
Borland
VisiBroker™ 8.0

VisiBroker for C++
Developer’s Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800
Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance
with the License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications
covering subject matter in this document. Please refer to the product CD or the About
dialog box for the list of applicable patents. The furnishing of this document does not give
you any license to these patents.

Copyright 1992–2006 Borland Software Corporation. All rights reserved. All Borland brand
and product names are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries. All other marks are the property of
their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB 80 VisiBroker C++ API
April 2007

i

Contents

Chapter 1
Understanding the CORBA model 1
What is CORBA? 1
What is VisiBroker? 2
VisiBroker Features 3

VisiBroker's Smart Agent (osagent) Architecture . 3
Enhanced Object Discovery Using the

Location Service 3
Implementation and Object Activation Support . . 3
Robust thread and connection management . . . 4
IDL compilers 4
Dynamic invocation with DII and DSI 4
Interface and implementation repositories 4
Server-side portability 5
Customizing the VisiBroker ORB with

interceptors and object wrappers 5
Event Queue . 5
Backing stores in the Naming Service 5
GateKeeper . 5

VisiBroker CORBA compliance 5
VisiBroker Development Environment 5

Programmer's tools 6
CORBA services tools 6
Administration Tools 6

Interoperability with VisiBroker 6
Interoperability with other ORB products 7
IDL to C++ Mapping 7

Chapter 2
Developing an example application
with VisiBroker 9

Development process 9
Step 1: Defining object interfaces 11

Writing the account interface in IDL 11
Step 2: Generating client stubs and server servants . 11

Files produced by the idl compiler 11
Step 3: Implementing the client 12

Client.C . 12
Binding to the AccountManager object 13
Obtaining an Account object 13
Obtaining the balance 13

Step 4: Implementing the server 13
Server programs 13
Understanding the Account class hierarchy 14

Step 5: Building the example 14
Compiling the example 15

Step 6: Starting the server and running the example . 15
Starting the Smart Agent 15
Starting the server 16
Running the client 16

Deploying applications with VisiBroker 16
VisiBroker Applications 17

Deploying applications 17
Environment variables 17
Support service availability 18
Running the application 18

Executing client applications 18

Chapter 3
Programmer tools for C++ 21
VisiBroker for C++ Switches for Header Files 21

_VIS_STD . 21
_VIS_NOLIB 21

Arguments/Options 22
General options. 22

General information 22
idl2cpp . 22
idl2ir . 25
ir2idl . 26
idl2wsc . 26

Usage of idl2wsc 26
Limitation of idl2wsc 27

Chapter 4
IDL to C++ mapping 29
Primitive data types 29
Strings . 30

String_var Class 30
Constants . 31

Special cases involving constants 32
Enumerations . 32
Type definitions 32
Modules . 33
Complex data types 34
Structures . 34

Fixed-length structures 34
Variable length structures 35
Memory management for structures 35
Unions . 36

Managed types for unions 37
Memory management for unions 37

Sequences . 37
Managed types for sequences 39
Memory management for sequences 39

Arrays. 40
Array slices 40
Managed types for arrays 40
Type-safe arrays 41
Memory management for arrays 41

Principal . 42
Valuetypes . 42

Valuebox . 45
Abstract Interfaces 45

Chapter 5
VisiBroker properties 47
Smart Agent properties 47
Smart Agent communication properties 48
VisiBroker ORB properties. 49
ServerManager properties. 53

Additional Properties 53
Properties related to Server-side resource usage

53

ii

Properties related to Client-side resource usage
54

Properties related to the Smart Agent
(Smart Agent). 54

Miscellaneous Properties 54
Location Service properties 55
Event Service properties 55
Naming Service (VisiNaming) properties. 55

Pluggable Backing Store Properties. 59
Default properties common to all adapters. . . 59
JDBC Adapter properties 60
DataExpress Adapter properties 61
JNDI adapter properties 62
VisiNaming Service Security-related properties 62

OAD properties . 63
Interface Repository properties. 63
TypeCode properties 64
Client-Side LIOP Connection properties 64
Client-side IIOP connection properties 65
QoS-related Properties 66
Server-side server engine properties. 66
Server-side thread session IIOP_TS/IIOP_TS

connection properties 67
Server-side thread session BOA_TS/BOA_TS

connection properties 68
Server-side thread pool IIOP_TP/IIOP_TP

connection properties 69
Server-side thread pool BOA_TP/BOA_TP

connection properties 70
Server-side thread pool LIOP_TP/LIOP_TP

connection properties 71
Server-side thread pool BOA_LTP/BOA_LTP connection

properties . 72
Properties that support bi-directional communication 72
Debug Logging properties 73

Enabling and Filtering 75
Appending and Logging 76

Examples . 77
Examples . 77

Web Services Runtime Properties 78
Enabling the runtime 78
Web Services HTTP Listener properties 79
Web Services Connection Manager properties . . 79
SOAP Request Dispatcher properties. 79

Real-time Extensions related properties 80

Chapter 6
Handling exceptions 81
Exceptions in the CORBA model 81
System exceptions 81

SystemException class 82
Obtaining completion status. 82
Getting and setting the minor code 83
Determining the type of a system exception . . . 83
Catching system exceptions. 83
Downcasting exceptions to a system exception . . 84
Catching specific types of system exceptions . . . 84

User exceptions 85
Defining user exceptions 85

Modifying the object to raise the exception . . 86
Catching user exceptions 86

Adding fields to user exceptions 86

Chapter 7
Server basics 89
Overview .89
Initializing the VisiBroker ORB 89
Creating the POA 90

Obtaining a reference to the root POA90
Creating the child POA. 90
Implementing servant methods 91

Creating and Activating the Servant. 92
Activating the POA92

Activating objects 92
Waiting for client requests92
Complete example 93

Chapter 8
Using POAs 97
What is a Portable Object Adapter?97

POA terminology98
Steps for creating and using POAs 99

POA policies. .99
Creating POAs 101

POA naming convention 101
Obtaining the rootPOA 101
Setting the POA policies 102
Creating and activating the POA 102

Activating objects 102
Activating objects explicitly 103
Activating objects on demand 103
Activating objects implicitly 103
Activating with the default servant 104
Deactivating objects 105

Using servants and servant managers 106
ServantActivators 107
ServantLocators 109

Managing POAs with the POA manager 112
Getting the current state 112
Holding state 112
Active state . 113
Discarding state 113
Inactive state 113

Listening and Dispatching: Server Engines,
Server Connection Managers, and their properties 114

Server Engine and POAs 114
Associating a POA with a Server Engine . . . 115
Defining Hosts for Endpoints for the

Server Engine 116
Server Connection Managers 116

Manager 116
Listener . 117
Dispatcher 118

When to use these properties 118
Adapter activators 119
Processing requests. 120

Chapter 9
Managing threads and connections 121
Using threads . 121

iii

Listener thread, dispatcher thread, and worker threads
122

Thread policies 122
Thread pool policy 122
Thread-per-session policy 126
Connection management 127
ServerEngines 128

ServerEngine properties 128
Setting dispatch policies and properties 129

Thread pool dispatch policy 129
Thread-per-session dispatch policy 130
Coding considerations 130

Setting connection management properties 131
Valid values for applicable properties 132
Effects of property changes 132
Dynamically alterable properties. 132
Determining whether property value

changes take effect 133
Impact of changing property values 133

Garbage collection 133

Chapter 10
Using the tie mechanism 135
How does the tie mechanism work? 135
Example program 136

Location of an example program using the
tie mechanism 136

Looking at the tie template. 136
Changing the server to use the _tie_account class .

137
Building the tie example 138

Chapter 11
Client basics 139
Initializing the VisiBroker ORB 139
Binding to objects 139

Action performed during the bind process 140
Invoking operations on an object 141
Manipulating object references 141

Checking for nil references 141
Obtaining a nil reference. 141
Duplicating an object reference 141
Releasing an object reference 142
Obtaining the reference count 142
Converting a reference to a string 143
Obtaining object and interface names 143
Determining the type of an object reference. . . 143
Determining the location and state of bound objects

144
Checking for non-existent objects 144
Narrowing object references 144
Widening object references 144

Using Quality of Service (QoS) 145
Understanding Quality of Service (QoS). 145

Policy overrides and effective policies 145
QoS interfaces 146

CORBA::Object 146

CORBA::Object 146
CORBA::PolicyManager. 146
CORBA::PolicyCurrent 146
QoSExt::DeferBindPolicy 147
QoSExt::RelativeConnectionTimeoutPolicy . . 147
Messaging::RebindPolicy 147
Messaging::RelativeRequestTimeoutPolicy . . 149
Messaging::RelativeRoundTripTimeoutPolicy . 149
Messaging::SyncScopePolicy 149

Exceptions . 149

Chapter 12
Using IDL 151
Introduction to IDL 151
How the IDL compiler generates code. 152

Example IDL specification 152
Looking at generated code for clients 152

Methods (stubs) generated by the IDL compiler . 153
Pointer type <interface_name>_ptr definition. . . 153
Automatic memory management

<interface_name>_var class 153
Looking at generated code for servers 154

Methods (skeletons) generated by the IDL compiler .
154

Class template generated by the IDL compiler . . 154
Defining interface attributes in IDL. 155
Specifying one-way methods with no return value. . 156
Specifying an interface in IDL that inherits

from another interface 156

Chapter 13
Using the Smart Agent 157
What is the Smart Agent? 157

Best practices for Smart Agent
configuration and synchronization 157

General guidelines 158
Load balancing/ fault tolerance guidelines . . 158
Location service guidelines 158
When not to use a Smart Agent 159

Locating Smart Agents 159
Locating objects through Smart Agent cooperation .

159
Cooperating with the OAD to connect with objects . .

159
Starting a Smart Agent (osagent) 160

Verbose output 161
Disabling the agent 161

Ensuring Smart Agent availability 161
Checking client existence 161

Working within VisiBroker ORB domains 162
Connecting Smart Agents on different local networks . .

163
How Smart Agents detect each other 163

Working with multihomed hosts 164
Specifying interface usage for Smart Agents . . . 164

Using point-to-point communications 165
Specifying a host as a runtime parameter 165

iv

Specifying an IP address with an
environment variable. 166

Specifying hosts with the agentaddr file 166
Ensuring object availability 166

Invoking methods on stateless objects 167
Achieving fault-tolerance for objects that

maintain state 167
Replicating objects registered with the OAD . . 167

Migrating objects between hosts 167
Migrating objects that maintain state 167
Migrating instantiated objects 168
Migrating objects registered with the OAD . . . 168

Reporting all objects and services 168
Binding to Objects 169

Chapter 14
Using the Location Service 171
What is the Location Service? 171
Location Service components 172

What is the Location Service agent? 172
Obtaining addresses of all hosts running

Smart Agents 173
Finding all accessible interfaces 173
Obtaining references to instances of an interface

174
Obtaining references to like-named

instances of an interface 174
What is a trigger? 174

Looking at trigger methods. 174
Creating triggers 175
Looking at only the first instance found

by a trigger 175
Querying an agent 175

Finding all instances of an interface 175
Finding interfaces and instances known to

Smart Agents 176
Writing and registering a trigger handler 178

Chapter 15
Using the VisiNaming Service 183
Overview . 183
Understanding the namespace 184

Naming contexts. 185
Naming context factories 185
Names and NameComponent. 186
Name resolution 186

Stringified names. 186
Simple and complex names 186

Running the VisiNaming Service 187
Installing the VisiNaming Service 187
Configuring the VisiNaming Service. 187
Starting the VisiNaming Service 188

Invoking the VisiNaming Service from the command line
188

Configuring nsutil 188
Running nsutil 189
Shutting down the VisiNaming Service using nsutil .

189
Bootstrapping the VisiNaming Service 190

Calling resolve_initial_references 190

Using -DSVCnameroot. 190
Using -ORBInitRef 190

Using a corbaloc URL. 190
Using a corbaname URL 191

-ORBDefaultInitRef. 191
Using -ORBDefaultInitRef with a corbaloc URL. .

191
Using -ORBDefaultInitRef with corbaname . . 191

NamingContext 191
NamingContextExt 192
Default naming contexts. 192

Obtaining the default context 192
Obtaining naming context factories 193

VisiNaming Service properties 193
Pluggable backing store 196

Types of backing stores 196
In-memory adapter 197
JDBC adapter 197
DataExpress adapter 197
JNDI adapter 197

Configuration and use 197
Properties file 198
JDBC Adapter properties 198
DataExpress Adapter properties 200
JNDI adapter properties 200

Configuration for OpenLDAP. 200
Caching facility 200

Important Notes for users of Caching Facility. 201
Object Clusters 201
Object Clustering criteria 202

Cluster and ClusterManager interfaces 202
IDL Specification for the Cluster interface . . 202
IDL Specification for the ClusterManager interface

203
IDL Specification for the

NamingContextExtExtended interface . . . 203
Creating an object cluster 204

Explicit and implicit object clusters 204
Load balancing 205
Object failover 205
Pruning stale object references in

VisiNaming object clusters 205
VisiNaming Service Clusters for Failover and

Load Balancing 206
Configuring the VisiNaming Service Cluster . . . 207
Configuring the VisiNaming Service in Master/

Slave mode 207
Starting up with a large number of connecting clients

208
VisiNaming service federation 209

VisiNaming Service Security 209
Naming client authentication 210
Configuring VisiNaming to use SSL 210
Method Level Authorization 211

Compiling and linking programs. 212
Sample programs 212
Configuring VisiNaming with JdataStore HA 213

Create a DB for the Primary mirror. 213
Invoke JdsServer for each listening connection . 213
Configure JDataStore HA 214
Run the VisiNaming Explicit Clustering example. 215

v

Run the VisiNaming Naming Failover example . 216

Chapter 16
Using the Event Service 221
Overview . 221

Proxy consumers and suppliers 222
OMG Common Object Services specification . . 224

Communication models 224
Push model 225
Pull model . 225

Using event channels 226
Creating event channels 227
Examples of push supplier and consumer 227

Push supplier and consumer example. 227
Deriving a PushSupplier class 227
Implementing the PushSupplier 228
Complete implementation for a sample

push supplier 230
Deriving a PushConsumer class 234
Implementing the PushConsumer 234

Setting the queue length. 236
Compiling and linking programs 237

Chapter 17
Using the VisiBroker Server Manager 239
Getting Started with the Server Manager 239

Enabling the Server Manager on a server 239
Obtaining a Server Manager reference 240
Working with Containers 240
The Storage Interface 241

The Container Interface 241
Container Methods 241

Methods related to property
manipulation and queries 241

Methods related to operations 242
Methods related to children containers 242
Methods related to storage 242

The Storage Interface 242
Storage Interface Methods. 242

Limiting access to the Server Manager 243
Server Manager IDL 244

Server Manager examples 246
Obtaining the reference to the top-level container246
Getting all the containers and their properties . . 246
Getting and Setting properties and saving

them into the file 247
Invoking an operation in a Container 247
Custom Containers 248

Chapter 18
Using VisiBroker Native Messaging 249
Introduction . 249

Two-phase invocation (2PI) 249
Polling-Pulling and Callback models 249
Non-native messaging and IDL mangling 250
Native Messaging solution 250
Request Agent 250

Native Messaging Current 251
Core operations 251

StockManager example 251
Polling-pulling model 252
Callback model 254

Advanced Topics. 256
Group polling 256
Cookie and reply de-multiplexing in reply recipients .

258
Evolving invocations into two-phases. 260
Reply dropping 261
Manual trash collection 262
Unsuppressed premature return mode. 262
Suppress poller generation in callback model . . 263

Native Messaging API Specification 263
Interface RequestAgentEx 264

create_request_proxy() 264
destroy_request() 264

Interface RequestProxy. 265
the_receiver 265
poll() . 265
destroy() . 266

Local interface Current 266
suppress_mode() 266
wait_timeout 266
the_cookie. 266
request_tag 266
the_poller 267
reply_not_available 267

Interface ReplyRecipient 269
reply_available() 269

Semantics of core operations 269
Native Messaging Interoperability Specification . . . 269

Native Messaging uses native GIOP 270
Native Messaging service context 270
NativeMessaging tagged component. 271

Using Borland Native Messaging 271
Using request agent and client model 271

Start the Borland Request Agent 271
Borland Request Agent URL 272
Using the Borland Native Messaging client model

272
Borland Request Agent vbroker properties. . . . 272

vbroker.requestagent.maxThreads 272
vbroker.requestagent.maxOutstandingRequests .

272
vbroker.requestagent.blockingTimeout 272
vbroker.requestagent.router.ior 272
vbroker.requestagent.listener.port. 273
vbroker.requestagent.requestTimeout 273

Interoperability with CORBA Messaging 273
Migrating from previous versions of

VisiBroker Native Messaging. 273
Migrating from previous versions of

VisiBroker Native Messaging. 274

vi

Chapter 19
Using the Object Activation Daemon (OAD)
275

Automatic activation of objects and servers 275
Locating the Implementation Repository data. . 275
Activating servers 276

Using the OAD 276
Starting the OAD 276

Using the OAD utilities 277
Converting interface names to repository IDs . . 277
Listing objects with oadutil list 278
Registering objects with oadutil 279

Example: Specifying repository ID 280
Example: Specifying IDL interface name. . . 280
Remote registration to an OAD 281
Using the OAD without using the Smart Agent281
Using the OAD with the Naming Service. . . 281

Distinguishing between multiple instances
of an object 282

Setting activation properties using the
CreationImplDef class 282

Dynamically changing an ORB implementation . 283
OAD Registration using OAD::reg_implementation .

283
Arguments passed by the OAD 284

Un-registering objects 284
Un-registering objects using the oadutil tool . . 284

Unregistration example. 285
Unregistering with the OAD operations 285
Displaying the contents of the

Implementation Repository 285
IDL interface to the OAD 286

Chapter 20
Using Interface Repositories 287
What is an Interface Repository? 287

What does an Interface Repository contain? . . 287
How many Interface Repositories can you have? 288

Creating and viewing an Interface Repository with irep
288

Creating an Interface Repository with irep . . . 288
Viewing the contents of the Interface Repository 289

Updating an Interface Repository with idl2ir 289
Understanding the structure of the Interface Repository

290
Identifying objects in the Interface Repository. . 291
Types of objects that can be stored in the

Interface Repository 291
Inherited interfaces 292

Accessing an Interface Repository 292
Interface Repository example program 292

Chapter 21
Using the Dynamic Invocation Interface 295
What is the dynamic invocation interface? 295

Introducing the main DII concepts. 296
Using request objects 296
Encapsulating arguments with the Any type . 297
Options for sending requests. 297
Options for receiving replies 298

Steps for invoking object operations dynamically 298
Example programs for using the DII 298

Obtaining a generic object reference 298
Creating and initializing a request 299

Request class 299
Ways to create and initialize a DII request 299
Using the create_request method 300
Using the _request method 300
Example of creating a Request object 300
Setting the context for the request 301
Setting arguments for the request 301

Implementing a list of arguments with the NVList.
301

Setting input and output arguments with
the NamedValue Class 302

Passing type safely with the Any class 302
Representing argument or attribute types

wit the TypeCode class 302
Sending DII requests and receiving results 304

Invoking a request 304
Sending a deferred DII request with the

send_deferred method 305
Sending an asynchronous DII request with

the send_oneway method 305
Sending multiple requests 306
Receiving multiple requests 306

Using the interface repository with the DII 307

Chapter 22
Using the Dynamic Skeleton Interface 311
What is the Dynamic Skeleton Interface? 311
Steps for creating object implementations dynamically .

311
Example program for using the DSI 312

Extending the DynamicImplementation class 312
Example of designing objects for dynamic requests .

312
Specifying repository ids 314

Looking at the ServerRequest class 314
Implementing the Account object 315
Implementing the AccountManager object 315

Processing input parameters. 315
Setting the return value 316

Server implementation 316

Chapter 23
Using Portable Interceptors 319
Portable Interceptors overview 319

Types of interceptors 320
Types of Portable Interceptors 320

Portable Interceptor and Information interfaces . . . 320
Interceptor class 320
Request Interceptor 320

ClientRequestInterceptor 321
Client-side rules. 322
ServerRequestInterceptor 322
Server-side rules 323

IOR Interceptor. 323
Portable Interceptor (PI) Current 323
Codec . 324

vii

CodecFactory 324
Creating a Portable Interceptor 324

Example: Creating a PortableInterceptor . . . 325
Registering Portable Interceptors 325
Registering an ORBInitializer 326

Example: Registering ORBInitializer 326
VisiBroker extensions to Portable Interceptors . 327

POA scoped Server Request Interceptors . . 327
Limitations of VisiBroker Portable

Interceptors implementation 327
ClientRequestInfo limitations 327
ServerRequestInfo limitations 327

Portable Interceptors examples 328
Example: client_server 328

Objective of example 328
Importing required packages 328
Client-side request interceptor initialization

and registration to the ORB 329
Implementing the ORBInitializer for a

server-side Interceptor 331
Implementing the RequestInterceptor for

client- or server-side Request Interceptor . . . 332
Implementing the ClientRequestInterceptor for Client

333
Implementation of the public void

send_request(ClientRequestInfo ri) interface333
Implementation of the void

send_poll(ClientRequestInfo ri) interface . . 333
Implementation of the void

receive_reply(ClientRequestInfo ri) interface 333
Implementation of the void

receive_exception(ClientRequestInfo ri)
interface 333

Implementation of the void
receive_request_service_contexts
(ServerRequestInfo ri) interface. 336

Implementation of the void receive_request
(ServerRequestInfo ri) interface. 336

Implementation of the void receive_reply
(ServerRequestInfo ri)interface 336

Implementation of the void receive_exception
(ServerRequestInfo ri) interface. 336

Implementation of the void receive_other
(ServerRequestInfo ri) interface. 337

Developing the Client and Server Application . . 339
Implementation of the client application . . . 339
Implementation of the server application . . . 340

Compilation procedure. 341
Execution or deployment of Client and

Server Applications 342

Chapter 24
Using VisiBroker Interceptors 345
Interceptors overview 345
Interceptor interfaces and managers 345

Client Interceptors 346
BindInterceptor 346

ClientRequestInterceptor 346
Server Interceptors 347

POALifeCycleInterceptor 347
ActiveObjectLifeCycleInterceptor 347
ServerRequestInterceptor 347
IORCreationInterceptor 348

Service Resolver Interceptor 348
Registering Interceptors with the VisiBroker ORB349
Creating Interceptor objects 349
Loading Interceptors 350

Example Interceptors 350
Example code 350

Client-server Interceptors example 350
Code listings 351

SampleServerLoader 351
SamplePOALifeCycleInterceptor 352
SampleServerInterceptor 353
SampleClientInterceptor. 353
SampleClientLoader. 354
SampleBindInterceptor 355

Passing information between your Interceptors . . . 356
Using both Portable Interceptors and

VisiBroker Interceptors simultaneously 356
Order of invocation of interception points. 357
Client side Interceptors 357
Server side Interceptors 357
Order of ORB events during POA creation 357
Order of ORB events during object

reference creation. 358

Chapter 25
Using object wrappers 359
Object wrappers overview 359

Typed and un-typed object wrappers 359
Special idl2cpp requirements. 360
Object wrapper example applications 360

Untyped object wrappers 360
Using multiple, untyped object wrappers 361
Order of pre_method invocation 361
Order of post_method invocation 361

Using untyped object wrappers 362
Implementing an untyped object wrapper factory 362
Implementing an untyped object wrapper 363

pre_method and post_method parameters . . 363
Creating and registering untyped object

wrapper factories 364
Removing untyped object wrappers 365

Typed object wrappers 365
Using multiple, typed object wrappers 366
Order of invocation 367
Typed object wrappers with co-located

client and servers 367
Using typed object wrappers 368

Implementing typed object wrappers 368
Registering typed object wrappers for a client . . 369
Registering typed object wrappers for a server. . 369
Removing typed object wrappers. 370

viii

Combined use of untyped and typed object wrappers .
370

Command-line arguments for typed wrappers . 371
Initializer for typed wrappers. 371
Command-line arguments for untyped wrappers 372
Initializers for untyped wrappers. 372
Executing the sample applications 373

Turning on timing and tracing object wrappers 373
Turning on caching and security object wrappers

374
Turning on typesd and untyped wrappers . . 374
Executing a CO-located client and server . . 374

Chapter 26
Event Queue 375
Event types . 375

Connection events 375
Event listeners 375

IDL definition 375
ConnInfo structure 376

EventListener interface 376
ConnEventListeners interface 376
EventQueueManager interface 377
How to return the EventQueueManager. 377
Event Queue code samples 377

Registering EventListeners. 377
Implementing EventListeners 378

Chapter 27
Using the dynamically managed types 381
DynAny interface overview 381

DynAny examples 381
DynAny types . 381

DynAny usage restrictions. 382
Creating a DynAny 382
Initializing and accessing the value in a DynAny 382

Constructed data types 383
Traversing the components in a

constructed data type 383
DynEnum . 383
DynStruct . 383
DynUnion . 383
DynSequence and DynArray 383

DynAny example IDL 384
DynAny example client application 384
DynAny example server application 385

Chapter 28
Using valuetypes 391
Understanding valuetypes 391

Valuetype IDL code sample 391
Concrete valuetypes. 391

Valuetype derivation 392
Sharing semantics 392
Null semantics 392
Factories 392

Abstract valuetypes 392
Implementing valuetypes 392

Defining your valuetypes 393
Compiling your IDL file 393

Inheriting the valuetype base class 393
Implementing the Factory class 393
Registering your Factory with the VisiBroker ORB. .

394
Implementing factories 394

Factories and valuetypes. 394
Registering valuetypes 394

Boxed valuetypes 395
Abstract interfaces. 395
Custom valuetypes 396
Truncatable valuetypes 396

Chapter 29
Bidirectional Communication 399
Using bidirectional IIOP 399
Bidirectional VisiBroker ORB properties 399
About the BiDirectional examples 400
Enabling bidirectional IIOP for existing applications. 401
Explicitly enabling bidirectional IIOP 401

Unidirectional or bidirectional connections 402
Enabling bidirectional IIOP for POAs. 403

Security considerations 403

Chapter 30
Using the BOA with VisiBroker 405
Compiling your BOA code with VisiBroker 405
Supporting BOA options. 405
Using object activators 405
Naming objects under the BOA 406

Object names 406

Chapter 31
Using object activators 407
Deferring object activation. 407
Activator interface 407
Using the service activation approach 408

Deferring object activation using service activators .
408

Example of deferred object activation for a service .
409

odb.idl interface 409
Implementing a service-activated object . . . 410
Implementing a service activator 410
Instantiating the service activator 411
Using a service activator to activate an object 411

Deactivating service-activated object
implementations 412

Chapter 32
Real-Time CORBA Extensions 415
Overview . 415
Using the Real-Time CORBA Extensions 416
Real-Time CORBA ORB 416
Real-Time Object Adapters 418
Real-Time CORBA Priority 419
Priority Mappings 420

Priority Mapping Types 420
Rules for Priority Mappings 421
Default Priority Mapping 422
Replacing the Default Priority Mapping 423

ix

Using Native Priorities in VisiBroker
Application Code 424

Threadpools. . 425
Threadpool API 425
Threadpool Creation and Configuration 426
Association of an Object Adapter with a Threadpool

426
The General Threadpool. 427
Threadpool Destruction 428

Real-Time CORBA Current 428
Real-Time CORBA Priority Models 429
Setting Priority at the Object Level 431
Real-Time CORBA Mutex API 431

Control of Internal ORB Thread Priorities 432
Configuring Individual Internal ORB

Thread Priorities 432
Limiting the Internal ORB Thread Priority Range.

433

Chapter 33
CORBA exceptions 435
CORBA exception descriptions 435
Heuristic OMG-specified exceptions 440
Other OMG-specified exceptions 440

Chapter 34
VisiBroker Pluggable Transport Interface
443

Pluggable Transport Interface Files 443
Transport Layer Requirements 443
User-Provided Code Required for a Protocol Plugin 444
Unique Profile ID Tag 444
Example Code 445
Implementing a New Transport 445

VISPTransConnection and
VISPTransConnectionFactory 445

VISPTransListener and VISPTransListenerFactory .
446

VISPTransProfileBase and VISPTransProfileFactory
447

Additional classes—VISPTransBridge and
VISPTransRegistrar 447

Chapter 35
VisiBroker Logging 451
Logging Overview. 451
Logger Manager 453
Logging . 453
Filtering . 454
Reserved names 455
Customization. 455
Configuration . 457

Log manager configuration 457
Appender and layout registration configuration . 458
Setting appenders and layouts on loggers. . . . 458
Filter configuration 459

Setting the properties. 459

Chapter 36
Web Services Overview 461
Web Services Architecture 461
Standard Web Services Architecture 462
VisiBroker Web Services Architecture 462

Web Services Artifacts 462
Web Service Runtime 463

Exposing a CORBA object as Web Service 465
Development. . 466

Generating WSDL from IDL 466
Generating the C++ interface type specific bridge . .

466
Deployment . 467

Creating Deployment WSDD 467
Using the created WSDD to deploy 467
A sample axiscpp.conf file 467
Web Services Runtime Configuration 468

WSDD Reference 468
Limitations . 469
SOAP/WSDL compatibility. 469

Chapter 37
Reducing ORB runtime footprints 471
Different ORB Libraries 471

Core ORB library 472
Smart Agent (osagent) Usage library 472
Location Service library 472
Server Manager Usage library 472
Interface Repository library 473
Dynamic Any library 473
Gatekeeper (firewall) library 473

Index 475

x

xi

xii

 1 : Understanding the CORBA model 1

Understanding the CORBA model
This section introduces VisiBroker, which comprises both the VisiBroker for C++ and
the VisiBroker for Java ORBs. Both are complete implementations of the CORBA 3.0
specification (excluding CCM and GIOP 1.3). This section describes VisiBroker
features and components.

What is CORBA?
The Common Object Request Broker Architecture (CORBA) allows distributed
applications to interoperate (application-to-application communication), regardless of
what language they are written in or where these applications reside.

The CORBA specification was adopted by the Object Management Group to address
the complexity and high cost of developing distributed object applications. CORBA
uses an object-oriented approach for creating software components that can be reused
and shared between applications. Each object encapsulates the details of its inner
workings by presenting a well-defined interface. Use of these interfaces, themselves
written in the standardized Interface Definition Language (IDL) reduces application
complexity. The cost of developing applications is reduced, because once an object is
implemented and tested, it can be used over and over again.

The role of the Object Request Broker (ORB) is to track and maintain these interfaces,
facilitate communication between them, and provide services to applications making
use of them. The ORB itself is not a separate process. It is a collection of libraries and
network resources that integrates within end-user applications, and allows your client
applications to locate and use disparate objects.

The Object Request Broker in the following figure connects a client application with the
objects it wants to use. The client program does not need to know whether the object it
seeks resides on the same computer or is located on a remote computer somewhere
on the network. The client program only needs to know the object's name and

2 VisiBroker for C++ Developer ’s Guide

What is Vis iBroker?

understand how to use the object's interface. The ORB takes care of the details of
locating the object, routing the request, and returning the result.

Figure 1.1 Client program acting on an object

What is VisiBroker?
VisiBroker provides a complete CORBA 3.0 ORB runtime and supporting development
environment for building, deploying, and managing distributed applications for both
C++ and Java that are open, flexible, and interoperable. Objects built with VisiBroker
are easily accessed by Web-based applications that communicate using the Internet
Inter-ORB Protocol (IIOP) standard for communication between distributed objects
through the Internet or through local intranets. VisiBroker has a built-in implementation
of IIOP that ensures high-performance and interoperability.

 1: Understanding the CORBA model 3

Vis iBroker Features

Figure 1.2 VisiBroker Architecture

VisiBroker Features
VisiBroker has several key features as described in the following sections.

VisiBroker's Smart Agent (osagent) Architecture

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory service that
provides naming facilities for both client applications and object implementations.
Multiple Smart Agents on a network cooperate to provide load-balancing and high
availability for client access to server objects. The Smart Agent keeps track of objects
that are available on a network, and locates objects for client applications at object-
invocation time. VisiBroker can determine if the connection between your client
application and a server object has been lost (due to an error such as a server crash or
a network failure). When a failure is detected, an attempt is automatically made to
connect your client to another server on a different host, if it is so configured. For
details on the Smart Agent see “Using the Smart Agent” and “Using Quality of Service
(QoS)”.

Enhanced Object Discovery Using the Location Service

VisiBroker provides a powerful Location Service—an extension to the CORBA
specification—that enables you to access the information from multiple Smart Agents.
Working with the Smart Agents on a network, the Location Service can see all the
available instances of an object to which a client can bind. Using triggers, a callback
mechanism, client applications can be instantly notified of changes to an object's
availability. Used in combination with interceptors, the Location Service is useful for
developing enhanced load balancing of client requests to server objects. See “Using
the Location Service.”

Implementation and Object Activation Support

The Object Activation Daemon (OAD) is the VisiBroker implementation of the
Implementation Repository. The OAD can be used to automatically start object

4 VisiBroker for C++ Developer ’s Guide

Vis iBroker Features

implementations when clients need to use them. Additionally, VisiBroker provides
functionality that enables you to defer object activation until a client request is received.
You can defer activation for a particular object or an entire class of objects on a server.

Robust thread and connection management

VisiBroker provides native support for single- and multi-threaded thread management.
With VisiBroker's thread-per-session model, threads are automatically allocated on the
server (per client connection) to service multiple requests, and then are terminated
when each connection ends. With the thread pooling model, threads are allocated
based on the amount of request traffic to and from server objects. This means that a
highly active client will be serviced by multiple threads—ensuring that the requests are
quickly executed—while less active clients can share a single thread and still have their
requests immediately serviced.

VisiBroker's connection management minimizes the number of client connections to
the server. All client requests for objects residing on the same server are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same
server, eliminating the need for clients to incur the overhead of new connections to the
same server.

All thread and connection behavior is fully configurable. See “Managing threads and
connections” for details on how VisiBroker manages threads and connections.

IDL compilers

VisiBroker comes with three IDL compilers that make object development easier,

– idl2java: The idl2java compiler takes IDL files as input and produces the necessary
client stubs and server skeletons in Java.

– idl2cpp: The idl2cpp compiler takes IDL files as input and produces the necessary
client stubs and server skeletons in C++.

– idl2ir: The idl2ir compiler takes an IDL file and populates an interface repository
with its contents. Unlike the previous two compilers, idl2ir functions with both the
C++ and Java ORBs.

See “Using IDL” and “Using Interface Repositories” for details on these compilers.

Dynamic invocation with DII and DSI

VisiBroker provides implementations of both the Dynamic Invocation Interface (DII) and
the Dynamic Skeleton Interface (DSI) for dynamic invocation. The DII allows client
applications to dynamically create requests for objects that were not defined at compile
time. The DSI allows servers to dispatch client operation requests to objects that were
not defined at compile time. See “Using the Dynamic Invocation Interface” and “Using
the Dynamic Skeleton Interface” for more information.

Interface and implementation repositories

The Interface Repository (IR) is an online database of meta information about the
VisiBroker ORB objects. Meta information stored for objects includes information about
modules, interfaces, operations, attributes, and exceptions. “Using Interface
Repositories” covers how to start an instance of the Interface Repository, add
information to an interface repository from an IDL file, and extract information from an
interface repository.

The Object Activation Daemon is a VisiBroker interface to the Implementation
Repository that is used to automatically activate the implementation when a client
references the object. See “Using the Object Activation Daemon (OAD)” for more
information.

 1: Understanding the CORBA model 5

VisiBroker CORBA compl iance

Server-side portability

VisiBroker supports the CORBA Portable Object Adapter (POA), which is a
replacement to the Basic Object Adapter (BOA). The POA shares some of the same
functionality as the BOA, such as activating objects, support for transient or persistent
objects, and so forth. The POA also has additional functionality, such as the POA
Manager and Servant Manager which create and manages instances of your objects.
See “Using POAs” for more information.

Customizing the VisiBroker ORB with interceptors and object
wrappers

VisiBroker's Interceptors enable developers to view under-the-cover communications
between clients and servers. The VisiBroker Interceptors are Borland's proprietary
interceptors. Interceptors can be used to extend the VisiBroker ORB with customized
client and server code that enables load balancing, monitoring, or security to meet the
specialized needs of distributed applications. See “Using Portable Interceptors” for
information.

VisiBroker also includes the Portable Interceptors, based on the OMG standardized
feature, that allow you to write portable code for interceptors and use it with different
vendor ORBs. For more information, refer to the COBRA 3.0 specification.

VisiBroker's object wrappers allow you to define methods that are called when a client
application invokes a method on a bound object or when a server application receives
an operation request. See “Using object wrappers” for information.

Event Queue

The event queue is designed as a server-side only feature. A server can register the
listeners to the event queue based on the event types that the server is interested in,
and the server processes those events when the need arises.

Backing stores in the Naming Service

The new interoperable Naming Service integrates with pluggable backing stores to
make its state persistent. This ensures easy fault tolerance and failover functionality in
the Naming Service. See “Pluggable backing store” for more information.

GateKeeper

The GateKeeper allows client programs to issue operation requests to objects that
reside on a web server and to receive callbacks from those objects, all the while
conforming to the security restrictions imposed by web browsers. The Gatekeeper also
handles communication through firewalls and can be used as an HTTP daemon. It is
fully compliant with the OMG CORBA Firewall Specification. For more information see
the VisiBroker “Introduction to GateKeeper.”

VisiBroker CORBA compliance
VisiBroker is fully compliant with the CORBA specification (version 3.0) (excluding
CCM and GIOP 1.3) from the Object Management Group (OMG). For more details,
refer to the CORBA specification located at http://www.omg.org/.

VisiBroker Development Environment
VisiBroker can be used in both the development and deployment phases. The
development environment includes the following components:

http://www.omg.org/

6 VisiBroker for C++ Developer ’s Guide

Interoperabi l i ty wi th Vis iBroker

– Administration and programming tools

– VisiBroker ORB

Programmer's tools

The following tools are used during the development phase:

CORBA services tools

The following tools are used to administer the VisiBroker ORB during development:

Administration Tools

The following tools are used to administer the VisiBroker ORB during development:

Interoperability with VisiBroker
Applications created with VisiBroker for Java can communicate with object
implementations developed with VisiBroker for C++. Likewise, for applications created
with VisiBroker for C++, these applications can also communicate with objects
implementations developed with VisiBroker for Java. For example, if you want to use
Java application on VisiBroker for C++, use the same IDL you used to develop your
Java application as input to the VisiBroker IDL compiler, supplied with VisiBroker for
C++. You may then use the resulting C++ skeletons to develop the object
implementation. To use the C++ application on VisiBroker for Java, repeat the process.
However, you will use the VisiBroker IDL complier with VisiBroker for Java instead.

Also, object implementations written with VisiBroker for Java will work with clients
written in VisiBroker for C++. In fact, a server written with VisiBroker for Java will work
with any CORBA-compliant client; a client written with VisiBroker for Java will work with
any CORBA-compliant server. This also applies to any VisiBroker for C++ object
implementations.

Tool Purpose

idl2ir This tool allows you to populate an interface repository with interfaces defined in an
IDL file for both the VisiBroker for Java and VisiBroker for C++.

idl2cpp This tool generates C++ stubs and skeletons from an IDL file.

idl2java This tool generates Java stubs and skeletons from an IDL file

java2iiop Generates Java stubs and skeletons from a Java file. This tool allows you to define
your interfaces in Java, rather than in IDL.

java2idl Generates an IDL file from a file containing Java bytecode.

Tool Purpose

irep Used to manage the Interface Repository. See “Using Interface Repositories.”

oad Used to manage the Object Activation Daemon (OAD). See “Using the Object
Activation Daemon (OAD).”

nameserv Used to start an instance of the Naming Service. See “Using the VisiNaming
Service.”

Tool Purpose

oadutil list Lists VisiBroker ORB object implementations registered with the OAD.

oadutil reg Registers an VisiBroker ORB object implementation with the OAD.

oadutil unreg Unregisters an VisiBroker ORB object implementation with the OAD.

osagent Used to manage the Smart Agent. See “Using the Smart Agent.”

osfind Reports on objects running on a given network.

 1: Understanding the CORBA model 7

Interoperabi l i ty wi th other ORB products

Interoperability with other ORB products
CORBA-compliant software objects communicate using the Internet Inter-ORB
Protocol (IIOP) and are fully interoperable, even when they are developed by different
vendors who have no knowledge of each other's implementations. VisiBroker's use of
IIOP allows client and server applications you develop with VisiBroker to interoperate
with a variety of ORB products from other vendors.

IDL to C++ Mapping
VisiBroker conforms with the OMG IDL/C++ Language Mapping Specification. See the
VisiBroker Programmer's Reference for a summary of VisiBroker's current IDL to C++
language mapping, as implemented by the idl2cpp compiler. For each IDL construct
there is a section that describes the corresponding C++ construct, along with code
samples.

For more information about the mapping specification, refer to the OMG IDL/C++
Language Mapping Specification.

8 VisiBroker for C++ Developer ’s Guide

 2: Developing an example appl icat ion with VisiBroker 9

Developing an example application
with VisiBroker
This section uses an example application to describe the development process for
creating distributed, object-based applications for both Java and C++.

The code for the example application is provided in the bank_agent.html file. You can
find this file in:

<install_dir>/examples/vbroker/basic/bank_agent/

Development process
When you develop distributed applications with VisiBroker, you must first identify the
objects required by the application. The following figure illustrates the steps to develop
a sample bank application. Here is a summary of the steps taken to develop the bank
sample:

1 Write a specification for each object using the Interface Definition Language (IDL).

IDL is the language that an implementer uses to specify the operations that an
object will provide and how they should be invoked. In this example, we define, in
IDL, the Account interface with a balance() method and the AccountManager interface
with an open() method.

2 Use the IDL compilers to generate the client stub code and server POA servant
code.

With the interface specification described in step 1, use the idl2java or idl2cpp
compilers to generate the client-side stubs and the server-side classes for the
implementation of the remote objects.

3 Write the client program code.

To complete the implementation of the client program, initialize the VisiBroker ORB,
bind to the Account and the AccountManager objects, invoke the methods on these
objects, and print out the balance.

10 VisiBroker for C++ Developer’s Guide

Development process

4 Write the server object code.

To complete the implementation of the server object code, we must derive from the
AccountPOA and AccountManagerPOA classes, provide implementations of the
interfaces' methods, and implement the server's main routine.

5 Compile the client and server code using the appropriate stubs and skeletons.

6 Start the server.

7 Run the client program.

Figure 2.1 Developing the sample bank application

 2: Developing an example appl icat ion with VisiBroker 11

Step 1: Def in ing object interfaces

Step 1: Defining object interfaces
The first step to creating an application with VisiBroker is to specify all of your objects
and their interfaces using the OMG's Interface Definition Language (IDL). The IDL can
be mapped to a variety of programming languages.

You then use the idl2cpp compiler to generate stub routines and servant code
compliant with the IDL specification. The stub routines are used by your client program
to invoke operations on an object. You use the servant code, along with code you write,
to create a server that implements the object.

Writing the account interface in IDL

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data
structures, and more.

The sample below shows the contents of the Bank.idl file for the bank_agent example.
The Account interface provides a single member function for obtaining the current
balance. The AccountManager interface creates an account for the user if one does not
already exist.

module Bank{
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};

Step 2: Generating client stubs and server servants
The interface specification you create in IDL is used by VisiBroker's idl2cpp to
generate C++ stub routines for the client program, and skeleton code for the object
implementation.

The client program uses the stub routines for all member function invocations.

You use the skeleton code, along with code you write, to create the server that
implements the objects.

The code for the client program and server object, once completed, is used as input to
your C++ compiler and linker to produce the client and server.

Because the Bank.idl file requires no special handling, you can compile the file with the
following command.

prompt> idl2cpp Bank.idl

For more information on the command-line options for the idl2cpp compiler, see “Using
IDL.”

Files produced by the idl compiler

The idl2cpp compiler generates four files from the Bank.idl file:

– Bank_c.hh: Contains the definitions for the Account and AccountManager classes.

– Bank_c.cc: Contains internal stub routines used by the client.

– Bank_s.hh: Contains the definitions for the AccountPOA and AccountManagerPOA servant
classes.

– Bank_s.cpp: Contains the internal routines used by the server.

12 VisiBroker for C++ Developer’s Guide

Step 3: Implement ing the cl ient

You will use the Bank_c.hh and Bank_c.cpp files to build the client application. The
Bank_s.hh and Bank_s.cpp files are for building the server object. All generated files have
either a .cpp or .hh suffix to help you distinguish them from source files.

Windows

The default suffix for generated files from the idl2cpp compiler is .cpp. However, the
Makefiles associated with the examples for VisiBroker use the -src suffix to change the
output to the specified extension.

Caution

You should never modify the contents of files generated by the idl2cpp compiler.

Step 3: Implementing the client
Many of the classes used in implementing the bank client are contained in the Bank
code generated by the idl2cpp compiler as shown in the previous example.

The Client.C file illustrates this example and is included in the bank_agent directory.
Normally, you would create this file.

Client.C

The Client program implements the client application which obtains the current
balance of a bank account. The bank client program performs these steps:

1 Initializes the VisiBroker ORB.

2 Binds to an AccountManager object.

3 Obtains the balance of the Account using the object reference returned by bind().

4 Obtains the balance by invoking balance on the Account object.

#include "Bank_c.hh"
int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 // Get the manager Id
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("BankManager");
 // Locate an account manager. Give the full POA name and the servant ID.
 Bank::AccountManager_ptr manager =
 Bank::AccountManager::_bind("/bank_agent_poa", managerId);
 // use argv[1] as the account name, or a default.
 const char* name = argc > 1 ? argv[1] : "Jack B. Quick";

 // Request the account manager to open a named account.
 Bank::Account_ptr account = manager->open(name);
 // Get the balance of the account.
 float balance = account->balance();
 // Print out the balance.
 cout << "The balance in " << name << "'s account is $" << balance <<
endl;
 } catch(const CORBA::Exception& e) {
 cerr << e << endl;

 2: Developing an example appl icat ion with VisiBroker 13

Step 4: Implement ing the server

 }
}

Binding to the AccountManager object
Before your client program can invoke the open(String name) member function, the
client must first use the bind() member function to establish a connection to the server
that implements the AccountManager object.

The implementation of the bind() member function is implemented automatically by
idl2cpp. The bind() member function requests the VisiBroker ORB to locate and
establish a connection to the server.

If the server is successfully located and a connection is established, a proxy object is
created to represent the server's AccountManagerPOA object. A pointer is returned to your
client program.

Obtaining an Account object
Next, your client program needs to call the open() member function on the
AccountManager object to get a pointer to the Account object for the specified customer
name.

Obtaining the balance
Once your client program has established a connection with an Account object, the
balance() member function can be used to obtain the balance. The balance() member
function on the client side is actually a stub generated by the idl2cpp compiler that
gathers all the data required for the request and sends it to the server object.

Several other member functions are provided that allow your client program to
manipulate an AccountManager object reference.

Step 4: Implementing the server
Just as with the client, many of the classes used in implementing the bank server are
contained in the header files of Bank generated by the idl2cpp compiler. The Server.C
file is a server implementation included for the purposes of illustrating this example.
Normally you, the programmer, would create this file.

Server programs

This file implements the Server class for the server side of our banking example. The
code sample below ia an example of a server side program. The server program does
the following:

– Initializes the Object Request Broker.

– Creates a Portable Object Adapter with the required policies.

– Creates the account manager servant object.

– Activates the servant object.

– Activates the POA manager (and the POA).

– Waits for incoming requests.

#include "BankImpl.h"
int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

14 VisiBroker for C++ Developer’s Guide

Step 5: Bui ld ing the example

 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] =
 rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
 // get the POA Manager
 PortableServer::POAManager_var poa_manager = rootPOA->the_POAManager();
 // Create myPOA with the right policies
 PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",
 poa_manager, policies);
 // Create the servant
 AccountManagerImpl managerServant;
 // Decide on the ID for the servant
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("BankManager");
 // Activate the servant with the ID on myPOA
 myPOA->activate_object_with_id(managerId, &managerServant);
 // Activate the POA Manager
 poa_manager->activate();
 cout << myPOA->servant_to_reference(&managerServant) << " is ready" <<
endl;
 // Wait for incoming requests
 orb->run();
 } catch(const CORBA::Exception& e) {
 cerr << e << endl;
 return 1;
 }
 return 0;
}

Understanding the Account class hierarchy

The Account class that you implement is derived from the POA_Bank::Account class that
was generated by the idl2cpp compiler. Look closely at the POA_Bank::Account class
definition that is defined in the Bank_c.hh file and notice that it is derived from the
Account class. The figure below shows the class hierarchy.

Figure 2.2 Class hierarchy for the AccountImpl interface

Step 5: Building the example
The examples directory of your VisiBroker release contains a Makefile.cpp for this
example and other VisiBroker examples.

 2: Developing an example appl icat ion with VisiBroker 15

Step 6: Start ing the server and running the example

The Client.C that you created and the generated Bank_c.cc file are compiled and linked
together to create the client program. The Server.C file that you created, along with the
generated Bank_s.cpp and the Bank_c.cpp files, are compiled and linked to create the
bank account server. Both the client program and the server must be linked with the
VisiBroker ORB library.

Note:

VisiBroker for C++ 8.0 has a kernel library, the ORB Core, and six component libraries.
The ORB Core must be linked to any VBC application, while the component libraries
can be selected on demand by linking or using property.

To reduce the migration effort, VisiBroker for C++ 8.0 also provides a library having the
same name as previous single ORB library. Although, the library suffix may be different
on some platforms.

The examples directory also contains a file named stdmk (for UNIX) or stdmk_nt (for
Windows NT), and defines file location and variable settings to be used by the
Makefile.

You may need to customize the stdmk or stdmk_nt file if your compiler does not support
the specified flags.

Compiling the example

Windows

Assuming VisiBroker is installed in C:\vbroker, type the following to compile the
example:

prompt> C:
prompt> cd vbroker\examples\basic\bank_agent
prompt> nmake -f Makefile.cpp

The Visual C++ nmake command runs the idl2cpp compiler and then compiles each file.

If you encounter some problems while running make , check that your path environment
variable points to the bin directory where you installed the VisiBroker software.

Also, try setting the VBROKERDIR environment variable to the directory where you
installed the VisiBroker software.

UNIX

Assuming VisiBroker is installed in /usr/local, type the following to compile the
example:

prompt> cd /usr/local/vbroker/examples/basic/bank_agent
prompt> make cpp

In this example, make is the standard UNIX facility. If you do not have it in your PATH, see
your system administrator.

Step 6: Starting the server and running the example
Now that you have compiled your client program and server implementation, you are
ready to run your first VisiBroker application.

Starting the Smart Agent

Before you attempt to run VisiBroker client programs or server implementations, you
must first start the Smart Agent on at least one host in your local network.

The basic command for starting the Smart Agent is as follows:

prompt> osagent

The Smart Agent is described in detail in “Using the Smart Agent.”

16 VisiBroker for C++ Developer’s Guide

Deploying appl icat ions with VisiBroker

Starting the server

Windows

Open a DOS prompt window and start your server by using the following DOS
command:

prompt> start Server

UNIX

Start your Account server by typing:

prompt> Server&

Running the client

Windows

Open a separate DOS prompt window and start your client by using the following DOS
command:

prompt> Client

UNIX

To start your client program, type the following command:

prompt> Client

You should see output similar to that shown below (the account balance is computed
randomly).

The balance in the account in $168.38.

Deploying applications with VisiBroker
VisiBroker is also used in the deployment phase. This phase occurs when a developer
has created client programs or server applications that have been tested and are ready
for production. At this point a system administrator is ready to deploy the client
programs on end-users' desktops or server applications on server-class machines.

For deployment, the VisiBroker ORB supports client programs on the front end. You
must install the VisiBroker ORB on each machine that runs the client program. Clients
(that make use of the VisiBroker ORB) on the same host share the VisiBroker ORB.
The VisiBroker ORB also supports server applications on the middle tier. You must
install the full VisiBroker ORB on each machine that runs the server application. Server
applications or objects (that make use of the VisiBroker ORB) on the same server
machine share the VisiBroker ORB. Clients may be GUI front ends, applets, or client
programs. Server implementations contain the business logic on the middle tier.

 2: Developing an example appl icat ion with VisiBroker 17

Deploying appl icat ions wi th Vis iBroker

Figure 2.3 Client and server programs deployed with VisiBroker ORBs

VisiBroker Applications

Deploying applications
In order to deploy applications developed with VisiBroker, you must first set up a
runtime environment on the host where the application is to be executed and ensure
that the necessary support services are available on the local network.

The runtime environment required for applications developed with VisiBroker for C++
includes these components:

– The VisiBroker libraries, located in the bin sub-directory where the product is
installed.

– The availability of the support services required by the application.

The VisiBroker ORB libraries must be installed on the host where the deployed
application is to execute. The location of these libraries must be included in the PATH
for the application's environment.

Environment variables
If the deployed application is to use a Smart Agent (osagent) on a particular host, you
must set the OSAGENT_ADDR environment variable before running the application. You can
use the ORBagentAddr property as a command-line argument to specify a hostname or
IP address. The table below lists the necessary command-line arguments.

If the deployed application is to use a particular UDP port when communicating with a
Smart Agent, you must set the OSAGENT_PORT environment variable before running the
application.

You can use the ORBagentPort (C++) command-line argument to specify the IP port
number.

For more information about environment variables, see the Borland VisiBroker
Installation Guide.

18 VisiBroker for C++ Developer’s Guide

Deploying appl icat ions with VisiBroker

Support service availability
A Smart Agent must be executing somewhere on the network where the deployed
application is to be executed. Depending on the requirements of the application being
deployed, you may need to ensure that other VisiBroker runtime support services are
available, as well. These services include:

Running the application
Before you attempt to run VisiBroker client programs or server implementations, you
must first start the Smart Agent on at least one host in your local network. The Smart
Agent is described in detail in “Starting the Smart Agent”.

Executing client applications
A client application is one that uses VisiBroker ORB objects, but does not offer any
VisiBroker ORB objects of its own to other client applications.

The following table summarizes the command-line arguments that may be specified for
a client application. These arguments also are applicable to servers.

Support services Needed when:

Object Activation Daemon (oad) A deployed application is a server that implements object
which needs to be started on demand.

Interface Repository (irep) A deployed application uses either the dynamic skeleton
interface or dynamic implementation interface. See “Using
Interface Repositories” for a description of these interfaces.

GateKeeper A deployed application needs to execute in an environment
that uses firewalls for network security.

 2: Developing an example appl icat ion with VisiBroker 19

Deploying appl icat ions wi th Vis iBroker

Options Description

-ORBagentAddr <hostname|ip_address> Specifies the hostname or IP address of the host running
the Smart Agent this client should use. If a Smart Agent
is not found at the specified address or if this option is not
specified, broadcast messages will be used to locate a
Smart Agent.

-ORBagentPort <port_number> Specifies the port number of the Smart Agent. This
option can be useful if multiple VisiBroker ORB domains
are required. If not specified, a default port number of
14000 will be used.

-ORBbackcompat <0|1> If set to 1, this option specifies that backward
compatibility with VisiBroker for C++ version 2.0 should
be provided. The default is 0.

-ORBbackdii <0|1> If set to 1, this option specifies that support for the 1.0
IDL-to-C++ mapping should be provided. If set to 0 or not
specified at all, the new 1.1 mapping will be used. The
default setting is 0. If -ORBbackcompat is set to 1, this option
will automatically be set to 1.

-ORBir_name <ir_name> Specifies the name of the Interface Repository to be
accessed when the Object::get_interface() method is
invoked on object implementations.

-ORBir_ior <ior_string> Specifies the IOR of the Interface Repository to be
accessed when the Object::get_interface() method is
invoked on object implementations.

-ORBnullstring <0|1> If set to 1, this option specifies that the VisiBroker ORB
will allow C++ NULL strings to be streamed. The NULL
strings will be marshalled as strings of length 0 opposed
to the empty string ("") which is marshalled as a string of
length 1, with the sole character of \0. If set to 0, attempts
to marshal out a NULL string will throw CORBA::BAD_PARAM.
Attempts to marshal in a NULL string will throw
CORBA::MARSHAL. The default setting is 0. If -ORBbackcompat is
set to 1, this option will automatically be set to 1.

-ORBrcvbufsize <buffer_size> Specifies the size of the TCP buffer (in bytes) used to
receive responses. If not specified, a default buffer size
will be used. This argument can be used to significantly
impact performance or benchmark results.

-ORBsendbufsize <buffer_size> Specifies the size of the TCP buffer (in bytes) used to
send client requests. If not specified, a default buffer size
will be used. This argument can be used to significantly
impact performance or benchmark results.

-ORBshmsize <size> Specifies the size of the send and receive segments (in
bytes) in shared memory. If your client program and
object implementation communicate via shared memory,
you may use this option to enhance performance. This
option is only supported on Windows platforms.

-ORBtcpnodelay <0|1> When set to 1, it sets all sockets to immediately send
requests. The default value of 0 allows sockets to send
requests in batches as buffers fill. This argument can be
used to significantly impact performance or benchmark
results.

20 VisiBroker for C++ Developer’s Guide

 3 : Programmer tools for C++ 21

Programmer tools for C++
This chapter describes the programmer tools offered by VisiBroker for C++.

VisiBroker for C++ Switches for Header Files
The following switches are used to point consumers of the header files to the proper
code libraries.

_VIS_STD

On platforms where VisiBroker for C++ supports development of both classical and
standard C++ applications, defining _VIS_STD enables inclusion of the correct C++
header files for the C++ libraries in the VisiBroker for C++ header files. For developing
standard C++ applications, use the _VIS_STD flag while compiling. For classical C++
application development, do not use this flag.

_VIS_NOLIB

On Windows, a VisiBroker for C++ header file (vdef.h) automatically places the
VisiBroker for C++ library search records in the object files. This is done using the
#pragma comment for both MSVC and BCB compilers. Depending on certain other
definition such as _DEBUG, VISDEBUG or _VIS_STD, appropriate library search records are
selected. If this behavior is not required and VisiBroker for C++ library names are to be
specified explicitly in the application link command, then _VIS_NOLIB should be defined.
By default it is not defined.

22 VisiBroker for C++ Developer’s Guide

Arguments/Opt ions

Arguments/Options
There is a set of arguments common to all VisiBroker programmer's tools and, in
addition, each tool has its own arguments. The specific arguments and options for
each tool are listed in the section for the tool. The general options are listed below.

General options

The following options are common to all programmer tools:

Note

On UNIX platforms, the -J option is only available with VisiBroker for Java on Solaris.

General information
The syntax of the VisiBroker programming tools described in this chapter differs
depending on whether you call them from a UNIX or a Windows environment. The
UNIX version of each tool is listed first followed by the Windows version.

UNIX

To display the options of a command under UNIX, enter:

Windows

To display the options of a command under Windows, enter:

idl2cpp
This command implements VisiBroker's IDL to C++ compiler, which generates client
stubs and server skeleton code from an IDL file.

Syntax

idl2cpp [arguments] infile(s)

idl2cpp takes an IDL file as input and generates the corresponding C++ classes for the
client and server side, client stubs, and server skeleton code.

The infile parameter represents the IDL file for which you wish C++ code to be
generated and the arguments provide various controls over the resulting code.

Option Description

-J<java option> Passes the java_option directly to the Java Virtual Machine.

-VBJversion Prints the VisiBroker version.

-VBJdebug Prints the VisiBroker debug information.

-VBJclasspath Specifies the classpath, precedes the CLASSPATH environment
variable.

-VBJprop <name> [=<value>] Passes the name/value pair to the Java Virtual Machine.

-VBJjavavm <jvmpath> Specifies the path of the Java Virtual Machine.

-VBJaddJar <jarfile> Appends the jarfile to the CLASSPATH before executing the Java
Virtual Machine.

Syntax Example

command name -\? idl2cpp -\?

Syntax Example

command name -? idl2cpp -?

 3 : Programmer tools for C++ 23

idl2cpp

Example

idl2cpp -hdr_suffix hx -server_ext _serv -no_tie -no_excep-spec bank.idl

Windows When linking implementations based on the stubs and skeletons idl2cpp generates,
use the -DSTRICT preprocessor option. Otherwise, the linker may display an error
message stating that a constructor is missing from orb.lib.

Argument Description

-D, -defined foo[=bar] Defines a preprocessor macro foo, optionally with a value
bar. To specify more than one preprocessor macro, use the -
D option multiple times. For example: -Dfoo=bar -Dhello=world

-H, -list_includes Prints the full paths of included files on the standard error
output. The default is off.

-I, -include <dir> Specifies an additional directory for #include searching. To
specify more than one additional #include directory for
searching, use the -I option multiple times. For example: -I/
home/include -I /app/include

-P, no_line_directives Suppresses the generation of line number information. The
default is off.

-U, -undefine foo Undefines a preprocessor macro foo.

-client_ext <file_extension> Specifies the file extension to be used for client files that are
generated. The default extension is (_c). To generate client
files without an extension, specify none as the value for
<file_extension>.

-[no_]back_compat_mapping In the current release this option does not do anything. It
could change in the next release.

[no]boa Specifies the generation of BOA compatible code. By default,
this code is not generated.

-[no_]comments Includes comments in the generated code. By default, the
comments are displayed in the generated code.

-[no_]idl_strict Specifies strict OMG standard interpretation of the IDL
source. By default, the OMG standard interpretation is not
used.

-[no_]obj_wrapper Generates stubs and skeletons with object wrapper support.
It also generates the base typed object wrapper from which
all other object wrappers inherit, and a default object wrapper
that performs the untyped object wrapper calls. When this
option is not set, idl2cpp does not generate code for object
wrappers.

-[no_]preprocess Preprocesses the IDL file before parsing. The default value is
set to on.

-[no_]preprocess_only Stops parsing the IDL file after preprocess. This option
causes the compiler to generate the result of the preprocess
phase to stdout. The default is on.

-[no_]pretty_print Generates the _pretty_print method. By default, this is set to
on.

-[no_]servant Specifies the generation of the server-side code. By default,
the servant is generated.

-[no_]stdstream Generates class stream operators with standard iostream
classes in their signature. The default is on.

-[no_]tie Generates the _tie template classes. By default, _tie classes
are generated.

-[no_]warn_all Suppresses all warnings. The default is off.

-[no_]warn_missing_define Warns if any forward declared names were never defined.
The default is on.

-[no_]warn_unrecognized_pragmas Generates a warning if a #pragma is not recognized.

-corba_inc <filename> Causes the #include <filename> directive to be inserted in
generated code instead of the usual#include <corba.h>
directive. By default, #include <corba.h> is inserted into
generated code.

24 VisiBroker for C++ Developer’s Guide

id l2cpp

-[no_]examples Specifies the generation of sample implementations. By
default, the sample implementations are not generated.

-excep_spec Generates exception specifications for methods. By default,
exception specifications are not generated.

Windows: -export <tag> Defines a tag name to be inserted into every client-side
declaration (class, function, etc.) that is generated.
Specifying-export _MY_TAG when invoking idl2cpp results in a
class definition like this: class _MY_TAG Bank{...} instead of

class Bank {...} By default, no tag names for client-side
declarations are generated.

Windows: -export_skel <tag> Defines a tag name to be inserted into just the server-side
declarations that are generated. Specifying -export _MY_TAG
when invoking idl2cpp results in a class definition like
this: class _MY_TAG POA_Bank{...} instead of class POA_Bank
{...} By default, no tag names for server-side declarations
are generated.

-gen_include_files Specifies the generation of code for #include files. By default,
this code is not generated.

-h, -help, -usage, -? Specifies that help information be printed.

-hdr_suffix <string> Specifies the header filename extension. The default is .hh.

-impl_inherit Generates implementation inheritance. The default is off.

-list_files Specifies that files written during code generation be listed.
By default, this list is not created.

-map_keyword <keywrd> <map> Adds <keywrd> as a keyword and associates with it the
mapping indicated. Any IDL identifier that conflicts with
<keywrd> will be mapped in C++ to <map>. This prevents
clashes between keywords and names used in C++ code. All
C++ keywords have default mappings—they do not need to
be specified using this option.

-namespace Implements modules as namespaces. The default is off.

-root_dir <path> Specifies the directory where the generated code is to be
written. By default, the code is written to the current directory.

-server_ext <file_extension> Specifies the file extension to be used for server files that are
generated. The default extension is (_s). To generate server
files without an extension, specify none as the value for
<file_extension>.

-src_suffix <string> Specifies the source filename extension. The default is .cc.

-target <compiler> Specifies the compiler used to generate the C++ code. The
default compiler used is Solaris.

-type_code_info Enables the generation of type code information needed for
client programs that intend to use the Dynamic Invocation
Interface. By default, type code information is not generated.

-version Displays the software version number of VisiBroker.

-corba_style Requires -type_code_info flag. Generates pointer insertion/
extraction into/from CORBA::Any. By default, it is off.

-corba_style_tie Requires -tie flag. Generate a tie class within same scope as
skeleton class. By default, it is off.

file1 [file2] ... Specifies one or more files to be processed, or “-” for stdin.

CPP The orb.idl has conditional definitions which are specific to
either VisiBroker for C++ or VisiBroker for Java. Therefore, if
you want to include the orb.idl in your IDL, you must turn on
the VisiBroker for C++-specific definitions using the CPP
macro. For example, use the following: idl2cpp -D CPP
test.idl. Alternately, you may put the following line at the top
of your IDL file:

#define CPP

Argument Description

 3 : Programmer tools for C++ 25

idl2ir

idl2ir
This command allows you to populate an interface repository with objects defined in an
Interface Definition Language source file.

Syntax

idl2ir [-ir <IR_name>] [-replace] <filename>.idl [<filename2>.idl ...]

Example

idl2ir -ir my_repository -replace bank/Bank.idl

Description

The idl2ir command takes the name of an IDL file as input, binds itself to an interface
repository server, and populates the repository with the IDL constructs contained in
<filename>.idl. If the -replace option is specified, if the repository already contains an
item with the same name as an item in the IDL file, the old item is replaced.

Note

The idl2ir command does not handle anonymous arrays or sequences properly. To
work around this problem, typedefs must be used for all sequences and arrays.

Option Description

-D, -define foo[=bar] Defines a preprocessor macro foo, optionally with a value
bar.

-I, -include <dir> Specifies an additional directory for #include searching.

-P, no_line_directives Suppresses the generation of line number information. The
default is off; line numbering is not suppressed.

-H, _list_includes Prints the names of included files on the standard error
output. The default is off.

-U, -undefine foo Undefines a preprocessor macro foo.

-[no_]back_compat_mapping Specifies the use of mapping that is backward compatible
with VisiBroker 3.x.

-{no_]idl_strict Specifies strict OMG standard interpretation of the IDL
source. By default, the OMG standard interpretation is not
used.

-[no_]preprocess Preprocesses the IDL file before parsing. The default value is
set to on.

-[no_]preprocess_only Stops parsing the IDL file after preprocess. This option
causes the compiler to generate the result of the preprocess
phase to stdout. The default is on.

-[no_]warn_all Suppresses all warnings. The default is off.

-[no_]warn_unrecognized_pragmas Generates a warning if a #pragma is not recognized.

-deep Specifies deep (rather than shallow) merges. If you specify -
deep, only differences between the new contents and the
existing contents will be merged. In a -shallow merge, all
existing content is replaced with new content if the new
content defines the same names. The default is off.

-h, -help, -usage, -? Prints help information.

-irep <name> Specifies the instance name of the interface repository to
which idl2ir will attempt to bind. If no name is specified,
idl2ir will bind itself to the interface repository server found
in the current domain. The current domain is defined by the
OSAGENT_PORT environment variable.

-replace Replaces definitions instead of updating them.

-version Displays the software version number of VisiBroker.

file1 [file2] ... Specifies one or more files to be processed, or “-” for stdin.

26 VisiBroker for C++ Developer’s Guide

i r2 id l

ir2idl
This command allows you to create an Interface Definition Language (IDL) source file
with objects from an interface repository.

Syntax

ir2idl [options]

Example

The following example dumps the contents of the IR named foo into the file named
foo.idl:

ir2idl -irep foo -o foo.idl

Description

The ir2idl command extracts the contents of an IR and prints it out as IDL.

Options

The following options are available for ir2idl.

idl2wsc
idl2wsc generates C++ code similar to Axis C++ v1.5 WSDL2Ws Server side
generated code and it also generates the necessary CORBA calls to the CORBA
server. This constitutes the C++ Web Services CORBA Bridge Code.

Given an IDL name “Foo.idl” by default the idl2wsc tool will generate the files
“Foo_ws_s.cc, Foo_ws_c.hh, Foo.wsdl, corba.wsdl and Foo.wsdd”. Note that the
“*.cc, *.hh, *.wsdl” files should not be modified. The generated WSDD file can be
modified by the user to point to the compiled shared library that will be loaded by the
C++ Web Services Run-time Library.

The options available to idl2cpp are also available to idl2wsc. In addition to the idl2cpp
options, the following are specific to idl2wsc

Usage of idl2wsc

Before passing any IDL file to idl2wsc to generate the C++ bridge code, you will have to
pass the IDL file to idl2cpp to generate the CORBA stub code. Note that you should
apply the same idl2cpp options that you use to generate the CORBA stub code to the
idl2wsc tool because the idl2wsc tool references names of files and/or signatures that
should have been generated by idl2cpp.

Option Description

-irep <irep name> Specifies the name of the interface repository.

-o, <file> Specifies the name of the output file, or “-” for stdout.

-strict Specifies strict adherence to OMG-standard code generation. The
default is on. The compiler will complain upon occurrences of Borland-
proprietary syntax extensions in input IDL.

-version Displays or prints out the version of VisiBroker that you are currently
running

-h, -help, -usage, -? Prints help information.

Option Description
-encoding_wsi_only Generate specific WS–I encodings only. Defaults to OFF

-encoding_soap_only Generate specific SOAP encodings only. Defaults to OFF

-gen_cpp_bridge Generate VisiBroker for C++ bridge code. Defaults to OFF.

 3 : Programmer tools for C++ 27

idl2wsc

Note that any changes to the idl2cpp generated code or to a new version of “\include\
vbws.h” requires a recompilation of the idl2wsc-generated code.

Limitation of idl2wsc

Note that the Axis C++ v1.5 WSDL2WS tool does not support a WSDL file that defines
more than one “portType” and it will only generate only one of the “portTypes” defined.
This itself is a limitation of Axis C++ v1.5 and therefore an IDL file containing more than
one interface is not supported.

28 VisiBroker for C++ Developer’s Guide

 4: IDL to C++ mapping 29

IDL to C++ mapping
This section discusses the IDL to C++ language mapping provided by the VisiBroker
for C++ idl2cpp compiler, which strictly complies with the CORBA C++ language
mapping specification.

Primitive data types
The basic data types provided by the Interface Definition Language are summarized in
the table below. Due to hardware differences between platforms, some of the IDL
primitive data types have a definition that is marked “platform dependent.” On a
platform that has 64–bit integral representations, for example, the g type, would still be
only 32 bits. You should refer to the included file orbtypes.h for the exact mapping of
these primitive data types for your particular platform.

Caution

The IDL boolean type is defined by the CORBA specification to have only one of two
values: 1 or 0. Using other values for a boolean will result in undefined behavior.

IDL type VisiBroker type C++ definition

short CORBA::Short short

long CORBA::Long platform dependent

unsigned short CORBA::UShort unsigned short

unsigned long CORBA::ULong unsigned long

float CORBA::Float float

double CORBA::Double double

char CORBA::Char char

wchar CORBA::WChar wchar_t

boolean CORBA::Boolean unsigned char

octet CORBA::Octet unsigned char

long long CORBA::LongLong platform dependent

ulong long CORBA::ULongLong platform dependent

30 VisiBroker for C++ Developer’s Guide

Str ings

Strings
Both bounded and unbounded String types in IDL are mapped to the C++ type char *.

Note

All CORBA string types are null-terminated.

To ensure that your applications use the same memory management facilities as
VisiBroker does, use the following functions to dynamically allocate and de-allocate
strings:

class CORBA

{
 ...
 static char *string_alloc(CORBA::ULong len);
 static void string_free(char *data);
 ...
};

CORBA::char *string_alloc(CORBA::ULong len);

Dynamically allocates a string and returns a pointer to it. Returns a NULL pointer if the
allocation fails.

CORBA::void *string_free(char *data);

Releases the memory associated with a string that was allocated with
CORBA::string_alloc.

String_var Class

Whenever it maps an IDL string to achar *, the IDL compiler also generates a
String_var class that contains a pointer to the memory allocated to hold the string.
When a String_var object is destroyed or goes out of scope, the memory allocated to
the string is automatically freed.

Following are the members and methods in the String_var class:

class CORBA {

 class String_var {
 protected:
 char *_p;
 ...
 public:
 String_var();
 String_var(char *p);
 ~String_var();
 String_var& operator=(const char *p);
 String_var& operator=(char *p);
 String_var& operator=(const String_var& s);
 operator const char *() const;
 operator char *();

 char &operator[](CORBA::ULong index);

Parameter Description

len The length specified by the len parameter need not include the NULL terminator.

Parameter Description

data Pointer to a string that was allocated with CORBA::string_alloc.

 4 : IDL to C++ mapping 31

Constants

 char operator[](CORBA::ULong index) const;
 friend ostream& operator<<(ostream&, const
String_var&);
 inline friend Boolean operator==(const String_var& s1,
 const String_var& s2);
 ...
 };
 ...
};

Constants
IDL constants defined outside of any interface specification are mapped directly to a
C++ constant declaration. For example:

This code sample shows the top-level definitions in IDL.

const string str_example = "this is an example";

const long long_example = 100;
const boolean bool_example = TRUE;

This code sample shows the resulting C++ code for constants.

const char * str_example = "this is an example";

const CORBA::Long long_example = 100;
const CORBA::Boolean bool_example = 1;

IDL constants defined within an interface specification are declared in the C++ include
file and assigned values in the C++ source file. For example:

This code sample shows the IDL definitions from the example.idl file.

interface example {

 const string str_example = "this is an example";
 const long long_example = 100;
 const boolean bool_example = TRUE;
};

This code sample shows the C++ code generated to the example_client.hh file.

class example :: public virtual CORBA::Object

{
 ...
 static const char *str_example; /* "this is an example" */
 static const CORBA::Long long_example; /* 100 */
 static const CORBA::Boolean bool_example; /* 1 */
 ...
};

This code sample shows the C++ code generated to the example_client.cc file.

const char *example::str_example = "this is an example";

const CORBA::Long example::long_example = 100;
const CORBA::Boolean example::bool_example = 1;

32 VisiBroker for C++ Developer’s Guide

Enumerat ions

Special cases involving constants

Under some circumstances, the IDL compiler must generate C++ code that contains
the value of an IDL constant rather than the name of the constant. For example, in the
following code samples, the value of the constant length must be generated for the
typedef V to allow the C++ code to compile properly.

The code sample shows the definition of an IDL constant with a value.

// IDL
interface foo {
 const long length = 10;
 typedef long V[length];
};

This code sample shows the generation of an IDL constant's value in C++.

class foo : public virtual CORBA::Object
{
 const CORBA::Long length;
 typedef CORBA::Long V[10];
};

Enumerations
Enumerations in IDL map directly to C++ enumerations. For example:

// IDL
enum enum_type {
 first,
 second,
 third
};

This code sample shows the enumerations in IDL map directly to C++ enums.

// C++ code
enum enum_type {
 first,
 second,
 third
};

Type definitions
Type definitions in IDL map directly to C++ type definitions. If the original IDL type
definition maps to several C++ types, the IDL compiler generates the corresponding
aliases for each type in C++. For example:

// IDL
typedef octet example_octet;
typedef enum enum_values {
 first,
 second,
 third
} enum_example;

 4 : IDL to C++ mapping 33

Modules

This code sample shows the mapping of simple type definitions from IDL to C++.

// C++
typedef octet example_octet;
enum enum_values {
 first,
 second,
 third
};
typedef enum_values enum_example;

The following code samples provide other type definition mapping examples.

This code sample shows the IDL typedef of an interface.

// IDL
interface A1;
typedef A1 A2;

This code sample shows the mapping the IDL interface type definition in C++.

// C++
class A1;
typedef A1 *A1_ptr;
typedef A1_ptr A1Ref;
class A1_var;
typedef A1 A2;
typedef A1_ptr A2_ptr;
typedef A1Ref A2Ref;
typedef A1_var A2_var;

This code sample shows the IDL typedef of a sequence.

// IDL
typedef sequence<long> S1;
typedef S1 S2;

This code sample shows the mapping the IDL sequence type definition to C++.

// C++
class S1;
typedef S1 *S1_ptr;
typedef S1_ptr S1Ref;
class S1_var;
typedef S1 S2;
typedef S1_ptr S2_ptr;
typedef S1Ref S2Ref;
typedef S1_var S2_var;

Modules
The OMG IDL to C++ language mapping specifies that each IDL module be mapped to
a C++ namespace with the same name. However, few compilers currently support the
use of namespaces. Therefore, VisiBroker currently supports module to class mapping
only. The code samples below show how VisiBroker's IDL compiler maps a module
definition to a class.

This code sample shows the IDL module definition.

// IDL
module ABC
{
 ...
};

This code sample shows the generated C++ class.

34 VisiBroker for C++ Developer’s Guide

Complex data types

// C++
class ABC
{
 ...
};

Complex data types
In this section, we discuss how the following complex data types are mapped from IDL
to C++:

– Any type

– string type, bounded or unbounded

– sequence type, bounded or unbounded

– Object reference

– Other structures or unions that contain a variable-length member

– array with variable-length elements

– typedef with variable-length elements.

Structures

Fixed-length structures

For each fixed-length IDL structure mapped to C++, VisiBroker's IDL compiler
generates a structure as well as a _var class for the structure. The code samples below
show how this is done. For more information on the _var class, see
“<class_name>_var” in the VisiBroker for C++ API Reference.

This code sample shows the fixed-length structure definition in IDL.

// IDL
struct example {
 short a;
 long b;
};

This code sample shows the mapping of a fixed-length IDL structure to C++.

// C++
struct example {
 CORBA::Short a;
 CORBA::Long b;
};
class example_var
{
 ...
 private:

IDL type C++ mapping

struct (fixed length) struct and _var class

struct (variable length) struct and _var class

(variable length members are declared with their respective T_var
class)

union class and _var class

sequence class and _var class

array array, array_slice, array_forany, and array_var

 4 : IDL to C++ mapping 35

Structures

 example *_ptr;
};

Using fixed-length structures

When accessing fields of the _var class, you must always use the -> operator. For
example, the code sample below shows that to access the fields of the _var class ex2,
the -> operator must always be used. When ex2 goes out of scope, the memory
allocated to it will be freed automatically.

This code sample shows the use of the example structure and the example_var class.

// Declare an example struct and initialize its fields.
example ex1 = { 2, 5 };
// Declare a _var class and assign it to a newly created example structure.
// The _var points to an allocated struct with un-initialized fields.
example_var ex2 = new example;
// Initialize the fields of ex2 from ex1
ex2->a = ex1.b;

Variable length structures

The C++ code generated when a structure contains variable-length members is
different than when the structure is of fixed length. For example, the code samples
below show what would happen if in the example structure first described previously
where the long member were replaced with a string and an object reference were
added, so that example became a variable-length structure.

This code sample shows the variable length structure definitions in IDL.

// IDL
interface ABC {
 ...
};
struct vexample {
 short a;
 ABC c;
 string name;
};

This code sample shows the mapping of a variable-length structure to C++.

// C++
struct vexample {
 CORBA::Short a;
 ABC_var c;
 CORBA::String_var name;
 vexample& operator=(const vexample& s);
};
class vexample_var {
 ...
};

Notice how the ABC object reference is mapped to an ABC_var class. In a similar fashion,
the string name is mapped to a CORBA::String_var class. In addition, an assignment
operator is generated for variable-length structures.

Memory management for structures

The use of _var classes in variable-length structures ensures that memory allocated to
the variable-length members is managed transparently.

– If a structure goes out of scope, all memory associated with variable-length members
is freed automatically.

36 VisiBroker for C++ Developer’s Guide

Structures

– If a structure is initialized or assigned and then re-initialized or reassigned, the
memory associated with the original data is always freed.

– When a variable-length member is assigned to an object reference, a copy is always
made of the object reference. If a variable-length member is assigned to a pointer, no
copying takes place.

Unions

Each IDL union is mapped to a C++ class with methods for setting and retrieving the
value of the data members. Every member in the IDL union is mapped to a set of
functions that serve as accessors and mutators. A mutator function sets the value of
the data member. An accessor function returns the data in the data member.

A special, pre-defined data member, named_d, of the discriminant type is also
generated. The value of this discriminant is not set when the union is first created, so
an application must set it before using the union. Setting any data member using one of
the methods provided automatically sets the discriminant. A special accessor function,
_d(), provides access to the discriminant.

For example, the code samples below show how a union, example_union, would be
generated in C++:

This code sample shows the IDL union containing a struct.

// IDL
struct example_struct
{
 long abc;
};
union example_union switch(long)
{
 case 1: long x; // a primitive data type
 case 2: string y; // a simple data type
 case 3: example_struct z; // a complex data type
};

This code sample shows the mapping of an IDL union to a C++ class.

// C++
struct example_struct
{
 CORBA::Long abc;
};
class example_union
{
 private:
 CORBA::Long _disc;
 CORBA::Long _x;
 CORBA::String_var _y;
 example_struct _z;
 public:
 example_union();
 ~example_union();
 example_union(const example_union& obj);
 example_union& operator=(const example_union& obj);
 void x(const CORBA::Long val);
 const CORBA::Long x() const;
 void y(char *val);
 void y(const char *val);
 void y(const CORBA::String_var& val);
 const char *y() const;
 void z(const example_struct& val);
 const example_struct& z() const;

 4 : IDL to C++ mapping 37

Structures

 example_struct& z();
 CORBA::Long _d();
 void _d(CORBA::Long);
 ...
};

The table below describes some of the methods in the example_union class.

Managed types for unions
In addition to the example_union class shown in the following code sample, an
example_union_var class would also be generated. See “<class_name>_var” in the
VisiBroker for C++ API Reference for details on the _var classes.

Memory management for unions
Here are some important points to remember about memory management of complex
data types within a union:

– When you use an accessor method to set the value of a data member, a deep copy
is performed. You should pass parameters to accessor methods by value for smaller
types or by constant reference for larger types.

– When you set a data member using an accessor method, any memory previously
associated with that member is freed. If the member being assigned is an object
reference, the reference count of that object is incremented before the accessor
method returns.

– A char * accessor method frees any storage before ownership of the passed pointer
is assumed.

– Both const char * and String_var accessor methods free any old memory before the
new parameter's storage is copied.

– Accessor methods for array data members return a pointer to the array slice. For
more information, see “Array slices”.

Sequences

IDL sequences, both bounded and unbounded, are mapped to a C++ class that has a
current length and a maximum length. The maximum length of a bounded sequence is
defined by the sequence's type. Unbounded sequences can specify their maximum
length when their C++ constructor is called. The current length can be modified
programmatically. The code samples below show how an IDL sequence is mapped to
a C++ class with accessor methods.

Method Description

_d() This Method returns the value of the discriminator.

_d(CORBA::Long) This method is used for setting the value of the
discriminator. (In the case of the example, the
discriminator is of type long). Note that based on the
data type of the discriminator, the input argument's
type will be different.

example_union() The default constructor sets the discriminant to the
default value but does not initialize any of the other
data members.

example_union(const example_union&
obj)

The copy constructor performs a deep copy of the
source object.

~example_union() The destructor frees all memory owned by the union.

operator=(const example_union& obj) The assignment operator performs a deep copy,
releasing old storage, if necessary.

38 VisiBroker for C++ Developer’s Guide

Structures

Note

When the length of an unbounded sequence exceeds the maximum length you specify,
VisiBroker transparently allocates a larger buffer, copies the old buffer to the new
buffer, and frees the memory allocated to the old buffer. However, no attempt is made
to free unused memory if the maximum length decreases.

This code sample shows the IDL unbounded sequence.

// IDL

typedef sequence<long> LongSeq;

This code sample shows the mapping of an IDL unbounded sequence to a C++ class.

// C++

class LongSeq
{
 public:
 LongSeq(CORBA::ULong max=0);
 LongSeq(CORBA::ULong max=0, CORBA::ULong length,
 CORBA::Long *data, CORBA::Boolean release = 0);
 LongSeq(const LongSeq&);
 ~LongSeq();
 LongSeq& operator=(const LongSeq&);
 CORBA::ULong maximum() const;
 void length(CORBA::ULong len);
 CORBA::ULong length() const;
 const CORBA::ULong& operator[](CORBA::ULong index) const;
 ...
 static LongSeq *_duplicate(LongSeq* ptr);
 static void _release(LongSeq *ptr);
 static CORBA::Long *allocbuf(CORBA::ULong nelems);
 static void freebuf(CORBA::Long *data);
 private:
 CORBA::Long * _contents;
 CORBA::ULong _count;
 CORBA::ULong _num_allocated;
 CORBA::Boolean _release_flag;
 CORBA::Long _ref_count;
};

Method Description

LongSeq(CORBA::ULong max=0) The constructor for an unbounded sequence takes a maximum
length as an argument. Bounded sequences have a defined
maximum length.

LongSeq(CORBA::ULong max=0,

CORBA::ULong length,

CORBA::Long *data,

CORBA::Boolean release=0)

This constructor allows you to set the maximum length, the
current length, a pointer to the data buffer associated and a
release flag. If release is not zero, VisiBroker will free memory
associated with the data buffer when increasing the size of the
sequence. If release is zero, the old data buffer's memory is not
freed. Bounded sequences have all of these parameters except
for max.

LongSeq(const LongSeq&) The copy constructor performs a deep copy of the source object.

~LongSeq(); The destructor frees all memory owned by the sequence only if
the release flag had a non-zero value when constructed.

operator=(const LongSeq&j) The assignment operator performs a deep copy, then releases
old storage, if necessary.

maximum() Returns the size of the sequence.

length() Two methods are defined for setting and returning the length of
the sequence.

operator[]() Two indexing operators are provided for accessing an element
within a sequence. One operator allows the element to be
modified and one allows only read access to the element.

 4 : IDL to C++ mapping 39

Structures

Managed types for sequences
In addition to the LongSeq class shown in the code sample below, a LongSeq_var class is
also generated. See “<class_name>_var” in the VisiBroker for C++ API Reference for
details on the classes. In addition to the usual methods, there are two indexing
methods defined for sequences.

CORBA::Long& operator[](CORBA::ULong index);

const CORBA::Long& operator[](CORBA::ULong index) const;

Memory management for sequences
You should carefully consider the memory management issues listed below. The code
sample below contains sample C++ code that illustrates these points.

– If the release flag was set to a non-zero value when the sequence was created, the
sequence assumes management of the user's memory. When an element is
assigned, the old memory is freed before ownership of the memory on the right-hand
side of the expression is assumed.

– If the release flag was set to a non-zero value when a sequence containing strings or
object references was created, each element is released before the sequence's
contents buffer is released and the object is destroyed.

– Memory management errors may occur if you assign a sequence element using the
[] operator unless the release flag was set to one.

– Do not use sequences created with the release flag set to zero as input/output
parameters because memory management errors in the object server may result.

– Always use allocbuf and freebuf to create and free storage used with sequences.

This code sample shows the IDL specification for an unbounded sequence.

// IDL

typedef sequence<string, 3> String_seq;

This code sample shows is an example of memory management with two bounded
sequences.

