
2 Specify the parameters for the gendoc utility. For example:

<gendoc workspace="C:\Work\Together\runtime-workspace" project="uml" package="package1"
outdir="c:\out" template="Project Report" format="RTF" nodiagrams="true"
hyperlinks="true" audits="true"/>

Example:

<project name="gendoc" default="exec">
<taskdef name="gendoc"
 classname="com.borland.gendoc.launchers.ant.GenDocTask"
 classpath="C:\Together\plugins\com.borland.gendoc.core\gendoc.jar"/>
<target name="exec">
 <gendoc
 workspace="C:\Together\workspace"
 project="uml20_test"
 package="package2"
 format="RTF"
 outdir="C:\tmp"
 audits="true"
 />
</target>
</project>

Related Concepts

Documentation Generation Overview

Related Procedures

Generating Project Documentation from Command Line

Related Reference

Gendoc Utility Syntax
Genhtml Utility Syntax

619

Generating Project Documentation from Command Line
You can update project documentation as part of a periodic automated build process by having the process script
call the documentation generator in Together via the command line interface.

Together provides the following utilities that enable you to generate project documentation without launching the
product:

♦ genhtml for generating HTML documentation, with the launchers genhtml.cmd and genhtml.sh
♦ gendoc for generating documentation by template, in one of the supported output formats, with the launchers

gendoc.cmd and gendoc.sh

To generate project documentation using the documentation generation utility
1 Use the following command: <utility> [project filename] [options] [packagenames]
2 Specify parameters and options as described in the utility references.

Note: If you run the utility without parameters, documentation is generated for the entire workspace and stored in
the out subfolder of the workspace.

Related Concepts

Documentation Generation Overview

Related Reference

Gendoc Utility Syntax
Genhtml Utility Syntax

620

Generating Project Documentation Using Template
In this section you will learn how to generate project documentation in the desired format, using one of the default
or custom templates of your choice.

To generate project documentation using a template
1 Select Project Documentation Generate Using Template on the main menu.
2 In the Generate Documentation Using Template dialog box that opens, specify the following settings:

♦ In the Output Path field, enter the fully qualified path to the target folder. Alternatively, use the browse
button.

♦ In the Format field, select an output format from the drop-down list.

♦ In the Templates section, select a Default or Custom template.

♦ In the Scope section, click the radio button for a scope. Note that you can generate documentation for all
open projects in the workspace, for a single project, or for the current package or diagram.

♦ In the Include section, select artifacts to be included in the generated output. Note that you can include
audit results.

♦ If you want to open the generated report immediately, check the Open in Viewer option.

3 Click Finish to generate documentation.

Related Concepts

Documentation Generation Overview

Related Procedures

Configuring the Documentation Generation Facility
Creating Custom Documentation Template

Related Reference

Generate Documentation Using Template dialog box

621

Together Documentation Templates Procedures
This section provides how-to information on creating and editing custom documentation templates using the
Together Documentation Template Designer.

In This Section
A Typical Scenario of Creating a Custom Documentation Template
This topic outlines general steps involved in creating a custom documentation template.

A Typical Scenario of Creating a Template for Multi-Frame Documentation
This part discusses how to use the Documentation Template Designer to create the templates for multi-
frame HTML documentation.

Creating Controls
This topic describes how to create controls in a section of a documentation template.

Creating Custom Documentation Template
This topic describes how to create a custom documentation template using the Template Designer.

Creating Formatting Styles for Documentation Templates
In this section you will learn how to create and edit formatting styles.

Creating Hypertext Links (Advanced)
How to create hypertext links for multi-frame documentation.

Creating Javadoc Link References (Advanced)
How to convert Javadoc tags into link references.

Creating Sections
This topic describes how to create sections in a documentation template using the Template Designer.

Creating Stock Sections
How to create and delete a stock sections.

Defining Frameset Structure
How to define the frameset structure of a multi-frame HTML document, which describes how the frames are
organized within the browser window.

Hyperlinking Controls to Element Documentation
How to hyperlink controls with the model elements' documentation.

Hyperlinking Documentation
How to create hypertext links in the ordinary and multi-frame documentation.

Image Mapping (Advanced)
How to create image maps from the diagram images.

Moving, Resizing and Aligning Controls
This topic describes how to change size and location of controls in the sections of a documentation template.

OCL in Documentation Templates
How to use OCL expressions in the templates for generating project documentation.

Reusing documentation templates from TCC/TA 1.x
This topic describes how to reuse custom documentation templates created in TCC/TA 1.x.

Setting Area Properties
This topic describes how to define area properties of a static section.

Setting Call to Template Section Properties
How to set output properties of a call to template section.

622

Setting Frame and Frameset Properties
How to define properties of a frameset or a frame within a Frameset Template.

Setting Section Properties
After a section is created, define its properties.

Setting Template Properties
After a documentation template is created, you can define its properties.

Using Word Documents in Documentation Templates
It is possible to use styles, headers and footers of the Word documents in the custom documentation
templates. In this section you will learn how to attach and detach a Word document.

623

A Typical Scenario of Creating a Custom Documentation Template
Creating a custom documentation template and populating it with sections and controls involves the following general
steps:

To create and customize a documentation template
1 Create a stub template:

Creating Custom Documentation Template
2 Create template structure:

Creating Sections
3 Provide reusable elements:

Creating Stock Sections
4 Define sections properties:

Setting Section Properties
5 Define area properties:

Setting Area Properties
6 Define template properties:

Setting Template Properties
7 Add controls to the sections:

Creating Controls
8 Customize controls:

Moving, Resizing and Aligning Controls

Find useful information in the following related sections:

Related Procedures

Using Word Documents in Documentation Templates
Reusing documentation templates from TCC/TA 1.x

624

Creating Custom Documentation Template

To create a documentation template
1 On the main menu, choose File New Other
2 In the New dialog that opens, expand the Modeling node.
3 Choose Documentation Template and click Next.
4 In the GenDoc Template Designer File dialog, specify the following:

♦ In the File Name field, enter the fully qualified name of the template file.

♦ In the Template type field, choose a template type from the drop-down list (documentation template or
frameset template).

5 Use the Template Designer toolbox or context menus to create the template structure.

Note: After a documentation template is created, you can view and modify its properties using the Template
Properties dialog.

Related Procedures

Setting Template Properties

Related Reference

Documentation Template Properties

625

Creating Sections
A nested section can be created for an existing folder or iterator; a sibling section can be created for any existing
section. For these sections, the Insert Nested Section or Insert Sibling Section toolbar buttons and menu
commands are enabled, unlike the report header and footer, which lie outside the template body.

To create a new section in a documentation template
1 Select an existing section in the template.
2 Right-click an existing section in the scope pane, point to the Insert Sibling Section or Insert Nested

Section on the context menu and select the type of new section.

Tip: Alternatively, use the toolbar buttons of the Documentation Template Designer.

3 When necessary, determine the essential template information for the new section.

♦ Static section: None required at creation.

♦ Element iterator: Select the element metatype from the list of available types.

♦ Element property iterator: Select the scope.

♦ Folder section: None required at creation.

♦ Call to stock section: Select the stock section from the list of existing sections. Refer to the section
“Creating Stock Sections.”

♦ Call to template section: None required at creation.

4 Click OK to complete the insertion.
5 Set section properties as required.

Iterators and folder sections can also contain headers and footers. If such a section does not contain a header or a
footer, its context menu provides Add Header or Add Footer commands. If a header or a footer exists, the context
menu provides Delete Header or Delete Footer commands.

To add a header or a footer to an iterator
1 Select an existing element iterator or folder section.
2 On the context menu, choose Add Header or Add Footer.

Related Concepts

Documentation Template
Documentation Template Sections

Related Procedures

Creating Stock Sections
Setting Section Properties

Related Reference

Documentation Template Designer

626

Creating Stock Sections
Stock sections are reusable folders or iterators that reside in the template’s collection of stock sections. Each stock
section displays in a separate named tab in a documentation template.

In this section you will learn how to:

♦ Create stock sections from scratch

♦ Create stock sections from an existing section

♦ Delete stock sections

♦ Show stock section

To create a stock section
1 On the toolbar of the Template Designer, click the New Stock Section (Element Iterator) button or New stock

section (Folder) button. The New Stock Section dialog opens.
2 In the Name field, enter the name of the new stock section.
3 For the element iterators, select a metatype from the list of available metatypes.
4 Check the Intrinsic to Property Iterator option, if necessary. If this flag is checked, the scope of the stock

section root iterator or folder section depends on the Properties Iterator this section is called from: the only
available iteration scopes for an element iterator are customized and programmed. For folder sections, it means
that the metatype chooser tab is absent.

5 Click OK.

To create a stock section from an existing section
1 In the scope pane of a template, select an element iterator or folder section from which you want to create a

stock section.
2 Right-click the section and choose Copy into Stock on the context menu.
3 In the New stock section (Folder) dialog, enter the stock section name.
4 Click OK.

To delete a stock section
1 Right-click the stock section tab be deleted.
2 On the context menu of the tab, choose Remove Stock Section.

To show a stock section for a call to stock section
1 Right-click the call stock section.
2 On the context menu of the section, choose Show Stock Section.

627

Related Concepts

Documentation Template
Documentation Template Sections

Related Reference

Documentation Template Designer

628

Setting Section Properties
After a section is created, define its properties. Section properties are defined in the Properties dialogs, which are
specific for each kind of sections.

You can invoke the Properties dialog for the iterators and folder sections from the scope pane or from the details
pane of a section. For the static sections, the Properties dialog is invoked from the scope pane only.

To set properties of a section
1 In the scope section of the Template designer, select a template section.
2 On the context menu, choose Properties.
3 Define properties as required and click OK.

Note: Properties dialogs are specific to each section type. Refer to the dialog descriptions for details.

Related Concepts

Documentation Template Sections
Enable Conditions

Related Reference

Element Iterator Properties
Property Iterator Properties
Static Section Properties
Call to Stock Section Properties
Call to Template Properties

629

Setting Area Properties
Area properties apply to static sections, headers and footers. They are defined in the Area Properties dialog, which
is common for static sections, headers and footers, and is invoked from the details pane. Refer to the dialog
descriptions for details.

To set area properties
1 Select a static section, header or footer of a template.
2 On the context menu of the details pane, choose Area Properties.
3 In the Area Properties dialog, specify settings and click OK.

Related Concepts

Documentation Template Sections

Related Reference

Area Properties

630

Setting Template Properties

To set properties of a documentation template
1 On the toolbox of the Template Designer, click the Show Template properties button.
2 In the General tab, you can change the following:

♦ Enter template description.

♦ Define the report title expression, clicking the editor button to open the Edit Expression dialog.

♦ Select Root Object Metatype from the list of available metatypes.

♦ Attach a Word document as a formatting template. Refer to “Using Word Documents in Documentation
Templates” for details.

♦ Check or clear options to generate headers and footers as required.

3 In the Page Settings tab, you can specify page size, margins, and landscape or portrait orientation.
4 In the Formatting Styles tab, you can change formatting styles. Refer to “Creating Formatting Styles” for details.
5 In the Template Parameters tab, specify the formal parameters that will be used for calling this template from

another template.

Related Procedures

Using Word Documents in Documentation Templates
Creating Formatting Styles for Documentation Templates

Related Reference

Documentation Template Properties

631

Creating Controls

To create a new control in a static section, header, or footer
1 Select a section in the details pane.
2 Click the type of control you want to insert on the template designer toolbar.

Tip: Alternatively, you can right-click the section in the details pane, point to Insert Control and
select the type of control from the menu.

3 On the context menu of a control, choose Properties and fill in the control properties in the tabbed <Control>
Properties dialog box.

4 Click OK.

Note: The Insert Control command is also available on the context menu of a panel control.

Related Concepts

Documentation Template Controls

Related Procedures

Hyperlinking Documentation

Related Reference

Control Properties

632

Moving, Resizing and Aligning Controls
The Documentation Template Designer displays a newly created control as a rectangle positioned at the insertion
point in the details pane. You can move the control to change where its output is displayed in the generated
documentation. You can also modify the size of the rectangle to determine the approximate size of the region for
the output. Increasing the rectangle size is especially important for a label with a default size that is not large enough
to allow its entire text to be displayed in the report.

If you select two or more controls in a section, you can use the context menu of the selection to uniformly align
controls within the section. Be aware that when you apply multiple alignments, it is possible for controls to overlap.

Tip: Precise positioning and sizing is not possible.

Warning: There is no simple undo for changes in alignment or size. When you change alignment or resize controls,
you must manually readjust the controls to return them to the former status.

To move a control within a section
1 Select a control. Notice that the mouse pointer changes to a cross with double-ended arrows.
2 With the control selected, drag and drop the control to a position within the section.

To copy or move a control to another section
1 Select a control.
2 On the context menu of the selected control, choose Copy or Cut.
3 Right-click the target section and choose Paste on the context menu.

To resize a control
1 Place the mouse pointer on either the right or left edge of the rectangle. Notice that the mouse pointer changes

to a double-ended arrow.
2 Drag the edge of the rectangle to the required size.

To align controls
1 Select two or more controls within a section.
2 Right-click the selection and choose Alignment on the context menu.
3 On the submenu, choose one of the following options:

♦ Left Side

♦ Right Side

♦ Top Side

♦ Bottom Side

♦ Make same width

♦ Make same height

633

♦ Make same size

Related Concepts

Documentation Template
Documentation Template Controls

Related Reference

Documentation Template Designer

634

A Typical Scenario of Creating a Template for Multi-Frame
Documentation
This part discusses how to use the Documentation Template Designer to create the templates for multi-frame HTML
documentation.

To create a template for multi-frame documentation
1 Create a stub multi-frame template:

Creating Custom Documentation Template
2 Create the frameset structure to describe how the frames are organized within the browser window:

Defining Frameset Structure
3 Design the body of a frameset template, keeping in mind that for the multi-frame templates, static sections and

headers and footers for the folder sections and iterators are prohibited. Create controls. Set section, area and
template properties as described in the section

A Typical Scenario of Creating a Custom Documentation Template
4 Set call to template section properties:

Setting Call to Template Section Properties
5 Create hypertext links, including image maps and Javadoc link references:

Hyperlinking Documentation

Related Concepts

Multi-frame Documentation Templates

Related Reference

Call to Template Properties

635

Creating Custom Documentation Template

To create a documentation template
1 On the main menu, choose File New Other
2 In the New dialog that opens, expand the Modeling node.
3 Choose Documentation Template and click Next.
4 In the GenDoc Template Designer File dialog, specify the following:

♦ In the File Name field, enter the fully qualified name of the template file.

♦ In the Template type field, choose a template type from the drop-down list (documentation template or
frameset template).

5 Use the Template Designer toolbox or context menus to create the template structure.

Note: After a documentation template is created, you can view and modify its properties using the Template
Properties dialog.

Related Procedures

Setting Template Properties

Related Reference

Documentation Template Properties

636

Defining Frameset Structure
The frameset structure of a multi-frame HTML document describes how the frames are organized within the browser
window. After a frameset template is created, you can define its structure through the template properties.

To define the structure of a frameset template
1 On the toolbar of the Template Designer, click the Show Properties button. The Template Properties dialog

opens with the root frameset highlighted.
2 Define template properties in the General and Template Parameter tabs, as described in

Setting Template Properties
3 In the Frameset Structure tab, choose the layout of the root frameset template, clicking either the Columns

or Rows radio-buttons.
4 Add a frame or a frameset to the root frameset. To add a frame, click the Add Frame button. To add a frameset,

click the Add Frameset button.
Repeat this step to create a structure.

5 For each frame or frameset node, define its properties, as described in

Setting Frame and Frameset Properties
6 Click OK when ready.

Related Procedures

Setting Frame and Frameset Properties

Related Reference

Frameset Template Properties

637

A Typical Scenario of Creating a Custom Documentation Template
Creating a custom documentation template and populating it with sections and controls involves the following general
steps:

To create and customize a documentation template
1 Create a stub template:

Creating Custom Documentation Template
2 Create template structure:

Creating Sections
3 Provide reusable elements:

Creating Stock Sections
4 Define sections properties:

Setting Section Properties
5 Define area properties:

Setting Area Properties
6 Define template properties:

Setting Template Properties
7 Add controls to the sections:

Creating Controls
8 Customize controls:

Moving, Resizing and Aligning Controls

Find useful information in the following related sections:

Related Procedures

Using Word Documents in Documentation Templates
Reusing documentation templates from TCC/TA 1.x

638

Setting Call to Template Section Properties
The section properties of a call to template determine how the output for a template call can be used. With multi-
frame HTML documentation, call to template sections typically generate separate files that can be loaded into a
frame of the resulting HTML project documentation.

To access the properties of a call to template section, select Properties from the section’s right-click menu. Refer
to the Call to Template Properties dialog description for details.

To define properties of a call to template section
1 In the Template field of the General tab, click the Browse button, and select a template.
2 Select the type of generated output. If the output generated from the template is to be loaded into a frame, select

Separate File from the radio buttons.
3 Define the name of the generated document. Click the Edit Expression button to create the expression.

Note: If a particular call of a template is to be iterated many times to produce multiple documents,
derive the output document name from the properties of the current model element. You
can use the getProperty("$name") expression to get the name of the current model
element.

4 Define the name of the output directory. Click the Edit Expression button to create the expression.
5 Define the output image subdirectory for the images files.

Related Reference

Call to Template Properties

639

Hyperlinking Documentation
HTML documentation requires hypertext links. A hypertext link connects a link reference (source) and a link
destination (target). The link reference is a piece of text or an image. The link destination is a file or an anchor in a
file.

To create hypertext links, refer to the following sections
1 Creating hyperlinks in the ordinary documentation:

Hyperlinking Controls to Element Documentation
2 Creating hyperlinks in the multi-frame documentation:

Creating Hypertext Links (Advanced)
3 Creating image mapping for the model elements in diagrams:

Image Mapping (Advanced)
4 Converting Javadoc link references to hyperlinks:

Creating Javadoc Link References (Advanced)

640

Creating Controls

To create a new control in a static section, header, or footer
1 Select a section in the details pane.
2 Click the type of control you want to insert on the template designer toolbar.

Tip: Alternatively, you can right-click the section in the details pane, point to Insert Control and
select the type of control from the menu.

3 On the context menu of a control, choose Properties and fill in the control properties in the tabbed <Control>
Properties dialog box.

4 Click OK.

Note: The Insert Control command is also available on the context menu of a panel control.

Related Concepts

Documentation Template Controls

Related Procedures

Hyperlinking Documentation

Related Reference

Control Properties

641

Creating Custom Documentation Template

To create a documentation template
1 On the main menu, choose File New Other
2 In the New dialog that opens, expand the Modeling node.
3 Choose Documentation Template and click Next.
4 In the GenDoc Template Designer File dialog, specify the following:

♦ In the File Name field, enter the fully qualified name of the template file.

♦ In the Template type field, choose a template type from the drop-down list (documentation template or
frameset template).

5 Use the Template Designer toolbox or context menus to create the template structure.

Note: After a documentation template is created, you can view and modify its properties using the Template
Properties dialog.

Related Procedures

Setting Template Properties

Related Reference

Documentation Template Properties

642

Creating Formatting Styles for Documentation Templates
In this section you will learn how to create and edit formatting styles.

Tip: Create as many Formatting Style types as you would like, then assign a Formatting Style to a Control. After
the Formatting Style has been assigned to controls, to change any style properties for these controls, change
the property in the appropriate Formatting Style. After the Formatting Style is updated, the change will show
immediately in the controls.

To create a new formatting style
1 On the tool palette of the Template Designer, click the Show Template Properties button. The Template

Properties dialog opens.
2 In the Formatting Styles tab, click the New button. The Style dialog opens.
3 Select Main tab of the dialog, and specify the following parameters:

♦ In the Name field, specify the style name. As you enter the name, it is displayed in the title bar of the
Style dialog.

♦ In the Type field, choose whether the style applies to a paragraph or to a character.

♦ In the Level field, choose the nesting level of the style.

4 In the Font, Color and Border tabs, define the respective parameters of the style.
5 Click OK.

To edit formatting style
1 On the tool palette of the Template Designer, click the Show Template Properties button. The Template

Properties dialog opens.
2 In the Formatting Styles tab, select a style and click the Edit button. The Style dialog opens.
3 Repeat steps 3 to 5 of the previous task.

Related Concepts

Documentation Generation Overview

Related Procedures

Creating Custom Documentation Template

Related Reference

Documentation Template Designer

643

Creating Hypertext Links (Advanced)
Multi-frame HTML documentation requires hypertext links. A hypertext link connects a link reference (source) and
a link destination (target). The link reference is a piece of text or an image; it is the property of a control. The link
destination is a file or an anchor in a file; it is the area property of a static section, header or footer.

By default, if no target frame for a hyper-reference is specified, the referenced document is loaded into the same
frame window as the page that contains the link reference. The target frame parameter alters this behavior to load
the target file into a named frame, so the source document is not replaced.

To assign a target frame to a link reference
1 On the context menu of the control, choose Properties.
2 Select the Hyperlink to Elements tab.
3 Click the Edit Expression button next to the Target Frame Name Expression field.
4 Select a notation and enter an expression for the name of a frame window defined in the frameset structure.

The expression should return the name of one of the frame windows defined in the FrameSet Structure.

To create a link reference for a control
1 Create a target from a section as described in “Hyperlinking Controls to Element Documentation.”
2 Right-click the desired control and choose Properties on the context menu.
3 In the Hyperlinks to Elements tab, click the Link to Element’s Specific Doc radio button.
4 Click the Edit Expression button next to the Expression for Model Element field to determine which elements'

documentation is the link target.
5 If the target area is marked as a Documentation Subject Selector, click the Edit Expression button next to the

Expression for Documentation Subject Selector field to match the expression for the template area described
above.

Related Concepts

Documentation Template Controls

Related Procedures

Hyperlinking Controls to Element Documentation

Related Reference

Control Properties

644

Creating Javadoc Link References (Advanced)
The Documentation Template Designer provides conversions for Javadoc References represented in the following
forms:

♦ inside {@link} tags

♦ as the value of some Javadoc element’s properties

Note: You need to specify the conversion in the properties of the control.

To convert a {@link} tag
1 On the context menu of the desired image control, choose Properties.
2 Select the Other tab.
3 Check the Render Embedded Javadoc Tags option.

Tip: Only a text control (label control, data control, or formula control) can generate documentation text.

Converting a value of an element’s property to a hyperlink is more complicated than converting an {@link} tag.
Such conversions require using one of these documentation generation functions:

getJDRefDisplayName()
getJDRefElement()

The following procedure gives a general outline of actions required to perform conversion. Most often this kind of
conversion is used for the see property.

To convert the value of an element property
1 Create a property iterator that will go through the instances of the property.
2 Create one or more static sections that correspond to the Javadoc references of the desired type.
3 Provide an enable condition for each section, which activates it for the appropriate JDRef.

getJDRefType(getDGVariable("curPropertyInstance")) == "<JDRef type>"

where “<JDRef type>” is “element”, “URL” or “text”.

4 Create a formula control in each section.
5 On the context menu of a formula control, choose Properties.
6 In the Formula tab of the Formula Control dialog, enter the following expression:

getJDRefDisplayName(getDGVariable("curPropertyInstance"))

Note: This expression is common for all types of Javadoc references. The value of the expression
is the text that will be displayed in the documentation.

7 In the Hyperlinks to Elements tab of the Formula Control dialog, select the hyperlink type:

645

♦ For the JDRefs of the “element” type, click the Link to Element's Specific Docs radio button and enter
the following expression in the Expression for model element field: getJDRefDisplayName
(getDGVariable("curPropertyInstance"))

♦ For the JDRefs of the “URL” type, click the URL Link radio button and enter the following expression in
the Expression for URL field: getJDRefURL(getDGVariable("curPropertyInstance"))

♦ For the JDRefs of the “text” type, the hyperlink definition is not defined. Because such a JDRef does not
refer to any element, the function getJDRefElement() always returns null, producing no hyperlinks.

Related Concepts

Javadoc Link References

Related Reference

Control Properties

646

Creating Sections
A nested section can be created for an existing folder or iterator; a sibling section can be created for any existing
section. For these sections, the Insert Nested Section or Insert Sibling Section toolbar buttons and menu
commands are enabled, unlike the report header and footer, which lie outside the template body.

To create a new section in a documentation template
1 Select an existing section in the template.
2 Right-click an existing section in the scope pane, point to the Insert Sibling Section or Insert Nested

Section on the context menu and select the type of new section.

Tip: Alternatively, use the toolbar buttons of the Documentation Template Designer.

3 When necessary, determine the essential template information for the new section.

♦ Static section: None required at creation.

♦ Element iterator: Select the element metatype from the list of available types.

♦ Element property iterator: Select the scope.

♦ Folder section: None required at creation.

♦ Call to stock section: Select the stock section from the list of existing sections. Refer to the section
“Creating Stock Sections.”

♦ Call to template section: None required at creation.

4 Click OK to complete the insertion.
5 Set section properties as required.

Iterators and folder sections can also contain headers and footers. If such a section does not contain a header or a
footer, its context menu provides Add Header or Add Footer commands. If a header or a footer exists, the context
menu provides Delete Header or Delete Footer commands.

To add a header or a footer to an iterator
1 Select an existing element iterator or folder section.
2 On the context menu, choose Add Header or Add Footer.

Related Concepts

Documentation Template
Documentation Template Sections

Related Procedures

Creating Stock Sections
Setting Section Properties

Related Reference

Documentation Template Designer

647

Creating Stock Sections
Stock sections are reusable folders or iterators that reside in the template’s collection of stock sections. Each stock
section displays in a separate named tab in a documentation template.

In this section you will learn how to:

♦ Create stock sections from scratch

♦ Create stock sections from an existing section

♦ Delete stock sections

♦ Show stock section

To create a stock section
1 On the toolbar of the Template Designer, click the New Stock Section (Element Iterator) button or New stock

section (Folder) button. The New Stock Section dialog opens.
2 In the Name field, enter the name of the new stock section.
3 For the element iterators, select a metatype from the list of available metatypes.
4 Check the Intrinsic to Property Iterator option, if necessary. If this flag is checked, the scope of the stock

section root iterator or folder section depends on the Properties Iterator this section is called from: the only
available iteration scopes for an element iterator are customized and programmed. For folder sections, it means
that the metatype chooser tab is absent.

5 Click OK.

To create a stock section from an existing section
1 In the scope pane of a template, select an element iterator or folder section from which you want to create a

stock section.
2 Right-click the section and choose Copy into Stock on the context menu.
3 In the New stock section (Folder) dialog, enter the stock section name.
4 Click OK.

To delete a stock section
1 Right-click the stock section tab be deleted.
2 On the context menu of the tab, choose Remove Stock Section.

To show a stock section for a call to stock section
1 Right-click the call stock section.
2 On the context menu of the section, choose Show Stock Section.

648

Related Concepts

Documentation Template
Documentation Template Sections

Related Reference

Documentation Template Designer

649

Defining Frameset Structure
The frameset structure of a multi-frame HTML document describes how the frames are organized within the browser
window. After a frameset template is created, you can define its structure through the template properties.

To define the structure of a frameset template
1 On the toolbar of the Template Designer, click the Show Properties button. The Template Properties dialog

opens with the root frameset highlighted.
2 Define template properties in the General and Template Parameter tabs, as described in

Setting Template Properties
3 In the Frameset Structure tab, choose the layout of the root frameset template, clicking either the Columns

or Rows radio-buttons.
4 Add a frame or a frameset to the root frameset. To add a frame, click the Add Frame button. To add a frameset,

click the Add Frameset button.
Repeat this step to create a structure.

5 For each frame or frameset node, define its properties, as described in

Setting Frame and Frameset Properties
6 Click OK when ready.

Related Procedures

Setting Frame and Frameset Properties

Related Reference

Frameset Template Properties

650

Setting Template Properties

To set properties of a documentation template
1 On the toolbox of the Template Designer, click the Show Template properties button.
2 In the General tab, you can change the following:

♦ Enter template description.

♦ Define the report title expression, clicking the editor button to open the Edit Expression dialog.

♦ Select Root Object Metatype from the list of available metatypes.

♦ Attach a Word document as a formatting template. Refer to “Using Word Documents in Documentation
Templates” for details.

♦ Check or clear options to generate headers and footers as required.

3 In the Page Settings tab, you can specify page size, margins, and landscape or portrait orientation.
4 In the Formatting Styles tab, you can change formatting styles. Refer to “Creating Formatting Styles” for details.
5 In the Template Parameters tab, specify the formal parameters that will be used for calling this template from

another template.

Related Procedures

Using Word Documents in Documentation Templates
Creating Formatting Styles for Documentation Templates

Related Reference

Documentation Template Properties

651

Setting Frame and Frameset Properties
In this section you will learn how to define properties of each frame and frameset that comprise a multi-frame
template.

To define properties of a frame
1 In the Frameset Structure tab of the Template Properties dialog, select frame.
2 Specify the frame name, percent size and scrolling mode.
3 Click the Edit Expression button in the Source File Name Expression field. In the Edit Expression dialog,

select an expression type and enter the expression body.
4 Click the Edit Expression button in the Enable Condition field. In the Edit Expression dialog, select an

expression type and enter the expression body.

To define properties of a frameset
1 In the Frameset Structure tab of the Template Properties dialog, select a frameset.
2 Choose the layout of a frameset.
3 Click the Edit Expression button in the Enable Condition field. In the Edit Expression dialog, select an

expression type and enter the expression body.

Related Reference

Frameset Template Properties

652

Hyperlinking Controls to Element Documentation
Any generated output that contains an anchor or a bookmark can be a link target. Documentation templates have
facilities for inserting anchors at the “main documentation” of model elements. You can insert anchors for static
sections, headers, and footers.

When you define the location of a model element main documentation, you can specify hyperlink references to it for
any control that is not a panel. The control can be in the same template as the main documentation or it can be in
a different template.

In this section you will learn how to:

♦ Make a target from a static section, footer, or header

♦ Link a control to a target

To make a target from a static section, footer, or header
1 Right-click the details pane of a section and choose Area Properties.
2 Click the Hypertext Target tab.
3 Specify Expression for the Target Bookmark Selector. When specified, this option inserts a bookmark into

a file used as the File Link target. Click the Edit Expression button to create the expression in OCL or legacy
notation.

4 Define Start of the Current Element’s Specific Documentation. If this option is checked, the output of this
section is identified as the “main documentation” for the current element. This option is used for hyperlinks of
Link to Element’s specific Doc type.

5 Specify Expression for the Documentation Subject Selector. This option is only enabled if the Start of the
Current Element’s Specific Documentation option is checked. It marks the location of the elements' specific
documentation with the appropriate Documentation Subject Selector, allowing users to create hyper-references
to different documentation locations generated by the same model element. Click the Edit Expression button to
create the expression in OCL or legacy notation.

To link a control to a target
1 In the details pane of a section, select a label, image or formula control.
2 On the context menu of the control, choose Properties.
3 Click the Hyperlinks to Element tab.
4 Define the ink type:

♦ Link to Element’s specific Doc: You must identify the element whose documentation is to be the target
in the text field for Expression for RWI-Element.

♦ File Link: You must fill in the path to the file. If the hyperlink target is a bookmark in the file, you must
supply that as well.

♦ URL Link: You must supply the URL.

5 Specify the link settings, depending on the selected link type.
6 Optionally, provide compound hyperlinks, clicking the Add Hyperlink <n> button. This adds a new Hyperlinks

to Element tab to the dialog.

653

Related Concepts

Documentation Template Controls

Related Procedures

Setting Area Properties

Related Reference

Area Properties

654

Hyperlinking Documentation
HTML documentation requires hypertext links. A hypertext link connects a link reference (source) and a link
destination (target). The link reference is a piece of text or an image. The link destination is a file or an anchor in a
file.

To create hypertext links, refer to the following sections
1 Creating hyperlinks in the ordinary documentation:

Hyperlinking Controls to Element Documentation
2 Creating hyperlinks in the multi-frame documentation:

Creating Hypertext Links (Advanced)
3 Creating image mapping for the model elements in diagrams:

Image Mapping (Advanced)
4 Converting Javadoc link references to hyperlinks:

Creating Javadoc Link References (Advanced)

655

Hyperlinking Controls to Element Documentation
Any generated output that contains an anchor or a bookmark can be a link target. Documentation templates have
facilities for inserting anchors at the “main documentation” of model elements. You can insert anchors for static
sections, headers, and footers.

When you define the location of a model element main documentation, you can specify hyperlink references to it for
any control that is not a panel. The control can be in the same template as the main documentation or it can be in
a different template.

In this section you will learn how to:

♦ Make a target from a static section, footer, or header

♦ Link a control to a target

To make a target from a static section, footer, or header
1 Right-click the details pane of a section and choose Area Properties.
2 Click the Hypertext Target tab.
3 Specify Expression for the Target Bookmark Selector. When specified, this option inserts a bookmark into

a file used as the File Link target. Click the Edit Expression button to create the expression in OCL or legacy
notation.

4 Define Start of the Current Element’s Specific Documentation. If this option is checked, the output of this
section is identified as the “main documentation” for the current element. This option is used for hyperlinks of
Link to Element’s specific Doc type.

5 Specify Expression for the Documentation Subject Selector. This option is only enabled if the Start of the
Current Element’s Specific Documentation option is checked. It marks the location of the elements' specific
documentation with the appropriate Documentation Subject Selector, allowing users to create hyper-references
to different documentation locations generated by the same model element. Click the Edit Expression button to
create the expression in OCL or legacy notation.

To link a control to a target
1 In the details pane of a section, select a label, image or formula control.
2 On the context menu of the control, choose Properties.
3 Click the Hyperlinks to Element tab.
4 Define the ink type:

♦ Link to Element’s specific Doc: You must identify the element whose documentation is to be the target
in the text field for Expression for RWI-Element.

♦ File Link: You must fill in the path to the file. If the hyperlink target is a bookmark in the file, you must
supply that as well.

♦ URL Link: You must supply the URL.

5 Specify the link settings, depending on the selected link type.
6 Optionally, provide compound hyperlinks, clicking the Add Hyperlink <n> button. This adds a new Hyperlinks

to Element tab to the dialog.

656

Related Concepts

Documentation Template Controls

Related Procedures

Setting Area Properties

Related Reference

Area Properties

657

Creating Hypertext Links (Advanced)
Multi-frame HTML documentation requires hypertext links. A hypertext link connects a link reference (source) and
a link destination (target). The link reference is a piece of text or an image; it is the property of a control. The link
destination is a file or an anchor in a file; it is the area property of a static section, header or footer.

By default, if no target frame for a hyper-reference is specified, the referenced document is loaded into the same
frame window as the page that contains the link reference. The target frame parameter alters this behavior to load
the target file into a named frame, so the source document is not replaced.

To assign a target frame to a link reference
1 On the context menu of the control, choose Properties.
2 Select the Hyperlink to Elements tab.
3 Click the Edit Expression button next to the Target Frame Name Expression field.
4 Select a notation and enter an expression for the name of a frame window defined in the frameset structure.

The expression should return the name of one of the frame windows defined in the FrameSet Structure.

To create a link reference for a control
1 Create a target from a section as described in “Hyperlinking Controls to Element Documentation.”
2 Right-click the desired control and choose Properties on the context menu.
3 In the Hyperlinks to Elements tab, click the Link to Element’s Specific Doc radio button.
4 Click the Edit Expression button next to the Expression for Model Element field to determine which elements'

documentation is the link target.
5 If the target area is marked as a Documentation Subject Selector, click the Edit Expression button next to the

Expression for Documentation Subject Selector field to match the expression for the template area described
above.

Related Concepts

Documentation Template Controls

Related Procedures

Hyperlinking Controls to Element Documentation

Related Reference

Control Properties

658

Image Mapping (Advanced)
When an image control is for the whole diagram in the model, the reference definition creates link references for all
model elements depicted on the diagram. To create the image map, you must enter all expressions in the hyper-
reference definition relative to the element returned by the context OclAny getDGRwiElement
('diagramMapElement') call.

When Documentation Generator generates the image of a diagram, it creates the image map, which includes all
model elements depicted on the diagram. While doing this, it iterates through diagram elements, substituting the
diagramMapElement variable with every diagram element, calculating a hyper-reference for it, and then inserting
it into the image map. For example: context uml::kernel::Elementif getDGRwiElement
('diagramMapElement').isDiagram() then getDGRwiElement('diagramMapElement') else
getDGRwiElement('') endif

To create an image map
1 On the context menu of the image control, choose Properties.
2 In the Image tab, select Diagram as an image type.
3 Select the Hyperlink to Elements tab.
4 Click the Link to Element's Specific Doc radio button.
5 Click the Edit Expression button next to the Expression for Model Element field and enter all expressions in

the hyper-reference definition relative to the element returned by the call:
context OclAny
getDGRwiElement('diagramMapElement')

Related Concepts

Documentation Template Controls

Related Reference

Control Properties

659

Creating Javadoc Link References (Advanced)
The Documentation Template Designer provides conversions for Javadoc References represented in the following
forms:

♦ inside {@link} tags

♦ as the value of some Javadoc element’s properties

Note: You need to specify the conversion in the properties of the control.

To convert a {@link} tag
1 On the context menu of the desired image control, choose Properties.
2 Select the Other tab.
3 Check the Render Embedded Javadoc Tags option.

Tip: Only a text control (label control, data control, or formula control) can generate documentation text.

Converting a value of an element’s property to a hyperlink is more complicated than converting an {@link} tag.
Such conversions require using one of these documentation generation functions:

getJDRefDisplayName()
getJDRefElement()

The following procedure gives a general outline of actions required to perform conversion. Most often this kind of
conversion is used for the see property.

To convert the value of an element property
1 Create a property iterator that will go through the instances of the property.
2 Create one or more static sections that correspond to the Javadoc references of the desired type.
3 Provide an enable condition for each section, which activates it for the appropriate JDRef.

getJDRefType(getDGVariable("curPropertyInstance")) == "<JDRef type>"

where “<JDRef type>” is “element”, “URL” or “text”.

4 Create a formula control in each section.
5 On the context menu of a formula control, choose Properties.
6 In the Formula tab of the Formula Control dialog, enter the following expression:

getJDRefDisplayName(getDGVariable("curPropertyInstance"))

Note: This expression is common for all types of Javadoc references. The value of the expression
is the text that will be displayed in the documentation.

7 In the Hyperlinks to Elements tab of the Formula Control dialog, select the hyperlink type:

660

♦ For the JDRefs of the “element” type, click the Link to Element's Specific Docs radio button and enter
the following expression in the Expression for model element field: getJDRefDisplayName
(getDGVariable("curPropertyInstance"))

♦ For the JDRefs of the “URL” type, click the URL Link radio button and enter the following expression in
the Expression for URL field: getJDRefURL(getDGVariable("curPropertyInstance"))

♦ For the JDRefs of the “text” type, the hyperlink definition is not defined. Because such a JDRef does not
refer to any element, the function getJDRefElement() always returns null, producing no hyperlinks.

Related Concepts

Javadoc Link References

Related Reference

Control Properties

661

Image Mapping (Advanced)
When an image control is for the whole diagram in the model, the reference definition creates link references for all
model elements depicted on the diagram. To create the image map, you must enter all expressions in the hyper-
reference definition relative to the element returned by the context OclAny getDGRwiElement
('diagramMapElement') call.

When Documentation Generator generates the image of a diagram, it creates the image map, which includes all
model elements depicted on the diagram. While doing this, it iterates through diagram elements, substituting the
diagramMapElement variable with every diagram element, calculating a hyper-reference for it, and then inserting
it into the image map. For example: context uml::kernel::Elementif getDGRwiElement
('diagramMapElement').isDiagram() then getDGRwiElement('diagramMapElement') else
getDGRwiElement('') endif

To create an image map
1 On the context menu of the image control, choose Properties.
2 In the Image tab, select Diagram as an image type.
3 Select the Hyperlink to Elements tab.
4 Click the Link to Element's Specific Doc radio button.
5 Click the Edit Expression button next to the Expression for Model Element field and enter all expressions in

the hyper-reference definition relative to the element returned by the call:
context OclAny
getDGRwiElement('diagramMapElement')

Related Concepts

Documentation Template Controls

Related Reference

Control Properties

662

Moving, Resizing and Aligning Controls
The Documentation Template Designer displays a newly created control as a rectangle positioned at the insertion
point in the details pane. You can move the control to change where its output is displayed in the generated
documentation. You can also modify the size of the rectangle to determine the approximate size of the region for
the output. Increasing the rectangle size is especially important for a label with a default size that is not large enough
to allow its entire text to be displayed in the report.

If you select two or more controls in a section, you can use the context menu of the selection to uniformly align
controls within the section. Be aware that when you apply multiple alignments, it is possible for controls to overlap.

Tip: Precise positioning and sizing is not possible.

Warning: There is no simple undo for changes in alignment or size. When you change alignment or resize controls,
you must manually readjust the controls to return them to the former status.

To move a control within a section
1 Select a control. Notice that the mouse pointer changes to a cross with double-ended arrows.
2 With the control selected, drag and drop the control to a position within the section.

To copy or move a control to another section
1 Select a control.
2 On the context menu of the selected control, choose Copy or Cut.
3 Right-click the target section and choose Paste on the context menu.

To resize a control
1 Place the mouse pointer on either the right or left edge of the rectangle. Notice that the mouse pointer changes

to a double-ended arrow.
2 Drag the edge of the rectangle to the required size.

To align controls
1 Select two or more controls within a section.
2 Right-click the selection and choose Alignment on the context menu.
3 On the submenu, choose one of the following options:

♦ Left Side

♦ Right Side

♦ Top Side

♦ Bottom Side

♦ Make same width

♦ Make same height

663

♦ Make same size

Related Concepts

Documentation Template
Documentation Template Controls

Related Reference

Documentation Template Designer

664

OCL in Documentation Templates
Together allows you to compose model queries and define enable conditions using OCL syntax, and then use them
in a template for generating documentation. OCL or Legacy type expressions can be entered in the template
element's properties dialog box using the provided Expression Editor. Where applicable, the editor is either opened
in the tab or you can use the Edit Expression button to open the editor.

In addition to the standard OCL operations, the special native OCL extensions are provided for the functions that
are specific for Documentation Generation. Native OCL extensions tend to have the same signature and meaning
as the legacy Documentation Generation functions have. Code sense suggests these operations along with the
standard OCL ones.

To add an expression to your template
1 Open a template where you want to add an OCL expression.
2 In the Properties dialog box, open the tab where you want to type the expression. If the Expression Editor is

not opened in the tab, click the Edit Expression button.
3 Specify the context for your expression in the Context field.
4 In the Body area, you can type the expression text. The code sense, syntax highlighting and validating are

available.
5 Click OK to save the expression in the template.

Related Concepts

Documentation Template Controls
About OCL Support in Together
Enable Conditions

665

Reusing documentation templates from TCC/TA 1.x
Normally the legacy documentation templates are compatible with Together, except for the two major differences:
adapter classes (special extensions written in Java) and changes in the metamodel.

'For example, consider the legacy Class.tpl template from predefined TCC templates. Errors occur when this
template executes because it calls methods of the SpecialScopeProvider adapter class, which is missing in
Together. Users need to modify this template manually to make sure that calls to these methods are replaced with
OCL expressions.

Namely, the users should change expressions for Class.tpl for Programmed iteration scope in two Element
iterators. The sample procedure is described below.

To modify a legacy documentation template using OCL
1 Remove class and method names.
2 Open Iterator properties.
3 Change the value of the programmed iteration scope property from specify class and method to specify

expression.
4 Set the expression type to 'OCL', with uml::kernel::Element as context.
5 Specify the following bodies:

— for Element iterator in the Direct Known Subinterfaces folder: getKnownSubclasses()
— for Element iterator in the All Known Implementing Classes folder: getImplementingClasses()

Note: Adapter classes written for TCC do not work for Together. Instead of the TCC GenDoc extensions, Together
makes use of the native OCL extensions (special Eclipse plugins that use the
com.borland.selena.ocl.gdm.nativeExtension extension point and contain Java implementations
of the corresponding methods). getKnownSubclasses() and getImplementingClasses() are the
examples of such extensions. Users should create their own OCL extensions to be used in their templates.

To make sure that metamodels are compatible
1 Open your template in the Template Designer.
2 Make sure there are no iterations by <Any> or folders without metatype specified. If such iterations exist, it

means that metatypes for these iterators/folders are not recognized.
3 Change metatypes as required.

Related Concepts

Documentation Template

Related Procedures

Together Documentation Templates Procedures

Related Reference

Documentation Template Designer

666

Setting Area Properties
Area properties apply to static sections, headers and footers. They are defined in the Area Properties dialog, which
is common for static sections, headers and footers, and is invoked from the details pane. Refer to the dialog
descriptions for details.

To set area properties
1 Select a static section, header or footer of a template.
2 On the context menu of the details pane, choose Area Properties.
3 In the Area Properties dialog, specify settings and click OK.

Related Concepts

Documentation Template Sections

Related Reference

Area Properties

667

Setting Call to Template Section Properties
The section properties of a call to template determine how the output for a template call can be used. With multi-
frame HTML documentation, call to template sections typically generate separate files that can be loaded into a
frame of the resulting HTML project documentation.

To access the properties of a call to template section, select Properties from the section’s right-click menu. Refer
to the Call to Template Properties dialog description for details.

To define properties of a call to template section
1 In the Template field of the General tab, click the Browse button, and select a template.
2 Select the type of generated output. If the output generated from the template is to be loaded into a frame, select

Separate File from the radio buttons.
3 Define the name of the generated document. Click the Edit Expression button to create the expression.

Note: If a particular call of a template is to be iterated many times to produce multiple documents,
derive the output document name from the properties of the current model element. You
can use the getProperty("$name") expression to get the name of the current model
element.

4 Define the name of the output directory. Click the Edit Expression button to create the expression.
5 Define the output image subdirectory for the images files.

Related Reference

Call to Template Properties

668

Setting Frame and Frameset Properties
In this section you will learn how to define properties of each frame and frameset that comprise a multi-frame
template.

To define properties of a frame
1 In the Frameset Structure tab of the Template Properties dialog, select frame.
2 Specify the frame name, percent size and scrolling mode.
3 Click the Edit Expression button in the Source File Name Expression field. In the Edit Expression dialog,

select an expression type and enter the expression body.
4 Click the Edit Expression button in the Enable Condition field. In the Edit Expression dialog, select an

expression type and enter the expression body.

To define properties of a frameset
1 In the Frameset Structure tab of the Template Properties dialog, select a frameset.
2 Choose the layout of a frameset.
3 Click the Edit Expression button in the Enable Condition field. In the Edit Expression dialog, select an

expression type and enter the expression body.

Related Reference

Frameset Template Properties

669

Setting Section Properties
After a section is created, define its properties. Section properties are defined in the Properties dialogs, which are
specific for each kind of sections.

You can invoke the Properties dialog for the iterators and folder sections from the scope pane or from the details
pane of a section. For the static sections, the Properties dialog is invoked from the scope pane only.

To set properties of a section
1 In the scope section of the Template designer, select a template section.
2 On the context menu, choose Properties.
3 Define properties as required and click OK.

Note: Properties dialogs are specific to each section type. Refer to the dialog descriptions for details.

Related Concepts

Documentation Template Sections
Enable Conditions

Related Reference

Element Iterator Properties
Property Iterator Properties
Static Section Properties
Call to Stock Section Properties
Call to Template Properties

670

Setting Template Properties

To set properties of a documentation template
1 On the toolbox of the Template Designer, click the Show Template properties button.
2 In the General tab, you can change the following:

♦ Enter template description.

♦ Define the report title expression, clicking the editor button to open the Edit Expression dialog.

♦ Select Root Object Metatype from the list of available metatypes.

♦ Attach a Word document as a formatting template. Refer to “Using Word Documents in Documentation
Templates” for details.

♦ Check or clear options to generate headers and footers as required.

3 In the Page Settings tab, you can specify page size, margins, and landscape or portrait orientation.
4 In the Formatting Styles tab, you can change formatting styles. Refer to “Creating Formatting Styles” for details.
5 In the Template Parameters tab, specify the formal parameters that will be used for calling this template from

another template.

Related Procedures

Using Word Documents in Documentation Templates
Creating Formatting Styles for Documentation Templates

Related Reference

Documentation Template Properties

671

Using Word Documents in Documentation Templates
The Template Designer provides a way to use styles, headers and footers of the *.rtf, *.dot and *.doc Word
files in your custom documentation templates. When the path to the Word file is specified, the styles of the referenced
Word document are displayed in the list of formatting styles; the header and footer of the referenced Word document
are displayed on each page of the generated report.

In this section you will learn how to:

♦ attach a Word document to a documentation template

♦ detach a Word document from a documentation template

To attach a Word document to a documentation template
1 Open a documentation template in the Template Designer, or create a new one.
2 On the tool palette of the Template Designer, click the Show Template Properties button. The Template

Properties dialog opens.
3 In the Formatting Template field, specify the path to the Word file.

Tip: Alternatively, click the Browse button and navigate to the Word file.

The styles of the referenced document display in the Formatting Styles tab of the Template Properties dialog.

Tip: The Delete and Edit buttons do not work for the styles of the attached document.

4 Click OK.

Warning: Together supports simple text Word *.rtf, *.dot and *.doc templates headers/footers only. The
headers and footers with embedded images, objects, complex formatted text and fields are not
processed.

To detach a Word document from a documentation template
1 Open a documentation template in the Template Designer.
2 On the tool palette of the Template Designer, click the Show Template Properties button. The Template

Properties dialog opens.
3 Remove the path from the field Formatting Template.
4 Click OK.

672

Related Concepts

Documentation Generation Overview

Related Procedures

Creating Custom Documentation Template
Creating Formatting Styles for Documentation Templates

Related Reference

Documentation Template Designer

673

Interoperability and Migration
This section provides how-to information on exchanging model information between the various products of the
Together product line.

In This Section
Converting Profile-Specific Properties
How to reuse a project with a profile, created and applied in Together 2006.

Importing a Project in an IBM Rational Rose MDX Model
How to import .mdx projects.

Importing a Project in IBM Rational Rose (MDL) Format
How to import .mdl projects.

Importing a Project in XMI Format
How to import XMI data.

Importing Java Modeling Projects Created in Together Edition for Eclipse 7.0
How to import a project created in TEC 7.0.

Importing Legacy Projects
How to import a legacy project and handle multiple project roots.

Reusing documentation templates from TCC/TA 1.x
This topic describes how to reuse custom documentation templates created in TCC/TA 1.x.

XMI Export and Import of the Models with Cross-Project References
You can import and export multi-root projects using XMI. Note that XMI imports and exports are implemented
differently for UML 1.4 and Java modeling projects, and for UML 2.0 projects.

674

Converting Profile-Specific Properties
The converting profiles function helps you reuse projects from Together 2006 in which custom profiles were applied.

This feature is useful for the following scenario:

1 In Together 2006, a profile has been created and deployed. This results in creating a profile plugin.
2 This profile plugin is applied to a certain modeling project.
3 The same profile definition is reused and deployed in Together 2006 R2. This results in creating another profile

plugin, which has different properties names.
4 The same modeling project is opened in Together 2006 R2. On an attempt to apply the new profile plugin to

this project, the profile-specific properties will loose their values unless they are properly converted.

To convert profile-specific properties
1 On the main menu, choose Model Profile Convert Properties.
2 If there are no profile-specific properties in the project, no action is performed.

Related Concepts

UML Profiles

675

Importing a Project in an IBM Rational Rose MDX Model
Together enables you to create projects around an IBM® Rational® XDE .mdx file.

Note: Together design projects that are created on the basis of the imported MDX models always comply with the
UML 2.0 specification.

To create a project from an MDX model
1 On the main menu, choose File Import. The New Project wizard opens.
2 Select Project from MDX file and click Next.
3 Specify the path to the MDX file you want to import or click Browse to locate the file. You can also specify the

following:

♦ Use the Scale factor field to specify the element dimensions coefficient. By default, the scale factor is
0.03.

♦ Preserve diagram nodes and bounds: If this option is selected, user-defined bounds are preserved in
the resulting diagrams. Otherwise the default values are applied.

4 Click Next.
5 Specify new project name. Click Next.
6 Specify the diagram to start with. Click Next.
7 Select one or more profiles you want to enable for this project. Click Next.
8 Select any referenced projects.
9 Click Finish to complete the wizard. A new project will be created with elements from the MDX file.

Note: If a profile was applied to the Rational XDE model while importing the MDX model to Together, the properties
from this profile are imported as custom properties.

Related Concepts

Model Import and Export Overview

Related Reference

MDX Import Wizard
MDX Projects Import Options

676

Importing a Project in IBM Rational Rose (MDL) Format
Together enables you to create projects around IBM® Rational® Rose model files (.mdl, .ptl, .cat, .sub).

Note: You can import a set of petal and subunit files.

Warning: Together projects created on the basis of the imported MDL models always comply with the UML 1.4
specification.

To create a design project from an IBM Rational Rose (MDL) project
1 On the main menu, choose File Import. The New Project wizard opens.
2 Select Project from MDL file and click Next.
3 Click either Add or Add Folder to designate the MDL project path. This step specifies the name (or names) of

the Rational Rose project file (or files) to be imported (several model files can be imported at once). Click
Remove to delete the selected file or files from the Paths list. Click Remove all to delete all files from the Paths
list.

Note: Avoid adding a model file along with its subunit to the import list because this results in
invalid project.

4 Use the Scale factor field to specify the element dimensions coefficient. By default, the scale factor is 0.3.
5 Specify the following options for the project:

♦ Convert Rose default colors: If this option is selected, the default Rational Rose colors will be replaced
with the default Together colors.

♦ Preserve diagram nodes and bounds: If this option is selected, user-defined bounds are preserved in
the resulting diagrams. Otherwise the default values are applied.

♦ Convert Rose actors: This option enables you to choose mapping for the Rose actors. If the option is
selected, the Rose actors are mapped to Together actors. If the option is not selected, the Rose actors
are mapped to the classes with the Actor stereotype, such as Actor, Business Actor, Business Worker, or
Physical Worker.

♦ Generate source code: If this option is selected, a new Java Modeling project is created; otherwise, a
Modeling project is created from imported MDL.

6 Click Finish.
7 When prompted, supply a name for your project and click Finish.
8 Follow the remaining steps in the wizard to specify options for your new project, and click Finish to complete

the wizard.

After the import process is complete, you can view the project structure in the Model Navigator view. The
mdlimport.log file is generated by default and lists any errors encountered during the import process.

Note: After entering a project name, you can click Finish without completing the remaining steps of the wizard. The
project is created using the remainder of default settings.

677

Related Concepts

Model Import and Export Overview

Related Procedures

Generating Source Code from Design Project

Related Reference

Together Projects
MDL Projects Import Options
MDL Import Wizard

678

Importing a Project in XMI Format
You can import projects or sections of projects that were created in other modeling tools and saved in XMI format.

Note: For UML 1.4 and Java Modeling projects only, XMI 1.1/1.2 imports are supported. Attempting to import an
XMI 1.0 file results in an empty project.

To import a project from an XMI file
1 Select File Import on the main menu. The Import dialog box opens.
2 Select XMI File and click Next.
3 In the Import Project from XMI File dialog box, specify the following:

♦ The Together project to which your XMI data will be imported in the Select destination project field.

♦ The full path to the .xml, .xmi, or .uml2 file you want to import in the Select source .xmi file field.

4 Click Finish.

Note: A .xml or .xmi file can be imported to UML 1.4 and Java Modeling projects; a .uml2 file can
be imported to UML 2.0 projects.

After you are notified that the import process is complete, you can view the results in the Model Navigator.

Note: When importing UML 2.0 models with profile files related to the model, for the models originally exported from
Together for Eclipse, select model .uml2 file as a source and make sure that all the profile files are located
in the same folder with the model file.

If there are any warnings produced during XMI import, the XMI Import dialog notifies you to refer to the Task view.
To open the Task view, select Window Show View Other Basic Tasks from the main menu.

Related Concepts

Model Import and Export Overview

Related Procedures

XMI Export and Import of the Models with Cross-Project References

679

Importing Java Modeling Projects Created in Together Edition for
Eclipse 7.0
You can import projects created in Together Edition for Eclipse 7.0.

The general procedure for importing a project created in Together Edition for Eclipse 7.0
consists of the following steps:
1 Importing your existing project into a workspace
2 Creating a Java modeling project from a Java project

To import an existing project from TEC 7.0
1 Select File Import on the main menu.
2 Select Existing Projects into Workspace and click Next.
3 In the Import Projects dialog box, specify the path to your project's root directory and select one or more projects

you want to import.
4 Click Finish when you specified all necessary options.

The new Java project is created and opened in your workspace.

Note: The name of the imported project cannot be changed during the import process. Therefore, the projects are
created with the same name as the imported projects.

To create a Java modeling project from a Java project
1 Select File New Project on the main menu. The New Project wizard opens.
2 Expand the Together node in the tree view list and select Java Modeling projects from Java projects. Click

Next.
3 Select the Java project you created from the project created in Together Edition for Eclipse. Click Next.
4 Specify other project-related options.
5 Click Finish when you specified all necessary options.

Related Concepts

Together Interoperability and Migration

680

Importing Legacy Projects
Together allows you to import projects from some of the previously released Together products. Considering the
differences between the products, Together suggests two ways to accomplish this import. You can merge all roots
of a legacy multi-rooted project into a single root, or you can create a separate project for each root of the source
project.

♦ The Merge option is recommended for typical cases of when the input project has one design root and several
source code roots.

♦ The Separate projects option is recommended when your input project has nonstandard configuration with
several design roots, which you would like to preserve as separate projects.

To import a legacy project merging all source roots into a single project
1 Select File Import on the main menu
2 In the Import Wizard, select Modeling Together Project and click Next. The second page of the wizard opens.
3 Click Browse to specify the fully qualified name of the project you want to import.
4 In the Design elements storage policy section, choose whether the design elements of the resulting project

will be stored as standalone design elements or as filemates.
5 In the Migration type section, select the Merge all roots contents into the new project option.
6 Click Next. The third page of the wizard opens.
7 Specify the name of the target project. The default project name is constructed from the names of the last two

folders of the source project file location.
8 Click Finish to import the selected project.

Warning: TVS projects and projects created in Together Editions for Eclipse prior to version 7.0 cannot be imported
to Together.

To create separate projects for each selected root
1 Select File Import on the main menu
2 In the Import Wizard, select Modeling Together Project and click Next. The second page of the wizard opens.
3 Click Browse to specify the fully qualified name of the project you want to import.
4 In the Design elements storage policy section, choose whether the design elements of the resulting project

will be stored as standalone design elements or as filemates.
5 In the Migration type section, select the Create a separate project for each root option.
6 On the third page of the wizard, the Root location table displays the list of folders of the source project. Select

each root from the list and define the way you want to handle the root and its contents:

♦ In the Together project name field, specify the name of the target project for the selected root. The default
name is constructed from the package prefix, if any. If there is no package prefix, the project name is
created from the names of the last two folders of the root location.

♦ The read-only Content type and Diagram format fields display the corresponding information for the
selected root.

♦ In the Decision field, choose the way to handle information of the selected root. If the root contains design
files, you can either copy them to the target location or skip the root. If the root contains source code files,

681

you have the choice to copy it as is, copy and convert it to design language, or skip the root. The option
Copy and convert to design language is the default choice for the roots that contain Java files.

♦ In the Dependencies to be preserved while importing field, you can specify whether the import handles
links and references between projects created for the currently selected root and projects created for other
roots. All dependencies are processed by default. However, if you are aware of any one-way dependencies
between the original roots, and the selected root does not refer to any elements from other roots, uncheck
those corresponding projects listed in the field to save CPU resources and complete the import faster.

7 Click Next. The fourth page of the wizard opens.
8 Specify the name of the master project that contains references to all projects created in the course of the

migration. The default name of the master project is based on the source project name.

Note: The master project is created to demonstrate the contents and structure of the source
project. It is read-only and not intended for editing. Use the real projects to create or edit
contents and establish dependencies.

9 Click Finish to import the selected project.

All resulting projects belong to the same type, which is defined by the properties of the source project and your choice
in the Decision field of the Import Wizard. Java modeling projects are created if there is at least one Java source
root for which the Copy option is selected. UML 1.4 modeling projects are created if there are no Java source roots,
or if such roots exist but the Decision field is set to Skip or Convert to design language.

Related Concepts

Together Interoperability and Migration

Related Reference

Import Together Project Wizard

682

Reusing documentation templates from TCC/TA 1.x
Normally the legacy documentation templates are compatible with Together, except for the two major differences:
adapter classes (special extensions written in Java) and changes in the metamodel.

'For example, consider the legacy Class.tpl template from predefined TCC templates. Errors occur when this
template executes because it calls methods of the SpecialScopeProvider adapter class, which is missing in
Together. Users need to modify this template manually to make sure that calls to these methods are replaced with
OCL expressions.

Namely, the users should change expressions for Class.tpl for Programmed iteration scope in two Element
iterators. The sample procedure is described below.

To modify a legacy documentation template using OCL
1 Remove class and method names.
2 Open Iterator properties.
3 Change the value of the programmed iteration scope property from specify class and method to specify

expression.
4 Set the expression type to 'OCL', with uml::kernel::Element as context.
5 Specify the following bodies:

— for Element iterator in the Direct Known Subinterfaces folder: getKnownSubclasses()
— for Element iterator in the All Known Implementing Classes folder: getImplementingClasses()

Note: Adapter classes written for TCC do not work for Together. Instead of the TCC GenDoc extensions, Together
makes use of the native OCL extensions (special Eclipse plugins that use the
com.borland.selena.ocl.gdm.nativeExtension extension point and contain Java implementations
of the corresponding methods). getKnownSubclasses() and getImplementingClasses() are the
examples of such extensions. Users should create their own OCL extensions to be used in their templates.

To make sure that metamodels are compatible
1 Open your template in the Template Designer.
2 Make sure there are no iterations by <Any> or folders without metatype specified. If such iterations exist, it

means that metatypes for these iterators/folders are not recognized.
3 Change metatypes as required.

Related Concepts

Documentation Template

Related Procedures

Together Documentation Templates Procedures

Related Reference

Documentation Template Designer

683

XMI Export and Import of the Models with Cross-Project References
You can import and export multi-root projects using XMI. Note that XMI import and export is implemented differently
for UML 1.4 and Java modeling projects, and for UML 2.0 projects.

♦ UML 1.4 and Java modeling projects: When a project that contains cross-project references is exported to
an XMI file, the main project root and referenced roots are exported to the same XMI file. The Use prefix of
imported root option of the Export Wizard enables you to reproduce the package structure of each root in
top-level packages named as the root prefixes. If the option is unchecked, all same-named packages from the
different roots are merged. When an XMI file is imported, the resulting project contains all packages and
elements from the main model and referenced roots.

♦ UML 2.0 projects: When a project that contains cross-project references is exported to an XMI file,
*.imports.uml2 special files are created for each referenced root. The exported XMI file contains references
to these files. When an XMI file is imported, the resulting project contains the main model only. If the referenced
roots still exist in the workspace, the resulting UML 2.0 model recognizes them. References to the elements
from these roots can be resolved only if the unique identifiers (UINs) of the elements have not been changed
since export. Note that when an element is moved, its container is changed, and this can change the UIN.

To export a UML 1.4 and Java modeling project with cross-project references
1 On the main menu, choose File Export.
2 On the first page of the Export Wizard, select XMI file under Modeling and click Next.
3 On the second page of the wizard:

♦ Select the project to be exported;

♦ Select the XMI type and encoding;

♦ Specify the export destination;

♦ Check the Use prefix of imported root option if you want to reproduce the package structure of each
root in top-level packages named as the root prefixes. By default, this option is unchecked.

4 Click Finish.

Tip: Package prefixes of the referenced roots are never used if you perform an export via the XMIExport.cmd
command line utility.

To export a UML 2.0 project with cross-project references
1 On the main menu, choose File Export.
2 On the first page of the Export Wizard, select XMI file under Modeling and click Next.
3 On the second page of the wizard:

♦ Select XMI for UML 2.0 as the project to be exported

♦ Specify export destination

4 Click Finish.

684

Related Concepts

Together Interoperability and Migration
Model Import and Export Overview

Related Procedures

Importing a Project in XMI Format
Exporting a Project to XMI Format

685

686

Reference

687

Reference
This part contains reference information.

In This Section
Together Glossary
This glossary contains the basic terminology of Together.

Together Keyboard Shortcuts
Describes Together keyboard shortcuts.

Additional Resources
The following supplemental resources provide further insights into modeling, architecture, and design.

Components of the Together User Interface
This section describes GUI components of the Together user interface you use for modeling, quality
assurance, requirements management and more.

Together Projects
This part contains reference information about the supported Together project types and formats and project
properties.

Preferences
This part contains reference information about TogetherPreferences.

Profiles Reference
Contains reference information about Together profiles and profiles API.

Business Process Diagram
This section provides Business Process Modeling reference information.

UML 1.4 Reference
Contains reference material about UML 1.4 diagrams.

UML 2.0 Reference
This section contains reference material about UML 2.0 diagrams.

Data Modeling Reference
This part contains reference information related to data modeling.

MDA
This section provides reference information related to MDA.

Requirements Management
This part contains reference information about Together requirements management facilities.

Patterns and Templates
Together includes a number of predefined templates that you can apply to your projects. Customize
templates using one of the three template editors. Use the Templates view to see and manage your
templates.

Quality Assurance
This part contains reference information about Together audits and metrics.

Project Documentation
This part contains reference information about Together project documentation: command and syntax of
the documentation generation utility, and reference information of the documentation template designer.

Model Import and Export
This part contains reference information about exchanging model information between Together and another
applications.

688

Version Control
This part contains reference information about the VCS in Together.

Dialogs
This part contains reference information about the various Togetherdialogs.

Legal Notices for Together
Legal notices for Together

689

Together Glossary
This topic contains a dictionary of specific terms used in the Together user interface and documentation. This
dictionary is sorted alphabetically.

Term Description
Behavior In Together, a group of the following UML 2.0 model elements: activity, state

machine, and interaction.
Cardinality The number of elements in a set.

See also multiplicity.
Classifier In general, a classifier is a classification of instances. It describes a set of

instances that have features in common.

In Together, a classifier is a group of the following model elements: class,
interface, association class, structure, delegate, enumeration, module,
interaction. In UML 2.0 projects this group includes the data type element as
well. Some of the elements can include members or other classifiers. A
classifier inserted into another classifier is called an inner classifier.

Compartment Some of Together model elements (basically, classes) are represented by
rectangles with several compartments inside.

You can change the appearance of the compartments. See Related
Reference below for details.

Container A container is a classifier that can include one or more model elements, or
members.

Design project One of the two basic project types supported by Together: design and
implementation. A design project is language-neutral. It does not contain
source code.

Diagram A graphical presentation of a collection of shortcuts to model elements from
one or more packages or namespaces. Most often a diagram is rendered
as a connected graph of arcs (relationship links) and vertices (nodes).

The set of available diagrams for a project depends on the project type.
Domain-specific language (DSL) A language designed to accomplish a set of tasks within a particular domain.

Compared to a general-purpose language, DSLs are typically smaller, more
declarative and less expressive.

Domain model A domain model is the part of a DSL that describes the entities and their
relationships within a domain.

Implementation project One of the two basic project types supported by Together: design and
implementation. An implementation project is language-specific. It includes
diagrams and source code.

Inner classifier An inner classifier is a classifier inserted into another classifier.
Invocation specification An area on a UML 2.0 Sequence Diagram. Most often an invocation

specification is located within an execution specification. This element is
not defined in the UML 2.0 specification, but is introduced in Together. It is a
useful tool for modeling synchronous invocations with the reply messages. A
message in a UML 2.0 Sequence Diagrams has its origin in an invocation
specification.

Member A member is a model element inserted into a classifier, or a container.

If a member is a classifier, it is called an inner classifier.
Model element Any component of your model that you can put into a package or a

namespace.

Model elements include nodes and links between them.

690

Multiplicity A specification of the range of allowable cardinalities that a set may assume,
for example: 0..*. Multiplicity specifications can be given for association
ends, parts within composites, and other purposes. A multiplicity is a subset
of the non-negative integers.

See also cardinality.
N-ary association An association among three or more nodes. In Together, an association

class implements this functionality.
Object Constraint language (OCL) A declarative language used to describe expressions on models. Typically,

OCL describes constraints (or rules) about models.
Package An element for storing diagrams, model elements, and other packages. For

implementation projects, the same elements are known as a namespace and
are connected to namespaces in the source code.

Every project in Together consists of one or more packages or namespaces.
You cannot delete the default package (namespace).

Pattern instance An oval model element that represents a pattern with a special predefined
behavior.

Practitioner The role in a software development team that uses the DSL created by the
Toolsmith.

Toolsmith The role in a software development team that amplifies and extends software
tools. Toolsmiths often create DSLs but also provide tool configurations,
customizations and extensions.

Shortcut A presentation of a model element, diagram, namespace, package, or some
external artifact placed on a diagram.

View filter A mechanism to show or hide a specific kind of model element.

With large projects, the amount of information shown on a diagram can
become overwhelming. In Together, you can selectively show or hide
information.

See Related Reference below for details.

Related Concepts

Help on Help
Together Overview

Related Procedures

Working with Inner Classes
Changing the Appearance of Compartments

691

Together Keyboard Shortcuts
Together enables you to perform many diagram actions without using the mouse. You can navigate between
diagrams and diagram elements, create diagram elements, use drag-and-drop operation, and more, using the
keyboard only.

Navigational shortcut keys
Keyboard shortcuts for navigation and browsing:

Action Shortcut Notes

Navigate between open diagrams in the
Diagram Editor

CTRL+TAB The title of the diagram that has focus is in
bold text.

Navigate between elements on a diagram Arrow keys

Select elements SHIFT + arrow key

Expand node in Model Navigator RIGHT ARROW

Collapse node in Model Navigator LEFT ARROW

Open the Properties View F4, or ALT + ENTER

Close current diagram CTRL+F4

Toggle between a selected container node
and its members

PGDOW /PGUP

Navigate between nodes or node members Arrow keys, SHIFT + arrow keys

In the Diagram Editor , toggle focus between
selected element and diagram.

CTRL+SPACE

Select on Diagram CTRL+F3

Shortcut keys for editing
Keyboard shortcuts for editing:

Action Shortcut

Cut, Copy, or Paste model elements or members CTRL+X, CTRL+C, CTRL+V

Activate the in-place editor for a diagram element to edit or rename a member F2

Undo CTRL+Z

Redo CTRL+Y, CTRL+SHIFT+Z

Select all elements on the diagram CTRL+A

Close the Overview window ESC

Add a new package to a diagram CTRL+E

Add a new class to a diagram CTRL+L

Add a new method (operation) to a class or interface CTRL+M

Add a new field (attribute) to a class CTRL+W

Add a new interface to diagram CTRL+SHIFT+L

Add shortcuts CTRL+SHIFT+N

692

Add a new diagram from the Model Navigator CTRL+SHIFT+D

Invoke Content Assist in the OCL editor, or check spelling in Description tab of Properties View CTRL+SPACE

Zoom shortcut keys
Keyboard shortcuts for zooming the diagram image:

Action Shortcut Notes

Zoom in + Use the numeric keypad

Zoom out - Use the numeric keypad

Fit the entire diagram in the Diagram Editor * Use the numeric keypad

Display the actual size / Use the numeric keypad

Cycling between the Diagram Editor and the Palette
Keyboard shortcuts for cycling between the diagram editor and the palette:

Action Shortcut

Navigate from the diagram name in focus to the Palette TAB

Navigate from the Palette in focus to Palette Minimize button TAB

Navigate from the Palette Minimize button in focus to Palette items TAB

Navigate from the Palette item in focus to the Diagram Editor and place focus on any selected item TAB

Navigate from the Diagram Editor in focus to the Palette items. The last Palette item used is selected (otherwise
defaults to the Select option)

SHIFT+TAB

Navigate from the Palette item in focus to Palette Minimize button SHIFT+TAB

Navigate from Palette Minimize button in focus to the Palette SHIFT+TAB

Navigate from the Palette in focus to the Diagram Editor SHIFT+TAB

Palette item navigation
Keyboard shortcuts for navigating between Palette items:

Action Shortcut

Expand or collapse the selected drawer in the Palette SPACE

Select the current Palette item in focus SPACE

Move the focus between Palette items UPARROW or DOWNARROW

Create a new shape item on the diagram if the Shape Palette item is in focus ENTER

Create a new connection between the two selected diagram elements if the Connection
Palette item is in focus

ENTER

Navigate to the diagram if the Palette item is in focus TAB

Deselect the Palette item that is in focus ESC

693

Display stack popup list if Stack Palette item is in focus ALT+DOWNARROW

Navigate between the available Palette tools on the stack if the Stack Palette item is in focus UPARROW or DOWNARROW

Select an item from the stack popup list if the stack popup list is in focus ENTER

Diagram navigation
Keyboard shortcuts for navigating between diagrams:

Action Shortcut

Select a shape in the selected diagram ALT+DOWNARROW

Cycle through the shapes that exist in the selected diagram.
A shape is selected when the eight side and corner size
handles are displayed.

UPARROW, DOWNARROW, LEFTARROW, or RIGHTARROW

Multi-select shapes on the selected diagram SHIFT+UPARROW, SHIFT+DOWNARROW, SHIFT
+LEFTARROW, or SHIFT+RIGHTARROW

Invoke the context menu for the shape for the selected
diagram

SHIFT+F10

Shape navigation
Keyboard shortcuts for navigating between shapes:

Action Shortcut

Invoke the context menu for the selected shape SHIFT+F10

Cycle through the Position Handle, 8 Side and Corner Size
Handles, and Position Handle for the selected shape
(navigates in clockwise rotation)

. (period)

Cycle through the Position Handle, 8 Side and Corner Size
Handles, and Position Handle for the selected shape
(navigates in counter-clockwise rotation)

SHIFT+. (period)

Select any available connection (navigates clockwise among
the existing connections)

/

Select any available connection (navigates counter-
clockwise among the existing connections)

\

Select the shape compartment for the selected shape ALT+DOWNARROW

Deselect the selected shape by displaying the shape in an
outline

CTRL+SPACE

Change the shape size or position for the selected shape
handle. A shaded shape is displayed showing the new size
or position.

UPARROW, DOWNARROW, LEFTARROW, or RIGHTARROW

Change the shape size or position for the selected shape
handle in respect to the aspect ratio. A shaded shape is
displayed showing the new size or position.

CTRL+UPARROW, CTRL+DOWNARROW, CTRL
+LEFTARROW, or CTRL+RIGHTARROW

Change the shape size or position for the selected shape with
respect to the shape's center. A shaded shape is displayed
showing the new size or position.

CTRL+SHIFT+UPARROW, CTRL+SHIFT+DOWNARROW,
CTRL+SHIFT+LEFTARROW, or CTRL+SHIFT+RIGHTARROW

694

Deselect the selected shape handle ESC

Accept the current shaded shape ENTER

Revert to the original shape size or position for the selected
shape

ESC

Select a compartment within the selected shape ALT+DOWNARROW

Navigate between the available compartments if a
compartment is selected

UPARROW or DOWNARROW

Select the shape compartment items. The first compartment
item is selected.

ALT+DOWNARROW

Deselect the compartment and select the shape if a
compartment is selected

ALT+UPARROW

Navigate between the available compartment items UPARROW or DOWNARROW

Connection navigation
Keyboard shortcuts for navigating between connections

Action Shortcut

Invoke the context menu for the connection SHIFT+F10

Cycle through all of the connection labels if a connection is
selected. A connection label is selected when the four corner
size handles are displayed. Connection labels can be
navigated in the same manner as shapes.

ALT+DOWNARROW

Deselect the connection label and select the connection if a
connection label is selected

ALT+UPARROW

Deselect the connection and select the shape if a connection
is selected

UPARROW, DOWNARROW, LEFTARROW, or RIGHTARROW

Deselect the selected connection by displaying the connection
in an outline

CTRL+SPACE

Cycle through the endpoints, bendpoints, and midpoints of the
selected connection

. (period) or SHIFT+. (period)

Allow the selected connection endpoint to be moved to a new
shape

UPARROW, DOWNARROW, LEFTARROW, or RIGHTARROW

Move the connection bendpoint if the cursor is over a bendpoint UPARROW, DOWNARROW, LEFTARROW, or RIGHTARROW

Accept the current location if the cursor is over a bendpoint ENTER

Revert to the original location if the cursor is over a bendpoint ESC

Move the new bendpoint UPARROW, DOWNARROW, LEFTARROW, or RIGHTARROW

Accept the new bendpoint ENTER

Remove the bendpoint ESC

Properties view navigation
Keyboard shortcuts for navigating between Properties views:

695

Action Shortcut

Cycle through the fields in the property section if a Properties field is selected and eventually
highlight the currently active Properties tab (cycles through the Properties View UI)

SHIFT+TAB

Cycle through the fields in the property sections of the active Properties tab (cycles through
the Properties View UI in the opposite direction of SHIFT+TAB)

TAB

Move focus among tabs in the Properties view if a Properties tab is highlighted UPARROW or DOWNARROW

Other shortcut keys
Other keyboard shortcuts:

Action Shortcut Notes

Open the Print Diagram dialog box CTRL+P

Diagram update F5

Drag-and-drop operation > While the focus is on the necessary element, press this key until the move
handle is displayed. Move the element using the arrow keys and press
ENTER to drop the element.

Related Concepts

Help on Help
Together Overview

696

Additional Resources
The following supplemental resources provide further insights into modeling, architecture, and design.

♦ High-Assurance Design: Architecting Secure and Reliable Enterprise Applications by Clifford Berg

♦ Beyond Software Architecture: Creating and Sustaining Winning Solutions by Luke Hohmann

♦ Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides

♦ Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions by Gregor Hohpe
and Bobby Woolf

♦ Enterprise Service Bus by David Chappell

♦ Enterprise SOA: Service-Oriented Architecture Best Practices (The Coad Series) by Dirk Krafzig, Karl Banke,
and Dirk Slama

♦ Object Design: Roles, Responsibilities, and Collaborations by Rebecca Wirfs-Brock and Alan McKean

♦ Patterns of Enterprise Application Architecture by Martin Fowler

♦ Refactoring to Patterns by Joshua Kerievsky

♦ Streamlined Object Modeling: Patterns, Rules, and Implementation by Jill Nicola, Mark Mayfield, Mike Abney,
and Michael Abney

♦ UML Distilled: A Brief Guide to the Standard Object Modeling Language, Third Edition by Martin Fowler

♦ Workflow Modeling: Tools for Process Improvement and Application Development by Alec Sharp and Patrick
McDermott

♦ The Object Constraint Language: Getting Your Models Ready for MDA, Second Edition by Jos Warmer and
Anneke Kleppe

♦ Eclipse Modeling Framework 2.0 by Frank Budinsky, Ed Merks, and David Steinberg

697

Components of the Together User Interface
This section describes GUI components of the Together user interface you use for modeling, quality assurance,
requirements management and more.

In This Section
Menus
This part contains reference information about the various Together menus.

Model Bookmarks View
This view lists available bookmarks and allows you to navigate directly to a book-marked model element.

Compare Editor
Use the Compare Editor to review and merge differences in the structure and properties of the models that
you have compared.

Tool Palette
The diagram Palette displays special buttons for supported UML diagrams.

Diagram View
Use the Diagram View to display model diagrams.

Metamodel Browser View
Use the Metamodel Browser view to look up a metamodel that can be selected as a source or a target of
a QVT transformation.

Model Package Explorer View
The Model Package Explorer displays the UML Content for all open Projects.

OCL Expressions View
Use the OCL Expressions view to quickly evaluate OCL expressions in the explicitly specified context (a
Together or EMF model element), or in the context of the current selection.

Properties View
This view shows properties of the selected element.

QVT Builder
Use QVT Builder to generate Java code from your QVT source files.

QVT Editor
Use the QVT Editor to write your QVT transformation.

XSL Editor
Use the XSL Editor to write your XSL transformation scripts.

Trace View
Use the Trace view to inspect the results of a Model-To-Model QVT transformation.

Trace Synchronizer View
This topic provides information about the Trace Synchronizer view. You can use this view to find and fix
desynchronized traces to CaliberRM or RequisitePro requirements.

Templates View
The Templates view displays currently available templates.

Last Validation Results View
The Last Validation view displays results of the latest validation of a pattern definition.

Patterns and Template GUI Components
This part describes GUI components of the Together interface you use for the Pattern features.

698

Quality Assurance GUI Components
Describes GUI components of the Together interface that you use for Together Quality Assurance features.

699

Menus
In This Section

Menus
Lists the different menus in Together.

Model Navigator
The Model Navigator has several different context menus, each specific to the resource selected.

Model Package Explorer Context Menus
This topic describes the context menus in the Model Package Explorer.

Common Diagram Context Commands
The context menus of the various diagrams provide functions specific to each diagram.

Package Context Menu
All of the UML diagram types share common context menu commands.

Common Element Context Commands
The context menus of the various elements provide functions specific to each element.

Common Link Context Commands
The context menus of the various link elements provide functions specific to each link.

700

Menus
If you have all Modeling capabilities enabled, which is the default configuration, and the Modeling perspective
opened, the following menu items are visible. The menu items that appear also depend on which view you have
opened.

Note: Because it shares the same user interface environment as the Eclipse platform, Together is able to extend
or replace existing Eclipse menus or add its own menus. For more information on the standard Eclipse menus,
refer to the “Workbench menus” topic in the Workbench User Guide.

Item Description
File menu The File menu extends the capabilities of submenus by providing the

ability to create, import, and export Together artifacts.
Edit menu Use the Edit menu to cut, copy, paste, and delete diagrams and diagram

elements, select all items on a diagram, and undo/redo actions.
Source menu (Model Navigator View) The Source menu contains commands for working with logical data

model elements.
Refactor menu (Model Navigator View) The Refactor menu contains refactoring commands for the

implementation projects.
Navigate menu Use the Navigate menu to locate and navigate through items displayed

on your workbench.
Search menu The Search menu lets you explore all facilities to locate specific content

or elements.
Project menu Use the Project menu to open and close projects, build projects and

working sets, discard build problems and built states, and generate
documentation.

Diagram menu Use the Diagram menu to create a new diagram or to configure how an
existing diagram is displayed.

Model menu Use the Model menu to run audits and metrics (for the implementation
projects), compare models, manage profiles, and apply transformations.

Run menu Use the Run menu to run and debug applications, and to configure your
run and debug options.

Window menu Use the Window menu to select perspectives, views, and editors, and to
set your Together preferences.

Help menu Use the Help menu to access product and platform documentation, tips
and cheat sheets, a search engine, and software updates.

Related Reference

Diagram View

701

Model Navigator
The Model Navigator provides the logical representation of the model of your project: namespaces (packages) and
diagram nodes. Using this view, you can add new elements to the model; cut, copy, paste and delete elements, and
more. Context menu commands of the Model Navigator are specific to each node. Explore these commands as you
encounter them.

In the Model Navigator, only the nodes and their respective subnodes shown in the Diagram Editor are listed under
the corresponding diagram node. For example, if you have a package containing a class, both the package and
class are shown under the diagram node in the Model Navigator. However, members of the class are not shown
under the diagram node because they are displayed under the namespace (package) node only.

The Model Navigator is a dockable window. The docking areas are any of the four borders of the Together window.
You can position the Model Navigator according to your preferences.

The Model Navigator has several different context menus, each specific to the resource selected. This section
discusses the various context menus for the following resource levels in the Model Navigator:

♦ Project Level

♦ Package Level

♦ Diagram Level

♦ Element Level, Class

♦ Element Level, Operation

♦ Element Level, Link

Note: Depending on your development platform, some of the menu commands described may not be applicable.
For more information, refer to the documentation set provided with your IDE: select Help Contents on the
Help menu.

Project Level
Model Navigator projects offer the following context menu commands. Some of the commands are the same across
all the context menus. For commands that are not mentioned here, refer to the Common Diagram Context
Commands section.

Option Description
New Displays a submenu with all basic elements that can be added to the project.
New Diagram Creates a new diagram: Activity, Collaboration, Class, Component, Deployment, State,

Use Case, Sequence.
Open in New Tab Opens the project level diagram in the Diagram editor in a new tab.
Open Opens the project level diagram in the Diagram editor. It will replace the currently shown

diagram with this one.
Open Type Hierarchy Highlights the node selected in the Hierarchy view. The Hierarchy view will expand and

highlight that element in the tree-view. If closed, the Hierarchy view will open. For more
information, refer to the documentation set provided with your IDE. Select Help Contents
on the Help menu.

Delete Deletes the selection. Together prompts for confirmation.
Source Format Uses the code formatter to format the current selection. For

more information, refer to the documentation set provided
with your IDE.

Organize Imports Generates a list of import statements based on the import
order preference, and replaces old statements. For more

702

information, refer to the documentation set provided with
your IDE. Select Help Contents on the Help menu.

Find Strings to Externalize Launches the Externalize Strings Wizard. For more
information, refer to the documentation set provided with
your IDE. Select Help Contents on the Help menu.

Refactor Begins the refactoring process to restructure your code without changing its observable
behavior. For more information, refer to the documentation set provided with your IDE.
Select Help Contents on the Help menu.

Rename Starts the Rename refactoring dialog. Renames the selection and (if enabled)
corrects all references to the elements (also in other files).

Move Starts the Move refactoring wizard. Moves the selection and (if enabled)
corrects all references to the elements (also in other files).

Import Opens the Import wizard for a number of import options. Follow this link for more
information about the XMI File option. TEC also offers the ability to import Together Control
Center projects. For details on other import options, refer to the documentation set
provided with your IDE. Select Help Contents on the Help menu.

Export Opens the Export wizard for a number of export options, some of which are Together-
specific: UML Documentation and XMI File, for instance. For details on other export
options, refer to the documentation set provided with your IDE. Select Help Contents on
the Help menu.

Quality Assurance Audit Runs audits against the selection. See “Running Model Audits and
Metrics” for details.

Metrics Runs metrics against the selection. See “Running Model Audits
and Metrics” for details.

Load Metric Results Loads a previously saved set of metric results. See “Saving and
Loading Metric Results” for details.

Refresh Refreshes the current view.
Properties Displays the properties for the selection in the Properties view. While the Properties

command accessed through the Model Navigator opens the Properties view for the
selected resource, you should be aware that this differs from the Properties command
accessed through the Navigator and Packages views. The Navigator view Properties
command, for instance, opens a project-specific Properties dialog. Among other things, it
allows you to turn templates and pattern-recognition on or off per project. These selections
override those made in the global Preferences dialogs.

Update Using the update command will update the diagram.

Package Level
Within the Model Navigator at the package level of a project, the context menu displays many of the same commands
as at the project level; however, there are some additional options available described below.

Option Description
Select on Diagram Using the Select on Diagram command, you can open the corresponding

diagram that the element belongs to in the Diagram editor and highlight the
element on the diagram.

Select in Project Displays project names that contain other occurrences of the selected design
element. The icons next to the project names let you distinguish whether the
referenced occurrence is in the home project of the element or in the read-only
root of another project referencing the home project. Selecting a project name
from this menu changes (or navigates) the element selection from the current
project to the element's other occurrence in the referenced project. This
navigation takes place whether the selection was made in the Model Navigator

703

context or in a diagram context. Refer to the topics on navigation and cross-
project references for further information.

Show in Packages View The Show in Packages View command highlights the node selected in the
Packages tree-view. The Packages view will expand and highlight that
element in the tree-view. If closed, the Packages view will open.

Show in Model Package Explorer The Show in Model Package Explorer command highlights the node selected
in the Model Package Explorer tree-view. The Model Package Explorer view
will expand and highlight that element in the tree-view. If closed, the Model
Package Explorer view will open.

Diagram Level
The context menu of the diagram level of a project displays the same commands as at the package level.

Element Level, Class
The context menu for class and interface elements has the following specific commands:

Select on Diagram The Select on Diagram command highlights the node selected in the Diagram editor. If the
diagram is closed, it opens to display the node.

Select in Project Displays project names that contain other occurrences of the selected design element. The
icons next to the project names let you distinguish whether the referenced occurrence is in
the home project of the element or in the read-only root of another project referencing the
home project. Selecting a project name from this menu changes (or navigates) the element
selection from the current project to the element's other occurrence in the referenced project.
This navigation takes place whether the selection was made in the Model Navigator context
or in a diagram context. Refer to the topics on navigation and cross-project references for
further information.

Element Level, Operation
The context menu for an operation has the following specific commands:

Select on Diagram The Select on Diagram command highlights the operation selected in the Diagram editor. If
the diagram is closed, it opens to display the operation.

Select in Project Displays project names that contain other occurrences of the selected design element. The
icons next to the project names let you distinguish whether the referenced occurrence is in
the home project of the element or in the read-only root of another project referencing the
home project. Selecting a project name from this menu changes (or navigates) the element
selection from the current project to the element's other occurrence in the referenced project.
This navigation takes place whether the selection was made in the Model Navigator context
or in a diagram context. Refer to the topics on navigation and cross-project references for
further information.

Element Level, Link
For information on the link level context menu, see Common Link Context Commands.