// C++

char *static_array[] = ("1", "2", "3"};
char *dynamic_array = StringSeq::allocbuf(3);

// Create a sequence, release flag is set to FALSE by default

StringSeq static_seq(3, static_array);
// Create another sequence, release flag set to TRUE
StringSeq dynamic_seq(3, dynamic_array, 1);

static_seq[1] = “1”; // old memory not freed, no copying occurschar *str =
string_alloc(2);

dynamic_seq[1] = str; // old memory is freed, no copying occurs

_release() Releases the sequence. If the constructor's release flag was non-
zero when the object was created and the sequence element
type is a string or object reference, each element is released
before the buffer is released.

allocbuf()

freebuf()

You should use these two static methods to allocate or free any
memory used by a sequence.

Method Description

40 VisiBroker for C++ Developer’s Guide

Structures

Arrays

IDL arrays are mapped to C++ arrays, which can be statically initialized. If the array
elements are strings or object references, the elements of the C++ array are of type
_var. The following code samples show three arrays with different element types.

This code sample shows the IDL array definitions.

// IDL

interface Intf
{
 ...
};
typedef long L[10];
typedef string S[10];
typedef Intf A[10];

This code sample shows the mapping of IDL arrays to C++ arrays.

// C++

typedef CORBA::Long L[10];
typedef CORBA::String_var S[10];
typedef Intf_var A[10];

The use of the managed type _var for strings and object references allows memory to
be managed transparently when array elements are assigned.

Array slices
The array_slice type is used when passing parameters for multi-dimensional arrays.
VisiBroker's IDL compiler also generates a _slice type for arrays that contains all but
the first dimension of the array. The array _slice type provides a convenient way to
pass and return parameters. The following code samples show two examples of the
_slice type.

This code sample shows the IDL definition of multi-dimensional arrays.

// IDL

typedef long L[10];
typedef string str[1][2][3];

This code sample shows the generation of the _slice type.

// C++
typedef CORBA::Long L_slice;
typedef CORBA::String_var str_slice[2][3];

Managed types for arrays
In addition to generating a C++ array for IDL arrays, VisiBroker's IDL compiler will also
generate a _var class. This class offers some additional features for array.

– operator[] is overloaded to provide intuitive access to array elements.

– Constructor and assignment operator are provided that take a pointer to an array
_slice object as an argument.

This code sample shows the IDL definition of an array.

// IDL

typedef long L[10];

This code sample shows the _var class generated for arrays.

// C++
class L_var
{
 public:

 4 : IDL to C++ mapping 41

Structures

 L_var();
 L_var(L_slice *slice);
 L_var(const L_var& var);
 ~L_var();
 L_var& operator=(L_slice *slice);
 L_var& operator=(const L_var& var);
 CORBA::Long& operator[](CORBA::ULong index);
 operator L_slice *();
 operator L &() const;
 ...
 private:
 L_slice *_ptr;
};

Type-safe arrays
A special _forany class is generated to handle arrays with elements mapped to the type
any. As with the _var class, the _forany class allows you to access the underlying array
type. The _forany class does not release any memory upon destruction because the
_any type maintains ownership of the memory. The _forany class is not implemented as
a typedef because it must be distinguishable from other types if overloading is to
function properly.

This code sample shows the IDL array definition.

// IDL

typedef long L[10];

This code sample shows _for any class generated for an IDL array.

// C++

class L_forany
{
 public:
 L_forany();
 L_forany(L_slice *slice);
 ~L_forany();
 CORBA::Long& operator[](CORBA::ULong index);
 const CORBA::Long& operator[](CORBA::ULong index) const;
 operator L_slice *();
 operator L &() const;
 operator const L & () const;
 operator const L& () const;
 L_forany& operator=(const L_forany obj);
 ...
 private:
 L_slice *_ptr;
};

Memory management for arrays
VisiBroker's IDL compiler generates four functions for allocating, duplicating, copying,
and releasing the memory associated with arrays. These functions allow the VisiBroker
ORB to manage memory without having to override the new and delete operators.

This code sample shows the IDL array definition.

// IDL

typedef long L[10];

This code sample shows the methods generated for allocating and releasing array
memory.

// C++

42 VisiBroker for C++ Developer’s Guide

Valuetypes

inline L_slice *L_alloc();
// Dynamically allocates array. Returns
// NULL on failure.
inline void L_free(L_slice *data);
// Releases array memory allocated with
// L_alloc.
inline void L_copy(L:slice *_to, L_slice *_from)
//Copies the contents of the _from array to the _to array
inline L_slice *L_dup(const L_slice *_date)
//Returns a new copy of _date array

Principal

A Principal represents information about client applications that are making operation
requests on an object implementation. The IDL interface of Principal does not define
any operations. The Principal is implemented as a sequence of octets. The Principal
is set by the client application and checked by the VisiBroker ORB implementation.
VisiBroker for C++ treats the Principal as an opaque type and its contents are never
examined by the VisiBroker ORB.

Valuetypes
An IDL valuetype is mapped to a C++ class with the same name as the IDL valuetype.
This class is an abstract base class with pure virtual accessor and modifier functions
corresponding to the state members of the valuetype and pure virtual functions
corresponding to the operations of valuetype.

A C++ class whose name is formed by adding an “OBV_” to the fully scoped name of the
valuetype provides default implementations for the accessors and modifiers of the
abstract base class.

Applications are responsible for the creation of valuetype instances. After creation,
these applications deal with those instances using only pointers. Unlike object
references which map to C++ _ptr types that may be implemented either as actual
C++ pointers or as C++ pointer-like objects, handles to C++ valuetype instances are
actual C++ pointers. This helps to distinguish them from object references.

Unlike mapping for interfaces, reference counting for valuetype must be implemented
by the instance of the valuetypes. The _var type for a valuetype automates the
reference counting. The code sample below illustrates these features.

 valuetype Example {

 Short op1();
 Long op2(in Example x);
 Private short val1;
 Public long val2;
};

The code sample below shows the C++ mapping of the IDL definition for the following
three classes.

class Example : public virtual CORBA::ValueBase {
 public:
 virtual CORBA::Short op1() = 0;
 virtual CORBA::Long op2(Example_ptr _x) = 0;
 // pure virtual getter/setters for all public state
 // These accessors are just like C++ union members since
 // by reference accessors allow read/write access
 virtual void val2(const CORBA::Long _val2) = 0;
 virtual const CORBA::Long val2() const = 0;
protected:
 Example() {}
 virtual ~Example() {}

 4 : IDL to C++ mapping 43

Valuetypes

 virtual void val1(const CORBA::Short _val1) = 0;
 virtual const CORBA::Short val1() const = 0;
 private:
 void operator=(const Example&);
 };
class OBV_Example: public virtual Example{
 public:
 virtual void val2(const CORBA::Long _val2) {
 _obv_val2 = _val2;
 }
 virtual const CORBA::Long val2() const {
 return _obv_val2;
 }
protected:
 virtual void val1(const CORBA::Short _val1) {
 _obv_val1 = _val1;
 }
 virtual const CORBA::Short val1() const {
 return _obv_val1; }
 OBV_Example() {}
 virtual ~OBV_Example() {}
 OBV_Example(const CORBA::Short _val1,
 const CORBA::Long _val2) {
 _obv_val1 = _val1;
 _obv_val2 = _val2;
 }
 CORBA::Short _obv_val1;
 CORBA::Long _obv_val2;
 };
class Example_init : public CORBA::ValueFactoryBase {
 };

The _init class provides a way to implement a factory for the valuetypes. Since
valuetypes are passed by value over the wire, the receiving end of a streamed out
valuetype usually implements a factory to create a valuetype instance from the stream.
Both the server and the client should implement it if there is a possibility of receiving a
valuetype over the stream. The _init class, as shown in the following code sample,
which must also implement create_for_unmarshal that returns a CORBA::ValueBase *.

This code sample shows the -init class example.

class Example_init_impl: public Example_init{

public:
 Example_init; _impl();
 virtual ~Example_init();
CORBA::ValueBase * create_for_unmarshal() {
 ...// return an Example_ptr
 }
};

A valuetype can derive from other valuetypes as follows:

This code sample shows the IDL for the valuetype derived from other valuetypes.

valuetype DerivedExample: Example{

 Short op3();
};

The C++ interfaces for the DerivedExample class are as follows:

// IDL valuetype: DerivedExample

class DerivedExample : public virtual Example {
 public:
 virtual CORBA::Short op3() = 0;

44 VisiBroker for C++ Developer’s Guide

Valuetypes

 protected:
 DerivedExample() {}
 virtual ~DerivedExample() {}
 private:
 void operator=(const DerivedExample&);
};
class OBV_DerivedExample: public virtual DerivedExample, public virtual
OBV_Example{
 protected:
 OBV_DerivedExample() {}
 virtual ~OBV_DerivedExample() {}
};
class DerivedExample_init : public CORBA::ValueFactoryBase { };

A derived valuetype can be truncated to the base valuetype as shown in the following
code sample. This is required if the receiving end of the stream does not know how to
construct a derived valuetype but can construct only the base valuetype.

This code sample shows the truncated derived valuetype.

valuetype DerivedExample : truncatable Example { };

The mapping is similar to regular derived valuetypes except that extra information is
added to the Type information of the DerivedExample class to indicate the truncatability to
the base class Example.

A valuetype can not derive from an interface but it can support one or more interfaces
by providing all the operations of the interfaces. An IDL keyword, supports, is
introduced for this purpose.

This code sample shows the IDL keyword support for the derived valuetype.

interface myInterface{
long op5();
};
valuetype IderivedExample supports myInterface {
 Short op6();
};

The C++ mapping for this will be as follows:

This code sample shows the C++ for the derived valuetype.

// IDL valuetype: DerivedExample
class IderivedExample : public virtual CORBA::ValueBase {
 public:
 virtual CORBA::Short op6() = 0;
 virtual CORBA::Long op5() = 0;
 protected:
 IderivedExample() {}
 virtual ~IderivedExample() {}
 private:
 void operator=(const IderivedExample&);
};
class OBV_IderivedExample: public virtual IderivedExample{
 protected:
 OBV_IderivedExample() {}
 virtual ~OBV_IderivedExample() {}
};

For reference counting, the C++ mapping provides two standard classes. The first
class is CORBA::DefaultValueRefCountBase, which serves as a base class for any
application provided concrete valuetypes that do not derive from any IDL interfaces.
For these kinds of valuetypes, the applications are also free to implement their own
reference counting mechanisms. The second class is
PortableServer::ValueRefCountBase, which must serve as a base class for any
application provided a concrete valuetype class which does derive from one or more
IDL interfaces.

 4 : IDL to C++ mapping 45

Abstract Inter faces

Valuebox

A valuebox is a valuetype applied to structures, unions, any, string, basic types, object
references, enums, sequence, and array types. These types do not support method,
inheritance, or interfaces. A valuebox is ref counted and is derived from
CORBA::DefaultValueRefCountBase. The mapping is different for different underlying
types. All valuebox C++ classes provide _boxed_in(), boxed_out(), and _boxed_inout()
for mapping to the underlying types. The factory for a valuebox id automatically
registered by the generated stub.

See the OMG CORBA 2.3 idl2cpp specification, Chapter 1.17, for more information.
The factory for a valuebox is automatically registered by the generated stub.

Abstract Interfaces
Abstract interfaces are used to determine at runtime, if an object is passed by
reference (IOR) or by value (valuetype.) A prefix “abstract” is used for this purpose
before an interface declaration.

This code sample shows the IDL code sample.

abstract interface foo {
 Void func():
}

A valuetype that supports an abstract interface, can be passes as that abstract
interface. The abstract interface is declared as follows:

valuetype vt supports foo {
 ...
};

Similarly, an interface that needs to be passed as an abstract interface is declared as
follows:

interface intf : foo {
}

The C++ mapping for the previously declared abstract interface foo, results in the
following classes:

class foo_var : public CORBA::_var{
 ...
}
class foo_out{
 ...
};
class foo : public virtual CORBA:::AbstractBase{
 private:
 ...
 void operator=(const foo&) {}
 protected:
 foo();
 foo(const foo& ref) {}
 virtual ~foo() {}
 public:
 static CORBA::Object* _factory():
 foo_ptr _this();
 static foo_ptr _nil() { ... }
 static foo_ptr _narrow(CORBA::AbstractBase* _obj);
 static foo_ptr _narrow(CORBA::Object_ptr _obj);
 static foo_ptr _narrow(CORBA::ValueBase_ptr _obj);
 virtual void func() = 0;
 ...
};

46 VisiBroker for C++ Developer’s Guide

Abstract Inter faces

class _vis_foo_stub : public virtual foo, public virtual CORBA_Object {
 public :
 _vis_foo_stub() {}
 virtual ~_vis_foo_stub() {}
 ...
 virtual void func():
}

There is a _var class, an _out class, and a class derived from CORBA::AbstractBase that
implements the methods described in the previous code samples.

 5: Vis iBroker propert ies 47

VisiBroker properties
This section describes the Borland VisiBroker properties.

Smart Agent properties

Property Default Old property Description

vbroker.agent.addrFile null ORBagentAddrF
ile

Specifies a file that stores the IP
address or host name of a host
running a Smart Agent.

vbroker.agent.localFile null N/A Specifies which network
interface to use on multi-home
machines. This used to be the
OSAGENT_LOCAL_FILE environment
variable.

vbroker.agent.clientHandle
rPort

null N/A Specifies the port that the Smart
Agent uses to verify the
existence of a client—in this
case, a VisiBroker application.
When you use the default value,
null, the Smart Agent connects
using a random port number.

vbroker.agent.keepAliveTim
er

120
second
s

N/A Smart agent will wake up after
this timeout and based on the
vbroker.agent.keepAliveThresho
ld value, will compute whether to
do client verification. The logic is
if the last received heart beat
value is less than current time -
(keepAliveTimer +
keepAliveThreshold), then do
client verification. The value of
this property should be greater
than 1 second and less than 120
seconds. The number of times
the client verification is tried can
be controlled by
vbroker.agent.maxRetries
property.

48 VisiBroker for C++ Developer’s Guide

Smart Agent communicat ion propert ies

Smart Agent communication properties
The properties described in the table below are used by the ORB for Smart Agent
communication.

vbroker.agent.keepAliveThr
eshold

40
second
s

N/A Refer to documentation on
vbroker.agent.keepAliveTimer.
This value should be greater
than 0.

vbroker.agent.maxRetries NA N/A The number of times the agent
will do client verification on not
receiving a heart beat from the
client. Values can be 1 to 10.

vbroker.agent.port 14000 ORBagentPort Specifies the port number that
defines a domain within your
network. VisiBroker applications
and the Smart Agent work
together when they have the
same port number. This is the
same property as the
OSAGENT_PORT environment
variable.

Property Default Old property Description

Property Default Old property Description

vbroker.agent.keepAliveT
imer

120 N/A The duration in seconds during
which the ORB will send keep-
alive messages to the Smart
Agent (applicable to both clients
and servers). Valid values are
integers between 1 and 120,
inclusive.

vbroker.agent.retryDelay 0
(zero)

N/A The duration in seconds that
the process will pause before
trying to reconnect to the Smart
Agent in the event of
disconnection from the Smart
Agent. If the value is -1, the
process will exit upon
disconnection from the Smart
Agent. The default value of 0
(zero) means that reconnection
will be made without any pause.

vbroker.agent.addr null ORBagentAddr Specifies the IP address or host
name of a host running a Smart
Agent. The default value, null,
instructs VisiBroker applications
to use the value from the
OSAGENT_ADDR environment
variable. If this OSAGENT_ADDR
variable is not set, then it is
assumed that the Smart Agent
is running on a local host.

vbroker.agent.addrFile null ORBagentAddrFil
e

Specifies a file that stores the IP
address or host name of a host
running a Smart Agent.

vbroker.agent.debug false ORBdebug When set to true, specifies that
the system will display
debugging information about
communication of VisiBroker
applications with the Smart
Agent.

 5 : Vis iBroker propert ies 49

VisiBroker ORB propert ies

VisiBroker ORB properties
The following table describes the VisiBroker ORB properties.

vbroker.agent.enableLoca
tor

true ORBdisableLocat
or

When set to false, does not
allow VisiBroker applications to
communicate with the Smart
Agent.

vbroker.agent.port 14000 ORBagentPort Specifies the port number that
defines a domain within your
network. VisiBroker applications
and the Smart Agent work
together when they have the
same port number. This is the
same property as the
OSAGENT_PORT environment
variable.

vbroker.agent.failOver true ORBagentNoFailO
ver

When set to true, allows a
VisiBroker application to fail
over to another Smart Agent.

vborker.agent.clientPort 0
(zero)

N/A Specifies the starting port
number to bind to the dsuser
socket.

vbroker.agent.clientPort
Range

0
(zero)

N/A Specifies a range of port
numbers to bind to the dsuser
socket. This property should be
used in conjunction with the
vbroker.agent.clientPort
property.

Property Default Old property Description

Property Default Description

vbroker.orb.defaultThreadS
tackSize

0 (Zero) This property indicates the default
size to be used by any thread
created by the ORB.

A default value of zero indicates a
system default value. If the value is
set and falls below the minimum
system requirement, then the
minimum system requirement value
is used. Dispatchers may have
their own threadStackSize property
set and as such their values are
used instead during thread
creation.

vbroker.orb.enableFirewall false When set to true, application will
dynamically load the "fw" library to
make the Gatekeeper firewall
component available.

By default, the property is false.
when false, the "fw" library is not
loaded, so the gatekeeper firewall
component is not available

vbroker.orb.cacheDSQuery true When set to true, allows VisiBroker
applications to cache IOR.

50 VisiBroker for C++ Developer’s Guide

Vis iBroker ORB propert ies

vbroker.orb.rebindForward 0 (zero) This value determines the number
of times a client will try to connect
to a forwarded target. You can use
this property when the client cannot
communicate with the forwarded
target (because of network failure,
for example). The default value of 0
(zero) means that the client will
keep trying to connect.

vbroker.orb.activationIOR null Allows the launched server to easily
establish contact with the OAD that
launched it.

vbroker.orb.oadUID 0 (zero) Used to ensure that the OAD that
launched the server still exists. A
value of 1 indicates that the OAD is
still running.

vbroker.orb.propStorage null Specifies a property file that
contains property values.

vbroker.orb.backCompat FALSE When set to TRUE, the server is
operating in backward compatibility
mode.

vbroker.orb.nullstring FALSE When set to TRUE, enables
marshaling of null strings. Note that
this property is no longer used, and
has been replaced by the
vbroker.orb.enableNullString
property.

vbroker.orb.admDir null Specifies the administration
directory at which various system
files are located. This property can
be set using the VBROKER_ADM
environment variable.

vbroker.orb.isNTService FALSE When set to TRUE, this property
coupled with the compile flag
WIN32, enables any NT service/
COM+ app to stay running when a
user logs out.

vbroker.orb.enableServerMa
nager

FALSE When set to TRUE, this property
enables Server Manager when the
server is started, so that clients can
access it.

vbroker.orb.input.maxBuffe
rs

16 Specifies the maximum number of
input buffers retained in a pool.

vbroker.orb.input.buffSize 255 Specifies the size of the input
buffer.

vbroker.orb.output.maxBuff
ers

16 Specifies the maximum number of
output buffers retained in a pool.

vbroker.orb.output.buffSiz
e

255 Specifies the size of the output
buffer.

vbroker.orb.initRef null Specifies the initial reference.
Object URL formats such as
corbaloc can be used in addition to
stringified IOR. “file://” URL as
described below is also supported if
the stringified IOR is in a file.

Property Default Description

 5 : Vis iBroker propert ies 51

VisiBroker ORB propert ies

vbroker.orb.defaultInitRef null Specifies the default initial
reference. Object URL formats
such as corbaloc can be used in
addition to stringified IOR. “file://”
URL as described below is also
supported if the stringified IOR is in
a file.

vbroker.orb.boa_map.TSingl
e

boa_s Maps the BOA bid policy of a single
thread to boa_s.

vbroker.orb.boa_map.TPool boa_tp Maps the BOA bid policy of a
thread pool to boa_tp.

vbroker.orb.boa_map.TSessi
on

boa_ts Maps the BOA bid policy of a
thread session to boa_ts.

vbroker.orb.boa_map.TPool_
LIOP

boa_ltp Maps the BOA bid policy of a local
thread pool to boa_ltp.

vbroker.orb.alwaysProxy false When set to true, specifies that
clients must always connect to the
server using the GateKeeper.

vbroker.orb.gatekeeper.ior null Forces the client application to
connect to the server through the
GateKeeper whose IOR is
provided.

vbroker.locator.ior null Specifies the IOR of the
GateKeeper that will be used as
proxy to the Smart Agent. If this
property is not set, the GateKeeper
specified by the
vbroker.orb.gatekeeper.ior property
is used for this purpose. For more
information, go to the VisiBroker
“Introduction to GateKeeper.”

vbroker.orb.exportFirewall
Path

false Forces the server application to
include firewall information as part
of any servant's IOR which this
server exposes (use
Firewall::FirewallPolicy in your
code to force it selectively per
POA).

vbroker.orb.proxyPassthru false If set to true, forces PASSTHROUGH
firewall mode globally in the
application scope (use
QoSExt::ProxyModePolicy in your code
to force it selectively per object or
per ORB).

vbroker.orb.bids.critical inprocess The critical bid has highest
precedence no matter where it is
specified in the bid order. If there
are multiple values for critical bids,
then their relative importance is
decided by the bidOrder property.

Property Default Description

52 VisiBroker for C++ Developer’s Guide

Vis iBroker ORB propert ies

vbroker.orb.bidOrder inprocess:liop:ssl:
iiop:proxy:hiop:loc
ator

You can specify the relative order
of importance for the various
transports. Transports are given
precedence as follows:

1 inprocess

2 liop

3 ssl

4 iiop

5 proxy

6 hiop

7 locator

The transports that appear first
have higher precedence. For
example, if an IOR contains both
LIOP and IIOP profiles, the first
chance goes to LIOP. Only if the LIOP
fails is IIOP used. (The critical bid,
specified by the
vbroker.orb.bids.critical property,
has highest precedence no matter
where it is specified in the bid
order.)

vbroker.orb.dynamicLibs null Specifies a list of available services
used by the VisiBroker ORB. Each
service is separated by a comma.

vbroker.orb.embedCodeset true When an IOR is created, the
VisiBroker ORB embeds the
codeset components into the IOR.
This may produce problems with
some non-compliant ORBs. By
turning off the embedCodeset
property, you instruct the Visibroker
ORB not to embed codesets in
IORs. When set to false, specifies
that character and wide character
conversions between the client and
the server are not to be negotiated.

vbroker.orb.enableVB4backc
ompat

false This property enables work-
arounds to deal with behavior that
is not GIOP 1.2-compliant in
VisiBroker 4.0 and 4.1. Any
VisiBroker client running on
VisiBroker 4.1.1 or a release
previous to 4.1.1 is affected,
especially if GateKeeper is
involved. To work with a Visibroker
4.0 or 4.1 client, this flag needs to
be set to true. This is a server-side
only flag. There is no corresponding
flag on the client-side.

vbroker.orb.enableNullStri
ng

false If set to TRUE, enables marshaling of
null strings.

vbroker.orb.procId 0 Specifies the process ID of the
server.

vbroker.orb.usingPoll true On UNIX platforms, the ORB uses
the system calls select() or poll() for
I/O multiplexing based on the value
of this property. If the value is true,
poll() is used. Otherwise, select() is
used. True is the default value.

Property Default Description

 5 : Vis iBroker propert ies 53

ServerManager propert ies

The file URL conforms to the standard format of “file://domain name/path/file”.
However, there are some constraints in the format supported by VisiBroker for C++.

– The protocol part of the URL must be file://

– The domain name of the URL must be empty

– All path specifications are absolute (relative paths are not allowed)

– The path may not contain the character “:”. The path separator must be “/”

– For Windows, the drive letter colon (“:”) must be replaced by the “|” symbol.

The following paths show examples of valid paths:

– file:///home/user/appl.ior

– file:///C|/My Documents/User/root.txt

ServerManager properties
This table lists the Server Manager properties.

Additional Properties

The following section describes the new properties supported by the Server Manager.
These properties can be queried through their containers.

Properties related to Server-side resource usage

Property Default Description

vbroker.serverManager.name null Specifies the name of the Server Manager.

vbroker.serverManager.enableOpera
tions

true When set to true, enables operations,
exposed by the Server Manager, to be
invoked.

vbroker.serverManager.enableSetPr
operty

true When set to true, enables properties,
exposed by the Server Manager, to be
changed.

Property Description

vbroker.se.<SE_name>.scm.<SCM_name>.listener.preferIPv4St
ack

This is applicable to the Windows platforms only.
It is a boolean value indicating whether the
listener has to use IPv4 or IPv6. The default
value is false, which will enforce usage of IPv6.

If the property "vbroker.se.<SE_name>.host" is
given an IPv4 or IPv6 address value, then you
can ignore the property setting.

vbroker.se.<SE_name>.scm.<SCM_name>.manager.allocatedFile
Descriptors

The current number of file descriptors used by the
Server Connection Manager (SCM). This value is
typically equal to the current number of incoming
connections plus two used by the listener.

vbroker.se.<SE_name>.scm.<SCM_name>.manager.maxFileDescri
ptor

The maximum value of the file descriptor with the
SCM.

vbroker.se.<SE_name>.scm.<SCM_name>.manager.inUseConnecti
ons

The number of incoming connections for which
there are requests executing in the ORB.

vbroker.se.<SE_name>.scm.<SCM_name>.manager.idleConnectio
ns

The number of incoming connections for which
there are not any requests currently being
executed in the ORB.

54 VisiBroker for C++ Developer’s Guide

ServerManager propert ies

Properties related to Client-side resource usage

Properties related to the Smart Agent (Smart Agent)

Miscellaneous Properties

vbroker.se.<SE_name>.scm.<SCM_name>.manager.idledTimeoutC
onnections

The number of idle connections which have also
idled past their idle timeout setting but have yet to
be closed (due to garbage collection restrictions,
for example).

vbroker.se.<SE_name>.scm.<SCM_name>.dispatcher.inUseThrea
ds

The number of threads currently executing
requests within the dispatcher.

vbroker.se.<SE_name>.scm.<SCM_name>.dispatcher.idleThread
s

The number of threads which are currently idle
waiting for work to be assigned.

Property Description

Property Description

vbroker.ce.<CE_name>.ccm.maxFileDescripto
r

The maximum number of file descriptors
within the Client Connection Manager
(CCM).

vbroker.ce.<CE_name>.ccm.activeConnection
s

The number of connections in the active
pool; that is, object references are using
these connections.

vbroker.ce.<CE_name>.ccm.cachedConnection
s

The number of connections in the cache
pool; no object references are using these
connections.

vbroker.ce.<CE_name>.ccm.inUseConnections The number of outgoing connections with
pending requests.

vbroker.ce.<CE_name>.ccm.idleConnections The number of outgoing connections with
no pending requests.

vbroker.ce.<CE_name>.ccm.idledTimeoutConn
ections

The number of idle connections which have
idled past their timeout setting, but have not
been closed.

Property Description

vbroker.agent.currentAgentIP The IP address of the current ORB's Smart Agent
(Smart Agent).

vbroker.agent.currentAgentClie
ntPort

The port of the Smart Agent to which the ORB is
sending requests.

Property Description

vbroker.env.path The value of the PATH environment variable under which
the ORB is running.

vbroker.env.shlibPath The value of the shared library path environment
variable. In HP-UX, it corresponds to the SHLIB_PATH
environment variable.

vbroker.env.orbVersion This is the ORB version of the currently loaded ORB. It
can also be obtained by running vbver liborb_r.sl in HP-
UX.

vbroker.process.fileDescripto
rLimit

The maximum number of file descriptors for the current
process.

vbroker.orb.uid The user ID of the user who started the VisiBroker server
application.

vbroker.orb.commandLine The command-line argument passed to the
CORBA::ORB_init method.

 5 : Vis iBroker propert ies 55

Locat ion Service propert ies

Location Service properties
The following table lists the Location Service properties.

Event Service properties
The following table lists the Event Service properties.

Naming Service (VisiNaming) properties
The following tables list the VisiNaming Service properties.

Property Default Description

vbroker.locationservice.de
bug

false When set to true, allows the Location Service to
display debugging information.

Note: This property has been deprecated. Refer to
the new Debug Logger Properties.

vbroker.locationservice.ve
rify

false When set to true, allows the Location Service to
check for the existence of an object referred by an
object reference sent from the Smart Agent. Only
objects registered BY_INSTANCE are verified for
existence. Objects that are either registered with
OAD, or those registered BY_POA policy are not
verified for existence.

vbroker.locationservice.ti
meout

1 Specifies the connect/receive/send timeout, in
seconds, when trying to interact with the Location
Service.

Property Default Description

vbroker.events.maxQueueL
ength

100 Specifies the number of messages to be queued for
slow consumers.

vbroker.events.factory false When set to true, allows the event channel factory to
be instantiated, instead of an event channel.

vbroker.events.debug false When set to true, allows output of debugging
information.

Note: This property is deprecated. Refer to the new
Debug logger properties.

vbroker.events.interacti
ve

false When set to true, allows the event channel to be
executed in a console-driven, interactive mode.

Table 5.1 Core Visinaming Service properties

Property Default Description

vbroker.naming.adminPw
d

inpris
e

Password required by administrative VisiBroker naming
service operations.

vbroker.naming.enableS
lave

0 If 1, enables master/slave naming services
configuration. See “VisiNaming Service Clusters for
Failover and Load Balancing” for information about
configuring master/slave naming services.

vbroker.naming.iorFile ns.ior This property specifies the full path name for storing the
naming service IOR. If you do not set this property, the
naming service will try to output its IOR into a file named
ns.ior in the current directory. The naming service
silently ignores file access permission exceptions when
it tries to output its IOR.

56 VisiBroker for C++ Developer’s Guide

Naming Service (Vis iNaming) propert ies

For more information see the Object Clusters section.

vbroker.naming.logLeve
l

emerg This property specifies the level of log messages to be
output from the naming service. Acceptable values are:

emerg (0): indicates some panic condition.

alert (1): a condition that requires user attention—for
example, if security has been disabled.

crit (2): critical conditions, such as a device error.

err (3): error conditions.

warning (4): warning conditions—these may include
some troubleshooting advice.

notice (5): conditions that are not errors but may require
some attention, such as the opening of a connection.

info (6): informational, such as binding in progress.

debug (7): debug messages for developers.

Note: This property is deprecated. Refer to the new
Debug logger properties

vbroker.naming.logUpda
te

false This property allows special logging for all of the update
operations on the CosNaming::NamingContext,
CosNamingExt::Cluster, and CosNamingExt::ClusterManager
interfaces.

The CosNaming::NamingContext interface operations for
which this property is effective are: bind, bind_context,
bind_new_context, destroy, rebind, rebind_context,
unbind.

The CosNamingExt::Cluster interface operations for which
this property is effective are: bind, rebind, unbind,
destroy.

The CosNamingExt::ClusterManager interface operation for
which this property is effective is: create_cluster.

When this property value is set to true and any of the
above methods is invoked, the following log message is
printed (the output shows a bind operation being
executed):

00000007,5/26/04 10:11 AM,127.0.0.1,00000000,

VBJ-Application,VBJ ThreadPool Worker,INFO,

OPERATION NAME : bind

CLIENT END POINT : Connection[socket=Socket

[addr=/127.0.0.1, port=2026, localport=1993]]

PARAMETER 0 : [(Tom.LoanAccount)]

PARAMETER 1 : Stub[repository_id=IDL:Bank/

LoanAccount:1.0, key=TransientId[poaName=/,

id={4 bytes: (0)(0)(0)(0)},sec=505,usec=990917734,

key_string=%00VB%01%00%00%00%02/%00%20%20%00%00%00%

04%00%00%00%00%00%00%01%f9;%104f],codebase=null]

Table 5.2 Object Clustering Related properties

Property Default Description

vbroker.naming.enableClusterFa
ilover

true When set to true, it specifies that an
interceptor be installed to handle fail-over for
objects that were retrieved from the
VisiNaming Service. In case of an object
failure, an attempt is made to transparently
reconnect to another object from the same
cluster as the original.

Table 5.1 Core Visinaming Service properties

Property Default Description

 5 : Vis iBroker propert ies 57

Naming Service (Vis iNaming) propert ies

For more information see “VisiNaming Service Clusters for Failover and
Load Balancing”.

vbroker.naming.propBindOn 0 If 1, the implicit clustering feature is turned on.

vbroker.naming.smrr.pruneStale
Ref

1 This property is relevant when the name
service cluster uses the Smart Round Robin
criterion. When this property is set to 1, a stale
object reference that was previously bound to
a cluster with the Smart Round Robin criterion
will be removed from the bindings when the
name service discovers it. If this property is
set to 0, stale object reference bindings under
the cluster are not eliminated. However, a
cluster with Smart Round Robin criterion will
always return an active object reference upon
a resolve() or select() call if such an object
binding exists, regardless of the value of the
vbroker.naming.smrr.pruneStaleRef property. By
default, the implicit clustering in the name
service uses the Smart Round Robin criterion
with the property value set to 1. If set to 2, this
property disables the clearing of stale
references completely, and the responsibility
of cleaning up the bindings belongs to the
application, rather than to VisiNaming.

Table 5.3 Visinaming Service Cluster Related properties

Property Default Description

vbroker.naming.enableSlave 0 See “VisiNaming Service
properties”.

vbroker.naming.slaveMode No
default.
Can be set
to cluster
or
slave.

This property is used to configure
VisiNaming Service instances in the
cluster mode or in the master/slave
mode. The
vbroker.naming.enableSlave property
must be set to 1 for this property to
take effect.

Set this property to cluster to
configure VisiNaming Service
instances in the cluster mode.
VisiNaming Service clients will then
be load balanced among the
VisiNaming Service instances that
comprise the cluster. Client failover
across these instances are enabled.

Set this property to slave to
configure VisiNaming Service
instances in the master/slave mode.
VisiNaming Service clients will
always be bound to the master
server if the master is running but
failover to the slave server when the
master server is down.

vbroker.naming.serverClusterName null This property specifies the name of
a VisiNaming Service cluster.
Multiple VisiNaming Service
instances belong to a particular
cluster (for example, clusterXYZ)
when they are configured with the
cluster name using this property.

Table 5.2 Object Clustering Related properties

Property Default Description

58 VisiBroker for C++ Developer’s Guide

Naming Service (Vis iNaming) propert ies

vbroker.naming.serverNames null This property specifies the factory
names of the VisiNaming Service
instances that belong to a cluster.
Each VisiNaming Service instance
within the cluster should be
configured using this property to be
aware of all the instances that
constitute the cluster. Each name in
the list must be unique. This
property supports the format:

vbroker.naming.serverNames=
Server1:Server2:Server3

See the related property,
vbroker.naming.serverAddresses.

vbroker.naming.serverAddresses null This property specifies the host and
listening port for the VisiNaming
Service instances that comprise a
VisiNaming Service cluster. The
order of VisiNaming Service
instances in this list must be
identical to that of the related
property vbroker.naming.serverNames,
which specifies the names of the
VisiNaming Service instances that
comprise a VisiNaming Service
Cluster. This property supports the
format:

vbroker.naming.
serverAddresses=host1:port1;
host2:port2;host3:port3

vbroker.naming.anyServiceOrder
(To be set on VisiNaming Service
clients)

false This property must be set to true on
the VisiNaming Service client to
utilize the load balancing and
failover features available when
VisiNaming Service instances are
configured in the VisiNaming
Service cluster mode. The following
is an example of how to use this
property:

client -DVbroker.
naming.anyServiceOrder=true

Table 5.3 Visinaming Service Cluster Related properties

Property Default Description

 5 : Vis iBroker propert ies 59

Naming Service (Vis iNaming) propert ies

Pluggable Backing Store Properties

The following tables show property information for the VisiNaming service pluggable
backing store types.

Default properties common to all adapters

Property Default Description

vbroker.naming.backingStoreT
ype

InMemory Specifies the naming service adapter type to
use. This property specifies which type of
backing store you want the VisiNaming
Service to use. The valid options are:
InMemory, JDBC, Dx, JNDI. The default is
InMemory.

vbroker.naming.cacheOn 0 Specifies whether to use the Naming Service
cache. A value of 1 (one) enables caching.

vbroker.naming.cache.connect
String

N/A This property is required when the Naming
Service cache is enabled
(vbroker.naming.cacheOn=1) and the Naming
Service instances are configured in Cluster
or Master/Slave mode. It helps locate an
Event Service instance in the format
<hostname>:<port>. For example:

vbroker.naming.cache.connectString=1
27.0.0.1:14500

See “Caching facility” for details about
enabling the caching facility and setting
the appropriate properties.

vbroker.naming.cache.size 2000 This property specifies the size of the
Naming Service cache. Higher values will
mean caching of more data at the cost of
increased memory consumption.

vbroker.naming.cache.timeout 0 (no
limit)

This property specifies the time, in seconds,
since the last time a piece of data was
accessed, after which the data in the cache
will be purged in order to free memory. The
cached entries are deleted in LRU (Least
Recently Used) order.

60 VisiBroker for C++ Developer’s Guide

Naming Service (Vis iNaming) propert ies

JDBC Adapter properties

Property Default Description

vbroker.naming.jd
bcDriver

com.borland.datastore.j
dbc.DataStoreDriver

This property specifies the JDBC driver
that is needed to access the database
used as your backing store. The
VisiNaming Service loads the
appropriate JDBC driver specified. Valid
values are:

■ com.borland.datastore.jdbc.DataStoreDri
ver
JDataStore driver

■ com.sybase.jdbc.SybDriver
Sybase driver

■ oracle.jdbc.driver.OracleDriver
Oracle driver

■ interbase.interclient.Driver
Interbase driver

■ weblogic.jdbc.mssqlserver4.Driver
WebLogic MS SQLServer Driver

■ COM.ibm.db2.jdbc.app.DB2Driver
IBM DB2 Driver

vbroker.naming.re
solveAutoCommit

True Sets Auto Commit on the JDBC
connection when doing a "resolve"
operation.

vbroker.naming.lo
ginName

VisiNaming The login name associated with the
database.

vbroker.naming.lo
ginPwd

VisiNaming The login password associated with the
database.

vbroker.naming.po
olSize

5 This property specifies the number of
database connections in your
connection pool when using the JDBC
Adapter as your backing store.

 5 : Vis iBroker propert ies 61

Naming Service (Vis iNaming) propert ies

DataExpress Adapter properties
The following table describes the DataExpress Adapter properties:

vbroker.naming.ur
l

jdbc:borland:dslocal:ro
otDB.jds

This property specifies the location of
the database which you want the
Naming Service to access. The setting
is dependent upon the database in use.
Acceptable values are:

■ jdbc:borland:dslocal:<db-name>
JDataStore UTL

■ jdbc:sybase:Tds:<host-name>:
<port-number>/<db-name>
Sybase URL

■ jdbc:oracle:thin@<host-name>:
<port-number>:<sid>
Oracle URL

■ jdbc:interbase://<server-name>/
<full-db-path>
Interbase URL

■ jdbc:weblogic:mssqlserver4:
<db-name>@<host-name>:<port-number>
WebLogic MS SQLSever URL

■ jdbc:db2:<db-name>
IBM DB2 URL

■ <full-path-JDataStore-db>
DataExpress URL for the native
driver

vbroker.naming.mi
nReconInterval

30 This property sets the Naming Service's
database reconnection interval time, in
seconds. The default value is 30. The
Naming Service will ignore the
reconnection request and throw a
CannotProceed exception if the time
interval between this request and the
last reconnection time is less than the
vset value. Valid values for this property
are non-negative integers. If set to 0, the
Naming Service will try to reconnect to
the database for every request.

Property Description

vbroker.naming.backingStor
eType

This property should be set to Dx.

vbroker.naming.loginName This property is the login name associated with the database.
The default is VisiNaming.

vbroker.naming.loginPwd This property is the login password associated with the
database. The default value is VisiNaming.

vbroker.naming.url This property specifies the location of the database.

Property Default Description

62 VisiBroker for C++ Developer’s Guide

Naming Service (Vis iNaming) propert ies

JNDI adapter properties
The following is an example of settings that can appear in the configuration file for a
JNDI adapter:

VisiNaming Service Security-related properties

Setting Description

vbroker.naming.backingStoreType=JNDI This setting specifies the backing
store type which is JNDI for the JNDI
adapter.

vbroker.naming.loginName=<user_name> The user login name on the JNDI
backing server.

vbroker.naming.loginPwd=<password> The password for the JNDI backing
server user.

vbroker.naming.jndiInitialFactory=com.sun.jn
di.ldap.LdapCtxFactory

This setting specifies the JNDI initial
factory.

vbroker.naming.jndiProviderURL=ldap://
<hostname>:389/<initial root context>

This setting specifies the JNDI
provider URL

vbroker.naming.jndiAuthentication=simple This setting specifies the JNDI
authentication type supported by the
JNDI backing server.

Property Value Default Description

vbroker.naming.security.disable boolean true This property indicates whether
the security service is disabled.

vbroker.naming.security.authDomai
n

string "" This property indicates the
authorization domain name to be
used for the naming service
method access authorization.

vbroker.naming.security.transport int 3 This property indicates what
transport the Naming Service will
use. The available values are:

ServerQoPPolicy.SECURE_ONLY=1
ServerQoPPolicy.CLEAR_ONLY=0
ServerQoPPolicy.ALL=3

vbroker.naming.security.requireAu
thentication

boolean false This property indicates whether
naming client authentication is
required. However, when the
vbroker.naming.security.disable
property is set to true, no client
authentication will be performed
regardless of the value of this
requireAuthentication property.

vbroker.naming.security.enableAut
horization

boolean false This property indicates whether
method access authorization is
enabled.

vbroker.naming.security.requiredR
olesFile

string null This property points to the file
containing the required roles that
are necessary for invocation of
each method in the protected
object types. For more
information see “Method Level
Authorization”.

 5 : Vis iBroker propert ies 63

OAD propert ies

OAD properties
This following table lists the configurable OAD properties.

This table list the OAD properties that cannot be overridden in a property file. They can
however be overridden with environment variables or from the command line.

Interface Repository properties
The following table lists the Interface Repository (IR) properties.

Property Default Description

vbroker.oad.spawnTimeOut 20 After the OAD spawns an executable, specifies how
long, in seconds, the system will wait to receive a
callback from the desired object before throwing a
NO_RESPONSE exception.

vbroker.oad.verbose false Allows the OAD to print detailed information about
its operations.

vbroker.oad.readOnly false When set to true, does not allow you to register,
unregister, or change the OAD implementation.

vbroker.oad.iorFile Oadj.i
or

Specifies the filename for the OAD's stringified IOR.

vbroker.oad.quoteSpaces false Specifies whether to quote a command.

vbroker.oad.killOnUnregis
ter

false Specifies whether to kill spawned server processes,
once they are unregistered.

vbroker.oad.verifyRegistr
ation

false Specifies whether to verify the object registration.

Property Default Description

vbroker.oad.implName impl_rep Specifies the filename for the
implementation repository.

vbroker.oad.implPath null Specifies the directory where the
implementation repository is stored.

vbroker.oad.path null Specifies the directory for the OAD.

vbroker.oad.systemRoot null Specifies the root directory.

vbroker.oad.windir null Specifies the Windows directory.

Property Default Description

vbroker.ir.debug false When set to true, allows the IR resolver to display
debugging information.

Note: This property is deprecated. Refer to the new
Debug logger properties.

vbroker.ir.ior null When the vbroker.ir.name property is set to the default
value, null, the VisiBroker ORB will try to use this
property to locate the IR.

vbroker.ir.name null Specifies the name that is used by the VisiBroker ORB
to locate the IR.

64 VisiBroker for C++ Developer’s Guide

TypeCode propert ies

TypeCode properties
The table below lists the VisiBroker for C++ TypeCode properties.

Client-Side LIOP Connection properties
The table below lists the VisiBroker for C++ client-side LIOP connection properties.

Property Default Description

vbroker.typecode.debug FALSE When set to TRUE, this property allows the typecode
code to display debugging.

Note: This property is deprecated. Refer to the new
Debug logger properties.

vbroker.typecode.noIndire
ction

FALSE When set to TRUE, this property does not allow the
use of indirection when writing a recursive typecode.

vbroker.typecode.marshalN
ame

TRUE Marshalling of names inside typecode data can now
be suppressed by replacing these with empty
strings, since the OMG spec allows. This will save
network bandwidth by reducing the length of GIOP
messages. However, the API functions relying on
this data will not function correctly when
compression is used. By default, the compression is
not done. To enable this, set this property to false.

Table 5.4 Client-side LIOP connection properties

Property Default Description

vbroker.ce.liop.ccm.connectionCacheMax 5 Specifies the maximum
number of cached connections
on a client. The connection is
cached when a client releases
it. Therefore, the next time a
client needs a new connection,
it can retrieve one from the
cache instead of creating a
new one.

vbroker.ce.liop.ccm.disableConnectionCache false When set to true, this property
disables connection caching on
the client side.

vbroker.ce.liop.ccm.connectionMax 0 Specifies the maximum
number of total connections for
a client. This includes the
active connections, plus the
ones that are cached. The
default value of 0 (zero)
specifies that the client will not
try to close any of the old active
or cached connections.

vbroker.ce.liop.ccm.connectionMaxIdle 360 Specifies the time, in seconds,
that the client uses to
determine if a cached
connection should be closed. If
a cached connection has been
idle longer than this time, then
the client will close the
connection.

vbroker.ce.liop.ccm.type Pool Specifies the type of client
connection management used
by a client. The default value
Pool means connection pool.
This is currently the only valid
value for this property.

 5 : Vis iBroker propert ies 65

Cl ient-s ide I IOP connect ion propert ies

Client-side IIOP connection properties
The table below lists the VisiBroker for C++ Client-side IIOP Connection properties.

vbroker.ce.liop.connection.rcvBufSize 0 Specifies the size of the
receive socket buffer. The
default value 0 (zero) implies a
system dependent value.

vbroker.ce.liop.connection.sendBufSize 0 Specifies the size of the send
socket buffer. The default value
0 (zero) implies a system
dependent value.

vbroker.ce.liop.connection.shmSize 4096 Specifies the size, in bytes, of
shared memory. If your client
program and object
implementation communicate
via shared memory, you may
use this option to enhance
performance.

vbroker.se.default.local.listener.doorMaxM
sgSize

1,000,00
0

Specifies the maximum
message size which will be
sent through the fast IPC (door)
mechanism in Solaris (when
the client and server are
running on the same machine).
If the message size is greater
than the default value
(1,000,000), it will not be sent
using the IPC, and will default
to the next available
mechanism (UNIX domain
socket or TCP/IP socket).

Table 5.4 Client-side LIOP connection properties

Property Default Description

Table 5.5 Client-side IIOP Connection properties

Property Default Description

vbroker.ce.iiop.ccm.connectionCacheMax 5 Specifies the maximum number of
cached connections for a client. The
connection is cached when a client
releases it. Therefore, the next time a
client needs a new connection, it first
tries to retrieve one from the cache,
instead of just creating a new one.

vbroker.ce.iiop.ccm.disableConnectionC
ache

false If you set this property to true, it
disables connection caching on the
client side.

vbroker.ce.iiop.ccm.connectionMax 0 Specifies the maximum number of
total connections for a client. This is
equal to the number of active
connections plus cached
connections. The default value of
zero specifies that the client will not
try to close any of the old active or
cached connections.

vbroker.ce.iiop.ccm.connectionMaxIdle 0 Specifies the time, in seconds, that
the client uses to determine if a
cached connection should be closed.
If a cached connection has been idle
longer than this time, then the client
closes the connection.

66 VisiBroker for C++ Developer’s Guide

QoS-related Propert ies

QoS-related Properties

Server-side server engine properties
This table lists the server-side server engine properties.

vbroker.ce.iiop.ccm.type Pool Specifies the type of client
connection management used by a
client. The value Pool means
connection pool. This is currently the
only valid value for this property.

vbroker.ce.iiop.connection.rcvBufSize 0 Specifies the size of the receive
socket buffer. The default value 0
(zero) implies a system dependent
value.

vbroker.ce.iiop.connection.sendBufSize 0 Specifies the size of the send socket
buffer. The default value 0 (zero)
implies a system dependent value.

vbroker.ce.iiop.connection.tcpNoDelay FALSE When set to TRUE, the server's
sockets are configured to send any
data written to them immediately
instead of batching the data as the
buffer fills.

vbroker.ce.iiop.host none Binds the client side sockets to the
desired interface. If the value is null,
the wild-card interface is used.

vbroker.ce.iiop.connection.noCallback FALSE When set to TRUE, this property allows
the server to call back to the client.

vbroker.ce.iiop.connection.socketLinge
r

0 A TCP/IP setting.

vbroker.ce.iiop.connection.keepAlive TRUE A TCP/IP setting.

Table 5.5 Client-side IIOP Connection properties

Property Default Description

Property Default Description

vbroker.qos.cache True Specifies if QoS policies should
be cached per delegate, instead
of being checked prior to every
request made by the client.

vbroker.qos.defaultRRTTimeout 0 milli-
secs

Sets the default value of relative
round trip request timeout.
Default 0 means no timeout.

vbroker.qos.defaultRRQTimeout 0 milli-
secs

Sets the default value of relative
request timeout. Default 0 means
no timeout

vbroker.qos.defaultConnectTimeout 0 milli-
secs

Sets the default value of
connection timeout. Default 0
means no timeout.

Property Default Description

vbroker.se.default iiop_tp Specifies the default server engine.

 5 : Vis iBroker propert ies 67

Server-s ide thread session I IOP_TS/I IOP_TS connect ion propert ies

Server-side thread session IIOP_TS/IIOP_TS connection properties
The following table lists the server-side thread session IIOP_TS/IIOP_TS connection
properties.

Property Default Description

vbroker.se.iiop_ts.scm.iiop_ts.listener.preferIPv
4Stack

false This is applicable to the Windows
platforms only. It is a boolean value
indicating whether the listener has to use
IPv4 or IPv6. The default value is false,
which will enforce usage of IPv6.

If the property
"vbroker.se.<SE_name>.host" is given an
IPv4 or IPv6 address value, then you can
ignore the property setting.

vbroker.se.iiop_ts.host null Specifies the host name used by this
server engine. The default value, null,
means use the host name from the
system.

vbroker.se.iiop_ts.proxyHost null Specifies the proxy host name used by
this server engine. The default value, null,
means use the host name from the
system.

vbroker.se.iiop_ts.scms iiop_ts Specifies the list of Server Connection
Manager name(s).

vbroker.se.iiop_ts.scm.iiop_ts.manager.type Socket Specifies the type of Server Connection
Manager.

vbroker.se.iiop_ts.scm.iiop_ts.manager.connection
Max

0 Specifies the maximum number of
connections the server will accept. The
default value, 0 (zero), implies no
restriction.

vbroker.se.iiop_ts.scm.iiop_ts.manager.connection
MaxIdle

0 Specifies the time in seconds the server
uses to determine if an inactive
connection should be closed.

vbroker.se.iiop_ts.scm.iiop_ts.manager.garbageCol
lectTimer

30 The number of seconds between garbage-
collection for connection objects.

vbroker.se.iiop_ts.scm.iiop_ts.listener.type IIOP Specifies the type of protocol the listener
is using.

vbroker.se.iiop_ts.scm.iiop_ts.listener.port 0 Specifies the port number that is used with
the host name property. The default value,
0 (zero), specifies that the system will pick
a random port number.

vbroker.se.iiop_ts.scm.iiop_ts.listener.proxyPort 0 Specifies the proxy port number used with
the proxy host name property. The default
value, 0 (zero), specifies that the system
will pick a random port number.

vbroker.se.iiop_ts.scm.iiop_ts.listener.rcvBufSiz
e

0 Specifies the size of the receive socket
buffer. The default value 0 implies system
dependent value.

vbroker.se.iiop_ts.scm.iiop_ts.listener.sendBufSi
ze

0 Specifies the size of the send buffer. The
default value 0 implies a system
dependent value.

vbroker.se.iiop_ts.scm.iiop_ts.listener.socketLin
ger

0 A TCP/IP setting

vbroker.se.iiop_ts.scm.iiop_ts.listener.keepAlive true A TCP/IP setting

68 VisiBroker for C++ Developer’s Guide

Server-s ide thread session BOA_TS/BOA_TS connect ion propert ies

Server-side thread session BOA_TS/BOA_TS connection properties
This protocol has the same set of properties as the Server-side thread session
IIOP_TS/IIOP_TS connection properties, by replacing alliiop_ts with boa_ts in all the
properties. For example, the vbroker.se.iiop_ts.scm.iiop_ts.manager.connectionMax
will become vbroker.se.boa_ts.scm.boa_ts.manager.connectionMax. Also, the default
value for vbroker.se.boa_ts.scms is boa_ts.

vbroker.se.iiop_ts.scm.iiop_ts.listener.giopVersi
on

1.2 This property can be used to resolve
interoperability problems with older
VisiBroker ORBs that cannot handle
unknown minor GIOP versions correctly.
Legal values for this property are 1.0, 1.1
and 1.2. For example, to make the
nameservice produce a GIOP 1.1 ior, start
it like this:

nameserv -VBJprop
vbroker.se.iiop_tp.scm.iiop_tp.listener
.giopVersion=1.1

vbroker.se.iiop_ts.scm.iiop_ts.dispatcher.type "ThreadSessi
on"

Specifies the type of thread dispatcher
used in the Server Connection Manager.

vbroker.se.iiop_ts.scm.iiop_ts.dispatcher.threadS
tackSize

0 The size of the thread stack. The default
value, 0, indicates system default.
However, on the HP-UX platform, the
default value is 128 KB.

vbroker.se.iiop_ts.scm.iiop_ts.dispatcher.cooling
Time

3 Time duration in seconds when a
connection is considered hot (expecting
more requests). After the time is elapsed,
the connection is returned back from the
dispatcher.

vbroker.se.iiop_ts.scm.iiop_ts.connection.rcvBufS
ize

0 Specifies the size of the receive socket
buffer. The default value 0 implies system
dependent value.

vbroker.se.iiop_ts.scm.iiop_ts.connection.sendBuf
Size

0 Specifies the size of the send buffer. The
default value 0 implies a system
dependent value.

vbroker.se.iiop_ts.scm.iiop_ts.connection.socketL
inger

0 A TCP/IP setting

vbroker.se.iiop_ts.scm.iiop_ts.connection.keepAli
ve

true A TCP/IP setting

vbroker.se.iiop_ts.scm.iiop_ts.connection.tcpNoDe
lay

true When this property is set to false, this
turns on buffering for the socket. The
default value, true, turns off buffering, so
that all packets are sent as soon as they
are ready.

Property Default Description

 5 : Vis iBroker propert ies 69

Server-s ide thread pool I IOP_TP/I IOP_TP connect ion propert ies

Server-side thread pool IIOP_TP/IIOP_TP connection properties
The following table lists the server-side thread pool IIOP_TP/IIOP_TP connection
properties.

Property Default Description

vbroker.se.iiop_tp.scm.iiop_tp.listener.preferIPv
4Stack

false This is applicable to the Windows platforms
only. It is a boolean value indicating whether
the listener has to use IPv4 or IPv6. The
default value is false, which will enforce usage
of IPv6.

If the property "vbroker.se.<SE_name>.host" is
given an IPv4 or IPv6 address value, then you
can ignore the property setting.

vbroker.se.iiop_tp.host null Specifies the host name that can be used by
this server engine. The default value, null,
means use the host name from the system.
Host names or IP addresses are acceptable
values.

vbroker.se.iiop_tp.proxyHost null Specifies the proxy host name that can be
used by this server engine. The default value,
null, means use the host name from the
system. Host names or IP addresses are
acceptable values.

vbroker.se.iiop_tp.scms iiop_tp Specifies the list of Server Connection
Manager name(s).

vbroker.se.iiop_tp.scm.iiop_tp.manager.type Socket Specifies the type of Server Connection
Manager.

vbroker.se.iiop_tp.scm.iiop_tp.manager.connection
Max

0 Specifies the maximum number of cache
connections on the server. The default value, 0
(zero), implies no restriction.

vbroker.se.iiop_tp.scm.iiop_tp.manager.connection
MaxIdle

0 Specifies the time, in seconds, that the server
uses to determine if an inactive connection
should be closed.

vbroker.se.iiop_tp.scm.iiop_tp.manager.garbageCol
lectTimer

30 The garbage-collection timer (in seconds) for
connections.

vbroker.se.iiop_tp.scm.iiop_tp.listener.type IIOP Specifies the type of protocol the listener is
using.

vbroker.se.iiop_tp.scm.iiop_tp.listener.port 0 Specifies the port number used with the host
name property. The default value, 0 (zero),
means that the system will pick a random port
number.

vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort 0 Specifies the proxy port number used with the
proxy host name property. The default value, 0
(zero), means that the system will pick a
random port number.

vbroker.se.iiop_tp.scm.iiop_tp.listener.rcvBufSiz
e

0 Specifies the size of the receive socket buffer.
The default value 0 implies a system
dependent value.

vbroker.se.iiop_tp.scm.iiop_tp.listener.sendBufSi
ze

0 Specifies the size of the send buffer. The
default value 0 implies a system dependent
value.

vbroker.se.iiop_tp.scm.iiop_tp.listener.socketLin
ger

0 A TCP/IP setting

vbroker.se.iiop_tp.scm.iiop_tp.listener.keepAlive true A TCP/IP setting

vbroker.se.iiop_tp.scm.iiop_tp.listener.giopVersi
on

1.2 This property can be used to resolve
interoperability problems with older VisiBroker
ORBs, that cannot handle unknown minor
GIOP versions correctly. Acceptable values for
this property are 1.0, 1.1 and 1.2.

70 VisiBroker for C++ Developer’s Guide

Server-s ide thread pool BOA_TP/BOA_TP connect ion propert ies

Server-side thread pool BOA_TP/BOA_TP connection properties
This protocol has the same set of properties as the Server-side thread pool IIOP_TP/
IIOP_TP connection properties, by replacing all iiop_tp with boa_tp in all the properties.
For example, the vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax will become
vbroker.se.boa_tp.scm.boa_tp.manager.connectionMax. Also, the default value for
vbroker.se.boa_tp.scms is boa_tp.

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.type ThreadPo
ol

Specifies the type of thread dispatcher used in
the Server Connection Manager.

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadM
in

0 Specifies the minimum number of threads that
the Server Connection Manager can create.

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadM
ax

0 Specifies the maximum number of threads that
the Server Connection Manager can create.
The default value, 0 (zero) implies the ORB will
control the thread generation using an internal
algorithm based on heuristics.

Setting the property
vbroker.se.iiop_tp.scm.iiop_tp.dispatche
r.unlimitedConcurrency=true will imply that
setting this property to 0 will enable unlimited
number of threads in the thread pool to be
created.

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadM
axIdle

300 Specifies the time in seconds before an idle
thread will be destroyed.

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadS
tackSize

0 The size of the thread stack. The default value
0 indicates the system default. However, on the
HP-UX platform, the default value is 128 KB.

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.cooling
Time

3 Time duration, in seconds, when a connection
is considered hot (expecting more requests).
After the time is elapsed, the connection is
returned back from the dispatcher.

vbroker.se.iiop_tp.scm.iiop_tp.connection.rcvBufS
ize

0 Specifies the size of the receive socket buffer.
The default value 0 implies a system
dependent value.

vbroker.se.iiop_tp.scm.iiop_tp.connection.sendBuf
Size

0 Specifies the size of the send buffer. The
default value 0 implies a system dependent
value.

vbroker.se.iiop_tp.scm.iiop_tp.connection.socketL
inger

0 A TCP/IP setting

vbroker.se.iiop_tp.scm.iiop_tp.connection.keepAli
ve

true A TCP/IP setting

vbroker.se.iiop_tp.scm.iiop_tp.connection.tcpNoDe
lay

true When this property is set to false, this turns on
buffering for the socket. The default value, true,
turns off buffering, so that all packets are sent
as soon as they are ready.

Property Default Description

 5 : Vis iBroker propert ies 71

Server-s ide thread pool LIOP_TP/LIOP_TP connect ion propert ies

Server-side thread pool LIOP_TP/LIOP_TP connection properties
The following table lists the server-side thread pool LIOP_TP/LIOP_TP connection
properties.

Property Default Description

vbroker.se.liop_tp.host null Specifies the host name that can be used by
this server engine. The default value, null,
means use the host name from the system.
Host names or IP addresses are acceptable
values.

vbroker.se.liop_tp.proxyHost null Specifies the proxy host name that can be
used by this server engine. The default value,
null, means use the host name from the
system. Host names or IP addresses are
acceptable values.

vbroker.se.liop_tp.scms liop_tp Specifies the list of Server Connection
Manager name(s).

vbroker.se.liop_tp.scm.liop_tp.manager.type Local Specifies the type of Server Connection
Manager.

vbroker.se.liop_tp.scm.liop_tp.manager.connection
Max

0 Specifies the maximum number of cache
connections on the server. The default value, 0
(zero), implies no restriction.

vbroker.se.liop_tp.scm.liop_tp.manager.connection
MaxIdle

0 Specifies the time, in seconds, that the server
uses to determine if an inactive connection
should be closed.

vbroker.se.liop_tp.scm.liop_tp.manager.garbageCol
lectTimer

30 The garbage-collection timer (in seconds) for
connections.

vbroker.se.liop_tp.scm.liop_tp.listener.type LIOP Specifies the type of protocol the listener is
using.

vbroker.se.liop_tp.scm.liop_tp.listener.port 0 Specifies the port number used with the host
name property. The default value, 0 (zero),
means that the system will pick a random port
number.

vbroker.se.liop_tp.scm.liop_tp.listener.proxyPort 0 Specifies the proxy port number used with the
proxy host name property. The default value, 0
(zero), specifies that the system will pick a
random port number.

vbroker.se.default.local.listener.door true Specifies whether the Door API has to be used
for the Client and Server to communicate when
running on the same machine. When set to
true, the Door API is used for the LIOP. When
set to false, the LIOP uses a UNIX Domain
Socket for IPC. This property is only for Solaris
operating systems.

vbroker.se.xxx.scm.yyy.listener.shmSize 4096 The size, in bytes, of the shared memory
allocation. If your client program and object
implementation communicate via shared
memory, you may use this option to enhance
performance.

vbroker.se.xxx.scm.yyy.listener.userConstrained 0 When set to true, the file is hidden in a
directory accessible only by the owner.

vbroker.se.liop_tp.scm.liop_tp.listener.giopVersi
on

1.2 This property can be used to resolve
interoperability problems with older VisiBroker
ORBs, that cannot handle unknown minor
GIOP versions correctly. Acceptable values for
this property are 1.0, 1.1 and 1.2.

72 VisiBroker for C++ Developer’s Guide

Server-s ide thread pool BOA_LTP/BOA_LTP connect ion propert ies

Server-side thread pool BOA_LTP/BOA_LTP connection properties
This protocol has the same set of properties as the thread pool liop_tp/liop_tp
connection properties, by replacing all liop_tp with boa_ltp in all the properties. For
example, the vbroker.se.liop_tp.scm.liop_tp.manager.connectionMax will become
vbroker.se.boa_ltp.scm.boa_ltp.manager.connectionMax. Also, the default value for
vbroker.se.boa_ltp.scms is boa_ltp.

Properties that support bi-directional communication
The following table lists the properties that support bi-directional communication.
These properties are evaluated only once—when the SCMs are created. In all cases,
the exportBiDir and importBiDir properties on the SCMs are given priority over the
enableBiDir property. In other words, if both properties are set to conflicting values, the

vbroker.se.liop_tp.scm.liop_tp.listener.allowedGr
oups

null Allows server applications to control the
trustees to the securable synchronization
objects, used for Local IPC communication on
Windows. Allows semicolon-separated
Windows User groups to access servers using
LIOP. Users not belonging to the groups
specified will not be allowed to connect and will
failover to IIOP.

vbroker.se.liop_tp.scm.liop_tp.dispatcher.type ThreadPo
ol

Specifies the type of thread dispatcher used in
the Server Connection Manager.

vbroker.se.liop_tp.scm.liop_tp.dispatcher.threadM
in

0 Specifies the minimum number of threads that
the Server Connection Manager can create.

vbroker.se.liop_tp.scm.liop_tp.dispatcher.threadM
ax

0 Specifies the maximum number of threads that
the Server Connection Manager can create.
The default value, 0 (zero), implies the ORB
will control the thread generation using an
internal algorithm based on heuristics.

vbroker.se.liop_tp.scm.liop_tp.dispatcher.threadM
axIdle

300 Specifies the time, in seconds, before an idle
thread will be destroyed.

vbroker.se.liop_ts.scm.liop_ts.dispatcher.threadS
tackSize

0 The size of the thread stack. The default value,
0, indicates a system default. However, on the
HP-UX platform, the default value is 128 KB.

vbroker.se.liop_tp.scm.liop_tp.dispatcher.cooling
Time

3 Time duration, in seconds, when a connection
is considered hot (expecting more requests).
After the time is elapsed, the connection is
returned back from the dispatcher.

Property Default Description

 5 : Vis iBroker propert ies 73

Debug Logging propert ies

SCM-specific properties will take effect. This allows you to set the enableBiDir property
globally and specifically turn off bi-directionality in individual SCMs.

Debug Logging properties
This section details the properties that can be used to control and configure the output
of debug log statements.

The debug log statements are categorized according to the areas of the ORB from
where they are logged. These categories are called source names. Currently the
following source names are logged:

– connection – logs from the connection-related source areas such as client side
connection, server side connection, connection pool etc.

– client – logs from the client side invocation path

– agent – logs for Osagent communication

– cdr – logs for GIOP areas

– se – logs from the server engine, such as dispatcher, listener etc.

– server – logs from the server side invocation path.

– orb – logs from the ORB.

For VisiNotify, the following source names are logged:

– v_vntfy - logs from the process.

– v_vnchnl - logs from the channel object.

– v_vn_pxsup - logs from proxy supplier objects.

– v_vnper - logs from persistency module.

Property Default Description

vbroker.orb.enableBiDir none You can selectively make
bi-directional connections. If
the client defines
vbroker.orb.enableBiDir=client
and the server defines
vbroker.orb.enableBiDir=server
the value of
vbroker.orb.enableBiDir at the
GateKeeper determines the
state of the connection. Values
of this property are: server,
client, both or none.

vbroker.se.<se>.scm.<scm>.manager.expo
rtBiDir

By default,
this property
is not set by
the ORB.

This is a client-side property.
Setting it to true enables
creation of a bi-directional
callback POA on the specified
server engine. Setting it to
false disables creation of a
bidirectional POA on the
specified server engine.

vbroker.se.<se>.scm.<scm>.manager.impo
rtBiDir

By default,
not set by
the ORB.

This is a server-side property.
Setting it to true allows the
server-side to reuse the
connection already established
by the client for sending
requests to the client. Setting it
to false prevents reuse of
connections in this fashion.

74 VisiBroker for C++ Developer’s Guide

Debug Logging propert ies

– v_vndb - logs from low level circular file based db layer

– v_vnlogdiscard - Details of any events that are discarded

For VisiTelcoLog, the following source names are logged:

– v_vtlog - logs from the process.

– v_vtlper - logs from the log persistence layer.

– v_vndb - logs from low level circular file based db layer.

For VisiTransact, the following source names are logged:

– v_ots_txncontext - logs from transaction factory, control and coordinator.

– v_ots_interceptor - logs from client and server interceptors and transaction current
related operations.

– v_ots_completion - logs related to transaction completion.

– v_ots_pc - logs related to resource and synchronization objects registered.

For VisiSecure C++, the following source names are logged:

– v_secauthn - logs from authentication related code (i.e. login module, callback
handler, identity services and alike).

– v_secauthz - logs from authorization related code (i.e. Authorization provider,
Authorization domain, role map and alike).

– v_secssl - logs from SSL transport related code (i.e. SecureSocketProvider,
CertificateFactory and alike).

– v_seccsiv2 - logs from CSIV2 service context protocol related code (i.e. Security
context management code and alike).

– v_secmisc - logs from the rest of code.

 5 : Vis iBroker propert ies 75

Debug Logging propert ies

Enabling and Filtering

The following table describes the properties used to enable logging and filtering.

Property Default Description

vbroker.log.enable false When set to true, all logging
statements will be produced
unless the log is being filtered.

Values are true or false.

vbroker.log.logLevel debug Specifies the logging level of the
log message. When set at a
level, the logs with log levels
equal to the specified level or
above are forwarded. This
property is applied at the global
level.

Values are emerg, alert, crit, err,
warning, notice, info and debug
ranking from the highest to the
lowest.

The meaning of the log levels
are:

■ emerg—indicates a panic
condition.

■ alert—a condition that
requires user attention—for
example, if security has been
disabled.

■ crit—critical conditions, such
as a device error.

■ err—error conditions.

■ warning—warning
conditions—these may
accompany some
troubleshooting advice, such
as on the opening of a
connection.

■ info—informational, such as
binding in progress.

■ debug—debug conditions used
by developers.

vbroker.log.default.filter.register null Register source name for
controlling (filtering) the logs from
that source.

Values are client, server,
connection, cdr, se, agent and orb.
Multiple values can be provided
as a comma-separated string.

Note: The source names must be
registered using this property
before they can be explicitly
controlled using

vbroker.log.default.filter.<source-
name>.enableand

vbroker.log.default.filter.<source-
name>.logLevel properties..

vbroker.log.default.filter.<source-
name>.enable

true Once a source name is
registered, log output from the
source can be explicitly
controlled using this property.

Values are true or false.

76 VisiBroker for C++ Developer’s Guide

Debug Logging propert ies

Appending and Logging
The output of the logs can be appended (forwarded) to either the Console or a rolling
local file system file (or both), either in a simple layout or in a more complicated Log4J
XML event layout (format). By default, the logs are appended to the Console in a
simple layout. The names of the various appenders and layouts supported are:

– stdout – Name of the Console appender.

– rolling – Name of the rolling file appender.

– simple – Name of a simple predefined output layout.

– xml – Name of Log4J XML event layout.

– full – Name of a full record fields printout layout.

The following table describes the properties used to configure the destination of the log
output and its format.

vbroker.log.default.filter.<source-
name>.logLevel

debug This property provides finer-
grained control over the global
log level property. The log level
specified using this property
explicitly applies to the given
source name.

The possible values are similar to
the global logLevel values.

vbroker.log.default.filter.all.enable true This is a special case of the
previous property where an
inbuilt source name “all” is being
used. “all” here denotes all the
source names that have not been
registered.

vbroker.log.enableSigHandler false When set to true, installs a signal
handler based on SIGUSR2 to
allow toggling of logging at
runtime.

Values are true or false.

Note: This applies only to UNIX
platforms.

Property Default Description

vbroker.log.default.appenders List of comma-
separated
appenders instance
names for
specifying log
output destination.

vbroker.log.default.appender.<appender-inst-
name>.appenderType

stdout Type of the
appender instance
that needs to be
configured with the
logger. Values
could be stdout or
rolling or a custom
appender type.

vbroker.log.default.appender.<appender-inst-
name>.layoutType

simple Type of layout
(format) to be
associated with the
registered appender
destination.
Values are simple or
xml or a custom
layout type.

Property Default Description

 5 : Vis iBroker propert ies 77

Debug Logging propert ies

Examples

For the built-in rolling appender type, you can create the following configurations. The
properties are described below, assuming that for each appender instance, the
appender type is specified as “rolling”.

The following properties can be used to define custom appender and layout types.

Examples

The following examples explain some of the debug logging properties' usage
scenarios. In the example commands, vbapp is a VisiBroker for C++ application.

1 To turn on logging with default log level.

prompt> vbapp –Dvbroker.log.enable=true

2 To trace only info level and above.

prompt> vbapp –Dvbroker.log.enable=true –Dvbroker.log.logLevel=info

3 To turn off agent-related component statements.

prompt> vbapp –Dvbroker.log.enable=true \
–Dvbroker.log.default.filter.register=agent \
–Dvbroker.log.default.filter.agent.enable=false

4 To trace the client and connection-related area only.

Property Default Description

vbroker.log.default.appender.<appender-
inst-name>.logDir

<current_dir
ectory>

Directory for the rolling
log file to reside in.

vbroker.log.default.appender.<appender-
inst-name>.fileNam

vbrolling.lo
g

Name of rolling log file.

vbroker.log.default.appender.<appender-
inst-name>.maxFileSize

10 Size in MB for each
backup before rolling
over.

Values >= 1.

vbroker.log.default.appender.<appender-
inst-name>.maxBackupIndex

1 Number of backups
needed. When set to 0
(zero), no backup is
created and logging will
keep on appending to the
file.

Values >= 0.

Property Default Description

vbroker.log.appender.register Comma-separated new
appender type names being
introduced to the logger
framework

vbroker.log.appender.<appender-type-
name>.sharedLib

Complete path including file
name of the shared library or
the DLL containing the custom
appender

vbroker.log.layout.register Comma-separated new layout
type names being introduced
to the logger framework

vbroker.log.appender.<layout-type-
name>.sharedLib

Complete path including file
name of the shared library or
the DLL containing the custom
layout

78 VisiBroker for C++ Developer’s Guide

Web Services Runt ime Propert ies

prompt> vbapp –Dvbroker.log.enable=true \
-Dvbroker.log.default.filter.all.enable=false \
–Dvbroker.log.default.register=client,connection

5 To trace emerg on se and err on the cdr areas and the rest on info level.

prompt> vbapp –Dvbroker.log.enable=true \
-Dvbroker.log.logLevel=info \
–Dvbroker.log.default.filter.register=se,cdr \
–Dvbroker.log.default.filter.se.logLevel=emerg \
–Dvbroker.log.default.filter.cdr.logLevel=err

6 To set up output to local file systems with three backups.

prompt> vbapp -Dvbroker.log.enable=true –
Dvbroker.log.default.appenders=myappinst1 \

-Dvbroker.log.default.appender.myappinst1.appenderType=rolling \
-Dvbroker.log.default.appender.myappinst1.logDir=/opt/vbc \
-Dvbroker.log.default.appender.myappinst1.fileName=vbc.log \
-Dvbroker.log.default.appender.myappinst1.maxBackupIndex=3

7 To set up output to both console and local filesystems in xml format.

prompt> vbapp -Dvbroker.log.enable=true –
Dvbroker.log.default.appenders=myappinst1,myappinst2\

-Dvbroker.log.default.appender.myappinst1.appenderType=rolling \
-Dvbroker.log.default.appender.myappinst2.appenderType=stdout \
-Dvbroker.log.default.appender.myappinst1.logDir=/opt/vbc \
-Dvbroker.log.default.appender.myappinst1.fileName=vbc.log \
-Dvbroker.log.default.appender.myappinst1.layoutType=xml \
-Dvbroker.log.default.appender.myappinst2.layoutType=xml

To set the output to two appender instances, one of type stdout and the other
a custom appender, using a simple layout and a custom layout.

prompt> vbapp -Dvbroker.log.enable=true \
-Dvbroker.log.appender.register=mycustomapp \
-Dvbroker.log.appender.mycustomapp.sharedLib=libCustomApp.so \
-Dvbroker.log.layout.register=mycustomlyt \
-Dvbroker.log.layout.mycustomlyt.sharedLib=libCustomLyt.so \
-Dvbroker.log.default.appenders=myappinst1,myappinst2 \
-Dvbroker.log.default.appender.myappinst1.appenderType=mycustomapp \
-Dvbroker.log.default.appender.myappinst1.layoutType=simple \
-Dvbroker.log.default.appender.myappinst2.appenderType=stdout \
-Dvbroker.log.default.appender.myappinst2.layoutType=mycustomlyt

Web Services Runtime Properties

Enabling the runtime

Property Default Description

vbroker.ws.enable false Takes in a Boolean true or false parameter. Setting this value to
true will enable the VisiBroker Web Services Runtime.

 5: Vis iBroker propert ies 79

Web Services HTTP Listener properties

Web Services Connection Manager properties

SOAP Request Dispatcher properties

Property Default Description

vbroker.ws.listener.
host

Null Specify the host name to be used by the listener.
Default null means the host name from the system

vbroker.ws.listener.
port

<TO
DO>

Specify the port number to be used by the listener
socket.

Property Default Description

vbroke.ws.keepAliveConnectio
n

False HTTP server closes a connection after use.
If set to true, it tries to maintain the
connection.

vbroker.ws.connectionMax 0 If keepAliveConnection is true, this
property specifies the maximum number of
connections the server will accept. Default
0 indicates no restriction.

vbroker.ws.connectionMaxIdle 0 If keepAliveConnection is true, this
property determines the maximum time an
unused connection will remain alive.

vbroker.ws.garbageCollectTim
er

30 If keepAliveConnection is true, this
property determines the garbage collection
cycle time for reaping unused connections.
Default is 30 seconds.

vbroker.ws.connection.rcvBuf
Size

0 Receive Buffer Socket option for the client
connection sockets. Default 0 implies
system dependent value.

vbroker.ws.connection.
sendBufSize

0 Send Buffer Socket option for the client
connection sockets. Default 0 implies
system dependent value.

vbroker.ws.connection.socket
Linger

0 TCP Socket option for the client connection
sockets.

vbroker.ws.connection.keepAl
ive

true TCP Socket option for the client connection
sockets.

Soap Request Dispatcher properties

Property Default Description

vbroker.ws.dispatcher.threadMax 0 Maximum number of threads to be
present in the thread pool dispatcher.
Default value 0 indicates unlimited
number of threads.

vbroker.ws.dispatcher.threadMin 0 Minimum number of threads to be
present in the thread pool dispatcher.

vbroker.ws.dispatcher.threadMax
Idle

300 Time in seconds before an idled thread
in the thread pool is destroyed.

vbroker.ws.dispatcher.threadSta
ckSize

0 Stack size of the thread pool dispatcher
thread. Default value 0 indicates system
dependent.

80 VisiBroker for C++ Developer’s Guide

Real-time Extensions related properties
The properties in the following table can be used to configure individual internal ORB
thread priorities.

Property Description

vbroker.se.default.socket.listener.priori
ty

Sets the default priority that Listener
threads will run at. Can be changed at
any time. The current value at the time
of Server Engine creation (which
occurs during POA creation) is the
value used for any new Listeners that
are created. Can be overridden, using
the next property.

vbroker.se.<se name>.scm.<scm name>
.listener.priority

Where <SE name> is the name of a
Server Engine and <SCM name> is the
name of a Server Connection Manager.
Sets the priority of the Listener thread
associated with a specific SCM in a
specific Server Engine. Can be set at
any time prior to the creation of that
Server Engine (which occurs during the
creation of the first POA that uses that
Server Engine.)

vbroker.agent.threadPriority Sets the priority at which the ORB’s
DSUser thread will run. Must be set no
later than the first time that the ORB
attempts to communicate with a
VisiBroker Smart Agent (which is
typically when a POA is created, an
object is activated or a call to a _bind
method is made.)

vbroker.garbageCollect.thread.priority Sets the priority of all Garbage
Collection threads. Can be changed at
any time. The current value at the time
of Threadpool creation is the value
used.

 6: Handl ing except ions 81

Handling exceptions

Exceptions in the CORBA model
The exceptions in the CORBA model include both system and user exceptions. The
CORBA specification defines a set of system exceptions that can be raised when
errors occur in the processing of a client request. Also, system exceptions are raised in
the case of communication failures. System exceptions can be raised at any time and
they do not need to be declared in the interface.

You can define user exceptions in IDL for objects you create and specify the
circumstances under which those exceptions are to be raised. They are included in the
method signature. If an object raises an exception while handling a client request, the
VisiBroker ORB is responsible for reflecting this information back to the client.

System exceptions
System exceptions are usually raised by the VisiBroker ORB, though it is possible for
object implementations to raise them through interceptors discussed in “Using
VisiBroker Interceptors.” When the VisiBroker ORB raises a SystemException, one of
the CORBA-defined error conditions is displayed as shown below.

For a listing of explanations and possible causes of these exceptions, see “CORBA
exceptions.”.

Exception name Description

BAD_CONTEXT Error processing context object.

BAD_INV_ORDER Routine invocations out of order.

BAD_OPERATION Invalid operation.

BAD_PARAM An invalid parameter was passed.

BAD_QOS Quality of service cannot be supported.

BAD_TYPECODE Invalid typecode.

COMM_FAILURE Communication failure.

DATA_CONVERSION Data conversion error.

FREE_MEM Unable to free memory.

IMP_LIMIT Implementation limit violated.

INITIALIZE VisiBroker ORB initialization failure.

82 VisiBroker for C++ Developer’s Guide

System except ions

For a listing of explanations and possible causes of the above exceptions, see
“CORBA exceptions.”

SystemException class

class SystemException : public CORBA::Exception {
 public:
 static const char *_id;
 virtual ~SystemException();
 CORBA::ULong minor() const;
 void minor(CORBA::ULong val);
 CORBA::CompletionStatus completed() const;
 void completed(CORBA::CompletionStatus status);
 ...
 static SystemException *_downcast(Exception *);
 ...
};

Obtaining completion status

System exceptions have a completion status that tells you whether or not the operation
that raised the exception was completed. The sample below illustrates the
CompletionStatus enumerated values for the CompletionStatus. COMPLETED_MAYBE is
returned when the status of the operation cannot be determined.

enum CompletionStatus {
 COMPLETED_YES = 0;
 COMPLETED_NO = 1;

INTERNAL VisiBroker ORB internal error.

INTF_REPOS Error accessing interface repository.

INV_FLAG Invalid flag was specified.

INV_INDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference specified.

INVALID_TRANSACTION Specified transaction was invalid (used in conjunction with
VisiTransact).

MARSHAL Error marshalling parameter or result.

NO_IMPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted operation.

NO_RESOURCES Insufficient resources to process request.

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTOR Failure detected by object adaptor.

OBJECT_NOT_EXIST Object is not available.

PERSIST_STORE Persistent storage failure.

TRANSIENT Transient failure.

TRANSACTION_MODE Mismatch detected between the TransactionPolicy in the IOR and the
current transaction mode (used in conjunction with VisiTransact).

TRANSACTION_REQUIRED Transaction is required (used in conjunction with VisiTransact).

TRANSACTION_ROLLEDBACK Transaction was rolled back (used in conjunction with VisiTransact).

TRANSACTION_UNAVAILABLE Connection to the VisiTransact Transaction Service has been
abnormally terminated.

TIMEOUT Request timeout.

UNKNOWN Unknown exception.

Exception name Description

 6: Handl ing except ions 83

System except ions

 COMPLETED_MAYBE = 2;
};

You can retrieve the completion status using these SystemException methods.

CompletionStatus completed();

Getting and setting the minor code

You can retrieve and set the minor code using these SystemException methods. Minor
codes are used to provide better information about the type of error.

ULong minor() const;
void minor(ULong val);

Determining the type of a system exception

The design of the VisiBroker exception classes allows your program to catch any type
of exception and then determine its type by using the _downcast() method. A static
method, _downcast() accepts a pointer to any Exception object. As with the _downcast()
method defined on CORBA::Object, if the pointer is of type SystemException, _downcast()
will return the pointer to you. If the pointer is not of type SystemException, _downcast()
will return a NULL pointer.

Catching system exceptions

Your applications should enclose the VisiBroker ORB and remote calls in a try catch
block. The code samples below illustrate how the account client program, discussed in
“Developing an example application with VisiBroker,” prints an exception.

#include "Bank_c.hh"
int main(int argc, char* const* argv) {
 try {
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("BankManager");
 Bank::AccountManager_var manager =
 Bank::AccountManager::_bind("/bank_agent_poa", managerId);
 const char* name = argc > 1 ? argv[1] : "Jack B. Quick";
 Bank::Account_var account = manager->open(name);
 CORBA::Float balance = account->balance();
 cout << "The balance in " << name << "'s account is $" << balance <<
endl;
 } catch(const CORBA::Exception& e) {
 cerr << e << endl;
 return 1;
 }
 return 0;
}

If you were to execute the client program with these modifications and without a server
present, the following output would indicate that the operation did not complete and the
reason for the exception.

prompt>Client
Exception: CORBA::OBJECT_NOT_EXIST
 Minor: 0
 Completion Status: NO

84 VisiBroker for C++ Developer’s Guide

System except ions

Downcasting exceptions to a system exception

You can modify the account client program to attempt to downcast any exception that
is caught to a SystemException. The following code sample shows you how to modify
the client program.

int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 // Bind to an account.
 Account_var account = Account::_bind();
 // Get the balance of the account.
 CORBA::Float acct_balance = account->balance();
 // Print out the balance.
 cout << "The balance in the account is $"
 << acct_balance << endl;
 } catch(const CORBA::Exception& e) {
 CORBA::SystemException* sys_excep;
 sys_excep = CORBA::SystemException::_downcast((CORBA::Exception*)&e);
 if(sys_excep != NULL) {
 cerr << "System Exception occurred:" << endl;
 cerr << "exception name: " <<
 sys_excep->_name() << endl;
 cerr << "minor code: " << sys_excep->minor() << endl;
 cerr << "completion code: " << sys_excep->completed() << endl;
 } else {
 cerr << "Not a system exception" << endl;
 cerr << e << endl;
 }
 }
}

The following code sample displays the resulting output if a system exception occurs.

System Exception occurred:
 exception name: CORBA::NO_IMPLEMENT
 minor code: 0
 completion code: 1

Catching specific types of system exceptions

Rather than catching all types of exceptions, you may choose to specifically catch each
type of exception that you expect. The following code sample show this technique.

...
int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 // Bind to an account.
 Account_var account = Account::_bind();
 // Get account balance.
 CORBA::Float acct_balance = account->balance();

 // Print out the balance.
 cout << "The balance in the account is $" << acct_balance
<< endl;
 }
 // Check for system errors
 catch(const CORBA::SystemException& sys_excep) {

 6: Handl ing except ions 85

User except ions

 cout << "System Exception occurred:" << endl;
 cout << " exception name: " << sys_excep-
>_name() << endl;
 cout << " minor code: " << sys_excep->minor() << endl;
 cout << " completion code: " << sys_excep->completed()
<< endl;
 }
}
...

User exceptions
When you define your object's interface in IDL, you can specify the user exceptions
that the object may raise. The following code sample shows the UserException code
from which the idl2cpp compiler will derive the user exceptions you specify for your
object.

class UserException: public Exception {
 public:
 ...
 static const char *_id;
 virtual ~UserException();
 static UserException *_downcast(Exception *);
};

Defining user exceptions

Suppose that you want to enhance the account application, introduced in “Developing
an example application with VisiBroker,” so that the account object will raise an
exception. If the account object has insufficient funds, you want a user exception
named AccountFrozen to be raised. The additions required to add the user exception to
the IDL specification for the Account interface are shown in bold.

// Bank.idl
module Bank {
 interface Account {
 exception AccountFrozen {
 };
 float balance() raises(AccountFrozen);
 };
};

The idl2cpp compiler will generate the following code for a AccountFrozen exception
class.

class Account : public virtual CORBA::Object {
 ...
 class AccountFrozen: public CORBA_UserException {
 public:
 static const CORBA_Exception::Description description;
 AccountFrozen() {}
 static CORBA::Exception *_factory() {
 return new AccountFrozen();
 }
 ~AccountFrozen() {}
 virtual const CORBA_Exception::Description& _desc() const;
 static AccountFrozen *_downcast(CORBA::Exception *exc);
 CORBA::Exception *_deep_copy() const {
 return new AccountFrozen(*this);
 }
 void _raise() const {

86 VisiBroker for C++ Developer’s Guide

User except ions

 raise *this;
 }
 ...
}

Modifying the object to raise the exception
The AccountImpl object must be modified to use the exception by raising the exception
under the appropriate error conditions.

CORBA::Float AccountImpl::balance()
{
 if(_balance < 50) {
 raise Account::AccountFrozen();
 } else {
 return _balance;
}

Catching user exceptions
When an object implementation raises an exception, the VisiBroker ORB is responsible
for reflecting the exception to your client program. Checking for a UserException is
similar to checking for a SystemException. To modify the account client program to catch
the AccountFrozen exception, make modifications to the code as shown below.

...
 try {
 // Initialize the ORB.
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 // Bind to an account.
 Account_var account = Account::_bind();
 // Get the balance of the account.
 CORBA::Float acct_balance = account->balance();
 }
 catch(const Account::AccountFrozen& e) {
 cerr << "AccountFrozen returned:" << endl;
 cerr << e << endl;
 return(0);
 }
 // Check for system errors
 catch(const CORBA::SystemException& sys_excep) {
 }
...

Adding fields to user exceptions
You can associate values with user exceptions. The code sample below shows how to
modify the IDL interface specification to add a reason code to the AccountFrozen user
exception. The object implementation that raises the exception is responsible for
setting the reason code. The reason code is printed automatically when the exception
is put on the output stream.

// Bank.idl
module Bank {
 interface Account {
 exception AccountFrozen {
 int reason;
 };
 float balance() raises(AccountFrozen);
 };
};

 6: Handl ing except ions 87

User except ions

88 VisiBroker for C++ Developer’s Guide

 7: Server basics 89

Server basics
This section outlines the tasks that are necessary to set up a server to receive client
requests.

Overview
The basic steps that you'll perform in setting up your server are:

– Initialize the VisiBroker ORB

– Create and setup the POA

– Activate the POA Manager

– Activate objects

– Wait for client requests

This section describes each task in a global manner to give you an idea of what you
must consider. The specifics of each step are dependent on your individual
requirements.

Initializing the VisiBroker ORB
As stated in the previous section, the VisiBroker ORB provides a communication link
between client requests and object implementations. Each application must initialize
the VisiBroker ORB before communicating with it as follows:

// Initialize the VisiBroker ORB.
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

90 VisiBroker for C++ Developer’s Guide

Creat ing the POA

Creating the POA
Early versions of the CORBA object adapter (the Basic Object Adapter, or BOA) did not
permit portable object server code. A new specification was developed by the OMG to
address these issues and the Portable Object Adapter (POA) was created.

Note

A discussion of the POA can be quite extensive. This section introduces you to some of
the basic features of the POA. For detailed information, see “Using POAs” and the
OMG specification.

In basic terms, the POA (and its components) determine which servant should be
invoked when a client request is received, and then invokes that servant. A servant is a
programming object that provides the implementation of an abstract object. A servant
is not a CORBA object.

One POA (called the rootPOA) is supplied by each VisiBroker ORB. You can create
additional POAs and configure them with different behaviors. You can also define the
characteristics of the objects the POA controls.

The steps to setting up a POA with a servant include:

– Obtaining a reference to the root POA

– Defining the POA policies

– Creating a POA as a child of the root POA

– Creating a servant and activating it

– Activating the POA through its manager

Some of these steps may be different for your application.

Obtaining a reference to the root POA

All server applications must obtain a reference to the root POA to manage objects or to
create new POAs.

// get a reference to the root POA
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
// narrow the object reference to a POA reference
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

You can obtain a reference to the root POA by using resolve_initial_references which
returns a value of type CORBA::Object. You are responsible for narrowing the returned
object reference to the desired type, which is PortableServer::POA in the above
example.

You can then use this reference to create other POAs, if needed.

Creating the child POA

The root POA has a predefined set of policies that cannot be changed. A policy is an
object that controls the behavior of a POA and the objects the POA manages. If you
need a different behavior, such as different lifespan policy, you will need to create a
new POA.

POAs are created as children of existing POAs using create_POA. You can create as
many POAs as you think are required.

Note

Child POAs do not inherit the policies of their parent POAs.

 7: Server basics 91

Creat ing the POA

In the following example, a child POA is created from the root POA and has a
persistent lifespan policy. The POA Manager for the root POA is used to control the
state of this child POA.

CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(
 PortableServer::PERSISTENT);
// Create myPOA with the right policies
PortableServer::POAManager_var rootManager = rootPOA->the_POAManager();
PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",
 rootManager, policies);

Implementing servant methods

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data
structures, and more. When you compile IDL that contains an interface, a class is
generated which serves as the base class for your servant. For example, in the
Bank.IDL file, an >AccountManager

module Bank{
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open (in string name);
 };
};

The following shows the AccountManager implementation on the server side.

class AccountManagerImpl : public POA_Bank::AccountManager {
 private:
 Dictionary _accounts;
 public:
 virtual Bank::Account_ptr open(const char* name) {
 // Lookup the account in the account dictionary.
 Bank::Account_ptr account = (Bank::Account_ptr) _accounts.get(name);
 if(account == Bank::Account::_nil()) {
 // Make up the account's balance, between 0 and 1000 dollars.
 float balance = abs(rand()) % 100000 / 100.0;
 // Create the account implementation, given the balance.
 AccountImpl *accountServant = new AccountImpl(balance);
 try {
 // Activate it on the default POA which is root POA for this
 servant
 PortableServer::POA_var rootPOA = _default_POA();
 CORBA::Object_var obj =
 rootPOA->servant_to_reference(accountServant);
 account = Bank::Account::_narrow(obj);
 } catch(const CORBA::Exception& e) {
 cerr << "_narrow caught exception: " << e << endl;
 }
 // Print out the new account.
 cout << "Created " << name << "'s account: " << account << endl;
 // Save the account in the account dictionary.
 _accounts.put(name, account);

 }

92 VisiBroker for C++ Developer’s Guide

Creat ing and Act ivat ing the Servant

 // Return the account.
 return Bank::Account::_duplicate(account);
 }
};

Creating and Activating the Servant
The AccountManager implementation must be created and activated in the server
code. In this example, AccountManager is activated with activate_object_with_id,
which passes the object ID to the Active Object Map where it is recorded. The Active
Object Map is simply a table that maps IDs to servants. This approach ensures that this
object is always available when the POA is active and is called explicit object
activation.

// Create the servant

AccountManagerImpl managerServant;
// Decide on the ID for the servant
PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("BankManager");
// Activate the servant with the ID on myPOA
myPOA->activate_object_with_id(managerId,&managerServant);

Activating the POA

The last step is to activate the POA Manager associated with your POA. By default,
POA Managers are created in a holding state. In this state, all requests are routed to a
holding queue and are not processed. To allow requests to be dispatched, the POA
Manager associated with the POA must be changed from the holding state to an active
state. A POA Manager is simply an object that controls the state of the POA (whether
requests are queued, processed, or discarded.) A POA Manager is associated with a
POA during POA creation. You can specify a POA Manager to use, or let the system
create a new one for you by passing a null value as the POA Manager name in
create_POA()).

// Activate the POA manager
rootPOA.the_POAManager().activate();

Activating objects
In the preceding section, there was a brief mention of explicit object activation. There
are several ways in which objects can be activated:

– Explicit: All objects are activated upon server start-up via calls to the POA

– On-demand: The servant manager activates an object when it receives a request for
a servant not yet associated with an object ID

– Implicit: Objects are implicitly activated by the server in response to an operation by
the POA, not by any client request

– Default servant: The POA uses the default servant to process the client request

A complete discussion of object activation is in “Using POAs.” For now, just be aware
that there are several means for activating objects.

Waiting for client requests
Once your POA is set up, you can wait for client requests by using orb.run(). This
process will run until the server is terminated.

 7: Server basics 93

Complete example

// Wait for incoming requests
orb.run();

Complete example
The samples below shows the complete example code.

// Server.C
#include "Bank_s.hh"
#include <math.h>
class Dictionary {
 private:
 struct Data {
 const char* name;
 void* value;
 };
 unsigned _count;
 Data* _data;
 public:
 Dictionary() {
 _count = 0;
 }
 void put(const char* name, void* value) {
 Data* oldData = _data;
 _data = new Data[_count + 1];
 for(unsigned i = 0; i < _count; i++) {
 _data[i] = oldData[i];
 }
 _data[_count].name = strdup(name);
 _data[_count].value = value;
 _count++;
 }
 void* get(const char* name) {
 for(unsigned i = 0; i < _count; i++) {
 if(!strcmp(name, _data[i].name)) {
 return _data[i].value;
 }
 }
 return 0;
 }
};
class AccountImpl : public POA_Bank::Account {
 private:
 float _balance;
 public:
 AccountImpl(float balance) {
 _balance = balance;
 }
 virtual float balance() {
 return _balance;
 }

};
class AccountManagerImpl : public POA_Bank::AccountManager {
 private:
 Dictionary _accounts;
 public:
 virtual Bank::Account_ptr open(const char* name) {

94 VisiBroker for C++ Developer’s Guide

Complete example

 // Lookup the account in the account dictionary.
 Bank::Account_ptr account = (Bank::Account_ptr) _accounts.get(name);
 if(account == Bank::Account::_nil()) {
 // Make up the account's balance, between 0 and 1000 dollars.
 float balance = abs(rand()) % 100000 / 100.0;
 // Create the account implementation, given the balance.
 AccountImpl *accountServant = new AccountImpl(balance);
 try {
 // Activate it on the default POA which is root POA for this
 servant
 PortableServer::POA_var rootPOA = _default_POA();
 CORBA::Object_var obj =
 rootPOA->servant_to_reference(accountServant);
 account = Bank::Account::_narrow(obj);
 } catch(const CORBA::Exception& e) {
 cerr << "_narrow caught exception: " << e << endl;
 }
 // Print out the new account.
 cout << "Created " << name << "'s account: " << account << endl;
 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }
 // Return the account.
 return Bank::Account::_duplicate(account);
 }
};
int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 // narrow the object reference to a POA reference
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);
 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(
 PortableServer::PERSISTENT
);
 // Create myPOA with the right policies
 PortableServer::POAManager_var rootManager = rootPOA->the_POAManager();
 PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",
 rootManager, policies);
 // Create the servant
 AccountManagerImpl managerServant;
 // Decide on the ID for the servant
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("BankManager");
 // Activate the servant with the ID on myPOA
 myPOA->activate_object_with_id(managerId,&managerServant);
 // Activate the POA Manager
 rootPOA->the_POAManager()->activate();
 cout << myPOA->servant_to_reference(&managerServant) << " is ready" <<

endl;
 // Wait for incoming requests
 orb->run();
 } catch(const CORBA::Exception& e) {
 cerr << e << endl;

 7: Server basics 95

 }
}

96 VisiBroker for C++ Developer’s Guide

 8 : Using POAs 97

Using POAs

What is a Portable Object Adapter?
Portable Object Adapters replace Basic Object Adapters; they provide portability on the
server side.

A POA is the intermediary between the implementation of an object and the VisiBroker
ORB. In its role as an intermediary, a POA routes requests to servants and, as a result
may cause servants to run and create child POAs if necessary.

Servers can support multiple POAs. At least one POA must be present, which is called
the rootPOA. The rootPOA is created automatically for you. The set of POAs is
hierarchical; all POAs have the rootPOA as their ancestor.

Servant managers locate and assign servants to objects for the POA. When an
abstract object is assigned to a servant, it is called an active object and the servant is
said to incarnate the active object. Every POA has one Active Object Map which keeps
track of the object IDs of active objects and their associated active servants.

Note

Users familiar with versions of VisiBroker prior to 6.0 should note the change in
inheritance hierarchy to support CORBA Specification 3.0, which requires local
interfaces. For example, a ServantLocator implementation would now extend from
org.omg.PortableServer._ServantLocatorLocalBase instead of
org.omg.PortableServer.ServantLocatorPOA.

98 VisiBroker for C++ Developer’s Guide

What is a Portable Object Adapter?

Figure 8.1 Overview of the POA

POA terminology

Following are definitions of some terms with which you will become more familiar as
you read through this section.

Term Description

Active Object Map Table that maps active VisiBroker CORBA objects (through their object
IDs) to servants. There is one Active Object Map per POA.

adapter activator Object that can create a POA on demand when a request is received for a
child POA that does not exist.

etherealize Remove the association between a servant and an abstract CORBA
object.

incarnate Associate a servant with an abstract CORBA object.

ObjectID Way to identify a CORBA object within the object adapter. An ObjectID
can be assigned by the object adapter or the application and is unique
only within the object adapter in which it was created. Servants are
associated with abstract objects through ObjectIDs.

persistent object CORBA objects that live beyond the server process that created them.

POA manager Object that controls the state of the POA; for example, whether the POA
is receiving or discarding incoming requests.

Policy Object that controls the behavior of the associated POA and the objects
the POA manages.

rootPOA Each VisiBroker ORB is created with one POA called the rootPOA. You
can create additional POAs (if necessary) from the rootPOA.

servant Any code that implements the methods of a CORBA object, but is not the
CORBA object itself.

servant manager An object responsible for managing the association of objects with
servants, and for determining whether an object exists. More than one
servant manager can exist.

transient object A CORBA object that lives only within the process that created it.

 8: Using POAs 99

POA pol ic ies

Steps for creating and using POAs

Although the exact process can vary, following are the basic steps that occur during the
POA lifecycle are:

1 Define the POA's policies.

2 Create the POA.

3 Activate the POA through its POA manager.

4 Create and activate servants.

5 Create and use servant managers.

6 Use adapter activators.

Depending on your needs, some of these steps may be optional. For example, you
only have to activate the POA if you want it to process requests.

POA policies
Each POA has a set of policies that define its characteristics. When creating a new
POA, you can use the default set of policies or use different values to suit your
requirements. You can only set the policies when creating a POA; you can not change
the policies of an existing POA. POAs do not inherit the policies from their parent POA.

The following lists the POA policies, their values, and the default value (used by the
rootPOA).

– Thread policy The thread policy specifies the threading model to be used by the
POA.

The thread policy can have the following values:

– ORB_CTRL_MODEL: (Default) The POA is responsible for assigning requests to
threads. In a multi-threaded environment, concurrent requests may be delivered
using multiple threads. Note that VisiBroker uses multi-threading model.

– SINGLE_THREAD_MODEL: The POA processes requests sequentially. In a
multi-threaded environment, all calls made by the POA to servants and servant
managers are thread-safe.

– MAIN_THREAD_MODEL: Calls are processed on a distinguished “main” thread.
Requests for all main-thread POAs are processed sequentially. In a multi-
threaded environment, all calls processed by all POAs with this policy are thread-
safe. The application programmer designates the main thread by calling
ORB::run() or ORB::perform_work(). For more information about these methods,
see “Activating objects”.

– Lifespan policy The lifespan policy specifies the lifespan of the objects
implemented in the POA.

The lifespan policy can have the following values:

– TRANSIENT: (Default) A transient object activated by a POA cannot outlive the
POA that created it. Once the POA is deactivated, an OBJECT_NOT_EXIST
exception occurs if an attempt is made to use any object references generated by
the POA.

– PERSISTENT: A persistent object activated by a POA can outlive the process in
which it was first created. Requests invoked on a persistent object may result in
the implicit activation of a process, a POA and the servant that implements the
object.

– Object ID Uniqueness policy The Object ID Uniqueness policy allows a single
servant to be shared by many abstract objects.

The Object ID Uniqueness policy can have the following values:

100 VisiBroker for C++ Developer ’s Guide

POA pol ic ies

– UNIQUE_ID: (Default) Activated servants support only one Object ID.

– MULTIPLE_ID: Activated servants can have one or more Object IDs. The Object
ID must be determined within the method being invoked at run time.

– ID Assignment policy The ID assignment policy specifies whether object IDs are
generated by server applications or by the POA.

The ID Assignment policy can have the following values:

– USER_ID: Objects are assigned object IDs by the application.

– SYSTEM_ID: (Default) Objects are assigned object IDs by the POA. If the
PERSISTENT policy is also set, object IDs must be unique across all
instantiations of the same POA.

Typically, USER_ID is for persistent objects, and SYSTEM_ID is for transient
objects. If you want to use SYSTEM_ID for persistent objects, you can extract them
from the servant or object reference.

– Servant Retention policy The Servant Retention policy specifies whether the POA
retains active servants in the Active Object Map.

The Servant Retention policy can have the following values:

– RETAIN: (Default) The POA tracks object activations in the Active Object Map.
RETAIN is usually used with ServantActivators or explicit activation methods on
POA.

– NON_RETAIN: The POA does not retain active servants in the Active Object
Map. NON_RETAIN must be used with ServantLocators.

ServantActivators and ServantLocators are types of servant managers. For more
information on servant managers, see Using servants and servant managers.

– Request Processing policy The Request Processing policy specifies how requests
are processed by the POA.

– USE_ACTIVE_OBJECT_MAP_ONLY: (Default) If the Object ID is not listed in
the Active Object Map, an OBJECT_NOT _EXIST exception is returned. The
POA must also use the RETAIN policy with this value.

– USE_DEFAULT_SERVANT: If the Object ID is not listed in the Active Object Map
or the NON_RETAIN policy is set, the request is dispatched to the default servant.
If no default servant has been registered, an OBJ_ADAPTER exception is
returned. The POA must also use the MULTIPLE_ID policy with this value.

– USE_SERVANT_MANAGER: If the Object ID is not listed in the Active Object
Map or the NON_RETAIN policy is set, the servant manager is used to obtain a
servant.

– Implicit Activation policy The Implicit Activation policy specifies whether the POA
supports implicit activation of servants.

The Implicit Activation policy can have the following values:

– IMPLICIT_ACTIVATION: The POA supports implicit activation of servants. There
are two ways to activate the servants as follows:

– Converting them to an object reference with POA::servant_to_reference() .

– Invoking _this() on the servant.

The POA must also use the SYSTEM_ID and RETAIN policies with this value.

– NO_IMPLICIT_ACTIVATION: (Default) The POA does not support implicit
activation of servants.

– Bind Support policy The Bind Support policy (a VisiBroker-specific policy) controls
the registration of POAs and active objects with the VisiBroker osagent. If you have
several thousands of objects, it is not feasible to register all of them with the osagent.

 8 : Using POAs 101

Creat ing POAs

Instead, you can register the POA with the osagent. When a client request is made,
the POA name and the object ID is included in the bind request so that the osagent
can correctly forward the request.

The BindSupport policy can have the following values:

– BY_INSTANCE: All active objects are registered with the osagent. The POA must
also use the PERSISTENT and RETAIN policy with this value.

– BY_POA: (Default) Only POAs are registered with the osagent. The POA must
also use the PERSISTENT policy with this value.

– NONE: Neither POAs nor active objects are registered with the smart agent.

Note

The rootPOA is created with NONE activation policy.

Creating POAs
To implement objects using the POA, at least one POA object must exist on the server.
To ensure that a POA exists, a rootPOA is provided during the VisiBroker ORB
initialization. This POA uses the default POA policies described earlier in this section.

Once the rootPOA is obtained, you can create child POAs that implement a specific
server-side policy set.

POA naming convention

Each POA keeps track of its name and its full POA name (the full hierarchical path
name.) The hierarchy is indicated by a slash (/). For example, /A/B/C means that POA
C is a child of POA B, which in turn is a child of POA A. The first slash (see the
previous example) indicates the rootPOA. If the BindSupport:BY_POA policy is set on
POA C, then /A/B/C is registered with the osagent and the client binds with /A/B/C.

If your POA name contains escape characters or other delimiters, VisiBroker precedes
these characters with a double back slash (\\) when recording the names internally. For
example, if you have coded two POAs in the following hierarchy,

PortableServer::POA_var myPOA1 = rootPOA->create_POA("A/B",
 poa_manager,
 policies);
PortableServer::POA_var myPOA2 = myPOA1->create_POA("\t",
 poa_manager,
 policies);

then the client would bind using:

Bank::AccountManager_var manager = Bank::AccountManager::_bind("/A\\/B/\t",
managerId);

Obtaining the rootPOA

The following code sample illustrates how a server application can obtain its rootPOA.

// Initialize the ORB.
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
// get a reference to the root POA
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

Note

The resolve_initial_references method returns a value of type CORBA::Object . You are
responsible for narrowing the returned object reference to the desired type, which is
PortableServer::POA in the previous example.

102 VisiBroker for C++ Developer ’s Guide

Act ivat ing objects

Setting the POA policies

Policies are not inherited from the parent POA. If you want a POA to have a specific
characteristic, you must identify all the policies that are different from the default value.
For more information about POA policies, see “POA policies”.

CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] = rootPOA-
>create_lifespan_policy(PortableServer::PERSISTENT);

Creating and activating the POA

A POA is created using create_POA on its parent POA. You can name the POA anything
you like; however, the name must be unique with respect to all other POAs with the
same parent. If you attempt to give two POAs the same name, a CORBA exception
(AdapterAlreadyExists) is raised.

To create a new POA, use create_POA as follows:

POA create_POA(POA_Name, POAManager, PolicyList);

The POA manager controls the state of the POA (for example, whether it is processing
requests). If null is passed to create_POA as the POA manager name, a new POA
manager object is created and associated with the POA. Typically, you will want to
have the same POA manager for all POAs. For more information about the POA
manager, see “Managing POAs with the POA manager”.

POA managers (and POAs) are not automatically activated once created. Use
activate() to activate the POA manager associated with your POA. The following code
sample is an example of creating a POA.

CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] = rootPOA-
>create_lifespan_policy(PortableServer::PERSISTENT);
// Create myPOA with the right policies
PortableServer::POAManager_var rootManager = rootPOA->the_POAManager();
PortableServer::POA_var myPOA =
 rootPOA->create_POA("bank_agent_poa", rootManager, policies);

Activating objects
When CORBA objects are associated with an active servant, if the POA's Servant
Retention Policy is RETAIN, the associated object ID is recorded in the Active Object
Map and the object is activated. Activation can occur in one of several ways:

Explicit activation The server application itself explicitly activates objects by
calling activate_object or activate_object_with_id.

On-demand activation The server application instructs the POA to activate objects
through a user-supplied servant manager. The servant
manager must first be registered with the POA through
set_servant_manager.

Implicit activation The server activates objects solely by in response to
certain operations. If a servant is not active, there is nothing
a client can do to make it active (for example, requesting
for an inactive object does not make it active.)

Default servant The POA uses a single servant to implement all of its
objects.

 8 : Using POAs 103

Act ivat ing objects

Activating objects explicitly

By setting IdAssignmentPolicy::SYSTEM_ID on a POA, objects can be explicitly activated
without having to specify an object ID. The server invokes activate_object on the POA
which activates, assigns and returns an object ID for the object. This type of activation
is most common for transient objects. No servant manager is required since neither the
object nor the servant is needed for very long.

Objects can also be explicitly activated using object IDs. A common scenario is during
server initialization where the user invokes activate_object_with_id to activate all the
objects managed by the server. No servant manager is required since all the objects
are already activated. If a request for a non-existent object is received, an
OBJECT_NOT_EXIST exception is raised. This has obvious negative effects if your server
manages large numbers of objects.

This code sample is an example of explicit activation using activate_object_with_id.

// Create the servant
AccountManagerImpl managerServant;
// Decide on the ID for the servant
PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("BankManager");
// Activate the servant with the ID on myPOA
myPOA->activate_object_with_id(managerId,&managerServant);
// Activate the POA Manager
PortableServer::POAManager_var rootManager = rootPOA->the_POAManager();
rootManger->activate();

Activating objects on demand

On-demand activation occurs when a client requests an object that does not have an
associated servant. After receiving the request, the POA searches the Active Object
Map for an active servant associated with the object ID. If none is found, the POA
invokes incarnate on the servant manager which passes the object ID value to the
servant manager. The servant manager can do one of three things:

– Find an appropriate servant which then performs the appropriate operation for the
request.

– Raise an OBJECT_NOT_EXIST exception that is returned to the client.

– Forward the request to another object.

The POA policies determine any additional steps that may occur. For example, if
RequestProcessingPolicy::USE_SERVANT_MANAGER and ServantRetentionPolicy::RETAIN are
enabled, the Active Object Map is updated with the servant and object ID association.

An example of on-demand activation is shown below.

Activating objects implicitly

A servant can be implicitly activated by certain operations if the POA has been created
with ImplicitActivationPolicy::IMPLICIT_ACTIVATION, IdAssignmentPolicy::SYSTEM_ID,
and ServantRetentionPolicy::RETAIN. Implicit activation can occur with:

– POA::servant_to_reference member function

– POA::servant_to_id member function

– _this() servant member function

If the POA has IdUniquenessPolicy::UNIQUE_ID set, implicit activation can occur when
any of the above operations are performed on an inactive servant.

If the POA has IdUniquenessPolicy::MULTIPLE_ID set, servant_to_reference and
servant_to_id operations always perform implicit activation, even if the servant is
already active.

104 VisiBroker for C++ Developer ’s Guide

Act ivat ing objects

Activating with the default servant

Use the RequestProcessing::USE_DEFAULT_SERVANT policy to have the POA invoke the
same servant no matter what the object ID is. This is useful when little data is
associated with each object.

This is an example of activating all objects with the same servants

int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 PortableServer::Current_var cur = PortableServer::Current::_instance();
 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);
CORBA::PolicyList policies;
 policies.length(3);
 // Create policies for our persistent POA
 policies[(CORBA::ULong)0] =
 rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
 policies[(CORBA::ULong)1] =
rootPOA>create_request_processing_policy(PortableServer::USE_DEFAULT_SERVANT);
 policies[(CORBA::ULong)2] =
 rootPOA->create_id_uniqueness_policy(PortableServer::MULTIPLE_ID);
 // Create myPOA with the right policies
 PortableServer::POAManager_var rootManager = rootPOA->the_POAManager();
 PortableServer::POA_var myPOA =
 rootPOA->create_POA("bank_default_servant_poa",
rootManager,policies);
 // Set the default servant
 AccountManagerImpl managerServant(cur);
 myPOA->set_servant(&managerServant);
 // Activate the POA Manager
 rootManager->activate();

 // Generate two references - one for checking and another for savings.
 //Note that we are not creating any
 // servants here and just manufacturing a reference which is not
 // yet backed by a servant
 PortableServer::ObjectId_var an_oid =
 PortableServer::string_to_ObjectId("CheckingAccountManager");
 CORBA::Object_var cref = myPOA->create_reference_with_id(an_oid.in(),
 "IDL:Bank/AccountManager:1.0");
 an_oid = PortableServer::string_to_ObjectId("SavingsAccountManager");
 CORBA::Object_var sref = myPOA->create_reference_with_id(an_oid.in(),
 "IDL:Bank/AccountManager:1.0");
 // Write out Checking reference
 CORBA::String_var string_ref = orb->object_to_string(cref.in());
 ofstream crefFile("cref.dat");
 crefFile << string_ref << endl;
 crefFile.close();
 // Now write out the Savings reference
 string_ref = orb->object_to_string(sref.in());
 ofstream srefFile("sref.dat");
 srefFile << string_ref << endl;
 srefFile.close();
 cout << "Bank Manager is ready" << endl;

 // Wait for incoming requests

 8 : Using POAs 105

Act ivat ing objects

orb->run();
 }
 catch(const CORBA::Exception& e) {
 cerr << e << endl;
 }
 return 1;
}

Deactivating objects

A POA can remove a servant from its Active Object Map. This may occur, for example,
as a form of garbage-collection scheme. When the servant is removed from the map, it
is deactivated. You can deactivate an object using deactivate_object(). When an
object is deactivated, it doesn't mean this object is lost forever. It can always be
reactivated at a later time.

This is an example of deactivating an object:

// DeActivatorThread
class DeActivatorThread: public VISThread {
 private :
 PortableServer::ObjectId _oid;
 PortableServer::POA_ptr _poa;
 public :
 virtual ~DeActivatorThread(){}
 // Constructor
 DeActivatorThread(const PortableServer::ObjectId& oid,
 PortableServer::POA_ptr poa): _oid(oid), _poa(poa) {
 // start the thread
 run();
 }
 // implement begin() callback
 void begin() {
 // Sleep for 15 seconds
 VISPortable::vsleep(15);
 CORBA::String_var s = PortableServer::ObjectId_to_string (_oid);
 // Deactivate Object
 cout << "\nDeActivating the object with ID =" << s << endl;
 if (_poa)
 _poa->deactivate_object(_oid);
 }
};
// Servant Activator
class AccountManagerActivator : public PortableServer::ServantActivator {
 public:
 virtual PortableServer::Servant incarnate (const
 PortableServer::ObjectId& oid,
 PortableServer::POA_ptr poa) {
 CORBA::String_var s = PortableServer::ObjectId_to_string (oid);
 cout << "\nAccountManagerActivator.incarnate called with ID = " << s
<<
 endl;
 PortableServer::Servant servant;
 if (VISPortable::vstricmp((char *)s, "SavingsAccountManager") == 0
)
 // Create CheckingAccountManager Servant
 servant = new SavingsAccountManagerImpl;
 else if (VISPortable::vstricmp((char *)s,
 "CheckingAccountManager")==0)
 // Create CheckingAccountManager Servant
 servant = new CheckingAccountManagerImpl;

106 VisiBroker for C++ Developer ’s Guide

Using servants and servant managers

 else
 throw CORBA::OBJECT_NOT_EXIST();
 // Create a deactivator thread
 new DeActivatorThread(oid, poa);
 // return the servant
 return servant;
 }
 virtual void etherealize (const PortableServer::ObjectId& oid,
 PortableServer::POA_ptr adapter,
 PortableServer::Servant servant,
 CORBA::Boolean cleanup_in_progress,
 CORBA::Boolean remaining_activations) {
 // If there are no remaining activations i.e. ObjectIds associated
 // with the servant delete it.
 CORBA::String_var s = PortableServer::ObjectId_to_string (oid);
 cout << "\nAccountManagerActivator.etherealize called with ID = " << s
 << endl;
 if (!remaining_activations)
 delete servant;
 }
};

Using servants and servant managers
Servant managers perform two types of operations: find and return a servant, and
deactivate a servant. They allow the POA to activate objects when a request for an
inactive object is received. Servant managers are optional. For example, servant
managers are not needed when your server loads all objects at startup. Servant
managers may also inform clients to forward requests to another object using the
ForwardRequest exception.

A servant is an active instance of an implementation. The POA maintains a map of the
active servants and the object IDs of the servants. When a client request is received,
the POA first checks this map to see if the object ID (embedded in the client request)
has been recorded. If it exists, then the POA forwards the request to the servant. If the
object ID is not found in the map, the servant manager is asked to locate and activate
the appropriate servant. This is only an example scenario; the exact scenario depends
on what POA policies you have in place.

 8 : Using POAs 107

Using servants and servant managers

Figure 8.2 Example servant manager function

There are two types of servant managers: ServantActivator and ServantLocator. The
type of policy already in place determines which type of servant manager is used. For
more information on POA policy, see “POA policies”. Typically, a Servant Activator
activates persistent objects and a Servant Locator activates transient objects.

To use servant managers, RequestProcessingPolicy::USE_SERVANT_MANAGER must be set
as well as the policy which defines the type of servant manager
(ServantRetentionPolicy::RETAIN for Servant Activator or
ServantRetentionPolicy::NON_RETAIN for Servant Locator.)

ServantActivators

ServantActivators are used when ServantRetentionPolicy::RETAIN and
RequestProcessingPolicy::USE_SERVANT_MANAGER are set.

Servants activated by this type of servant manager are tracked in the Active Object
Map.

The following events occur while processing requests using ServantActivators:

1 A client request is received (client request contains POA name, the object ID, and a
few others.)

2 The POA first checks the active object map. If the object ID is found there, the
operation is passed to the servant, and the response is returned to the client.

3 If the object ID is not found in the active object map, the POA invokes incarnate on a
servant manager. incarnate passes the object ID and the POA in which the object is
being activated.

4 The servant manager locates the appropriate servant.

5 The servant ID is entered into the active object map, and the response is returned to
the client.

Note

The etherealize and incarnate method implementations are user-supplied code.

At a later date, the servant can be deactivated. This may occur from several sources,
including the deactivate_object operation, deactivation of the POA manager
associated with that POA, and so forth. More information on deactivating objects is
described in “Deactivating objects”.

This code sample is an example of servant activator-type servant manager:

108 VisiBroker for C++ Developer ’s Guide

Using servants and servant managers

int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");

 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

 CORBA::PolicyList policies;
 policies.length(2);
 policies[(CORBA::ULong)0] =
 rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
 policies[(CORBA::ULong)1] =
 rootPOA->create_request_processing_policy(
 PortableServer::USE_SERVANT_MANAGER);
 // Create myPOA with the right policies
 PortableServer::POAManager_var rootManager = rootPOA->the_POAManager();
 PortableServer::POA_var myPOA =
 rootPOA->create_POA("bank_servant_activator_poa", rootManager,
 policies);
 // Create a Servant activator
 AccountManagerActivator servant_activator_impl;
 // Set the servant activator
 myPOA->set_servant_manager(&servant_activator_impl);
 // Generate two references - one for checking and another for savings.
 // Note that we are not creating any
 // servants here and just manufacturing a reference which is not
 // yet backed by a servant
 PortableServer::ObjectId_var an_oid =
 PortableServer::string_to_ObjectId("CheckingAccountManager");
 CORBA::Object_var cref = myPOA->create_reference_with_id(an_oid.in(),
 "IDL:Bank/AccountManager:1.0");
 an_oid = PortableServer::string_to_ObjectId("SavingsAccountManager");
 CORBA::Object_var sref = myPOA->create_reference_with_id(an_oid.in(),
 "IDL:Bank/AccountManager:1.0");
 // Activate the POA Manager
 rootManager->activate();

 // Write out Checking reference
 CORBA::String_var string_ref = orb->object_to_string(cref.in());
 ofstream crefFile("cref.dat");
 crefFile << string_ref << endl;
 crefFile.close();
 // Now write out the Savings reference
 string_ref = orb->object_to_string(sref.in());
 ofstream srefFile("sref.dat");
 srefFile << string_ref << endl;
 srefFile.close();
 // Waiting for incoming requests
 cout << " BankManager Server is ready" << endl;
 orb->run();
 }
 catch(const CORBA::Exception& e) {
 cerr << e << endl;
 }
 return 1;
}

The servant manager for the servant activator example follows:

 8 : Using POAs 109

Using servants and servant managers

// Servant Activator
class AccountManagerActivator : public PortableServer::ServantActivator {

 public:
 virtual PortableServer::Servant incarnate (const
 PortableServer::ObjectId& oid,
 PortableServer::POA_ptr poa) {
 CORBA::String_var s = PortableServer::ObjectId_to_string (oid);
 cout << "\nAccountManagerActivator.incarnate called with ID = " << s
<<
 endl;
 PortableServer::Servant servant;
 if (VISPortable::vstricmp((char *)s, "SavingsAccountManager") == 0)
 // Create CheckingAccountManager Servant
 servant = new SavingsAccountManagerImpl;
 else if (VISPortable::vstricmp((char *)s, "CheckingAccountManager")
==
 0)
 // Create CheckingAccountManager Servant
 servant = new CheckingAccountManagerImpl;
 else
 throw CORBA::OBJECT_NOT_EXIST();
 // Create a deactivator thread
 new DeActivatorThread(oid, poa);
 // return the servant
 return servant;
 }
 virtual void etherealize (const PortableServer::ObjectId& oid,
 PortableServer::POA_ptr adapter,
 PortableServer::Servant servant,
 CORBA::Boolean cleanup_in_progress,
 CORBA::Boolean remaining_activations) {
 // If there are no remaining activations i.e. ObjectIds associated
 // with the servant delete it.
 CORBA::String_var s = PortableServer::ObjectId_to_string (oid);
 cout << "\nAccountManagerActivator.etherealize called with ID = " << s <<
 endl;
 if (!remaining_activations)
 delete servant;
 }
};

ServantLocators

In many situations, the POA's Active Object Map could become quite large and
consume memory. To reduce memory consumption, a POA can be created with
RequestProcessingPolicy::USE_SERVANT_MANAGER and
ServantRetentionPolicy::.NON_RETAIN, meaning that the servant-to-object association is
not stored in the active object map. Since no association is stored, ServantLocator
servant managers are invoked for each request.

The following events occur while processing requests using ServantLocators:

1 A client request, which contains the POA name and the object id, is received.

2 Since ServantRetentionPolicy::NON_RETAIN is used, the POA does not search the
active object map for the object ID.

3 The POA invokes preinvoke on a servant manager. preinvoke passes the object ID,
the POA in which the object is being activated, and a few other parameters.

4 The servant locator locates the appropriate servant.

110 VisiBroker for C++ Developer ’s Guide

Using servants and servant managers

5 The operation is performed on the servant and the response is returned to the client.

6 The POA invokes postinvoke on the servant manager.

Note

The preinvoke and postinvoke methods are user-supplied code.

This is some example server code illustrating servant locator-type servant managers:

int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

 CORBA::PolicyList policies;
 policies.length(3);
 // Create a child POA with Persistence life span policy
 // that uses servant manager with non-retain retention policy
 // (no Active Object Map) causing the POA to use
 // the servant locator.
 policies[(CORBA::ULong)0] =
 rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
 policies[(CORBA::ULong)1] =
 rootPOA->create_servant_retention_policy(PortableServer::

NON_RETAIN);
 policies[(CORBA::ULong)2] =

 rootPOA->create_request_processing_policy(PortableServer::
USE_SERVANT_MANAGER);

 PortableServer::POAManager_var rootManager = rootPOA->the_POAManager();
 PortableServer::POA_var myPOA =
 rootPOA-
>create_POA("bank_servant_locator_poa",rootManager,policies);
 // Create the servant locator
 AccountManagerLocator servant_locator_impl;
 myPOA->set_servant_manager(&servant_locator_impl);
 // Generate two references - one for checking and another for savings.
 // Note that we are not creating any
 // servants here and just manufacturing a reference which
 // is not yet backed by a servant
 PortableServer::ObjectId_var an_oid =
 PortableServer::string_to_ObjectId("CheckingAccountManager");
 CORBA::Object_var cref = myPOA->create_reference_with_id(an_oid.in(),
 "IDL:Bank/AccountManager:1.0");
 an_oid = PortableServer::string_to_ObjectId("SavingsAccountManager");
 CORBA::Object_var sref = myPOA->create_reference_with_id(an_oid.in(),
 "IDL:Bank/AccountManager:1.0");
 // Activate the POA Manager
 rootManager->activate();

 // Write out Checking reference
 CORBA::String_var string_ref = orb->object_to_string(cref.in());
 ofstream crefFile("cref.dat");
 crefFile << string_ref << endl;
 crefFile.close();

 8 : Using POAs 111

Using servants and servant managers

 // Now write out the Savings reference
 string_ref = orb->object_to_string(sref.in());
 ofstream srefFile("sref.dat");
 srefFile << string_ref << endl;
 srefFile.close();
 // Wait for incoming requests
 cout << "Bank Manager is ready" << endl;
 orb->run();
 }
 catch(const CORBA::Exception& e) {
 cerr << e << endl;
 }
 return 1;
}

The servant manager for this example follows:

// Servant Locator
class AccountManagerLocator : public PortableServer::ServantLocator {
 public:
 AccountManagerLocator (){}
 // preinvoke is very similar to ServantActivator's incarnate method but
gets
 // called every time a request comes in unlike incarnate() which gets
called
 // every time the POA does not find a servant in the active object map
 virtual PortableServer::Servant preinvoke (const
PortableServer::ObjectId& oid,
 PortableServer::POA_ptr adapter,
 const char* operation,
 PortableServer::ServantLocator::Cookie& the_cookie) {
 CORBA::String_var s = PortableServer::ObjectId_to_string (oid);
 cout << "\nAccountManagerLocator.preinvoke called with ID = " << s <<
 endl;
 PortableServer::Servant servant;
 if (VISPortable::vstricmp((char *)s, "SavingsAccountManager") == 0
)
 // Create CheckingAccountManager Servant
 servant = new SavingsAccountManagerImpl;
 else if (VISPortable::vstricmp((char *)s, "CheckingAccountManager"
)
 == 0)
 // Create CheckingAccountManager Servant
 servant = new CheckingAccountManagerImpl;
 else
 throw CORBA::OBJECT_NOT_EXIST();
 // Note also that we do not spawn of a thread to explicitly deactivate
an object
 // unlike a servant activator , this is because the POA itself calls
post invoke
 // after the request is complete. In the case of a servant activator
the POA calls
 // etherealize() only if the object is deactivated by calling
 // poa->de_activateobject or the POA itself is destroyed.
 // return the servant
 return servant;
 }
 virtual void postinvoke (const PortableServer::ObjectId& oid,
 PortableServer::POA_ptr adapter,
 const char* operation,
 PortableServer::ServantLocator::Cookie the_cookie,

112 VisiBroker for C++ Developer ’s Guide

Managing POAs with the POA manager

 PortableServer::Servant the_servant) {
 CORBA::String_var s = PortableServer::ObjectId_to_string (oid);
 cout << "\nAccountManagerLocator.postinvoke called with ID = " << s <<
 endl;
 delete the_servant;
 }
};

Managing POAs with the POA manager
A POA manager controls the state of the POA (whether requests are queued or
discarded), and deactivates the POA. Each POA is associated with a POA manager
object. A POA manager can control one or several POAs.

A POA manager is associated with a POA when the POA is created. POA Managers
can be created implicitly, by passing a nil POAManager reference to the create_POA
operation

PortableServer::POAManager_var rootManager = rootPOA->the_POAManager();
PortableServer::POA_var myPOA = rootPOA->create_POA(
"bank_servant_locator_poa", rootManager, policies);
PortableServer::POA_var myPOA = rootPOA.create_POA("bank_servant_locator_poa",
null, policies);

They can also be created explicitly using a POA Manager Factory
PortableServer::POAManagerFactory_var poaMgrFactory = rootPOA->
the_POAManagerFactory();
PortableServer::POAManager_var poaMgr = poaMgrFactory->
create_POAManager("MyPOAManager", null);
PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa", poaMgr,
policies);

Explicit creation of a POA Manager permits application control of the POA Manager's
identity, whereas implicit creation results in creation of a unique identity by the ORB
run-time. There is a single instance of POA Manager Factory in an ORB and is created
with root POA. It can also be used to get the list of all POA Managers in an ORB.

Getting the current state

To get the current state of the POA manager, use

enum State{HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

Holding state

By default, when a POA manager is created, it is in the holding state. When the POA
manager is in the holding state, the POA queues all incoming requests.

Requests that require an adapter activator are also queued when the POA manager is
in the holding state.

To change the state of a POA manager to holding, use

void hold_requests (in boolean wait_for_completion)
 raises (AdapterInactive);

wait_for_completion is Boolean. If FALSE, this operation returns immediately after
changing the state to holding. If TRUE, this operation returns only when all requests
started prior to the state change have completed or when the POA manager is
changed to a state other than holding. AdapterInactive is the exception raised if the
POA manager was in the inactive state prior to calling this operation.

 8 : Using POAs 113

Managing POAs wi th the POA manager

Note

POA managers in the inactive state cannot change to the holding state.

Any requests that have been queued but not yet started will continue to be queued
during the holding state.

Active state

When the POA manager is in the active state, its associated POAs process requests.

To change the POA manager to the active state, use

void activate()
 raises (AdapterInactive);

AdapterInactive is the exception raised if the POA manager was in the inactive state
prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the active state.

Discarding state

When the POA manager is in the discarding state, its associated POAs discard all
requests that have not yet started. In addition, the adapter activators registered with
the associated POAs are not called. This state is useful when the POA is receiving too
many requests. You need to notify the client that their request has been discarded and
to resend their request. There is no inherent behavior for determining if and when the
POA is receiving too many requests. It is up to you to set-up thread monitoring if so
desired.

To change the POA manager to the discarding state, use

void discard_requests(in boolean wait_for_completion)
 raises (AdapterInactive);

The wait_for_completion option is Boolean. If FALSE, this operation returns immediately
after changing the state to holding. If TRUE, this operation returns only when all requests
started prior to the state change have completed or when the POA manager is
changed to a state other than discarding. AdapterInactive is the exception raised if the
POA manager was in the inactive state prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the discarding state.

Inactive state

When the POA manager is in the inactive state, its associated POAs reject incoming
requests. This state is used when the associated POAs are to be shut down.

Note

POA managers in the inactive state cannot change to any other state.

To change the POA manager to the inactive state, use

void deactivate (in boolean etherealize_objects, in boolean
wait_for_completion)
 raises (AdapterInactive);

After the state changes, if etherealize_objects is TRUE, then all associated POAs that
have Servant RetentionPolicy::RETAIN and
RequestProcessingPolicy::USE_SERVANT_MANAGER set call etherealize on the servant
manager for all active objects. If etherealize_objects is FALSE, then etherealize is not
called. The wait_for_completion option is Boolean. If FALSE, this operation returns
immediately after changing the state to inactive. If TRUE, this operation returns only

114 VisiBroker for C++ Developer ’s Guide

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

when all requests started prior to the state change have completed or etherealize has
been called on all associated POAs (that have ServantRetentionPolicy::RETAIN and
RequestProcessingPolicy::USE_SERVANT_MANAGER). AdapterInactive is the exception
raised if the POA manager was in the inactive state prior to calling this operation.

Listening and Dispatching: Server Engines, Server Connection
Managers, and their properties

Note

Policies that cover listener and dispatcher features previously supported by the BOA
are not supported by POAs. In order to provide these features, a VisiBroker-specific
policy (ServerEnginePolicy) can be used.

Visibroker provides a very flexible mechanism to define and tune endpoints for
Visibroker servers. An endpoint in this context is a destination for a communication
channel for clients to communicate with servers. A Server Engine is a virtual
abstraction for connection endpoint provided as a configurable set of properties.

A ServerEngine abstraction can provide control in terms of:

– types of connection resources

– connection management

– threading model and request dispatching

Server Engine and POAs

A POA on Visibroker can have many-to-many relationship with a ServerEngine. A POA
can be associated with many ServerEngines and vice-versa. The manifestation of this
fact is that a POA, and hence the CORBA objects on the POA, can support multiple
communication channels.

Figure 8.3 Server engine overview

The simplest case is where POAs have their own unique single server engine. Here,
requests for different POAs arrive on different ports. A POA can also have multiple
server engines. In this scenario, a single POA supports requests coming from multiple
input ports.

Notice that POAs can share server engines. When server engines are shared, the
POAs listen to the same port. Even though the requests for (multiple) POAs arrive at
the same port, they are dispatched correctly because of the POA name embedded in
the request. This scenario occurs, for example, when you use a default server engine
and create multiple POAs (without specifying a new server engine during the POA
creation).

 8 : Using POAs 115

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

Server Engines are identified by a name and is defined the first time its name is
introduced. By default Visibroker defines three Server Engine names. They are:

– iiop_tp: TCP transport with thread pool dispatcher

– iiop_ts: TCP transport with thread per session dispatcher

– iiop_tm: TCP transport with main thread dispatcher

Additionally, VisiBroker for C++ defines following Server Engines:

– liop_tp: Local ICP transport with thread pool dispatcher

– liop_ts: Local ICP transport with thread per session dispatcher

– liop_tm: Local ICP transport with main thread dispatcher

Two more Server Engines, boa_tp and boa_ts, are available for BOA backward
compatibility.

Associating a POA with a Server Engine
The default Server Engine associated with POA can be changed by using the property
vbroker.se.default. For example, setting

vbroker.se.default=MySE

defines a new server engine with the name MySE. Root POA and all child POAs created
will be associated with this Server Engine by default.

A POA can also be associated with a particular ServerEngine explicitly by using the
SERVER_ENGINE_POLICY_TYPE POA policy. For example:

// create ServerEngine policy value
CORBA::Any_var se(new CORBA::Any);
CORBA::StringSequence_var engines =
 new CORBA::StringSequence(1UL);
engines->length(1UL);
engines[(CORBA::ULong)0] = CORBA::string_dup("MySE");
se <<= engines;

// create POA policies
CORBA::PolicyList_var policies =
 new CORBA::PolicyList(2UL);
policies->length(2UL);
policies[(CORBA::ULong)0] =
 orb->create_policy(
 PortableServerExt::SERVER_ENGINE_POLICY_TYPE,
 se);
policies[(CORBA::ULong)1] =
 rootPOA->create_lifespan_policy(
 PortableServer::PERSISTENT);

// create POA with policies
PortableServer::POA_var myPOA = rootPOA->create_POA(
 "bank_se_policy_poa", manager,
 policies);

The POA has an IOR template, profiles for which, are obtained from the Server
Engines associated with it.

If you don't specify a server engine policy, the POA assumes a server engine name of
iiop_tp and uses the following default values:

vbroker.se.iiop_tp.host=null
vbroker.se.iiop_tp.proxyHost=null
vbroker.se.iiop_tp.scms=iiop_tp
vbroker.se.liop_tp.host=null
vbroker.se.liop_tp.proxyHost=null
vbroker.se.liop_tp.scms=liop_tp

116 VisiBroker for C++ Developer ’s Guide

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

To change the default server engine policy, enter its name using the
vbroker.se.default property and define the values for all the components of the new
server engine. For example:

vbroker.se.default=abc,def
vbroker.se.abc.host=cob
vbroker.se.abc.proxyHost=null
vbroker.se.abc.scms=cobscm1,cobscm2
vbroker.se.def.host=gob
vbroker.se.def.proxyHost=null
vbroker.se.def.scms=gobscm1

Defining Hosts for Endpoints for the Server Engine
Since Server Engines help define a connection's endpoints, the following properties
are provided to specify their hosts:

– vbroker.se.<se-name>.host=<host-URL>: vbroker.se.mySE.host=host.borland.com, for
example.

– vbroker.se.<se-name>.proxyHost=<proxy-host-URL-or-IP-address>:
vbroker.se.mySE.proxyHost=proxy.borland.com, for example.

The proxyHost property can also take an IP address as its value. Doing so replaces the
default hostname in the IOR with this IP address.

The endpoint abstraction of ServerEngine is further fine-grained in terms of
configurable set of entities referred to as Server Connection Managers (SCM). A
ServerEngine can have multiple SCMs. SCMs are not shareable between
ServerEngines. SCMs are also identified using a name and are defined for a
ServerEngine using:

vbroker.se.<se-name>.scms=<SCM-name>[,<SCM-name>,...]

Note

the iiop_tp and liop_tp Server Engines have SCMs named iiop_tp and liop_tp created
for them, respectively.

Server Connection Managers

The Server Connection Manager defines the configurable components of an endpoint.
Its responsibilities are connection resource management, listening for requests, and
dispatching requests to its associated POA. Three logical entities, defined through
property groups, are provided by the SCM to fulfill these responsibilities:

– Manager

– Listener

– Dispatcher

Each SCM has one Manager, Listener, and Dispatcher. All three, when defined, form a
single endpoint definition allowing clients to contact servers.

Manager
Manager is a set of properties defining the configurable portions of a connection
resource. VisiBroker provides a manager of type Socket.

Additionally, VisiBroker for C++ defines another manager of type Local. The Local type
corresponds to Local IPC connections, while the Socket manager type expects TCP
connections. To select either Local or Socket, set the following property:

vbroker.se.<se-name>.scm.<scm-name>.manager.type=Local|Socket

You can specify the maximum number of concurrent connections acceptable to the
server endpoint using the connectionMax property:

vbroker.se.<se-name>.scm.<scm-name>.manager.connectionMax=<integer>

 8 : Using POAs 117

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

Setting connectionMax to 0 (zero) indicates that there is no restriction on the number of
connections, which is the default setting.

You specify the maximum number of idle seconds using the connectionMaxIdle
property:

vbroker.se.<se-name>.scm.<scm-name>.manager.connectionMaxIdle=<seconds>

Setting connectionMaxIdle to 0 (zero) indicates that there is no timeout, which is the
default setting.

Garbage collection time can also be specified for the manager to garbage-collect idled
connections. (Connections can idle after the connectionMaxIdle time until they are
garbage-collected.) You can use the garbageCollectTimer property to specify the period
of garbage collection in seconds:

vbroker.se.<se-name>.scm.<scm-name>.manager.garbageCollectTimer=<seconds>

A value of 0 (zero) means that the connection will never be garbage collected.

Listener
The Listener is the SCM component that determines how and where the SCM listens
for messages. Like the Manager, the Listener is also a set of properties. VisiBroker
defines a IIOP listener for the TCP connections.

Additionally, VisiBroker for C++ defines a LIOP listerner for local IPC connections. You
specify which type of listener you want to use with the property:

vbroker.se.<se-name>.scm.<scm-name>.listener.type=LIOP|IIOP

Since listeners are close to the actual underlying transport mechanism, their properties
are not portable across listener types. Each listener type has its own set of properties,
defined below.

LIOP listener properties

For systems using shared memory Local IPC, the shmSize property is used to control
the shared memory size, in bytes:

vbroker.se.<se-name>.scm.<scm-name>.listener.shmSize=<bytes>

If the shared memory-mapped file needs to be hidden in a directory accessible only by
the user, the following boolean property needs to be set:

vbroker.se.<se-name>.scm.<scm-name>.listener.userConstrained=true|false

IIOP listener properties

IIOP listners need to define a port and (if desired) a proxy port in conjunction with their
hosts. These are set using the port and proxyPort properties, as follows:

vbroker.se.<se-name>.scm.<scm-name>.listener.port=<port>
vbroker.se.<se-name>.scm.<scm-name>.listener.proxyPort=<proxy-port>

Note

If you do not set the port property (or set it to 0 [zero]), a random port will be selected. A
0 value for the proxyPort property means that the IOR will contain the actual port
(defined by the listener.port property or selected by the system randomly). If it is not
required to advertise the actual port, set the proxy port to a non-zero (positive) value.

Setting properties to define standard TCP socket options is also supported for send|
receive buffer sizes, socket lingering time, and whether or not to keep inactive sockets
alive. The following properties are provided for these mechanisms:

vbroker.se.<se-name>.scm.<scm-name>.listener.rcvBuffSize=<bytes>
vbroker.se.<se-name>.scm.<scm-name>.listener.sendBuffSize=<bytes>
vbroker.se.<se-name>.scm.<scm-name>.listener.socketLinger=<seconds>
vbroker.se.<se-name>.scm.<scm-name>.connection.keepAlive=true|false

If for any reason you wish to simply use your system's defaults for the TCP socket
properties, simply set the appropriate property to a value of 0 (zero).

118 VisiBroker for C++ Developer ’s Guide

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

Dispatcher
The Dispatcher defines a set of properties that determine how the SCM dispatches
requests to threads. Three types of dispatchers are provided: ThreadPool,
ThreadSession, and MainThread. You set the dispatcher type with the type property:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher.type=ThreadPool|ThreadSession|
MainThread

Further control is provided through the SCM for the ThreadPool dispatcher type. The
ThreadPool defines the minimum and maximum number of threads that can be created
in the thread pool, as well as the maximum time in seconds after which an idled thread
is destroyed. These values are controlled with the following properties:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher.threadMin=<integer>
vbroker.se.<se-name>.scm.<scm-name>.dispatcher.threadMax=<integer>
vbroker.se.<se-name>.scm.<scm-name>.dispatcher.threadMaxIdle=<seconds>

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is said to be “hot”
when the GIOP connection being served is potentially readable, either upon creation of
the connection or upon the arrival of a request. After the cooling time (in seconds), the
thread can be returned to the thread pool.

The following property is used to set the cooling time:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher.coolingTime=<seconds>

When to use these properties

There are many times where you need to change some of the server engine properties.
The method for changing these properties depends on what you need. For example,
suppose you want to change the port number. You could accomplish this by:

– Changing the default listener.port property

– Creating a new server engine

Changing the default listener.port property is the simplest method, but this affects all
POAs that use the default server engine. This may or may not be what you want.

If you want to change the port number on a specific POA, then you'll have to create a
new server engine, define the properties for this new server engine, and then reference
the new server engine when creating the POA. The previous sections show how to
update the server engine properties. The following code snippet shows how to define
properties of a server engine and create a POA with a user-defined server engine
policy:

// static initialization
AccountRegistry AccountManagerImpl::_accounts;
int main(int argc, char* const* argv)
{

try {
// Initialize the orb
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
// Get the property manager; notice the value returned is not placed into a
// 'var' type.
VISPropertyManager_ptr pm = orb->getPropertyManager();
pm->addProperty("vbroker.se.mySe.host", "");
pm->addProperty("vbroker.se.mySe.proxyHost", "");
pm->addProperty("vbroker.se.mySe.scms", "scmlist");
pm->addProperty("vbroker.se.mySe.scm.scmlist.manager.type", "Socket");
pm->addProperty("vbroker.se.mySe.scm.scmlist.manager.connectionMax", 100UL);
pm->addProperty("vbroker.se.mySe.scm.scmlist.manager.connectionMaxIdle",

300UL);
pm->addProperty("vbroker.se.mySe.scm.scmlist.listener.type", "IIOP");
pm->addProperty("vbroker.se.mySe.scm.scmlist.listener.port", 55000UL);
pm->addProperty("vbroker.se.mySe.scm.scmlist.listener.proxyPort", 0UL);
pm->addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.type", "ThreadPool");

 8 : Using POAs 119

Adapter act ivators

pm->addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.threadMax", 100UL);
pm->addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.threadMin", 5UL);
pm->addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.threadMaxIdle",

300UL);
// Get a reference to the root POA
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);
// Create the policies
CORBA::Any_var seAny(new CORBA::Any);
// The SERVER_ENGINE_POLICY_TYPE requires a sequence, even if
// only one engine is being specified.
CORBA::StringSequence_var engines = new CORBA::StringSequence(1UL);
engines->length(1UL);
engines[0UL] = CORBA::string_dup("mySe");
seAny <<= engines;
CORBA::PolicyList_var policies = new CORBA::PolicyList(2UL);
policies->length(2UL);
policies[0UL] = orb->create_policy(

PortableServerExt::SERVER_ENGINE_POLICY_TYPE, seAny);
policies[1Ul] = rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
// Create our POA with our policies
PortableServer::POAManager_var manager = rootPOA->the_POAManager();
PortableServer::POA_var myPOA = rootPOA->create_POA(

"bank_se_policy_poa", manager, policies);

// Create the servant
AccountManagerImpl* managerServant = new AccountManagerImpl();
// Activate the servant
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId("BankManager");
myPOA->activate_object_with_id(oid ,managerServant);
// Obtain the reference
CORBA::Object_var ref = myPOA->servant_to_reference(managerServant);
CORBA::String_var string_ref = orb->object_to_string(ref.in());
ofstream refFile("ref.dat");
refFile << string_ref << endl;
refFile.close();
// Activate the POA manager
manager->activate();
// Wait for Incoming Requests
cout << "AccountManager Server ready" << endl;
orb->run();
}
catch(const CORBA::Exception& e) {
cerr << e << endl;

return (1);
}
return (0);
}

Adapter activators
Adapter activators are associated with POAs and provide the ability to create child
POAs on-demand. This can be done during the find_POA operation, or when a request
is received that names a specific child POA.

An adapter activator supplies a POA with the ability to create child POAs on demand,
as a side-effect of receiving a request that names the child POA (or one of its children),
or when find_POA is called with an activate parameter value of TRUE. An application
server that creates all its needed POAs at the beginning of execution does not need to

120 VisiBroker for C++ Developer ’s Guide

Processing requests

use or provide an adapter activator; it is necessary only for the case in which POAs
need to be created during request processing.

While a request from the POA to an adapter activator is in progress, all requests to
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new POA
before requests are delivered to that POA.

For an example on using adapter activators, see the POA adaptor_activator example
included with the product.

Processing requests
Requests contain the Object ID of the target object and the POA that created the target
object reference. When a client sends a request, the VisiBroker ORB first locates the
appropriate server, or starts the server if needed. It then locates the appropriate POA
within that server.

Once the VisiBroker ORB has located the appropriate POA, it delivers the request to
that POA. How the request is processed at that point depends on the policies of the
POA and the object's activation state. For information about object activation states,
see “Activating objects”.

– If the POA has ServantRetentionPolicy::RETAIN , the POA looks at the Active Object
Map to locate a servant associated with the Object ID from the request. If a servant
exists, the POA invokes the appropriate method on the servant.

– If the POA has ServantRetentionPolicy::NON_RETAIN or has
ServantRetentionPolicy::RETAIN but did not find the appropriate servant, the following
may take place:

– If the POA has RequestProcessingPolicy::USE_DEFAULT_SERVANT , the POA invokes
the appropriate method on the default servant.

– If the POA has RequestProcessingPolicy::USE_SERVANT_MANAGER , the POA invokes
incarnate or preinvoke on the servant manager.

– If the POA has RequestProcessingPolicy::USE_OBJECT_MAP_ONLY , an exception is
raised.

If a servant manager has been invoked but can not incarnate the object, the servant
manager can raise a ForwardRequest exception.

 9 : Managing threads and connect ions 121

Managing threads and connections
This section discusses the use of multiple threads in client programs and object
implementations, and will help you understand the VisiBroker thread and connection
model.

Using threads
A thread, or a single sequential flow of control within a process, is also called a
lightweight process that reduces overhead by sharing fundamental parts with other
threads. Threads are lightweight so that there can be many of them present within a
process.

Using multiple threads provides concurrency within an application and improves
performance. Applications can be structured efficiently with threads servicing several
independent computations simultaneously. For example, a database system may have
many user interactions in progress while at the same time performing several file and
network operations.

Although it is possible to write the software as one thread of control moving
asynchronously from request to request, the code may be simplified by writing each
request as a separate sequence, and letting the underlying system handle the
synchronous interleaving of the different operations.

Multiple threads are useful when:

– There are groups of lengthy operations that do not necessarily depend on other
processing (like painting a window, printing a document, responding to a mouse-
click, calculating a spreadsheet column, signal handling).

– There will be few locks on data (the amount of shared data is identifiable and small).

– The task can be broken into various responsibilities. For example, one thread can
handle the signals and another thread can handle the user interface.

Thread and connection management occurs within the scope of an entity known as a
server engine. Several default server engines are created automatically by VisiBroker,
which include thread pool engines for IIOP, for LIOP, and so forth. Additional server
engines can be used and created in a VisiBroker server by applications. See the
example in:

<install_dir>/examples/Vbroker/poa/server_engine_policy/Server.C

Server engines are created, configured, and used independently. The creation and
configuration of one server engine does not affect other server engines in the same

122 VisiBroker for C++ Developer ’s Guide

Listener thread, d ispatcher thread, and worker threads

server. Usually, each server engine has one transport end point, called the listen point/
socket.

The relationship between server engines and POAs is many-to-many. Each server
engine can be used by multiple POAs, and each POA may also use multiple server
engines.

Server engines can consist of multiple Server Connection Managers (SCMs). An SCM
is composed of managers, listeners, and dispatchers. The properties of managers,
listeners and dispatchers can be configured to determine how the SCM functions.
These properties are discussed in “Setting connection management properties”.

Listener thread, dispatcher thread, and worker threads
Each server engine has a listener and a dispatcher thread. The listener thread is
responsible for:

– Accepting new connections. Therefore, it listens on the listen end-point.

– Monitoring readability on idle GIOP connections.

– Updating the monitoring list.

– Idle connection garbage collection based on property settings.

The dispatcher determines which threads to send requests.

Each server engine uses a certain number of worker threads to receive and process
requests. Different requests may handled by different worker threads. For a given
request, the request reading, processing (include server side interceptor intercepting),
and replying are all handled by the same thread. The number of worker threads used
by a server engine depends on:

– The thread model.

– The number of concurrent requests or connections.

– The property settings.

Thread policies
The two major thread models supported by VisiBroker are the thread pool (also known
as thread-per-request, or TPool) and thread-per-session (also known as thread-per-
connection, or TSession). Single-thread and main-thread models are not discussed in
this document. The thread pool and thread-per-session models differ in these
fundamental ways:

– Situation in which they are created

– How simultaneous requests from the same client are handled

– When and how threads are released

The default thread policy is the thread pool. For information about setting thread-per-
session or changing properties for the thread pool model, see “Setting dispatch policies
and properties”.

Thread pool policy
When your server uses the thread pool policy, it defines the maximum number of
threads that can be allocated to handle client requests. A worker thread is assigned for
each client request, but only for the duration of that particular request. When a request
is completed, the worker thread that was assigned to that request is placed into a pool
of available threads so that it may be reassigned to process future requests from any of
the clients.

Using this model, threads are allocated based on the amount of request traffic to the
server object. This means that a highly active client that makes many requests to the

 9: Managing threads and connect ions 123

Thread pool pol icy

server at the same time will be serviced by multiple threads, ensuring that the requests
are quickly executed, while less active clients can share a single thread, and still have
their requests immediately serviced. Additionally, the overhead associated with the
creation and destruction of worker threads is reduced, because threads are reused
rather than destroyed, and can be assigned to multiple new connections.

VisiBroker conserves system resources by dynamically allocating the number of
threads in the thread pool based on the number of concurrent client requests by
default. If the client becomes very active, new threads are allocated to meet its needs.
If threads remain inactive, VisiBroker releases them, only keeping enough threads to
meet current client demand. This enables the optimal number of threads to be active in
the server at all times.

The size of the thread pool grows based upon server activity and is fully configurable,
either before or during execution, to meet the needs of specific distributed systems.
With the thread pool model, you can configure the following:

– Maximum and minimum number of threads

– Maximum idle time

Each time a client request is received, an attempt is made to assign a thread from the
thread pool to process the request. If this is the first client request and the pool is
empty, a thread will be created. Likewise, if all threads are busy, a new thread will be
created to service the request.

A server can define a maximum number of threads that can be allocated to handle
client requests. If there are no threads available in the pool and the maximum number
of threads have already been created, the request will block until a thread currently in
use has been released back into the pool.

Thread pool is the default thread policy. You do not have to set up anything to define
this environment. If you want to set properties for the thread pool, see “Setting dispatch
policies and properties”.

Figure 9.1 Pool of threads is available

The figure above shows the object implementation using the thread pool policy. As the
name implies, there is an available pool of worker threads in this policy.

124 VisiBroker for C++ Developer ’s Guide

Thread pool pol icy

Figure 9.2 Client application #1 sends a request

In the above figure, Client application #1 establishes a connection to the Object
Implementation and a thread is created to handle requests. In the thread pool, there is
one connection per client and one thread per connection. When a request comes in, a
worker thread receives the request; that worker thread is no longer in the pool.

A worker thread is removed from the thread pool and is always listening for requests.
When a request comes in, that worker thread reads in the request and dispatches the
request to the appropriate object implementation. Prior to dispatching the request, the
worker thread wakes up one other worker thread which then listens for the next
request.

 9: Managing threads and connect ions 125

Thread pool pol icy

Figure 9.3 Client application #2 sends a request

As the above figure shows, when Client application #2 establishes its own connection
and sends a request, a second worker thread is created. Worker thread #3 is now
listening for incoming requests.

126 VisiBroker for C++ Developer ’s Guide

Thread-per-session pol icy

Figure 9.4 Client application #1 sends a second request

The above figure shows that when a second request comes in from Client application
#1, it uses worker thread #4. Worker thread #5 is spawned to listen for new requests. If
more requests came in from Client application #1, more threads would be assigned to
handle them, each spawned after the listening thread receives a request. As worker
threads complete their tasks, they are returned to the pool and become available to
handle requests from any client.

Thread-per-session policy
With the thread-per-session (TSession) policy, threading is driven by connections
between the client and server processes. When your server selects the thread-per-
session policy, a new thread is allocated each time a new client connects to a server. A
thread is assigned to handle all the requests received from a particular client. Because
of this, thread-per-session is also referred to as thread-per-connection. When the client
disconnects from the server, the thread is destroyed. You may limit the maximum
number of threads that can be allocated for client connections by setting the
vbroker.se.iiop_ts.scm.iiop_ts.manager.connectionMax property.

 9: Managing threads and connect ions 127

Connect ion management

Figure 9.5 Object implementation using the thread-per-session policy

The above figure shows the use of the thread-per-session policy. The Client application
#1 establishes a connection with the object implementation. A separate connection
exists between Client application #2 and the object implementation. When a request
comes in to the object implementation from Client application #1, a worker thread
handles the request. When a request from Client application #2 comes in, a different
worker thread is assigned to handle this request.

Figure 9.6 Second request comes in from the same client

In the above figure, a second request has come in to the object implementation from
Client application #1. The same thread that handles request 1 will handle request 2.
The thread blocks request 2 until it completes request 1. (With thread-per-session,
requests from the same Client are not handled in parallel.) When request 1 has
completed, the thread can handle request 2 from Client application #1. Multiple
requests may come in from Client application #1. They are handled in the order that
they come in; no additional threads are assigned to Client application #1.

Connection management
Overall, VisiBroker's connection management minimizes the number of client
connections to the server. In other words there is only one connection per server
process which is shared. All requests from a single client application are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same

128 VisiBroker for C++ Developer ’s Guide

ServerEngines

server, eliminating the need for clients to incur the overhead of new connections to the
server.

In the following scenario, a client application is bound to two objects in the server
process. Each bind() shares a common connection to the server process, even though
the bind() is for a different object in the server process.

Figure 9.7 Binding to two objects in the same server process

The following figure shows the connections for a client using multiple threads that has
several threads bound to an object on the server.

Figure 9.8 Binding to an object in a server process

As the above figure shows, all invocations from all threads are serviced by the same
connection. For that scenario, the most efficient multi threading model to use is the
thread pool model. If the thread-per-session model is used in this scenario, only one
thread on the server will be allocated to service all requests from all threads in the
client application, which could easily result in poor performance.

The maximum number of connections to a server, or from a client, can be configured.
Inactive connections will be recycled when the maximum is reached, ensuring resource
conservation.

ServerEngines
Thread and connection management on the server side is performed by
ServerEngines, which can consist of one or more Server Connection Managers
(SCMs). An SCM is a collection of properties of the manager, listener, and dispatcher.

Defining a ServerEngine consists of specifying a set of properties in a properties file.
For example, if on UNIX the property file called myprops.properties is in home directory,
the command line is

prompt> vbj -DORBpropStorage=~/myprops.properties myServer

ServerEngine properties

vbroker.se.<srvr_eng_name>.scms=<srvr_connection_mngr_name1>,<srvr_connection_m
ngr_name2>

The set of Server Connection Managers associated with a ServerEngine is defined by
this property. The name specified in the above property as the <svr_eng_name> is the
name of the ServerEngine. The SCMs listed here will be the list of SCMs for the
associated server engine. SCMs cannot be shared between ServerEngines. However,
ServerEngines can be shared by multiple POAs.

 9: Managing threads and connect ions 129

Sett ing dispatch pol ic ies and propert ies

The other properties are

vbroker.se.<se>.host

The host property is the IP address for the server engine to listen for messages.

vbroker.se.<se>.proxyHost

The proxyHost property specifies the proxy IP address to send to the client in the case
where the server does not want to publish its real hostname.

Setting dispatch policies and properties
Each POA in a multi-threaded object server can choose between two dispatch models:
thread-per-session or thread pool. You choose a dispatch policy by setting the
dispatcher.type property of the ServerEngine.

vbroker.se.<srvr_eng_name>.scm.<srvr_connection_mngr_name>.dispatcher.type=
 ThreadPool
vbroker.se.<srvr_eng_name>.scm.<srvr_connection_mngr_name>.dispatcher.type=
 ThreadSession

For more information about these properties see “Using POAs” and the VisiBroker
Programmer's Reference.

Thread pool dispatch policy

ThreadPool (thread pooling) is the default dispatch policy when you create a POA
without specifying the ServerEnginePolicy.

For ThreadPool, you can set the following properties:

– vbroker.se.default.dispatcher.tp.threadMax

This property sets a TPool server engine's maximum number of worker threads in
the thread pool. The property can be set statically on server startup or dynamically
reconfigured using the property API. For instance, the start up property

vbroker.se.default.dispatcher.tp.threadMax=32

or

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMax=32

sets the initial maximum worker thread limitation to 32 for the default TPool server
engine. The default value of this property is unlimited (0). If there are no threads
available in the pool and the maximum number of threads have already been
created, the request is blocked until a thread currently in use has been released
back into the pool.

– vbroker.se.default.dispatcher.tp.threadMin

This property sets a TPool server engine's minimum number of worker threads in the
thread pool. The property can be set statically on server startup or dynamically
reconfigured using the property API. For instance, the start up property

vbroker.se.default.dispatcher.tp.threadMin=8

or

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMin=8

sets the initial worker thread minimum number to 8 for the default TPool server
engine. The default value of this property is 0 (no worker threads).

– vbroker.se.default.dispatcher.tp.threadMaxIdle

This property sets a TPool server engine's idle thread check interval. The property
can be set statically on server startup or dynamically reconfigured using the property
API. For instance, the start up property

130 VisiBroker for C++ Developer ’s Guide

Set t ing d ispatch pol ic ies and propert ies

vbroker.se.default.dispatcher.tp.threadMaxIdle=120

or

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle=120

sets the initial idle worker thread check interval to 120 seconds for the default TPool
server engine. The default value of this property is 300 seconds. With this setting,
the server engine will check the idle state of each worker thread every 120 seconds.
If a worker thread has been idle across two consecutive checks, it will be recycled
(terminated) at the second check. Therefore, the actual idle thread garbage
collection time is between 120 to 240 seconds under the above setting, instead of
exactly 120 seconds.

– vbroker.se.default.dispatcher.tp.coolingTime

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is said to be
“hot” when the GIOP connection being served is potentially readable, either upon
creation of the connection or upon the arrival of a request. After the cooling time (in
seconds), the thread can be returned to the thread pool. The property can be set
statically on server startup or dynamically reconfigured using the property API. For
instance, the startup property

vbroker.se.default.dispatcher.tp.coolingTime=6

or

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.coolingTime=6

sets the initial cooling time to 6 seconds for the default engine (or the IIOP TPool
server engine).

The default value of this property is 3 seconds. The maximum value is 10 seconds.

Note

The vbroker.se.default.xxx.tp.xxx property is recommended when
vbroker.se.default=iiop_tp. When using with ThreadSession, it is recommended that
you use the vbroker.se.iiop_ts.scm.iiop_ts.xxx property.

Thread-per-session dispatch policy

When using the ThreadSession as the dispatcher type, you must set the se.default
property to iiop_ts.

vbroker.se.default=iiop_ts

Note

In thread-per-session, there are no threadMin, threadMax, threadMaxIdle, and
coolingTime dispatcher properties. Only the Connection and Manager properties are
valid properties for ThreadSession.

Coding considerations

All code within a server that implements the VisiBroker ORB object must be thread-
safe. You must take special care when accessing a system-wide resource within an
object implementation. For example, many database access methods are not thread-
safe. Before your object implementation attempts to access such a resource, it must
first lock access to the resource using a synchronized block.

If serialized access to an object is required, you need to create the POA on which this
object is activated with the SINGLE_THREAD_MODEL value for the ThreadPolicy.

 9: Managing threads and connect ions 131

Sett ing connect ion management propert ies

Setting connection management properties
The following properties are used to configure connection management. Properties
whose names start with vbroker.se are server-side properties. The client side
properties have their names starting with vbroker.ce.

Note

The command line options for VisiBroker 3.x backward-compatibility are less obvious
in terms of whether they are client-side or server-side. However, the connection and
thread management options that start with the -ORB prefix set the client-side options
whereas the options with the -OA prefix are used for the server-side options. There are
no common properties which are used for both client-side and server-side thread and
connection management.

The distinction between client and server vanishes if callback or bidirectional GIOP is
used.

– vbroker.se.default.socket.manager.connectionMax

This property sets the maximum allowable client connections to a server engine.
The property can be set statically on server startup or dynamically reconfigured
using the property API. For instance, the start up property

-Dvbroker.se.default.socket.manager.connectionMax=128

or

-Dvbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax=128

sets the initial maximum connection limitation on this server engine to 128. The
default value of this property is unlimited (0 [zero]). When the server engine reaches
this limitation, before accepting a new client connection, the server engine needs to
reuse an idle connection. This is called connection swapping. When a new
connection arrives at the server, it will try to detach the oldest unused connection. If
all the connections are busy, the new connection will be dropped. The client may
retry again until some timeout expires.

– vbroker.se.default.socket.manager.connectionMaxIdle

This property sets the maximum length of time an idle connection will remain open
on a server engine. The property can be set statically on server startup or
dynamically reconfigured using property API. For instance, the start up property

-Dvbroker.se.default.socket.manager.connectionMaxIdle=300

or

-Dvbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxIdle=300

s

ets the initial idle connection maximum lifetime to 300 seconds. The default value of
this property is 0 (unlimited). When a client connection has been idle longer than this
value, it becomes a candidate for garbage collection.

– vbroker.ce.iiop.ccm.connectionMax

Specifies the maximum number of the total connections within a client. This is equal
to active connections plus the ones that are cached. The default value of zero
means that the client does not try to close any of the old active or cached
connections. If a new client connection will result in exceeding the limit set by this
property, the VisiBroker for C++ will try to release one of the cached connections. If
there are no cached connections, it will try to close the oldest idle connection. If both
of them fail, the CORBA::NO_RESOURCE exception will result.

132 VisiBroker for C++ Developer ’s Guide

Set t ing connect ion management propert ies

Valid values for applicable properties

The following properties have a fixed set or range of valid values:

– vbroker.ce.iiop.ccm.type=Pool

Currently, Pool is the only supported type.

In the following properties, xxx is the server engine name and yyy is the server
connection manager name:

– vbroker.se.xxx.scm.yyy.manager.type=Socket

Other possible values are Local for LIOP and BIDIR for bidir (bidirectional) SCMs.

– vbroker.se.xxx.scm.yyy.listener.type=IIOP

You can also use the value LIOP for local IPC and SSL for security.

– vbroker.se.xxx.scm.yyy.disptacher.type=ThreadPool

The other possible values are ThreadSession and MainThread.

– vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.coolingTime

The default value is 3 , and the maximum value is 10, so a value greater than 10 will
be clamped to 10.

Effects of property changes

The effect of a change in a property value depends on the actions associated with the
properties. Most of the actions are directly or indirectly related to the utilization of
system resources. The availability and restrictions of the system resources to the
CORBA application vary depending on the system and the nature of the application.

For instance, increasing the garbage collector timer may increase the system activities,
as the garbage collector will run more frequently. On the other hand, increasing its
value means the idle threads will remain in system unclaimed for longer periods of
time.

Dynamically alterable properties

The following properties can be changed dynamically and the effect will be immediate
unless stated otherwise:

vbroker.ce.iiop.ccm.connectionCacheMax=5
vbroker.ce.iiop.ccm.connectionMax=0
vbroker.ce.iiop.ccm.connectionMaxIdle=360
vbroker.ce.iiop.connection.rcvBufSize=0
vbroker.ce.iiop.connection.sendBufSize=0
vbroker.ce.iiop.connection.tcpNoDelay=false
vbroker.ce.iiop.connection.socketLinger=0
vbroker.ce.iiop.connection.keepAlive=true
vbroker.ce.liop.ccm.connectionMax=0
vbroker.ce.liop.ccm.connectionMaxIdle=360
vbroker.ce.liop.connection.rcvBufSize=0
vbroker.ce.liop.connection.sendBufSize=0
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax=0
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxIdle=0
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMin=0
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMax=100

The new dispatcher threadMax properties will be reflected after the next garbage
collector run.

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle=300
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.coolingTime=3

 9: Managing threads and connect ions 133

Garbage col lect ion

vbroker.se.iiop_tp.scm.iiop_tp.manager.garbageCollectTimer=30
vbroker.se.liop_tp.scm.liop_tp.listener.userConstrained=false

Determining whether property value changes take effect

For this purpose, the server manager needs to be enabled, using the property
vbroker.orb.enableServerManager=true, and the properties can be obtained through the
server manager query either through the Console or through a command-line utility.

Impact of changing property values

It is very difficult to determine the impact of changing the value of a property to
something other than the default. For thread and connection limits, the available
system resources vary depending on the machine configuration and the number of
other processes running. The setting of properties allows performance tuning for a
given system.

Garbage collection
A dispatcher's thread pool in VisiBroker has an idle timeout
vbroker.se.xxx.scm.xxx.dispatcher.threadMaxIdle. The default value is 300 seconds,
and after the idle timeout expires the dispatcher will remove any idle worker threads in
the thread pool.

A Server Connection Manager (SCM) has its own garbage collection timeout
vbroker.se.xxx.scm.xxx.manager.garbageCollectTimer. The default value is 30 seconds,
and after the timeout expires any idle connections are garbage collected.

Since the SCM only garbage collects idle connections, the property
vbroker.se.xxx.scm.xxx.manager.connectionMaxIdle needs to be set greater than 0
(zero) in order for connections to go to an idle state. The default value is 0 (zero), which
means that a connection is never considered idle and nothing is collected, even if the
SCM's garbage collection timeout expires.

The dispatcher and the SCM perform garbage collection independently and there is no
garbage collection performed by the ORB itself. Hence given the values below.

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle=5
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxIdle=5
vbroker.se.iiop_tp.scm.iiop_tp.manager.garbageCollectTimer=10

When the thread pool worker thread, T1, has been idle for 5 seconds it is immediately
removed from the dispatcher's thread pool. The connection, C1, which has been idle for
5 seconds is only garbage collected by the SCM after 10 seconds.

Figure 9.9 Collection of resources by the SCM GC

On the Client side the Client Connection Manager's (CCM) cached connections can be
given an idle timeout by setting the property vbroker.ce.xxx.ccm.connectionMaxIdle.
The default value is 0 (zero), meaning that the cached connections do not have an idle
timeout. Given an idle timeout, the idle cached connections in the connection pool/
cache are marked eligible for garbage collection. Unlike the SCM, the CCM has no
garbage collection timer, however whenever any connection is being cached it will
attempt to garbage collect any cached connections that are marked eligible for
collection.

134 VisiBroker for C++ Developer ’s Guide

Garbage col lect ion

 10: Using the t ie mechanism 135

Using the tie mechanism
This section describes how the tie mechanism may be used to integrate existing C++
code into a distributed object system. This section will enable you to create a
delegation implementation or to provide implementation inheritance.

How does the tie mechanism work?
Object implementation classes normally inherit from a servant class generated by the
idl2cpp compiler. The servant class, in turn, inherits from
PortableServer.Servant::Servant . When it is not convenient or possible to alter existing
classes to inherit from the VisiBroker servant class, the tie mechanism offers an
attractive alternative.

The tie mechanism provides object servers with a delegator implementation class that
inherits from PortableServer::Servant . The delegator implementation does not provide
any semantics of its own. The delegator implementation simply delegates every
request it receives to the real implementation class, which can be implemented
separately. The real implementation class is not required to inherit from
PortableServer::Servant .

With using the tie mechanism, two additional files are generated from the IDL compiler:

– <interface_name>POATie defers implementation of all IDL defined methods to a
delegate. The delegate implements the interface <interface_name>Operations. Legacy
implementations can be trivially extended to implement the operations interface and
in turn delegate to the real implementation.

– <interface_name>Operations defines all of the methods that must be implemented by
the object implementation. This interface acts as the delegate object for the
associated <interface_name>POATie class when the tie mechanism is used.

136 VisiBroker for C++ Developer ’s Guide

Example program

Example program

Location of an example program using the tie mechanism

A version of the Bank example using the tie mechanism can be found in:

<install_dir>\vbroker\examples\basic\bank_tie

Looking at the tie template

The idl2cpp compiler will automatically generate a _tie_Account template class, as
shown in the code sample below. The POA_Bank_Account_tie class is instantiated by the
object server and initialized with an instance of AccountImpl. The POA_Bank_Account_tie
class delegates every operation request it receives to AccountImpl, the real
implementation class. In this example, the class AccountImpl does not inherit from the
POA_Bank::Account class.

...
template <class T> class POA_Bank_Account_tie :
 public POA_Bank::Account {
 private:
 CORBA::Boolean _rel;
 PortableServer::POA_ptr _poa;
 T *_ptr;
 POA_Bank_Account_tie(const POA_Bank_Account_tie&) {}
 void operator=(const POA_Bank_Account_tie&) {}
 public:
 POA_Bank_Account_tie (T& t): _ptr(&t), _poa(NULL),
 _rel((CORBA::Boolean)0) {}
 POA_Bank_Account_tie (T& t,
 PortableServer::POA_ptr poa): _ptr(&t),
 _poa(PortableServer::_duplicate(poa)),
 _rel((CORBA::Boolean)0) {}
 POA_Bank_Account_tie (T *p, CORBA::Boolean release= 1) : _ptr(p),
 _poa(NULL), _rel(release) {}
 POA_Bank_Account_tie (T *p, PortableServer::POA_ptr poa,
 CORBA::Boolean release =1): _ptr(p),
 _poa(PortableServer::_duplicate(poa)), _rel(release) {}
 virtual ~POA_Bank_Account_tie() {
 CORBA::release(_poa);
 if (_rel) {
 delete _ptr;
 }
 }
 T* _tied_object() { return _ptr; }
 void _tied_object(T& t) {
 if (_rel) {
 delete _ptr;
 }
 _ptr = &t;
 _rel = 0;
 }
 void _tied_object(T *p, CORBA::Boolean release=1) {
 if (_rel) {
 delete _ptr;
 }
 _ptr = p;
 _rel = release;
 }

 10: Using the t ie mechanism 137

Example program

 CORBA::Boolean _is_owner() { return _rel; }
 void _is_owner(CORBA::Boolean b) { _rel = b; }
 CORBA::Float balance() {
 return _ptr->balance();
 }
 PortableServer::POA_ptr _default_POA() {
 if (!CORBA::is_nil(_poa)) {
 return _poa;
 } else {
 return PortableServer_ServantBase::_default_POA();
 }
 }
};

Changing the server to use the _tie_account class

The code sample below shows the modifications to the Server.C file required to use the
_tie_account class.

#include "Bank_s.hh"
#include <math.h>
...
int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 // get a reference to the root POA
 PortableServer::POA_var rootPOA =
 PortableServer::POA::_narrow(
 orb->resolve_initial_references("RootPOA"));
 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(
 PortableServer::PERSISTENT);
 // get the POA Manager
 PortableServer::POAManager_var poa_manager =
 rootPOA->the_POAManager();
 // Create myPOA with the right policies
 PortableServer::POA_var myPOA = rootPOA->create_POA(
 "bank_agent_poa", poa_manager, policies);
 // Create the servant
 AccountManagerImpl managerServant(rootPOA);
 // Create the delegator
 POA_Bank_AccountManager_tie<AccountManagerImpl>
 tieServer(managerServant);
 // Decide on the ID for the servant
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("BankManager");
 // Activate the servant with the ID on myPOA
 myPOA->activate_object_with_id(managerId, &tieServer);
 // Activate the POA Manager
 poa_manager->activate();
 cout << myPOA->servant_to_reference(&tieServer) <<
 " is ready" << endl;
 // Wait for incoming requests
 orb->run();

 } catch(const CORBA::Exception& e) {
 cerr << e << endl;

138 VisiBroker for C++ Developer ’s Guide

Example program

 return 1;
 }
 return 0;
}

Building the tie example

The instructions described in “Developing an example application with VisiBroker” are
also valid for building the tie example.

 11: Cl ient basics 139

Client basics
This section describes how client programs access and use distributed objects.

Initializing the VisiBroker ORB
The Object Request Broker (ORB) provides a communication link between the client
and the server. When a client makes a request, the VisiBroker ORB locates the object
implementation, activates the object if necessary, delivers the request to the object,
and returns the response to the client. The client is unaware whether the object is on
the same machine or across a network.