704

Related Procedures

Running Model Audits and Metrics
Saving and Loading Metric Results
Establishing cross-project references
Navigating between the Tree View, Diagram, and Source Code

Related Reference

Common Link Context Commands

705

Model Package Explorer Context Menus
The Model Package Explorer has many different context menus, each specific to the resource selected. This section
discusses the following Model Package Explorer context menus.

Note: Together can leverage all Java development functionality from Eclipse's JDT, and it therefore inherits all the
corresponding Eclipse interface's views and menus while adding some modeling-specific items to those
menus. Depending on your development platform, some of the following menu commands described might
not be applicable. For more information, refer to the documentation set provided with your IDE. On the main
menu, click Help Help Contents.

Project Menu

New Displays a submenu with all elements that can be created.
Go Into Displays the contents of the selected item in the Model Package Explorer. All others are

hidden. To return to views of parent resources, click the Up button.
Open in New Window Displays the contents of the selected item in a new instance of Together.
Open Type Hierarchy Opens the type Hierarchy view. For more information, refer to the documentation set

provided with your IDE. From the menubar, choose Help Help Contents.
Copy Copies the selection.
Paste Pastes a copied selection.
Delete Deletes selection. A confirmation dialog opens before deletion.
Source Format Uses the code formatter to format the current selection.

For more information, refer to the documentation set
provided with your IDE.

Organize Imports Generates list of import statements based on the import
order preference and replaces old statements. For more
information, refer to the documentation set provided with
your IDE.

Find Strings to Externalize Launches the Externalize Strings Wizard. For more
information, refer to the documentation set provided with
your IDE.

Refactor Begins the refactoring process to restructure your code without changing its observable
behavior. For more information, refer to the documentation set provided with your IDE.

Rename Starts the Rename refactoring dialog. Renames the selection and (if
enabled) corrects all references to the elements (also in other files).

Move Starts the Move refactoring wizard. Moves the selection and (if enabled)
corrects all references to the elements (also in other files).

Import Opens the Import wizard for a number of import options. Follow this link for more
information about the XMI File option. TEC also offers the ability to import Together
Control Center projects. For details on other import options, refer to the documentation
set provided with your IDE.

Export Opens the Export wizard for a number of export options, some of which are Together-
specific: UML Documentation and XMI File, for instance. For details on other export
options, refer to the documentation set provided with your IDE.

Refresh Refreshes the selection.
Close Project Closes selected project.
Run This menu contains commands similar to the Run command on the main menu. See

Workbench User Guide for details.
Debug This menu contains commands similar to the Debug command on the main menu. See

Workbench User Guide for details.

706

Team Use the Team command to add a project to the repository. After a project is added, you
can create patches, commit, synchronize with repository, and so on. For more
information, see “Using Version Control and Teams in Together.”

Compare With Use Compare With to compare the resources in the workspace with the resources held
within the repository. Offers a submenu with the following options:

Patch Allows you to share work with other team members
without storing it in a repository. Use the Patch
command to access this type of resource.

Each Other Compares two files. Select two diagrams in the Model
Package Explorer view by using CTRL+CLICK, then
invoke Compare With Each Other.

Restore From Local History Allows you to restore a resource with a saved version
from your local history. For more information, refer to the
documentation set provided with your IDE.

Quality Assurance Audits Run audits on the selection. Together allows you to run a default
QA set or create your own. See “Running Model Audits and
Metrics” for more information.

Metrics Run metrics on the selection. Together allows you to run a
default QA set or create your own. See “Running Model Audits
and Metrics” for more information.

Load Metric Results Loads the results of a previous metrics run. See “Saving and
Loading Metric Results” for more information.

Load Audit Results Loads the results of a previous audit run. See “Saving and
Loading Metric Results” for more information.

CaliberRM connections Displays the Open Connection dialog box with available connections. Connections to
CaliberRM servers can be specified on the CaliberRM page of the Preferences dialog
box.

Properties Opens the selected Project Properties dialog box.

Folder Menu
The folder menu commands are documented in the Project Menu section.

Package Menu
The package menu commands are documented in the Project Menu section except for the following:

Select on Diagram Opens the corresponding diagram that the element belongs to in the Diagram editor and
highlights the element on the diagram.

This command is also available for compilation units in the Package Explorer view.
Select in Project Displays project names that contain other occurrences of the selected design element. The

icons next to the project names let you distinguish whether the referenced occurrence is in
the home project of the element or in the read-only root of another project referencing the
home project. Selecting a project name from this menu changes (or navigates) the element
selection from the current project to the element's other occurrence in the referenced project.
This navigation takes place whether the selection was made in the Model Navigator context
or in a diagram context. Refer to the topics on navigation and cross-project references for
further information.

Open Diagram Opens the package diagram. If necessary, the Diagram Editor opens first.
References Workspace Searches the entire workbench for references to the selection.

707

Working Set Opens the Select Working Sets dialog, allowing you to specify which
working set to search.

Declarations Workspace Searches the entire workbench for references to the selection.
Working Set Opens the Select Working Sets dialog, allowing you to specify which

working set to search.

Package Declaration Menu
The commands for this menu are documented in the Package Menu section.

Package Diagram Menu
The menu shown below is for a default package diagram. Menus for specific diagram types may not contain all of
the commands listed.

New Displays a submenu with all basic elements that can be added to a diagram.
New Diagram Creates a new diagram.
Generate Class Diagram Creates a new class diagram from the selection.
Select in Model Tree Highlights the selection in the Model Navigator. If closed, the Model Navigator will open.
Select in Project Displays project names that contain other occurrences of the selected design element.

The icons next to the project names let you distinguish whether the referenced
occurrence is in the home project of the element or in the read-only root of another
project referencing the home project. Selecting a project name from this menu changes
(or navigates) the element selection from the current project to the element's other
occurrence in the referenced project. This navigation takes place whether the selection
was made in the Model Navigator context or in a diagram context. Refer to the topics
on navigation and cross-project references for further information.

Show in Packages View Highlights the selection in the Package Explorer. If closed, the Package Explorer will
open.

Open Opens the selected diagram in the Diagram Editor .
Open in New Tab Opens the selected diagram on a new tab in the Diagram Editor .
Cut Removes the selection to the clipboard. You can later choose to Paste the element.
Copy Copies the selection to the clipboard. You can later choose to Paste the element.
Paste Pastes a cut or copied selection in a new location.
Rename Opens the Rename dialog to rename the selection.
Delete Opens a confirmation dialog before deleting the selection.
Import Opens the Import wizard.
Export Opens the Export wizard.
Quality Assurance Audit Runs audits against the selection. See “Running Model Audits

and Metrics” for details.
Metrics Runs metrics against the selection. See “Running Model

Audits and Metrics” for details.
Load Metric Results Loads a previously saved set of metric results. See “Saving

and Loading Metric Results” for details.
Add Bookmark Allows you to bookmark the selection. You can view bookmarks in the Bookmarks view.

You can also bookmark individual lines of code in the editor. For more information on
using bookmarks, refer to the documentation set provided with your IDE.

Hyperlinks The Hyperlinks command offers a submenu with the following options:

Edit Using Edit, you can view, add, and remove hyperlinks to a project. For
more information on hyperlinks, see “Hyperlinking Diagrams.”

708

<Hyperlink> <Hyperlink> represents an actual hyperlinked element. If there are no
hyperlinks for the diagram, then only the Edit option is available.

Requirements Allows you to edit requirements traces. For more information, refer to the CaliberRM
plugin help.

References Workspace Searches the entire workbench for references to the selection.
Hierarchy Searches the Hierarchy view for references to the selection.
Working Set Opens the Select Working Sets dialog, allowing you to specify which

working set to search.
Declarations Workspace Searches the entire workbench for references to the selection.

Hierarchy Searches the Hierarchy view for declarations of the selection.
Working Set Opens the Select Working Sets dialog, allowing you to specify which

working set to search.
Export to Image Opens the Export Diagram to Image dialog box, which lets you create an image of the

selection. You can export to Bitmap, JPEG, GIF, and SVG formats.
Hide/Show Hides individual elements on a diagram. If you do not see an element in a diagram,

choose Show hidden from the diagram context menu and check the hidden elements
list. For more information, see “Hiding and Showing Model Elements.”

Team Use the Team command to add a project to the repository. After a project is added,
you can create patches, commit, synchronize with repository, and so on. For more
information, see “Using Version Control and Teams in Together.”

Compare With Use Compare With to compare the resources in the Workbench with the resources
held within the repository.

Replace With Use Replace With to replace Workbench resources with versions in the repository.
Properties Opens the Properties view for the selection.
Update Refreshes the selection.

Compilation Unit Menu
The compilation unit menu commands are explained in the above sections except for the following:

Open With Allows you to choose, from a submenu, an editor with which to open the selection. You can
determine which editors are available in the File Associations Preferences dialog. For more
information on using system, default, and external editors, refer to the documentation set
provided with your IDE.

Apply Template Opens the Apply Template wizard, which lets you apply templates. For more information, see
“Working with the Templates.”

Save As Template Selecting the Save As Template command displays the Create Template dialog, which lets
you save the class or interface as a template.

Java Scrapbook Page Menu
The commands on this menu are documented in the above sections.

No-Icon File Menu
The commands on this menu are documented in the above sections.

709

XML File Menu
The commands on this menu are documented in the above sections.

Plugin Menu
The commands on this menu are documented in the above sections except for the following:

Update Classpath Opens the Java Classpath wizard. The dialog displays a list of plug-ins and fragments in
your workspace. Select the ones for which you want to recompute classpaths.

Create Plugin JARs Creates an Ant buildscript and opens the Run Ant wizard with the build.jars option selected
by default. This may be done to deploy the plugins/fragments in your workspace. For more
on creating and deploying plugins, see the Tool Developer guide.

Image File Menu
The commands on this menu are documented in the above sections.

Cascading Style Sheet Menu
The commands on this menu are documented in the above sections.

HTML File Menu
The commands on this menu are documented in the above sections.

Type/Interface Menu
The commands on this menu are documented in the above sections.

Method Menu
The commands on this menu are documented in the above sections.

Field Menu
The commands on this menu are documented in the Compilation Unit Menu section except for the following:

Read Access Finds all read accesses to the selection. Search the Workspace/Hierarchy or select a Working Set
to search.

Write Access Finds all write accesses to the selection. Search the Workspace/Hierarchy or select a Working Set
to search.

Import Container Menu
The commands on this menu are documented in the above sections.

710

Import Menu
The commands on this menu are documented in the above sections.

JAR Menus
The commands on this menu are documented in the above sections, but may also include the following:

Open With Allows you to choose, from a submenu, an editor with which to open the selection. You can determine
which editors are available in the File Associations Preferences dialog. For more information on using
system, default, and external editors, refer to the documentation set provided with your IDE.

Related Procedures

Using Version Control and Teams in Together
Running Model Audits and Metrics
Saving and Loading Metric Results
Hyperlinking Diagrams
Hiding and Showing Model Elements
Using Version Control and Teams in Together
Working with the Templates
Establishing cross-project references
Navigating between the Tree View, Diagram, and Source Code

Related Reference

Common Link Context Commands

711

Common Diagram Context Commands
The context menus of the various diagrams provide functions specific to each diagram. Explore the context menus
of the different diagrams as you encounter them to see the commands available for each one.

However, for the most part, all of the UML diagrams do share common context menu commands. To use the context
menu for a diagram, simply right-click the background of the diagram in the Diagram editor.

From the Diagram editor, each diagram has the following common context menu commands. Most of the commands
are similar in all the Together projects.

New
Each diagram has the New command. Each diagram has a submenu specific to the New command containing each
diagram's specific elements.

Select in Model Tree
The Select in Model Tree command highlights the node selected in the Model Navigator tree-view. The Model
Navigator will expand and highlight that element in the tree-view. If closed, the Model Navigator will open. For more
information, see “Navigating between the Tree View, Diagram, and Source Code.”

Cut
This action removes the diagram. You can then choose to Paste the element into a new location.

Copy
This action copies the selected diagram. After copying an element, you can Paste it into a new location.

Clone
The Clone command lets you quickly create a new diagram or element with the same content as the existing one.
An element that can be cut/copied and pasted can also be cloned by using the Clone command. Cloning is basically
a one-step copy-and-paste. For more information, see “Working with Custom OCL Operations.”

Paste
Using the Paste command, you can paste a diagram that has been cut or copied.

Paste element
Use this command to paste a copied diagram or element as a shortcut to another diagram.

Rename
The Rename dialog renames the element and refactors the change throughout the project.

712

Delete
The Delete command will delete the element from the project. A Confirmation dialog opens to confirm the deletion.

Export
Opens the Select dialog box with available export destinations.

Import
Opens the Select dialog box with available import sources.

Add Linked
Provides search options for references, implementations, and inheritance according to the specified types and
scopes.

Refactor
Moves/Renames and Refactors a project or element. Other options are displayed in the submenu based on the
selection. Dialogs let you enter the needed information or locations.

Model Bookmark
Bookmarks allow you to navigate to resources that are frequently used. You can set, remove, and view bookmarks
using the Bookmarks view.

Hyperlinks
The Hyperlinks command offers a submenu with the following options:

Option Description
Edit Using Edit, you can view, add, and remove hyperlinks to a project. For more information on

hyperlinks, see “Hyperlinking Diagrams.”
<Hyperlink> <Hyperlink> represents an actual hyperlinked element. If there are no hyperlinks for the diagram,

then only the Edit option displays.

Requirements
The Requirements Management command offers a submenu with the following commands:

Option Description
Manage Traces Opens the Manage Traces dialog, which lets you define traces from a model element

selected in the Diagram editor or Model Navigator to CaliberRM or RequisitePro
requirements. Using the dialog, you can view, add, and remove requirements associated
with the element. For more information on linking requirements to diagram elements, see
“Creating Traces from Requirements to Model Elements.”

Synchronize Traces Opens the Trace Synchronizer dialog, which lets you search for traced CaliberRM
requirements or model elements with local and server copies that become desynchronized

713

for some reason. The found desynchronized traces are displayed in the Trace Synchronizer
view. For more information on synchronizing traces, see “Trace Synchronizer Dialog Box.”

If the diagram is associated with requirements, the submenu lists such requirements. Click on a requirement to open
it in the CaliberRM or RequisitePro Navigator.

Layout
The Layout command offers a submenu with options for laying out your diagram elements.

Hide / Show
Note that individual elements on a diagram can be hidden using the element context menu. If you do not see an
element in a diagram, choose Hide/Show from the diagram context menu and check the hidden elements list in the
Show Hidden dialog. For more information, see “Hiding and Showing Model Elements.”

Team
Use the Team command to add a project to the repository. Once the project is added, you can create patches,
commit, synchronize with repository, and so on. Refer to the documentation set provided with your IDE for complete
information. From the menubar, choose Help Help Contents.

Additional commands for CVS are provided when the Capability Team CVS support for Modeling is enabled.

Using these commands assumes that option Team Modeling Resources Auto Checkout modeling
resources on edit is off and that the project is checked out from CVS with option Team CVS Watch/Edit
 Configure project to use Watch/Edit on checkout turned on.

The Team command offers a submenu with the following commands:

Command Description
Edit View Performs the edit command for the diagram file (*.txv*) only. Model or

diagram files (*.txv*/*.txa*) containing elements shown on the diagram
are not affected.

Edit View and Model Performs the edit command for the diagram file and also for all files
containing elements shown on the diagrams regardless of their
containing package.

Edit View and Package Locally Performs the edit command for the diagram file and also files containing
elements shown on the diagrams from the same package.

Edit View and Package Recursively Performs the edit command for the diagram file and also files containing
elements shown on the diagrams from the same package and all its
subpackages recursively.

Unedit View Performs the unedit command for the diagram file (*.txv*) only. Model or
diagram files (*.txv*/*.txa*) containing elements shown on the diagram
are not affected.

Unedit View and Model Performs the unedit command for the diagram file and also for all files
containing elements shown on the diagrams regardless of their
containing package.

Unedit View and Package Locally Performs the unedit command for the diagram file and also files
containing elements shown on the diagrams from the same package.

Unedit View and Package Recursively Performs the unedit command for the diagram file and also files
containing elements shown on the diagrams from the same package and
all its subpackages recursively.

714

Properties
The Properties command opens the Properties view for the current element or diagram. For more information, see
“Properties View.”

Related Concepts

Together Capabilities Activation
Version Control in Together

Related Procedures

Navigating between the Tree View, Diagram, and Source Code
Working with Custom OCL Operations
Hyperlinking Diagrams
Creating Traces from Requirements to Model Elements
Hiding and Showing Model Elements
Common Diagrams Procedures

Related Reference

Trace Synchronizer Dialog Box
Properties View
Package Context Menu

715

Package Context Menu
All of the UML diagram types share common context menu commands. To use the context menu for a diagram,
simply right-click in the Diagram Editor .

To view the common context menu commands, see “Common Diagram Context Commands.”

The context menu for a package element residing on a diagram differs slightly from the package diagram context
menu. It includes the Open, Open in New Tab, and New Diagram commands. The package context menu shares
the common context menu commands as well as commands specific to it:

♦ New

♦ New Diagram (for package elements)

♦ Generate Class Diagram

♦ Show in Packages View

♦ Show in Model Package Explorer

♦ Open (for package elements)

♦ Open in New Tab (for package elements)

♦ Quality Assurance

New
The New command for the package element offers a submenu with the following options:

♦ Selecting Class from the submenu adds a class element to the diagram.

♦ Selecting Interface from the submenu adds an interface element to the diagram.

♦ Selecting Package from the submenu adds a package element to the diagram.

♦ Selecting Object from the submenu adds an object element to the diagram.

♦ Selecting Class by Template launches the Apply Template dialog displaying the available templates. Make a
selection from the list to apply a template.

♦ Selecting Note from the submenu adds a note element to the diagram.

♦ To refer to an element located outside of the current diagram, or to another diagram, you can use shortcuts.
Invoking the Shortcut command displays a selection dialog, where you can choose the desired element (or
diagram) from the appropriate location.

New Diagram
The New Diagram command for the package element offers a submenu allowing you to create new diagrams. The
new diagrams are created in the current package.

Generate Class Diagram
The Generate Class Diagram command creates an exact copy of the package diagram as a new class diagram.

716

Show in Packages View
The Show in Packages View command highlights the node selected in the Packages tree-view. The Packages view
will expand and highlight that element in the tree-view. If closed, the Packages view will open.

Show in Model Package Explorer View
The Show in Model Package Explorer View command highlights the node selected in the UML Explorer tree-view.
The Model Package Explorer view will expand and highlight that element in the tree-view. If closed, this view will
open.

Open
When selecting a package element on a diagram, you can open the package diagram in the Diagram editor by using
the Open command. Using the Open command will keep the current diagram open, while the newly opened diagram
opens in its own tabbed page in the Diagram editor. This command resides on the context menu for package
elements on diagrams.

Open in Active Editor
When selecting a package element on a diagram, you can open the package diagram in the Diagram editor by using
the Open in Active Editor command. Using the Open in Active Editor command will replace the currently opened
diagram with the newly opened diagram. This command resides on the context menu for package elements on
diagrams.

Quality Assurance
The Quality Assurance command for the class diagram offers a submenu with the following options:

♦ After you have run metrics on a project or part of a project, you can save those metric results and view them
whenever you like. Use this command to load a set of metrics results. For more information, see “Saving and
Loading Metric Results.”

♦ Selecting Metrics from the submenu processes metrics for only the specific diagram. For more information,
see “Running Source Code Metrics.”

♦ Selecting Audit from the submenu processes audits for only the specific diagram. For more information, see
“Running Source Code Audits.”

Team
Use the Team command to add a project to the repository. Once the project is added, you can create patches,
commit, synchronize with repository, and so on. Refer to the documentation set provided with your IDE for complete
information. From the menubar, choose Help Help Contents.

Additional commands for CVS are provided when the Capability Team CVS support for Modeling is enabled.

Using these commands assumes that option Team Modeling Resources Auto Checkout modeling
resources on edit is off and that the project is checked out from CVS with option Team CVS Watch/Edit
 Configure project to use Watch/Edit on checkout turned on.

The Team command offers a submenu with the following commands:

717

Command Description
Edit Performs edit command for the diagram and model files (*.txv*/*.txa*) in the selected

package.
Edit Recursively Performs edit command for the diagram and model files in the selected package and all its

subpackages recursively.
Unedit Performs unedit command for the diagram and model files (*.txv*/*.txa*) in the selected

package.
Unedit Recursively Performs unedit command for the diagram and model files in the selected package and all

its subpackages recursively.

Related Concepts

Together Capabilities Activation
Version Control in Together

Related Procedures

Saving and Loading Metric Results
Running Source Code Metrics
Running Source Code Audits

Related Reference

Common Diagram Context Commands

718

Common Element Context Commands
Select element Right-click

The context menus of the various elements provide functions specific to each element. For example, you can add
or delete members from a class, cut-copy-paste, hide and show elements, and more. Explore the context menus of
the different elements as you encounter them to see the commands available for each one.

However, for the most part, all of the UML elements do share common context menu commands. To use the context
menu for an element, simply right-click on the element in the Diagram Editor .

Each element has the following common context menu commands:

Select in Model Tree
The Select in Model Tree command highlights the node selected in the Model Navigator tree-view. The Model
Navigator will expand and highlight that element in the tree-view. If closed, the Model Navigator will open.

Select in Project
The Select in Project command displays project names that contain other occurrences of the selected design
element. The icons next to the project names let you distinguish whether the referenced occurrence is in the home
project of the element or in the read-only root of another project referencing the home project. Selecting a project
name from this menu changes (or navigates) the element selection from the current project to the element's other
occurrence in the referenced project. This navigation takes place whether the selection was made in the Model
Navigator context or in a diagram context. Refer to the topics on navigation and cross-project references for further
information.

Cut
One of the usual edit operations. This action deletes the source element from the current Diagram Editor . You can
then Paste the element into a new location.

Copy
One of the usual edit operations. This action copies the selected element. After copying an element, you can Paste
it into a new location.

Clone
The Clone command lets you quickly create a new element with the same content as the existing one. An element
that can be cut/copied and pasted can also be cloned by using the Clone command. Cloning is basically a one-step
copy-and-paste. For more information, see “Working with Custom OCL Operations.”

Paste
One of the usual edit operations. Using the Paste command, you can paste an element that has been cut or copied.

Note: Pasting elements from one package to another also maps relationships of those elements
to the target package. By default, a prompt appears warning users of this before the paste
is complete. To disable this warning, select Window Preferences from the main menu,

719

choose the Modeling node, and uncheck the Show warning about relationships when
elements copied option.

Paste shortcut
Use this command to paste a copied diagram element as a short cut on another diagram.

Rename
The Rename dialog renames the element and refactors the change throughout the project.

Delete
The Delete command will delete the element from the project. A Confirmation dialog opens to confirm the deletion.

Add Linked
Provides search options for references, implementations, and inheritance according to the specified types and
scopes.

Model Bookmark
Bookmarks allow you to navigate to resources that are frequently used. You can set, remove, and view bookmarks
using the Bookmarks view.

Hyperlinks
The Hyperlinks command offers a submenu for managing and viewing hyperlinks:

Option Description
Edit Using Edit, you can view, add, and remove hyperlinks to a project. For more information on

hyperlinks, see “Hyperlinking Diagrams.”
<Hyperlink> <Hyperlink> represents an actual hyperlinked element. If there are no hyperlinks for the diagram,

then only the Edit option displays.

Requirements
The Requirements Management command offers a submenu with the following commands:

Option Description
Manage Traces Opens the Manage Traces dialog, which lets you define traces from a model element

selected in the Diagram Editor or Model Navigator to CaliberRM or RequisitePro
requirements. Using the dialog, you can view, add, and remove requirements associated
with the element. For more information on linking requirements to diagram elements, see
“Creating Traces from Requirements to Model Elements.”

Synchronize Traces Opens the Trace Synchronizer dialog, which lets you search for traced CaliberRM
requirements or model elements with local and server copies that become desynchronized

720

for some reason. The found desynchronized traces are displayed in the Trace Synchronizer
view. For more information on synchronizing traces, see “Trace Synchronizer Dialog Box.”

If the selected element is associated with requirements, the submenu lists such requirements. Click on a requirement
to open it in the CaliberRM or RequisitePro Navigator.

Print
Use the Print command to print a single diagram element. Use CTRL + CLICK to select multiple diagram elements for
printing.

Optimize Size
Use this command to resize an element to its default size. For elements that contain subelements, the default size
will respect the position of the subelements and remain large enough to show them.

Hide
Individual elements can be hidden in diagrams using the Hide command. If you do not see an element in a diagram,
choose Hide/Show from the Diagram context menu and check the hidden elements list.

Properties
Using the Properties command opens the Properties View for the current element. For more information, see
“Properties View.”

Related Procedures

Working with Custom OCL Operations
Hyperlinking Diagrams
Creating Traces from Requirements to Model Elements
Common Diagrams Procedures
Establishing cross-project references
Navigating between the Tree View, Diagram, and Source Code

Related Reference

Trace Synchronizer Dialog Box
Properties View

721

Common Link Context Commands
The context menus of the various link elements provide functions specific to each link. Explore the context menus
of the different link elements as you encounter them to see the commands available for each one.

Shared Commands
For the most part, all of the link elements share common context menu commands. To use the context menu for a
link, simply right-click the link in the Diagram editor.

Each link has the following common context menu commands:

Option Description
Scroll to Source If the required end of the link is out of reach, choose Scroll to Source to scroll to the client

end of the link.
Scroll to Destination If the required end of the link is out of reach, choose Scroll to Destination to scroll to the

supplier end of the link.
Select in Model Tree The Select in Model Tree command highlights the node selected in the Model Navigator

tree-view. The Model Navigator will expand and highlight that element in the tree-view. If
closed, the Model Navigator will open. For more information, see “Navigating between the
Tree View, Diagram, and Source Code.”

Delete The Delete command will delete the element from the project. A Confirmation dialog opens
to confirm the deletion.

Add Linked Provides search options for references, implementations, and inheritance according to the
specified types and scopes.

Hyperlinks The Hyperlinks command offers a submenu with the following commands:

Edit Using Edit, you can view, add, and remove hyperlinks to a project. For more
information on hyperlinks, see “Hyperlinking Diagrams.”

<Hyperlink> <Hyperlink> represents an actual hyperlinked element. In the example
shown above, Activity is a hyperlinked element. If there are no hyperlinks
for the diagram, then only the Edit option displays.

Hide Individual elements can be hidden in diagrams using the Hide command. If you do not see
an element in a diagram, choose Hide / Show from the Diagram context menu and check
the hidden elements list.

Properties The Properties command opens the Properties view for the current element. For more
information, see “Properties View.”

Widely Encountered Commands
Perhaps not available on context menus for all diagram elements, the following commands are often encountered.

Option Description
Add Linked Provides search options for references, implementations, and inheritance according to

the specified types and scopes.
Generate Class Diagram The Generate Class Diagram command creates an exact copy of the diagram as a new

class diagram. Active only where applicable. For more information, see “Creating a
Diagram.”

Link Type Use the submenu list of the link types to specify an association, aggregation, or
composition link.

Client Cardinality Choose the appropriate cardinality from the drop-down list. Available cardinality
choices are:

722

0..1
1
0..*
1..*

Supplier Cardinality Choose the appropriate cardinality from the list. Available cardinality choices are:

0..1
1
0..*
1..*

Add client qualifier Use this command to designate a qualified association to reduce multiplicity for
associations.

Add supplier qualifier Use this command to designate a qualified association to reduce multiplicity for
associations.

Related Procedures

Navigating between the Tree View, Diagram, and Source Code
Hyperlinking Diagrams
Creating a Diagram

Related Reference

Properties View

723

Model Bookmarks View
The Model Bookmarks view lists book-marked model elements. Using the context menu, you can navigate to the
book-marked element on the diagram or remove a bookmark from the list.

Context Menu Commands

Show in Model Navigator Highlights the element in the Model Navigator.
Select All Selects all bookmarks.
Remove Bookmark Removes one or more selected bookmarks.
Select on Diagram Highlights the selected bookmark on the diagram. The diagram opens in the Diagram

Editor, if necessary.

724

Compare Editor
Model Compare With Each Other (As Models or Model Elements)

Use the Compare Editor to review and merge differences in the structure and properties of the models which you
have compared.

Structure Compare
Use the Structure Compare area to view the differences found during model comparison. Double-click the
difference to open details in the Changed Properties and Substructure/Properties Merge areas.

Show Containment References Toggles plain and structured view of the Structure Compare area. The
structured view displays references to containment features (if any) for a
particular difference.

Expand All Expands all nodes in the Structure Compare area.
Collapse All Collapses all nodes in the Structure Compare area.
Export Result Opens the Export Result wizard that allows you to export the comparison

results to a text file.

Substructure/Properties Merge
Use the Substructure/Properties Merge area to review the differences found in the structure and between
properties of the compared models.

Undo Steps one step back in the history of the applied commands.
Redo Steps one step forth in the history of the applied commands.
Copy to the left Moves the selected change from the right window (remote model) to the left window (local

model).
Copy to the right Moves the selected change from the left window (local model) to the right window (remote

model).
Navigate Shows the selected element in the Model Navigator view.

Problems
Use the Problems area to view problems found during model comparison.

Description Displays the problem description.
Element Displays the name of the problematic model element.
Source Specifies in which model the problem occurs: Left (local model) or Right (remote model).

Related Concepts

Model Compare and Merge

Related Procedures

Comparing and Merging Models

725

Tool Palette
Window Show View

Together extends Palette of the platform of by adding model elements to it.

The Together diagram Palette displays special buttons for the supported UML diagrams. When a diagram opens in
the Diagram Editor , the appropriate buttons are also displayed in the Palette.

In the diagram Palette you see the top level model elements that can be placed on the current diagram.

Note: The set of available model elements depends on the type of the current diagram and active profiles.

Related Procedures

Adding a Single Model Element to a Diagram
Creating a Simple Link

726

Diagram View
Context menu (in the Model View) Open Diagram

The Diagram View displays model diagrams. Each diagram is presented in its own tab.

To open the Diagram View, choose a diagram, namespace or a package in the Model View, right-click it and
choose Open Diagram on the context menu.

Most manipulations with diagram elements and links involve drag-and-drop operations or executing right-click (or
context) menu commands on the selected elements.

Some of the actions provided by the context menus are:

♦ Add or delete diagram elements and links

♦ Add or delete members in the elements

♦ Create elements by pattern

♦ Cut, copy, and paste the selected items

♦ Navigate to the source code

♦ Hyperlink diagrams

♦ Zoom in and out

Item Description
Working area The main part of the Diagram View shows the current diagram.
Context menu The context menus of the Diagram View are context-sensitive. Right-clicking model elements,

including class members, provides access to element-specific operations on the respective
context menu. Right-clicking the diagram background opens the context menu for the diagram.

Overview button Opens the Overview pane (see below).

Overview pane
The overview feature of the Diagram View provides a thumbnail view of the current diagram. The Overview button
is located in the bottom right corner of every diagram.

OCL Editor
The OCL Editor is used to enter and edit OCL expressions. Any changes to the names of your model components
(classes, operations, attributes, and so on) used in these expressions are automatically updated by Together. This
guarantees that your OCL constraints always stay up-to-date.

Related Concepts

Together Diagram Overview
About OCL Support in Together

Related Procedures

Creating a Diagram
Navigating between the Tree View, Diagram, and Source Code

727

Metamodel Browser View
Window Show View MDA Metamodel Browser

Use the Metamodel Browser view to look up a metamodel that can be selected as a source or a target of a QVT
transformation.

Toolbar

Item Description
Go into Expands the selected node and displays the nested contents.
Go back Returns to the parent node.
Go home Returns to the metamodel tree.
Collapse all Collapses all open nodes.
Show inherited features If this button is pressed, the inherited features are displayed in each node.
Show fully-qualified names If this button is pressed, the fully-qualified names of the classifiers display.
Find classifier Opens the Find Classifier dialog, where you can locate a metaclass by any substring

of its name. Wildcards are supported.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Model Transformations
Applying Model-To-Text Transformations

Related Reference

QVT Editor
QVT Builder

728

Model Package Explorer View
The Model Package Explorer displays the UML Content for all open Projects. This view combines useful visual and
functional advantages from the Together Model Navigator with the Package Explorer. You can see all of your diagram
elements at a glance while also keeping an eye on .java, XML, and all other project files. Context menus in this view
also access commands from both the Model Navigator and Package Explorer.

Buttons

Button Description
Back Returns to previous tree view display.
Go Into Expands the selected node and hides others from view.
Up Returns view to parent structure level. This button becomes active after you use the Go Into context

command.
Collapse Collapses nodes in view.

Filters
In the upper-right corner of the Model Package Explorer view, the down-arrow menu offers the following commands:

Option Description
Name filter patterns If selected, opens the edit field in which you can type your own filter patterns to hide from

view. Off by default.
Select the filters Specifies resources to hide from view (.*files, empty parent packages, referenced libraries,

Together diagram files, Together Model folder).
Filter description Displays a description of the selected filter. Empty by default.

Select Working Set
Opens the Select Working Set dialog. Working sets allow you to customize your view, determining which resources
are displayed. After a working set is selected, it becomes an additional option in the Model Package Explorer filters
menu.

For more information on working sets, consult the documentation set provided with your IDE. From the menu bar,
choose Help Help Contents.

Warning: Exercise caution when using the Remove button. Deletion is performed without prompt.

Deselect Working Set
Returns the Model Package Explorer to the default view.

Edit Active Working Set
Makes changes to the current working set.

729

OCL Expressions View
OCLExpressionsView editor_context

Use the OCL Expressions view to quickly evaluate OCL expressions in the explicitly specified context (a Together
or EMF model element), or in the context of the current selection. The screen shot below shows Class1 from a
UML 2.0 model in the current selection, and the model itself explicitly added as the second context.

 The children of the Class1 element
are expressions in the uml20::classes::Class OCL context. The children of the second element are
expressions in the uml::together::Model OCL context . The OCL Expressions view displays a tree structure
with several levels. The first level contains contexts, with the predefined Current selection context. The second
level contains OCL expressions.

A context element specifies the model element against which Together evaluates child expressions. The OCL
context of child expressions is defined by the type of the context element. For example, children of a UML 2.0 class
context element will be evaluated in the uml20::classes::Class OCL context.

The OCL Expressions view preserves manually added contexts and OCL expressions after the Workbench restart.
The OCL Expressions view evaluates your OCL expressions in real time as you work on your model. Evaluation
results are displayed either in expression labels (for simple results), or as expression children (for model- or
collection-like results). Evaluation errors display in red with the <errors during evaluation> label, and error
messages are displayed as children of the expression node.

Note: To use OCL in EMF models, enable the corresponding metamodels in the OCL Preferences dialog box.

Toolbar

Item Description
Add Together Model Element... Opens the Model Elements dialog box, which lets you choose a context model

or model element from your workspace and add it to the current list of contexts.
Add EMF Model Element... Opens the Workspace Contents dialog box, which lets you choose a context

EMF model or model element from your workspace and add it to the current list
of contexts.

Add URI... Opens the Add model dialog box, which lets you specify the URI of a context
model or model element that you want to add to the current list of contexts.

Hide/Unhide Empty Nodes Hides/Displays empty expression nodes.
Refresh Reevaluates the selected OCL expressions and reloads the selected contexts.

Note, that the OCL Expressions view does not automatically refresh contexts
and expressions when the referenced models change.

730

Context Menu

Item Description
Add Together Model Element... Opens the Model Elements dialog box, which lets you choose a context model

or model element from your workspace and add it to the current list of contexts.
Add EMF Model Element... Opens the Workspace Contents dialog box, which lets you choose a context

EMF model or model element from your workspace and add it to the current list
of contexts.

Add URI... Opens the Add model dialog box, which lets you specify the URI of a context
model or model element that you want to add to the current list of contexts.

Add Expression... Opens the Edit... dialog box, which lets you compose a new OCL expression
and add it as a direct child of the selected context model or model element. The
dialog box supports OCL error reporting and code completion options.

Edit... Opens the Edit... dialog box, which lets you edit the selected OCL expression.
Enable Expression Enables real-time evaluation of the selected OCL expression node and all its

children.
Disable Expression Disables real-time evaluation of the selected OCL expression node and all its

children.
Delete Removes the selected expression or context model element from the view.
Refresh Reevaluates OCL expressions currently in the OCL Expressions view.

Related Concepts

About OCL Support in Together

Related Procedures

Creating Constraints
Opening MDA Views

731

Properties View
Context menu Properties

Every diagram and element has a general Properties View. The composition of the Properties View changes
depending on the element or diagram selected in the Diagram Editor or Model Navigator. Use the Properties View
to set properties for all diagrams and elements.

The Properties View displays properties in two columns: Property and Value. The Property column displays the
names of the properties of a selected resource. The Value value column displays the values of the properties of a
selected resource. Double-click on a value to edit.

Groups of properties display on the left of the Properties View.

The following keyboard shortcuts are available:

Ctrl+A Select all
Ctrl+ ->/<- Next or previous word
Del/Backspace Remove current or previous character
Ctrl+Z/Y Undo or redo
Ctrl+C/X/V, Shift+Del/Ins Copy, cut, or paster
Ctrl+B/I/U Bold, italic, or underline
Ctrl+M/Ctrl+Shift+M Increase/Decrease indent (in a lists context)
Ctrl+Shift+Space Insert non-breaking whitespace
Ctrl+- Insert acronym
Ctrl+Space Clear all formatting for the selection
Ctrl+Shift+8 Show whitespace characters (linebreaks)
F11 Show WYSIWYG only (without Source view; that is, in full-screen mode in the Inspector

context)
Ctrl+Alt+I Show Real Objects' About dialog with license information

Properties
This section displays the common properties of the selected object. The number of fields in this section varies
depending on the selected diagram or element. See each element description for details.

Custom
This section displays the custom properties and their values specified for the selected object.

Add Creates a new entry in the list of properties.
Remove Deletes the selected entry from the list of properties.

Description
Use this field to add description text for a diagram or element. There are 'WYSIWYG and Source View tabs. Text in
the Source tab is displayed with HTML formatting.

Words that are displayed with a red underline are not recognized by the editor's dictionary. A list of spelling
checkersuggestions is available in the context menu. Select the word with a red underline and open the context
menu to see spelling suggestions. You can disable automatic spell checking.

732

Note: You can configure the spelling settings from the WYSIWYG tab. The available Spelling properties are
American English, British English, French, German, and Spanish.

Edit tab item Description

 Undo Undoes an action

 Redo Redoes an action

 B Applies bold style
 I Applies italic
 U Applies underlining

 S Applies strikethrough

 Align left Applies align left

 Align center Applies align center

 Align right Applies align right

 Align justify Applies align justify

 Decrease indent Applies decrease indent

 Increase indent Applies increase indent

 Add ordered list Adds an ordered list

 Add unordered list Adds an unordered list

 Insert table Inserts a table

 Insert row below Inserts a row below the current row

 Insert column left Inserts a column to the left of the current column

 Insert image Inserts an image

 Insert hyperlink Inserts a hyperlink

 Spelling settings Apply spelling checker settings

 Auto spelling checker Enable or disable automatic spell checking

Hyperlinks
Use this field to add hyperlinks to the element.

Item Description
Add hyperlink Opens the Hyperlinks dialog, where you can select elements to be linked with the current element.
Remove Deletes the selected hyperlink.
Remove all Removes all hyperlinks from the element.

Requirements
You can track various requirements properties including type, priority, and difficulty for diagrams and individual
elements. You can specify a requirements document for the diagram or elements.

traces Displays the number of traces associated with the selected element.
author Use this field to add author properties. Click the ellipse button to add values.
difficulty Use the drop-down list to set difficulty to High or Low. Medium represents the default value.
document Use the document field to link to a specific document.

733

number Use the number field to assign a requirement number.
priority Use the drop-down list to set priority to High or Low. Medium represents the default value.
req. description Use this field to add a requirements description. Click the ellipse button to add text.
testcase Use the text field to designate a testcase requirement.
type Use the drop-down list to set the appropriate type. You can choose from Business Rule, Feature,

Performance, Product Requirement, or User Need.

View
Diagrams do not have view properties. Each element (class, interface, object, and so on) will have the view properties
listed below:

2D look The property value can be set as Yes or No. Yes represents the default value.
background color This field sets the RGB background color for the element. {255, 255, 255} represents the default

color value. Use the drop-down list to choose a color.
font This fields sets the font for the element.
foreground color This field sets the RGB foreground color for the element. {0, 0, 0} represents the default color

value. Use the drop-down list to choose a color.

Buttons for the Properties View

Show/Hide Categories: This button groups lines under their appropriate categories.
Filter Properties This button determines whether advanced properties are displayed in this view. Basic

properties are always shown.
Restore Default Value If you make changes to a value, this button restores the selected property to its default

value.
Menu Displays the Show/Hide Categories and Filter Properties commands.
Minimize Minimizes current properties view to the view title. To show the entire view, click the

Restore button.
Maximize Maximizes the current view to the entire window. To restore the view, click the Restore

button.
Information button Available for certain properties. May display a small text editor for larger text entries, a

selection wizard, or a file chooser dialog.
Chooser button Available for certain properties. Displays the Selection dialog, enabling you to select an

element from the Model.
drop-down button Available for certain properties. Displays a list of available options to choose from.

Rich Text Editor Shortcuts
The following keyboard shortcuts are available for the Rich Text Editor:

Ctrl+A Select all
Del/Backspace Remove current/previous character
Ctrl+Z/Y Undo/Red
Ctrl+C/X/V,Shift+Del/Ins Copy, Cut, Past
Ctrl+B/I/U Bold, Italic, Underlin
Ctrl+M/Ctrl+Shift+M Increase/Decrease indent (this is reasonable in a lists context
Ctrl+Space Clear all formatting in the selection

734

Ctrl+Shift+8 Show whitespace characters (linebreaks). Works with Windows and Linux, but has not
been integrated on Mac OSX

Ctrl+->/<- Next/Previous wor
Ctrl+Shift+Space Insert non-breaking whitespace
F11 Shows WYSIWYG view only (without a Source view; that is, full screen in the context

of the Inspector)
Ctrl+Alt+I Show Real Objects' About dialog with license informatio

735

QVT Builder
Use QVT Builder to generate Java code from your QVT source files.

The generated code is placed in the Java source folder specified in the QVT Settings page of your transformation
project Properties dialog box. You can then compile Java files using the Eclipse Java builder.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Model Transformations
Applying Model-To-Text Transformations

Related Reference

QVT Editor

736

QVT Editor
Use the QVT Editor to write your QVT transformation.

The QVT Editor provides QVT code sense and auto-complete (CTRL+SPACE) options.

The QVT-specific Outline view displays an outline of the structure of the currently active QVT file in the editor area.

Related Concepts

Model Transformation Support

Related Procedures

Creating a Model-To-Model Transformation
Creating Model-To-Text Transformations

Related Reference

QVT Language
QVT Builder

737

XSL Editor
Use the XSL Editor to write your XSL transformation scripts.

The XSL Editor provides XSL code sense and auto-complete (CTRL+SPACE) options.

The XSL-specific Outline view displays an outline of the structure of the currently active XSL file in the editor area.

Related Concepts

Model Transformation Support

Related Procedures

Creating an XSL Transformation

738

Trace View
Use the Trace view to inspect the results of a Model-To-Model QVT transformation.

The view displays the trace file, which contains detailed information about every transformation step performed.

Item Description
Displays the number of the executed transformation step.
From Displays the object before the transformation.
To Displays the object after the transformation.
Method Displays the method in the source code that executes the transformation step.

Context Menu

Item Description
Show Source Navigates to the element that is the source of the selected transformation step.
Show Target Navigates to the element that is the result of the selected transformation step.

Related Concepts

Model Transformation Support

Related Procedures

Opening MDA Views

739

Trace Synchronizer View
Window Show View Other... Requirements Trace Synchronizer

This topic provides information about the Trace Synchronizer view. You can use this view to find and fix
desynchronized traces to CaliberRM or RequisitePro requirements.

Toolbar buttons and context menu items

Synchronize Traces Opens the Trace Synchronizer dialog box.
Refresh trace synchronization information Refreshes the trace information displayed in the Trace

Synchronizer view.
Save as HTML Opens the Save As dialog box, where you can export the current

content of the Trace Synchronizer view to an HTML file.
Update Trace Discards local changes and updates the selected traces from the

repository.
Restore Trace Discards changes in the repository and restores the requirement

information stored in the model.
Delete Trace Deletes the trace.
Navigate to Trace Source Opens the trace source (requirement) in the CaliberRM or

RequisitePro Navigator depending on the requirement type.
Navigate to Trace Target Opens the trace target (model element) in the appropriate editor.

Columns

Status Displays the status of the trace source.
Trace from Displays the name of the trace source.
Trace from project Displays the name of the source CaliberRM or Together project.
Status Displays the status of the trace target.
Trace to Displays the name of the trace source.
Trace to project Displays the name of the target CaliberRM or Together project.
Status summary Displays the summary information about the current trace status.

Status items

Not Found Information about the object is not found.
Current Information about the object is up to date.
Missed Information about the object is missing.
New The object is new.
Modified The object has been modified.
Outdated The object becomes outdated.

Related Concepts

Requirements Management

740

Templates View
Window Show view Other Patterns and Templates Templates

The Templates view displays currently available templates. These templates can be applied to open projects that
have been template-enabled.

Together is shipped with a number of templates for the supported languages (Java, OMG CORBA IDL and C++).
By default, each language contains a Local Templates node, which includes all the templates predefined and
shipped with Together. They are divided into three categories: Link, Class, and Package. Each category contains
subcategories related to the individual templates it contains.

Button Description
Sort templates Sorts the nodes in the view alphabetically.

Note: New projects will not be displayed in the Templates view until they contain a template.

Related Procedures

Working with the Templates
Editing Templates

Related Reference

Templates View Context Menus

741

Last Validation Results View
Window Show view Other Patterns and Templates Last Validation Results

The Last Validation view displays results of the latest validation of a pattern definition. This view opens automatically
when the validation process reports errors.

Related Procedures

Validating Pattern Definition Projects

742

Patterns and Template GUI Components
This part describes GUI components of the Together interface you use for Together Pattern features.

In This Section
Pattern Explorer
This topic describes the Pattern Explorer view.

Pattern Registry
This topic describes the Pattern Registry window.

743

Pattern Explorer
Window Show view Other Patterns and Templates Pattern Explorer

The Pattern Explorer enables you to logically organize patterns (using virtual trees, folders and shortcuts), and
manage recognized instances of patterns. You are working with shortcuts in Pattern Explorer, not with the actual
patterns. Because of this, shortcuts to the same pattern may be included in several folders.

Context menu command Description
Delete instance Deletes a pattern instance from the model. When applied to a model folder, deletes

all pattern instances.
Clear invalid instances Deletes invalid instances of a pattern from the model.
Select on diagram Sets highlight to the selected pattern instance in diagram. This command is available

for pattern nodes.
Select in Model Tree Sets highlight to the selected pattern instance in the Model Navigator. This command

is available for pattern nodes.
Add as shortcut to diagram Creates a shortcut to the pattern instance on the current diagram.
Verify pattern Checks validity of the selected pattern.

Related Concepts

Patterns and Templates

Related Reference

Pattern Registry

744

Pattern Registry
Window Show view Patterns and Templates Pattern Registry

The Pattern Registry defines the virtual hierarchy of patterns. You can create virtual folders and group the patterns
logically to meet your specific requirements. All operations with the contents of the Pattern Registry are performed
in the Pattern Explorer and synchronized with the Pattern Registry.

Pattern Registry shows a tree of folders with shortcuts to patterns. The structure of the pattern registry is a simple
tree with two separated subtrees with common root. These separated subtrees represent folder structures: one is
taken from Eclipse extensions and another from workspace-specific local data. Pattern Registry allows several
shortcuts to the same definition in different folders; therefore, internally, the registry keeps the plain list of definitions
and a tree of folders and shortcuts to definitions.

The context menu of the pattern shortcuts in the Pattern Registry allows you to rename, copy, and delete the selected
pattern. When attempting to delete a shortcut, you are prompted whether the shortcut should be deleted or the
definition and all its shortcuts. In case the shortcut is the last one that refers to the corresponding pattern, the program
warns you that deleting this shortcut will result in the loss of the corresponding pattern definition.

Command Description
New This command is available for the categories. You can choose to create a new nested

category or a new pattern.
Rename Opens the Rename dialog, where you can specify the new name of a category or a

pattern.
Delete Deletes the selected category or pattern. Requires confirmation.
Delete pattern definition This command is available for the patterns. Deletes the pattern definition and all

shortcuts to it from the Registry. Requires confirmation.
Copy This command is available for the patterns. Copies the selected pattern to clipboard.
Cut This command is available for the patterns. Cuts the selected pattern to clipboard.
Paste This command is available for the categories. Pastes a pattern from the clipboard to the

selected category.
Edit pattern definition Opens a pattern definition project of the selected pattern.

Related Concepts

Patterns and Templates

Related Reference

Pattern Explorer

745

Templates View
Window Show view Other Patterns and Templates Templates

The Templates view displays currently available templates. These templates can be applied to open projects that
have been template-enabled.

Together is shipped with a number of templates for the supported languages (Java, OMG CORBA IDL and C++).
By default, each language contains a Local Templates node, which includes all the templates predefined and
shipped with Together. They are divided into three categories: Link, Class, and Package. Each category contains
subcategories related to the individual templates it contains.

Button Description
Sort templates Sorts the nodes in the view alphabetically.

Note: New projects will not be displayed in the Templates view until they contain a template.

Related Procedures

Working with the Templates
Editing Templates

Related Reference

Templates View Context Menus

746

Last Validation Results View
Window Show view Other Patterns and Templates Last Validation Results

The Last Validation view displays results of the latest validation of a pattern definition. This view opens automatically
when the validation process reports errors.

Related Procedures

Validating Pattern Definition Projects

747

Quality Assurance GUI Components
Describes GUI components of the Together interface that you use for Together Quality Assurance features.

In This Section
Audit View
Use the Audits View to display and export audit results.

Metric View
Use the Metric view to display and export metric results.

Model Audits View
Use the Model Audits view to display and export model audits results.

Model Metrics View
Use the Model Metrics view to display and export model metric results.

Chart View
Displays Kiviat graph.

748

Audit View
Use the Audits View to display and export audit results.

Audit View Toolbar

Item Description
Quick Fix Opens the Quick Fix dialog box and offers suggested quick fixes and suppression fixes as available.
Refresh Recalculates the results that are currently displayed.
History... Opens a submenu from which you can open a previously ran audit or clear the history.

Audit View Pull Down Menu

Item Description
Show Suppressed Messages Enables displaying suppressed messages.
Show Suppressed Messages Only Filters the results table to show only suppressed messages.

Audit View Context Menu

Item Description
Go To Highlights affected code in the editor.
Fix Opens the Quick Fix dialog box and offers suggested quick fixes and suppression fixes as

available. Not all audit results have fixes. If no fix is available, the choices are dimmed. A
lightbulb icon in the Audits View toolbar also indicates that a possible fix is available.

Detection Metrics When a problem detection audit line is selected in the Audits View, the problem detection
metric displays in the Metrics View.

Group By Groups audits based on selection.
UnGroup Ungroups audits.
Hide Selected Hides specific audit results based on selection.
Show All Hidden Shows hidden audit results.
Show Description Displays a window with the full name and description of the selected audit.
Search in Displays a dialog box for searching audit results.
Refresh Reruns the same QA check on the selected resources.
Preferences Displays the Audit tab of the QA Source Preferences dialog box.
Copy Copies the currently displayed QA results into the clipboard, from which you can paste them

into an external document.
Print Displays the system print dialog allowing you to print the audit results set.
Load Audit Results Load results of perviously run audits.
Export Opens the Export QA results to file dialog box, where you can choose a format and

destination for saving the displayed audit results.
Description Displays the audit description in the help window.
Export Dialog Opens the Export QA results to file dialog box.

Audit View Results Table
The results table displays only audit violations. For this reason, the results do not necessarily display all of the audits
that you ran, or all the packages or classes that you processed.

749

Column Description
Description Describes why the audit flagged the item.
! Indicates how serious, in general, violations of the audit are considered to be. This will help you sort

the results and assess which violations are critical and which are not.
Resource The source code file that was flagged by the audit.
In Folder Displays the path to the folder that contains the file with a problem code.
Location The line number in the file where the problem code is located.

Related Concepts

Quality Assurance

Related Procedures

Viewing Audit Results
Running Source Code Audits

750

Metric View
Use the Metric view to display and export metric results.

The metrics results report is displayed as a table in the Metrics View. The rows display the elements that were
analyzed, and the columns display the corresponding values of selected metrics. Context menus of the rows and
columns enable you to navigate to the source code, view descriptions of the metrics, and produce graphical output.

Metrics View Toolbar

Item Description
Compare With... Opens a submenu from which you can choose a previously ran metric to compare with currently

displayed results.
Set Filter... Opens a submenu from which you can choose a filter to narrow the list of currently displayed

results.
Refresh Recalculates the results that are currently displayed.
History... Opens a submenu from which you can open a previously ran metric or clear the history.

Metrics View Context Menu

Item Description
Go To Highlights affected code in editor.
Load Metric Results Opens a dialog box from which you can load a previously saved metric results file.
Export Opens the Export QA results to file dialog box, from which you can choose a format and

destination for saving the results displayed.
Kiviat Graph Displays a Kiviat Graph for the selected resource. Graph displays in a new view.
Bar Graph Displays a bar graph for the selected metric. Graph displays in a new view.
Search in Displays a dialog box that lets you search metric results.
Refresh Reruns the same QA check on the selected resources.
Preferences Displays the Metric tab of the QA Source Preferences dialog box.
Copy Copies the currently displayed QA results into the clipboard, from which you can paste them

into an external document.
Print Displays the system print dialog allowing you to print the metric results set.
Load Metric Results Load results of previously run metrics.
Export Opens the Export QA results to file dialog box, where you can choose a format and

destination for saving the displayed metric results.
Description Displays the metric description in the help window.
Export Dialog Opens the Export QA results to file dialog box.

Related Concepts

Quality Assurance

Related Procedures

Running Source Code Metrics
Viewing Metric Results

751

Model Audits View
When you run model audits on your model, the Model Audits view with results table opens.

Model Audits View Elements

Option Description
Description Brief description of the audit item. For a full description, point to the audit in the list and see the

description in the opened tooltip.
! Severity of the audit item.
Parent Path Name and path of the parent model item.
Entity Name Name of the element that needs you attention.
Audit Text Displays the code of the selected audit.

Model Audits View Toolbar

Option Description
Refresh Recalculates the results that are currently displayed.
History... Opens a submenu from which you can open a previously ran audit or clear the history.

Model Audits View Context Menu

Option Description
Go To Highlights the affected element in the Model Navigator view and Diagram Editor.
Preferences Displays the Audit tab of the Model Quality Assurance Preferences dialog box.
Group By Groups audits based on selection. You can select Group by Audit or Group by Entity.
Ungroup Ungroups audits.
Hide Current Hides specific audit results based on selection. You can select from Hide Current Row,

Hide Current Audit, or Hide Current Entity.
Show All Hidden Shows hidden audit results.
Clean Up Removes all audit results.
Export Results Displays the Export QA result to file dialog box.
Load Audit Results Loads results of previously run model audits.

Related Concepts

Model Audits

Related Procedures

Running Model Audits and Metrics

Related Reference

QA Model

752

Model Metrics View
When you run model metrics on your code, the Model Metrics view with results table opens.

Model Metrics View Elements

Option Description
Entity Name of the model element.
Metric Text Displays the code of the selected metric. Each column with an abbreviation in its name represents

a certain metric. Select a column and the corresponding metric code is displayed under the Metric
Text.

Model Metrics View Context Menu
The Export Results command opens the Export QA result to a file dialog box.

Option Description
Go To Highlights affected element in the Model Navigator view and Diagram Editor.
Preferences Displays the Metric tab of the Model Quality Assurance Preferences dialog box.
Kiviat Graph Displays a Kiviat Graph for the selected resource. Graph displays in a new view.
Clean Up Removes all metrics results.
Export Results The Export Results command opens the Export QA result to file dialog box.
Load Metric Results Loads results of previously run model metrics.

Related Procedures

Viewing Metrics as Graphs
Running Model Audits and Metrics

Related Reference

QA Model

753

Chart View
The Chart view displays a Kiviat or bar graph when you choose to view the metrics results as a graph.

Related Concepts

Quality Assurance

Related Procedures

Running Source Code Metrics
Viewing Metric Results

754

Together Projects
This part contains reference information about the supported Together project types and formats and project
properties.

In This Section
Project Properties
Use this dialog box to modify your project's properties.

C++ Projects
This section provides specific information related to C++ projects.

IDL Language-Specific Information
This topic describes the special fields for CORBA IDL inspectors.

New Together Project Wizards
This section describes the common pages of the Wizards used to create new Together modeling projects,
and language-specific pages for C++ and IDL projects.

755

Project Properties
Project Properties

You can modify the Together Project properties using the Properties dialog box. In the Model Navigator or in the
Navigator, right-click a project and choose Properties on the context menu.

Among the general properties for a project, there are some properties specific to Together projects:

Open this property page... to...
Model path — Define the name of the model folder used to store diagrams

and design elements.

— Enable cross-project references in the list of imported
projects.

QVT Settings — Specify the Java source folder that is used for storing Java
code generated by QVT Builder. This page is available for
transformation projects only.

Profiles — Select profiles to be used in the project.
QA Model — View or modify the sets of audits and metrics to be used in

the project. Note that you can only change sets of audits and
metrics if you check the Override workspace settings check
box.

QA Builder Properties — View or modify the set of audits that is used during your
source project build. Note that you can only change the set of
audits if you check the Enable project specific settings check
box.

Store package properties in package diagram
files

— Preserves all properties of the package diagram, both visual
and semantical, in the default.txvpck diagram file. If this
option is not checked, only diagram-specific information (visual
information, such as layout) is retained in the
default.txvpck diagram file, while settings that you treat as
package properties (semantical information, such as
descriptions and custom properties) are moved from the
default.txvpck file into the default.txaPackage file.
Turning this option off allows you to track your package
changes using version control. This option is on by default.
Changing this option from this dialog converts the project files.

Create elements in separate files — Create elements as standalone files. If this option is not
checked, all design elements are stored in one file as file mates.

Sort elements in design files — Enforces sorting of elements in the design and diagram files.
Originally information saved without predefined order. Thus it
was quite possible that minor change caused subsequent
revisions of a file to look very different if compared as plain text
or XML. If this option is checked information is ordered on save.

Note: normally this is not needed and also it may take extra
CPU time. Please don't change unless you clearly understand
the implications.

756

Related Concepts

UML Profiles

Related Reference

QVT Settings
QA Builder Properties

757

C++ Projects
This section provides specific information related to C++ projects.

In This Section
Special Considerations for C++ Projects
This section describes special issues to be considered when defining the C++ project configuration, and the
way Together handles syntax constructs.

C++ Language-Specific Properties of the Model Elements
The Properties View displays these special fields for the C++ node elements, members and links.

C++ Project Properties
This section describes the options for setting your C++ project properties.

758

Special Considerations for C++ Projects
In this section:

♦ Project configuration issues

♦ Header and implementation files

♦ Reverse engineering tips

♦ Processing syntax constructs

Project configuration issues
The task of creating and configuring C++ projects is important, especially for existing source code. The project must
achieve a proper balance between the completeness of the model at runtime and resources used.

Two C++ language characteristics place limitations on C++ projects in Together:

♦ fully qualified class names in C++ need not correspond to the actual physical locations of the classes

♦ C++ uses a preprocessor

File Structure
The lack of correspondence between class names and source code files can impact memory demand. In order for
Together to retrieve a class by name, all known classes must be visible when the project opens. Together must
process all available files at the outset, thus increasing memory demand for C++ projects.

The memory demand becomes crucial when the project uses many libraries. The size of these libraries may be
significant (for example, MFC, VCL, and OWL) even when the project itself makes use of only a small portion of the
libraries.

Preprocessor
When working with the preprocessor, consider the following:

Macro definitions The object model depends on resolving macro definitions. Because macros are used in
the course of conditional compilation, they define portions of the source code that may or
may not be displayed in the object model.

#include directives Together projects are folder oriented. Header files and implementation (definition) files that
reside in project folders are processed.

Together parses the files that are specified in the #include directives, or in the entry
points that are defined during project creation.

A file that is an entry point is parsed once; an #include directive is parsed whenever it is
encountered.

Entry points
In order to support the building of a correct model described by C++ code, Together introduces the concept of entry
points. An entry point is a file explicitly defined as a point from which the parser will start.

There are certain differences in parsing between TCC and Together:

759

♦ The TCC parser processed all project files in an arbitrary order, taking into consideration the include directives.
Each file was parsed only once.

♦ In Together the parsing order is explicitly defined by means of entry points and include directives. Each file is
parsed as many times as it appears in the include directives that can be reached from the entry points.

Proper organization of entry points is critical for the correctness of the model and for the overall performance.

Header and implementation files
There are two kinds of C++ source code files: header files and implementation files. When you place a new class
on a class diagram, Together creates a header file with a name that matches the class. An implementation file is
created manually from an operation context menu (refer to “Creating Header and Implementation Files in C++
Projects”).

The C++ language options, specified in the Project Properties dialog, determine suffixes for each file.

#include
The files in the project path and in the include path determine the structure of a project.

Together parser exercises the same approach as all compilers do. While processing the #include directives, it
parses header files as many times as they are included. Symbols found on multiple passes are merged according
to their signatures in a manner similar to how a linker would operate when producing an executable from different
object files.

In large-scale projects, all of the sources that are considered external (standard or third party libraries) with respect
to the entire project structure should be added to the include path. This helps restrict the number of files handled
within a project. Together parses all files in the include path.

#include conventions
Together uses the standard convention to discriminate between the project internal and external headers.

♦ External files are included via #include <filename> directives (with angle braces).

♦ Internal files are included via #include "filename" directives (with quotes).

Tip: #include directives automatically contain a relative path to the project root.

Reverse engineering tips
Existing C++ projects normally have an additional context, implicitly defined by the C++ dialect, and make/compile
tools used. The Together parser cannot equally fit all possible combinations. As a result, opening an existing project
may cause the parser to report unexpected errors that do not appear when the project is compiled.

To tune the Together parser to a specific project with its concrete combination, use the following:

♦ C++ dialect property in the project settings

♦ Skip standard includes property in the project settings

♦ Predefined macros property in the project settings

♦ preinclude.inc

760

Using preinclude.inc gives you more flexibility than using predefined macros. Together processes
preinclude.inc before it processes any other C++ file available to the project. It treats preinclude.inc almost
the same as other C++ files, except that it ignores the file’s symbol declarations.

When a new project is created, an empty preinclude.inc file is created as a placeholder.

Particularly, you can use preinclude.inc to make some macros or additional reserved words defined for the
Together parser explicitly by means of appropriate #define and/or #include directives.

Alternatively, you can make Together ignore all external #include directives and place the required directives
into the preinclude.inc file. This option is available in the project properties.

Note: Normally you need just enough definitions to avoid unexpected parser errors. It may not be necessary to
copy all of them, as they are in their original places. Instead you can use a shortened form.

Processing syntax constructs
Together parses syntax constructs and displays them in diagrams according to the C++ language options.

Union If a union is encountered in the source code, it displays in the diagram as a class
node with the stereotype <<union>>.

Structure If a strucutre is encountered in the source code, it displays in the diagram as a
class node with the stereotype <<struct>>.

If the structure is anonymous, the name on the diagram node is the name of the
structure variable (or the first such variable if there are more than one).

Typedef Typedefs display in class diagrams as class nodes. The Model Navigator lists the
types as ordinary model elements. Furthermore, if you use the Properties View
of an attribute or an operation to select its type, typedefs are listed among the
available model element types.

If the typedef declaration simply creates another name for a known type, it is
displayed on a class diagram as a rectangle with the stereotype <<typedef>>
and the typedef identifier as the name. The notation does not support members
or inheritance.

Forward declaration When a forward declaration for a class or a type is encountered in the source
code, it is displayed in the diagram as a class node with the stereotype
<<forward>>, unless the definition of this class is available.

Together lets you create declarations for the forward declarations using the
context menu command.

Template specialization When an explicit or implicit template specialization is encountered in the source
code, it is displayed in the diagram as a class node and a template binding link
to the template class.

If a template specialization usage appears in the inheritance or as a type of
attribute, the corresponding inheritance or association link goes to the model
element that represents this specialization.

Global functions and variables Currently not represented in diagrams.
Multi-Declarations You can use multi-declarations of class members in the source code. For

example:

class Class1 { private:int a,b;};
Such members are displayed in diagram elements as separate entries. However,
deleting and editing in the Diagram Editor or in the Properties View are prohibited.

761

Related Concepts

Language Support

Related Procedures

Configuring C++ Projects
Creating, Editing and Opening Header and Implementation Files in C++ Projects

Related Reference

New project Wizard C++ Language-Specific Options

762

C++ Language-Specific Properties of the Model Elements
The Properties View displays these special fields for the C++ node elements, members and links:

Class and Interface properties Description
definition file Lists the filename of the associated definition file.
namespace Text area for the class namespace.

Operation Properties Description
return type Combobox (bool, char, double, float, int, long, long double, short, string, unsigned,

unsigned long, and unsigned short.) and file chooser to browse to your own type.
definition file Text area and file chooser for the *.cpp file.
throw Text area and file chooser button to help with exceptions.
visibility public, protected, and private
virtual Checkbox for adding a virtual modifier to a function.
const Checkbox for adding a const keyword to a function.
inline Checkbox for indicating an operation as inline.
volatile Checkbox for adding the volatile keyword to an operation.

Attribute properties Description
type combobox (bool, char, double, float, int, long, long double, short, string, unsigned,

unsigned long, unsigned short) and file chooser to browse to your own type.
visibility public, protected, private.

Generalization link properties Description
visibility public, protected, private.
virtual Checkbox for adding a virtual modifier to a function.

Related Concepts

Language Support

Related Reference

New project Wizard C++ Language-Specific Options

763

C++ Project Properties
Project Properties

Project properties are defined while the project is being created in the New Project wizard. You can modify these
properties using the Project Properties dialog that displays the same fields.

Tip: Alternatively, choose Properties on the context menu of a C++ project node in the Model Navigator.

Tab Description
Project Source Path Use this tab to define projects paths.

Use as a source folder Use this button to add the selected package
to the build path. Add the folder
corresponding to the package to the build
path if the package is the root of packages
and source files. Entries on the build path
are visible to the compiler and used for
building.

Remove from build path Children of the folder will not be seen by the
compiler anymore and will not be included
when building the project.

Toggle Read-Only Status Use this button to make selected roots read-
only or to clear the read-only attribute.

Make Default Root Use this button to choose the selected folder
as the default root. This root is used as a
target container when automatically
creating new files.

Exclude/Include Use these alternative buttons to make the
folder contents invisible or visible to the
compiler.

Configure inclusion and exclusion
filters

Use this button to create the inclusion and
exclusion filters instead of including and
excluding each folder or file manually.

Configure entry points Use this button to add specific files as entry
points. Usually, these are *.cpp files. You
do not need to add header files, because
they are processed from inclusion in
*.cpp files. For more information, refer to
“Special Considerations for C++ Projects.”

Link additional source to project Use this button to open the Link Additional
Source dialog and add the sources that
reside outside of the project.

Include Paths Use this tab to include search paths to the project.

Include search paths Folders in this area are included in the search path.
Add Click this button to add a folder to the project search path.

Enter the path to the text field, or use the Browse button to
locate the specific folder.

Edit Click this button to modify the include folder.
Remove Click this button to delete the selected folder from the path.

C++ Processing Settings Use this tab to define C++ specific settings.

C++ generating class name prefix Each new class name starts with the
specified prefix.

764

C++ generating definition file extension Each new class has the specified
extension.

C++ generating file name prefix Name of the file that contains C++ classes
starts with the specified prefix.

C++ generating file extension File name has the specified extension.
Recognize wchar_t as a data type If this option is checked, the compiler

recognizes the keyword wchar_t as a data
type.

Enable messenger If this option is checked, the decorators
describing compilation errors will be
displayed in the Problems View and
Resource Navigator.

Package filter Enter the names of the packages that you
would like to filter out.

Skip standard includes If this option is checked, the #include
<filename> directives (in angle
brackets) are ignored.

Tip: Do not confuse the name of this
option with the standard C++ library.

Predefined macros Specify the list of predefined macros,
which will be available for the whole
project.

Preinclude file name Specify the name of the preinclude file (if
any), to make its contents available for all
participants of the project.

New file default head comment Specify the text that will be displayed in the
generated C++ files.

Recognize free comments as doc If this option is checked, the Javadoc
comments will be recognized.

C++ dialect support Select a C++ dialect from the list. The
possible options are: GNU, MS, or pure C
++.

C/C++ Indexer Together provides its own Borland indexer that reuses the results of project parsing.
Using any other indexer results in increased memory consumption because the other
indexers need to parse the Together project again.

Related Concepts

Language Support

Related Reference

New project Wizard C++ Language-Specific Options
Special Considerations for C++ Projects

765

IDL Language-Specific Information
CORBA IDL inspectors have these special fields:

Item Description
Struct Properties module The text area to enter a module name for a struct.
Interface Properties module The text area to enter a module name for an

interface.
abstract When this checkbox is checked, the Boolean

property is set to true. If an interface is defined
as local, its name is displayed in the diagram in
italics.

local When this checkbox is checked, the Boolean
property is set to true.

Interface and Valuetype Operation Properties return type any, boolean, char, double, float, long,
long double, long long, octet, short, string,
unsigned long, unsigned long long,
unsigned short, and void, and a file chooser
button to browse to your own return value.

raises The text area and file chooser button to
associate an exception with an operation.

oneway Checkbox for adding a oneway modifier to an
interface operation.

context The property editor for adding values to the
context property. Multiple values are comma-
delimited.

Interface and Valuetype Attribute Properties type any, boolean, char, double, float, long, long
double, long long, octet, short, string,
unsigned long, unsigned long long,
unsigned short, and wchar, and a file chooser
button to browse to your own type.

read only Checkbox for adding a read only modifier to an
attribute.

const Checkbox for adding a const modifier to an
attribute. If this property is set to true, the
initial value property adds to the list of
properties.

Valuetype Properties module The text area to enter a module name for a
valuetype.

supports The text area and file chooser button for an
interface name.

abstract Checkbox to add an abstract modifier to a
valuetype.

custom Checkbox for adding a custom modifier to a
valuetype.

extends The text area and a file chooser to define the
parent valuetype.

Exception and Enumeration Properties module The text area to enter a module name for an
exception or enumeration.

Exception and Struct Attribute (Member)
Properties

type any, boolean, char, double, float, long, long
double, long long, octet, short, string, unsigned
long, unsigned long long, unsigned short, and

766

wchar, and a file chooser button to browse to your
own type

Generalization Link Properties A generalization link can be drawn between two interfaces or
two valuetypes. It can also be drawn between an interface
and a valuetype, where the client for the link is a valuetype
and the supplier is an interface.

Union Create unions with the Class By Template button of the
Palette, choosing the Default Union template from the
Templates list.

Together provides limited support to the unions. For example,
you cannot add an attribute from the diagram or create a link
from the union

module Text area to enter a module name for a union.
switch type Shows union discriminator type. This is a

read-only field.

Tip: CORBA IDL exception-type classes do not contain operations. These class types contain only attributes.

Related Concepts

Language Support

767

New Together Project Wizards
This section describes the common pages of the Wizards used to create new Together modeling projects, and
language-specific pages for C++ and IDL projects.

In This Section
New Project Wizard Common Pages
This topic describes the options for using the common pages of the New Project Wizard.

New project Wizard C++ Language-Specific Options
You can specify the C++ language-specific options through the New Project Wizard.

New project Wizard IDL Language-Specific Options
You can specify the IDL language-specific options through the New Project Wizard.

New project Wizard Data Modeling Specific Options
You can specify the data modeling options through the New Project Wizard.

Convert MDL Wizard
You can base a design project on an existing MDL model.

768

New Project Wizard Common Pages
File New Project Modeling < Project type>

These pages are common for the majority of project types provided by Together. For more information, refer to the
topics that describe project settings for the specific project types.

Modeling Project page
Project name Use this text field to enter the project name.
Use default location If this option is checked, the new project is created in the current workspace.
Location Use this field to define the project location. This field is only available when the Use default

location option is not checked.

Modeling Settings page
Metamodel These controls are only available for Java projects. You can

choose the UML version to comply with. The default option is
UML 2.0.

Start with Diagram If this option is checked, the new project starts with the default
package diagram. If this option is not checked, you can select
the type of starting diagram from the drop-down list and specify
its name.

Store package properties in package diagram
files

If this option is checked, all properties of the package diagram,
both visual and semantical, are preserved in the
default.txvpck diagram file. If this option is not checked,
only diagram-specific information (visual information, such as
layout) is retained in the default.txvpck diagram file, while
settings that you treat as package properties (semantical
information, such as descriptions and custom properties) are
moved from the default.txvpck file into the
default.txaPackage file. Turning this option off allows you
to track your package changes using version control. This
option is on by default.

Create design elements in separate files If this option is checked, the design elements are created as
standalone. If this option is not checked, all design elements
are stored in one file as file mates.

Profiles page
Available Profiles Displays the list of available profiles with checkboxes. The Profile Description field displays

a brief description of the selected profile.
Select all Checks all available profiles.
Deselect all Unchecks all profiles.
Set Defaults Resets profiles to the default settings

Related Procedures

Creating a Project

Related Reference

New project Wizard C++ Language-Specific Options
New project Wizard IDL Language-Specific Options

769

New project Wizard C++ Language-Specific Options
File New Project Modeling C++ Modeling Project

Access the properties for your existing project via Project Properties or Project context menu Properties.

Tab Description
Project Source Path Use this tab to define projects paths.

Use as a source folder Use this button to add the selected
package to build path. Add the folder
corresponding to the package to the build
path if the package is the root of packages
and source files. Entries on the build path
are visible to the compiler and used for
building.

Remove from build path Children of the folder will not be seen by
the compiler anymore and will not be
included when building the project.

Toggle Read-Only Status Use this button to make selected roots
read-only or to clear the read-only
attribute.

Make Default Root Use this button to choose the selected
folder as the default root. This root is used
as a target container when automatically
creating new files.

Exclude/Include Use these alternative buttons to make the
folder contents invisible or visible to the
compiler.

Configure inclusion and exclusion
filters

Use this button to create the inclusion and
exclusion filters instead of including and
excluding each folder or file manually.

Configure entry point Use this button to add selected files from
a package to the project in the Configure
Entry Points dialog. The dialog displays
a model tree with the check boxes for
each file or folder. If a node is checked, it
is considered an entry point.

If a root is added to the project, all
*.cpp files are automatically included in
the project, but the header files should be
added individually.

Link additional source to project Use this button to open the Link
Additional Source dialog and add the
sources that reside outside of the project.

Include Paths Use this tab to include search paths to the project.

Include search paths Folders in this area are included in the search path.
Add Click this button to add a folder to the project search path.

Enter the path to the text field, or use the Browse button
to locate the specific folder.

Edit Click this button to modify the include folder.
Remove Click this button to delete the selected folder from the path.

C++ Processing Settings Use this tab to define C++ specific settings.

770

C++ generating class name prefix Each new class name starts with the
specified prefix.

C++ generating definition file extension Each new class has the specified
extension.

C++ generating file name prefix Name of the file that contains C++
classes starts with the specified prefix.

C++ generating file extension File name has the specified extension.
Support wchar_t as keyword If this option is checked, the compiler

recognizes the keyword wchar_t as a
data type.

Enable messenger If this option is checked, the decorators
describing compilation errors will
display in the Problems View and
Resource Navigator.

Package filter Enter the names of the packages that
you would like to filter out.

Skip standard includes If this option is checked, standard
includes are ignored.

Predefined macros Specify the list of predefined macros,
which will be available for the whole
project.

Preinclude file name Specify the name of the preinclude file
(if any) to make its contents available for
all participants of the project.

New file default head comment Specify the text that will be displayed in
the generated C++ files.

Recognize free comments as doc If this option is checked, the Javadoc
comments will be recognized.

C++ dialect support Select a C++ dialect from the list. The
possible options are: GNU, MS, or pure
C++.

Add CDT features to project If this option is checked, CDT features become available in the project. You can
access these features in the project properties dialog.

Related Procedures

Creating a Project

Related Reference

C++ Projects

771

New project Wizard IDL Language-Specific Options
File New Project Modeling IDL Modeling Project

Access the properties for your existing project via Project Properties or Project context menu Properties.

Tab Description
Project Source Path Use this tab to define projects paths.

Use as a source folder Use this button to add the selected package
to the build path. Add the folder
corresponding to the package to the build
path if the package is the root of packages
and source files. Entries on the build path
are visible to the compiler and used for
building.

Remove from build path Children of the folder will not be seen by the
compiler anymore and will not be included
when building the project.

Toggle Read-Only Status Use this button to make selected roots read-
only or to clear the read-only attribute.

Make Default Root Use this button to choose the selected folder
as the default root. This root is used as a
target container when automatically
creating new files.

Exclude/Include Use these alternative buttons to make the
folder contents invisible or visible to the
compiler.

Configure inclusion and exclusion
filters

Use this button to create the inclusion and
exclusion filters instead of including and
excluding each folder or file manually.

Link additional source to project Use this button to open the Link Additional
Source dialog and add the sources that
reside outside of the project.

Include Paths Use this tab to include search paths to the project.

Include search paths Folders in this area are included in the search path.
Add Click this button to add a folder to the project search path.

Enter the path to the text field, or use the Browse button to
locate a specific folder.

Edit Click this button to modify the include folder.
Remove Click this button to delete the selected folder from the path.

IDL Processing Settings Use this tab to define IDL-specific settings.

Preinclude file name Specify the name of the preinclude file (if any) to
make its contents available for all participants of
the project.

Show typedefs as classes If this option is checked, typedefs display as
classes in diagrams.

Skip standard includes If this option is checked, standard includes are
ignored.

Show natives as classes If this option is checked, all types marked as
natives display as classes in diagrams.

Rename file when renaming class If this option is checked, the container file is
renamed together with its class.

772

Warn about not found include files If this option is checked, a warning is displayed
for the missing files.

Use preprocessor If this option is checked, the existing macros are
opened and includes are attached.

Predefined macros Specify the list of predefined macros that will be
available for the whole project.

Copy non-doc comments If this option is checked, free comments are
copied or moved together with the elements
located next to them.

Recognize free comments as doc If this option is checked, the Javadoc comments
will be recognized.

Related Procedures

Creating a Project

773

New project Wizard Data Modeling Specific Options
File New Project Modeling Data Modeling Project

Access the properties for your existing project via Project Properties or Project context menu Properties.

Option Description
Server Choose the target database server to which the physical data model is bound.
Default schema If this option is checked, the default schema with the specified name will be created during project

creation.

If this option is not checked, the project will be created without a schema. You can add a schema
later using the New command of the project context menu.

Schema name This field is only available when the Default schema option is checked. Use this text field to
specify the name of the default schema.

Related Procedures

Creating a Data Modeling Project

774

Convert MDL Wizard
Use this wizard to create a design project around an existing IBM Rational Rose (MDL) model. The wizard is invoked
by the Design Projects Convert from MDL template of the New Project dialog box.

Paths section

Button Description
Add Adds one model file to the Paths section. Press this button to open the Select Model File dialog box,

navigate to the desired model file and click Open.
Add Folder Adds all model files in the selected folder. Press this button to open the Browse for Folder dialog

box, navigate to the desired folder that contains the model files and click OK.
Remove Press this button to delete the selected entry from the Paths section.
Remove all Press this button to delete all model files from the Paths section.

Options section

Option Description
Scale factor Specify the element dimensions coefficient. By default, the scale factor is 0.3.
Convert Rose default colors If this option is checked, the default Rational Rose will be replaced with the

default Together colors.
Preserve diagram nodes bounds If this option is checked, user-defined bounds are preserved in the resulting

diagrams. Otherwise, the default values are applied.
Convert Rose actors This options enables you to choose mapping for the Rose classes with actor-

like stereotypes (Actor, Business Actor, Business Worker, Physical Worker). If
the option is checked, the Rose actors are mapped to Together actors. If the
option is not checked, the Rose actors are mapped to the classes with the Actor
stereotype.

Related Procedures

Importing a Project in IBM Rational Rose (MDL) Format

Related Reference

Together Projects

775

Import Together Project Wizard
File Import Modeling Together Project

Use this dialog box to migrate a legacy Together project to the current version of Together.

Migrate legacy Together project to Together <version>
Specify the Together project file and select the migrations type.

Item Description
Project Path Click the Browse button to navigate to a specific source project.
Diagram folders This read-only area displays the folders of the legacy project that contain

diagrams.
Design elements storage policy Use the radio-buttons in this section to define how to handle the design elements

(as standalone or as file mates).

The same as in the original project If this option is selected, the settings of
the original project are preserved. The
existing standalone design elements
remain standalone. The new design
elements are created according to the
project settings.

Force creating design elements in
separate files

If this option is selected, all existing
design elements are converted to
standalone. All new design elements
are created as standalone.

Migration type Choose one of the possible ways to process the project roots.

Merge all roots contents into the new
project

Click this radio-button to create a
single project from a multi-rooted
source project.

Create a separate project for each
root

Click this radio-button to create a
Together project for each root.

Merged project name
This page will be displayed if the Merge all roots contents into the new project option is selected.

Item Description
Project name Enter the name of the resulting project. The default project name is constructed from the names

of the last two folders of the source project file location.

Create a set of Together <version> projects
This page will be displayed if the Create a separate project for each root option is selected.

Item Description
Root location Displays the list of roots of the source project.
Together <version> project name Displays the default name of the resulting project for the selected root. The

default name is constructed from the package prefix, if any. If there is no

776

package prefix, the project name is created from the names of the last two
folders of the root location. Edit the project name as required.

Content type Displays information about the type of contents in the selected root (design
files or source code).

Diagram format Displays information about the diagram format in the selected root, if any.
Decision Select the way to handle information of the selected root. If the root contains

design files, you can either copy them to the target location or skip the root. If
the root contains source code files, you have the choice to copy it as is, copy
and convert it to the design language, or skip the root.

Master project
This page is displayed when multiple projects are created.

Item Description
Master Project Name Specify the name of the master project that contains references to all projects created in

the course of migration. The default name of the master project is based on the source
project name.

The master project is created to demonstrate the contents and structure of the source
project. It is read-only and not intended for editing. Use the real projects to create or edit
contents, and establish dependencies.

Related Concepts

Together Interoperability and Migration

Related Procedures

Importing Legacy Projects

777

Preferences
In This Section

Together Preferences
This topic provides general information about Together-related preferences.

Generate Documentation Preferences
Describes the options for generating documentation.

Modeling Preferences
Use these preferences to change startup, deletion, error reporting, ignored folders, and team sharing
options.

Modeling Resources Team Preferences
Use these preferences to change the team sharing options for modeling resources.

XML
The XML preferences enable you to customize XML Editor options.

XSL
The XSL preferences enable you to customize XSL Editor and Run/Debug options.

778

Together Preferences
Window Preferences

The following pages of the Preference dialog enable you to modify the basic Together settings.

Tip: Some preference pages let you use keyboard shortcuts to set preferences. If you see a label with an underlined
letter, you can use ALT + the underlined letter (for example, ALT + K) to quickly set the preference.

Generate Documentation Preferences
Use the Generate Documentation node to define options for documentation generated by Together.

Requirements Preferences
Use the Requirements node to customize global requirements management options for the products integrated
with Together.

Modeling Preferences
On the Modeling page you can change deletion, ignored folders, and team sharing preferences.

Restore/Apply Buttons
All of the Together Preference dialogs have the following buttons:

Item Description
Restore Defaults Restores default selections for this dialog.
Apply Applies selections made in this dialog.

Related Reference

Generate Documentation Preferences
Preferences

779

Generate Documentation Preferences
Window Preferences Generate Documentation

This node includes the following groups of options:

♦ Diagram Image Rotation

♦ Generate HTML

♦ HTML Output Options

♦ RTF Output Options

Related Concepts

Documentation Generation Overview

Related Reference

Diagram Image Rotation
Generate HTML Preferences
HTML Output Options
RTF Output Options
Preferences

780

Diagram Image Rotation
Window Preferences Generate Documentation Diagram Image Rotation

This node includes the following options:

Option/Button Description
None If this option is checked, the diagram image orientation is preserved.
90° If this option is checked, the diagram image is rotated 90 degrees clockwise.
180° If this option is checked, the diagram image is rotated 180 degrees.
270° If this option is checked, the diagram image is rotated 270 degrees clockwise.

Related Reference

Generate HTML Preferences

781

Generate HTML Preferences
Window Preferences Generate Documentation Generate HTML

This node includes the following options:

Generate HTML

Option/Button Description
Javadoc style If this option is checked, the generated output corresponds to the Javadoc style (without

navigation tree and diagrams).
Process line breaks If this option is checked, line breaks are preserved.

Include Classes and Members options

Option/Button Description
public If this option is checked, elements with the public visibility modifier are included in the generated

documentation.
protected If this option is checked, elements with the protected visibility modifier are included in the generated

documentation.
private If this option is checked, elements with the private visibility modifier are included in the generated

documentation.
package If this option is checked, elements with the package visibility modifier are included in the generated

documentation.
deprecated If this option is checked, the deprecated elements are included in the generated documentation.

Include Tags options

Option/Button Description
@author If this option is checked, the @author tag is included in the generated documentation.
@version If this option is checked, the @version tag is included in the generated documentation.
@param If this option is checked, the @param tag is included in the generated documentation.
@return If this option is checked, the @return tag is included in the generated documentation.
@see If this option is checked, the @see tag is included in the generated documentation.
@since If this option is checked, the @since tag is included in the generated documentation.
@throws If this option is checked, the @throws tag is included in the generated documentation.
User-defined tags If this option is checked, the user-defined tags are included in the generated documentation.

Javadoc options

Option/Button Description
Window Title Enter the window title.
Doc Title Enter the title of the generated documentation.
Header Enter the string that will be displayed in the header of each page of the generated

output.

782

Footer Enter the string that will be displayed in the footer of each page of the generated
output.

Bottom Enter the string that will be displayed at the bottom of each page.
Generate Tree If this option is checked, the navigation tree is generated.
Generate Index If this option is checked, index is generated.
Split index If this option is checked, the index file is split into parts in alphabetical order.
Generate Use If this option is checked, a table that shows usages of each class is included in the

generated output.
Generate Deprecated List If this option is checked, the list of deprecated elements is included in the generated

output.
Generate Help If this option is checked, a page that will be displayed on pressing the Help hyperlink

is generated.
Generate Navigation bar If this option is checked, a navigation bar is generated.
Stylesheet File Specify stylesheet file.
Overview File Specify path to a file that will be included in the generated documentation. A link to

the overview file is placed at the top of the JavaDoc frame.

Related Concepts

Documentation Generation Overview

Related Reference

Generate Documentation Preferences
Preferences

783

HTML Output Options
Window Preferences Generate Documentation HTML Output Options

This node includes the following options:

Option/Button Description
Process line breaks If this option is checked, line breaks are preserved.

Related Reference

Generate HTML Preferences

784

RTF Output Options
Window Preferences Generate Documentation RTF Output Options

This node includes the following options:

Option/Button Description
Render HTML tags Check to translate HTML tags into appropriately formatted text in the printed

documentation. The following tags are supported: ,<i>,<u>,<h1> — <h6>,
<code>, <tt>, , , <pre>, <p>,
, , ,

RTF Process line breaks Check to preserve line breaks even if the Render HTML tags is checked on.
Store graphics in RTF Check to embed all the graphics in a single RTF document.
Diagram image format Select EMF or GIF format.
Color representation Select RGB color or 16-bit color.
Included text formatting Select whether to preserve the original formatting or apply the one from the Formatting

template that is specified in the first option.

Related Concepts

Documentation Generation Overview

Related Reference

Generate HTML Preferences
Preferences

785

Modeling Preferences
Window Preferences Modeling

Use these preferences to change startup, deletion, error reporting, ignored folders, and team sharing options.

Copy/Paste Tab

Option Description
Show warning about relationships when elements
copied

Before elements are pasted into another package,
prompts for a confirmation that relationships between
elements will be mapped to the target package. This
option is On by default.

Deletion Tab

Option Description
Show confirmation when element is about to be deleted Prompts for a confirmation before an element is deleted.
On pressing 'Delete' key always delete from:
Model Element is deleted from both model and view.
View only Element is deleted from view, but remains in model.

Ignored Folders Tab
Use this tab to specify the folders you want Together to ignore. Usually this list contains CVS, bin, lib and doc
directories. Ignored folders are not parsed, so no diagram will be generated for them.

Button Description
Add Opens the name field so you can enter a new folder.
Remove Removes the selected folder.

Referenced projects Tab

Option Description
Don't show referenced projects content under referring
project node.

When this option is On, the content of the referenced
project is not shown in the model tree of referring project.
Note that in this mode it is impossible to copy content
form the referenced project to referring one. This option
is Off by default.

Team/Compare Tab
Use this tab to specify how you want to work with Team/Compare menus and version control in the Model Navigator.

786

Option Description
Include diagram folders in Team/Compare This option has an impact when the design and Java roots differ.