Though much of the work done by the VisiBroker ORB is transparent to you, your client
program must explicitly initialize the VisiBroker ORB. VisiBroker ORB options,
described in the VisiBroker Programmer's Reference, Programmer tools for C++ can
be specified as command-line arguments. To ensure these options take effect you will
need to pass the supplied argc and argv arguments to ORB_init. The code samples
below illustrate the VisiBroker ORB initialization.

#include <fstream.h>
#include "Bank_c.hh"

int main(int argc, char* const* argv) {
 CORBA::ORB_var orb;
 CORBA::Float balance;
 try {
 // Initialize the ORB.
 orb = CORBA::ORB_init(argc, argv);
 ...
}

Binding to objects
A client program uses a remote object by obtaining a reference to the object. Object
references are usually obtained using the <interface> _bind() method. The VisiBroker
ORB hides most of the details involved with obtaining the object reference, such as
locating the server that implements the object and establishing a connection to that
server.

140 VisiBroker for C++ Developer ’s Guide

Binding to objects

Action performed during the bind process

When the server process starts, it performs CORBA::ORB.init() and announces itself to
Smart Agents on the network.

When your client program invokes the _bind() method, the VisiBroker ORB performs
several functions on behalf of your program.

– The VisiBroker ORB contacts the Smart Agent to locate an object implementation
that offers the requested interface. If an object name is specified when _bind() is
invoked, that name is used to further qualify the directory service search. The Object
Activation Daemon (OAD), described in “Using the Object Activation Daemon
(OAD),” may be involved in this process if the server object has been registered with
the OAD.

– When an object implementation is located, the VisiBroker ORB attempts to establish
a connection between the object implementation that was located and your client
program.

– Once the connection is successfully established, the VisiBroker ORB will create a
proxy object and return a reference to that object. The client will invoke methods on
the proxy object which will, in turn, interact with the server object.

Figure 11.1 Client interaction with the Smart Agent

Note

Your client program will never invoke a constructor for the server class. Instead, an
object reference is obtained by invoking the static _bind() method.

PortableServer::ObjectId_var manager_id =
PortableServer::string_to_ObjectId("BankManager");
Bank::AccountManager_var =
 Bank::AccountManager::_bind("/bank_agent_poa", manager_id);

 11: Cl ient basics 141

Invoking operat ions on an object

Invoking operations on an object
Your client program uses an object reference to invoke an operation on an object or to
reference data contained by the object. “Manipulating object references” describes the
variety of ways that object references can be manipulated.

The following example shows how to invoke an operation using an object reference:

// Invoke the balance operation.
balance = account->balance();
cout << "Balance is $" << balance << endl;

Manipulating object references
The _bind() method returns a reference to a CORBA object to your client program.
Your client program can use the object reference to invoke operations on the object
that have been defined in the object's IDL interface specification. In addition, there are
methods that all VisiBroker ORB objects inherit from the class CORBA::Object that you
can use to manipulate the object.

Checking for nil references

You can use the CORBA class method is_nil() shown below to determine if an object
reference is nil. This method returns 1 if the object reference passed is nil. It returns 0
(zero) if the object reference is not nil.

class CORBA {
 ...
 static Boolean is _nil(CORBA::Object_ptr obj);
 ...
};

Obtaining a nil reference

You can obtain a nil object reference using the CORBA::Object class _nil() member
function. It returns a NULL value that is cast to an Object_ptr.

class Object {
 ...
 static CORBA::Object_ptr _nil();
 ...
};

Duplicating an object reference

When your client program invokes the _duplicate member function, the reference
count for the object reference is incremented by one and the same object reference is
returned. Your client program can use the _duplicate member function to increase the
reference count for an object reference so that the reference can be stored in a data
structure or passed as a parameter. Increasing the reference count ensures that the
memory associated with the object reference will not be freed until the reference count
has reached zero.

142 VisiBroker for C++ Developer ’s Guide

Manipulat ing object references

The IDL compiler generates a _duplicate member function for each object interface
you specify. The _duplicate member function accepts and returns a generic Object_ptr.

class Object {
 ...
 static CORBA::Object_ptr _duplicate(CORBA::Object_ptr obj);
 ...
};

Note

The _duplicate member function has no meaning for the POA or VisiBroker ORB
because these objects do not support reference counting.

Releasing an object reference

You should release an object reference when it is no longer needed. One way of
releasing an object reference is by invoking the CORBA::Object class _release member
function.

Caution

Always use the release member function. Never invoke operator delete on an object
reference.

class CORBA {
 class Object {
 ...
 void _release();
 ...
 };
};

You may also use the CORBA class release member function, which is provided for
compatibility with the CORBA specification.

class CORBA {
 ...
 static void release();
 ...
};

Obtaining the reference count

Each object reference has a reference count that you can use to determine how many
times the reference has been duplicated. When you first obtain an object reference by
invoking _bind(), the reference count is set to one. Releasing an object reference will
decrement the reference count by one. Once the reference count reaches 0 (zero),
VisiBroker automatically deletes the object reference. The code sample below shows
the _ref_count member function for retrieving the reference count.

Note

When a remote client duplicates or releases an object reference, the server's object
reference count is not affected.

class Object {
 ...
 CORBA::Long _ref_count() const;
 ...
};

 11: Cl ient basics 143

Manipulat ing object references

Converting a reference to a string

VisiBroker provides a VisiBroker ORB class with methods that allow you to convert an
object reference to a string or convert a string back into an object reference. The
CORBA specification refers to this process as stringification.

A client program can use the object_to_string method to convert an object reference
to a string and pass it to another client program. The second client may then de-
stringify the object reference, using the string_to_object method, and use the object
reference without having to explicitly bind to the object.

The caller of object_to_string is responsible for calling CORBA::string_free() on the
returned string.

Note

Locally-scoped object references like the VisiBroker ORB or the POA cannot be
stringified. If an attempt is made to do so, a MARSHAL exception is raised with the minor
code 4.

Obtaining object and interface names

The table below shows the methods provided by the Object class that you can use to
obtain the interface and object names as well as the repository id associated with an
object reference. The interface repository is discussed in “Using Interface
Repositories.”

Note

When you invoke _bind() without specifying an object name, invoking the
_object_name() method with the resulting object reference will return NULL .

Determining the type of an object reference

You can use the _hash() member function to obtain a hash value for an object
reference. While this value is not guaranteed to be unique, it will remain consistent
through the lifetime of the object reference and can be stored in a hash table.

You can check whether an object reference is of a particular type by using the _is_a()
method. You must first obtain the repository id of the type you wish to check using the
_repository_id() method. This method returns 1 if the object is either an instance of the
type represented by _repository_id() or if it is a sub-type. The member function returns
0 (zero) if the object is not of the type specified. Note that this may require remote
invocation to determine the type.

You can use _is_equivalent() to check if two object references refer to the same object
implementation. This method returns 1 if the object references are equivalent. It returns
0 (zero) if the object references are distinct, but it does not necessarily indicate that the
object references are two distinct objects. This is a lightweight method and does not
involve actual communication with the server object.

Method Description

object_to_string Converts an object reference to a string.

string_to_object Converts a string to an object reference.

Method Description

_interface_name Returns the interface name of this object.

_object_name Returns this object's name.

_repository_id Returns the repository's type identifier.

Method Description

_hash Returns a hash value for the object reference.

144 VisiBroker for C++ Developer ’s Guide

Manipulat ing object references

Determining the location and state of bound objects

Given a valid object reference, your client program can use _is_bound() to determine if
the object bound. The method returns 1 if the object is bound and returns 0 (zero) if the
object is not bound.

The _is_local() method returns 1 if the client program and the object implementation
reside within the same process or address space where the method is invoked.

The _is_remote() method returns 1 if the client program and the object implementation
reside in different processes, which may or may not be located on the same host.

Checking for non-existent objects

You can use the _non_existent() member function to determine if the object
implementation associated with an object reference still exists. This method actually
“pings” the object to determine if it still exists and returns 1 if it does exist.

Narrowing object references

The process of converting an object reference's type from a general super-type to a
more specific sub-type is called narrowing.

The _narrow() member function may construct a new C++ object and returns a pointer
to that object. When you no longer need the object, you must release the object
reference returned by _narrow().

VisiBroker maintains a type graph for each object interface so that narrowing can be
accomplished by using the object's narrow() method.

If the narrow member function determines it is not possible to narrow an object to the
type you request, it will return NULL.

Account *acct;
Account *acct2;
Object *obj;
acct = Account::_bind();
obj = (CORBA::Object *)acct;
acct2 = Account::_narrow(obj);

Widening object references

Converting an object reference's type to a super-type is called widening. The code
sample below shows an example of widening an Account pointer to an Object pointer.
The pointer acct can be cast as an Object pointer because the Account class inherits
from the Object class.

...
Account *acct;
CORBA::Object *obj;
acct = Account::_bind();
obj = (CORBA::Object *)acct;...

_is_a Determines if an object implements a specified interface.

_is_equivalent Returns true if two objects refer to the same interface implementation.

Method Description

_is_bound Determines if a connection is currently active for this object.

_is_local Determines if this object is implemented in the local address space.

_is_remote Determines if this object's implementation does not reside in the local address
space.

Method Description

 11: Cl ient basics 145

Using Qual i ty of Service (QoS)

Using Quality of Service (QoS)
Quality of Service (QoS) utilizes policies to define and manage the connection between
your client applications and the servers to which they connect.

Understanding Quality of Service (QoS)

QoS policy management is performed through operations accessible in the following
contexts:

– The VisiBroker ORB level policies are handled by a locality constrained
PolicyManager, through which you can set Policies and view the current Policy
overrides. Policies set at the VisiBroker ORB level override system defaults.

– Thread level policies are set through PolicyCurrent, which contains operations for
viewing and setting Policy overrides at the thread level. Policies set at the thread
level override system defaults and values set at the VisiBroker ORB level.

Note

– Object level policies can be applied by accessing the base Object interface's quality
of service operations. Policies applied at the Object level override system defaults
and values set in at the VisiBroker ORB or thread level.

Note

The QoS policies installed at the ORB level will only affect those objects on which no
method is called before installing the policies, for example a non_existent call internally
makes a call on a server object. If ORB level QoS policies are installed after the
non_existent call, then the policies do not apply.

Policy overrides and effective policies
The effective policy is the policy that would be applied to a request after all applicable
policy overrides have been applied. The effective policy is determined by comparing
the Policy as specified by the IOR with the effective override. The effective Policy is the
intersection of the values allowed by the effective override and the IOR-specified
Policy. If the intersection is empty a org.omg.CORBA.INV_POLICY exception is raised.

146 VisiBroker for C++ Developer ’s Guide

Using Qual i ty of Service (QoS)

QoS interfaces

The following interfaces are used to get and set QoS policies.

CORBA::Object
Contains the following methods used to get the effective policy and get or set the policy
override.

– _get_policy returns the effective policy for an object reference.

– _set_policy_override returns a new object reference with the requested list of Policy
overrides at the object level.

CORBA::Object
– _get_client_policy returns the effective Policy for the object reference without doing

the intersection with the server-side policies. The effective override is obtained by
checking the specified overrides in first the object level, then at the thread level, and
finally at the VisiBroker ORB level. If no overrides are specified for the requested
PolicyType the system default value for PolicyType is used.

– _get_policy_overrides returns a list of Policy overrides of the specified policy types
set at the object level. If the specified sequence is empty, all overrides at the object
level will be returned. If no PolicyTypes are overridden at the object level, an empty
sequence is returned.

– _validate_connection returns a boolean value based on whether the current effective
policies for the object will allow an invocation to be made. If the object reference is
not bound, a binding will occur. If the object reference is already bound, but current
policy overrides have changed, or the binding is no longer valid, a rebind will be
attempted, regardless of the setting of the RebindPolicy overrides. A false return
value occurs if the current effective policies would raise an INV_POLICY exception. If
the current effective policies are incompatible, a sequence of type PolicyList is
returned listing the incompatible policies.

CORBA::PolicyManager
The PolicyManager is an interface that provides methods for getting and setting Policy
overrides for the VisiBroker ORB level.

– get_policy_overrides returns a PolicyList sequence of all the overridden policies for
the requested PolicyTypes. If the specified sequence is empty, all Policy overrides at
the current context level will be returned. If none of the requested PolicyTypes are
overridden at the target PolicyManager, an empty sequence is returned.

– set_policy_overrides modifies the current set of overrides with the requested list of
Policy overrides. The first input parameter, policies, is a sequence of references to
Policy objects. The second parameter, set_add, of type SetOverrideType indicates
whether these policies should be added onto any other overrides that already exist in
the PolicyManager using ADD_OVERRIDE, or they should be added to a PolicyManager that
doesn't contain any overrides using SET_OVERRIDES. Calling set_policy_overrides with
an empty sequence of policies and a SET_OVERRIDES mode removes all overrides from
a PolicyManager. Should you attempt to override policies that do not apply to your
client, NO_PERMISSION will be raised. If the request would cause the specified
PolicyManager to be in an inconsistent state, no policies are changed or added, and
an InvalidPolicies exception is raised.

CORBA::PolicyCurrent
The PolicyCurrent interface derives from PolicyManager without adding new methods.
It provides access to the policies overridden at the thread level. A reference to a
thread'sPolicyCurrent is obtained by invoking ORB::resolve_initial_references() and
specifying an identifier of PolicyCurrent.

 11: Cl ient basics 147

Using Qual i ty of Service (QoS)

QoSExt::DeferBindPolicy
The DeferBindPolicy determines if the VisiBroker ORB will attempt to contact the
remote object when it is first created, or to delay this contact until the first invocation is
made. The values of DeferBindPolicy are true and false. If DeferBindPolicy is set to
true all binds will be deferred until the first invocation of a binding instance. The default
value is false.

If you create a client object, and DeferBindPolicy is set to true, you may delay the
server startup until the first invocation. This option existed before as an option to the
Bind method on the generated helper classes.

The code sample below illustrates an example for creating a DeferBindPolicy and
setting the policy on the VisiBroker ORB.

//Initialize the flag and references
CORBA::Boolean deferMode = (CORBA::Boolean) 1;
CORBA::Any policy_value;
policy_value <<= CORBA::Any::from_boolean(deferMode);

CORBA::Policy_var policy =
 orb->create_policy(QoSExt::DEFER_BIND_POLICY_TYPE, policy_value);

CORBA::PolicyList policies;
policies.length(1);
policies[0] = CORBA::Policy::_duplicate(policy);

// Get a reference to the thread manager
CORBA::Object_var obj = orb->resolve_initial_references("ORBPolicyManager");
CORBA::PolicyManager_var orb_mgr = CORBA::PolicyManager::_narrow(obj);

// Set the policy on the ORB level
orb_mgr->set_policy_overrides(policies, CORBA::SET_OVERRIDE);

QoSExt::RelativeConnectionTimeoutPolicy
The RelativeConnectionTimeoutPolicy indicates a timeout after which attempts to
connect to an object using one of the available endpoints is aborted. The timeout
situation is likely to happen with objects protected by firewalls, where HTTP tunneling
is the only way to connect to the object.

Messaging::RebindPolicy
RebindPolicy is used to indicate whether the ORB may transparently rebind once
successfully bound to a target. An object reference is considered bound once it is in a
state where a LocateRequest message would result in a LocateReply message with
status OBJECT_HERE. RebindPolicy accepts values of type Messaging::RebindMode and are
set only on the client side. It can have one of six values that determine the behavior in
the case of a disconnection, an object forwarding request, or an object failure after an
object reference is bound. The supported values are:

– Messaging::TRANSPARENT allows the VisiBroker ORB to silently handle object-
forwarding and necessary reconnections during the course of making a remote
request.

– Messaging::NO_REBIND allows the VisiBroker ORB to silently handle reopening of
closed connections while making a remote request, but prevents any transparent
object-forwarding that would cause a change in client-visible effective QoS policies.
When RebindMode is set to NO_REBIND, only explicit rebind is allowed.

– Messaging::NO_RECONNECT prevents the VisiBroker ORB from silently handling object-
forwards or the reopening of closed connections. You must explicitly rebind and
reconnect when RebindMode is set to NO_RECONNECT.

148 VisiBroker for C++ Developer ’s Guide

Using Qual i ty of Service (QoS)

– QoSExt::VB_TRANSPARENT is the default policy. It extends the functionality of TRANSPARENT
by allowing transparent rebinding with both implicit and explicit binding.
VB_TRANSPARENT is designed to be compatible with the object failover implementation
in VisiBroker 3.x.

– QoSExt::VB_NOTIFY_REBIND throws an exception if a rebind is necessary. The client
catches this exception, and binds on the second invocation. If a client has received a
CloseConnection message before, it will also reestablish the closed connection.

– QoSExt::VB_NO_REBIND does not enable failover. It only allows the client VisiBroker
ORB to reopen a closed connection to the same server; it does not allow object
forwarding of any kind.

Note

Be aware that if the effective policy for your client is VB_TRANSPARENT and your client is
working with servers that hold state data, VB_TRANSPARENT could connect the client to a
new server without the client being aware of the change of server, any state data held
by the original server will be lost.

Note

If the Client has set RebindPolicy and the RebindMode is anything other that the
default(VB_TRANSPARENT), then the RebindPolicy is propagated in a special
ServiceContext as per the CORBA specification. The propagation of the ServiceContext
occurs only when the client invokes the server through a GateKeeper or a RequestAgent.
This propagation does not occur in a normal Client/Server scenario.

In the case of NO_REBIND or NO_RECONNECT, the reopening of the closed connection or
forwarding may be explicitly allowed by calling _validate_connection on the
CORBA::Object interface.

The following table describes the behavior of the different RebindMode types.

The appropriate CORBA exception will be thrown in the case of a communication
problem or an object failure.

For more information on QoS policies and types, see the Messaging section of the
CORBA specification.

RebindMode type

Reestablish closed
connection to the
same object?

Allow object
forwarding? Object failover?

NO_RECONNECT No, throws
REBIND
exception.

No, throws
REBIND
exception.

No

NO_REBIND Yes Yes, if policies
match. No, throws
REBIND
exception.

No

TRANSPARENT Yes Yes No

VB_NO_REBIND Yes No, throws
REBIND
exception.

No

VB_NOTIFY_REBIND No, throws
exception.

Yes Yes. VB_NOTIFY_REBIND
throws an exception after
failure detection, and then
tries a failover on subsequent
requests.

VB_TRANSPARENT Yes Yes Yes, transparently.

 11: Cl ient basics 149

Using Qual i ty of Service (QoS)

Messaging::RelativeRequestTimeoutPolicy
The RelativeRequestTimeoutPolicy indicates the relative amount of time which a
Request or its responding Reply may be delivered. After this amount of time, the
Request is canceled. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout, the Reply
will never be discarded due to timeout. The timeout value is specified in 100s of
nanoseconds. This policy is only effective on established connections, and is not
applicable to establishing a connection.

Messaging::RelativeRoundTripTimeoutPolicy
The RelativeRoundTripTimeoutPolicy specifies the relative amount of time for which a
Request or its corresponding Reply may be delivered. If a response has not yet been
delivered after this amount of time, the Request is canceled. Also, if a Request had
already been delivered and a Reply is returned from the target, the Reply is discarded
after this amount of time. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout, the Reply
will never be discarded due to timeout. The timeout value is specified in 100s of
nanoseconds. This policy is only effective on established connections, and is not
applicable to establishing a connection.

Messaging::SyncScopePolicy
The SyncScopePolicy defines the level of synchronization for a request with respect to
the target. Values of type SyncScope are used in conjunction with a SyncScopePolicy to
control the behavior of one-way operations.

The default SyncScopePolicy is SYNC_WITH_TRANSPORT. To perform one-way operations via
the OAD, you must use SyncScopePolicy=SYNC_WITH_SERVER. Valid values for
SyncScopePolicy are defined by the OMG.

Note

Applications must explicitly set an VisiBroker ORB-level SyncScopePolicy to ensure
portability across VisiBroker ORB implementations. When instances of SyncScopePolicy
are created, a value of type Messaging::SyncScope is passed to
CORBA::ORB::create_policy. This policy is only applicable as a client-side override.

Exceptions

Exception Description

CORBA::INV_POLICY Raised when there is an incompatibility between Policy
overrides.

CORBA::REBIND Raised when the RebindPolicy has a value of NO_REBIND,
NO_RECONNECT, or VB_NO_REBIND and an invocation on a bound object
references results in an object-forward or location-forward
message.

CORBA::PolicyError Raised when the requested Policy is not supported.

CORBA::InvalidPolicies Raised when an operation is passed a PolicyList sequence. The
exception body contains the policies from the sequence that are
not valid, either because the policies are already overridden
within the current scope, or are not valid in conjunction with other
requested policies.

CORBA::COMM_FAILURE Raised by the client side ORB if communication is lost while an
operation is in progress. Potentially, the operation was
completed.

CORBA::TRANSIENT Raised by the client side ORB if it attempted to reach the object
and failed. The operation was not successful.

150 VisiBroker for C++ Developer ’s Guide

 12: Using IDL 151

Using IDL
This section describes how to use the CORBA interface description language (IDL).

Introduction to IDL
The Interface Definition Language (IDL) is a descriptive language (not a programming
language) to describe the interfaces being implemented by the remote objects. Within
IDL, you define the name of the interface, the names of each of the attributes and
methods, and so forth. Once you've created the IDL file, you can use an IDL compiler
to generate the client stub file and the server skeleton file in the C++ programming
language.

For more information see the VisiBroker Programmer's Reference Programmer's tools
for C++ .

The OMG has defined specifications for such language mapping. Information about the
language mapping is not covered in this manual since VisiBroker adheres to the
specification set forth by OMG. If you need more information about language mapping,
see the OMG web site at http://www.omg.org.

Note

The CORBA 3.0 formal specification can be found at: http://www.omg.org/technology/
documents/vault.htm#CORBA_IIOP.

Discussions on the IDL can be quite extensive. Because VisiBroker adheres to the
specification defined by OMG, you can visit the OMG site for more information about
IDL.

152 VisiBroker for C++ Developer ’s Guide

How the IDL compi ler generates code

How the IDL compiler generates code
You use the Interface Definition Language (IDL) to define the object interfaces that
client programs may use. The idl2cpp compiler uses your interface definition to
generate code.

Example IDL specification

Your interface definition defines the name of the object as well as all of the methods the
object offers. Each method specifies the parameters that will be passed to the method,
their type, and whether they are for input or output or both. The IDL sample below
shows an IDL specification for an object named example. The example object has only
one method, op1.

// IDL specification for the example object
interface example {
 long op1(in char x, out short y);
};

Looking at generated code for clients
The code sample below shows how the IDL compiler generates two client files,
example_c.hh and example_c.cc from the “Using IDL.” These two files provide an example
class that the client uses. By convention, files generated by the IDL compiler always
have either a .cc or an .hh suffix to make them easy to distinguish from files that you
create yourself. If you wish, you can alter the convention to produce files with a
different suffix.

Important

Do not modify the contents of the files generated by the IDL compiler.

class example : public virtual CORBA_Object {
 protected:
 example() {}
 example(const example&) {}
 public:
 virtual ~example() {}
 static const CORBA::TypeInfo *_desc();
 virtual const CORBA::TypeInfo *_type_info() const;
 virtual void *_safe_narrow(const CORBA::TypeInfo&) const;
 static CORBA::Object*_factory();
 example_ptr _this();
 static example_ptr _duplicate(example_ptr _obj) { /* ... */ }
 static example_ptr _nil() { /* ... */ }
 static example_ptr _narrow(CORBA::Object* _obj);
 static example_ptr _clone(example_ptr _obj) { /* ... */ }
 static example_ptr _bind(
 const char *_object_name = NULL,
 const char *_host_name = NULL,
 const CORBA::BindOptions* _opt = NULL,
 CORBA::ORB_ptr _orb = NULL);
 static example_ptr _bind(
 const char *_poa_name,
 const CORBA::OctetSequence& _id,
 const char *_host_name = NULL,
 const CORBA::BindOptions* _opt = NULL,
 CORBA::ORB_ptr _orb = NULL);
 virtual CORBA::Long op1(
 CORBA::Char _x, CORBA::Short_out _y);
};

 12: Using IDL 153

Looking at generated code for c l ients

Methods (stubs) generated by the IDL compiler

The code sample above shows the op1 method generated by the IDL complier, along
with several other methods. The op1 method is called a stub because when your client
program invokes it, it actually packages the interface request and arguments into a
message, sends the message to the object implementation, waits for a response,
decodes the response, and returns the results to your program.

Since the example class is derived from the CORBA::Object class, several inherited
methods are available for your use.

Pointer type <interface_name>_ptr definition

The IDL compiler always provides a pointer type definition. The code sample below
shows the type definition for the example class.

typedef example *example_ptr;

Automatic memory management <interface_name>_var class

The IDL compiler also generates a class named example_var, which you can use
instead of an example_ptr. The example_var class will automatically manage the memory
associated with the dynamically allocated object reference. When the example_var
object is deleted, the object associated with example_ptr is released. When an
example_var object is assigned a new value, the old object reference pointed to by
example_ptr is released after the assignment takes place. A casting operator is also
provided to allow you to assign an example_var to a type example_ptr.

class example_var : public CORBA::_var {
 ...
 public:
 static example_ptr _duplicate(example_ptr);
 static void _release(example_ptr);
 example_var();
 example_var(example_ptr);
 example_var(const example_var &);
 ~example_var();
 example_var& operator=(example_ptr);
 example_var& operator=(const example_var& _var) { /* ... */ }
 operator example* () const { return _ptr; }
 ...
};

The following table describes the methods in the _var class.

Method Description

example_var() Constructor that initializes the_ptr to NULL.

example_var(example_ptr ptr) Constructor that creates an object with the_ptr initialized
to the argument passed. The var invokes release() on
_ptr at the time of destruction. When the _ptr's reference
count reaches 0, that object will be deleted.

example_var(const example_var& var) Constructor that makes a copy of the object passed as a
parameter var and points _ptr to the newly copied object.

~example() Destructor that invokes _release() once on the object to
which _ptr points.

operator=(example_ptr p) Assignment operator invokes _release() on the object to
which _ptr points and then stores p in _ptr.

154 VisiBroker for C++ Developer ’s Guide

Looking at generated code for servers

Looking at generated code for servers
The code sample below shows how the IDL compiler generates two server files:
example_s.hh and example_s.cc. These two files provide a POA_example class that the
server uses to derive an implementation class. The POA_example class is derived from
the PortableServer_ServantBase class.

Important

You should not modify the contents of the files generated by the IDL compiler.

class POA_example : public virtual PortableServer_ServantBase {
 protected:
 POA_example() {}
 virtual ~POA_example() {}
 public:
 static const CORBA::TypeInfo _skel_info;
 virtual const CORBA::TypeInfo *_type_info() const;
 example_ptr _this();
 virtual void *_safe_narrow(const CORBA::TypeInfo&) const;
 static POA_example * _narrow(PortableServer_ServantBase *_obj);
 // The following operations need to be implemented
 virtual CORBA::Long op1(CORBA::Char _x, CORBA::Short_out _y) = 0;
 // Skeleton Operations implemented automatically
 static void _op1(void *_obj, CORBA::MarshalInBuffer &_istrm,
 const char *_oper, VISReplyHandler& handler);
};

Methods (skeletons) generated by the IDL compiler

Notice that the op1 method declared in the IDL specification below is generated, along
with an _op1 method. The POA_example class declares a pure virtual method named op1.
The implementation class that is derived from POA_example must provide an
implementation for this method.

The POA_example class is called a skeleton and its method (_op1) is invoked by the POA
when a client request is received. The skeleton's internal method will marshal all the
parameters for the request, invoke your op1 method and then marshal the return
parameters or exceptions into a response message. The ORB will then send the
response to the client program.

The constructor and destructor are both protected and can only be invoked by inherited
members. The constructor accepts an object name so that multiple distinct objects can
be instantiated by a server.

Class template generated by the IDL compiler

In addition to the POA_example class, the IDL compiler generates a class template
named _tie_example. This template can be used if you wish to avoid deriving a class
from POA_example. Templates can be useful for providing a wrapper class for existing
applications that cannot be modified to inherit from a new class. The sample below
shows the template class generated by the IDL compiler for the example class.

operator=(const example_ptr p) Assignment operator invokes _release() on the object to
which _ptr points and then stores a _duplicate() of p in
_ptr.

example_ptr operator->() Returns the _ptr stored in this object. This operator
should not be called until this object has been properly
initialized.

Method Description

 12: Using IDL 155

Defin ing interface at t r ibutes in IDL

template <class T>
class POA_example_tie : public POA_example {
 public:
 POA_example_tie (T& t): _ptr(&t),
 _poa(NULL), _rel((CORBA::Boolean)0) {}
 POA_example_tie (T& t,
 PortableServer::POA_ptr poa): _ptr(&t),
 _poa(PortableServer::_duplicate(poa)),
 _rel((CORBA::Boolean)0) {}
 POA_example_tie (T *p, CORBA::Boolean release= 1)
 : _ptr(p),_poa(NULL), _rel(release) {}
 POA_example_tie (T *p, PortableServer::POA_ptr poa,
 CORBA::Boolean release =1)
 : _ptr(p), _poa(PortableServer::_duplicate(poa)), _rel(release) {}
 virtual ~POA_example_tie() { /* ... */ }
 T* _tied_object() { /* ... */ }
 void _tied_object(T& t) { /* ... */ }
 void _tied_object(T *p, CORBA::Boolean release=1) { /* ... */ }
 CORBA::Boolean _is_owner() { /* ... */ }
 void _is_owner(CORBA::Boolean b) { /* ... */ }
 CORBA::Long op1(CORBA::Char _x, CORBA::Short_out _y) { /* ... */ }
 PortableServer::POA_ptr _default_POA() { /* ... */ }
};

For complete details on using the _tie template class, see “Using the tie mechanism.”

You may also generate a _ptie template for integrating an object database with your
servers.

Defining interface attributes in IDL
In addition to operations, an interface specification can also define attributes as part of
the interface. By default, all attributes are read-write and the IDL compiler will generate
two methods, one to set the attribute's value, and one to get the attribute's value. You
can also specify read-only attributes, for which only the reader method is generated.

The IDL sample below shows an IDL specification that defines two attributes, one read-
write and one read-only.

interface Test {
 attribute long count;
 readonly attribute string name;
};

156 VisiBroker for C++ Developer ’s Guide

Speci fy ing one-way methods wi th no return value

The following code sample shows the operations class generated for the interface
declared in the IDL.

class test : public virtual CORBA::Object {
 ...
 // Methods for read-write attribute
 virtual CORBA::Long count();
 virtual void count(CORBA::Long __count);
 // Method for read-only attribute.
 virtual char * name();
 ...
};

Specifying one-way methods with no return value
IDL allows you to specify operations that have no return value, called one-way
methods. These operations may only have input parameters. When a oneway method is
invoked, a request is sent to the server, but there is no confirmation from the object
implementation that the request was actually received.

VisiBroker uses TCP/IP for connecting clients to servers. This provides reliable delivery
of all packets so the client can be sure the request will be delivered to the server, as
long as the server remains available. Still, the client has no way of knowing if the
request was actually processed by the object implementation itself.

Note

One-way operations cannot raise exceptions or return values.

interface oneway_example {
 oneway void set_value(in long val);
};

Specifying an interface in IDL that inherits from another interface
IDL allows you to specify an interface that inherits from another interface. The classes
generated by the IDL compiler will reflect the inheritance relationship. All methods, data
type definitions, constants and enumerations declared by the parent interface will be
visible to the derived interface.

interface parent {
 void operation1();
};
interface child : parent {
 ...
 long operation2(in short s);
};

The code sample below shows the code that is generated from the interface
specification shown above.

class parent : public virtual CORBA::Object {
 ...
 void operation1();
 ...
};
class child : public virtual parent {
 ...
 CORBA::Long operation2(CORBA::Short s);
 ...
};

 13: Using the Smart Agent 157

Using the Smart Agent
This section describes the Smart Agent (osagent), which client programs register with in
order to find object implementations. It explains how to configure your own VisiBroker
ORB domain, connect Smart Agents on different local networks, and migrate objects
from one host to another.

What is the Smart Agent?
VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory service that
provides facilities used by both client programs and object implementations. A Smart
Agent must be started on at least one host within your local network. When your client
program invokes bind() on an object, the Smart Agent is automatically consulted. The
Smart Agent locates the specified implementation so that a connection can be
established between the client and the implementation. The communication with the
Smart Agent is completely transparent to the client program.

If the PERSISTENT policy is set on the POA, and activate_object_with_id is used, the
Smart Agent registers the object or implementation so that it can be used by client
programs. When an object or implementation is deactivated, the Smart Agent removes
it from the list of available objects. Like client programs, the communication with the
Smart Agent is completely transparent to the object implementation. For more
information about POAs, see “Using POAs.”

Best practices for Smart Agent configuration and synchronization

While the Smart Agent imposes no hard limits on the numbers and types of objects that
it can support, there are reasonable best practices that can be followed when
incorporating the it into a larger architecture.

The Smart Agent is designed to be a lightweight directory service with a flat, simple
namespace, which can support a small number of well known objects within a local
network.

Since all objects' registered services are stored in memory, scalability cannot be
optimized and be fault tolerant at the same time. Applications should use well known
objects to bootstrap to other distributed services so as not to rely on the Smart Agent
for all directory needs. If a heavy services lookup load is necessary, it is advisable to
use the VisiBroker Naming Service (VisiNaming). VisiNaming provides persistent
storage capability and cluster load balancing whereas the Smart Agent only provides a
simple round robin on a per osagent basis. Due to the in-memory design of the Smart
Agent, if it is terminated by a proper shutdown or an abnormal termination, it does not

158 VisiBroker for C++ Developer ’s Guide

What is the Smart Agent?

failover to another Smart Agent in the same ORB domain, that is to the same
OSAGENT_PORT number, whereas the VisiNaming Service provides such failover
functionality. For more information on the VisiBroker naming service, see “Using the
VisiNaming Service.”

General guidelines
The following are some general guidelines for best practice Smart Agent usage.

– Server registrations should be limited to less than 100 object instances or POAs per
ORB domain.

– The Smart Agent keeps track of all clients (not just CORBA servers), so every client
creates a small load on the Smart Agent. Within any 10 minute period, the client
population should generally not exceed 100 clients.

Note

The GateKeeper counts as one client even though it is acting on behalf of many real
clients.

– Applications should use the Smart Agent sparsely by binding to small sets of well
known objects at startup and then using those objects for further discovery. The
Smart Agent communications are based on UDP. Although the message protocol
built on top of UDP is reliable, UDP is often not reliable or allowed in wide area
networks. Since the Smart Agent is designed for intranet use, it is not recommended
over wide area networks that involve firewall configurations.

– The real default IP of the Smart Agent must be accessible to clients on a subnet that
is not directly connected to the Smart Agent host. The Smart Agent cannot be
configured for client access behind a Network Address Translation (NAT) firewall.

– The Smart Agent configures itself at startup using the network information available
at that time. It is not able to detect new network interfaces that are added later, such
as interfaces associated with a dial up connection. Therefore, the Smart Agent is
meant for use in static network configurations.

Load balancing/ fault tolerance guidelines
– The Smart Agent implements load balancing using a simple round-robin algorithm on

a per agent basis, not on an ORB domain basis. For load balancing between server
replicas, when you have more than one Smart Agent in the ORB domain, make sure
all servers are registered with the same Smart Agent.

– The ORB runtime caches access to the Smart Agent, so multiple binds to the same
server object from the same ORB process do not result in round-robin behavior
because all subsequent attempts to bind to the object us the cache rather than
sending a new request to the Smart Agent. This behavior can be changed using ORB
properties. For more information, refer to the VisiBroker Programmer's Reference,
“Using VisiBroker properties.”

– When a Smart Agent is terminated, all servers that were registered with that agent
attempt to locate another agent with which to register. This process is automatic, but
may take up to two minutes for the server to perform this function. During that two
minute window, the server is not registered in the ORB domain and therefore is not
available to new clients. However, this does not affect ongoing IIOP communications
between the server and clients that were previously bound.

Location service guidelines
The location service is built upon the Smart Agent technology. Therefore, the location
service is subject to the same guidelines described above.

– The location service triggers generate UDP traffic between the Smart Agent and the
trigger handlers registered by applications. Use of this feature should be limited to
less than 10 objects, monitored by less than 10 processes.

 13: Using the Smart Agent 159

What is the Smart Agent?

– The location service triggers fire when the Smart Agent determines that an object is
available or down. There may be a delay of up to four minutes for a “down” trigger to
fire. For this reason, you may not want to use this feature for time critical
applications.

For more information about the Location Service, refer to “Using the Location Service.”

When not to use a Smart Agent
– When the ORB domain spans a large number (greater than 5) of subnets.

Maintaining the agentaddr files for a large ORB domain spread over a large number
of subnets is difficult to manage.

– When the name space requires a large number (greater than 100) of well known
objects.

– When the number of applications (clients) that require the Smart Agent consistently
exceeds 100 in a 10 minute period.

Note

In the above situations an alternative directory, such as the Naming Service, may be
more appropriate. Refer to “Using the VisiNaming Service” for more information.

Locating Smart Agents

VisiBroker locates a Smart Agent for use by a client program or object implementation
using a broadcast message. The first Smart Agent to respond is used. After a Smart
Agent has been located, a point-to-point UDP connection is used for sending
registration and look-up requests to the Smart Agent.

The UDP protocol is used because it consumes fewer network resources than a TCP
connection. All registration and locate requests are dynamic, so there are no required
configuration files or mappings to maintain.

Note

Broadcast messages are used only to locate a Smart Agent. All other communication
with the Smart Agent makes use of point-to-point communication. For information on
how to override the use of broadcast messages, see “Using point-to-point
communications”.

Locating objects through Smart Agent cooperation

When a Smart Agent is started on more than one host in the local network, each Smart
Agent will recognize a subset of the objects available and communicate with other
Smart Agents to locate objects it cannot find. If one of the Smart Agent processes
should terminate unexpectedly, all implementations registered with that Smart Agent
discover this event and they will automatically re register with another available Smart
Agent.

Cooperating with the OAD to connect with objects

Object implementations may be registered with the Object Activation Daemon (OAD)
so they can be started on demand. Such objects are registered with the Smart Agent
as if they are actually active and located within the OAD. When a client requests one of
these objects, it is directed to the OAD. The OAD then forwards the client request to
the actual server. The Smart Agent does not know that the object implementation is not
truly active within the OAD. For more information about the OAD, see “Using the Object
Activation Daemon (OAD).”

160 VisiBroker for C++ Developer ’s Guide

What is the Smart Agent?

Starting a Smart Agent (osagent)

At least one instance of the Smart Agent should be running on a host in your local
network. Local network refers to a subnetwork in which broadcast messages can be
sent.

Windows

To start the Smart Agent:

– Double-click the osagent executible osagent.exe located in:

<install_dir\bin\

or

– At the Command Prompt, enter: osagent [options]. For example:

prompt> osagent [options]

UNIX

To start the Smart Agent, enter: osagent &. For example:

prompt> osagent &

Note

Due to signal handling changes, bourne and korn shell users need to use the
ignoreSignal hup parameter when starting osagent in order to prevent the hangup (hup)
signal from terminating the process when the user logs out. For example:
nohup $VBROKERDIR/bin/osagent ignoreSignal hup &

The osagent command accepts the following command line arguments:

Example:

The following example of the osagent command specifies a particular UDP port:

 osagent -p 17000

Option Description

-p <UDP_port> Overrides the setting of OSAGENT_PORT and the registry setting.

-v Turns verbose mode on, which provides information and diagnostic
messages during execution.

-help or -? Prints the help message.

-l Turns off logging if OSAGENT_LOGGING_ON is set.

-ls <size> Specifies trimming log size of 1024KB block. Max value is 300, therefore
largest log size is 300MB

+l <options> Show/enable logging level. Options supported are:

■ Turn logging on and enable level "ief" (== +l oief), equivalent to
OSAGENT_LOGGING_ON set. Logs are auto-trim and written to OSAGENT_LOG_DIR
or VBROKER_ADM directory if set. Otherwise default is to /tmp on UNIX and
%TEMP% on Windows.

■ i - Informational

■ e - Error

■ w - Warning

■ f - Fatal

■ d - Debugging

■ a - All

-n, -N Disables system tray icon on Windows.

 13: Using the Smart Agent 161

What is the Smart Agent?

Verbose output

UNIX

On UNIX, the verbose output is sent to stdout.

Windows

On Windows, the verbose output is written to a log file stored in either of the following
locations:

– C:\TEMP\vbroker\log\osagent.log.

– the directory specified by the VBROKER_ADM environment variable.

Note

To specify a different directory in which to write the log file, use OSAGENT_LOG_DIR. To
configure logging options you can right-click the Smart Agent icon and select Log
Options.

Disabling the agent
Communication with the Smart Agent can be disabled by passing the VisiBroker ORB
the property at runtime:

prompt> Server -Dvbroker.agent.enableLocator=false

If using string-to-object references, a naming service, or passing in a URL reference,
the Smart Agent is not required and can be disabled. If you pass an object name to the
bind() method, you must use the Smart Agent.

Ensuring Smart Agent availability

Starting a Smart Agent on more than one host within the local network allows clients to
continually bind to objects, even if one Smart Agent terminates unexpectedly. If a
Smart Agent becomes unavailable, all object implementations registered with that
Smart Agent will be automatically re-registered with another Smart Agent. If no Smart
Agents are running on the local network, object implementations will continue retrying
until a new Smart Agent is contacted.

If a Smart Agent terminates, any connections between a client and an object
implementation established before the Smart Agent terminated will continue without
interruption. However, any new bind() requests issued by a client causes a new Smart
Agent to be contacted.

No special coding techniques are required to take advantage of these fault-tolerant
features. You only need to be sure a Smart Agent is started on one or more host on the
local network.

Checking client existence
A Smart Agent sends an “are you alive” message (often called a heartbeat message) to
its clients every two minutes to verify the client is still connected. If the client does not
respond, the Smart Agent assumes the client has terminated the connection.

You can not change the interval for polling the client.

Note

The use of the term “client” does not necessarily describe the function of the object or
process. Any program that connects to the Smart Agent for object references is a
client.

162 VisiBroker for C++ Developer ’s Guide

Working wi th in Vis iBroker ORB domains

Working within VisiBroker ORB domains
It is often useful to have two or more VisiBroker ORB domains running at the same
time. One domain might consist of production versions of client programs and object
implementations, while another domain might consist of test versions of the same
clients and objects that have not yet been released for general use. If several
developers are working on the same local network, each may want to establish their
own VisiBroker ORB domain so that their tests do not conflict with one another.

Figure 13.1 Running separate VisiBroker ORB domains simultaneously

VisiBroker allows you to distinguish between multiple VisiBroker ORB domains on the
same network by using unique UDP port numbers for the Smart Agents of each
domain. By default, the OSAGENT_PORT variable is set to 14000. If you wish to use a
different port number, check with your system administrator to determine what port
numbers are available.

To override the default setting, the OSAGENT_PORT variable must be set accordingly
before running a Smart Agent, an OAD, object implementations, or client programs
assigned to that VisiBroker ORB domain. For example,

prompt> setenv OSAGENT_PORT 5678
prompt> osagent &
prompt> oad &

The Smart Agent uses an additional internal port number for both TCP and UDP
protocols, the port number is the same for both. This port number is set by using the
OSAGENT_CLIENT_HANDLER_PORT environment variable.

 13: Using the Smart Agent 163

Connect ing Smart Agents on d i f ferent local networks

Connecting Smart Agents on different local networks
If you start multiple Smart Agents on your local network, they will discover each other
by using UDP broadcast messages. Your network administrator configures a local
network by specifying the scope of broadcast messages using the IP subnet mask. The
following figure shows two local networks connected by a network link.

Figure 13.2 Two Smart Agents on separate local networks

To allow the Smart Agent on one network to contact a Smart Agent on another local
network, use the OSAGENT_ADDR_FILE environment variable, as shown in the following
example:

setenv OSAGENT_ADDR_FILE=<path to agent addr file>

Alternatively, use the vbroker.agent.addrFile property, as shown in the following
example:

vbj -Dvbroker.agent.addrFile=<path to agent addr file>

The following example shows what the agentaddr file would contain to allow a Smart
Agent on Local Network #1 to connect to a Smart Agent on another local network.

101.10.2.6

With the appropriate agentaddr file, a client program on Network #1 locates and uses
object implementations on Network #2. For more information on environment variables,
see the Borland VisiBroker Installation Guide.

Note

If a remote network has multiple Smart Agents running, you should list all the IP
addresses of the Smart Agents on the remote network.

How Smart Agents detect each other

Suppose two agents, Agent 1 and Agent 2, are listening on the same UDP port from
two different machines on the same subnet. Agent 1 starts before Agent 2. The
following events occur:

– When Agent 2 starts, it UDP broadcasts its existence and sends a request message
to locate any other Smart Agents.

– Agent 1 makes note that Agent 2 is available on the network and responds to the
request message.

– Agent 2 makes note that another agent, Agent 1, is available on the network.

If Agent 2 is terminated gracefully (such as killing with Ctrl+C), Agent 1 is notified that
Agent 2 is no longer available.

164 VisiBroker for C++ Developer ’s Guide

Working wi th mult ihomed hosts

Working with multihomed hosts
When you start the Smart Agent on a host that has more than one IP address (known
as a multihomed host), it can provide a powerful mechanism for bridging objects
located on separate local networks. All local networks to which the host is connected
will be able to communicate with a single Smart Agent, therefore bridging the local
networks.

Figure 13.3 Smart Agent on a multihomed host

UNIX

On a multihomed UNIX host, the Smart Agent dynamically configures itself to listen
and broadcast on all of the host's interfaces which support point-to-point connections
or broadcast connections. You can explicitly specify interface settings using the
localaddr file as described in “Specifying interface usage for Smart Agents”.

Windows

On a multihomed Windows host, the Smart Agent is not able to dynamically determine
the correct subnet mask and broadcast address values. To overcome this limitation,
you must explicitly specify the interface settings you want the Smart Agent to use with
the localaddr file.

When you start the Smart Agent with the -v (verbose) option, each interface that the
Smart Agent uses will be listed at the beginning of the messages produced. The
example below shows the sample output from a Smart Agent started with the verbose
option on a multihomed host.

Bound to the following interfaces:
Address: 199.10.9.5 Subnet: 255.255.255.0 Broadcast:199.10.9.255
Address: 101.10.2.6 Subnet: 255.255.255.0 Broadcast:101.10.2.255
...

The above output shows the address, subnet mask, and broadcast address for each
interface in the machine.

UNIX

The above output should match the results from the UNIX command ifconfig -a.

If want to override these settings, configure the interface information in the localaddr
file. See “Specifying interface usage for Smart Agents” for details.

Specifying interface usage for Smart Agents

Note

It is not necessary to specify interface information on a single-homed host.

You can specify interface information for each interface you wish the Smart Agent to
use on your multihomed host in the localaddr file. The localaddr file should have a
separate line for each interface that contains the host's IP address, subnet mask, and

 13: Using the Smart Agent 165

Using point- to-point communicat ions

broadcast address. By default, VisiBroker searches for the localaddr file in the
VBROKER_ADM directory. You can override this location by setting the OSAGENT_LOCAL_FILE
environment variable to point to this file. Lines in this file that begin with a “#” character,
and are treated as comments and ignored. The code sample below shows the contents
of the localaddr file for the multihomed host listed above.

#entries of format <address> <subnet_mask> <broadcast address>
199.10.9.5 255.255.255.0 199.10.9.255
101.10.2.6 255.255.255.0 101.10.2.255

UNIX

Though the Smart Agent can automatically configure itself on a multihomed host on
UNIX, you can use the localaddr file to explicitly specify the interfaces that your host
contains. You can display all available interface values for the UNIX host by using the
following command:

prompt> ifconfig -a

Output from this command appears similar to the following:

lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232
 inet 127.0.0.1 netmask ff000000
le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
 inet 199.10.9.5 netmask ffffff00 broadcast 199.10.9.255
le1: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
 inet 101.10.2.6 netmask ffffff00 broadcast 101.10.2.255

Windows

The use of the localaddr file with multihomed hosts is required for hosts running
Windows because the Smart Agent is not able to automatically configure itself. You
can obtain the appropriate values for this file by accessing the TCP/IP protocol
properties from the Network Control Panel. If your host is running Windows, the
ipconfig command will provide the needed values. This command is as follows:

prompt> ipconfig

Output from this command appears similar to the following:

Ethernet adapter El90x1:

 IP Address. : 172.20.30.56
 Subnet Mask : 255.255.255.0
 Default Gateway : 172.20.0.2
Ethernet adapter Elnk32:
 IP Address. : 101.10.2.6
 Subnet Mask : 255.255.255.0
 Default Gateway : 101.10.2.1

Using point-to-point communications
VisiBroker provides three different mechanisms for circumventing the use of UDP
broadcast messages for locating Smart Agent processes. When a Smart Agent is
located with any of these alternate approaches, that Smart Agent will be used for all
subsequent interactions. If a Smart Agent cannot be located using any of these
alternate approaches, VisiBroker will revert to using the broadcast message scheme to
locate a Smart Agent.

Specifying a host as a runtime parameter

The code sample below shows how to specify the IP address where a Smart Agent is
running as a runtime parameter for your client program or object implementation. Since
specifying an IP address will cause a point-to-point connection to be established, you
can even specify an IP address of a host located outside your local network. This
mechanism takes precedence over any other host specification.

166 VisiBroker for C++ Developer ’s Guide

Ensur ing object avai labi l i ty

prompt> Server -Dvbroker.agent.addr=<ip_address>

You can also specify the IP address through the properties file. Look for the
vbroker.agent.addr entry.

vbroker.agent.addr=<ip_address>

By default, vbroker.agent.addr in the properties file is set to NULL.

You can also list the host names where the agent might reside and then point to that
file with the vbroker.agent.addrFile option in the properties file.

Specifying an IP address with an environment variable

You can specify the IP address of a Smart Agent by setting the OSAGENT_ADDR
environment variable prior to starting your client program or object implementation.
This environment variable takes precedence if a host is not specified as a runtime
parameter.

UNIX

prompt> setenv OSAGENT_ADDR 199.10.9.5
prompt> client

Windows

To set the OSAGENT_ADDR environment variable on a Windows system, you can use the
System control panel and edit the environment variables:

1 Under System Variables, select any current variable.

2 Type OSAGENT_ADDR in the Variable edit box.

3 Type the IP address in the Value edit box. For example, 199.10.9.5.

Specifying hosts with the agentaddr file

Your client program or object implementation can use the agentaddr file to circumvent
the use of a UDP broadcast message to locate a Smart Agent. Simply create a file
containing the IP addresses or fully qualified hostnames of each host where a Smart
Agent is running and then set the OSAGENT_ADDR_FILE environment variable to point to
the path of the file. When a client program or object implementation has this
environment variable set, VisiBroker will try each address in the file until a Smart Agent
is located. This mechanism has the lowest precedence of all the mechanisms for
specifying a host. If this file is not specified, the VBROKER_ADM/agentaddr file is used.

Ensuring object availability
You can provide fault tolerance for objects by starting instances of those objects on
multiple hosts. If an implementation becomes unavailable, the VisiBroker ORB will
detect the loss of the connection between the client program and the object
implementation and will automatically contact the Smart Agent to establish a
connection with another instance of the object implementation, depending on the
effective rebind policy established by the client. For more information on establishing
client policies, see “Using Quality of Service (QoS)”.

Note

The Smart Agent implements load balancing using a simple round-robin algorithm on a
per agent basis, not on an ORB domain basis. For load balancing between server
replicas, when you have more than one Smart Agent in the ORB domain, make sure all
servers are registered with the same Smart Agent.

Important

The rebind option must be enabled if VisiBroker is to attempt reconnecting the client
with an instance object implementation. This is the default behavior.

 13: Using the Smart Agent 167

Migrat ing objects between hosts

Invoking methods on stateless objects

Your client program can invoke a method on an object implementation which does not
maintain state without being concerned if a new instance of the object is being used.

Achieving fault-tolerance for objects that maintain state

Fault tolerance can also be achieved with object implementations that maintain state,
but it will not be transparent to the client program. In these cases, your client program
must either use the Quality of Service (QoS) policy VB_NOTIFY_REBIND or register an
interceptor for the VisiBroker ORB object. For information on using QoS, see “Using
Quality of Service (QoS)”.

When the connection to an object implementation fails and VisiBroker reconnects the
client to a replica object implementation, the bind method of the bind interceptor will be
invoked by VisiBroker. The client must provide an implementation of this bind method
to bring the state of the replica up to date. Client interceptors are described in “Client
Interceptors”.

Replicating objects registered with the OAD

The OAD ensures greater object availability because if the object goes down, the OAD
will restart it. If you want fault tolerance for hosts that may become unavailable, the
OAD must be started on multiple hosts and the objects must be registered with each
OAD instance.

Note

The type of object replication provided by VisiBroker does not provide a multicast or
mirroring facility. At any given time there is always a one-to-one correspondence
between a client program and a particular object implementation.

Migrating objects between hosts
Object migration is the process of terminating an object implementation on one host,
and then starting it on another host. Object migration can be used to provide load
balancing by moving objects from overloaded hosts to hosts that have more resources
or processing power (there is no load balancing between servers registered with
different Samrt Agents.) Object migration can also be used to keep objects available
when a host is shutdown for hardware or software maintenance.

Note

The migration of objects that do not maintain state is transparent to the client program.
If a client is connected to an object implementation that has migrated, the Smart Agent
will detect the loss of the connection and transparently reconnect the client to the new
object on the new host.

Migrating objects that maintain state

The migration of objects that maintain state is also possible, but it will not be
transparent to a client program that has connected before the migration process
begins. In these cases, the client program must register an interceptor for the object.

When the connection to the original object is lost and VisiBroker reconnects the client
to the object, the interceptor's rebind_succeeded() method will be invoked by VisiBroker.
The client can implement this method to bring the state of the object up to date.

Refer to “Using Portable Interceptors” for more information about how to use the
interceptors.

168 VisiBroker for C++ Developer ’s Guide

Report ing al l objects and services

Migrating instantiated objects

If the objects that you wish to migrate were created by a server process instantiating
the implementation's class, you need only start it on a new host and terminate the
server process. When the original instance is terminated, it will be unregistered with the
Smart Agent. When the new instance is started on the new host, it will register with the
Smart Agent. From that point on, client invocations are routed to the object
implementation on the new host.

Migrating objects registered with the OAD

If VisiBroker objects that you wish to migrate are registered with the OAD, you must
first unregister them with the OAD on the old host. Then, reregister them with the OAD
on the new host.

Use the following procedure to migrate objects already registered with the OAD:

1 Unregister the object implementation from the OAD on the old host.

2 Register the object implementation with the OAD on the new host.

3 Terminate the object implementation on the old host.

See “Using the Object Activation Daemon (OAD)” for detailed information on
registering and unregistering object implementations.

Reporting all objects and services
The Smart Finder (osfind) command reports on all VisiBroker related objects and
services which are currently available on a given network.

You can use osfind to determine the number of Smart Agent processes running on the
network and the exact host on which they are executing. The osfind command also
reports on all VisiBroker objects that are active on the network if these objects are
registered with the Smart Agent. You can use osfind to monitor the status of the
network and locate stray objects during the debugging phase.

The osfind command has the following syntax:

osfind [options]

The following options are valid with osfind. If no options are specified, osfind lists all of
the agents, OAD's, and implementations in your domain.

Option Description

-a Lists all Smart Agents in your domain.

-b Uses the VisiBroker 2.0 backward compatible osfind
mechanism.

-d Prints hostnames as quad addresses.

-f <agent_address_file_name> Queries Smart Agents running on the hosts specified in the
file. This file contains one IP address or fully qualified host
name per line. Note that this file is not used when reporting
all Smart Agents; it is only used when reporting objects
implementations and services.

-g Verifies object existence. This can cause considerable delay
on loaded systems. Only objects registered BY_INSTANCE are
verified for existence. Objects that are either registered with
the OAD, or those registered BY_POA policy are not verified for
existence.

-h, -help, -usage, -? Prints help information for this option.

-o Lists all OADs in your domain.

-p Lists all POA instances activated on the same host. Without
this option only unique POA names are listed.

 13: Using the Smart Agent 169

Binding to Objects

Windows

osfind is a console application. If you start osfind from the Start menu, it runs until
completion and exits before you can view the results.

Binding to Objects
Before your client application invokes a method on an interface it must first obtain an
object reference using the bind() method.

When your client application invokes the bind() method, VisiBroker performs several
functions on behalf of your application. These are shown below.

– VisiBroker contacts the osagent to locate an object server that is offering the
requested interface. If an object name and a host name (or IP address) are specified,
they will be used to further qualify the directory service search.

– When an object implementation is located, VisiBroker attempts to establish a
connection between the object implementation that was located and your client
application.

– If the connection is successfully established, VisiBroker will create a proxy object if
necessary, and return a reference to that object.

Note

VisiBroker is not a separate process. It is a collection of classes and other resources
that allow communication between clients and servers.

170 VisiBroker for C++ Developer ’s Guide

 14: Using the Locat ion Service 171

Using the Location Service
The VisiBroker Location Service provides enhanced object discovery that enables you
to find object instances based on particular attributes. Working with VisiBroker Smart
Agents, the Location Service notifies you of what objects are presently accessible on
the network, and where they reside. The Location Service is a VisiBroker extension to
the CORBA specification and is only useful for finding objects implemented with
VisiBroker. For more information on the Smart Agent (osagent), see “Using the Smart
Agent.”

What is the Location Service?
The Location Service is an extension to the CORBA specification that provides
general-purpose facilities for locating object instances. The Location Service
communicates directly with one Smart Agent which maintains a catalog, which
contains the list of the instances it knows about. When queried by the Location Service,
a Smart Agent forwards the query to the other Smart Agents, and aggregates their
replies in the result it returns to the Location Service.

The Location Service knows about all object instances that are registered on a POA
with the BY_INSTANCE Policy and objects that are registered as persistent on a BOA. The
server containing these objects may be started manually or automatically by the OAD.
For more information, see “Using POAs”, “Using the BOA with VisiBroker”, and “Using
the Object Activation Daemon (OAD).”

The following diagram illustrates this concept.

Figure 14.1 Using the Smart Agent to find instances of objects

Note

A server specifies an instance's scope when it creates the instance. Only globally-
scoped instances are registered with Smart Agents.

172 VisiBroker for C++ Developer ’s Guide

Locat ion Service components

The Location Service can make use of the information the Smart Agent keeps about
each object instance. For each object instance, the Location Service maintains
information encapsulated in the structure ObjLocation::Desc shown below.

struct Desc {
 Object ref;
 ::IIOP::ProfileBodyValue iiop_locator;
 string repository_id;
 string instance_name;
 boolean activable;
 string agent_hostname;
};
typedef sequence<Desc> DescSeq;

The IDL for the Desc structure contains the following information:

– The object reference, ref, is a handle for invoking the object.

– The iiop_locator interface provides access to the host name and the port of the
instance's server. This information is only meaningful if the object is connected with
IIOP, which is the only supported protocol. Host names are returned as strings in the
instance description.

– The repository_ id, which is the interface designation for the object instance that can
be looked up in the Interface and Implementation Repositories. If an instance
satisfies multiple interfaces, the catalog contains an entry for each interface, as if
there were an instance for each interface.

– The instance_name, which is the name given to the object by its server.

– The activable flag, which differentiates between instances that can be activated by
an OAD and instances that are started manually.

– The agent_hostname, the name of the Smart Agent with which the instance is
registered.

The Location Service is useful for purposes such as load balancing and monitoring.
Suppose that replicas of an object are located on several hosts. You could deploy a
bind interceptor that maintains a cache of the host names that offer a replica and each
host's recent load average. The interceptor updates its cache by asking the Location
Service for the hosts currently offering instances of the object, and then queries the
hosts to obtain their load averages. The interceptor then returns an object reference for
the replica on the host with the lightest load. For more information about writing
interceptors, see “Using Portable Interceptors” and “Using VisiBroker Interceptors.”

Location Service components
The Location Service is accessible through the Agent interface. Methods for the Agent
interface can be divided into two groups: those that query a Smart Agent for data
describing instances and those that register and unregister triggers. Triggers provide a
mechanism by which clients of the Location Service can be notified of changes to the
availability of instances.

What is the Location Service agent?

The Location Service agent is a collection of methods that enable you to discover
objects on a network of Smart Agents. You can query based on the interface's
repository ID, or based on a combination of the interface's repository ID and the
instance name. Results of a query can be returned as either object references or more
complete instance descriptions. An object reference is simply a handle to a specific
instance of the object located by a Smart Agent. Instance descriptions contain the
object reference, as well as the instance's interface name, instance name, host name
and port number, and information about its state (for example, whether it is running or
can be activated).

 14: Using the Locat ion Service 173

Locat ion Service components

Note

The locserv executable no longer exists since the service is now part of the core
VisiBroker ORB.

The figure below illustrates the use of interface repository IDs and instance names
given the following example IDL:

module Automobile {
 interface Car{...};
 interface Sedan:Car {...};
}

Figure 14.2 Use of interface repository IDs and instance names

Given the previous example, the following diagram visually depicts Smart Agents on a
network with references to instances of Car. In this example, there are three instances:
one instance of Keri's Car and two replicas of Tom's Car.

Figure 14.3 Smart Agents on a network with instances of an interface

The following sections explain how the methods provided by the Agent class can be
used to query VisiBroker Smart Agents for information. Each of the query methods can
raise the Fail exception, which provides a reason for the failure.

Obtaining addresses of all hosts running Smart Agents
Using the HostnameSeq method, you can find out which servers are hosting VisiBroker
Smart Agents. In the example shown in the figure below, this method would return the
addresses (such as, IP address string) of two servers: Athena and Zeus.

Finding all accessible interfaces
You can query the VisiBroker Smart Agents on a network to find out about all
accessible interfaces. To do so, you can use the RepositoryIDSeq method. In the
example shown in the following figure, this method would return the repository IDs of
two interfaces: Car and Sedan.

Note

Earlier versions of the VisiBroker ORB used IDL interface names to identify interfaces,
but the Location Service uses the repository id instead. To illustrate the difference, if an
interface name is:

::module1::module2::interface

the equivalent repository id is:

IDL:module1/module2/interface:1.0

For the example shown in the figure above, the repository ID for Car would be:

IDL:Automobile/Car:1.0

and the repository ID for Sedan would be:

IDL:Automobile/Sedan:1.0

174 VisiBroker for C++ Developer ’s Guide

Locat ion Service components

Obtaining references to instances of an interface
You can query VisiBroker Smart Agents on a network to find all available instances of a
particular interface. When performing the query, you can use either of these methods:

In the example shown in the figure above, a call to either method with the request
IDL:Automobile/Car:1.0 would return three instances of the Car interface: Tom's Car on
Athena, Tom's Car on Zeus, and Keri's Car. The Tom's Car instance is returned twice
because there are occurrences of it with two different Smart Agents.

Obtaining references to like-named instances of an interface
Using one of the following methods, you can query VisiBroker Smart Agents on a
network to return all occurrences of a particular instance name.

In the example shown in the previous figure, a call to either method specifying the
repository ID IDL:Automobile/Sedan:1.0 and instance name Tom's Car would return two
instances because there are occurrences of it with two different Smart Agents.

What is a trigger?

A trigger is essentially a callback mechanism that lets you determine changes to the
availability of a specified instance. It is an asynchronous alternative to polling an Agent,
and is typically used to recover after the connection to an object has been lost.
Whereas queries can be employed in many ways, triggers are special-purpose.

Looking at trigger methods
The trigger methods in the Agent class are described in the following tables:

Both of the Agent trigger methods can raise the Fail exception, which provides a
reason for the failure.

The TriggerHandler interface consists of the methods described in the following tables:

Method Description

CORBA::ObjectSeq* all_instances(const char* _repository_id) Use this method to return object
references to instances of the
interface.

DescSeq* all_instances_descs(const char* _repository_id) Use this method to return an
instance description for
instances of the interface.

Method Description

CORBA::ObjectSeq* all_replica(const char* _repository_id,
const char*_instance_name)

Use this method to return object
references to like-named
instances of the interface.

DescSeq all_replica_descs(const char*_repository_id,
const char* _instance_name)

Use this method to return an
instance description for like-
named instances of the interface.

Methods Description

void reg_trigger(const
TriggerDesc& _desc,TriggerHandler_ptr _handler)

Use this method to register a trigger handler.

void unreg_trigger(const
TriggerDesc& _desc,TriggerHandler_ptr _handler)

Use this method to unregister a trigger
handler.

Method Description

void impl_is_ready(const Desc& _desc) This method is called by the Location Service when an
instance matching the desc becomes accessible.

void impl_is_down(const Desc& _desc) This method is called by the Location Service when an
instance becomes unavailable.

 14: Using the Locat ion Service 175

Querying an agent

Creating triggers
A TriggerHandler is a callback object. You implement a TriggerHandler by deriving from
theTriggerHandlerPOA class (or the TriggerHandlerImpl class with BOA), and
implementing its impl_is_ready() and impl_is_down() methods. To register a trigger
with the Location Service, you use the reg_trigger() method in the Agent interface.
This method requires that you provide a description of the instance you want to
monitor, and the TriggerHandler object you want invoked when the availability of the
instance changes. The instance description (TriggerDesc) can contain combinations of
the following instance information: repository ID, instance name, and host name. The
more instance information you provide, the more particular your specification of the
instance.

struct TriggerDesc {
 string repository_id;
 string instance_name;
 string host_name;
};

Note

If a field in the TriggerDesc is set to the empty string (""), it is ignored. The default for
each field value is the empty string.

For example, a TriggerDesc containing only a repository ID matches any instance of the
interface. Looking back to our example in the figure above, a trigger for any instance of
IDL:Automobile/Car:1.0 would occur when one of the following instances becomes
available or unavailable: Tom's Car on Athena, Tom's Car on Zeus, or Keri's Car.
Adding an instance name of “Tom's Car” to the TriggerDesc tightens the specification
so that the trigger only occurs when the availability of one of the two “Tom's Car”
instances changes. Finally, adding a host name of Athena refines the trigger further so
that it only occurs when the instance Tom's Car on the Athena server becomes
available or unavailable.

Looking at only the first instance found by a trigger
Triggers are “sticky.” A TriggerHandler is invoked every time an object satisfying the
trigger description becomes accessible. You may only be interested in learning when
the first instance becomes accessible. If this is the case, invoke the Agent's
unreg_trigger() method to unregister the trigger after the first occurrence is found.

Querying an agent
This section contains two examples of using the Location Service to find instances of
an interface. The first example uses the Account interface shown in the following IDL
excerpt:

// Bank.idl
module Bank {
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open (in string name);
 };
};

Finding all instances of an interface

The following code sample uses the all_instances() method to locate all instances of
the Account interface. Notice that the Smart Agents are queried by passing
“LocationService” to the ORB::resolve_initial_references() method, then narrowing

176 VisiBroker for C++ Developer ’s Guide

Querying an agent

the object returned by that method to an ObjLocation::Agent . Notice, as well, the
format of the Account repository id: IDL:Bank/Account:1.0.

Finding all instances satisfying the AccountManager interface:

#include "corba.h"
#include "locate_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the std namespace
USE_STD_NS
int main(int argc, char** argv) {
 try {
 // ORB initialization
 CORBA::ORB_var the_orb = CORBA::ORB_init(argc, argv);

 // Obtain a reference to the Location Service
 CORBA::Object_var obj = the_orb->
 resolve_initial_references("LocationService");
 if (CORBA::is_nil(obj)) {
 cout << "Unable to locate initial LocationService" << endl;
 return 0;
 }
 ObjLocation::Agent_var the_agent = ObjLocation::Agent::_narrow(obj);

 // Query the Location Service for all implementations of
 // the Account interface
 ObjLocation::ObjSeq_var accountRefs =
 the_agent->all_instances("IDL:Bank/AccountManager:1.0");
 cout << "Obtained " << accountRefs->length()
 << " Account objects" << endl;
 for (CORBA::ULong i=0; i < accountRefs->length(); i++) {
 cout << "Stringified IOR for account #" << i <<
 ":" << endl;
 CORBA::String_var stringified_ior(the_orb
 ->object_to_string(accountRefs[i]));
 cout << stringified_ior << endl;
 cout << endl;
 }
 }
 catch (const CORBA::Exception& e) {
 cout << "Caught exception: " << e << endl;
 return 0;
 }
 return 1;
}

Finding interfaces and instances known to Smart Agents

The following code sample shows how to find everything known to Smart Agents. It
does this by invoking the all_repository_ids() method to obtain all known interfaces.
Then it invokes the all_instances_descs() method for each interface to obtain the
instance descriptions.

Finding everything known to a Smart Agent:

#include "corba.h"
#include "locate_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the std namespace
// if it exists
USE_STD_NS

 14: Using the Locat ion Service 177

Querying an agent

int DisplaybyRepID(CORBA::ORB_ptr the_orb,
 ObjLocation::Agent_var the_agent,
 char * myRepId) {

 ObjLocation::ObjSeq_var accountRefs;
 accountRefs = the_agent->all_instances(myRepId);
 cout << "Obtained " << accountRefs->length()
 << " Account objects" << endl;
 for (CORBA::ULong i=0; i < accountRefs->length(); i++) {
 cout << "Stringified IOR for account #" << i << ":"
 << endl;
 CORBA::String_var stringified_ior(
 the_orb->object_to_string(accountRefs[i]));
 cout << stringified_ior << endl;
 cout << endl;
 }
 return(1);
}
void PrintUsage(char * name) {
 cout << "\nUsage: \n" << endl;
 cout << "\t" << name << " [Rep ID]" << endl;
 cout << "\n\tWith no argument, finds and prints all objects" << endl;
 cout << "\tOptional rep ID searches for specific rep ID\n" << endl;
}
int main(int argc, char** argv) {
 char myRepId[255] = "";
 if (argc == 2) {
 if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "/?") ||
 !strcmp(argv[1], "-?")) {
 PrintUsage(argv[0]);
 exit(0);
 } else {
 strcpy(myRepId, argv[1]);
 }
 }

 else if (argc > 2) {
 PrintUsage(argv[0]);
 exit(0);
 }
 try {
 CORBA::ORB_ptr the_orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_ptr obj = the_orb->
 resolve_initial_references("LocationService");
 if (CORBA::is_nil(obj)) {
 cout << "Unable to locate initial LocationService" << endl;
 return 0;
 }
 ObjLocation::Agent_var the_agent = ObjLocation::Agent::_narrow(obj);
 ObjLocation::DescSeq_var descriptors;
 //Display stringified IOR for RepID requested and exit
 if (argc == 2) {
 DisplaybyRepID(the_orb, the_agent, myRepId);
 exit(0);
 }
 //Report all hosts running osagents
 ObjLocation::HostnameSeq_var HostsRunningAgents =
 the_agent->all_agent_locations();
 cout << "Located " << HostsRunningAgents->length()

178 VisiBroker for C++ Developer ’s Guide

Wri t ing and register ing a t r igger handler

 << " Hosts running Agents" << endl;
 for (CORBA::ULong k=0; k<HostsRunningAgents->length(); k++) {
 cout << "\tHost #" << (k+1) << ": "
 << (const char*) HostsRunningAgents[k] << endl;
 }
 cout << endl;
 // Find and display all Repository Ids
 ObjLocation::RepositoryIdSeq_var repIds = the_agent->all_repository_ids();
 cout << "Located " << repIds->length() <<
 " Repository Ids" << endl;
 for (CORBA::ULong j=0; j<repIds->length(); j++) {
 cout << "\tRepository ID #" << (j+1) << ": "
 << repIds[j] << endl;
 }
 // Find all Object Descriptors for each Repository Id
 for (CORBA::ULong i=0; i < repIds->length(); i++) {
 descriptors = the_agent->all_instances_descs(repIds[i]);
 cout << endl;
 cout << "Located " << descriptors->length()
 << " objects for " << (const char*) (repIds[i])
 << " (Repository Id #" << (i+1) << "):"
 << endl;
 for (CORBA::ULong j=0; j < descriptors->length(); j++) {
 cout << endl;
 cout << (const char*) repIds[i] << " #" << (j+1)
 << ":" << endl;
 cout << "\tInstance Name \t= " << descriptors[j].instance_name <<endl;
 cout << "\tHost \t= " << descriptors[j].iiop_locator.host
 <<endl;
 cout << "\tPort \t= " << descriptors[j].iiop_locator.port

 <<endl;
 cout << "\tAgent Host \t= " << descriptors[j].agent_hostname <<endl;
 cout << "\tActivable \t= " << (descriptors[j].activable?"YES":"NO")

<< endl;
 }
 }
 } catch (const CORBA::Exception& e) {
 cout << "CORBA Exception during execution of find_all: " << e << endl;
 return 0;
 }
 return 1;
}

Writing and registering a trigger handler
The following code sample implements and registers a TriggerHandler. The
TriggerHandlerImpl's impl_is_ready() and impl_is_down() methods display the
description of the instance that caused the trigger to be invoked, and optionally
unregister itself.

If it unregisters itself, the method calls the CORBA::ORB::shutdown() method which directs
the BOA to exit the main program's impl_is_ready() method so the program can
terminate.

 14: Using the Locat ion Service 179

Writ ing and register ing a t r igger handler

Notice that the TriggerHandlerImpl class keeps a copy of the desc and Agent parameters
with which it was created. The unreg_trigger() method requires the desc parameter.
The Agent parameter is duplicated in case the reference from the main program is
released.

Implementing a trigger handler:

// AccountTrigger.c
#include "locate_s.hh"

// USE_STD_NS is a define set up by VisiBroker to use the std namespace
 USE_STD_NS
// Instances of this class will be called back by the Agent when the
// event for which it is registered happens.

class TriggerHandlerImpl : public _sk_ObjLocation::_sk_TriggerHandler
{
 public:
 TriggerHandlerImpl(
 ObjLocation::Agent_var agent,
 const ObjLocation::TriggerDesc& initial_desc)
 : _agent(ObjLocation::Agent::_duplicate(agent)),
 _initial_desc(initial_desc) {}

 void impl_is_ready(const ObjLocation::Desc& desc) {
 notification(desc, 1);
 }
 void impl_is_down(const ObjLocation::Desc& desc) {
 notification(desc, 0);
 }

 private:
 void notification(const ObjLocation::Desc& desc, CORBA::Boolean isReady)
{
 if (isReady) {
 cout << "Implementation is ready:" << endl;
 } else {
 cout << "Implementation is down:" << endl;
 }
 cout << "\tRepository Id = " << desc.repository_id << endl;
 cout << "\tInstance Name = " << desc.instance_name << endl;
 cout << "\tHost Name = " << desc.iiop_locator.host << endl;
 cout << "\tPort = " << desc.iiop_locator.port << endl;
 cout << "\tAgent Host = " << desc.agent_hostname << endl;
 cout << "\tActivable = " << (desc.activable? "YES" : "NO")

<< endl;
 cout << endl;
 cout << "Unregister this handler and exit (yes/no)? " << endl;
 char prompt[256];
 cin >> prompt;
 if ((prompt[0] == 'y') || (prompt[0] == 'Y')) {
 try {
 _agent->unreg_trigger(_initial_desc, this);
 }
 catch (const ObjLocation::Fail& e) {
 cout << "Failed to unregister trigger with reason=["

180 VisiBroker for C++ Developer ’s Guide

Wri t ing and register ing a t r igger handler

 << (int) e.reason << "]" << endl;
 }
 cout << "exiting..." << endl;
 CORBA::ORB::shutdown();
 }
 }

 private:
 ObjLocation::Agent_var _agent;
 ObjLocation::TriggerDesc _initial_desc;
};

int main(int argc, char* const * argv)
{
 try {
 CORBA::ORB_var the_orb = CORBA::ORB_init(argc, argv);
 CORBA::BOA_var boa = the_orb->BOA_init(argc, argv);
 CORBA::Object_var obj = the_orb->
 resolve_initial_references("LocationService");
 if (CORBA::is_nil(obj)) {
 cout << "Unable to locate initial LocationService" << endl;
 return 0;
 }
 ObjLocation::Agent_var the_agent = ObjLocation::Agent::_narrow(obj);

 // Create the trigger descriptor to notify us about
 // OSAgent changes with respect to Account objects
 ObjLocation::TriggerDesc desc;
 desc.repository_id = (const char*) "IDL:Bank/AccountManager:1.0";
 desc.instance_name = (const char*) "";
 desc.host_name = (const char*) "";

 ObjLocation::TriggerHandler_var trig = new TriggerHandlerImpl(the_agent,
 desc);
 boa->obj_is_ready(trig);
 the_agent->reg_trigger(desc,trig);
 boa->impl_is_ready();
 }
 catch (const CORBA::Exception& e) {
 cout << "account_trigger caught Exception: " << e << endl;
 return 0;
 }
 return 1;
}

 14: Using the Locat ion Service 181

Writ ing and register ing a t r igger handler

182 VisiBroker for C++ Developer ’s Guide

 15: Using the VisiNaming Service 183

Using the VisiNaming Service
This section describes the usage of the VisiBroker VisiNaming Service which is a
complete implementation of the CORBA Naming Service Specification Version 1.2
(formal/02–09–02).

Overview
The VisiNaming Service allows you to associate one or more logical names with an
object reference and store those names in a namespace. With the VisiNaming Service,
your client applications can obtain an object reference by using the logical name
assigned to that object.

The figure below contains a simplified view of the VisiNaming Service that shows how

1 an object implementation can bind a name to one of its objects within a namespace.

2 client applications can then use the same namespace to resolve a name which
returns an object reference to a naming context or an object.

184 VisiBroker for C++ Developer ’s Guide

Understanding the namespace

Figure 15.1 Binding, resolving, and using an object name from a naming context within a namespace

There are some important differences to consider between locating an object
implementation with the VisiNaming Service as opposed to the Smart Agent.

– Smart Agent uses a flat namespace, while the VisiNaming Service uses a
hierarchical one.

– If you use the Smart Agent, an object's interface name is defined at the time you
compile your client and server applications. This means that if you change an
interface name, you must recompile your applications. In contrast, the VisiNaming
service allows object implementations to bind logical names to its objects at runtime.

– If you use the Smart Agent, an object may implement only one interface name. The
VisiNaming service allows you to bind more than one logical name to a single object.

For more information about the Smart Agent (osagent), see “Using the Smart Agent.”

Understanding the namespace
The figure below shows how the VisiNaming Service might be used to name objects
that make up an order entry system. This hypothetical order entry system organizes its
namespace by geographic region, then by department, and so on. The VisiNaming
Service allows you to organize the namespace in a hierarchical structure of
NamingContext objects that can be traversed to locate a particular name. For example,
the logical name NorthAmerica/ShippingDepartment/Orders could be used to locate an
Order object.

 15: Using the Vis iNaming Service 185

Understanding the namespace

Figure 15.2 Naming scheme for an order entry system

Naming contexts

To implement the namespace shown above with the VisiNaming Service, each of the
shadowed boxes in the diagram above, would be implemented by a NamingContext
object. A NamingContext object contains a list of Name structures that have been bound to
object implementations or to other NamingContext objects. Though a logical name may
be bound to a NamingContext, it is important to realize that a NamingContext does not, by
default, have a logical name associated with it nor is such a name required.

Object implementations use a NamingContext object to bind a name to an object that
they offer. Client applications use a NamingContext to resolve a bound name to an object
reference.

A NamingContextExt interface is also available which provides methods necessary for
using stringified names.

Naming context factories

A naming context factory provides the interface for bootstrapping the VisiNaming
Service. It has operations for shutting down the VisiNaming Service and creating new
contexts when there are none. Factories also have an additional API that returns the
root context. The root context provides a very critical role as a reference point. This is
the common starting point to store all data that are supposed to be publicly available.

Two classes are provided with the VisiNaming Service that allow you to create a
namespace; the default naming context factory and the extended naming context
factory. The default naming context factory creates an empty namespace that has no
root NamingContext. You may find it more convenient to use the extended naming
context factory because it creates a namespace with a root NamingContext.

You must obtain at least one of these NamingContext objects before your object
implementations can bind names to their objects and before client applications can
resolve a name to an object reference.

Each of the NamingContext objects shown in the figure above could be implemented
within a single name service process, or they could be implemented within as many as
five distinct name server processes.

186 VisiBroker for C++ Developer ’s Guide

Understanding the namespace

Names and NameComponent

A CosNaming::Name represents an identifier that can be bound to an object
implementation or a CosNaming::NamingContext. A Name is not simply a string of
alphanumeric characters; it is a sequence of one or more NameComponent structures.

Each NameComponent contains two attribute strings, id and kind. The Naming service
does not interpret or manage these strings, except to ensure that each id and kind is
unique within a given NamingContext.

The id and kind attributes are strings which uniquely identify the object to which the
name is bound. The kind member adds a descriptive quality to the name. For example,
the name “Inventory.RDBMS” has an id member of “Inventory” and a kind member of
“RDBMS.”

module CosNaming
 typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 };
 typedef sequence<NameComponent> Name;
};

The id and kind attributes of NameComponent in the code example above, must be a
character from the ISO 8859–1 (Latin–1) character set, excluding the null character
(0x00) and other non-printable characters. Neither of the strings in NameComponent can
exceed 255 characters. Furthermore, the VisiNaming Service does not support
NameComponent which uses wide strings.

Note

The id attribute of a Name cannot be an empty string, but the kind attribute can be an
empty string.

Name resolution

Your client applications use the NamingContext method resolve to obtain an object
reference, given a logical Name. Because a Name consists of one or more NameComponent
objects, the resolution process requires that all of the NameComponent structures that
make up the Name be traversed.

Stringified names
Because the representation of CosNaming::Name is not in a form that is readable or
convenient for exchange, a stringified name has been defined to resolve this problem.
A stringified name is a one-to-one mapping between a string and a CosNaming::Name. If
two CosNaming::Name objects are equal, then their stringified representations are equal
and vice versa. In a stringified name, a forward slash (/) serves as a name component
separator; a period (.) serves as the id and kind attributes separator; and a backslash
(\) serves as an escape character. By convention a NameComponent with an empty kind
attribute does not use a period (for example, Order).

"Borland.Company/Engineering.Department/Printer.Resource"

Note

In the following examples, NameComponent structures are given in their stringified
representations.

Simple and complex names
A simple name, such as Billing, has only a single NameComponent and is always resolved
relative to the target naming context. A simple name may be bound to an object
implementation or to a NamingContext.

 15: Using the Vis iNaming Service 187

Running the Vis iNaming Service

A complex name, such as NorthAmerica/ShippingDepartment/Inventory, consists of a
sequence of three NameComponent structures. If a complex name consisting of n
NameComponent objects has been bound to an object implementation, then the first (n–1)
NameComponent objects in the sequence must each resolve to a NamingContext, and the
last NameComponent object must resolve to an object implementation.

If a Name is bound to a NamingContext, each NameComponent structure in the sequence
must refer to a NamingContext.

The code sample below shows a complex name, consisting of three components and
bound to a CORBA object. This name corresponds to the stringified name,
NorthAmerica/SalesDepartment/Order. When resolved within the topmost naming
context, the first two components of this complex name resolve to NamingContext
objects, while the last component resolves to an object implementation with the logical
name “Order.”

...
// Name stringifies to "NorthAmerica/SalesDepartment/Order"
CosNaming::Name_var continentName =
 rootNamingContext->to_name("NorthAmerica");
CosNaming::NamingContext_var continentContext =
 rootNamingContext->bind_new_context(continentName);
CosNaming::Name_var departmentName = continentContext-
>to_name("SalesDepartment");

CosNaming::NamingContext_var departmentContext =
 rootNamingContext->bind_new_context(departmentName);
CosNaming::Name_var objectName =
 departmentContext->to_name("Order");
 departmentContext->rebind(objectName, myPOA-
>servant_to_reference(managerServant));
...

Running the VisiNaming Service
The VisiNaming Service can be started with the following commands. Once you have
started the Naming service, you may browse its contents by using the VisiBroker
Console.

Installing the VisiNaming Service

The VisiNaming Service is installed automatically when you install VisiBroker. It
consists of a file nameserv, which for Windows is a binary executable and for UNIX is a
script, and Java class files which are stored in the vbjorb.jar file.

Configuring the VisiNaming Service

In previous versions of VisiBroker, the VisiNaming Service maintained persistence by
logging any modifying operations to a flat-file. From version 4.0 onward, the
VisiNaming Service works in conjunction with backing store adapters. It is important to
note that not all backing store adapters support persistence. The default InMemory
adapter is non-persistent while all the other adapters are. For more details about
adapters, see “Pluggable backing store”.

Note

A Naming Server is designed to register itself with the Smart Agent. In most cases you
should to run the Smart Agent to bootstrap the VisiNaming Service. This allows clients
to retrieve the initial root context by calling the resolve_initial_references method. The
resolving function works through the Smart Agent for the retrieval of the required
references. Similarly, Naming Servers that participate in a federation also uses the
same mechanism for setting up a federation.

For more information about the Smart Agent, see “Using the Smart Agent.”

188 VisiBroker for C++ Developer ’s Guide

Invoking the Vis iNaming Service f rom the command l ine

Starting the VisiNaming Service

You can start the VisiNaming Service by using the nameserv launcher program in the /
bin directory. The nameserv launcher uses the com.inprise.vbroker.naming.ExtFactory
factory class by default.

UNIX

nameserv [driver_options] [nameserv_options] <ns_name> &

Windows

start nameserv [driver_options] [nameserv_options] <ns_name>

See “General options” for descriptions of the driver options available to all of the
VisiBroker programmer tools.

In order to force the VisiNaming Service to start on a particular port, the VisiNaming
Service must be started with the following command line option:

prompt> nameserv -J-Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port number>

The default name for VisiNaming is “NameService”, if you want to specify a name other
than this, you can start VisiNaming in the following way:

prompt> nameserv -J-Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port number>
<ns_name>

Invoking the VisiNaming Service from the command line
The VisiNaming Service Utility (nsutil) provides the ability to store and retrieve
bindings from the command line.

Configuring nsutil

To use nsutil, first configure the Naming service instance using the following
commands:

prompt>nameserv <ns_name>

prompt>nsutil -VBJprop <option> <cmd> [args]

nameserv_option Description

-?, -h, -help, -usage Print out the usage information.

-config <properties_file> Use <properties_file> as the configuration file when starting up the
VisiNaming Service.

<ns_name> The name to use for this VisiNaming Service. This is optional; the
default name is NameService.

Option Description

ns_name Configure the Naming service to contact

SVCnameroot=<ns_name> Note: Before using SVCnameroot, you must first run OSAgent.

ORBInitRef=NameService=<url> File name or URL, prefixed by its type, which may be (corbaloc:,
corbaname:, file:, ftp:, http:, or ior:). For example, to assign a
file in a local directory, the ns_config string would be:-VBJprop
ORBInitRef=NameService=<file:ns.ior>

cmd Any CosNaming operation, and, in addition, ping and shutdown.

 15: Using the Vis iNaming Service 189

Invoking the Vis iNaming Service f rom the command l ine

Running nsutil

The VisiNaming Service Utility supports all the CosNaming operations as well as three
additional commands. The CosNaming operations supported are:

Note

For the operations destroy and list, the name parameter must refer to existing naming
contexts. For the operation list only, there can be zero or more naming contexts,
whose contents will be listed. In the case where no naming context is specified, the
content of the root naming context will be listed.