When it is checked, Team/Compare (context menu) actions respect
both folders (merged, seen as a single model node known as
package in the Model Navigator). When it is unchecked, only folders
from Java root are considered.

If you do not store diagram elements in CVS, you should leave this
option unchecked. When your diagram folders are in CVS alongside
the folders from the Java root and you want to synchronize both of
them with one action, you should check this option. A package in the
Model Navigator is a logical view of two physical locations. One is the
real directory in the project and the other is the directory under the
model directory (named Together Model by default) where the
Together diagrams are stored (these are updated automatically by
Together and probably do not need to be shared).

Default state is Off

Related Procedures

Diagrams

Related Reference

Preferences

787

Business Process Preferences
PreferencesBP

Use these preferences to change how Together checks types of events and activities in BPMN diagrams.

Check Activity and Event Type Options

Option/Button Description
Auto update inconsistent element types on the diagram If this option is selected, Together automatically fixes the

type of the element when it becomes inconsistent. No
coloring. The suggested event type is defined by the
element input and output links. For Tasks, the presence
of children is taken into account: if a Task contains at
least one child, it automatically becomes an Embedded
SubProcess. Auto update provides the fastest way to
create a valid business process.

Highlight elements with inconsistent type If this option is selected, the elements of inconsistent
types are colored in red in the Diagram editor. This is a
default option.

Prohibit creation of incorrect Sequence Flow links
(between events only)

If this option is selected, Together does not allow events
to be connected in the wrong order using a Sequence
Flow link. No coloring.

Validation Only If this option is selected, Together does not check events
and activities as you draw a diagram. Provides
constraint-free modeling, only with validation on. No
checks beyond trivial ones (for example, you will not be
able to create elements within containers that are not
supposed to hold them). Constraint (specification
compliance) checks are manual, using one of the
Validate commands. No coloring.

Diagram Coloring

Option/Button Description
Highlighting color Opens the color chooser dialog to define a color to highlight invalid elements.
Color group Uses “color coding” for group. Group color defines the background color for the elements it

contains.

Simulation

Option/Button Description
Inspector label for cost Label of the property in the Properties view.
Report label for cost Label that is used instead of cost in the simulation report. For example, if you type

CostName in this field, the following names will be shown in the report: "Total CostName",
"Total work CostName", and so forth.

788

Simulation Coloring

Option/Button Description
Active status color Color of the currently executing item on a diagram.
Wait status color Color of the element waiting for an event (for example, message arrival) after which the

element becomes active. Execution order is defined by the sequence flow links and if
execution “pointer” does not reach a diagram element, the element is neither active nor
waiting.

Related Concepts

Business Process Modeling

Related Procedures

Together Business Process Modeling

Related Reference

Preferences

789

Data Modeling Preferences
Window Preferences Modeling Data Modeling

Use these preferences to change database diagram notation and diagram display options.

Option Description
Default diagram notation Select a diagram notation (IDEF1x or IE) you want to use in physical data

modeling.
Show icon for top-level elements If this option is selected, top-level diagram elements are decorated with icons

in the Diagram Editor .
Show owner If this option is selected, the owner property is displayed in the name labels of

tables and views in the Diagram Editor .
Show attribute datatype If this option is selected, the value of the attribute type is displayed in the

Diagram Editor .
Show attribute NOT NULL If this option is selected, the value of the attribute not null is displayed in the

Diagram Editor .

Related Concepts

Data Modeling

Related Procedures

Data Modeling Procedures

Related Reference

Preferences

790

Diagram Preferences
Window Preferences Modeling Diagram

Use these preferences to change how Together displays your diagrams:

Option/Button Description
Diagram Font Lists the current diagram font and size settings.

Change Click to open the system font dialog and change the font.
Diagram toolbar visible If this option is selected, the diagram toolbar is displayed

in the Diagram Editor .
Diagram background Select to change the diagram background color.
Antialiased graphics If this option is selected, the diagram elements and

graphics on the diagrams are displayed as anti-aliased.
Antialiased text If this option is selected, the text on the diagrams are

displayed as anti-aliased.
Show detailed feedback If this option is selected, a translucent trace of the

elements are displayed on drag-and-drop.
Rulers, Grid and Snapping Show grid Displays a background grid in the Diagram Editor .

Snap to grid Diagram elements, when dragged, will lock in place at the
nearest grid point.

Snap to geometry Snaps selected objects for precise placement by aligning
them with guides and other objects.

Show snap feedback Highlights guides and grids when an object aligns with
them.

Grid width Determines width, in pixels, between grid points in a row.
Grid height Determines the height, in pixels, between grid points in a

column.
Grid color Click the button to define the grid color.
Grid type Determines the grid type (line or dotted).
Show rulers Displays rulers with selected units.
Store ruler guides Saves created guides in your project upon exiting.
Ruler units Sets units of the rulers. You can select from centimeters,

inches or pixels.
Palette Show imported categories Enables you to show the imported categories if

required, or hide them if your diagram becomes
overloaded.

Other Show projection bars If this option is checked, projection bars
are displayed for the elements that can
display their projections (Activity
Partitions, Objects or Lifelines on
Sequence diagrams, BPMN pool).

Show chooser when link target is
invalid

If this option is checked, the Select target
for the link dialog is displayed when you
drop the link on an invalid target location
(for example, on the diagram
background).

Copy image along with diagram
elements

If this option is checked, images of the
copied diagram elements are also placed
to the clipboard. You can paste these
images to the other applications. In the
large diagrams, this can slow down
performance.

791

Synchronize source code editor to
diagram

If this option is checked, the Editor
highlights source code of the element
selected in the diagram. Synchronization
works for the elements already opened in
the Editor.

If layout is changed on diagram open With Together 2008 R3 it is possible to
choose whether or not the changes to
diagram layouts that are made
automatically at open time should be
saved.

Save - Changes are silently saved
(standard behavior up to version Together
2008 R2 SP1).

Ignore - Changes are indicated with '*' in
the name of diagram editor but not saved
even when diagram is closed.

Note: With the later choice any change to
the diagram or underlying model explicitly
initiated by the user will enforce saving of
the changes (and the '*' marker will
disappear). See Opening a Diagram
procedure for details.

Tip: These selections become active on the current diagram when you click Apply.

Related Concepts

Together Diagram Overview

Related Procedures

Diagrams
Opening a Diagram

Related Reference

Preferences

792

EMF Model Compare Preferences
Window Preferences Modeling EMF Model Compare

Use these preferences to change how Together compares models.

EMF Model Compare
Use the EMF Model Compare tab to set global model comparison options.

Item Description
Initially show containment references in difference
overview

Specifies if you want to display references to
containment features into the Structure Compare area
of the Compare Editor.

ID Features
Use the ID Features tab to choose ID (key) EMF features for model comparison. By default, the name feature is set
as ID throughout all metamodels (where applicable).

Item Description
Metamodels Displays the hierarchy of EMF metamodel classes with features that will be used as IDs

during model comparison.
Home Navigates to the root of the hierarchy.
Back Navigates to the previously selected node.
Go Into Navigates one level down from the selected node. The selected node becomes a root

of the displayed view tree.
Features of class Displays the list of features for the selected class. The checked features will be used as

IDs during model comparison.
Reset local preferences Resets ID features of the currently selected class to the default state.
Go To “Defined in” Navigates to the feature where the selected containment feature is defined.

Ignored Features
Use the Ignored Features tab to choose EMF features that you want to ignore during model comparison.

Item Description
Metamodels Displays the hierarchy of EMF metamodel classes with features that will be ignored

during model comparison.
Home Navigates to the root of the hierarchy.
Back Navigates to the previously selected node.
Go Into Navigates one level down from the selected node. The selected node becomes a root

of the displayed view tree.
Features of class Displays the list of features for the selected class. The checked features will be ignored

during model comparison.
Reset local preferences Resets ignored features of the currently selected class to the default state.
Go To “Defined in” Navigates to the feature where the selected containment feature is defined.

793

EMF Model File Compare
Use the EMF Model File Compare tab to set model file comparison options.

Item Description
Use Model File Compare Specifies if you want to enable the Model File compare feature.

Related Procedures

Comparing Models

Related Reference

Preferences

794

Export to UML2Tools Preferences
Window Preferences Modeling Export to UML 2 Tools

Use these preferences to change the options for exporting modeling projects to UML version 2.1.

Option Description
Auto size converted nodes if size has not been
modified by user.

Nodes that have not had their sizes modified in the legacy
version will be automatically resized to a preferred size after
the conversion. UML2Tools also has a different default font
size from the legacy version. This preference sets the name
label of converted node to nontruncated.

Always overwrite folder for diagram models. If this preference is checked, the converter overwrites all
diagrams silently. When the converter detects that the
target folder is not empty, an alert is generated.

Always overwrite folder for model hyperlinks and
requirement traces.

If this preference is checked, the converter overwrites all
model hyperlinks and requirement traces. When the
converter detects that the target folder is not empty, an alert
is generated.

Invert Property's isUnique attribute meaning. The default value of the MultiplicityElement's isUnique
property is false in the legacy version and true in
UML2Tools. When the converter detects that the value of
the property is false, UML2T displays the corresponding
label. This preference, on by default, avoids label
complications by inverting the property labels to the
UML2Tools default value for users who have never set the
value in the legacy version.

Replace link name with its label. This preference, on by default, replaces the name of legacy
links that have a label property set with the value of the
property.

Ignore synchronized package diagrams. If this preference is checked, the converter overwrites all
diagrams silently. When the converter detects that the
target folder is not empty, an alert is generated. If this
preference is checked, the converter prevents the diagram
with the package contents from being converted.

Skip lnk* properties in source code elements. When project links between source code elements are
exported, the source association end gets duplicated. This
preference, on by default, prevents this duplication by
skipping the association's lnk* property during export.

Related Concepts

Model Import and Export Overview

795

Interaction Diagrams 2.0 Preferences
Window Preferences Modeling Interaction Diagrams 2.0

Use these preferences to customize view and editing options for the sequence and communication UML 2.0.
diagrams.

Option/Button Description
Show Sequence Numbers If this option is selected, the sequence numbers are displayed in the

Diagram Editor .
Invocations If this option is selected, method invocations are displayed in the Diagram

Editor .
Edit Delete preserves content of frame If this option is selected, the deletion of a

diagram element does not affect the contents
of the deleted frame.

Color Combined Fragments If this option is selected, combined fragments
display in color.

Show “Select signature” dialog on message
creation

If this option is selected, the Select signature
dialog is displayed when a message is drawn
to a lifeline. If the lifeline does not have any
associated type, or this type does not contain
any operation, the dialog is not displayed.

Allow asynchronous call message to be straight If this option is selected, the asynchronous call
messages are drawn at the right angle to the
target lifeline.

Related Concepts

About OCL Support in Together

Related Reference

Preferences

796

Java Preferences
Window Preferences Modeling Java

Use these preferences to define how Together handles your Java code.

Java tab
This tab contains Java-specific modeling options.

Option Description
Source code This group contains the following options:

Update diagram immediately on
changes in the text editor

If this option is checked, code
changes made in the editor are
reflected in the diagram without
saving or rebuilding.

Save resources automatically on
changes in the diagram

If this option is checked, changes
made to diagram resources are
saved automatically and
immediately.

Optimize imports If this option is checked, import
statements are automatically
optimized.

Call refactoring on rename of
Java elements with default
names (Class1, attribute1, etc.)

Renaming Java elements causes
refactoring throughout the
project.

Format source code on any
changes

If this option is checked, source
code is formatted upon making
changes.

Associations This group contains the following options:

Association link name
prefix

Specifies the letters to precede the field
identifier in your code when you create
links.

Show associations as
attribute

The following options are available:

All Shows all attributes
representing association
links.

None Shows no attributes
representing association
links.

Automatic Does not show attributes
representing association
links that have names
starting with lnk (or
whatever prefix you
specify in the Association
link name prefix field).
Does show all other
attributes representing
association links.

Support comment-based associations
(requires restart)

Enables Java comment-based associations. You can add comments to
Java code to complete the concept that you are modeling, thereby

797

providing the information needed to properly render the model from
source code. You must restart Together for this change to take effect.

Link deletion This group contains the following options:

Delete attributes on deletion of
target types

If this option is checked,
references are deleted from code
when the target type is deleted.

On deleting types, update
extends and implements clauses

If this option is checked, extends
and implements clauses are
updated when changes are made
to the associated element.

On deleting types, update
comment-based dependency
links

If this option is checked,
comment-based dependency
links are updated when changes
are made to the associated
element.

Java Bean Properties Support This group contains the following options:

Recognize Java Bean Properties If this option is checked, Together
recognizes Java Bean properties.

Hide Java Bean Properties
Participants

If this option is checked, Java
Bean properties participants are
hidden.

Name templates tab
In this tab you can define templates for the names of the new Java elements.

Option Description
Class Sets the default name for a new class element.
Interface Sets the default name for a new interface element.
Field Sets the default name for a new field element.
InnerClass Sets the default name for a new inner class element.
InnerInterface Sets the default name for a new inner interface element.
Method Sets the default name for a new method element.
Enum Sets the default name for a new Enum element.
Enum constant Sets the default name for a new Enum constant element.

Members order tab
In this tab you can choose the order in which members are displayed in a diagram.

Option Description
Order of creation of the new members
Member order Sets the display order for members. The default order is:

Field — Constructor — Method — Inner Class —
Inner Interface.

Visibility order Sets the visibility display order for code elements. The
default order is: Public— Package — Local Protected
— Private.

Up Down Click Up and Down to set visibility and member ordering.

798

Miscellaneous
Maximum width of class element Defines the maximum width of class elements in pixels.
Sort class elements alphabetically inside compartments If selected, the class elements are sorted alphabetically

inside compartments.
Open source editors If selected, the Java editor opens when an element is

added to the diagram.

Related Concepts

Roundtrip Engineering Overview

Related Procedures

Creating and Editing Properties

799

Layout Preferences
Window Preferences Modeling Layout

Use these preferences to define the alignment of diagram elements.

Option/Button Description
Links Layout Determines the shape of the links (direct or rectilinear).
Algorithm Click the drop-down arrow to select a layout algorithm. UML diagrams can be thought of as graphs

(with vertices and edges). Therefore, graph data structures (algorithms) can be applied to the UML
diagrams for diagram layout. The various algorithms and their optional settings are described
below. The algorithm that you specify executes when you lay out your diagram. See the detailed
descriptions of the Algorithm-specific options in the subsections that follow.

Recursive This option is available for all layout algorithms. Selecting this option lets you lay out all subelements
within containers while laying out diagram nodes.

Algorithm-specific options are described in the following subsections.

<Autoselect>

Option/Button Description
<autoselect> Each of the layout algorithms contains internal information about the types of diagrams it will work

with and the numeric characteristics for the final quality of the produced layout when applied to
each applicable diagram type. Several algorithms can be available for the same diagram type. The
<autoselect> option uses such internal information and picks the best layout algorithm for the
current diagram type.

Hierarchical
The Hierarchical algorithm originates from the Sugiyama algorithm. The algorithm draws the UML diagram
hierarchically according to the preferences that you select.

Option/Button Description
Vertical and Horizontal Minimal distance between elements in pixels. Here you can specify Vertical and

Horizontal distance options.
Justification This option defines the alignment of classes. The Justification setting is dependent on

the Inheritance setting. Select from the following:

Top If the Inheritance option is set as Vertical, then all nodes in a column are
aligned at the left of the column. If the Inheritance option is set as Horizontal,
then all nodes in a row are aligned at the top of the row.

Center If the Inheritance option is set as Vertical, then all nodes in a column are
aligned at the center of the column. If the Inheritance option is set as
Horizontal, then all nodes in a row are aligned at the center of the row.

Bottom If the Inheritance option is set as Vertical, then all nodes in a column are
aligned at the right of the column. If the Inheritance option is set as
Horizontal, then all nodes in a row are aligned at the bottom of the row.

Layer ordering The heuristics are used to sort nodes within each layer to minimize edge-crossings.

Barycenter The Barycenter heuristic reorders the nodes on node N according to the
barycenter weight. The weight of node N is calculated as a simple
average of all its successors/predecessors relative coordinates.

800

Median The Median heuristic reorders the nodes on node N according to the
median weight. The weight of node N is calculated as a simple average
of this nodes' relative positions dealing only with two central successors/
predecessors coordinates.

Hybrid The Hybrid heuristic combines the Median and Barycenter heuristics
with the Proportion (see below) setting.

Inheritance This option defines how classes are aligned with each other if they are connected by
an inheritance link.

Horizontal Classes connected by inheritance are aligned horizontally
Vertical Classes connected by inheritance are aligned vertically

Proportion Used in conjunction with the Hybrid ordering option. The optimal setting for this value
is 0.7.

Tree
The algorithm draws the given graph in a tree layout according to its maximum spanning-tree.

Option/Button Description
Process non tree edges If this option is selected, non-tree edges are bent to fit into the diagram layout.
Horizontal and Vertical Minimal distance between elements in pixels. Here you can specify Vertical and

Horizontal distance options.
Justification This option defines the alignment of elements. The Justification setting is dependent on

the Hierarchy direction setting. Select from the following:

Top If the Hierarchy direction option is set to Vertical, then all nodes in a column
are aligned at the left of the column. If the Hierarchy direction option is set
to Horizontal, then all nodes in a row are aligned at the top of the row.

Center If the Hierarchy direction option is set to Vertical, then all nodes in a column
are aligned at the center of the column. If the Hierarchy direction option is
set to Horizontal, then all nodes in a row are aligned at the center of the row.

Bottom If the Hierarchy direction option is set to Vertical, then all nodes in a column
are aligned at the right of the column. If the Hierarchy direction option is set
to Horizontal, then all nodes in a row are aligned at the bottom of the row.

Hierarchy direction This option defines the hierarchy direction of the elements

Horizontal Elements are aligned horizontally.
Vertical Elements are aligned vertically.

Reverse hierarchy Last in the hierarchy elements are laid out first in the diagram.

Orthogonal
The Orthogonal algorithm uses heuristics to distribute diagram nodes within a lattice.

Option/Button Description
Node placement strategy There are three strategies for node placement: Tree, Balanced, and Smart.

Tree The Tree node placement strategy creates a spanning-tree diagram
layout. The spanning-tree for the given graph is calculated and
diagram nodes are placed on the lattice to minimize the tree edges
length. This minimizes the distance between nodes that are linked with
a tree-edge.

801

Balanced The balanced node placement strategy uses a balanced ordering of
the vertices of the graph as a starting point. Balanced means that the
neighbors of each vertex V are as evenly distributed to the left and
right of V as possible.

Smart The Smart node placement strategy sorts all vertices according to the
in/out degrees for each vertex and fills the lattice starting from the
center with the vertices with the greatest degree.

Distance between elements Specifies the minimum distance between diagram elements. Distance is in pixels.

Spring Embedder
The Spring Embedder algorithm is force-directed layout algorithms that model the input graph as a system of forces
and try to find a minimum energy configuration of this system. All edges are drawn as straight lines. This type of
layout is especially suitable for projects with numerous diagram elements based on large amount of source code.
When you lay out the graph according to the Spring Embedder layout algorithm, the program will simulate the graph
as a physical model (masses and springs) and subject it to physical forces. The unnecessarily long edges will be
the most tense and will try to contract the most. When the nodes and edges have pushed and pulled themselves to
equilibrium, you will have a geometric representation of the graph.

Option/Button Description
Movement Specify the nodes movement factor. The more value you specify, the more distance will be between

the nodes in the final graph. If you specify 0 as the movement factor, you will get a random layout
of the nodes.

Spring force Specify the rigidity of the springs. The greater value you specify, the less the length of edges will
be in the final graph. Tip: Lay out your graph with the default spring settings first and then edit the
spring options if necessary.

Together
The following layout options are used in the legacy versions of Together.

Option/Button Description
Layout inheritance This option defines how classes are aligned with each other if they are connected by an

inheritance link. Select either:

From left to right Classes connected by inheritance are aligned horizontally from left to
right.

From top to bottom Classes connected by inheritance are aligned vertically from top to
bottom.

From right to left Classes connected by inheritance are aligned horizontally from right
to left.

From bottom to top Classes connected by inheritance are aligned vertically from bottom
to top.

Layout justification This option defines the alignment of classes. The Justification setting depends on the
Inheritance setting. The elements are aligned as summarized in the following table.

Inheritance Justification
Left-right Top Right of the column

Center Center of the column
Bottom Left of the column

Right-left Top Left of the column

802

Center Center of the column
Bottom Right of the column

Top-bottom Top Bottom of the row
Center Center of the row
Bottom Top of the row

Bottom-top Top Top of the row
Center Center of the row
Bottom Bottom of the row

Related Reference

Preferences

803

OCL
Window Preferences Modeling OCL

Use the OCL preferences to specify auxiliary OCL operations and other OCL settings.

OCL Metamodels
Use the OCL Metamodels tab of the OCL preferences to choose which metamodels you want to use with OCL.
The tab contains the list of all available metamodels; the required Together metamodels are listed under the
Together node:

♦ UML 1.4 Project

♦ UML 2.0 Project

♦ Business Process Modeling Project

♦ Database Modeling Project

Warning: Do not deselect the required Together metamodels.

The user can select any metamodel and thus make it visible to the OCL processor. This means that metaclasses of
the selected metamodel can be used as the contexts for the OCL operations created in the OCL Operations tab.

It is not possible to use the arbitrary metamodels as the contexts for the audits, metrics, documentation generation
expressions and search, but you can use the features and operations of these metaclasses in the bodies of the
audits and metrics.

For example, the user can create a metamodel for a profile. This metamodel is displayed in the list of available
metamodels. If this metamodel is selected, it becomes possible to create operations with the respective context and
create audits that will evaluate element properties specific for the selected profile.

OCL Operations Options
Use the OCL Operations Options tab of the OCL preferences to define custom OCL operations that you want to
use in OCL queries throughout Together—in audits, metrics, search expressions, gendoc templates, and so on. As
an example, you can use the predefined set of OCL operations created for Together audits. OCL operations are
defined in the standard way, using ocl def: expressions.

Option Description
Name Displays names of auxiliary OCL operations defined upon the Borland metamodel.
New Opens the Edit Operation dialog box, which lets you choose the context and provide the body of a new

operation.
Remove Removes the selected operation from the list.
Edit Opens the Edit Operation dialog box, which lets you choose the context and edit the body of the

selected operation.
Import... Imports a text file containing auxiliary OCL operations. Use the Export... command to create the file.

Important: During the import, OCL operations defined in the file replace the current list of operations.
Export... Exports the current list of auxiliary OCL operations to the text file with the .oclOperations extension.

804

OCL Library Operations
Use the OCL Library Operations tab of the OCL preferences to view (not edit) the list of signatures of library
operations that have been implemented as native extensions to OCL. The list includes a number of powerful
String operations that are not defined in the OCL specification.

Option Description
Operations Displays a list of auxiliary OCL operations defined for the Borland metamodel in Java libraries.
Select All Checks all operations in the list.
Clear All Unchecks all operations in the list.

For a description of predefined library operations with native OCL extensions, refer to “Predefined OCL Library
Operations.”

Model Names Mappings
Use the Model Names Mappings tab of the OCL preferences to define mappings for keywords and other illegal
symbols or words that you cannot use in OCL expressions directly.

Option Description
Whole name Specifies if you want to apply the mapping rule only to whole words matching the find substring.

Thus, if the substring is "body" and the replacement is "_body", all occurrences of the word "body"
will be replaced by "_body" (but, for example, "mybody" will not).

Substring Defines a find substring. Before validating an OCL expression, if the substring is found in the
expression body, it will be replaced by one defined in the Replacement field. To avoid a naming
conflict, provide replacements for all OCL keywords that can appear in your model elements
names.

Replacement Defines a replace substring.
Select All Checks all operations in the list.
Clear All Unchecks all operations in the list.
New Adds a new empty mapping rule to the list.
Remove Removes the selected mapping rule from the list.
Edit Opens a dialog box that allows you to change the Substring and Replacement values.

Related Concepts

OCL Support

Related Procedures

Working with Custom OCL Operations

Related Reference

Predefined OCL Library Operations
Java Source Generation Preferences

805

Predefined OCL Library Operations
Window Preferences Modeling OCL

Use the OCL Operations Options tab of the OCL preferences to define custom OCL operations to use in OCL
queries. You can also use the following predefined set of OCL operations created for Together audits.

Library Operation Description
OclAny::addStereotypeInstance(instance:
OclAny): OclVoid

Adds a stereotype instance to the model element. For more
information on OCL profile library operations, refer to “EMF API for
Together Profiles.”

OclAny::allInstances(type: OclType): Set
(OclAny)

Returns a Set of all instances of a datatype passed as an argument
contained in the context. For example, model.allInstances
(uml20::classes::Class) collects all classes in the model.

OclAny::getResourceContents(uri:
String): Bag(OclAny)

Returns the contents of a resource created for the given URI string.
See the description of the
org.eclipse.emf.ecore.resource.Resource.Factory.createResource
(URI uri) method in the Eclipse EMF API reference for more
information.

OclAny::getStereotypeInstances():
OrderedSet(OclAny)

Returns all stereotype instances for the context model element. This
operation can retrieve values of custom properties defined in profiles.
The set returned is not live and does not automatically update when
other clients perform changes affecting its contents, or when a profile
is switched on or off for the model. For example,
getStereotypeInstances().oclAsType
(My_Profile::My_Stereotype)->any(true).My_Tag For
more information on OCL profile library operations, refer to “EMF API
for Together Profiles.”

OclAny::isStereotypeApplicable
(stereotype: OclType): Boolean

Checks whether a given stereotype can be applied to the model
element. For more information on OCL profile library operations, refer
to “EMF API for Together Profiles.”

OclAny::removeStereotypeInstances
(instances: OrderedSet(OclAny)): OclVoid

Removes stereotypes instances from the model element. For more
information on OCL profile library operations, refer to “EMF API for
Together Profiles.”

String::endsWith(suffix: String): Boolean Compares the end of a string in a context to a specified suffix. This
operation is similar to the endsWith(String suffix) method of
the java.lang.String class.

String::indexOf(str: String): Integer Searches forward in a string in a context for a substring passed as an
argument. This operation is similar to the indexOf(String str)
method of the java.lang.String class.

String::indexOf(str: String, fromIndex:
Integer): Integer

Starting from the specified index, searches forward in a string in a
context for a substring passed as an argument. This operation is
similar to the indexOf(String str, int fromIndex) method
of the java.lang.String class.

String::lastIndexOf(str: String): Integer Searches backward in a string in a context for a substring passed as
an argument. This operation is similar to the lastIndexOf(String
str) method of the java.lang.String class.

String::lastIndexOf(str: String, fromIndex:
Integer): Integer

Searches backward in a string in a context for a substring passed as
an argument. This operation is similar to the lastIndexOf(String
str, int fromIndex) method of the java.lang.String class.

String::replace(regex: String, with: String):
String

Replaces the first substring of the string in a context that matches the
given regular expression with the given replacement. This operation
is similar to the replaceFirst(String regex, String
replacement) method of the java.lang.String class.

806

String::replaceAll(regex: String, with:
String): String

Replaces each substring of the string in a context that matches the
given regular expression with the given replacement. This operation
is similar to the replaceAll(String regex, String
replacement) method of the java.lang.String class.

String::split(regex: String): Sequence
(String)

The collection of Strings returned by this method contains each
substring of the string in a context that is terminated by another
substring that matches the given regular expression or is terminated
by the end of the string. The substrings in the collection are in the
order in which they occur in this string. This operation is similar to the
split(String regex) method of the java.lang.String class.

String::split(regex: String, limit: Integer):
Sequence(String)

The collection of Strings returned by this method contains each
substring of the string in a context that is terminated by another
substring that matches the given regular expression or is terminated
by the end of the string. The substrings in the collection are in the
order in which they occur in this string. The limit parameter controls
the number of times the pattern is applied. This operation is similar to
the split(String regex, int limit) method of the
java.lang.String class.

String::startsWith(prefix: String): Boolean Compares the start of a string in a context to a specified prefix. This
operation is similar to the startsWith(String prefix) method
of the java.lang.String class.

String::startsWith(prefix: String, toffset:
Integer): Boolean

Compares the start of a string in a context to a specified prefix. This
operation is similar to the startsWith(String prefix, int
toffset) method of the java.lang.String class.

String::toLowerCase(): String Converts all of the characters in the string in a context to lowercase
using the rules of the default locale. This operation is similar to the
toLowerCase() method of the java.lang.String class.

String::toUpperCase(): String Converts all of the characters in the string in a context to uppercase
using the rules of the default locale. This operation is similar to the
toUpperCase() method of the java.lang.String class.

String::trim(): String Returns a copy of the string in a context, with leading and trailing white
space omitted. This operation is similar to the trim() method of the
java.lang.String class.

uml::kernel::Element::getIncomingLinks
():Set(uml::together::BinaryLink)

Returns a collection (Set) of all links in the model whose target is an
element in a context. For example, the following expression returns a
Set of all incoming associations of an element:
self.getIncomingLinks()->select(oclIsTypeOf
(uml20::kernel::KernelAssociation))

uml::kernel::Element::isAssignableFrom
(element: uml::kernel::Element): Boolean

Compares the metaclasses of an element in a context with the
element passed as an argument. If the metaclasses are the same, or
if the metaclass of the context element is a superclass of the
argument's metaclass, this operation returns the Boolean value of
true.

Related Reference

EMF API for Together Profiles
QA Source

807

Patterns Preferences
Window Preferences Modeling Patterns

Use the Patterns Preferences to define pattern conversion profiles.

Option Description
Pattern conversion profiles Lists available pattern conversion profiles.
Edit Opens the Edit Transformation Profile dialog box, which lets you change the

selected pattern conversion profile.
Remove Removes the selected pattern conversion profile from the list.
Import... Opens the Import Pattern Conversion Profiles dialog box, which lets you import

one or more profiles stored in the .xml file.
Export... Opens the Export Pattern Conversion Profiles dialog box, which lets you export

one or more profiles to the .xml file.

Related Concepts

Patterns and Templates

Related Procedures

Patterns and Templates

808

Print Preferences
Window Preferences Modeling Print

Use this dialog box to define settings of the printed output.

Option Description
Size and Orientation Paper size Determines the size of the paper to be used. If you set the option to

custom, you can use the Custom Paper Size tab to define the size. Default
size is A4.

Orientation Sets the orientation of the paper. Default orientation is Portrait.
Width (in.) Determines the width, in inches, of the custom paper size. Default value

is 8.5.
Height (in.) Determines the height, in inches, of the custom paper size. Default value

is 11.
Margins (inches) Top (in.) Determines the size of the top margin in inches. Default value is 1

Bottom (in.) Determines the size of the bottom margin in inches. Default value is 1
Left (in.) Determines the size of the left margin in inches. Default value is 1
Right (in.) Determines the size of the right margin in inches. Default value is 1

Header and Footer Print page header Prints the header on each page. The header is a combination of
the diagram's name and the page number. Use the adjacent field
to specify the header text. The macros for this variable (%PAGE%,
%PROJECT%, %ELEMENT%, %DATE%, AND %TIME%), are
defined below.

Default value is On, %PAGE%, %ELEMENT%
Print page footer Prints the footer on each page. The footer is a combination of the

diagram's name and the page number. Use the adjacent field to
specify the footer text. The macros for this variable (%PAGE%, %
PROJECT%, %ELEMENT%, %DATE%, AND %TIME%), are
defined below.

Default value is On, %PAGE%, %ELEMENT%
%PAGE% Page number
%PROJECT% Project name
%ELEMENT% Element name
%DATE% Current date
%TIME% Current time

Diagram Print Options Print zoom Sets the zoom size of the document. This
zoom size and its effect can be seen in the
Preview dialog. This zoom option overrides
any zoom size that may have been set with
Zoom In or Out. The default value is 0.7.

Fit to page Fits the printed material on the paper size
selected.

Print border Switches the border on or off for printing.
Print empty pages Determines whether empty pages are

printed or ignored.
Synchronize with Default Printer Options Click to set Together print options to match

your default printer options.

809

Related Concepts

Together Diagram Overview

Related Procedures

Printing Diagrams

Related Reference

Preferences

810

UML Profiles Preferences
Window Preferences Modeling Profiles

Use these preferences to define a default set of profiles available in your projects.

BPMN Tab

Profile Description
BPEL Modeling Adds BPEL Extensions for BPMN diagram.
BPMN Simulation Adds simulation capabilities.
UML Links Adds UML links for BPMN diagram.

ER Physical Tab
There are no ER Physical default profiles currently available.

UML14 Tab

Profile Description
Business Modeling If selected, the Business Modeling profile is included into the default profile

set. The UML Profile for Business Modeling is an example profile that
describes how UML can be customized for business modeling.

UML in Color If selected, the UML in Color is included into the default profile set. This profile
defines four interconnected archetypes that form a domain neutral
component:

The moment-interval archetype The first archetype in importance is a
moment in or interval of time. It
represents something that one needs
to work with and track for business or
legal reasons that occurs at a
moment in time, or over an interval of
time.

The role archetype The second archetype in importance
is a role. A role is a way of
participation by a person, place, or
thing.

The "catalog-entry-like description"
archetype

The description archetype is a
catalog-entry-like description. It is a
collection of values that apply again
and again. It also provides behavior
across the collection of all things that
correspond to its description.

The "party, place or thing"
archetype.

A party (meaning, a person or an
organization), place or thing is
someone or something who plays
different roles.

Software Development Processes If selected, the Software Development Processes profile is included into the
default profile set. The UML Profile for Software Development Processes is

811

an example profile that is based on the Unified Process for software
engineering.

UML20 Tab

Profile Description
Business Modeling If selected, the Business Modeling profile is included into the default profile

set. The UML Profile for Business Modeling is an example profile that
describes how UML can be customized for business modeling.

ER Logical Diagram Profile If selected, the ER Logical Diagram Profile is included into the default profile
set. This profile is intended for modeling an ER Logical Diagram.

Software Development Processes If selected, the Software Development Processes profile is included into the
default profile set.

Standard EJB Profile If selected, the Standard EJB Profile is included into the default profile set.
The EJB Profile for Standard EJB module complies with specification EJB
2.0.

Standard EJB Profile (ver. 2.1) If selected, the Standard EJB Profile (version 2.1) is included into the default
profile set. EJB profile for Standard EJB module complies with specification
EJB 2.1. In order to work properly, this profile should be used along with the
EJB profile for EJB 2.0 Specification.

UML in Color If selected, the UML in Color profile is included into the default profile set.
WebLogic EJB Extension Profile If selected, the WebLogic EJB Extension Profile is included into the default

profile set. This profile should not be used together with the EJB profile for
EJB 2.1 Specification.

Related Concepts

UML Profiles Basics

Related Reference

UML Profiles Preferences Constraints
UML Profiles Preferences View Management

812

UML Profiles Preferences Constraints
Window Preferences Modeling Profiles Constraints

Use this page to manage constraints to be run on elements if appropriate profiles are applied to the project.

Item Description
BPMN, ER Physical, UML 1.4, UML 2.0 Each tab corresponds to one of the supported metamodels and contains

the list of profiles with their constraints.

If a constraint is checked, it will be applied to the model elements by
the Run Profile Constraints command, after applying the parent
profile.

Checking or clearing a profile node results in checking or clearing all the
nested constraints.

Select All Checks all profile and constraint nodes in the current tab.
Deselect All Clears all profile and constraint nodes in the current tab.

Related Concepts

UML Profiles Basics

Related Procedures

Verifying a Model Against Profile Constraints

813

UML Profiles Preferences View Management
Window Preferences Modeling Profiles View Management

Use this page to manage showing and hiding stereotypes after applying profiles to the projects.

Item Description
BPMN, ER Physical, UML 1.4, UML 2.0 Each tab corresponds to one of the supported metamodels and contains

the list of profiles with their stereotypes.

If a stereotype is checked, it will be hidden on diagrams after applying
the parent profile.

If a stereotype is not checked, it will show up on diagrams after applying
the parent profile.

Checking or clearing a profile node results in checking or clearing all the
nested stereotypes.

Select All Checks all profile and stereotype nodes in the current tab.
Deselect All Clears all profile and stereotype nodes in the current tab.

Tip: To manage the stereotype decoration in diagrams, refer to the Show Stereotype option (Preferences
Modeling View Management Text Decorations Show Stereotype)

Related Concepts

UML Profiles Basics

Related Procedures

Working with Required Stereotypes

814

QA Model
Window Preferences Modeling QA Model

Use the QA Model preferences to define model audits and metrics.

Audits

Option Description
Name Displays names of the defined QA model audits. Select the checkbox next to the audit name to

activate it.
Description Provides an audit description.
Severity Specifies the audit severity.
Select All Selects all categories and all elements within categories. Selected categories will be included in the

current QA set.
Clear All Deselects all categories and all elements. Deselected categories will not be included in the current

QA set.
New Opens the Edit Audit dialog box, which lets you create a new audit.
Remove Removes the selected audit from the list.
Edit Opens the Edit Audit dialog box, which lets you change the selected audit.
Import... Allows you to import a previously saved set of audits.
Export... Allows you to export the current set of audits as a file.
Clone Opens the Edit Audit dialog box, which lets you create a new audit identical to the audit that is

currently selected in the list.

Metrics

Option Description
Name Displays names of the defined QA model metrics. Select the checkbox next to the metric to activate

it.
Description Provides a metric description.
Severity Specifies the metric severity.
Select All Selects all categories and all elements within categories. Selected categories will be included in the

current QA set.
Clear All Deselects all categories and all elements. Deselected categories will not be included in the current

QA set.
New Opens the Edit Metric dialog box, which lets you create a new metric.
Remove Removes the selected metric from the list.
Edit Opens the Edit Metric dialog box, which lets you change the selected metric.
Import... Allows you to import a previously saved set of metrics.
Export... Allows you to export the current set of metrics as a file.
Clone Opens the Edit Metric dialog box, which lets you create a new metric identical to the metric that is

currently selected in the list.

Related Concepts

Quality Assurance

Related Procedures

Running Model Audits and Metrics

815

QA Source
Window Preferences Modeling QA Source

Use the QA Source preferences to select source code audits and metrics and specify quality assurance default
options.

QA Source

Item Description
Show prompt dialog when QA preferences are changed Specifies if you want to be notified every time when QA

preferences are changed. You are also asked if you
would like to refresh QA results.

Add QA Builder to new projects automatically Specifies if you want to automatically enable the QA
Builder for each new Java project that you create in the
workspace.

Show QA Starter dialog Specifies if you want to display the Run QA dialog box
before running audits and metrics. The dialog box lets
you specify the QA target and change QA preferences
before running audits and metrics.

Show prompt dialog when resources are modified Specifies if you want to display a warning dialog box
every time the QA resources are changed. The dialog
box also prompts if you would like to refresh QA results.

C++, C++ QA Builder, Java, and Java QA Builder Preferences
Displays the hierarchy of audit categories and the elements within categories that you can include in the current QA
Builder set.

Item Description
Configure Project Specific Settings Opens the Project Specific Configuration dialog box, which lets you

configure QA Builder properties for a specific project in your workspace.
Current set Displays the name of the current QA Builder set.
Load set of options from the file Opens the Choose configuration file dialog box, which lets you load a file

containing a QA set (*.qa).
Save set of options to a file Opens the Choose configuration file dialog box, which lets you save

current QA set to a file (*.qa).
Expand all nodes Expands all categories.
Collapse all nodes Collapses all categories.
Select all Selects all categories and all elements within categories. Selected categories

will be included in the current QA set.
Clear all Deselects all categories and all elements. Deselected categories will not be

included in the current QA set.
Find an analyzer Opens the Find Analyzer dialog box, which lets you quickly find a necessary

analyzer in any category.
Property Displays the properties of the selected element used in the calculation of the

audit or metric. Note, that there is an aggregation property defined for
each metric with the following values: None, Sum, Average, Minimum,
Maximum, Median.

Value Click a row under Value to edit the property's value.
Restore Defaults Restores the selection to default settings.

816

Audits and Metrics tree context menu

Menu Item Description
Group By Provides methods for grouping audits and metrics (Category by default).
Ungroup Removes grouping in the Audits or Metrics tree. All items are sorted alphabetically.
Description Opens the Audit or Metric description in a default browser window.

Related Concepts

Quality Assurance

Related Procedures

Creating and Using Code QA Sets
Exporting and Importing Model Audits/Metrics

Related Reference

QA Model
Find Analyzer Dialog

817

Find Analyzer Dialog
Window Preferences Modeling QA Source Java QA Builder

Use this dialog box to find an analyzer by the specified string.

Item Description
Choose an analyzer (* = any string) Enter the search string in this text field, using wildcards if necessary.
Matching analyzers This area displays the list of analyzers that match the specified search string.

Note that the matching analyzers are selected by their full names rather than
abbreviations.

Related Reference

QA Source

818

Requirements
Window Preferences Modeling Requirements

Use the Requirements preferences to define how Together processes traces between requirements and Use Case
diagram elements.

Option Description
Type of links Specifies which type of links Together uses to link child

objects to their parents. Choose one of the following options:
No Links, Generalization, Include, or Extend.

Field with description Specifies which Use Case property maps to the requirement
description field (Description or Explanation (UML 1.4
only).

Create traces between Requirement and Use Case Specifies if you want Together to create traces between
requirements and Use Cases when you generate Use Case
diagrams from requirements and vice versa.

Process links between Use Cases Defines how Together treats links between Use Cases
when you create requirements from Use Case elements.
Choose one of the following options: Ignore, As parent-
child relationship, or As trace between requirements.

Update requirement traces on element move Defines how Together updates traces to requirements when
a traced element is moved to another location in the model
tree.

Related Concepts

Requirements Management

Related Reference

CaliberRM

819

CaliberRM
Window Preferences Modeling Requirements CaliberRM

Use the CaliberRM preferences to change how Together treats legacy traces imported from Together Control Center
(TCC).

Option/Button Description
Connection Selects a connection to the CaliberRM server that stores legacy traces.
New... Opens the New CaliberRM Connection dialog box where you can set up a new connection to a

CaliberRM server.

Related Concepts

Requirements Management

Related Reference

Modifying Requirement Preferences
Requirements

820

Source Generation Preferences
Window Preferences Modeling Source generation

Use these preferences to define how Together generates source code from your projects.

Source generation tab
This tab contains source generation preferences.

Option Description
Encoding Selects character encoding used for the generated source code.
Line separator Selects a platform-dependent separator used in the generated source code.

Name mapping tab
This tab contains model name mapping preferences.

Option Description
Use mapping files When this option is on, the codegen__map.xml file is generated in the model folder of a

project being exported. This XML file contains name+alias (<design name>=<source name>)
pairs for all packages, classes, members, and types of this project. This option uses the value
of <source name> to replace the value of <design name> during generation. If the mapping
file specified does not exist, this option creates one with a valid name. For example, the
following name+alias pair: <metaclass name="Class20"><map-entry name="My
class with non-java name" alias="My class with non-java name"
generated="true"/> changes to: <metaclass name="Class20"><map-entry
name="My class with non-java name" alias="MyClassWithNonJavaName"
generated="true"/>.

Related Concepts

Roundtrip Engineering Overview

Related Reference

C++ Source Generation Preferences
Java Source Generation Preferences
Together Preferences

821

C++ Source Generation Preferences
Window Preferences Modeling Source generation C++

Use these preferences to change how Together generates C++ source code from your projects.

Option/Button Description
Generate inherited abstract method skeleton If checked, Together generates "skeletons" for inherited abstract

methods.
Set const for query operations If checked, Together generates const modifier for query

operations.

Related Concepts

Roundtrip Engineering Overview

Related Reference

Java Source Generation Preferences
Together Preferences

822

Java Source Generation Preferences
Window Preferences Modeling Source generation Java

Use these preferences to define how Together generates Java source code from your modeling projects.

Java tab

Option Description
Source compatibility Selects the version of Java SDK. Together generates Java code

compatible with the selected version.
Generate inherited abstract method skeleton If checked, Together generates "skeletons" for inherited abstract

methods.
Organize imports If checked, Together generates import statements and short

names.

OCL tab

Option Description
Generate invariants If this option is checked, the code is generated for the OCL invariants used in the

source design project.
Generate pre/post conditions If this option is checked, the code is generated for the OCL preconditions and post-

conditions used in the source design project.

Related Concepts

Roundtrip Engineering Overview

Related Reference

C++ Source Generation Preferences
Together Preferences

823

View Management Preferences
Window Preferences Modeling View Management

Use these preferences to determine which elements are visible in the Diagram Editor .

Details Tab

Option Description
Detail level Analysis (UML14) Only the name of the operation assigned to a message

is shown. If a return value is specified in the Message properties,
the return value is displayed in the following form:

<return>:=<operation_name>
(UML20) Only the operation name is shown. Supplier/client end
visibility is hidden while the role name remains visible.

Design Design is the default detail level.

(UML14) The operation name and return type are shown. If a return
value is specified in the Message properties, the return value is
displayed in the following form:

<return>:=<operation_name>:<return_type>
(UML20) The operation name and parameter names are displayed
in the following form:

<operation_name>([<param_name>‘,’<param_name>]*)
Implementation (UML14) The operation name, parameters names, parameter

types, and the return type are shown. if an arguments value is
specified in the Message properties, the operation parameters are
substituted. If a return value is specified in the Message properties,
the return type is displayed in the following form:

<return>:=<operation_name>
([params]) :<return_type>
(UML20) The full operation signature is shown, including the
name, parameter names, parameter types, direction, multiplicities,
unique, and ordered. If a return value and arguments are specified
in the Message properties, the operation return type and
parameters are replaced with these values

Show Icons for This option enables you to use icons for better distinguishing metaclasses of elements
with a similar look. Icons help recognize metaclasses in the following cases:

Element shown as a label inside
another element

For example, class members; package or
diagram children; internal transition and
deferred event of a State element.

Diagrams An element that represents a diagram on
diagram.

Classifier shown as Class Classifier element whose notation is the
same as class notation (for example,
interfaces and components)

Show Simple Java
Interfaces

If selected, Java interfaces on class diagrams will be shown as circles.

Default value: Off

824

Make Classifiers look like
Classes on diagram

If selected, the classifiers display on the diagram in a boxlike manner (like classes),
regardless of their original notation.

Default value: Off
Default Activity Partition
orientation

Choose whether the activity partitions will have vertical or horizontal orientation by
default.

Maximum auto-width of
class element

If textual name of an element or a member exceeds the specified width in pixels, it will
be truncated. This option becomes effective if the user has not resized the element
manually.

Always show “Attributes”
and “Operations”
compartments

If selected, these compartments are always visible, even they are empty. Otherwise
compartments only show when respective members exist.

Default value: Off
Sort members
alphabetically

Default value: Off

Mark link to member with
a dot

Default value: On

Show shortcut sign Default value: On
3D look Default value: On

Text Decorations Tab
These options enable you to control text that is displayed on diagram elements.

Option Description
Show stereotypes If selected, the following options become enabled:

Show members stereotypes
Show <<communicate>>
stereotype on Association Link
on Use Case Diagram

If selected, the
<<communicate>> stereotype is
displayed in UML 1.4 Use Case
diagrams.

Default value: Off
Show Diagram Types If selected, a type of the diagram is displayed above the diagram name

in the Diagram Editor.

Default value: On
Show name of referenced Class in
extending Class icon

If selected, the name of the base class is displayed in the icon of the
extending class.

Default value: Off
Use Fully Qualified Names in Shortcuts to
classes from different packages

If selected, shortcut names on diagrams will contain both package
name and class name.

Default value: On
Show Aliases in Java Modeling Projects If selected, the value of the alias property is displayed for the elements

in Java Modeling projects.

Default value: On
Show link names If selected, the default non-empty link names are displayed on

diagrams.

Default value: On
Show names of Decision/Merge element If selected, the ID names of decision.merge nodes are displayed on

activity diagrams.

825

Default value: Off
Show Message Link Signatures
(Sequence Diagram 1.4)

If selected, the names of Message Link elements are shown in the
Diagram Editor (available only for Sequence Diagrams 1.4).

Default value: On
Show Class name below Object name
(Sequence Diagram 1.4)

If selected, the names of instantiated classes are displayed under the
respective object name in the Diagram Editor (available only for
Sequence Diagrams 1.4).

Default value: On
Show short instantiated Class names in
Objects (Sequence / Collaboration
diagram 1.4)

Default value: On

Show/Hide Elements Tab
All options in this dialog box are selected by default except Elements marked as hidden.

Option Description
Elements Packages Show all packages.

Interfaces Show all interfaces.
Classes Show all classes.
Notes Show note elements.
Elements marked as hidden Shows elements marked individually as hidden on the diagram.

By default, this filter is off so that the Hide from View menu
functions.

Non-public Classes and Interfaces Shows all package local classes and interfaces, including inner
classes.

Members Shows all attributes, operations and inner classes/interfaces. Either Interfaces or Classes must be
selected for this check box to be active.

Attributes Shows all attributes. Either Interfaces or Classes must be selected for this
check box to be active. Members must also be selected for this check box to
be active.

Operations Shows all operations. Either Interfaces or Classes must be selected for this
check box to be active. Members must also be selected for this check box to
be active.

Non-public Members Shows all private, local and protected members (members include attributes,
operations, inner classes and inner interfaces). Either Interfaces or Classes
must be selected for this check box to be active. Members must also be
selected for this check box to be active.

Links Associations Shows all associations links.
Generalizations Shows all generalization links.
Implementations Shows all implementation links.
Dependencies Shows all dependency links.

Labels Multiplicity Shows multiplicity labels on links. In UML 2.0, multiplicity is a required property. If a
multiplicity value is not specified explicitly, the default multiplicity value is 1 and the
multiplicity value is displayed on diagrams. If this level of visible diagram detail is not
needed, you can specify this option to disable the display of multiplicity labels. This
option is currently supported only at the global level.

826

Related Concepts

Together Diagram Overview

Related Procedures

Diagrams

Related Reference

Preferences

827

Modeling Resources Team Preferences
Window Preferences Team Modeling Resources

Use these preferences to change the team sharing options for modeling resources.

Option Description
AutoCheckout modeling resource on edit Together checks out model files on any attempt of Together to change

corresponding model entities. The actual checkout is performed when
the edited resource is saved to disk (that is, potentially after you
performed several modifications). This mode requires a VCS provider
to mark files that are not checked out as read-only.

Checkout before model modification Performs the checkout before any modification is performed.
Ignore default package diagrams Does not check out or check in the default package diagrams.

Related Procedures

Diagrams
Sharing Projects

Related Reference

Preferences

828

XML
The XML preferences enable you to customize XML Editor options.

In This Section
XML Editor
Use the XML Editor preferences to change general XML Editor options.

Annotation
Use the Annotation preferences to change XML Annotation options.

Code Assist
Use the Code Assist preferences to change XML Code Assist options.

Folding
Use the Folding preferences to change XML elements folding options.

Formatter
Use the Formatter preferences to change XML formatting options.

Mark Occurrences
Use the Mark Occurrences preferences to change XML Mark Occurrences options.

References
Use the References preferences to change XML References options.

Relocation
Use the Relocation preferences to change XML Relocation options.

Syntax Coloring
Use the Syntax Coloring preferences to change XML Syntax Coloring options.

Templates
Use the Templates preferences to change XML templates options.

Typing
Use the Typing preferences to change the XML Editor typing options.

829

XML Editor
Window Preferences XML Editor

Use the XML Editor preferences to change general XML Editor options.

Item Description
Attribute value delimiter Lets you choose the delimiter for wrapping attribute values: “ (quotation mark) or

' (apostrophe).

Related Reference

Preferences

830

Annotation
Window Preferences XML Editor Annotation

Use the Annotation preferences to change XML Annotation options.

Item Description
Enable XML well-formedness checking Specifies if you want to enable automatic well-formedness check of your

XML constructs.
Enable XML schema validation Specifies if you want to enable automatic validation of your XML

constructs against the schema.

Related Reference

Preferences

831

Code Assist
Window Preferences XML Editor Code Assist

Use the Code Assist preferences to change XML Code Assist options.

Item Description
Insertion Specifies how you want to insert code assist suggestions into your

code. The following options are available: Completion inserts,
Completion overwrites, and Smart completion (where code assist
takes the decision depending on the current context).

Insert single proposals automatically Specifies if you want to insert the code assist suggestion automatically
when there are no other suggestions.

Insert common prefixes automatically Specifies if you want to insert common XML prefixes (e.g., xs)
automatically.

Add empty attribute value automatically Specifies if you want to add an empty attribute value when you insert
an attribute.

Fill required attributes on completion Specifies if you want Together to automatically add the required
attributes to a tag when you press CTRL+SPACE. If you added the tag
attributes to the Elements hints area, these attributes are
automatically added as well. This option requires the XML schema.

Present proposals in alphabetical order Specifies if you want to sort code assist suggestions in alphabetical
order.

Hide proposals not permitted in context Specifies if you want to hide code assist suggestions that are
inappropriate in the current context.

Hide templates not permitted in context Specifies if you want to hide the suggested templates that are
inappropriate in the current context.

Hide proposals already existing in context Specifies if you want to hide the code assist suggestions that already
exist in the current context.

Proposals from existing elements Specifies if you want Together to provide the list of possible names
for the tag or attribute as you type it. Suggestions are taken from the
current XML document. The option does not require the XML schema.

Enable auto-activation Specifies if you want code assist suggestions to automatically popup
when you enter a trigger element.

Auto-activation delay Specifies the popup delay in milliseconds.
Auto-activation triggers Specifies the elements that trigger the code assist auto-activation.
Element Specifies the element for which you define a specific code assist hint.
Tag creation Specifies the tag creation option: Empty tag, Tag pair, or As defined

by Schema.
Default attributes Lists attributes the you want to insert by default when the Fill required

attributes on completion check box is checked.
New Opens the New Element dialog box, which lets you specify a new

element for which you want to create a code assist hint.
Remove Removes the selected hint from the list.

Related Reference

Preferences

832

Folding
Window Preferences XML Editor Folding

Use the Folding preferences to change XML elements folding options.

Item Description
Enable folding Specifies if you want to enable elements folding.
<![CDATA[]]> Specifies if you want to enable CDATA sections folding.
<!-- Comments --> Specifies if you want to enable comments folding.
<!DOCTYPE> Specifies if you want to enable DOCTYPE sections folding.
<Element> Specifies if you want to enable folding of a particular element.
Element folding Check the check boxes next to the elements for which you want to enable folding.
New... Opens the New element dialog box, which lets you specify the name of the element for which

you want to enable folding.
Remove Removes the selected element from the list.

Related Reference

Preferences

833

Formatter
Window Preferences XML Editor Formatter

Use the Formatter preferences to change XML formatting options.

Item Description
Tab size Specifies the number of spaces in a single tab position.
Use tab characters instead of spaces Specifies if you want to use tab characters instead of spaces.
Maximum line width Specifies the maximum line width.
Wrap long element tags Specifies if you want to wrap element tags that exceed the maximum line

width.
Align final '>' in multi-line element tags Specifies if you want to align closing tags in multi-line elements.
Preview Displays the sample XSL stylesheet with the current formatter rules

applied.

Related Reference

Together Preferences

834

Mark Occurrences
Window Preferences XML Editor Mark Occurrences

Use the Mark Occurrences preferences to change XML Editor Mark Occurrences options.

Item Description
Mark occurrences of the selected element in the current
file

Specifies if you want to highlight occurrences of
elements and attributes over which you move the caret.

Sticky Specifies if you want to make the current marking
persistent, even if you move the caret away from the
currently marked tag, attribute name, or attribute value.

Elements Specifies if you want to mark occurrences of XML
elements.

Attribute names Specifies if you want to mark occurrences of XML
attribute names.

Same elements Specifies if you want to mark occurrences of XML
attribute names located within the same elements.

Attribute values Specifies if you want to mark occurrences of XML
attribute values.

Same elements Specifies if you want to mark occurrences of XML
attribute values located within the same elements.

References Specifies if you want to mark element or attribute
references.

Only references Specifies if you want to mark only element or attribute
references.

Inverse Specifies if you want to use inverse highlighting.
Mark whole element Specifies if you want to mark the whole contents of

referenced element or attribute.

Related Reference

Preferences

835

References
Window Preferences XML Editor References

Use the References preferences to change XML References options.

Item Description
Source Displays the name of the source referencing element.
Target Displays the name of the target referencing element.
New... Opens the New element dialog box, which lets you specify the name of the referencing element.
Remove Removes the selected referencing element from the list.

Related Reference

Preferences

836

Relocation
Window Preferences XML Editor Relocation

Use the Relocation preferences to change XML Relocation options.

Item Description
URL Specifies the relocation URL. Click the field to type in the URL.
Location Specifies the relocation target. Click the field and then click the Browse button to open the Location

dialog box, which lets you choose the target relocation file.
New Opens the New URL dialog box, which lets you specify the URL that is the subject of relocation.
Remove Removes the selected relocation from the list.

Related Reference

Preferences

837

Syntax Coloring
Window Preferences XML Editor Syntax Coloring

Use the Syntax Coloring preferences to change XML Syntax Coloring options.

Item Description
Element Displays current coloring for each element type.
Foreground Opens the Color dialog box, which lets you change the current foreground color

of the selected element. Check the associated check box to activate coloring
for the selected element.

Background Opens the Color dialog box, which lets you change the current background
color of the selected element. Check the associated check box to activate
coloring for the selected element.

Bold Specifies if you want to display the selected element in a bold face type.
Italic Specifies if you want to display the selected element in italics.
Namespaces (element coloring) Displays current coloring for elements related to each of the defined

namespaces. In the code, Together highlights elements within the namespace
with the specified color.

New Opens the New namespace dialog box, which lets you enter the URL of a new
namespace.

Remove Removes the selected namespace from the list of defined namespaces.
Preview Displays a sample XSL stylesheet with the current coloring applied.

Related Reference

Preferences

838

Templates
Window Preferences XML Editor Templates

Use the Templates preferences to change XML templates options.

Item Description
Name Displays the name of the template.
Context Displays the template context in which the template is applied (XML or XML Processing

Instruction).
Description Displays the template description.
Auto Insert Specifies if you want the template to be applied automatically.
New Opens the Edit Template dialog box, which lets you create a new custom template.
Edit Opens the Edit Template dialog box, which lets you edit the selected template.
Remove Removes the selected template.
Restore Removed Restores predefined templates that have been removed.
Revert to Default Restores predefined templates that have been modified.
Import Lets you choose a file with previously saved templates.
Export Lets you save current templates to a file.
Preview Displays the body of the selected template.
Use code formatter Specifies if you want to apply the Formatter rules to the template.

Related Reference

Preferences

839

Typing
Window Preferences XML Editor Typing

Use the Typing preferences to change the XML Editor typing options.

Item Description
Add end </tags> Specifies if you want the XML Editor to automatically add end

tags when you type in your code.
Complete end </tags> Specifies if you want Together to automatically add an

appropriate closing tag name when you type "</".
'/' before '>' removes end tag of empty elements Specifies if you want the XML Editor to automatically recognize

and remove excessive end tags for empty elements.
Add attribute=”values” Specifies if you want Together to automatically add quotation

marks when you type “=” after an attribute name.
Add required attributes Specifies if you want the XML Editor to automatically add

required attributes when you type in the element name.
Close <!-- Comments --> Specifies if you want the XML Editor to automatically close

comment sections when you type an opening character.
Close <![CDATA[]]> Specifies if you want the XML Editor to automatically add end

tags to <![CDATA[]]> constructs when you type an opening
character.

Adjust indentation Specifies if you want the XML Editor to automatically adjust
indentation to the current indentation level when you paste XML
code from the clipboard.

Escape text when pasting into a string literal Specifies if you want to escape special characters in pasted
strings when the strings are pasted into an existing string literal.

Related Reference

Preferences

840

XSL
The XSL preferences enable you to customize XSL Editor and Run/Debug options.

In This Section
XSL
Use the XSL preferences to specify the XSL version.

Annotation
Use the Annotation preferences to change XSL Annotation options.

OCL (Syntax Checking)
Use the OCL preferences to change XSL/OCL syntax checking options.

Code Assist
Use the Code Assist preferences to change XSL Code Assist options.

OCL (Syntax Coloring)
Use the OCL preferences to change OCL syntax coloring options.

Syntax Coloring
Use the Syntax Coloring preferences to change XSL Syntax Coloring options.

Run/Debug
Use the Run/Debug preferences to change XSL Run/Debug options.

841

XSL
Window Preferences XSL

Use the XSL preferences to specify the XSL version.

Item Description
Default XSL version Specifies which version of XSL you want to use in your stylesheets (1.0, 1.1, or 2.0).

Related Reference

Preferences

842

Annotation
Window Preferences XSL Editor Annotation

Use the Annotation preferences to change XSL Annotation options.

Item Description
Enable XSL consistency checking Specifies if you want to enable automatic consistency check of your XSL

constructs.
Enable language checking Specifies if you want to enable automatic language check of your XSL

constructs.

Related Reference

Preferences

843

OCL (Syntax Checking)
Window Preferences XSL Editor Annotation OCL

Use the OCL preferences to change XSL/OCL syntax checking options.

Item Description
Parsing (Syntax) Specifies if you want to enable OCL syntax parsing. Syntax parsing detects

only OCL structure violations (that is, misplaced operators, variables whose
names do not comply with naming conventions, and so on) and cannot detect
things like variables that are spelled correctly but do not exist in the context.

Analysis (Syntax and Semantics) Specifies if you want to enable OCL syntax and semantics analysis. Analysis
“knows” about the context of each OCL expression and can detect both the
structure and the semantics violations, such as unavailable variables,
operations, metaclasses, and so on.

Check boolean match Specifies if you also want to check the xsl:template@match attribute
values for a Boolean type. XSLT specifications do not require such matches
to be strictly Boolean because there is a boolean() function that makes
certain assumptions, such as an empty string is false while a non-empty string
is true, an empty collection is false while a non-empty collection is true, and so
on.

Check this check box if you want to enforce Boolean results in matches. For
example, you will be warned about match clauses such as ecore::EClass,
which, otherwise, always return true (a non-undefined model is always true)
even if the passed object is not of the used type. To eliminate the warning, you
will need to use the self.oclIsKindOf(ecore::EClass) construct
instead.

Related Reference

Preferences

844

Code Assist
Window Preferences XSL Editor Code Assist

Use the Code Assist preferences to change XSL Code Assist options.

Item Description
Suggest suitable logic elements (XSLT) Specifies if you want code assistant to suggest logical

elements in XSLT that are appropriate in the current
context.

Suggest suitable result elements (XSL-FO, XHTML, ...) Specifies if you want code assistant to suggest result
elements in XSL-FO, XHTML, and other markup
languages that are appropriate in the current context.

Related Reference

Preferences

845

OCL (Syntax Coloring)
Window Preferences XSL Editor Syntax Coloring OCL

Use the OCL preferences to change OCL syntax coloring options.

Item Description
Element Displays current coloring for each element type.
Foreground Opens the Color dialog box, which allows you to change the current foreground color of the selected

element. Check the associated check box to activate coloring for the selected element.
Background Opens the Color dialog box, which allows you to change the current background color of the selected

element. Check the associated check box to activate coloring for the selected element.
Bold Specifies if you want to display the selected element in a bold face type.
Italic Specifies if you want to display the selected element in italics.
Preview Displays a sample OCL script with the current coloring applied.

Related Reference

Preferences

846

Syntax Coloring
Window Preferences XSL Editor Syntax Coloring

Use the Syntax Coloring preferences to change how XSL code is rendered.

Note: Use General Editors Text Editors preferences to change general text editor settings, such as the
background color. Use General Appearance Colors and Fonts preferences to change fonts.

Item Description
Default language Sets the default language for syntax coloring and code assist rules. Use the Language option

to override these rules for individual elements and attributes.
Tag and Attribute Lists tag/attribute pairs that you want to color. Use @ to separate tags and attributes.
Language Lists tag/attribute pairs that override the Default language setting.
New Opens the New tag and attribute dialog box, which lets you add a new tag/attribute pair to

the list of colored elements and attributes.
Remove Removes the selected tag/attribute pair from the list.
Preview Displays the preview of XSL code respecting the currently applied colors and styles.

Related Reference

Preferences

847

Run/Debug
Window Preferences XSL Run/Debug

Use the Run/Debug preferences to change XSL Run/Debug options.

Item Description
Verbousness Specifies which messages you want to display when you debug

your XSL code. The following options are available: Quiet (no
messages), Document (display only document level messages),
Template (display document and template level messages),
Instruction (display document, template and XSLT instruction
level messages).

Console output (Run/Debug, requires restart) Specifies if you want to display debugging messages in the
Console view.

Statistics (Run/Debug, requires restart) Specifies if you want Together to collect statistical data on how
much time the whole transformation takes and how much time it
takes each call to complete an individual xsl instruction. The data
displays in the Console view at the very end of the transformation
log.

Collect messages (Run/Debug) Specifies if you want to collect messages in the Messages view.
Collect traces (Debug) Specifies if you want to collect traces in the Traces view.
Intercept results (Debug, requires restart) Specifies if you want to make the result of the transformation

available in the Result view of the XSL Debugging perspective.
You can uncheck this check box for large style sheets.

Track contexts (Debug) Specifies if you want to track contexts in the Context view.
Track template usage (Debug) Specifies if you want to track template usage in the Templates

view.
Debug instructions Lists debug instructions for which you want to define an individual

debugging/tracing behavior.
Stepping Specifies the debugging/tracing behavior for the selected

instruction when you use step debugger actions. Normal -
specifies that when you press F5 (or use the Step-Into action), the
debugger also steps through the child instructions of the current
element. Skip - specifies that on any of the step actions, the
selected instruction will always be stepped over, including
children.

Don't go into - is less restrictive than Skip as it suspends only
execution of the element itself, its next sibling, or parent's sibling
that are not set to Skip.

Tracing Specifies whether you want the debugger to add a line about
execution of the selected instruction to the Traces view or not.

New Displays the New Element dialog box, which lets you add a new
XSL element to the list of debugging instructions.

Remove Removes the selected XSL elements from the list of debugging
instructions.

Related Reference

Preferences

848

Profiles Reference
Contains reference information about Together profiles and profiles API.

In This Section
Profile Definition Properties
Describes Profile Definition and View properties of a profile, its nodes and links.

UML Profile for Business Modeling
Describes how UML can be customized for business modeling.

Stereotype Options of UML Profile for Modeling In Color
Describes the new stereotype options for modeling in color.

UML Profile for Software Development Processes
Describes how UML can be customized for specific domains, such as software development processes.

EMF API for Together Profiles
Provides a description of the EMF API, which you can use to programmatically access the Together profile
data.

849

Profile Definition Properties
Describes Profile Definition and View properties of a profile, its nodes and links.

Profile Definition Properties of a Profile
Profile properties are accessible via the default package diagram of the Profile Definition project:

Context menu of the default diagram Properties Profile Definition

Property Description
description Gives a description of a profile. This text is displayed in the Profiles page of the New Project wizard

and in the Profiles node of the Preferences dialog.
namespace Provides external identification of the profile. This identification can be represented by a URI string,

which will be used when exporting a model with the applied profile into an XMI file.

Profile Definition Properties of a Stereotype
Context menu of a stereotype Properties Profile Definition

The following properties define visual representation of a Stereotype extending a metaclass. They are available in
the viewmap editor, which can be invoked from the viewmap field of the Properties View with the Edit button.

Property Description
extended metaclass Defines metaclasses extended by the stereotype. Metaclasses can be selected from those

existing in the target metamodel. If a stereotype extends more than one metaclass or
extends an abstract metaclass, it has no viewmap properties.

icon Specifies the path to the icon file (.gif) that will represent this stereotype on the Tools Palette,
in the Model Navigator, on diagrams, and on the diagram context menu. This property is
available if the stereotype extends one metaclass that supports viewmapping.

viewmap Specifies the selected Stereotype visual representation. This property extends one
metaclass that supports viewmapping. You can specify color for this node or a figure from
the selected .svg file. This property is available if the stereotype extends one metaclass that
supports viewmapping.

Profile Definition Properties of an Attribute or Outgoing Association Link

inspector group This property enables you to define the name of the group of properties of a stereotype. When
the stereotype in question applies to an element, a tab with the specified name will add to the
Properties View of this element.

icon Specifies the path to the icon file (.gif).
viewmap Specifies the visual representation of an attribute or association link.

Profile Definition Properties of a Palette Contribution

Property Description
diagrams Specifies diagrams whose Tools Palettes will contain a creation tool for the linked Stereotype.

850

icon Opens the Select Icon dialog, where one can define an icon that will appear in the Palette Contribution
node of the target project after applying the profile.

Properties of Extension link

Property Description
isRequired If this property is set to true for a stereotype, then any created instance of the base metaclass

automatically gets its stereotype property assigned to the stereotype in question.
bindWithProfile This property is only available if isRequired is set to true.

If this property is set to true, then when you apply a profile to a project, all appropriate elements
get the required stereotype but the diagram files are not modified. After removing the profile from
the project, the stereotype is also removed from all elements to which it was assigned.

If the property is set to false, then when you apply a profile to a project, all appropriate elements
get the required stereotype and the diagram files are modified accordingly. After removing the
profile, the stereotype persists in project.

Related Concepts

UML Profiles

851

UML Profile for Business Modeling
The UML Profile for Business Modeling is an example profile that describes how UML can be customized for business
modeling. Note that UML can be used to model different kinds of systems (such as software systems, hardware
systems, and real-world organizations).

The UML Profile for Business Modeling provides several new stereotype options for the following diagram elements:

Note: The profile-specific audits are available for this profile via Model Profile Run Profile Constraints
command.

Stereotype set
The stereotypes that are defined by this profile are described in the following table.

A system modeled by the Unified Process consists of several different but related models. These models are
characterized by the lifecycle stage that they represent, and each model makes use of one specific stereotype. Many
of the stereotypes are used particularly to give the ability to structure and categorize models and systems during
different stages of the development process. The UseCaseSystem, AnalysisSystem, UseCasePackage,
AnalysisPackage and AnalysisServicePackage stereotypes can be set manually for a Package Diagram (and for
uml20 projects, a Class Diagram).

Stereotype Element
objectSystem Subsystem
organizationUnit Subsystem
workUnit Subsystem
BM_worker Class
BM_caseWorker Class
BM_internalWorker Class
BM_entity Class
BM_communicate Association
BM_subscribe Association

Organization Stereotypes

Stereotype Description
Object System <<objectSystem>> An object system is the top-level subsystem in an object model, and

may contain organization units, work units, classes, and relationships.
Organization Unit <<organizationUnit>> An organization unit is a subsystem that may contain other organization

units, work units, classes, and relationships.
Work Unit <<workUnit>> A work unit is a subsystem that may contain one or more entities. It is

a task-oriented set of objects that forms a recognizable whole to the end
user, and may have a facade defining the view of the work unit's entities
relevant to the task.

852

Class Stereotypes

Stereotype Description
Worker <<BM_worker>> A worker is a class that represents an abstraction of a human that acts

within the system. A worker interacts with other workers and
manipulates entities while participating in use case realizations.

Case Worker <<BM_caseWorker>> A case worker is a special case of worker that interacts directly with
actors outside the system.

Internal Worker <<BM_internalWorker>> An internal worker is a special case of worker that interacts with other
workers and entities inside the system.

Entity <<BM_entity>> An entity is a passive class; that is, its objects do not initiate interactions
on their own. An entity object may participate in many different use
case realizations and usually outlives any single interaction.

Association Stereotypes

Stereotype Description
Communicate <<BM_communicate>> Communicate is an association used to specify that instances of the

associated classifiers interact.
Subscribe <<BM_subscribe>> A subscribe association between two classes states that objects of the

source class (called the subscriber) will be notified when a particular
event has occurred in objects of the target class (called the publisher).
The association includes a specification of a set of events defining the
event that causes the subscriber to be notified.

Constraint set
The UML Specification relies on the use of well-formedness rules to express constraints on model elements, and
this profile uses the same approach. The constraints applicable to the profile are added to the ones of the stereotyped
base model elements, which cannot be changed.

All the modeling elements in a generalization must be of the same stereotype; for example, a BM_worker class may
only inherit from the other BM_worker classes.

Generalization
All the modeling elements in a generalization must be of the same stereotype; for example, a BM_worker class may
only inherit from the other BM_worker classes.

Related Concepts

UML Profiles Basics

Related Reference

UML Profiles Preferences

853

Stereotype Options of UML Profile for Modeling In Color
The UML Profile for Modeling in Color provides several new stereotype options for the following diagram elements:

Diagram Element Stereotype
Class role
Class moment-interval
Class mi-detail
Class party
Class place
Class thing
Class description

When applying a stereotype to one of the diagram elements listed in the table, the view of the associated diagram
element changes on the diagram. The stereotype field is displayed directly above the name field for the element,
and the color of the element depends on the stereotype chosen.

This profile includes the four interconnected archetypes:

♦ moment-interval

♦ role

♦ catalog-entry-like description

♦ party, place or thing

For detailed information about modeling in color, refer to Java Modeling in Color with UML: Enterprise Components
and Process by Peter Coad, Jeff De Luca, and Eric Lefebvre.

Related Concepts

UML Profiles

Related Procedures

Together Profiles

Related Reference

UML Profiles Preferences

854

UML Profile for Software Development Processes
The UML Profile for Software Development Processes is an example profile that is based on the Unified Process
for software engineering. The profile is defined using the extensibility mechanisms of UML, which allow modelers to
customize UML for specific domains, such as software development processes. This profile is not a complete
definition of the Unified Process or how to apply it, but rather an example that shows how some of the profile
terminology and notation is used.

Note: The profile-specific audits are available for this profile via Model Profile Run Profile Constraints
command.

Stereotype set
The stereotypes that are defined by this profile are listed in the following table.

A system modeled by the Unified Process consists of several different but related models. These models are
characterized by the lifecycle stage that they represent, and each model makes use of one specific stereotype. Many
of the stereotypes are used particularly to give the ability to structure and categorize models and systems during
different stages of the development process. The UseCaseSystem, AnalysisSystem, UseCasePackage,
AnalysisPackage and AnalysisServicePackage stereotypes can be set manually for a Package Diagram (and for
uml20 projects, a Class Diagram).

Stereotype Element
designSystem Subsystem
implementationSystem Subsystem
designSubsystem Subsystem
implementationSubsystem Subsystem
designServiceSubsystem Subsystem
SwDev_control Class
SwDev_boundary Class
SwDev_entity Class
SwDev_communicate Association
SwDev_subscribe Association

Design Stereotypes

Stereotype Description
Design System <<designSystem>> A design system is a top-level subsystem that may

contain design subsystems, design service
subsystems, design classes, and relationships.

Design Subsystem <<designSubystem>> A design subsystem is a subsystem that may contain
other design subsystems, design classes, and
relationships.

Design Service Subsystem <<designServiceSubsystem>> A design service subsystem is a subsystem that may
contain design service subsystems, components,
and relationships.

855

Implementation Stereotypes

Stereotype Description
Implementation System <<implementationSystem>> An implementation model is a subsystem that may

contain implementation subsystems, components,
and relationships.

Implementation Subsystem <<implementationSubsystem>> An implementation model is a subsystem that may
contain other implementation systems,
components, and relationships.

Class Stereotypes

Stereotype Description
SwDev_Entity <<SwDev_Entity>> An entity is a passive class; that is, its objects do not initiate

interactions on their own. An entity object may participate in many
different use case realizations and usually outlives any single
interaction.

SwDev_Control <<SwDev_Control>> A control is a class whose objects manage interactions between
collections of objects. A control class usually has behavior that is
specific for one use case, and a control object usually does not outlive
the use case realizations in which it participates.

SwDev_Boundary <<SwDev_boundary>> A boundary is a class that lies on the periphery of a system, but within
it. It interacts with actors outside the system as well as with entity,
control, and other boundary classes within the system.

Association Stereotypes

Stereotype Description
SwDev_Communicate <<SwDev_Communicate>> Communicate is an association between actors and use

cases that is used to denote messages that may be sent
between them. It may also be used between boundary,
control, and entity, and between actor and boundary.

SwDev_Subscribe <<SwDev_subscribe>> A subscribe association between two classes states that
objects of the source class (called the subscriber) will be
notified when a particular event has occurred in objects of
the target class (called the publisher). The association
includes a specification of a set of events defining the
events that causes the subscriber to be notified.

Constraint set
The UML Specification relies on the use of wellformedness rules to express constraints on model elements, and this
profile uses the same approach. The constraints applicable to the profile are added to the ones of the stereotyped
base model elements, which cannot be changed.

All the modeling elements in a generalization must be of the same stereotype; for example, a BM_worker class may
only inherit from the other BM_worker classes.

856

Generalization
All the modeling elements in a generalization must be of the same stereotype; for example, a BM_worker class
may only inherit from the other BM_worker classes.

Related Concepts

UML Profiles Basics

Related Reference

UML Profiles Preferences

857

EMF API for Together Profiles
Provides a description of the EMF API, which you can use to programmatically access the Together profile data.

Introduction
Together provides a reflective EMF-compatible profile API supporting read/write access to Together profile data
(stereotype instances). Profile API can be used programmatically from Java code, OCL, and QVT. The Model
Compare/Merge utility displays stereotype instances under special stereotypeInstances containment
reference, which also allows read/write access.

Profile metamodels
Profile metamodels are EMF-compatible metamodels (packages) that are built at runtime for all available (deployed)
profile definitions. Each stereotype class has an extendedElement non-containment reference pointing to a model
element, and typed features corresponding to properties and associations specified in the profile definition.
Stereotype properties are represented as EMF attributes of the corresponding type and multiplicity. Stereotype
associations are represented as non-containment references. Enumerations defined in the profile definition project
become standard EMF enumerations.

Profile API does not support EMF notifications; that is, no notifications are sent after changes have been made to
stereotype properties.

Each profile metamodel is uniquely identified by the profile nature identifier assigned to the profile definition project.

The screen shot below shows the Metamodel Browser view with the EMF metamodel generated for a WSDL profile
taken from the "Define UML Profile" cheat sheet.

Note: When creating a metamodel, Together automatically replaces special characters found in profile names
(spaces in our example) with underscores (_).

All Together stereotypes extend StereotypeInstance, which declares the extendedElement reference.

858

The profile metamodel is available during profile development, and you can use it in OCL constraints associated
with extended metamodel elements. For example, the following OCL constraint can be written in the WSDL profile
definition project.

context uml20::components::Component
inv: let ns = self.getStereotypeInstances().oclAsType(
 WSDL_Profile::Web_Service)->any(true).namespace
in
 not ns.oclIsUndefined()

This invariant uses the OCL library function getStereotypeInstances(), which is shortly described further in
the document.

Profiles in Model Compare/Merge
The Model Compare/Merge view displays the applied stereotypes under special stereotypeInstances
containment reference. Note that this is a "virtual" reference, as it is not a part of the Together metamodel.

The screen shot below shows the Compare editor with two components, one of which has Web Service stereotype
applied, and its namespace property is set to http://www.example.com.

When working with stereotype instances, you have full access to model compare/merge functionality. You can create
and delete stereotype instances, and change their attributes and references.

Note that the comparing of arbitrary custom properties is not directly supported by Model Compare/Merge. To work
with these properties, you need to define profile descriptions for them.

Profile API in OCL
You can use the Profile API as well as the metamodels in any OCL code written at the Together metamodel level:
model audits/metrics, XSL/OCL transformations, documentation generation, model search, OCL Expressions view,
and OCL constraints linked to metamodel elements. The OCL constraints are only supported inside a Profile
Definition project, and the only profile metamodel that is available is the one being defined by the project profile.

Use the Metamodels tab of the Preferences dialog box (Window Preferences... Modeling OCL
Metamodels) to specify which metamodels you want to be visible to the OCL engine. The tab contains entries for

859

all available metamodels, including profile metamodels. You need to check the check boxes next to each profile
metamodel that you want to use in your OCL code.

The following profile library functions are available. To provide a more general example, the functions use
OclAny as a type of stereotype instances.

Library Function Description

OclAny::getStereotypeInstances(): OrderedSet(OclAny) Returns all stereotype instances for the
context model element. The set returned is not
live and is not automatically updated when
some other clients perform changes affecting
its contents or when a profile is switched on/
off for the model.

OclAny::isStereotypeApplicable(stereotype: OclType):
Boolean

Checks whether a given stereotype can be
applied to the model element.

OclAny::addStereotypeInstance(instance: OclAny): OclVoid Adds a stereotype instance to the model
element.

OclAny::removeStereotypeInstances(instances: OrderedSet
(OclAny)): OclVoid

Removes stereotypes instances from the
model element.

The addStereotypeInstance and removeStereotypeInstances functions modify the state of the model
element and are therefore not used in OCL queries.

The screen shot below shows the OCL Expressions view with OCL expressions, which illustrate how to use profile
library functions.

Profile API in QVT
QVT uses the same profile functions, packaged in the together.profiles library. Profile metamodels are
referenced using the standard metamodel statement.

Profile metamodels are created at runtime and do not have underlying Java implementation. QVT transformations
that work with the profile data can only be run in interpreted mode when no Java code is generated from QVT sources.

The sample QVT transformation below uses profile API to modify the Web Service stereotype data for some input
component.

transformation WebService;

860

import library together.profiles;

metamodel 'http://www.borland.com/together/uml';
metamodel 'http://www.borland.com/together/uml20';
metamodel 'WSDL_Profile.wsdl_profilenature';

mapping main(inout model: uml20::components::Component): uml20::components::Component {
 init {
 var webService := model.getStereotypeInstances().
 oclAsType(WSDL_Profile::Web_Service)->any(true);

 model.removeStereotypeInstances(OrderedSet{webService});

 var newNamespace := if webService.namespace.oclIsUndefined() then
 'namespace' else webService.namespace + '*' endif;
 var newService := model.makeService(newNamespace);
 model.addStereotypeInstance(newService);

 result := model;
 }
}

mapping uml20::components::Component::makeService(ns: String): WSDL_Profile::Web_Service {
 namespace := ns;
}

First, it uses getStereotypeInstances() to read the web service stereotype instance. Then it removes the
instance and creates a new one using the standard object expression. Finally, transformation calls
addStereotypeInstance() to add a newly created stereotype to the component.

Traces to/from stereotype instances are stored in the transformation trace file and can be accessed programmatically
(for example, using another QVT transformation). Currently, navigation from Trace view (Show source/target) is
not supported for stereotype instances.

Profile API in Java
Java clients have to use reflective EMF APIs for working with stereotype instances, as profile metamodels have no
Java implementations. Java Profile API methods are declared in ProfileApi, located in the
com.borland.tg.emfapi.profile plugin.

The following sample Java code performs exactly the same transformation as the QVT code above.

package profileaccess;

import java.util.Collections;
import java.util.List;

import org.eclipse.emf.ecore.EAttribute;
import org.eclipse.emf.ecore.EClass;
import org.eclipse.emf.ecore.EObject;
import org.eclipse.emf.ecore.EPackage;

import com.borland.tg.emfapi.profile.ProfileApi;
import com.borland.tg.emfapi.profile.ProfilePackageRegistry;
import com.borland.tg.emfapi.uml20.components.Component;

public class WebService {
 public void generate(Component model, String outputPath) {

861

 main(model);
 }

 private void main(Component model) {
 List instances = ProfileApi.INSTANCE.getStereotypeInstances(model);
 String newNamespace;
 if(!instances.isEmpty()) {
 EObject webService = instances.isEmpty() ? null : (EObject) instances.get(0);
 ProfileApi.INSTANCE.removeStereotypeInstances(model, Collections.singletonList
(webService));

 newNamespace = (String)webService.eGet(WSDL_PROFILE.WEB_SERVICE_NAMESPACE) +
"*";
 }
 else {
 newNamespace = "namespace";

 }

 EObject newService = makeService(newNamespace);
 ProfileApi.INSTANCE.addStereotypeInstance(model, newService);
 }

 private EObject makeService(String ns) {
 EObject service = WSDL_PROFILE.METAMODEL.getEFactoryInstance().create
(WSDL_PROFILE.WEB_SERVICE);
 service.eSet(WSDL_PROFILE.WEB_SERVICE_NAMESPACE, ns);
 return service;
 }

 static class WSDL_Profile {
 public final EPackage METAMODEL;
 public final EClass WEB_SERVICE;
 public final EAttribute WEB_SERVICE_NAMESPACE;

 public WSDL_Profile() {
 METAMODEL = ProfilePackageRegistry.INSTANCE.getProfilePackage(NS_URI);
 WEB_SERVICE = (EClass) METAMODEL.getEClassifier("Web_Service");
 WEB_SERVICE_NAMESPACE = (EAttribute)WEB_SERVICE.getEStructuralFeature
("namespace");
 }

 public static final String NS_URI = "WSDL_Profile.wsdl_profilenature";
 }

 private static final WSDL_Profile WSDL_PROFILE = new WSDL_Profile();
}

The code declares a helper WSDL_Profile class, which contains "Java-friendly" representation of the profile. This
is a special metamodel, so its EPackage is obtained via a call to the
ProfilePackageRegistry.INSTANCE.getProfilePackage() method.

Then, the code uses the removeStereotypeInstances() and addStereotypeInstance methods from
ProfileApi to replace the stereotype instance of the component.

862

Related Concepts

Model Transformation Support
OCL Support

Related Procedures

Merging Models

Related Reference

QVT Language
EMF API for Together Models

863

Business Process Diagram
This section provides Business Process Modeling reference information.

In This Section
Mapping Elements
Describes how elements are mapped when a BPMN diagram is exported to BPEL4WS.

Mapping Exception Flow
Describes the mapping of exception flows.

Mapping Pools and Message Flows
Describes the mapping of pools and message flows.

Mapping Process Structure: Flows and Sequences
Describes how business process mappings are structured.

Elements That Are Not Transformed to BPEL
This topic provides information about elements that are not transformed to BPEL.

BPMN Validation View
Describes the view to use to review all BPMN diagram-related errors.

BPMN Simulation View
Describes the view to use to monitor BPMN simulation run progress.

BPMN Diagram Context Commands
Describes the context menu commands that BPMN diagrams share with UML diagrams.

BPMN Simulation-specific Properties
Describes the view to use for reviewing BPMN diagram-specific properties.

BPMN Diagram Toolbar
Describes the diagram elements available for a BPMN diagram in Together.

BPMN Simulation Report
Describes the report generated after a BPMN diagram simulation run.

864

Mapping Elements

Business Process Mappings
Business Process Mappings are performed according to the OMG Adopted Business Process Modeling Notation
Specification (specification). BPEL is generated for private processes. No generation is performed for the abstract
processes.

Note: The final version of the specification can be found at the bpmn.org web site.

Events
Start and End events are mapped according to the specification.

Intermediate events are mapped according to the specification with the following exception: multiple intermediate
events are mapped to pick, each child detail corresponds to onMessage activity.

Activities
Activities are mapped according to the specification with the following exceptions:

♦ Independent subprocesses are not supported. Service tasks should be used instead.

♦ Manual tasks and script tasks are not supported. Their implementation is server-dependent.

Gateways
Exclusive and parallel gateways are mapped according to the specification.

Mapping of the Inclusive and Complex gateways is not supported.

WebService
In the Together BPMN diagram, the WebService element is created inside the Participant element. The WebService
element is used for the Interface and Operation information.

865

http://bpmn.org

Mapping Exception Flow
In Together, mapping of an exception flow is completely different from the mapping described in the specification.
The specification suggests mapping to switch, but it does not explain how to perform mapping if the exception flow
contains tasks that must be executed in parallel. In this case, an exception flow can join normal flow at different
points (see the figure below). Mapping that uses switch in such situations can hardly be suggested.

Any task or subprocess with boundary events starts a flow. All the elements from the exception flow or normal flow
belong to that flow element, until all the paths from them merge (as in the figure below). If the paths do not merge
explicitly, the program assumes that they merge in the end element.

For each boundary event, a variable with the name event_name + "_completion" is created. For the task that
starts the flow, the variable with the name task_name + "_completion" is created (in the first example above,
Task2_completion and ErrorEvent1_completion). A mapping of the task is enclosed into the sequence, and
all these variables are initialized before executing the task. At initialization, Task_name completion is set to true and
EventName_completion to false.

866

The sequence is put inside the scope and all the handlers of the events are defined inside this scope according to
the specification of the mapping of the boundary events. If a boundary event occurs, inside handler
EventName_completion is set to true and TaskName_completion to false.

All the links outgoing from boundary events have condition "bpws:getVariableProperty
(EventName_completion,completion)=true" and from the original task have condition
"bpws:getVariableProperty(TaskName_completion,completion)=true". If exception flows are
nested, the separate flow is not created for the inner elements, but they are considered as parts of the outer flow.

867

Mapping Pools and Message Flows

General Information
Web Services Description Language (WSDL) files are generated for all pools, including the default pool, that
represent the abstract or private processes. The WSDL file is not generated in two cases:

♦ If the participant has attached the WSDL.

♦ If the pool represents the abstract process, which does not contain any web services (consumer processes).
In other words, the pool does not contain any elements (except lanes) and does not have incoming message
flows other than a reply for outgoing message flows.

All partner links are stored in WSDL files for the default process. For the name of the WSDL file, the process name
is used. f there is no default process, any pool that the participant has no attached an WSDL file to will be used.