The additional nsutil commands are:

To run an operation from the nsutil command, place the operation name and its
parameters as the <cmd> parameter. For example:

prompt>nsutil -VBJprop ORBInitRef=NameService=file://ns.ior resolve myName

Shutting down the VisiNaming Service using nsutil

To shut down the VisiNaming Service using nsutil, use the shutdown command:

prompt>nsutil -VBJprop ORBInitRef=NameService=file://ns.ior shutdown <ns_name>

cmd Parameter(s)

bind name objRef

bind_context name ctxRef

bind_new_context name

destroy name

list [name1 name2 name3...]

new_context No parameter

rebind name objRef

rebind_context name ctxRef

resolve name

unbind name

cmd Parameter Description

ping name Resolves the stringified name and contacts the object
to see if it is still alive.

shutdown <naming context
factory name
or stringified ior>

Shuts the VisiNaming Service down gracefully from
the command line. The mandatory parameter of this
operation specifies either the naming context
factory's name as registered with the osagent or the
stringified IOR of the factory.

unbind_from_cluster name objRef Unbinds a specific object in an implicit cluster. The
name is the object's logical name and the objRef is the
stringified object reference that is to be unbound.

190 VisiBroker for C++ Developer ’s Guide

Bootst rapping the Vis iNaming Service

Bootstrapping the VisiNaming Service
There are three ways to start a client application to obtain an initial object reference to
a specified VisiNaming Service. You can use the following command-line options when
starting the VisiNaming Service:

– ORBInitRef

– ORBDefaultInitRef

– SVCnameroot

The following example illustrates how to use these options.

Suppose there are three VisiNaming Services running on the host TestHost:

ns1, ns2, and ns3

running on the ports 20001, 20002 and 20003 respectively.

And there are three server applications:

sr1, sr2, sr3.

Server sr1 binds itself in ns1, Server sr2 binds itself in ns2, and server sr3 in ns3.

Calling resolve_initial_references

The VisiNaming Service provides a simple mechanism by which the
resolve_initial_references method can be configured to return a common naming
context. You use the resolve_initial_references method which returns the root context
of the Naming Server to which the client program connects.

...
CORBA::ORB_ptr orb = CORBA::ORB_init(argv, argc, NULL);
CORBA::Object_var rootObj = orb->resolve_initial_references("NameService");
...

Using -DSVCnameroot

You use the -DSVCnameroot option to specify into which VisiNaming Service instance
(especially important if several unrelated Naming service instances are running) you
want to bootstrap.

For instance, if you want to bootstrap into ns1, you would start your client program as:

<client_application> -DSVCnameroot=ns1

You can then obtain the root context of ns1 by calling the resolve_initial_references
method on an ORB reference inside your client application as illustrated below. The
Smart Agent must be running in order to use this option.

Keep in mind that the -DSVCnameroot bootstrapping mechanism is based on the
proprietary functionality that VisiBroker Smart Agent provides and it is not interoperable
with other CORBA implementations.

Using -ORBInitRef

You can use either the corbaloc or corbaname URL naming schemes to specify which
VisiNaming Service you want to bootstrap. This method does not rely on the Smart
Agent.

Using a corbaloc URL
If you want to bootstrap using VisiNaming Service ns2, then start your client application
as follows:

<client_application> -ORBInitRef=NameService=corbaloc://TestHost:20002/
NameService

 15: Using the Vis iNaming Service 191

NamingContext

You can then obtain the root context of ns2 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated in
the example above.

Note

The deprecated iioploc and iiopname URL schemes are implemented by corbaloc and
corbaname, respectively. For backwards compatibility, the old schemes are still
supported.

Using a corbaname URL
If you want to bootstrap into ns3 by using corbaname, then you should start your client
program as:

<client_application> -ORBInitRef NameService=corbaname://TestHost:20003/

You can then obtain the root context of ns3 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated
above.

-ORBDefaultInitRef

You can use either a corbaloc or corbaname URL to specify which VisiNaming Service
you want to bootstrap. This method does not rely on the Smart Agent.

Using -ORBDefaultInitRef with a corbaloc URL
If you want to bootstrap into ns2, then you should start your client program as:

<client_application> -ORBDefaultInitRef corbaloc://TestHost:20002

You can then obtain the root context of ns2 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated in
the sample above.

Using -ORBDefaultInitRef with corbaname
The combination of -ORBDefaultInitRef or -DORBDefaultInitRef and corbaname works
differently from what is expected. If -ORBDefaultInitRef or -DORBDefaultInitRef is
specified, a slash and the stringified object key is always appended to the corbaname.

For example, if the URL is corbaname::TestHost:20002, then by specifying -
ORBDefaultInitRef, resolve_initial_references in C++ will result in a new URL:
corbaname::TestHost:20003/NameService.

NamingContext
This object is used to contain and manipulate a list of names that are bound to
VisiBroker ORB objects or to other NamingContext objects. Client applications use this
interface to resolve or list all of the names within that context. Object implementations
use this object to bind names to object implementations or to bind a name to a
NamingContext object. The sample below shows the IDL specification for the
NamingContext.

Module CosNaming {
 interface NamingContext {
 void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
 void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);
 void bind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
 void rebind_context(in Name n, in NamingContext NC)
 raises(NotFound, CannotProceed, InvalidName);
 Object resolve(in Name n)

192 VisiBroker for C++ Developer ’s Guide

NamingContextExt

 raises(NotFound, CannotProceed, InvalidName);
 void unbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 NamingContext new_context();
 NamingContext bind_new_context(in Name n)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
 void destroy()
 raises(NotEmpty);
 void list(in unsigned long how_many,
 out BindingList bl,
 out BindingIterator bi);
 };
};

NamingContextExt
The NamingContextExt interface, which extends NamingContext, provides the operations
required to use stringified names and URLs.

Module CosNaming {
 interface NamingContextExt : NamingContext {
 typedef string StringName;
 typedef string Address;
 typedef string URLString;
 StringName to_string(in Name n)
 raises(InvalidName);
 Name to_name(in StringName sn)
 raises(InvalidName);
 exception InvalidAddress {};
 URLString to_url(in Address addr, in StringName sn)
 raises(InvalidAddress, InvalidName);
 Object resolve_str(in StringName n)
 raises(NotFound, CannotProceed, InvalidName);
 };
};

Default naming contexts
A client application can specify a default naming context, which is the naming context
that the application will consider to be its root context. Note that the default naming
context is the root only in relation to this client application and, in fact, it can be
contained by another context.

Obtaining the default context

The VisiBroker ORB method resolve_initial_references can be used by a client
application to obtain the default naming context. The default naming context must have
been specified by passing the SVCnameroot or ORBInitRef command-line argument when
the client application was started. The sample below shows how a C++ client
application could invoke this method.

#include "CosNaming_c.hh"
...
int main(int argc, char* const* argv) {
 try {
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 ...
 CORBA::Object_var ref = orb->resolve_initial_references("NameService");

 15: Using the Vis iNaming Service 193

VisiNaming Service propert ies

 CosNaming::NamingContext_var rootContext =
 CosNaming::NamingContext::_narrow(ref);
 ...
 } catch(const CORBA::Exception& e) {
 cout << "Failure: " << e << endl;
 exit(1);
 }
 exit(0);
}

Obtaining naming context factories

If there is no osagent running on the network, a naming service client can get a
reference to the naming context factory by resolving the initial reference of the factory
as follows:

...
CORBA::Object_var factRef = orb-
>resolve_initial_references("VisiNamingContextFactory");
CosNamingExt::NamingContextFactory_var factory =
 CosNamingExt::NamingContextFactory::_narrow(factRef);
...

Start this client as shown in the following example:

Client -ORBInitRef = VisiNamingContextFactory =
corbaloc::<host>:<port>/VisiNamingContextFactory

VisiNaming Service properties
The following tables list the VisiNaming Service properties:

Property Default Description

vbroker.naming.adminPwd inprise Password required by administrative VisiBroker Naming
service operations.

vbroker.naming.enableSlave 0 If 1, enables master/slave naming services
configuration. See “VisiNaming Service Clusters for
Failover and Load Balancing” for information about
configuring master/slave naming services.

vbroker.naming.iorFile ns.ior This property specifies the full path name for storing the
Naming service IOR. If you do not set this property, the
Naming service will try to output its IOR into a file
named ns.ior in the current directory. The Naming
service silently ignores file access permission
exceptions when it tries to output its IOR.

194 VisiBroker for C++ Developer ’s Guide

Vis iNaming Serv ice propert ies

For more information see “Object Clusters”.

vbroker.naming.logLevel emerg This property specifies the level of log messages to be
output from Naming service. Acceptable values are:

■ vbroker.log.enable=true

■ vbroker.log.filter.default.enable=false

■ vbroker.log.filter.default.register=naming

■ vbroker.log.filter.default.naming.enable=true

■ vbroker.log.filter.default.naming.logLevel=debug

vbroker.naming.logUpdate false This property allows special logging for all of the update
operations on the CosNaming::NamingContext,
CosNamingExt::Cluster, and CosNamingExt::ClusterManager
interfaces.

The CosNaming::NamingContext interface operations for
which this property is effective are:

bind, bind_context, bind_new_context, destroy, rebind,
rebind_context, unbind.

The CosNamingExt::Cluster interface operations for which
this property is effective are:

bind, rebind, unbind, destroy.

The CosNamingExt::ClusterManager interface operation for
which this property is effective is:

create_cluster

When this property value is set to true and any of the
above methods is invoked, the following log message is
printed (the output shows a bind operation being
executed):

00000007,5/26/04 10:11 AM,127.0.0.1,00000000,
VBJ-Application,VBJ ThreadPool Worker,INFO,

OPERATION NAME : bind
CLIENT END POINT : Connection[socket=Socket
[addr=/127.0.0.1, port=2026, localport=1993]]
PARAMETER 0 : [(Tom.LoanAccount)]
PARAMETER 1 : Stub[repository_id=IDL:Bank/
LoanAccount:1.0, key=TransientId[poaName=/,
id={4 bytes: (0)(0)(0)(0)},sec=505,usec=990917734,
key_string=%00VB%01%00%00%00%02/%00%20%20%00%00%00%
04%00%00%00%00%00%00%01%f9;%104f],codebase=null]

Property Default Description

vbroker.naming.enableClusterFailover true When set to true, it specifies that an
interceptor be installed to handle fail-over for
objects that were retrieved from the
VisiNaming Service. In case of an object
failure, an attempt is made to transparently
reconnect to another object from the same
cluster as the original.

Property Default Description

 15: Using the Vis iNaming Service 195

VisiNaming Service propert ies

For more information see the VisiNaming Service Clusters for Failover and
Load Balancing section.

vbroker.naming.propBindOn 0 If 1, the implicit clustering feature is turned on.

vbroker.naming.smrr.pruneStaleRef 1 This property is relevant when the name
service cluster uses the Smart Round Robin
criterion. When this property is set to 1, a stale
object reference that was previously bound to
a cluster with the Smart Round Robin criterion
will be removed from the bindings when the
name service discovers it. If this property is
set to 0, stale object reference bindings under
the cluster are not eliminated. However, a
cluster with Smart Round Robin criterion will
always return an active object reference upon
a resolve() or select() call if such an object
binding exists, regardless of the value of the
vbroker.naming.smrr.pruneStaleRef property. By
default, the implicit clustering in the name
service uses the Smart Round Robin criterion
with the property value set to 1. If set to 2, this
property disables the clearing of stale
references completely, and the responsibility
of cleaning up the bindings belongs to the
application, rather than to VisiNaming.

Property Default Description

vbroker.naming.enableSlave 0 See “VisiNaming Service properties”.

vbroker.naming.slaveMode No default.

Can be set
to cluster
or slave.

This property is used to configure
VisiNaming Service instances in the
cluster mode or in the master/slave
mode. The vbroker.naming.enableSlave
property must be set to 1 for this
property to take effect.

Set this property to cluster to
configure VisiNaming Service
instances in the cluster mode.
VisiNaming Service clients will then
be load balanced among the
VisiNaming Service instances that
comprise the cluster. Client failover
across these instances are enabled.

Set this property to slave to configure
VisiNaming Service instances in the
master/slave mode. VisiNaming
Service clients will always be bound
to the master server if the master is
running but failover to the slave
server when the master server is
down.

vbroker.naming.serverClusterName null This property specifies the name of a
VisiNaming Service cluster. Multiple
VisiNaming Service instances belong
to a particular cluster (for example,
clusterXYZ) when they are configured
with the cluster name using this
property.

Property Default Description

196 VisiBroker for C++ Developer ’s Guide

Pluggable backing store

Pluggable backing store
The VisiNaming Service maintains its namespace by using a pluggable backing store.
Whether or not the namespace is persistent, depends on how you configure the
backing store: to use JDBC adapter, the Java Naming and Directory Interface (JNDI,
which is certified for LDAP), or the default, in-memory adapter.

Types of backing stores

The types of backing store adapters supported are:

– In-memory adapter

– JDBC adapter for relational databases

– DataExpress adapter

– JNDI (for LDAP only)

Note

For an example using pluggable adapters, see the code located in the directory:

vbroker.naming.serverNames null This property specifies the factory
names of the VisiNaming Service
instances that belong to a cluster.
Each VisiNaming Service instance
within the cluster should be
configured using this property to be
aware of all the instances that
constitute the cluster. Each name in
the list must be unique. This property
supports the format:

vbroker.naming.serverNames=
Server1:Server2:Server3

See the related property,
vbroker.naming.serverAddresses.

vbroker.naming.serverAddresses null This property specifies the host and
listening port for the VisiNaming
Service instances that comprise a
VisiNaming Service cluster. The
order of VisiNaming Service
instances in this list must be identical
to that of the related property
vbroker.naming.serverNames, which
specifies the names of the
VisiNaming Service instances that
comprise a VisiNaming Service
Cluster. This property supports the
format:

vbroker.naming.serverAddresses=
host1:port1;host2:port2;host3:port3

vbroker.naming.anyServiceOrder
(To be set on VisiNaming Service clients)

false This property must be set to true on
the VisiNaming Service client to
utilize the load balancing and failover
features available when VisiNaming
Service instances are configured in
the VisiNaming Service cluster
mode. The following is an example of
how to use this property:

client -DVbroker.naming.
anyServiceOrder=true

Property Default Description

 15: Using the Vis iNaming Service 197

Pluggable backing store

<install dir>/vbroker/examples/ins/pluggable_adaptors

In-memory adapter
The in-memory adapter keeps the namespace information in memory and is not
persistent. This is the adapter used by the VisiNaming Service by default.

JDBC adapter
JDBC adapter Relational databases are supported via JDBC. The following databases
have been certified to work with the VisiNaming Service JDBC adapter:

– DataStore 7

– Oracle 10G, Release 2

– Microsoft SQLServer 2005

– DB 2 8.2

– InterBase 7

Multiple VisiNaming Service instances can use the same back-end relational database
if one of these is true:

– The VisiNaming Service instances are independent of each other and use different
factory names, or,

– The VisiNaming Service instances are all part of the same VisiNaming Service
Cluster.

DataExpress adapter
In addition to the JDBC adapter, there is also a DataExpress adapter which allows you
to access JDataStore databases natively. It is much faster than accessing JDataStore
through JDBC, but the DataExpress adapter has some limitations. It only supports a
local database running on the same machine as the Naming Server. To access a
remote JDataStore database, you must use the JDBC adapter.

JNDI adapter
A JNDI adapter is also supported. Sun's JNDI (Java Naming and Directory Interface)
provides a standard interface to multiple naming and directory services throughout the
enterprise. JNDI has a Service Provider Interface (SPI) with which different naming and
service vendors must conform. There are different SPI modules available for Netscape
LDAP server, Novell NDS, WebLogic Tengah, etc. By supporting JNDI, the VisiNaming
Service allows you to have portable access to these naming and directory services and
other future SPI providers.

The VisiNaming JNDI adapter is certified with the following LDAP implementations:

– iPlanet Directory Server 5.0

– OpenLdap 2.3.35

You must use Sun and Netscape JNDI Driver version 1.2 to leverage LDAP.

Configuration and use

Backing store adapters are pluggable, which means that the type of adapter used can
be specified by user-defined information stored in a configuration (properties) file used
when starting up the VisiNaming Service. All adapters, except the in-memory one,
provide persistence. The in-memory adapter should be used when you want to use a
lightweight VisiNaming Service which keeps its namespace entirely in memory.

198 VisiBroker for C++ Developer ’s Guide

Pluggable backing store

Note

For the current version of the VisiNaming Service, you cannot change settings while
the VisiNaming Service is running. To change a setting, you must bring down the
service, make the change to the configuration file, and then restart the VisiNaming
Service.

Properties file
As with the VisiNaming Service in general, which adapter is to be used and any
specific configuration of it is handled in VisiNaming Service properties file. The default
properties common to all adapters are:

JDBC Adapter properties
The following sections describe the JDBC Adapter properties.

vbroker.naming.backingStoreType

This property should be set to JDBC. The poolSize , jdbcDriver, url, loginName, and
loginPwd properties must also be set for the JDBC adapter.

vbroker.naming.jdbcDriver

This property specifies the JDBC driver that is needed to access the database used as
your backing store. The VisiNaming Service loads the appropriate JDBC driver
specified. The default is the Java DataStore JDBC driver.

Property Default Description

vbroker.naming.backingStoreType InMemory Specifies the Naming service adapter type to
use. This property specifies which type of
backing store you want the VisiNaming
Service to use. The valid options are:
InMemory, JDBC, Dx, JNDI. The default is InMemory.

vbroker.naming.cacheOn 0 Specifies whether to use the Naming Service
cache. A value of 1 (one) enables caching.

vbroker.naming.cache.connectString This property is required when the Naming
Service cache is enabled
(vbroker.naming.cacheOn=1) and the Naming
Service instances are configured in Cluster or
Master/Slave mode. It helps locate an Event
Service/VisiNotify instance in the format
<hostname>:<port>. For example:

vbroker.naming.cache.connectString=
127.0.0.1:14500

See “Caching facility” for details about
enabling the caching facility and setting
the appropriate properties.

vbroker.naming.cache.size 2000 This property specifies the size of the Naming
Service cache. Higher values will mean
caching of more data at the cost of increased
memory consumption.

vbroker.naming.cache.timeout 0 (no limit) This property specifies the time, in seconds,
since the last time a piece of data was
accessed, after which the data in the cache
will be purged in order to free memory. The
cached entries are deleted in LRU (Least
Recently Used) order.

JDBC driver class name Description

com.borland.datastore.jdbc.DataStoreDriver JDataStore JDBC Driver 7.0

com.sybase.jdbc2.jdbc.SybDriver Sybase driver (jConnect Version 5.0)

oracle.jdbc.driver.OracleDriver Oracle driver (using classes12.zip Version
8.1.7.0.0)

interbase.interclient.Driver Interbase driver (using InterClient.jar Version
3.0.12)

 15: Using the Vis iNaming Service 199

Pluggable backing store

vbroker.naming.minReconInterval

This property sets the database reconnection retry time by the Naming Service in
seconds. The default value is 30. The Naming Service will ignore the request and throw
a CannotProceed exception if the time interval between this request and the last
reconnection time is less than the value set by this property. The valid value for this
property is 0 (zero) or a greater integer. If the property value is 0 (zero), the VisiNaming
Service will try to reconnect to the database for every request, once disconnected.

vbroker.naming.loginName

This property is the login name associated with the database. The default is VisiNaming.

vbroker.naming.loginPwd

This property is the login password associated with the database. The default value is
VisiNaming.

vbroker.naming.poolSize

This property specifies the number of database connections in your connection pool
when using the JDBC Adapter as our backing store. The default value is 5, but it can be
increased to whatever value the database can handle. If you expect many requests will
be made to the VisiNaming Service, you should make this value larger.

vbroker.naming.url

This property specifies the location of the database which you want to access. The
setting is dependent on the database in use. The default is JDataStore and the
database location is the current directory and is called rootDB.jds. You can use any
name you like not necessarily rootDB.jds. The configuration file needs to be updated
accordingly.

1You should start InterServer before accessing InterBase via JDBC. If the InterBase
server resides on the local host, specify <server> as localhost; otherwise specify it as
the host name. If the InterBase database resides on Windows NT, specify the
<full_db_path> as driver:\\dir1\dir2\\db.gdb (the first backslash [\] is to escape the
second backslash [\]). If the InterBase database resides on UNIX, specify the
<full_db_path> as \dir1\dir2\db.gdb. You can get more information from
http://www.borland.com/interbase/.
2Before you access DB2 via JDBC, you must register the database by its alias
<db_name> using the Client Configuration Assistant. After the database has been
registered, you do not have to specify <host> and <port> for the vbroker.naming.url
property.
3 If the JDataStore database resides on Windows, the <full path of the JDataStore
database> should be Driver:\\dir1\\dir2\\db.jds (the first backslash [\] is to escape the
second backslash [\]). If the JDataStore database resides on UNIX, the <full path of
the JDataStore database> should be /dir1/dir2/db.jds.

weblogic.jdbc.mssqlserver4.Driver WebLogic MS SQLServer 2005 JDBC driver
(Version 1.1)

com.ibm.db2.jcc.DB2Driver IBM DB2 driver (using db2jcc.jar Version 1.2.117)

URL value Description

jdbc:borland:dslocal:<db_name> JDataStore URL

jdbc:sybase:Tds:<host>:<port>/<db_name> Sybase URL

jdbc:oracle:thin:@<host>:<port>:<sid> Oracle URL

jdbc:interbase://<server>/<full_db_path> Interbase URL

jdbc:weblogic:mssqlserver4:<db_name>@<host>:<port> WebLogic MS SQLServer URL

jdbc:db2://<host_name>:<port-number>/<db_name> IBM DB2 URL

<full_path_JDataStore_db> DataExpress URL for the native driver

JDBC driver class name Description

200 VisiBroker for C++ Developer ’s Guide

Pluggable backing store

DataExpress Adapter properties
The following table describes the DataExpress Adapter properties:

JNDI adapter properties
The following is an example of settings that can appear in the configuration file for a
JNDI adapter:

Configuration for OpenLDAP

OpenLDAP is one of the supported VisiNaming back-end stores. When using OpenLDAP,
additional configuration is required on the OpenLDAP server. You must perform the
following actions:

1 Add corba.schema in the OpenLDAP server's config file (the default is slapd.conf). The
corba.schema is included with your OpenLDAP server installation.

2 Add openldap_ns.schema in the OpenLDAP config file. openldap_ns.schema is provided
with VisiBroker and is located in

<install-dir>/etc/ns_schema/

Note

The user must have the necessary privilege to add schemas/attributes to the Directory
Server.

Caching facility

By enabling the caching facility you can improve the performance of the Naming
Service when it uses a backing store. For example, in the case of the JDBC adapter,
directly accessing the database every time there is a resolve or bind operation is
relatively slow. If you cache the results, you can reduce the number of times you
access the database. You will only see improvement in the performance of the backing
store if the same piece of data is accessed multiple times.

Note

Multiple Naming Service instances can access the same backing store if they are
configured in the Naming Service Cluster mode or in the Master/Slave mode. In order
to use the caching facility in these two modes, each Naming Service instance must be
specially configured using the vbroker.naming.cache.connectString property. The

Property Description

vbroker.naming.backingStoreType This property should be set to Dx.

vbroker.naming.loginName This property is the login name associated with the database.
The default is VisiNaming.

vbroker.naming.loginPwd This property is the login password associated with the
database. The default value is VisiNaming.

vbroker.naming.url This property specifies the location of the database.

Setting Description

vbroker.naming.backingStoreType=JNDI This setting specifies the backing store type which
is JNDI for the JNDI adapter.

vbroker.naming.loginName=<user_name> The user login name on the JNDI backing server.

vbroker.naming.loginPwd=<password> The password for the JNDI backing server user.

vbroker.naming.jndiInitialFactory=com.sun.
jndi.ldap.LdapCtxFactory

This setting specifies the JNDI initial factory.

vbroker.naming.jndiProviderURL=ldap:
//<hostname>:389/<initial root context>

This setting specifies the JNDI provider URL

vbroker.naming.jndiAuthentication=simple This setting specifies the JNDI authentication type
supported by the JNDI backing server.

 15: Using the Vis iNaming Service 201

Object Clusters

VisiBroker Event Service or VisiNotify is used to coordinate the caching facility
amongst the various Naming Service instances.

To enable the caching facility set the following property in your configuration file:

vbroker.naming.cacheOn=1

If multiple Naming Service instances in Cluster or Master/Slave mode will access the
cache, set the vbroker.naming.cache.connectString property so that the Naming
Services can locate the Event Service (or VisiNotify).

The format for vbroker.naming.cache.connectString is:

vbroker.naming.cache.connectString=<host>:<port>

Where <host> is the hostname or IP address of the machine where VisiBroker Event
Service is running and <port> is the port used by VisiBroker Event Service/VisiNotify
(default is 14500 for Event Service and 14100 for VisiNotify).

For example:

vbroker.naming.cache.connectString=127.0.0.1:14500

or

vbroker.naming.cache.connectString=myhost:14100

If the host address is an IPv6 style address then enclose it in square brackets.

To support IPv6 on windows, a new property has been introduced. See “Properties
related to Server-side resource usage” for more information.

Note

The VisiBroker Event Service (version 6.5 or later) should be started before starting the
Naming Service instances. If VisiNotify is used instead, VisiNotify should be started.
Start the Event Service/VisiNotify without any channel name (so the default name is
used) before Naming Service instances are started.

If the cache needs tuning, set the following properties:

vbroker.naming.cache.size
vbroker.naming.cache.timeout

See “Properties file” for more information about the caching facility properties.

Important Notes for users of Caching Facility
Consistent configuration is very important. It is extremely important to configure all
Naming Service instances in a Cluster to use the Caching Facility in a consistent
manner. Naming Service instances that constitute a Cluster must either all use the
caching facility or none use it. If certain Naming Service instances use the caching
facility while others do not, the behaviour of the Cluster will be inconsistent. This is also
true for Naming Services configured in the Master-Slave mode. If the Master is
configured to use the caching facility, it is required that the Slave also be configured to
use it, and vice versa.

The distributed cache depends on the Event Service/VisiNotify. If the Caching
Facility is used in Naming Service Cluster mode (or the Master-Slave mode), the
distributed cache needs synchronization across the multiple Naming Services
instances. This is achieved using the Event Service (or VisiNotify). Please note that in
such a configuration, the cached data might be stale. The quality of data would depend
on the health of the Event Service/VisiNotify. Applications that do not find this
acceptable are advised to avoid using the Caching Facility. It is advisable to perform
tests to gauge the suitability of the distributed Caching Facility for a particular
application.

Object Clusters
VisiBroker supports a clustering feature which allows a number of object bindings to be
associated with a single name. The VisiNaming Service can then perform load
balancing among the different bindings in a cluster. You can decide on a load

202 VisiBroker for C++ Developer ’s Guide

Object Cluster ing cr i ter ia

balancing criterion at the time a cluster is created. Clients, which subsequently resolve
name-object bindings against a cluster, are load balanced amongst different cluster
server members. These clusters of object bindings should not be confused with
“VisiNaming Service Clusters for Failover and Load Balancing”.

A cluster is a multi-bind mechanism that associates a Name with a group of object
references. The creation of a cluster is done through a ClusterManager reference. At
creation time, the create_cluster method for the ClusterManager takes in a string
parameter which specifies the criterion to be used. This method returns a reference to
a cluster, which you can add, remove, and iterate through its members. After deciding
on the composition of a cluster, you can bind its reference with a particular name to any
context in a VisiNaming Service. By doing so, subsequent resolve operations against
the Name will return a particular object reference in this cluster.

Object Clustering criteria
The VisiNaming Service uses a SmartRoundRobin criterion with clusters by default. After
a cluster has been created, its criterion cannot be changed. User-defined criteria are
not supported, but the list of supported criteria will grow as time goes on.
SmartRoundRobin performs some verifications to ensure that the CORBA object
reference is an active one; that the object reference is referring to a CORBA server
which is in a ready state.

Cluster and ClusterManager interfaces

Although a cluster is very similar to a naming context, there are certain methods found
in a context that are not relevant to a cluster. For example, it would not make sense to
bind a naming context to a cluster, because a cluster should contain a set of object
references, not naming contexts. However, a cluster interface shares many of the
same methods with the NamingContext interface, such as bind, rebind, resolve, unbind
and list. This common set of operations mainly pertains to operations on a group. The
only cluster-specific operation is pick. Another crucial difference between the two is
that a cluster does not support compound names. It can only use a single component
name, because clusters do not have a hierarchical directory structure, rather it stores
its object references in a flat structure.

IDL Specification for the Cluster interface
CosNamingExt module {
 typedef sequence<Cluster> ClusterList;
 enum ClusterNotFoundReason {
 missing_node,
 not_context,
 not_cluster_context
 };
 exception ClusterNotFound {
 ClusterNotFoundReason why;
 CosNaming::Name rest_of_name;
 };
 exception Empty {};
 interface Cluster {
 Object select() raises(Empty);
 void bind(in CosNaming::NameComponent n, in Object obj)
 raises(CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName,
 CosNaming::NamingContext::AlreadyBound);
 void rebind(in CosNaming::NameComponent n, in Object obj)
 raises(CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName);
 Object resolve(in CosNaming::NameComponent n)
 raises(CosNaming::NamingContext::NotFound,
 CosNaming::NamingContext::CannotProceed,

 15: Using the Vis iNaming Service 203

Object Cluster ing cr i ter ia

 CosNaming::NamingContext::InvalidName);
 void unbind(in CosNaming::NameComponent n)
 raises(CosNaming::NamingContext::NotFound,
 CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName);
 void destroy()
 raises(CosNaming::NamingContext::NotEmpty);
 void list(in unsigned long how_many,
 out CosNaming::BindingList bl,
 out CosNaming::BindingIterator BI);
};

IDL Specification for the ClusterManager interface
CosNamingExt module {
 interface ClusterManager
 Cluster create_cluster(in string algo);
 Cluster find_cluster(in CosNaming::NamingContext ctx, in CosNaming::Name
n)
 raises(ClusterNotFound, CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName);
 Cluster find_cluster_str(in CosNaming::NamingContext ctx, in string n)
 raises(ClusterNotFound, CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName);
 ClusterList clusters();
 };
};

IDL Specification for the NamingContextExtExtended interface
The NamingContextExtExtended interface, which extends NamingContextExt, provides
some operations required to remove an object reference from an implicit cluster. You
must narrow a NamingContext to NamingContextExtExtended in order to use these
operations. Note that these operations are proprietary to VisiBroker only.

module CosNamingExt {
 interface NamingContextExtExtended : NamingContextExt {
 void unbind_from_cluster(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);
 boolean is_ncluster_type(in Name n, out Object cluster)
 raises(NotFound, CannotProceed, InvalidName);
 };
}

unbind_from_cluster()

The unbind_from_cluster() method allows user to unbind a specific object in a cluster.
The object's logical name (such as “London.Branch/Jack.SavingAccount”) and the
object reference to be unbound need to be passed into this method. Whenever the
number of objects in the cluster reaches zero, the cluster is deleted as well.

This method is useful when automatic pruning of stale object references in a cluster is
not required. Call this method to unbind an object in a cluster based on the
application's specific rules.

Note

The unbind_from_cluster() method can only be used when the VisiNaming Service is
running in the implicit clustering mode and automatic pruning of stale object reference
is disabled. This means that the following two properties must be set at the VisiNaming
Service side:
vbroker.naming.smrr.pruneStaleRef=0
vbroker.naming.propBindOn=1

is_ncluster_type()

204 VisiBroker for C++ Developer ’s Guide

Object Cluster ing cr i ter ia

The is_ncluster_type() method lets you check whether a context is of a cluster type.
The object's logical name need to be passed into this method. It returns true when the
context is a cluster type and set the cluster object in the second argument value. It
returns false when the context is not a cluster type and set the second argument value
to null.

Creating an object cluster

To create a cluster, use the Cluster Manager interface. A single ClusterManager object
is automatically created when a Naming Server starts up. There is only one
ClusterManager per Naming Server. The role of a ClusterManager is to create, retrieve,
and keep track of the clusters that are in the Naming Server. Here are the general
steps in creating an object cluster:

1 Bind to the Naming Server with which you wish to create cluster objects.

2 Get a reference to the Cluster Manager by calling get_cluster_manager method on
the factory reference.

3 Create a cluster using a specified cluster criterion.

4 Bind objects to an Name using the cluster.

5 Bind the Cluster object itself to a Name.

6 Resolve through the Cluster reference for the specified cluster criterion.

...
ExtendedNamingContextFactory_var myFactory =
 ExtendedNamingContextFactory::_bind(orb, "NamingService");
ClusterManager_var clusterMgr = myFactory->get_cluster_manager();
Cluster_var clusterObj = clusterMgr->create_cluster("RoundRobin");
clusterObj->bind(new NameComponent("member1", "aCluster"), obj1);
clusterObj->bind(new NameComponent("member2", "aCluster"), obj2);
clusterObj->bind(new NameComponent("member3", "aCluster"), obj3);
NameComponent_var myClusterName = new NameComponent("ClusterName", "");
root->bind(myClusterName, clusterObj);
root->resolve(myClusterName); // a member of the Cluster is returned
root->resolve(myClusterName); // the next member of the Cluster is returned
root->resolve(myClusterName); // the last member of the Cluster is returned
...

Explicit and implicit object clusters
The clustering feature can be turned on automatically for a VisiNaming Service. The
caveat is that once this facility is on, a cluster is created transparently to bind the
object. The round robin criterion is used. The implication is that it is possible to bind
several objects to the same name in the Naming Server. Conversely, resolving that
name will return one of those objects, and an unbind operation would destroy the
cluster associated with that name. This means that the VisiNaming Service is no longer
compliant to the CORBA specification. The Interoperable Naming Specification
explicitly forbids the ability to bind several objects to the same name. For a compliant
VisiNaming Service, an AlreadyBound exception is thrown if a client tries to use the
same name to bind to a different object. You must decide whether to use this feature
for a dedicated server only.

Note

Do not switch from an implicit cluster mode to an explicit cluster mode as this can
corrupt the backing store.

Once a Naming Server is used with the implicit clustering feature, it must be activated
with that feature turned “on”. To turn on the clustering feature, define the following
property value in the configuration file:

vbroker.naming.propBindOn=1

 15: Using the Vis iNaming Service 205

Object Cluster ing cr i ter ia

Note

For an example of both explicit and implicit clustering, see the code located in the
following directories:

<install_dir>/examples/vbroker/ins/implicit_clustering

<install_dir>/examples/vbroker/ins/explicit_clustering

Load balancing

Both the ClusterManager and the Smart Agent provide RoundRobin criterion load
balancing facilities, however, they are of very different nature. You get load balancing
from the Smart Agent transparently. When a server starts, it registers itself
automatically with the Smart Agent, and this in turn allows VisiBroker ORB to provide
an easy and proprietary way for the client to get a reference to the server. However,
you have no choice in determining what constitutes a group and the members of a
group. The Smart Agent makes all the decisions for you. This is where a Cluster
provides an alternative. It enables a programmatic way to define and create the
properties of a Cluster. You can define the criterion for a Cluster, including choosing
the members of a Cluster. Though the criterion is fixed at creation time, the client can
add or remove members from the Cluster throughout its existance.

Object failover

An advantage of using object clustering is the failover capability among the objects
clustered together in a VisiNaming service. These clustered objects support the same
interface. Once such a cluster is created and bound to a naming context, the failover
behavior is transparently handled by the ORB. Typically when a naming service client
does a resolution against this cluster, the VisiNaming service returns a member from
the cluster. In case any member of the cluster has crashed or is temporarily
unavailable, ORB and VisiNaming service perform transparent failover by handing over
the next available cluster member to the client. This ensures high availability and fault-
tolerance.

Failover capability using object clustering is demonstrated in the example contained in
the following directory:

<install_dir>/examples/vbroker/ins/cluster_failover

Pruning stale object references in VisiNaming object clusters

Object references in VisiNaming service can become stale due to unavailability of the
servers. Implicit object clustering provides different strategies, which can be used to
configure the pruning of stale references. Note that this pruning facility only works in
implicit clustering using smart round-robin technique. VisiNaming service is started with
a pruning configuration using the property vbroker.naming.smrr.pruneStaleRef. This
property can take values 0, 1 (default) and 2. The working of pruning facility can be
understood as follows:

VisiNaming service holds the mapping between the names and object references in the
memory. When a client requests for an object reference against a name, VisiNaming
resolves the name, modifies the IOR and hands over the object reference to the client.
The modification pertains to putting the logic that in case, the server represented by the
object reference in unavailable, the client ORB, to which this object reference is being
handed to, can revert back to the VisiNaming service to look for an alternate object
reference (fail-over to another candidate). If the client is unable to find the server and it
does revert back to the VisiNaming service, VisiNaming marks that object reference as
stale.

Depending on the value of the property vbroker.naming.smrr.pruneStaleRef, VisiNaming
decides whether to keep the object reference or remove it. Following are the possible
values:

– vbroker.naming.smrr.pruneStaleRef =0
In this case, if an object reference has been detected stale, VisiNaming only marks it
as stale but does not remove it from its in-memory hold. However, VisiNaming does

206 VisiBroker for C++ Developer ’s Guide

Vis iNaming Service Clusters for Fai lover and Load Balancing

not ever hand over this reference to the client unless the server rebinds the object
reference against the same name.

– vbroker.naming.smrr.pruneStaleRef =1
VisiNaming service immediately removes the object reference both from the memory
and persistent backstore (if backing store is being used) as soon as the client
bounces back to the VisiNaming service indicating the object reference as stale.

– vbroker.naming.smrr.pruneStaleRef =2
In this case, VisiNaming does not modify the IOR before handing it over to the client.
In case the client is not able to contact the server represented by the object
reference, client ORB throws OBJECT_NOT_EXISTS exception back to the client
application. VisiNaming services does not take guarantee of providing the client
application with an active object reference.

VisiNaming Service Clusters for Failover and Load Balancing
Multiple instances of the VisiNaming Service can be clustered to provide for load
balancing and failover. These clusters of VisiNaming Service instances should not be
confused with the clustering of object bindings described in “Object Clusters”. Clients
can bind to any one of the VisiNaming Service instances that comprise the cluster,
which allows for load sharing across multiple VisiNaming Service instances. If a
particular VisiNaming Service instance becomes inactive or terminates, the client will
automatically fail over to another VisiNaming Service instance within the same cluster.

All instances of the VisiNaming Service within a cluster must use the common
underlying data in a persistent backing store. The caching facility is available to
Naming Service instances provided that a VisiBroker Event Service (or VisiNotify)
instance is made available to the Naming Service instances via the
vbroker.naming.cache.connectString property. There are certain restrictions regarding
the choice of backing store. See the following Note that discusses these restrictions.

When failover occurs, it is transparent to the client, but there can be a slight delay
because server objects might have to be activated on demand by the requests that are
coming in. Also, object reference transients like iterator references are no longer valid.
This is normal because clients using transient iterator references must be prepared for
those references becoming invalid. In general, a VisiNaming Service instance never
keeps too many resource-intensive iterator objects, and it may invalidate a client's
iterator reference at any time. Other than these transient references, any other client
request using persistent references will be rerouted to another VisiNaming Service
instance.

In addition to the VisiNaming Service cluster, a Master/Slave model is also supported.
This is a special cluster with the configuration of two VisiNaming Service instances. It is
useful only when failover is required. The two VisiNaming Services instances must be
running at the same time; the master in active mode and the slave in standby mode. If
both VisiNaming Services are active, the master is always preferred by clients that are
using VisiNaming Service. In the event that the master terminates unexpectedly, the
slave VisiNaming Service takes over. This changeover from master to slave is
seamless and transparent to clients. However, the slave VisiNaming Service does not
become the master server. Instead, it provides temporary backup when the master
server is unavailable. You must take whatever remedial actions necessary to revive the
master server. After the master comes back up again, only requests from the new
clients are sent to the master server. Clients that are already bound to a slave naming
server will not automatically switch back to the master.

Note

Clients that are bound to a slave naming server provide only one level of failover
support. They will not switch back to the master, therefore, if the slave naming server
terminates, the VisiNaming Service also becomes unavailable.

Note

VisiNaming Service Clusters configured in the Master/Slave mode may use either the
JNDI adapter or the JDBC adapter. Clusters not configured in the Master/Slave mode
must use the JDBC adapter for RDBMS. Each clustered service must obviously point

 15: Using the Vis iNaming Service 207

Vis iNaming Service Clusters for Fai lover and Load Balancing

to the same backing store. See “Pluggable backing store” for information on
configuring the backing store for the cluster.

Configuring the VisiNaming Service Cluster

The VisiNaming Service instances that comprise the cluster must be started with the
relevant properties set as illustrated in the code sample below. The configuration is set
to cluster mode using the enableSlave and the slaveMode properties. The instances of
the VisiNaming Service that comprise the cluster have to be started on the hosts and
ports specified using the serverAddresses property. The snippet shows the host and
port entries for the three VisiNaming Service instances in the sample cluster. The
serverNames property lists the factory names of the VisiNaming Service instances.
These names are unique and the ordering identical to the serverAddresses property.
Finally, the serverClusterName property names the cluster.

Note

Starting from VisiBroker 6.0, VisiNaming Service contains several properties for proxy
support:

– vbroker.naming.proxyEnable allows the VisiNaming Service to use a proxy. Turn off
this property (default is turned off), and the VisiNaming Service will ignore other
Naming service properties for the proxy.

– vbroker.naming.proxyAddresses gives each Naming service in the cluster a proxy host
and a proxy port. The ordering of the proxyAddresses is identical to the
serverAddresses.

C++ clients need to set the boolean property vbroker.naming.anyServiceOrder in order
to benefit from the load-balancing and failover capabilities provided by VisiNaming
Service clusters. Clients must use the corbaloc mechanism to resolve to a VisiNaming
Service instance within the cluster, provided osagent is being used.

The Naming Service instances comprising a Cluster can benefit from the Naming
Service Caching Facility. Use the vbroker.naming.cacheOn and
vbroker.naming.cache.connectString properties to configure caching for a Naming
Service cluster. See “Caching facility” for details.

The following code sample shows the configuration of the VisiNaming Service cluster:

vbroker.naming.enableSlave=1
vbroker.naming.slaveMode=cluster
vbroker.naming.serverAddresses=host1:port1;host2:port2;host3:port3
vbroker.naming.serverNames=Server1:Server2:Server3
vbroker.naming.serverClusterName=ClusterX
vbroker.naming.proxyEnable=1 //Any value other than 1 means proxy is not
enabled.
vbroker.naming.proxyAddresses=proxyHost1:proxyPort1;proxyHost2:proxyPort2;proxy
Host3:proxyPort3

Note

When using the vbroker.naming.proxyAddresses property, place a semicolon (;)
separator between each host and port pair.

Configuring the VisiNaming Service in Master/Slave mode

The two VisiNaming Services must be running. You must designate one as the master
and the other as the slave. The same property file can be used for both the servers.
The relevant property values in the property file are shown in the following code sample
to configure for the Master/Slave mode.

vbroker.naming.enableSlave=1
vbroker.naming.slaveMode=slave
vbroker.naming.masterServer=<Master Naming Server Name>
vbroker.naming.masterHost=<host ip address for Master>
vbroker.naming.masterPort=<port number that Master is listening on>

208 VisiBroker for C++ Developer ’s Guide

Vis iNaming Service Clusters for Fai lover and Load Balancing

vbroker.naming.slaveServer=<Slave Naming Server Name>
vbroker.naming.slaveHost=<host ip address for Slave>
vbroker.naming.slavePort=<Slave Naming Server port address>
vbroker.naming.masterProxyHost=<proxy host ip address for Master>
vbroker.naming.masterPortPort=<proxy port number for Master>
vbroker.naming.slaveProxyHost=<proxy host ip address for Slave>
vbroker.naming.slavePortPort=<proxy port number for slave>

Note

There is no restriction in the start sequence of the master and the slave servers.

Starting up with a large number of connecting clients

In a production environment with a large number of clients it may be impossible to
avoid clients trying to connect to a Naming Service which is still in the startup phase
(still initializing and not yet ready to service requests). When a Naming Service is not
yet completely started up it may receive incoming requests and discard them.
Depending on the number of requests, which must be received then discarded, this
activity can use too many CPU resources which can disturb the startup process itself,
resulting in a long startup time for the Naming Service.

To solve this particular problem, and let the Naming Service start quickly, the following
configuration settings can be used:

1 Set the following property to true:

vbroker.se.iiop_tp.scm.iiop_tp.listener.deferAccept=true

2 Use a fixed listener port by setting the following properties:

vbroker.se.iiop_tp.scm.iiop_tp.scm.listener.port=<port_number>
vbroker.se.iiop_tp.scm.iiop_tp.listener.portRange=0

For this to succeed, make sure that the <port_number> is available on the host on
which the Naming Service is running. Make sure that the portRange property is set to
0 (zero). You can leave it at its default setting or explicitly set the property. Note that
both the port and portRange settings described above should be applied.

Clients that try to connect to a Naming Service configured in this manner while it is
starting up will be denied any connection. If they are accessing a Naming Service
Cluster, then they would fail over to another Naming Service that has finished its
initialization. If no Naming Services are up and running, the client application would get
an OBJECT_NOT_EXIST exception.

These settings are per SCM (Server Connection Manager). If needed, all SCMs can be
set to take advantage of this feature.

If SSL is involved in the Naming Service, in addition to the settings described above,
the following settings might also be needed:

vbroker.se.iiop_tp.scm.ssl.listener.deferAccept=true
vbroker.se.iiop_tp.scm.ssl.listener.port=<port_number_for_ssl>
vbroker.se.iiop_tp.scm.ssl.listener.portRange=0

Note

The deferAccept property should only be used for Naming Services. Using for other
services or user written servers can result in undefined behavior.

 15: Using the Vis iNaming Service 209

VisiNaming Service Secur i ty

VisiNaming service federation

Federation enables more than one VisiNaming services to be configured to act as a
distributed namespace. This involves having a naming context in a name service
bound to the names in the naming contexts of other naming services, thereby providing
more than one naming hierarchy to access an object. The figure below shows two
instances of naming service ns1 and ns2. Grayed naming contexts are the initial
contexts of the respective naming services. An AccountManager object s1 is placed in
a naming context under ns1.

Figure 15.3 Naming contexts with multiple access hierarchies

As shown in the figure, naming context containing Paris is bound to Branch under
naming service ns1 and also bound to Remote under naming service ns2. Client can
retrieve the IOR of the AccountManager object against s1 either by resolving ns1: Branch/
Paris/s1 or ns2: Branch/Paris/s1. In both cases, it gets the same IOR.

Setting up federation is as easy as binding the name Branch in the root context of ns2 in
the above example to the naming context containing the name Paris in ns1. The
example in the following location shows the working of VisiNaming federation:

<install_dir>/examples/vbroker/ins/federation

VisiNaming Service Security
The VisiNaming Service in the VisiBroker integrates with the Security Service,
providing two levels of security: Client authentication and Method level authorization.
This allows fine grained control over which clients can use the VisiNaming Service and
what methods they can call. The following properties are used to enable or disable
security and to configure the Security Service.

Property Value Default Description

vbroker.naming.security.disable boolean true This property indicates whether the
security service is disabled.

vbroker.naming.security.authDomain string "" This property indicates the
authorization domain name to be
used for the Naming service method
access authorization.

210 VisiBroker for C++ Developer ’s Guide

Vis iNaming Service Secur i ty

Naming client authentication

Note

For detailed information on authentication and authorization, see the “Authentication”
and “Authorization” chapters of the Borland VisiBroker Security Guide.

Configuring VisiNaming to use SSL

Depending on the security requirements, different properties can be set to configure
the VisiNaming service. For the full list of security properties and their descriptions, go
to the Security Guide, “Security Properties for Java” or the “Security Properties for
C++” section.

Important

In order to enable security in the VisiNaming Service, you must have a valid VisiSecure
license.

The following is a sample of the properties that can be used to configure the
VisiNaming Service to use SSL:

 # Enable Security in Naming Service
 vbroker.naming.security.disable=false

 # Enabling Security Service
 vbroker.security.disable=false

 # Setting SSL Layer Attributes
 vbroker.security.peerAuthenticationMode=REQUIRE_AND_TRUST
 vbroker.se.iiop_tp.scm.ssl.listener.trustInClient=true
 vbroker.security.trustpointsRepository=Directory:./trustpoints

 # Set the certificate identity for the VisiNaming Service using wallet
properties
 vbroker.security.wallet.type=Directory:./identities
 vbroker.security.wallet.identity=delta
 vbroker.security.wallet.password=Delt@$$$

vbroker.naming.security.transport int 3 This property indicates what transport
to be used. The available values are:

ServerQoPPolicy.SECURE_ONLY=1
ServerQoPPolicy.CLEAR_ONLY=0
ServerQoPPolicy.ALL=3

vbroker.naming.security.
requireAuthentication

boolean false This property indicates whether
naming client authentication is
required. When
vbroker.naming.security.disable is
true, no client authentication will be
performed regardless what value this
property takes.

vbroker.naming.security.
enableAuthorization

boolean false This property indicates whether
method access authorization is
enabled.

vbroker.naming.security.
requiredRolesFile

string (none) This property points to the file
containing the required roles that are
necessary for invocation of each
method in the protected object types.
For more information see “Method
Level Authorization”.

Property Value Default Description

 15: Using the Vis iNaming Service 211

VisiNaming Service Secur i ty

For information about how to configure the client to use SSL, go to the Security Guide,
“Making secure connections (Java)” or the “Making secure connections (C++)” section.

Note

Currently, there is no way to specify security and secure transport components in an
IOR using corbaloc. So, when using SSL, bootstrapping a VisiNaming Service using
the corbaloc method at the Naming client side is not possible. However, the
SVCnameroot and stringified IOR methods can still be used.

Method Level Authorization

Method level authorization is supported for the following object types:

– Context

– ContextFactory

– Cluster

– ClusterManager

When security is enabled for the Naming service and enableAuthorization is set to true,
only authorized users of each method of these object types can invoke the
corresponding method.

The Naming service predefines two roles to support the method level authorization:

– Administrator role

– User role

Other roles can be defined if required. Users need to configure the roles map for these
two roles, assigning roles to clients. The following is an example role map definition:

 Administrator {
 *CN=admin
 *group=admin
 uid=*, group=admin
 }

 User {
 *CN=admin
 *group=user
 uid=*, group=user
 }

You need to specify the roles before invoking each method of the objects listed above.
This is done using the required_roles property for each method. Below is the list of
these properties and the corresponding default values. These default values are used
only when you do not define any required_roles specified using the property
vbroker.naming.security.requiredRolesFile. The values of these properties are space
or comma separated:

 #
 # naming_required_roles.properties
 #

 # all roles
 required_roles.all=Administrator User

 required_roles.Context.bind=Administrator
 required_roles.Context.rebind=Administrator
 required_roles.Context.bind_context=Administrator
 required_roles.Context.rebind_context=Administrator
 required_roles.Context.resolve=Administrator User
 required_roles.Context.unbind=Administrator
 required_roles.Context.new_context=Administrator User

212 VisiBroker for C++ Developer ’s Guide

Compi l ing and l inking programs

 required_roles.Context.bind_new_context=Administrator User
 required_roles.Context.list=Administrator User
 required_roles.Context.destroy=Administrator

 required_roles.ContextFactory.root_context=Administrator User
 required_roles.ContextFactory.create_context=Administrator
 required_roles.ContextFactory.get_cluster_manager=Administrator User
 required_roles.ContextFactory.remove_stale_contexts=Administrator
 required_roles.ContextFactory.list_all_roots=Administrator
 required_roles.ContextFactory.shutdown=Administrator

 required_roles.Cluster.select=Administrator User
 required_roles.Cluster.bind=Administrator
 required_roles.Cluster.rebind=Administrator
 required_roles.Cluster.resolve=Administrator User
 required_roles.Cluster.unbind=Administrator
 required_roles.Cluster.destroy=Administrator
 required_roles.Cluster.list=Administrator User

 required_roles.ClusterManager.create_cluster=Administrator
 required_roles.ClusterManager.find_cluster=Administrator User
 required_roles.ClusterManager.find_cluster_str=Administrator User
 required_roles.ClusterManager.clusters=Administrator User

Compiling and linking programs
C++ applications that use the Naming service need to include the following generated
files:

#include "CosNaming_c.hh"
#include "CosNamingExt_c.hh"

UNIX

The UNIX applications need to be linked with the cosnm_r.so (multi-threaded) library.

Windows

The Windows applications need to be linked with the cosnm_r.lib (cosnm_r_6.dll)
(multi-threaded) library.

Sample programs
Several example programs that illustrate the use of the VisiNaming Service are
provided with VisiBroker. They show all of the new features available with the
VisiNaming Service and are found in the <install_dir>/examples/vbroker/ins directory.
In addition, a Bank Naming example illustrates basic usage of the VisiNaming Service
is found in the <install_dir>/examples/vbroker/basic/bank_naming directory.

Before running the example programs, you must first start the VisiNaming Service, as
described in “Running the VisiNaming Service”. Furthermore, you must ensure that at
least one naming context has been created by doing one of the following:

– Start the VisiNaming Service, as described in “Running the VisiNaming Service”
which will automatically create an initial context.

– Use the VisiBroker Console.

– Have your client bind to the NamingContextFactory and use the create_context
method.

– Have your client use the ExtendedNamingContextFactory.

 15: Using the Vis iNaming Service 213

Conf igur ing Vis iNaming with JdataStore HA

Important

If no naming context has been created, a CORBA::NO_IMPLEMENT exception is raised when
the client attempts to issue a CosNaming::NamingContext::bind.

Configuring VisiNaming with JdataStore HA
This section helps you configure JDataStore High Available (HA) to work with
VisiNaming.

The Explicit Clustering example used throughout this section illustrates the usage of
JDataStore HA with VisiNaming. In this example, JDataStore will be configured to have
the following mirror types:

– One Primary mirror. This is the only mirror type that can accept both read and write
transactions. Only one Primary mirror at a time is allowed.

– Three Read-only mirrors. These can only perform read transactions, and they
provide a transactionally consistent view of the Primary mirror database.

– One Directory mirror. This contains only the mirror configuration table and other
system security tables. It redirects read-only connection requests to Read-only
mirrors, and writable connection requests to the Primary mirror. It also provides an
important feature for load balancing all read connections across all available Read-
only mirrors. However, this feature is not supported by Naming Service at this
version.

JDataStore HA supports automatic failover in the following circumstances:

– If a connection to the Primary mirror was made before the failure, this connection can
trigger an automatic failover by calling the rollback method on the connection object.
Note that this scenario is not described in this section.

– If the connection request is not for read-only operation, and the current Primary
mirror is not accessible, the Directory mirror automatically triggers the failover
operations to satisfy the request for a writable connection. This is done by promoting
one of the Read-only mirrors to the Primary mirror.

VisiNaming works with JDataStore HA when a connection is made to the Directory
mirror. When the Primary mirror is inaccessible, it will failover to one of the Read-only
mirrors. VisiNaming must work with one Primary, and at least two Read-only mirrors at
all times.

Notes

– The Directory Mirror is a single point of failure in the scenario described in this
section. Higher availability could be achieved by configuring Master and Slave
Naming Services to point to a different directory mirror.

– JDataStoreHA only works with JDataStore Version 7.04 or later.

Create a DB for the Primary mirror

To make use of the JDataStore Explorer (JdsExplorer) to create a new DB, select New
from the File menu.

Invoke JdsServer for each listening connection

In this example, the following connections are used:

– JdsServer –port 2511 (Primary mirror)

– JdsServer –port 2512 (Read-only mirror)

– JdsServer –port 2513 (Read-only mirror)

214 VisiBroker for C++ Developer ’s Guide

Conf igur ing Vis iNaming with JdataStore HA

– JdsServer –port 2514 (Read-only mirror)

– JdsServer –port 2515 (Directory mirror)

Note

Always start JdsServer from the location where the AutoFailover_* jds files are located.
Never start JdsServer from <JdataStore Install Directory>/bin unless
vbroker.naming.url is set according. The required jar files are:

– dbtools.jar

– dbswing.jar

– jdsremote.jar

– jdsserver.jar

– jds.jar

Configure JDataStore HA

To configure JDataStore HA, complete the following steps:

1 Invoke the JDS Server Console to configure JDataStore.

2 Create a new project named NS_AutoFailover in the JDataStore Server Console.

Note

When creating a new DataSource, it is best to set its Protocol to Remote and
include the machine IP in the ServerName

3 Click DataSource1 (in the Structure pane) to open it for editing.

4 Right-click DataSource1 and select Connect from the context menu.

5 Right-click Mirror (in the Structure pane) and select Add mirror from the context
menu.

6 Edit Mirror1 so that the Type property is set to PRIMARY.

Each of the mirrors should also ensure that the host uses the IP of the machine
where they are located instead the default value of localhost. You can use a
different IP address for each of the mirrors, as long as the JdsServer is started for
that mirror at the IP. The Directory mirror must have access to each of the mirrors.

7 Set the Auto Failover and Instant Synchronization properties to true.

8 Add Mirror2 and edit it to be a Read-only mirror.

Note that you do not need to create AutoFailover_Mirror2 beforehand. It is created
automatically by JDataStore HA.

9 Set the Auto Failover and Instant Synchronization properties to true for all Read-
only mirrors.

10 Repeat the previous two steps for Mirror3 and Mirror4.

11 Add Mirror5 and edit it be the Directory mirror.

12 Set the Auto Failover and Instant Synchronization properties to false for this
Directory mirror.

13 Choose Save Project "NS_AutoFailover.datasources" from the File menu to save the
project.

14 Right-click Mirrors (in the Structure pane) and choose Synchronize all mirrors.

15 Click Mirror Status (in the Structure pane) and verify that Validate Primary is
checked for Mirror1 only.

 15: Using the Vis iNaming Service 215

Conf igur ing Vis iNaming with JdataStore HA

Run the VisiNaming Explicit Clustering example

To run the VisiNaming Explicit Clustering example, complete the following steps:

1 Start osagent with the following command:

osagent

2 Create a file named autofailover.properties with the following properties:

vbroker.naming.backingStoreType=JDBC
vbroker.naming.poolSize=5
vbroker.naming.jdbcDriver=com.borland.datastore.jdbc.DataStoreDriver
vbroker.naming.url=jdbc:borland:dsremote://143.186.141.14/
AutoFailover_Mirror5.jds
vbroker.naming.loginName=SYSDBA
vbroker.naming.loginPwd=masterkey
vbroker.naming.traceOn=0
vbroker.naming.jdsSvrPort=2515
vbroker.naming.logLevel=debug

3 Start Naming Service with the following command:

nameserv –VBJclasspath <JDS_Install>\lib\
jdsserver.jar –config autofailover.properties

4 Start ServerA with the following command:

Server ServerA -ORBpropStorage ns_client.properties &

5 Start ServerB with the following command:

Server ServerB -ORBpropStorage ns_client.properties &

6 Start Client with the following command:

Client -ORBInitRef NameService=<nsIOR>

7 Repeat the previous step several times and observe the output.

To verify the minimum requirement of one Primary and two Read-only mirrors,
complete the following steps:

1 Stop the JdsServer listening to port 2513.

2 Repeat the Start Client step several times.

Note that the behavior is the same as in the previous procedure.

3 Stop the JdsServer listening to port 2514.

4 Repeat the Start Client step several times.

Note that Client begins to raise a BAD_PARAM exception. This is as expected because
a failover requires that at least two read-only mirrors are available.

5 Restart the JdsServer listening to port 2513 and 2514.

This restores the original configuration, with three Read-only mirrors.

To verify the autofailover of JDatastore HA, complete the following steps:

1 Stop the JdsServer listening to port 2511, configured for Primary mirror, and repeat
the Start Client step several times.

Note that one of the Read-only mirrors has been promoted to Primary mirror.

2 Stop another active Read-only mirror and repeat the Start Client step several times.

Note that Client begins to raise a BAD_PARAM exception because a failover requires
that at least two read-only mirrors are available.

3 Restart the JdsServer listening to port 2511.

Note that this was previously configured for Primary mirror.

216 VisiBroker for C++ Developer ’s Guide

Conf igur ing Vis iNaming with JdataStore HA

4 Repeat the Start Client step several times.

Note that Mirror1 is now configured as Read-only mirror. You can check this from
the JDS Server Console by making a datasource connection to the Directory mirror
that the Naming Service uses.

Run the VisiNaming Naming Failover example

Run the following example to observe the failover capability of the VisiNaming service.

Note

Before using this procedure, create a JDataStore HA with one Primary mirror at port
1111, three Read-only mirrors at ports 1112, 1113, 1114 and two Directory mirrors at
ports 1115 and 1116.

1 Start osagent with the following command:

osagent

2 Create a file named autofailover.properties with the following properties:

Naming
vbroker.naming.backingStoreType=JDBC
vbroker.naming.poolSize=5
vbroker.naming.jdbcDriver=com.borland.datastore.jdbc.DataStoreDriver
vbroker.naming.loginName=SYSDBA
vbroker.naming.loginPwd=masterkey
vbroker.naming.traceOn=0
vbroker.naming.jdsSvrPort=1115
#vbroker.naming.logLevel=debug
#default value of enableslave is 0. '1' Indicates cluster or
master-slave configuration
vbroker.naming.enableSlave=1
#indicate master-slave configuration
vbroker.naming.slaveMode=slave
vbroker.naming.masterHost=143.186.141.14
vbroker.naming.masterPort=12372
vbroker.naming.masterServer=Master
vbroker.naming.slaveHost=143.186.141.14
vbroker.naming.slavePort=12373
vbroker.naming.slaveServer=Slave

3 Start the JDataStore Servers as shown in the following example:

JdsServer.exe -port=1111
JdsServer.exe -port=1112
JdsServer.exe -port=1113
JdsServer.exe -port=1114
JdsServer.exe -port=1115
JdsServer.exe -port=1116

4 Start the Naming Service Master with the following command:

nameServ -VBJclasspath <JDS_Install>\lib\
jdsserver.jar -config autofailover.properties -VJprop
vbroker.naming.url=jdbc:borland:dsremote:// 143.186.141.12
AutoFailover_Mirror 5.jds

VBJprop vbroker.se.iiop_tp.scm.iiop_tp.listener.port=12372 Master

 15: Using the Vis iNaming Service 217

Conf igur ing Vis iNaming with JdataStore HA

5 Start the Naming Service Slave with the following command:

nameserv –VBJclasspath <JDS_Install>\lib\

jdsserver.jar –config autofailover.properties -VBJprop

vbroker.naming.url=jdbc:borland:dsremote://143.186.141.14/
AutoFailover_Mirror6.jds

-VBJprop vbroker.se.iiop_tp.scm.iiop_tp.listener.port=12373 –VBJprop
vbroker.naming.jdsSvrPort=1116 Slave

6 Start Server with the following command:

Server -ORBInitRef NameService=<Master Server IOR>

7 Start Client with the following command:

NamingClient -ORBInitRef NameService=<Master Server IOR>

8 Press the Enter key and observe the output.
Note that the balance returns a value.

9 Stop the Naming Service Master, repeat the previous step, and observe the output.

Note that the balance returns a value.

10 Press the Enter key to exit, and observe the output.

Note that the balance returns a value

To see how two Directory mirrors handle a single point of failure, complete the
following steps:

1 Stop the JdsServer listening to port 1115.

2 Without starting the Naming Service Master, repeat the Start Client step.
The CannotProceed exception is raised, which is the expected behavior.

3 Repeat the Start Client step several times.

Note that the balance will return a value. Once it can return a value, you can
observe that it is using the Directory mirror that is listening on port 1117.

4 Repeat the Start Client step and press the Enter key three times.

Note that the balance returns a value for three times.

To see how autofailover functions with two Directory mirrors, complete the following
steps:

1 Stop the JdsServer that is listening on port 1111.

2 Repeat the Start Client step.

3 Press the Enter key three times.

The CannotProceed exception is raised several times before it starts returning a
value. Once it returns a value, you can see that one of the mirrors is promoted to be
a Primary mirror. This can only be viewed using the JDS Server Console.

218 VisiBroker for C++ Developer ’s Guide

Conf igur ing Vis iNaming with JdataStore HA

 15: Using the Vis iNaming Service 219

Conf igur ing Vis iNaming with JdataStore HA

220 VisiBroker for C++ Developer ’s Guide

 16: Using the Event Serv ice 221

Using the Event Service
This section describes the VisiBroker Event Service.

Note

The OMG Event Service has been superseded by the OMG Notification Service. The
VisiBroker Event Service is still supported for backward compatibility and light weight
purposes. For mission critical applications, we strongly recommend using VisiBroker
VisiNotify. For more information, see “Introduction to VisiNotify.”

Overview
The Event Service package provides a facility that de-couples the communication
between objects. It provides a supplier-consumer communication model that allows
multiple supplier objects to send data asynchronously to multiple consumer objects
through an event channel. The supplier-consumer communication model allows an
object to communicate an important change in state, such as a disk running out of free
space, to any other objects that might be interested in such an event.

222 VisiBroker for C++ Developer ’s Guide

Overview

Figure 16.1 Supplier-Consumer communication model

The figure above shows three supplier objects communicating through an event
channel with two consumer objects. The flow of data into the event channel is handled
by the supplier objects, while the flow of data out of the event channel is handled by the
consumer objects. If each of the three suppliers shown in the figure above sends one
message every second, then each consumer will receive three messages every
second and the event channel will forward a total of six messages per second.

The event channel is both a consumer of events and a supplier of events. The data
communicated between suppliers and consumers is represented by the Any class,
allowing any CORBA type to be passed in a type safe manner. Supplier and consumer
objects communicate through the event channel using standard CORBA requests.

Proxy consumers and suppliers

Consumers and suppliers are completely de-coupled from one another through the use
of proxy objects. Instead of interacting with each other directly, they obtain a proxy
object from the EventChannel and communicate with it. Supplier objects obtain a
consumer proxy and consumer objects obtain a supplier proxy. The EventChannel
facilitates the data transfer between consumer and supplier proxy objects. The figure
below shows how one supplier can distribute data to multiple consumers.

 16: Using the Event Service 223

Overview

Figure 16.2 Consumer and supplier proxy objects

Note

The event channel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process.

224 VisiBroker for C++ Developer ’s Guide

Communicat ion models

OMG Common Object Services specification

The VisiBroker Event Service implementation conforms to the OMG Common Object
Services Specification, with the following exceptions:

– The VisiBroker Event Service only supports generic events. There is currently no
support for typed events in the VisiBroker Event Service.

– The VisiBroker Event Service offers no confirmation of the delivery of data to either
the event channel or to consumer applications. TCP/IP is used to implement the
communication between consumers, suppliers and the event channel and this
provides reliable delivery of data to both the channel and the consumer. However,
this does not guarantee that all of the data that is sent is actually processed by the
receiver.

Communication models
The Event Service provides both a pull and push communication model for suppliers
and consumers. In the push model, supplier objects control the flow of data by pushing
it to consumers. In the pull model, consumer objects control the flow of data by pulling
data from the supplier.

The EventChannel insulates suppliers and consumers from having to know which model
is being used by other objects on the channel. This means that a pull supplier can
provide data to a push consumer and a push supplier can provide data to a pull
consumer.

Figure 16.3 Push model

Note

The EventChannel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process.

 16: Using the Event Service 225

Communicat ion models

Push model

The push model is the more common of the two communication models. An example
use of the push model is a supplier that monitors available free space on a disk and
notifies interested consumers when the disk is filling up. The push supplier sends data
to its ProxyPushConsumer in response to events that it is monitoring.

The push consumer spends most of its time in an event loop, waiting for data to arrive
from the ProxyPushSupplier. The EventChannel facilitates the transfer of data from the
ProxyPushSupplier to the ProxyPushConsumer.

The figure below shows a push supplier and its corresponding ProxyPushConsumer
object. It also shows three push consumers and their respective ProxyPushSupplier
objects.

Pull model

In the pull model, the event channel regularly pulls data from a supplier object, puts the
data in a queue, and makes it available to be pulled by a consumer object. An example
of a pull consumer would be one or more network monitors that periodically poll a
network router for statistics.

The pull supplier spends most of its time in an event loop waiting for data requests to
be received from the ProxyPullConsumer. The pull consumer requests data from the
ProxyPullSupplier when it is ready for more data. The EventChannel pulls data from the
supplier to a queue and makes it available to the ProxyPullSupplier.

The figure below shows a pull supplier and its corresponding ProxyPullConsumer object.
It also shows three pull consumers and their respective ProxyPullSupplier objects.

Figure 16.4 Pull model

Note

The event channel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process.

226 VisiBroker for C++ Developer ’s Guide

Using event channels

Using event channels
To create an EventChannel, connect a supplier or consumer to it and use it:

1 Create and start the EventChannel:

Windows

prompt> start vbj com.inprise.vbroker.CosEvent.EventServer -ior <iorFilename>
 <channelName>

UNIX

prompt> vbj com.inprise.vbroker.CosEvent.EventServer -ior <iorFilename>
 <channelName> &

Note

Only one instance of the EventChannel is supported. All binding to the EventChannel
is done through the call to orb.resolve_initial_references("EventService"), where
EventService is the hardcoded EventChannel name.

2 Connect to the EventChannel.

3 Obtain an administrative object from the channel and use it to obtain a proxy object.

4 Connect to the proxy object.

5 Begin transferring or receiving data.

The methods used for these steps vary, depending on whether the object being
connected is a supplier or a consumer, and on the communication model being used.
The table below shows the appropriate methods for suppliers.

The table below shows the appropriate methods for consumers.

Steps Push supplier Pull supplier

Bind to the
EventChannel

CosEventChannelAdmin::
EventChannel::
_narrow(orb::
resolve_initial_references
("EventService"))

CosEventChannelAdmin::
EventChannel::
_narrow(orb::
resolve_initial_references
("EventService"))

Get a
SupplierAdmin

EventChannel::for_suppliers() EventChannel::for_suppliers()

Get a
consumer proxy

SupplierAdmin::
obtain_push_consumer()

SupplierAdmin::
obtain_pull_consumer()

Add the supplier to
the EventChannel

ProxyPushConsumer::
connect_push_supplier()

ProxyPullConsumer::
connect_pull_supplier()

Data transfer ProxyPushConsumer::push() Implements pull() and try_pull()

Steps Push consumer Pull consumer

Bind to the
EventChannel

CosEventChannelAdmin::
EventChannel::
_narrow(orb::
resolve_initial_references
("EventService"))

CosEventChannelAdmin::
EventChannel::
_narrow(orb::
resolve_initial_references
("EventService"))

Get a
ConsumerAdmin

EventChannel::for_consumers() EventChannel::for_consumers()

Obtain a
supplier proxy

ConsumerAdmin::obtain_push_suppl
ier()

ConsumerAdmin::
obtain_pull_supplier()

Add the consumer to
the EventChannel

ProxyPushSupplier::connect_push_
consumer()

ProxyPushSupplier::
connect_pull_consumer()

Data transfer Implements push() ProxyPushSupplier::
pull() and try_pull()

 16: Using the Event Service 227

Creat ing event channels

Creating event channels
VisiBroker provides a proprietary interface called EventChannelFactory in the
CosEventChannelAdmin module to allow Event Service clients to create event
channels on demand. To enable this feature, start the event service for your operating
system as follows:

Windows

start vbj -Dvbroker.events.factory=true
com.inprise.vbroker.CosEvent.EventServer <factoryName>

UNIX

vbj -Dvbroker.events.factory=true
com.inprise.vbroker.CosEvent.EventServer <factoryName>

The property vbroker.events.factory instructs the service to create a factory object with
the name <factoryName> (with a default value of VisiEvent) instead of a channel
object. To write the IOR of the factory to a file, use the –ior option to provide the file
name. By default, the IOR is written to the console.

The factory object created can then be bound by the client, either using the IOR written
to the file (or console) or using the osagent bind mechanism to pass the factory object
name. Once the factory object reference is obtained, it can be used to create, look up,
or destroy event channel objects. An event channel object obtained from the factory
object can be used to connect suppliers and consumers.

Examples of push supplier and consumer
This section describes the example of the push supplier and the consumer
applications.

Push supplier and consumer example

This section describes the example push supplier and consumer applications. When
executed, the supplier application prompts the user to enter data and then pushes the
data to the consumer application. The consumer application receives the data and
writes it to the screen.

The push supplier application is implemented in the PushModel.C file and the push
consumer is implemented in the PushView.C file. These files can be found in the
<install_dir>/examples/vbroker/events directory.

Deriving a PushSupplier class
The first step in implementing a supplier is to derive our own PushModel class from the
PushSupplier interface, shown below.

module CosEventComm {
 interface PushSupplier {
 void disconnect_push_supplier();
 };
};

228 VisiBroker for C++ Developer ’s Guide

Examples of push suppl ier and consumer

The code sample below shows the PushModel class, implemented in C++. The
disconnect_push_supplier method is called by the EventChannel to disconnect the
supplier when the channel is being destroyed. This implementation simply prints out a
message and exits. If the PushModel object were persistent, this method might also call
deactivate_obj to deactivate the object.

// PushModel.C
#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"
class PushModel : public POA_CosEventComm::PushSupplier, public VISThread {
public:
 void disconnect_push_supplier() {
 cout << "Model::disconnect_push_supplier()" << endl;
 try {
 PortableServer::ObjectId_var objId =
 PortableServer::string_to_ObjectId("PushModel");
 _myPOA->deactivate_object(objId);
 }
 catch(const CORBA::Exception& e) {
 cout << e << endl;

 }
 }
};

Implementing the PushSupplier
The first portion of the supplier implementation is fairly routine. After doing some
initialization, a local scope is set, resulting in a locally-scoped PushModel object.

int main(int argc, char* const* argv)
{
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 //Create the POA serverPOA
 ...

 CPushModel* model = NULL;
 CosEventChannelAdmin::ProxyPushConsumer_var pushConsumer = NULL;

 model = new PushModel(orb, pushConsumer, serverPOA);
 CORBA::String_var supplier_name(CORBA::string_dup("PushModel"));
 PortableServer::ObjectId_var objId =
 PortableServer::string_to_ObjectId(supplier_name);
 serverPOA->activate_object_with_id(objId, model);
 // Activate the POA Manager
 serverPOA->the_POAManager()->activate();
 CORBA::Object_var reference = serverPOA->servant_to_reference(model);
 cout << "Created model: " << reference << endl;
 }
 ...
}

The example uses command line options to implement the PushSupplier. When the
command line option is m, it initializes and instantiates the PushModel object.

If the command line option is p, the example binds to the EventChannel and obtains a
SupplierAdmin object from the EventChannel. Note that the application could specify an
object name for a specific EventChannel. In a real implementation, the object could be
passed as an argument to the application or obtained from the naming service

 16: Using the Event Service 229

Examples of push suppl ier and consumer

(VisiNaming), if it is available. For more information, see “Using the VisiNaming
Service.” Next the SupplierAdmin object is used to obtain a proxy for the pushConsumer
object from the EventChannel.

If the command line option is c, the pushSupplier object is connected to the
EventChannel.

...
if (cmd == 'p') {
 if (channel == NULL) {
 cout << "Need to locate an [e]vent channel" << endl;
 }
 else {
 pushConsumer = channel->for_suppliers()->obtain_push_consumer();
 cout << "Obtained push consumer: " << pushConsumer << endl;
 continue;
 }
}
else if (cmd == 'c') {
 if (model == NULL) {
 cout << "Need to create a [m]odel" << endl;
 }
 else if (pushConsumer == NULL) {
 cout << "Need to obtain a [p]ush consumer" << endl;
 }
 else {
 cout << "Connecting..." << endl;
 pushConsumer->connect_push_supplier(model->_this());
 model->start();
 continue;
 }
}

A different thread of the supplier application prompts the user for a string, waits for a
string to be entered and converts the string to an Any object. Lastly, the data is “pushed”
to the consumer proxy object.

...
while(true) {
 VISPortable::vsleep(_delay);
 try {
 char buf[81];
 std::string str;
 sprintf(buf, "%s%d", "Hello #", ++_counter);
 str = buf;

 CORBA::Any_var message = new CORBA::Any();
 *message <<= str.c_str();
 cout << "Supplier pushing: " << str.c_str() << endl;

 _pushConsumer->push(*message);
 }
 catch(CosEventComm::Disconnected e) {
 cout << "Disconnected #" << _counter << endl;
 }
 catch(CORBA::OBJECT_NOT_EXIST e)
 {
 cout << "Push Consumer has been disconnected" << endl;
 return;
 }
 catch(const CORBA::Exception& e) {
 cout << e << endl;
 disconnect_push_supplier();

230 VisiBroker for C++ Developer ’s Guide

Examples of push suppl ier and consumer

 return;
 }
 catch(...) {
 cout << "Unexpected exception" << endl;
 disconnect_push_supplier();
 return;
 }
}
...

Complete implementation for a sample push supplier
#include "corba.h"
#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"
#include "vport.h"
#include <string>

USE_STD_NS
class PushModel : public POA_CosEventComm::PushSupplier, public VISThread{
 public:
 PushModel(CORBA::ORB_ptr orb,
 CosEventComm::PushConsumer_ptr pushConsumer,
 PortableServer::POA_ptr myPOA) :
 _orb(orb), _pushConsumer(pushConsumer), _myPOA(myPOA), _counter(0),
 _delay(1)
 {}
 void delay(int time) { delay = time; }
 void start() {
 // start the thread
 run();
 }
 void disconnect_push_supplier() {
 cout << "Model::disconnect_push_supplier()" << endl;
 try {
 PortableServer::ObjectId_var objId =
 PortableServer::string_to_ObjectId("PushModel");
 _myPOA->deactivate_object(objId);
 }
 catch(const CORBA::Exception& e) {
 cout << e << endl;
 }
 }
 // implement begin() callback
 void begin() {
 while(true) {
 VISPortable::vsleep(_delay);
 try {
 char buf[81];
 std::string str;
 sprintf(buf, "%s%d", "Hello #", ++_counter);
 str = buf;
 CORBA::Any_var message = new CORBA::Any();
 *message <<= str.c_str();
 cout << "Supplier pushing: " << str.c_str() << endl;
 _pushConsumer->push(*message);
 }
 catch(CosEventComm::Disconnected e) {
 cout << "Disconnected #" << _counter << endl;
 }

 16: Using the Event Service 231

Examples of push suppl ier and consumer

 catch(CORBA::OBJECT_NOT_EXIST e)
 {
 cout << "Push Consumer has been disconnected" << endl;
 return;
 }
 catch(const CORBA::Exception& e) {
 cout << e << endl;
 disconnect_push_supplier();
 return;
 }
 catch(...) {
 cout << "Unexpected exception" << endl;
 disconnect_push_supplier();
 return;
 }
 }
 }

private :
 int _delay;
 int _counter;
 CORBA::ORB_var _orb;
 PortableServer::POA_var _myPOA;
 CosEventComm::PushConsumer_var _pushConsumer;
};

int main(int argc, char* const* argv)
{
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

 // Create policies for our persistent POA
 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] =
 rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);

 PortableServer::POAManager_var poa_manager = rootPOA->the_POAManager();

 // Create serverPOA with the right policies
 PortableServer::POA_var serverPOA =
 rootPOA->create_POA("event_service_poa", poa_manager, policies);

 CosEventChannelAdmin::EventChannel_var channel = NULL;
 PushModel* model = NULL;

CosEventChannelAdmin::ProxyPushConsumer_var pushConsumer = NULL;

 while(true) {
 try {

 cout << "-> ";
 cout.flush();
 char cmd;
 if (cin >> cmd) {

232 VisiBroker for C++ Developer ’s Guide

Examples of push suppl ier and consumer

 if (cmd == 'e') {
 obj = orb->resolve_initial_references("EventService");
 channel = CosEventChannelAdmin::EventChannel::_narrow(obj);
 cout << "Located event channel: " << channel << endl;
 continue;
 }
 else if (cmd == 'p') {
 if (channel == NULL) {
 cout << "Need to locate an [e]vent channel" << endl;
 }
 else {
 pushConsumer = channel->

for_suppliers()_>obtain_push_consumer();
 cout << "Obtained push consumer: " << pushConsumer <<
endl;
 continue;
 }
 }
 else if (cmd == 'm') {
 if (pushConsumer == NULL) {
 cout << "Need to obtain a [p]ush consumer" << endl;
 }
 else {
 model = new PushModel(orb, pushConsumer, serverPOA);
 CORBA::String_var

supplier_name(CORBA::string_dup("PushModel"));
 PortableServer::ObjectId_var objId =
 PortableServer::string_to_ObjectId(supplier_name);
 serverPOA->activate_object_with_id(objId, model);
 // Activate the POA Manager
 serverPOA->the_POAManager()->activate();
 CORBA::Object_var reference = serverPOA->
 servant_to_reference(model);
 cout << "Created model: " << reference << endl;
 continue;
 }
 }
 else if (cmd == 's') {
 if (model == NULL) {
 cout << "Need to create a [m]odel" << endl;
 }
 else {
 int delay;
 if (cin >> delay) {
 if (delay < 0)
 cout << "[s]leep delay must be positive" ;
 else
 model->delay(delay);
 }
 else {
 cerr << "Invalid argument to [s]leep" << endl;
 }
 }
 }
 else if (cmd == 'c') {
 if (model == NULL) {
 cout << "Need to create a [m]odel" << endl;
 }

 16: Using the Event Service 233

Examples of push suppl ier and consumer

 else if (pushConsumer == NULL) {
 cout << "Need to obtain a [p]ush consumer" << endl;
 }
 else {
 cout << "Connecting..." << endl;
 pushConsumer->connect_push_supplier(model->_this());
 model->start();
 continue;
 }
 }
 else if (cmd == 'd') {
 if (pushConsumer == NULL) {
 cout << "Need to obtain a [p]ush consumer" << endl;
 }
 else {
 cout << "Disconnecting..." << endl;
 pushConsumer->disconnect_push_consumer();
 continue;
 }
 }
 else if (cmd == 'q') {
 cout << "Quitting..." << endl;
 CORBA::ORB::shutdown();
 break;
 }
 else {
 cout << "Commands: e [e]vent channel" << endl
 << " s <# seconds> set [s]leep delay" << endl
 << " p [p]ush consumer" << endl
 << " m [m]odel" << endl
 << " c [c]onnect" << endl
 << " d [d]isconnect" << endl
 << " q [q]uit" << endl;
 }
 }
 }
 catch(const CORBA::SystemException& e) {
 cerr << e << endl;
 }
 }
 }
 catch(const CORBA::Exception& e) {
 cerr << e << endl;
 }
 return 0;
}

234 VisiBroker for C++ Developer ’s Guide

Examples of push suppl ier and consumer

Deriving a PushConsumer class
The code sample below shows the first part of the supplier application, which defines a
PushView class that is derived from the PushConsumer interface, shown below.

module CosEventComm {
 exception Disconnected();
 interface PushConsumer {
 void push(in any data) raises(Disconnected);
 void disconnect_push_consumer();
 };
};

The push method receives an Any type and attempts to convert it to a string and print it.
The disconnect_push_supplier method is called by the EventChannel to disconnect the
consumer when the channel is destroying itself.

// PushView.C
#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"
class PushView : public POA_CosEventComm::PushConsumer
{
 public:
 void push(const CORBA::Any& data) {
 cout << "Consumer being pushed: " << data << endl;
 }

 void disconnect_push_consumer() {
 cout << "PushView::disconnect_push_consumer" << endl;
 }
};

Implementing the PushConsumer
If the command line is v, then the PushConsumer object is instantiated and activated.
Different command line options cause it to bind to the EventChannel, obtain the supplier
proxy object and connect to the consumer object and wait to receive push requests.

// PushView.C
#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"
...
int main(int argc, char* const* argv)
{
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

 // Create policies for our persistent POA
 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] =
 rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);

 PortableServer::POAManager_var poa_manager = rootPOA->the_POAManager();
 // Create serverPOA with the right policies
 PortableServer::POA_var serverPOA =
 rootPOA->create_POA("event_service_poa", poa_manager, policies);

 16: Using the Event Service 235

Examples of push suppl ier and consumer

 CosEventChannelAdmin::EventChannel_var channel = NULL;
 PushView* view = NULL;
 CosEventChannelAdmin::ProxyPushSupplier_var pushSupplier = NULL;

 while(true) {
 try {
 cout << "-> ";
 cout.flush();
 char cmd;
 if (cin >> cmd) {
 if (cmd == 'e') {
 obj = orb->resolve_initial_references("EventService");
 channel = CosEventChannelAdmin::EventChannel::_narrow(obj);
 cout << "Located event channel: " << channel << endl;
 continue;
 }
 else if (cmd == 'v') {
 view = new PushView();
 CORBA::String_var
consumer_name(CORBA::string_dup("PushView"));
 PortableServer::ObjectId_var objId =
 PortableServer::string_to_ObjectId(consumer_name);
 serverPOA->activate_object_with_id(objId, view);
 // Activate the POA Manager
 serverPOA->the_POAManager()->activate();
 CORBA::Object_var reference = serverPOA
 -
>servant_to_reference(view);
 cout << "Created view: " << reference << endl;
 continue;
 }
 else if (cmd == 'p') {
 if (channel == NULL) {
 cout << "Need to locate an [e]vent channel" << endl;
 }
 else {
 pushSupplier = channel->for_consumers()
 ->obtain_push_supplier();
 cout << "Obtained push consumer: " << pushSupplier <<
endl;
 continue;
 }
 }
 else if (cmd == 'c') {
 if (view == NULL) {
 cout << "Need to create a [v]iew" << endl;
 }
 else if (pushSupplier == NULL) {
 cout << "Need to obtain a [p]ush supplier" << endl;
 }
 else {
 cout << "Connecting..." << endl;
 pushSupplier->connect_push_consumer(view->_this());
 continue;
 }
 }
 else if (cmd == 'd') {
 if (pushSupplier == NULL) {
 cout << "Need to obtain a [p]ush supplier" << endl;
 }

236 VisiBroker for C++ Developer ’s Guide

Examples of push suppl ier and consumer

 else {
 cout << "Disconnecting..." << endl;
 pushSupplier->disconnect_push_supplier();
 continue;
 }
 }
 else if (cmd == 'q') {
 cout << "Quitting..." << endl;
 break;
 }
 cout << "Commands: e [e]vent channel" << endl
 << " p [p]ush supplier" << endl
 << " v [v]iew" << endl
 << " c [c]onnect" << endl
 << " d [d]isconnect" << endl
 << " q [q]uit" << endl;
 }
 }
 catch(const CORBA::SystemException& e) {
 cerr << e << endl;
 }
 }
 }
 catch(const CORBA::Exception& e) {
 cerr << e << endl;
 }
}

Setting the queue length

In some environments, consumer applications may run slower than supplier
applications. The maxQueueLength parameter prevents out-of-memory conditions by
limiting the number of outstanding messages that will be held for each consumer that
cannot keep up with the rate of messages from the supplier.

If a supplier generates 10 messages per second and a consumer can only process one
message per second, the queue will quickly fill up. Messages in the queue have a fixed
maximum length and if an attempt is made to add a message to a queue that is full, the
channel will remove the oldest message in the queue to make room for the new
message.

Each consumer has a separate queue, so a slow consumer may miss messages while
another, faster consumer may not lose any. The code sample below shows how to limit
each consumer to 15 outstanding messages.

CosEventChannel -maxQueueLength=15 MyChannel

Note

If maxQueueLength is not specified or if an invalid number is specified, a default queue
length of 100 is used.

 16: Using the Event Serv ice 237

Compiling and linking programs
Applications that use the Event Service need to include the following generated files:

#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"

UNIX

UNIX applications need to be linked with one of the libraries:

– libcosev.a

– libcosev.so

Windows

Windows applications need to be linked with the cosev_r.lib (cosev_r.dll) library.

238 VisiBroker for C++ Developer ’s Guide

 17: Using the Vis iBroker Server Manager 239

Using the VisiBroker Server Manager
The VisiBroker Server Manager allows client applications to monitor and manage
object servers, view and set properties at runtime for those servers, and view and
invoke methods on Server Manager objects. The Server Manager uses elements
known as containers which represent each major ORB component. A container can
contain properties, operations, and even other containers.

Note

Do not confuse the Server Manager container with J2EE containers. The Server
Manager container is simply a logical grouping of ORB components and selected
runtime properties.

Getting Started with the Server Manager
This section covers enabling the Server Manager on a server, obtaining a Server
Manager reference, working with containers, the Storage interface and the Server
Manager IDL.

Enabling the Server Manager on a server

A VisiBroker server is not enabled to be managed by default. The command which
starts the server must set the following property to manage the server:

vbroker.orb.enableServerManager=true

The property can be specified either through the command-line or through the server's
properties file.

240 VisiBroker for C++ Developer ’s Guide

Gett ing Star ted wi th the Server Manager

Obtaining a Server Manager reference

The first step in interacting with a Server Manager is to obtain a reference to a server's
Server Manager. This reference points to the top level container. A client can obtain the
reference in two ways:

1 A server runner can choose to name the Server Manager using the property option
vbroker.serverManager.name. For example, the command:

prompt> Server -Dvbroker.serverManager.name=BigBadBoss

registers the Server Manager name “BigBadBoss” to the Smart Agent namespace.
From this point onward, the client can bind to that name and start invoking
operations on the reference. This property can be set in the properties file as well.
This method of locating a Server Manager can be used when the client does not
have object references to any other objects implemented by the server, for example:

ServerManager::Container_var cont =
ServerManager::Container::_bind("BigBadBoss");

2 If the client has an object reference to some other object implemented by the server,
then the client can perform _resolve_reference("ServerManager") on that object to
obtain the ServerManager for the ORB corresponding to the object. The following
code fragment obtains the Server Manager's top-level container from the
Bank::AccountManager object.

Bank::AccountManager_var manager = Bank::AccountManager::_bind("/
bank_agent_poa", managerId);
ServerManager::Container_var cont;
CORBA::Object_var objCont = manager->_resolve_reference("ServerManager");

The client code needs to include the servermgr_c.hh to use the Server Manager
interfaces.

Working with Containers

Once a client application has obtained the reference to the top level container, it can:

– get, set, or add properties on top level container.

– iterate through containers container inside top level container.

– get, set, or add containers.

– invoke operations defined in containers.

– get or set storage on the containers.

– restore or persist properties to property storage.

The top-level container does not support any properties or operations but just contains
the ORB container. The ORB container in turn contains few ORB properties, a shutdown
method, and other containers like RootPOA, Agent, OAD, and so forth.

See “The Container Interface” for information on how to interact with containers. The
“Server Manager examples” shows Java and C++ interactions as well.

 17: Using the Vis iBroker Server Manager 241

The Container Interface

The Storage Interface

Server Manager provides an abstract notion of storage that can be implemented in any
fashion. Individual containers may choose to store their properties in the different ways.
Some containers may choose to store their properties in a database, while others may
choose to store them in files or in some other method. The Storage interface is defined
in Server Manager IDL.

Every container uses the same methods to get and set storage, along with the ability to
optionally set storage on all child containers of the parent. Similarly, each container
uses the same methods to read and write its properties from the storage.

For information on the Storage Interface and its methods, see “The Storage Interface”.

The Container Interface
The container interface defines an interface and associated methods for logically
grouping sets of objects, properties, operations, and so forth.

Container Methods

A container can hold properties, operations, and other containers. Each major ORB
component is represented as a container. The top-level container corresponds to the
ORB itself and includes a few ORB properties, the shutdown method, and a few other
commonly used containers like RootPOA and Agent.

This section explains the C++ methods that can be executed on the container
interface. There are four categories:

– Methods related to property manipulation and quereies

– Methods related to operations

– Methods related to children containers

– Methods related to storage

Methods related to property manipulation and queries
CORBA::StringSequence list_all_properties();

Returns the names of all the properties in the contianer as a StringSequence.

PropertySequence get_all_properties();

Returns the PropertySequence containing the names, values, and read-write status of all
the properties in the container.

Property get_property(in string name raises(NameInvalid);

Returns the value of the property name passed as an input parameter.

void add_property(in string name, in any value) raises(NameInvalid,
ValueInvalid, ValueNotSettable);

Sets the value of the property name to the requested value.

void persist_properties(in boolean recurse) raises(StorageException);

Causes the container to actually store its properties to the associated storage. If no
storage is associated with the container, a StorageException will be raised. When it is
invoked with the parameter recurse=true, the properties of the children containers are
also stored into the storage. It is up to the container to decide if it has to store all the
properties or only the changed properties.

void restore_properties(in boolean recurse) raises(StorageException);

Instructs the container to obtain its properties from the storage. A container knows
exactly what properties is manages and it attempts to read those properties from the
storage. The containers shipped with the ORB do not support restoring from the
storage. You must create containers that support this feature yourself.

242 VisiBroker for C++ Developer ’s Guide

The Storage Interface

Methods related to operations
::CORBA::StringSeqence list_all_operations();

Returns the names of all the operations suppored in the container.

OperationSequence get_all_operations();

Returns all the operations along with the parameters and the type code of the
parameters so that the operation can be invoked with the appropriate parameters.

Operation get_operation(in string name) raises(NameInvalid);

Returns the parameter information of the operation specified by name which can be
used to invoke the operation.

any do_operation(in Operation op) raises(NameInvalid, ValueInvalid,
OperationFailed);

Invokes the method in the operation and returns the result.

Methods related to children containers
::CORBA::StringSequence list_all_containers();

Returns the names of all the children containers of the current container.

NamedContainerSequence get_all_containers();

Returns all the children containers.

NamedContainer get_container(in string name) raises(NameInvalid);

Returns the child container identified by the name parameter. If there is not any child
container with this name, a NameInvalid exception is raised.

void add_container(in NamedContainer container) raises(NameAlreadyPresent,
ValueInvalid);

Adds the container as a child container of this container.

void set_container(in string name, in Container value) raises(NameInvalid,
ValueInvalid, ValueNotSettable);

Modifies the child container identified by the name parameter to one in the value
parameter.

Methods related to storage
void set_storage(in Storage s, in boolean recurse);

Sets the storage of this container. If recurse=true, it also sets the storage for all its
children as well.

Storage get_storage();

Returns the current storage of the container.

The Storage Interface
The Server Manager provides an abstract notion of storage that can be implemented in
any fashion. Individual containers may choose to store their properties in databases,
flat files, or some other means. The storage implementation included with the
VisiBroker ORB uses a flat-file-based approach.

Storage Interface Methods

void open() raises (StorageException);

 17: Using the Vis iBroker Server Manager 243

Limit ing access to the Server Manager

Opens the storage and makes it ready for reading and writing the properties. For the
database-based implementation, logging into the database is performed in this
method.

void close() raises (StorageException);

Closes the storage. This method also updates the storage with any properties that
have been changed since the last Container::persist_properties call. In database
implementations, this method closes the database connection.

Container::PropertySequence read_properties() raises(StorageException);

Reads all the properties from the storage.

Container::Property read_property(in string propertyName)
raises(StorageException, Container::NameInvalid);

Returns the property value for propertyName read from the storage.

void write_properties(in Container::PropertySequence p)
raises(StorageException);

Saves the property sequence into the storage.

void write_property(in Container::Property p) raises(StorageException);

Saves the single property into the storage.

Limiting access to the Server Manager
A client that obtains the Server Manager can control the entire ORB and hence security
is paramount. The following properties can limit a user's access to the Server Manager
functionality:

Property Default Value Description

vbroker.orb.enableServerManager false Setting this property to True enables
the Server Manager.

vbroker.serverManager.enableOperations true Controls the permission to invoke
operations in the containers. If set to
false, the client will not be able to
invoke do_operation on any container.

vbroker.serverManager.enableSetProperty true Controls the setting of properties
from the client. If set to false, clients
cannot modify any of the container
properties.

244 VisiBroker for C++ Developer ’s Guide

Limit ing access to the Server Manager

Server Manager IDL

Server Manager IDL is as shown below:

module ServerManager {
interface Storage;

exception StorageException {
 string reason;
};

interface Container
{
 enum RWStatus {
 READWRITE_ALL,
 READONLY_IN_SESSION,
 READONLY_ALL
 };

 struct Property {
 string name;
 any value;
 RWStatus rw_status;
 };
 typedef sequence<Property> PropertySequence;

 struct NamedContainer {
 string name;
 Container value;
 boolean is_replaceable;
 };
 typedef sequence<NamedContainer> NamedContainerSequence;

 struct Parameter {
 string name;
 any value;
 };
 typedef sequence<Parameter> ParameterSequence;

 struct Operation {
 string name;
 ParameterSequence params;
 ::CORBA::TypeCode result;
 };
 typedef sequence<Operation> OperationSequence;

 struct VersionInfo {
 unsigned long major;
 unsigned long minor;
 };

 exception NameInvalid{};
 exception NameAlreadyPresent{};
 exception ValueInvalid{};
 exception ValueNotSettable{};
 exception OperationFailed{
 string real_exception_reason;
 };

 17: Using the Vis iBroker Server Manager 245

Limit ing access to the Server Manager

 ::CORBA::StringSequence list_all_properties();
 PropertySequence get_all_properties();
 Property get_property(in string name) raises (NameInvalid);
 void add_property(in Property prop)
 raises(NameAlreadyPresent, NameInvalid, ValueInvalid);
 void set_property(in string name, in any value)
 raises(NameInvalid, ValueInvalid, ValueNotSettable);

 ::CORBA::StringSequence get_value_chain(in string propertyName) raises
(NameInvalid);
 void persist_properties(in boolean recurse) raises (StorageException);
 void restore_properties(in boolean recurse) raises (StorageException);

 ::CORBA::StringSequence list_all_operations();
 OperationSequence get_all_operations();
 Operation get_operation(in string name)
 raises (NameInvalid);
 any do_operation(in Operation op)
 raises(NameInvalid, ValueInvalid, OperationFailed);

 ::CORBA::StringSequence list_all_containers();
 NamedContainerSequence get_all_containers();
 NamedContainer get_container(in string name)
 raises (NameInvalid);
 void add_container(in NamedContainer container)
 raises(NameAlreadyPresent, ValueInvalid);
 void set_container(in string name, in Container value)
 raises(NameInvalid, ValueInvalid, ValueNotSettable);

 void set_storage(in Storage s, in boolean recurse);
 Storage get_storage();

 readonly attribute VersionInfo version;
};

interface Storage
{
 void open() raises (StorageException);
 void close() raises (StorageException);
 Container::PropertySequence read_properties() raises
 (StorageException);
 Container::Property read_property(in string propertyName)
 raises (StorageException, Container::NameInvalid);
 void write_properties(in Container::PropertySequence p) raises
 (StorageException);
 void write_property(in Container::Property p) raises (StorageException);
};

};

246 VisiBroker for C++ Developer ’s Guide

Server Manager examples

Server Manager examples
The following examples demonstrate how to:

1 Obtain a reference to the top-level container.

2 Get all containers and their properties recursively.

3 Getting, setting, and saving properties on different containers.

4 Invoke the shutdown() method on the ORB container.

These example files can be found in:

<install_dir>/examples/vbroker/ServerManager/

The following example uses the bank_agent server. This server should be started by
passing the property storage file. Initially the property file contains the properties to
enable the Server Manager and set its name. The file is used by the Server Manager to
update the properties if the user changes them. The properties to enable the Server
Manager and set its name can be passed as command-line options, but the property
file is required if any of the properties are to be modified and saved during the session.

Initially, the property file contains the following:

server properties
vbroker.orb.enableServerManager=true
vbroker.serverManager.name=BigBadBoss

The server is started from the command-line:

prompt> Server -ORBpropStorage prop.txt

Obtaining the reference to the top-level container

This example uses the second, or bind method since the Server Manager has been
started with a name (see “Obtaining a Server Manager reference”).

ServerManager::Container_var cont =
ServerManager::Container::_bind("BigBadBoss");

Getting all the containers and their properties

The following example shows how get_all_properties, get_all_operations, and
get_all_containers can be used to query all the properties and operations of all the
containers below the current container recursively.

void SrvrmgrUtil::displayContainer(char * name, ServerManager::Container_ptr
cont) {
 try {
 ServerManager::Container::PropertySequence * props = cont-
>get_all_properties();
 for (int i =0; i < props->length() ; i++) {
 printProperty((*props)[i]);
 }
 ServerManager::Container::OperationSequence * ops = cont-
>get_all_operations();
 for (int j = 0; j < ops->length(); j++)
 printOperation((*ops)[j]);
 }
 catch (ServerManager::Container::NameInvalid& ne) {
 cerr << ne <<endl;

 } catch (ServerManager::Container::ValueInvalid & ve) {
 cerr << ve <<endl;

 17: Using the Vis iBroker Server Manager 247

Server Manager examples

 } // Pass the remaining exceptions to the main function
 ServerManager::Container::NamedContainerSequence* nc = cont-
>get_all_containers();
 for (int j =0 ; j < nc->length(); j++) {
 displayContainer((*nc)[j].name, (*nc)[j].value);
 }
}

Getting and Setting properties and saving them into the file

The following code fragment shows how to query a property of a container. If the
container is not the top-level container, it needs to be reached first by traversing
through all its parents from the top container. The get and set methods can be called
only on the container which owns the property.

Note

Properties with RW_STATUS values of READONLY_ALL are not settable.

// querying for properties
ServerManager::Container::NamedContainer_var orbCont = cont-
>get_container("ORB");
ServerManager::Container::NamedContainer_var sesCont =
 orbCont->value->get_container("ServerEngines");
ServerManager::Container::NamedContainer_var seCont =
 sesCont->value->get_container("iiop_tp");
ServerManager::Container::NamedContainer_var scmCont =
 seCont->value->get_container("iiop_tp");
SrvrmgrUtil::displayProperty("vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.inUseTh
reads",
 scmCont->value);

CORBA::Any_var a = new CORBA::Any;
a <<= (CORBA::ULong) 34001UL;
scmCont->value->set_property("vbroker.se.iiop_tp.scm.iiop_tp.listener.port",
a);
scmCont->value->persist_properties(true);

Invoking an operation in a Container

The ORB container supports the operation shutdown. The operation can be obtained by
calling get_operation on the container.

void SrvrmgrUtil::invokeShutdown(ServerManager::Container_ptr orbCont)
{
 ServerManager::Container::Operation_var shutOp = orbCont-
>get_operation("shutdown");
 shutOp->params[0].value <<= CORBA::Any::from_boolean(0UL);
 orbCont->do_operation(shutOp.in());
}

The operation returned by the get_operation call has the default parameters. If the
default values of the parameters are not the intended ones, these values should be
modified before calling the do_operation method.

248 VisiBroker for C++ Developer ’s Guide

Server Manager examples

Custom Containers

It is possible for a user application to define containers and add them to the Server
Manager. The container manages two properties and defines one operation. It also
uses its own storage for storing the properties. The two properties are:

The operation is:

For a complete example, go to:

<install_dir>/examples/vbroker/ServerManager/custom_container/

The main steps in writing custom containers is follows:

1 Implement the Container interface defined in Serve Manager IDL.

2 Instantiate the servant that implements the Container interface and activate it on a
POA.

3 Obtain the reference to Server Manager top level container. Add the custom
container to the Container hierarchy.

The server then can be started with the Server Manager enabled and a client can
interact with the custom container.

If you want your application to implement its own storage, it has to implement the
Storage interface defined in Server Manager IDL. The basic steps are same as
implementing custom containers

Property Description

manager.lockAllAccounts This property has a read-write status of READWRITE_ALL, so it can be
modified and takes effect while the server is running. The purpose of
this property is to make AccountManager unavailable for client
applications. The initial value of this property is read by the server on
startup and saved to the same file when server shuts down/restarts.

manager.numAccounts This property has a read-write status of READONLY_ALL, so it can only be
read. The purpose of this property is to provide the number of
Accounts in the AccountManager. The value of this property is not
written to the storage.

Operation Description

shutdown Shuts down the server without starting it again. Before shutdown, the
manager.lockAllAccounts property is written (persisted) to the property file.

 18: Using Vis iBroker Nat ive Messaging 249

Using VisiBroker Native Messaging

Introduction
Native Messaging is a language independent, portable, interoperable, server side
transparent, and OMG compliant two-phase invocation framework for CORBA and
RMI/J2EE (RMI-over-IIOP) applications.

Two-phase invocation (2PI)

In object-oriented vocabulary, invocations are method calls made on target objects.
Conceptually, an invocation is made up of two communication phases:

– sending a request to a target in the first phase

– receiving a reply from the target in the second phase

In classic object-oriented distributed frameworks, such as CORBA, RMI/J2EE, and
.NET, invocations on objects are one-phased (1PI), in which the sending and receiving
phases are encapsulated together inside a single operation rather than exposed
individually. In a one-phased invocation the client calling thread blocks on the operation
after the first phase until the second phase completes or aborts.

If a client can be unblocked after the first phase, and the second phase can be carried
out separately, the invocation is called two-phased (2PI). The operation unblocking
before completing its two invocation phases is called a premature return (PR) in Native
Messaging.

A 2PI allows a client application to unblock immediately after the request sending
phase. Consequently, the client does not have to halt its calling thread and retain the
transport connection while waiting for a reply. The reply can be retrieved or received by
the client from an independent client execution context and/or through a different
transport connection.

Polling-Pulling and Callback models

In a two-phase invocation scenario, after sending out each request the client
application can either actively poll and pull the reply using a poller object provided by
the infrastructure, or the client can passively wait for the infrastructure to notify it and
send back the reply on a specified asynchronous callback handler. These two
scenarios are usually called the synchronous polling-pulling model and the
asynchronous callback model respectively.

250 VisiBroker for C++ Developer ’s Guide

Introduct ion

Non-native messaging and IDL mangling

In non-native messaging, such as CORBA Messaging, two-phase invocations are not
made with native operation signatures on native IDL or RMI interfaces. Instead, at
different invocation phases, and with different reply retrieve models, client applications
have to call various mangled operations.

For instance, in CORBA Messaging, to make a two-phase invocation of operation
foo (<parameter_list>) on a target, the request sending is not made with the native
signature foo() itself, but it is made with either of the following mangled signatures:

// in polling-pulling model
sendp_foo(<input_parameter_list>);

// in callback model
sendc_foo(<callback_handler>, <input_parameter_list>);

The reply polling operation signature is:

foo(<timeout>, <return_and_output_parameter_list_as_output>);

The reply delivery callback operation signature is:

foo(<return_and_output_parameter_list_reversed_as_input>);

These mangled operations are either additional signatures added to the original
application specified interface, or defined in additional type specific interfaces or
valuetypes.

Problems of this non-native and mangling approach are:

– It ruins the intuitiveness of the original IDL interface and operation signatures.

– It could conflict with other operation mangling, for instance, in case of Java RMI.

– It could collide with operation signatures already used by the original IDL interface.

– It introduces interface binary incompatibility. For instance, interfaces with and without
mangled signatures are not necessarily binary compatible in their language mapping.

– It does not respect the natural mapping between IDL operations and native GIOP
messages, and therefore, introduces inconsistency and dilemmas when used with
other OMG CORBA features, such as PortableInterceptor.

Native Messaging solution

Native Messaging only uses native IDL language mapping and native RMI interfaces
defined by applications, without any interface mangling and without introducing any
additional application specific interface or valuetype.

For instance, in Native Messaging, sending a request to foo(<parameter_list>) and
retrieving (or receiving) its reply in either the polling-pulling or callback models are
made with the exact native operation foo(<parameter_list>) itself and are made on
native IDL or RMI interfaces. No mangled operation signature and interfaces or
valuetypes are introduced or used.

This pure native and non-mangling approach is not only elegant and intuitive but
completely eliminates conflicts, name collision, and inconsistencies of operation
signature mangling.

Request Agent

Similar to the OMG Security and Transaction Services, Native Messaging is an object
service level solution, which is based on an fully interoperable broker server, the
Request Agent, and a client side portable request interceptor fully compliant with the
OMG Portable Interceptor specification.

When making two-phase invocations, Native Messaging applications do not send
requests directly to their target objects. Instead, request invocations are made on
delegate request proxies created on a specified Request Agent. The request proxy is

 18: Using Vis iBroker Nat ive Messaging 251

StockManager example

responsible for delegating invocations to their specified target objects, and delivering
replies to client callback handlers or returning them later on client polling-pulling.

Therefore, a request agent needs to be known by client applications. Usually, this is
accomplished by initializing the client ORB using OMG standardized ORB initialization
command arguments:

-ORBInitRef RequestAgent=<request_agent_ior_or_url>

This command allows client applications to resolve the request agent reference from
this ORB as an initial service, for instance:

// Getting Request Agent reference in C++
CORBA::Object_var ref
 = orb->resolve_initial_references("RequestAgent");
NativeMessaging::RequestAgentEx_var agent
 = NativeMessaging::RequestAgentEx::_narrow(ref);

By default, the URL of a request agent is:

corbaloc::<host>:<port>/RequestAgent

Here, <host> is the host name or dotted IP address of a RequestAgent server, and
<port> is the TCP listener port number of this server. By default, NativeMessaging
RequestAgent uses port 5555.

Native Messaging Current

Similar to the OMG Security and Transaction Services, Native Messaging uses a
thread local Current object to provide and access additional supplemental parameters
for making two-phase invocations. These parameters include blocking timeout, request
tag, cookie, poller reference, reply availability flag, and others. Semantic definitions
and usage descriptions of these parameters are given in later sections. Similarly, the
Native Messaging Current object reference can be resolved from an ORB as an initial
service, for instance:

// Getting Current object reference in C++
CORBA::Object_var ref
 = orb->resolve_initial_references("NativeMessagingCurrent");
NativeMessaging::Current_var current
 = NativeMessaging::Current::_narrow(ref);

Core operations

A two-phase framework allows all normal invocations to be carried out in two separate
phases manageable by client applications. Nevertheless, on fulfilling or using this two-
phase invocation service, the framework and/or client may need some other primitive
core functions from the framework. Operations used to access primitive core functions
are called core operations. It is desirable that:

– Core operations are always accomplished in a single phase. An invocation on a core
operation always blocks until it completes or aborts.

– Core operations are always orthogonal to any normal two-phase invocations that
they are involved in.

In Native Messaging, all pseudo operations are reserved as core operations.

Note

In this document, if not explicitly stated, “invocation” or “operation” implies a non-core
two way operation.

StockManager example
The StockManager example is used in this section to illustrate the Native Messaging
usage scenarios. This example is abridged from the full scale version that is shipped

252 VisiBroker for C++ Developer ’s Guide

StockManager example

with the product in the <install_dir>/examples/vbroker/NativeMessaging/stock_manager
directory, and it is provided to illustrate functionality that is equivalent to the CORBA
Messaging StockManager example.

The following example assumes a server object has its IDL interface, StockManager,
defined as follows:

// from: <install_dir>/examples/vbroker/NativeMessaging/
// stock_manager/StockManager.idl
interface StockManager {
 boolean add_stock(in string symbol, in float price);
 boolean find_closest_symbol(inout string symbol);
};

A conventional single-phase add_stock() or find_closest_symbol() call adds a stock
symbol to or finds a symbol in the targeted stock manager server. The following is an
example of the invocation code:

// invoke and block until return
CORBA::Boolean stock_added
 = stock_manager->add_stock("ACME", 100.5);
CORBA::String_var symbol = (const char*)"ACMA";
CORBA::Boolean closest_found
 = stock_manager->find_closest_symbol(symbol.inout());

In the above one-phase invocation case, the invocations are blocked until the client
receives its returns or exceptions.

Using Native Messaging, two-phase invocations can be made on the same stock
manager server. Replies to these invocations can be retrieved or returned using the
synchronous polling-pulling model or the asynchronous callback model, as illustrated in
the following sections, “Polling-pulling model”, and “Callback model”.

Note

This document illustrates the StockManager example code in C++. The corresponding
Java code is available in the “Using VisiBroker Native Messaging” chapter of the
VisiBroker for Java Developer's Guide.

Polling-pulling model

In the polling-pulling model, the result of a two-phase invocation is pulled back by client
applications. The steps for Native Messaging polling-pulling two-phase invocations are
summarized below.

1 Create a request proxy from a Native Messaging Request Agent. This proxy is
created for a specific target object (a stock manager server in our example) and is
used to delegate requests to the target.

2 Get the typed receiver or <I> interface of this proxy. This typed receiver is used by
the client application to send requests to the proxy. The typed receiver of a proxy
supports the same IDL interface as the target object. In this example, the typed
receiver supports the StockManager interface and can be narrowed down to a typed
StockManager stub.

3 Perform the first invocation phase, making several invocations on the typed receiver
stub. By default, invocations on a typed receiver are returned with dummy output
and return values. This is called a premature return. Receiving a premature return
from proxy's typed receiver without raising an exception indicates that a two-phase
invocation has been successfully initiated. It indicates that the request has been
accepted and assigned to a distinct poller object by the request agent. The poller
object of a two-phase invocation is available from the local NativeMessaging
Current. Like the typed receiver, all poller objects also support the same IDL
interface as the target (in this example the StockManager).

4 Carry out the second phase of the invocation, polling availability and pulling replies
back from the poller objects. The client application narrows the poller objects to their

 18: Using Vis iBroker Nat ive Messaging 253

StockManager example

corresponding typed receiver stubs (StockManager in this example) and invokes the
same operations as those invoked in the request sending phase. When making an
invocation on poller objects input parameters are ignored. Also, the agent does not
deliver new requests to the delegated target object. The agent treats all invocations
made on the poller object as polling-pulling requests. Usually, a timeout value can
be provided as a supplemental parameter through NativeMessaging Current to
specify the maximum polling blocking timeout. If the reply is available before the
timeout, the polling invocation will receive a mature return with output parameters
and a return result from the real invocation. Otherwise, if the reply is not available
before the timeout expires, the poll ends up with a premature return again.
Applications should use the reply_not_available attribute of Native Messaging
Current to determine whether a polling return is premature.

The following code sample illustrates how to use Native Messaging to make polling-
pulling two-phase invocations on a stock manager object:

// from: <install_dir>/examples/vbroker/NativeMessaging/
// stock_manager/polling_client_main.C

// 1. create a request proxy from the request agent for making
// non-blocking requests on targeted stock_manager server.
NativeMessaging::RequestProxy_var proxy
 = agent->create_request_proxy(
 stock_manager, "",
 NULL, NativeMessaging::PropertySeq(0));

// 2. Get the request (typed) receiver of the proxy
CORBA::Object_var ref;
StockManager_var stock_manager_rcv
 = StockManager::_narrow(ref = proxy->the_receiver());

// 3. send several requests to the typed receiver, and
// get their reply pollers from Native Messaging Current.
StockManager_var pollers[2];
stock_manager_rcv->add_stock("ACME", 100.5);
pollers[0] = StockManager::_narrow(ref = current->the_poller());
CORBA::String_var symbol = (const char*)"ACMA";
stock_manager_rcv->find_closest_symbol(symbol.inout());
pollers[1] = StockManager::_narrow(ref = current->the_poller());

// 4. Poll/pull the two associated replies
current->wait_timeout(max_timeout);

CORBA::Boolean stock_added;
do { stock_added = pollers[0]->add_stock("", 0.0); }
while(current->reply_not_available());

CORBA::Boolean closest_found;
do { closest_found = pollers[1]->find_closest_symbol(symbol.inout()); }
while(current->reply_not_available());

Note

– In Native Messaging, the request sending phase and the reply polling-pulling phase
of a two-phase invocation all use the same operation signature. This operation used
by both phases of a two-phase invocation is exactly the same native operation
defined on the actual target's IDL interface.

– Poller objects are normal CORBA objects with location transparency. Therefore, in
Native Messaging, it is not necessary to carry out the request sending phase and the
reply polling phase of a two-phase invocation in same client execution context and
through same transport connection.

254 VisiBroker for C++ Developer ’s Guide

StockManager example

– If there is an exception in polling-pulling phase, the application should use the
Current reply_not_available attribute to determine whether the exception is the result
of a reply polling-pulling failure, or the successful pulling of a real exceptional result
of the delegated request. TRUE indicates that the exception is a polling-pulling failure
between the client and agent. FALSE indicates that the exception is the real result of
the delegated request.

– In a premature return, Native Messaging sets all non-primitive output parameters
and the return value to null. This is similar to the OMG non-exception handling C++
mapping except Native Messaging uses a local Current object rather than the
CORBA Environment.

Additional features, variances of the polling-pulling model, and Native Messaging API
syntax and semantics specification are discussed in “Advanced Topics” and “Native
Messaging API Specification”.

Callback model

Using the Native Messaging callback model, applications are unblocked immediately
after they send out requests to a proxy's typed receiver. Replies to these invocations
are delivered to a callback reply recipient that is specified upon creating the request
proxy.

The steps to make Native Messaging two-phase invocations in the callback model are
summarized below:

1 Create a request proxy from a Native Messaging Request Agent. This proxy is
created for a specific target object. Like the polling-pulling model, this proxy will be
used to delegate requests to the specified target. A reply recipient callback handler,
which is a null reference in the polling-pulling model, is also specified on creating
this request proxy. The request agent will deliver to the callback handler any newly
available replies to requests delegated by this proxy.

2 Like the second step in the polling-pulling model, get the typed receiver, or <I>
interface, of this proxy and narrow it down to a typed <I> stub (a StockManager stub
in this example).

3 Like the third step in the polling-pulling model, perform the first invocation phase by
making several invocations on the proxy's typed receiver stub. By default,
invocations on a typed receiver are returned with dummy output and return values.
This is called a premature return. A premature return on a proxy's typed receiver
without an exception indicates a two-phase invocation has been successfully
initiated.

4 Complete the second phase of the invocation, which is to receive replies. In the
callback model, this is done asynchronously in a completely independent execution
context. Client applications implement and activate a reply recipient object. This
callback object is type unspecific, that is it does not depend on the real target's IDL
interface. The key operation of this callback handler is the reply_available() method
which is discussed below after the code sample.

The following code sample illustrates the first three steps for using Native Messaging to
make callback model two-phase invocations on a stock manager object:

// from: <install_dir>/examples/vbroker/NativeMessaging/
// stock_manager/callback_client_main.C

// get type independent callback handler reference
NativeMessaging::ReplyRecipient reply_recipient = …;

// 1. create a request proxy from the request agent for
// making asynchronous requests on targeted stock_manager server.
NativeMessaging::RequestProxy_var proxy
 = agent->create_request_proxy(
 stock_manager, "", reply_recipient,

 18: Using Vis iBroker Nat ive Messaging 255

StockManager example

 NativeMessaging::PropertySeq(0));

// 2. Get the request (typed) receiver of the proxy
StockManager_var stock_manager_rcv
 = StockManager::_narrow(obj = proxy->the_receiver());

// 3. send two requests to the receiver
stock_manager_rcv->add_stock("ACME", 100.5);
CORBA::String_var symbol = (const char*)"ACMA";
stock_manager_rcv->find_closest_symbol(symbol.inout());

Here, the reply_recipient callback handler is a NativeMessaging::ReplyRecipient object
regardless the specific application target types. The ReplyRecipient interface is defined
as

// from: <install_dir>/idl/NativeMessaging.idl

interface NativeMessaging::ReplyRecipient {
 void reply_available(
 in object reply_holder,
 in string operation,
 in sequence<octet> the_cookie);
);
};

The reply_holder parameter of reply_available() is called a reflective callback
reference, which is the same as a reply poller object of the polling-pulling model and
can be used by the reply_available() implementation to pull back the reply result in the
same way a polling-pulling client would pull back a reply result from a poller object.

Note

In delivering replies to a callback handler, Native Messaging uses the double dispatch
pattern to reverse the callback model into a polling-pulling model. Here, a reply
recipient implementation makes a second (reflective) callback on a typed reply_holder
reference to retrieve the reply.

The following code sample is an example implementation of reply_available() method:

// from: <install_dir>/examples/vbroker/NativeMessaging/
// stock_manager/AsyncStockRecipient.C

void StockManagerReplyRecipientImpl::reply_available(
CORBA::Object_ptr reply_holder,
 const char* operation,
 const CORBA::OctetSequence& cookie)
{
 StockManager_var poller
 = StockManager::_narrow(reply_poller);

 // retrieve response using reflective callback
 if(strcmp(operation, "add_stock") == 0) {
 // retrieve a add_stock() return.
 CORBA::Boolean stock_added
 = poller->add_stock("", 0.0);
 ...
 }
 else
 if(strcmp(operation, "find_closest_symbol") == 0) {
 CORBA::String_var symbol = (const char*)"";
 // retrieve a find_closest_symbol() return
 CORBA::Boolean closest_found
 = poller->find_closest_symbol(symbol.inout());
 ...

256 VisiBroker for C++ Developer ’s Guide

Advanced Topics

 }
...
}

Note

– In Native Messaging, the request sending phase and the reply receiving phase of a
two-phase invocation both use the same operation. The operation used by both
phases of a two-phase invocation is exactly the same native operation defined on the
actual target's IDL interface.

– Reply recipient objects are normal CORBA objects and are location transparent.
Therefore, in Native Messaging, the reply recipient callback object is not necessarily
located within the request sending client process.

– If an exception is raised when the reply_available() implementation retrieves a reply
from the reply_holder, the application should use the Current reply_not_available
attribute to determine whether the exception reports retrieving a failure or a
successful reply retrieval of a real exceptional result of the delegated request. TRUE
indicates that this exception is the result of a reply retrieval failure between the client
and agent. FALSE indicates that this exception is a real result of delegated request.

– Reply retrieval operations on reply_holder should only be made within the scope of
the reply_available() method. Once the application returns from reply_available(),
the reply_holder may no longer be valid.

Additional features, variances of the polling-pulling model, and the Native Messaging
API specification are discussed in “Advanced Topics” and “Native Messaging API
Specification”.

Advanced Topics

Group polling

As illustrated in previous sections, multiple requests can be delegated by a given
request proxy. However, as different requests take different processing time, replies
from them are not necessarily ready in the order in which they were invoked. Instead of
polling individual requests one by one, group polling allows a polling client application,
which has multiple requests delegated by a given request proxy, to determine the
availability of replies in an multiplexed aggregation.

In order to participate in group polling, a request sent to a given proxy needs to be
tagged. Request tags are assigned by clients to identify requests in the scope of their
group, namely the request proxy. Native Messaging does not impose any constraint on
request tag content, except that they must be unique within the scope (request proxy).
Untagged requests (requests with empty tags) do not participate in group polling, and
the availability of their replies is not reported by group polling results.

The steps for using group polling are summarized below.

1 Send tagged requests. To tag a request, a client application simply sets the
request_tag attribute of the local Native Messaging Current object before making
each invocation on the typed receiver interface (before delivering each request).
The content of each request tag is specified by application for its own convenience,
as long as it is unique within its scope (proxy).

2 Poll reply availability on the request proxy, instead of on any individual poller, by
calling the proxy's poll(max_timeout, unmask) operation. This operation will block
until timeout, or until any tagged requests delegated by this proxy are ready for
mature return, at which time their tags will be put in the returned request tag
sequence. An empty tag sequence return indicates a timeout has expired.

3 Retrieve reply results from individual pollers, which have reported that they are
ready for mature return by the group polling return result.

 18: Using Vis iBroker Nat ive Messaging 257

Advanced Topics

The following code sample illustrates above steps of using Native Messaging group
polling feature:

// from: <install_dir>/examples/vbroker/NativeMessaging/
// stock_manager/group_polling_client.C
// send one tagged request
current->request_tag(NativeMessaging::RequestTag(2,2, (CORBA::Octet*)"0"));
stock_manager_rcv->add_stock("ACME", 100.5);
pollers[0] = StockManager::_narrow(ref = current->the_poller());
// send another tagged request
current->request_tag(NativeMessaging::RequestTag(2,2, (CORBA::Octet*)"1"));
CORBA::String_var symbol = (const char*)"ACMA";
stock_manager_rcv->find_closest_symbol(symbol.inout());
pollers[1] = StockManager::_narrow(ref = current->the_poller());
...
// polling request availability on proxy and retrieve their replies
NativeMessaging::RequestTagSeq_var tags;
while(TRUE) {
 // polling availability
 try {
 tags = proxy->poll(max_timeout, TRUE);
 }
 catch(NativeMessaging::RequestAgent::PollingGroupIsEmpty&) {
 proxy->destroy(TRUE);
 break;
 }
 // retrieve replies
 for(int i=0;i<tags->length();i++) {
 int id = atoi((const char*)((tags.in())[i].get_buffer()));

 switch(id) {
 case 0: // the first tagged request sent above
 CORBA::Boolean stock_added;
 stock_added = pollers[0]->add_stock("", 0.0);
 break;

 case 1: // the second tagged request sent above
 CORBA::Boolean closest_found;
 closest_found = pollers[1]-
>find_closest_symbol(symbol.inout());
 break;

 default:
 break;
 }
 }
}

Note

– After each invocation, the Current request_tag attribute is automatically reset to
empty or null.

– Try to initiate a 2PI on a proxy with a request_tag already used by another 2PI or the
proxy will end up with a CORBA BAD_INV_ORDER exception with minor code
NativeMessaging::DUPLICATED_REQUEST_TAG.

– The unmask parameter of the poll() operation on a request proxy specifies whether
the poll() should unmask all mature requests. If they are unmasked, they will not be
involved and reported by the next poll().

258 VisiBroker for C++ Developer ’s Guide

Advanced Topics

– If all requests on a proxy are not tagged or unmasked, poll() will raise a
PollingGroupIsEmpty exception.

Cookie and reply de-multiplexing in reply recipients

As illustrated in previous sections, multiple requests can be delegated by a given
request proxy. In the callback model, all replies to these requests will be sent back to
the same reply recipient object specified on creating the proxy. The challenge is how
the client demultiplexes different replies on one ReplyRecipient callback handler.

Applications using OMG CORBA Messaging also face the same challenge. To avoid
activating many callback objects, CORBA Messaging suggests that applications use a
POA default servant or servant manager to manipulate callback objects, and assign
different object IDs to different callback references. Although this avoids many callback
objects being activated in the reply recipient process, it is inflexible and far from an
efficient scenario, because it requires an object reference to be created and marshaled
for sending each callback request.

Native Messaging supports two demultiplexer mechanisms, which can be used either
together or alone depending on the required demultiplexer granularity. A coarse
grained demultiplex, but handy mechanism, is simply demultiplexing by operation
signature, which is available within the ReplyRecipient's reply_available() callback
method. This is the mechanism used in some of the previous examples.

A more effective demultiplexing mechanism in the Native Messaging callback scenario
is using request cookies. A request cookie is an octet sequence (or byte array). Its
content is specified by client applications on the Native Messaging's Current object
before sending a request. The specified cookie is passed to the reply recipient's
reply_available() method on delivering the reply of that request. There is no constraint
on the content of a cookie, not even a uniqueness requirement. Contents of cookies
are decided solely by applications for their own convenience and efficiency on callback
demultiplexing.

The following code sample illustrates how to assign cookie to a request:

// send a requests with a cookie
current->the_cookie(CORBA::OctetSeq(9,9,"add stock"));
stock_manager_rcv->add_stock("ACME", 100.5);

// send another request with a different cookie
current->the_cookie(CORBA::OctetSeq(11,11,"find symbol"));
CORBA::String_var symbol = (const char*)"ACMA";
stock_manager_rcv.find_closest_symbol(symbol.inout());

The following code sample illustrates how to use attach cookies to demultiplex by reply
recipient:

void StockManagerReplyRecipientImpl::reply_available(
 CORBA::Object_ptr reply_poller,
 const char* operation,
 const CORBA::OctetSequence& cookie)
{
 StockManager_var poller
 = StockManager::_narrow(reply_poller);

 CORBA::String_var id = PortableServer::
 ObjectId_to_string(cookie.get_buffer());

 // retrieve response using reflective callback
 if(strcmp(id, "add stock") == 0) {
 CORBA::Boolean stock_added
 = poller->add_stock("", 0.0);

 ...
 }
 else

 18: Using Vis iBroker Nat ive Messaging 259

Advanced Topics

 if(strcmp(id, "find symbol") == 0) {
 CORBA::String_var symbol = (const char*)"";
 CORBA::Boolean closest_found
 = poller->find_closest_symbol(symbol.inout());
 ...
 }
 ...
}

260 VisiBroker for C++ Developer ’s Guide

Advanced Topics

Evolving invocations into two-phases

Compared to conventional single-phase invocations, two-phase invocations incur
additional reply polling communication round trips. For a long duration heavyweight
task, latency from few additional communication round trips is insignificant. However,
for a lightweight transient invocation, this latency can be undesirable.

It is ideal for applications if lightweight transient invocations can be completed in a
single-phase without incurring additional latency, and heavyweight long duration
invocations can automatically be performed in two separated phases without holding
client execution context and transport connection.

In Native Messaging, this can be achieved with the evolve into two-phase invocation
feature. By default, invocations on a proxy's typed receiver always end up with
premature returns along with their reply results to be polled back or delivered through
callbacks later in a separate invocation phase. The evolve into two-phase feature
allows invocations on a proxy's typed receiver to block and end up with a mature return
if it can be accomplished before a specified timeout expires. Otherwise, if the
invocation cannot complete before the timeout expires, it will evolve into a two-phase
invocation by taking a premature return. To determine whether an invocation on a
proxy's typed receiver has evolved into a two-phase invocation, the application can
examine the reply_not_available attribute of the local Native Messaging Current object
after the return.

To use this feature:

– The request proxy should be created with a WaitReply property with a value of TRUE.

– Set the wait_timeout attribute of Native Messaging Current to a non-zero value
(milliseconds) before the invocations.

– After each invocation on the typed receiver, determine whether a return is premature
by examining the reply_not_available attribute of the local Native Messaging Current
object after each invocation.

– If a return is premature, get the returned poller object from the local Current to poll
the reply in separate phase later.

The following code sample illustrates how to use the evolve invocations into two-
phases:

// Create a request proxy with WaitReply property TRUE
NativeMessaging::PropertySeq props;
props.length(1);
props[0].id = (const char*)"WaitReply";
CORBA::Any::from_boolean fb((CORBA::Boolean)1);
props[0].value <<= fb;

NativeMessaging::RequestProxy_var proxy
 = agent->create_request_proxy(stock_manager, "", NULL, props);

// get the typed receiver of this proxy
CORBA::Object_var ref;
StockManager_var stock_manager_rcv
 = StockManager::_narrow(ref = proxy->the_receiver());

// Set wait_timeout attribute to 3 seconds
current->wait_timeout(3000);
// make an invocation on the receiver.
CORBA::Boolean stock_added = stock_manager_rcv->add_stock("ACME", 100.5);

// check whether it has evolved into a two-phase invocation.
if(! current->reply_not_available()) {
 // It is not evolved. The return above is mature.

 18: Using Vis iBroker Nat ive Messaging 261

Advanced Topics

 // The job has done.
 return;
}

// It has evolved into a two-phase invocation.
// We should get the poller and poll its reply.
StockManager_var poller
 = StockManager::_narrow(ref = current->the_poller());
do { stock_added = pollers->add_stock("", 0.0); }
while(current->reply_not_available())

Note

– If an operation on a proxy's typed receiver can be completed before it evolves into a
two-phase invocation on timeout, there will be no poller generated, nor will a callback
be made on the reply recipient to deliver the reply.

– If an exception is raised from blocking on a proxy or polling reply, the application
should use the reply_not_available attribute of Native Messaging Current to
determine whether the exception reports a request delivering or reply polling failure
or if it is a real result of delegating the request. A value of TRUE for this attribute
indicates that this exception is a reply delivering or polling failure between the client
and agent. FALSE indicates that this exception is a real result of delegating the
request.

Reply dropping

In the callback model, by default, a request agent sends whatever result, return or
exception, of the invocation back to the reply recipient. Reply dropping allows specified
types of reply results to be filtered out. This is useful, for instance, if applications want
to invoke one-way requests with no result to be returned, but would still be notified if
any invocations fail.

Native Messaging allows applications to specify a ReplyDropping property on creating a
request proxy. This property specifies which types of returns should be filtered out from
being sent to the reply recipient. The value of this property is an octet (or byte) with the
following filtering rules:

– if(value & 0x01 == 0x01) drop normal replies

– if(value & 0x02 == 0x02) drop system exceptions

– if(value & 0x04 == 0x04) drop user exceptions

For example, a value of 0x06 for this property lets the request agent drop all exceptions,
system as well as user, on requests delegated by this proxy.

The following example code illustrates setting the ReplyDropping property:

// Create a request proxy with ReplyDropping property
// with value 0x01 (dropping all normal replies).
NativeMessaging::PropertySeq props;
props.length(1);
props[0].id = (const char*)"ReplyDropping";
CORBA::Any::from_octet fo((CORBA::Octet)0x01);
props[0].value <<= fo;

NativeMessaging::RequestProxy_var proxy
 = agent->create_request_proxy(stock_manager, "",
 reply_recipient, props);
...

Note

– Reply dropping only applies to the callback model. If the reply_recipient reference
passed to the create_request_proxy() is null, the reply dropping property is ignored.

262 VisiBroker for C++ Developer ’s Guide

Advanced Topics

– If the value of the reply dropping property in create_request_proxy() is not 0x00, and
the reply_recipient reference is not null, invocation on this proxy's typed receiver will
not return a poller object on Native Messaging Current.

Manual trash collection

By default, a poller object will be trashed immediately after a polling operation on it
results in a mature return. In the callback model, once the callback is returned, a
request agent also trashes the poller regardless of whether the application has
retrieved the reply within the callback reply_available() operation. Polling on a trashed
object raises a CORBA OBJECT_NOT_EXIST exception and the Current
reply_not_available attribute is set to TRUE.

If a request proxy is created with a RequestManualTrash property of value TRUE, poller
objects of requests delegated by this proxy are not trashed automatically. Polling on
these poller objects after a reply becomes available is idempotent, returning the same
result every time.

These poller objects can be manually trashed if an application no longer needs them.
To manually trash poller objects, applications simply call the destroy_request()
operation on the request agent, with the poller to be trashed as a parameter. For
example,

agent->destroy_request(poller);

Note

Pollers of requests delegated by an auto-trashing proxy can also be trashed manually.
This makes sense when replies on these pollers are either not yet available or have not
been polled back.

Unsuppressed premature return mode

The key concept of Native Messaging is unblocking from a native operation after its
first invocation phase. In Native Messaging, this is called premature return. There are
two premature return modes in Native Messaging: suppressed mode and
unsuppressed mode. All of the discussions so far used the default suppressed mode.
In suppressed mode, the premature return is a normal operation return, except that it
contains dummy output and return values. This is similar to an exceptional return in
non-exception handling in the OMG C++ mapping, except that Native Messaging uses
a thread local Current object instead of an additional Environment parameter.

Suppressed premature return mode is handy, however, it requires client-side mapping
support. Namly, it assumes the IDL precompiler generated client-side stub code
catches and suppresses premature return exceptions. To port client applications to an
ORB, its IDL precompiler does not generate premature return suppressed client-side
stub code, the unsuppressed premature return mode can be used.

In Native Messaging unsuppressed premature return mode, a native operation is
unblocked by simply raising an RNA exception, that is a CORBA NO_RESPONSE exception
with minor code REPLY_NOT_AVAILABLE. To use unsuppressed premature return mode, an
application needs to turn off suppressed mode by calling suppress_mode(false) on
Native Messaging Current, and it needs to catch and handle the RNA exceptions
accordingly.

Note

To ensure that the code is portable to both suppressed and unsuppressed modes, it is
recommended that applications use the Current reply_not_available attribute in
unsuppressed mode, rather than the RNA exception and minor code to determine the
maturity of a return.

The following example code illustrates the StockManager polling example in
unsuppressed mode. This code is not only portable to all ORBs, but also portable to
suppressed mode as well.

// from: <install_dir>/examples/vbroker/NativeMessaging/
// stock_manager/polling_client_portable.C

 18: Using Vis iBroker Nat ive Messaging 263

Nat ive Messaging API Speci f icat ion

static void yield_non_rna(const CORBA::NO_RESPONSE& e)
{
 if(e.minor() != NativeMessaging::REPLY_NOT_AVAILABLE) {
 throw e;
 }
}
...
// This marco suppresses an RNA, namely a NO_RESPONSE exception
// with minor code of NativeMessaging::REPLY_NOT_AVAILABLE.
#define SUPPRESS_RNA(stmt) \
 try { stmt; } \
 catch(const CORBA::NO_RESPONSE& e) { yield_non_rna(e); }
...
// turn off suppress mode
current->suppress_mode(FALSE);

// send several requests to the typed receiver, and
// get their reply pollers from Native Messaging Current.
StockManager_var pollers[2];
SUPPRESS_RNA(stock_manager_rcv->add_stock("ACME", 100.5))
pollers[0] = StockManager::_narrow(ref = current->the_poller());

CORBA::String_var symbol = (const char*)"ACMA";
SUPPRESS_RNA(stock_manager_rcv->find_closest_symbol(symbol.inout()))
pollers[1] = StockManager::_narrow(ref = current->the_poller());

// poll the associated replies
current->wait_timeout(max_timeout);

CORBA::Boolean stock_added;
do { SUPPRESS_RNA(stock_added = pollers[0]->add_stock("", 0.0)) }
while(current->reply_not_available());

CORBA::Boolean closest_found;
do { SUPPRESS_RNA(closest_found
 = pollers[1]->find_closest_symbol(symbol.inout())) }
while(current->reply_not_available());

Suppress poller generation in callback model

By default, pollers are generated even in the callback model. This allows:

– Applications to trash a request before it completes.

– Applications to retrieve replies independent of their reply recipients.

However, generating and sending back poller references incurs additional overhead.
Native Messaging allows applications to suppress (disable) poller reference generation
in the callback model.

To suppress a poller in the callback model, applications only need to create a request
proxy with the CallbackOnly property set to TRUE. In this case null pollers are returned.

Native Messaging API Specification
Note

Several operations and attributes in the Native Messaging IDL definition are not
specified in this document. They are either value added features, depreciated features,
or reserved for further extension.

264 VisiBroker for C++ Developer ’s Guide

Nat ive Messaging API Speci f icat ion

Interface RequestAgentEx

This is the interface of the Native Messaging Request Agent. A request agent is
responsible for delegating invocations to their specified target object and delivering
return results to client callback handlers or returning them later on client polling. See
“Request Agent” for more information.

create_request_proxy()
RequestProxy
create_request_proxy(
 in object target,
 in string repository_id,
 in ReplyRecipient reply_recipient,
 in PropertySeq properties)
 raises(InvalidProperty);

The create_request_proxy() method creates a request proxy to delegate two-phase
invocations to the specified target object.

destroy_request()
void
destroy_request(
 in object poller)
 raises(RequestNotExist);

This method is used to manually trash a poller object. See “Manual trash collection” for
more information.

Argument Description

target The target of all requests to be delegated by this proxy.

repository_id This is the assigned repository ID of the typed receiver, reply poller, and reply
holder from this proxy. If this parameter is an empty string, the target's
repository ID is used. This ID is used by Native Messaging to fulfill _is_a()
semantics on typed receiver, reply poller, and reply holder.

reply_recipient The reply recipient callback handler. When replies become available the
request agent calls back its reply_available() operation to send back reply
results. A null_reply_recipient implies the polling-pulling model.

properties Properties to specify non-default semantics of the proxy. Supported
properties include:

■ WaitReply: A boolean property with default value FALSE. See “Reply
dropping” for more information.

■ RequestManualTrash: A boolean property with default value FALSE. See
“Manual trash collection” for more information.

■ ReplyDropping: An octet property with default value 0x00. See “Reply
dropping” for more information.

■ CallbackOnly: A boolean property with default value FALSE. See “Suppress
poller generation in callback model” for more information.

Exception Description

InvalidProperty This exception indicates that an invalid property name or value is used in the
properties list. The property name is available from the exception.

Argument Description

poller the poller to be trashed.

Exception Description

RequestNotExist This exception indicates the poller to be trashed is not available.

 18: Using Vis iBroker Nat ive Messaging 265

Nat ive Messaging API Speci f icat ion

Interface RequestProxy

Request proxies are created by an application from a request agent in order to
delegate requests to the specified target and with the specified semantic properties.
See “create_request_proxy()”.

the_receiver
readonly attribute object the_receiver;

This attribute is the proxy's typed receiver reference. The type receiver of a proxy
supports the same IDL interface as the specified target and is where applications send
their requests to be delegated by the proxy.

Note

– By default, calling operations on a proxy's typed receiver initiates two-phase
invocations to be delegated by this proxy. These calls will be unblocked and yield
distinct reply pollers.

– If the proxy is created with a WaitReply property value of TRUE and the request on
the_receiver is called with a non-zero wait_timeout, the request agent will try to
delegate the request as single-phase invocation before the timeout expires. If the
agent does not receive a reply from the target before the timeout expires, it will
unblock the client and the request will evolve into a two-phase invocation. After
unblocking from a call on the_receiver, applications can use the Current
reply_not_available attribute to determine whether the request has evolved into a
two-phase invocation. See “reply_not_available”.

– IDL one-way operations only have one invocation phase intrinsically, therefore, one-
way invocations on a proxy's typed receiver do not yield poller objects. The agent
simply forwards them to their targets without going through a second invocation
phase.

– Core operations on a proxy's typed receiver are handled synchronously; they will be
blocked until a mature return or exception. Calling core operations on typed receivers
does not imply initiating two-phase invocations. For instance, a _non_existent() call
on a proxy's typed receiver only implies a ping on the receiver itself, not on the real
target.

poll()
RequestIdSeq
poll(
 in unsigned long timeout,
 in boolean unmask)
 raises(PollingGroupIsEmpty);

This method performs group polling. See “Group polling” for more information.

Argument Description

timeout specifies the maximum length of time, in milliseconds, that this method will wait for
any tagged request to become available. If no tagged request becomes available
before the timeout expires an empty RequestIdSeq is returned.

unmask specifies whether a tagged request, its tag is in the returned sequence, should be
unmasked. Once unmasked, a tagged request will no longer be involved in
subsequent group polling.

Exception Description

PollingGroupIsEmpty This exception indicates there are no tagged or unmasked requests
pending on this proxy.

266 VisiBroker for C++ Developer ’s Guide

Nat ive Messaging API Speci f icat ion

destroy()
void
destroy (
 in boolean destroy_requests);

This method destroys a request proxy.

Local interface Current

A local Native Messaging Current object is used by an application to specify and
access additional information before and after a two-phase invocation. The Current
object can be resolved from the local ORB as an initial reference. See “Native
Messaging Current” for more information.

suppress_mode()
void
suppress_mode(
 in boolean mode);

This sets the current premature return mode. In suppressed mode, two-phase
invocations are unblocked after the first phase in a normal return, except that it
contains dummy output and return values. In unsuppressed mode, two-phase
invocations are unblocked after the first phase by an RNA exception (a CORBA
NO_RESPONSE exception with minor code of NativeMessaging::REPLY_NOT_AVAILABLE). See
“Unsuppressed premature return mode” for more information.

wait_timeout
attribute unsigned long wait_timeout;

This attribute specifies the maximum number of milliseconds a two-phase invocation
will block on sending a request or on polling a reply. On timeout, Native Messaging
unblocks the call with a premature return.

the_cookie
attribute Cookie the_cookie;

This attribute specifies the cookie to be sent immediately following the invocation on a
proxy's typed receiver. By default, the cookie is empty. A non-empty cookie can be
used by reply_recipient to do more application-specific demultiplexing. See “Cookie
and reply de-multiplexing in reply recipients” for more information.

request_tag
attribute RequestTag request_tag;

This attribute uniquely identifies the request immediately following an invocation on a
proxy's typed receiver. By default the tag is initially empty, and it is reset to empty after
sending the request. Requests with non-empty tags are involved in group polling. See
“poll()” and “Group polling”.

Note

– After each invocation, the Current request_tag attribute is automatically reset to
empty or null.

Argument Description

destroy_requests if TRUE, all requests delegated by this proxy are trashed.

Argument Description

mode specifies whether the suppressed mode is used.

 18: Using Vis iBroker Nat ive Messaging 267

Nat ive Messaging API Speci f icat ion

– Attempting to initiate a 2PI on a proxy with a request_tag previously used by another
2PI on the proxy will result in a CORBA BAD_INV_ORDER exception with minor code
NativeMessaging::DUPLICATED_REQUEST_TAG.

the_poller
readonly attribute object the_poller;

This attribute returns the poller object reference just after delivering a request through
an invocation made on a proxy's typed receiver. Poller objects are used by client
applications to fulfill the reply polling-pulling phase of two-phase invocations.

Note

– A client application should call the same operation used in initiating the two-phase
invocation on the given poller object to poll and retrieve the return result. Calling an
operation on the poller that does not match the one used in initiating the two-phase
invocation will result in a CORBA BAD_OPERATION exception, and the value of the
Current reply_not_available attribute will be TRUE.

– Poller objects are normal CORBA objects with location transparency. Therefore, in
Native Messaging, the request sending phase and the reply polling phase of a two-
phase invocation are not necessarily carried out in same client execution context and
through same transport connection. A client application can accomplish the first
invocation phase and get the poller object, then perform the polling in a completely
distinct client execution context, in a different process, and through a different
transport connection.

– If an exception is raised in the reply polling-pulling phase, an application should use
the Current reply_not_available attribute to determine whether the exception reports
a reply polling-pulling failure or a successful reply pulling of a real exceptional result
of the delegated request. TRUE indicates that this exception is a polling-pulling failure
between the client and agent. FALSE indicates that this exception is the real result of
the delegated request.

– Core operations made on poller objects are orthogonal to two-phase invocations
pending on them. For instance, _is_a() or _non_existent() on a poller does not imply
reply polling-pulling on the pending two-phase invocation, but only implies a
repository ID comparison and non-existence check on the poller object itself.

reply_not_available
readonly attribute boolean reply_not_available;

This attribute reports the consequence of an unblocked (either normal return or
exception) call on a proxy's typed receiver, reply poller, or reply holder, as summarized
by the following table.

The terms in the above table are defined as follows:

Reply_not_avail
able True False True False

Called object Proxy's typed
receiver

Reply poller or
holder

Normal return,
no exception

2PI initiated
(premature)

2PI completed (poller only) Reply
not available
(premature)

2PI completed

RNA exception
(unsuppressed
mode)

2PI initiated
(premature)

N/A (poller only) Reply
not available
(premature)

N/A

Exception other
than RNA

2PI initiation
failure

2PI completed
(target failure)

Polling-pulling
failure

2PI completed
(target failure)

268 VisiBroker for C++ Developer ’s Guide

Nat ive Messaging API Speci f icat ion

– 2PI initiated: This is the result when an operation made on a proxy's typed receiver
results in a normal return or an RNA exception (in unsuppressed mode), and the
Current reply_not_available attribute is TRUE. This is one of the two premature return
cases in Native Messaging. By default, a reply poller of this initiated two-phase
invocation is available on Current after the call.

– 2PI initiation failure: This is the result when an operation made on a proxy's typed
receiver results in an exception other than RNA, and the Current reply_not_available
attribute is TRUE. This outcome indicates either that the agent has rejected the two-
phase invocation, or the client failed to receive agent's premature reply message. No
reply poller is available on Current. If this is caused by a communication failure on
receiving a premature reply message, the agent will still delegate the request and
may even generate a callback to a reply recipient.

– 2PI completed: This is the result when an operation made on a proxy's typed
receiver, a reply poller or reply holder, results in either a normal return or any
CORBA exception, and the Current reply_not_available attribute is FALSE. If the
operation results in an exception other than RNA, a TRUE reply_not_available attribute
indicates that this exception is a real result of a delegated request to target.

– Reply not available: This is the result when an operation made on a reply poller
results in a normal return or an RNA exception, and the Current reply_not_available
attribute is TRUE. This is one of the two premature return cases.

– Polling-Pulling failure: This is the result when an operation made on a reply poller
or reply holder results in an exception other than RNA, and the Current
reply_not_available attribute is TRUE. This outcome indicates a usage or system
failure on retrieving the reply, such as calling an unmatched operation or the poller
has already been trashed.

– N/A: Not an applicable outcome. It should never happen.

 18: Using Vis iBroker Nat ive Messaging 269

Nat ive Messaging Interoperabi l i ty Speci f icat ion

Interface ReplyRecipient

ReplyRecipient objects are implemented by Native Messaging applications to receive
reply results in the callback model. See the example in “Callback model” and “Cookie
and reply de-multiplexing in reply recipients”.

reply_available()
void
reply_available(
 in object reply_holder,
 in string operation,
 in Cookie the_cookie);

This method is callback by request agent on delivering a reply. The actual reply result,
either a normal return or an exception, is held by the input reply_holder object and can
be retrieved by making a callback on it. If an exception is raised from a call on the
reply_holder, the application should use the Current reply_not_available attribute to
determine whether the exception is reporting a retrieval failure or the real result of the
delegated request. TRUE indicates that this exception is the result of a retrieval failure
between the client and agent. FALSE indicates that this exception is a real result of the
delegated request.

See the example in “Callback model”.

Semantics of core operations

Native Messaging reserves all pseudo operations as core operations. Core operations
meet the following rules:

– They are always accomplished in one phase. Core operations always block until a
mature return or a non-RNA exception.

– They do not initiate a two-phase invocation to be forwarded to the real target when
called on a proxy's typed receiver. For instance, calling _non_existent() on a proxy's
typed receiver is only a ping to check the non-existence of the receiver itself, not the
target.

– They are orthogonal to pending two-phase invocations on a reply poller or reply
holder: For instance, calling _is_a() or _non_existent() on a reply poller or reply
holder does not imply retrieving the reply result of the pending two-phase invocation,
but only repository ID comparsion and existence checks on these poller or holder
objects themselves.

Native Messaging Interoperability Specification
The content of this section is not intended for Native Messaging application developers
but for third party Native Messaging vendors.

Argument Description

reply_holder Within the scope of the reply_available() method, this object reference has the
same semantics as a reply poller. A reply retrieving operation on reply_holder
should only be made within the scope of the reply_available() method. Once the
application returns from reply_available(), the reply_holder may no longer be
valid.

operation The original operation signature. It can be used by applications for coarse
grained demultiplexing. A call made on the reply_holder reference should have
same operation signature as this parameter. Making a call on the reply_holder
with a different operation will end up with a CORBA BAD_OPERATION exception with
Current reply_not_available attribute value of TRUE.

the_cookie The original request cookie. Can be used by applications for fine grained
demultiplexing.

270 VisiBroker for C++ Developer ’s Guide

Nat ive Messaging Interoperabi l i ty Speci f icat ion

Native Messaging uses native GIOP

In non-native messaging, such as CORBA Messaging, the OMG GIOP protocol is not
used as a direct message protocol; it is used as a tunneling protocol for another ad hoc
message routing protocol.

For instance, in CORBA Messaging, calling a mangled operation

sendc_foo(<input_parameter_list>);

does not incur a native OMG GIOP Request message with operation sendc_foo in the
head and <input_parameter_list> as payload. Instead, a routing message tunneling
through GIOP Request is sent.

Native Messaging uses the native OMG GIOP directly as its message level protocol:

– A method call on an agent, request proxy's typed receiver, reply poller, reply
recipient, or reply holder reference incurs a native GIOP Request message with the
exact called operation name in head, and the exact input parameters as payload to
be sent, as defined by OMG GIOP.

– A premature return is simply a native GIOP Reply message containing an RNA
exception, specifically a CORBA NO_RESPONSE exception with minor code of
REPLY_NOT_AVAILABLE.

– A mature return is simply a native GIOP Reply message with either the exact
<return_value_and_output_parameter_list> or the exact exception from the target as
payload.

Native Messaging service context

Like the OMG Security and Transaction service, Native Messaging also uses a service
context to achieve certain semantic results. The client-side Native Messaging engine,
implemented in an OMG standardized PortableInterceptor for instance, is responsible
for creating and adding required service contexts into certain outgoing requests and for
extracting information from the same kind of service context inside incoming replies.

The context_id used by Native Messaging's service context is
NativeMessaging::NMService. The context_data is an encapsulated
NativeMessaging::NMContextData defined as:

module NativeMessaging {
...
 const IOP::ServiceID NMService = ...

 struct RequestInfo {
 RequestTag request_tag;
 Cookie the_cookie;
 unsigned long wait_timeout;
 };
 union NMContextData switch(short s) {
 case 0: RequestInfo req_info;
 case 1: unsigned long wait_timeout;
 case 2: object the_poller;
 case 3: string replier_name;
 };
};

Mandated usage of different context data in Native Messaging is summarized in the
following table:

Sending to or receiving from Proxy's typed receiver Reply poller Reply holder

Request req_info wait_timeout Not defined

Normal Reply
(NO_EXCEPTION)

Not defined

RNA Exception the_poller No NMService context N/A

 18: Using Vis iBroker Nat ive Messaging 271

Using Bor land Nat ive Messaging

The terms in the above table are defined as follows:

– req_info: NMContextData is mandated to all requests of two-way non-core operation
sending to a proxy's typed receiver. This context has request_tag, cookie and
wait_timeout from Native Messaging Current as supplement parameters for initiating
a two-phase invocation. The content of this context should be used by the request
agent to tag the request, to deliver callback with the cookie, and to wait before
evolving into a two-phased invocation. See corresponding topics in the previous
sections.

– wait_timeout: NMContextData is mandated to all normal (two-way non-core)
requests sent to a reply poller, with wait_timeout from Native Messaging Current as
supplement parameter for polling. The content, namely the wait_timeout, should be
used by the request agent to block the call before a mature or premature return. See
corresponding topics in previous sections.

– the_poller: NMContextData is mandated to all successful returns on initiating two-
phase invocations on a proxy's typed receiver object. The content of the context, a
poller reference, is extracted and copied to Native Messaging Current's the_poller
attribute.

– replier_name: NMContextData is mandated to all exceptional returns as a
successful return of an exceptional return result from delegating a request. This
context should not appear if the exceptional return is a failure not resulting from
delegating the request. The actual content of the string should be empty and
preserved for further extension.

– Not defined: Native Messaging does not use NMService context in these cases.

– N/A: Not applicable. It should never happen.

NativeMessaging tagged component

A tagged component with the NativeMessaging::TAG_NM_REF tag should be embedded in
typed receivers of request proxies and poller references. The component_data of this
tagged component encapsulates an octet. Namely the first octet of the component_data
is the byte-order byte and second byte of it is the value octet. A value of 0x01 for this
octet indicates the reference is a typed receiver of a request proxy, and a value of 0x02
indicates it is a poller reference.

This component is used by PortableInterceptor's send_request() method to determine
whether a request is sending to a Native Messaging request proxy's the_receiver
reference, a reply poller, or something else, and to decide whether and what service
context to add to the outgoing request.

Using Borland Native Messaging

Using request agent and client model

Start the Borland Request Agent
To start the Request Agent service, run the command requestagent. Run it with
requestagent -? to see the usage information.

Non-RNA exception from
calling target

replier_name

Non-RNA exception within
agent

No NMService context

Sending to or receiving from Proxy's typed receiver Reply poller Reply holder

272 VisiBroker for C++ Developer ’s Guide

Using Bor land Nat ive Messaging

Borland Request Agent URL
To use Native Messaging, a request agent needs to be known by client applications.
Usually, this is done by initializing the client ORB with the OMG standardized ORB
initialize command arguments:

-ORBInitRef RequestAgent=<request_agent_ior_or_url>

This allows client applications to resolve the request agent reference from the ORB as
an initial service, for instance:

// Getting Request Agent reference in C++
CORBA::Object_var ref
 = orb->resolve_initial_references("RequestAgent");
NativeMessaging::RequestAgentEx_var agent
 = NativeMessaging::RequestAgentEx::_narrow(ref);

By default, the URL of a request agent is:

corbaloc::<host>:<port>/RequestAgent

Here, <host> is the host name or dotted IP address of a Request Agent server, and
<port> is the TCP listener port number of this server. By default, the Native Messaging
Request Agent uses port 5555.

Using the Borland Native Messaging client model
Borland Native Messaging client side models in C++ are implemented as OMG
portable interceptors and are referred to as the Native Messaging Client Component.
Native Messaging C++ Client Components are implicitly enabled/disabled by link (or
load in) with a Native Messaging Client (including callback object) application.

Borland Request Agent vbroker properties

vbroker.requestagent.maxThreads
Specifies the maximum number of threads for request invocation. The default value is 0
(zero) which means no limit. Values cannot be negative.

vbroker.requestagent.maxOutstandingRequests
Specifies the maximum queue size for requests waiting to get serviced. This property
only takes effect if the maxThreads property is set to non-zero value. The default value is
0 (zero) which means no limit. Values cannot be negative. If a request arrives when the
queue size is equal to maximum size, the request waits for a timeout until there is
space in the queue. See “vbroker.requestagent.blockingTimeout”.

vbroker.requestagent.blockingTimeout
Specifies the maximum time, in milliseconds, that a request can wait before it is added
to the queue. The default value is 0 (zero) which means no wait. Values cannot be
negative. If the value is set to 0 (zero) and a request arrives and the queue is full, the
Request Agent will raise CORBA::IMP_LIMIT exception. Otherwise, the request waits for
the specified timeout. After the timeout, either the request gets executed immediately if
the queue is empty and worker thread is available, or the request is enqueued in the
waiting queue if the queue has space and the request remains there until it gets
serviced, or if the queue is still full, CORBA::IMP_LIMIT exception is raised by the Request
Agent.

vbroker.requestagent.router.ior
Specifies the IOR of OMG messaging router. The default value is empty string.

 18: Using Vis iBroker Nat ive Messaging 273

Migrat ing from previous versions of Vis iBroker Nat ive Messaging

vbroker.requestagent.listener.port
Specifies the TCP listener port to be used by the request agent. The default value is
5555.

vbroker.requestagent.requestTimeout
This property specifies the maximum time, in milliseconds, that the agent will hold the
reply result for its client. If request agent has received reply results on a request, but
the client does not pull the result or trash the request, the request agent will trash the
request (together with its reply result) upon the expiration of the request timeout set by
this property. The default value of this property is infinity, meaning the agent will
preserve the reply results until they are trashed by client applications (manually or
automatically).

Interoperability with CORBA Messaging

The Native Messaging Request Agent is forward interoperable with the OMG untyped
Messaging Router. Specifically, the Request Agent can be configured to route requests
through an OMG untyped router instead of sending them directly to their specified
targets. To do so, the request agent needs to be started with the
“vbroker.requestagent.router.ior” property with a valid CORBA Messaging router IOR
as value.

Migrating from previous versions of VisiBroker Native Messaging
In VisiBroker 6.0 some changes in the Native Messaging IDL have been made that can
impact source and binary level compatibility of the applications written using VisiBroker
5.x Native Messaging.

There are two changes that VisiBroker 5.x application developers have to pay attention
to. One is in the Property structure and other is the definition of OctetSeq.

Property
In VisiBroker 5.x, Property structure was defined as follows:

module NativeMessaging {
 struct Property {
 string name;
 any value;
 };
};

In VisiBroker 6.0 Property has been typedef to CORBA::NameValuePair. That is:

typedef CORBA::NameValuePair Property;
typedef CORBA::NameValuePairSeq PropertySeq;

Native Messaging 5.x applications therefore have to be migrated to use
CORBA::NameValuePair for Property.

OctetSeq
In VisiBroker 5.x, OctetSeq was defined as:

typedef sequence<octet> OctetSeq;

RequestTag and Cookie were defined as follows:

typedef OctetSeq RequestTag;
typedef OctetSeq Cookie;

In VisiBroker 6.0, this definition is removed and RequestTag and Cookie are defined as
follows:

274 VisiBroker for C++ Developer ’s Guide

Migrat ing f rom previous vers ions of Vis iBroker Nat ive Messaging

typedef CORBA::OctetSeq RequestTag;
typedef CORBA::OctetSeq Cookie;

With this change the reply_available() method of ReplyRecipient interface has to be
changed from

void reply_available (CORBA::Object_ptr replyHolder,
 const char* operation, const NativeMessaging::OctetSeq& cookie)

to

void reply_available (CORBA::Object_ptr replyHolder,
 const char* operation, const CORBA::OctetSeq& cookie)

Therefore, NativeMessaging 5.x applications have to be migrated to use
CORBA::OctetSeq for RequestTag and Cookie.

These changes need to be done manually; there is no migration tool available. Note
that any VisiBroker 5.x Native Messaging application is “on-the-wire” compatible with
VisiBroker 6.0 Request Agent.

Migrating from previous versions of VisiBroker Native Messaging
In VisiBroker 6.0 some changes in the Native Messaging IDL have been made that can
impact source and binary level compatibility of the applications written using VisiBroker
5.x Native Messaging. The main change is in the Property structure. In VisiBroker 5.x,
this structure was defined as follows:

module NativeMessaging {
 struct Property {
 string name;
 any value;
 };
};

In VisiBroker 6.0 Property has been typedef to CORBA::NameValuePair. That is:

typedef CORBA::NameValuePair Property;
typedef CORBA::NameValuePairSeq PropertySeq;

Native Messaging 5.x applications therefore have to be migrated to use
CORBA::NameValuePair for Property. These changes need to be done manually; there is
no migration tool available. Note that any VisiBroker 5.x Native Messaging application
is “on-the-wire” compatible with VisiBroker 6.0 Request Agent.

 19: Using the Object Act ivat ion Daemon (OAD) 275

Using the Object Activation Daemon
(OAD)
This section discusses how to use the Object Activation Daemon (OAD).

Automatic activation of objects and servers
The Object Activation Daemon (OAD) is the VisiBroker implementation of the
Implementation Repository. The Implementation Repository provides a runtime
repository of information about the classes a server supports, the objects that are
instantiated, and their IDs. In addition to the services provided by a typical
Implementation Repository, the OAD is used to automatically activate an
implementation when a client references the object. You can register an object
implementation with the OAD to provide this automatic activation behavior for your
objects.

Object implementations can be registered using a command-line interface (oadutil).
There is also a VisiBroker ORB interface to the OAD, described in “IDL interface to the
OAD”. In each case, the repository ID, object name, the activation policy, and the
executable program representing the implementation must be specified.

Note

You can use the VisiBroker OAD to instantiate servers generated with VisiBroker for
Java and C++.

The OAD is a separate process that only needs to be started on those hosts where
object servers are to be activated on demand.

Locating the Implementation Repository data

Activation information for all object implementations registered with the OAD are stored
in the Implementation Repository. By default, the Implementation Repository data is
stored in a file named impl_rep in the <install_dir>/adm/impl_dir directory.

276 VisiBroker for C++ Developer ’s Guide

Using the OAD

Activating servers

The OAD activates servers in response to client requests. VisiBroker clients and non-
VisiBroker IIOP-compliant clients can activate servers through the OAD.

Any client that uses the IIOP protocol can activate a VisiBroker server when that
server's reference is used. The server's exported Object Reference points to the OAD
and the client can be forwarded to the spawned server in accordance with the rules of
IIOP. To allow true persistence of the server's object references (such as through a
Name Service), the OAD must always be started on the same port. For example, to
start the OAD on port 16050, enter the following:

prompt> oad -VBJprop vbroker.se.iiop_tp.scm.iiop_tp.listener.port=16050

Note

Port 16000 is the default port, but it can be changed by setting the listener.port
property.

Using the OAD
The OAD is an optional feature that allows you to register objects that are to be started
automatically when clients attempt to access them. Before starting the OAD, you
should first start the Smart Agent. For more information, see “Starting a Smart Agent
(osagent)”.

Starting the OAD

Windows

To start the OAD:

– Use the oad.exe located in <install_dir>\bin\

or

– Enter the following at the command prompt:

prompt> oad

The oad command accepts the following command line arguments:

Option Description

-verbose Turns on verbose mode.

-version Prints the version of this tool.

-path <path> Specifies the platform-specific directory for storing the
Implementation Repository. This overrides any setting
provided through the use of environment variables.

-filename <repository_filename> Specifies the name of the Implementation Repository. If you
do not specify it, the default is impl_rep. This overrides any
user environment variable settings.

-timeout <#_of_seconds> Specifies the amount of time the OAD will wait for a
spawned server process to activate the requested
VisiBroker ORB object. The default time-out is 20 seconds.
Set this value to 0 (zero) if you wish to wait indefinitely. If a
spawned server process does not activate the requested
object within the time-out interval, the OAD will kill the
spawned process and the client will see a CORBA::NO
IMPLEMENT exception. Turn on the verbose option to see more
detailed information.

-IOR <IOR_filename> Specifies the filename to store the OAD's stringified IOR.

-kill Stipulates that an object's child process should be killed
once all of its object are unregistered with the OAD.

-no_verify Turns off check for validity of registrations.

 19: Using the Object Act ivat ion Daemon (OAD) 277

Using the OAD ut i l i t ies

The OAD is installed as Windows Service, allowing you to control it with the Service
Manager provided with Windows.

UNIX

To start the OAD enter the following command:

prompt> oad &

Using the OAD utilities
The oadutil commands provide a way for you to manually register, unregister, and list
the object implementations available on your VisiBroker system. The oadutil
commands are implemented in Java and use a command line interface. Each
command is accessed by invoking the oadutil command, passing the type of operation
to be performed as the first argument.

Note

An object activation daemon process (oad) must be started on at least one host in your
network before you can use the oadutil commands.

The oadutil command has the following syntax:

oadutil {list|reg|unreg} [options]

The options for this tool vary, depending on whether you specify list, reg or unreg.

Converting interface names to repository IDs

Interface names and repository IDs are two ways of representing the type of interface
the activated object should implement. All interfaces defined in IDL are assigned a
unique repository identifier. This string is used to identify a type when communicating
with the Interface Repository, the OAD, and most calls to the VisiBroker ORB itself.

When registering or unregistering an object with the OAD, the oadutil commands allow
you to specify either an object's IDL interface name or its repository id.

An interface name is converted to a repository ID as follows:

1 Prepend “IDL:” to the interface name.

2 Replace all non-leading instances of the scope resolution operator (::) with a slash
(/) character.

3 Append “:1.0” to the interface name.

For example, the IDL interface name

::Module1::Module2::IntfName

would be converted to the following repository ID:

IDL:Module1/Module2/IntfName:1.0

The #pragma ID and #pragma prefix mechanisms can be used to override the default
generation of repository ID's from interface names. If the #pragma ID mechanism is used
in user-defined IDL files to specify non-standard repository IDs, the conversion process

-? Displays command usage.

-readonly When the OAD is started with the -readonly option, no
changes can be made to the registered objects. Attempts to
register or unregister objects will return an error. The -
readonly option is usually used after you've made changes
to the Implementation Repository, and have restarted the
OAD in readonly mode to the prevent any additional
changes.

Option Description

278 VisiBroker for C++ Developer ’s Guide

Using the OAD ut i l i t ies

outlined above will not work. In these cases, you must use -r repository ID argument
and specify the object's repository ID.

To obtain the repository ID of the object implementation's most derived interface in
C++, use the method <interface_name>._repository_id() defined for all CORBA
objects.

Listing objects with oadutil list

The oadutil list utility allows you to list all VisiBroker ORB object implementations
registered with the OAD. The information for each object includes:

– Interface names of the VisiBroker ORB objects.

– Instance names of the object offered by that implementation.

– Full path name of the server implementation's executable.

– Activation policy of the VisiBroker ORB object (shared or unshared).

– Reference data specified when the implementation was registered with the OAD.

– List of arguments to be passed to the server at activation time.

– List of environment variables to be passed to the server at activation time.

The oadutil list command returns all VisiBroker ORB object implementations
registered with the OAD. Each OAD has its own Implementation Repository database
where the registration information is stored.

Note

An OAD process must be started on at least one host in your network before you can
use the oadutil list command.

The oadutil list command has the following syntax:

oadutil list [options]

The oadutil list command accepts the following command line arguments:

Option Description

-i <interface name> Lists the implementation information for objects of a particular IDL
interface name. Only one of the following options may be specified at a
particular time: -i, -r, -s, or -poa.

Note: All communications with the VisiBroker ORB reference an object's
repository id instead of the interface name. For more information about
the conversion performed when specifying an interface name, see
“Converting interface names to repository IDs”.

-r <repository id> Lists the implementation information of a specific repository id. See
“Converting interface names to repository IDs” for details on specifying
repository IDs. Only one of the following options may be specified at a
particular time: -i, -r, -s, or -poa.

-s <service name> Lists the implementation information for a specific service name. Only
one of the following options may be specified at a particular time: -i, -r, -
s, or -poa.

-poa <poa_name> Lists the implementation information for a specific POA name. Only one
of the following options may be specified at a particular time: -i, -r, -s, or
-poa.

-o <object name> Lists the implementation information for a specific object name. You can
use this only if the interface or repository id is specified in the command
statement. This option is not applicable when an -s or -poa arguments is
used.

-h <OAD host name> Lists the implementation information for objects registered with an OAD
running on a specific remote host.

-verbose Turns verbose mode on, causing messages to be output to stdout.

-version Prints the version of this tool.

-full Lists the status of all implementations registered with the OAD.

 19: Using the Object Act ivat ion Daemon (OAD) 279

Using the OAD ut i l i t ies

The following is an example of a local list request, specifying an interface name and
object name:

oadutil list -i Bank::AccountManager -o BorlandBank

The following is an example of a remote list request, specifying a host IP address:

oadutil list -h 206.64.15.198

Registering objects with oadutil

The oadutil command can be used to register an object implementation from the
command line or from within a script. The parameters are either the interface name and
object name, the service name, or the POA name, and path name to the executable
that starts the implementation. If the activation policy is not specified, the shared server
policy will be used by default. You may write an implementation and start it manually
during the development and testing phases. When your implementation is ready to be
deployed, you can simply use oadutil to register your implementation with the OAD.

Note

When registering an object implementation, use the same object name that is used
when the implementation object is constructed. Only named objects (those with a
global scope) may be registered with the OAD.

The oadutil reg command has the following syntax:

oadutil reg [options]

Note

An oad process must be started on at least one host in your network before you can use
the oadutil reg command.

The options for the oadutil reg command accepts the following command-line
arguments:

Option Required Description

-i <interface name> Yes Specifies a particular IDL interface name. Only one of
the following options may be specified at a particular
time: -i, -r, -s, or -poa. See “Converting interface
names to repository IDs” for details on specifying
repository IDs.

-r <repository id> Yes Specifies a particular repository id. Only one of the
following options may be specified at a particular
time: -i, -r, -s, or -poa.

-s <service name> Yes Specifies a particular service name. Only one of the
following options may be specified at a particular
time: -i, -r, -s, or -poa.

-poa <poa_name> Yes Use this option to register the POA instead of an
object implementation. Only one of the following
options may be specified at a particular time: -i, -r,
-s, or -poa.

-o <object name> Yes Specifies a particular object. You can use this only if
the interface name or repository id is specified in the
command statement. This option is not applicable
when an -s or -poa argument is used.

-cpp <file name to execute> Yes Specifies the full path of an executable file that must
create and register an object that matches the
-o/-r/-s/-poa arguments. Applications registered with
the -cpp argument must be stand-alone executables.

-java <full class name> Yes Specifies the full name of a Java class containing a
main routine. This application must create and
register an Object that matches the -o/-r/-s/-poa
argument. Classes registered with the -java
argument will be executed with the command vbj
<full_classname>.

280 VisiBroker for C++ Developer ’s Guide

Using the OAD ut i l i t ies

Example: Specifying repository ID
The following command will register with the OAD the VisiBroker program factory. It
will be activated upon request for objects of repository ID IDL:ehTest/Factory:1.0
(which corresponds to the interface name ehTest::Factory). The instance name of the
object to be activated is ReentrantServer, and that name is also passed to the spawned
executable as a command-line argument. This server has the unshared policy, by
which it will be terminated when the requesting client breaks its connection to the
spawned server.

prompt> oadutil reg -r IDL:ehTest/Factory:1.0 -o ReentrantServer \
 -cpp /home/developer/Project1/factory_r -a ReentrantServer \
 -p unshared

Example: Specifying IDL interface name
The following command will register the VisiBroker Server class with the OAD. In this
example, the specified class must activate an object of repository ID IDL:Bank/
AccountManager:1.0 (corresponding to the interface name IDL name
Bank::AccountManager) and instance name CreditUnion. The server will be started with
unshared policy, ensuring that it will terminate when the requesting client breaks its
connection. The server is also passed with an environment variable DEBUG=1 when it is
first started by the client.

prompt> oadutil reg -i Bank::AccountManager -o CreditUnion \
 -cpp Server -a CreditUnion -p unshared -e DEBUG=1

-host <OAD host name> No Specifies a specific remote host where the OAD is
running.

-verbose No Turns verbose mode on, causing messages to be
output to stdout.

-version No Prints the version of this tool.

-cos_name <CosName> No Specifies the CosName to bind this registration to
NOTE: This does not work with service or POA
registrations.

-d <referenceData> No Specifies reference data to be passed to the server
upon activation.

-a arg1 -a arg2 No Specifies the arguments to be passed to the
spawned executable as command-line arguments.
Arguments can be passed with multiple -a (arg)
parameters. They will be propagated in order to
create the spawned executable.

-e env1 -e env2 No Specifies environment variables to be passed to the
spawned executable. Arguments can be passed with
multiple -e (env) parameters. They will be propagated
in order to create the spawned executable.

-p <shared|unshared> No Specifies the activation policy of the spawned
objects. The default policy is SHARED_SERVER. Shared:
Multiple clients of a given object share the same
implementation. Only one server is activated by an
OAD at a particular time. Unshared: Only one client
of a given implementation will bind to the activated
server. If multiple clients wish to bind to the same
object implementation, a separate server is activated
for each client application. A server exits when its
client application disconnects or exits.

Option Required Description

 19: Using the Object Act ivat ion Daemon (OAD) 281

Using the OAD ut i l i t ies

Remote registration to an OAD
To register an implementation with an OAD on a remote host, use the -h argument to
oadutil reg.

The following is an example of how to perform a remote registration to an OAD on
Windows from a UNIX shell. The double backslashes are necessary to avoid having
the shell interpret the backslashes before passing them to oadutil.

prompt> oadutil reg -r IDL:Library:1.0 Harvard \
 -cpp c:\\vbroker\\examples\\library\\libsrv.exe -p shared -h 100.64.15.198

Using the OAD without using the Smart Agent
To access a server using the OAD without involving the Smart Agent, use the property
vbroker.orb.activationIOR to indicate the OAD's IOR to oadutil and to the server.

For example, let us assume that the OAD's IOR is located in the e:/adm dir (on
Windows), and you want to run the bank_portable example that is included (in the
examples/basic/bank_portable directory) with with the product. To access this server
without using the Smart Agent:

1 Start the OAD: the classpath visible to OAD must include the Server's classpath.
The command is:

prompt>start oad -VBJprop vbroker.agent.enableLocator=false -verbose

2 Register the server using oadutil: the command is:

prompt> oadutil -VBJprop vbroker.orb.activationIOR=file:///e:/adm/oadj.ior -
VBJprop
 vbroker.agent.enableLocator=false reg -i Bank::AccountManager
 -o BankManager -cpp Server

3 Generate the Server's IOR: when the server is started it will write out it's IOR into a
file. Terminate the server once it is running, so that the launching of the server by
the OAD can be demonstrated. The command is:

prompt> Server -Dvbroker.orb.activationIOR=file:///e:/adm/oadj.ior Server

4 Run the Client: make sure the OAD is running, then use the command:

prompt> Client -Dvbroker.agent.enableLocator=false

Using the OAD with the Naming Service
OAD facilitates the use of the Naming Service for bootstrapping. In the above section,
the Smart Agent was not used, and the client needed to obtain the server's IOR file.
This bootstrapping can be achieved using the Naming Service instead, as illustrated in
the following steps.