Attached WSDL
Participants can attach WSDL files. That WSDL file defines all possible interfaces and operations for the participant.
It is impossible to define a new interface/operation for the participant with an attached WSDL file. Such a feature
can be used to add side Web Services to a diagram and use them in the modeled Business Process.

Default process WSDL
The default pool is equal to other pools. If a default pool exists, the WSDL file is always generated for it. If a default
pool does not exist, any other pool without an attached WSDL is used for this purpose.

Abstract processes with Web Services
For pools that represent abstract processes with Web Services (those that have incoming calls or asynchronous
messages) and do not have associated WSDL files, Together generates an extended WSDL file that, along with
necessary interface definitions, contains <binding/> and <service/> tags. These tags help to generate Java
stubs for the defined web services.

Mapping
The generator creates the <portType/>, <operation/> and <message/> tags according to the Business
Process Modeling Notation (BPMN) specification.

The only difference is in the mapping of property types. The specification assumes "xsd" prefix by default. In
Together, the generator uses the prefix of the generated WSDL file by default. To use the XML Schema types, the
"xsd" prefix must be specified directly (for example, xsd:String).

Element Description

Activity Mapping For each Task that has properties, the <message/> tag with the name of the activity and a standard
suffix "_ActivityDataMessage" is generated. Each property maps to the <part/> tag.

Loop Activity Mapping If the process contains an activity with a loop, the generator creates the <message/> tag with a
"loopCounterMessage" name for the "simple" loop and with a "forEachCounterMessage" name for
the "multiple instance" loop.

868

Boundary Event Mapping If the process contains at least one boundary event, the <message/> tag with
"completionMessage" name is created.

Link Event Mapping For each intermediate Link Event that participates in the event-based decision (goes just after
Event-Based Exclusive Gateway), the generator creates an <operation/> tag inside the
"LinkPortType" port type. The fully qualified name of the Link Event will be used as the name of
the operation.

Message Flow Mapping For each incoming message flow, except the reply message flow, the generator creates the
<portType/> and <operation/> tags as defined in the message flow. The input message is
also generated from this one message flow. If the diagram contains a reply message flow, this one
is used for the generation of the output message. The "InMessage" on the following figure is
mapped to Web Service (<portType/> and <operation/> pair). The "InMessage" will be used
as an outgoing message and the "OutMessage" as an incoming message of a created service.

Process Mapping For each Process that has properties, the <message/> tag with the name of the process and
standard suffix "_ProcessDataMessage" is generated. Each property maps to the <part/> tag
inside the message.

Rule Event mapping For each start Rule event, the generator creates an <operation/> tag in the "RulePortType" port
type. The fully qualified name of the event will be used as the name of the operation.

Timer Event mapping For each start Rule event, the generator creates an <operation/> tag in the "TimerPortType"
port type. The fully qualified name of the event will be used as the name of the operation.

Implementations details
If the type property of the property contains prefix, the generator tries to find appropriated namespace URI from the
existing (predefined and collected form associated WSDL files). If the URI cannot be found, the generator uses the
default URI (see. The namespace URI above).

The namespace prefixes
In generated WSDL files generator tries to use original prefixes from the predefined WSDL file or from the associated
WSDL file. If it is impossible (for example, some WSDL files use the same prefixes) the generator creates unique
prefix in format "prcXX", where XX is a unique number (in scope of the diagram).

The namespace URI
The generator uses the following predefined namespace prefixes and URIs:

♦ prefix "xsd", URI " http://www.w3.org/2001/XMLSchema"

♦ prefix "plink", URI " http://schemas.xmlsoap.org/ws/2003/05/partner-link/"

♦ prefix "bpws", URI " http://schemas.xmlsoap.org/ws/2003/03/business-process/"

♦ prefix "soap", URI " http://schemas.xmlsoap.org/wsdl/soap/"

♦ prefix "wsdl", URI " http://schemas.xmlsoap.org/wsdl/"

Such URIs cannot be used as namespace URIs for BPMN processes.

The property types
If the type property of the property contains prefix, the generator tries to find appropriated namespace URI from the
existing (predefined and collected form associated WSDL files). If the URI cannot be found, the generator uses the
default URI (see. The namespace URI above).

869

Mapping Process Structure: Flows and Sequences

Starting and Ending Business Process
In Together, each non-abstract business process must have only one event with the type start. If the start event is
missing or there are more than one start events, the diagram is considered invalid and a validation error occurs.

Each event with the type end is considered as an end of a business process. There might be several events with
type end and each of them will be considered as the end of the current BPEL container element (for example,
sequence or flow). There may be no end element at all; each element without an outgoing sequence flow is
considered as the end element.

Executing Tasks Sequentially
All the elements of the process are enclosed into one top-level sequence with the name main. If each of the elements
has one incoming and one outgoing sequence flow, they form a sequence and sequence flow links are not mapped.
Sequences can be nested into each other.

Executing Tasks in Parallel
If some element has more than one outgoing sequence flow, there must be a BPEL flow. There are three elements
that can start the flow:

♦ Tasks

♦ Start Events

♦ Parallel gateway

Each flow starts with empty activity that has sources of the links outgoing from the first element. A name of the
sequence flow becomes the name of the link. The condition type must be expression. The value of the expression
property is mapped to the value of the link condition without any processing, as it is written. Therefore, the condition
should be written with a prefix, for example:

bpws:getVariableData('request', 'amount')>=10000.

The flow starts and ends with an empty activity. The elements with several outgoing sequence flows (fork) and
several incoming sequence flows (merge) are outside the BPEL flow.

Flow Inside Flow
Sometimes an element with several outgoing sequence flows is included inside another flow. In this case, Task1
does not start another inner flow but is considered as an activity in the outer flow. It is mapped as follows:

<flow>
 …
 <invoke name="Task1">
 <source linkName="SequenceFlow2"/>
 <source linkName="SequenceFlow5"/>
 <target linkName="SequenceFlow1">
 </invoke>

870

 …
</flow>

Exclusive gateways inside a flow are mapped to switch in the ordinary way.

Mapping of Exclusive Gateways
An exclusive gateway inside a flow is mapped into switch. Each sequence flow outgoing from the exclusive gateway
starts a case with a sequence. Sometimes several paths merge before all the paths started from the gateway are
merged. In this case, elements that are common to that case are duplicated. The same happens if several paths in
nested switches are merged before the merge of all paths.

Unmapped Elements
To be mapped into BPEL properly, the process must be represented by a connected graph. Graph traversal starts
from the start event and follows the sequence flow. If some elements cannot be reached in that way, they are not
mapped to BPEL and a validation warning is provided.

Cycles Support
Currently Together does not support cycles that are formed by the sequence flow. Any cycle formed by the sequence
flow leads to a validation error. However, each task or subprocess can be mapped to the cycle using the loop
properties.

871

Elements That Are Not Transformed to BPEL
The following elements are not transformed to BPEL:

1 Artifacts. The mapping is not provided by specification.
2 Complex gateways. The mapping is not provided by specification.
3 Lane. The mapping is not required by specification.
4 Cancel events. The mapping is not provided by specification.
5 Inclusive gateway. Not supported in this version.
6 Manual tasks and script tasks are not supported. Their implementation is server-dependent.
7 Independent subprocesses are not supported. Service tasks should be used instead.

If an element that is not supported is present on the diagram, there can be two outcomes:

♦ If an element that is not supported is connected to other elements with sequence flow, a validation error occurs
and no output is provided. Ignoring such an element can influence the behavior and lead to an incomplete
process that does not correspond to the diagram. To get the BPEL process file, the user must remove all
unsupported elements.

♦ An element is connected to other elements with an association or not connected at all. In this case, the element
is simply ignored.

872

BPMN Validation View
Use this view to review the errors that occurred during validation. Validation view lists all BPMN diagram-related
errors, including diagram errors, export, and simulation errors. An error in the list contains the name of the entity and
a short description that helps you understand the cause of the error and how to fix it. The number of validation
commands in the context menu depends on the selected profiles for the current project. For example, if the BPMN
Simulation profile is on, you will see a Validate for Simulation command on the diagram context menu.

The following is a list of context menu commands.

Item Description
Show in Model Navigator Selects an entity in the Model Navigator view.
Select All Selects all items listed in the BPMN Validation view.
Clean Removes the selected items from the list.
Select on Diagram Selects an entity on the BPMN diagram. If the diagram is not visible, this command will

open it in the Diagram editor.

Alternatively, you can double-click an item in the list to select the element on a diagram.

873

BPMN Simulation View
This view provides simulation run progress information and tools to control the simulation process.

Item Description
Diagram Displays the simulated diagram name.
Progress Displays simulation run progress.
Execution Provides simulation process statistics.

BPMN Simulation view buttons

Resume simulation Resumes previously paused simulation.
Pause simulation Pauses running simulation.
Next simulation step Proceeds to the next simulation steps when a step-by-step simulation is running.
Stop simulation Stops current simulation.

874

BPMN Diagram Context Commands
BPMN diagrams share common context menu commands with UML diagrams. To use the context menu for a
diagram, right-click in the Diagram Editor.

To view the common context menu commands, see “Common Diagram Context Commands” topic.

Item Description
Select Default Pool In Model Tree Selects the default pool in Model Navigator.
Fix Element Type Changes the type of the selected element if it is detected as incorrect.
Simulate Starts simulation for the selected diagram with the default settings (Start time

= 0, End time = 1000). The report is generated after choosing this command
(report generation is off by default).

New Offers a submenu with BPMN diagram elements available for the current
context.

Validate BPMN Diagram Validates the entire diagram.
Validate for BPEL4WS export Validates the diagram to meet the BPEL4WS export requirements.
Validate for simulation Validates the entire diagram to meet the simulation requirements.

Related Procedures

Together Business Process Modeling

Related Reference

Common Diagram Context Commands
Business Process Modeling

875

BPMN Simulation-specific Properties
This topic describes the BPMN diagram-specific properties. The composition of the Properties view changes
depending on the element selected in the Diagram or Model Navigator view. The Properties lets you view and
modify property values.

Use the BPMN simulation profile to add properties required to run a business process simulation.

Participant

Lifecycle Property Description
None Simulation is performed as is from Start to End.
Arriving Instances of the process, for which this parameter is specified, periodically enter the system.

An instantiation interval is defined by the arriving distribution property.

Additional property Description
mean arriving interval Mean time between arriving of the participants (tokens) that start the

process.
arriving distribution Different functions used to change the arriving intervals.
order The parameter in an Erlang distribution.
standard deviation The parameter in a Normal distribution.
maximum deviation Deviation of the arriving interval in a Uniform distribution. The

resulting range for a Uniform distribution is (mean-deviation to mean
+deviation).

Cycle Instances of the process for which this parameter is specified return to the beginning of the
process after completion. The maximum number property specifies the number of instances
executing in cycling order.

Additional Property Description
maximum number Specifies the maximum number of participants (entering tokens)

performing the sequence.

Task

Properties Description
mean duration Mean duration of the task.
duration distribution Functions that change the duration of the task. Can be Constant, Erlang, Exponential,

Normal, and Uniform. The following additional values can be displayed when you change
the duration distribution.

Additional Properties Description
order The parameter in an Erlang distribution
standard deviation The parameter in a Normal distribution
maximum deviation Deviation of the mean duration in a Uniform distribution

cost per time unit Cost of each time unit when the task is executed.

Sequence flow

Properties Description
probability to take (in percent) Specifies the probability of following the selected sequence flow when you specify

two or more sequence flows. This property is taken into account only when the
Sequence Flow property is set to "condition type"="Expression".

876

Related Concepts

Business Process Modeling

877

BPMN Diagram Toolbar
The table below lists diagram elements available for a BPMN diagram in Together.

Element Description
Process Pool Represents a Participant in a Process. A Participant can be a specific business entity

(for example, a company) or can be a more general business role (a buyer, seller, or
manufacturer). There are three basic types of submodels within an end-to-end BPMN
model:

None (or undefined), the default business process

Private (internal) business processes

Abstract (public) processes

Collaboration (global) processes

All business process diagrams contain at least one Pool. In most cases, a business
process diagram that consists of a single Pool will only display the activities of the
Process and not display the boundaries of the Pool. Any Pool can have an invisible
border, but only after you change border visibility of the Default Pool from true to
false.

Lane A Lane is a subpartition within a Pool that extends the entire length of the Pool. Lanes
are used to organize and categorize activities within a Pool.

Task A Task is an atomic activity that is included within a Process. A Task is used when
the work in the Process is not broken down to a finer level of Process Model detail.

SubProcess A compound task within a process that has a flow of other activities. A subprocess
can be embedded, independent, or referenced. The subprocess can be in a collapsed
view that hides its details or a subprocess can be in an expanded view that shows its
details within the view of the Process in which it is contained. In the collapsed form,
the subprocess object uses a marker to distinguish it as a subprocess rather than a
Task.

None Event An Event is something that "happens" during the course of a business process. These
Events affect the flow of the Process and usually have a cause or an impact. BPMN
has restricted the use of events to include only those types of events that will affect
the sequence or timing of activities of a process. BPMN further categorizes Events
into three main types: Start, Intermediate, and End. The Start Event indicates where
a particular process will start. Intermediate Events occur between a Start Event and
an End Event. It will affect the flow of the process, but will not start or (directly)
terminate the process. The End Event indicates where a process will end.

Message Event A Message Event occurs when a message with the exact identity is received by the
process.

Timer Event Sets a specific time-date or a specific cycle that will affect the process and trigger
other events.

Error Event An Error Event occurs when the process detects an error.
Cancel Event Indicates that the process should be cancelled and triggers a Cancel Intermediate

Event attached to the Subprocess boundary. In addition, it indicates that a Cancel
message should be sent to any entities involved in the Process.

Compensation Event Used for compensation handling—both setting and performing compensation. It calls
for compensation if the Event is part of a Normal Flow. It reacts to a named
compensation call when attached to the boundary of an activity.

Rule Event Used only for exception handling. This type of event is triggered when a Rule becomes
true. A Rule is an expression that evaluates some process data.

Link Event A Link connects an End Event (Result) of one process to a Start Event (Start) or
Intermediate Event (Trigger) in another process. Paired Intermediate Events can also
be used as "Go To" objects within a process.

878

Multiple Event Means that there are multiple ways of triggering the Event. Only one of them will be
required. The attributes of the Intermediate Event will define which of the other types
of Triggers apply.

Terminate Event This type of End event indicates that all activities in the Process should be immediately
ended. This includes all instances of Multi-Instances. The Process is ended without
compensation or event handling.

Exclusive (XOR) Gateway Exclusive Gateways (Decisions) are places within a business process where the
Sequence Flow can take two or more alternative paths. For a given performance (or
instance) of the process, only one of the paths can be taken.

Inclusive (OR) Gateway This Decision represents a branching point where Alternatives are based on
conditional expressions contained within an outgoing Sequence Flow. However, in
this case, the True evaluation of one condition expression does not exclude the
evaluation of other condition expressions. Because each path is independent, all
combinations of the paths may be taken, from zero to all. However, it should be
designed so that at least one path is taken.

Complex Gateway Used to handle situations that are not easily handled through the other types of
Gateways. Complex Gateways can also be used to combine a set of linked simple
Gateways into a single, more compact situation. You can provide complex
expressions that determine the merging and/or splitting behavior of the Gateway.

Parallel (AND) Gateway Provides a mechanism to synchronize parallel flow and to create parallel flow.
Text Annotation Provides additional information for the reader of a BPMN Diagram.
Data Object Provides information about what the Process does; that is, how documents, data, and

other objects are used and updated during the Process.
Group Eases the division of a BPMN diagram into logical parts. A Group permanently keeps

track of content, resizes on element move, colors elements with selected color, and
so on.

Sequence Flow Shows the order that activities will be performed in a Process.
Message Flow Shows the flow of messages between two entities that are prepared to send and

receive them. Note: Message Flow cannot connect to objects that are located within
the same Process (Pool).

Association Associates Artifacts with Objects within the process flow and with the flow itself. An
Association is also used to show the activities used to compensate for an activity.

Related Concepts

Business Process Modeling

Related Procedures

Together Business Process Modeling

879

BPMN Simulation Report
Together generates a report on a BPMN diagram simulation run.

Use the Simulation run dialog box to specify the output folder for report file, start/end time, and time units. Start/
End time and time units are shown in the report after its generation. For the entire BPMN process and all the report
calculation decisions, a process is active if it contains at least one active task, and the process is waiting if it does
not contain an active task but contains at least one waiting task.

The report provides the following information:

Setup:

Field Description
Model name Name of the simulated model.
Start time Start of the simulation process.
End time End of the simulation process.
Duration Duration of the simulation process.
Actual End time Time when the simulation process was stopped (the real End time).
Actual Duration Actual duration of the simulation.

Token

Process statistics

Field Description
Process Name of the simulated process.
Started count Number of starts of the process.
Completed count Number of completed processes.

Activity statistics

Field Description
Activity Name of the simulated activity.
Completed count Number of tokens completed for this activity during the simulation time.

Time

Process statistics

Field Description
Process Name of the simulated process.
Total time Total process simulation time.
Average time Average process simulation time.
Total work time Total process work time.
Average work time Average process work time.
Total wait time Total process wait time.
Average wait time Average process wait time.

Activity statistics

880

Field Description
Activity Name of the simulated activity.
Total time Total activity simulation time.
Average time Average activity simulation time.
Total work time Total activity work time.
Average work time Average activity work time.
Total wait time Total activity wait time.
Average wait time Average activity wait time.

Cost

Resource statistics

Field Description
Activity Name of the simulated activity.
Work cost Work cost per time unit for the activity.

Process statistics

Field Description
Process Name of the simulated process.
Total cost Total cost of the simulated processes.
Average cost Average cost of the simulated processes.
Total work cost Total cost of the work.
Average work cost Average cost of the work.
Total wait cost Total cost of the wait time.
Average wait cost Average cost of the wait time.

Activity statistics

Field Description
Activity Name of the simulated activity.
Total cost Total cost of the simulated activity.
Average cost Average cost of the simulated activity.
Total work cost Total cost of the work of the simulated activity.
Average work cost Average cost of the work of the simulated activity.
Total wait cost Total cost of the activity wait time.
Average wait cost Average cost of the activity wait time.

Note: The report content is generated using the sim-doc.xsl template from the sim-data.xml file generated by the
simulation run and simple sim-layout.xml template defining sections and tables within the report. The files
are located in the com.borland.tg.bpm.simulation.core plugin under the report folder. It is possible to
change the report view by editing the corresponding files. It is also possible to include some files in the
simulation report by adding them into the /report/content folder. The included files will be present in the
content folder of the generated report.

881

Related Concepts

Business Process Modeling

Related Procedures

Together Business Process Modeling

Related Reference

Launch BPMN Simulation

882

UML 1.4 Reference
This section contains reference material about UML 1.4 diagrams.

In This Section
UML 1.4 Class Diagrams
Describes the elements of UML 1.4 Class Diagrams.

UML 1.4 Use Case Diagrams
Describes the elements of UML 1.4 Use Case Diagrams.

UML 1.4 Interaction Diagrams
This section describes the elements of UML 1.4 Sequence and Collaboration diagrams.

UML 1.4 Statechart Diagrams
Describes the elements of UML 1.4 Statechart diagrams.

UML 1.4 Activity Diagrams
Describes the elements of UML 1.4 Activity Diagrams.

UML 1.4 Component Diagrams
Describes the elements of UML 1.4 Component Diagrams.

UML 1.4 Deployment Diagrams
Describes the elements and context menus of UML 1.4 Deployment Diagrams.

883

UML 1.4 Class Diagrams
This section describes the elements of UML 1.4 Class Diagrams.

In This Section
UML 1.4 Class Diagram Elements
Lists the UML 1.4 class diagram elements.

Attribute Context Menu
Describes the attribute context menu and its commands.

Attribute Properties
Describes the properties specific to attributes of classes, inner classes, and interfaces.

Class Context Menu
Describes the class context menu and its commands.

Class Diagram Context Menu
Describes the class diagram context menu and its commands.

Class Diagram Properties
Describes the properties specific to attributes of classes, inner classes, and interfaces.

Class Diagram Relationships
Describes class diagram relationships for UML 1.4 and UML 2.0 specifications.

Class, Inner Class, and Interface Properties
Describes the properties specific to classes, inner classes, and interfaces.

Dependency Link Properties
Describes the specific properties of dependency links.

Extend/Include Link Properties
Describes the properties specific to extend and include links.

Generalization/Implementation Link Properties
This section describes the properties specific to generalization/implementation links.

LiveSource Rules
Describes LiveSource basic rules.

Object Context Menu
Describes the common context menu commands used by all UML diagram elements.

Object Properties
Describes properties specific to Object elements.

Operation Context Menu
Describes the common operation context menu commands used by all UML diagram elements.

Operation Properties
This section describes the properties specific to operations (methods) of classes, inner classes, and
interfaces.

Package Properties
Describes package-specific properties.

884

UML 1.4 Class Diagram Elements
The table below lists the elements of UML 1.4 class diagrams that are available using the Palette.

Note that the available elements depend on the type of the project and selected profiles.

Package node
Class node
Interface node
Enumeration This element is available in the source code projects only.
Class by Template Available in the source code projects. Opens the Apply Template wizard.
Association Class node
Link by Template Available in the source code projects. Opens the Apply Template wizard.
Object Available in the design and source code projects.
Association end link
Generalization/Implementation link
Association link
Dependency link
Note annotation
Note link annotation link

885

Attribute Context Menu
All of the UML diagram elements share common context menu commands. To use the context menu for an element,
right-click the element in the Diagram editor. To view the common context menu commands, see “Common Element
Context Commands.”

The context menu for an attribute shares the common element context commands as well as the following commands
specific to it.

Open
Selecting Open from the context menu opens in the text editor the selected class that contains the attribute and
highlights the attribute in the source code.

Show in Packages View
The Show in Packages View command highlights the node selected in the Packages tree-view. The Packages view
will expand and highlight that element in the tree-view. If closed, the Packages view will open.

Show in Model Package Explorer
The Show in Model Package Explorer View command highlights the node selected in the UML Explorer tree-view.
The Model Package Explorer view will expand and highlight that element in the tree-view. If closed, this view will
open.

Modifiers

Static Selecting Static from the context menu sets the static property for the attribute.
Public Selecting Public from the submenu sets the visibility property for the attribute to public.
Protected Selecting Protected from the submenu sets the visibility property for the attribute to protected.
Private Selecting Private from the submenu sets the visibility property for the attribute to private.
Package Local Selecting Package Local from the submenu sets the visibility property for the attribute to package

local.

Apply Template
Selecting this command launches the Apply Template dialog, which displays the available templates. Select a
template from the Templates list to apply.

Related Reference

Common Element Context Commands

886

Attribute Properties
This section describes the properties specific to attributes of classes, inner classes, and interfaces. Every element
has general properties as well as specific properties. For more information, see “Properties View.” The composition
of the Properties view changes depending on the element selected in the Diagram Editor or Model Navigator view.
You can view and modify values of properties through the Properties View.

Attribute Properties

alias Lets you give an element a name that would not normally be accepted for that element. For example,
use the alias property to represent a class name with spaces to make it more readable. Using the
alias property does not affect the original name. The Diagram editor shows the alias for an element.

associates The associates property is displayed in the Properties view whenever an attribute has a non-primitive
type. Click the Selection dialog button to open the Selection dialog for selecting model or java
elements.

final Set this value as true or false from the drop-down list.
initial value Use this field to set the initial value of the attribute.
name The name of the attribute.
static Set this value as true or false from the drop-down list.
stereotype Use this field to add your own stereotype property.
transient Set this value as true or false from the drop-down list.
type This field represents the attribute type (String, Boolean, double, float, and so on). Choose the

appropriate type from the drop-down list.
visibility Set the visibility for the attribute from the drop-down list. Choose from public, private, protected, or

package local.
volatile Set this value as true or false from the drop-down list.

Final, static, transient and volatile properties only apply to Class attributes.

Javadoc Properties
The Properties View for source-generating elements also displays Javadoc properties. Using javadoc tags enables
you to automatically generate a complete, well-formatted API from your source code. You can enter a description
and specify values for Javadoc tags applicable to the selected element. These values are used when you generate
Javadoc using the Documentation Generation feature of Together (File Export UML Documentation).

Filling in the Javadoc fields automatically generates appropriate tags in the Javadoc tags in the source code.

deprecated Adds a comment to the generated documentation indicating that the API is deprecated and should
no longer be used (even though it may continue to work).

see Adds a hyperlinked "See also" entry when using the Documentation Generation feature.
since Adds a "Since" entry with the specified since-text to the generated documentation. This tag indicates

that this change or feature has existed since the software release specified by the since-text.

Related Concepts

UML 1.4 Class Diagram Definition

Related Reference

Properties View

887

Class Context Menu
Diagram Editor Select Class element Right-click

All of the UML diagram elements share common context menu commands. To use the context menu for an element,
simply right click on the element in the Diagram Editor . To view the common context menu commands, see “Common
Element Context Commands.”

The context menu for the class and interface elements share the common element context commands as well as
the following commands specific to both.

New
The New command for the class or interface element offers a submenu with the following options:

Attribute Selecting Attribute from the submenu adds an attribute to the class or interface.
Operation Selecting Operation from the submenu adds an operation to the class or interface.
Constructor Selecting Constructor from the submenu adds a constructor to the class or interface.
Property Selecting Property from the submenu adds a property to the class or interface.
Inner Class Selecting Inner Class from the submenu adds an inner class to the class or interface.
Inner Interface Selecting Inner Interface from the submenu adds an inner interface to the class or interface.

Open
Selecting Open from the context menu opens the selected class or interface in the text editor.

Open Type Hierarchy
The Open Type Hierarchy command highlights the node selected in the Hierarchy view. The Hierarchy view will
expand and highlight that element in the tree-view. If closed, the Hierarchy view will open.

QA Source
The QA Source command for the class element offers a submenu with the following options:

Load Audit Results Use this command to load a set of audits results.
Load Metrics Results Use this command to load a set of metrics results.
Audits Selecting Audit from the submenu processes audits for only the selected class or interface.

For more information, see “Running Model Audits and Metrics.”
Metrics Selecting Metrics from the submenu processes metrics for only the selected class or

interface. For more information, see “Running Model Audits and Metrics.”

Add linked
The Add Linked command is available for class and package diagrams, and provides search options for references,
implementations, and inheritance according to the specified types and scopes. Search applies to a single object or
to a group of selected objects.

888

Apply Template
Selecting Apply Template launches the Apply Template dialog, which displays the available templates. From the
resulting dialog, select the template you want for the new class. Invoking Choose Template enables refactoring of
the class according to the specific template. For more information, see “Creating Class By Template.”

Save As Template
Selecting the Save As Template command displays the Create Template dialog, which lets you save the class or
interface as a template.

Add Bookmark
Bookmarks let you navigate to resources that are frequently used. You can set, remove, and view bookmarks using
the Bookmarks view.

Hide / Show
The Hide / Show command for a class (or interface) element offers a submenu with the following options:

Attributes Selecting Attributes from the submenu hides only the attributes of the class. The Hide /
Show command for Attributes works as a toggle. To redisplay hidden attributes, right-click the
class where the attributes are hidden and select Hide / Show Attributes from the context
menu.

Operations Selecting Operations from the submenu hides only the operations of the class. The Hide /
Show command for Operations works as a toggle. To redisplay hidden operations, right-click
the class where the operations are hidden and select Hide / Show Operations from the context
menu.

Properties Selecting Properties from the submenu hides only the properties of the class. The Hide /
Show command for Properties works as a toggle. To redisplay hidden properties, right-click the
class where the properties are hidden, and select Hide / Show Properties from the context
menu.

Inner Classes Selecting Inner Classes from the submenu hides only the inner classes of the class. TheHide /
Show command for Inner Classes works as a toggle. To redisplay a hidden inner class, right-
click the class where it was hidden and select Hide / Show Inner Classes from the context
menu.

Inner Interfaces Selecting Inner Interfaces from the submenu hides only inner interfaces of the class. The Hide /
Show command for Inner Interfaces works as a toggle. To redisplay a hidden inner interface,
right-click on the class where it was hidden and select Hide / Show Inner Interfaces from the
context menu.

All Selecting All from the submenu hides attributes, operations, properties, inner classes, and inner
interfaces of the class. The Hide / Show command for All works as a toggle. To redisplay hidden
class elements, right-click the class where the elements are hidden and select Hide / Show
All from the context menu.

Hide
The Hide command hides a class in the Diagram Editor . To show classes hidden after using this command, right-
click the diagram background, and select Hide/Show.

889

Compare With
Use Compare With to compare the resources in the Workbench with the resources held within the repository.
The Compare With command offers a submenu with the following options:

Using the Each Other command simply compares two files. Select two diagrams in the Model Navigator view by
using CTRL+Click, then invoking Compare With Each Other.

Related Procedures

Creating Class By Template
Running Model Audits and Metrics

Related Reference

Common Element Context Commands

890

Class Diagram Context Menu
All of the UML diagram types share common context menu commands. To use the context menu for a diagram,
right-click in theDiagram Editor .

To view the common context menu commands, see “Common Diagram Context Commands.”

The class diagram context menu shares the common context menu commands as well as commands specific to it.

New
The New command for the class diagram offers a submenu with the following options:

Package Adds a package element to the diagram.
Class Adds a class element to the diagram.
Interface Adds an interface element to the diagram.
Association class Adds an association class element to the diagram.
Object Adds an object element to the diagram.
Apply Template Opens the Apply Template dialog, which displays the available templates.
Note Adds a note element to the diagram.
Shortcut To refer to an element located outside of the current diagram or to another diagram, you can

use shortcuts. Invoking the Shortcut command displays a selection dialog, where you can
choose the desired element (or diagram) from the appropriate location.

Quality Assurance
The Quality Assurance command for the class diagram offers a submenu with the following options:

Save Metrics Results After you have run metrics on a project or part of a project, you can save those metric
results and view them whenever you like. Use this command to load a set of metrics results.
For more information, see “Saving and Loading Metric Results.”

Metrics Selecting Metrics from the submenu processes metrics for only the specific diagram. For
more information, see “Running Source Code Metrics.”

Audit Selecting Audit from the submenu processes audits for only the specific diagram. For more
information, see “Running Source Code Audits.”

Related Procedures

Running Source Code Audits
Running Source Code Metrics
Saving and Loading Metric Results

Related Reference

Common Diagram Context Commands

891

Class Diagram Properties
This section describes the properties specific to attributes of classes, inner classes, and interfaces. Every element
has general properties as well as specific properties. For more information, see “Properties View.” The composition
of the Properties view changes depending on the element selected in the Diagram Editor or Model Navigator view.
You can view and modify values of properties through the Properties View.

diagram type Shows the current diagram type.
name The name of the class diagram.
stereotype Choose the appropriate stereotype from the drop-down list or add your own stereotype. The

available stereotypes are:

▪ data management

▪ facade

▪ framework

▪ human interaction

▪ problem domain

▪ stub

▪ subsystem

▪ system

▪ system interaction

Related Reference

Properties View

892

Class Diagram Relationships
There are several kinds of relationships for UML 1.4 and UML 2.0 Class diagrams.

Types of Relationships

Association A relationship between instances of the two classes. There is an association
between two classes if an instance of one class must know about the other to
perform its work. In a diagram, an association is a link connecting two classes.
Associations can be directed or undirected. A directed link points to the supplier
class (the target). An association has two ends. An end may have a role name
to clarify the nature of the association. A navigation arrow on an association
shows which direction the association can be traversed or queried. A class can
be queried about its Item, but not the other way around. The arrow also lets you
know who "owns" the implementation of the association. Associations with no
navigation arrows are bi-directional.

Simple Association A binary association in which aggregationKind =
none.

Aggregation An association in which one class belongs to a collection.
An aggregation has a diamond end pointing to the part
containing the whole.

Composition An association that represents a composite aggregation
(that is, a whole/part relationship). A composite
aggregation is a strong form of aggregation that requires
a part instance to be included in a maximum of one
composite at a time. A composition has a filled diamond
at the aggregate end.

Generalization/Implementation An inheritance link indicating that a class implements an interface. An
implementation has a triangle pointing to the interface.

Dependency A supplier/client relationship between model elements in which modification of
the supplier could impact the client model elements. A dependency implies that
the semantics of the client are not complete without the supplier.

Part An “owned” property that corresponds to a composition (that is, a composite
aggregation). The syntax of such a property differs from a referenced part, or
“shared” property. In the abstract syntax, which defines the model, a part is the
role name for a relationship that a StructuredClassifier has with an owned
property. In the concrete syntax, which defines the diagram, a part is the name
of the graphical node that represents such an owned property.

Referenced Part A “shared” property that corresponds to a shared association (that is, an
aggregation). The syntax of such a property differs from a part, or “owned”
property. In the abstract syntax, which defines the model, a referenced part is the
role name for a relationship that a StructuredClassifier has with a shared
property. In the concrete syntax, which defines the diagram, a referenced part is
the name of the graphical node that represents such a shared property.

Required interface Available in UML 2.0 class diagrams. Applying a provided interface link to a port
on the client class creates a link in ball-and-socket notation.

Provided interface Available in UML 2.0 class diagrams. Applying a provided interface link between
a class and an interface creates a regular generalization/implementation link.

Instantiates Available in UML 2.0 class diagrams. This link can be drawn between an instance
specification and its instantiated class.

893

Multiplicities
Every class diagram has classes and associations. Navigability, roles, and multiplicities are optional items placed
in a diagram to provide clarity.

The multiplicity of an association end is the number of possible instances of the class associated with a single
instance of the other end. Multiplicities are single numbers or ranges of numbers.

0..1 Zero or one instance. The notation n . . m indicates n to m occurrences
0..* or No limit on the number of occurrences (including none)
1 Exactly one occurrence
1..* At least one occurrence
-1 No limit on the number of occurrences (note that this multiplicity value is displayed as * on the diagram)

Related Procedures

Changing Type of an Association Link

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

894

Class, Inner Class, and Interface Properties
This section describes the properties specific to classes, inner classes, and interfaces. Every element has general
properties as well as specific properties. For more information, see “Properties View.” The composition of the
Properties view changes depending on the element selected in the Diagram or Model Navigator view. You can view
and modify values of properties through the Properties View.

abstract (Class only) Set this value to true or false using the drop-down menu.
alias Allows you to give an element a name that would not normally be accepted for that element. For

example, use the alias property to represent a class name with spaces to make it more readable.
Using the alias property does not effect the original name. The Diagram editor shows the alias for
an element.

extends If a class extends another class, use the drop-down arrow to select the appropriate class.
file Lists the file name and its location in the project directory.
final (Class only) Set this value as true or false from the drop-down list.
implements (Class only) If a class implements an interface, use the drop-down arrow to select the appropriate

interface.
invariants This field allows you to enter text describing what is always true for all instances of a class.
name The name of the class, inner class or interface.
package The package the class or inner class belongs to.
persistent Set this value as true or false using the drop-down list.
public (Class only) Set this value as true or false using the drop-down list.
stereotype Use this field to add your own stereotype property.

Javadoc
The Properties View or source-generating elements also displays Javadoc properties. Using Javadoc tags enables
you to automatically generate a complete, well-formatted API from your source code. You can enter a description
and specify values for Javadoc tags applicable to the selected element. These values are used when you generate
Javadoc using the Documentation Generation feature of Together (File Export Documentation Using
Template).

Filling in the Javadoc fields automatically generates appropriate tags in the Javadoc tags in the source code. The
@author and @see tags allow multiple values. In this case, the values are separated by commas in the Properties
field.

author Creates an "Author" entry. This field can contain multiple @author tags.
deprecated Adds a comment to the generated documentation indicating that the API is deprecated and should

no longer be used (even though it may continue to work).
see Adds a hyperlinked "See also" entry when using the Documentation Generation feature. For

example, @see java.lang.String.
since Adds a "Since" entry with the specified since-text to the generated documentation. This tag indicates

that this change or feature has existed since the software release specified by the since-text.
version Adds a "Version" entry to the class. A doc comment may contain at most one @version tag.

Related Reference

Properties View

895

Dependency Link Properties
This section describes the dependency links' specific properties. Every element has common properties as well as
specific properties. For more information, see “Properties View.” The composition of the Properties View changes
depending on the element selected in theDiagram Editor or Model Navigator view. You can view and modify values
of properties through the Properties View.

Property Description
client This property field indicates the client for the link.
client role Use client role to add a label to the dependency link. The label appears on the UML diagram towards

the client side of the link.
label Use label to add a label to the dependency link. The label is displayed on the UML diagram between

the client and the supplier.
stereotype Use this field to add your own stereotype property.
supplier This property field indicates the supplier for the link.
supplier role Use supplier role to add a label to the dependency link. The label is displayed on the UML diagram

towards the supplier side of the link.

Related Reference

Properties View

896

Extend/Include Link Properties
This section describes the properties specific to extend and include links. Every diagram element has general
properties as well. For more information, see “Properties View.” The composition of the Properties view changes
depending on the element selected in the Diagram or Model Navigator view. You can view and modify values of
properties through the Properties view.

Extend Link Properties

comment Use this field to edit the comment property.
condition Use this field to edit the condition property.
label Use this property to indicate the label for the link.
metaclass Use this property to indicate the metaclass for the link.
stereotype Use this field to add your own stereotype property.

Include Link Properties

comment Use this field to edit the comment property.
label Use this property to indicate the label for the link.
metaclass Use this property to indicate the metaclass for the link.
stereotype Use this field to add your own stereotype property.

Related Reference

Properties View

897

Generalization/Implementation Link Properties
This section describes the properties specific to generalization/implementation links. Every element has general
properties as well as specific properties. For more information, see “Properties View.” The composition of the
Properties view changes depending on the element selected in the Diagram or Model Navigator view. You can view
and modify values of properties through the Properties view.

Item Description
client This property field indicates the client for the link.
supplier This property field indicates the supplier for the link.

Related Reference

Properties View

898

LiveSource Rules
The impact of changing a class, interface, or package on a logical class diagram varies according to the kind of
change:

♦ Changing the name, adding a member, creating a new link, or applying a pattern makes the corresponding
change in the actual source code.

♦ Choose Delete from View on the context menu of the element to remove the element from a current diagram
and keep the element in the namespace (package).

♦ Choose Delete on the context menu to completely remove the element from the model.

♦ When you press DELETE on the keyboard, the Delete from view command is applied, if it is available in this
particular situation. If it is not, the element is deleted completely.

♦ Direct changes in source code editor, such as renaming a class, cannot be tracked by Together. Use refactoring
operations for this purpose.

Related Concepts

Roundtrip Engineering Overview

Related Procedures

Opening a Diagram Element in the Source Code Editor

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

899

Object Context Menu
All of the UML diagram elements share common context menu commands. To use the context menu for an element,
right-click on the element in the Diagram editor. To view the common context menu commands, see “Common
Element Context Commands.”

The object element offers the following additional context menu selections:

New
The object element has a New menu item, with a submenu for creating a new class, interface or a slot.

Item Description
Class Opens the New Object's Class dialog.
Interface Opens the New Object's Interface dialog.
Linked note Creates a note with the activated in-place editor.
Slot Adds a slot to the object.

Select Class
Select Class expands to display a submenu with any classes that are "local" to the diagram and an option named
More for browsing available classes that you wish to associate with the object.

Local Class List (Class1, Class2) If there are classes that are "local" to the diagram, they will be displayed in this
list. Select the class from the list to associate it with the object

More Select More to open a file browsing dialog to select a class to associate with
an object.

Show Class
After a class or interface has been associated with an object, the Show Class command is enabled. This command
offers special context commands:

In Editor Opens the source file in the Editor window.
In Navigator Opens the Navigator, navigates to and highlights the source file in the view.
In Package Explorer Opens the Package Explorer view, navigates to and highlights the source file in the view.
In Model Navigator Opens the Model Navigator, navigates to and highlights the source file in the view.

Unlink Class
Use Unlink Class to unlink a previously linked class or interface from an object.

Related Reference

Common Element Context Commands

900

Object Properties
Diagram Editor Right-click Object Properties

This section describes properties specific to Object elements. Every element has general properties as well as
specific properties. For more information, see “Properties View.” The composition of the Properties View changes
depending on the element selected in the Diagram Editor or Model Navigator view. You can view and modify values
of properties through the Properties view.

active Set this value as true or false from the drop-down list.
concurrent Set this value as true or false from the drop-down list.
instantiates Use the ellipsis button to open the Select Class dialog, and navigate to and select the

instantiating class.
in This field represents the package that the class resides in.
location This field represents the physical location for the class.
multiple instance Set this value as true or false from the drop-down list.
name The name of the object.
persistence Choose the appropriate persistence type from the drop-down list. Objects have the following

persistence types:

transient, static, persistent
Note: When setting the persistence property for an object on class, collaboration, activity, state,
or deployment diagrams the persistence property is displayed below the name of the object in
curly braces.

state Use this text field to describe the state of an object.
stereotype Use this field to add your own stereotype property.

Related Reference

Properties View

901

Operation Context Menu
All of the UML diagram elements share common context menu commands. To use the context menu for an element,
right-click on the element in the Diagram editor. To view the common context menu commands, see “Common
Element Context Commands.”

The context menu for an operation shares the common element context commands as well as the following
commands specific to it:

Open
Selecting Open from the context menu opens the selected class containing the operation in the text editor.

Show in Packages View
The Show in Packages View command highlights the node selected in the Packages tree-view. The Packages view
will expand and highlight that element in the tree-view. If closed, the Packages view will open.

Show in Model Package Explorer
The Show in Model Package Explorer View command highlights the node selected in the UML Explorer tree-view.
The Model Package Explorer view will expand and highlight that element in the tree-view. If closed, this view will
open.

Modifiers
The Modifiers command for the operation offers a submenu with the following options:

Static Selecting Static from the context menu sets the static property for the operation.
Abstract Selecting Abstract from the context menu sets the abstract property for the operation.
Public Selecting Public from the submenu sets the visibility property for the operation to public.
Protected Selecting Protected from the submenu sets the visibility property for the operation to protected.
Private Selecting Private from the submenu sets the visibility property for the operation to private.
Package Local Selecting Package Local from the submenu sets the visibility property for the operation to

package local.

Note: The visibility options are not available for Interface members.

Add Javadoc comment
Using this command, you are able to add Javadoc comments for the operation.

Generate Sequence Diagram
Use this command to generate sequence diagrams from your source code. For more information, see “Working with
Operations in Sequence/Collaboration Diagrams.”

902

Related Procedures

Working with Operations in Sequence/Collaboration Diagrams
Roundtrip Engineering with Sequence Diagrams

Related Reference

Common Element Context Commands

903

Operation Properties
This section describes the properties specific to operations (methods) of classes, inner classes, and interfaces. Every
element has general properties as well as specific properties. For more information, see “Properties View.” The
composition of the Properties View changes depending on the element selected in the Diagram Editor or Model
Navigator. You can view and modify values of properties through the Properties View.

Operation Properties

Property Description
abstract Set this value as true or false from the drop-down list.
alias lets you give an element a name that would not normally be accepted for that element. For

example, use the alias property to represent a class name with spaces to make it more readable.
Using the alias property does not affect the original name. The Diagram editor shows the alias for
an element.

final Set this value as true or false from the drop-down list.
input This field lets you enter text describing the inputs for an operation.
name The name of the operation.
native Set this value as true or false from the drop-down list.
output This field lets you enter text describing the outputs for an operation.
parameters Add the parameters for an operation using this field.
post-condition This field lets you enter text describing the post-conditions for an operation.
precondition This field lets you enter text describing the preconditions for a method an operation.
return value Specify the return value of a method. Choose the appropriate return value from the drop-down

list.
semantics This field lets you enter text describing the semantics of an operation.
static Set this value as true or false from the drop-down list.
stereotype Use this field to add your own stereotype property.
synchronized Set this value as true or false from the drop-down list.
throws Use the drop-down list to select the appropriate throws statement.
time This field lets you enter text for the time requirement of an operation.
visibility Set the visibility for the operation from the drop-down list. Choose from public, private, protected,

or package local.

Note: Abstract, final, native, static, synchronized and visibility properties apply only for Class operations.

Javadoc Properties
The Properties view for source-generating elements also displays Javadoc properties. Using javadoc tags enables
you to automatically generate a complete, well-formatted API from your source code. You can enter a description
and specify values for Javadoc tags applicable to the selected element. These values are used when you generate
Javadoc using the Documentation Generation feature of Together (File > Export > UML Documentation). Filling in
the Javadoc fields automatically generates appropriate tags in the Javadoc tags in the source code.

Property Description
deprecated Adds a comment to the generated documentation indicating that the API is deprecated and should

no longer be used (even though it may continue to work).
exception Use the @exception tag in place of the @throws tag. Use the file chooser button to designate the

class-name of the exception that may be thrown by the method. A "Throws" heading is inserted in
the generated documentation.

params Adds a parameter to the "Parameters" section. You can insert multiple values in this field.

904

return Use this field to add a "Returns" comment with the description text. The text should describe the
return type and a permissible range of values.

see Adds a hyperlinked "See also" entry when using the Documentation Generation feature.
since Adds a "Since" entry with the specified since-text to the generated documentation. This tag indicates

that this change or feature has existed since the software release specified by the since-text.

Related Reference

Properties View

905

Package Properties
This section describes package-specific properties. Every element has general properties as well as specific
properties. For more information, see “Properties View.” Edit package properties through the Properties View. The
composition of the Properties View changes depending on the element selected in the Diagram Editor or Model
Navigator. You can view and modify values of properties.

diagram type This read-only field displays the diagram type.
name The name of the package.
package This field lists the name of the package.
stereotype Use this field to add your own stereotype property.

Related Reference

Properties View

906

UML 1.4 Use Case Diagrams
This section describes the elements of UML 1.4 Use Case Diagrams.

In This Section
UML 1.4 Use Case Diagram Elements
Describes UML 1.4 use case diagram elements.

Actor Properties
This section describes properties specific to actor elements.

Generalization Link Properties
This section describes the properties specific to generalization/implementation links.

Use Case Diagram Context Commands
Describes the common context menu commands used by all UML use case diagrams.

Use Case Diagram Elements Context Menu
Describes the common context menu commands used by all UML use case diagram elements.

Extension Point
Describes an extension point (Use Case diagrams).

Use Case Properties
Describes the specific properties for use case elements.

907

UML 1.4 Use Case Diagram Elements
The following table lists the elements of UML 1.4 Use Case diagrams that are available using the Palette.

Actor Draws an actor within the Diagram Editor .
Use Case Draws a use case within the Diagram Editor .
Communicates Draws a communication link between use case elements and actors.
Extend Draws an extends link between use case elements.
Include Draws an includes link between use case elements.
Generalization Draws a generalization link between use case elements. A generalization link can be also

created between a pair of Use Cases and a pair of Actors.
System Boundary Draws a system boundary to separate a system from external actors.
Note Creates an annotation.
Note Link Creates an annotation link.

908

Actor Properties
This section describes properties specific to actor elements. Every element has general properties as well as specific
properties. For more information, see “Properties View.” The composition of the Properties view changes depending
on the element selected in the Diagram or Model Navigator view. You can view and modify values of properties
through the Properties view.

explanation Use this field to enter text to explain the actor.
name Use this field to specify the name of the actor.
stereotype Use this field to add your own stereotype property.

Related Reference

Properties View

909

Generalization Link Properties
This section describes the properties specific to generalization/implementation links. Every element has general
properties as well as specific properties. For more information, see “Properties View.” The composition of the
Properties view changes depending on the element selected in the Diagram or Model Navigator view. You can view
and modify values of properties through the Properties view.

If the concept includes subtopics, introduce what the reader will encounter in the text.

label Use this property to indicate the label for the link.
stereotype Use this property to indicate the stereotype for the link.

Related Reference

Properties View

910

Use Case Diagram Context Commands
Diagram Editor Right-click

All of the UML diagram types share common context menu commands. To use the context menu for a diagram,
right-click in the Diagram Editor .

To view the common context menu commands, see “Common Diagram Context Commands.”

The use case diagram offers a special context command New with a submenu for adding new elements to the use
case diagram:

Option Description
New The New command for the Use Case diagram offers a submenu with the following options:

Actor Adds an actor element to the diagram.
Use Case Adds a use case element to the diagram.
System Boundary Adds a system boundary element to the diagram.
Note Adds an annotation to the diagram.
Shortcut To refer to an element located outside of the current diagram or to another diagram,

you can use shortcuts. Invoking the Shortcut command displays a selection dialog
in which you can choose the desired element (or diagram) from the appropriate
location.

Related Reference

Common Diagram Context Commands

911

Use Case Diagram Elements Context Menu
All of the UML diagram elements share common context menu commands. To use the context menu for an element,
right-click on the element in the Diagram editor. To view the common context menu commands, see “Common
Element Context Commands.”

The context menus described in this section are specific to UML 1.4 use case diagram elements.

Use Case
The use case element offers a special context command named, New, with a submenu for adding new elements to
the diagram:

Extension Point Adds an extension point to a use case element. For more information, see “Creating an
Extension Point.”

System Boundary
The system boundary element offers a special context command New.

Option Description
New Opens a submenu for adding a Use Case element and a Note.

Use Case Adds a use case within the system boundary.
Note Adds a note.

Related Procedures

Creating an Extension Point

Related Reference

Common Element Context Commands

912

Extension Point
An extension point refers to a location within a use case where you can insert action sequences from other use
cases.

An extension point consists of a unique name within a use case and a description of the location within the behavior
of the use case.

In a use case diagram, extension points are listed in the use case with the heading "Extension Points" (appears as
bold text in the Diagram View).

Related Reference

UML 1.4 Use Case Diagrams
UML 2.0 Use Case Diagrams

913

Use Case Properties
Right-click Use Case Properties

This section describes the specific properties for use case elements. Every diagram and diagram element has
general properties as well. For more information, see “Properties View.” The composition of the Properties view
changes depending on the element selected in the Diagram Editor or the Model Navigator view. You can view and
modify values of properties through the Properties View.

abstract Set this value as true or false from the drop-down list. Setting this value true for a use case
element displays the name of the element in italics on the diagram.

alternative flow Use the text field to describe an alternate flow of events.
explanation This field lets you enter text to explain the use case.
name The name of the use case element.
normal flow Use the text field to describe the normal flow of events.
post-conditions This field lets you enter text describing the state of the system after the use case is performed.
pre-conditions This field lets you enter text describing the necessary conditions that have to be met before the

use case can be performed.
rank Use the rank field to rank use case. For example, you might want to rank a use case for complexity

and risk.
stereotype Use this field to add your own stereotype property.

Related Reference

Properties View

914

UML 1.4 Interaction Diagrams
This section describes the elements of UML 1.4 Sequence and Collaboration diagrams.

In This Section
UML 1.4 Interaction Diagram Elements
Describes UML 1.4 interaction diagram elements.

Conditional Block
Describes a conditional block.

UML 1.4 Message
Describes UML 1.4 messages.

Activation Bar
Describes an activation bar.

Nested Message
Describes a nested message.

Message Link Properties
This section describes the properties specific to message links in UML 1.4 interaction diagrams.

915

UML 1.4 Interaction Diagram Elements
The table below lists the elements of UML 1.4 Interaction (Sequence and Collaboration) diagrams that are available
using the Palette, and context menus of the elements.

You can add shortcuts to the interaction diagrams, by using the New Shortcut command. However, referring to
the elements of the other interaction diagrams is not allowed.

UML 1.4 Interaction Diagram Elements
Object Draws an object with its lifeline in the Diagram Editor .
Actor Draws an actor in the Diagram Editor .
Message Draws a message link between object lifelines.
Self Message Draws a message link from an object lifeline back to itself.
Message with delivery time Draws a message link with delivery time between object lifelines. Sequence diagram

only.
Conditional Block Creates a conditional block on an activation point. Sequence diagram only.
Return Draws a return message.
Association link Draws an association link. Collaboration diagram only.
Aggregation link Draws an aggregation link. Collaboration diagram only.
Note Draws a note.
Note link Draws a note link.

916

Conditional Block
Conditional block statement is a flexible tool to enhance a sequence diagram. The following statements are
supported:

♦ if

♦ else

♦ for

♦ foreach

♦ while

♦ do while

♦ try

♦ catch

♦ finally

♦ switch

♦ case

♦ default

917

UML 1.4 Message
By default, message links in a sequence diagram are numbered sequentially from top to bottom. You can reorder
messages.

A “self message” is a message from an object back to itself.

Related Reference

UML 2.0 Message

918

Activation Bar
Together automatically renders the activation of messages that show the period of time that the message is active.
When you draw a message link to the destination object, the activation bar is created automatically.

You can extend or reduce the period of time of a message by vertically dragging the top or bottom line of the activation
bar as required. A longer activation bar means a longer time period when the message is active.

919

Nested Message
You can nest messages by originating message links from an activation bar. The nested message inherits the
numbering of the parent message.

For example, if the parent message has the number 1, its first nested message is 1.1. It is also possible to create
message links back to the parent activation bars.

Related Reference

UML 1.4 Message

920

Message Link Properties
This section describes the properties specific to message links in UML 1.4 interaction diagrams. The composition
of the Properties View changes depending on the element selected in the Diagram Editor or Model Navigator. You
can view and modify values of properties through the Properties View.

Property Description
label Use this field to add a label to the message link.
name The name of the link.
operation Use the text field or the file Edit button to select an operation to associate with the link.
in A text field that displays the package and source file of the operation.
stereotype Use this field to add your own stereotype for the link.
visibility Select the visibility value from the list.
arguments A text field to update the arguments property.
condition A text field to update the condition property
creation Use this field to set the creation property.
destruction Use this field to set the destruction property.
iteration Use this field to update the iteration property
non-atomic delivery Use this field to set the non-atomic delivery property for a message link. By default, message

links have atomic delivery.
return Use this field to update the return property.
return message Set the property value to true to create a return message.
sequence number This read-only field displays the message sequence number.
synchronization Use the drop-down list to set the synchronization property, which enables you to reduce or

extend the time of invocation and execution simultaneously or independently.

921

UML 1.4 Statechart Diagrams
This section describes the elements of UML 1.4 Statechart diagrams.

In This Section
UML 1.4 Statechart Diagram Elements
Describes UML 1.4 statechart diagram elements.

State
Describes a state (UML 1.4 Activity, UML 1.4 Statechart, UML 2.0 State Machine diagrams).

Transition
Describes a transition (UML 1.4 Activity, UML 1.4 Statechart, UML 2.0 State Machine diagrams).

Deferred Event
Describes a deferred event.

922

UML 1.4 Statechart Diagram Elements
The table below lists the elements of UML 1.4 Statechart diagrams that are available using the Palette.

Option Description
State node
Start State node
End State node
History node
Object node
Transition link
Horizontal Fork/Join node
Vertical Fork/Join node
Note annotation
Note Link annotation link

923

State
A state models a situation during which some (usually implicit) invariant condition holds. The invariant can represent
a static situation, such as an object waiting for some external event to occur. However, it can also model dynamic
conditions, such as the process of performing an activity (for example, the model element under consideration enters
the state when the activity commences and leaves it as soon as the activity is completed).

Actions
Entry and exit actions are executed when entering or leaving a state, respectively.

You can create these actions in statechart diagrams as special nodes or as stereotyped internal transitions.

Composite (nested) state
Create a composite state by nesting one or more levels of states within one state. You can also place start/end states
and a history state inside of a state, and draw transitions among the contained substates.

Related Reference

UML 1.4 Statechart Diagrams
UML 1.4 Activity Diagrams
UML 2.0 State Machine Diagrams

924

Transition
A single transition comes out of each state or activity, connecting it to the next state or activity.

A transition takes an operation from one state to another and represents the response to a particular event. You can
connect states with transitions and create internal transitions within states.

Internal transition
An internal transition is a way to handle events without leaving a state (or activity) and dispatching its exit or entry
actions. You can add an internal transition to a state or activity element.

Self-transition
A self-transition flow leaves the state dispatching any exit actions, then reenters the state dispatching any entry
actions.

Guard expressions
All transitions, including internal ones, are provided with the guard conditions (logical expressions) that define
whether this transition should be performed. You can associate a transition with an effect, which is an optional activity
performed when the transition fires. The guard condition is enclosed in the brackets (for example, "[false]") and
displayed near the transition link on a diagram. Effect activity is displayed next to the guard condition. You can define
the guard condition and effect using the Object Inspector Properties Window.

Guard expressions (inside []) label the transitions coming out of a branch. The hollow diamond indicates a branch,
and its subsequent merge indicates the end of the branch.

Related Reference

UML 1.4 Statechart Diagrams
UML 1.4 Activity Diagrams
UML 2.0 State Machine Diagrams

925

Deferred Event
A deferred event is a type of internal transition that handles the event and places it in an internal queue until it is
used or discarded.

You can add a deferred event to a state or activity element.

Related Reference

UML 1.4 Statechart Diagrams
UML 1.4 Activity Diagrams
UML 2.0 State Machine Diagrams

926

UML 1.4 Activity Diagrams
This section describes the elements of UML 1.4 Activity Diagrams.

In This Section
UML 1.4 Activity Diagram Elements
Describes UML 1.4 activity diagram elements.

Activity Diagram Context Commands
Describes the common context menu commands used by activity diagrams.

History Properties
Describes properties specific to history elements.

Horizontal and Vertical Fork/Join Properties
Describes properties specific to horizontal and vertical fork/join elements.

Transition Link Properties
Describes properties specific to the transition links.

927

UML 1.4 Activity Diagram Elements
The table below lists the elements of UML 1.4 Activity diagrams that are available using the Together Palette.

Activity Activities are action states in an activity diagram. Action states are states with outgoing transitions
that are triggered by the completion of an action associated with the state.

Decision A decision element indicates possible transitions relative to Boolean conditions of the owning
object. The decision represents a branch in the control flow of an activity diagram.

Signal Signal receipt is an explicit symbol used on an activity diagram for certain kinds of information
that can be specified on transitions.

Signal sending Signal sending is an explicit symbol used on an activity diagram for certain kinds of information
that can be specified on transitions.

State A state is a condition during the life of an object or interaction during which it satisfies a condition,
performs an action, or waits for an event.

Start State You can use start state to indicate the initial state for a state or activity diagram.
End State You can use end state to indicate the final states for a state or activity diagram.
History A state region can contain history. History applies to the state element that directly contains it.
Object An object represents an instance of a class.
Transition A transition link can be drawn between the following elements: State, Activity, Decision, Signal

receipt , Signal sending, Fork/Join, and History.
Fork/join A transition can have multiple sources, meaning it is a join from several concurrent states; or it

can have multiple targets, meaning it is a fork to several concurrent states. Use horizontal and
vertical fork/joins to accomplish this task within activity and state diagrams.

Swimlane Swimlanes are a UML grouping concept used to organize the responsibility for activities and
subactivities in an activity diagram.

Object Flow An object flow relationship can be drawn: from an Activity to an Object, from SignalSending to
an Object, from an Object to SignalReceipt, from/to an Object to/from a Fork/Join.

Note An annotation.
Note link An annotation link.

928

Activity Diagram Context Commands
All of the UML diagram types share common context menu commands. To use the context menu for a diagram,
right-click in the Diagram editor.

To view the common context menu commands, see “Common Diagram Context Commands.”

The activity diagram offers a special context command, New, with a submenu for adding new elements to the activity
diagram:

New
The New command for the activity diagram offers a submenu with the following options:

Activity Adds an activity element to the diagram.
Decision Adds a decision element to the diagram.
Signal Receipt Adds a Signal Receipt element to the diagram.
Signal Sending Adds a Signal Sending element to the diagram.
Vertical Fork/Join Adds a Vertical Fork/Join element to the diagram.
Horizontal Fork/Join Adds a Horizontal Fork/Join element to the diagram.
State Adds a state element to the diagram.
Object Adds a object element to the diagram.
Start State Adds a Start State element to the diagram.
End State Adds an End State element to the diagram.
Swimlane Adds a swimlane element to the diagram.
Note Adds a note element to the diagram.
Shortcut To refer to an element located outside of the current diagram or to another diagram, you

can use shortcuts. Invoking the Shortcut command displays a selection dialog, where you
can choose an element (or diagram) from the appropriate location.

Related Reference

Common Diagram Context Commands

929

History Properties
ActivityDiagram

This section describes properties specific to history elements. Every element has general properties as well as
specific properties. For more information, see “Properties View.” The composition of the Properties View changes
depending on the element selected in the Diagram Editor or the Navigator.

You can view and modify values of properties through the Properties View.

deep Use the drop-down list to set the field to true or false. Setting the deep property as true for a history
element displays the * symbol next to the history element on the diagram.

name The name of the history element.
stereotype Use this field to add your own stereotype.

Related Reference

Properties View

930

Horizontal and Vertical Fork/Join Properties
This section describes properties specific to horizontal and vertical fork/join elements. Every element has general
properties as well as specific properties. For more information, see “Properties View.” The composition of the
Properties View changes depending on the element selected in the Diagram Editor or the Navigator.

You can view and modify values of properties through the Properties View.

name The name of the fork/join element.
orientation Choose either horizontal or vertical for this property.
stereotype Use this field to add your own stereotype property.

Related Reference

Properties View

931

Transition Link Properties
This section describes properties specific to the transition links. Every element has general properties as well as
specific properties. For more information, see “Properties View.” The composition of the Properties View changes
depending on the element selected in the Diagram Editor or the Navigator.

You can view and modify values of properties through the Properties View.

action expression Document the action expression.
constraint Add your own stereotype.
effect Specify the effect property.
event arguments Document event arguments.
event name Document the event name.
guard condition Document a guard condition
label Indicate the label for the link
receive time Document the receiving time.
send clause Document the send clause.
send time Document the send time.
stereotype Add your own stereotype property.

Related Reference

Properties View

932

UML 1.4 Component Diagrams
This section describes the elements of UML 1.4 Component Diagrams.

In This Section
UML 1.4 Component Diagram Elements
Describes UML 1.4 component diagram elements.

933

UML 1.4 Component Diagram Elements
The table below lists the elements of UML 1.4 component diagrams that are available using the Palette.

Element Description
Subsystem node
Component node
Interface node
Supports link
Dependency link
Note annotation
Note link annotation link

934

UML 1.4 Deployment Diagrams
This section describes the elements and context menus of UML 1.4 Deployment Diagrams.

In This Section
UML 1.4 Deployment Diagram Elements
Describes UML 1.4 deployment diagram elements.

935

UML 1.4 Deployment Diagram Elements
Node Draws a node element within the Diagram editor.
Component Draws a component element within the Diagram editor.
Interface Draws an interface element within the Diagram editor.
Supports Link Draws a supports link between a component and interface.
Association Link Draws an association link between elements.
Aggregation Link Draws an aggregation link between elements.
Object Draws an object element in the Diagram editor.
Dependency Link Draws a dependency link between nodes, objects and components and from nodes, objects

and components to interfaces.
Note An annotation.
Note Link An annotation link.

936

UML 2.0 Reference
This section contains reference material about UML 2.0 diagrams.

In This Section
UML 2.0 Class Diagrams
Describes the elements of UML 2.0 Class diagrams.

UML 2.0 Use Case Diagrams
Describes the elements of UML 2.0 Use Case Diagrams.

UML 2.0 Interaction Diagrams
Describes the elements of UML 2.0 Communication and Sequence diagrams.

UML 2.0 State Machine Diagrams
Describes the elements of UML 2.0 State Machine Diagrams.

UML 2.0 Activity Diagrams
This section describes the elements of UML 2.0 Activity Diagrams.

UML 2.0 Component Diagrams
Describes the elements of UML 2.0 Component diagrams.

UML 2.0 Deployment Diagrams
Describes the elements of UML 2.0 Deployment diagrams.

UML 2.0 Composite Structure Diagrams
Describes the elements of UML 2.0 Composite Structure Diagrams.

937

UML 2.0 Class Diagrams
This section describes the elements of UML 2.0 Class diagrams.

In This Section
UML 2.0 Class Diagram Elements
Lists UML 2.0 class diagram elements.

Class Diagram Relationships
Describes class diagram relationships for UML 1.4 and UML 2.0 specifications.

Class Diagram Properties
Describes the properties specific to attributes of classes, inner classes, and interfaces.

Association Class and N-ary Association
Describes association class and n-ary associations.

Dependency Link Properties
Describes the specific properties of dependency links.

Generalization/Implementation Link Properties
This section describes the properties specific to generalization/implementation links.

Operation Context Menu
Describes the common operation context menu commands used by all UML diagram elements.

938

UML 2.0 Class Diagram Elements
The table below lists the elements of UML 2.0 class diagrams that are available using the Palette. Note that
availability of the elements depends on the project type and profiles.

 Package A package groups elements of the diagram and provides a namespace for
those grouped elements.

 Class A classifier whose behavior is described through the interaction of its parts.
Within a class you can specify attributes, operations, and other classes.

 Interface Creates a new object whose classifier conforms to a static classifier. The new
object resides on the output pin at runtime and is returned as the value of the
action. An interface must have at least one class to implement it.

 Enumeration A data type with values enumerated in the model as user-defined literals.
 Data Type Available in design projects only. A classifier that is similar to a class except

that its instances are identified only by their value.
 Association Class An element with both association and class properties that connects a set of

classifiers. It has its own set of features that do not belong to any of the
connected classifiers.

 Port Available in design projects only. Each of the small squares attached to
classes that connect the behavior of classes with their internal parts and with
the other parts of the system. Ports can specify which service a class provides
to its environment and which service a class expects from its environment.

 Instance Specification Available in the source code projects. Specifies the existence of an entity in
a modeled system. The entity can be a class, in which case the instance
specification describes an object of that class. For example, an instance
specification of the class Nation might be Brazil. An entity can also be an
association, in which case the instance specification describes the link of the
association.

 Generalization/Implementation If one classifier inherits all the behavior of another classifier and furthermore
extends it with additional behavior, a generalization link results. The arrow
points to the more general of the two.

 Required Interface A required interface specifies a usage dependency (which include the
services needed to perform a required function) between instances of a
classifier and their interfaces.

 Provided Interface A provided interface represents services that are offered by instances of a
classifier to fulfill contractual obligations.

 Association The interaction between model elements, represented by a solid line between
them. These interaction links can be either unidirectional (indicating that an
actor initiates the interaction) or bidirectional (indicating that an actor can
participate in the interaction without initiating it).

 Directed Association An association between a collection of source model elements and a
collection of target model elements.

 Aggregation A binary association that specifies the literals for defining the aggregation type
of a property.

 Composition A type of aggregation in which the composite object has responsibility for the
existence and storage of its composed parts.

 Association End Connects the line depicting an Association Class and the icon depicting the
connected classifier. The Association End defines the ends of the Association
Class. Names of Association Ends are optional and can be suppressed.

 Dependency Elements whose semantics depend on the definition of a supplier element are
in a dependency relationship with the supplier element. Dependency links are
shown as dashed arrows between the two model elements with the arrowhead
pointing to the supplier element.

939

 Instantiates A usage dependency between classifiers that specifies that operations on the
client classifier create instances of the supplier classifier.

 Constraint A constraint is a Boolean expression that restricts the extension of an element.
It restricts by imposing a value that specifies additional semantics beyond
what is imposed by other language constructs applied to that element. The
element that owns the constraint must have access to Constrained Elements.

 Constraint Link Links a constraint to a diagram element.

 Template Signature Bundles the formal template parameters into a set for the templated diagram
element that owns it.

 Template Binding A relationship between a diagram element and a template. The binding
specifies template parameter substitutions.

 Note An annotation.

 Note Link An annotation link.

940

Class Diagram Relationships
There are several kinds of relationships for UML 1.4 and UML 2.0 Class diagrams.

Types of Relationships

Association A relationship between instances of the two classes. There is an association
between two classes if an instance of one class must know about the other to
perform its work. In a diagram, an association is a link connecting two classes.
Associations can be directed or undirected. A directed link points to the supplier
class (the target). An association has two ends. An end may have a role name
to clarify the nature of the association. A navigation arrow on an association
shows which direction the association can be traversed or queried. A class can
be queried about its Item, but not the other way around. The arrow also lets you
know who "owns" the implementation of the association. Associations with no
navigation arrows are bi-directional.

Simple Association A binary association in which aggregationKind =
none.

Aggregation An association in which one class belongs to a collection.
An aggregation has a diamond end pointing to the part
containing the whole.

Composition An association that represents a composite aggregation
(that is, a whole/part relationship). A composite
aggregation is a strong form of aggregation that requires
a part instance to be included in a maximum of one
composite at a time. A composition has a filled diamond
at the aggregate end.

Generalization/Implementation An inheritance link indicating that a class implements an interface. An
implementation has a triangle pointing to the interface.

Dependency A supplier/client relationship between model elements in which modification of
the supplier could impact the client model elements. A dependency implies that
the semantics of the client are not complete without the supplier.

Part An “owned” property that corresponds to a composition (that is, a composite
aggregation). The syntax of such a property differs from a referenced part, or
“shared” property. In the abstract syntax, which defines the model, a part is the
role name for a relationship that a StructuredClassifier has with an owned
property. In the concrete syntax, which defines the diagram, a part is the name
of the graphical node that represents such an owned property.

Referenced Part A “shared” property that corresponds to a shared association (that is, an
aggregation). The syntax of such a property differs from a part, or “owned”
property. In the abstract syntax, which defines the model, a referenced part is the
role name for a relationship that a StructuredClassifier has with a shared
property. In the concrete syntax, which defines the diagram, a referenced part is
the name of the graphical node that represents such a shared property.

Required interface Available in UML 2.0 class diagrams. Applying a provided interface link to a port
on the client class creates a link in ball-and-socket notation.

Provided interface Available in UML 2.0 class diagrams. Applying a provided interface link between
a class and an interface creates a regular generalization/implementation link.

Instantiates Available in UML 2.0 class diagrams. This link can be drawn between an instance
specification and its instantiated class.

941

Multiplicities
Every class diagram has classes and associations. Navigability, roles, and multiplicities are optional items placed
in a diagram to provide clarity.

The multiplicity of an association end is the number of possible instances of the class associated with a single
instance of the other end. Multiplicities are single numbers or ranges of numbers.

0..1 Zero or one instance. The notation n . . m indicates n to m occurrences
0..* or No limit on the number of occurrences (including none)
1 Exactly one occurrence
1..* At least one occurrence
-1 No limit on the number of occurrences (note that this multiplicity value is displayed as * on the diagram)

Related Procedures

Changing Type of an Association Link

Related Reference

UML 1.4 Class Diagrams
UML 2.0 Class Diagrams

942

Class Diagram Properties
This section describes the properties specific to attributes of classes, inner classes, and interfaces. Every element
has general properties as well as specific properties. For more information, see “Properties View.” The composition
of the Properties view changes depending on the element selected in the Diagram Editor or Model Navigator view.
You can view and modify values of properties through the Properties View.

diagram type Shows the current diagram type.
name The name of the class diagram.
stereotype Choose the appropriate stereotype from the drop-down list or add your own stereotype. The

available stereotypes are:

▪ data management

▪ facade

▪ framework

▪ human interaction

▪ problem domain

▪ stub

▪ subsystem

▪ system

▪ system interaction

Related Reference

Properties View

943

Association Class and N-ary Association
Association classes are displayed in diagrams as three related elements:

♦ Association class itself (represented by a class icon)

♦ N-ary association class link (represented by a diamond)

♦ Association connector (represented by a link between both)

Association classes can connect to as many association end classes (participants) as required.

The Properties View of an association class, association link, and connector contains an additional Association tab.
This tab displays the only label property, its value being synchronized with the name of the association class. For
the association classes and association end links, the Custom node of the Properties View displays additional
properties that correspond to the role of this part of n-ary association (associationClass and
associationEnd, respectively).

You can delete each of the association end links or participant classes without destroying the entire n-ary association.
However, deleting the association class results in deleting all the components of the n-ary association.

Related Procedures

Working with Association classes and n-ary associations

Related Reference

Class Diagram Relationships
UML 2.0 Class Diagrams
UML 1.4 Class Diagrams

944

Dependency Link Properties
This section describes the dependency links' specific properties. Every element has common properties as well as
specific properties. For more information, see “Properties View.” The composition of the Properties View changes
depending on the element selected in theDiagram Editor or Model Navigator view. You can view and modify values
of properties through the Properties View.

Property Description
client This property field indicates the client for the link.
client role Use client role to add a label to the dependency link. The label appears on the UML diagram towards

the client side of the link.
label Use label to add a label to the dependency link. The label is displayed on the UML diagram between

the client and the supplier.
stereotype Use this field to add your own stereotype property.
supplier This property field indicates the supplier for the link.
supplier role Use supplier role to add a label to the dependency link. The label is displayed on the UML diagram

towards the supplier side of the link.

Related Reference

Properties View

945

Generalization/Implementation Link Properties
This section describes the properties specific to generalization/implementation links. Every element has general
properties as well as specific properties. For more information, see “Properties View.” The composition of the
Properties view changes depending on the element selected in the Diagram or Model Navigator view. You can view
and modify values of properties through the Properties view.

Item Description
client This property field indicates the client for the link.
supplier This property field indicates the supplier for the link.

Related Reference

Properties View

946

Operation Context Menu
All of the UML diagram elements share common context menu commands. To use the context menu for an element,
right-click on the element in the Diagram editor. To view the common context menu commands, see “Common
Element Context Commands.”

The context menu for an operation shares the common element context commands as well as the following
commands specific to it:

Open
Selecting Open from the context menu opens the selected class containing the operation in the text editor.

Show in Packages View
The Show in Packages View command highlights the node selected in the Packages tree-view. The Packages view
will expand and highlight that element in the tree-view. If closed, the Packages view will open.

Show in Model Package Explorer
The Show in Model Package Explorer View command highlights the node selected in the UML Explorer tree-view.
The Model Package Explorer view will expand and highlight that element in the tree-view. If closed, this view will
open.

Modifiers
The Modifiers command for the operation offers a submenu with the following options:

Static Selecting Static from the context menu sets the static property for the operation.
Abstract Selecting Abstract from the context menu sets the abstract property for the operation.
Public Selecting Public from the submenu sets the visibility property for the operation to public.
Protected Selecting Protected from the submenu sets the visibility property for the operation to protected.
Private Selecting Private from the submenu sets the visibility property for the operation to private.
Package Local Selecting Package Local from the submenu sets the visibility property for the operation to

package local.

Note: The visibility options are not available for Interface members.

Add Javadoc comment
Using this command, you are able to add Javadoc comments for the operation.

Generate Sequence Diagram
Use this command to generate sequence diagrams from your source code. For more information, see “Working with
Operations in Sequence/Collaboration Diagrams.”

947

Related Procedures

Working with Operations in Sequence/Collaboration Diagrams
Roundtrip Engineering with Sequence Diagrams

Related Reference

Common Element Context Commands

948

UML 2.0 Use Case Diagrams
This section describes the elements of UML 2.0 Use Case Diagrams.

In This Section
UML 2.0 Use Case Diagram Elements
Lists UML 2.0 use case diagram elements.

Extension Point
Describes an extension point (Use Case diagrams).

949

UML 2.0 Use Case Diagram Elements
The table below lists the elements of UML 2.0 Use Case diagrams that are available using the Palette.

Name Type

 Actor An actor node is a role (usually a person or thing, depicted by a stick figure) outside of
the system that interacts with the system through a use case to achieve an observable
goal.

Use the Show as context menu to optionally change the actor notation to display as a
rectangle instead of a stick figure.

Between actors, only a generalization relationship can exist.

 Subject A subject node represents a system under consideration with which the actors and other
subjects interact. The required behavior of the subject is described by the use cases.

When a subject is created on a Use Case Diagram, a component is created in the
namespace for the diagram canvas. Then after a use case is created on the subject, a
new use case element is added to the subject's namespace and a relationship is formed
between the use case and the subject.

 Use Case The use case node is the action or sequence of actions that actors engage in to yield an
observable goal. It can be any element that displays behavior, including a component,
subsystem, or class. A use case is defined according to the needs of the actor.

Relationships between use cases can be either extend, include, or generalization.
Besides the use case's name and brief description, elements that describe use cases
include flow or scenarios, special requirements, pre- and post-conditions, and extension
points.

Use the Show as Classifier/UseCase context menu to optionally display a use case
as a Classifier rectangle.

 Generalization If one use case or actor inherits all the behavior of another use case or actor and
furthermore extends it with additional behavior, a generalization link results. The arrow
points to the more general of the two.

 Association The interaction between an actor and a use case, represented by a solid line between
them. These interaction links can be either unidirectional (indicating that an actor initiates
the interaction) or bidirectional (indicating that an actor can participate in the interaction
without initiating it).

Association links can further be refined into multiplicities (how often the use case and
actor interact), labels (roles specified at each end of the association), and direction (who
initiates communication, although not necessarily a sequential flow of events).

 Extend If a certain condition is met at a specific extension point, a use case can be extended to
another use case. This results in an extend relationship between the use cases. For
example, whenever the Repair use case in the diagram above reaches the value
specified by the Mechanics Verification extension point, it is extended by the Repair
Dispenser use case. An extended use case does not have a dependency on the use
case it extends to.

Extend links are indicated by a dashed arrow pointing from the use case providing the
extension to the base use case.

 Include If one use case includes a basic behavior that other use cases show, you can separate
the common behavior out into another use case and establish an include relationship.
Include use cases are required in order for the original use case to execute successfully.
For example, in order for the Initiate Transaction use case in the diagram above to
complete, the actor must be verified through the Authenticate use case.

Include links are indicated by a dashed arrow pointing from the base use case to the
included use case.

950

 Dependency Elements whose semantics depend on the definition of a supplier element are in a
dependency relationship with the supplier element. Dependency links are shown as
dashed arrows between the two model elements with the arrowhead pointing to the
supplier element.

 Constraint A constraint is a Boolean expression that restricts the extension of an element. It restricts
by imposing a value that specifies additional semantics beyond what is imposed by other
language constructs applied to that element. The element that owns the constraint must
have access to Constrained Elements.

 Constraint Link
 Template Signature A template signature contains the list of template parameters that are defined for a

package.
 Template Binding A relationship between an element and a template that specifies the substitution of actual

parameters for the formal parameters of the template.
 Note Use a note to optionally show relationship conditions between diagram elements. Note:

This element is not a UML element.
 Note Link Use a note link to optionally show relationship conditions between diagram elements.

Note: This element is not a UML element.

951

Extension Point
An extension point refers to a location within a use case where you can insert action sequences from other use
cases.

An extension point consists of a unique name within a use case and a description of the location within the behavior
of the use case.

In a use case diagram, extension points are listed in the use case with the heading "Extension Points" (appears as
bold text in the Diagram View).

Related Reference

UML 1.4 Use Case Diagrams
UML 2.0 Use Case Diagrams

952

UML 2.0 Interaction Diagrams
This section describes the elements of UML 2.0 Communication and Sequence diagrams.

In This Section
UML 2.0 Sequence Diagram Elements
Describes UML 2.0 sequence diagram elements.

UML 2.0 Communication Diagram Elements
Describes UML 2.0 communication diagram elements.

Interaction
Describes Interaction.

UML 2.0 Message
Describes UML 2.0 messages (Interaction diagrams).

Execution Specification and Invocation Specification
Describes an execution specification and invocation specification.

Operator and Operand for a Combined Fragment
Describes an operator and operand for a combined fragment.

Clipboard operations with execution and invocation specifications
Provides information about clipboard operations with execution and invocation specifications.

953

UML 2.0 Sequence Diagram Elements
The table below lists the elements of UML 2.0 sequence diagrams that are available using the Palette. For more
information on these palette elements, refer to the other UML 2.0 Interaction Diagram help topics in this reference
section.

Name Type

 Lifeline Draws an object with its lifeline in an interaction. For each lifeline, its projection bar
displays on top of the diagram. When scrolling down, these projection bars are always
visible.

 Interaction Draws an interaction node in diagram.
 Message Draws a message link between the source and target lifelines.
 Found Execution Draws a message link to a target lifeline. The source of such a message is unknown.

 State Invariant Draws a state invariant node on a lifeline.

 Action Execution Draws an action execution node on a lifeline.

 Combined Fragment Draws a combined fragment node on a lifeline.

 Interaction Use Draws an interaction use node on a lifeline.

 Constraint A constraint is a Boolean expression that restricts the extension of an element. It restricts
by imposing a value that specifies additional semantics beyond what is imposed by other
language constructs applied to that element. The element that owns the constraint must
have access to Constrained Elements.

 Constraint Link Links a constraint to a diagram element.

 Template Signature Bundles the formal template parameters into a set for the templated diagram element
that owns it.

 Template Binding A relationship between a diagram element and a template. The binding specifies
template parameter substitutions.

 Note An annotation.

 Note Link An annotation link.

Warning: Sequence diagram can contain shortcuts to the other diagram elements. However, shortcuts to the
elements that reside in the other interaction diagrams are not supported.

Note: Interaction diagrams, represented in the Model Navigator, display a number of auxiliary elements that are
not visible in the Diagram Editor . These elements play a supplementary role for representation of the diagram
structure. Actually, these elements are editable, but it is strongly advised to leave them untouched to preserve
the integrity of the interaction diagrams.

Related Reference

UML 2.0 Interaction Diagrams

954

UML 2.0 Communication Diagram Elements
The table below lists the elements of UML 2.0 communication diagrams that are available using the Palette.

Name Type
Lifeline node
Interaction node
Message link
OCL constraint node
Constraint link link
Template Signature node
Template Binding link
Note annotation
Note Link annotation link

Note: Interaction diagrams, represented in the Model Navigator, display a number of auxiliary elements that are
not visible in the Diagram Editor . These elements play a supplementary role for representation of the diagram
structure. Actually, these elements are editable, but it is strongly advised to leave them untouched to preserve
the integrity of the interaction diagrams.

955

Interaction
By using Together, you can create interactions for the detailed description and analysis of inter-process
communications.

Interactions can be visually represented in your Together projects by means of the two most common interaction
diagrams: Sequence and Communication. On the other hand, interactions can exist in projects without visual
representation.

Interaction use
Within an interaction, you can refer to the other interactions described in your project. So called “Interaction use”
elements serve this purpose. Note that a referenced interaction can be explicitly defined from the model or just
specified as a text string.

Each interaction use is attached to its lifeline with a black dot. This dot is an individual diagram element. If an
interaction use is expanded over several lifelines, you can delete the attachment dots from all lifelines but one. An
interaction use should be connected with at least one lifeline.

Lifeline
A lifeline defines an individual participant of the interaction. A lifeline is shown in a sequence diagram as a rectangle
followed by a vertical-dashed line.

Lifelines of an interaction can represent the parts defined in the class or composite structure diagrams. If the
referenced element is multivalued, then the lifeline should have a selector that specifies which particular part is
represented by this lifeline.

If a lifeline represents a connectable element, has type specified, or refers to another interaction, the Select menu
becomes enabled on the context menu of this lifeline. Using this menu, you can navigate to the part, type or
decomposition associated with the lifeline. These properties are defined by using the Properties View. If the
represents property is set, the type and name properties are disabled.

You can define these properties manually by typing the values in the corresponding fields of the Properties View If
the specified values are not found in the model, they are displayed in single quotes. Such references are not related
to any actual elements and the Select menu is not available for them. If the specified values can be resolved in the
model, they are shown without quotes, and the Select menu is available for them.

State invariant
A state invariant is a constraint placed on a lifeline. This constraint is evaluated at runtime prior to execution of the
next execution specification. State invariants are represented in the interaction diagrams in two ways: as OCL
expressions or as references to the state diagrams. You can use the state invariants to provide comments to your
interaction diagrams and to connect interactions with states.

It is important to note that Together provides validation of the state invariants represented as OCL expressions. If
the syntax is wrong, or there is no valid context, the constraint is displayed in red. For example, to be a valid context,
a lifeline should have type and represents properties defined.

Related Concepts

About OCL Support in Together

Related Reference

UML 2.0 Interaction Diagrams

956

UML 2.0 Message
Call messages are always visible in diagrams; reply messages normally are not displayed. However, you can
visualize the reply message.

Messages on different diagram types

♦ Messages in communication diagrams: When you draw a message between lifelines, a generic link line is
displayed between the lifelines and a list of messages is created under it. The link line is present as long as
there is at least one message between the lifelines.

♦ Messages in sequence diagrams: Messages in sequence diagrams have the same properties as those in
communication diagrams but allow you to perform more actions. The further discussion refers mainly to the
sequence diagram messages.

Properties of the messages for both types of interaction diagrams can be edited in the Properties View.

Properties of the message links
Call messages have the following properties:

Property Description

Signature Use this field to specify the name of an operation or signal associated with the message. Note that
changing the signature of a message call results in changing the signature of the corresponding reply.

Sort Use this field to select the type of synchronization from the drop-down list. The possible values are:
asynchCall, synchCall, asynchSignal. The message link changes its appearance accordingly.

There are certain limitations related to the asynchronous calls:

Sometimes it is impossible to create or paste an asynchronous call because of the frame limitations.

Execution specification for an asynchronous call must always be located on a lifeline.

Name Displays the link name. This field is editable.

Full name Displays the fully qualified link name. This field is not editable.

Visibility Use this field to select the visibility modifier from the drop-down list.

Stereotype Use this field to define the message stereotype. The stereotype name displays above the link.

Metaclass This read-only field displays the message metaclass.

Label Use this field to define the link label.

Attribute Use this field to define the link attribute.

Arguments Displays actual arguments of an operation associated with a message call. This field is editable.

Return value Use this field to enter the return value.

Commentary Use this textual field to enter comments for a message link.

Show reply message Use this Boolean option to define whether to draw a dashed return arrow.

Sequence number Use this field to view and edit the sequential number of a message. When the message number
changes, the message call changes respectively.

no duration Use this Boolean option to make the invocation and execution specifications invisible in diagram.

This option can be only specified for the link that has no operation.

creation Use this Boolean option to define creation message. If this option is true, the message link points to
the lifeline object node.

957

destruction Use this Boolean option to define a destruction message. If this option is true, the message link points
to the execution specification marked with a cross sign.

Reply messages have the following properties:

Property Description

Stereotype Use this field to define the message stereotype.

Attribute Use this field to define an attribute to which the return value of the message will be assigned. This field can be
edited.

Signature Use this field to specify the name of an operation or signal associated with the message. Note that changing
the signature of a message reply results in changing the signature of the corresponding call.

Arguments Displays arguments of an operation associated with a message call. This field can be edited. Note that changing
the list of arguments of a reply message results in changing the corresponding call.

Return value Displays the return value of an operation associated with a message link. This field can be edited.

Sort Use this field to select the type of synchronization from the drop-down list. The possible values are:asynchCall,
synchCall, asynchSignal. The message link changes its appearance accordingly.

Commentary Use this text field to comment the link.

Note: Properties of the call and reply messages, such as arguments, attribute, qualified name, return value,
signature, and sort pertain to the invocation specification. You can edit these properties in the invocation
specification itself, in the call or in the reply messages. As a result, the corresponding properties of the
counterpart message and the invocation specification will change accordingly. Stereotype and commentary
properties are unique for the call and reply messages.

Related Procedures

Working with a UML 1.4 Message

Related Reference

Execution Specification and Invocation Specification
UML 2.0 Interaction Diagrams

958

Execution Specification and Invocation Specification
In sequence diagrams, Together automatically renders invocation specification and execution specification of a
message that shows the period of time when the message is active. When you draw a message link from the source
lifeline to the destination lifeline, the invocation and execution specification bars are created automatically. You can
extend or reduce the period of time of a message by vertically dragging the top or bottom line of the invocation or
execution specification as required.

For an invocation or execution specification, you can define the no duration property. If this property is checked for
one specification, it will be automatically checked for the other one. Also, you can define this property for the
message. If the no duration property is set to true, the specification icons reduce to the minimal possible dimensions
and become invisible. By default, the execution specification is synchronized with the invocation specification. You
can make the invocation specification and execution specification asynchronous.

It is also possible to create an execution specification on a lifeline without creating an incoming message link. In this
case, a found message is created, which is a message that comes from an object that is not shown in the diagram.
Use theProperties View to hide or show the found messages.

Messages in sequence diagrams have their origin in an invocation specification. This is an area within an execution
specification. The notion of an invocation specification is introduced in Together's implementation of UML 2.0
sequence diagrams. Though this element is not defined in the UML 2.0 specification, it is a useful tool for modeling
synchronous invocations with the reply messages. In particular, an invocation specification marks a place where the
reply messages (even if they are invisible) enter the execution context of a lifeline, and where submessages can
reenter the lifeline.

Active and passive areas of the execution specification are rendered in different colors. The white execution
specification bars denote active areas where you can create message links. The gray bars are passive and are not
a valid source or target for the message links.

Related Reference

UML 2.0 Message

959

Operator and Operand for a Combined Fragment
In this section, the following topics are discussed:

♦ About combined fragment

♦ Operator

♦ Operand

About combined fragment
A combined fragment can consist of one or more interaction operators and one or more interaction operands. The
number of interaction operands (just one, or more than one) depends on the last interaction operator of this combined
fragment.

Use the Palette or context menus to create these elements. The operator type shows up in the descriptor in the
upper-left corner of the design element. Note that you can define multiple operators in a combined fragment. In this
case, the descriptor contains the list of all operators, which is a shorthand for nested operators.

When an operator is created, add the allowed operands using the combined fragment's context menu.

A combined fragment can be expanded over several lifelines, detached from and reattached to lifelines. In the
Properties View, use the Operators field to manage operators within the combined fragment.