1 Start the OAD, providing it with a reference to the Naming Service. Assume that the
Naming Service runs on port 1111 on host myhost.

prompt>oad -verbose -VBJprop
vbroker.orb.initRef=NameService=corbaloc::myhost:1111/NameService

282 VisiBroker for C++ Developer ’s Guide

Using the OAD ut i l i t ies

2 Register the server with the OAD. Note the use of the -cos_name parameter which
indicates to the OAD that this server should be automatically bound to the Naming
Service.

prompt>oadutil -VBJprop vbroker.orb.activationIOR=file:///e:/adm/oadj.ior -
VBJprop
 vbroker.agent.enableLocator=false reg -i Bank::AccountManager -o
BankManager
 -cos_name simple_test -cpp Server/pre>

prompt>oadutil -VBJprop vbroker.orb.activationIOR=file:///e:/adm/oadj.ior -
VBJprop
 vbroker.agent.enableLocator=false reg -i Bank::AccountManager -o
BankManager
 -cos_name simple_test -java Server

3 The client can then use the Naming Service to resolve and obtain the server's
reference. A snippet of the client code for a Java client is shown below.

prompt>org.omg.CORBA.Object server=
 rootCtx.resolve(new NameComponent[] {new
NameComponent("simple_test","")});

Note that the OAD automatically created a binding for the server in the Naming Service
because the -cos_name parameter was used.

Distinguishing between multiple instances of an object
Your implementation can use ReferenceData to distinguish between multiple instances
of the same object. The value of the reference data is chosen by the implementation at
object creation time and remains constant during the lifetime of the object. The
ReferenceData typedef is portable across platforms and VisiBroker ORBs.

VisiBroker does not use the inf_ptr, which is defined by the CORBA specification to
identify the interface of the object being created. Applications created with VisiBroker
should always specify a NULL value for this parameter.

Setting activation properties using the CreationImplDef class
The CreationImplDef class contains the properties the OAD requires to activate a
VisiBroker ORB object: path_name, activation_policy, args, and env. The following
sample shows the CreationImplDef struct.

The path_name property specifies the exact path name of the executable program that
implements the object. The activation_policy property represents the server's
activation policy, which is used in object creation and registration.

module extension {
...
 enum Policy {
 SHARED_SERVER,
 UNSHARED_SERVER
 };
 struct CreationImplDef {
 CORBA::RepositoryId repository_id;
 string object_name;
 CORBA::ReferenceData id;
 string path_name;
 Policy activation_policy;
 CORBA::StringSequence args;
 CORBA::StringSequence env;
 };
...
};

 19: Using the Object Act ivat ion Daemon (OAD) 283

Using the OAD ut i l i t ies

Dynamically changing an ORB implementation

The sample below shows the change_implementation() method which can be used to
dynamically change an object's registration. You can use this method to change the
object's activation policy, path name, arguments, and environment variables.

module Activation
{
...
 void change_implementation(in extension::CreationImplDef old_info,
 in extension::CreationImplDef new_info)
 raises (NotRegistered, InvalidPath, IsActive);
...
};

Caution

Although you can change an object's implementation name and object name with the
change_implementation() method, you should exercise caution. Doing so will prevent
client programs from locating the object with the old name.

OAD Registration using OAD::reg_implementation

Instead of using the oadutil reg command manually or in a script, VisiBroker allows
client applications to use the OAD::reg_implementation operation to register one or more
objects with the activation daemon. Using this operation results in an object
implementation being registered with the OAD and the osagent. The OAD will store the
information in the Implementation Repository, allowing the object implementation to be
located and activated when a client attempts to bind to the object.

module Activation {
...
 typedef sequence<ObjectStatus> ObjectStatus List;
...
 typedef sequence<ImplementationStatus> ImplStatusList;
...
 interface OAD {
 // Register an implementation.
 Object reg_implementation(in extension::CreationImplDef impl)
 raises (DuplicateEntry, InvalidPath);
 }
}

The CreationImplDef struct contains the properties the OAD requires. The properties
are repository_id, object_name, id, path_name, activation_policy, args, and env.
Operations for setting and querying their values are also provided. These additional
properties are used by the OAD to activate an VisiBroker ORB object.

struct CreationImplDef {
 CORBA::RepositoryId repository_id;
 string object_name;
 CORBA::ReferenceData id;
 string path_name;
 Policy activation_policy;
 CORBA::StringSequence args;
 CORBA::StringSequence env;
};

The path_name property specifies the exact path name of the executable program that
implements the object. The activation_policy property represents the server's
activation policy. The args and env properties represent optional arguments and
environment settings to be passed to the server.

284 VisiBroker for C++ Developer ’s Guide

Un-register ing objects

Arguments passed by the OAD
When the OAD starts an object implementation it passes all of the arguments that were
specified when the implementation was registered with the OAD.

Un-registering objects
When the services offered by an object are no longer available or temporarily
suspended, the object should be unregistered with the OAD. When the VisiBroker ORB
object is unregistered, it is removed from the Implementation Repository. The object is
also removed from the Smart Agent's dictionary. Once an object is unregistered, client
programs will no longer be able to locate or use it. In addition, you will be unable to use
the OAD.change_implementation() method to change the object's implementation. As
with the registration process, un-registering may be done either at the command line or
programmatically.

Un-registering objects using the oadutil tool

The oadutil unreg command allows you to unregister one or more object
implementations registered with the OAD. Once an object is unregistered, it can no
longer be automatically activated by the OAD if a client requests the object. Only
objects that have been previously registered via the oadutil reg command may be
unregistered with oadutil unreg.

If you specify only an interface name, all VisiBroker ORB objects associated with that
interface will be unregistered. Alternatively, you may identify a specific VisiBroker ORB
object by its interface name and object name. When you unregister an object, all
processes associated with that object will be terminated.

Note

An oad process must be started on at least one host in your network before you can use
the oadutil reg command.

The oadutil unreg command has the following syntax:

oadutil unreg [options]

The options for the oadutil unreg command accepts the following command line
arguments:

Option Required Description

-i <interface name> Yes Specifies a particular IDL interface name. Only one of the
following options may be specified at a particular time: -i, -r,
-s, or -poa. See “Converting interface names to repository
IDs” for details on specifying repository IDs.

-r <repository id> Yes Specifies a particular repository id. Only one of the following
options may be specified at a particular time: -i, -r, -s, or
-poa.

-s <service name> Yes Specifies a particular service name. Only one of the following
options may be specified at a particular time: -i, -r, -s, or
-poa.

-o <object name> Yes Specifies a particular object name. You can use this only if
the interface name or repository id is included in the
command statement. This option is not applicable when a -s
or -poa argument is used.

-poa <POA_name> Yes Unregisters the POA registered using oadutil reg -poa
<POA_name>.

-host <host name> No Specifies the host name where the OAD is running.

-verbose No Enables verbose mode, causing messages to be output to
stdout.

-version No Prints the version of this tool.

 19: Using the Object Act ivat ion Daemon (OAD) 285

Un-register ing objects

Unregistration example
The oadutil unreg utility unregisters one or more VisiBroker ORB objects from these
three locations:

– Object Activation Daemon

– Implementation repository

– Smart Agent

The following is an example of how to use the oadutil unreg command. It unregisters
the implementation of the Bank::AccountManager named MyBank from the local OAD.

oadutil unreg -i Bank::AccountManager -o MyBank

Unregistering with the OAD operations

An object's implementation can use any one of the operations or attributes in the OAD
interface to unregister a VisiBroker ORB object.

– unreg_implementation(in CORBA::RepositoryId repId, in string object_name)

– unreg_interface(in CORBA::RepositoryId repId)

– unregister_all()

– attribute boolean destroy_on_unregister()

The following is an example of an OAD unregistered operation:

module Activation {
...
 interface OAD {
 ...
 void unreg_implementation(in CORBA::RepositoryId repId,
 in string object_name)
 raises(NotRegistered);
 ...
 }
}

Displaying the contents of the Implementation Repository

You can use the oadutil tool to list the contents of a particular Implementation
Repository. For each implementation in the repository the oadutil tool lists all the
object instance names, the path name of the executable program, the activation mode
and the reference data. Any arguments or environment variables that are to be passed
to the executable program are also listed.

Operation Description

unreg_implementation() Use this operation when you want to un-registered implementations
using a specific repository id and object name. This operation
terminates all processes currently implementing the specified
repository id and object name.

unreg_interface() Use this operation when you want to un-registered implementations
by using a specific repository id only. This operation terminates all
processes currently implementing the specified repository id.

unregister_all() Use this operation to un-registered all implementations. Unless
destroyActive is set to true, all active implementations continue to
execute. For backward compatibility, unregister_all() is not
destructive; it is equivalent to invoking unregister_all_destroy(false).

destroy_on_unregister Use this attribute to destroy any spawned processes on unregistration
of the relevant implementation. The default value is false.

286 VisiBroker for C++ Developer ’s Guide

IDL interface to the OAD

IDL interface to the OAD
The OAD is implemented as a VisiBroker ORB object, allowing you to create a client
program that binds to the OAD and uses its interface to query the status of objects that
have been registered. The sample below shows the IDL interface specification for the
OAD.

module Activation
{
 enum state {
 ACTIVE,
 INACTIVE,
 WAITING_FOR_ACTIVATION
 };
 struct ObjectStatus {
 long unique_id;
 State activation_state;
 Object objRef;
 };
 typedef sequence<ObjectStatus> ObjectStatusList;
 struct ImplementationStatus {
 extension::CreationImplDef impl;
 ObjectStatusList status;
 };
 typedef sequence<ImplementationStatus> ImplStatusList;
 exception DuplicateEntry {};
 exception InvalidPath {};
 exception NotRegistered {};
 exception FailedToExecute {};
 exception NotResponding {};
 exception IsActive {};
 exception Busy {};
 interface OAD {
 Object reg_implementation(in extension::CreationImplDef impl)
 raises (DuplicateEntry, InvalidPath);
 extension::CreationImplDef get_implementation(
 in CORBA::RepositoryId repId,
 in string object_name)
 raises (NotRegistered);
 void change_implementation(in extension::CreationImplDef old_info,
 in extension::CreationImplDef new_info)
 raises (NotRegistered,InvalidPath,IsActive);
 attribute boolean destroy_on_unregister;
 void unreg_implementation(in CORBA::RepositoryId repId,
 in string object_name)
 raises (NotRegistered);
 void unreg_interface(in CORBA::RepositoryId repId)
 raises (NotRegistered);
 void unregister_all();
 ImplementationStatus get_status(in CORBA::RepositoryId repId,
 in string object_name)
 raises (NotRegistered);
 ImplStatusList get_status_interface(in CORBA::RepositoryId repId)
 raises (NotRegistered);
 ImplStatusList get_status_all();
};

 20: Using Interface Reposi tor ies 287

Using Interface Repositories
An Interface Repository (IR) contains descriptions of CORBA object interfaces. The
data in an IR is the same as in IDL files, descriptions of modules, interfaces,
operations, and parameters, but it is organized for runtime access by clients. A client
can browse an Interface Repository (perhaps serving as an online reference tool for
developers) or can look up the interface of any object for which it has a reference
(perhaps in preparation for invoking the object with the Dynamic Invocation Interface
(DII)).

Reading this section will enable you to create an Interface Repository and access it
with VisiBroker utilities or with your own code.

What is an Interface Repository?
An Interface Repository (IR) is like a database of CORBA object interface information
that enables clients to learn about or update interface descriptions at runtime. In
contrast to the VisiBroker Location Service, described in “Using the Location Service,”
which holds data describing object instances, an IR's data describes interfaces (types).
There may or may not be available instances that satisfy the interfaces stored in an IR.
The information in an IR is equivalent to the information in an IDL file (or files), but it is
represented in a way that is easier for clients to use at runtime.

Clients that use Interface Repositories may also use the Dynamic Invocation Interface
(DII) described in “Using the Dynamic Invocation Interface.” Such clients use an
Interface Repository to learn about an unknown object's interface, and they use the DII
to invoke methods on the object. However, there is no necessary connection between
an IR and the DII. For example, someone could use the IR to write an "IDL browser"
tool for developers; in such a tool, dragging a method description from the browser to
an editor would insert a template method invocation into the developer's source code.
In this example, the IR is used without the DII.

You create an Interface Repository with the VisiBroker irep program, which is the IR
server (implementation). You can update or populate an Interface Repository with the
VisiBroker idl2ir program, or you can write your own IR client that inspects an
Interface Repository, updates it, or does both.

What does an Interface Repository contain?

An Interface Repository contains hierarchies of objects whose methods divulge
information about interfaces. Although interfaces are usually thought of as describing

288 VisiBroker for C++ Developer ’s Guide

Creat ing and v iewing an Inter face Reposi tory wi th i rep

objects, using a collection of objects to describe interfaces makes sense in a CORBA
environment because it requires no new mechanism such as a database.

As an example of the kinds of objects an IR can contain, consider that IDL files can
contain IDL module definitions, and modules can contain interface definitions, and
interfaces can contain operation (method) definitions. Correspondingly, an Interface
Repository can contain ModuleDef objects which can contain InterfaceDef objects,
which can contain OperationDef objects. Thus, from an IR ModuleDef, you can learn
what InterfaceDefs it contains. The reverse is also true; given an InterfaceDef you can
learn what ModuleDef it is contained in. All other IDL constructs, including exceptions,
attributes, and valuetypes, can be represented in an Interface Repository.

An Interface Repository also contains typecodes. Typecodes are not explicitly listed in
IDL files, but are automatically derived from the types (long, string, struct, and so on)
that are defined or mentioned in IDL files. Typecodes are used to encode and decode
instances of the CORBA any type: a generic type that stands for any type and is used
with the dynamic invocation interface.

How many Interface Repositories can you have?

Interface repositories are like other objects; you can create as many as you like. There
is no VisiBroker-mandated policy governing the creation or use of IRs. You determine
how Interface Repositories are deployed and named at your site. You may, for
example, adopt the convention that a central Interface Repository contains the
interfaces of all "production" objects, and developers create their own IRs for testing.

Note

Interface repositories are writable and are not protected by access controls. An
erroneous or malicious client can corrupt an IR or obtain sensitive information from it.

If you want to use the _get_interface_def method defined for all objects, you must have
at least one Interface Repository server running so the VisiBroker ORB can look up the
interface in the IR. If no Interface Repository is available, or if the IR that the VisiBroker
ORB binds to has not been loaded with an interface definition for the object,
_get_interface_def raises a NO_IMPLEMENT exception.

Creating and viewing an Interface Repository with irep
The VisiBroker Interface Repository server is called irep, and is located in the
<install_dir>/bin directory. The irep program runs as a daemon. You can register
irep with the Object Activation Daemon (OAD) as you would any object
implementation. The oadutil tool requires the object ID, for example, IDL:org.omg/
CORBA/Repository:2.3 (as opposed to an interface name such as CORBA::Repository).

Note

The irep server needs a rollback file to keep its internal data consistent. The file is
created if it does not already exist, for example when launching the irep server for the
first time. The IRepName specified in the command line is used to make up the name
of the rollback file. Make sure that the name contains only valid file system characters
based on your platform. If the specified name contains directory locations that do not
exist, they will be automatically created.

Creating an Interface Repository with irep

Use the irep program to create an Interface Repository and view its contents. The
usage syntax for the irep program is as follows:

irep <driver_options> <other_options> <IRepName> [file.idl]

 20: Using Inter face Reposi tor ies 289

Updat ing an Interface Reposi tory wi th id l2 i r

The syntax for creating an Interface Repository in the irep is described in the following
table:

The irep arguments are defined in the following table. You may also use the driver
options defined in “General options” .

The following example shows how an Interface Repository named TestIR can be
created from a file called Bank.idl.

irep TestIR Bank.idl

Viewing the contents of the Interface Repository

You can view the contents of the Interface Repository with either the VisiBroker ir2idl
utility, or the VisiBroker Console application. The syntax for the ir2idl utility is:

ir2idl [-irep <IRname>]

The syntax for viewing the contents of an Interface Repository in the irep is described
in the following table:

Updating an Interface Repository with idl2ir
You can update an Interface Repository with the VisiBroker idl2ir utility, which is an IR
client. The syntax for the idl2ir utility is:

idl2ir [arguments] <idl_file_list>

The following example shows how the TestIR Interface Repository would be updated
with definitions from the Bank.idl file.

Syntax Description

IRepName Specifies the instance name of the Interface Repository. Clients can bind to this
Interface Repository instance by specifying this name.

file.idl Specifies the IDL file whose contents irep will load into the Interface Repository it
creates and will store the IR contents into when it exits. If no file is specified, irep
creates an empty Interface Repository.

Argument Description

-D, -define foo[=bar] Define a preprocessor macro, optionally with value.

-I, -include <dir> Specify additional directory for #include searching.

-P, -no_line_directives Do not emit #line directives from preprocessor. The default is
off.

-H, -list_includes Display #included file names as they are encountered. The
default is off.

-C, -retain_comments Retain comments in preprocessed output. The default is off.

-U, -undefine foo Undefine a preprocessor macro.

-[no_]idl_strict Strict OMG-standard interpretation of IDL source. The default
is off.

-[no_]warn_unrecognized_pragmas Warn if a #pragma is not recognized. The default is on.

-[no_]back_compat_mapping Use mapping that is compatible with VisiBroker 3.x.

-h, -help, -usage, -? Print this usage information.

-version Display software version numbers.

-install <service name> Install as a NT service.

-remove <service name> Uninstall this NT service.

Syntax Description

-irep <IRname> Directs the program to bind to the Interface Repository instance named
IRname. If the option is not specified, it binds to any Interface Repository
returned by the Smart Agent.

290 VisiBroker for C++ Developer ’s Guide

Understanding the structure of the Interface Reposi tory

idl2ir -irep TestIR -replace Bank.idl

Entries in an Interface Repository cannot be removed using the idl2ir or irep utilities.
To remove an item:

– Exit or quit the irep program.

– Edit the IDL file named in the irep command line.

– Start irep again with the updated file.

Interface repositories have a simple transaction service. If the specified IDL file fails to
load, the Interface Repository rolls back its content to its previous state. After loading
the IDL, the Interface Repository commits its state to be used in subsequent
transactions. For any repository, there is a file <IRname>.rollback in the home directory
that contains the state of the last uncommitted transaction.

Note

If you wish to remove all entries in the Interface Repository, you can replace the
contents with a new empty IDL file. For example, using an IDL file named Empty.idl,
you could run the following command:

idl2ir -irep TestIR -replace Empty.idl

Understanding the structure of the Interface Repository
An Interface Repository organizes the objects it contains into a hierarchy that
corresponds to the way interfaces are defined in an IDL specification. Some objects in
the Interface Repository contain other objects, just as an IDL module definition might
contain several interface definitions. Consider how the example IDL file shown below
would translate to a hierarchy of objects in an Interface Repository.

// Bank.idl
module Bank {
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};

Figure 20.1 Interface repository object hierarchy for Bank.idl

The OperationDef object contains references to additional data structures (not
interfaces) that hold the parameters and return type.

 20: Using Inter face Reposi tor ies 291

Understanding the structure of the Interface Reposi tory

Identifying objects in the Interface Repository

The following table shows the objects that are provided to identify and classify Interface
Repository objects.

Types of objects that can be stored in the Interface Repository

The following table summarizes the objects that can be contained in an Interface
Repository. Most of these objects correspond to IDL syntax elements. A StructDef, for
example, contains the same information as an IDL struct declaration, an InterfaceDef
contains the same information as an IDL interface declaration, all the way down to a
PrimitiveDef which contains the same information as an IDL primitive (boolean, long,
and so forth.) declaration.

Item Description

name A character string that corresponds to the identifier assigned in an IDL specification
to a module, interface, operation, and so forth. An identifier is not necessarily unique.

id A character string that uniquely identifies an IRObject. A RepositoryID contains three
components, separated by colon (:) delimiters. The first component is IDL: and the
last is a version number such as :1.0. The second component is a sequence of
identifiers separated by slash (/) characters. The first identifier is typically a unique
prefix.

def_kind An enumeration that defines values which represent all the possible types of
Interface Repository objects.

Object type Description

Repository Represents the top-level module that contains all other objects.

ModuleDef Represents an IDL module declaration that can contain ModuleDefs,
InterfaceDefs, ConstantDefs, AliasDefs, ExceptionDefs, and the IR equivalents of
other IDL constructs that can be defined in IDL modules.

InterfaceDef Represents an IDL interface declaration and contain OperationDefs,
ExceptionDefs, AliasDefs, ConstantDefs, and AttributeDefs.

AttributeDef Represents an IDL attribute declaration.

OperationDef Represents an IDL operation (method) declaration. Defines an operation on
an interface. It includes a list of parameters required for this operation, the
return value, a list of exceptions that may be raised by this operation, and a
list of contexts.

ConstantDef Represents an IDL constant declaration.

ExceptionDef Represents an IDL exception declaration.

ValueDef Represents a valuetype definition containing lists of constants, types,
valuemembers, exceptions, operations, and attributes.

ValueBoxDef Represents a simple boxed valuetype of another IDL type.

ValueMemberDef Represents a member of the valuetype.

NativeDef Represents a native definition. Users can not define their own natives.

StructDef Represents an IDL structure declaration.

UnionDef Represents an IDL union declaration.

EnumDef Represents an IDL enumeration declaration.

AliasDef Represents an IDL typedef declaration. Note that the IR TypedefDef interface is
a base interface that defines common operations for StructDefs, UnionDefs, and
others.

StringDef Represents an IDL bounded string declaration.

SequenceDef Represents an IDL sequence declaration.

ArrayDef Represents an IDL array declaration.

PrimitiveDef Represents an IDL primitive declaration: null, void, long, ushort, ulong, float,
double, boolean, char, octet, any, TypeCode, Principal, string, objref, longlong,
ulonglong, longdouble, wchar, wstring.

292 VisiBroker for C++ Developer ’s Guide

Accessing an Interface Reposi tory

Inherited interfaces

Three non-instantiatable (that is, abstract) IDL interfaces define common methods that
are inherited by many of the objects contained in an IR (see the table above). The
following table summarizes these widely inherited interfaces. For more information on
the other methods for these interfaces, see the VisiBroker Programmer's Reference.

Accessing an Interface Repository
Your client program can use an Interface Repository's IDL interface to obtain
information about the objects it contains. Your client program can bind to the
Repository and then invoke the methods shown below. A complete description of this
interface can be found in the Programmer's Reference.

Note

A program that uses an Interface Repository must be compiled with the-
D_VIS_INCLUDE_IR flag.

class CORBA {
 class Repository : public Container {
 ...
 CORBA::Contained_ptr lookup_id(const char * search_id);
 CORBA::PrimitiveDef_ptr get_primitive(CORBA::PrimitiveKind kind);
 CORBA::StringDef_ptr create_string(CORBA::ULong bound);
 CORBA::SequenceDef_ptr create_sequence(CORBA::ULong bound,
 CORBA::IDLType_ptr element_type);
 CORBA::ArrayDef_ptr create_array(CORBA::ULong length,
 CORBA::IDLType_ptr element_type);
 ...
 };
 ...
};

Interface Repository example program
This section describes a simple Interface Repository example which contains an
AccountManager interface to create an account and (re)open an account. This example
code can be found in the following directory:

<install_dir>\Vbroker\examples\ir

At the initialization time the AccountManager implementation bootstraps the Interface
Repository definition for the managed Account interface. This exposes the additional
operation that has been already implemented by this particular Account implementation
to the clients. The clients now can access all known operations (which are described in
IDL) and, additionally, they can verify with the Interface Repository support for other
operations and invoke them. The example illustrates how we can manage Interface
Repository definition objects and how to introspect remote objects using the Interface
Repository.

Interface Inherited by Principal query methods

IRObject All IR objects including
Repository

def_kind() returns an IR object's definition kind, for
example, module or interface destroy() destroys an IR
object

Container IR objects that can
contain other IR objects,
for example, module or
interface

lookup() looks up a contained object by name
contents() lists the objects in a Container
describe_contents() describes the objects in a Container

Contained IR objects that can be
contained in other objects,
that is, Containers

name() name of this object defined_in() Container that
contains an object describe() describes an object move
() moves an object into another container

 20: Using Inter face Reposi tor ies 293

Interface Reposi tory example program

Before this program can be tested, the following conditions should exist:

– OSAgent should be up and running. For more information, see “Using the Smart
Agent.”

– Interface repository should be started using irep. For more information, see
“Creating and viewing an Interface Repository with irep”.

– Interface Repository should be loaded with an IDL file either by the command line
when you start the Interface Repository, or by using idl2ir. For more information,
see “Updating an Interface Repository with idl2ir”.

– Start the client program.

Looking up an interface's operations and attributes in an IR:

/* PrintIR.C */
#ifndef _VIS_INCLUDE_IR
#define _VIS_INCLUDE_IR
#endif
#include "corba.h"
#include "strvar.h"
int main(int argc, char *argv[]) {
 try {
 if (argc != 2) {
 cout << "Usage: PrintIR idlName" << endl;
 exit(1);
 }
 CORBA::String_var idlName = (const char *)argv[1];
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 CORBA::Repository_var rep = CORBA::Repository::_bind();
 CORBA::Contained_var contained = rep->lookup(idlName);
 CORBA::InterfaceDef_var intDef = CORBA::InterfaceDef::_narrow(contained);
 if (intDef != CORBA::InterfaceDef::_nil()) {
 CORBA::InterfaceDef::FullInterfaceDescription_var fullDesc = intDef-
>describe_interface();
 cout << "Operations:" << endl;
 for(CORBA::ULong i = 0; i < fullDesc->operations.length(); i++)
 cout << " " << fullDesc->operations[i].name << endl;
 cout << "Attributes:" << endl;
 for(i = 0; i < fullDesc->attributes.length(); i++)
 cout << " " << fullDesc->attributes[i].name << endl;
 } else
 cout << "idlName is not an interface: " << idlName << endl;
 } catch (const CORBA::Exception& excep) {
 cerr << "Exception occurred ..." << endl;
 cerr << excep << endl;
 exit(1);
 }
 return 0;
}

294 VisiBroker for C++ Developer ’s Guide

Interface Reposi tory example program

 21: Using the Dynamic Invocat ion Interface 295

Using the Dynamic Invocation
Interface
The developers of most client programs know the types of the CORBA objects their
code will invoke, and they include the compiler-generated stubs for these types in their
code. By contrast, developers of generic clients cannot know what kinds of objects
their users will want to invoke. Such developers use the Dynamic Invocation Interface
(DII) to write clients that can invoke any method on any CORBA object from knowledge
obtained at runtime.

What is the dynamic invocation interface?
The Dynamic Invocation Interface (DII) enables a client program to invoke a method on
a CORBA object whose type was unknown at the time the client was written. The DII
contrasts with the default static invocation, which requires that the client source code
include a compiler-generated stub for each type of CORBA object that the client
intends to invoke. In other words, a client that uses static invocation declares in
advance the types of objects it will invoke. A client that uses the DII makes no such
declaration because its programmer does not know what kinds of objects will be
invoked. The advantage of the DII is flexibility; it can be used to write generic clients
that can invoke any object, including objects whose interfaces did not exist when the
client was compiled. The DII has two disadvantages:

– It is more difficult to program (in essence, your code must do the work of a stub).

– Invocations take longer because more work is done at runtime.

The DII is purely a client interface. Static and dynamic invocations are identical from an
object implementation's point of view.

296 VisiBroker for C++ Developer ’s Guide

What is the dynamic invocat ion interface?

You can use the DII to build clients like these:

– Bridges or adapters between script environments and CORBA objects. For
example, a script calls your bridge, passing object and method identifiers and
parameter values. Your bridge constructs and issues a dynamic request, receives
the result, and returns it to the scripting environment. Such a bridge could not use
static invocation because its developer could not know in advance what kinds of
objects the script environment would want to invoke.

– Generic object testers. For example, a client takes an arbitrary object identifier,
looks up its interface in the interface repository (see “Using Interface Repositories”),
and then invokes each of its methods with artificial argument values. Again, this style
of generic tester could not be built with static invocation.

Note

Clients must pass valid arguments in DII requests. Failure to do so can produce
unpredictable results, including server crashes. Although it is possible to dynamically
type-check parameter values with the interface repository, it is expensive. For best
performance, ensure that the code (for example, script) that invokes a DII-using client
can be trusted to pass valid arguments.

Introducing the main DII concepts

The dynamic invocation interface is actually distributed among a handful of CORBA
interfaces. Furthermore, the DII frequently offers more than one way to accomplish a
task—the trade-off being programming simplicity versus performance in special
situations. As a result, DII is one of the more difficult CORBA facilities to grasp. This
section is a starting point, a high-level description of the main ideas.

To use the DII you need to understand these concepts, starting from the most general:

– Request objects

– Any and Typecode objects

– Request sending options

– Reply receiving options

Using request objects
A Request object represents one invocation of one method on one CORBA object. If
you want to invoke two methods on the same CORBA object, or the same method on
two different objects, you need two Request objects. To invoke a method you first need
the target reference, an object reference representing the CORBA object. Using the
target reference, you create a Request, populate it with arguments, send the Request,
wait for the reply, and obtain the result from the Request.

There are two ways to create a Request. The simpler way is to invoke the target object's
_request method, which all CORBA objects inherit. This does not, in fact, invoke the
target object. You pass _request the IDL name of the method you intend to invoke in
the Request, for example, "get_balance." To add argument values to a Request created
with _request, you invoke the Request's add_value method for each argument required
by the method you intend to invoke. To pass one or more Context objects to the target,
you must add them to the Request with its ctx method.

Although not intuitively obvious, you must also specify the type of the Request's result
with its result method. For performance reasons, the messages exchanged between
the VisiBroker ORBs do not contain type information. By specifying a place holder
result type in the Request, you give the VisiBroker ORB the information it needs to
properly extract the result from the reply message sent by the target object. Similarly, if
the method you are invoking can raise user exceptions, you must add place holder
exceptions to the Request before sending it.

The more complicated way to create a Request object is to invoke the target object's
_create_request method, which, again, all CORBA objects inherit. This method takes
several arguments which populate the new Request with arguments and specify the
types of the result and user exceptions, if any, that it may return. To use the

 21: Using the Dynamic Invocat ion Interface 297

What is the dynamic invocat ion interface?

_create_request method you must have already built the components that it takes as
arguments. The potential advantage of the _create_request method is performance.
You can reuse the argument components in multiple _create_request calls if you invoke
the same method on multiple target objects.

Note

There are two overloaded forms of the _create_request method: one that includes
ContextList and ExceptionList parameters, and one that does not. If you want to pass
one or more Context objects in your invocation, and/or the method you intend to invoke
can raise one or more user exceptions, you must use the _create_request method that
has the extra parameters.

Encapsulating arguments with the Any type
The target method's arguments, result, and exceptions are each specified in special
objects called Anys. An Any is a generic object that encapsulates an argument of any
type. An Any can hold any type that can be described in IDL. Specifying an argument to
a Request as an Any allows a Request to hold arbitrary argument types and values
without making the compiler complain of type mismatches. (The same is true of results
and exceptions.)

An Any consists of a TypeCode and a value. A value is just a value, and a TypeCode is an
object that describes how to interpret the bits in the value (that is, the value's type).
Simple TypeCode constants for simple IDL types, such as long and Object, are built into
the header files produced by the idl2cpp compiler. TypeCodes for IDL constructed types,
such as structs, unions, and typedefs, have to be constructed. Such TypeCodes can be
recursive because the types they describe can be recursive.

Consider a struct consisting of a long and a string. The TypeCode for the struct
contains a TypeCode for the long and a TypeCode for the string. The idl2cpp compiler will
generate TypeCodes for the constructed types in an IDL file if the compiler is invoked
with the -type_code_info option. However, if you are using the DII, you need to obtain
TypeCodes at runtime. You can get a TypeCode at runtime from an interface repository
(see “Using Interface Repositories”) or by asking the VisiBroker ORB to create one by
invoking ORB::create_struct_tc or ORB::create_exception_tc.

If you use the _create_request method, you need to put the Any-encapsulated target
method arguments in another special object called an NVList. No matter how you
create a Request, its result is encoded as an NVList. Everything said about arguments in
this paragraph applies to results as well. "NV" stands for named value, and an NVList
consists of a count and number of items, each of which has a name, a value, and a
flag. The name is the argument name, the value is the Any encapsulating the argument,
and the flag denotes the argument's IDL mode (for example, in or out). The result of
Request is represented a single named value.

Options for sending requests
Once you create and populate a Request with arguments, a result type, and exception
types, you send it to the target object. There are several ways to send a Request,

– The simplest is to call the Request's invoke method, which blocks until the reply
message is received.

– More complex, but not blocking, is the Request's send_deferred method. This is an
alternative to using threads for parallelism. For many operating systems the
send_deferred method is more economical than spawning a thread.

– If your motivation for using the send_deferred method is to invoke multiple target
objects in parallel, you can use the VisiBroker ORB object's
send_multiple_requests_deferred method instead. It takes a sequence of Request
objects.

– Use the Request's send_oneway method if, and only if, the target method has been
defined in IDL as oneway.

– You can invoke multiple oneway methods in parallel with the VisiBroker ORB's
send_multiple_requests_oneway method.

298 VisiBroker for C++ Developer ’s Guide

Obtaining a gener ic object reference

Options for receiving replies
If you send a Request by calling its invoke method, there is only one way to get the
result: use the Request object's env method to test for an exception, and if none, extract
the NamedValue from the Request with its result method. If you used the send_oneway
method, then there is no result. If you used the send_deferred method, you can
periodically check for completion by calling the Request's poll_response method which
returns a code indicating whether the reply has been received. If, after polling for a
while, you want to block waiting for completion of a deferred send, use the Request's
get_response method.

If you have sent Requests with the send_multiple_requests_deferred method, you can
find out if a particular Request is complete by invoking that Request's get_response
method. To learn when any outstanding Request is complete, use the VisiBroker ORB's
get_next_response method. To do the same thing without risking blocking, use the
VisiBroker ORB's poll_next_response method.

Steps for invoking object operations dynamically

To summarize, here are the steps that a client follows when using the DII,

1 Make sure the-type_code_info option is passed to the idl compiler so that type
codes are generated for IDL interfaces and types.

2 Obtain a generic reference to the target object you wish to use.

3 Create a Request object for the target object.

4 Initialize the request parameters and the result to be returned.

5 Invoke the request and wait for the results.

6 Retrieve the results.

Example programs for using the DII

Several example programs that illustrate the use of the DII are included in the following
directory:

<install_dir>/examples/Vbroker/bank_dynamic

These example programs are used to illustrate DII concepts in this section.

Compile these example programs with the VIS_INCLUDE_IR flag, and add the typecode
generation option.

Obtaining a generic object reference
When using the DII, a client program does not have to use the traditional bind
mechanism to obtain a reference to the target object, because the class definition for
the target object may not have been known to the client at compile time.

The code sample below shows how your client program can use the bind method
offered by the VisiBroker ORB object to bind to any object by specifying its name. This
method returns a generic CORBA::Object .

...
CORBA::Object_var account;
try {
 // initialize the ORB.
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
} catch (const CORBA::Exception& e)
 cout << "Failure during ORB_init" << endl;
 cout << e << endl;
}
...
try {
 // Request ORB to bind to object supporting the account interface.

 21: Using the Dynamic Invocat ion Interface 299

Creat ing and in i t ia l iz ing a request

 account = orb->bind("IDL:Account:1.0");
} catch (const CORBA::Exception& excep)
 cout << "Error binding to account" << endl;
 cout << excep << endl;
}
cout << "Bound to account object" << endl;
...

Creating and initializing a request
When your client program invokes a method on an object, a Request object is created to
represent the method invocation. The Request object is written, or marshalled, to a
buffer and sent to the object implementation. When your client program uses client
stubs, this processing occurs transparently. Client programs that wish to use the DII
must create and send the Request object themselves.

Note

There is no constructor for this class. The Object's _request method or Object's
_create_request method are used to create a Request object.

Request class

The following code sample shows the Request class. The target of the request is set
implicitly from the object reference used to create the Request. The name of the
operation must be specified when the Request is created.

class Request {
 public:
 CORBA::Object_ptr target() const;
 const char* operation() const;
 CORBA::NVList_ptr arguments();
 CORBA::NamedValue_ptr result();
 CORBA::Environment_ptr env();
 void ctx(CORBA::Context_ptr ctx);
 CORBA::Context_ptr ctx() const;
 CORBA::Status invoke();
 CORBA::Status send_oneway();
 CORBA::Status send_deferred();
 CORBA::Status get_response();
 CORBA::Status poll_response();
 ...
 };
};

Ways to create and initialize a DII request

Once you have issued a bind to an object and obtained an object reference, you can
use one of two methods for creating a Request object.

The following sample shows the methods offered by the CORBA::Object class.

class Object {
 ...
 CORBA::Request_ptr _request(Identifier operation);
 CORBA::Status _create_request(
 CORBA::Context_ptr ctx,
 const char *operation,
 CORBA::NVList_ptr arg_list,
 CORBA::NamedValue_ptr result,
 CORBA::Request_ptr request,
 CORBA::Flags req_flags);
 CORBA::Status _create_request(

300 VisiBroker for C++ Developer ’s Guide

Creat ing and in i t ia l iz ing a request

 CORBA::Context_ptr ctx,
 const char *operation,
 CORBA::NVList_ptr arg_list,
 CORBA::NamedValue_ptr result,
 CORBA::ExceptionList_ptr eList,
 CORBA::ContextList_ptr ctxList,
 CORBA::Request_out request,
 CORBA::Flags req_flags);
 ...
};

Using the create_request method

You can use the _create_request method to create a Request object, initialize the
Context, the operation name, the argument list to be passed, and the result. Optionally,
you can set the ContextList for the request, which corresponds to the attributes defined
in the request's IDL. The request parameter points to the Request object that was
created for this operation.

Using the _request method

The code sample in “Example of creating a Request object” shows the use of the
_request method to create a Request object, specifying only the operation name. After
creating a float request, calls to its add_in_arg method add an input parameter Account
name. Its result type is initialized as an Object reference type via a call to
set_return_type method. After a call has been made, the return value is extracted with
the result's call to the result method. The same steps are repeated to invoke another
method on an Account Manager instance with the only difference being in-parameters
and return types.

The req, an Any object is initialized with the desired account name and added to the
request's argument list as an input argument. The last step in initializing the request is
to set the result value to receive a float.

Example of creating a Request object

A Request object maintains ownership of all memory associated with the operation, the
arguments, and the result so you should never attempt to free these items. The
following code sample is an example of creating a request object.

...
CORBA::NamedValue_ptr result;
CORBA::Any_ptr resultAny;
CORBA::Request_var req;
CORBA::Any customer;
...
try {
 req = account->_request("balance");

 // Create argument to request
 customer <<= (const char *) name;
 CORBA::NVList_ptr arguments = req->arguments();
 arguments->add_value("customer", customer, CORBA::ARG_IN);
 // Set result
 result = req->result();
 resultAny = result->value();
 resultAny->replace(CORBA::_tc_float, &result);
} catch(CORBA::Exception& excep) {
...

 21: Using the Dynamic Invocat ion Interface 301

Creat ing and in i t ia l iz ing a request

Setting the context for the request

Though it is not used in the example program, the Context object can be used to
contain a list of properties, stored as NamedValue objects, that will be passed to the
object implementation as part of the Request. These properties represent information
that is automatically communicated to the object implementation.

class Context {
 public:

 const char *context_name() const;
 CORBA::Context_ptr parent();
 CORBA::Status create_child(const char *name, CORBA::Context_ptr&);
 CORBA::Status set_one_value(const char *name, const CORBA::Any&);
 CORBA::Status set_values(CORBA::NVList_ptr);
 CORBA::Status delete_values(const char *name);
 CORBA::Status get_values(
 const char *start_scope,
 CORBA::Flags,
 const char *name,
 CORBA::NVList_ptr&) const;
};

Setting arguments for the request

The arguments for a Request are represented with a NVList object, which stores name-
value pairs as NamedValue objects. You can use the arguments method to obtain a pointer
to this list. This pointer can then be used to set the names and values of each of the
arguments.

Note

Always initialize the arguments before sending a Request. Failure to do so will result in
marshalling errors and may even cause the server to abort.

Implementing a list of arguments with the NVList
This class implements a list of NamedValue objects that represent the arguments for a
method invocation. Methods are provided for adding, removing, and querying the
objects in the list. The following code sample is an example of the NVList class:

class NVList {
 public:
 ...
 CORBA::Long count() const;
 CORBA::NamedValue_ptr add(Flags);
 CORBA::NamedValue_ptr add_item(const char *name, CORBA::Flags flags);
 CORBA::NamedValue_ptr add_value(
 const char *name,
 const CORBA::Any *any,
 CORBA::Flags flags);
 CORBA::NamedValue_ptr add_item_consume(char *name, CORBA::Flags flags);
 CORBA::NamedValue_ptr add_value_consume(
 char *name,
 CORBA::Any *any,
 CORBA::Flags flags);
 CORBA::NamedValue_ptr item(CORBA::Long index);
 CORBA::Status remove(CORBA::Long index);
 ...
};

302 VisiBroker for C++ Developer ’s Guide

Creat ing and in i t ia l iz ing a request

Setting input and output arguments with the NamedValue Class
This class implements a name-value pair that represents both input and output
arguments for a method invocation request. The NamedValue class is also used to
represent the result of a request that is returned to the client program. The name
property is simply a character string and the value property is represented by an Any
class. The following code sample is an example of the NamedValue class.

class NamedValue {
 public:
 const char *name() const;
 CORBA::Any *value() const;
 CORBA::Flags flags() const;
};

The following table describes the methods in the NamedValue class.

Passing type safely with the Any class

This class is used to hold an IDL-specified type so that it may be passed in a type-safe
manner.

Objects of this class have a pointer to a TypeCode that defines the contained object's
type and a pointer to the contained object. Methods are provided to construct, copy,
and release an object as well as initialize and query the object's value and type. In
addition, streaming operators methods are provided to read and write the object from
and to a stream. The following code sample is an example of defining this class.

class Any {
 public:
 ...
 CORBA_TypeCode_ptr type();
 void type(CORBA_TypeCode_ptr tc);
 const void *value() const;
 static CORBA::Any_ptr _nil();
 static CORBA::Any_ptr _duplicate(CORBA::Any *ptr);
 static void _release(CORBA::Any *ptr);
 ...
}

Representing argument or attribute types wit the TypeCode class

This class is used by the Interface Repository and the IDL compiler to represent the
type of arguments or attributes. TypeCode objects are also used in a Request object to
specify an argument's type, in conjunction with the Any class.

TypeCode objects have a kind and parameter list property. The following code sample is
an example of the TypeCode class.

Method Description

name Returns a pointer to the name of the item that you can then use to initialize the name.

value Returns a pointer to an Any object representing the item's value that you can then use
to initialize the value. For more information, see the “Passing type safely with the Any
class” section.

flags Indicates if this item is an input argument, an output argument, or both an input and
output argument. If the item is both an input and output argument, you can specify a
flag indicating that the VisiBroker ORB should make a copy of the argument and
leave the caller's memory intact. Flags are ARG_IN, ARG_OUT, and ARG_INOUT.

 21: Using the Dynamic Invocat ion Interface 303

Creat ing and in i t ia l iz ing a request

The following table shows the kinds and parameters for the TypeCode objects.

TypeCode class:

class _VISEXPORT CORBA_TypeCode {
 public:
 ...
 // For all CORBA_TypeCode kinds
 CORBA::Boolean equal(CORBA_TypeCode_ptr tc) const;
 CORBA::Boolean equivalent(CORBA_TypeCode_ptr tc) const;
 CORBA_TypeCode_ptr get_compact_typecode() const;

Kind Parameter list

tk_abstract_interf
ace

repository_id, interface_name

tk_alias repository_id, alias_name, TypeCode
tk_any None
tk_array length, TypeCode
tk_boolean None
tk_char None
tk_double None
tk_enum repository_id, enum-name, enum-id1, enum-id2, ... enum-idn

tk_except repository_id, exception_name, StructMembers
tk_fixed digits, scale
tk_float None
tk_long None
tk_longdouble None
tk_longlong None
tk_native id, name
tk_null None
tk_objref repository_id, interface_id
tk_octet None
tk_Principal None
tk_sequence TypeCode, maxlen
tk_short None
tk_string maxlen-integer

tk_struct repository_id, struct-name, {member1, TypeCode1}, {membern,
TypeCoden}

tk_TypeCode None
tk_ulong None
tk_ulonglong None
tk_union repository_id, union-name, switch TypeCode,{label-value1,

member-name1, TypeCode1}, {labell-valuen, member-namen,
TypeCoden}

tk_ushort None
tk_value repository_id, value_name, boxType
tk_value_box repository_id, value_name, typeModifier, concreteBase, members
tk_void None
tk_wchar None
tk_wstring None

304 VisiBroker for C++ Developer ’s Guide

Sending DII requests and receiv ing resul ts

 CORBA::TCKind kind() const // ...
 // For tk_objref, tk_struct, tk_union, tk_enum, tk_alias and tk_except
 virtual const char* id() const; // raises(BadKind);
 virtual const char *name() const; // raises(BadKind);
 // For tk_struct, tk_union, tk_enum and tk_except
 virtual CORBA::ULong member_count() const;
 // raises((BadKind));
 virtual const char *member_name(CORBA::ULong index) const;
 // raises((BadKind, Bounds));
 // For tk_struct, tk_union and tk_except
 virtual CORBA_TypeCode_ptr member_type(CORBA::ULong index) const;
 // raises((BadKind, Bounds));
 // For tk_union
 virtual CORBA::Any_ptr member_label(CORBA::ULong index) const;
 // raises((BadKind, Bounds));
 virtual CORBA_TypeCode_ptr discriminator_type() const;
 // raises((BadKind));
 virtual CORBA::Long default_index() const;
 // raises((BadKind));
 // For tk_string, tk_sequence and tk_array
 virtual CORBA::ULong length() const;
 // raises((BadKind));
 // For tk_sequence, tk_array and tk_alias
 virtual CORBA_TypeCode_ptr content_type() const;
 // raises((BadKind));
 // For tk_fixed
 virtual CORBA::UShort fixed_digits() const;
 // raises (BadKind)
 virtual CORBA::Short fixed_scale() const;
 // raises (BadKind)

// for tk_value
 virtual CORBA::Visibility
 member_visibility(CORBA::ULong index) const;
 // raises(BadKind, Bounds);
 virtual CORBA::ValueModifier type_modifier() const;
 // raises(BadKind);
 virtual CORBA::TypeCode_ptr concrete_base_type() const;
 // raises(BadKind);
};

Sending DII requests and receiving results
The Request class, as discussed in “Creating and initializing a request”, provides
several methods for sending a request once it has been properly initialized.

Invoking a request

The simplest way to send a request is to call its invoke method, which sends the
request and waits for a response before returning to your client program. The
return_value method returns a pointer to an Any object that represents the return value.
The following code sample shows how to send a request with invoke.

try {
 ...
 // Create request that will be sent to the account object
 request = account->_request("balance");
 // Set the result type
 request->set_return_type(CORBA::_tc_float);

 21: Using the Dynamic Invocat ion Interface 305

Sending DI I requests and receiv ing resul ts

 // Execute the request to the account object
 request->invoke();
 // Get the return balance
 CORBA::Float balance;
 CORBA::Any& balance_result = request->return_value();
 balance_result >>= balance;
 // Print out the balance
 cout << "The balance in " << name << "'s account is $" << balance << endl;
} catch(const CORBA::Exception& e) {
 cerr << e << endl;
 return 1;
}
return 0;
...

Sending a deferred DII request with the send_deferred method

A non-blocking method, send_deferred, is also provided for sending operation requests.
It allows your client to send the request and then use the poll_response method to
determine when the response is available. The get_response method blocks until a
response is received. The following codes show how these methods are used. The
following sample shows you how to use the send_deferred and poll_response methods
to send a deferred DII request.

...
try {
 // Create request that will be sent to the manager object
 CORBA::Request_var request = manager->_request("open");
 // Create argument to request
 CORBA::Any customer;
 customer <<= (const char *) name;
 CORBA::NVList_ptr arguments = request->arguments();
 arguments->add_value("name" , customer, CORBA::ARG_IN);
 // Set result type
 request->set_return_type(CORBA::_tc_Object);
 // Creation of a new account can take some time
 // Execute the deferred request to the manager object
 request->send_deferred();
 VISPortable::vsleep(1);
 while (!request->poll_response()) {
 cout << " Waiting for response..." << endl;
 VISPortable::vsleep(1); // Wait one second between polls
 }
 request->get_response();
 // Get the return value
 CORBA::Object_var account;
 CORBA::Any& open_result = request->return_value();
 open_result >>= CORBA::Any::to_object(account.out());
...
}

Sending an asynchronous DII request with the send_oneway
method

The send_oneway method can be used to send an asynchronous request. Oneway
requests do not involve a response being returned to the client from the object
implementation.

306 VisiBroker for C++ Developer ’s Guide

Sending DII requests and receiv ing resul ts

Sending multiple requests

A sequence of DII Request objects can be created using array of Request objects. A
sequence of requests can be sent using the VisiBroker ORB methods
send_multiple_requests_oneway or send_multiple_requests_deferred. If the sequence of
requests is sent as oneway requests, no response is expected from the server to any
of the requests.

The following code sample shows how two requests are created and then used to
create a sequence of requests. The sequence is then sent using
thesend_multiple_requests_deferred method.

...
// Create request to balance
try {
 req1 = account->_request("balance");
 // Create argument to request
 customer1 <<= (const char *) "Happy";
 CORBA::NVList_ptr arguments = req1->arguments();
 arguments->add_value("customer", customer1, CORBA::ARG_IN);
 // Set result
 ...
} catch(const CORBA::Exception& excep) {
 cout << "Error while creating request" << endl;
 cout << excep << endl;
}
// Create request2 to slowBalance
try {
 req2 = account->_request("slowBalance");
 // Create argument to request
 customer2 <<= (const char *) "Sleepy";
 CORBA::NVList_ptr arguments = req2->arguments();
 arguments->add_value("customer", customer2, CORBA::ARG_IN);
 // Set result
 ...
} catch(const CORBA::Exception& excep) {
 cout << "Error while creating request" << endl;
 cout << excep << endl;
}
// Create request sequence
CORBA::Request_ptr reqs[2];
reqs[0] = (CORBA::Request*) req1;
reqs[1] = (CORBA::Request*) req2;
CORBA::RequestSeq reqseq((CORBA::ULong)2, 2, (CORBA::Request_ptr *) reqs);
// Send the request
try {
 orb->send_multiple_requests_deferred(reqseq);
 cout << "Send multiple deferred calls are made..." << endl;
} catch(const CORBA::Exception& excep) {
...

Receiving multiple requests

When a sequence of requests is sent using send_multiple_requests_deferred, the
poll_next_response and get_next_response methods are used to receive the response
the server sends for each request.

The VisiBroker ORB method poll_next_response can be used to determine if a
response has been received from the server. This method returns true if there is at
least one response available. This method returns false if there are no responses
available.

 21: Using the Dynamic Invocat ion Interface 307

Using the inter face reposi tory with the DII

The VisiBroker ORB method get_next_response can be used to receive a response. If
no response is available, this method will block until a response is received. If you do
not wish your client program to block, use the poll_next_response method to first
determine when a response is available and then use the get_next_response method to
receive the result. The following code sample shows an example of receiving multiple
requests.

VisiBroker ORB methods for sending multiple requests and receiving the results:

class CORBA {
 class ORB {
 ...
 typedef sequence <Request_ptr> RequestSeq;
 void send_multiple_requests_oneway(const RequestSeq &);
 void send_multiple_requests_deferred(const RequestSeq &);
 Boolean poll_next_response();
 Status get_next_response();
 ...
 };
};

Using the interface repository with the DII
One source of the information needed to populate a DII Request object is an interface
repository (IR) (see “Using Interface Repositories”). The following example uses an
interface repository to get obtain the parameters of an operation. Note that the
example, atypical of real DII applications, has built-in knowledge of a remote object's
type (Account) and the name of one of its methods (balance). An actual DII application
would get that information from an outside source, for example, a user.

– Binds to any Account object.

– Looks up the Account's balance method in the IR and builds an operation list from the
IR OperationDef.

– Creates argument and result components and passes these to the _create_request
method. Note that the balance method does not return an exception.

– Invokes the Request, extracts and prints the result.

// acctdii_ir.C
// This example illustrates IR and DII
#include <iostream.h>
#include "corba.h"
int main(int argc, char* const* argv) {
 CORBA::ORB_ptr orb;
 CORBA::Object_var account;
 CORBA::NamedValue_var result;
 CORBA::Any_ptr resultAny;
 CORBA::Request_var req;
 CORBA::NVList_var operation_list;
 CORBA::Any customer;
 CORBA::Float acct_balance;
try {
 // use argv[1] as the account name, or a default.
 CORBA::String_var name;
 if (argc == 2)
 name = (const char *) argv[1];
 else
 name = (const char *) "Default Name";
 try {
 // Initialize the ORB.
 orb = CORBA::ORB_init(argc, argv);
 } catch(const CORBA::Exception& excep) {

308 VisiBroker for C++ Developer ’s Guide

Using the interface reposi tory wi th the DII

 cout << "Failure during ORB_init" << endl;
 cout << excep << endl;
 exit(1);
 }
 cout << "ORB_init succeeded" << endl;
 // Unlike traditional binds, this bind is called off of "orb"
 // and returns a generic object pointer based on the interface name
 try {
 account = orb->bind("IDL:Account:1.0");
 } catch(const CORBA::Exception& excep) {
 cout << "Error binding to account" << endl;
 cout << excep << endl;
 exit(2);
 }
 cout << "Bound to account object" << endl;
 // Obtain Operation Description for the "balance" method of
 // the Account
 try {
 CORBA::InterfaceDef_var intf = account->_get_interface();
 if (intf == CORBA::InterfaceDef::_nil()) {
 cout << "Account returned a nil interface definition. " << endl;
 cout << " Be sure an Interface Repository is running and" << endl;
 cout << " properly loaded" << endl;
 exit(3);
 }
 CORBA::Contained_var oper_container = intf->lookup("balance");
 CORBA::OperationDef_var oper_def =
 CORBA::OperationDef::_narrow(oper_container);
 orb->create_operation_list(oper_def, operation_list.out());

 } catch(const CORBA::Exception& excep) {
 cout << "Error while obtaining operation list" << endl;
 cout << excep << endl;
 exit(4);
 }
 // Create request that will be sent to the account object
 try {
 // Create placeholder for result
 orb->create_named_value(result.out());
 resultAny = result->value();
 resultAny->replace(CORBA::_tc_float, &result);
 // Set the argument value within the operation_list
 CORBA::NamedValue_ptr arg = operation_list->item(0);
 CORBA::Any_ptr anyArg = arg->value();
 *anyArg <<= (const char *) name;

 // Create the request
 account->_create_request(CORBA::Context::_nil(),

 "balance",
 operation_list,
 result,
 req.out(),
 0);

 } catch(const CORBA::Exception& excep) {
 cout << "Error while creating request" << endl;
 cout << excep << endl;
 exit(5);
 }

 21: Using the Dynamic Invocat ion Interface 309

Using the inter face reposi tory with the DII

 // Execute the request
 try {
 req->invoke();
 CORBA::Environment_ptr env = req->env();
 if (env->exception()) {
 cout << "Exception occurred" << endl;
 cout << *(env->exception()) << endl;
 acct_balance = 0;
 } else {
 // Get the return value;
 acct_balance = *(CORBA::Float *)resultAny->value();
 }
 } catch(const CORBA::Exception& excep) {
 cout << "Error while invoking request" << endl;
 cout << excep << endl;
 exit(6);
 }
 // Print out the results
 cout << "The balance in " << name << "'s account is $";
 cout << acct_balance << "." << endl;
} catch (const CORBA::Exception& excep) {
 cout << "Error occurred" << endl;
 cout << excep << endl;
}

310 VisiBroker for C++ Developer ’s Guide

Using the interface reposi tory wi th the DII

 22: Using the Dynamic Skeleton Interface 311

Using the Dynamic Skeleton Interface
This section describes how object servers can dynamically create object
implementations at run time to service client requests.

What is the Dynamic Skeleton Interface?
The Dynamic Skeleton Interface (DSI) provides a mechanism for creating an object
implementation that does not inherit from a generated skeleton interface. Normally, an
object implementation is derived from a skeleton class generated by the idl2cpp
compiler. The DSI allows an object to register itself with the VisiBroker ORB, receive
operation requests from a client, process the requests, and return the results to the
client without inheriting from a skeleton class generated by the idl2cpp compiler.

Note

From the perspective of a client program, an object implemented with the DSI behaves
just like any other VisiBroker ORB object. Clients do not need to provide any special
handling to communicate with an object implementation that uses the DSI.

The VisiBroker ORB presents client operation requests to a DSI object implementation
by calling the object's invoke method and passing it a ServerRequest object. The object
implementation is responsible for determining the operation being requested,
interpreting the arguments associated with the request, invoking the appropriate
internal method or methods to fulfill the request, and returning the appropriate values.

Implementing objects with the DSI requires more manual programming activity than
using the normal language mapping provided by object skeletons. However, an object
implemented with the DSI can be very useful in providing inter-protocol bridging.

Steps for creating object implementations dynamically
To create object implementations dynamically using the DSI:

1 When compiling your IDL use the -type_code_inf flag.

2 Design your object implementation so that it is derived from the
PortableServer::DynamicImplementation abstract class instead of deriving your object
implementation from a skeleton class.

3 Declare and implement the invoke method, which the VisiBroker ORB will use to
dispatch client requests to your object.

312 VisiBroker for C++ Developer ’s Guide

Extending the DynamicImplementat ion class

4 Register your object implementation (POA servant) with the POA manager as the
default servant.

Example program for using the DSI

An example program that illustrates the use of the DSI is located in the following
directory:

<install_dir>/examples/Vbroker/basic/bank_dynamic

This example is used to illustrate DSI concepts in this section. The Bank.idl file, shown
below, illustrates the interfaces implemented in this example.

// Bank.idl
module Bank {
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};

Extending the DynamicImplementation class
To use the DSI, object implementations should be derived from the
DynamicImplementation base class shown below. This class offers several constructors
and the invoke method, which you must implement.

class PortableServer::DynamicImplementation : public virtual
PortableServer::ServantBase {
 public:
 virtual void invoke(PortableServer::ServerRequest_ptr request) = 0;
...
};

Example of designing objects for dynamic requests

The code sample below shows the declaration of the AccountImpl class that is to be
implemented with the DSI. It is derived from the DynamicImplementation class, which
declares the invoke method. The VisiBroker ORB will call the invoke method to pass
client operation requests to the implementation in the form of ServerRequest objects.

The code sample below shows the Account class constructor and _primary_interface
function.

class AccountImpl : public PortableServer::DynamicImplementation {
 public:
 AccountImpl(PortableServer::Current_ptr current,
 PortableServer::POA_ptr poa)
 : _poa_current(PortableServer::Current::_duplicate(current)),
 _poa(poa)
 {}
 CORBA::Object_ptr get(const char *name) {
 CORBA::Float balance;
 // Check if account exists
 if (!_registry.get(name, balance)) {
 // simulate delay while creating new account
 VISPortable::vsleep(3);
 // Make up the account's balance, between 0 and 1000 dollars
 balance = abs(rand()) % 100000 / 100.0;
 // Print out the new account

 22: Using the Dynamic Skeleton Interface 313

Extending the DynamicImplementat ion class

 cout << "Created " << name << "'s account: " << balance << endl;
 _registry.put(name, balance);
 }
 // Return object reference
 PortableServer::ObjectId_var accountId =
 PortableServer::string_to_ObjectId(name);
 return _poa->create_reference_with_id(accountId, "IDL:Bank/
 Account:1.0");
 }
 private:
 AccountRegistry _registry;
 PortableServer::POA_ptr _poa;
 PortableServer::Current_var _poa_current;
 CORBA::RepositoryId _primary_interface(
 const PortableServer::ObjectId& oid, PortableServer::POA_ptr poa) {
 return CORBA::string_dup((const char *)"IDL:Bank/Account:1.0");
 };
 void invoke(CORBA::ServerRequest_ptr request) {
 // Get the account name from the object id
 PortableServer::ObjectId_var oid = _poa_current->get_object_id();
 CORBA::String_var name;
 try {
 name = PortableServer::ObjectId_to_string(oid);
 } catch (const CORBA::Exception& e) {
 throw CORBA::OBJECT_NOT_EXIST();
 }
 // Ensure that the operation name is correct
 if (strcmp(request->operation(), "balance") != 0) {
 throw CORBA::BAD_OPERATION();
 }
 // Find out balance and fill out the result
 CORBA::NVList_ptr params = new CORBA::NVList(0);
 request->arguments(params);
 CORBA::Float balance;
 if (!_registry.get(name, balance))
 throw CORBA::OBJECT_NOT_EXIST();
 CORBA::Any result;
 result <<= balance;
 request->set_result(result);
 cout << "Checked " << name << "'s balance: " << balance << endl;
 }
};

The following code sample shows the implementation of the AccountManagerImpl class
that need to be implemented with the DSI. It is also derived from the
DynamicImplementation class, which declares the invoke method. The VisiBroker ORB
will call the invoke method to pass client operation requests to the implementation in
the form of ServerRequest objects.

class AccountManagerImpl : public PortableServer::DynamicImplementation {
 public:
 AccountManagerImpl(AccountImpl* accounts) { _accounts = accounts; }
 CORBA::Object_ptr open(const char* name) {
 return _accounts->get(name);
 }
 private:
 AccountImpl* _accounts;
 CORBA::RepositoryId _primary_interface(
 const PortableServer::ObjectId& oid,
 PortableServer::POA_ptr poa) {
 return CORBA::string_dup((const char *)"IDL:Bank/AccountManager:1.0");
 };

314 VisiBroker for C++ Developer ’s Guide

Looking at the ServerRequest c lass

 void invoke(CORBA::ServerRequest_ptr request) {
 // Ensure that the operation name is correct
 if (strcmp(request->operation(), "open") != 0)
 throw CORBA::BAD_OPERATION();
 // Fetch the input parameter
 char *name = NULL;
 try {
 CORBA::NVList_ptr params = new CORBA::NVList(1);
 CORBA::Any any;
 any <<= (const char*) "";
 params->add_value("name", any, CORBA::ARG_IN);
 request->arguments(params);
 *(params->item(0)->value()) >>= name;
 } catch (const CORBA::Exception& e) {
 throw CORBA::BAD_PARAM();
 }
 // Invoke the actual implementation and fill out the result
 CORBA::Object_var account = open(name);
 CORBA::Any result;
 result <<= account;
 request->set_result(result);
 }
};

Specifying repository ids

The_primary_interface method should be implemented to return supported repository
identifiers. To determine the correct repository identifier to specify, start with the IDL
interface name of an object and use the following steps:

1 Replace all non-leading instances of the delimiter scope resolution operator (::) with
a slash (/).

2 Add "IDL:" to the beginning of the string.

3 Add ":1.0" to the end of the string.

For example, this code sample shows an IDL interface name:

Bank::AccountManager

The resulting repository identifier looks like this:

IDL:Bank/AccountManager:1.0

Looking at the ServerRequest class
A ServerRequest object is passed as a parameter to an object implementation's invoke
method. The ServerRequest object represents the operation request and provides
methods for obtaining the name of the requested operation, the parameter list, and the
context. It also provides methods for setting the result to be returned to the caller and
for reflecting exceptions.

class CORBA::ServerRequest {
 public:
 const char* op_name() const { return _operation; }
 void params(CORBA::NVList_ptr);
 void result(CORBA::Any_ptr);
 void exception(CORBA::Any_ptr exception);
 ...
 CORBA::Context_ptr ctx() {
 ...
 }

 22: Using the Dynamic Skeleton Interface 315

Implement ing the Account object

 // POA spec methods
 const char *operation() const { return _operation; }
 void arguments(CORBA::NVList_ptr param) { params(param); }
 void set_result(const CORBA::Any& a) { result(new CORBA::Any(a)); }
 void set_exception(const CORBA::Any& a) {
 exception(new CORBA::Any(a));
 }
};

All arguments passed into the arguments, set_result, or set_exception methods are
thereafter owned by the VisiBroker ORB. The memory for these arguments will be
released by the VisiBroker ORB; you should not release them.

Note

The following methods have been deprecated:

– op_name

– params

– result

– exception

Implementing the Account object
The Account interface declares only one method, so the processing done by the
AccountImpl class' invoke method is fairly straightforward.

The invoke method first checks to see if the requested operation has the name
"balance." If the name does not match, a BAD_OPERATION exception is raised. If the
Account object were to offer more than one method, the invoke method would need to
check for all possible operation names and use the appropriate internal methods to
process the operation request.

Since the balance method does not accept any parameters, there is no parameter list
associated with its operation request. The balance method is simply invoked and the
result is packaged in an Any object that is returned to the caller, using the ServerRequest
object'sset_result method.

Implementing the AccountManager object
Like the Account object, the AccountManager interface also declares one method.
However, the AccountManagerImpl object'sopen method does accept an account name
parameter. This makes the processing done by the invoke method a little more
complicated.

The method first checks to see that the requested operation has the name "open". If the
name does not match, a BAD_OPERATION exception is raised. If the AccountManager object
were to offer more than one method, its invoke method would need to check for all
possible operation names and use the appropriate internal methods to process the
operation request.

Processing input parameters

The following are the steps the AccountManagerImpl object'sinvoke method uses to
process the operation request's input parameters.

1 Create an NVList to hold the parameter list for the operation.

2 Create Any objects for each expected parameter and add them to the NVList, setting
their TypeCode and parameter type (ARG_IN, ARG_OUT, or ARG_INOUT).

3 Invoke the ServerRequest object'sarguments method, passing the NVList, to update
the values for all the parameters in the list.

316 VisiBroker for C++ Developer ’s Guide

Server implementat ion

The open method expects an account name parameter; therefore, an NVList object is
created to hold the parameters contained in the ServerRequest. The NVList class
implements a parameter list containing one or more NamedValue objects. The NVList and
NamedValue classes are described in the “Using the Dynamic Invocation Interface.”

An Any object is created to hold the account name. This Any is then added to NVList with
the argument's name set to name and the parameter type set to ARG_IN.

Once the NVList has been initialized, the ServerRequest object'sarguments method is
invoked to obtain the values of all of the parameters in the list.

Note

After invoking the arguments method, the NVList will be owned by the VisiBroker ORB.
This means that if an object implementation modifies an ARG_INOUT parameter in the
NVList, the change will automatically be apparent to the VisiBroker ORB. This NVList
should not be released by the caller.

An alternative to constructing the NVList for the input arguments is to use the
VisiBroker ORB object'screate_operation_list method. This method accepts an
OperationDef and returns an NVList object, completely initialized with all the necessary
Any objects. The appropriate OperationDef object may be obtained from the interface
repository, described in the “Using Interface Repositories.”

Setting the return value

After invoking the ServerRequest object's arguments method, the value of the name
parameter can be extracted and used to create a new Account object. An Any object is
created to hold the newly created Account object, which is returned to the caller by
invoking the ServerRequest object's set_result method.

Server implementation
The implementation of the main routine, shown in the following code sample, is almost
identical to the original example in “Developing an example application
with VisiBroker.”

int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 // Get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);
 // Get the POA Manager
 PortableServer::POAManager_var poaManager = rootPOA->the_POAManager();
 // Create the account POA with the right policies
 CORBA::PolicyList accountPolicies;
 accountPolicies.length(3);
 accountPolicies[(CORBA::ULong)0] =
 rootPOA->create_servant_retention_policy(PortableServer::NON_RETAIN);
 accountPolicies[(CORBA::ULong)1] =
 rootPOA->create_request_processing_policy(
 PortableServer::USE_DEFAULT_SERVANT);
 accountPolicies[(CORBA::ULong)2] =
 rootPOA->create_id_uniqueness_policy(
 PortableServer::MULTIPLE_ID);
 PortableServer::POA_var accountPOA =
 rootPOA->create_POA("bank_account_poa",
 poaManager,
 accountPolicies);
 // Create the account default servant
 PortableServer::Current_var current =
PortableServer::Current::_instance();
 AccountImpl accountServant(current, accountPOA);
 accountPOA->set_servant(&accountServant);
 // Create the manager POA with the right policies

 22: Using the Dynamic Skeleton Interface 317

Server implementat ion

 CORBA::PolicyList managerPolicies;
 managerPolicies.length(3);
 managerPolicies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(
 PortableServer::PERSISTENT);
 managerPolicies[(CORBA::ULong)1] =
 rootPOA->create_request_processing_policy(
 PortableServer::USE_DEFAULT_SERVANT);
 managerPolicies[(CORBA::ULong)2] =
 rootPOA->create_id_uniqueness_policy(
 PortableServer::MULTIPLE_ID);
 PortableServer::POA_var managerPOA = rootPOA-
>create_POA("bank_agent_poa",
 poaManager,
 managerPolicies);
 // Create the manager default servant
 AccountManagerImpl managerServant(&accountServant);
 managerPOA->set_servant(&managerServant);
 // Activate the POA Manager
 poaManager->activate();
 cout << "AccountManager is ready" << endl;
 // Wait for incoming requests
 orb->run();
 } catch(const CORBA::Exception& e) {
 cerr << e << endl;
 return 1;
 }
 return 0;
}

DSI implementation is instantiated as a default servant and the POA should be created
with the support of corresponding policies. For more information see “Using POAs.”

318 VisiBroker for C++ Developer ’s Guide

 23: Using Portable Interceptors 319

Using Portable Interceptors
This section provides an overview of Portable Interceptors. Several Portable
Interceptor examples are discussed as well as the advanced features of Portable
Interceptor factories.

For a complete description of Portable Interceptors, refer to the OMG Final Adopted
Specification, ptc/2001–04–03, Portable Interceptors.

Portable Interceptors overview
The VisiBroker ORB provides a set of interfaces known as interceptors which provide a
framework for plugging-in additional ORB behavior such as security, transactions, or
logging. These interceptor interfaces are based on a callback mechanism. For
example, using the interceptors, you can be notified of communications between
clients and servers, and modify these communications if you wish, effectively altering
the behavior of the VisiBroker ORB.

At its simplest usage, the interceptor is useful for tracing through code. Because you
can see the messages being sent between clients and servers, you can determine
exactly how the ORB is processing requests.

Figure 23.1 How Interceptors work

If you are building a more sophisticated application such as a monitoring tool or
security layer, interceptors give you the information and control you need to enable
these lower-level applications. For example, you can develop an application that
monitors the activity of various servers and performs load balancing.

320 VisiBroker for C++ Developer ’s Guide

Portable Interceptor and Information interfaces

Types of interceptors

There are two types of interceptors supported by the VisiBroker ORB.

Types of Portable Interceptors

The two kinds of Portable Interceptors defined by the OMG specification are: Request
Interceptors and IOR interceptors.

For additional information on using both Portable Interceptors and VisiBroker
Interceptors, see the “Using VisiBroker Interceptors.”

See also VisiBroker for Java APIs, and the “Portable Interceptor interfaces and classes
for C++” chapter of the VisiBroker for C++ API Reference.

Portable Interceptor and Information interfaces
All Portable Interceptors implement one of the following base interceptor API classes
which are defined and implemented by the VisiBroker ORB:

– Request Interceptor:

– ClientRequestInterceptor

– ServerRequestInterceptor

– IORInterceptor

Interceptor class

All the interceptor classes listed above are derived from a common class: Interceptor.
This Interceptor class has defined common methods that are available to its inherited
classes.

The Interceptor class:

class PortableInterceptor::Interceptor
{
 virtual char* name() = 0;
 virtual void destroy() = 0;
}

Request Interceptor

A request interceptor is used to intercept the flow of a request/reply sequence at
specific interception points so that services can transfer context information between
clients and servers. For each interception point, the VisiBroker ORB gives an object

Portable Interceptors VisiBroker Interceptors

An OMG standardized feature that allows
writing of portable code as interceptors, which
can be used with different ORB vendors.

VisiBroker-specific interceptors. For more
information, go to the “Using VisiBroker
Interceptors.”

Request Interceptors IOR interceptor

Can enable the VisiBroker ORB
services to transfer context
information between clients and
servers. Request Interceptors are
further divided into Client Request
Interceptors and Server Request
Interceptors.

Used to enable a VisiBroker ORB service to add
information in an IOR describing the server's or object's
ORB-service-related capabilities. For example, a
security service (like SSL) can add its tagged
component into the IOR so that clients recognizing that
component can establish the connection with the
server based on the information in the component.

 23: Using Portable Interceptors 321

Portable Interceptor and Information interfaces

through which the interceptor can access request information. There are two kinds of
request interceptor and their respective request information interfaces:

– ClientRequestInterceptor and ClientRequestInfo

– ServerRequestInterceptor and ServerRequestInfo

Figure 23.2 Request Interception points

For more detail information on Request Interceptors, see VisiBroker for Java APIs and
“Portable Interceptor interfaces and classes for C++” chapter of the VisiBroker for C++
API Reference.

ClientRequestInterceptor
ClientRequestInterceptor has its interception points implemented on the client-side.
There are five interception points defined in ClientRequestInterceptor by the OMG as
shown in the following table:

1 TII is not implemented in the VisiBroker ORB. As a result, the send_poll() interception point will
never be invoked.

For more information on each interception point, see VisiBroker for Java APIs and
“Portable Interceptor interfaces and classes for C++” chapter of the VisiBroker for C++
API Reference.

class _VISEXPORT ClientRequestInterceptor: public virtual Interceptor
{
 public:
 virtual void send_request(ClientRequestInfo_ptr _ri) = 0;
 virtual void send_poll(ClientRequestInfo_ptr _ri) = 0;
 virtual void receive_reply(ClientRequestInfo_ptr _ri) = 0;
 virtual void receive_exception(ClientRequestInfo_ptr _ri) = 0;

Interception Points Description

send_request Lets a client-side Interceptor query a request and modify the service
context before the request is sent to the server.

send_poll Lets a client-side Interceptor query a request during a Time-Independent
Invocation (TII)1 polling get reply sequence.

receive_reply Lets a client-side Interceptor query the reply information after it is
returned from the server and before the client gains control.

receive_exceptio
n

Lets a client-side Interceptor query the exception's information, when an
exception occurs, before the exception is sent to the client.

receive_other Lets a client-side Interceptor query the information which is available
when a request result other than normal reply or an exception is
received.

322 VisiBroker for C++ Developer ’s Guide

Portable Interceptor and Information interfaces

 virtual void receive_other(ClientRequestInfo_ptr _ri) = 0;
};

Client-side rules
The following are the client-side rules:

– The starting interception points are: send_request and send_poll. On any given
request/reply sequence, one and only one of these interception points is called.

– The ending interception points are: receive_reply, receive_exception and
receive_other.

– There is no intermediate interception point.

– An ending interception point is called if and only if send_request or send_poll runs
successfully.

– A receive_exception is called with the system exception BAD_INV_ORDER with a minor
code of 4 (ORB has shutdown) if a request is canceled because of ORB shutdown.

– A receive_exception is called with the system exception TRANSIENT with a minor code
of 3 if a request is canceled for any other reason.

ServerRequestInterceptor
ServerRequestInterceptor has its interception points implemented on the server-side.
There are five interception points defined in ServerRequestInterceptor. The following
table shows the ServerRequestInterceptor Interception points.

For more detail on each interception point, see VisiBroker for Java APIs and “Portable
Interceptor interfaces and classes for C++” chapter of the VisiBroker for C++ API
Reference.

ServerRequestInterceptor class:

class _VISEXPORT ServerRequestInterceptor: public virtual Interceptor
{
 public:
 virtual void receive_request_service_contexts(ServerRequestInfo_ptr _ri)
= 0;
 virtual void receive_request(ServerRequestInfo_ptr _ri) = 0;
 virtual void send_reply(ServerRequestInfo_ptr _ri) = 0;

Successful invocations send_request is followed by receive_reply; a start point is
followed by an end point

Retries send_request is followed by receive_other; a start point is
followed by an end point

Interception Points Description

receive_request_service_contexts Lets a server-side Interceptor get its service context
information from the incoming request and transfer it to
PortableInterceptor::Current's slot.

receive_request Lets a server-side Interceptor query request information
after all information, including operation parameters, is
available.

send_reply Lets a server-side Interceptor query reply information and
modify the reply service context after the target operation
has been invoked and before the reply is returned to the
client.

send_exception Lets a server-side Interceptor query the exception's
information and modify the reply service context, when an
exception occurs, before the exception is sent to the client.

send_other Lets a server-side Interceptor query the information which is
available when a request result other than normal reply or
an exception is received.

 23: Using Portable Interceptors 323

Portable Interceptor and Information interfaces

 virtual void send_exception(ServerRequestInfo_ptr _ri) = 0;
 virtual void send_other(ServerRequestInfo_ptr _ri) = 0;
};

Server-side rules
The following are the server-side rules:

– The starting interception point is: receive_request_service_contexts. This interception
point is called on any given request/reply sequence.

– The ending interception points are: send_reply, send_exception and send_other. On
any given request/reply sequence, one and only one of these interception points is
called.

– The intermediate interception point is receive_request. It is called after
receive_request_service_contexts and before an ending interception point.

– On an exception, receive_request may not be called.

– An ending interception point is called if and only if send_request or send_poll runs
successfully.

– A send_exception is called with the system exception BAD_INV_ORDER with a minor code
of 4 (ORB has shutdown) if a request is canceled because of ORB shutdown.

– A send_exception is called with the system exception TRANSIENT with a minor code of 3
if a request is canceled for any other reason.

IOR Interceptor

IORInterceptor give applications the ability to add information describing the server's or
object's ORB service related capabilities to object references to enable the VisiBroker
ORB service implementation in the client to function properly. This is done by calling
the interception point, establish_components. An instance of IORInfo is passed to the
interception point. For more information on IORInfo, see VisiBroker for Java APIs and
“Portable Interceptor interfaces and classes for C++” chapter of the VisiBroker for C++
API Reference.

class _VISEXPORT IORInterceptor: public virtual Interceptor
{
 public:
 virtual void establish_components(IORInfo_ptr _info) = 0;
 virtual void components_established(IORInfo_ptr _info) = 0;
 virtual void adapter_manager_state_changed(
 CORBA::Long _id, CORBA::Short _state) = 0;
 virtual void adapter_state_changed(
 const ObjectReferenceTemplateSeq& _templates,
 CORBA::Short _state) = 0;
};

Portable Interceptor (PI) Current

The PortableInterceptor::Current object (hereafter referred to as PICurrent) is a table
of slots that can be used by Portable Interceptors to transfer thread context information
to request context. Use of PICurrent may not be required. However, if client's thread
context information is required at interception point, PICurrent can be used to transfer
this information.

PICurrent is obtained through a call to:

Successful invocations The order of interception points:
receive_request_service_contexts, receive_request,
send_reply; a start point is followed by an intermediate
point which is followed by an end point.

324 VisiBroker for C++ Developer ’s Guide

Portable Interceptor and Information interfaces

ORB->resolve_initial_references("PICurrent");

PortableInterceptor::Current class:

class _VISEXPORT Current: public virtual CORBA::Current, public virtual
CORBA_Object
{
 public:
 virtual CORBA::Any* get_slot(CORBA::ULong _id);
 virtual void set_slot(CORBA::ULong _id, const CORBA::Any& _data);
};

Codec

Codec provides a mechanism for interceptors to transfer components between their IDL
data types and their CDR encapsulation representations. A Codec is obtained from
CodecFactory. For more information, see “CodecFactory”.

The Codec class:

class _VISEXPORT Codec
{
 public:
 virtual CORBA::OctetSequence* encode(const CORBA::Any& _data) = 0;
 virtual CORBA::Any* decode(const CORBA::OctetSequence& _data) = 0;
 virtual CORBA::OctetSequence* encode_value(const CORBA::Any& _data) = 0;
 virtual CORBA::Any* decode_value(const CORBA::OctetSequence& _data,
 CORBA::TypeCode_ptr _tc) = 0;
};

CodecFactory

This class is used to create a Codec object by specifying the encoding format, the major
and minor versions. CodecFactory can be obtained with a call to:

ORB->resolve_initial_references("CodecFactory")

The CodecFactory class:

class _VISEXPORT CodecFactory
{
 public:
 virtual Codec_ptr create_codec(const Encoding& _enc) = 0;
};

Creating a Portable Interceptor

The generic steps to create a Portable Interceptor are:

1 The Interceptor must be inherited from one of the following Interceptor interfaces:

– ClientRequestInterceptor

– ServerRequestInterceptor

– IORInterceptor

1 The Interceptor implements one or more interception points that are available to the
Interceptor.

2 The Interceptor can be named or anonymous. All names must be unique among all
Interceptors of the same type. However, any number of anonymous Interceptors
can be registered with the VisiBroker ORB.

 23: Using Portable Interceptors 325

Portable Interceptor and Information interfaces

Example: Creating a PortableInterceptor
#include "PortableInterceptor_c.hh"

class SampleClientRequestInterceptor: public
PortableInterceptor::ClientRequestInterceptor
{
 char * name() {
 return "SampleClientRequestInterceptor";
 }

 void send_request(ClientRequestInfo_ptr _ri) {
 // actual interceptor code here
 }

 void send_request(ClientRequestInfo_ptr _ri) {
 // actual interceptor code here
 }

 void receive_reply(ClientRequestInfo_ptr _ri) {
 // actual interceptor code here
 }

 void receive_exception(ClientRequestInfo_ptr _ri) {
 // actual interceptor code here
 }

 void receive_other(ClientRequestInfo_ptr _ri) {
 // actual interceptor code here
 }
};

Registering Portable Interceptors

Portable Interceptors must be registered with the VisiBroker ORB before they can be
used. To register a Portable Interceptor, an ORBInitializer object must be
implemented and registered. Portable Interceptors are instantiated and registered
during ORB initialization by registering an associated ORBInitializer object which
implements its pre_init() or post_init() method, or both. The VisiBroker ORB will
call each registered ORBInitializer with an ORBInitInfo object during the initializing
process.

The ORBInitializer class:

class _VISEXPORT ORBInitializer
{
 public:

 virtual void pre_init(ORBInitInfo_ptr _info) = 0;
 virtual void post_init(ORBInitInfo_ptr _info) = 0;
};

The ORBInitInfo class:

class _VISEXPORT ORBInitInfo
{
 public:
 virtual CORBA::StringSequence* arguments() = 0;
 virtual char* orb_id() = 0;
 virtual IOP::CodecFactory_ptr codec_factory() = 0;
 virtual void register_initial_reference(const char* _id,
CORBA::Object_ptr _obj) = 0;
 virtual CORBA::Object_ptr resolve_initial_references(const char* _id) =
0;
 virtual void add_client_request_interceptor(

326 VisiBroker for C++ Developer ’s Guide

Portable Interceptor and Information interfaces

 ClientRequestInterceptor_ptr _interceptor) = 0;
 virtual void add_server_request_interceptor(
 ServerRequestInterceptor_ptr _interceptor) = 0;
 virtual void add_ior_interceptor(IORInterceptor_ptr _interceptor) = 0;
 virtual CORBA::ULong allocate_slot_id() = 0;
 virtual void register_policy_factory(CORBA::ULong _type,
 PolicyFactory_ptr _policy_factory) = 0;
};

Registering an ORBInitializer

To register an ORBInitializer, the global method register_orb_initializer is provided.
Each service that implements Interceptors provides an instance of ORBInitializer. To
use a service, an application:

1 calls register_orb_initializer() with the service's ORBInitializer; and

2 makes an instantiating ORB_Init() call with a new ORB identifier to produce a new
ORB.

During ORB.init():

1 these ORB properties which begin with
org.omg.PortableInterceptor.ORBInitializerClass are collected.

2 the <Service> portion of each property is collected.

3 an object is instantiated with the <Service> string as its class name.

4 the pre_init() and post_init() methods are called on that object.

5 if there is any exception, the ORB ignores them and proceeds.

Note

To avoid name collisions, the reverse DNS name convention is recommended. For
example, if company ABC has two initializers, it could define the following properties:

org.omg.PortableInterceptor.ORBInitializerClass.com.abc.ORBInit1

org.omg.PortableInterceptor.ORBInitializerClass.com.abc.ORBInit2

The register_orb_initializer method is defined in the PortableInterceptor module as:

class _VISEXPORT PortableInterceptor {
 static void register_orb_initializer(ORBInitializer *init);
}

Example: Registering ORBInitializer
A client-side monitoring tool written by company ABC may have the following
ORBInitializer implementation:

#include "PortableInterceptor_c.hh"

class MonitoringService: public PortableInterceptor::ORBInitializer
{
 void pre_init(ORBInitInfo_ptr _info)
 {
 // instantiate the service's Interceptor.
 Interceptor* interceptor = new MonitoringInterceptor();

 // register the Monitoring's Interceptor.
 _info->add_client_request_interceptor(interceptor);
 }

 void post_init(ORBInitInfo_ptr _info)

 23: Using Portable Interceptors 327

Portable Interceptor and Information interfaces

 {
 // This init point is not needed.
 }
};

MonitoringService * monitoring_service = new MonitoringService();
PortableInterceptor::register_orb_initializer(monitoring_service);

The following command may be used to run a program called MyApp using this
monitoring service:

java -
Dorg.omg.PortableInterceptor.ORBInitializerClass.com.abc.Monitoring.MonitoringS
ervice MyApp

VisiBroker extensions to Portable Interceptors

POA scoped Server Request Interceptors
Portable Interceptors specified by OMG are scoped globally. VisiBroker has defined
"POA scoped Server Request Interceptor", a public extension to the Portable
Interceptors, by adding a new module call PortableInterceptorExt. This new module
holds a local interface, IORInfoExt, which is inherited from
PortableInterceptor::IORInfo and has additional methods to install POA scoped server
request interceptor.

The IORInfoExt class:

#include "PortableInterceptorExt_c.hh"

class IORInfoExt: public PortableInterceptor::IORInfo
{
 public:
 virtual void add_server_request_interceptor(
 ServerRequestInterceptor_ptr _interceptor) = 0;
 virtual char* full_poa_name();
};

Limitations of VisiBroker Portable Interceptors implementation

The following are limitations of the Portable Interceptor implementation in VisiBroker.

ClientRequestInfo limitations
– arguments(), result(), exceptions(), contexts(), and operation_contexts() are

only available for DII invocations.

– operation_context(): not available, CORBA::NO_RESOURCES thrown.

– received_exception(): available only if typecode info is available (for example,
IDL is compiled with -typecode_info and linked into program), otherwise
CORBA::UNKNOWN is always returned.

ServerRequestInfo limitations
– arguments(), result(), are only available for DSI invocations. For more information,

see “Using the Dynamic Skeleton Interface.”

– exceptions(), contexts(), operation_context(): not available, CORBA::NO_RESOURCES
thrown.

– sending_exception(): available only if typecode info is available (for example, IDL is
compiled with -typecode_info and linked into program), otherwise CORBA::UNKNOWN is
always returned.