Each combined fragment is attached to its lifeline with a mounting link that is displayed in the diagram as a black
dot. This mounting link is an individual diagram element, which can be selected or deleted. Deleting a mounting link
means detaching a combined fragment from the lifeline. Note that a combined fragment cannot be detached from
all lifelines and should have at least one attachment dot.

You can reattach a combined fragment later using the anchor tool.

Operator
When a combined fragment is created, the operator displays in a descriptor pentagon in the upper-left corner of the
frame. You can change the operator type using the operator field of the Properties View, which is immediately
reflected in the descriptor.

The descriptor can contain several operators. The UML 2.0 specification provides this notation for the nested
combined fragments. In Together, you can use this notation or create nested combined fragment nodes.

Operand
Operands are represented as rectangular areas within a combined fragment, separated by the dashed lines. When
a combined fragment is initially created, the number of operands is defined by the pattern defaults. You can create
additional operands or remove the existing ones.

Note that the uppermost area of the operator is empty and does not contain any operands. It is reserved for the
descriptor. Clicking on this area selects the entire operator; clicking on one of the dotted rectangles selects the
corresponding operand. If a combined fragment contains only one operand, the entire combined fragment and the
single existing operand are still separately selectable.

960

Related Concepts

About OCL Support in Together

Related Reference

UML 2.0 Interaction Diagrams

961

Clipboard operations with execution and invocation specifications
Clipboard operations are supported for the execution and invocation specifications. Cut, Copy, and Paste commands
are available on the context menu of an execution specification and invocation specification. It is possible to copy
or move these elements within the same diagram or to another diagram.

When an execution or invocation specification is copied, it means that the entire branch of messages is copied also.
Pasting the clipboard contents to a target lifeline results in changing the message numbers according to the
numbering of messages in the target lifeline.

If you paste an invocation or execution specification to another diagram, the entire outgoing bunch of messages will
be pasted also, with all the respective lifelines. If the target diagram does not contain lifelines for this execution
specification, they will be created automatically.

It is also possible to move and copy message branches using the drag-and-drop technique. To move an execution
or invocation specification, drag-and-drop it to the target location. To create a copy, drag-and-drop while holding the
CTRL key down.

Related Concepts

Interaction (Sequence and Communication) Diagrams

962

UML 2.0 State Machine Diagrams
This section describes the elements of UML 2.0 State Machine Diagrams.

In This Section
UML 2.0 State Machine Diagram Elements
Describes UML 2.0 state machine diagram elements.

State Machine Diagram Context Commands
Lists the common context menu commands and element options used by UML 2.0 state machine diagrams.

State Machine Diagram Elements Properties
This section describes the properties specific to State Machine diagram elements.

Transition
Describes a transition (UML 1.4 Activity, UML 1.4 Statechart, UML 2.0 State Machine diagrams).

History Element (State Machine Diagrams)
Describes UML 2.0 history.

963

UML 2.0 State Machine Diagram Elements
The table below lists the elements of UML 2.0 State Machine diagrams that are available using the Palette.

Name Type

 State Machine node

A state machine describes the behavior of a part of a system. A state machine owns one
or more regions.

 State node

A state models a situation during which some invariant condition holds.
 Entry Point node

Execution of the state starts at this point. It is possible to create several entry points for
one state, which makes sense if there are substates.

 Exit Point node

Execution of the state finishes at this point. It is possible to create several exit points for
one state, which makes sense if there are substates.

 Initial Node at which flow starts when the activity is invoked.
 Final node

Signifies that the enclosing region is complete.
 Terminate node

A pseudostate that, when activated, terminates the execution of the object that owns the
state machine.

 Shallow History node

A pseudostate that restores the most recent active substate of the containing state (that
is, the configuration state that was active when the enclosing composite state last exited).

A composite state cannot have more than one shallow history vertex.
 Deep History node

A pseudostate that restores the most recent active configuration state that was active
when the enclosing composite state last exited.

A composite state cannot have more than one deep history vertex.
 Region node

Use regions inside the states to group the substates. The regions may have different
visibility settings and history elements. Each state has one region immediately after
creation (though it can be deleted.)

In the regions, you can create all the elements that are available for the State Machine
diagram.

This element is only available on the state context menu.
 Fork node

A fork node splits one incoming flow into multiple outgoing concurrent flows.
 Join node

A join node synchronizes multiple incoming flows into one outgoing flow.
 Choice node

A pseudostate that performs a dynamic branch within a single transition.
 Junction node

A pseudostate that connects transition segments into a single transition.

964

 Transition link

Draws a link from the exit point of a source state (or the state without exit points) to the
entry point of the destination (or the state without points).

 Internal Transition link

Internal transition elements are only available on the state context menu.
 Dependency Elements whose semantics depend on the definition of a supplier element are in a

dependency relationship with the supplier element. Dependency links are shown as
dashed arrows between the two model elements with the arrowhead pointing to the
supplier element.

 Constraint A constraint is a Boolean expression that restricts the extension of an element. It restricts
by imposing a value that specifies additional semantics beyond what is imposed by other
language constructs applied to that element. The element that owns the constraint must
have access to Constrained Elements.

 Constraint Link Links a constraint to a diagram element.

 Template Signature Bundles the formal template parameters into a set for the templated diagram element
that owns it.

 Template Binding A relationship between a diagram element and a template. The binding specifies
template parameter substitutions.

 Note An annotation.

 Note Link An annotation link.

965

State Machine Diagram Context Commands
Diagram Editor Right-click

All of the UML 2.0 diagrams share common context menu commands. To use the context menu for a diagram, right-
click in the Diagram Editor .

To view the common context menu commands, see “Common Diagram Context Commands.”

The State Machine diagrams offer the following context commands.

Diagram Context Menu

Option Description
New The New command for the State Machine diagram offers a submenu with the following options:

State Machine
Constraint
Note
Shortcut

State Machine Context Menu

Option Description
New The New command for the State Machine element offers a submenu with the following options:

Entry point
Exit point
Region

Region Context Menu

Option Description
New The New command for the Region element offers a submenu with the following options:

State
Initial
Final
Shallow history
Deep history
Terminate
Fork
Join
Choice
Junction
Note

966

State Context Menu

Option Description
New The New command for the State element offers a submenu with the following options:

Internal Transition
Reference To Entry Point
Reference To Exit Point
Region

Related Reference

Common Diagram Context Commands

967

State Machine Diagram Elements Properties
This section describes the properties specific to State Machine diagram elements. Every element has common
properties as well as specific properties. For more information, see “Properties View.” The composition of the
Properties View changes depending on the element selected in the Diagram Editor or Model Navigator view. You
can view and modify values of properties through the Properties View.

The following elements are included in state machine diagrams:

♦ State Machine element

♦ Region element

♦ Entry Point element

♦ Exit Point element

♦ Reference to Entry Point element

♦ Reference to Exit Point element

♦ State element

♦ Initial element

♦ Final element

♦ Shallow History element

♦ Deep History element

♦ Terminate element

♦ Fork element

♦ Join element

♦ Choice element

♦ Junction element

♦ Transition link

♦ Dependency link

State Machine element
The following properties are associated with the State Machine element:

♦ abstract

♦ context

♦ extends

♦ final

♦ full name

♦ is reentrant

♦ metaclass

♦ name

♦ parameters

968

♦ specification

♦ stereotype

♦ visibility

Region element
The following properties are associated with the Region element:

♦ full name

♦ metaclass

♦ name

♦ stereotype

♦ visibility

Entry Point element
The following properties are associated with the Entry Point element:

♦ full name

♦ kind

♦ metaclass

♦ name

♦ stereotype

♦ visibility

Exit Point element
The following properties are associated with the Exit Point element:

♦ full name

♦ kind

♦ metaclass

♦ name

♦ stereotype

♦ visibility

Reference to Entry Point element
The following properties are associated with the Reference to Entry Point element:

969

♦ entry

♦ full name

♦ metaclass

♦ name

♦ stereotype

♦ visibility

Reference to Exit Point element
The following properties are associated with the Reference to Exit Point element:

♦ exit

♦ full name

♦ metaclass

♦ name

♦ stereotype

♦ visibility

State element
The following properties are associated with the State element:

♦ do activity link

♦ entry activity link

♦ exit activity link

♦ full name

♦ is composite

♦ is orthogonal

♦ is simple

♦ is submachine state

♦ metaclass

♦ name

♦ stereotype

♦ submachine

♦ visibility

970

Initial element
The following properties are associated with the Initial element:

♦ full name

♦ kind

♦ metaclass

♦ name

♦ stereotype

♦ visibility

Final element
The following properties are associated with the Final element:

♦ do activity link

♦ entry activity link

♦ exit activity link

♦ full name

♦ is composite

♦ is orthogonal

♦ is simple

♦ is submachine state

♦ metaclass

♦ name

♦ stereotype

♦ submachine

♦ visibility

Shallow History element
The following properties are associated with the Shallow History element:

♦ full name

♦ kind

♦ metaclass

♦ name

♦ stereotype

♦ visibility

971

Deep History element
The following properties are associated with the Deep History element:

♦ full name

♦ kind

♦ metaclass

♦ name

♦ stereotype

♦ visibility

Terminate element
The following properties are associated with the Terminate element:

♦ full name

♦ kind

♦ metaclass

♦ name

♦ stereotype

♦ visibility

Fork element
The following properties are associated with the Fork element:

♦ full name

♦ kind

♦ metaclass

♦ name

♦ stereotype

♦ visibility

Join element
The following properties are associated with the Join element:

♦ full name

♦ kind

♦ metaclass

♦ name

972

♦ stereotype

♦ visibility

Choice element
The following properties are associated with the Choice element:

♦ full name

♦ kind

♦ metaclass

♦ name

♦ stereotype

♦ visibility

Junction element
The following properties are associated with the Junction element:

♦ full name

♦ kind

♦ metaclass

♦ name

♦ stereotype

♦ visibility

Transition link
The following properties are associated with the Transition link:

♦ client

♦ effect

♦ full name

♦ kind

♦ label

♦ metaclass

♦ name

♦ stereotype

♦ supplier

♦ trigger

973

♦ visibility

Dependency link
The following properties are associated with the Dependency link:

♦ client named element

♦ full name

♦ label

♦ metaclass

♦ name

♦ stereotype

♦ supplier named element

♦ visibility

Related Reference

Properties View

974

Transition
A single transition comes out of each state or activity, connecting it to the next state or activity.

A transition takes an operation from one state to another and represents the response to a particular event. You can
connect states with transitions and create internal transitions within states.

Internal transition
An internal transition is a way to handle events without leaving a state (or activity) and dispatching its exit or entry
actions. You can add an internal transition to a state or activity element.

Self-transition
A self-transition flow leaves the state dispatching any exit actions, then reenters the state dispatching any entry
actions.

Guard expressions
All transitions, including internal ones, are provided with the guard conditions (logical expressions) that define
whether this transition should be performed. You can associate a transition with an effect, which is an optional activity
performed when the transition fires. The guard condition is enclosed in the brackets (for example, "[false]") and
displayed near the transition link on a diagram. Effect activity is displayed next to the guard condition. You can define
the guard condition and effect using the Object Inspector Properties Window.

Guard expressions (inside []) label the transitions coming out of a branch. The hollow diamond indicates a branch,
and its subsequent merge indicates the end of the branch.

Related Reference

UML 1.4 Statechart Diagrams
UML 1.4 Activity Diagrams
UML 2.0 State Machine Diagrams

975

History Element (State Machine Diagrams)
The Shallow History and Deep History elements are placed on regions of the states.

There may be none or one Deep History, and none or one Shallow History elements in each region. If there is only
one history element in a region, it may be switched from the Deep to Shallow type by changing its kind property.

Refer to UML 2.0 Specification for more information.

Related Reference

UML 2.0 State Machine Diagrams

976

UML 2.0 Activity Diagrams
This section describes the elements of UML 2.0 Activity Diagrams.

In This Section
UML 2.0 Activity Diagram Elements
Describes UML 2.0 activity diagram elements.

UML 2.0 Activity Diagram Context Commands
Describes context menu commands of UML 2.0 activity diagram.

977

UML 2.0 Activity Diagram Elements
The table below lists the elements of UML 2.0 Activity diagrams that are available using the Palette.

 Activity Node. Activities are action states in an activity diagram. Action states are states
with outgoing transitions that are triggered by the completion of an action
associated with the state.

 Activity Parameter Node component. An activity parameter node is an object node for inputs and
outputs to activities.

 Activity Partition An activity partition is a kind of activity group for identifying actions that have some
characteristic in common.

 Action An action is an executable activity node.
 Dependency Elements whose semantics depend on the definition of a supplier element are in

a dependency relationship with the supplier element. Dependency links are shown
as dashed arrows between the two model elements with the arrowhead pointing
to the supplier element.

 Initial Node at which flow starts when the activity is invoked.
 Activity Final Node at which a flow in an activity stops.

 Decision Node. A decision element indicates possible transitions relative to Boolean
conditions of the owning object. The decision represents a branch in the control
flow of an activity diagram.

 Merge Node that brings together multiple alternate flows.

 Join Node A join node synchronizes multiple incoming flows into one outgoing flow.
 Fork Node A fork node splits one incoming flow into multiple outgoing concurrent flows.
 Flow Final Node that terminates a flow.
 Control Flow Link that starts an activity node after the previous one is finished.
 Input Pin An object node that permits inputs to actions.

 Output Pin Pin that holds input values to be consumed by an action.

 Value Pin Input pin that provides a value to an action that does not come from an incoming
object flow.

 Object Node Node that is a part of a defining object flow in an activity.

 Central Buffer An object node that manages flows from multiple sources and destinations. Unlike
other buffers, central buffers are not attached to actions or activities. They help
manage queuing and competing object flows.

 Data Store A central buffer node that stores all incoming tokens and distributes select copies
for movement downstream.

 Object Flow An object flow relationship can be drawn: from an Activity to an Object, from
SignalSending to an Object, from an Object to SignalReceipt, from/to an Object
to/from a Fork/Join.

 Accept Event Action An action that waits for the occurrence of an event that meets a specified condition.

 Accept Time Event Action When a specified condition is not yet met, an accept time event action (displayed
as an hour glass) waits until the condition is met before the action can accept it.

 Send Signal Action Send Signal Action is an explicit symbol used on an activity diagram for certain
kinds of information that can be specified on transitions.

 Constraint A constraint is a Boolean expression that restricts the extension of an element. It
restricts by imposing a value that specifies additional semantics beyond what is
imposed by other language constructs applied to that element. The element that
owns the constraint must have access to Constrained Elements.

 Constraint Link Links a constraint to a diagram element.

 Template Signature Bundles the formal template parameters into a set for the templated diagram
element that owns it.

978

 Template Binding A relationship between a diagram element and a template. The binding specifies
template parameter substitutions.

 Note An annotation.

 Note Link An annotation link.

979

UML 2.0 Activity Diagram Context Commands
All of the UML diagram types share common context menu commands. To use the context menu for a diagram,
right-click in the Diagram editor.

To view the common context menu commands, see “Common Diagram Context Commands.”

Diagram Context Menu

Activity Adds an activity element to the diagram.
Constraint Adds a constraint element to the diagram.
Note Adds a note element to the diagram.
Shortcut To refer to an element located outside of the current diagram or to another diagram, you can use

shortcuts. Invoking the Shortcut command displays a selection dialog, where you can choose an
element (or diagram) from the appropriate location.

Activity Context menu
The activity element offers a special context command named New with a submenu for adding the following
elements:

Activity parameter Adds an activity parameter element to the activity.
Activity partition Adds a partition to the activity.
Action Adds an action element to the activity.
Initial Adds an initial element to the activity.
Activity Final Adds an activity final element to the activity.
Decision Adds a decision element to the activity.
Merge Adds a merge element to the activity.
Fork Adds a fork element to the activity.
Join Adds a join element to the activity.
Flow Final Adds a flow final element to the activity.
Object Node Adds an object node element to the activity.
Central Buffer Adds a central buffer element to the activity.
Data Store Adds a data store element to the activity.
Accept Event Action Adds an accept event action element to the activity.
Accept Time Event Action Adds an accept time event action element to the activity.
Send Signal Action Adds a send signal action element to the activity.

Action Context Menu
The action element offers the New context command with a submenu for adding the following elements:

Input Pin Adds Input Pin to the action.
Output Pin Adds Output Pin to the action.
Value Pin Adds Value Pin to the action.

Accept Event Action Context Menu
The Accept Event Action element offers the New context command with a submenu for adding the following element:

980

Output Pin Adds Output Pin to the Accept Event Action.

Accept Time Event Action Context Menu
The Accept Event Action element offers the New context command with a submenu for adding the following element:

Output Pin Adds Output Pin to the Accept Time Event Action.

Send Signal Action Context Menu
The Accept Event Action element offers the New context command with a submenu for adding the following
elements:

Input Pin Adds Input Pin to the Send Signal Action.
Output Pin Adds Output Pin to the Send Signal Action.
Value Pin Adds Value Pin to the Send Signal Action.

Related Concepts

UML Modeling Overview

Related Reference

Common Diagram Context Commands

981

UML 2.0 Component Diagrams
This section describes the elements of UML 2.0 Component diagrams.

In This Section
UML 2.0 Component Diagram Elements
Describes UML 2.0 component diagram elements.

982

UML 2.0 Component Diagram Elements
The table below lists the elements of UML 2.0 component diagrams that are available using the Palette.

Component node
Port node
Artifact node
Interface node
Instance specification node
Delegation connector link
Provided interface link
Required interface link
Association link
Aggregation link
Realization link
Note annotation
Note link annotation link

983

UML 2.0 Deployment Diagrams
This section describes the elements of UML 2.0 Deployment diagrams.

In This Section
Deployment Diagram Context Commands
Describes the common context commands shared by all UML 2.0 diagrams.

UML 2.0 Deployment Diagram Elements
Describes UML 2.0 deployment diagram elements.

984

Deployment Diagram Context Commands
Diagram Editor Right-click

All of the UML 2.0 diagrams share common context menu commands. To use the context menu for a diagram, right-
click in the Diagram Editor .

To view the common context menu commands, see “Common Diagram Context Commands.”

The deployment diagram offers the following context commands.

Diagram Context Menu

New The New command for the deployment diagram offers a submenu with the following options:

Node
Device
Execution Environment
Artifact
Deployment Specification
Constraint
Note
Shortcut

Node Context Menu

New The New command for the Node element offers a submenu with the following options:

Attribute
Operation
Node
Device
Execution environment

Device Context Menu

New The New command for the Device element offers a submenu with the following options:

Attribute
Operation
Node
Device
Execution environment

Execution Environment Context Menu

New The New command for the Execution Environment element offers a submenu with the following options:

Attribute
Operation

985

Node
Device
Execution environment

Deployment Specification Context Menu

New The New command for the Deployment Specification element offers a submenu with the following options:

Attribute
Operation
Artifact
Deployment Specification

Related Reference

Common Diagram Context Commands

986

UML 2.0 Deployment Diagram Elements
The table below lists the elements of UML 2.0 deployment diagrams that are available using the Palette.

Name Type
Node A node is a computational resource upon which artifacts can be deployed for execution.

Nodes can be interconnected through communication paths to define network
structures.

Device Node that represents a physical computational resource with processing capability
upon which artifacts can be deployed for execution. Devices can be complex, i.e. they
can consist of other devices.

Execution Environment Node that offers an execution environment for specific types of components that are
deployed on it in the form of executable artifacts.

Artifact node

An artifact represents a physical entity and is depicted in a diagram as a rectangle with
the <<artifact>> stereotype. An artifact can have properties, which define its
features, and operations, which can be performed on its instances. Physically, the
artifacts can be model files, source files, scripts, binary executable files, a table in a
database system, a development deliverable, a word-processing document, or a mail
message. A deployed artifact is one that has been deployed to a node used as a
deployment target. Deployed artifacts are connected with the target node by
deployment links.

Artifacts can include operations.

You can create complex artifacts by nesting artifact icons.
Deployment specification node

A deployment specification specifies a set of properties that determine execution
parameters of a component artifact that is deployed on a node.

Deployment link
Generalization link
Association link
Dependency Link used to model general dependencies. In Deployment diagrams, this notation is

used to depict the following metamodel associations: (i) the relationship between an
Artifact and the model elements that it implements, and (ii) the deployment of an Artifact
(instance) on a Node (instance).

Manifestation Link. A manifestation is the concrete physical of one or more model elements by an
artifact.

Communication path Link. A communication path is an association between two Nodes, through which
Nodes are able to exchange signals and messages.

Note annotation
Note Link annotation link

987

UML 2.0 Composite Structure Diagrams
This section describes the elements of UML 2.0 Composite Structure Diagrams.

In This Section
UML 2.0 Composite Structure Diagram Elements
Describes UML 2.0 composite structure diagram elements.

988

UML 2.0 Composite Structure Diagram Elements
The following is a list of UML 2.0 composite structure diagram elements.

Name Type

 Class A classifier whose behavior is described through the interaction of its parts. Within a class
you can specify attributes, operations, and other classes.

 Interface Creates a new object whose classifier conforms to a static classifier. The new object
resides on the output pin at runtime and is returned as the value of the action. An interface
must have at least one class to implement it.

 Collaboration Collaborating elements that perform specialized tasks and are structured collectively to
accomplish a function. Collaborations show how a collection of cooperating classes
achieve something.

 Collaboration Use Describes one use of a collaboration that is applied in a given context involving specific
classes or instances playing the roles of the collaboration.

 Dependency Elements whose semantics depend on the definition of a supplier element are in a
dependency relationship with the supplier element. Dependency links are shown as
dashed arrows between the two model elements with the arrowhead pointing to the
supplier element.

 Part A role played by one instance of a classifier or by a set of instances.

 Referred Part The instance of the classifier that is referenced.

 Port Available in design projects only. Each of the small squares attached to classes that
connect the behavior of classes with their internal parts and with the other parts of the
system. Ports can specify which service a class provides to its environment and which
service a class expects from its environment.

 Provided Interface A provided interface represents services that are offered by instances of a classifier to
fulfill contractual obligations.

 Required Interface A required interface specifies a usage dependency (which include the services needed to
perform a required function) between instances of a classifier and their interfaces.

 Connector A link that lets two or more instances communicate with each other.

 Collaboration Role A link between instances that play the roles of the collaboration.

 Role Binding A dependency that maps between features of collaboration types and features of a
classifier or operation. The mapping determines which connectable element of the
classifier or operation plays which role in the collaboration.

 Note An annotation.

 Note Link An annotation link.

989

Data Modeling Reference
In This Section

ER Logical Diagram Elements
Describes ER Logical diagram elements.

ER Physical Diagram Elements
Describes ER Physical diagram elements.

Element Context Menu Commands of ER Logical Diagram
The context menus described in this section are specific to the elements that are displayed in the class
diagram when the ER Logical Diagram profile is activated.

ER Physical Diagram Context Commands
Describes diagram context commands specific to data modeling projects.

Element Context Menu Commands of ER Physical Diagram
The context menus described in this section are specific to the elements that are displayed in the diagram
of the data modeling projects.

Links Context Menu Commands of ER Physical Diagram
The context menus described in this section are specific to the links that appear in the diagram of the data
modeling projects.

990

ER Logical Diagram Elements
Project Properties Profiles ER Logical Diagram Profile

The table below lists diagram elements that become available after activating the ER Logical Diagram Profile in a
UML 2.0 project.

Tip: To create second-level elements, use context menus of the top-level elements.

Element Description
ER Entity Creates an entity.
ER View Creates a view.
Subtype Cluster Creates a subtype cluster.
ER Relationship Creates an association between two entities.
ER Many To Many Relationship Creates an association with the stereotype erManyToManyRelationship.
ER View Relationship Creates an association with the stereotype erViewRelationship between

two top-level elements.
Cluster Link Creates a link with the stereotype erClusterLink between a subtype cluster

and an entity.

Related Concepts

Data Modeling

Related Procedures

Data Modeling Procedures

Related Reference

Element Context Menu Commands of ER Logical Diagram

991

ER Physical Diagram Elements
The list below describes diagram elements available for a ER Physical diagram in Together.

Element Description
Table Creates a physical table.
View Creates a physical view.
Foreign key Creates ER relationship between a child table (link source or client) and a parent table (link

destination or supplier).
View Relationship Creates a view relationship between a physical view (link client or source) and a physical table

(link destination or supplier).

Related Concepts

Data Modeling

Related Procedures

Data Modeling Procedures

992

Element Context Menu Commands of ER Logical Diagram
Element Right click

To view the common context menu commands, see “Common Diagram Context Commands.”

Using the tools Palette, you can only create top-level elements. To create the second-level elements, use context
menus of the container elements. The context menus described in this section are specific to the elements that are
displayed in the class diagram when the ER Logical Diagram profile is activated.

Table
The Table element offers a special context command named New with a submenu for adding the following
subelements:

Element Description
ER Entity Attribute Adds a stereotyped attribute (erAttribute) to an entity.
ER Entity PK Attribute Adds a stereotyped attribute (erAttribute) to the Primary Key section, and a

stereotyped (erKeyGroup) key group to the Key Group of an entity.
ER Entity Key Group Adds a stereotyped (erKeyGroup) key group to the Key Group of an entity.
ER Entity Check Adds a stereotyped (erEntityCheck) entity check to an entity.

View
The View element offers a special context command named New with a submenu for adding the following
subelement:

Element Description
ER View Expression Adds a stereotyped attribute (erViewAttribute) to a view.

Related Concepts

Data Modeling

Related Procedures

Data Modeling Procedures

Related Reference

Common Diagram Context Commands
ER Logical Diagram Elements

993

ER Physical Diagram Context Commands
To use the context menu for a diagram, right-click in the Diagram Editor . To view the common context menu
commands, see “Common Diagram Context Commands.”

The ER Physical diagram offers a special context command named New with a submenu for adding new elements
to the ER Physical diagram:

New
The New command for the ER Physical diagram offers a submenu with the following options:

Option Description
Table Adds a Table element to the diagram.
View Adds a View element to the diagram.

Related Concepts

Logical and Physical Data Models

Related Reference

Common Diagram Context Commands

994

Element Context Menu Commands of ER Physical Diagram
Element Right click

To view the common context menu commands, see “Common Diagram Context Commands.”

The context menus described in this section are specific to ER Physical diagram elements.

Table
The Table element offers a special context command named New with a submenu for adding the following
subelements:

Element Description
Column Creates a Column within the Table element.
Primary Key Column Creates a Primary Key Column within the Table element.
PK Constraint Creates a PK Constraint within the Table element.
Unique Constraint Creates a Unique Constraint element within the Table element.
Check Constraint Creates a Check Constraint within the Table element.
Index Creates an Index within the Table element.

View
The View element offers a special context command named New with a submenu for adding the following
subelements:

Element Description
Column Creates a Column within the View element.
Expression Creates an Expression within the View element.

Related Concepts

Data Modeling

Related Procedures

Data Modeling Procedures

Related Reference

Common Diagram Context Commands

995

Links Context Menu Commands of ER Physical Diagram
Link Right click

The context menus described in this section are specific to ER Physical diagram links.

The Foreign Key Link and View Relationship Link offer the following special context commands:

Command Description
Propagate Attributes For view relationships, propagates table columns to view. For foreign keys,

propagates columns included in parent table constraint (selected as parent key for
foreign key link using Inspector) to child table.

Propagate Attributes to All For view relationships, propagates table columns to the entire view hierarchy.
Unpropagate Attributes Undoes the applied propagation.

Related Concepts

Data Modeling

Related Procedures

Data Modeling Procedures

996

MDA
This section provides reference information related to MDA.

In This Section
QVT Language
Provides a description of QVT Language syntax and semantics supported by Together.

QVTO Language
Provides a description of M2M.QVTO Language syntax and semantics. The language implementation is
based on an OMG formal/08-04-03 QVT Specification.

XSL/OCL Language
Provides a description of XSL/OCL Language syntax and semantics supported by Together.

QVT Ant Tasks
Provides a description of QVT Ant tasks, which let you launch QVT transformations from the Ant build.

QVT Operational Ant Tasks
Provides a description of Operational QVT Ant tasks, which let you launch QVTO transformations from the
Ant build.

Model-To-Text Ant Tasks
Provides a description of Model-To-Text Ant tasks, which let you launch Model-To-Text transformations from
the Ant build.

XSL/OCL Ant Tasks
Provides a description of XSL/OCL Ant tasks, which let you launch XSL/OCL transformations from the Ant
build.

QVT Operational Migration Notes
Users who want to migrate from the proprietary QVT engine to M2M.QVTO should consider this topic.

QVT Operational Imperative Iterators
Provides a description of QVT Operational imperative iterators and their shorthand notation.

QVT Operational Transformation Wizard Configuration Properties
Provides a description of Configuration Properties page of the Apply Transformation wizard, which let you
specify values for the properties defined in your QVTO script.

QVTO/OCL Collections and Operations
Most relationships in object-oriented systems occur between an object and a collection of other objects.
OCL predefines a number of collection types and collection operations to allow the manipulation of
collections. The different types of collections influence OCL expressions.

MDA Example Projects
Lists example transformation projects available in Together.

EMF API for Together Models
Provides a description of EMF API for Together models.

Model Compare/Merge
Provides reference information on Together Model Compare/Merge facility.

997

QVT Language
Provides a description of QVT Language syntax and semantics supported by Together.

Introduction
This topic provides a description of QVT Language syntax and semantics supported by Together. The language
implementation is based on an OMG document ptc/05-11-01 (MOF 2.0 Query/View/Transformation final adopted
specification).

This implementation of QVT does not support declarative relations. Only imperative, or operational, transformations
are supported.

Operational transformations
An operational transformation contains a series of methods (mappings or queries) and defines an entry point
(main method) for the execution of the transformation. Invoking an operational transformation implies executing its
entry point. All methods in a transformation are stateless, and must pass all of the required information via parameters
and return values.

The following example demonstrates a simple transformation that contains only one mapping, main. This
transformation creates an instance of an RDB model from an instance of a SimpleUML model.

transformation samples.Simpleuml_To_Rdb;
metamodel 'http:///SimpleUML.ecore';
metamodel 'http:///rdb.ecore';
mapping main(in model: simpleuml::Model): rdb::Model {
object {
name := model.name;
}
}

The first line identifies the transformation by assigning a fully qualified name, samples.Simpleuml_To_Rdb. and
samples specifies a package that the transformation belongs to and must match the physical directory path.
Simpleuml_To_Rdb sets the name of the transformation and must be equal to the filename of the transformation
(without extension). Files that contain a transformation must have a .qvt extension. Therefore, the above
transformation must reside in the Simpleuml_To_Rdb.qvt file in the samples folder. Transformations are looked
up starting from the root folder, which is usually the root of the containing project.

The next two lines reference two EMF metamodels using the metamodel statement. The QVT implementation
operates on EMF model instances, and the corresponding EMF metamodels must be declared to provide the
necessary type information to the QVT compiler. The type of compliance as defined by the QVT specification is
always strict.

The only method declared by this sample transformation is main, which takes a single input parameter model of
type simpleuml::Model and returns an instance of rdb::Model as its result. It is created using the object
expression, which assigns a value for a single feature of rdb::Model -- name.

Transformations can operate on any model elements defined by the referenced metamodel(s). The entry point of
the transformation is a specially named method. Its arguments are not globally accessible, but might be passed to
other methods as parameters.

There are two modes of transformation execution: interpreted and compiled. Interpreted mode implies direct
evaluation of the transformation semantic tree. This mode is used by the QVT debugger. Compiled mode runs Java
984 code generated for the QVT sources. Generated Java code is stored in Eclipse plug-in project and can be
deployed as an Eclipse plug-in.

998

Transformation methods
Transformation consists of a number of methods. There are two kinds of methods: mappings and queries. Mappings
usually create new model elements and populate trace data. Queries represent lists of expressions that are executed
one by one.

Mappings

A mapping operation consists of a signature, a guard (when clause), and a mapping body.

A signature defines an optional context type of the mapping, an optional parameter list, and the return type. A
single unnamed return value is supported and can be accessed inside the transformation via the result keyword.
The context type is accessed using the self keyword. The return type of the mapping is always a model type.

An optional guard specifies a Boolean condition. The mapping is only executed if the condition evaluates to
true. If the condition is false, the mapping body is skipped and the undefined value is returned.

The mapping body consists of an optional initialization section, containing variable declarations and
assignments, and the population section, which contains an object expression creating the mapping result.

The following toRdb mapping is defined in the context of simpleuml::Model and takes a single input parameter
prefix of type String. The guard checks the name of the context value. The initialization section declares
and initializes a newName variable. This variable is then used in the object expression in the population section.

mapping simpleuml::Model::toRdb(in prefix: String): rdb::Model
when {
 self.name <> ''
}
{
 init {
 var newName := prefix + self.name;
 }
 object {
 name := newName;
 }
}

The toRdb mapping should be called in the context of simpleuml::Model. It might be viewed as a new operation
defined for this context.

init {
 var model := object simpleuml::Model {};
 var rdbModel := model.toRdb('rdb');
}

Mappings that do not specify the context are defined in the OclVoid context and can be called either without passing
any context value or with undefined context:

init {
 var model := contextless();
 var model2 := undefined.contextless();
}

...

999

mapping contextless(): simpleuml::Model {
}

The initialization section can contain the following kinds of expressions: variable declarations, feature
assignments and assignment to result.

A variable declaration has the form of var name[: type] := expression;. An optional type can be specified.
If the type is not specified, the variable gets the type of the right-hand expression.

Feature assignments let you modify features of the input-output (inout) parameters of the method. For example,
the following code adds a class to the model.

mapping addClass(inout model: simpleuml::Model): simpleuml::Model {
 init {
 model.ownedMembers += object simpleuml::Class {
name := 'Customer'; };
 result := model;
 }
}

The last example also uses the result assignment. This prevents execution of the section responsible for mapping
population, and the assigned value is returned as the mapping result value.

Queries

A query is a special kind of method that consists of a signature, and a list of expressions (which forms its body).

A query's signature is identical to the one used for the mapping. The only difference is there are no restrictions for
the query return type.

The body of the query consists of a list of semicolon-separated expressions. Expressions are executed one by one.
The value of the last expression is returned as the result of the query.

The following sample query getName extracts the name attribute from the model parameter.

query getName(in model: simpleuml::Model): String {
 model.name
}

Queries can also be defined in a context of some type. For example, the following query returns the container
package of simpleuml::Class:

query simpleuml::Class::getContainerPackage(): simpleuml::Package {
 self.owner
}

QVT language constructs
QVT uses OCL extensively, adding a "write" capability to this "read-only" language through a number of special
constructs. These QVT-specific constructs are described below.

The QVT implementation allows to call Java methods from within QVT sources. The mechanism used is identical
to the one used for calling Java methods from OCL code. It allows to view specially written methods of a Java class
as QVT operations.

1000

Consider a simple example of defining a new dumpErr operation with the following signature: OclAny::dumpErr
(in prefix: String): OclAny. This operation prints the string representation of self, prepended by the prefix to a
standard error, and returns self as the result.

Note: The context parameter self is passed as the first parameter of the dumpErr operation. For OclVoid context,
this parameter is omitted.

First, we need a Java class implementing the operation:

package qvtlib;
public class SampleLibrary {
 public Object dumpErr(Object self, String prefix) {
 System.err.println(prefix + self);
 return self;
 }
 public static class Metainfo {
 private static final String[] DUMP_ERR = new String[] {
"OclAny", "String", "OclAny" };
 public static String[] dumpErr(Object self, String prefix)
{
 return DUMP_ERR;
 }
 }
}

Note that the context parameter self is passed as the first parameter of the dumpErr operation. In case of
OclVoid context, this parameter is omitted.

Static Metainfo class provides information on the signatures of the exported operations. Each exported operation
should provide metainformation through the static method of this class. The method should have the same signature
as the operation being described, and the String[] return type. The returned array should contain OCL type names
and is interpreted as follows.

♦ array[0] -- context type

♦ array[1]..array[array.length-2] -- parameter type(s)

♦ array[array.length-1] -- return type

SampleLibrary class must reside in the Eclipse plug-in, which should also provide a
com.borland.tg.ocl.emf.libraries extension:

<extension point=”com.borland.tg.ocl.emf.libraries”>
 <library class=”qvtlib.SampleLibrary”
id="qvtlib.SampleLibrary">
 <inMetamodel
uri="http://www.eclipse.org/emf/2002/Ecore"/>
 <outMetamodel
uri="http://www.eclipse.org/emf/2002/Ecore"/>
 </library>
</extension>

Extension specifies a library id (qvtlib.SampleLibrary), and, optionally, metamodels required by the library (http://
www.eclipse.org/emf/2002/Ecore in our case).

When the plug-in is deployed and available to the Workbench, the qvtlib.SampleLibrary library becomes available
to QVT transformations and OCL scripts. It can be used with any QVT transformation whose transformation project
has a dependency on the library plug-in. For example:

1001

transformation Ecore_To_Ecore;
import library qvtlib.SampleLibrary;

metamodel 'http://www.eclipse.org/emf/2002/Ecore';

query dump(in model: ecore::EPackage): OclAny {
 model.dumpErr('model: ');
}

The above dumpErr call will be converted to the following Java code:

new qvtlib.SampleLibrary().dumpErr(model, "model: "));

object expression

The object expression lets you create an instance of the specified model type and initialize its features. For
example, the following expression creates an instance of rdb::Table and sets its name attribute:

object rdb::Table {
 name := 'Customers';
}

The expressions within the object construct must be in the form feature := expression; or feature +=
expression;. The latter assignment is only applicable to collection types where it adds the value of the expression
in the right part to the feature in the left part.

The object expression can be used in any OCL expression, as well as in the population section of a mapping. In
the latter case, you can omit the reference to a type, as the type is identical to the return type of the mapping:

mapping makeTable(): rdb::Table {
 object {
 name := 'Customer';
 }
}

You can further simplify the above mapping by removing the object keyword:

mapping makeTable(): rdb::Table {
 name := 'Customer';
}

Omitting the type of the object expression is not possible if the return type of the mapping is abstract. In this case,
a non-abstract derived type should be specified for the object expression.

ObjectExp is implemented according to the QVT specification. The variant of object { ... } without a variable
specification is not allowed (as this involves performing implicit, complicated, non-standard resolution), and if only
a single result is involved, an explicit object expression cannot be used without the population keyword (according
to section 8.2.1.19 of the QVT specification).

1002

resolve operations

Execution of a mapping automatically creates trace records that map input parameters to the mapping result. Trace
data is available at runtime via a family of resolve library functions:

♦ OclAny::resolve(in type: OclType): Set(type):Returns all target objects of the type type that
were produced by a source object specified by the context parameter.

♦ OclAny::resolveByRule(in rule:Mapping, in type: OclType): Set(type) Returns all target
objects of the type type that were produced by a source object using the specified mapping method.

♦ OclAny::invresolve(in type: OclType): Set(type) Returns all source objects of type type that
were used to produce the target object.

♦ OclAny::invresolveByRule(in type: OclType): Set(type)Returns all the source objects of the
type type that were used to produce the target object using the specified mapping method.

♦ OclAny::lateResolve(in type: OclType): type Identical to resolve, but the computation is
performed after executing the transformation entry point. This allows you to make "future" references to objects
that will be created (and traced) later in the transformation.

♦ OclAny::lateResolveByRule(in rule:Mapping, in type: OclType): type Identical to
resolveByRule, but the computation is performed after executing the transformation entry point.

The example below shows the mapping that creates rdb::Tables from simpleuml::Classes:

mapping makeTable(in cls: simpleuml::Class): rdb::Table {
 object {
 name := cls.name;
 }
}

After executing this mapping for a number of classes, it is possible to retrieve the tables produced for a given class
using the following code:

query getCreatedTables(in cls: simpleuml::Class): Set(rdb::Table) {
 cls.resolve(rdb::Table)
}

inout parameters

QVT methods can take two kinds of parameters: input-only parameters (default), specified by the in keyword, and
input-output parameters, specified by the inout keyword. The inout parameters can be modified by the mapping/
query code. For example:

mapping patch(inout model: simpleuml::Model): simpleuml::Model {
 init {
 model.name := 'New name';
 result := model
 }
}

The patch mapping above assigns a new name to its model parameter. Then it assigns model to the special
result variable, which prevents the execution of the population section, and returns the patched model from the
mapping. This is an example of an inplace transformation.

1003

Output-only (out) parameters are not supported by the current QVT implementation.

Transformation import

QVT implementation supports reuse of transformations via transformation import. Importing the transformation has
the effect of making all its methods available to the current transformation. For example:

transformation utils();

modeltype simpleuml uses "http://www.eclipse.org/qvt/1.0.0/Operational/examples/simpleuml";

query simpleuml::Model::getName(): String {
 self.name
}

transformation main;

transformation NewTransformation1(inout model : simpleuml, out model1 : rdb);

import utils;

modeltype simpleuml uses "http://www.eclipse.org/qvt/1.0.0/Operational/examples/simpleuml";
modeltype rdb uses "http://www.eclipse.org/qvt/1.0.0/Operational/examples/rdb";

mapping main(inout inoutModel : simpleuml::Model) : rdb::Model {
 name := inoutModel.getName();
}

Transformation main imports transformation utils and uses the getName method declared by the utils
transformation.

When you import a transformation and the imported transformation contains methods with identical signatures, the
method from the importing transformation is used.

Virtual methods

QVT implementation uses real type information when resolving context operation calls at runtime. This provides
virtual behavior for context operations:

query simpleuml::ModelElement::getName(): String {
 self.name
}

query simpleuml::Class::getName(): String {
 'class ' + self.name
}

query test(in element: simpleuml::ModelElement): String {
 element.getName()
}

Given the above declarations, the test(object simpleuml::Class { name := 'Customer'; }) call
returns 'class Customer'.

Query libraries

It is possible to define query libraries using the following QVT syntax.

1004

library queries;
modeltype simpleuml uses "http://www.eclipse.org/qvt/1.0.0/Operational/examples/simpleuml";

query getName(in model: simpleuml::Model): String {
 model.name
}

The library keyword is used to declare a QVT library. Libraries can contain the same QVT code as QVT
transformations but are registered as a special kind of QVT transformation, and they can be reused not only within
QVT transformations but in pure OCL code as well.

Traceability

Execution of a mapping method automatically creates trace records that point from the method parameters to the
mapping result. Trace data is available at runtime via the resolve functions family. This data can also be saved to
a file for later analysis.

The stack trace is now available in both runtime mode and debug mode. Because stack trace elements can be
constructed with no impact on memory or performance, the readability of runtime failures is improved. A runtime
failure is directly mapped to the corresponding QVT stack in the source code so that meaningful QVT output, such
as the following, can be generated:

org.eclipse.m2m.qvt.oml.internal.ast.evaluator.QvtRuntimeException:
java.lang.IllegalArgumentException: Cannot instantiate type EClassifier
 at EClass.mapCreateInstaceFailure3(stacktrace.qvto:33)
 at EClassifier.mapCreateInstaceFailure2(stacktrace.qvto:23)
 at EClassifier.mapCreateInstaceFailure(stacktrace.qvto:17)
 at stacktrace.main(stacktrace.qvto:43)
 at stacktrace.<init>(stacktrace.qvto:39)

OCL support

QVT implementation supports a full range of OCL 2.0 expressions.

Debugging support

QVT implementation provides an Eclipse debugger, supporting the following functionality:

♦ Line breakpoints.

♦ Standard stepping commands: step over, step into, step out, run to line.

♦ The QVT-specific Variables View, which displays QVT variables from the context of the current frame. This
view also provides type information for OCL complex types, including the following features:

■ Mapping for structural (isMany=true) features to corresponding OCL collection types, including
element type and size information

■ Support for enumerations
■ Proper handling of OclInvalid value and type (OclInvalid literal value of Invalid type)

■ Values for Declared type and Actual type provided where possible (except in cases in which values are
not accessible, such as with iterator variables)

♦ The QVT-specific Expressions View, which evaluates an arbitrary QVT expression in the context of the current
frame.

1005

QVT also provides the following library function: OclVoid::dump(in o: OclAny): OclVoid. This function
prints the string representation of the o parameter to standard output, which is redirected to the Console View when
transformation is executed in the Workbench.

Renaming features

In case a model element’s feature name conflicts with a QVT keyword, contains spaces, or is otherwise invalid from
the QVT point of view, it can be renamed using a special rename directive. The format of the directive is:

rename <type> = 'old_name'

This directive should be placed immediately after the metamodel declaration statements.

The sample QVT below uses the rename directive to assign a new name to the “name” feature of
ecore::Epackage.

transformation EPackage_To_EPackage;

modeltype ecore uses "http://www.eclipse.org/emf/2002/Ecore";
rename ecore::EPackage.newName = 'name';

mapping main(in model: ecore::EPackage): ecore::EPackage {
 newName := 'NewPackage';
}

Note: In the current implementation, changing names of the model types and packages is not supported.

Appendix
This QVT implementation does not fully support the draft QVT specification as given by the ptc/05-11-01 OMG
document. Incompatibilities include:

♦ No model parameters are supported. Transformation entry point is just a specifically named method (main).
Parameters of an entry point must be explicitly passed to the methods that need to access them.

♦ Multiple return values are not supported. Each mapping should have a single return value, accessible in code
via implicit result variable. The main mapping should have exactly one input or input-output parameter.

♦ Limited support for return statements in queries is provided. Support is provided for return statements that are
used only with the last expression in the query body. The compiler produces a warning for a missing return
that is used for the last expression in the query body, but the engine runs successfully.

♦ Output parameters are not supported.

♦ Input-output parameters are supported with the following semantics: they must be created by the caller, but it
is possible to modify their features inside the method.

♦ Syntax for mapping method calls does not include the map keyword. Methods are invoked in the same way as
ordinary methods, like operations defined in the model.

♦ The where clause (postcondition) is not supported.

♦ The constructor operations are not supported.

♦ Intermediate classes and properties are not supported.

♦ Supported mapping operation reuse mechanisms include inherits, merges, and disjuncts. Relation refinement
is not supported because hybrid (mixed with QVT relational) parse/execution is not implemented.

1006

♦ Dynamic instantiation and invocation of transformations is not supported.

♦ typedefs are not supported.

♦ Exceptions are not supported.

Related Concepts

Model Transformation Support

Related Procedures

Creating Model-To-Text Transformations
Creating a Model-To-Model Transformation

Related Reference

QVT Editor
EMF API for Together Profiles

1007

QVTO Language
Provides a description of M2M.QVTO Language syntax and semantics. The language implementation is based on
an OMG formal/08-04-03 QVT Specification.

Related Help
Please refer the following Help book Help Help Contents QVT Operational Developer Guide

Related Concepts

Model Transformation Support

Related Procedures

Manually Registering a Metamodel for Use with QVTO
Running an Operational QVT

Related Reference

QVT Operational Ant Tasks
QVT Operational Migration Notes
QVT Operational Imperative Iterators
QVT Operational Transformation Wizard Configuration Properties
QVTO/OCL Collections and Operations

1008

XSL/OCL Language
Provides a description of XSL/OCL Language syntax and semantics supported by Together.

Introduction
This is an introduction into Extensible Stylesheet Language Transformations (XSLT) provided by Together. The
language implementation is based on XSL Transformations (XSLT) Version 2.0 (W3C Candidate Recommendation
8 June 2006).

This implementation of XSLT is not used in conjunction with XPath 2.0. It uses the Object Constraint Language
(OCL) as described in the UML 2.0 OCL Specification (OMG Final Adopted Specification ptc/03-10-14).

XSL transformations
An XSL transformation consists of a series of declarations, instructions, and result elements/text. It is organized into
xsl:template elements that can be compared to procedures in other languages.

Invoking an XSL transformation executes one or more of the available templates. An example below demonstrates
a simple transformation containing only one template. This transformation creates HTML output, listing the names
of packages passed in as the source.

<xml version="1.0" encoding="UTF-8"?>
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xta="http://www.borland.com/xta">
 <xta:metamodel uri="http://www.borland.com/together/uml"/>
 <xta:metamodel uri="http://www.borland.com/together/uml20"/>
 <xsl:output method="html"/>
 <xsl:template match="self.oclIsKindOf(uml::kernel::packages::Package)">
 <HTML>
 <HEADER>
 </HEADER>
 <BODY>
 <H1><xsl:value-of select="self.name"/></H1>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

Every stylesheet consists of one main element xsl:stylesheet or the synonymous xsl:transform. The most
common XSLT namespaces, auxiliary instructions and result elements are defined within this element. The above
example associates the URI http://www.w3.org/1999/XSL/Transform with the prefix xsl for XSLT and the
URI http://www.borland.com/xta with a prefix xta for OCL add-ons.

To instruct the transformer to produce a valid HTML text, the xsl:output instruction has set its method attribute
to html. This way, the resulting text will not have typical XML additions (like the XML processing instruction in the
first line), which are not a part of HTML specs, and therefore, may startle HTML renderers.

The next two xta:metamodel child elements introduce the UML and UML 2.0 metamodels (referenced by their
URIs http://www.borland.com/together/uml and http://www.borland.com/together/uml20) to
the OCL engine.

The main entry point is an <xsl:template> element. Its match condition states that it can only be applied to objects
currently referenced by the self variable in the OCL runtime context and which are directly or indirectly of the type
uml::kernel::packages::Package. If the transformation source references a package like together:/

1009

Simple UML Model#model:project::Simple UML Model that references a project (which is of the required
kind), the match clause is evaluated to Boolean true and child elements of the template are executed.

The children of the template are a combination of result elements and XSLT elements—a combination of content
and logic. In this case the result is HTML and the XSLT elements contribute text. The xsl:value-of element is
not written to the output like the result elements <HTML> or <BODY>. The OCL expression in its select attribute is
evaluated and the outcome of the evaluation written to the result.

In the above example, this would be the package name surrounded by header tags: <H1>Simple UML Model</
H1>

Transformation Source
Because OCL is used instead of XPath, a different type of transformation source is required. The XML source is
replaced by an ECore source, bringing model elements referenced by their URIs into the transformer. A URI
together:/Simple UML Model#model:project::Simple UML Model enters the Simple UML Model
project into a transformation.

Transformation Stylesheet
Stylesheets are a combination of content and logic. They combine content from the source with possible but not
necessary content in the stylesheet (result elements and text) to some new result. The logic (XSLT) elements steer
how the contents are combined.

Embedding stylesheets lets you reuse templates defined in other stylesheets. <xsl:include
href="someOtherStylesheet.xsl"> inserts the contents of the referenced stylesheet as if they were defined
in the including stylesheet. <xsl:import href="someOtherStylesheet.xsl"> uses the references
stylesheet more in a library-like manner, introducing object-oriented concepts, like overriding. Both versions prohibit
the direct or indirect embedding of a stylesheet into itself.

Transformation Result
The result of a transformation is stored generally in a file within the workspace.

Multiple results can be created by specifying relative or absolute URLs in the href attribute of an xsl:result-
document directive. All results created by their child elements are redirected to the new output location. That also
applies to results created by invoked templates. Result-document elements can be cascaded so it is possible to
redirect results from within another redirection. The end-tag restores the result destination as it was before the start-
tag.

Transformation Parameters
Pairs of string keys and values passed into a transformation are available within the stylesheet as global parameters.
Those parameters need to be defined using <xsl:param name="someParamName"> within the stylesheet to be
able to access the passed-in values using for instance <xsl:value-of select="someParamName">. A
transformation fails with an error if a param instruction with an attribute required="yes" exists and no key-value
pair with the value of its name attribute was passed in.

Transformation Invocation
Without any further invocation settings, the best matching template is applied to the source element(s). A special
case is when the mode attribute value of a template is specified before the transformation. Only templates with a
fitting mode will be taken into consideration for application. If a named template should be called (similar to an entry
point procedure in other languages), its name can be set for the transformation.

1010

OCL
Utilizing XSL for model-to-text transformations predestines the usage of OCL in place of XPath to work directly
against the model input. This eliminates intermediate layers to convert model elements into XML elements with the
drawbacks of memory overhead, added processing cycles, and disconnecting the logic from the model.

Auto-context and stereotype
OCL constructs consist of three major parts. The context, stereotypes, and the actual expressions:

context Person::income : Integer -- context
init: parents.income->sum() * 1% -- 1st stereotype and expression
derive: if underAge -- 2nd stereotype and its expressions
then parents.income->sum() * 1% else job.salary
endif

Providing complete OCL statements would create considerable clutter in a stylesheet. In most cases, explicit naming
of the context and stereotype is not necessary because they can be derived from the element in focus in the OCL
runtime environment. If the self variable points to the Simple UML Model from the example above, the context can
be derived from its type and set to: context uml::together::Model. The stereotype used for OCL attributes and
embedded OCL is inv: so it can also be suppressed. By automatically computing context end stereotype, an element
like <xsl:value-of select="context uml::together::Model inv: self.name"/> can be written
much shorter as <xsl:value-of select="self.name"/>. Nonetheless, the full syntax is still supported to fine-
tune OCL statements.

Embedded OCL
Attribute values are generally considered to have simple contents such as xs:string. Often, stylesheet writers
want to access for instance the values of variables in the OCL runtime environment. This is possible by using
embedded OCL. Embedded OCL is an OCL expression surrounded by braces { and }. Attributes with embedded
OCL are converted at execution time into the combination of their literal parts and the results of the evaluations of
the embedded OCL expressions. As an example, an attribute att="type {self.type.name} - name
{self.name}" becomes att="type SomeTypeName - name someName", assuming the context object was
named "someName" and its type was named "SomeTypeName".

OCL attributes
Attributes of instructions that typically deal with OCL do not require embedded OCL. They presume that their values
are a valid OCL expression. Meaningful conditional instructions need to test against non-literal values. Therefore,
the condition of a simple conditional instruction is stated like <xsl:if test="self.oclIsKindOf
(SomeType)">. To use literal strings within OCL attributes, they need to be in single quotes <xsl:value-of
select="'some string'">.

Special characters
There are characters permitted in the OCL language, like comparative operators < or => that collide with XML well-
formedness. These characters need to be replaced by entity references such as < or =>, respectively. They
are substituted by their referenced entities at parsing time of the stylesheet and the OCL statements will conform to
the correct syntax.

Extension instructions
The OCL processor needs to be informed about certain things like which metamodels to expect or which libraries
to use. The transformer implementation provides extensions that transcend XSLT and accommodate the OCL layer.
<xta:metamodel uri="someMetamodelURI"> makes a metamodel known to the OCL engine so that its types

1011

can be used in expressions. <xta:import-library id="someLibraryID"> loads an OCL library in the OCL
processor and allows the operations defined in there to be used in expressions.

Templates
Templates are the means of breaking down a transformation into smaller reusable chunks. There are two kinds of
templates: named templates that can be called directly, and templates whose applicability is decided at runtime
evaluating a match attribute clause.

Matches
match attributes are OCL expressions that determine whether the template element can be applied to the self object
of the OCL runtime environment. Applicability is decided by passing the result of the evaluation to the boolean()
function. Therefore, the OCL expression does not need to deliver a Boolean result by itself. It can return strings or
numbers, which are then interpreted for their Boolean nature.

Undefined always false
String false if undefined or empty, else true
Number false if undefined, 0, or 0.0, else true
Collection false if undefined or empty, else true
Model element false if undefined, else true
Type always true

A check for an empty name can hence be as brief as <xsl:template match="name"> and does not need a
complex Boolean expression like <xsl:template match="not name.oclIsUndefined() and name-
>size() > 0">.

Parameters
Templates can be defining parameters that can or must be passed in at invocation by providing child elements of
the type xsl:param. Parameters setting their attribute required="yes" force their invokers to provide these
parameters or an error is reported. Since XSLT 2.0, parameters can be quietly propagated down an invocation
hierarchy without the constant need of redefinition in templates by setting an attribute tunnel="yes". Tunneling
parameters are available in templates that define them even if there were templates invoked in between that do not
define those parameters.

Template invocation
Templates can be called directly by name or applied using various strategies of determining which one to apply.

Calling
Templates in the form <xsl:template name="someName" ...> can be called directly by elements
<xsl:call-template name="someName">. To avoid ambiguity, only one template with a given name can exist
at a time with the same import precedence or an error stops the transformation. That is, a template of the same
name can exist very well in an imported stylesheet and the importing stylesheet as the imported template would
assume a lower precedence and hence not be called, allowing stylesheets to redefine imported behavior.

An important difference to template application is that the self object in the OCL runtime is the same. Caller and
callee operate on the same object.

Applying
The most basic form of template application is <xsl:apply-templates>. This form finds the most applicable
template whether it is imported or not and passes the child elements of the current self object in the OCL runtime

1012

environment as new self objects to the template applied to each child. Since the children could vary in their type
and properties, different templates can be applied to each and every one of them.

That said, a template could basically apply itself recursively but doing that to the child elements of the self object
rather than endlessly applying itself to the same object all over. The self object passed to the template can be
overridden by using a select attribute OCL expression determining something other than the children of the current
self.

Even if there are more templates to apply, only one is applied, actually. The candidate is determined by priority
computations and precedence considerations.

Use the xsl:next-match element if you need to apply a similar template to the one currently applied. It enables
templates to apply templates that they may have replaced in the match order in the first run. A next match is a
template that would have been applied if the current one had not taken higher priority or precedence. This concept
is related to the call to a super-implementation of virtual operations.

Another way of invoking a template that would otherwise be overridden by one with a higher import-precedence is
xsl:apply-imports. This form of application will disregard non-imported templates and only consider match
clauses, priory, and precedence within imported templates. This is also somewhat similar to virtuality in object-
oriented development.

Priority
Priority of a template match is either determined by how exact or vague the criteria applies to the object or by setting
it explicitly using the priority attribute and a decimal value, which can be negative.

If there is more than one matching template with the same priority, precedence takes over when deciding which
template to apply.

Precedence
Precedence is determined by the order in which templates are defined. The farther down a template exists in a
stylesheet, regardless of whether it was embedded, the higher its precedence is.

Mode
While priority and precedence are well-suited to control template traffic, they do not suffice to categorize templates.
Categorizing templates provides a higher level of control to limit the set of templates coming into question for
applicability. It reduces the amount of actual match evaluations and provides certain groups of functionality that do
not interfere with each other. When specifying a mode attribute in an xsl:template, all xsl:apply-
templates, xsl:apply-imports, and xsl:next-match will need to specify that very same attribute and value
to be able to target the thereby marked templates.

With parameters
The counterpart to xsl:param elements within an xsl:template element are xsl:with-param elements within
xsl:call-template, xsl:apply-templates, xsl:apply-imports, and xsl:next-match elements. The
invoking element needs to provide parameters that were declared as required in their owning templates or the
transformation is halted with an error. The tunneling parameter can be passed to potential recipients even if other
templates are invoked before them in the hierarchy that do not define those parameters.

Constructing results
Style sheets let you create textual results in various means, from a plain text to elements composed at runtime.

1013

Text
If the text to be added to the result is fairly simple, it can be placed at any position in a template that allows result
content.

<?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text"/>
 <xsl:template match="true">The quick brown fox jumps over the lazy dog.
 </xsl:template>
</xsl:stylesheet>

There may be cases in which preserving the line separation and avoiding replacement of special characters by entity
references is necessary. Such texts can be enclosed in xsl:text elements with an attribute disable-output-
escaping="yes" to avoid any conversion or reformatting. Also, if the content contains special characters, a
CDATA section can be used so you do not have use entity references for them to conform to XML. This is useful for
creating a JavaScript or source code of other languages.

<?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text"/>
 <xsl:template match="true">
 <xsl:text disable-output-escaping="yes"><![CDATA[function matchwo(a,b) {
 if (a < b && a < 0) then {
 return 1
 } else {
 return 0
 } }]]></xsl:text>
 </xsl:template>
</xsl:stylesheet>

Elements and attributes
Elements that are not of the XSLT namespace or of an extension namespace are written to the result. If the result
elements reside in a namespace, the latter has to be declared before or at the first result element. If the result
namespace is the XSLT namespace, you can declare a namespace alias to avoid conflicts and still get a result with
the right namespace and prefix.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"
 xmlns:wxsl="http://www.w3schools.com/w3style.xsl"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xta="http://www.borland.com/xta">
 <xta:metamodel uri="http://www.eclipse.org/emf/2002/Ecore"/>
 <xsl:namespace-alias stylesheet-prefix="wxsl" result-prefix="xsl"/>
 <xsl:template match="self.oclIsKindOf(ecore::EPackage)">
 <wxsl:stylesheet>
 <content/>
 </wxsl:stylesheet>
 </xsl:template>
</xsl:stylesheet>

If the name of an element can just be determined at runtime, the xsl:element instruction can be used. It has a
name attribute that permits embedded OCL for runtime composition of the element name. In the example below, an

1014

element is dynamically composed from a prefix defaulting to my and a suffix that must be provided by the caller of
the template.

<?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template name="createNamedElement">
 <xsl:param name="elementNamePrefix">my</xsl:param>
 <xsl:param name="elementNameSuffix" required="yes"/>
 <xsl:element name="{elementNamePrefix}-{elementNameSuffix}">
 <content/>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

Not only elements can be constructed dynamically but also attributes. It does not matter if the element is a literal or
using the XSLT instruction to compose elements dynamically. Dynamic attributes can even be grouped to reusable
sets that can be applied repeatedly and in various locations, using the set name as reference in an xsl:use-
attribute-sets attribute. The following example shows a callable template that creates an HTML paragraph
element P having its CLASS attribute filled by an attribute set and allows overriding the value of one of its attribute
name and value pairs by passed-in parameters that default to ALIGN and LEFT.

<?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:attribute-set name="paragraph">
 <xsl:attribute name="CLASS">MyParagraphs</xsl:attribute>
 </xsl:attribute-set>
 <xsl:template name="newParagraph">
 <xsl:param name="attName">ALIGN</xsl:param>
 <xsl:param name="attVal">LEFT</xsl:param>
 <P xsl:use-attribute-sets="paragraph">
 <xsl:attribute name="{attName}">
 <xsl:value-of select="attValue"/>
 </xsl:attribute>
 <xsl:apply-templates/>
 </P>
 </xsl:template>
</xsl:stylesheet>

Values
The xsl:value-of instruction is the most widely used one to contribute result content from model elements. A
select attribute value being of OCL nature queries the model and returns the result as text. Alternatively, it can
return contained text and elements as text. Similar to the xsl:text instruction, it supports the attribute disable-
output-escaping="yes" to avoid conversion of special characters that are prohibited for content in XML to entity
references.

Because of the differences from XPath and OCL, xsl:copy-of works differently as it cannot work against an XML
node set and copy that one over to the result XML node set. Instead, it copies the XMI-form of the selected model
element and its child elements into the result. This provides a very powerful yet simple way of serializing models
and model parts into the most common storage format.

Controlling
In many cases the result to be created will depend on certain conditions. One may want to create different elements
depending on the value of certain properties of model elements. XSLT provides various forms of conditional
execution of stylesheet elements. The most versatile is the xsl:chose instruction with its xsl:when and

1015

xsl:otherwise child instructions. The next stylesheet excerpt depicts how an attribute can decide between two
different values based on a property of a model element.

<xsl:attribute name="TITLE">
 <xsl:choose>
 <xsl:when test="self.getPropertyValue('$interface').oclIsUndefined()">
 <xsl:text>class in </xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>interface in </xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:value-of select="self.owner.getPropertyValue('$fullName')"/>
</xsl:attribute>

For simple yes/no-assessments, the xsl:if instruction exists. The shown stylesheet snippet asks if a given UML
1.4 class instance has generalizations, and it executes the child elements of the conditional element only in such a
case.

<xsl:template match="self.oclIsKindOf(uml14::kernel::classes::Class)"mode="class-tools-
extends">
 <xsl:param name="relativePathOfPackageRoot"/>
 <xsl:if test="self.generalizations->notEmpty()">
 <xsl:apply-templates select="self.generalizations" mode="class-tools-
extends-generalizations">
 <xsl:with-param name="relativePathOfPackageRoot">
 <xsl:value-of select="relativePathOfPackageRoot"/>
 </xsl:with-param>
 </xsl:apply-templates> </xsl:if> </xsl:template>

Iterating
xsl:apply-templates and its variations can be considered for iterating child elements and other selections.
Sometimes it is difficult to separate a loop execution part into a template. The more simple xsl:for-each
instruction helps iterating any collection and processing the contained objects; for example, the following stylesheet
fragment iterates attributes of a class and puts their names and type names into an HTML table.

<xsl:template match="oclIsKindOf(ecore::EClass)">
 <table border="1" width="100%">
 <xsl:for-each select="eAttributes">
 <tr>
 <td width="20%">
 <xsl:value-of select="name"/>
 </td>
 <td>
 <xsl:value-of select="eType.name"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
</xsl:template>

Sorting
All iterating instructions like xsl:for-each or xsl:apply-templates can work against sorted data.
xsl:sort instructions can be placed directly within looping instructions and thereby multiple sorting criteria can be

1016

implemented. If the sorting instruction is used without any attributes, the sorted object is converted to a text and this
text is submitted to alphabetical ascending sorting. Attributions of sorted elements can be used to refine the sorting.
Other attributes allow changing the order or the comparison method. The sorting illustrated below uses the name of
the child elements other templates should be applied to as sorting criteria. It sorts them in reverse order based on
textual comparison and determines an Austrian character set to be taken as the basis for the character sequence,
placing Ä after A, Ö after O, Ü after U, ä after a, ö after o, ü after u, and ß after s.

<xsl:template match="self.oclIsKindOf(ecore::EPackage)">
 <xsl:param name="indent" select="' '"/>
 <xsl:apply-templates>
 <xsl:sort select="self.name" data-type="text" lang="de-AU" order="descending"/>
 <xsl:with-param name="indent" select="indent + ' '"/>
 </xsl:apply-templates>
</xsl:template>

Numbering
Tables of contents and other directory-type document structures call for numbering. The xsl:number instruction
can add numbering to single document entities as much as to repetitive entries.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xta="http://www.borland.com/xta">
 <xsl:output method="text"/>
 <xta:metamodel uri="http://www.eclipse.org/emf/2002/Ecore"/>
 <xsl:template match="self.oclIsKindOf(ecore::EPackage)">
 <xsl:number format="1. " level="multiple"/>
 <xsl:text>ecore::EPackage:</xsl:text>
 <xsl:value-of select="self.name"/>
 <xsl:text>
 </xsl:text>
 <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="self.oclIsKindOf(ecore::EClass)">
 <xsl:number format="1.1. " level="multiple"
 count="self.oclIsKindOf(ecore::EPackage) or self.oclIsKindOf(ecore::EClass)"/>
 <xsl:text>ecore::EClass: </xsl:text>
 <xsl:value-of select="self.name"/>
 <xsl:text>
</xsl:text>
 </xsl:template>
</xsl:stylesheet>

The above stylesheet uses numbering in its most common form. It creates a hierarchical table of packages and their
owned classes as shown in the next lines.

1. ecore::EPackage: epo3
1.1. ecore::EClass: Item
1.2. ecore::EClass: USAddress
1.3. ecore::EClass: PurchaseOrder
1.4. ecore::EClass: GlobalAddress
1.5. ecore::EClass: Address

1017

The number instructions specify in a format attribute the way in which the numbers should be written. For packages
it only uses a single number-period combination, while for classes it uses two of those to provide numbers for both
the owning package and the owned classes.

In addition to that, level attributes set to multiple are supplied to enforce the number-period tuples for the classes.
Note that the second numbering instruction also states a selecting count clause that makes sure that the internal
grouping does not discard stored package information and thereby suppresses the leading number-period for the
owning package. Numbering is very powerful and thus complex—you may need to experiment with it and read the
“Numbering” chapter of the XSLT 2.0 specification.

Tracing
Even with XSL debugging, it is often useful to report to the console during stylesheet processing or even stop the
process in case of inconsistent data. The xsl:message instruction can both print to the console or exit processing
if it has an attribute terminate="yes".

<xsl:template match="self.oclIsKindOf(uml14::kernel::classes::Class)">
<xsl:if test="verbose"><xsl:message>Processing UML14 class: <xsl:value-of
select="self.fullName"/><xsl:text>
</xsl:text></xsl:message></xsl:if>

Advanced techniques

Beautifying output
Especially when creating output that is to be read by people again, you should instruct the XSL transformer to format
the result to comply to common standards—indentation is one of them.

<xsl:stylesheet version="2.0"
 xmlns:xalan="http://xml.apache.org/xslt">
 <xsl:output method="html" encoding="UTF-8" indent="yes" xalan:indent-amount="4"/>
 <xsl:template match="true">
 <html>
 <head>
 <title></title>
 </head>
 <body>
 <h1>
 </h1>
 <p>
 </p>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

You need to declare the Apache.org Xalan namespace and use the attribute indent-amount with its prefix
xalan in combination with the attribute indent="yes" of the xsl:output instruction if you do not want to have
the HTML code of this example lined up like pearls on a string but wrapped around into separate lines, neatly indented
and easier to read and edit.

<html>
 <head>
 <title/>

1018

 </head>
 <body>
 <h1/>
 <p/>
 </body>
</html>

Regular expressions
In many cases, models can consist of structures within structures that require further analysis and recombination.
This can be in the form of properties of model elements whose text content follows a certain pattern. Regular
expressions are a powerful means of breaking content following such patterns into its parts and reusing or
recombining them. The xsl:analyze-string instruction with its two permitted child elements, xsl:matching-
substring and xsl:non-matching-substring, introduces regular expressions into XSLT.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0">
 <xsl:variable name="abstract">
 <xsl:text>Whose woods these are I think I know.
His house is in the village, though;
He will not see me stopping here
To watch his woods fill up with snow.
My little horse must think it's queer
To stop without a farmhouse near
Between the woods and frozen lake
The darkest evening of the year.
He gives his harness bells a shake
To ask if there's some mistake.
The only other sound's the sweep Of easy wind and downy flake.
The woods are lovely, dark, and deep,
But I have promises to keep,
And miles to go before I sleep,
And miles to go before I sleep.</xsl:text>
 </xsl:variable>
 <xsl:output method="html"/>
 <xsl:template match="true">
 <HTML>
 <BODY>
 <P>
 <xsl:analyze-string select="abstract" regex="\r\n">
 <xsl:matching-substring>
<xsl:text></xsl:text></xsl:matching-
substring>
 <xsl:non-matching-substring>
 <xsl:value-of select="self"/>
 </xsl:non-matching-substring>
 </xsl:analyze-string>
 </P>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

The little stylesheet example above converts a poem in plain text and stored in a variable for demonstration purposes
into HTML output, wrapping it in a paragraph. The matching-substring sections (that is, the carriage-return line-feed
combinations specified in the regular expression for the analyze-string instruction) are replaced by the typical HTML
line breaks
 followed by enforced line breaks using the text-directives. For nonmatching substrings, that group
part of the regular expression stored in the OCL self variable is transferred to the result unchanged, producing:

1019

<HTML>
 <BODY>
 <P>
Whose woods these are I think I know.

His house is in the village, though;

He will not see me stopping here

To watch his woods fill up with snow.

My little horse must think it's queer

To stop without a farmhouse near

Between the woods and frozen lake

The darkest evening of the year.

He gives his harness bells a shake

To ask if there's some mistake.

The only other sound's the sweep

Of easy wind and downy flake.

The woods are lovely, dark, and deep,

But I have promises to keep,

And miles to go before I sleep,

And miles to go before I sleep.
</P>
 </BODY>
</HTML>

Appendix

Priority computation

Expression Priority Examples

Computed priorities Ranges between 0.25 and -0.5

oclIsTypeOf 0

oclIsKindOf Ranges from -0.125 inclusively
to -0.25 exclusively.

The algorithm is: priority =
(distance + 1) / (distance + 2) *
-0.25, where distance is the
number of "generalizes"
relations between the actual
argument type of the
oclIsKindOf expression and
the demanded type.

That is, the priority starts at
-0.125 when the types are
identical and asymptotically
nears -0.25, the farther an
actual type is removed from the
specified type.

Example: oclIsKindOf(ecore::EPackage), self is
of type ecore::EPackage, distance is 0, priority is ((0 +
1)/(0 + 2)*-0.25) or 1/2*-0.25 or -0.125

Example: oclIsKindOf(ecore::EClassifier), self
is of type ecore::EClass, distance is 1, priority is ((1 +
1)/(1 + 2)*-0.25) or 2/3*-0.25 or -0.1666666666

Example: oclIsKindOf(ecore::EClassifier), self
is of type ecore::EEnum, distance is 2, priority is ((2 + 1)/
(2 + 2)*-0.25) or 3/4*-0.25 or -0.1875

Comparative expressions and
functions

0.25 Example: self.oclAsType
(ecore::EClassifier).name = 'MyName'
Example: self.oclAsType(ecore::EList)-
>notEmpty()

1020

Example: context
uml::kernel::packages::Package inv:
self.name <> 'SuspendedRoot'

Unqualified collections -0.5 Example: context ecore::EPackage inv:
self.eContents()

Constrained collections
respectively constraining
collection operations

Depends on the constraint
expression

Example: context ecore::EPackage inv:
self.eContents()->select(oclAny : OclAny |
oclAny.oclIsKindOf(ecore::EClass))
The above selection operation has the priority of its
constraint expression oclIsKindOf, which is -0.25

Example: context ecore::EPackage inv:
self.eContents()->select(oclAny : OclAny |
oclAny.oclIsTypeOf(ecore::EClass))
The above selection has the priority of its constraint
expression oclIsTypeOf , which is 0.

Example: context ecore::EPackage inv:
self.eContents()->select(eClass :
ecore::EClass | eClass.name <>
'HotPotato')
The above selection has the priority of its Boolean
constraint expression, which is 0.25.

Example: context ecore::EPackage inv:
self.eContents()->select(oclAny : OclAny |
oclAny.oclIsTypeOf(ecore::EClass) and
oclAny.oclAsType(ecore::EClass).name =
'PickMe')
The above selection has the priority of its composite
constraint expression, which is 0.25 because of the higher
prior comparison.

OR-ed expressions The priority of the first striking
part is used

Example: self.oclIsTypeOf(ecore::EClass) or
self.oclIsKindOf(ecore::EClassifier)
If context object is of type ecore::EClass the priority of
self.oclIsTypeOf(ecore::EClass) is taken.

If context object is of type ecore::EClassifier but not
ecore::EClass the priority of self.oclIsKindOf
(ecore::EClassifier) is taken.

Example: self.oclIsKindOf
(ecore::EClassifier) or self.oclIsTypeOf
(ecore::EClass)
If context object is of type ecore::EClass, the priority of
self.oclIsKindOf(ecore::EClassifier) is
taken.

If context object is of type ecore::EClassifier, the
priority of self.oclIsKindOf
(ecore::EClassifier) is taken as well.

AND-ed expressions The highest priority of all
matching parts is taken

Example: self.oclIsKindOf
(ecore::EClassifier) and self.oclAsType
(ecore::EClassifier).name = 'MyName'

1021

If context object is of type ecore::EClass and has a
name 'MyName', the priority of self.oclAsType
(ecore::EClassifier).name = 'MyName' is taken.

Example: self.oclIsKindOf
(ecore::EClassifier) and self.oclAsType
(ecore::EClassifier).name = 'MyName'
If context object is of type ecore::EClass the priority of
self.oclAsType(ecore::EClassifier).name =
'MyName' is taken.

Related Concepts

Model Transformation Support

Related Reference

XSL Editor

1022

QVT Ant Tasks
Provides a description of QVT Ant tasks, which let you launch QVT transformations from the Ant build.

qvt.applyCompiledTransformation
This task applies a compiled (deployed) QVT transformation to the specified model.

Example:

<qvt.applyCompiledTransformation
transformation="package.Transformation"
sourceuri="platform:/resource/project/model.xmi"
targeturi="platform:/resource/project/result.xmi"
tracefile="platform:/resource/project/Transformation.trace"
targettype="EXISTING_MODEL" feature="feature_name"
clearcontents="true"
resulturiproperty="result_uri" />

Attribute Value Description

sourceuri String Specifies the URI of the source model.

targeturi String Specifies the URI of the target model.

tracefile String Specifies the workspace-relative path to the trace file. If this attribute is omitted, Together
does not generate a trace file.

targettype String Defines where to save the result of the transformation. Possible values: NEW_MODEL –
(default). Creates a new model or overwrites the existing one.EXISTING_MODEL – Saves
the result into the specified feature of the existing model.INPLACE – Overwrites the source
model with the transformation result.

clearcontents Boolean Specifies whether you want to clear contents of the target feature before writing the result
(when targettype="EXISTING_MODEL").

resulturiproperty String Specifies the name of the Ant property where you want to save the result URI. Use this
attribute to pass the transformation result to another transformation as the transformation
input.

qvt.applyTransformation
This task applies a project (not compiled) QVT transformation to the specified model.

Note: Together generates and executes the transformation Java code.

Example:

<qvt.applyTransformation
 transformation="/project/Transformation.qvt"
 ...
/>

The attributes are the same as for qvt.applyCompiledTransformation, except the following:

1023

Attribute Value Description

transformation String Specifies the workspace-relative path to the transformation file.

qvt.interpretedTransformation
This task applies a project (not compiled) QVT transformation to the specified model by interpreting the QVT code.

Example:

<qvt.interpretedTransformation
 transformation="/project/Transformation.qvt"
 ...
/>

The attributes are the same as for qvt.applyTransformation.

Related Concepts

Model Transformation Support

Related Procedures

Creating a Composite Transformation

Related Reference

Model-To-Text Ant Tasks
XSL/OCL Ant Tasks

1024

QVT Operational Ant Tasks
Provides a description of Operational QVT Ant tasks, which let you launch QVTO transformations from the Ant script.

qvto.interpretedTransformation
This task applies a QVTO transformation (workspace located) to the specified model by interpreting the QVTO code.

Example:

transformation ecore2uml(in ecore : ECORE, out uml1 : UML, inout uml2 : UML);

<qvto.interpretedTransformation
 transformation="/project/ecore2uml.qvto"
 tracefile="/project/ecore2uml.trace"
 resulturiproperty="myResulturiproperty"
 >
 <targeturidef
 targeturi="platform:/resource/project/input.ecore"
 />
 <targeturidef
 targeturi="platform:/resource/project/result1.uml"
 />
 <targeturidef
 targeturi="platform:/resource/project/result2.uml"
 targettype="EXISTING_MODEL"
 feature="eOperations"
 clearcontents="true"
 />
 <configurationProperty name="prop" value="attr"/>
</qvto.interpretedTransformation>

The following table describes each script attribute and its value type.

Attribute Value Type Description

transformation String Specifies the workspace-relative path to the transformation
file.

tracefile String Specifies the workspace-relative path to the trace file. If this
attribute is omitted, trace file is not generated.

resulturiproperty String Specifies the name of the Ant property where you want to save
the resulting URIs. Use this attribute to pass the
transformation results to another transformation as the
transformation input. Results are numbered starting from 1
and so forth in ascending order. Example: targeturi="$
{myResulturiproperty1}"

targeturidef:targeturi String Use both for specifying the URI of the source and target
models.

targeturidef:targettype String Defines where to save the result of the transformation.
Possible values:

targeturidef:feature String Specifies the target structural feature to save the result to
(only when targettype="EXISTING_MODEL").

1025

targeturidef:clearcontents Boolean Specifies whether to clear contents of the target feature before
writing the result (only when
targettype="EXISTING_MODEL").

configurationProperty name:String value:String Specifies configuration properties for the transformation.

Related Concepts

Model Transformation Support

Related Reference

QVTO Language

1026

Model-To-Text Ant Tasks
Provides a description of Model-To-Text Ant tasks, which let you launch Model-To-Text transformations from the
Ant build.

m2t.applyCompiledTransformation
This task applies a compiled (deployed) Model-To-Text transformation to the specified model.

Example:

<m2t.applyCompiledTransformation
 transformation="package.Transformation"
 sourceuri="platform:/resource/project/model.xmi"
 targetdir="platform:/resource/project/result"
/>

Attribute Value Description

transformation String Specifies the transformation ID.

sourceuri String Specifies the URI of the source model.

targetdir String Specifies the workspace-relative path to the folder where you want to store the transformation
results (it can be a project root).

m2t.applyTransformation
This task applies a project (not compiled) Model-To-Text transformation to the specified model.

Example:

<m2t.applyTransformation
 transformation="com.foo.project.package.TransformationClass"
 ...
/>

The attributes are the same as for m2t.applyCompiledTransformation, except the following:

Attribute Value Description

transformation String Specifies a fully qualified name of the transformation class.

Related Concepts

Model Transformation Support

Related Procedures

Creating a Composite Transformation

Related Reference

QVT Ant Tasks
XSL/OCL Ant Tasks

1027

XSL/OCL Ant Tasks
Provides a description of XSL/OCL Ant tasks, which let you launch XSL/OCL transformations from the Ant build.

xsl.applyTransformation
This task applies an XSL/OCL transformation to the specified model.

Example:

<xsl.applyTransformation
transformation="platform:/resource/project/index.xsl"
sourceuri="platform:/resource/project/model.xmi"
targetfile="/project/index.html"
applymode="index"
resulturiproperty="result_uri">
 <parameter name="title" value="Project Model Index"/>
</xsl.applyTransformation>

Attribute Value Description

transformation String Specifies the workspace-relative path to the XSL stylesheet file.

sourceuri String Specifies the URI of the source model.

targetfile String Specifies the workspace-relative path to the result file.

applymode String Specifies the mode attribute of the applied template.

callname String Specifies the name attribute of the applied template.

resulturiproperty String Specifies the name of the Ant property where you want to save the result URI. Use this
attribute to pass the transformation result to another transformation as the transformation
input.

<parameter> element
Use the contained <parameter> elements to pass parameters to the transformer.

Attribute Value Description

name String Specifies the parameter name that is used in your XSL stylesheet.

value String Specifies the parameter value.

Related Concepts

Model Transformation Support

Related Procedures

Creating a Composite Transformation

Related Reference

QVT Ant Tasks
Model-To-Text Ant Tasks

1028

QVT Operational Migration Notes

Introduction
The legacy QVT engine is not fully compliant with the current QVT specification. Users who want to migrate from
the proprietary QVT engine to M2M.QVTO should consider making the following code changes.

Use modeltype Expression to Reference Metamodels
Reference metamodels using the modeltype expression instead of the metamodel expression, as in the following
example.

modeltype uml uses 'http://www.borland.com/together/uml';

The metamodel expression becomes deprecated.

metamodel 'http://www.borland.com/together/uml';

Transformation Signature
Use a transformation declaration to define model parameters.

transformation NewTransformation(inout model1 : rdb, out model2 : simpleuml);

A declaration without parameters becomes deprecated.

transformation samples.Simpleuml_To_Rdb;

The legacy QVT defines transformations using an identifier and a main mapping operation with parameters. In
standard QVT, a transformation defines a signature that indicates the models that the transformation can process.
The signature consists of a transformation identifier and a list of model parameters. A transformation accepting an
Ecore model as input and producing a UML output model can be written as follows.

transformation Ecore2Uml(in inModel : ECORE, out outModel : UML);

The ECORE and UML model type identifiers denote the metamodels that are applicable to the transformation. There
is no implicit metamodel resolution implemented, which could eventually resolve a metamodel uniquely identified by
a name. You must declare a model type that refers to the model's metamodels by URI. To complete the preceding
example, define ECORE and UML model types before the transformation signature.

modeltype ECORE uses "http://www.eclipse.org/emf/2002/Ecore";
modeltype UML uses "http://www.eclipse.org/uml2/2.1.0/UML";

transformation Ecore2Uml(in inModel : ECORE, out outModel : UML);

The in, out keywords used in the signature denote the direction kind of individual model parameters. In addition,
the inout direction is available for definition of inplace transformations. Model parameters qualified as in require
an existing model instance that represents a read-only input. Similarly, inout parameters refer to existing models,
but modifications are allowed.

1029

Finally, out parameters always result in the creation of new model instances that are initially empty and that are
then populated during the transformation execution.

Note: In standard QVT, the modeltype declaration replaces the metamodel keyword used in legacy QVT.

In order to execute a transformation, all formal model parameters must be bound to actual contexts in which existing
models are resolved and new model instances are created. This is done external to the transformation, typically in
a runtime configuration, as when QVT Interpreter launches configurations in the Eclipse UI. The actual binding is
realized by using an EMF resource referenced by URI. The contents of the resource form the logical MOF Extent
associated with every model parameter of a transformation. Therefore, after a resource is associated with a model
parameter, the transformation can load and eventually modify its contents and save new output there.

Standard main() Entry Point
The QVT specification defines the entry point of a transformation as a unique imperative operation named main. It
has no arguments and return type, and its body is executed immediately after the owning transformation is
instantiated.

Typically, the body contains the logic to query appropriate objects within the extents of in or input model
parameters. These selected elements become the source objects for mapping calls producing the transformation
output.

transformation Simpleuml_To_Rdb(in uml : UML, out rdb : RDB);

main() {
 uml.rootObjects()[UML::Model]->map model2RDBModel();
}

The standard signature-less main operation helps to define a flexible execution logic accepting input elements of
various types, which belong to the declared model types. In many cases, no specific flow is required and a mapping
operation between a top-level input type and its corresponding output type is sufficient. This mapping operation then
invokes other necessary mappings on its child objects and composes a complete transformation result. This scenario
is supported in legacy QVT and is also still valid in the new QVT. A mapping operation as the entry point is shown
in the following example.

mapping main(in ePackage : EPackage, out umlPackage : Package)

Note: mapping main(...) is a legacy construct that originated from early versions of the QVT specification.

Collection Types
In legacy QVT, the data objects of Collection types cannot contain a null value. All related collection operations or
literals do not allow undefined values to be added to resulting collections. The OCL 2.0 specification states that the
null value is a legal element in a collection and the new QVT implementation follows this rule.

In addition, according to the OCL 2.0 specification, the Collection type no longer conforms to OclAny. Check for
potential misuses of OclAny operations because some of these misuses might not be detected by a compilation
error.

In the following example, legacy QVT takes collections as conforming to OclAny.

 var bag : Bag(String) := Bag { 'aString'};
-- calls oclIsKindOf() on 'bag', which conforms to OclAny

1030

var b : Boolean := bag->oclIsKindOf(String);
var oclAny : OclAny := bag; -- This is legal

In the following example, standard QVT does not handle collection types as OclAny subtypes.

var bag : Bag(String) := Bag { 'aString'};
-- xcollect -> calls oclIsKindOf() on each element of 'bag'
var b : Bag(Boolean) := bag->oclIsKindOf(String);
var oclAny : OclAny := bag; -- compilation error

Mapping Structure
Mappings are now implemented according to specification and can contain init, population and end sections.

 mapping metamodel1::Metaclass1::mappingName(): metamodel2::Metaclass2{
 init{
 }
 population{
 object result:{
 }
 }
 end{
 }
}

Mapping Operation Call
Calls on mapping operations must be used in conjunction with the map keyword. The ordinary operation call variant
is nonstandard and has been deprecated.

Because null can now be contained in collections, existing mapping calls on collection source objects or any
collect of mapping calls results can cause the null value to be included in resulting collections. In fact, a mapping
call can result in null if the mapping precondition fails.

-- sourceObjects is a collection and the mapping call causes to collect
-- the results of mapping calls on every collection element
-- The resulting collection may contain 'null'
sourceObjects.map foo();

The standard QVT uses the xcollect iterator (->) to skip irrelevant null results of mapping calls and to collect only
the elements of interest.

-- the resulting collection will NOT contain 'null'
sourceObjects->map foo(); -- xcollect shorthand

Mapping Execution Semantics
In legacy QVT, every mapping operation call executes its mapping body even if the mapping operation is executed
on the same source object repeatedly.

1031

In standard QVT, only the first execution of a mapping operation on a given source object results in complete body
execution, and a corresponding trace instance that records all parameters is created.

All subsequent calls made to the same mapping operation and the same source object check first available traces.
If a trace record for a particular mapping and source already exists because it has been executed previously, the
existing output value is fetched from the trace and returned to the caller without re-executing the operation body.

An exception to this unique mapping paradigm is the case of reentering a mapping operation. This is due to the fact
that the trace record is created immediately after the mapping initialization section, so it is only from this point forward
that the mapping result can be accessed using traces, even though the mapping might not yet have its result
population step fully completed. If the execution within the init section again invokes the same mapping for the same
source, no corresponding trace is available yet and the mapping body is re-executed for the same source.

It is the responsibility of the transformation writer to carefully consider the possible mapping calls from init sections.

The self Variable
Legacy QVT allows for implicit resolution of a self variable. This is applied if a property or operation call has no
source object on which the call is performed.

/*
 * Legacy QVT implicit source resolution
 */
mapping simpleuml::Model::simple2Rdb() : rdb::Model {
 name := name; -- implicit resolution -> self.name
}

The QVT standard method is to refer to the contextual instance by a self variable explicitly in both mapping and
query operations. An implicit source is resolved to the module (transformation or library) instance that defines the
operation containing the implicit call expression.

/*
 * Standard QVT requires explicit 'self' variable
 */
mapping simpleuml::Model::simple2Rdb() : rdb::Model {
 name := self.name;
}

For explicit reference to the module instance, the predefined this variable can be used. Note that OCL implicit
iterators take precedence over the module instance in implicit source object resolution, so this can be used for
referring to the module scope.

object Expression
The explicit use of an object expression as a mapping body that was supported in legacy QVT is nonstandard and
has been deprecated.

/*
 * obsolete object expression usage
 */
mapping simpleuml::Model::simple2Rdb() : rdb::Model {
 object {
 name := self.name;
 }
}

1032

A mapping with an implicit or explicit population section can be used instead. The following example shows an
object expression in an explicit population section, which updates a previously created object referenced by the
result target variable.

/*
 * new construct with explicit population section
 */
mapping simpleuml::Model::simple2Rdb() : rdb::Model {
 population {
 object result: {
 name := self.name;
 }
 }
}

while Expression
The legacy QVT style of while expression is not compliant with the standard QVT and has been replaced by the
following while constructs.
The following example shows a while loop with Boolean type condition only.

var i : Integer := 0;
while(i <= 10) {
 i := i + 1;
 -- do something
};

The following example shows a while loop with both variable declarator and Boolean type condition.

while(c : Integer = 0; c <= 10) {
 c := c + 1;
 -- do something
};

undefined and invalid Values
Legacy QVT supports only undefined values represented by the singleton value literal named undefined. This is
obsolete and has been replaced by the null value literal. Besides the undefined value, the OCL 2.0 specification
also defines the invalid value, which is of Invalid type (defined in the Standard Library). This has also been
adopted in the new QVT implementation.

It has exactly one runtime instance named OclInvalid. By definition, any operation or attribute call performed on
an undefined source object results in OclInvalid. Note that this is different from legacy QVT, where the result is
also undefined.

In legacy QVT, equality operations involving undefined values result in undefined. The OCL 2.0 supports equality
operations for both undefined and invalid values and always results in a Boolean type value.

Note: Always use an OclAny::oclIsUndefined() operation to test for undefined values in general, as this tests
for both undefined and invalid cases. The operation OclAny::oclIsInvalid() only tests for
invalidity.

1033

Variable Initialization
Legacy QVT supports variable declarations without initial expressions and assigns the null value by default.

var str : Bag(String); -- resulting variable has the 'null' value

The QVT specification defines default values that are different from null for some predefined types such as String,
Collection, and numerical types. However, the Boolean type is skipped and keeps a null value as the default.

The new QVT implementation always requires an initial expression in variable declarations. Missing initial
expressions are marked as compilation errors. Because these are reasonably easy to fix, the initial expression makes
for a safer migration step then new unexpected values, such as empty strings for the String type, that can silently
change the execution logic.

Escaping Identifiers
Model element identifiers that conflict with QVT or OCL keywords can be escaped by prepending the underscore
(_) character, as in the following example.

(self._abstract = false)

Resolve Expressions
Legacy QVT defines a limited trace ability by definition of resolve and invresolve operations, which have been
replaced by OMG standard implementation of the resolve expression in the new QVT implementation. The
resolveByRule legacy operation is now realized by the standard resolveIn equivalent.

Compare the following two examples of a resolve operation, the first using legacy QVT.

mapping simpleuml::Model::simple2Rdb() : rdb::Model {
 name := name;
 end {
 self.resolve(rdb::Model);
 self.resolveByRule('simple2Rdb', rdb::Model)
 result.invresolve(rdb::Model);
 result.invresolveByRule('simple2Rdb', rdb::Model);
 }
}

The following resolve operation example has been migrated to a standard QVT resolve.

mapping simpleuml::Model::simple2Rdb() : rdb::Model {
 name := self.name;
 end {
 self.resolve(rdb::Model);
 self.resolveIn(Model::simple2Rdb, rdb::Model)
 result.invresolve(rdb::Model);
 result.invresolveIn(Model::simple2Rdb, rdb::Model);
 }
}

The M2M.QVTO engine has a larger set of resolve call variants with more flexible filtering capabilities. In addition
to the constraint on the type of resolved objects, further restrictions of the result can be defined.

1034

You can accomplish type filtering by specifying the type name. For example, source->resolve(Table); selects
only Table instances, and source->resolve() selects any object.

An optional Boolean type condition for further restriction can be applied as in the following example.

 source->resolve(t : Table | t.name = 'nameValue')

where t is the target variable that provides access to the target in the condition expression and is initialized by
applicable target objects. Only those target objects that satisfy the condition are included in the final result. It might
appear that the same result could be retrieved by applying the condition on the result of the resolve. However, there
might be a difference in performance if a built-in condition within the resolve avoids creating intermediate collections
on which further filtering should be applied.

The result type of resolve calls is determined either by the type name condition or the target variable type (if specified).
Otherwise, OclAny is the result type (or element type, if the result is a collection).

Note: The Object type (supertype of OclAny), described in the QVT spec is not currently supported by this QVT
implementation.

The following modifiers can be used to select an execution strategy of resolve expressions:

one The first applicable single result found is returned. If no suitable result was found, null is returned. If not applied, the
result type of resolve is of the Sequence collection type.

The resolve call variant used in the following example returns all targets created or updated by mappings already called
on the source. In that case, a Sequence of the target type is returned. In order to limit the result to a single object, the
resolveone variant can be used, which ensures that the first target found in traces is returned. Sequence(Table)
tables = source.resolve(Table); Table table = source.resolveone(Table);

Inv The inverse direction, resolving the source objects used in mappings to create or update the target objects on which the
resolve call is applied.

late Deferred resolution, the late resolving variant has different execution semantics and postpones the actual resolution until
the end of the transformation. The actual late resolve call results in null during the regular transformation run and stores
its current execution environment needed for the later re-execution. The environment contains the variables to the late
resolve call that are available when reached at normal execution time as well as the source object of the call. The source
is computed at normal execution time only and used to execute the late resolve call at deferred time.

All late resolve calls should be used with assignments and should not be targeted to local variables. Instead, they should
be targeted to object properties so that a permanent effect can be achieved after the transformation ends.

The following EClass2UMLClass mapping performs mapping of objects referenced by the EClass::eSuperTypes
property to UML::Class instances set into the UML::Class::superClass property by using the late resolve.When
the assignment statement is reached during normal execution, the statement is not executed and its right side expression
results in null without actual evaluation, which is performed only at the end of the transformation. Note, that no code
referencing the left side property of deferred assignments is ever re-executed along with deferred assignments. Such
code will retain its last value assigned in the normal execution time. In the following example, the variable c does not get
assigned the late value of the superClass property.mapping ECORE::EClass::eClass2UMLClass() :
UML::Class { superClass := self.eSuperTypes.late resolve(UML::Class)->asSet(); end { var
c := result.superClass->asOrderedSet(); } }
All late resolutions are executed sequentially in the order they were encountered by the normal execution. The
implementation does not perform any reordering to guarantee that any condition expressions used in late resolve calls
and referencing late assigned properties will receive the late assigned values during its evaluation.

The preceding modifiers are not mutually exclusive and can be combined as one of the following:

♦ resolveone

♦ late resolve

♦ late resolveone

1035

♦ invresolve

♦ invresolveone

The late resolve variant with invresolve is also allowed but is not useful because the source object is always available
through a non-late resolve.

resolveIn resolves target objects created or updated by a specific mapping operation, which is referred to by its qualified
identifier (<context class>::name). This modifier is not currently supported by QVT concrete syntax. If there
are multiple mappings of the same name but with different signatures, an ambiguity error is reported.

Strings Library
A number of operations on the String type are defined in the new QVT Standard Library, while some of these are
duplicated in the custom Strings native library available in legacy QVT. If it is available, refer to QVT StdLib in the
migrated QVT source code.

Logging
The QVT standard log expression can be used to replace usages of the proprietary dump() operation available in
legacy QVT. A textual message along with optional object data can be sent to the log. Eventually, this can be disabled
or enabled by a Boolean type condition as shown in the following example.

log('a message');
log('a message', self);
log('a message', self.name) when self.name <> null;

Helpers
Helpers are very similar to queries, but have the advantage of being able to modify passed arguments.

Explicit Return for Queries
In legacy QVT, the last expression of an operation body is considered the result value. The new QVT implementation
introduces a dedicated return statement to return a result from a query or helper operations. Additionally, this can
be used to change the execution flow as the return statement causes the current operation to quit immediately
and return the result to the caller.

helper EClass::getUpperName() : String {
 return self.name.toUpper();
}

Related Concepts

Model Transformation Support

Related Reference

QVTO Language
QVT Language

1036

QVT Operational Imperative Iterators
Provides a description of QVT imperative iterators and their shorthand notation.

An imperative iterate expression is an imperative loop expression that iterates over a source collection and builds a
given result by using iterator variables, a target variable, a body, and a condition expression.

QVT imperative iterators are implemented in DSL Toolkit in accordance with section 8.2.2.7 of the MOF QVT Final
Adopted Specification (http://www.omg.org/docs/ptc/05-11-01.pdf), with the following exceptions.

xcollect Unlike collect, xcollect (collectOne) does not flatten results. A
flat collection cannot contain other collections as elements, and the
elements of all nested collections are xcollect extracted to the top level.
For example,

`{{1, 2}, 3, {4 , {5, 6}}}->flatten()`

results in

`{1, 2, 3, 4, 5, 6}`

collectOne DSL Toolkit implements six imperative operators, not five as specified in
section 8.2.2.7 of the MOF QVT Final Adopted Specification.The QVT
specification does not document the collectOne iterator. The EBNF
section of the QVT specification documents the collectOne iterator.

selectOne and collectselectOne The pseudocode for selectOne and collectselectOne in section 8.2.2.7 of
the QVT specification does not make sense. According to this
pseudocode, the evaluation of selectOne and collectselectOne the
selectOne and collectselectOne operators produces a collection
that contains a single element. However, the apparent intention is to
return the element itself, not a collection that contains the element.

xcollect, collectset, and xselect behavior Imperative iterators in DSL Toolkit are implemented by using the behavior
of collect and select in OCL. For more information, see section 7.6.2 of
the OCL Specification (http://www.omg.org/docs/ptc/05-06-06.pdf).

Therefore, for xcollect and collectselect, Sets and Bags result in
Bags, while OrderedSets and Sequences result in Sequences. This
approach allows for duplicates and preserves the source collection's
original type for xselect.

Full notation forms Two notation forms exist for xselect, two forms for xcollect, and only
one form for collectset. The following forms are the only ones
permissible.

<source> —> xselect (<iterator-list> |
<condition>) ;
<source> —> xselect (<condition>) ;
<source> —> xcollect (<iterator-list> |
<body>) ;
<source> —> xcollect (<body>) ;
<source> —> collectselect (<iterator-list>;
<target> = <body> |
<condition>)

For the selectOne, collectOne, and collectselectOne operators,
see the xselect, xcollect, and collectselect notations,
respectively.

1037

Related Concepts

Model Transformation Support

Related Reference

QVTO Language

1038

QVT Operational Transformation Wizard Configuration Properties
Use the Configuration Properties page of the Apply Transformation wizard to specify values for the properties
defined in your QVT script. The page is available only for Model-To-Model transformations.

A transformation can define configuration properties. These configuration properties receive their actual values at
execution. You can use QVT launch configurations to pass these configuration properties, which let you assign a
string representation of values to individual properties. Because raw string values are specified, the launch
configuration validates each passed value according to its related property type and rejects invalid values. This check
is not always sufficient, however, so an additional validation is performed at execution.

By modifying configuration properties in QVT scripts, the transformation writer can eventually change the type of a
previously defined configuration property. Therefore, an existing launch configuration can contain an invalid
stringified value for the configuration property. In this case, a QVT runtime exception is thrown at the point of the
configuration property initialization and the execution is terminated. This behavior is preferred over a silent execution
using undefined or invalid values, because values that are explicitly set are received. If no value is available (no
value is set) for a configuration property at execution time, the configuration property is initialized to a null value. To
test this behavior, verify that the following list of assert statements remain true:

♦ assert (myConfigProperty == null);

♦ assert (myConfigProperty.oclIsUndefined());

♦ assert (not myConfigProperty.oclIsInvalid

Note: Currently, only QVT-recognized primitive types are supported for configuration properties.

Item Description

Property Specifies the name of the property that is passed to the transformation.

Type Specifies the property type.

Value Specifies the property value. You can edit this field.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Model Transformations
Applying Model-To-Text Transformations

Related Reference

QVT Language
QVT Editor

1039

QVTO/OCL Collections and Operations
Most relationships in object-oriented systems occur between an object and a collection of other objects. OCL
predefines a number of collection types and collection operations to allow the manipulation of collections. The
different types of collections influence OCL expressions.

OCL Collection Types1
A collection is an abstract superclass with concrete collection types as subclasses. OCL specifies the following four
subclasses of collections.

Set: A collection of unordered, unduplicated elements, typically resulting from a single navigation.
Ordered Set : A Set, but with a collection of ordered, unduplicated elements.
Bag: A collection of unordered elements that might be duplicated, typically resulting from a combined navigation.
Sequence: A Bag, but with a collection of ordered elements that might be duplicated.

Collections often result from navigating from objects. However, collections can also result from specifying literals.
Elements within these collections can be enumerated within the syntax by placing them within curly brackets following
the type of collection that contains them.

OCL Collection Operations
Another way of creating collections is through the use of collection operations, which efficiently project new
collections from existing ones.

In syntax, an arrow between a collection and the operation represents a collection operation, as in the following
example.

collection->operation

The arrow indicates the collection operation, which reveals the properties of a collection. The following types of
operations are available:

♦ standard operations - operations available for all four collection types.

♦ variant operations – operations that provide different functions when applied to different collection types.

♦ loop operations or iterators – operations that loop over a collection, take an OCL expression as a parameter,
and evaluate each element in a collection for that expression.

The following table gives a brief description for operations applicable to the four collection types.

Operation Collection Type Description

any All A loop operation and variant of the select operation
that returns any random element of the source
collection whose expression is true.

append, prepend OrderedSet, Sequence Variant operations that put an element at the end of
(append) or at the beginning of (prepend) a
Sequence or OrderedSet.

asBag, asOrderedSet, asSequence,
asSet

All Use one of these variant operations to transform one
concrete collection type into an instance of another
concrete collection type. Depending on which
operation is applied to which collection type, the

1040

result changes either the order of the elements or the
duplication properties of the elements.

For example, if you apply the asBag operation on a
Sequence collection, the order of the Sequence is
lost in the resulting collection.

at OrderedSet, Sequence A variant operation that results in the element at the
current position.

collect All A loop operation that returns the set of all values for
a certain attribute of all objects in a collection.

For example, in the context
stores.numberOfCustomers, the integer value
of numberOfCustomers is added to each element in
a collection of stores.

collectNested All A loop operation that returns the set of all values for
a certain attribute of all nested collections in a
collection.

count All A standard operation that returns the number of
occurrences of an element in a collection.

equals (or =) All A variant operation that evaluates to True if all
elements in two collections are the same. For
orderedSets and Sequences, the elements must not
only be the same in both collections but the order
must also match.

excludes (or excluding) All A standard operation that results in a new collection
with one fewer object than was in the original
collection.

excludesAll All A standard operation that results in a new collection
in which all the objects from the original collection are
absent.

exists All A loop operation that identifies the presence of at
least one element in a collection for which a certain
condition is True.

first OrderedSet, Sequence A variant operation that results in the first element of
a collection.

flatten All A variant operation that changes a collection of
collections into a collection of objects.

forAll All A loop operation that always takes a Boolean
expression as a parameter. Evaluates to True if all
elements comply, and to False if at least one does
not.

includes (or including) All A standard operation that results in a new collection
with one more object than was in the original
collection. The element is added to sets and ordered
sets only if it does not already reside in them.

includesAll All A standard operation that results in a new collection
in which all the objects from the original collection are
present.

indexOf OrderedSet, Sequence A variant operation that returns an integer value
specifying the first position of an element in a
collection.

1041

insertAt OrderedSet, Sequence A variant operation that results in the insertion of an
extra element at the specified position of a sequence
or ordered set.

intersection Set, Bag A variant operation that results in a collection of
objects that holds all elements in both collections.

isEmpty All A standard operation that must be true when a
collection has no elements.

isUnique All A loop operation that returns true if the value of the
evaluated parameter for every element in the source
collection is unique.

iterate All The most basic and complex loop operation, the
iterate operation is used to build a value by
accumulation over a collection.

For example, in the expression collection-
>iterate(element : Type; accumulator :
Type = <expression> | expression-with-
element-and-accumulator), element is the
iterator operation that iterates over a collection.
expression-with-element-and-
accumulator s evaluated for each element. After
each evaluation, the value is assigned to
accumulator. In this way, the value of
accumulator is built up during the iteration of a
collection.

last OrderedSet, Sequence A variant operation that results in the last element of
a collection.

minus (or -) Set, OrderedSet A variant operation that results in a new set that
contains all the elements of the set that called the
operation but none of the elements in the parameter
set.

notEmpty All A standard operation that evaluates to true when a
collection has at least one element.

notEquals (or <>) All A variant operation that evaluates to true if all
elements in two collections are not the same.

one All A loop operation and variant of the exists operation
that returns true if a certain condition for one and
only one element in the source collection is true.

reject All A loop operation that is like the select operation
except it specifies every element from a collection for
which the Boolean expression is false.

select All A loop operation that specifies a subset in the
resulting collection if a certain condition for the subset
is true.

For example, if customers must have a card for every
service in a collection that they use, their total number
of cards is a subset of the total number of cards or
services available. The select operation picks among
the services.

size All A standard operation that indicates the predefined
operation size of a collection.

1042

sortedBy All A variant operation that uses a property of the type of
the elements in a collection as a parameter to sort the
ordered (OrderedSet, Sequence) or unordered (Set,
Bag) elements in a collection. The resulting
collection's first element is the lowest element.

subOrderedSet OrderedSet A variant operation that results in an OrderedSet with
elements from the lower to upper index in the original
order.

subSequence Sequence A variant operation that results in a Sequence with
elements from the lower to upper index in the original
order.

sum all A standard operation that results in the addition of all
of the elements in a collection.

symmetricDifference Set A variant operation that results in a Set containing all
the elements in either the Set that called the
operation or in the parameter.

union All A variant operation that results in a new collection of
objects that hold the elements in both sets.

For example, a Set combined with a Set makes
another Set without duplicates. A Set combined with
a Bag makes a Bag. An OrderedSet combined with a
Sequence, neither of which can be combined with a
Set or Bag, results in a collection in which the
elements of the calling operation are sequenced
before the elements of the parameter collection.

For examples of how collection operations are used, refer to the UML 2.0 OCL Specification.

Mapping OCL Collections
OCL collection types can be mapped to collections in one of the libraries in the target language. If the target language
does not provide a collection type, you can either define your own class of collection types based on a standard
collection type or use a Java collection type that is already closely mapped to OCL, such as Tree, Set, or List. For
more information, refer to The Object Constraint Language – Getting Your Models Ready for MDA, by Jos Warmer
and Anneke Kleppe.

Related Concepts

Model Transformation Support

Related Reference

QVTO Language

1043

MDA Example Projects
The following example transformation projects are available in Together

Transformation Project Description

Data Modeling to UML A QVT Transformation that maps an ER Physical model to UML 2.0 model.

Documentation Generation (via XSL) An XSL transformation that produces Javadoc style documentation in HTML format
from a modeling project.

Ecore to UML A QVT transformation that produces a UML 2.0 model from an Ecore model.

ER Logical to Data Modeling A QVT transformation that transforms an UML 2.0 project with an ER profile applied
into a Data Modeling project using the EMF Profile API.

RDB to DDL A Model-To-Text transformation that produces a DDL script from an Ecore RDB model.

SimpleUML to RDB A QVT transformation that produces an RDB Model from a simple UML model.

UML Diagrams A QVT transformation that demonstrates how to use the EMF API for Together models.
The transformation enumerates all the classes, interfaces, data types and
enumerations in the input project and creates a Class diagram that contains references
to these elements. The references are displayed in different colors and styles.

UML to Data Modeling A QVT transformation that produces a Data Modeling (ER Physical) project from a
Together UML 2.0 project.

UML to J2EE A collection of transformations (including QVT, Model-To-Text, and XSL
transformations) chained to each other using the Composite transformation script. The
transformation chain produces a J2EE application from a Together UML 2.0 model.

UML to Java (via XSL) An XSL transformation that produces Java code from a UML 2.0 model.

UML to WSDL A QVT transformation that produces a WSDL description of a web service from a UML
2.0 model.

UML to XHTML A QVT transformation that produces XHTML markup from a UML 2.0 model.

UML to XSD A QVT transformation that produces an XML Schema from a UML 2.0 model.

WSDL to UML A QVT transformation that produces a UML 2.0 model from a WSDL file (using reverse
engineering).

Related Concepts

Model Transformation Support

Related Procedures

Creating an Example MDA Transformation Project

Related Reference

MDA

1044

EMF API for Together Models
Provides a description of EMF API for Together models.

Introduction
EMF API provides EMF-like access to the public part of Together models. The obtained EMF model is synchronized
with the Together model for which is it built for; any changes to one of them immediately affect the other.

EMF API is a Java framework generated from metamodels existing as EMF .ecore files. It is organized as a set of
EMF packages rooted at com.borland.tg.emfapi. The API provides metamodels for UML modeling (UML 1.4
and UML 2.0), Business Process modeling and Data modeling. Together generates a separate EMF API plug-in for
each type of modeling. The original .ecore model (along with the .genmodel file) is located in the /model folder
of each plug-in.

In the EMF Editor, using these .ecore models, you can create a new EMF model that uses types from Together
metamodels.

For every feature of a Together model element there is a named get<Feature>() method. For writable features,
there is a set<Feature>() method.

EMF API supports:

♦ read/write access to model structure (containment hierarchy and links)

♦ read/write access to attributes of model elements

♦ creation/deletion of model elements

♦ conversion of model change notifications to EMF notifications

Component diagram for existing EMF API plug-ins

1045

Creating and accessing instances
EMF API is built on top of the BCore metamodel, which is the abstraction layer between API and EMF. Classes from
the BCore model decorate appropriate EMF classes (namely: BProxyFactory -> EFactory, BProxyObject
-> EObject, BProxyPackage -> EPackage).

These classes are roots in the EMF API hierarchy. For example, inheritance hierarchy for an UML Element looks
like: Element (UML) -> BProxyObject (BCore) -> EObject (EMF).

BCore tracks all generated EMF API plug-ins using the
com.borland.tg.emfapi.bcore.generated_emfapi extension point. It provides a uniform way to obtain an
EMF object for any Together element:

Entity modelEntity = … EObject model=BProxyObject.Registry.INSTANCE.getBProxyObject
(modelEntity, ProxySession.DEFAULT_MODEL_SESSION);

The second parameter is a ProxySession instance. It is used to specify modes that EMF API uses to interact with
a Together model. The predefined ProxySession values are listed below:

Value Description

DEFAULT_SESSION Specifies that the obtained EMF object will track model change notifications

DEFAULT_NONSYNC_SESSION Specifies that the obtained EMF object will not track model change notifications, and each
request to EMF API will generate a different set of objects

DEFAULT_MODEL_SESSIONS Specifies that the obtained EMF object will track model change notifications and will perform
model operations in the “thread-safe” manner

In most cases, the predefined ProxySession.DEFAULT_MODEL_SESSION is suitable. A new session can be
created using the session factory:

ProxySession session = ProxySession.REGISTRY.createSession(..);

The main difference between EMF API and the pure EMF is how it obtains the element factory. For an EMF model,
something like the following is used:

LibraryFactory factory = LibraryFactory.eINSTANCE; Book book = factory.createBook();

For EMF API, IProject and ProxySession must be specified to get the element factory:

PackagesFactory factory = PackagesFactory.REGISTRY.getFactory(getIProject(),
ProxySession.DEFAULT_MODEL_SESSION);
Package pack = factory.createPackage();

Accessing Together specific properties
The Bcore model provides the way to get EMF classes and features using original Together model names:

EClass clazz = BProxyObject.Registry.INSTANCE.getBProxyClass("Classifier20");
// get attribute structural feature
EStructuralFeature feature = BProxyObject.Registry.INSTANCE.getBProxyFeature
("Classifier20", "$abstract");
// get reference structural feature

1046

EStructuralFeature feature = BProxyObject.Registry.INSTANCE.getBProxyFeature
("Classifier20", "generalization");

For UML modeling projects, a Together model object is obtained using the getModel() method in a
TogetherFactory class. This method returns a singleton model object that corresponds to IProject specified
during the factory creation.

ProxySession session = ProxySession.DEFAULT_MODEL_SESSION;
TogetherFactory factory = TogetherFactory.REGISTRY.getFactory(getIProject(), session);
Model model = factory.getModel();

To distinguish between different UML modeling types (UML 1.4 or UML 2.0), a model object has an
namespaceURI attribute. This feature contains NsURI of an appropriate Epackage:

ProxySession session = ProxySession.DEFAULT_MODEL_SESSION;
TogetherFactory factory = TogetherFactory.REGISTRY.getFactory(getIProject(), session);
Model model = factory.getModel();
if (model. getNamespaceURI().equals(com.borland.tg.emfapi.uml20.Uml20Package.eNS_URI)) {
 // it’s Uml20 model
}
if (model. getNamespaceURI().equals(com.borland.tg.emfapi.uml14.Uml14Package.eNS_URI)) {
 // it’s Uml14 model
}

BCore provides operations for get/set custom properties of the corresponding Together model element:

Entity tgClass = …
Class cls = (Class) BProxyObject.Registry.INSTANCE.getBProxyObject(tgClass);
String metaclass = cls. getPropertyValue(“$metaclass”);
cls.setPropertyValue("custom", "foo");

Accessing Together diagrams
The EMF API provides read/write access to the contents of Together diagrams. For the given package, the list of
diagrams is obtained like:

Package pack = …
EList diagrams = pack. getOwnedDiagrams();

The EMF API diagram metamodel is built on the GMF metamodel. This implies that a diagram consists of elements
of two types: Node (the diagram representation of Together elements) and Edge (the diagram representation of
Together links). View styles of the diagram elements are represented as the list of instances of the Style interface.
To modify view styles of the diagram element, you need to add or remove an appropriate instance of Style. For
example:

ProxySession session = ProxySession.DEFAULT_MODEL_SESSION;
TogetherFactory factory = TogetherFactory.REGISTRY.getFactory(getIProject(), session);
Model model = factory.getModel();

To distinguish between different UML modeling types (UML 1.4 or UML 2.0), a model object has an
namespaceURI attribute. This feature contains NsURI of an appropriate Epackage:

1047

ProxySession session = ProxySession.DEFAULT_MODEL_SESSION;
DiagramFactory diagramFactory = DiagramFactory.REGISTRY.getFactory(getIProject(), session);
Node node = diagramFactory.createNode();
FontStyle fontStyle = diagramFactory.createFontStyle();
fontStyle.setFontHeight(20);
node.getStyles().add(fontStyle);
FillStyle fillStyle = diagramFactory.createFillStyle();
fillStyle.setBlue(100);
node.getStyles().add(fillStyle);

Package pack = ...
Class clazz = ...
Diagram defaultDiagram = pack.getDefaultDiagram();
node.setElement(clazz);
defaultDiagram.getChildren().add(node);

Saving and loading resources
EMF API objects, like any other EMF objects, can be persisted as XMI:

Entity modelEntity = …
ProxySession session = ProxySession.DEFAULT_MODEL_SESSION;
Model model = (Model) BProxyObject.Registry.INSTANCE.getBProxyObject(modelEntity, session);
// Create a resource for the file URI
Resource resource = resourceSet.createResource(fileURI);
// Add the model objects to the contents
resource.getContents().add(model);
// Save the contents of the resource to the file system
try {
 resource.save(Collections.EMPTY_MAP);
} catch (IOException e) {}

The BCore model provides a special type of Resource that is used to store cross-references to EMF API objects.
When they are loaded, these objects resolve to Together model elements.

Entity entity = ...
URI uri = TogetherResourceFactory.createUri(entity.getModel());
TogetherResource resource = new TogetherResource(uri);
EObject eObject = resource.getEObject(TogetherResource.makeUriFragment(entity));

Adapting EMF objects
When an EMF API object is obtained for a synchronized session, the API ensures that the listener is registered for
Together model notifications. While dispatching the Together model delta, the API collects all generated EMF
notifications and fire them after the delta is processed. The generated EMF notifications are very similar to those
generated by the pure EMF for the similar action.

BCore provides a set of adapters for adapting org.eclipse.core.resources.IProject,
com.tssap.selena.model.elements.Model, and com.tssap.selena.model.ui.IElementWrapper to
EObject:

1048

IProject project = ...
EObject eModel = (EObject) project.getAdapter(EObject.class);
Entity gdmModel = (Entity) Platform.getAdapterManager().getAdapter(eModel, Model.class);

This can be used when defining extension points:

<extension point="org.eclipse.ui.popupMenus">
 <objectContribution
 adaptable="true"
 id="elementContributions"
 objectClass="org.eclipse.emf.ecore.EObject">
 <action ...
 </action>
 </objectContribution>
</extension>

Using the reflective API
Because the EMF API is based on EMF, you can manipulate with a generated model class using the reflective API
defined in the EObject interface: eGet(), eSet(), eIsSet(), eUnset().

In the EMF API, eIsSet() returns true for references and multi-valued properties. For single valued properties,
it returns true only when the value differs from the default.

In order to create an arbitrary EMF API object using EClass, you can use the following pattern:

EClass eClass = ...;
EFactory eFactory = BProxyFactory.REGISTRY.getFactory(
 eClass.getEPackage().getEFactoryInstance().getClass(),
 getIProject(), ProxySession.DEFAULT_MODEL_SESSION);
EObject eObject = eFactory.create(concreteClass);

Support for the EMF.Edit framework
For every model plug-in, the EMF API provides an .edit plug-in that contributes to the
org.eclipse.emf.edit.itemProviderAdapterFactories extension point. These plug-ins delegate to a
Together model the task of providing the label and images for EMF objects.

Samples
The Uml2Ecore example (com.borland.tg.samples.api plug-in) illustrates how to transform a Together UML
2.0 model static structure into an EPackage instance. The generated EPackage contains all packages, classes,
enumerations, datatypes, and other core elements.

Related Concepts

Model Transformation Support

Related Reference

EMF API for Together Profiles

1049

Model Compare/Merge
Provides reference information on Together Model Compare/Merge facility.

Introduction
Together provides a generic Model Compare/Merge facility that works with EMF models. It supports Together
proprietary models (UML 1.4, UML 2.0, and so on) via the EMF API. Model Compare/Merge is designed to be
consistent with the standard Eclipse Compare/Merge functionality and uses similar terms.

The term model below means the whole containment tree rooted in an EMF object (EObject). Together elements
are adapted to EObject by EMF API. This definition implies that in a model, each object but the root has an unique
container. Model Compare/Merge only processes the objects contained in a model and objects that are referenced
by an object contained in the model.

A reference is called internal when both referencing and referenced object are contained in the same model; a
reference is called external when it crosses model boundaries. The external references are references to standard
UML types (such as Integer or String) that are not contained in any user model.

The term resource denotes either a basic EMF resource or a Together project.

Comparing Models
It is possible to compare two or three models. In a two-way compare, case models are called Left and Right. When
Model Compare/Merge is used with a VCS like CVS or StarTeam, the Left model represents a local version and the
Right model represents a remote version. In a three-way compare, an Ancestor model is added. It represents a
common ancestor version when used with VCS.

To activate Model Compare/Merge, first either select elements of the same type on a diagram or in the Model
Navigator view, or select Together projects or files with saved EMF resources in any resource view (such as the
Navigator view). Then choose Compare With Each Other (as Models) in the context menu. Note, that the compare
action is disabled if less than two or more than three elements are selected.

During comparison, Model Compare/Merge traverses the models, going level-by-level down the containment tree.
On each level, objects are matched using ID features that are set on a preference page. A tuple of ID features values
should uniquely identify the object in the list of its container's direct contents. When all objects on all levels of the
models are matched, Model Compare/Merge compares values of attributes and non-containment references.

Exporting Compare Results
The model compare results can be exported to the EMF model (http://www.borland.com/tg/emf/compare/
2006/Change metamodel). The exported model is saved as EMF XMI and has enough information to generate a
difference report (by means of XSL).

Merging Models
After the models are compared they can be merged. Note that changes in the Model Compare editor will not be
applied to the models until you click Save. This behavior implies that if changing some feature value has side effects,
then they cannot be observed until the models are saved. This is why derived features are ignored by default.

The most basic operations used when merging are copying the feature value and copying an object (together with
its containment tree) from one model to its proper place in another model. When an object is copied, Model Compare/
Merge ensures that its container is copied too or has a matching object in another model.

After objects are copied, each non-containment reference is set to an object that matches its original setting or to
null (in case there is no such an object). If an object in the containment tree of the copied object references an object

1050

that is not in the tree and belongs to the same resource as the copied object, the referenced object is copied too,
provided it has no matching object already. It is not possible to copy the referenced object if it is not checked in the
Elements to Copy dialog box.

Copy operations can put models to an invalid state. Model constraint violations (errors and warnings) are listed in
the bottom of the Model Compare editor. Errors prevent models from being saved. For example, it is impossible to
save a Together model when it has external references to another resource.

Related Concepts

Model Transformation Support

Related Procedures

Comparing and Merging Models

1051

Requirements Management
In This Section

Element Traces View
This topic provides information about the Element Traces view. You can use this view to display existing
traces to CaliberRM or RequisitePro requirements.

Trace Synchronizer View
This topic provides information about the Trace Synchronizer view. You can use this view to find and fix
desynchronized traces to CaliberRM or RequisitePro requirements.

1052

Element Traces View
Window Show View Other... Requirements Element Traces

This topic provides information about the Element Traces view. You can use this view to display existing traces to
CaliberRM or RequisitePro requirements.

Columns:

Column Description
Name DIsplays the traced element or requirement name.
Project Displays the requirement project name.

Context menu commands:

Command Description
Open Selects the traced requirement in the CaliberRM or RequisitePro Navigator, depending on the

requirement type.
Remove Removes the trace.
Convert Converts the legacy CaliberRM trace to the current format. The option is available only if a trace

imported from a Together ControlCenter 6.1 project is selected.

Related Concepts

Requirements Management

1053

Trace Synchronizer View
Window Show View Other... Requirements Trace Synchronizer

This topic provides information about the Trace Synchronizer view. You can use this view to find and fix
desynchronized traces to CaliberRM or RequisitePro requirements.

Toolbar buttons and context menu items

Synchronize Traces Opens the Trace Synchronizer dialog box.
Refresh trace synchronization information Refreshes the trace information displayed in the Trace

Synchronizer view.
Save as HTML Opens the Save As dialog box, where you can export the current

content of the Trace Synchronizer view to an HTML file.
Update Trace Discards local changes and updates the selected traces from the

repository.
Restore Trace Discards changes in the repository and restores the requirement

information stored in the model.
Delete Trace Deletes the trace.
Navigate to Trace Source Opens the trace source (requirement) in the CaliberRM or

RequisitePro Navigator depending on the requirement type.
Navigate to Trace Target Opens the trace target (model element) in the appropriate editor.

Columns

Status Displays the status of the trace source.
Trace from Displays the name of the trace source.
Trace from project Displays the name of the source CaliberRM or Together project.
Status Displays the status of the trace target.
Trace to Displays the name of the trace source.
Trace to project Displays the name of the target CaliberRM or Together project.
Status summary Displays the summary information about the current trace status.

Status items

Not Found Information about the object is not found.
Current Information about the object is up to date.
Missed Information about the object is missing.
New The object is new.
Modified The object has been modified.
Outdated The object becomes outdated.

Related Concepts

Requirements Management

1054

Patterns and Templates
Together includes a number of predefined templates that you can apply to your projects. Customize templates using
one of the three template editors. Use the Templates view to see and manage your templates.

Related Reference

Apply Template Wizard
Save As Template Wizard
Templates View
Templates View Context Menus
Template Editors
Template Properties
Syntax and Conditions in Templates
Supported Templates

1055

Patterns and Template GUI Components
This part describes GUI components of the Together interface you use for Together Pattern features.

In This Section
Pattern Explorer
This topic describes the Pattern Explorer view.

Pattern Registry
This topic describes the Pattern Registry window.

1056

Pattern Explorer
Window Show view Other Patterns and Templates Pattern Explorer

The Pattern Explorer enables you to logically organize patterns (using virtual trees, folders and shortcuts), and
manage recognized instances of patterns. You are working with shortcuts in Pattern Explorer, not with the actual
patterns. Because of this, shortcuts to the same pattern may be included in several folders.

Context menu command Description
Delete instance Deletes a pattern instance from the model. When applied to a model folder, deletes

all pattern instances.
Clear invalid instances Deletes invalid instances of a pattern from the model.
Select on diagram Sets highlight to the selected pattern instance in diagram. This command is available

for pattern nodes.
Select in Model Tree Sets highlight to the selected pattern instance in the Model Navigator. This command

is available for pattern nodes.
Add as shortcut to diagram Creates a shortcut to the pattern instance on the current diagram.
Verify pattern Checks validity of the selected pattern.

Related Concepts

Patterns and Templates

Related Reference

Pattern Registry

1057

Pattern Registry
Window Show view Patterns and Templates Pattern Registry

The Pattern Registry defines the virtual hierarchy of patterns. You can create virtual folders and group the patterns
logically to meet your specific requirements. All operations with the contents of the Pattern Registry are performed
in the Pattern Explorer and synchronized with the Pattern Registry.

Pattern Registry shows a tree of folders with shortcuts to patterns. The structure of the pattern registry is a simple
tree with two separated subtrees with common root. These separated subtrees represent folder structures: one is
taken from Eclipse extensions and another from workspace-specific local data. Pattern Registry allows several
shortcuts to the same definition in different folders; therefore, internally, the registry keeps the plain list of definitions
and a tree of folders and shortcuts to definitions.

The context menu of the pattern shortcuts in the Pattern Registry allows you to rename, copy, and delete the selected
pattern. When attempting to delete a shortcut, you are prompted whether the shortcut should be deleted or the
definition and all its shortcuts. In case the shortcut is the last one that refers to the corresponding pattern, the program
warns you that deleting this shortcut will result in the loss of the corresponding pattern definition.

Command Description
New This command is available for the categories. You can choose to create a new nested

category or a new pattern.
Rename Opens the Rename dialog, where you can specify the new name of a category or a

pattern.
Delete Deletes the selected category or pattern. Requires confirmation.
Delete pattern definition This command is available for the patterns. Deletes the pattern definition and all

shortcuts to it from the Registry. Requires confirmation.
Copy This command is available for the patterns. Copies the selected pattern to clipboard.
Cut This command is available for the patterns. Cuts the selected pattern to clipboard.
Paste This command is available for the categories. Pastes a pattern from the clipboard to the

selected category.
Edit pattern definition Opens a pattern definition project of the selected pattern.

Related Concepts

Patterns and Templates

Related Reference

Pattern Explorer

1058

Apply Template Wizard
Together provides a wizard to help you make use of templates. The following context menu commands open the
Apply Template Wizard:

View Element/Member and Context Command
Model Navigator Project. New Class by Template
Package Diagram Package. New Class by Template
Model Navigator or Navigator Class. Apply Template
Model Navigator or Navigator Interface. Apply Template
Model Navigator or Navigator Various elements as applicable. Apply Template
Diagram Editor Class by Template button, Link by Template button.
Package .java. Apply Template

Note: Templates that are out of the scope are not shown (for example, link and class templates are not shown when
invoking the wizard on a package). But templates with the right scope that can't make use of the current
selection are grayed.

Options

Option Description
Templates list The top left area displays the list of templates in Together. Click a template to display its

parameters.
Property name Displays the properties of the selected template.
Value Displays property values.
Description Provides a template description.

Related Reference

Patterns and Templates

1059

Create Pattern from Elements
File Export Modeling Pattern Definition.

Use this wizard to create a pattern from the selected model elements.

Customize page

Item Description
Pattern name Enter the name of the new pattern definition.
Select category Use this field to select the target category for the new

pattern definition.
Show existing patterns Check this option to display the available patterns.
Transformation profile Check this option to display the transformation profile.
Open pattern definition project after pattern is finished If this option is checked, the new profile definition project

opens for editing.

Set Role Names page
Use this page to edit the role names of the elements involved in the pattern definition

Item Description
Element name Displays the name of the element participating in the pattern definition.
Role name Use this column to edit the name of the pattern participant. By default, the role name is the same

as the element name.

Set Default Values page
Use this page to specify the default values for the properties of the roles. Each property has the following set of
parameters:

Parameter Description
Customize value on application If this option is set to true, you can modify the value of this property in the Model

element by pattern wizard to be set on element creation. This property should
be false if Use property on application is false.

Use for recognition Controls whether to use this property on recognition.
Use property on application Controls whether to set this property on creating elements by pattern.
Value If Use for recognition is true, this value is compared to the property of the

element against which the pattern is recognized.

If Use property on application is true, this field defines the default value of
the property.

Related Concepts

Patterns and Templates

Related Procedures

Patterns and Templates

1060

Save As Template Wizard
Accessed from the context menu of an element in the Model Package Explorer, Model Navigator or Package Explorer
views, this wizard lets you save a template from an existing element.

Name The name of the new template. The default value is <blank>.
Project List List of projects for which templates can be created. "Local Templates" contains the templates

included with Together. Templates stored here are stored locally. You can also save templates to
shared directories for use by a team. For more information, see “Using Version Control and Teams
in Together.” For a project to be displayed in the list, it must be template-enabled. (See “Working
with the Templates.”) The default value is Local Templates.

Finish When clicked, generates the basic structure of your template.

Related Procedures

Using Version Control and Teams in Together
Working with the Templates

1061

Templates View
Window Show view Other Patterns and Templates Templates

The Templates view displays currently available templates. These templates can be applied to open projects that
have been template-enabled.

Together is shipped with a number of templates for the supported languages (Java, OMG CORBA IDL and C++).
By default, each language contains a Local Templates node, which includes all the templates predefined and
shipped with Together. They are divided into three categories: Link, Class, and Package. Each category contains
subcategories related to the individual templates it contains.

Button Description
Sort templates Sorts the nodes in the view alphabetically.

Note: New projects will not be displayed in the Templates view until they contain a template.

Related Procedures

Working with the Templates
Editing Templates

Related Reference

Templates View Context Menus

1062

Templates View Context Menus

Project Level
The following context menu options are available at the project level.

New Opens the Save As Template wizard through which you may create a new template of the type
selected.

Properties Opens the Properties dialog for the selected resource.

Class Level
The following context menu options are available at the class level.

New Opens the Save As Template wizard through which you may create a new template of the
type selected.

Create Category... Opens a dialog through which you may create a new template category.
Properties Opens the Properties dialog for the selected resource.

Category Level
The following context menu options are available at the category level.

New Opens the Save As Template wizard through which you may create a new template of the
type selected.

Rename Opens a dialog through which you may rename the selected category.
Delete Opens a confirmation dialog through which you may delete the selected category.
Restore deleted... Allows you to restore a deleted resource with a saved version from your local history. For more

information, refer to the documentation set provided with your IDE. From the menubar,
choose Help Help Contents.

Properties Opens the Properties dialog for the selected resource.

Template Level
The following context menu options are available at the template level.

New Opens the Save As Template wizard through which you may create a new template of the type
selected.

Open Opens the template editor for the selected template. For more information, see “Editing Templates.”
Copy Opens a dialog through which you may save the selected template to another location.
Rename Opens a dialog through which you may rename the template.
Delete Opens a confirmation dialog from which you may delete the selected template.
Properties Opens the Properties dialog for the selected resource.

1063

Related Procedures

Editing Templates

Related Reference

Save As Template Wizard
Preferences

Template Editors
Each type of template has its own template editor in Together. Use the template editor to alter template values.
Double-click on any editor in the Templates view to open the appropriate editor. The tabs on each editor give you
access to different parts of the template's code.

1064

Class Template Editor
Use this editor to make changes in class templates. This editor is displayed when you double-click a class template
in the Templates view.

Overview
This tab, which is used only with the interface option that lets you designate the template for interfaces, includes:

♦ The class template Name.

♦ Description field in which you can enter the description of the template. This text is displayed in the Apply
Template... dialog description area when you select this template. The description of a template usually
describes what the template does and what the parameters (if any) expect and do.

♦ Help Context ID field for linking to a help page (for use with the extension point
org.eclipse.help.contexts) if you want to provide F1 context help for the template.

Variables
Use this tab to specify text in the code that the template will generate or for names that are displayed on the various
tabs.

Columns include:

♦ Name

♦ Label

♦ Type, for example: int, float, java.lang.String
♦ Value

Imports
Use this tab to specify import statements to add to the class created by this template. Double-click an import line to
open the Edit Import dialog.

Attributes
Use this tab to specify the attributes to generate.

Operations
Use this tab to create operations.

Buttons
The Buttons menu options are described in the following table.

1065

Item Description
Add On the Variables, Imports, Attributes, and Operations tabs. Opens a wizard or new dialog to add

new elements. The fields in the wizard correspond to those on the tab.
Edit On the Variables and Imports tabs. Opens a wizard (for Variables) or new dialog (for Imports) to change

elements. The fields in the wizard correspond to those on the tab.
Remove On the Variables and Imports tabs. Removes the selected element. Note: Consider this option

carefully. You will not be prompted before an element is removed.
Delete On the Attributes and Operations tabs. Removes the selected element. Note: Consider this option

carefully. You will not be prompted before an element is removed.
Rename On the Attributes and Operations tabs. Opens a dialog with an editable name field.
Variable On the Attributes and Operations tabs. Opens a popup with className, fieldName,

packageName choices for adding code snippets.

Related Reference

Templates View

1066

Link Template Editor
Use this editor to make changes in link templates. It is displayed when you double-click a link template in the
Templates view.

Related Reference

Templates View

1067

Package Template Editor
The Package Template Editor allows you to modify the structure of package templates. This editor is displayed when
you double-click a package template in the Templates view.

Overview
This tab includes:

Field Description
Name The package template Name.
Description field Description field in which you can enter the description of the template. This text is displayed in

the Apply Template... dialog description area when you select this template. The description
of a template usually describes what the template does and what the parameters (if any) expect
and do.

Help Help Context ID field for linking to a help page (for use with the extension point
org.eclipse.help.contexts) if you want to provide F1 context help for the template.

Variables
Use this tab to specify text in the code that the template will generate or for names that are displayed on the various
tabs.

Columns include:

♦ Name

♦ Label

♦ Type, for example: int, float, java.lang.String
♦ Value

Units
Use this tab to create the individual classes that the package template should generate. In the area below the list,
you can enter the syntax for each class, or enter comments. As you select different classes in the list at top, the area
below displays the syntax for that class. You can also use conditional statements based on the variables you create
on the Variables tab.

Buttons
The Buttons menu options are described in the following table.

Button Description
Add Opens a wizard to add new variables or units. The fields in the wizard correspond to those on the tab.
Remove Removes the variable or unit selected. Consider this option carefully. You will not be prompted before

an element is removed.
Rename Opens a dialog with an editable name field.
Edit Opens the dialog box to change the selected element. The fields in the dialog box correspond to those

on the tab.

1068

Delete Removes the selected element. Consider this option carefully. You will not be prompted before an
element is removed.

Related Reference

Templates View

1069

Template Variable Types

Variable Type Description

String Simple String entry field.

Boolean True or false drop-down list.

Class Enter the fully qualified class name or use the Browse button in this field to use the Class Selector dialog.

ClassArray As the Class type, but supports multiple classes separated by a comma. The Class Selector dialog for
this type supports multiple class selections.

Fieldname String name for entry for an attribute.

Interface Enter the fully qualified interface name or use the Browse button in this field to use the Interface
Selector dialog.

InterfaceArray As the Interface type, but supports multiple interfaces separated by a comma. The Interface Selector
dialog for this type supports multiple interface selections.

Methodname String name for entry of a method.

Packagename String name for entry of a package.

SimpleTypeName The value is a (java.lang.)String instance representing a simple Java type name. For example, "MyApplet".

Type The value is a (org.eclipse.jdt.core..)IType instance representing an existing type/array-of-types from the
workspace.

TypeArray The value is a (org.eclipse.jdt.core..)IType[] instance representing an existing array-of-types from the
workspace.

Typename The value is a (java.lang.)String instance representing a qualified Java type name.

1070

Template Properties
The Properties view can be used alongside the template editors and the Templates view to change the properties
of a template.

Property
This column displays the names of the properties of a selected resource.

Property Value
This column displays the values of the properties of a selected resource. Double-click on a value to edit.

Buttons
The Buttons menu options are described in the following table.

Button Description
Show/Hide Categories This button groups lines under their appropriate categories.
Filter Properties This button determines whether advanced properties are displayed in this view. Basic

properties are always shown.
Restore Default Value If you make changes to a value, this button restores the selected property to its default

value.
Menu Displays some additional commands.
Minimize Minimizes current properties view to the view title. To show the entire view, click the

Restore button.
Maximize Maximizes the current view to the entire window. To restore the view, click the Restore

button.

1071

Syntax and Conditions in Templates

Syntax
Together uses Velocity to generate templates. Velocity is a Java-based template engine. This page describes
commonly used Velocity syntax.

#foreach($ref in arg) statement #end

$ref The first variable reference.
arg Can be a reference to a list (i.e. object array, collection, or map), an array list, or the range

operator.
statement The output when Velocity finds a valid item in the arg list. Output is any valid Velocity Template

Language statement. Rendered each iteration of the loop.
Reference #foreach ($part in $whole)
Array list #foreach ($part in ["Follow", $my, "lead"])
Range operator #foreach ($part in [1..3])

This example of a foreach loop is on the Units tab in the Unit Test package template in Together.

For a thorough syntax list and explanations, visit: http://jakarta.apache.org/velocity/vtl-
reference-guide.html

Note: VTL directives (beginning with "#") are displayed in the snippets area as comments.

Variables

Notation:

$ [!][{][a..z, A..Z][a..z, A..Z, 0..9, -, _][}]

Notation examples:

Normal: $long-Thrower_4 Silent: $!long-Thrower_4 Formal: ${long-Thrower_4}

If /ElseIf /Else Conditionals

Format:

#if([condition]) [output] [#elseif([condition]) [output]]* [#else [output]] #end

Usage:

condition: If Boolean, considered true when its value is true. If not Boolean, considered true when not null. output:
May contain Velocity Template Language.

Examples:

Equivalent Operator: #if($foo == $bar) Greater Than: #if($foo > 34) Less Than: #if($foo < 34) Greater Than or
Equal To: #if($foo >= 34) Less Than or Equal To: #if($foo <= 34) Equals Number: #if($foo == 34) Equals String:
#if($foo == "bar")

1072

Foreach Loop
Reference: #foreach ($part in $whole) Array list: #foreach ($part in ["Follow", $my, "lead"]) Range operator:
#foreach ($part in [1..3])

This example of a foreach loop is on the Units tab in the Unit Test package template in Together.

For a thorough syntax list and explanations, visit: http://jakarta.apache.org/velocity/vtl-
reference-guide.html

Note: VTL directives (beginning with "#") are displayed in the snippets area as comments.

Format:

#foreach($ref in arg) statement #end

Usage:

$ref: The first variable reference. arg: May be a reference to a list (that is, object array, collection, or map), an array
list, or the range operator. statement: The output when Velocity finds a valid item in the arg list. Output is any valid
Velocity Template Language statement. Rendered each iteration of the loop.

Examples:

Reference: #foreach ($part in $whole) Array list: #foreach ($part in ["Follow", $my, "lead"]) Range operator:
#foreach ($part in [1..3])

This example of a foreach loop is on the Units tab in the Unit Test package template in Together.

For a thorough syntax list and explanations, visit: http://jakarta.apache.org/velocity/vtl-
reference-guide.html

Note: VTL directives (beginning with "#") are displayed in the snippets area as comments.

When using the template editor to write the code snippets and syntax for fields, methods and classes, you can write
conditional logic to control what is created when the template is applied.

The typical format for conditional statements is as follows:

#if([${reservedVariable}] | [${variable from Variable Tab}] [operator] [operand]) ...template code to be generated is
inserted here... #end

When you type the $ character as you write a condition, a pop-up window is displayed allowing you to select one of
the current variables, including the reserve variables that apply to this type of template. This variable selected is
inserted into the template snippet at the cursor.

An if condition can be anywhere within the template code; if conditions are granular down to specific lines of code.

Note: Variable names declared on the Variables tab must be preceded by a $ symbol. Otherwise, they are treated
as normal text.

Conditions
When using the template editor to write the code snippets and syntax for fields, methods and classes, you can write
conditional logic to control what is created when the template is applied.

The typical format for conditional statements is as follows:

1073

#if([${reservedVariable}] | [${variable from Variable Tab}] [operator] [operand]) ...template code to be generated is
inserted here... #end

When you type the $ character as you write a condition, a pop-up window is displayed allowing you to select one of
the current variables, including the reserve variables that apply to this type of template. This variable selected is
inserted into the template snippet at the cursor.

An if condition can be anywhere within the template code; if conditions are granular down to specific lines of code.

Note: Variable names declared on the Variables tab must be preceded by a $ symbol. Otherwise, they are treated
as normal text.

1074

Last Validation Results View
Window Show view Other Patterns and Templates Last Validation Results

The Last Validation view displays results of the latest validation of a pattern definition. This view opens automatically
when the validation process reports errors.

Related Procedures

Validating Pattern Definition Projects

1075

Supported Templates
Together includes a collection of predefined templates. You can customize these using the template editors, or create
your own templates and share them with team members.

Predefined GoF patterns supplied with the product are only used in the Java modeling projects.

1076

Link Templates

Miscellaneous

Composition

Aggregation

Association

Aggregations

Aggregation as AbstractCollection

Aggregation as AbstractList

Aggregation as AbstactMap

Aggregation as AbstractSequentialList

Aggregation as AbstractSet

Aggregation as ArrayList

Aggregation as Collection

Aggregation as HashMap

Aggregation as HashSet

Aggregation as Hashtable

Aggregation as LinkedList

Aggregation as List

Aggregation as Map

Aggregation as Set

Aggregation as SortedMap

Aggregation as SortedSet

Aggregation as Stack

Aggregation as TreeMap

Aggregation as TreeSet

Aggregation as Vector

Aggregation as WeakHashMap

Associations

Association as AbstractCollection

Association as AbstractList

Association as AbstactMap

Association as AbstractSequentialList

Association as AbstractSet

Association as ArrayList

Association as Collection

Association as HashMap

Association as HashSet

1077

Association as Hashtable

Association as LinkedList

Association as List

Association as Map

Association as Set

Association as SortedMap

Association as SortedSet

Association as Stack

Association as TreeMap

Association as TreeSet

Association as Vector

Association as WeakHashMap

1078

Class and Package Templates

Class Templates

Standard

Main Method

Parse XML Document

String Representation

Enterprise

Lookup EJBHome

Package Templates

Standard

Class

Interface

Main Class

Bean

Applet

Exception

RemoteObject

Logging

Assertion

Locale Message

Unit Test

J2EE Connector

Connection

ConnectionFactory

ManagedConnectionFactory

J2EE Servlet

ServletFilter

ServletContextListener

ServletContextAttributeListener

HttpServlet

HttpSessionListener

HttpSessionAttributeListener>

J2EE ServletTags

Tag

TagExtraInfo

1079

TagSupport

BodyTag

BodyTagSupport

J2EE JMS

JMS Queue

JMS Topic

1080

J2EE, TagLibs, J2EE JMS Templates

J2EE Templates

App Event Listeners

ServletFilter

ServletContextListener

ServletContextAttributeListener

HttpServlet

HttpSessionListener

HttpSessionAttributeListener

Lookup EJBHome

Connection

ConnectionFactory

ManagedConnectionFactory

TagLibs Templates

Tag

TagExtraInfo

TagSupport

BodyTag

BodyTagSupport

J2EE JMS Templates

JMS Queue

JMS Topic

1081

GoF Templates
Creational

Abstract Factory

Builder

Factory Method

Prototype

Singleton

Behavioral

Command

Chain Of Responsibility

Interpreter

Iterator

Mediator

Memento

Observer

State

Strategy

Template Method

Visitor

Structural

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

1082

GoF Patterns
GoF patterns are predefined. These patterns can be applied and recognized in Java-modeling projects only.
Modification of the GoF patterns is not allowed.

Creational

Abstract Factory

Builder

Factory Method

Prototype

Singleton

Behavioral

Command

Chain Of Responsibility

Interpreter

Iterator

Mediator

Memento

Observer

State

Strategy

Template Method

Visitor

Structural

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

1083

Quality Assurance
In this part you will find reference information about the command line QA tools and their syntax, and API information
that enables you to create audits and metrics of your own.

In This Section
Model Audits and Metrics Descriptions
Provides descriptions for predefined audits and metrics.

Audit and Metric Sample Project
Provides a sample Audit and Metric project, including its structure, configurations, and considerations for
running it.

1084

Model Audits and Metrics Descriptions
Use QA Model Preferences (Window Preferences Modeling QA Model) for viewing and editing model
audits and metrics. Together includes the following predefined audits and metrics:

Model Audits

Name Short Description Long description

AAFC Avoid (Weak) Aggregation, Favor Composition
(Strong Aggregation)

In general, aggregation is not well defined and leads
to confusion in modeling. Specifically, it is the hollow
diamond weak aggregation that is to be discouraged,
in preference to the filled-in diamond strong
aggregation element commonly called composition.
Fowler, 68

AIM Always Indicate Multiplicity In many modeling environments, it is possible to
create an association without specifying multiplicity on
the association ends. This is advantageous during the
beginning stages of modeling, but may confuse or
complicate generation facilities. Ambler #88 Frankel,
186 Frankel, 178

AIMAE Always Indicate Multiplicity In many modeling environments, it is possible to
create an association without specifying multiplicity on
the association ends. This is advantageous during the
beginning stages of modeling, but may confuse or
complicate generation facilities. Ambler #88 Frankel,
186 Frankel, 178

AIN Always Indicate Navigability A lack of navigability in UML indicates either
bidirectional, or non-specified navigability. This is fine
for human interpretation with a common
understanding, but may confuse or complicate
generation facilities. Frankel, 168

AMIMM Avoid Multiplicities Involving Minimums and
Maximums

Fixed range multiplicities are not recommended as
they are less flexible than 1..* or 0..* and represent
commonly used collections as found in most object-
oriented languages today. Ambler #102

AMIMMAE Avoid Multiplicities Involving Minimums and
Maximums

Fixed range multiplicities are not recommended as
they are less flexible than 1..* or 0..* and represent
commonly used collections as found in most object-
oriented languages today. Ambler #102

AMM Avoid '*' Multiplicity A multiplicity of * is ambiguous and should be avoided
as it is not clear whether 0..* or 1..* was intended.
Ambler #89

AMMAE Avoid '*' Multiplicity A multiplicity of * is ambiguous and should be avoided
as it is not clear whether 0..* or 1..* was intended.
Ambler #89

ANA Always Name Associations Generators will require names on all associations and
association ends. Those names provided by the
modeler are likely to be more readable/useful than
those generated. Frankel, 186

IRNOAE Indicate Role Name on Association Ends Generators will require names on all associations and
association ends. Those names provided by the
modeler are likely to be more readable/useful than
those generated. Frankel, 186 Ambler #98

1085

IRNOAEAE Indicate Role Name on Association Ends Generators will require names on all associations and
association ends. Those names provided by the
modeler are likely to be more readable/useful than
those generated. Frankel, 186 Ambler #98

IRNORA Indicate Role Names on Recursive Associations -

AUD Avoid Using Dependencies Manually added semantic dependencies in UML
diagrams are problematic to generators and cannot be
enforced due to insufficient meaning. Dependencies
do not exist in MOF and are to be discouraged in the
UML. Frankel, 159

NPGOIT Never Place Guard on Internal Transition A guard placed on an initial transition that evaluates to
false renders the diagram useless and should be
avoided. Ambler #186

UPNAEMS Use Plural Names on Association Ends with
Multiplicity > 1

A plural name on association ends that have
multiplicities > 1 allow for improved model readability.
Fowler, 39

UPNAEMAE Use Plural Names on Association Ends with
Multiplicity > 1

A plural name on association ends that have
multiplicities > 1 allow for improved model readability.
Fowler, 39

UPNAEMC Use Plural Names on Association Ends with
Multiplicity > 1

A plural name on association ends that have
multiplicities > 1 allow for improved model readability.
Fowler, 39

AGBUC Avoid Generalization Between Use Cases The use of generalization between use cases is rare
and not commonly understood. This relationship
should be avoided in favor of <<include>> and
<<extend>>. Ambler #45

AUIE Avoid <<uses>>, <<includes>>, and <<extends>> These stereotypes are deprecated and should not be
used. Ambler #46

AUIEAE Avoid <<uses>>, <<includes>>, and <<extends>> These stereotypes are deprecated and should not be
used.
Ambler #46

AAC Avoid Association Classes Association classes can be decomposed into a
separate class that associates two others. Association
classes are not supported by MOF and may confuse
some generators. Some generators may support
them, but will likely decompose them anyway. Frankel,
159

ACD Abstract Class Declaration If a class marked abstract does not provide any
abstract methods, or if a class that is marked as
abstract contains one or more public constructors, this
audit will be flagged.

ONAMAM Overriding Non-Abstract Method with Abstract
Method

A child class should not override with an abstract
method a non-abstract method found in a parent class.

ASTP Always Specify Type on Parameters Many UML modeling tools default to a primitive type
assignment. Others may leave a <<null>> in place,
which may prove problematic for generators. It is
therefore recommended that type information be
provided for all attributes and parameters. Frankel,
185

ASTA Always Specify Type on Attributes Many UML modeling tools default to a primitive type
assignment. Others may leave a <<null>> in place,
which may prove problematic for generators. It is
therefore recommended that type information be

1086

provided for all attributes and parameters. Frankel,
185

HIA Hiding Inherited Attribute A child class should not declare an attribute of the
same name and type as is found in its parent.

HISM Hiding Inherited Static Method Inherited static methods should not be hidden by
same-named methods in child classes.

SHSA Subclasses Have the Same Attribute If two or more direct subclasses of a class or interface
define a field of the same signature, a refactoring may
be in order to pull up the field. These cases are
identified by this audit.

SHSO Subclasses Have the Same Operation If two or more direct subclasses of a class or interface
define a field of the same signature, a refactoring may
be in order to pull up the field. These cases are
identified by this audit.

CSODOI Components Should only Depend on Interfaces Many UML drawing tools allow for dependencies to be
drawn from one component to another. This is
discouraged in favor of indicating only dependency
relationships between the interfaces of a component.
Ambler #226

AESHD All elements should have descriptions This audit checks not all elements but only classifiers
and states. Users can adopt it to their own needs if
necessary

SSBTR States should belong to Regions In valid models, all states should be owned by regions
of StateMachine or other states.

ATEDMHG All Transitions Exiting a Decision Must Have Guards To ensure all cases are covered, each outgoing
transition should have a guard indicated. Ambler #195

ABHS Avoid "Black Hole" States Other than End states, no state should have an
incoming transition without an outgoing transition.
Ambler #169

FSHOOET Forks Should Have Only One Entry Transition Some UML tools allow for the drawing of multiple
incoming transitions to a fork. A fork should only have
a single incoming transition and more than one exiting
transition. Ambler #202

FSHMTOET Forks Should Have More Then One Exiting Transition Some UML tools allow for the drawing of multiple
incoming transitions to a fork. A fork should only have
a single incoming transition and more than one exiting
transition. Ambler #202

JSHOOET Joins Should Have Only One Exit Transition Some UML tools allow for the drawing of multiple
outgoing transitions from a join. A join should only
have a single outgoing transition and more than one
incoming transition. Ambler #203

JSHMTOET Joins Should Have More Then One Entry Transition Some UML tools allow for the drawing of multiple
outgoing transitions from a join. A join should only
have a single outgoing transition and more than one
incoming transition. Ambler #203

AMS Avoid "Miracle" States Other than Start states, no state should have an
outgoing transition without an incoming transition.
Ambler #170

ICKJ Identifier Conflicts with Keyword Java language keywords should not be used as a
model elements names.

1087

AUA Avoid Unassociated Actors An actor with no association to a use case provides no
value to a diagram and should therefore be avoided.
Ambler #35

CSI Class Should be Interface An abstract class that contains only abstract methods
and final static fields should be declared as an
interface.

CWSCJ Conflict With System Class Classes should be given names that will not cause
potential conflicts with standard Java API classes.

BSMSNHCP A state machine as the method for a behavioral
feature cannot have entry/exit connection points

-

CPSBTSM Pseudostates of kind entryPoint can only be defined
in the topmost regions of a StateMachine

-

SSSHSM If state is submachineState, submachine should be
defined for it

-

SSSNHR A state is not allowed to have both a submachine and
regions

-

FSMNHGT A fork segment must not have guards or triggers -

JSMNHGT A join segment must not have guards or triggers -

FSMTS A fork segment must always target a state -

JSMOFS A join segment must always originate from a state -

TFPMNHT Transitions outgoing pseudostates may not have a
trigger

-

OSSCHCPR Only submachine states can have connection point
references

-

PIPSBPT Provided Interface of a Port Should Be the Port Type
or one of the interfaces realized by the port type

-

IMVMBP The visibility of all features owned by an interface
must be public

-

POEVMBPOP If an element that is owned by a package has visibility,
it is public or private

-

SMHFD Slot must have defined feature -

SFDMBU One structural feature (including the same feature
inherited from multiple classifiers) is the defining
feature of at most

-

DFSBSFOC The Defining Feature of each slot Should Be a
Structural Feature (directly or inherited) Of a Classifier
of the instance specification

-

ACHATUCC An actor can only have associations to use cases,
components and classes; furthermore, these
associations must be binary

Only binary associations between Actor and Use
Case, Class or Component are valid from the point of
UML.

UCNHATSSU UseCases cannot have Associations to UseCases
specifying the same subject

-

UCNIUTII A use case cannot include use cases that directly or
indirectly include it

-

ACIIC Avoid cyclic inheritance in classifiers Cyclic inheritance is nonsense and reflects an
incorrectness of used model.

1088

UCNEUTEI A use case cannot extend use cases that directly or
indirectly extend it

-

AQA Avoid qualified associations Qualified associations are not popular among most
UML modelers and can be decomposed to a class
representing the association with an attribute
representing the qualifier. Frankel, 159

AQAAE Avoid qualified associations Qualified associations are not popular among most
UML modelers and can be decomposed to a class
representing the association with an attribute
representing the qualifier. Frankel, 159

CORTDNMOT <<Create>> Operation Return Type Does Not Match
Owner's Type

For operation with stereotype <<create>>, return type
should be either an operation's owning classifier or not
specified.

IAWNPV Interface Association With Not Public Visibility -

ROFSHIV Read-Only Field Should Have Init Value -

AMIU Avoid Multiple Inheritance Usage Multiple inheritance is not supported in some OO
languages (like Java). Aggregation or Implementation
links could compensate this limitation.

PTSOC Primitive Type Should be OCL-Compatible This audit contains a list of primitive types supported
by OCL. All the rest of primitive types should not be
used together with OCL constraints referencing them.

AMRA Avoid Modeling Return Arrows To reduce clutter on diagrams, the explicit modeling of
return arrows on messages is discouraged.

AMOOD Avoid Modeling Of Object Destruction To reduce clutter on diagrams, the explicit modeling of
object destruction is discouraged. This is particularly
the case in languages such as Java where the actual
destruction of an object is up to the virtual machine.
Ambler #131

ICKC Identifier Conflicts with keyword C++ language keywords should not be used as a
model elements names.

ICIC Identifier Contains Incorrect Character These characters are not a valid part of an identifier
for most of the programming languages.

Model Metrics

Name Short Description

NOOA Number Of Owned Attributes

NOOO Number Of Owned Operations

NOOPO Number Of Owned Public Operations

NLOC Nesting Level Of Class

NOA Number Of Ancestors

NODA Number Of Direct Ancestors

NOIO Number Of Inherited Operations

NOIA Number Of Inherited Attributes

NOOAS Number Of Outgoing Associations

1089

NOCDO Number Of Classes this one Depends On

NOOPT Number Of Operation Parameter Types

NOCIP Number Of Classes In Package

NOCIPR Number Of Classes In Package Recursively

NOOICOP Number Of Operations In Classes Of Package

NOAC Number Of Abstract Classes In the Package

AR Abstractness Ratio

NLOP Nesting Level Of Package

NOEPUC Number Of the Extension Point of this Use Case

NOIUC Number Of Included Use Cases

NOEUC Number Of Extended Use Cases

NOSISM Number Of States In State Machine

NOOT Number Of Outgoing Transitions

NOCABAC Number Of Classes Associated by Association Class

Related Procedures

Viewing and Finding QA Descriptions
Using OCL in Model Audits and Metrics

Related Reference

Quality Assurance
QA Model

1090

Audit and Metric Sample Project
This topic provides a sample Audit and Metric project, including its structure, configurations, and considerations for
running it.

Project structure

Item Description
sample.properties Auto-generated file that contains a short sample description.
Plugin.xml Class declaration of the plug-in used by the QA extension of JUnit

test framework.
List of dependencies from
required plugins
com.borland.sapient.core Contains API for writing source

code audits and metrics.
com.borland.sapient.audit Required for writing audits to

avoid errors during execution.
com.borland.sapient.metric Required for writing metrics to

avoid errors during execution.
com.borland.sapient.test Contains QA extension of JUnit

test framework required for writing
unit tests.

org.eclipse.core.runtime Required for UserPlugin, because
it extends
org.eclipse.core.runtime.Plugin.

Extension point
com.borland.sapient.core.plugins Shows that the plug-in

contains extensions for QA
framework.

sapient.xml Describes extensions for QA framework.
sapient.xsd XSD for sapient.xml.
sapient.properties Resources file for sapient.xml.
cases folder Contains test cases for unit test in the sample.
pre_build.xml ANT file with jar task that creates cases.jar from files located in the

cases folder. You should run “Ant Build” using this file every time
you change the contents of the cases folder.

com.borland.sapient.examples.audit
package

UserNC A class that represents an
example of a user audit.

UserAuditMessages.properties Contains messages from the
UserNC audit.

com.borland.sapient.examples.metric
package

UserNOO class that represents an example of a user metric.

com.borland.sapient.examples.audit.test
package

UserAuditTestSuite A class that
represents an
example of using QA
extension of JUnit
test framework.

UserPlugin (extends
org.eclipse.core.runtime.Plugin)

A class required for
initializing QA
extension of JUnit
test framework.

1091

docs/java folder Contains HTML descriptions for audits and metrics.

sapient.xml
sapient.xml contains description of audits and metrics provided by this plug-in. Information in this file is used for
loading audits and metrics as well as for specifying additional parameters thus; user audits and metrics are included
into the general list of existing audits and metrics. sapient.xml is localized according to the rules in Eclipse (attributes
with the name name are usually localized). Localized resources should be located in the sapient.properties file. The
sapient.xml file structure is described with sapient.xsd.

The following are some explanations of the peculiarities that are not described in the schema.

description element An optional auxiliary element.
library attribute of the deployment
element

Specifies a library (jar) that contains audit and metric classes.

category attribute of the inspector
element

Must be set to audit to describe audits and to metric to describe
metrics.

category element Corresponds to the displayed node in the tree of audits and metrics.
analyzer element Describes an audit or metric.

Attribute Description
id An abbreviation of the audit or metric name that

is used to open the description HTML file. The id
must match the file name.

implementation Correspond to a full audit or metric class name.
parameter element Describes the audit or metric parameter. There is a set of standard

parameters that can be applied to all audits or metrics. All parameters
are available in the interface except the language parameter.

Standard id attribute values of the
parameter element for metrics

Value Description
Aggregation Method to calculate a metric for internal

objects.
PackageUpperLimit Upper limit for a package (for Java).
PackageLowerLimit Lower limit for a package (for Java).
NamespaceUpperLimit Upper limit for namespace (except Java).
NamespaceLowerLimit Lower limit for namespace (except Java).
ClassUpperLimit Upper limits for a class.
ClassLowerLimit Lower limits for a class.

type attribute values of the parameter
element

Value Description
boolean value attribute can be true or false.
integer value attribute can be any integer.
string value attribute can be any string.
list A composite parameter composed of subparameters. All

subparameters must be of the same type. The structure
of the list can be changed via UI. The value of the list
parameter is the set of values specified in the list.

enum A composite parameter composed of subparameters. All
subparameters must be of the same type. The structure
of the list can be changed via UI. The value of the enum
parameter is one of the values specified in the list.

1092

Using API for creating your Audits and Metrics
Together is shipped with a modified API to simplify the creation of audits, metrics, and audit test cases.

Note: A previous method of creating audits can be used as well.

When using the new API, a class should be inherited from com.borland.sapient.core.audit.AuditRule.

To create an audit, redefine necessary methods of the base class using the API and write a code that performs
analysis and displays messages.

To create TestSuite for the JUnit test, extend the AuditTestSuite class, which is documented in the Test API
Overview.

Metric creation differs in the base class that can be one of the following:

♦ com.borland.sapient.core.metric.ClassMetric

♦ com.borland.sapient.core.metric.MethodMetric

♦ com.borland.sapient.core.metric.PackageMetric

♦ com.borland.sapient.core.metric.ProjectMetric

Running the Sample
To see how a custom audit and metric is added to the list of audits and metrics in Together, create an Eclipse
Application launch configuration to run the Audit and Metric Sample Project. The simplest way to create this launch
configuration is to right-click the Audit and Metric Sample project node in the Navigator and select Run As
Eclipse Application.

Note: After you create a launch configuration, you can run it from the drop-down menus of the Run or Debug toolbar
buttons.

Borland recommends you add the following values to your launch configuration in the VM arguments field of the
Arguments tab: -Xms128M -Xmx1024M -XX:MaxPermSize=256M.

To run the unit test included in the sample, create a JUnit Plug-in Test launch configuration. The simplest way to
create this launch configuration is to right-click the Audit and Metric Sample project node in the Navigator and
select Run As JUnit Plug-in Test. Edit your launch configuration to choose Run an application [No
Application] – Headless Mode on the Main tab.

1093

Project Documentation
In This Section

Documentation Generation
This section contains reference information about command line utilities.

Documentation Template Designer
This part contains information about the Documentation Designer tool, structure and controls of a
documentation template.

1094

Documentation Generation
This section contains reference information about command line utilities.

In This Section
Gendoc Utility Syntax
Syntax reference of gendoc utility that enables automated generation of the project documentation by
template, with the output format of your choice.

Genhtml Utility Syntax
Syntax reference of genhtml utility that enables automated generation of the project documentation in
HTML format.

1095

Gendoc Utility Syntax
The following is a syntax for the gendoc.cmd command:

gendoc.cmd [project filename [package name]] [options]
where:

Parameter Description
[project filename] Path to the project you want to export to documentation. Note that the <-sourcepath> and

<-classpath> options are ignored, as are package names.
[package name] Specifies package to export to documentation.
[options] See the list of available options below.

Option Description
–help Displays command line options
–d <directory> Specifies the destination directory for output files
–data Locates the project's workspace when it differs from the default workspace
–template Specifies the name of the default template or path to the template file
–format Specifies the documentation format: HTML, TXT, RTF, PDF or XSL-FO
–nodiagrams Specifies that diagram pictures are not created
–hyperlinks Includes the contents of hyperlinked files into documentation
–audits Includes the contents of the audits results into documentation
–browser Launches HTML browser

Related Concepts

Project Documentation

Related Procedures

Generating Project Documentation from Command Line

1096

Genhtml Utility Syntax
The following is a syntax for genhtml.cmd command:

genhtml.cmd [project name [package name]] [options]
where:

[project filename] Path to the project you want to export to documentation. Note that the <-sourcepath> and
<-classpath> options are ignored, as are package names.

[package name] Specifies packages to export to HTML documentation.
[options] See the list of available options below.

Option Description
–overview <file> Reads overview documentation from HTML file
–public Shows only public classes and members
–protected Shows protected/public classes and members (default)
–package Shows package/protected/public classes and members
–private Shows all classes and members
–help Displays command line options
–d <directory> Specifies the destination directory for output files
–data Locates the project's workspace when it differs from the default workspace
–use Creates class and package usage pages
–version Includes @version paragraphs
–author Includes @author paragraphs
–splitindex Splits index into one file per letter
–windowtitle <text> Specifies the browser window title for the documentation
–doctitle <html code> Includes title for the package index (first) page
–header <html code> Includes header text for each page
–footer <html code> Includes footer text for each page
–bottom <html code> Includes bottom text for each page
–nodeprecated Does not include @deprecated information
–nodeprecatedlist Does not generate deprecated list
–notree Does not generate class hierarchy
–noindex Does not generate index
–nohelp Does not generate help link
–nonavbar Does not generate navigation bar
–recurse Creates output for packages specified in [packagenames] and their subpackages
–javadoc Creates the same output as javadoc.exe produces
–audits Includes audits results in the generated documentation
–browser Launches HTML browser
–nodiagrams Does not create diagrams' pictures
–nonavtree Does not generate navigation tree

Related Concepts

Project Documentation

Related Procedures

Generating Project Documentation from Command Line

1097

Documentation Template Designer
This part contains information about the Documentation Designer tool, structure and controls of documentation
templates. You can also find reference information about the variables, functions and OCL expressions used in
custom templates.

In This Section
Area Properties
Use this dialog box to view or edit area properties of a static section, header or footer.

Call to Stock Section Properties
Use this dialog to view or edit properties of a call to stock section.

Call to Template Properties
Use this dialog to view or edit properties of a call to template section.

Control Properties
This dialog enables you to define properties of the various template controls.

DG functions in Formulae Expressions
This section gives a brief description of the major legacy functions used in the doc generation module.

DG Variables
DG variables are special variables that are available to DocGen at runtime when it is producing a report.
DG variables include items such as current element, the date and time, and template parameters. This topic
contains the list of internal variables, their locations and accessors.

Documentation Template Designer
Documentation Template designer is a tool that helps you create custom documentation templates. This
section shows the details of the Template Designer toolbar and menu commands.

Documentation Template Properties
Use this dialog box to view and modify the properties of a documentation template.

Element Iterator Properties
Use this dialog box to access properties of the element iterators.

Frameset Template Properties
Use this dialog box to view and modify the properties of a documentation template.

Folder Section Properties
Use this dialog box to access properties of the folder sections.

OCL Functions in formulae expressions
This section contains the list of functions that can be used in OCL expressions. The table provides
information about the returned type, context and parameter type of each function.

Property Iterator Properties
Use this dialog box to access properties of the property iterators.

Static Section Properties
Use this dialog box to access properties of the static sections.

1098

Area Properties
Template Designer Static section, header or footer Details pane context menu Area Properties

Use this dialog box to view or edit area properties of a static section, header or footer.

Settings tab
Contains check boxes for page settings and for suppressing formatting.

Hypertext Target tab
Any generated output that contains an anchor or bookmark can be a link target. Use this tab to insert anchors at the
“main documentation” of model elements.

Option/Button Description
Expression for Target Bookmark Selector Inserts a bookmark into a file used as File Link target.

Result of evaluating this expression should match the
result of Bookmark Name Expression set for File Link
reference. Click the Edit Expression button to create the
expression in OCL or legacy notation.

Start of the current element’s specific documentation Identifies the output of this section as the “main
documentation” for the current element. When DocGen
processes the section, it inserts a hypertext anchor or
bookmark into the output, automatically generating its
name. DocGen recognizes this section as the element’s
main documentation.

Expression for Documentation Subject Selector This option should be used in conjunction with Start of the
current element’s specific documentation option. It marks
the location of the current element's specific
documentation with the appropriate Documentation
Subject Selector. Result of evaluating this expression
should match the Expression for Documentation Subject
Selector set for link reference. Click the Edit Expression
button to create the expression in OCL or legacy notation.

Other tab
Use this tab for associating formatting styles with an area, setting style name expressions, and using a control
delimiter.

Option/Button Description
Formatting style Select the desired formatting style from the list of available styles.
Reset all controls in the area with this style Applies the selected formatting style to all controls in the area. The

individual style of each control will be suppressed.
Style Name Expression Enter the style name expression in the text field.
Control Delimiter View or edit control delimiter options.

Default If this option is checked, the default delimiter is used, and
the font settings fields are disabled.

1099

Related Procedures

Setting Area Properties

1100

Call to Stock Section Properties
Template Designer Call to Stock Section context menu Properties

Use this dialog to view or edit properties of a call to stock section.

Call To tab
This tab lists the available stock sections and highlights the name of the stock section that is actually called.

Other tab
Use this tab to define enable condition and template parameters.

Option/Button Description
Left indent (mm) Specify indentation.
Parameter Expression Lets you specify string parameter of the stock section call. Within stock section, this

parameter can be retrieved using getDGVariable('stockParam'). Click the Edit
Expression button to create an expression in OCL or legacy notation.

Enable condition An enable condition for turning this section on or off. Use the Expression editor to specify
enable condition using the OCL or legacy notation.

Disabled Check this option to skip the section.

Related Concepts

Enable Conditions

Related Procedures

Creating Stock Sections

1101

Call to Template Properties
Template Designer Call to Template section context menu Properties

Use this dialog to view or edit properties of a call to template section.

General tab

Option/Button Description
Template Assigns a template that is invoked by the Call to Template section. Click the Browse button to

choose the actual template to be called.
Output Settings Gives a choice of where the output for the called template goes.

Separate file This is important for generating multiframe HTML documentation consisting
of separate HTML documents that are extensively linked together. If this
option is selected, the following fields are displayed:

Output Filename
Expression

Enter the name of the document. This
expression should not include the file path. If
this field is blank, the generated document is
named according to the name of the called
template. Click the Edit Expression button to
create the expression in OCL or legacy
notation.

Example:
context uml::kernel::NamedElement
name.concat('.Dia')

Output Directory
Expression

Enter the path to the destination directory of
the generated document. If the expression
contains directories that do not yet exist, they
will be created when the template is
processed. Click the Edit Expression button
to create the expression in OCL or legacy
notation.

This path is always relative. Define it
according to the following conventions:

1. If the calling template is a frameset
template, the path is relative to the destination
directory for the entire documentation.

2. If the calling template is a document
template, the path is relative to the location of
the document that is generated by the calling
template.

3. The right slash character (/) is the name-
separator for the path.

Output Image
Subdirectory
Expression

Enter the path to the directory for the images
files of the generated document. Click the Edit
Expression button to create the expression in
OCL or legacy notation.

Example:

1102

context OclAny
'../doc-images'

Do not create file with
empty output

Check this option to skip empty files.

Common stream The called template behaves like a stock section. If this option is selected,
the following field is available:

Left indent (mm) The called template provides output to the same file
as the calling template, and you can only specify
indentation if required.

Parameters tab
A calling template can pass additional information to the called template through template parameters. The
parameter value can be obtained in a template body using the String getParam(String paramName)
function.

Parameter Enter parameter name.
Expression Displays the parameter expression. Click the Edit Expression button to create the expression in

OCL or legacy notation.
Set Adds parameter to the list. This button is only enabled when the Parameter field is not empty.
Delete Removes the selected parameter from the list. This button is only enabled when a parameter is

selected in the list.

Other tab
Use this tab to define enable condition.

Item Description
Enable condition An enable condition for turning this section on or off. Use the Expression editor to specify enable

condition using the OCL or legacy notation.
Disabled Check this option to skip the section.

Related Concepts

Enable Conditions

1103

Control Properties
Template Designer Section's details pane Control context menu Properties

This dialog enables you to define properties of the various template controls. Composition of the tabs depends on
the selected control.

Label Control Properties

Tab Description
Label tab Use this tab to specify the label text.
Font tab Use this tab to define family, size, style and alignment.
Color tab Use this tab to define foreground and background color.
Border tab Use this tab to define foreground and background color, and line styles of the borders.
Hyperlinks to Elements tab Use this tab to create link references.

Option/Button Description
Type Click radio button to select the hyperlink type.
Link Settings Fields in this section depend on the selected link type.
Add Hyperlink2 Creates a compound hyperlink for a single control. Adds a

Hyperlinks to Elements 2 tab.
Delete Hyperlink2 Deletes the second hyperlink from the current control and

deletes its tab from the Properties. This button is displayed if
the second hyperlink exists.

Other tab Formatting Style Select a formatting style from the list.
Render embedded HTML tags If this option is checked, HTML tags

encountered in the text are recognized and
visualized appropriately.

Render embedded Javadoc tags If this option is checked, Javadoc references in
the {@link} tags are converted into hypertext
links.

Image Control Properties
For the descriptions of the Border and Hyperlinks to Elements tabs, refer to the Label Control Properties section.

Option / Button Description
Image tab Choose an image type from the drop-down list. The other controls of this tab depend on the

selected image type.

Static (URL) URL: Enter the fully qualified path in the URL
field, or click the Browse button and navigate to
the image. Note that GenDoc functions/variables
cannot be used in expressions for Static (URL).

Static (Resource) Image Resource Expression: Enter the
expression that describes the relative path to the
resource. This option is deprecated. Note that
GenDoc functions/variables cannot be used in
expressions for Static (Resource).

Diagram Use this option to output the diagram image. Note
that Documentation Generator, while processing
the section, will create an image only if the

1104

current model element represents a model
diagram.

Element's Small Icon / Element's Large Icon If one of these options is selected, the respective
element icon is displayed in the generated
documentation.

Panel Control Properties
For the descriptions of the Border, Color and Other tabs, refer to the Label Control Properties section.

Option / Button Description
Fill panel with the output of stock section Select the stock section, which will produce its output to the panel.
Parameter Expression Specify the parameter for stock section call. You can query the

specified parameter using the getDGVariable('stockParam')
function.

Passed Model Element Expression Use this field to define an element that will be used as a root element
for the stock section called from this panel

Formula Control Properties
For the descriptions of the Border, Color, Hyperlinks to Elements and Other tabs, refer to the Label Control
Properties section.

Data Control Properties
For the descriptions of the Border, Color, Hyperlinks to Elements and Other tabs, refer to the Label Control
Properties section.

Option / Button Description
Source tab Data Source: Select data source from the drop-down list.

Include Text Control Properties
For the descriptions of the Border, Color, and Font tabs, refer to the Label Control Properties section.

Option / Button Description
Text File URL Expression Specify the relative path to the file that contains the desired text.

Related Concepts

Documentation Template Controls

Related Procedures

Creating Controls

1105

DG functions in Formulae Expressions
This section gives a brief description of the major legacy functions used in the doc generation module.

getDGVariable
String getDGVariable(String variableName)
Returns the specified DG variable of String type.

Parameter: name of the variable

Returns: value of the variable or an empty string if the variable is not defined in the given place

getDGRwiElement
RwiElement getDGRwiElement(String variableName)
Returns the specified DG variable of RwiElement type.

Parameter: name of the variable

Returns: value of the variable or null , if the variable is not provided in the given place

getDGRwiProperty
RwiElement getDGRwiProperty(String variableName)
Returns RwiProperty type DG variable with the specified name.

Parameter: name of the variable

Returns: value of the variable or null if this variable is not in place

getDGOption
String getDGOption(String optionName)
Returns the specified DG option.

Parameter: name of the option

Returns: value of the option or empty string if the option is not defined

Features:

The option can be specified for an object of Report Generator (descendant of
the ..gendoc.docgenerator.Generic.GnrReportGenerator class, for example:
class ..gendoc.docgenerator.txt.TXTReportGenerator) using the method: addReportOption
(String optionName, String optionValue)
Default values for some options can be defined in the template file. This definition persists even though the Template
Designer subsequently modifies the template. However, the addReportOption method overwrites the options
values.

1106

Example:

default values for the options inclSubpackages", "inclDoc", "DTLAdapter"
DEFAULT_OPTIONS=
{inclSubpackages='yes';inclDoc='yes';DTLAdapter='com.togethersoft.modules.doorslink
.DTLAdapter'}

getParam
String getParam(String paramName)
Returns the value of the specified template parameter.

Parameter: parameter name

Warning:

The requested parameter should be declared in the Template Parameters tab of Template Properties. If the
parameter declaration is not defined, calls to this function will cause an error message and stop the generator.

Since: Together 5

invokeForName
String invokeForName(String className, String methodName)
String invokeForName(String className, String methodName, String param1)
String invokeForName(String className, String methodName, String param1, String
param2)
Invokes specified method of the user-provided class.

Parameters:

♦ className: Fully qualified name of the user-provided class. This class should not be abstract. The
Documentation Generator creates an instance of the className class and calls the methodName method
with this instance. Note that this instance object is created for each entry of invokeForNamecall within each
particular expression of the template where this function is used. However, the object is created only during
the first call from such an entry and will be used for the next calls unless the className parameter is changed.

♦ methodName: name of the method in the class to be executed. The method should have the following
signature: String methodName (..gendoc.api.GenDocContext)

Parameter is an instance of the class ..gendoc.api.GenDocContext that provides the following methods:

♦ RwiReference getRwiReference: Returns RwiReference if the current DG iteration element is an RWI
reference within a diagram. Otherwise, the method returns null.

♦ RwiElement getRwiElement: Always returns the RwiElement. If the current DG iteration element is an
RWI reference, the returned element is rwiReference.getElement(). Otherwise, returned element is the current
DG iteration RWI element.

♦ String getParameter1(): Returns the value of the first optional parameter passed to the invokeForName
function, or null if the parameter is omitted.

♦ String getParameter2(): Returns the value of the second optional parameter passed to the
invokeForName function, or null if the parameter is omitted.

Returns: Value calculated by the user-provided methodName method.

1107

getContainingDiagram
RwiDiagram getContainingDiagram()
Returns the RWI diagram containing the primary reference to the current element.

Example: rwiElement-> getContainingDiagram()
Returns: RWI diagram containing the primary reference to the current element.

isDiagram
boolean isDiagram()
Tests if the current RWI element is a diagram. Call this function to test any RWI element accessible in your
expression.

Examples:
rwiElement->isDiagram()
getDGRWIElement("diagramMapElement")->isDiagram()
This function may be useful when you design a Multi-Frame documentation and need to program some special
behavior when clicking hyperlinks. For example, if a hyperlink references to a diagram you may want when clicking
it to reload one frame with a document describing the diagram and another frame with the graphic chart of this
diagram. Whereas, if the hyperlink references to any other model element only document frame should be reloaded.
See also: Creating compound Hyper-References.

Returns: True if the element is a diagram; False otherwise.

isImported
boolean isImported()
Checks if the current element in the diagram is presented by a shortcut.

Returns: True if the element is a shortcut; False if the element is not a shortcut.

getSubproperty
String getSubproperty(RwiProperty rwiProperty, String subpropertyName)
The function returns the value of the subpropertyName subproperty contained in the rwiProperty_ RWI
property. See the description of the curPropertyInstance DG variable for an example of using this function.
A possible call is: rwiProperty->getSubproperty(subpropertyName)
Parameters:

rwiProperty The element property

subpropertyName The name of its subproperty

Returns: Value of the specified subproperty

hasSubproperty
String hasSubproperty(RwiProperty rwiProperty, String subpropertyName)
Checks if the rwiProperty_ RWI property contains the subpropertyName subproperty.

1108

A possible call is: rwiProperty->hasSubproperty(subpropertyName)
Parameters:

♦ rwiProperty The element property

♦ subpropertyName The name of subproperty to be checked

Returns: True if the property has the specified subproperty; False otherwise.

getJDRefType
String getJDRefType(String jdref)
Returns type of the JavaDoc Reference specified as the parameter.

Returns: "element" if jdref references a model element (that is, if it has the form package.class#member label);

"url" if jdref references a URL (that is, if it has the form label).

"text" if jdref has the form "string"

Since: Together 5

getJDRefDisplayName
String getJDRefDisplayName(String jdref)
Returns a text to be displayed in place of the specified JavaDoc Reference.

Returns:

♦ if jdref is an "element" reference (that is, it has the form package.class#member label, where
package.class#member represents a model element) the returned text is the label. If the label is omitted,
returns the name of the referenced element.

♦ if jdref is a "url" reference (that is, it has the form label) the returned text is
the label.

♦ if jdref has the form "string", the returned text is the string.

Since: Together 5

getJDRefElement
RwiElement getJDRefElement(String jdref)
If the specified JavaDoc Reference is an "element" reference (that is, it has the form package.class#member
label, where package.class#member represents a model element) and the referenced element exists in the
model, the function returns this element; otherwise, it returns null.

Since: Together 5

getJDRefURL
String getJDRefURL(String jdref)

1109

If the specified JavaDoc Reference is a "url" reference (that is, it has the form a href="URL#value">label</
a>) the function returns the text URL#value; otherwise, it returns an empty string.

Since: Together 5

findElement
RwiElement findElement(String uniqueName)
Passes the call to the RwiModel.findElement() method, which finds an element by its unique name.

Parameter: String with the unique name of an RWI element that needs to be found

Returns: An element found by its unique name

getCodeElement
Object getCodeElement(RwiElement rwiElement)
Passes the call to the rwiElement.getCodeElement()method method declared in the
com.togethersoft.openapi.rwi.RwiElement interface.

This function is used in the template expressions together with one of the following functions: findMember(),
findNode(), findLink(), findPackage().

Since: Together 5

getCodeElements
Enumeration getCodeElements(RwiElement rwiElement)
Passes the call to the rwiElement.getCodeElements() method declared in the
com.togethersoft.openapi.rwi.RwiElement interface.

This function is used in the template expressions together with one of the following functions:
findDocumentedMember(), findDocumentedNode(), findDocumentedLink(),
findDocumentedPackage(). These functions may be helpful when you need to provide hyperlinks from some
specific elements on a diagram chart.

For example, if you have set the Recognize Java Bean / C++ properties option in Together's View Management,
each JavaBean/C++ property is presented by a single element on a class diagram, whereas actually, it consists of
2 elements: property's attribute and setter/getter methods. When you generate the documentation for such a class,
you will get for every JavaBean/C++ property all those 2 elements documented (or at least, docs for accessor
methods if you have specified to skip private members). The corresponding element on the diagram chart associates
with a certain RWI element, and you can obtain this RWI element via the diagramMapElement variable. But
actually, this RWI element is a kind of a proxy. It will not be identical to any of those 2 elements your JavaBean/C+
+ property consists of, those elements which you can see in Java/C++ code and which will be documented by the
template's iterators.

Thus, in the case of the JavaBean/C++ property, you cannot directly use the RWI element representing it on the
diagram to establish a hyperlink to anything contained in the generated documentation. Instead of this, use the
following expression: findDocumentedMember(getCodeElements(getDGRwiElement("
diagramMapElement"))).

1110

The findDocumentedMember() function returns one of the RWI elements associated with the JavaBean/C++
property and that is definitely presented in the generated documentation.

Since a diagram contains ordinary elements as well, your expression for diagram hyperlinks connecting an RWI
element is more complicated:

if(getDGRWIElement("diagramMapElement")->hasPropertyValue
("$shapeType","BeanProperty"), findDocumentedMember(getCodeElements(getDGRWIElement
("diagramMapElement"))), getDGRWIElement("diagramMapElement"))
Since: Together 5

findMember
RwiElement findMember(Object codeElement)
Passes the call to the com.togethersoft.openapi.rwi.RwiModel.findMember() method. This function
should be used together with the getCodeElement() function.

Since: Together 5

findNode
RwiElement findNode(Object codeElement)
Passes the call to the com.togethersoft.openapi.rwi.RwiModel.findNode() method. This function
should be used together with the getCodeElement() function.

Since: Together 5

findLink
RwiElement findLink(Object codeElement)
Passes the call to the com.togethersoft.openapi.rwi.RwiModel.findLink() method. This function
should be used together with the getCodeElement() function.

Since: Together 5

findPackage
RwiElement findPackage(Object codeElement)
Passes the call to the com.togethersoft.openapi.rwi.RwiModel.findPackage() method. This function
should be used together with the getCodeElement() function.

Since: Together 5

findDocumentedMember

♦ RwiElement findDocumentedMember(Enumeration codeElements)

♦ RwiElement findDocumentedMember(Enumeration codeElements, String
subjectSelector)

1111

This function should be used together with the getCodeElements() function. It utilizes the
com.togethersoft.openapi.rwi.RwiModel.findMember() method and seeks the model for an RWI
element that matches the following conditions:

♦ it is associated with the passed codeElements

♦ it is an RwiMember
♦ it will definitely be presented among all generated documents by its Main Documentation or, if subjectSelector

is specified, by its "specific" documentation associated with the passed subjectSelector.

Returns: Found RwiElement, or null if the requested element does not exist in the model

Since: Together 5

findDocumentedNode

♦ RwiElement findDocumentedNode(Enumeration codeElements)

♦ RwiElement findDocumentedNode(Enumeration codeElements, String subjectSelector)

This function should be used together with the getCodeElements() function. It utilizes the
com.togethersoft.openapi.rwi.RwiModel.findNode() method and seeks the model for an RWI element
that matches the following conditions:

♦ it is associated with the passed codeElements
♦ it is an RwiMember
♦ it will definitely be presented among all generated documents by its Main Documentation or, if

subjectSelector is specified, by its "specific" documentation associated with the passed
subjectSelector.

Returns: Found RwiElement, or null if the requested element does not exist in the model

Since: Together 5

findDocumentedLink
RwiElement findDocumentedLink(Enumeration codeElements)
RwiElement findDocumentedLink(Enumeration codeElements, String subjectSelector)
This function should be used together with the getCodeElements() function. It utilizes the
com.togethersoft.openapi.rwi.RwiModel.findLink() method and seeks the model for an RWI element
that matches the following conditions:

- it is associated with the passed codeElements
- it is an RwiMember
- it will definitely be presented among all generated documents by its Main Documentation or, if subjectSelector
is specified, by its "specific" documentation associated with the passed subjectSelector.

Returns: Found RwiElement, or null if the requested element does not exist in the model

Since: Together 5

1112

findDocumentedPackage
RwiElement findDocumentedPackage(Enumeration codeElements)
RwiElement findDocumentedPackage(Enumeration codeElements, String subjectSelector)
This function should be used together with the getCodeElements() function. It utilizes the
com.togethersoft.openapi.rwi.RwiModel.findPackage() method and seeks the model for an RWI
element that matches the following conditions:

- it is associated with the passed codeElements

- it is an RwiMember
- it will definitely be presented among all generated documents by its Main Documentation or, if
subjectSelector is specified, by its "specific" documentation associated with the passed subjectSelector.

Returns: Found RwiElement, or null if the requested element does not exist in the model

Since: Together 5

findDocBySubjectSelector
String findDocBySubjectSelector(String subjectSelectorList)
Returns the first generated document that contains an area marked with one of the specified subject selectors from
the list.

This is how it works. The function takes the first passed subject selector from the list and checks if there are any
generated documents that contain areas marked with this subject selector. If such documents exist, the function
returns the one that has been generated first. Otherwise, it iterates to the next subject selector from the list and
repeats examination. When all subject selectors are passed and no document is found, the function returns an empty
string.

Parameter: List of subject selectors separated with semicolons.

Note: Blank subject selector is allowed and will refer to the Main Documentation of an element.

Returns: Path of the found document relative to the documentation's root directory. Subdirectories are delimited
with a slash (/). If no document is found, the function returns an empty string.

Example:
findDocBySubjectSelector("package-summary;summary")
returns the fist generated document for one of the subject selectors: "package-summary", "summary"

Warning:

This function can be used only inside the Source File Name Expression of the node in FrameSet Structure definition.

Since: Together 5

findDocByTemplate
String findDocByTemplate(String templateList)

1113

Returns the first generated document produced by one of the specified templates.

The function takes the first passed template name and checks if there are documents generated by this template.
If such documents exist, it returns the one which has been generated first. Otherwise, it iterates to the next template
from the passed list and repeats examination. When all templates are passed and no document is found, the function
returns an empty string.

Parameter: List of template names (without file name extensions) separated with semicolons.

Returns: Path of the found document relative to the documentation's root directory. Subdirectories are delimited
with a slash /. If no document is found, the function returns an empty string.

Example:
findDocByTemplate("all-classes;all-diagrams")
returns the fist document produced by one of the templates: "all-classes.tpl" and "all-diagrams.tpl"

Warning:

This function can be used only inside the Source File Name Expression of the node in FrameSet Structure definition.

Since: Together 5

checkStockSectionOutput
boolean checkStockSectionOutput(String stockSectionName, RwiElement rwiElement)
Tests if a Stock Section with the name stockSectionName will produce a nonempty output, provided that it is invoked
from a Stock Section Call and rwiElement is passed to it as the current model element. When this function is
called, no actual output is produced.

Parameters:

stockSectionName – name of the Stock Section to be tested. If no Stock Section with the specified name is found
in the template, the function call issues an error message and stops the generator.

rwiElement – RWI element passed to the Stock Section as the current model element.

Returns: true, if the tested Stock Section would have a non-empty output; false, otherwise.

Example:
checkStockSectionOutput("Included Diagram List", getDGRwiElement("curElement"))
Since: Together 5

getPropertyExt
String getPropertyExt(String propertyName)
This function gets any element property available in DG for the metatype to which this element belongs. It includes
the properties provided by RWI and the properties calculated only by DG (names of such properties start with %.
See the MetaModel.mm file).

A possible call is rwiElement->getPropertyExt(propertyName). In this case, the RWI element whose
property should be obtained is specified before the arrow.

Parameter: Name of the required property

1114

Returns: Value of the property or empty string if the element has no such property

See also: getProperty()

Utility functions provided by Documentation Generation

substring
String substring(String str, int beginIndex) String substring(String str, int
beginIndex, int endIndex)
Returns a new string that is a substring of the string str. Parameters are the same as in the standard Java
String.substring() methods.

replace
String replace(String str, String oldStr, String newStr)
Returns a new string produced by replacing all occurrences of oldStr in the string str with newStr. Operation is case-
sensitive.

Example:
replace("str-oldStr-newStr", "Str", "S")
Returns: "str-oldS-newS"

This function is especially helpful when you create a Call to Template section; the location of the document, generated
by the called template, should be derived from some properties of the current model element (for example, from the
full nume of the package where the current element belongs). In such a case you can write in the field "Output
Directory Expression" something like this:

replace(getContainingPackage()->getProperty("$fullName"), ".", "/")
See also: Linking document templates when designing Multi-Frame documentation.

Since: Together 5

duplicate
String duplicate(String str, int num)
Returns a new string resulting from duplication of the specified string str num times. If num is 0, returns an empty
string.

Example:
duplicate("abc", 2)
Returns: " abcabcabc"

Since: Together 5

length
int length(String str)
Returns the length of string str.

1115

str
String str(Numeric N)
Converts numeric value to a string.

val
Numeric val(String str)
Converts numeric value represented as String into Numeric format. If conversion is impossible, returns 0.

Functions used in queries
The following functions, commonly provided in Together formulae queries, are also very useful in DG expressions.

getProperty
String getProperty(String rwiPropertyName)
Returns the value of the specified RWI property the current element has.

A possible call is rwiElement->getProperty(rwiPropertyName). In this case, the RWI element whose
property should be obtained is specified before arrow.

Parameter: name of the required property

Returns: value of the property or empty string if the element has no such property

See also: getPropertyExt()

hasProperty
boolean hasProperty(String rwiPropertyName)
Checks if the current element has the specified property.

A possible call is: rwiElement->hasProperty(rwiPropertyName)
In this case, the RWI element whose property should be checked is specified before arrow.

Parameter: name of the property being checked

Returns: true, if the element has such property; false, otherwise

hasPropertyValue
boolean hasPropertyValue (String rwiPropertyName, String value)
Checks if the current element has the property with the specified value.

A possible call is: rwiElement->hasPropertyValue (rwiPropertyName, value)
In this case, the RWI element whose property should be checked is specified before arrow.

Parameter:

rwiPropertyName – name of the property being checked

value – required property value

Returns: true, if the element has specified property with the required value; false, otherwise

1116

if
type if(boolean condition, type value1, type value2)

If the parameter condition is true , the function returns value1. If the condition is false , the function returns value2.

The type can be any data type allowed in queries.

getContainingNode
RwiNode getContainingNode()
Returns the RwiNode element that contains the current element. Can be called for RWI member or node current
element.

A possible call is: rwiElement->getContainingNode()
Example:

The following expression calculates visibility modifier for the class/interface member:

if (hasProperty("$private"), "private", if (hasProperty("$protected"),
"protected", if (hasProperty("$public") && !getContainingNode()-> hasProperty
("$interface"), "public", "")))
In this case, the public modifier is printed only when the containing node is not an interface, because all interface
members are public implicitly.

1117

DG Variables
When using the Documentation Designer to develop custom documentation templates for Documentation Generator
building block (DocGen), you have to reference the internal variables and functions to specify formulae expressions,
and provide section flow control.

When the Documentation Generator executes a template and generates a report, it produces some specific internal
information, which may be interesting to include in the report. This includes information such as the project name
and current date/time. Moreover, there are special internal temporary data that get displayed when DG executes
some particular parts of the template.

Documentation Generator variables enable access to this information and its insertion in the report. Each variable
has a specific name and represents a particular kind of internal Documentation Generator information available at
any particular moment.

Internal variables are not all accessible at any instant. Most of them get displayed only in special areas or inside
special sections. Documentation Generator variables belong to one of the following types: String, RwiElement,
RwiProperty. Access to these variables is provided by appropriate functions in formulae expressions:
getDGVariable, getDGRwiElement, getDGRwiProperty.

Variable Availability Accessible via

curItemNo
String The current iteration item number (starting with 1)

inside any Property Iterator and
Element Iterator

getDGVariable

curPropertyName :

String Name of the current property

inside Property Iterator getDGVariable

curPropertyFullName :

String Full name of the current property (specified in DG
MetaModel File)

inside Property Iterator getDGVariable

curPropertyType :

String Type of the element property. Since RWI-interface
does not provide property types, they should be specified in
the DG MetaModel File. Possible values:"string" for String
property; "boolean"for Boolean property

inside Property Iterator getDGVariable

curPropertyValue :

String value of the current property

inside Property Iterator getDGVariable

curPropertyInstance
RwiProperty The RwiProperty object of the current property
instance. This variable is useful when you have to get a
subproperty of the current property instance.

For example, if the current model element is a class node and
you need to list information about all interfaces implemented
by this class, you have to create a template section that
iterates by instances of the IMPLEMENTS property of the
current class element.

After that, within this iteration section you can use the
curPropertyInstance variable to access the subproperty
REFERENCED_ELEMENT that lets you obtain all information
about the implementing class. This lets you get the full names
of the implemented interfaces. Then the required expression
should be: findElement(getDGRwiProperty
("curPropertyInstance")-> getSubproperty

inside Property Iterator while iterating
by instances of the specified property

getDGRwiProperty

1118

("$referencedElement"))-> getProperty
("$fullName")
See also DG Functions: getDGRwiProperty,
getSubproperty, findElement, getProperty
curPropertyInstance :

String value of the current property instance

inside Property Iterator while iterating
by instances of the specified property

getDGVariable

curElement :

RwiElement the current model element

inside Element Iterator getDGRwiProperty

prevElement :

RwiElement previous element in the current iteration scope.

Possible values: null, if it is the beginning of the scope.

inside Element Iterator getDGRwiProperty

diagramMapElement :

RwiElement This variable should be used to create
hyperlinks from image elements of a diagram chart.

Inside Image Control getDGRwiElement

projectName : String The Project name in the report or page header and footer
areas

getDGVariable

nowDateTime :

String The current date/time

in the report or page header and footer
areas

getDGVariable

outputFormat :

String returns output type of the generated documentation.

Use this variable to control behavior of your templates
depending on the output format type selected for the
generator.

Possible Values: "RTF", "HTML", "TXT"

in any place getDGVariable

reportScope :

String shows the specified report scope.

Possible values:

"all_model" – the scope is the whole model

"current_package" – the scope is the current package only

"current_package_recursive" – the scope is the current
package with subpackages

"current_diagram" – the scope is the current diagram only

in any place getDGVariable

stockParam :

String parameter of the stock section call

inside stock sections getDGVariable

1119

Documentation Template Designer
File (in the main menu) New Other Modeling Documentation Template

The Template Designer is a tool for creating custom documentation templates. The Template Designer displays
two panes:

Scope pane on the left, reveals the template structure
Details pane on the right shows the contents of the zones.

Each template is presented in its own tab.

Most manipulations with the template sections and controls are performed by means of the Template Designer
toolbar or executing right-click (or context) menu commands on the selected elements. Each header, footer, and
static section has two different context menus, one for the scope pane (on the left) and the other for the details
pane (on the right). The context menus on the details pane are for setting area style and format characteristics and
for inserting controls. The right-click menus on the scope pane vary among sections. Items on those menus include
the following:

Context menu command Description
Delete Deletes the selected section. This command applies for all sections, except

for static sections without siblings and for the root iterator.
Insert Sibling Section Inserts a new section immediately below this header or section. This

command applies to all sections except for the footers.
Insert Nested Section Inserts a new section immediately below the parent section. This command

applies to the folder sections and iterators only.
Move Up, Move Down, Copy Section Move Up and Move Down commands change the position of a section

among its siblings. Copy Section creates a copy of the section in the
clipboard. You can paste from the clipboard when you insert a new section.

This command does not apply to the headers and footers.
Copy into Stock Copies the whole section into a new stock section. This command applies

to the folder sections and element iterators only.
Properties Opens the Properties dialog.

This command does not apply to the headers and footers.

Buttons on the Template Designer toolbar include the following:

Item Description
Show Template Properties Opens the Template Properties dialog.
Insert Nested Element Inserts a nested element (static section, element property iterator,

folder section, call to stock section, call to template) . This action is
enabled for iterator sections only.

Insert Sibling Element Inserts a sibling element (static section, element property iterator,
folder section, call to stock section, call to template).

Insert Label Control Opens the Label Control dialog that enables you to insert a label into
a static section, header or footer of a template.

Insert Image Control Opens the Image Control dialog that enables you to insert an image
into a static section, header or footer of a template.

Insert Panel Control Opens the Panel Control dialog that enables you to insert a panel
into a static section, header or footer of a template.

Insert Formula Control Opens the Formula Control dialog that enables you to insert a
formula into a static section, header or footer of a template.

Insert Data Control Opens the Data Control dialog that enables you to insert a data
control element into a static section, header or footer of a template.

1120

Insert Include Text Control Opens the Include Text Control dialog that enables you to insert a
text control element into a static section, header or footer of a
template.

New Stock Section Opens the New Stock Section (Element Iterator) dialog that
enables you to create a new stock section in a separate tab.

New Stock Section (Folder) Opens the New Stock Section (Folder) dialog that enables you to
create a new folder section in a separate tab.

Generate Documentation Using Template Opens the Generate Documentation Using Template dialog that
enables you to generate project documentation with the current
template.

Related Concepts

Documentation Generation Overview

Related Reference

Organization of a Documentation Template
Documentation Template Properties

1121

Documentation Template Properties
Template Designer toolbar Show Template Properties button

Use this dialog box to view and modify the properties of a documentation template. The dialog box contains the
following tabs:

♦ General

♦ Page Settings

♦ Formatting Styles

♦ Template Parameters

General tab

Option / Button Description
Model This read-only field displays the metamodel defined on template creation.
Template type This read-only field displays the template type defined on template creation.
Template Description Enter commentary information in this text field.
Report Title Expression The field displays report title expression created in the Expression Editor. Click the editor

button to the right to open the Edit Expression dialog, choose notation and enter a title
expression.

Root Object Metatype Select root object metatype from the drop-down list.
Formatting Template Enter the path to the formatting template, or click the Browse button and choose an MS

Word document.
Headers/Footers Choose to generate specified headers and footers.

Page Settings tab
Use this tab to specify page size, margins, and orientation.

Option / Button Description
Page Size (mm) Use this section to define page dimensions:

Page Type Select page type from the list.
Width/Height These fields are read-only for the predefined page types. If “User” type is

selected, the fields are editable.
Page Margins (mm) Use this section to define page margins.
Page Orientation Click one of the radio buttons to select a page orientation. Default page size and margins

display automatically.

Formatting Styles tab
Use this tab to change formatting styles used in a template.

Option / Button Description
New Opens Style dialog, where you can define properties of a new formatting style.
Delete Removes the selected style from the Styles list.

1122

Edit Opens Style dialog for the selected formatting style.

Template Parameters tab
Use this tab to specify the formal parameters that will be used for calling this template from another template.

Option / Button Description
Parameter Use this field to enter the name of a formal parameter that will be used for calling this template

from another template.
Description Enter optional parameter description.
Default Value Enter optional string value. The parameter value can be obtained in a template body using the

String getParam(String paramName) function.
Set Saves the specified parameter in the list of formal parameters. This button is only enabled when

the Parameter field is not empty.
Delete Deletes the selected parameter from the list of formal parameters. This button is only enabled

when the list is not empty.

Related Concepts

Organization of a Documentation Template

Related Procedures

Setting Template Properties

1123

Element Iterator Properties
Template Designer Element Iterator section context menu Properties

Use this dialog box to access properties of the element iterators. The dialog displays the following tabs: Metatype,
Scope Options, Sorting, Output Style and Other. This topic describes the Scope Options tab.

For the description of the Sorting tab, refer to the “Property Iterator Properties” topic. For the description of the
Metatype, Output Style and Other tabs, refer to the “Folder Section Properties” topic.

Scope Options tab
Choose iteration scope from the list.

Iteration scope Description
Collecting elements Use this section to define how the elements are collected. Depending on the selected radio-

button, the dialog displays a different set of controls.

Default If this option is selected, the Search Options section is displayed.

Defined iteration by the elements of the metatype, selected in the
MetaType tab. There are five different options to find out which elements
of the subtree should be included in the generated documentation:

– 'Recurse subpackages': traverses the packages tree searching for
elements of the current metatype.

– 'Recurse Subnodes': searches inside elements.

– 'Include Parent Element': Visits the parent element (the current
element, from which the iteration was initiated). Normally, an iterator goes
through the contents of an element, not the element itself. This option is
for documenting the containing element as well.

– 'Visit Diagrams': Searches for element's references on diagrams as well
as for elements themselves. Used in conjunction with 'Include Shortcuts'.

– 'Include Shortcuts': Searches shortcuts contained in elements.
Customized If this option is selected, the Customized Iteration Scope section is

displayed.

Enables you to specify the expressions that return the first and the
subsequent elements of the iteration: the first expression defines an
element to begin with; the other describes how to get the subsequent
element from the current one. Expressions can be defined in the
Expression Editor using OCL or legacy notation.

Programmed If this option is selected, the Programmed Iteration Scope section is
displayed. You can specify either class and method that returns Collection,
or create an expression in the Expression Editor using the OCL or legacy
notation.

Filter expression Use this field to restrict the search scope to satisfy the filter condition. The filter expression
can contain properties of the element by which the iteration is currently performed, as well
as calls to DG functions returning DG options and template parameters (see the list of DG
functions and variables in the “Documentation Template Designer” section).

1124

Related Concepts

Documentation Template Sections

Related Procedures

Setting Section Properties

Related Reference

Documentation Template Designer
Property Iterator Properties
Folder Section Properties

1125

Frameset Template Properties
Template Designer toolbar Show Template Properties button

Use this dialog box to view and modify the properties of a documentation template. The dialog box contains the
following tabs:

♦ General

♦ Frameset Structure

♦ Template Parameters

General tab

Option / Button Description
Model This read-only field displays the metamodel defined on template creation.
Template type This read-only field displays the template type defined on template creation.
Template Description Enter commentary information in this text field.
Report Title Expression The field displays the report title expression created in the Expression Editor. Click the

editor button to the right to open the Edit Expression dialog, choose notation and enter
a title expression.

Root Object Metatype Select a root object metatype from the drop-down list.
Formatting Template Enter a path to the formatting template, or click the Browse button and choose a

Microsoft Word document.

Frameset Structure tab
Use this tab to define properties of a frame or frameset.

Note: The availability of controls depends on the selected node.

Frameset option / button Description
Layout This is the topmost property of a frameset. The possible options are:

Columns A frameset with a column layout divides its window into columns, with one
frame per column for each child.

Rows A frameset with a row layout divides its window (HTML frame) into rows,
with one frame per row for each of its children.

Percent Size You can assign a Percent Size to each frameset child to determine the percentage of the
frameset’s total space to be allocated to the child. The total of the sizes of a frameset’s
children should be 100%. Otherwise, the browser will decide the sizes for the children
when it displays the documentation.

This property is not available for the root frameset.
Scrolling Choose the scrolling option from the drop-down list.

This property is not available for the root frameset.
Enable Condition This property determines if the frameset is to be skipped or included when the frameset

file is generated. This condition is identical to that for body sections.

This property is not available for the root frameset.
Add Frame Adds a new frame under the current frameset node.
Add Frameset Adds a new frameset under the current frameset node.

1126

Delete Deletes the current frameset node from the structure.

Frame Option / Button Description
Frame Name The Frame Name value is translated into the name parameter of the

corresponding <frame> tag. You can use that name in a hyperlink to load the
referenced document into the frame window. The tree in the left pane of the
Frameset Structure tab shows the Frame names.

Percent Size You can assign a Percent Size to each frameset child to determine the percentage
of the frameset’s total space to be allocated to the child. The total of the sizes of
a frameset’s children should be 100%. Otherwise, the browser will decide the
sizes for the children when it displays the documentation.

This property is not available for the root frameset.
Scrolling Choose the scrolling option from the drop-down list.

This property is not available for the root frameset.
Source File Name Expression The Source File Name Expression determines the name of the HTML file that will

be initially loaded into the frame.
Enable Condition This property determines if the frameset is to be skipped or included when the

frameset file is generated. This condition is identical to that for body sections.

This property is not available for the root frameset.
Delete Deletes the current frame from the structure.

Template Parameters tab
Use this tab to specify the formal parameters that will be used for calling this template from another template.

Option / Button Description
Parameter Use this field to enter the name of a formal parameter that will be used for calling this template

from another template.
Description Enter optional parameter description.
Default Value Enter an optional string value. The parameter value can be obtained in a template body using the

String getParam(String paramName) function.
Set Saves the specified parameter in the list of formal parameters. This button is enabled only when

the Parameter field is not empty.
Delete Deletes the selected parameter from the list of formal parameters. This button is enabled only

when the list is not empty.

Related Concepts

Multi-frame Documentation Templates

Related Procedures

Setting Frame and Frameset Properties

1127

Folder Section Properties
Template Designer Folder section context menu Properties

Use this dialog box to access properties of the folder sections. The dialog displays three tabs: Metatype, Output
Style and Settings.

Metatype tab
Displays the list of available metatypes.

Output Style tab
The Output Style tab is for specifying whether the documentation is to be in paragraph, text, or table format.

Style Description
Paragraph Flow In this default format, documentation for each element constitutes a single paragraph.
Delimited Text Flow Delimiter separates the documentation for different elements. The following fields are

available:

Formatting Style Choose the formatting style from the list. Refer to
the section “Creating Formatting Styles for
Documentation Templates” for details.

Delimiter Enter the delimiter character.
Font Specify font size and style.
Always print section's header / footer If this option is checked, section header and footer

are always printed, even though the section is
empty.

Suppress all GenDoc formatting This option relates to HTML documentation only.
If the option is checked, formatting options in
controls are ignored, and all output text is printed
in default font.

Table Documentation for different elements is written to a table, with one row per element. Within
each row, the different pieces of documentation are in different table cells. You can set
border styles and cell padding. There are two check boxes for RTF documentation: print a
separate table header on each page and allowing breaking a table over successive pages.

Settings tab

Item Description
Left Indent (mm) Specify indent. Note that indents are relative to the indentation for the containing sections rather

than the physical paper border.
Commentary Enter a descriptive string to identify the folder section in the template.
Enable condition An enable condition for turning this section on or off. Use the Expression editor to specify an

enable condition using the OCL or legacy notation.
Disabled Check this option to skip the section.

1128

Related Concepts

Documentation Template Sections

Related Procedures

Setting Section Properties
Creating Formatting Styles for Documentation Templates

1129

OCL Functions in formulae expressions
The functions listed below are intended for the usage of expressions with OCL syntax. Refer to the list of legacy
functions for comparison. Note that same-named functions return the same values.

Name Return Type Context Parameter Type Notes

getContainingPackage uml::kernel::NamedElement uml::kernel::Element Returns the package containing
the element in context or an
undefined value if there is no such
package.

getContainingNode uml::kernel::NamedElement uml::kernel::Element Returns the node containing the
element in context or an undefined
value if there is no such node.

getContainingEntity uml::kernel::NamedElement uml::kernel::Element String metaclass Returns an entity containing the
element in context with the
specified metaclass.

getUin String uml::kernel::Element Returns the model element uin.

getFriendlyMetaclassName String uml::kernel::Element Returns human readable
metaclass name for the element in
context.

getDGVariable String OclAny String
dgVariableName

Returns the value of the variable or
an empty string if the variable is
not defined in the given place.

getDGOption String OclAny String
dgOptionName

Returns the value of the option or
empty string if such an option is not
defined.

getParam String OclAny String param Returns the value of the specified
template parameter.

getDGRwiElement uml::kernel::Element OclAny String
dgVariableName

Returns the specified DG variable
of Element type or null if the
variable is not provided in the
given place.

getPropertyExt String uml::kernel::Element String
propertyName

Gets any element property
available in DG for the metatype to
which this element belongs.
Returns the value of the property
or an empty string if the element
has no such property.

findDocByElement String uml::kernel::Element uml::kernel::Element
element, String
subjectSelector

Returns an area marked as start of
passed Element's specific
documentation and marked with
the specified subject selector.

findDocBySubjectSelector String OclAny String
subjectSelectorList

Returns the first generated
document that contains an area
marked with one of the specified
subject selectors from the list.

findDocumentedMember uml::kernel::Element uml::kernel::Element Returns found Element or null if
the requested element does not
exist in the model.

findElement uml::kernel::Element OclAny String uniqueName Returns an element found by its
unique name.

1130

getJDRefElement uml::kernel::Element OclAny String jdref If the specified JavaDoc
Reference is an "element"
reference (that is, it has the form
package.class#member label,
where package.class#member
represents a model element) and
the referenced element exists in
the model, the function returns this
element, otherwise returns null.

getJDRefDisplayName String OclAny String jdref Returns a text to be displayed in
place of the specified JavaDoc
Reference.

substring String OclAny String str

Integer beginIndex

Returns a substring of a string
starting from the specified
position.

substring String OclAny String str,

Integer beginIndex,

Integer endIndex

Returns substring of a given string
starting from the first index,
excluding the last one.

substring String OclAny String string,

String startFrom,

Boolean include,

Boolean index

Returns substring of a given string
that starts from the specified
string, searching from the start, if
Boolean parameter is true, or
from the end otherwise.

duplicate String OclAny String str

Integer number

Returns string that concatenates
the given string for the specified
number of times.

replace String OclAny String oldString

String newString

Replaces all occurrences of
oldString with the newString
in the string.

val Integer OclAny String str Parses the given string and
returns an integer value or 0 in
case of an error in the string.

str String OclAny Integer value Returns string representation of
the given integer value.

isDiagram Boolean uml::kernel::Element Returns true , if the element is a
diagram; false otherwise.

getSubpropertyValue String uml::kernel::Element String
propertyName,

String
subpropertyName

Returns the value of subproperty
of the given property of an element
in context.

getSubproperty String OclAny String
propertyName,

String
subpropertyName

Returns the value of subproperty
subpropertyName contained in the
passed property. See the
description of the
curPropertyInstance DG variable
for an example of using this
function.

getAuditMessage String uml::kernel::Element Returns audit result for the given
source code element in context.

1131

getSessionId String OclAny Returns ID of the current Caliber
session; can only be used when
Caliber session is open. This is a
service function, that is normally
passed as a parameter of other
GenDoc functions used for
retrieving requirements
properties, like
getRequirementSystemProperties
(RequirementTrace trace, String
sessionID).

getLocalWorkspaceURL String OclAny String url For a hyperlink to a file from the
workspace, returns the
hyperlinked file path.

getRequirementDescription String OclAny String requirement

String sessionId

Returns a description of a
requirement linked to the currently
iterated model element.

Related Concepts

DG functions in Formulae Expressions

1132

Property Iterator Properties
Template Designer Property Iterator section context menu Properties

Use this dialog box to access properties of the property iterators. The dialog displays the following tabs: Iteration
Scope, Sorting, Output Style and Other. This topic describes the Iteration Scope and Sorting tabs. For the
description of Output Style and Other tabs, refer to the “Folder Section Properties” topic.

Iteration Scope tab
Choose an iteration scope from the list. Depending on your choice, the dialog displays different controls.

Iteration scope Description
All User-Defined Properties Iterates over the properties that are not described in the metamodel.

Exclude already iterated
properties

If this option is checked, all properties that were
already iterated for the current element are
skipped.

Iterate only unknown
properties

If this option is checked, only those properties
that were not included in the metamodel are
included.

Filter expression Use this field to restrict the search scope to satisfy
the filter condition. Expressions can use DG
Variables available inside Property Iterators.
Refer to “DG Variables” reference for details.

Example of a filter expression for Property
Iterator:

context: OclAny
body: (getDGVariable
('curPropertyFullName') <>
'Stereotype') and (getDGVariable
('curPropertyFullName') <>
'Visibility')
Click the editor button to open the Expression
editor.

Set of properties These are properties that belong to the metatype of the parent element iterator. A
property iterator can iterate over multiple properties. Use CTRL + CLICK to select
multiple properties from the Available properties list, and then use the double-
arrow button to move these properties to the Selected properties list. You can
change the order in which the properties are documented by arranging the
properties in the Selected properties list.

Instances of a single property These are properties that can have multiple values, for example, @see or
@author. Use the Filter expression to restrict the search elements that satisfy the
filter properties.

All properties Iterates by all properties defined for the current element metatype (only properties
described in the metamodel are iterated). Use the Filter expression to restrict the
search elements that satisfy the filter properties.

Sorting tab
Use this tab to specify the order in which the elements are to be searched and thus documented.

1133

Option Description
Sorting mode The following options are available: none, by name, by value, by key expression.
Reverse order Elements are always documented in ascending order. Check the Reverse scope order box to list

elements in descending order.

Related Concepts

Documentation Template Sections

Related Procedures

Setting Section Properties

Related Reference

Folder Section Properties
DG functions in Formulae Expressions
DG Variables

1134

Static Section Properties
Template Designer Static section context menu Properties

Use this dialog box to access properties of the static sections. The dialog displays the only Settings tab.

Item Description
Enable condition An enable condition for turning this section on or off. Use the Expression editor to specify an

enable condition using the OCL or legacy notation.
Disabled Check this option to skip the section.

Related Concepts

Documentation Template Sections

Related Procedures

Setting Section Properties

1135

Model Import and Export
In This Section

Import Together Project Wizard
Use this dialog box to migrate a legacy Together project to the current version of Together.

MDL Import Wizard
The MDL Import Wizard is used to import MDL projects created in another application for use in Together.

MDL Projects Import Options
Describes the options available for importing IBM Rational Rose model files (.mdl, .ptl, .cat, .sub).

MDX Import Wizard
The MDX Import Wizard is used to import MDX projects created in another application for use in Together.

MDX Projects Import Options
Lists parameters available for MDX command line import.

XMI Export Wizard
The XMI Export Wizard is used to export projects or sections of projects created in Together for use by other
applications and languages.

XMI Import Wizard
The XMI Import Wizard is used to import XMI projects or sections of projects created in another application
for use in Together.

1136

Import Together Project Wizard
File Import Modeling Together Project

Use this dialog box to migrate a legacy Together project to the current version of Together.

Migrate legacy Together project to Together <version>
Specify the Together project file and select the migrations type.

Item Description
Project Path Click the Browse button to navigate to a specific source project.
Diagram folders This read-only area displays the folders of the legacy project that contain

diagrams.
Design elements storage policy Use the radio-buttons in this section to define how to handle the design elements

(as standalone or as file mates).

The same as in the original project If this option is selected, the settings of
the original project are preserved. The
existing standalone design elements
remain standalone. The new design
elements are created according to the
project settings.

Force creating design elements in
separate files

If this option is selected, all existing
design elements are converted to
standalone. All new design elements
are created as standalone.

Migration type Choose one of the possible ways to process the project roots.

Merge all roots contents into the new
project

Click this radio-button to create a
single project from a multi-rooted
source project.

Create a separate project for each
root

Click this radio-button to create a
Together project for each root.

Merged project name
This page will be displayed if the Merge all roots contents into the new project option is selected.

Item Description
Project name Enter the name of the resulting project. The default project name is constructed from the names

of the last two folders of the source project file location.

Create a set of Together <version> projects
This page will be displayed if the Create a separate project for each root option is selected.

Item Description
Root location Displays the list of roots of the source project.
Together <version> project name Displays the default name of the resulting project for the selected root. The

default name is constructed from the package prefix, if any. If there is no

1137

package prefix, the project name is created from the names of the last two
folders of the root location. Edit the project name as required.

Content type Displays information about the type of contents in the selected root (design
files or source code).

Diagram format Displays information about the diagram format in the selected root, if any.
Decision Select the way to handle information of the selected root. If the root contains

design files, you can either copy them to the target location or skip the root. If
the root contains source code files, you have the choice to copy it as is, copy
and convert it to the design language, or skip the root.

Master project
This page is displayed when multiple projects are created.

Item Description
Master Project Name Specify the name of the master project that contains references to all projects created in

the course of migration. The default name of the master project is based on the source
project name.

The master project is created to demonstrate the contents and structure of the source
project. It is read-only and not intended for editing. Use the real projects to create or edit
contents, and establish dependencies.

Related Concepts

Together Interoperability and Migration

Related Procedures

Importing Legacy Projects

1138

MDL Import Wizard
File Import Modeling Project from MDL file

The MDL Import Wizard is used to import MDL projects created in another application for use in Together.

Option/Button Description
Add/Add Folder Specifies the name (or names) of the Rational Rose project file (or files)

to be imported (several model files can be imported at once).
Remove Deletes the selected file or files from the Paths list.
Remove all Deletes all files from the Paths list.
Scale factor Specifies the element dimensions coefficient. Default value is 0.3.
Convert Rose default colors If this option is selected, the default Rational Rose colors will be replaced

with the default Together colors. Deselected by default.
Preserve diagram nodes and bounds If this option is selected, user-defined bounds are preserved in the resulting

diagrams. Otherwise, the default values are applied. Deselected by
default.

Convert Rose actors If the option is selected, the Rose actors are mapped to Together actors.
Deselected by default.

Generate source code If this option is selected, a new Java Modeling project is created; otherwise,
a Modeling project is created from imported MDL.

Related Concepts

Model Import and Export Overview

Related Reference

MDL Projects Import Options

1139

MDL Projects Import Options
This topic provides information necessary for importing MDL projects, and the list of command line parameters.

MDL Import Notes

♦ A single state/activity element in a Rose model can be put into several different swimlanes. However, state/
activity elements in Together can belong to only one swimlane; therefore, when importing a Rose project with
a single state/activity element placed into several different swimlanes, Together places the state/activity
element in one swimlane only.

♦ Using Rose, it is possible to create nested diagrams for class, use case, activity, and state elements. When
using MDL import, the relationship between the element and the nested diagram is shown by a hyperlink that
is created from the element to the diagram.

Path Aliases
Rational Rose model files may contain path aliases that need to be converted to real paths. Together recognizes
path aliases and displays the Virtual Path Map dialog box that enables you to supply a real path for each path alias.
To specify the actual path, click the Browse button. This opens the Select Actual Path dialog box. Navigate to the
desired path and click OK when ready.

Tip: If new aliases are encountered in course of the file or subunit parsing, the Virtual Path Map dialog will be
displayed again.

Parameters available for MDL command line import

Option Description
–d <directory> Name of the target directory where the output files are placed.
–model <directory name> Name of the target directory where the generated diagram files are placed.
–src <directory name> Name of the target directory where the generated source files are placed.
–project <project name> Project name for generating hyperlinks to inner diagrams.
–scale <value> Scale factor between Rose and Together diagrams. Default value is "0.3".
–colors Converts Rose default colors to Together default colors.
–bounds Preserves diagram nodes bounds.
–logfile <log file> Path to log file.
–gensource Enables source generation.
–log[:none|errors|debug] Defines the level of logging. Default value is "errors".
–A<name>=<value> This option is used to convert path aliases used in the Rose model file to the real paths;

here <name> is the path alias and<value> is the real path for it.
–modelfile <file name> Name of the Rose model file (*Mdl, *.ptl, *Cat, *Sub).
–f <file name> Subunit files or paths to subunits (*Cat or *Sub files).
–v Enables validation of the source code elements' names. Validation means that the

symbols restricted in Java are replaced with the '_' characters.
–p Enables creating diagrams that comply with the new containment metamodel.
–actors Maps classes with the Actor stereotype (and the other similar stereotypes) to actors.

The supported stereotypes are: Actor, Business Actor, Business Worker, Physical
Worker.

1140

–ac Maps association classes to the simple text properties of association links. This option
is intended for the legacy Together versions that did not support association classes.

Related Procedures

Importing a Project in IBM Rational Rose (MDL) Format
Importing a Project in IBM Rational Rose (MDL) From the Command Line

1141

MDX Import Wizard
File Import Modeling Project from MDX file

The MDX Import Wizard is used to import MDX projects created in another application for use in Together.

MDX Import Options page

Option Description
Path to the MDX file Specifies the name of the IBM® Rational® XDE .mdx file.
Scale factor Specifies the element dimensions coefficient. The default value is 0.03.
Preserve diagram nodes and bounds If this option is selected, user-defined bounds are preserved in the resulting

diagrams. Otherwise, the default values are applied. Deselected by
default.

Convert Rose XDE colors If this option is selected, the Rational Rose XDE colors will be replaced
with the default Together colors. Deselected by default.

1142

MDX Projects Import Options
The following parameters are available for importing MDX models.

♦ -modelfile

♦ -d

♦ -model

♦ -project

♦ -scale

♦ -bounds

♦ -logfile

♦ -p

Related Procedures

Importing a Project in IBM Rational Rose (MDL) Format
Importing a Project in IBM Rational Rose (MDL) From the Command Line

1143

XMI Export Wizard
File Export Modeling XMI file

The XMI Export Wizard is used to export projects or sections of projects created in Together for use by other
applications and languages.

Export Project to XMI File

Open projects list box Displays currently open Together projects, which you can export as XMI data. Click
on the plus sign to expand a project and select only a portion of it for export. You can
select only one project at a time.

Select XMI type Select an XMI type for export. Options:

XMI for UML 1.3 (Unisys Extension)

XMI for UML 1.3 (Unisys Extension, Recommended for TCC)

XMI for UML 1.3 (Unisys Extension, Recommended for Rose)

XMI for UML 1.4 (OMG)

XMI for UML 2.0 Note: TCC stands for Together ControlCenter.

XMI for UML 2.0 compliant with OMG standard

XMI for UML 2.1
XMI Version Specifies the version of XMI to be exported.
XMI Encoding Specifies the XMI encoding setting.
XMI file Specifies the path and file name to be used. Together will create these if they do not

exist. You may enter a name and path or accept the default
Use prefix of imported root Enabled for UML 1.4 projects that have imported roots. If this option is checked, a

top-level package with the same name as the imported project prefix (specified in
Project Properties Model Path) is created for each imported root.

Run Audits on Exported Project
The Part-Port Audit is provided for UML 2.0 projects. This audit provides the possibility to resolve problems that
occur in Together 2006 models, where it was possible to add a port to a part. Such ports can be moved to the chosen
classifier when one decides to fix the problem found by audit before the XMI export.

The Required/Provided Interface Audit is provided for UML 2.0 projects. It searches for Required/Provided
Interface links with a null supplier. When the problem found by this audit gets fixed before the XMI export (by clicking
Fix All), the link target can be changed to the chosen interface.

Related Concepts

Model Import and Export Overview

Related Procedures

XMI Export and Import of the Models with Cross-Project References

1144

XMI Import Wizard
File Import Modeling XMI file

The XMI Import Wizard is used to import XMI projects or sections of projects created in another application for use
in Together.

Note: For UML 1.4 and Java Modeling projects, only XMI 1.1/1.2 import is supported. Attempting to import an XMI
1.0 file results in an empty project. After selecting XMI File from the Import wizard, the XMI Import wizard's only
dialog opens.

Select the Source File Specifies the full path to the .xml, .xmi, or .uml2 file you are importing.
Open projects list box Displays a list of open Together projects into which you can import the XMI data.
Select XMI Type of input file The radio-buttons in this read-only section turn on corresponding to the type of the

chosen project.

Related Concepts

Model Import and Export Overview

1145

Version Control
In This Section

Sharing Design Elements: Special Considerations
What to consider when sharing design elements.

Sharing Packages: Special Considerations
What to consider when sharing packages.

Sharing QA Sets and Audits and Metrics Results
What to consider when sharing QA Sets and Audits and Metrics Results.

1146

Sharing Design Elements: Special Considerations
When sharing design elements there are several points to consider.

♦ By default, Together stores diagram elements in a single file per package. While creating a project, choose to
create design elements in separate files. To create design elements in separate files, select the Create design
elements in separate files option.

♦ Use the locking mechanism of your version control system to ensure that only one user is allowed to edit the
diagrams for each package.

♦ Standalone design elements have their own Team menu, which you can use to interact with the VCS. You
need to add and commit standalone design elements individually or use Team Synchronize with
Repository to get a list of outgoing changes (make sure the Outgoing button is selected). Outgoing elements
are under the Together Model branch.

♦ Borland recommends that the *txa* files that store the design elements themselves (both txaPackage that store
multiple nodes and standalone element files) are kept in synch with the diagram files that store the references
to those elements.

Related Concepts

Version Control in Together

Related Procedures

Using Version Control and Teams in Together

1147

Sharing Packages: Special Considerations
When using the Team menu to share packages through the Model Package Explorer, Model Navigator and the
Diagram editor, there are several points to consider.

♦ Package elements on diagrams represent the diagram for that package, not the physical package directory.
Therefore, the Team menu commands for these elements represent actions for the package diagram only.

♦ Class and interface elements on diagrams represent the source file and design elements represent the
corresponding *txa* file they are located in; therefore, you can use their Team menu to Add, Commit or Update.

♦ To commit your packages and source code, you can use the Team menu accessed through the Model Package
Explorer view. When you commit a package, it will (recursively, through subpackages) commit all the classes
that are already part of the repository. New classes need to be added separately by either right-clicking on the
Class in the Model Package Explorer or on the element in the diagram. Committing your packages through
the Model Package Explorer will commit only the source and subpackages.

♦ The Model Navigator behaves similarly to the Model Package Explorer, but note that by default, while
committing a package in Model Navigator, you commit all the source and design resources. To disable such
behavior, use the Together modeling preferences dialog. To open the preferences dialog, from the menubar,
select Window Preferences. In the options list on the left, expand the Modeling node, and select the Team/
Compare tab on the right. Clear "Include diagram folders in Team/Compare actions." With this option disabled,
the Commit command will not commit source and design resources. Note that Borland does not recommend
committing package diagrams in source code projects.

♦ To find out how to prevent package diagrams being committed, refer to “Sharing Projects,” especially the last
item, Recommendations and Tips.

♦ To prevent files synchronization problems and to ensure you can use the compare tools (including Model
Compare provided by Together) to observe the differences, use Team Synchronize with Repository...,
and wait for the Synchronize view to open. Click the outgoing and incoming buttons to see a list of outgoing
and incoming changes. With this view you can commit your packages and source. If you commit a package
with new resources, you are asked to confirm that you want to add the new files.

Related Procedures

Sharing Projects

1148

Sharing QA Sets and Audits and Metrics Results
This topic describes what to consider when sharing QA sets and Audits and Metrics results.

Note: You can version both source code and model audits and metrics sets and results.

Sharing QA Sets
When deciding which audits and metrics you want to run on your project, you have the option to create a customized
set, or load an existing set. You can save the QA sets you want to use in your project, possibly under a "sets" directory
that you create, and use VCS to distribute them among your team. Each team member can then use the Load button
on the QA Preferences page to select the agreed upon set. QA sets can be configured on the project level and the
settings can be version controlled if saved with the project.

Sharing Audits and Metrics Results
Just as you can save QA sets in your project, you can save the audits and metrics results in your project if you want
to distribute them. This gives your team a central place to store the results. Then, by using either Load Audits Results
or Load Metric Results context commands in the Audits or Metric view, you can easily compare current and past
results.

Related Concepts

Version Control in Together

Related Procedures

Using Version Control and Teams in Together

1149

Dialogs
This part contains reference information about various Together dialogs.

In This Section
Apply Transformation
Use the Apply Transformation wizard to apply a QVT transformation to your model or model element.

BPEL4WS Export Wizard
This topic provides BPEL4WS Export wizard description.

BPEL4WS Import Wizard
This topic provides a description of the BPEL4WS import wizard.

Call to Stock Section Properties
Use this dialog to view or edit properties of a call to stock section.

Call to Template Properties
Use this dialog to view or edit properties of a call to template section.

Create Pattern from Elements
Use this dialog to create a pattern from the selected model elements.

Create Requirement(s) Dialog Box
Use this dialog box to create CaliberRM or RequisitePro requirements from use case elements selected in
the Diagram editor or Model Navigator.

Edit Audit
Use the Edit Audit dialog box to create or edit a model audit.

Edit Hyperlinks for Diagram dialog box
Describes the dialog that lets you creatte hyperlinks to model elements and external resources.

Edit Metric
Use the Edit Metric dialog box to create or edit a model metric.

Edit Operation
Use the Edit Operation dialog box to create or edit an OCL operation.

Edit Transformation Profile
Use the Edit Transformation Profile dialog box to specify which metaclass elements and properties you
want to filter or omit when you apply patterns to your models.

Element Iterator Properties
Use this dialog box to access properties of the element iterators.

Export Diagram to Image Wizard
Describes the wizard that lets you save a diagram or selected elements in a specified format.

Export Pattern Conversion Profiles
Use the Export Pattern Conversion Profiles dialog box to specify which profiles you want to export to a
file and location of the file.

Export QA Results To A File
Use the Export QA Results To A File dialog box to save the Audit or Metric results to a file.

Export Wizard: SQL/DDL Script from DB Schema
Use this wizard to create an SQL/DDL script from a DB Schema.

Find Analyzer Dialog
Describes the dialog that lets you find an analyzer by specifying a search string.

1150

Frameset Template Properties Dialog Box
Describes the dialog that lets you view and modify properties of a documentation template.

Generate HTML Documentation dialog box
Describes the wizard that lets you generate HTML documentation for your projects.

Generate Documentation Using Template dialog box
Describes the wizard that lets you use predefined or custom templates to generate documentation for your
projects.

Generate Sequence Diagram dialog box
Describes the dialog that lets you choose classes and namespaces to display on generated sequence
diagrams.

Import Wizard: DB Schema from ER Logical Diagram Profile UML 2.0 Project
Use this wizard to create a DB Schema from a UML 2.0 project with ER Logical Diagram Profile enabled.

Import Wizard: DB Schema from JDBC
Use this wizard to create a DB Schema from a JDBC connection.

Import Wizard: DB schema from SQL script
Import Pattern Conversion Profiles
Use the Import Pattern Conversion Profiles dialog box to specify which profiles you want to import to a
file, and the location of the file.

Import Together Project Wizard
Use this dialog box to migrate a legacy Together project to the current version of Together.

Manage Traces Dialog
Describes the options for defining traces from a model element selected in the Diagram editor or Model
Navigator.

Modeling Preferences
Use these preferences to change startup, deletion, error reporting, ignored folders, and team sharing
options.

New MDA Ant Task
Use the New MDA Ant Task wizard to add a new Ant task to your Composite transformation.

MDL Import Wizard
The MDL Import Wizard is used to import MDL projects created in another application for use in Together.

MDX Import Wizard
The MDX Import Wizard is used to import MDX projects created in another application for use in Together.

Model Search and OCL Model Search
Describes the dialog used to search the current diagram or all opened diagrams for the specified string in
a certain scope.

New Together Project Wizards
This section describes the common pages of the Wizards used to create new Together modeling projects,
and language-specific pages for C++ and IDL projects.

Print Audit dialog box
Describes the dialog that lets you print selected sets of audit report results to a specified printer.

Print Diagram Dialog Box
Describes the dialog that lets you print selected diagrams to a specified printer.

Print Dialog
Describes the options for printing diagrams.

1151

Project Properties
Use this dialog box to modify your project's properties.

Project Specific Configuration
Use the Project Specific Configuration dialog box to select a C++ or Java project for which you want to
configure QA Builder properties.

Property Iterator Properties
Use this dialog box to access properties of the property iterators.

QA Builder Properties
Use the QA Builder Properties dialog box if you want to customize the workspace-level set of audits for
the QA Builder to suit your C++ or Java project needs.

QA Search
Use the QA Search dialog box to search within Audits View or Metrics View.

QVT Settings
Use the QVT Settings page of the Project Properties dialog box to specify if you want to generate Java
code for your MDA transformation project, and choose a Java container where you want to store the code.

Run
Use the Run dialog to create, manage, and run configurations.

Run QA
Use the Run QA dialog box to choose resources that you want to process when running quality assurance.

Requirement Traces Search Dialog Box
Use this dialog box to search for specific elements that have traces to requirements, or find all traced
elements in the defined search scope.

Select element dialog box
This dialog box displays a tree view of the available contents within your project.

Selection Manager
Describes the options for selecting elements from the available contents and adding them to a certain
destination scope.

Static Section Properties
Use this dialog box to access properties of the static sections.

Template Properties Dialog Box
Describes the options for viewing and modifying properties of a documentation template.

Trace Synchronizer Dialog Box
Use this dialog box to search for traced requirements or model elements that become desynchronized.

XMI Export Wizard
The XMI Export Wizard is used to export projects or sections of projects created in Together for use by other
applications and languages.

XMI Import Wizard
The XMI Import Wizard is used to import XMI projects or sections of projects created in another application
for use in Together.

1152

Apply Transformation
Use the Apply Transformation wizard to apply a QVT transformation to your model or model element.

In This Section
Select Destination
Use the Select Destination page of the Apply Transformation wizard to select the output model for Model-
To-Model transformations.

Select Transformation
Use the Select Transformation page of the Apply Transformation wizard to select the source
transformation file for Model-To-Model transformations.

1153

Select Destination
Use the Select Destination page of the Apply Transformation wizard to select the output model for Model-To-
Model transformations.

Item Description
Target type Selects where you want to store the transformation results:

New model Saves transformation output to a new EMF resource with URI
specified in the URI field.

Existing container Adds transformation output to a containment feature (reference) of
an existing model element.

Inplace Directly modifies the transformation input and returns it as the
transformation result (inplace transformation). The URI specified in
the Source model URI field is used as the URI of the transformation
output.

URI Specifies the URI of the target model element when you select New model or Existing
container as the target type.

Feature Specifies the name of a container within the selected target model or model element where
you want to store the transformation results. Enabled when you select Existing
container as the target type.

Select... Opens a dialog box that allows you to choose the feature from the list of all containment
references of the selected element.

Clear contents Specifies if you want to remove elements specified in the chosen reference before you store
the transformation results. For the references with multiplicity 1, this option has no effect.

Generate trace file Specifies if you want to generate the trace file for the transformation. If selected, lets you
specify the name and location of the file.

Open result in editor Specifies if you want to open the transformation result in the corresponding editor.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Model Transformations
Applying Model-To-Text Transformations

Related Reference

QVT Language
QVT Editor

1154

Select Transformation
Use the Select Transformation page of the Apply Transformation wizard to select the source transformation file
for Model-To-Model transformations.

Item Description
Select Transformation Displays the list of transformation projects available at the specified location.
Current selection Displays the selected transformation file (*.qvt).
Run in interpreted mode Specifies if you want to run the selected transformation using QVT Interpreter.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Model Transformations
Applying Model-To-Text Transformations

Related Reference

QVT Language
QVT Editor

1155

BPEL4WS Export Wizard
The BPEL4WS Export wizard allows you to export your BPMN diagram to BPEL and WSDL files.

Item Description
List of BPMN projects Select the project you want to export to BPEL and WSDL files.
Destination Type the path to the created BPEL and WSDL files.
Browse Specify the path to the created BPEL and WSDL files.
Open file in Active BPEL Designer Opens generated BPEL file in the new view as the Active BPEL Designer file;

the BPEL structure is shown in a special diagram. You can export BPEL/
WSDL files to the current workspace project when the Active BPEL Designer
is already installed. The checkbox becomes available when the folder inside
your workspace project is created.

After you export your project to BPEL4WS, you can use Active BPEL Designer to work with BPEL files.

Warning: If you want to open the export result in Active BPEL Designer, make sure your export result is located
within one project opened in the workspace.

Related Concepts

Business Process Modeling

Related Procedures

Together Business Process Modeling

1156

BPEL4WS Import Wizard
The BPEL4WS Import wizard allows you to import BPEL and WSDL files and create a BPMN diagram based on the
imported files.

Item Description
BPEL File Type the path and the name of the imported BPEL File. Lists BPEL files opened earlier using the

Browse button.
Browse Browse for a BPEL file to import.
WSDL fIles Lists WSDL files selected for import together with a BPEL file.
Add Selects WSDL files to add to the list.
Add folder Selects all WSDL files in a folder.
Diagram name Name of the created BPMN diagram.
Project Selects a project, where the new BPMN diagram will be created.

Related Concepts

Business Process Modeling

Related Procedures

Together Business Process Modeling

1157

Call to Stock Section Properties
Template Designer Call to Stock Section context menu Properties

Use this dialog to view or edit properties of a call to stock section.

Call To tab
This tab lists the available stock sections and highlights the name of the stock section that is actually called.

Other tab
Use this tab to define enable condition and template parameters.

Option/Button Description
Left indent (mm) Specify indentation.
Parameter Expression Lets you specify string parameter of the stock section call. Within stock section, this

parameter can be retrieved using getDGVariable('stockParam'). Click the Edit
Expression button to create an expression in OCL or legacy notation.

Enable condition An enable condition for turning this section on or off. Use the Expression editor to specify
enable condition using the OCL or legacy notation.

Disabled Check this option to skip the section.

Related Concepts

Enable Conditions

Related Procedures

Creating Stock Sections

1158

Call to Template Properties
Template Designer Call to Template section context menu Properties

Use this dialog to view or edit properties of a call to template section.

General tab

Option/Button Description
Template Assigns a template that is invoked by the Call to Template section. Click the Browse button to

choose the actual template to be called.
Output Settings Gives a choice of where the output for the called template goes.

Separate file This is important for generating multiframe HTML documentation consisting
of separate HTML documents that are extensively linked together. If this
option is selected, the following fields are displayed:

Output Filename
Expression

Enter the name of the document. This
expression should not include the file path. If
this field is blank, the generated document is
named according to the name of the called
template. Click the Edit Expression button to
create the expression in OCL or legacy
notation.

Example:
context uml::kernel::NamedElement
name.concat('.Dia')

Output Directory
Expression

Enter the path to the destination directory of
the generated document. If the expression
contains directories that do not yet exist, they
will be created when the template is
processed. Click the Edit Expression button
to create the expression in OCL or legacy
notation.

This path is always relative. Define it
according to the following conventions:

1. If the calling template is a frameset
template, the path is relative to the destination
directory for the entire documentation.

2. If the calling template is a document
template, the path is relative to the location of
the document that is generated by the calling
template.

3. The right slash character (/) is the name-
separator for the path.

Output Image
Subdirectory
Expression

Enter the path to the directory for the images
files of the generated document. Click the Edit
Expression button to create the expression in
OCL or legacy notation.

Example:

1159

context OclAny
'../doc-images'

Do not create file with
empty output

Check this option to skip empty files.

Common stream The called template behaves like a stock section. If this option is selected,
the following field is available:

Left indent (mm) The called template provides output to the same file
as the calling template, and you can only specify
indentation if required.

Parameters tab
A calling template can pass additional information to the called template through template parameters. The
parameter value can be obtained in a template body using the String getParam(String paramName)
function.

Parameter Enter parameter name.
Expression Displays the parameter expression. Click the Edit Expression button to create the expression in

OCL or legacy notation.
Set Adds parameter to the list. This button is only enabled when the Parameter field is not empty.
Delete Removes the selected parameter from the list. This button is only enabled when a parameter is

selected in the list.

Other tab
Use this tab to define enable condition.

Item Description
Enable condition An enable condition for turning this section on or off. Use the Expression editor to specify enable

condition using the OCL or legacy notation.
Disabled Check this option to skip the section.

Related Concepts

Enable Conditions

1160

Create Pattern from Elements
File Export Modeling Pattern Definition.

Use this wizard to create a pattern from the selected model elements.

Customize page

Item Description
Pattern name Enter the name of the new pattern definition.
Select category Use this field to select the target category for the new

pattern definition.
Show existing patterns Check this option to display the available patterns.
Transformation profile Check this option to display the transformation profile.
Open pattern definition project after pattern is finished If this option is checked, the new profile definition project

opens for editing.

Set Role Names page
Use this page to edit the role names of the elements involved in the pattern definition

Item Description
Element name Displays the name of the element participating in the pattern definition.
Role name Use this column to edit the name of the pattern participant. By default, the role name is the same

as the element name.

Set Default Values page
Use this page to specify the default values for the properties of the roles. Each property has the following set of
parameters:

Parameter Description
Customize value on application If this option is set to true, you can modify the value of this property in the Model

element by pattern wizard to be set on element creation. This property should
be false if Use property on application is false.

Use for recognition Controls whether to use this property on recognition.
Use property on application Controls whether to set this property on creating elements by pattern.
Value If Use for recognition is true, this value is compared to the property of the

element against which the pattern is recognized.

If Use property on application is true, this field defines the default value of
the property.

Related Concepts

Patterns and Templates

Related Procedures

Patterns and Templates

1161

Create Requirement(s) Dialog Box
Use case context menu Requirements Create Requirement(s)...

Use this dialog box to create CaliberRM or RequisitePro requirements from use case elements selected in the
Diagram Editor or Model Navigator.

Tab Description
CaliberRM Lets you select a requirement or requirement type in the CaliberRM projects tree under which the

requirements created from model elements will be inserted.
RequisitePro Lets you select a project, package or a requirement in the RequisitePro projects tree under which

the requirements created from model elements will be inserted.

Related Concepts

Requirements Management

Related Procedures

Creating Requirements Based on Use Case

1162

Edit Audit
Window Preferences Modeling QA Model Audits tab New, Edit, or Clone button

Use the Edit Audit dialog box to create or edit a model audit.

Option Description
Name Displays the name of the QA model audit.
Description Specifies the audit description.
Severity Specifies the audit severity.
Context Selects the context for the OCL operation.
Body Displays the body of the selected OCL operation in the built-in OCL expression editor. The editor

provides OCL code sense and auto-complete (CTRL+SPACE) options.

Related Concepts

Model Audits

Related Procedures

Running Source Code Audits

Related Reference

QA Model

1163

Edit Hyperlinks for Diagram dialog box
Context menu Hyperlinks Edit

This dialog box is invoked from the context menus in the Diagram Editor or the Model View. It contains two tabbed
pages that enable you to create hyperlinks to the model elements and external resources.

Dialog title The title of the dialog box varies depending on the way it is invoked. It displays the string
that corresponds to the invoking object.

Model Elements tab The pane on the left of the dialog box displays the content available in your project. You
can use the explorer to navigate to the element and select it for inclusion in the pane of
values returned by the dialog to the invoking object.

External Documents tab The Recently Used Documents pane displays the external contents that you make
available for your project. Such contents may be represented by the file system
resources or by URLs. Use the Browse and URL buttons to specify these resources.

Browse Click this button to invoke the Open dialog box. Navigate to the desired file
and click OK.

URL Click this button to invoke the Documents URL dialog box. Type a URL in
the text field and click OK.

Clear Click this button to remove all entries in the list of the Recently Used
Documents.

Selected pane This pane displays two kinds of data: it displays values already existing and passed
from the invoking object, if any; and it displays values of the selections you have added
from the left-hand pane, if any.

Buttons
Add Enabled when an element is selected in the left-hand pane. Adds the selected element to the right-

hand pane.
Remove Enabled when you select an item in the right-hand pane. Removes the selected item from the pane.

All removed values or objects are removed from the invoking property or diagram upon clicking OK.
Remove All Enabled when items are present in the right-hand pane. Removes all items from that pane. All

removed values or objects are removed from the invoking property or diagram upon clicking OK.

Related Concepts

Model Hyperlinking Overview

Related Procedures

Hyperlinking Diagrams

1164

Edit Metric
Window Preferences Modeling QA Model Metrics tab New, Edit, or Clone button

Use the Edit Metric dialog box to create or edit a model metric.

Option Description
Name Displays the name of the QA model audit.
Lower limit Defines the lower limit of the constraint in the metric.
Upper limit Defines the upper limit of the constraint in the metric.
Description Specifies the audit description.
Severity Specifies the audit severity.
Context Selects the context for the OCL operation.
Body Displays the body of the selected OCL operation in the built-in OCL expression editor. The editor

provides OCL code sense and auto-complete (CTRL+SPACE) options.

Related Concepts

Model Metrics

Related Procedures

Running Source Code Metrics

Related Reference

QA Model

1165

Edit Operation
Window Preferences Modeling OCL OCL Operations tab New (or Edit) button

Use the Edit Operation dialog box to create or edit an OCL operation.

Option Description
Context Selects the context for the OCL operation.
Body Displays the body of the selected OCL operation in the built-in OCL expression editor. The editor provides

OCL code sense and auto-complete (CTRL+SPACE) options.

Related Concepts

OCL Support

Related Procedures

Together Object Constraint Language (OCL)

Related Reference

OCL

1166

Edit Transformation Profile
Window Preferences Patterns Edit...

Use the Edit Transformation Profile dialog box to specify which metaclass properties you want to filter or omit
when you apply patterns to your models.

Option Description
Metaclass Displays the hierarchy of metaclasses available in Together.
Show only filtered Displays only metaclasses that contain filtered properties.
Expand All Expands the hierarchy of metaclasses.
Collapse All Collapses the hierarchy of metaclasses.
Properties to filter out Unchecks the check boxes against all profiles in the list.
Omit element entirely Omits the selected metaclass.
Unfilter Removes filter from the properties selected in the Properties to filter out

field.
Omit properties with default values Specifies if you want to omit the properties whose values have not been

specifically defined.
Omit properties with derived values Specifies if you want to omit the properties whose values derived from values

of other properties.
Save profile as Specifies the name under which you want to save the profile.

Related Concepts

Patterns and Templates

Related Procedures

Patterns and Templates

1167

Element Iterator Properties
Template Designer Element Iterator section context menu Properties

Use this dialog box to access properties of the element iterators. The dialog displays the following tabs: Metatype,
Scope Options, Sorting, Output Style and Other. This topic describes the Scope Options tab.

For the description of the Sorting tab, refer to the “Property Iterator Properties” topic. For the description of the
Metatype, Output Style and Other tabs, refer to the “Folder Section Properties” topic.

Scope Options tab
Choose iteration scope from the list.

Iteration scope Description
Collecting elements Use this section to define how the elements are collected. Depending on the selected radio-

button, the dialog displays a different set of controls.

Default If this option is selected, the Search Options section is displayed.

Defined iteration by the elements of the metatype, selected in the
MetaType tab. There are five different options to find out which elements
of the subtree should be included in the generated documentation:

– 'Recurse subpackages': traverses the packages tree searching for
elements of the current metatype.

– 'Recurse Subnodes': searches inside elements.

– 'Include Parent Element': Visits the parent element (the current
element, from which the iteration was initiated). Normally, an iterator goes
through the contents of an element, not the element itself. This option is
for documenting the containing element as well.

– 'Visit Diagrams': Searches for element's references on diagrams as well
as for elements themselves. Used in conjunction with 'Include Shortcuts'.

– 'Include Shortcuts': Searches shortcuts contained in elements.
Customized If this option is selected, the Customized Iteration Scope section is

displayed.

Enables you to specify the expressions that return the first and the
subsequent elements of the iteration: the first expression defines an
element to begin with; the other describes how to get the subsequent
element from the current one. Expressions can be defined in the
Expression Editor using OCL or legacy notation.

Programmed If this option is selected, the Programmed Iteration Scope section is
displayed. You can specify either class and method that returns Collection,
or create an expression in the Expression Editor using the OCL or legacy
notation.

Filter expression Use this field to restrict the search scope to satisfy the filter condition. The filter expression
can contain properties of the element by which the iteration is currently performed, as well
as calls to DG functions returning DG options and template parameters (see the list of DG
functions and variables in the “Documentation Template Designer” section).

1168

Related Concepts

Documentation Template Sections

Related Procedures

Setting Section Properties

Related Reference

Documentation Template Designer
Property Iterator Properties
Folder Section Properties

1169

Export Diagram to Image Wizard
File Export Modeling Image (GIF, JPEG, Bitmap, EMF, SVG)

This wizard lets you save a diagram or selected elements in the specified format.

Option Description
Destination file Use this field to specify the fully qualified name of the resulting image file. You can enter the file

name manually, confirm default setting, or click the Browse button and navigate to a specific
location.

Diagram scope Choose one of the following options: Current, All opened, Selected elements.
Format Select the format of the resulting image from the list of supported formats.
Scale Specify zoom factor. You can select one from the drop-down list, or enter a specific value.
Export heading If this option is checked, the image will be saved together with the diagram title.
Open in viewer If this option is checked, the image will open in the default image viewer.

Related Concepts

Model Import and Export Overview

Related Procedures

Exporting a Diagram to an Image

1170

Export Pattern Conversion Profiles
Window Preferences Patterns Export...

Use the Export Pattern Conversion Profiles dialog box to specify which profiles you want to export to a file and
the file location.

Option Description
Profiles to export Displays the list of available pattern conversion profiles. Check the check boxes against profiles

that you want to export.
Select All Checks the check boxes against all profiles in the list.
Deselect All Unchecks the check boxes against all profiles in the list.
Target directory Specifies the full path to the folder where you want to store the exported file. Click the adjacent

Browse button to open the dialog box, which lets you browse for the folder.

Related Concepts

Patterns and Templates

Related Procedures

Patterns and Templates

1171

Export QA Results To A File
Use the Export QA Results To A File dialog box to save the Audit or Metric results to a file.

Option Description
Save as The location path and name for the new file. Or you can accept the

default: <project file>/out/qa/audit.*. Directories and files that do not
exist will be created in the process.

Type Format of the exported file. Choices include:

Text file, comma separated/tab separated: preferred for use by
spreadsheet programs.

HTML file: single html file that contains a simple table listing
information about the audits.

Summary HTML report: a series of html files that include a graphical
overview and audit statistics grouped by package, class, and so on.

Save in loadable format: *.atbl file, a form that can be imported for
later viewing in the audit results table using the Load Audit Results
command.

Selected rows only If checked, report will include only selected results rows.
Expand nodes (Text and HTML files) Expands nodes, listing the information as separate rows.
Open in browser (HTML files) If checked, file opens automatically in browser when created.
Include documentation (HTML files) If checked, copies of the audit description files from Together are

included in a separate directory within the destination directory.
Select encoding (Summary HTML report) Options include: UTF-8, Cp1251, KOI8-R

Related Procedures

Saving and Loading Metric Results
Saving and Loading Audit Results

1172

Export Wizard: SQL/DDL Script from DB Schema
File Export Modeling DDL/SQL Script

Use this wizard to create an SQL/DDL script from a DB Schema.

Related Reference

Select Generation Options page
Select Generation Objects page
Save to File page

1173

Select Generation Objects page
File Export Modeling DDL/SQL Script Select Generation Objects page

Use this page to specify the source objects and schema file.

Option/Button Sub Options
Project Selects source Data Modeling project.
Schema Select the schema from the list of schemata available in the project.
Objects Selects the schema objects.
Select All Selects all schema objects.
Clear All Clears the selection.

Related Reference

Select Generation Objects page
Save to File page

1174

Select Generation Options page
File Export Modeling DDL/SQL Script Select Generation Options

DBMExportWizard

Use this page to specify conversion options for specific Data Modeling project elements. The following options alter
the presence of some SQL constructs in a generated DDL script.

Option/Button Sub Options
Schema options Pre SQL Generate schema pre SQL

Post SQL Generate schema post SQL
Table options CREATE statement Generate CREATE statements

DROP statement Generate DROP statements
Check constraint Generate table check constraints
Pre SQL Generate schema pre SQL
Post SQL Generate schema post SQL
Storage options Generate RDBMS-specific table storage options

View options CREATE statement Generate CREATE statements
DROP statement Generate DROP statements
Check constraint Generate table check constraints
Pre SQL Generate schema pre SQL
Post SQL Generate schema post SQL
Column list Do not generate unique column names for propagated view

columns (CREATE VIEW "myView" AS SELECT
"myTable.column1" [AS "column1"])

Primary Key options As ALTER TABLE Generate primary key definition in ALTER TABLE statement
As CREATE TABLE Generate primary key definition in CREATE TABLE

statement
As column definition Generate primary key definition in column definition
Constraint name Include constraint name in primary key definition

Column options Default Include DEFAULT in column definition
Check Include CHECK in column definition

Index options CREATE statement Generate CREATE statements
DROP statement Generate DROP statements
Storage Options Generate RDBMS-specific index storage options

Unique constraint options As ALTER TABLE Generate primary key definition in ALTER TABLE statement
As CREATE TABLE Generate primary key definition in CREATE TABLE

statement
As column definition Generate primary key definition in column definition
Constraint name Include constraint name in primary key definition

Foreign key options As ALTER TABLE Generate primary key definition in ALTER TABLE statement
As CREATE TABLE Generate primary key definition in CREATE TABLE

statement
Constraint name Include constraint name in primary key definition

UDT options CREATE statement Generate CREATE statements
DROP statement Generate DROP statements

Miscellaneous Statement delimiter
Quote names
Generate owner
Generate comments

1175

Preview Opens the DDL Preview dialog that displays a preview of the
resulting script.

Related Reference

Select Generation Options page
Save to File page

1176

Save to File page
File Export Modeling DDL/SQL Script Save to File

Use this page to specify the name and location of the target script file.

Option/Button Description
File Specifies the name and location of the target script file.
Open script in editor If selected, the generated script will be open in the SQL editor.

Related Reference

Select Generation Options page
Select Generation Objects page

1177

Find Analyzer Dialog
Window Preferences Modeling QA Source Java QA Builder

Use this dialog box to find an analyzer by the specified string.

Item Description
Choose an analyzer (* = any string) Enter the search string in this text field, using wildcards if necessary.
Matching analyzers This area displays the list of analyzers that match the specified search string.

Note that the matching analyzers are selected by their full names rather than
abbreviations.

Related Reference

QA Source

1178

Frameset Template Properties Dialog Box
Template Designer toolbar Show Template Properties

Use this dialog to view and modify properties of a documentation template.

General tab Model UML Metamodel.
Template type Frameset template.
Template Description Enter description of the template.
Report Title Expression Click the Editor button to open the Edit Expression dialog.
Root Object Metatype Select metatype from the drop-down list.

Frameset Structure Layout The topmost property of the frameset is its Layout, with
radio buttons for selecting Columns or Rows. A
frameset with a row layout divides its window (HTML
frame) into rows. A frameset with a column layout
divides its window into columns.

Frame Name Enter frame name here. The DocGen engine translates
the Frame Name into the name parameter of the
corresponding <frame> tag. You can use that name in
a hyperlink to load the referenced document into the
frame window. The tree in the left pane of the Frameset
Structure tab shows the Frame names.

Percent size Specify the percentage of the frameset’s total space to
be allocated to the child. The total of the sizes of a
frameset’s children should be 100%.

Scrolling Choose scrolling type from the drop-down list.
Source File Name Expression Click the Editor button to open the Edit Expression

dialog and enter the expression. The DocGen engine
evaluates the Source File Name Expression
expression to determine the name of the HTML file that
will be initially loaded into the frame.

Enabling Condition Click the Editor button to open the Edit Expression
dialog and enter the expression, which defines the
enabling contition. The DocGen engine evaluates the
enabling condition, which determines if the frameset is
to be skipped or included in the frameset file.

Delete Press this button to remove the selected frame from the
treeview.

Template Parameters These parameters include:

Parameter Enter the parameter name.
Description Enter optional description.
Default Value Enter optional default value.

Buttons Set Click this button to add a parameter to the list.
Delete Click this button to remove the selected parameter from the list.

Related Concepts

Multi-frame Documentation Templates

Related Procedures

A Typical Scenario of Creating a Template for Multi-Frame Documentation

1179

Generate HTML Documentation dialog box
Project Documentation Generate HTML

Together features a UML documentation wizard that you can use to generate HTML documentation for your projects.

Output path Use this text field to enter the target location of the generated report, or click the chooser button
and specify the target folder in the Choose output folder dialog.

Scope options You can limit the scope of the documentation to a smaller set by choosing a different Scope
option. The Scope section at the top of the dialog has a drop-down list from which you can
choose the parts of the project to be parsed and included in the generated documentation:

All projects in the workspace Generated output includes all projects in the workspace.

It is important to note that documentation generation is not
supported for the workspaces that contain data or business
process projects, and UML projects.

<project> Generated output includes the selected project.
Options settings The Options section of the dialog has options to specify the destination and other optional

actions:

Include diagrams Check to include diagram images in the output.
Include navigation tree Check to include a navigation tree in the output.
Audits Check to include audits into the generated report.

Open in Viewer Check to load the documentation into your external web browser.
Buttons Finish Accepts the input and starts the generate documentation process.

Cancel Cancels your input and closes the dialog box without generating documentation.

Related Concepts

Documentation Generation Overview

Related Procedures

Generating HTML Documentation

1180

Generate Documentation Using Template dialog box
Project Documentation Generate Using Template

Together features a UML documentation wizard that you can use to generate documentation for your projects.

Output path Use this text field to enter the target location of the generated report, or click the chooser button
and specify the target folder in the Choose output folder dialog.

Format Choose an output format from the drop-down list of supported formats.
Template Use this section to choose between the default and custom documentation template.

Default Click this radio button to enable the list of available predefined documentation
templates delivered with Together.

Custom Click this radio button to enable the list of available custom templates and the
chooser button to select the desired user-defined template in the Choose Template
File dialog.

Scope You can limit the scope of the documentation to a smaller set by choosing a different Scope
option. The Scope section at the top of the dialog has radio buttons to indicate which parts of
the project should be parsed and included in the generated documentation:

Project Generated output covers all projects in the
workspace, or the selected project.

It is important to note that documentation
generation is not supported for the workspaces
that contain data or business process projects,
and UML projects.

Current package Generated output includes only the current
package selected in the Model Navigator or in
the Diagram Editor .

Current diagram Generated output for the current diagram that is
in focus in the Diagram Editor .

Current package with descendent packages Generated output includes the current package
selected in the Model Navigator and any
descendent packages.

Include This section of the dialog has options to specify the composition of generated output:

Include diagrams Check to include diagram images in the output.
Include navigation tree Check to include a navigation tree in the output.

Open in Viewer Check to load the documentation into your external web browser.
Buttons Finish Accepts the input and starts the generate documentation process.

Cancel Cancels your input and closes the dialog box without generating documentation.

Related Concepts

Documentation Generation Overview

Related Procedures

Generating HTML Documentation

1181

Generate Sequence Diagram dialog box
Context menu Generate Sequence Diagram

To open this dialog box, right-click a method (or function) and choose Generate Sequence Diagram from the context
menu. The Generate Sequence Diagram dialog box lists the classes and namespaces involved in the method
(function) and lets you choose which classes/namespaces to display on the generated sequence diagram.

Fields Name Lists the names of namespaces/classes involved in the method (function).
Show On Diagram Check the namespaces/classes that you want to show on the generated

sequence diagram. All namespaces and classes are selected by default.
However, some classes may not be relevant. To increase the meaningfulness
of the generated diagram, clear the checkboxes that are not helpful in
explaining the sequence of operations.

Show Implementation For the elements that you decide to show in the diagram, check whether to
show the implementation details in the generated sequence diagram.

Buttons OK Generates the new sequence diagram and opens the diagram in a new tab in the Diagram
View.

Cancel Closes the dialog box without generating a sequence diagram.
Help Displays this help topic.

Related Reference

UML 2.0 Interaction Diagrams

1182

Import Wizard: DB Schema from ER Logical Diagram Profile UML
2.0 Project
File Import Modeling DB Schema from ER Logical Diagram Profile UML 2.0 Project

Use this wizard to create a DB Schema from a UML 2.0 project with ER Logical Diagram Profile enabled.

Related Reference

Import Wizard: DB Schema from JDBC

1183

Select Source and Target Objects page
File Import Modeling DB Schema from ER Logical Diagram Profile UML 2.0 Project Select Source
and Target Objects

Use this wizard page to define source classes, target project and target schema file.

Option/Button Description
Source Lets you select logical data model elements found in UML 2.0 projects located in your current

workspace. The selected elements are used as import source.
Target project Lets you select a Data Modeling project where the resulting schema will be created.
Target schema file Specifies the target schema name.

Related Concepts

Data Modeling

Related Procedures

Data Modeling Procedures

Related Reference

Data Modeling Reference

1184

Select Options page
Use this wizard page to define how Together should process specific elements.

Option Description
Create cross table for many-to-many relationship If selected, Together creates a cross table for each many-to-

many relationship found in the source ER Diagram.
Create unique constraints for alternate key group If selected, Together creates unique constraints for each

alternate key group found in the source ER Diagram.

Related Concepts

Data Modeling

Related Procedures

Data Modeling Procedures

Related Reference

Select Source and Target Objects page

1185

Import Wizard: DB Schema from JDBC
File Import Modeling DB Schema from JDBC

Use this wizard to create a DB Schema from a JDBC connection.

Related Concepts

Data Modeling

Related Procedures

Data Modeling Procedures

Related Reference

Data Modeling Reference
DB Schema from JDBC Import Wizard: Select Objects to Import page
Connect to Database Dialog

1186

DB Schema from JDBC Import Wizard: Select Objects to Import
page
Menu Sub Menu Command

Use this page to create a JDBC connection and specify which schemata, tables and views located on the remote
database should be used as import source.

Option/Button Description
Connect Opens the Connect to Database dialog.
Source Lets you select objects from the connected database.
Select All Selects all objects from the connected database.
Clear All Clears the selection.
Target project Selects a target Data Modeling project where the source object will be imported.

Related Concepts

Data Modeling

Related Procedures

Data Modeling Procedures

Related Reference

Data Modeling Reference
Connect to Database Dialog

1187

Connect to Database Dialog
File Import Modeling DB Schema from JDBC Connect

Use this dialog to specify JDBC database connection options and connect to the database.

Option/Button Description
Source Selects the data source.
New Creates a new connection profile for the selected data source.
Delete Deletes the selected connection profile.
Name Specifies the name for the connection profile.
JDBC driver Specifies the name of the JDBC driver associated with the selected data source.
Lib(s) location Defines location of the JDBC libraries.
URL Defines the JDBC URL supported by the selected data source.
URL pattern Defines the pattern for the JDBC URL.
Prefix Specifies the prefix of the JDBC URL.
Database name Specifies the database name.
Host Specifies the database server host.
Port Specifies the database server port.
User name Specifies the name of the user authorized to access the database.
Password Specifies the user's password.
Apply Saves the selected connection profile.
Test Attempts to connect to the database specified in the selected connection profile.

Related Reference

Import Wizard: DB Schema from JDBC

1188

Import Wizard: DB schema from SQL script
File Import Modeling DB schema from SQL script

Use this wizard to create a DB Schema from an SQL script.

Related Concepts

Data Modeling Overview

Related Reference

Select Objects to Import page
Connect to Database Dialog

1189

Select Objects to Import page
File Import Modeling DB Schema from SQL script

Use this page to specify the source SQL script, database server, target project and the target schema name.

Option/Button Description
File Specifies the path to the file containing source SQL script.
Open script in editor If selected, the imported script will be open in the SQL editor.
Server Selects the server type from the list of available database servers.
Target project Selects a target Data Modeling project where the target schema file will be stored.
Target schema name Specifies the target schema name.

1190

Import Pattern Conversion Profiles
Window Preferences Patterns Import...

Use the Import Pattern Conversion Profiles dialog box to specify which profiles you want to import to a file, and
the file location.

Option Description
File containing profiles Selects the file with the profiles that you want to import. Click the adjacent Browse button

to open the dialog box, which lets you specify the folder containing the file.
Select profiles to import Displays the list of pattern conversion profiles stored in the specified file. Check the

check boxes against profiles that you want to import.
Select All Checks the check boxes against all profiles in the list.
Deselect All Unchecks the check boxes against all profiles in the list.

Related Concepts

Patterns and Templates

Related Procedures

Patterns and Templates

1191

Import Together Project Wizard
File Import Modeling Together Project

Use this dialog box to migrate a legacy Together project to the current version of Together.

Migrate legacy Together project to Together <version>
Specify the Together project file and select the migrations type.

Item Description
Project Path Click the Browse button to navigate to a specific source project.
Diagram folders This read-only area displays the folders of the legacy project that contain

diagrams.
Design elements storage policy Use the radio-buttons in this section to define how to handle the design elements

(as standalone or as file mates).

The same as in the original project If this option is selected, the settings of
the original project are preserved. The
existing standalone design elements
remain standalone. The new design
elements are created according to the
project settings.

Force creating design elements in
separate files

If this option is selected, all existing
design elements are converted to
standalone. All new design elements
are created as standalone.

Migration type Choose one of the possible ways to process the project roots.

Merge all roots contents into the new
project

Click this radio-button to create a
single project from a multi-rooted
source project.

Create a separate project for each
root

Click this radio-button to create a
Together project for each root.

Merged project name
This page will be displayed if the Merge all roots contents into the new project option is selected.

Item Description
Project name Enter the name of the resulting project. The default project name is constructed from the names

of the last two folders of the source project file location.

Create a set of Together <version> projects
This page will be displayed if the Create a separate project for each root option is selected.

Item Description
Root location Displays the list of roots of the source project.
Together <version> project name Displays the default name of the resulting project for the selected root. The

default name is constructed from the package prefix, if any. If there is no

1192

package prefix, the project name is created from the names of the last two
folders of the root location. Edit the project name as required.

Content type Displays information about the type of contents in the selected root (design
files or source code).

Diagram format Displays information about the diagram format in the selected root, if any.
Decision Select the way to handle information of the selected root. If the root contains

design files, you can either copy them to the target location or skip the root. If
the root contains source code files, you have the choice to copy it as is, copy
and convert it to the design language, or skip the root.

Master project
This page is displayed when multiple projects are created.

Item Description
Master Project Name Specify the name of the master project that contains references to all projects created in

the course of migration. The default name of the master project is based on the source
project name.

The master project is created to demonstrate the contents and structure of the source
project. It is read-only and not intended for editing. Use the real projects to create or edit
contents, and establish dependencies.

Related Concepts

Together Interoperability and Migration

Related Procedures

Importing Legacy Projects

1193

Manage Traces Dialog
Use this dialog to define traces from a model element selected in the Diagram editor or Model Navigator to
requirements.

Option/Button Description
CaliberRM Selects one or more requirements in the CaliberRM projects tree.
RequisitePro Selects one or more requirements in the RequisitePro projects tree.
Selected Displays the requirements currently traced from the model element, as well as any requirements

you added to the tab using the Add button.
Add Adds the requirements selected on the CaliberRM or RequisitePro tabs to the Selected tab.
Remove Removes the selected requirements from the Selected tab.
Remove All Removes all requirements from the Selected tab.

Related Concepts

Requirements Management

Related Procedures

Creating Traces from Requirements to Model Elements
Deleting Traces

1194

Modeling Preferences
Window Preferences Modeling

Use these preferences to change startup, deletion, error reporting, ignored folders, and team sharing options.

Copy/Paste Tab

Option Description
Show warning about relationships when elements
copied

Before elements are pasted into another package,
prompts for a confirmation that relationships between
elements will be mapped to the target package. This
option is On by default.

Deletion Tab

Option Description
Show confirmation when element is about to be deleted Prompts for a confirmation before an element is deleted.
On pressing 'Delete' key always delete from:
Model Element is deleted from both model and view.
View only Element is deleted from view, but remains in model.

Ignored Folders Tab
Use this tab to specify the folders you want Together to ignore. Usually this list contains CVS, bin, lib and doc
directories. Ignored folders are not parsed, so no diagram will be generated for them.

Button Description
Add Opens the name field so you can enter a new folder.
Remove Removes the selected folder.

Referenced projects Tab

Option Description
Don't show referenced projects content under referring
project node.

When this option is On, the content of the referenced
project is not shown in the model tree of referring project.
Note that in this mode it is impossible to copy content
form the referenced project to referring one. This option
is Off by default.

Team/Compare Tab
Use this tab to specify how you want to work with Team/Compare menus and version control in the Model Navigator.

1195

Option Description
Include diagram folders in Team/Compare This option has an impact when the design and Java roots differ.

When it is checked, Team/Compare (context menu) actions respect
both folders (merged, seen as a single model node known as
package in the Model Navigator). When it is unchecked, only folders
from Java root are considered.

If you do not store diagram elements in CVS, you should leave this
option unchecked. When your diagram folders are in CVS alongside
the folders from the Java root and you want to synchronize both of
them with one action, you should check this option. A package in the
Model Navigator is a logical view of two physical locations. One is the
real directory in the project and the other is the directory under the
model directory (named Together Model by default) where the
Together diagrams are stored (these are updated automatically by
Together and probably do not need to be shared).

Default state is Off

Related Procedures

Diagrams

Related Reference

Preferences

1196

New MDA Ant Task
Use the New MDA Ant Task wizard to add a new Ant task to your Composite transformation.

In This Section
Choose Data Source Type
Use the Choose Data Source Type page of the New MDA Ant Task wizard to choose how you want to
provide parameters required to generate the Ant script for your task.

Select Launch Configuration
Use the Select Launch Configuration page of the New MDA Ant Task wizard to select which parameters
from the existing launch configuration you want to use for your task.

Select Launch Configuration Type
Use the Select Launch Configuration Type page of the New MDA Ant Task wizard to select the launch
configuration type matching the transformation that you want to execute using the Ant task.

Preview
Use the Preview page of the New MDA Ant Task wizard to display the resulting Ant script fragment
generated for your task.

1197

Choose Data Source Type
Use the Choose Data Source Type page of the New MDA Ant Task wizard to choose how you want to provide
parameters required to generate the Ant script for your task.

Item Description
Enter data manually Indicates that you want to provide the required parameters manually.
Select existing launch configuration Indicates that you want to copy the required parameters from an existing

launch configuration.

Related Concepts

Model Transformation Support

Related Procedures

Creating a Composite Transformation

Related Reference

QVT Ant Tasks
Model-To-Text Ant Tasks

1198

Select Launch Configuration
Use the Select Launch Configuration page of the New MDA Ant Task wizard to select which parameters from
the existing launch configuration you want to use for your task.

Note: This wizard page is displayed if you choose the Select existing launch configuration option on the Choose
data source type wizard page.

Item Description
Configurations Displays the list of MDA launch configurations available in your workspace.

Related Concepts

Model Transformation Support

Related Procedures

Creating a Composite Transformation

Related Reference

QVT Ant Tasks
Model-To-Text Ant Tasks

1199

Select Launch Configuration Type
Use the Select Launch Configuration page of the New MDA Ant Task wizard to select the launch configuration
type that you want to use for your Ant task.

Note: This wizard page is displayed if you choose the Enter data manually option on the Choose data source
type wizard page.

Item Description
Configurations Displays the list of available MDA launch configuration types.
Enter launch configuration data... Displays the Edit launch configuration properties dialog box for the selected

transformation type.

Note: The Edit launch configuration properties dialog box is used here only to collect required task parameters;
actually, no real launch configuration is created.

Related Concepts

Model Transformation Support

Related Procedures

Creating a Composite Transformation

Related Reference

QVT Ant Tasks
Model-To-Text Ant Tasks

1200

Preview
Use the Preview page of the New MDA Ant Task wizard to display the resulting Ant script fragment generated for
your task.

Related Concepts

Model Transformation Support

Related Procedures

Creating a Composite Transformation

Related Reference

QVT Ant Tasks
Model-To-Text Ant Tasks

1201

MDL Import Wizard
File Import Modeling Project from MDL file

The MDL Import Wizard is used to import MDL projects created in another application for use in Together.

Option/Button Description
Add/Add Folder Specifies the name (or names) of the Rational Rose project file (or files)

to be imported (several model files can be imported at once).
Remove Deletes the selected file or files from the Paths list.
Remove all Deletes all files from the Paths list.
Scale factor Specifies the element dimensions coefficient. Default value is 0.3.
Convert Rose default colors If this option is selected, the default Rational Rose colors will be replaced

with the default Together colors. Deselected by default.
Preserve diagram nodes and bounds If this option is selected, user-defined bounds are preserved in the resulting

diagrams. Otherwise, the default values are applied. Deselected by
default.

Convert Rose actors If the option is selected, the Rose actors are mapped to Together actors.
Deselected by default.

Generate source code If this option is selected, a new Java Modeling project is created; otherwise,
a Modeling project is created from imported MDL.

Related Concepts

Model Import and Export Overview

Related Reference

MDL Projects Import Options

1202

MDX Import Wizard
File Import Modeling Project from MDX file

The MDX Import Wizard is used to import MDX projects created in another application for use in Together.

MDX Import Options page

Option Description
Path to the MDX file Specifies the name of the IBM® Rational® XDE .mdx file.
Scale factor Specifies the element dimensions coefficient. The default value is 0.03.
Preserve diagram nodes and bounds If this option is selected, user-defined bounds are preserved in the resulting

diagrams. Otherwise, the default values are applied. Deselected by
default.

Convert Rose XDE colors If this option is selected, the Rational Rose XDE colors will be replaced
with the default Together colors. Deselected by default.

1203

Model Search and OCL Model Search
Search Model

Model Search Tab
This tab enables you to search the current diagram or all opened diagrams for the specified string in a certain scope.
You can create search strings using wildcards and regular expressions.

OCL Model Search Tab
Together allows you to compose model queries using OCL syntax and use them in model search functionality. For
example, to search for all UML 2.0 classes that have the stereotype MyStereotype, in the Context field, enter:

uml20::classes::Class
And in the Invariant field, enter:

self.stereotypes->includes('MyStereotype')

Related Procedures

Searching Model Elements
Searching Model with OCL queries

1204

New Together Project Wizards
This section describes the common pages of the Wizards used to create new Together modeling projects, and
language-specific pages for C++ and IDL projects.

In This Section
New Project Wizard Common Pages
This topic describes the options for using the common pages of the New Project Wizard.

New project Wizard C++ Language-Specific Options
You can specify the C++ language-specific options through the New Project Wizard.

New project Wizard IDL Language-Specific Options
You can specify the IDL language-specific options through the New Project Wizard.

New project Wizard Data Modeling Specific Options
You can specify the data modeling options through the New Project Wizard.

Convert MDL Wizard
You can base a design project on an existing MDL model.

1205

New Project Wizard Common Pages
File New Project Modeling < Project type>

These pages are common for the majority of project types provided by Together. For more information, refer to the
topics that describe project settings for the specific project types.

Modeling Project page
Project name Use this text field to enter the project name.
Use default location If this option is checked, the new project is created in the current workspace.
Location Use this field to define the project location. This field is only available when the Use default

location option is not checked.

Modeling Settings page
Metamodel These controls are only available for Java projects. You can

choose the UML version to comply with. The default option is
UML 2.0.

Start with Diagram If this option is checked, the new project starts with the default
package diagram. If this option is not checked, you can select
the type of starting diagram from the drop-down list and specify
its name.

Store package properties in package diagram
files

If this option is checked, all properties of the package diagram,
both visual and semantical, are preserved in the
default.txvpck diagram file. If this option is not checked,
only diagram-specific information (visual information, such as
layout) is retained in the default.txvpck diagram file, while
settings that you treat as package properties (semantical
information, such as descriptions and custom properties) are
moved from the default.txvpck file into the
default.txaPackage file. Turning this option off allows you
to track your package changes using version control. This
option is on by default.

Create design elements in separate files If this option is checked, the design elements are created as
standalone. If this option is not checked, all design elements
are stored in one file as file mates.

Profiles page
Available Profiles Displays the list of available profiles with checkboxes. The Profile Description field displays

a brief description of the selected profile.
Select all Checks all available profiles.
Deselect all Unchecks all profiles.
Set Defaults Resets profiles to the default settings

Related Procedures

Creating a Project

Related Reference

New project Wizard C++ Language-Specific Options
New project Wizard IDL Language-Specific Options

1206

New project Wizard C++ Language-Specific Options
File New Project Modeling C++ Modeling Project

Access the properties for your existing project via Project Properties or Project context menu Properties.

Tab Description
Project Source Path Use this tab to define projects paths.

Use as a source folder Use this button to add the selected
package to build path. Add the folder
corresponding to the package to the build
path if the package is the root of packages
and source files. Entries on the build path
are visible to the compiler and used for
building.

Remove from build path Children of the folder will not be seen by
the compiler anymore and will not be
included when building the project.

Toggle Read-Only Status Use this button to make selected roots
read-only or to clear the read-only
attribute.

Make Default Root Use this button to choose the selected
folder as the default root. This root is used
as a target container when automatically
creating new files.

Exclude/Include Use these alternative buttons to make the
folder contents invisible or visible to the
compiler.

Configure inclusion and exclusion
filters

Use this button to create the inclusion and
exclusion filters instead of including and
excluding each folder or file manually.

Configure entry point Use this button to add selected files from
a package to the project in the Configure
Entry Points dialog. The dialog displays
a model tree with the check boxes for
each file or folder. If a node is checked, it
is considered an entry point.

If a root is added to the project, all
*.cpp files are automatically included in
the project, but the header files should be
added individually.

Link additional source to project Use this button to open the Link
Additional Source dialog and add the
sources that reside outside of the project.

Include Paths Use this tab to include search paths to the project.

Include search paths Folders in this area are included in the search path.
Add Click this button to add a folder to the project search path.

Enter the path to the text field, or use the Browse button
to locate the specific folder.

Edit Click this button to modify the include folder.
Remove Click this button to delete the selected folder from the path.

C++ Processing Settings Use this tab to define C++ specific settings.

1207

C++ generating class name prefix Each new class name starts with the
specified prefix.

C++ generating definition file extension Each new class has the specified
extension.

C++ generating file name prefix Name of the file that contains C++
classes starts with the specified prefix.

C++ generating file extension File name has the specified extension.
Support wchar_t as keyword If this option is checked, the compiler

recognizes the keyword wchar_t as a
data type.

Enable messenger If this option is checked, the decorators
describing compilation errors will
display in the Problems View and
Resource Navigator.

Package filter Enter the names of the packages that
you would like to filter out.

Skip standard includes If this option is checked, standard
includes are ignored.

Predefined macros Specify the list of predefined macros,
which will be available for the whole
project.

Preinclude file name Specify the name of the preinclude file
(if any) to make its contents available for
all participants of the project.

New file default head comment Specify the text that will be displayed in
the generated C++ files.

Recognize free comments as doc If this option is checked, the Javadoc
comments will be recognized.

C++ dialect support Select a C++ dialect from the list. The
possible options are: GNU, MS, or pure
C++.

Add CDT features to project If this option is checked, CDT features become available in the project. You can
access these features in the project properties dialog.

Related Procedures

Creating a Project

Related Reference

C++ Projects

1208

New project Wizard IDL Language-Specific Options
File New Project Modeling IDL Modeling Project

Access the properties for your existing project via Project Properties or Project context menu Properties.

Tab Description
Project Source Path Use this tab to define projects paths.

Use as a source folder Use this button to add the selected package
to the build path. Add the folder
corresponding to the package to the build
path if the package is the root of packages
and source files. Entries on the build path
are visible to the compiler and used for
building.

Remove from build path Children of the folder will not be seen by the
compiler anymore and will not be included
when building the project.

Toggle Read-Only Status Use this button to make selected roots read-
only or to clear the read-only attribute.

Make Default Root Use this button to choose the selected folder
as the default root. This root is used as a
target container when automatically
creating new files.

Exclude/Include Use these alternative buttons to make the
folder contents invisible or visible to the
compiler.

Configure inclusion and exclusion
filters

Use this button to create the inclusion and
exclusion filters instead of including and
excluding each folder or file manually.

Link additional source to project Use this button to open the Link Additional
Source dialog and add the sources that
reside outside of the project.

Include Paths Use this tab to include search paths to the project.

Include search paths Folders in this area are included in the search path.
Add Click this button to add a folder to the project search path.

Enter the path to the text field, or use the Browse button to
locate a specific folder.

Edit Click this button to modify the include folder.
Remove Click this button to delete the selected folder from the path.

IDL Processing Settings Use this tab to define IDL-specific settings.

Preinclude file name Specify the name of the preinclude file (if any) to
make its contents available for all participants of
the project.

Show typedefs as classes If this option is checked, typedefs display as
classes in diagrams.

Skip standard includes If this option is checked, standard includes are
ignored.

Show natives as classes If this option is checked, all types marked as
natives display as classes in diagrams.

Rename file when renaming class If this option is checked, the container file is
renamed together with its class.

1209

Warn about not found include files If this option is checked, a warning is displayed
for the missing files.

Use preprocessor If this option is checked, the existing macros are
opened and includes are attached.

Predefined macros Specify the list of predefined macros that will be
available for the whole project.

Copy non-doc comments If this option is checked, free comments are
copied or moved together with the elements
located next to them.

Recognize free comments as doc If this option is checked, the Javadoc comments
will be recognized.

Related Procedures

Creating a Project

1210

New project Wizard Data Modeling Specific Options
File New Project Modeling Data Modeling Project

Access the properties for your existing project via Project Properties or Project context menu Properties.

Option Description
Server Choose the target database server to which the physical data model is bound.
Default schema If this option is checked, the default schema with the specified name will be created during project

creation.

If this option is not checked, the project will be created without a schema. You can add a schema
later using the New command of the project context menu.

Schema name This field is only available when the Default schema option is checked. Use this text field to
specify the name of the default schema.

Related Procedures

Creating a Data Modeling Project

1211

Convert MDL Wizard
Use this wizard to create a design project around an existing IBM Rational Rose (MDL) model. The wizard is invoked
by the Design Projects Convert from MDL template of the New Project dialog box.

Paths section

Button Description
Add Adds one model file to the Paths section. Press this button to open the Select Model File dialog box,

navigate to the desired model file and click Open.
Add Folder Adds all model files in the selected folder. Press this button to open the Browse for Folder dialog

box, navigate to the desired folder that contains the model files and click OK.
Remove Press this button to delete the selected entry from the Paths section.
Remove all Press this button to delete all model files from the Paths section.

Options section

Option Description
Scale factor Specify the element dimensions coefficient. By default, the scale factor is 0.3.
Convert Rose default colors If this option is checked, the default Rational Rose will be replaced with the

default Together colors.
Preserve diagram nodes bounds If this option is checked, user-defined bounds are preserved in the resulting

diagrams. Otherwise, the default values are applied.
Convert Rose actors This options enables you to choose mapping for the Rose classes with actor-

like stereotypes (Actor, Business Actor, Business Worker, Physical Worker). If
the option is checked, the Rose actors are mapped to Together actors. If the
option is not checked, the Rose actors are mapped to the classes with the Actor
stereotype.

Related Procedures

Importing a Project in IBM Rational Rose (MDL) Format

Related Reference

Together Projects

1212

Print Audit dialog box
Audit results pane Print button

This dialog box enables you to print selected sets of audit report results to the specified printer. The dialog box is
invoked from the audit results report view.

Select View Choose the scope of the results to print using the Select View list box. Audit results display
in tabbed-pages in the audit results report view. You can group and ungroup the results using
the Group by command on the report view context menu.

Unless the results have been grouped using the Group by command, the Active Group
option is not enabled in the dialog. The possible view options are:

All Results: If the results are grouped, choosing All Results prints a report for all groups in
the current tabbed-page. If the results are not grouped, all results print for the current tabbed-
page.

Active Group: If the results are grouped, you can select a group in the current tabbed page
to print a report for the selected group.

Selected Rows: You can select single or multiple rows in the audit results report view.
Choosing Selected Rows prints a report for such selections.

Print zoom Type in a zoom factor for the printout. By default, the zoom factor is set to 1.
Fit to page Check this option if you want to print the results on a single page. If checked, the Print zoom

field is disabled.
Preview Click the down arrow to show the print preview page.
Preview zoom Use the Preview zoom (auto) slider to set the preview zoom. The current value of the zoom

factor is displayed to the left of the slider.
Auto preview zoom Check this option to fit the image to the preview window.
Buttons
Print Click Print to send the selected audits report to the default printer. Use the down arrow to

choose the Print dialog command, which enables you to configure the printer options.
Cancel Click to close the dialog box without printing the audits report.
Help Clicking Help opens this page.

Related Procedures

Viewing Audit Results
Printing Audit Results

1213

Print Diagram Dialog Box
File Print

This dialog box enables you to print selected diagrams to the specified printer. The dialog box is invoked by
choosing File Print from the main menu with a diagram open in the Diagram View.

Print diagrams From this list box, choose the diagrams to be printed. The possible options are:

Active diagram

Active with neighbors (all diagrams within the same namespace)

All opened diagrams

All diagrams in the model
Print zoom Enter a zoom factor for the printout. By default, the zoom factor is set to 1.
Fit to page Check this option if you want to print the diagram on a single page. If checked, the Print zoom

field is disabled.
Preview Click the down arrow to show the print preview page.
Preview zoom Use the slider to set up the preview zoom. The current value of the zoom factor is displayed

to the left of the slider.
Auto preview zoom Check this option to fit the image to the preview window.
Print Press this button to send the selected diagrams to the default printer. Use the down arrow

to choose the Print dialog box command, which enables you to configure the printer options.

Related Procedures

Printing Diagrams

1214

Print Dialog
File Print

Option/Button Description
Current Prints only the current diagram.
Current with subdiagrams Prints the current diagram and, recursively, any other diagram it contains.
All opened Prints all diagrams currently open in the Diagram editor.
All in Model Prints all diagrams open in the current Model.
Print Opens the standard Print dialog from which you can select and setup your printer.
Preview Expands the dialog to display the diagram as it will be displayed when printed (see

below).
Print Options... Displays the Print Preferences dialog. For more information, see “Print Preferences.”

Preview Dialog

Option/Button Description
Scale Use this option to obtain the required magnification in the Preview pane

of the Print dialog box.
Print whole diagram as an image Select this option to print the diagram as an image.
Print diagram as black and white image Select this option to print the diagram in black and white.

Related Reference

Print Preferences
Printing Diagram Elements

1215

Project Properties
Project Properties

You can modify the Together Project properties using the Properties dialog box. In the Model Navigator or in the
Navigator, right-click a project and choose Properties on the context menu.

Among the general properties for a project, there are some properties specific to Together projects:

Open this property page... to...
Model path — Define the name of the model folder used to store diagrams

and design elements.

— Enable cross-project references in the list of imported
projects.

QVT Settings — Specify the Java source folder that is used for storing Java
code generated by QVT Builder. This page is available for
transformation projects only.

Profiles — Select profiles to be used in the project.
QA Model — View or modify the sets of audits and metrics to be used in

the project. Note that you can only change sets of audits and
metrics if you check the Override workspace settings check
box.

QA Builder Properties — View or modify the set of audits that is used during your
source project build. Note that you can only change the set of
audits if you check the Enable project specific settings check
box.

Store package properties in package diagram
files

— Preserves all properties of the package diagram, both visual
and semantical, in the default.txvpck diagram file. If this
option is not checked, only diagram-specific information (visual
information, such as layout) is retained in the
default.txvpck diagram file, while settings that you treat as
package properties (semantical information, such as
descriptions and custom properties) are moved from the
default.txvpck file into the default.txaPackage file.
Turning this option off allows you to track your package
changes using version control. This option is on by default.
Changing this option from this dialog converts the project files.

Create elements in separate files — Create elements as standalone files. If this option is not
checked, all design elements are stored in one file as file mates.

Sort elements in design files — Enforces sorting of elements in the design and diagram files.
Originally information saved without predefined order. Thus it
was quite possible that minor change caused subsequent
revisions of a file to look very different if compared as plain text
or XML. If this option is checked information is ordered on save.

Note: normally this is not needed and also it may take extra
CPU time. Please don't change unless you clearly understand
the implications.

1216

Related Concepts

UML Profiles

Related Reference

QVT Settings
QA Builder Properties

1217

Project Specific Configuration
Use the Project Specific Configuration dialog box to select a C++ or Java project for which you want to configure
QA Builder properties.

Item Description
Select the project to configure Lists projects in your workspace that contain code supported by the

respective QA Builder.
Filter project with no project specific settings Check this check box if you want to hide projects that contain

project-specific settings.

Related Concepts

Quality Assurance

Related Reference

QA Source

1218

Property Iterator Properties
Template Designer Property Iterator section context menu Properties

Use this dialog box to access properties of the property iterators. The dialog displays the following tabs: Iteration
Scope, Sorting, Output Style and Other. This topic describes the Iteration Scope and Sorting tabs. For the
description of Output Style and Other tabs, refer to the “Folder Section Properties” topic.

Iteration Scope tab
Choose an iteration scope from the list. Depending on your choice, the dialog displays different controls.

Iteration scope Description
All User-Defined Properties Iterates over the properties that are not described in the metamodel.

Exclude already iterated
properties

If this option is checked, all properties that were
already iterated for the current element are
skipped.

Iterate only unknown
properties

If this option is checked, only those properties
that were not included in the metamodel are
included.

Filter expression Use this field to restrict the search scope to satisfy
the filter condition. Expressions can use DG
Variables available inside Property Iterators.
Refer to “DG Variables” reference for details.

Example of a filter expression for Property
Iterator:

context: OclAny
body: (getDGVariable
('curPropertyFullName') <>
'Stereotype') and (getDGVariable
('curPropertyFullName') <>
'Visibility')
Click the editor button to open the Expression
editor.

Set of properties These are properties that belong to the metatype of the parent element iterator. A
property iterator can iterate over multiple properties. Use CTRL + CLICK to select
multiple properties from the Available properties list, and then use the double-
arrow button to move these properties to the Selected properties list. You can
change the order in which the properties are documented by arranging the
properties in the Selected properties list.

Instances of a single property These are properties that can have multiple values, for example, @see or
@author. Use the Filter expression to restrict the search elements that satisfy the
filter properties.

All properties Iterates by all properties defined for the current element metatype (only properties
described in the metamodel are iterated). Use the Filter expression to restrict the
search elements that satisfy the filter properties.

Sorting tab
Use this tab to specify the order in which the elements are to be searched and thus documented.

1219

Option Description
Sorting mode The following options are available: none, by name, by value, by key expression.
Reverse order Elements are always documented in ascending order. Check the Reverse scope order box to list

elements in descending order.

Related Concepts

Documentation Template Sections

Related Procedures

Setting Section Properties

Related Reference

Folder Section Properties
DG functions in Formulae Expressions
DG Variables

1220

QA Builder Properties
Project Properties QA Builder Properties

Use the QA Builder Properties dialog box if you want to customize the workspace-level set of audits for the QA
Builder to suit your C++ or Java project needs.

Item Description
Run incremental QA builder Check this option if you want to enable the incremental QA builder. Using the

incremental project builder allows you to define project-specific QA settings.
Enable project-specific settings Check this option if you want to override QA builder settings defined at the

workspace level.
Configure Workspace Settings Displays the QA Builder Preferences dialog box, which lets you change QA

builder settings defined at the workspace level.
Current set Displays the name of the current QA Builder set.
Load set of options from the file Opens the Choose configuration file dialog box, which lets you load a file

containing a QA set (*.qa).
Save set of options to a file Opens the Choose configuration file dialog box, which lets you save current

QA set to a file (*.qa).
Expand all nodes Expands all categories.
Collapse all nodes Collapses all categories.
Select all Selects all categories and all elements within categories. Selected categories

will be included in the current QA set.
Clear all Deselects all categories and all elements. Deselected categories will not be

included in the current QA set.
Find an analyzer Opens the Find Analyzer dialog box, which lets you quickly find a necessary

analyzer in any category.
Property Displays the properties of the selected element used in the calculation of the

audit.
Value Click a row under Value to edit the property's value.
Restore Defaults Restores the selection to default settings.

Related Concepts

Quality Assurance

Related Reference

QA Model
Find Analyzer Dialog
Project Specific Configuration

1221

QA Search
Right-click in the Audit or Metric view Search In...

Use the QA Search dialog box to search within Audits View or Metrics View.

Audit Search Options

Option Description
Search in Narrow your search to one of the following: Severity of audit result, General description of audits, Name

of resource that caused the violation, Path location of the above resource, Specific line the problem
occurred on.

Direction Starting from the currently selected line, search moves in the direction chosen.
Search The text you want to locate. This drop-down list includes previously searched for strings.

Metric Search Options

Option Description
Search in Together searches according to the name of the resource.
Direction Starting from the currently selected line, search moves in the direction chosen.
Search The text you want to locate. This drop-down list includes previously searched for strings.

Related Reference

Audit View
Metric View

1222

QVT Settings
Use the QVT Settings page of the Project Properties dialog box to specify if you want to generate Java code for
your MDA transformation project, and choose a Java container where you want to store the code.

Item Description
Generate Java code Specifies if you want to generate Java code for your MDA transformation project.
Java source container Specifies a Java container to store your code.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Text Transformations

Related Reference

QVT Builder

1223

Run
Use the Run dialog to create, manage, and run configurations.

In This Section
Model-To-Text Application
Use the Model-To-Text Application page of the Run or Debug dialog box to create, manage, and run
(debug) configuration for your compiled Model-To-Text transformation.

Model-To-Text Transformation
Use the Model-To-Text Transformation page of the Run dialog box to create, manage, and run
configuration for your Model-To-Text transformation.

QVT Interpreter
Use the QVT Interpreter page of the Run dialog box to create, manage, and run configuration for your
transformation, which runs using the QVT Interpreter.

QVT Transformation
Use the QVT Transformation page of the Run dialog box to create, manage, and run configuration for your
QVT transformation.

XSL Transformation
Use the XSL Transformation page of the Run dialog box to create, manage, and run configuration for your
XSL transformation.

Launch BPMN Simulation
Describes the BPMN simulation run parameters.

1224

Model-To-Text Application
Run Run... or Debug... Model-To-Text Application

Use the Model-To-Text Application page of the Run or Debug dialog box to create, manage, and run (debug)
configuration for your compiled Model-To-Text transformation.

Transformation tab

Item Description
Transformation file Specifies the transformation file. The adjacent Browse button opens the

Select Transformation dialog box which, which lets you choose the file
in your workspace.

Source model URI Specifies the URI of the source model.
Target folder Specifies the folder where you want to store the transformation results.

The adjacent Browse button opens the Select Folder dialog box, which
lets you choose the folder in your workspace.

Refresh target folder on debug events Specifies if you want to monitor changes in the target folder during the
debugging process.

Workspace tab

Item Description
Projects used Specifies projects that you want to add to the temporary debugging workspace.

Related Concepts

Model Transformation Support

Related Reference

QVT Language

1225

Model-To-Text Transformation
Run Run... Model-To-Text Transformation

Use the Model-To-Text Transformation page of the Run dialog box to create, manage, and run configuration for
your Model-To-Text transformation.

Transformation tab

Item Description
Transformation file Specifies the transformation file. The adjacent Browse button opens the Select

Transformation dialog box, which lets you choose the transformation file in your workspace.
Source model URI Specifies the URI of the source model.
Target folder Specifies the folder where you want to store the transformation results. The adjacent

Browse button opens the Select Folder dialog box, which lets you choose the target folder
in your workspace.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Text Transformations

Related Reference

QVT Language
QVT Editor

1226

QVT Interpreter
Run Run... QVT Interpreter

Use the QVT Interpreter page of the Run dialog box to create, manage, and run configuration for your
transformation, which runs using the QVT Interpreter.

Transformation tab

Item Description
Transformation module Specifies the transformation file. The adjacent Browse button opens the Select

Transformation dialog box, which lets you choose the transformation file in your
workspace.

Source model URI Specifies the URI of the source model.
Target type Selects where you want to store the transformation results:

New model Saves transformation output to a new EMF resource with URI
specified in the URI field.

Existing container Adds transformation output to a containment feature (reference)
of an existing model element. Specify the container element in the
URI field, and the provide feature name in the Feature field.
Clicking the Select button displays a dialog presenting all
containment references of the selected element. If the Clear
contents option is checked, all elements contained by the
selected reference will be removed before adding the
transformation output. This checkbox has no effect for the
references with multiplicity 1.

Inplace Directly modifies the transformation input and returns it as the
transformation result (inplace transformation). The URI specified
in the Source model URI field is used as URI of the transformation
output.

URI Specifies the URI of the target model element when you select New model or Existing
container as the target type.

Browse... Opens the Workspace Contents dialog box which, which lets you choose the target
model or model element in your workspace.

Feature Specifies the name of a container within the selected target model or model element
where you want to store the transformation results. Enabled when you select Existing
container as the target type.

Select... Opens a dialog box that allows you to choose the feature from the list of all containment
references of the selected element.

Clear contents Specifies if you want to remove elements specified in the chosen reference before you
store the transformation results. For the references with multiplicity 1, this option has no
effect.

Generate trace file Specifies if you want to generate the trace file for the transformation. If selected, lets you
specify the name and location of the file.

Configuration tab

Item Description
Property Specifies the name of the property that is passed to the transformation.
Type Specifies the property type.

1227

Value Specifies the property value. You can edit this field.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Model Transformations
Applying Model-To-Text Transformations

Related Reference

QVT Language
QVT Editor

1228

QVT Transformation
Run Run... QVT Transformation

Use the QVT Transformation page of the Run dialog box to create, manage, and run configuration for your QVT
transformation.

Transformation tab

Item Description
Transformation module Specifies the transformation file. The adjacent Browse button opens the Select

Transformation dialog box, which lets you choose the transformation file in your
workspace.

Source model URI Specifies the URI of the source model.
Target type Selects where you want to store the transformation results:

New model Saves transformation output to a new EMF resource with URI
specified in the URI field.

Existing container Adds transformation output to a containment feature (reference)
of an existing model element.

Inplace Directly modifies the transformation input and returns it as the
transformation result (inplace transformation). The URI specified
in the Source model URI field is used as URI of the transformation
output.

URI Specifies the URI of the target model element when you select New model or Existing
container as the target type.

Browse... Opens the Workspace Contents dialog box which, which lets you choose the target
model or model element in your workspace.

Feature Specifies the name of a container within the selected target model or model element
where you want to store the transformation results. Enabled when you select Existing
container as the target type.

Select... Opens a dialog box that allows you to choose the feature from the list of all containment
references of the selected element.

Clear contents Specifies if you want to remove elements specified in the chosen reference before you
store the transformation results. For the references with multiplicity 1, this option has no
effect.

Generate trace file Specifies if you want to generate the trace file for the transformation. If selected, lets you
specify the name and location of the file.

Configuration tab
The Configuration tab lists properties defined in your QVT transformation script and allows to specify their values.

Item Description
Property Specifies the name of the property which is passed to the transformation.
Type Specifies the property type.
Value Specifies the property value. You can edit this field.

1229

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Model Transformations
Applying Model-To-Text Transformations

Related Reference

QVT Language
QVT Editor

1230

XSL Transformation
Run Run... XSL Transformation

Use the XSL Transformation page of the Run dialog box to create, manage, and run configuration for your XSL
transformation.

Transformation tab

Item Description
Transformation file (Workspace) Specifies if you want to use the transformation file stored in your workspace.

The adjacent Browse button opens the Select Transformation dialog box,
which lets you choose the transformation file.

Transformation file (File System) Specifies if you want to use the transformation file stored in the file system. The
adjacent Browse button opens the Open dialog box, which lets you choose
the transformation file.

Source model URI Specifies the URI of the source model.
Target file Specifies the URI of the target file. The adjacent Browse button opens the

Workspace Contents dialog box, which lets you choose the file location in
your workspace.

Add Opens the Add dialog box, which lets you add a property to the list of
parameters of your XSL transformation.

Remove Removes the selected property from the list of parameters.

Related Concepts

Model Transformation Support

Related Procedures

Applying Model-To-Model Transformations
Applying Model-To-Text Transformations

Related Reference

XSL Editor

1231

Launch BPMN Simulation
Run Run... Launch BPMN Simulation

Use the Simulation tab of the Run dialog box to specify BPMN simulation run parameters.

Item Description
Name Specifies the name of the run configuration.
Diagram to simulate Lists open diagrams that are available for simulation in the project, and diagrams selected

earlier using the Browse button.
Browse Browse for available diagrams to simulate.
Time format Specifies time format for the run. If you select Natural time, start and end time should be

specified in the format “M/d/y H:m”.
Time unit Specifies time units when Natural time is selected in the Time format list. You can choose

from second, minute, hour, day, week, month, and year. Note that 1 year = 365 days and 1
month = 30 days.

Execution time Specifies start and end time for the simulation run. Select Infinite end time to withdraw end
time restriction.

Animation settings Specifies animation settings including animation speed, animation visualization, and a step-
by-step execution (each step is to be confirmed by a user).

Report settings Specifies the output folder for the report file and whether to open the report in a browser
after simulation is complete.

Related Concepts

Business Process Modeling

Related Procedures

Together Business Process Modeling

1232

Run QA
Context menu QA Source Audits (Metric)

Use the Run QA dialog box to choose resources that you want to process when running quality assurance.

Item Description
Select resources to process Displays the resource tree from which you can choose the resources you want to

process when running quality assurance.
Remember my decision Check this check box if you want to disable this dialog box for the selected project

in the future.
Preferences... Opens the QA Source page of the Preferences dialog box.

Related Concepts

Quality Assurance

Related Procedures

Running Source Code Audits
Viewing Audit Results

1233

Requirement Traces Search Dialog Box
Search Requirement Traces Search

Use this dialog box to search for specific elements that have traces to requirements, or find all traced elements in
the defined search scope.

Option Description
Containing text Provides a space for typing text to search (consider the note below).
Search all traced elements Searches for all traced elements within the specified search scope.
Case sensitive Specifies whether to distinguish between uppercase and lowercase characters when

searching for occurrences of the text typed in the Containing text field.
Regular expression Specifies whether regular expressions are used in the Containing text field.
Available integrations Filters the found traces by the selected requirements vendors (CaliberRM and/or

RequisitePro).
Available attributes Selects in which of the trace attributes the search is performed (server name, project

name or requirement name).

Note: The server field is localhost for all requirements for RequisitePro.
Scope Defines the search scope: Workspace, Selected resources, Enclosing projects

and Working set.
Search Click to find traced elements matching your search criteria. The found elements are

displayed in the Eclipse Search view.

Note: Together compares the search string with the whole contents of each of the trace attributes defined in the
Available Attributes field. Use * and ? wildcards if you want to find traces where the search string is displayed
as a substring of an attribute value. The * symbol stands for any text, ? - for any symbol. For example, if
Server is selected in Available Attributes, the search string *localhost* finds only those traces which
are stored locally.

Related Concepts

Requirements Management

Related Reference

Searching for Traced Elements

1234

Select element dialog box
This dialog box displays a tree view of the available contents within your project. Expand the project nodes to reveal
the nested classes, select the required element, and click OK when ready.

This dialog box belongs to a general group of selection dialogs where you can choose interactions, operations,
ancestor classes, instantiated classes for the objects, and so on. This dialog opens when you press the chooser
button in a field of the Properties View, or when More is selected from the Choose Class or Choose Method menu
nodes.

Related Procedures

Instantiating a Classifier
Working with a Collaboration Use

1235

Selection Manager
This dialog belongs to a general group of selection dialogs where you can select elements from the available contents
and add them to a certain destination scope. All Selection Manager dialogs have a similar structure and varying title
strings.

Dialog title: The title of the dialog varies depending on the way it is invoked.
It displays the string that corresponds to the invoking object or
property.

Model Elements tab or Diagram elements tab: The pane on the left of the dialog displays the content available
in your project. You can use the explorer to navigate to the
element and select it for inclusion in the pane of values returned
by the dialog to the invoking object.

Existing and/or ready to add: This pane displays two kinds of data:

Values already existing and passed from the invoking object, if
any.

Values of the selections you have added from the left-hand pane,
if any.

Add: Enabled when an element is selected in the left-hand pane. Adds
the selected element to the right-hand pane.

Remove: Enabled when you select an item in the right-hand pane.
Removes the selected item from the pane. All removed values or
objects are removed from the invoking property or diagram upon
clicking OK.

Remove All: Enabled when items are present in the right-hand pane. Removes
all items from that pane. All removed values or objects are
removed from the invoking property or diagram upon clicking OK.

Related Procedures

Creating a Shortcut
Hyperlinking Diagrams
Hiding and Showing Model Elements

1236

Static Section Properties
Template Designer Static section context menu Properties

Use this dialog box to access properties of the static sections. The dialog displays the only Settings tab.

Item Description
Enable condition An enable condition for turning this section on or off. Use the Expression editor to specify an

enable condition using the OCL or legacy notation.
Disabled Check this option to skip the section.

Related Concepts

Documentation Template Sections

Related Procedures

Setting Section Properties

1237

Template Properties Dialog Box
Template Designer toolbar Show Template Properties

Use this dialog to view and modify properties of a documentation template.

General tab

Option / Button Description
Model UML Metamodel.
Template type Documentation template.
Template Description Enter description of the template.
Report Title Expression Click the Editor button to open the Edit Expression dialog.
Root Object Metatype Select metatype from the drop-down list.
Formatting Template Specify the path to the Microsoft Word document whose styles should be used as

formatting styles.
Headers and Footers Report Header If the option is checked, the report header is included in the generated

output.
Report Footer If the option is checked, the report footer is included in the generated

output.
Page Header If the option is checked, the page header is included in the generated

output.
Page Footer If the option is checked, the page footer is included in the generated

output.

Page Settings tab

Option / Button Description
Page Type Choose page type from the drop-down list. If the value User is selected, specify a page width

and height.
Page margins Left//Right Specify left and right page margins in millimeters. The default value is 12.7 mm.

Top/Bottom Specify top and bottom page margins in millimeters. The default value is 15.24
mm.

Page Orientation Click either the Portrait or Landscape radio-button. The default value is Portrait.

Formatting Styles tab

Option / Button Description
Formatting Styles Use the New button to create a new style in the Style dialog, and add the created style to the

list of available styles. The Delete button removes the selected style from the list of available
styles. Use the Edit button to modify the selected style in the Style dialog.

Note that the Delete and Edit buttons are disabled for the styles from the attached document.

1238

Template Parameters tab

Option / Button Description
Parameter Enter the parameter name.
Description Enter optional description.
Default Value Enter optional default value.
Buttons Set Click this button to add a parameter to the list.

Delete Click this button to remove the selected parameter from the list.

Related Procedures

Creating Custom Documentation Template

Related Reference

Documentation Template Properties
Frameset Template Properties

1239

Trace Synchronizer Dialog Box
Trace Synchronizer View Trace Synchronizer button on the toolbar

Use this dialog box to search for traced requirements or model elements that become desynchronized in local and
server copies. The found desynchronized traces are displayed in the Trace Synchronizer view.

Tab Description
Requirements Lets you select requirements, requirement types, baselines, projects and connections to search

for desynchronized traced requirements.
Model Elements Lets you select model elements in your current Eclipse workspace to search for desynchronized

traces.

Related Concepts

Requirements Management

Related Procedures

Opening Requirements Views
Synchronizing Traces

Related Reference

Trace Synchronizer View

1240

XMI Export Wizard
File Export Modeling XMI file

The XMI Export Wizard is used to export projects or sections of projects created in Together for use by other
applications and languages.

Export Project to XMI File

Open projects list box Displays currently open Together projects, which you can export as XMI data. Click
on the plus sign to expand a project and select only a portion of it for export. You can
select only one project at a time.

Select XMI type Select an XMI type for export. Options:

XMI for UML 1.3 (Unisys Extension)

XMI for UML 1.3 (Unisys Extension, Recommended for TCC)

XMI for UML 1.3 (Unisys Extension, Recommended for Rose)

XMI for UML 1.4 (OMG)

XMI for UML 2.0 Note: TCC stands for Together ControlCenter.

XMI for UML 2.0 compliant with OMG standard

XMI for UML 2.1
XMI Version Specifies the version of XMI to be exported.
XMI Encoding Specifies the XMI encoding setting.
XMI file Specifies the path and file name to be used. Together will create these if they do not

exist. You may enter a name and path or accept the default
Use prefix of imported root Enabled for UML 1.4 projects that have imported roots. If this option is checked, a

top-level package with the same name as the imported project prefix (specified in
Project Properties Model Path) is created for each imported root.

Run Audits on Exported Project
The Part-Port Audit is provided for UML 2.0 projects. This audit provides the possibility to resolve problems that
occur in Together 2006 models, where it was possible to add a port to a part. Such ports can be moved to the chosen
classifier when one decides to fix the problem found by audit before the XMI export.

The Required/Provided Interface Audit is provided for UML 2.0 projects. It searches for Required/Provided
Interface links with a null supplier. When the problem found by this audit gets fixed before the XMI export (by clicking
Fix All), the link target can be changed to the chosen interface.

Related Concepts

Model Import and Export Overview

Related Procedures

XMI Export and Import of the Models with Cross-Project References

1241

XMI Import Wizard
File Import Modeling XMI file

The XMI Import Wizard is used to import XMI projects or sections of projects created in another application for use
in Together.

Note: For UML 1.4 and Java Modeling projects, only XMI 1.1/1.2 import is supported. Attempting to import an XMI
1.0 file results in an empty project. After selecting XMI File from the Import wizard, the XMI Import wizard's only
dialog opens.

Select the Source File Specifies the full path to the .xml, .xmi, or .uml2 file you are importing.
Open projects list box Displays a list of open Together projects into which you can import the XMI data.
Select XMI Type of input file The radio-buttons in this read-only section turn on corresponding to the type of the

chosen project.

Related Concepts

Model Import and Export Overview

1242

Legal Notices for Together
"Parts of the application are: Copyright © RealObjects GmbH. All Rights Reserved. http://www.realobjects.com"

1243

Index
abstract, 766
Activate capabilities, 174
Activity diagram

control flow, 370
any, boolean, char, double, float, long, long double,
long long, octet, short, string, unsigned long, unsigned
long long, unsigned short, 766
array[0], 998
array[1]..array[array.length-2], 998
array[array.length-1], 998
artifact

deploying, 380
association class

delete, 320 414
Association Class

N-ary Association, 944
asynchCall, synchCall, asynchSignal, 957
asynchCall, synchCall, asynchSignal., 957
Attribute

Tagged value, 274 280 290
audits

sorting, 592
grouping, 592
navigate to source code, 592

audits and metrics
command line, 579
model, 580

Audits and Metrics
search, 587
preferences, 588

bool, char, double, float, int, long, long double, short,
string, unsigned, unsigned long, and unsigned short.,
763
bool, char, double, float, int, long, long double, short,
string, unsigned, unsigned long, unsigned short, 763
browse through sequence, 49
C++

configuring, 238 302
entry point, 759
formatter, 238 239 302 303
header and implementation files, 760
implementation file, 314
preinclude, 760
prepocessor, 759

Capabilities
Activation, 51
Activating, 166

cardinality, 690
chart

creating, 568 568

charts
saving, 568

class, 154
Class diagram

view, 408
visibility, 408

classifier
instantiate, 404

Code Template, 125
Code template

Edit, 544 560
Collaboration diagram, 424
com.borland.tg.ocl.emf.libraries, 998
combined fragment, 336

detach, 337 349 535
expand, 337 349 535
outer fragment, 337 349 535

comment, 190
compare models

EMF, 522 523 525 598
compartments, 690
conditional block

setting type, 419
const, 763
constructor, 315
container, 690
Content Assist, 692
context, 121
custom, 766
CVS, bin, lib, 1195
Data controls, 154
data type, 690
default, 40
deferred event, 926
Dependency link, 404
design, 690
Design Pattern, 125
DG functions, 1115
diagram

renaming, 229
Diagram View

opening, 257
doc, 1195
documentation generation, 144

ant, 619
command line, 620
configure, 617
HTML, 618
template, 621

Documentation Template

1244

zone, 149
body, 149
call to stock section, 152
call to template section, 152
control, 154
current model element, 150
data control, 154
element iterator, 151
element property iterator, 151
folder section, 152
formula control, 155
hyperlink, 653 656
image control, 154
image map, 659 662
panel control, 154
root object metatype, 149
static section, 151

DSL, 690
DSLs, 690
dumpErr, 998
entry action

exit action, 446 456
Enum, 797
execution specification, 690
export

image, 197
extension point, 913
Field — Constructor — Method — Inner Class — Inner
Interface, 797
fields, 316

multi-declaration, 316 411
generalization link

properties, 910
generic class, 154
Generics, 115
guard expression, 925
help

typographic, 29
http://www.eclipse.org/emf/2002/Ecore, 998
image, 154
implementation, 690
Include Text, 154
initial value

defining, 316 411
inline., 763
inner classifier

creating, 219 219
InstanceSpecifications, 542
interaction

create, 330 352
context, 330 352

navigating, 340
open, 330 352

interaction diagram
return link, 434

interaction diagrams
navigation, 257

interaction use, 956
interface, 66

changing notation, 309
internal transitions, 446
interoperability, 116
invocation specification, 690
Java Beabs

add property, 310
Java Beans

property, 310
show or hide, 310

javax > swing, 346
JFrame, 346
label, 154
label control, 154
layout

setting up, 226
libraries > javax > swing, 429
lifeline, 420
links, 690
main, 998
members, 690
message

self, 334 350
operation call, 334 350

Metainfo, 998
metric

viewing description, 594
metrics

sorting results, 593
filtering results, 593
navigating, 593
updating results, 593

Migration
documentation template, 666 666 683 683

model
transformations, 59
reloading, 262

model element
hiding and showing, 179 209
navigating, 257
opening, 257

model elements, 690
modeling

1245

overview, 57
benefits, 57

modeling in color, 61
models

problems, 58
views, 59

multiplicities, 894
multiplicity, 690
name, 956
name mapping, 48
namespace

opening, 264
deleting, 264
renaming, 264

namespaces, 690
no duration, 959
node

optimizing size, 231
optimizing size (global), 231

nodes, 690
object, 998
OCL, 119

constraint, 122 123 391 528
edit constraint, 395 529
model search, 207 532
supported diagram types, 119

OCL constraints, 121
OCL expression, 121
OclAny::dumpErr(in prefix: String): OclAny, 998
OclVoid, 998
oneway, 766
online help, 29
operand, 960
operation

defining parameters, 380
operator, 960
options

disabling changes, 170
packages, 690
panel, 154
Pattern

Build, 540
Create Pattern Definition Project, 542
Delete, 543 558
Pattern Registry, 545
Recognize, 546 557

Pattern instance
Add part, 539 555
Create by pattern, 541 554
manage, 553

Patterns, 125
private, 763
Profile

Enable, 243 294
Apply, 279 283
Constraint, 286
Create definition, 269
Deploy, 278 293
Import and Export, 295
Open definition, 296
Palette Contribution, 277 285
Properties, 271 292
Required stereotype, 288 300
Reuse, 284 675
Shortcut to metaclass, 273 282
Stereotype, 272 287
Uninstall, 298
Verify, 299
Viewmap, 276 289 297

project, 39
example, 187 263
importing, 254 254 680 680

public, protected, 763
public, protected, private, 763
Public— Package — Local Protected — Private, 797
QVT

language, 998
example, 1044
rename, 1006

qvtlib.SampleLibrary, 998
QVTO

language, 1008
migration, 1029

rdb::Model, 998
rdb::Model -- name, 998
read only, 766
relationship, 319
rename, 998
represents, 956
required interface

provided interface, 318 376 387
creating, 318 376 387

resources, additional, 697
result, 998
role

binding to different classifiers, 386
SampleLibrary, 998
samples, 998
samples.Simpleuml_To_Rdb, 998
self, 998
separate project, 255

1246

Sequence diagram
UML 2.0, 329
branch, 420
Roundtrip engineering, 346 429

sequence diagram
conditional block, 419

sever
combined fragment, 337 349 535

shortcut, 45
create, 175 217

Shortcut, 175
shortcuts

other, 696
simpleuml::Model, 998
Simpleuml_To_Rdb, 998
Slots, 542
state

nested, 362 362 448 448 458 458
State diagram

Activity diagram, 439 451
internal transition, 443

state invariant, 956
stereotype

defining, 222
String[], 998
Template element, 115

generic, 392
Template signature, 393

template specialization, 392
Together

overview, 25
Together perspective, 169
Toolsmith, 690
transform to source code, 48
transition

self, 441 453
true, 959
type, 956
UML, 61
UML 2.0

Activity diagram context commands, 980
UML In Color, 61
Use Case

includes and extends links, 326
virtual, 763
visibility modifier

defining, 316 411
void, 766
volatile, 763
wchar, 766

wchar_t, 764

1247

	Getting Started with Together
	Together Overview
	Together Documentation Set
	Sample Projects and Cheat Sheets
	Help on Help
	Together Online Help
	Concepts
	How-To Procedures
	Reference Topics
	Context Sensitive Help

	Typographic Conventions Used in the Help

	Tour of Together
	Views and Editors Associated with Each Together Perspective
	Together Modeling
	DSL Toolkit
	Data Modeling
	CaliberRM
	RequisitePro

	Project Menu
	Model Menu
	Diagram Menu

	Concepts
	Together Basics
	Together Project Overview
	Package Overview
	Together Diagram Overview
	Diagram Format
	Containment Metamodel
	Model Element Overview
	Model Shortcut Overview
	Roundtrip Engineering Overview
	Language Support
	Generating Source Code Based on Model
	About source code generation
	Name mapping

	Model Hyperlinking Overview
	Why use hyperlinking?
	Hyperlink types
	Browse-through sequence

	Model Annotation Overview
	Together Capabilities Activation
	Together Capability Categories
	Together Modeling Capabilities

	Together Interoperability and Migration
	Interoperability
	Migration from the legacyTogether products
	Reusing legacy projects
	Reusing artifacts

	Modeling Overview
	Together Modeling
	Benefits of modeling
	Common problems in analysis and design
	Models and views
	Domain Model Diagrams and UML Class Diagrams
	Model Transformations

	UML Modeling Overview
	Supported UML Specifications
	UML 1.4 and UML 2.x
	UML In Color

	UML 2.0 Diagrams
	UML 2.0 Activity Diagram Definition
	Definition
	Sample Diagram

	UML 2.0 Class Diagram Definition
	Interfaces
	Sample Diagram
	Special Note for the LiveSource Projects

	UML 2.0 Use Case Diagram Definition
	Definition
	Sample Diagram

	UML 2.0 Component Diagram Definition
	Definition
	Sample Diagram

	UML 2.0 Composite Structure Diagram Definition
	Definition
	Sample Diagram

	UML 2.0 Deployment Diagram Definition
	Definition
	Sample Diagram

	UML 2.0 State Machine Diagram Definition
	Definition
	Sample Diagram

	Interaction (Sequence and Communication) Diagrams

	UML 1.4 Diagrams
	UML 1.4 Class Diagram Definition
	Definition
	Sample Diagram

	Package and logical class diagrams
	UML 1.4 Sequence Diagram Definition
	Definition
	Sample Diagram

	UML 1.4 Collaboration Diagram Definition
	Definition
	Sample Diagram

	UML 1.4 Use Case Diagram Definition
	Definition
	Sample Diagram

	UML 1.4 Statechart Diagram Definition
	Definition
	Sample Diagram

	UML 1.4 Activity Diagram Definition
	Definition
	Sample Diagram

	UML 1.4 Component Diagram Definition
	Definition
	Sample Diagram

	UML 1.4 Deployment Diagram Definition
	Definition
	Sample Diagram

	Business Process Modeling
	Overview
	Reusing BPMN Projects Created in Together 2006
	Optional Install

	Data Modeling
	Data Modeling Overview
	Logical and Physical Data Models

	Model Transformation Support
	UML Profiles
	UML Profiles Basics
	Profile Definition Project
	Supported Metamodels
	Stereotype
	Palette Contribution
	Extension Link
	Contribution Link

	Modeling for EJB
	Model Compare and Merge
	EMF and UML Models Compare
	Shared Models Compare
	Merging Models

	Template Elements and Generics Overview
	Template elements
	Generics

	Model Import and Export Overview
	OCL Support
	About OCL Support in Together
	About OCL
	Supported Diagram Types

	OCL Constraints and Expressions
	OCL on Non-Class Diagrams
	Inner constraints
	External constraints

	Patterns and Templates
	Patterns and Templates Overview
	Code templates
	Patterns
	Pattern instances

	Pattern Definition Project
	Pattern recognition
	Templates

	Quality Assurance
	Code Audits
	Problem Detection Audits
	Bad Smell Audits

	Model Audits
	Code Metrics
	Model Metrics
	Metrics Graphical Representation
	Bar Chart
	Kiviat Chart

	Exporting and Importing Audits and Metrics
	Source Code Audits and Metrics
	Model Audits and Metrics

	Refactoring Overview
	Requirements Management
	Version Control in Together
	Overview
	Models, views, and files
	Task-aware features
	Together Version Control Recommendations
	Support for CVS edit/unedit commands

	Project Documentation
	Documentation Generation Overview
	Documentation output formats
	Documentation files
	Documentation templates

	Documentation Template
	Documentation Generator Metamodel
	Organization of a Documentation Template
	Zones of a template
	Body of a template
	Root object metatype
	Current model element

	Documentation Template Sections
	Static section
	Element iterators
	Element property iterators
	Folder sections
	Calls to stock sections
	Calls to template sections

	Documentation Template Controls
	Label, Image, and Panel Controls
	Label
	Image
	Panel

	Data Controls
	Formula and Text Controls
	Formula controls
	Include Text controls

	Multi-frame Documentation Templates
	Hyperlinks in Documentation
	Javadoc Link References
	Enable Conditions

	Procedures
	Getting Started Procedures
	Activating Together Capabilities
	Adding a Single Model Element to a Diagram
	Bookmarking Model Elements
	Choosing a Together Perspective
	Configuring Together Preferences on the Workspace and Diagram Levels
	Creating a Browse-Through Sequence of Diagrams
	Creating a Diagram
	Creating a Project
	Creating a Shortcut
	Creating a Simple Link
	Deleting a Diagram
	Deleting Elements
	Hiding and Showing Model Elements
	Opening a Diagram
	Opening a Diagram Element in the Source Code Editor
	Printing Diagrams
	Reusing Existing Source Code in Modeling Projects
	Selecting Model Elements
	Using Drag-and-Drop
	Using Example Projects

	Diagrams
	Common Diagrams Procedures
	Annotating a Diagram
	Browsing a Diagram with Overview Pane
	Changing the Default Diagrams Directory
	Closing a Diagram
	Creating a Diagram
	Deleting a Diagram
	Exporting a Diagram to an Image
	Hyperlinking Diagrams
	Opening a Diagram
	Opening a Diagram Element in the Source Code Editor
	Opening a Parent Diagram
	Printing Diagram Elements
	Printing Diagrams
	Searching Model Elements
	Searching Model with OCL queries

	Customizing Appearance of Together Diagrams
	Hiding and Showing Model Elements
	Using a Class Diagram as a View
	Zooming a Diagram

	Populating Together Diagrams
	Adding a Member to a Container
	Adding a Single Model Element to a Diagram
	Adding Multiple Elements to a Diagram
	Creating a Link with Bending Points
	Creating a Shortcut
	Creating a Simple Link
	Creating an Inner Classifier

	Editing Together Diagrams
	Aligning Model Elements
	Assigning a Stereotype to an Element
	Changing Type of an Association Link
	Copying and Pasting Model Elements
	Deleting Elements
	Laying Out a Diagram Automatically
	Laying out a Diagram for Printing
	Moving Model Elements
	Renaming a Diagram
	Rerouting a Link
	Resizing Model Elements
	Selecting Model Elements
	Working with Rulers Guides and Grid

	Together Projects
	Changing the Default Diagrams Directory
	Choosing a Together Perspective
	Configuring C++ Projects
	Configuring IDL Projects
	Converting UML 1.4 Project to UML 2.0 Project
	Creating a Project
	Enabling UML Profiles
	Establishing cross-project references
	Exporting a Project to XMI Format
	Exporting a Project to XMI Format Using the Command Line
	Generating Source Code from Design Project
	Importing a Project in an IBM Rational Rose MDX Model
	Importing a Project in IBM Rational Rose (MDL) Format
	Importing a Project in IBM Rational Rose (MDL) From the Command Line
	Importing a Project in IBM Rational Rose (MDX) From the Command Line
	Importing a Project in XMI Format
	Importing Java Modeling Projects Created in Together Edition for Eclipse 7.0
	Importing Legacy Projects
	Navigating between the Tree View, Diagram, and Source Code
	Resolving Duplicates During an XMI Import
	Reusing Existing Source Code in Modeling Projects
	Showing libraries
	Troubleshooting a Model
	Using Example Projects
	Working with a Package
	XMI Export and Import of the Models with Cross-Project References

	Together Profiles
	A Typical User Scenario of Working With Profiles
	Creating a Project
	Defining Profile Properties
	Creating Stereotypes
	Adding Shortcuts to Metaclasses
	Adding Attributes to Stereotypes
	Setting Viewmap Properties for Stereotypes
	Creating Palette Contributions
	Deploying Profiles
	Applying Profiles

	Adding Attributes to Stereotypes
	Adding Shortcuts to Metaclasses
	Applying Profiles
	Converting Profile-Specific Properties
	Creating Palette Contributions
	Creating Profile-Specific Constraints
	Creating Stereotypes
	Working with Required Stereotypes
	Setting Viewmap Properties for Stereotypes
	Adding Attributes to Stereotypes

	Defining Profile Properties
	Deploying Profiles
	Enabling UML Profiles
	Exporting and Importing Profiles
	Opening Profile Definition
	Setting Viewmap Properties for Stereotypes
	Uninstalling Profiles
	Verifying a Model Against Profile Constraints
	Working with Required Stereotypes

	Configuring Implementation Projects
	Configuring C++ Projects
	Configuring IDL Projects

	Together UML 2.0 Diagrams
	UML 2.0 Class Diagrams Procedures
	Adding Owned Behavior to a Class
	Changing the Appearance of Compartments
	Changing the Appearance of Interfaces
	Creating and Editing Properties
	Creating Class By Template
	Creating Data Types
	Creating Enumerations and Enumeration Literals
	Creating, Editing and Opening Header and Implementation Files in C++ Projects
	Working with a Constructor
	Working with a Field
	Working with a Provided or Required Interface
	Working with a Relationship
	Working with Association classes and n-ary associations
	Working with Inner Classes
	Working with Instance Specifications

	UML 2.0 Use Case Diagrams Procedures
	Creating an Extension Point
	Defining Includes and Extends Links
	Setting Subject for a Use Case

	UML 2.0 Interaction Diagrams Procedures
	A Typical Scenario of Designing a UML 2.0 Interaction Diagram
	Working with Interactions
	Creating an Interaction Use
	Associating a Lifeline with a Classifier
	Defining Decomposition of a Lifeline
	Working with a UML 2.0 Message
	Working with a Combined Fragment
	Creating a State Invariant

	Associating a Lifeline with a Classifier
	Associating a Lifeline with a Referenced Element
	Copying and Pasting an Execution or Invocation Specification
	Creating a Full-Screen Sequence or Communication Diagram from an Interaction
	Creating a State Invariant
	Creating an Interaction Use
	Defining Decomposition of a Lifeline
	Roundtrip Engineering with UML 2.0 Sequence Diagrams
	Working with a Combined Fragment
	Working with a UML 2.0 Message
	Working with Interactions

	UML 2.0 State Machine Diagrams Procedures
	Associating a Transition or a State with a Behavior
	Changing Regions Order in a State
	Creating an OCL Guard Condition for a Transition
	Creating and Editing States
	Creating History Elements
	Creating Members for State Machines, States, and Regions
	Designing a UML 2.0 State Machine Diagram
	Working with a Complex State
	Working with Activities and State Machines Full Screen Diagrams

	UML 2.0 Activity Diagrams Procedures
	Creating Activity Parameters
	Creating Pins
	Designing a UML 2.0 Activity Diagram
	Rotating Activity Partitions
	Using Control Flow Link
	Working with Activities and State Machines Full Screen Diagrams
	Working with Activity Element
	Working with an Object Flow or a Control Flow

	UML 2.0 Component Diagrams Procedures
	Designing a UML 2.0 Component Diagram
	Working with a Provided or Required Interface
	Working with Instance Specifications

	UML 2.0 Deployment Diagrams Procedures
	Designing a UML 2.0 Deployment Diagram
	Working with Artifacts

	UML 2.0 Composite Structure Diagrams Procedures
	Creating a Port
	Creating a Referenced Part
	Creating an Internal Structure for a Node
	Working with a Collaboration Use
	Working with a Provided or Required Interface
	Working with Instance Specifications

	Template Elements
	Creating Constraints
	Creating Generic Template Elements in LiveSource Projects
	Creating Template Elements
	Defining Formal Parameters
	Editing Constraint Expressions

	Together UML 1.4 Diagrams
	UML 1.4 Class Diagrams Procedures
	Changing the Appearance of Compartments
	Creating and Editing Constructors
	Creating Class By Template
	Expanding or Collapsing Compartments
	Extending and Implementing Classes and Interfaces
	Hiding and Showing Members
	Instantiating a Classifier
	Setting Abstract or Final for a Class or Interface
	Setting Visibility for a Class or Interface
	Setting Visibility for Members of a Class or Interface
	Showing Different Modeling Views
	Showing Interfaces as Small Circles (lollipops)
	Working with a Constructor
	Working with a Field
	Working with a Relationship
	Working with Association classes and n-ary associations
	Working with Inner Classes

	UML 1.4 Use Case Diagrams Procedures
	Creating an Extension Point

	UML 1.4 Interaction Diagrams Procedures
	Adding a Conditional Block
	Branching Message Links
	Converting Between UML 1.4 Sequence and Collaboration Diagrams
	Creating Slots
	Generating an Incremental Sequence Diagram
	Refining Collaboration Diagrams
	Refining Sequence Diagrams
	Roundtrip Engineering with Sequence Diagrams
	Using AutoFix
	Using AutoLink Labels
	Working with a UML 1.4 Message
	Working with Classes in Sequence/Collaboration Diagrams
	Working with Operations in Sequence/Collaboration Diagrams

	UML 1.4 Statechart Diagrams Procedures
	Choosing a Target Class for the State Diagram or Activity Diagram
	Creating a Deferred Event
	Creating a Self-Transition
	Creating History
	Creating internal transitions
	Creating Multiple Transitions
	Setting Deep History
	Specifying Entry and Exit Actions
	Specifying entry/exit actions for a state
	Working with a Complex State

	UML 1.4 Activity Diagrams Procedures
	Choosing a Target Class for the State Diagram or Activity Diagram
	Creating a Deferred Event
	Creating a Self-Transition
	Creating an Activity for a State
	Designing a UML 1.4 Activity Diagram
	Specifying Entry and Exit Actions
	Using Object Flow Link
	Working with a Complex State

	UML 1.4 Component Diagrams Procedures
	Designing a UML 1.4 Component Diagram
	Nesting Components

	UML 1.4 Deployment Diagrams Procedures
	Designing a UML 1.4 Deployment Diagram

	Together Business Process Modeling
	Attaching External WSDL File
	Creating a BPMN Project
	Exporting to BPEL/WSDL Files
	Importing BPEL File
	Importing BPMN Projects Created in Together 2006 for Eclipse
	Performing Business Process Simulation
	Specifying BPMN Preferences
	Specifying Event and Trigger Type
	Using BPMN Layout Features
	Validating BPMN Diagrams
	Working with Groups
	Working with Projection Bars
	Working With UML Links in a BPMN Project

	Data Modeling Procedures
	Activating ER Logical Diagram Profile
	Creating a Data Modeling Project
	Creating Connection Profile
	Creating Foreign Key in a Physical Data Model
	Creating Logical Data Model
	Creating View Relationships in a Physical Data Model
	Generating Data Model from SQL (DDL) Script
	Generating DDL Script from a Data Modeling Project
	Importing Data Model from Database
	Transforming Logical Data Model to Physical Data Model

	Model Driven Architecture
	Adding a New Ant Task to the Composite Transformation
	Applying Model-To-Model Transformations
	Applying Model-To-Text Transformations
	Applying XSL Transformations
	Building MDA Projects from the Command Line
	Configuring Model-To-Model Transformation Builder
	Configuring Model-To-Text Transformation Builder
	Creating a Composite Transformation
	Adding a New Ant Task to the Composite Transformation

	Creating a Model-To-Model Transformation
	Creating a QVT Library
	Creating an Example MDA Transformation Project
	Creating an MDA Transformation Project
	Creating an XSL Transformation
	Creating Model-To-Text Transformations
	Debugging Model-To-Model Transformations
	Debugging Model-To-Text Transformations
	Debugging XSL Transformations
	Deploying Transformations
	Manually Registering a Metamodel for Use with QVTO
	Opening MDA Views
	Running a Composite Transformation script
	Running an Operational QVT
	Running Compiled Transformations

	Comparing and Merging Models
	Comparing and Merging Shared Models
	Comparing Models
	Merging Models
	Comparing Models

	Together Object Constraint Language (OCL)
	Creating an OCL Guard Condition for a Transition
	Creating Constraints
	Editing Constraint Expressions
	Enabling Source Code Generation from OCL Constraint
	OCL in Documentation Templates
	Searching Model with OCL queries
	Using OCL in Model Audits and Metrics
	Working with a Combined Fragment
	Working with Custom OCL Operations

	Patterns and Templates
	Adding a Pattern Part
	Building Pattern
	Creating Model Element by Pattern
	Creating Pattern Definition
	Deleting Patterns Instances
	Editing Templates
	Managing Pattern Definitions in the Pattern Registry
	Recognizing Patterns
	Using Conditions in Templates
	Using the Class Template Editor
	Using the Link Template Editor
	Using the Package Template Editor
	Validating Pattern Definition Projects
	Verifying Pattern Instances
	Working with the Pattern Instances
	Creating Model Element by Pattern
	Adding a Pattern Part
	Verifying Pattern Instances
	Recognizing Patterns
	Deleting Patterns Instances

	Working with the Templates
	Editing Templates
	Using the Class Template Editor
	Using the Link Template Editor
	Using the Package Template Editor
	Using Conditions in Templates

	Together Quality Assurance
	Copying QA Results to Clipboard
	Creating a Metrics Chart
	Creating and Using Code QA Sets
	Exporting and Importing Model Audits/Metrics
	Exporting QA Results
	Flagging Audits in Code
	Generating QA Report
	Grouping and Ungrouping
	Hiding and Showing Audit Results
	Navigating to Problems
	Printing Audit Results
	Refreshing QA Results
	Running Audits and Metrics from the Command Line
	Running Model Audits and Metrics
	Running Model Audits and Metrics as Ant Tasks
	Running Source Code Audits
	Running Source Code Metrics
	Saving and Loading Audit Results
	Saving and Loading Metric Results
	Searching QA Results
	Specifying Quality Assurance Preferences
	Using OCL in Model Audits and Metrics
	Using QA History
	Viewing and Finding QA Descriptions
	Viewing Audit Results
	Viewing Metric Results
	Viewing Metrics as Graphs
	Viewing Problem Detection Audits (Detection Metrics)

	Using Version Control and Teams in Together
	Comparing and Merging Shared Models
	Setting Up ClearCase Support
	Setting Up Repositories
	Sharing Projects
	Sharing Templates

	Managing Requirements with Together
	Creating Requirements Based on Use Case
	Creating Traces from Requirements to Model Elements
	Deleting Traces
	Generating Documentation for Requirements
	Modifying Requirement Preferences
	Navigating from Model Elements to Requirements
	Opening Requirements Views
	Searching for Traced Elements
	Synchronizing Traces
	Viewing Element Traces

	Generating Project Documentation
	Configuring the Documentation Generation Facility
	Generating HTML Documentation
	Generating Project Documentation as Ant Task
	Generating Project Documentation from Command Line
	Generating Project Documentation Using Template

	Together Documentation Templates Procedures
	A Typical Scenario of Creating a Custom Documentation Template
	Creating Custom Documentation Template
	Creating Sections
	Creating Stock Sections
	Setting Section Properties
	Setting Area Properties
	Setting Template Properties
	Creating Controls
	Moving, Resizing and Aligning Controls

	A Typical Scenario of Creating a Template for Multi-Frame Documentation
	Creating Custom Documentation Template
	Defining Frameset Structure
	A Typical Scenario of Creating a Custom Documentation Template
	Setting Call to Template Section Properties
	Hyperlinking Documentation

	Creating Controls
	Creating Custom Documentation Template
	Creating Formatting Styles for Documentation Templates
	Creating Hypertext Links (Advanced)
	Creating Javadoc Link References (Advanced)
	Creating Sections
	Creating Stock Sections
	Defining Frameset Structure
	Setting Template Properties
	Setting Frame and Frameset Properties

	Hyperlinking Controls to Element Documentation
	Hyperlinking Documentation
	Hyperlinking Controls to Element Documentation
	Creating Hypertext Links (Advanced)
	Image Mapping (Advanced)
	Creating Javadoc Link References (Advanced)

	Image Mapping (Advanced)
	Moving, Resizing and Aligning Controls
	OCL in Documentation Templates
	Reusing documentation templates from TCC/TA 1.x
	Setting Area Properties
	Setting Call to Template Section Properties
	Setting Frame and Frameset Properties
	Setting Section Properties
	Setting Template Properties
	Using Word Documents in Documentation Templates

	Interoperability and Migration
	Converting Profile-Specific Properties
	Importing a Project in an IBM Rational Rose MDX Model
	Importing a Project in IBM Rational Rose (MDL) Format
	Importing a Project in XMI Format
	Importing Java Modeling Projects Created in Together Edition for Eclipse 7.0
	Importing Legacy Projects
	Reusing documentation templates from TCC/TA 1.x
	XMI Export and Import of the Models with Cross-Project References

	Reference
	Together Glossary
	Together Keyboard Shortcuts
	Navigational shortcut keys
	Shortcut keys for editing
	Zoom shortcut keys
	Cycling between the Diagram Editor and the Palette
	Palette item navigation
	Diagram navigation
	Shape navigation
	Connection navigation
	Properties view navigation
	Other shortcut keys

	Additional Resources
	Components of the Together User Interface
	Menus
	Menus
	Model Navigator
	Project Level
	Package Level
	Diagram Level
	Element Level, Class
	Element Level, Operation
	Element Level, Link

	Model Package Explorer Context Menus
	Common Diagram Context Commands
	New
	Select in Model Tree
	Cut
	Copy
	Clone
	Paste
	Paste element
	Rename
	Delete
	Export
	Import
	Add Linked
	Refactor
	Model Bookmark
	Hyperlinks
	Requirements
	Layout
	Hide / Show
	Team
	Properties

	Package Context Menu
	New
	New Diagram
	Generate Class Diagram
	Show in Packages View
	Show in Model Package Explorer View
	Open
	Open in Active Editor
	Quality Assurance
	Team

	Common Element Context Commands
	Select in Model Tree
	Select in Project
	Cut
	Copy
	Clone
	Paste
	Paste shortcut
	Rename
	Delete
	Add Linked
	Model Bookmark
	Hyperlinks
	Requirements
	Print
	Optimize Size
	Hide
	Properties

	Common Link Context Commands
	Shared Commands
	Widely Encountered Commands

	Model Bookmarks View
	Compare Editor
	Tool Palette
	Diagram View
	Metamodel Browser View
	Model Package Explorer View
	OCL Expressions View
	Toolbar
	Context Menu

	Properties View
	QVT Builder
	QVT Editor
	XSL Editor
	Trace View
	Trace Synchronizer View
	Toolbar buttons and context menu items
	Columns
	Status items

	Templates View
	Last Validation Results View
	Patterns and Template GUI Components
	Pattern Explorer
	Pattern Registry
	Templates View
	Last Validation Results View

	Quality Assurance GUI Components
	Audit View
	Metric View
	Model Audits View
	Model Metrics View
	Chart View

	Together Projects
	Project Properties
	C++ Projects
	Special Considerations for C++ Projects
	Project configuration issues
	File Structure
	Preprocessor
	Entry points

	Header and implementation files
	#include
	#include conventions

	Reverse engineering tips
	Processing syntax constructs

	C++ Language-Specific Properties of the Model Elements
	C++ Project Properties

	IDL Language-Specific Information
	New Together Project Wizards
	New Project Wizard Common Pages
	New project Wizard C++ Language-Specific Options
	New project Wizard IDL Language-Specific Options
	New project Wizard Data Modeling Specific Options
	Convert MDL Wizard
	Import Together Project Wizard

	Preferences
	Together Preferences
	Generate Documentation Preferences
	Diagram Image Rotation
	Generate HTML Preferences
	HTML Output Options
	RTF Output Options

	Modeling Preferences
	Copy/Paste Tab
	Deletion Tab
	Ignored Folders Tab
	Referenced projects Tab
	Team/Compare Tab
	Business Process Preferences
	Check Activity and Event Type Options
	Diagram Coloring
	Simulation
	Simulation Coloring

	Data Modeling Preferences
	Diagram Preferences
	EMF Model Compare Preferences
	Export to UML2Tools Preferences
	Interaction Diagrams 2.0 Preferences
	Java Preferences
	Layout Preferences
	OCL
	OCL Metamodels
	OCL Operations Options
	OCL Library Operations
	Model Names Mappings
	Predefined OCL Library Operations

	Patterns Preferences
	Print Preferences
	UML Profiles Preferences
	UML Profiles Preferences Constraints
	UML Profiles Preferences View Management

	QA Model
	QA Source
	Find Analyzer Dialog
	Requirements
	CaliberRM

	Source Generation Preferences
	C++ Source Generation Preferences
	Java Source Generation Preferences

	View Management Preferences

	Modeling Resources Team Preferences
	XML
	XML Editor
	Annotation
	Code Assist
	Folding
	Formatter
	Mark Occurrences
	References
	Relocation
	Syntax Coloring
	Templates
	Typing

	XSL
	XSL
	Annotation
	OCL (Syntax Checking)
	Code Assist
	OCL (Syntax Coloring)
	Syntax Coloring
	Run/Debug

	Profiles Reference
	Profile Definition Properties
	UML Profile for Business Modeling
	Stereotype Options of UML Profile for Modeling In Color
	UML Profile for Software Development Processes
	EMF API for Together Profiles
	Introduction
	Profile metamodels
	Profiles in Model Compare/Merge
	Profile API in OCL
	Profile API in QVT
	Profile API in Java

	Business Process Diagram
	Mapping Elements
	Business Process Mappings
	Events
	Activities
	Gateways
	WebService

	Mapping Exception Flow
	Mapping Pools and Message Flows
	General Information
	Attached WSDL
	Default process WSDL
	Abstract processes with Web Services
	Mapping
	Implementations details
	The namespace prefixes
	The namespace URI
	The property types

	Mapping Process Structure: Flows and Sequences
	Starting and Ending Business Process
	Executing Tasks Sequentially
	Executing Tasks in Parallel
	Flow Inside Flow
	Mapping of Exclusive Gateways
	Unmapped Elements
	Cycles Support

	Elements That Are Not Transformed to BPEL
	BPMN Validation View
	BPMN Simulation View
	BPMN Diagram Context Commands
	BPMN Simulation-specific Properties
	BPMN Diagram Toolbar
	BPMN Simulation Report

	UML 1.4 Reference
	UML 1.4 Class Diagrams
	UML 1.4 Class Diagram Elements
	Attribute Context Menu
	Attribute Properties
	Class Context Menu
	Class Diagram Context Menu
	Class Diagram Properties
	Class Diagram Relationships
	Types of Relationships
	Multiplicities

	Class, Inner Class, and Interface Properties
	Dependency Link Properties
	Extend/Include Link Properties
	Generalization/Implementation Link Properties
	LiveSource Rules
	Object Context Menu
	Object Properties
	Operation Context Menu
	Operation Properties
	Operation Properties
	Javadoc Properties

	Package Properties

	UML 1.4 Use Case Diagrams
	UML 1.4 Use Case Diagram Elements
	Actor Properties
	Generalization Link Properties
	Use Case Diagram Context Commands
	Use Case Diagram Elements Context Menu
	Extension Point
	Use Case Properties

	UML 1.4 Interaction Diagrams
	UML 1.4 Interaction Diagram Elements
	Conditional Block
	UML 1.4 Message
	Activation Bar
	Nested Message
	Message Link Properties

	UML 1.4 Statechart Diagrams
	UML 1.4 Statechart Diagram Elements
	State
	Actions
	Composite (nested) state

	Transition
	Internal transition
	Self-transition
	Guard expressions

	Deferred Event

	UML 1.4 Activity Diagrams
	UML 1.4 Activity Diagram Elements
	Activity Diagram Context Commands
	History Properties
	Horizontal and Vertical Fork/Join Properties
	Transition Link Properties

	UML 1.4 Component Diagrams
	UML 1.4 Component Diagram Elements

	UML 1.4 Deployment Diagrams
	UML 1.4 Deployment Diagram Elements

	UML 2.0 Reference
	UML 2.0 Class Diagrams
	UML 2.0 Class Diagram Elements
	Class Diagram Relationships
	Types of Relationships
	Multiplicities

	Class Diagram Properties
	Association Class and N-ary Association
	Dependency Link Properties
	Generalization/Implementation Link Properties
	Operation Context Menu

	UML 2.0 Use Case Diagrams
	UML 2.0 Use Case Diagram Elements
	Extension Point

	UML 2.0 Interaction Diagrams
	UML 2.0 Sequence Diagram Elements
	UML 2.0 Communication Diagram Elements
	Interaction
	Interaction use
	Lifeline
	State invariant

	UML 2.0 Message
	Messages on different diagram types
	Properties of the message links

	Execution Specification and Invocation Specification
	Operator and Operand for a Combined Fragment
	About combined fragment
	Operator
	Operand

	Clipboard operations with execution and invocation specifications

	UML 2.0 State Machine Diagrams
	UML 2.0 State Machine Diagram Elements
	State Machine Diagram Context Commands
	State Machine Diagram Elements Properties
	State Machine element
	Region element
	Entry Point element
	Exit Point element
	Reference to Entry Point element
	Reference to Exit Point element
	State element
	Initial element
	Final element
	Shallow History element
	Deep History element
	Terminate element
	Fork element
	Join element
	Choice element
	Junction element
	Transition link
	Dependency link

	Transition
	Internal transition
	Self-transition
	Guard expressions

	History Element (State Machine Diagrams)

	UML 2.0 Activity Diagrams
	UML 2.0 Activity Diagram Elements
	UML 2.0 Activity Diagram Context Commands
	Diagram Context Menu
	Activity Context menu
	Action Context Menu
	Accept Event Action Context Menu
	Accept Time Event Action Context Menu
	Send Signal Action Context Menu

	UML 2.0 Component Diagrams
	UML 2.0 Component Diagram Elements

	UML 2.0 Deployment Diagrams
	Deployment Diagram Context Commands
	Diagram Context Menu
	Node Context Menu
	Device Context Menu
	Execution Environment Context Menu
	Deployment Specification Context Menu

	UML 2.0 Deployment Diagram Elements

	UML 2.0 Composite Structure Diagrams
	UML 2.0 Composite Structure Diagram Elements

	Data Modeling Reference
	ER Logical Diagram Elements
	ER Physical Diagram Elements
	Element Context Menu Commands of ER Logical Diagram
	ER Physical Diagram Context Commands
	Element Context Menu Commands of ER Physical Diagram
	Links Context Menu Commands of ER Physical Diagram

	MDA
	QVT Language
	Introduction
	Operational transformations
	Transformation methods
	Mappings
	Queries

	QVT language constructs
	object expression
	resolve operations
	inout parameters
	Transformation import
	Virtual methods
	Query libraries
	Traceability
	OCL support
	Debugging support
	Renaming features

	Appendix

	QVTO Language
	Related Help

	XSL/OCL Language
	Introduction
	XSL transformations
	Transformation Source
	Transformation Stylesheet
	Transformation Result
	Transformation Parameters
	Transformation Invocation

	OCL
	Auto-context and stereotype
	Embedded OCL
	OCL attributes
	Special characters
	Extension instructions

	Templates
	Matches
	Parameters

	Template invocation
	Calling
	Applying
	Priority
	Precedence
	Mode
	With parameters

	Constructing results
	Text
	Elements and attributes
	Values
	Controlling
	Iterating
	Sorting
	Numbering

	Tracing
	Advanced techniques
	Beautifying output
	Regular expressions

	Appendix
	Priority computation
	

	QVT Ant Tasks
	qvt.applyCompiledTransformation
	qvt.applyTransformation
	qvt.interpretedTransformation

	QVT Operational Ant Tasks
	qvto.interpretedTransformation

	Model-To-Text Ant Tasks
	m2t.applyCompiledTransformation
	m2t.applyTransformation

	XSL/OCL Ant Tasks
	xsl.applyTransformation
	<parameter> element

	QVT Operational Migration Notes
	Introduction
	Use modeltype Expression to Reference Metamodels
	Transformation Signature
	Standard main() Entry Point
	Collection Types
	Mapping Structure
	Mapping Operation Call
	Mapping Execution Semantics
	The self Variable
	object Expression
	while Expression
	undefined and invalid Values
	Variable Initialization
	Escaping Identifiers
	Resolve Expressions
	Strings Library
	Logging
	Helpers
	Explicit Return for Queries

	QVT Operational Imperative Iterators
	QVT Operational Transformation Wizard Configuration Properties
	QVTO/OCL Collections and Operations
	OCL Collection Types1
	OCL Collection Operations
	Mapping OCL Collections

	MDA Example Projects
	EMF API for Together Models
	Introduction
	Creating and accessing instances
	Accessing Together specific properties
	Accessing Together diagrams
	Saving and loading resources
	Adapting EMF objects
	Using the reflective API
	Support for the EMF.Edit framework
	Samples

	Model Compare/Merge
	Introduction
	Comparing Models
	Exporting Compare Results
	Merging Models

	Requirements Management
	Element Traces View
	Trace Synchronizer View
	Toolbar buttons and context menu items
	Columns
	Status items

	Patterns and Templates
	Patterns and Template GUI Components
	Pattern Explorer
	Pattern Registry

	Apply Template Wizard
	Create Pattern from Elements
	Save As Template Wizard
	Templates View
	Templates View Context Menus
	Template Editors
	Class Template Editor
	Link Template Editor
	Package Template Editor
	Template Variable Types

	Template Properties
	Syntax and Conditions in Templates
	Syntax
	Variables
	Notation:
	Notation examples:

	If /ElseIf /Else Conditionals
	Format:
	Usage:
	Examples:

	Foreach Loop
	Format:
	Usage:
	Examples:

	Conditions

	Last Validation Results View
	Supported Templates
	Link Templates
	Class and Package Templates
	Class Templates
	Package Templates

	J2EE, TagLibs, J2EE JMS Templates
	J2EE Templates
	TagLibs Templates
	J2EE JMS Templates
	

	GoF Templates
	GoF Patterns

	Quality Assurance
	Model Audits and Metrics Descriptions
	Model Audits
	Model Metrics

	Audit and Metric Sample Project
	Project structure
	sapient.xml
	Using API for creating your Audits and Metrics
	Running the Sample

	Project Documentation
	Documentation Generation
	Gendoc Utility Syntax
	Genhtml Utility Syntax

	Documentation Template Designer
	Area Properties
	Call to Stock Section Properties
	Call to Template Properties
	Control Properties
	DG functions in Formulae Expressions
	getDGVariable
	getDGRwiElement
	getDGRwiProperty
	getDGOption
	getParam
	invokeForName
	getContainingDiagram
	isDiagram
	isImported
	getSubproperty
	hasSubproperty
	getJDRefType
	getJDRefDisplayName
	getJDRefElement
	getJDRefURL
	findElement
	getCodeElement
	getCodeElements
	findMember
	findNode
	findLink
	findPackage
	findDocumentedMember
	findDocumentedNode
	findDocumentedLink
	findDocumentedPackage
	findDocBySubjectSelector
	findDocByTemplate
	checkStockSectionOutput
	getPropertyExt
	Utility functions provided by Documentation Generation
	substring
	replace
	duplicate
	length
	str
	val

	Functions used in queries
	getProperty
	hasProperty
	hasPropertyValue
	if
	getContainingNode

	DG Variables
	Documentation Template Designer
	Documentation Template Properties
	Element Iterator Properties
	Frameset Template Properties
	Folder Section Properties
	OCL Functions in formulae expressions
	Property Iterator Properties
	Static Section Properties

	Model Import and Export
	Import Together Project Wizard
	MDL Import Wizard
	MDL Projects Import Options
	MDL Import Notes
	Path Aliases
	Parameters available for MDL command line import

	MDX Import Wizard
	MDX Projects Import Options
	XMI Export Wizard
	XMI Import Wizard

	Version Control
	Sharing Design Elements: Special Considerations
	Sharing Packages: Special Considerations
	Sharing QA Sets and Audits and Metrics Results
	Sharing QA Sets
	Sharing Audits and Metrics Results

	Dialogs
	Apply Transformation
	Select Destination
	Select Transformation

	BPEL4WS Export Wizard
	BPEL4WS Import Wizard
	Call to Stock Section Properties
	Call to Template Properties
	Create Pattern from Elements
	Create Requirement(s) Dialog Box
	Edit Audit
	Edit Hyperlinks for Diagram dialog box
	Edit Metric
	Edit Operation
	Edit Transformation Profile
	Element Iterator Properties
	Export Diagram to Image Wizard
	Export Pattern Conversion Profiles
	Export QA Results To A File
	Export Wizard: SQL/DDL Script from DB Schema
	Select Generation Objects page
	Select Generation Options page
	Save to File page

	Find Analyzer Dialog
	Frameset Template Properties Dialog Box
	Generate HTML Documentation dialog box
	Generate Documentation Using Template dialog box
	Generate Sequence Diagram dialog box
	Import Wizard: DB Schema from ER Logical Diagram Profile UML 2.0 Project
	Select Source and Target Objects page
	Select Options page

	Import Wizard: DB Schema from JDBC
	DB Schema from JDBC Import Wizard: Select Objects to Import page
	Connect to Database Dialog

	Import Wizard: DB schema from SQL script
	Select Objects to Import page

	Import Pattern Conversion Profiles
	Import Together Project Wizard
	Manage Traces Dialog
	Modeling Preferences
	Copy/Paste Tab
	Deletion Tab
	Ignored Folders Tab
	Referenced projects Tab
	Team/Compare Tab

	New MDA Ant Task
	Choose Data Source Type
	Select Launch Configuration
	Select Launch Configuration Type
	Preview

	MDL Import Wizard
	MDX Import Wizard
	Model Search and OCL Model Search
	New Together Project Wizards
	New Project Wizard Common Pages
	New project Wizard C++ Language-Specific Options
	New project Wizard IDL Language-Specific Options
	New project Wizard Data Modeling Specific Options
	Convert MDL Wizard

	Print Audit dialog box
	Print Diagram Dialog Box
	Print Dialog
	Project Properties
	Project Specific Configuration
	Property Iterator Properties
	QA Builder Properties
	QA Search
	QVT Settings
	Run
	Model-To-Text Application
	Model-To-Text Transformation
	QVT Interpreter
	QVT Transformation
	XSL Transformation
	Launch BPMN Simulation

	Run QA
	Requirement Traces Search Dialog Box
	Select element dialog box
	Selection Manager
	Static Section Properties
	Template Properties Dialog Box
	Trace Synchronizer Dialog Box
	XMI Export Wizard
	XMI Import Wizard

	Legal Notices for Together

	Index