328 VisiBroker for C++ Developer ’s Guide

Portable Interceptors examples

Portable Interceptors examples
This section discusses how applications are actually written to make use of Portable
Interceptors and how each request interceptor is implemented. Each example consists
of a set of client and server applications and their respective interceptors written in
Java and C++. For more information on the definition of each interface, see VisiBroker
for Java APIs and “Portable Interceptor interfaces and classes for C++” chapter of the
VisiBroker for C++ API Reference. We also recommend that developers who want to
make use of Portable Interceptors read the chapter on Portable Interceptors in the
most recent CORBA specification.

The Portable Interceptors examples are located in the following directory:

<install_dir>/examples/Vbroker/pi

Each example is associated with one of the following directory names to better
illustrate the objective of that example.

– client_server

– chaining

Example: client_server
This section provides a detailed description, explanation, the compilation procedure,
and the execution or deployment of the examples in client_server.

Objective of example

This example demonstrates how easily a Portable Interceptor can be added into an
existing CORBA application without altering any code. The Portable Interceptor can be
added to any application, both client and server-side, through executing the related
application again, together with the specified options or properties which can be
configured during runtime.

The client and server application used is similar to the one found in:

<install_dir>/examples/Vbroker/basic/bank_agent

Portable Interceptors have been added to the entire example during runtime
configuration. This provides developers, who are familiar with VisiBroker Interceptors,
a fast way of coding between VisiBroker Interceptors and OMG specific Portable
Interceptors.

Importing required packages

To use Portable Interceptor interfaces, inclusion of the related packages or header files
is required.

Note

If you are using any Portable Interceptors exceptions, such as, DuplicateName or
InvalidName, the ORBInitInfoPackage is optional.

Required header files for using Portable Interceptor are:

#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

To load a client-side request interceptor, a class that uses the ORBInitializer interface
must be implemented. This is also applicable for server-side request interceptor as far
as initialization is concerned. The following example shows the code for loading:

Proper inheritance of a ORBInitializer in order to load a server request interceptor:

class SampleServerLoader : public PortableInterceptor::ORBInitializer

 23: Using Portable Interceptors 329

Example: c l ient_server

Note

Each object that implements the interface, ORBInitializer, is also required to inherit
from the object LocalObject. This is necessary because the IDL definition of
ORBInitializer uses the keyword local.

For more information on the IDL keyword, local, see “Understanding valuetypes”.

During the initialization of the ORB, each request Interceptor is added through the
implementation of the interface, pre_init(). Inside this interface, the client request
Interceptor is added through the method, add_client_request_interceptor(). The
related client request interceptor is required to be instantiated before adding itself into
the ORB.

Client-side request interceptor initialization and registration to
the ORB

public: void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {
 SampleClientInterceptor *interceptor = new SampleClientInterceptor;
 try {
 _info->add_client_request_interceptor(interceptor);
 ...

According to the OMG specification, the required application registers the respective
interceptors through the method register_orb_initializer. For more information, see
“Developing the Client and Server Application”.

VisiBroker provides an optional way of registering these interceptors through a
dynamic link library (DLL). The advantage of using this method of registering is that the
applications do not require changing any code, only changing the way they are
executed. With an additional option during execution, the interceptors are registered
and executed. The option is similar to 4.x Interceptors:

vbroker.orb.dynamicLibs=<DLL filename>

where <DLL filename>is the filename of the dynamic link library (extension .SO for UNIX
or .DLL for Windows). To load more than one DLL file, separate each filename with a
comma (","), for example:

Windows

vbroker.orb.dynamicLibs=a.dll,b.dll,c.dll

UNIX

vbroker.orb.dynamicLibs=a.so,b.so,c.so

In order to load the interceptor dynamically, the VISInit interface is used. This is similar
to the one used in VisiBroker Interceptors. For more information, see “Using VisiBroker
Interceptors.” The registration of each interceptor loader is similar within the ORB_init
implementation.

Registration of client-side ORBInitializer through DLL loading:

void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb)
{
 if(_bind_interceptors_installed) return;

 SampleClientLoader *client = new SampleClientLoader();
 PortableInterceptor::register_orb_initializer(client);
...

Complete implementation of the client-side interceptor loader:

// SampleClientLoader.C

#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"
#include "SampleClientInterceptor.h"
#if !defined(DLL_COMPILE)
#include "vinit.h"

330 VisiBroker for C++ Developer ’s Guide

Example: c l ient_server

#include "corba.h"
#endif

// USE_STD_NS is a define setup by VisiBroker to use the std namespace
USE_STD_NS
class SampleClientLoader :
 public PortableInterceptor::ORBInitializer
{
private:
 short int _interceptors_installed;

 #if defined(DLL_COMPILE)
 static SampleClientLoader _instance;
 #endif
public:
 SampleClientLoader() {
 _interceptors_installed = 0;
 }

 void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {
 if(_interceptors_installed) return;

 cout << "=====>SampleClientLoader: Installing ..." << endl;

 SampleClientInterceptor *interceptor = new SampleClientInterceptor;

 try {
 _info->add_client_request_interceptor(interceptor);

 _interceptors_installed = 1;
 cout << "=====>SampleClientLoader: Interceptors loaded."
 << endl;
 }
 catch(PortableInterceptor::ORBInitInfo::DuplicateName &e) {
 cout << "=====>SampleClientLoader: "
 << e.name << " already installed!" << endl;
 }
 catch(...) {
 cout << "=====>SampleClientLoader: other exception occurred!"
 << endl;
 }
 }

 void post_init(PortableInterceptor::ORBInitInfo_ptr _info) {
 }
};

#if defined(DLL_COMPILE)

class VisiClientLoader : VISInit
{
private:
 static VisiClientLoader _instance;
 short int _bind_interceptors_installed;

public:
 VisiClientLoader() : VISInit(1) {
 _bind_interceptors_installed = 0;
 }
void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb) {
 if(_bind_interceptors_installed) return;

 try {
 SampleClientLoader *client = new SampleClientLoader();
 PortableInterceptor::register_orb_initializer(client);

 23: Using Portable Interceptors 331

Example: c l ient_server

 _bind_interceptors_installed = 1;
 }
 catch(const CORBA::Exception& e)
 {
 cerr << e << endl;
 }
 }
};
// static instance
VisiClientLoader VisiClientLoader::_instance;

#endif

Implementing the ORBInitializer for a server-side Interceptor

At this stage, the client request interceptor should already have been properly
instantiated and added. Subsequent code thereafter only provides exception handling
and result display. Similarly, on the server-side, the server request interceptor is also
done the same way except that it uses the, add_server_request_interceptor() method
to add the related server request interceptor into the ORB.

Server-side request interceptor initialization and registration to the ORB:

public void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {
 SampleServerInterceptor *interceptor = new
SampleServerInterceptor;
 try {
 _info->add_server_request_interceptor(interceptor);
 ...

This method also applies similarly to loading the server-side ORBInitializer class
through a DLL implementation.

Server-side request ORB Initializer loading through DLL:

void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb)
{
 if(_poa_interceptors_installed) return;

 SampleServerLoader *server = new SampleServerLoader();
 PortableInterceptor::register_orb_initializer(server);
 ...

The complete implementation of the server-side interceptor loader:

// SampleServerLoader.C

#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"
#if defined(DLL_COMPILE)
#include "vinit.h"
#include "corba.h"
#endif
#include "SampleServerInterceptor.h"
 // USE_STD_NS is a define setup by VisiBroker to use the std namespace

USE_STD_NS class SampleServerLoader :

 public PortableInterceptor::ORBInitializer
{
private:
 short int _interceptors_installed;

public:
 SampleServerLoader() {
 _interceptors_installed = 0;
 }
 void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {

332 VisiBroker for C++ Developer ’s Guide

Example: c l ient_server

 if(_interceptors_installed) return;

 cout << "=====>SampleServerLoader: Installing ..." << endl;

 SampleServerInterceptor *interceptor = new SampleServerInterceptor();

 try {
 _info->add_server_request_interceptor(interceptor);

 _interceptors_installed = 1;

 cout << "=====>SampleServerLoader: Interceptors loaded."
 << endl;
 }
 catch(PortableInterceptor::ORBInitInfo::DuplicateName &e) {
 cout << "=====>SampleServerLoader: "
 << e.name << " already installed!" << endl;
 }
 catch(...) {
 cout << "=====>SampleServerLoader: other exception occurred!"
 << endl;
 }
 }
 void post_init(PortableInterceptor::ORBInitInfo_ptr _info) {}
};

 #if defined(DLL_COMPILE) class VisiServerLoader : VISInit

{
private:
 static VisiServerLoader _instance;
 short int _poa_interceptors_installed;

public:
 VisiServerLoader() : VISInit(1) {
 _poa_interceptors_installed = 0;
}
 void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb) {
 if(_poa_interceptors_installed) return;
 try {
 SampleServerLoader *server = new SampleServerLoader();
 PortableInterceptor::register_orb_initializer(server);
 _poa_interceptors_installed = 1;
 }
 catch(const CORBA::Exception& e)
 {
 cerr << e << endl;
 }

 } }; // static instance>

VisiServerLoader VisiServerLoader::_instance;

 #endif

Implementing the RequestInterceptor for client- or server-side
Request Interceptor

Upon implementation of either client- or server-side request interceptor, two other
interfaces must be implemented. They are name() and destroy().

The name() is important here because it provides the name to the ORB to identify the
correct interceptor that it will load and call during any request or reply. According to the
CORBA specification, an interceptor may be anonymous, for example, it has an empty
string as the name attribute. In this example, the name, SampleClientInterceptor, is

 23: Using Portable Interceptors 333

Example: c l ient_server

assigned to the client-side interceptor and SampleServerInterceptor is assigned to the
server-side interceptor.

Implementation of interface attribute, readonly attribute name:

public: char *name(void) {
 return _name;
 }

Implementing the ClientRequestInterceptor for Client

For the client request interceptor, it is necessary to implement the
ClientRequestInterceptor interface for the request interceptor to work properly.

When the class implements the interface, the following five request interceptor
methods are implemented regardless of any implementation:

– send_request()

– send_poll()

– receive_reply()

– receive_exception()

– receive_other()

In addition, the interface for the request interceptor must be implemented before hand.
On the client-side interceptor, the following request interceptor point will be triggered in
relation to its events.

send_request—provides an interception point for querying request information and
modifying the service context before the request is sent to the server.

Implementation of the public void send_request(ClientRequestInfo ri)
interface

void send_request(PortableInterceptor::ClientRequestInfo_ptr ri) {
 ...

Implementation of the void send_poll(ClientRequestInfo ri) interface
send_poll—provides an interception point for querying information during a Time-
Independent Invocation (TII) polling to get reply sequence.

void send_poll(PortableInterceptor::ClientRequestInfo_ptr ri) {
 ...

Implementation of the void receive_reply(ClientRequestInfo ri) interface
receive_reply—provides an interception point for querying information on a reply after
it is returned from the server and before control is returned to the client.

void receive_reply(PortableInterceptor::ClientRequestInfo_ptr ri) {
 ...

Implementation of the void receive_exception(ClientRequestInfo ri)
interface
receive_exception—provides an interception point for querying the exception's
information before it is raised to the client.

void receive_exception(PortableInterceptor::ClientRequestInfo_ptr ri) {
 ...

receive_other—provides an interception point for querying information when a request
results in something other than a normal reply or an exception. For example, a request
could result in a retry (for example, a GIOP Reply with a LOCATION_FORWARD status was

334 VisiBroker for C++ Developer ’s Guide

Example: c l ient_server

received); or on asynchronous calls, the reply does not immediately follow the request.
However, the control is returned to the client and an ending interception point is called.

void receive_other(PortableInterceptor::ClientRequestInfo_ptr ri) {
 ...

The complete implementation of the client-side request interceptor follows.

// SampleClientInterceptor.h

#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the std namespace
USE_STD_NS

class SampleClientInterceptor :
 public PortableInterceptor::ClientRequestInterceptor
{
private:
 char *_name;

 void init(char *name) {
 _name = new char[strlen(name)+1];
 strcpy(_name, name);
 }

public:
 SampleClientInterceptor(char *name) {
 init(name);
 }

 SampleClientInterceptor() {
 init("SampleClientInterceptor");
 }

char *name(void) {
 return _name;
}

void destroy(void) {
 // do nothing here
 cout << "=====>SampleServerLoader: Interceptors unloaded" << endl;
}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* void preinvoke_premarshal(CORBA::Object_ptr target,
* const char* operation,
* IOP::ServiceContextList&servicecontexts,
* VISClosure& closure) = 0;
*/
void send_request(PortableInterceptor::ClientRequestInfo_ptr ri) {
 cout << "=====> SampleClientInterceptor id " << ri->request_id()
 << " send_request => " << ri->operation()
 << ": Target = " << ri->target()
 << endl;
}

/**
* There is no equivalent interface for VisiBroker 4.x
* ClientRequestInterceptor.
*/

void send_poll(PortableInterceptor::ClientRequestInfo_ptr ri) {
 cout << "=====> SampleClientInterceptor id " << ri->request_id()

 23: Using Portable Interceptors 335

Example: c l ient_server

 << " send_poll => " << ri->operation()
 << ": Target = " << ri->target()
 << endl;
}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* void postinvoke(CORBA::Object_ptr target,
* const IOP::ServiceContextList& service_contexts,
* CORBA_MarshalInBuffer& payload,
* CORBA::Environment_ptr env,
* VISClosure& closure) = 0;
*
* with env not holding any exception value.
*/
void receive_reply(PortableInterceptor::ClientRequestInfo_ptr ri){
 cout << "=====> SampleClientInterceptor id " << ri->request_id()
 << " receive_reply => " << ri->operation()
 << endl;
}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* void postinvoke(CORBA::Object_ptr target,
* const IOP::ServiceContextList& service_contexts,
* CORBA_MarshalInBuffer& payload,
* CORBA::Environment_ptr env,
* VISClosure& closure) = 0;
*
* with env holding the exception value.
*/
void receive_exception(PortableInterceptor::ClientRequestInfo_ptr ri) {
 cout << "=====> SampleClientInterceptor id " << ri->request_id()
 << " receive_exception => " << ri->operation()
 << ": Exception = " << ri->received_exception()
 << endl;
}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* void postinvoke(CORBA::Object_ptr target,
* const IOP::ServiceContextList& service_contexts,
* CORBA_MarshalInBuffer& payload,
* CORBA::Environment_ptr env,
* VISClosure& closure) = 0;
*
* with env holding the exception value.
*/
void receive_other(PortableInterceptor::ClientRequestInfo_ptr ri) {
 cout << "=====> SampleClientInterceptor id " << ri->request_id()
 << " receive_other => " << ri->operation()
 << ": Exception = " << ri->received_exception()
 << ", Reply Status = " <<
 getReplyStatus(ri->reply_status())
 << endl;
 }

protected:
 char *getReplyStatus(CORBA::Short status) {
 if(status == PortableInterceptor::SUCCESSFUL)
 return "SUCCESSFUL";
 else if(status == PortableInterceptor::SYSTEM_EXCEPTION)

336 VisiBroker for C++ Developer ’s Guide

Example: c l ient_server

 return "SYSTEM_EXCEPTION";
 else if(status == PortableInterceptor::USER_EXCEPTION)
 return "USER_EXCEPTION";
 else if(status == PortableInterceptor::LOCATION_FORWARD)
 return "LOCATION_FORWARD";
 else if(status == PortableInterceptor::TRANSPORT_RETRY)
 return "TRANSPORT_RETRY";
 else
 return "invalid reply status id";
 }
};

On the server-side interceptor, the following request interceptor point will be triggered
in relation to its events.

receive_request_service_contexts—provides an interception point for getting service
context information from the incoming request and transferring it to
PortableInterceptor::Current slot. This interception point is called before the Servant
Manager. For more information, go to the Using POAs, “Using servants and servant
managers”.

Implementation of the void receive_request_service_contexts
(ServerRequestInfo ri) interface

void
receive_request_service_contexts(PortableInterceptor::ServerRequestInfo_ptr ri)
{
 ...

receive_request—provides an interception point for querying all the information,
including operation parameters.

Implementation of the void receive_request (ServerRequestInfo ri) interface
void receive_request(PortableInterceptor::ServerRequestInfo_ptr ri) {
 ...

send_reply—provides an interception point for querying reply information and modifying
the reply service context after the target operation has been invoked and before the
reply is returned to the client.

Implementation of the void receive_reply (ServerRequestInfo ri)interface
void send_reply(PortableInterceptor::ServerRequestInfo_ptr ri) {
 ...

send_exception—provides an interception point for querying the exception information
and modifying the reply service context before the exception is raised to the client.

Implementation of the void receive_exception (ServerRequestInfo ri)
interface

void send_exception(PortableInterceptor::ServerRequestInfo_ptr ri) {
 ...

send_other—provides an interception point for querying the information available when
a request results in something other than a normal reply or an exception. For example,
a request could result in a retry (such as, a GIOP Reply with a LOCATION_FORWARD status
was received); or, on asynchronous calls, the reply does not immediately follow the
request, but control is returned to the client and an ending interception point is called.

 23: Using Portable Interceptors 337

Example: c l ient_server

Implementation of the void receive_other (ServerRequestInfo ri) interface
void send_other(PortableInterceptor::ServerRequestInfo_ptr ri) {
 ...

All the interception points allow both the client and server to obtain different types of
information at different points of an invocation. In the example, this information is
displayed as a debugging tool.

The following code example shows the complete implementation of the server-side
request interceptor:

// SampleServerInterceptor.h

#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the std namespace
USE_STD_NS

class SampleServerInterceptor :
 public PortableInterceptor::ServerRequestInterceptor
{
private:
 char *_name;

 void init(char *name) {
 _name = new char[strlen(name)+1];
 strcpy(_name, name);
 }

public:
 SampleServerInterceptor(char *name) {
 init(name);
 }

 SampleServerInterceptor() {
 init("SampleServerInterceptor");
}

 char *name(void) {
 return _name;
}

 void destroy(void) {
 // do nothing here
 cout << "=====>SampleServerLoader: Interceptors unloaded" << endl;
 }
/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* void preinvoke_premarshal(CORBA::Object_ptr target,
* const char* operation,
* IOP::ServiceContextList& servicecontexts,
* VISClosure& closure) = 0;
*/
void
receive_request_service_contexts(PortableInterceptor::ServerRequestInfo_ptr
ri) {
 cout << "=====> SampleServerInterceptor id " << ri->request_id()
 << " receive_request_service_contexts => " << ri->operation()
 << endl;
 }

/**

338 VisiBroker for C++ Developer ’s Guide

Example: c l ient_server

* There is no equivalent interface for VisiBroker 4.x
* SeverRequestInterceptor.
*/
void receive_request(PortableInterceptor::ServerRequestInfo_ptr ri)
{
 cout << "=====> SampleServerInterceptor id " << ri->request_id()
 << " receive_request => " << ri->operation()
 << ": Object ID = " << ri->object_id()
 << ", Adapter ID = " << ri->adapter_id()
 << endl;
}

/**
* There is no equivalent interface for VisiBroker 4.x
* SeverRequestInterceptor.
*/
void send_reply(PortableInterceptor::ServerRequestInfo_ptr ri) {
 cout << "=====> SampleServerInterceptor id " << ri->request_id()
 << " send_reply => " << ri->operation()
 << endl;
}

/**
* This is similar to VisiBroker 4.x ServerRequestInterceptor,
*
* virtual void postinvoke_premarshal(CORBA::Object_ptr _target,
* IOP::ServiceContextList&_service_contexts,
* CORBA::Environment_ptr _env,
* VISClosure& _closure) = 0;
*
* with env holding the exception value.
*/
void send_exception(PortableInterceptor::ServerRequestInfo_ptr ri) {
 cout << "=====> SampleServerInterceptor id " << ri->request_id()
 << " send_exception => " << ri->operation()
 << ": Exception = " << ri->sending_exception()
 << ", Reply status = " << getReplyStatus(ri->reply_status())
 << endl;
}

/**
* This is similar to VisiBroker 4.x ServerRequestInterceptor,
*
* virtual void postinvoke_premarshal(CORBA::Object_ptr _target,
* IOP::ServiceContextList&
_service_contexts,
* CORBA::Environment_ptr _env,
* VISClosure& _closure) = 0;
*
* with env holding the exception value.
*/
void send_other(PortableInterceptor::ServerRequestInfo_ptr ri) {
 cout << "=====> SampleServerInterceptor id " << ri->request_id()
 << " send_other => " << ri->operation()
 << ": Exception = " << ri->sending_exception()

 << ", Reply Status = " << getReplyStatus(ri->reply_status())
 << endl;
 }
protected:
 char *getReplyStatus(CORBA::Short status) {
 if(status == PortableInterceptor::SUCCESSFUL)
 return "SUCCESSFUL";
 else if(status == PortableInterceptor::SYSTEM_EXCEPTION)
 return "SYSTEM_EXCEPTION";

 23: Using Portable Interceptors 339

Example: c l ient_server

 else if(status == PortableInterceptor::USER_EXCEPTION)
 return "USER_EXCEPTION";
 else if(status == PortableInterceptor::LOCATION_FORWARD)
 return "LOCATION_FORWARD";
 else if(status == PortableInterceptor::TRANSPORT_RETRY)
 return "TRANSPORT_RETRY";
 else
 return "invalid reply status id";
 }
};

Developing the Client and Server Application

After the interceptor classes are written, you need to register them with their respective
client and server applications.

The client and server register the respective ORBInitializer classes through the
PortableInterceptor::register_orb_initalizer(<class_name>) method, where
<class_name> is the name of the class to be registered.

In the example, we also demonstrate another way of registering the interceptor classes
as a dynamic link library (DLL). The advantage of registering it this way is that while
changes in the execution are required, the application does not require any code
changes.

Note

This is a VisiBroker proprietary way of registration. If you wish to have full compliance
with OMG, do not use the following style.

If you choose to load the interceptor classes as a DLL (using a proprietary method of
VisiBroker), no additional code is required for the client and server applications. Notice
that in the example a portion of the code is conditionalized out through a macro if DLL
compilation and linking is not specified.

Implementation of the client application
// Client.C

#include "Bank_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the std namespace
USE_STD_NS

#if !defined(DLL_COMPILE)
#include "SampleClientLoader.C"
#endif

int main(int argc, char* const* argv)
{
 try {
 // Instantiate the Loader *before* the orb initialization
 // if chose not to use DLL method of loading
 #if !defined(DLL_COMPILE)
 SampleClientLoader* loader = new SampleClientLoader;
 PortableInterceptor::register_orb_initializer(loader);
 #endif

 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Get the manager Id
 PortableServer::ObjectId_var managerId =

340 VisiBroker for C++ Developer ’s Guide

Example: c l ient_server

 PortableServer::string_to_ObjectId("BankManager");

 // Locate an account manager. Give the full POA name and the servant
ID.
 Bank::AccountManager_var manager =
 Bank::AccountManager::_bind("/bank_agent_poa", managerId);

 // use argv[1] as the account name, or a default.
 const char* name = argc > 1 ? argv[1] : "Jack B. Quick";

 // Request the account manager to open a named account.
 Bank::Account_var account = manager->open(name);

 // Get the balance of the account.
 CORBA::Float balance = account->balance();

 // Print out the balance.
 cout << "The balance in " << name << "'s account is $" << balance
 << endl;
 }
 catch(const CORBA::Exception& e) {
 cerr << e << endl;
 return 1;
 }

 return 0;
}

Implementation of the server application
// Server.C

#include "BankImpl.h"

// USE_STD_NS is a define setup by VisiBroker to use the std namespace
USE_STD_NS

#if !defined(DLL_COMPILE)
#include "SampleServerLoader.C"
#endif

int main(int argc, char* const* argv)
{
 try {
 // Instantiate an interceptor loader before initializing the orb:
 #if !defined(DLL_COMPILE)
 SampleServerLoader* loader = new SampleServerLoader();
 PortableInterceptor::register_orb_initializer(loader);
 #endif

 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(

 23: Using Portable Interceptors 341

Example: c l ient_server

 PortableServer::PERSISTENT);

 // get the POA Manager
 PortableServer::POAManager_var poa_manager = rootPOA->the_POAManager();

 // Create myPOA with the right policies
 PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",
 poa_manager,
 policies);
 // Create the servant
 AccountManagerImpl managerServant;

 // Decide on the ID for the servant
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("BankManager");

 // Activate the servant with the ID on myPOA
 myPOA->activate_object_with_id(managerId, &managerServant);

 // Activate the POA Manager
 poa_manager->activate();

 CORBA::Object_var reference =
myPOA->servant_to_reference(&managerServant);
 cout << reference << " is ready" << endl;

 // Wait for incoming requests
 orb->run();
 }
 catch(const CORBA::Exception& e) {
 cerr << e << endl;
 return 1;
 }
 return 0;
}

Compilation procedure

To compile the C++ example without using the VisiBroker propriety loading method,
simply execute the following commands:

Windows

<install_dir>\examples\Vbroker\pi\client_server> nmake -f Makefile.cpp

UNIX

<install_dir>/examples/Vbroker/pi/client_server> make -f Makefile.cpp

To compile the C++ example using the VisiBroker propriety loading method, execute
the following commands:

Windows

<install_dir>\examples\Vbroker\pi\client_server>
 nmake -f Makefile.cpp dll

UNIX

<install_dir>/examples/Vbroker/pi/client_server>
 make -f Makefile.cpp dll

342 VisiBroker for C++ Developer ’s Guide

Example: c l ient_server

Execution or deployment of Client and Server Applications

To run the C++ example without using the VisiBroker proprietary loading method, start
the server and client as follows:

Windows

<install_dir>\examples\Vbroker\pi\client_server> start Server (running under a
new command prompt window)
<install_dir>\examples\Vbroker\pi\client_server> Client John (using a given
name)

or

<install_dir>\examples\Vbroker\pi\client_server> Client (using a default name)

UNIX

Open two console shells:

<install_dir>/examples/Vbroker/pi/client_server> Server(in the first window)
<install_dir>/examples/Vbroker/pi/client_server> Client John (in the second
window, using a given name)

or

<install_dir>/examples/Vbroker/pi/client_server> Client (in the second window,
using the default name)

To run the C++ example using the VisiBroker proprietary loading method, start the
server and client as follows:

Windows

<install_dir>\examples\Vbroker\pi\client_server> start Server -
Dvbroker.orb.dynamicLibs= SampleServerLoader.dll(running under a new command
prompt window)
<install_dir>\examples\Vbroker\pi\client_server> Client John -
Dvbroker.orb.dynamicLibs= SampleClientLoader.dll(using a given name)

or

<install_dir>\examples\Vbroker\pi\client_server> Client -
Dvbroker.orb.dynamicLibs= SampleClientLoader.dll (using a default name)

UNIX

Open two console shells:

<install_dir>/examples/Vbroker/pi/client_server> Server
-Dvbroker.orb.dynamicLibs=./SampleServerLoader.so (in the first window)
<install_dir>/examples/Vbroker/pi/client_server> Client
-Dvbroker.orb.dynamicLibs=./SampleClientLoader.so John (in the second window,
using a given name)

 23: Using Portable Interceptors 343

Example: c l ient_server

344 VisiBroker for C++ Developer ’s Guide

 24: Using Vis iBroker Interceptors 345

Using VisiBroker Interceptors
This section provides an overview of the VisiBroker Interceptors (Interceptors)
framework, walks through a Interceptor example, and describes some advanced
features such as Interceptor factories and chaining Interceptors. This section also
covers the expected behaviors when both Portable Interceptors and VisiBroker
Interceptors are used in the same service.

Interceptors overview
Similar to Portable Interceptors, VisiBroker Interceptors offers VisiBroker ORB services
a mechanism to intercept normal flow of execution of the ORB. There are two kinds of
VisiBroker Interceptors:

– Client Interceptors are system-level Interceptors which are called when a method is
invoked on a client object.

– Server Interceptors are system-level Interceptors which are called when a method is
invoked on a server object.

To use VisiBroker Interceptors, you declare a class which implements one of the
Interceptor interfaces. Once you have instantiated an Interceptor object, you register it
with its corresponding Interceptor manager. Your Interceptor object is then notified by
its manager when, for example, an object has had one of its methods invoked or its
parameters marshalled or demarshalled.

An important difference between VisiBroker interceptors and Portable interceptors is
that VisiBroker interceptors do not get invoked for co-located calls. Therefore, users
have to make a cautious decision when choosing which interceptor to use.

Note

If you want to intercept an operation request before it is marshalled on the client side or
if you want to intercept an operation request before it is processed on the server side,
use object wrappers, described in “Using object wrappers.”

Interceptor interfaces and managers
Interceptor developers derive classes from one or more of the following base
Interceptor API classes which are defined and implemented by the VisiBroker.

– Client Interceptors:

346 VisiBroker for C++ Developer ’s Guide

Interceptor inter faces and managers

– BindInterceptor

– ClientRequestInterceptor

– Server Interceptors:

– POALifeCycleInterceptor

– ActiveObjectLifeCycleInterceptor

– ServerRequestInterceptor

– IORCreationInterceptor

– ServiceResolver Interceptor

Client Interceptors

There are currently two kinds of client Interceptor and their respective managers:

– BindInterceptor and BindInterceptorManager

– ClientRequestInterceptor and ClientRequestInterceptorManager

For more details about client Interceptors, see “Using Portable Interceptors.”

BindInterceptor
A BindInterceptor object is a global Interceptor which is called on the client side before
and after binds.

class _VISEXPORT BindInterceptor : public virtual VISPseudoInterface {
 public:
 virtual IOP::IORValue_ptr bind(IOP::IORValue_ptr ior,
 CORBA_Object_ptr obj,
 CORBA::Boolean rebind,
 VISClosure& closure) = 0;
 virtual IOP::IORValue_ptr bind_failed(IOP::IORValue_ptr ior,
 CORBA_Object_ptr object,
 VISClosure& closure) = 0;
 virtual void bind_succeeded(IOP::IORValue_ptr ior,
 CORBA_Object_ptr object,
 CORBA::Long profile_index,
 interceptor::InterceptorManagerControl_ptr control,
 VISClosure& closure) = 0;
 virtual void exception_occurred(IOP::IORValue_ptr ior,
 CORBA_Object_ptr object,
 CORBA_Environment_ptr env,
 VISClosure& closure) = 0;
};

ClientRequestInterceptor
A ClientRequestInterceptor object may be registered during a bind_succeeded call of a
BindInterceptor object, and it remains active for the duration of the connection. Two of
its methods are called before the invocation on the client object, one
(preinvoke_premarshal) before the parameters are marshalled and the other
(preinvoke_postmarshal) after they are. The third method (postinvoke) is called after the
request has completed.

class _VISEXPORT ClientRequestInterceptor : public virtual VISPseudoInterface {
 public:
 virtual void preinvoke_premarshal(CORBA::Object_ptr target,
 const char* operation,
 IOP::ServiceContextList& servicecontexts,
 VISClosure& closure) = 0;

 24: Using VisiBroker Interceptors 347

Interceptor in terfaces and managers

 virtual void preinvoke_postmarshal(CORBA::Object_ptr target,
 CORBA_MarshalInBuffer& payload,
 VISClosure& closure) = 0;
 virtual void postinvoke(CORBA::Object_ptr target,
 const IOP::ServiceContextList& service_contexts,
 CORBA_MarshalInBuffer& payload,
 CORBA::Environment_ptr env,
 VISClosure& closure) = 0;
 virtual void exception_occurred(CORBA::Object_ptr target,
 CORBA::Environment_ptr env,
 VISClosure& closure) = 0;
};

Server Interceptors

There are the following kinds of server Interceptors:

– POALifeCycleInterceptor and POALifeCycleInterceptorManager

– ActiveObjectLifeCycleInterceptor and ActiveObjectLifeCycleInterceptorManager

– ServerRequestInterceptor and ServerRequestInterceptorManager

– IORCreationInterceptor and IORCreationInterceptorManager

For more details about server Interceptors see “Using Portable Interceptors.”

POALifeCycleInterceptor
A POALifeCycleInterceptor object is a global Interceptor which is called every time a
POA is created (using the create method) or destroyed (using the destroy method).

class _VISEXPORT POALifeCycleInterceptor : public virtual VISPseudoInterface {
 public:
 virtual void create(PortableServer::POA_ptr _poa,
 CORBA::PolicyList& _policies,
 IOP::IORValue*& _iorTemplate,
 interceptor::InterceptorManagerControl_ptr _poaAdmin) = 0;
 virtual void destroy(PortableServer::POA_ptr _poa) = 0;
};

ActiveObjectLifeCycleInterceptor
An ActiveObjectLifeCycleInterceptor object is called whenever an object is added to
the Active Object Map (using the create method) or after an object has been
deactivated and etherealized (using the destroy method). The Interceptor may be
registered by a POALifeCycleInterceptor on a per-POA basis at POA creation time. This
Interceptor may only be registered if the POA has the RETAIN policy.

class _VISEXPORT ActiveObjectLifeCycleInterceptor : public virtual
VISPseudoInterface {
 public:
 virtual void create(const PortableServer::ObjectId& _oid,
 PortableServer_ServantBase* _servant,
 PortableServer::POA_ptr _adapter) = 0;
 virtual void destroy(const PortableServer::ObjectId& _oid,
 PortableServer_ServantBase* _servant,
 PortableServer::POA_ptr _adapter) = 0;
};

ServerRequestInterceptor
A ServerRequestInterceptor object is called at various stages in the invocation of a
server implementation of a remote object before the invocation (using the preinvoke

348 VisiBroker for C++ Developer ’s Guide

Interceptor inter faces and managers

method) and after the invocation both before and after the marshalling of the reply
(using the postinvoke_premarshal and postinvoke_premarshal methods respectively).
This Interceptor may be registered by a POALifeCycleInterceptor object at POA
creation time on a per-POA basis.

class _VISEXPORT ServerRequestInterceptor : public virtual VISPseudoInterface {
 public:
 virtual void preinvoke(CORBA::Object_ptr _target, const char* _operation,
 const IOP::ServiceContextList& _service_contexts,
 CORBA_MarshalInBuffer& _payload,
 VISClosure& _closure) = 0;
 virtual void postinvoke_premarshal(CORBA::Object_ptr _target,
 IOP::ServiceContextList& _service_contexts,
 CORBA::Environment_ptr _env,
 VISClosure& _closure) = 0;
 virtual void postinvoke_postmarshal(CORBA::Object_ptr _target,
 CORBA_MarshalOutBuffer& _payload,
 VISClosure& _closure) = 0;
 virtual void exception_occurred(CORBA::Object_ptr _target,
 CORBA::Environment_ptr _env,
 VISClosure& _closure) = 0;
};

Note

If a CORBA::SystemException or any sub-classes (for example CORBA::NO_PERMISSION) is
raised on the server side, the exception should not be encrypted. This is because the
ORB uses some of these exceptions internally (for example TRANSIENT for doing
automatic rebind).

IORCreationInterceptor
An IORCreationInterceptor object is called whenever a POA creates an object
reference (using the create method). This Interceptor may be registered by a
POALifeCycleInterceptor at POA creation time on a per-POA basis.

class _VISEXPORT IORCreationInterceptor : public virtual VISPseudoInterface {
 public:
 virtual void create(PortableServer::POA_ptr _poa,
 IOP::IORValue*& _ior) = 0;
};

Service Resolver Interceptor

This Interceptor is used to install a user service that you can then dynamically load.

class _VISEXPORT interceptor::ServiceResolverInterceptor :public virtual
VISPsuedoInterface {
 public:
 virtual CORBA::Object_ptr resolve(const char* _name) = 0;
};
class _VISEXPORT ServiceResolverInterceptorManager :public virtual
InterceptorManager,
 public virtual VISPseudoInterface {
 public:
 virtual void add(const char* _name, ServiceResolverInterceptor_ptr
_interceptor) =
 0;
 virtual void remove(const char* _name) = 0;
};

When you call resolve_initial_references, the resolve on all installed services gets
called. The resolve then can return the appropriate object.

 24: Using VisiBroker Interceptors 349

Interceptor in terfaces and managers

To write service initializers, you must obtain a ServiceResolver after getting an
InterceptorManagerControl to be able to add your services.

Registering Interceptors with the VisiBroker ORB

Each Interceptor interface has a corresponding Interceptor manager interface which is
used to register your Interceptor objects with the VisiBroker ORB. The following steps
are necessary to register an Interceptor:

1 Get a reference to an InterceptorManagerControl object by calling the
resolve_initial_references method on an ORB object with the parameter
VisiBrokerInterceptorControl.

2 Call the get_manager method on the InterceptorManagerControl object with one of the
String values in the following table which shows the String values to pass to the
get_manager method of the InterceptorManagerControl object. (Be sure to cast the
object reference to its corresponding Interceptor manager interface.)

3 Create an instance of your Interceptor.

4 Register your Interceptor object with the manager object by calling the add method.

5 Load your Interceptor objects when running your client and server programs.

Creating Interceptor objects

Finally, you need to implement a factory class which creates instances of your
Interceptors and registers them with the VisiBroker ORB. Your factory class must
derive from the VISInit class.

// in the vinit.h file
class _VISEXPORT VISInit {
 public:
 VISInit();
 VISInit(CORBA::Long init_priority);
 virtual ~VISInit();
 // ORB_init is called toward the beginning of CORBA::ORB_init()
 virtual void ORB_init(int& /*argc*/,
 char* const* /*argv*/,
 CORBA_ORB* /*orb*/)
 {}
 // ORB_initialized is called at the end of CORBA::ORB_init()
 virtual void ORB_initialized(CORBA_ORB* /*orb*/) {}
 // shutdown is called when CORBA::ORB::shutdown() was called
 // or process shutdown is detected
 virtual void ORB_shutdown() {}
 ...
};

Table 24.1 String values of the InterceptorManagerControl object

Value Corresponding Interceptor interface

ClientRequest ClientRequestInterceptor

Bind BindInterceptor

POALifeCycle POALifeCycleInterceptor

ActiveObjectLifeCycle ActiveObjectLifeCycleInterceptor

ServerRequest ServerRequestInterceptor

IORCreation IORCreationInterceptor

ServiceResolver ServiceResolverInterceptor

350 VisiBroker for C++ Developer ’s Guide

Example Interceptors

Note

You can also create new instances of your Interceptors and register them with the
VisiBroker ORB from within other Interceptors as in the examples in “Example
Interceptors”.

Loading Interceptors

To load your interceptor, simply instantiate the factory before the call to
CORBA::ORB_init in your application.

Example Interceptors
The example Interceptor in this section uses all of the Interceptor API methods (listed
in “Using Portable Interceptors”) so that you can see how these methods are used, and
when they are invoked.

Example code

In “Code listings”, each of the Interceptor API methods is simply implemented to print
informational messages to the standard output.

The following example applications are located in the directory:

<install_dir>\examples\Vbroker\interceptors\

– active_object_lifecycle

– client_server

– ior_creation

Client-server Interceptors example
To run the example, compile the files as you normally would. Then start up the server
and the client as follows:

prompt>Server
prompt>Client John

Note

The ServiceInit class used in VisiBroker 3.x is replaced by implementing two
interfaces: ServiceLoader and ServiceResolverInterceptor.

The results of executing the example Interceptor are shown in the following table. The
execution by the client and server is listed in sequence.

Client Server

============>SampleServerLoader: Interceptors
loaded============> In POA /. Nothing to
do.============> In POA bank_agent_poa, 1
ServerRequest interceptor installedStub
[repository_id=IDL:Bank/AccountManager:
1.0,key=ServiceId[service=/bank_agent_poa,id=
{11 bytes:
[B][a][n][k][M][a][n][a][g][e][r]}]] is ready.

Bind Interceptors loaded==========>
SampleBindInterceptor bind==========>
SampleBindInterceptor
bind_succeeded==========>
SampleClientInterceptor id MyClientInterceptor
preinvoke_premarshal=> open==========>
SampleClientInterceptor id MyClientInterceptor
preinvoke_postmarshal

 24: Using VisiBroker Interceptors 351

Example Interceptors

Since the OAD is not running, the bind call fails and the server proceeds. The client
binds to the account object, and then calls the balance method. This request is received
by the server, processed, and results are returned to the client. The client prints the
results.

As demonstrated by the example code and results, the Interceptors for both the client
and server are installed when the respective process starts. Information about
registering an interceptor is covered in “Registering Interceptors with the VisiBroker
ORB”.

Code listings

SampleServerLoader
The SampleServerLoader object is responsible for loading the POALifeCycleInterceptor
class and instantiating an object. This class is linked to the VisiBroker ORB
dynamically by vbroker.orb.dynamicLibs. The SampleServerLoader class contains the
init method which is called by the VisiBroker ORB during initialization. Its sole purpose
is to install a POALifeCycleInterceptor object by creating it and registering it with the
InterceptorManager.

#include <iostream.h>
#include "vinit.h"
#include "SamplePOALifeCycleInterceptor.h"

class POAInterceptorLoader : VISInit {
 private:
 short int _poa_interceptors_installed;
 public:
 POAInterceptorLoader(){
 _poa_interceptors_installed = 0;
 }
 void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb) {
 if(_poa_interceptors_installed) return;
 cout << "Installing POA interceptors" << endl;
 SamplePOALifeCycleInterceptor *interceptor = new
SamplePOALifeCycleInterceptor;
 // Get the interceptor manager control
 CORBA::Object *object =

============> SampleServerInterceptor id
MyServerInterceptor preinvoke => openCreated
john's account: Stub[repository_id=IDL:Bank/
Account:1.0, key=TransientId[poaName=/,id={4
bytes: (0)(0)(0)(0)}, sec=0,usec=0]]

============> SampleClientInterceptor id
MyClientInterceptor postinvoke============>
SampleBindInterceptor bind============>
SampleBindInterceptor
bind_succeeded============>
SampleClientInterceptor id MyClientInterceptor
preinvoke_premarshal => balance ============>
SampleClientInterceptor id MyClientInterceptor
preinvoke_postmarshal

============> SampleServerInterceptor id
MyServerInterceptor
postinvoke_premarshal============>
SampleServerInterceptor id MyServerInterceptor
postinvoke_postmarshal

============> SampleClientInterceptor id
MyClientInterceptor postinvoke The balance in
john's account is $245.64

Client Server

352 VisiBroker for C++ Developer ’s Guide

Example Interceptors

 orb->resolve_initial_references("VisiBrokerInterceptorControl");
 interceptor::InterceptorManagerControl_var control =
 interceptor::InterceptorManagerControl::_narrow(object);
 // Get the POA manager
 interceptor::InterceptorManager_var manager =
 control->get_manager("POALifeCycle");
 PortableServerExt::POALifeCycleInterceptorManager_var poa_mgr =

PortableServerExt::POALifeCycleInterceptorManager::_narrow(manager);
 // Add POA interceptor to the list
 poa_mgr->add(
(PortableServerExt::POALifeCycleInterceptor*)interceptor);
 cout << "POA interceptors installed" << endl;
 _poa_interceptors_installed = 1;
 }
};

SamplePOALifeCycleInterceptor
The SamplePOALifeCycleInterceptor object is invoked every time a POA is created or
destroyed. Because we have two POAs in the client_server example, this Interceptor
is invoked twice, first during rootPOA creation and then at the creation of myPOA. We
install the SampleServerInterceptor only at the creation of myPOA.

#include "interceptor_c.hh"
#include "PortableServerExt_c.hh"
#include "IOP_c.hh"
#include "SampleServerInterceptor.h"

class SamplePOALifeCycleInterceptor :
PortableServerExt::POALifeCycleInterceptor {
 public:
 void create(PortableServer::POA_ptr poa,
 CORBA_PolicyList& policies,
 IOP::IORValue_ptr& iorTemplate,
 interceptor::InterceptorManagerControl_ptr control) {
 if(strcmp(poa->the_name(),"bank_agent_poa") == 0) {
 // Add the Request-level interceptor
 SampleServerInterceptor* interceptor =
 new SampleServerInterceptor("MyServerInterceptor");
 // Get the ServerRequest interceptor manager
 interceptor::InterceptorManager_var generic_manager =
 control->get_manager("ServerRequest");
 interceptor::ServerRequestInterceptorManager_var manager =
 interceptor::ServerRequestInterceptorManager::_narrow(
 generic_manager);
 // Add the interceptor
 manager->add((interceptor::ServerRequestInterceptor*)interceptor);
 cout <<"============>In POA " << poa->the_name() <<
 ", 1 ServerRequest interceptor installed"<< endl;
 } else
 cout << "============>In POA " << poa->the_name() <<
 ". Nothing to do." << endl;
 }
 void destroy(PortableServer::POA_ptr poa) {
 // To be a trace!
 cout << "============> SamplePOALifeCycleInterceptor destroy" <<
 poa->the_name() << endl;
 }
};

 24: Using VisiBroker Interceptors 353

Example Interceptors

SampleServerInterceptor
The SampleServerInterceptor object is invoked every time a request is received at or a
reply is made by the server.

#include <iostream.h>
#include "vclosure.h"
#include "interceptor_c.hh"
#include "IOP_c.hh"
// USE_STD_NS is a define setup by VisiBroker to use the std namespace
USE_STD_NS

class SampleServerInterceptor : interceptor::ServerRequestInterceptor {
 private:
 char * _id;
 public:
 SampleServerInterceptor(const char* id) {
 _id = new char[strlen(id)];
 strcpy(_id,id);
 }
 ~SampleServerInterceptor() { _id = NULL;}
 void preinvoke(CORBA_Object* target,
 const char* operation,
 const IOP::ServiceContextList& service_contexts,
 CORBA_MarshalInBuffer& payload,
 VISClosure& closure) {
 closure.data = new char[strlen(_id)];
 strcpy((char*)(closure.data), _id);
 cout << "============> SampleServerInterceptor id " <<
 (char*)(closure.data) <<
 " preinvoke => " << operation << endl;
 }
 void postinvoke_premarshal(CORBA_Object* target,
 IOP::ServiceContextList& service_contexts,
 CORBA::Environment_ptr env,
 VISClosure& closure) {
 cout << "============> SampleServerInterceptor id " <<
 (char*)(closure.data) <<
 " postinvoke_premarshal " << endl;
 }
 void postinvoke_postmarshal(CORBA_Object* target,
 CORBA_MarshalOutBuffer& payload,
 VISClosure& closure) {
 cout << "============> SampleServerInterceptor id " <<
 (char*)(closure.data) <<
 " postinvoke_postmarshal " << endl;
 }
 void exception_occurred(CORBA_Object* target,
 CORBA::Environment_ptr env,
 VISClosure& closure) {
 cout << "============> SampleServerInterceptor id " <<
 (char*)(closure.data) <<
 " exception_occurred" << endl;
 }
};

SampleClientInterceptor
The SampleClientInterceptor is invoked every time a request is made by or a reply is
received at the client.

354 VisiBroker for C++ Developer ’s Guide

Example Interceptors

#include <iostream.h>
#include "interceptor_c.hh"
#include "IOP_c.hh"
#include "vclosure.h"

class SampleClientInterceptor : public interceptor::ClientRequestInterceptor {
 private:
 char * _id;
 public:
 SampleClientInterceptor(char * id) {
 _id = new char[strlen(id)+1];
 strcpy(_id,id);
 }
 void preinvoke_premarshal(CORBA::Object_ptr target,
 const char* operation,
 IOP::ServiceContextList& servicecontexts,
 VISClosure& closure) {
 closure.data = new char[strlen(_id)];
 strcpy((char*)(closure.data), _id);
 cout << "SampleClientInterceptor id " << closure.data
 << "=================> preinvoke_premarshal "
 << operation << endl;
 }
 void preinvoke_postmarshal(CORBA::Object_ptr target,
 CORBA_MarshalInBuffer& payload,
 VISClosure& closure) {
 cout << "SampleClientInterceptor id " << closure.data
 << "=================> preinvoke_postmarshal "
 << endl;
 }
 void postinvoke(CORBA::Object_ptr target,
 const IOP::ServiceContextList& service_contexts,
 CORBA_MarshalInBuffer& payload,
 CORBA::Environment_ptr env,
 VISClosure& closure) {
 cout << "SampleClientInterceptor id " << closure.data
 << "=================> postinvoke "
 << endl;
 }
 void exception_occurred(CORBA::Object_ptr target,
 CORBA::Environment_ptr env,
 VISClosure& closure) {
 cout << "SampleClientInterceptor id " << closure.data
 << "=================> exception_occurred "
 << endl;
 }
};

SampleClientLoader
The SampleClientLoader is responsible for loading BindInterceptor objects. This class is
linked to the VisiBroker ORB dynamically by vbroker.orb.dynamicLibs. The
SampleClientLoader class contains the bind and bind_succeeded methods. These
methods are called by the ORB during object binding. When the bind
succeeds,bind_succeeded will be called by the ORB and a BindInterceptor object is
installed by creating it and registering it the InterceptorManager.

#include <iostream.h>
#include "vinit.h"
#include "SampleBindInterceptor.h"

 24: Using VisiBroker Interceptors 355

Example Interceptors

class BindInterceptorLoader : VISInit {
 private:
 short int _bind_interceptors_installed;
 public:
 BindInterceptorLoader() {
 _bind_interceptors_installed = 0;
 }
 void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb) {
 if(_bind_interceptors_installed) return;
 cout << "Installing Bind interceptors" << endl;
 SampleBindInterceptor *interceptor =
 new SampleBindInterceptor;
 // Get the interceptor manager control
 CORBA::Object *object =
 orb->resolve_initial_references("VisiBrokerInterceptorControl");
 interceptor::InterceptorManagerControl_var control =
 interceptor::InterceptorManagerControl::_narrow(object);
 // Get the Bind manager
 interceptor::InterceptorManager_var manager =
 control->get_manager("Bind");
 interceptor::BindInterceptorManager_var bind_mgr =
 interceptor::BindInterceptorManager::_narrow(manager);
 // Add Bind interceptor to the list
 bind_mgr->add((interceptor::BindInterceptor*)interceptor);
 cout << "Bind interceptors installed" << endl;
 _bind_interceptors_installed = 1;
 }
};

SampleBindInterceptor
The SampleBindInterceptor is invoked when the client attempts to bind to an object. The
first step on the client side after ORB initialization is to bind to an AccountManager object.
This bind invokes the SampleBindInterceptor and a SampleClientInterceptor is installed
when the bind succeeds.

#include <iostream.h>
#include "interceptor_c.hh"
#include "IOP_c.hh"
#include "vclosure.h"
#include "SampleClientInterceptor.h"

class SampleBindInterceptor : public interceptor::BindInterceptor {
 public:
 IOP::IORValue_ptr bind(IOP::IORValue_ptr ior,
 CORBA_Object_ptr obj,
 CORBA::Boolean rebind,
 VISClosure& closure) {
 cout << "SampleBindInterceptor-----> bind" << endl;
 return NULL;
 }
 IOP::IORValue_ptr bind_failed(IOP::IORValue_ptr ior,
 CORBA_Object_ptr object,
 VISClosure& closure) {
 cout << "SampleBindInterceptor-----> bind_failed" << endl;
 return NULL;
 }
 void bind_succeeded(IOP::IORValue_ptr ior,
 CORBA_Object_ptr object,
 CORBA::Long profile_index,
 interceptor::InterceptorManagerControl_ptr control,

356 VisiBroker for C++ Developer ’s Guide

Passing informat ion between your Interceptors

 VISClosure& closure) {
 cout << "SampleBindInterceptor-----> bind_succeeded"
 << endl;
 // Add the Request-level interceptor
 interceptor::ClientRequestInterceptor_var interceptor =
 new SampleClientInterceptor((char*)"MyClientInterceptor");
 // Get the ClientRequest interceptor manager
 interceptor::InterceptorManager_var generic_manager =
 control->get_manager("ClientRequest");
 interceptor::ClientRequestInterceptorManager_var manager =
 interceptor::ClientRequestInterceptorManager::_narrow(
 generic_manager);
 // Add the interceptor
 manager->add((interceptor::ClientRequestInterceptor*)interceptor);
 cout <<"============>In bind_succeeded, 1 "
 <<"ClientRequest interceptor installed"<< endl;
 }
 void exception_occurred(IOP::IORValue_ptr ior,
 CORBA_Object_ptr object,
 CORBA_Environment_ptr env,
 VISClosure& closure) {
 cout << "SampleBindInterceptor-----> exception_occured"
 << endl;
 }
};

Passing information between your Interceptors
Closure objects are created by the ORB at the beginning of certain sequences of
Interceptor calls. The same Closure object is used for all calls in that particular
sequence. The Closure object contains a single public data field object of type
java.lang.Object which may be set by the Interceptor to keep state information. The
sequences for which Closure objects are created vary depending on the Interceptor
type. In the ClientRequestInterceptor, a new Closure is created before calling
preinvoke_premarshal and the same Closure is used for that request until the request
completes, successfully or not. Likewise, in the ServerInterceptor, a new Closure is
created before calling preinvoke, and that Closure is used for all Interceptor calls related
to processing that particular request.

For an example of how Closure is used, see the examples in the following directory:

<install_dir>/examples/Vbroker/interceptors/client_server

The Closure object can be cast to ExtendedClosure to obtain response_expected and
request_id as follows:

CORBA::Boolean my_response_expected =
 ((ExtendedClosure)closure).reqInfo.response_expected;
CORBA::ULong my_request_id =
 ((ExtendedClosure)closure).reqInfo.request_id;

Using both Portable Interceptors and VisiBroker Interceptors
simultaneously

Both Portable Interceptors and VisiBroker Interceptors can be installed simultaneously
with the VisiBroker ORB. However, as they have different implementations, there are
several rules of flow and constrains that developers need to understand when using
both Interceptors, as described in the following.

 24: Using VisiBroker Interceptors 357

Using both Portable Interceptors and Vis iBroker Interceptors s imultaneously

Order of invocation of interception points

The order of invocation of interception points follows the interception point ordering
rules of individual versions of Interceptors, regardless of whether the developer
actually chooses to install one of more than one version.

Client side Interceptors

When both Portable Interceptors and VisiBroker client side Interceptors are installed,
the order of events, (assuming no Interceptor throws an exception) is:

1 send_request (Portable Interceptor), followed by preinvoke_premarshal (Interceptors)

2 construct request message

3 preinvoke_postmarshal (Interceptor)

4 send request message and wait for reply

5 postinvoke (Interceptor), followed by received_reply/receive_exception/receive_other
(Portable Interceptor) depending on the type of reply.

Server side Interceptors

When both Portable Interceptors and VisiBroker server side Interceptors are installed,
the order of events is received (locate requests do not fire Interceptors, which is the
same as VisiBroker behavior), assuming no Interceptor throws an exception, is:

1 received_request_service_contexts (Portable Interceptor), followed by preinvoke
(Interceptor)

2 servantLocator.preinvoke (if using servant locator)

3 receive_request (Portable Interceptor)

4 invoke operation on servant

5 postinvoke_premarshal (Interceptor)

6 servantLocator.postinvoke (if using servant locator)

7 send_reply/send_exception/send_other, depending on the outcome of the request

8 postinvoke_postmarshal (Interceptor)

Order of ORB events during POA creation

The order of ORB events during creation of a POA is listed as follows:

1 An IOR template is created based on profiles of server engines servicing the POA.

2 An Interceptors' POA life cycle Interceptors' create() method is invoked. This
method can potentially add new policies or modify the IOR template created in the
previous step.

3 A Portable Interceptor's IORInfo object is created and the IORInterceptors'
establish_components() method is invoked. This interception point allows the
Interceptor to query the policies passed to create_POA() and those added in the
previous step, and also add components to the IOR template based on those
policies.

4 An object reference factory and object reference template for the POA are created,
and the Portable Interceptor's IORInterceptors' components_established() method is
invoked. This interception point allows the Interceptor to change the POA's object
reference factory, which will be used to manufacture object references.

358 VisiBroker for C++ Developer ’s Guide

Using both Portable Interceptors and Vis iBroker Interceptors s imultaneously

Order of ORB events during object reference creation

The following events occur during calls to POA that create object reference, such as
create_reference(), create_reference_with_id().

1 Call the object reference factory's make_object() method to create the object
reference (this does not call the VisiBroker IOR creation Interceptors, and the
factory may be user -supplied). If there are no VisiBroker IOR creation Interceptors
installed, this should be the object reference returned to the application; otherwise,
proceed to step 2.

2 Extract the IOR from the delegate of the returned object reference, and call the
VisiBroker IOR creation Interceptors' create() method.

3 IOR from step 2 is returned as the object reference to the caller of
create_reference(), create_reference_with_id()

 25: Using object wrappers 359

Using object wrappers
This section describes the object wrapper feature of VisiBroker, which allows your
applications to be notified or to trap an operation request for an object.

Object wrappers overview
The VisiBroker object wrapper feature allows you to define methods that are called
when a client application invokes a method on a bound object or when a server
application receives an operation request. Unlike the interceptor feature which is
invoked at the VisiBroker ORB level, object wrappers are invoked before an operation
request has been marshalled. In fact, you can design object wrappers to return results
without the operation request having ever been marshalled, sent across the network, or
actually presented to the object implementation. For more information about VisiBroker
Interceptors, see “Using VisiBroker Interceptors.”

Object wrappers may be installed on just the client-side, just the server-side, or they
may be installed in both the client and server portions of a single application.

The following are a few examples of how you might use object wrappers in your
application:

– Log information about the operation requests issued by a client or received by a
server.

– Measure the time required for operation requests to complete.

– Cache the results of frequently issued operation requests so results can be
immediately returned, without actually contacting the object implementation each
time.

Note

Externalizing a reference to an object for which object wrappers have been installed,
using the VisiBroker ORB Object's object_to_string method, will not propagate those
wrappers to the recipient of the stringified reference if the recipient is a different
process.

Typed and un-typed object wrappers

VisiBroker offers two kinds of object wrappers: typed and untyped. You can mix the use
of both of these object wrappers within a single application. For information on typed

360 VisiBroker for C++ Developer ’s Guide

Untyped object wrappers

wrappers, see “Typed object wrappers”. For information on untyped wrappers, see
“Untyped object wrappers”. The following table summarizes the important distinctions
between these two kinds of object wrappers.

Special idl2cpp requirements

Whenever you plan to use typed or untyped object wrappers, you must ensure that you
use the -obj_wrapper option with the idl2cpp compiler when you generate the code for
your applications. This will result in the generation of an Object wrapper base class for
each of your interfaces.

Object wrapper example applications

The sample client and server applications used to illustrate both the typed and untyped
object wrapper concepts in this section are located in the following directory:

<install_dir>\examples\Vbroker\interceptors\objectWrappers\

Untyped object wrappers
Untyped object wrappers allow you to define methods that are to be invoked before an
operation request is processed, after an operation request is processed, or both.
Untyped wrappers can be installed for client or server applications and you can also
install multiple versions.

You may also mix the use of both typed and untyped object wrappers within the same
client or server application.

By default, untyped object wrappers have a global scope and will be invoked for any
operation request. You can design untyped wrappers so that they have no effect for
operation requests on object types in which you are not interested.

Note

Unlike typed object wrappers, untyped wrapper methods do not receive the arguments
that the stub or object implementation would receive nor can they prevent the
invocation of the stub or object implementation.

The following figure shows how an untyped object wrapper's pre_method is invoked
before the client stub method and how the post_method is invoked afterward. It also
shows the calling sequence on the server-side with respect to the object
implementation.

Features Typed Untyped

Receives all arguments that are to be passed to the stub. Yes No

Can return control to the caller without actually invoking the next wrapper,
the stub, or the object implementation.

Yes No

Will be invoked for all operation requests for all objects. No Yes

 25: Using object wrappers 361

Untyped object wrappers

Figure 25.1 Single untyped object wrapper

Using multiple, untyped object wrappers

Figure 25.2 Multiple untyped object wrappers

Order of pre_method invocation

When a client invokes a method on a bound object, each untyped object wrapper
pre_method will receive control before the client's stub routine is invoked. When a server
receives an operation request, each untyped object wrapper pre_method will be invoked
before the object implementation receives control. In both cases, the first pre_method to
receive control will be the one belonging to the object wrapper that was registered first.

Order of post_method invocation

When a server's object implementation completes its processing, each post_method will
be invoked before the reply is sent to the client. When a client receives a reply to an
operation request, each post_method will be invoked before control is returned to the
client. In both cases, the first post_method to receive control will be the one belonging to
the object wrapper that was registered last.

362 VisiBroker for C++ Developer ’s Guide

Using untyped object wrappers

Note

If you choose to use both typed and untyped object wrappers, see “Combined use of
untyped and typed object wrappers” for information on the invocation order.

Using untyped object wrappers
The following are the required steps for using untyped object wrappers. Each step is
discussed in further detail in the following sections.

1 Identify the interface, or interfaces, for which you want to create a untyped object
wrapper.

2 Generate the code from your IDL specification using the idl2cpp compiler with the -
obj_wrapper option.

3 Create an implementation for your untyped object wrapper factory, derived from the
VISObjectWrapper::UntypedObjectWrapperFactory class.

4 Create an implementation for your untyped object wrapper, derived from the
VISObjectWrapper::UntypedObjectWrapper class.

5 Modify your application to create your untyped object wrapper factory.

Implementing an untyped object wrapper factory

The TimeWrap.h file, part of the ObjectWrappers sample applications, illustrates how to
define an untyped object wrapper factory that is derived from the
VISObjectWrapper::UntypedObjectWrapperFactory.

Your factory's create method will be invoked to create an untyped object wrapper
whenever a client binds to an object or a server invokes a method on an object
implementation. The create method receives the target object, which allows you to
design your factory to not create an untyped object wrapper for those object types you
wish to ignore. It also receives an enum specifying whether the object wrapper created
is for the server side object implementation or the client side object.

The following code sample shows the TimingObjectWrapperFactory, which is used to
create an untyped object wrapper that displays timing information for method calls.
Notice the addition of the key parameter to the TimingObjectWrapperFactory constructor.
This parameter is also used by the service initializer to identify the wrapper.

class TimingObjectWrapperFactory
 : public VISObjectWrapper::UntypedObjectWrapperFactory
{
 public:
 TimingObjectWrapperFactory(VISObjectWrapper::Location loc,
 const char* key)
 : VISObjectWrapper::UntypedObjectWrapperFactory(loc),
 _key(key) {}

 // ObjectWrapperFactory operations
 VISObjectWrapper::UntypedObjectWrapper_ptr create(
 CORBA::Object_ptr target,
 VISObjectWrapper::Location loc) {
 if (_owrap == NULL) {
 _owrap = new TimingObjectWrapper(_key);
 }
 return VISObjectWrapper::UntypedObjectWrapper::_duplicate(_owrap);
 }
 private:
 CORBA::String_var _key;
 VISObjectWrapper::UntypedObjectWrapper_var _owrap;
};

 25: Using object wrappers 363

Using untyped object wrappers

Implementing an untyped object wrapper

The following code sample shows the implementation of the TimingObjectWrapper, also
defined in the TimeWrap.h file. Your untyped wrapper must be derived from the
VISObjectWrapper::UntypedObjectWrapper class, and you may provide an implementation
for both the pre_method or post_method methods in your untyped object wrapper.

Once your factory has been installed, either automatically by the factory's constructor
or manually by invoking the VISObjectWrapper::ChainUntypedObjectWrapper::add
method. An untyped object wrapper object will be created automatically whenever your
client binds to an object or when your server invokes a method on an object
implementation.

The pre_method shown in the following code sample invokes the TimerBegin method,
defined in TimeWrap.C, which uses the Closure object to save the current time. Similarly,
the post_method invokes the TimerDelta method to determine how much time has
elapsed since the pre_method was called and print the elapsed time.

class TimingObjectWrapper : public VISObjectWrapper::UntypedObjectWrapper {
 public:
 TimingObjectWrapper(const char* key=NULL) : _key(key) {}
 void pre_method(const char* operation,
 CORBA::Object_ptr target,
 VISClosure& closure) {
 cout << "*Timing: [" << flush;
 if ((char *)_key)
 cout << _key << flush;
 else
 cout << "<no key>" << flush;
 cout << "] pre_method\t" << operation << "\t->" << endl;
 TimerBegin(closure, operation);
 }
 void post_method(const char* operation,
 CORBA::Object_ptr target,
 CORBA::Environment& env,
 VISClosure& closure) {
 cout << "*Timing: [" << flush;
 if ((char *)_key)
 cout << _key << flush;
 else
 cout << "<no key>" << flush;
 cout << "] post_method\t" ;
 TimerDelta(closure, operation);
 }
 private:
 CORBA::String_var _key;
};

pre_method and post_method parameters
Both the pre_method and post_method receive the parameters shown in the following
table.

Parameter Description

operation Name of the operation that was requested on the target object.

target Target object.

closure Area where data can be saved across method invocations for this wrapper.

environment post_method only parameter used to inform the user of any exceptions that might
have occurred during the previous steps of the method invocation.

364 VisiBroker for C++ Developer ’s Guide

Using untyped object wrappers

Creating and registering untyped object wrapper factories

An untyped object wrapper factory is automatically added to the chain of untyped
wrappers whenever it is created with the base class constructor that accepts a location.

On the client side, objects will be wrapped only if untyped object wrapper factories are
created and registered before the objects are bound. On the server side, untyped
object wrappers factories are created and registered before an object implementation
is called.

The following code sample shows a portion of the sample file UntypedClient.C which
shows the creation, with automatic registration, of two untyped object wrapper factories
for a client. The factories are created after the VisiBroker ORB has been initialized, but
before the client binds to any objects.

int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 // Install untyped object wrappers
 TimingObjectWrapperFactory timingfact(VISObjectWrapper::Client,
 "timeclient");
 TraceObjectWrapperFactory tracingfact(VISObjectWrapper::Client,
 "traceclient");
 // Now locate an account manager.
 ...]

The following code sample illustrates the sample file UntypedServer.C, which shows the
creation and registration of untyped object wrapper factories for a server. The factories
are created after the VisiBroker ORB is initialized, but before any object
implementations are created.

// UntypedServer.C
#include "Bank_s.hh"
#include "BankImpl.h"
#include "TimeWrap.h"
#include "TraceWrap.h"
USE_STD_NS
int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 // Initialize the POA.
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPoa = PortableServer::POA::_narrow(obj);
 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] = rootPoa->create_lifespan_policy(
 PortableServer::PERSISTENT);
 // Get the POA Manager.
 PortableServer::POAManager_var poa_manager = rootPoa->the_POAManager();
 // Create myPOA With the Right Policies.
 PortableServer::POA_var myPOA = rootPoa->create_POA("bank_ow_poa",
 poa_manager,
 policies);
 // Install Untyped Object Wrappers for Account Manager.
 TimingObjectWrapperFactory timingfact(VISObjectWrapper::Server,
 "timingserver");
 TraceObjectWrapperFactory tracingfact(VISObjectWrapper::Server,
 "traceserver");
 // Create the Account Manager Servant.
 AccountManagerImpl managerServant;
 // Decide on ID for Servant.
 PortableServer::ObjectId_var managerId =

 25: Using object wrappers 365

Typed object wrappers

 PortableServer::string_to_ObjectId("BankManager");
 // Activate the Servant with the ID on myPOA.
 myPOA->activate_object_with_id(managerId, &managerServant);
 // Activate the POA Manager.
 rootPoa->the_POAManager()->activate();
 cout << "Manager is ready." << endl;
 // Wait for Incoming Requests.
 orb->run();
 } catch(const CORBA::Exception& e) {
 cerr << e << endl;
 return 1;
 }
 return 0;
}

Removing untyped object wrappers

The VISObjectWrapper::ChainUntypedObjectWrapperFactory class remove method can be
used to remove an untyped object wrapper factory from a client or server application.
You must specify a location when removing a factory. This means that if you have
added a factory with a location of VISObjectWrapper::Both , you can selectively remove
it from the Client location, the Server location, or Both.

Note

Removing one or more object wrapper factories from a client will not affect objects of
that class that are already bound by the client. Only subsequently bound objects will be
affected. Removing object wrapper factories from a server will not affect object
implementations that have already been created. Only subsequently created object
implementations will be affected.

Typed object wrappers
When you implement a typed object wrapper for a particular class, you define the
processing that is to take place when a method is invoked on a bound object. The
following figure shows how an object wrapper method on the client is invoked before
the client stub class method and how an object wrapper on the server-side is invoked
before the server's implementation method.

Note

Your typed object wrapper implementation is not required to implement all methods
offered by the object it is wrapping.

You may also mix the use of both typed and untyped object wrappers within the same
client or server application. For more information, see “Combined use of untyped and
typed object wrappers”.

366 VisiBroker for C++ Developer ’s Guide

Typed object wrappers

Figure 25.3 Single typed object wrapper registered

Using multiple, typed object wrappers

You can implement and register more than one typed object wrapper for a particular
class of object, as shown in the following figure.

On the client side, the first object wrapper registered is client_wrapper_1, so its
methods will be the first to receive control. After performing its processing, the
client_wrapper_1 method may pass control to the next object's method in the chain or it
may return control to the client.

On the server side, the first object wrapper registered is server_wrapper_1, so its
methods will be the first to receive control. After performing its processing, the
server_wrapper_1 method may pass control to the next object's method in the chain or it
may return control to the servant.

 25: Using object wrappers 367

Typed object wrappers

Figure 25.4 Multiple, typed object wrappers registered

Order of invocation

The methods for a typed object wrapper that are registered for a particular class will
receive all of the arguments that are normally passed to the stub method on the client
side or to the skeleton on the server side. Each object wrapper method can pass
control to the next wrapper method in the chain by invoking the parent class' method,
<interface_name>ObjectWrapper::<method_name> . If an object wrapper wishes to return
control without calling the next wrapper method in the chain, it can return with the
appropriate return value.

A typed object wrapper method's ability to return control to the previous method in the
chain allows you to create a wrapper method that never invokes a client stub or object
implementation. For example, you can create an object wrapper method that caches
the results of a frequently requested operation. In this scenario, the first invocation of a
method on the bound object results in an operation request being sent to the object
implementation. As control flows back through the object wrapper method, the result is
stored. On subsequent invocations of the same method, the object wrapper method
can simply return the cached result without actually issuing the operation request to the
object implementation.

If you choose to use both typed and untyped object wrappers, see “Combined use of
untyped and typed object wrappers” for information on the invocation order.

Typed object wrappers with co-located client and servers

When the client and server are both packaged in the same process, the first object
wrapper method to receive control will belong to the first client-side object wrapper that
was installed. The following figure illustrates the invocation order.

368 VisiBroker for C++ Developer ’s Guide

Using typed object wrappers

Figure 25.5 Typed object wrapper invocation order

Using typed object wrappers
The following are the required steps for using typed object wrappers. Each step is
discussed in further detail in the following sections.

1 Identify the interface, or interfaces, for which you want to create a typed object
wrapper.

2 Generate the code from your IDL specification using the idl2cpp compiler with the -
obj_wrapper option.

3 Derive your typed object wrapper class from the <interface_name>ObjectWrapper
class generated by the compiler, and provide an implementation of those methods
you wish to wrap.

4 Modify your application to register the typed object wrapper.

Implementing typed object wrappers

You derive typed object wrappers from the <interface_name>ObjectWrapper class that is
generated by the idl2cpp compiler.

The following code sample shows the implementation of a typed object wrapper for the
Account interface from the file BankWrap.h.

Notice that this class is derived from the AccountObjectWrapper interface and provides a
simple caching implementation of the balance method, which provides these
processing steps:

1 Check the _inited flag to see if this method has been invoked before.

2 If this is the first invocation, the balance method on the next object in the chain is
invoked and the result is saved to _balance, the _inited flag is set to true, and the
value is returned.

3 If this method has been invoked before, simply return the cached value.

class CachingAccountObjectWrapper : public Bank::AccountObjectWrapper {
 public:
 CachingAccountObjectWrapper() : _inited((CORBA::Boolean)0) {}
 CORBA::Float balance() {
 cout << "+ CachingAccountObjectWrapper: Before Calling Balance" <<
endl;
 if (! _inited) {
 _balance = Bank::AccountObjectWrapper::balance();
 _inited = 1;
 } else {
 cout << "+ CachingAccountObjectWrapper: Returning Cached Value" <<
 endl;
 }
 cout << "+ CachingAccountObjectWrapper: After Calling Balance" <<
endl;
 return _balance;

 25: Using object wrappers 369

Using typed object wrappers

 }
 ...
};

Registering typed object wrappers for a client

A typed object wrapper is registered on the client-side by invoking the
<interface_name>::add method that is generated for the class by the idl2cpp compiler.
Client-side object wrappers must be registered after the ORB_init method has been
called, but before any objects are bound. The following code sample shows a portion of
the TypedClient.java file that creates and registers a typed object wrapper.

...
int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Install Typed Object Wrappers for Account.
 Bank::AccountObjectWrapper::add(orb,
 CachingAccountObjectWrapper::factory,
 VISObjectWrapper::Client);
 // Get the Manager ID.
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("BankManager");
 // Locate an Account Manager.
 Bank::AccountManager_var manager =
 Bank::AccountManager::_bind("/bank_ow_poa", managerId);
...

The VisiBroker ORB keeps track of any object wrappers that have been registered for it
on the client side. When a client invokes the _bind method to bind to an object of that
type, the necessary object wrappers will be created. If a client binds to more than one
instance of a particular class of object, each instance will have its own set of wrappers.

Registering typed object wrappers for a server

As with a client application, a typed object wrapper is registered on the server side by
invoking the <interface_name>::add method. Server side, typed object wrappers must
be registered after the ORB_init method has been called, but before an object
implementation services a request. The following code sample shows a portion of the
TypedServer.C file that installs a typed object wrapper.

// TypedServer.C
#include "Bank_s.hh"
#include "BankImpl.h"
#include "BankWrap.h"
USE_STD_NS
int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 // Initialize the POA.
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPoa = PortableServer::POA::_narrow(obj);
 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] = rootPoa->create_lifespan_policy(
 PortableServer::PERSISTENT);
 // Get the POA Manager.
 PortableServer::POAManager_var poa_manager = rootPoa->the_POAManager();
 // Create myPOA With the Right Policies.
 PortableServer::POA_var myPOA = rootPoa->create_POA("bank_ow_poa",
 poa_manager,
 policies);

370 VisiBroker for C++ Developer ’s Guide

Combined use of untyped and typed object wrappers

 // Install Typed Object Wrappers for Account Manager.
 Bank::AccountManagerObjectWrapper::add(orb,
 SecureAccountManagerObjectWrapper::factory,
 VISObjectWrapper::Server);
 Bank::AccountManagerObjectWrapper::add(orb,
 CachingAccountManagerObjectWrapper::factory,
 VISObjectWrapper::Server);
 // Create the Account Manager Servant.
 AccountManagerImpl managerServant;
 // Decide on ID for Servant.
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("BankManager");
 // Activate the Servant with the ID on myPOA.
 myPOA->activate_object_with_id(managerId, &managerServant);
 // Activate the POA Manager.
 rootPoa->the_POAManager()->activate();
 cout << "Manager is ready." << endl;
 // Wait for Incoming Requests.
 Orb>run();
 } catch(const CORBA::Exception& e) {
 cerr << e << endl;
 return 1;
 }
 return 0;
}

If a server creates more than one instance of a particular class of object, a set of
wrappers will be created for each instance.

Removing typed object wrappers

The <interface_name>ObjectWrapper::remove method that is generated for a class by the
idl2cpp compiler allows you to remove a typed object wrapper from a client or server
application. You must specify a location when removing a factory. This means that if
you have added a factory with a location of VISObjectWrapper::Both, you can selectively
remove it from the Client location, the Server location, or Both.

Note

Removing one or more object wrappers from a client will not affect objects of that class
that are already bound by the client. Only subsequently bound objects will be affected.
Removing object wrappers from a server will not affect object implementations that
have already serviced requests. Only subsequently created object implementations will
be affected.

Combined use of untyped and typed object wrappers
If you choose to use both typed and untyped object wrappers in your application, all
pre_method methods defined for the untyped wrappers will be invoked prior to any typed
object wrapper methods defined for an object. Upon return, all typed object wrapper
methods defined for the object will be invoked prior to any post_method methods defined
for the untyped wrappers.

The sample applications Client.C and Server.C make use of a sophisticated design that
allows you to use command-line properties to specify which, if any, typed and untyped
object wrappers are to be used.

 25: Using object wrappers 371

Combined use of untyped and typed object wrappers

Command-line arguments for typed wrappers

The following table shows the command-line arguments you can use to enable the use
of typed object wrappers for the sample bank applications implemented in Client.C and
Server.C.

Initializer for typed wrappers

The typed wrappers are created in the BankInit::update initializer, defined in
objectWrappers/BankWrap.C. This initializer will be invoked when the ORB_init method is
invoked and will handle the installation of various typed object wrappers, based on the
command-line properties you specify.

The following code sample shows how the initializer uses a set of PropStruct objects to
track the command-line options that have been specified and then add or remove
AccountObjectWrapper objects for the appropriate locations.

...
static const CORBA::ULong kNumTypedAccountProps = 2;
static PropStruct TypedAccountProps[kNumTypedAccountProps] =
{ { "BANKaccountCacheClnt", CachingAccountObjectWrapper::factory,
 VISObjectWrapper::Client },
 { "BANKaccountCacheSrvr", CachingAccountObjectWrapper::factory,
 VISObjectWrapper::Server }
};
static const CORBA::ULong kNumTypedAccountManagerProps = 4;
static PropStruct TypedAccountManagerProps[kNumTypedAccountManagerProps] =
{ { "BANKmanagerCacheClnt", CachingAccountManagerObjectWrapper::factory,
 VISObjectWrapper::Client },
{ "BANKmanagerSecurityClnt", SecureAccountManagerObjectWrapper::factory,
 VISObjectWrapper::Client },
{ "BANKmanagerCacheSrvr", CachingAccountManagerObjectWrapper::factory,
 VISObjectWrapper::Server },
{ "BANKmanagerSecuritySrvr", SecureAccountManagerObjectWrapper::factory,
 VISObjectWrapper::Server },
};
void BankInit::update(int& argc, char* const* argv) {
 if (argc > 0) {
 init(argc, argv, "-BANK");
 CORBA::ULong i;

 for (i=0; i < kNumTypedAccountProps; i++) {
 CORBA::String_var arg(getArgValue(TypedAccountProps[i].propname));
 if (arg && strlen(arg) > 0) {
 if (atoi((char*) arg)) {
 Bank::AccountObjectWrapper::add(_orb,
 TypedAccountProps[i].fact,
 TypedAccountProps[i].loc);

Bank wrappers properties Description

-BANKaccountCacheClnt <0|1> Enables or disables a typed object wrapper that caches the
results of the balance method for a client application.

-BANKaccountCacheSrvr <0|1> Enables or disables a typed object wrapper that caches the
results of the balance method for a server application.

-BANKmanagerCacheClnt <0|1> Enables or disables a typed object wrapper that caches the
results of the open method for a client application.

-BANKmanagerCacheSrvr <0|1> Enables or disables a typed object wrapper that caches the
results of the open method for a server application.

-BANKmanagerSecurityClnt <0|1> Enables or disables a typed object wrapper that detects
unauthorized users passed on the open method for a client
application.

-BANKmanagerSecuritySrvr <0|1> Enables or disables a typed object wrapper that detects
unauthorized users passed on the open method for a server
application.

372 VisiBroker for C++ Developer ’s Guide

Combined use of untyped and typed object wrappers

 } else {
 Bank::AccountObjectWrapper::remove(_orb,
 TypedAccountProps[i]Fact,
 TypedAccountProps[i].loc);
 }
 }
 }
 for (i=0; i < kNumTypedAccountManagerProps; i++) {
 CORBA::String_var arg(
 getArgValue(TypedAccountManagerProps[i].propname));
 if (arg && strlen(arg) > 0) {
 if (atoi((char*) arg)) {
 Bank::AccountManagerObjectWrapper::add(_orb,
 TypedAccountManagerProps[i]Fact,
 TypedAccountManagerProps[i].loc);
 } else {
 Bank::AccountManagerObjectWrapper::remove(_orb,
 TypedAccountManagerProps[i]Fact,
 TypedAccountManagerProps[i].loc);
 }
 }
 }
 }
}

Command-line arguments for untyped wrappers

The following table shows the command-line arguments you can use to enable the use
of untyped object wrappers for the sample bank applications implemented in Client.C
and Server.C.

Initializers for untyped wrappers

The untyped wrappers are created and registered in the TraceWrapInit::update
andTimingWrapInit::update methods, defined in BankWrappers/TraceWrap.C and
TimeWrap.C. These initializers will be invoked when the ORB_init method is invoked and
will handle the installation of various untyped object wrappers.

The following code sample shows a portion of the TraceWrap.C file, which will install the
appropriate untyped object wrapper factories, based on the command-line properties
you specify.

TraceWrapInit::update(int& argc, char* const* argv) {
 if (argc > 0) {
 init(argc, argv, "-TRACEWRAP");
 VISObjectWrapper::Location loc;
 const char* propname;
 LIST(VISObjectWrapper::UntypedObjectWrapperFactory_ptr) *list;

Bank wrappers properties Description

-TRACEWRAPclient <numwraps> Instantiates the specified number of untyped object wrapper
factories for tracing wrappers for a client application.

-TRACEWRAPserver <numwraps> Instantiate the specified number of untyped object wrapper
factories for tracing on a server application.

-TRACEWRAPboth <numwraps> Instantiate the specified number of untyped object wrapper
factories for tracing for both a client and server application.

-TIMINGWRAPclient <numwraps> Instantiate the specified number of untyped object wrapper
factories for timing on a client application.

-TIMINGWRAPserver <numwraps> Instantiate the specified number of untyped object wrapper
factories for timing on a server application

-TIMINGWRAPboth <numwraps> Instantiate the specified number of untyped object wrapper
factories for timing on both a client and a server application.

 25: Using object wrappers 373

Combined use of untyped and typed object wrappers

 for (CORBA::ULong i=0; i < 3; i++) {
 switch (i) {
 case 0:

 loc = VISObjectWrapper::Client;
 propname = "TRACEWRAPclient";
 list = &_clientfacts;
 break;
 case 1:
 loc = VISObjectWrapper::Server;
 propname = "TRACEWRAPserver";
 list = &_serverfacts;
 break;
 case 2:
 loc = VISObjectWrapper::Both;
 propname = "TRACEWRAPboth";
 list = &_bothfacts;
 break;
 }
 CORBA::String_var getArgValue(property_value(propname));
 if (arg && strlen(arg) > 0) {
 int numNew = atoi((char*) arg);
 char key_buf[256];
 for (CORBA::ULong j=0; j < numNew; j++) {
 sprintf(key_buf, "%s-%d", propname, list->size());
 list->add(new TraceObjectWrapperFactory(loc,
 (const char*) key_buf));
 }
 }
 }
 }
}

Executing the sample applications

Before executing the sample applications, make sure that an osagent is running on
your network. For more information, see “Starting a Smart Agent (osagent)”. You can
then execute the server application without any tracing or timing object wrappers by
using the following command:

prompt> Server

Note

The server is designed as a co-located application. It implements both the server and a
client.

From another window, you can execute the client application without any tracing or
timing object wrappers to query the balance in a user's account using the following
command:

prompt> Client John

You can also execute the following command if you want a default name to be used:

prompt> Client

Turning on timing and tracing object wrappers
To execute the client with untyped timing and tracing object wrappers enabled, use the
following command:

prompt> Client -TRACEWRAPclient 1 -TIMINGWRAPclient 1

374 VisiBroker for C++ Developer ’s Guide

Combined use of untyped and typed object wrappers

To execute the server with untyped wrappers for timing and tracing enabled, use the
following command:

prompt> Server -TRACEWRAPserver 1 -TIMINGWRAPserver 1

Turning on caching and security object wrappers
To execute the client with the typed wrappers for caching and security enabled, use
this command:

prompt> Client -BANKaccountCacheClnt 1 _BANKmanagerCacheClnt 1 \
 -BANKmanagerSecurityClnt 1

To execute the server with typed wrappers for caching and security enabled, use the
followiong command:

prompt> Server -BANKaccountCacheSrvr 1 -BANKmanagerCacheSrvr 1 \
 -BANKmanagerSecuritySrvr 1

Turning on typesd and untyped wrappers
To execute the client with all typed and untyped wrappers enabled, use the following
command:

prompt> Client -BANKaccountCacheClnt 1 -BANKmanagerCacheClnt 1 \
 -BANKmanagerSecurityClnt 1 \
 -TRACEWRAPclient 1 -TIMINGWRAPclient 1

To execute the server with all typed and untyped wrappers enabled, use the following
command:

prompt> Server BANKaccountCacheSrvr 1 BANKmanagerCacheSrvr 1 \
 -BANKmanagerSecuritySrvr 1 \ -TRACEWRAPserver 1 -TIMINGWRAPserver 1

Executing a CO-located client and server
The following command will execute a CO-located server and client with all typed
wrappers enabled, the untyped wrapper enabled for just the client, and the untyped
tracing wrapper for just the server:

prompt> Server -BANKaccountCacheClnt 1 -BANKaccountCacheSrvr 1 \
 -BANKmanagerCacheClnt 1 -BANKmanagerCacheSrvr 1 \
 -BANKmanagerSecurityClnt 1 \
 -BANKmanagerSecuritySrvr 1 \
 -TRACEWRAPboth 1 \
 -TIMINGWRAPboth 1

 26: Event Queue 375

Event Queue
This section provides information about the Event Queue feature. This feature is
provided for the server-side only.

A server can register listeners to the event queue based on event types that the server
is interested and therefore can process those events when the server needs to do so.

Event types
Currently, connection event type is the only event type generated.

Connection events
There are two connection events that the VisiBroker ORB will generate and push to the
registered connection event, as follows:

- Connection established: Indicates that a new client is connected to the server
successfully.

- Connection closed: Indicates that an existing client is disconnected from the server.

Event listeners
A server implements and registers listeners with the VisiBroker ORB based on event
types the server needs to process. The connection event listener is the only event lis
tener supported.

IDL definition

The interface definitions are as follows:
module EventQueue {
// Connection event types
enum EventType {UNDEFINED, CONN_EVENT_TYPE};
// Peer (Client) connection info
struct ConnInfo {
string ipaddress; // in %d.%d.%d.%d format
long port;
long connID;

376 VisiBroker for C++ Developer ’s Guide

ConnInfo structure

};

// Marker interface for all types of event listeners
local interface EventListener {};
typedef sequence<EventListener> EventListeners;
// connection event listener interface
local interface ConnEventListener : EventListener{
void conn_established(in ConnInfo info);
void conn_closed(in ConnInfo info);
};

// The EventQueue manager
local interface EventQueueManager : interceptor::InterceptorManager {
void register_listener(in EventListener listener, in EventType type);
void unregister_listener(in EventListener listener, in EventType type);
EventListeners get_listeners(in EventType type);
};
};

The details of the interface definitions are described in the following sections.

ConnInfo structure
The ConnInfo structure contains the following client connection information.

EventListener interface

The EventListener interface section is the marker interface for all types of event

listeners.

ConnEventListeners interface

The ConnEventListeners interface defines the following operations.

Table 26.1 ConnInfo structure client connection information

Paramters Description

ipaddress stores the client ip address

port stores the client port number

connID stores the per server unique identification for this client
connection

Table 26.2 ConnEventListeners interface operations

Operation Description

void conn_established (in
ConnInfo info)

This operation is called back by the VisiBroker ORB to
push the connection established event. The VisiBroker
ORB fills in the client connection information into the in
ConnInfo info parameter and passes this value into the
callback operation.

void conn_closed (in
ConnInfo info)

This operation is called back by the VisiBroker ORB to
push the connection closed event. The VisiBroker ORB
fills in the client connection information into the in
ConnInfo info parameter and passes this value into the
callback operation.

 26: Event Queue 377

ConnInfo st ructure

The server-side application is responsible for the implementation of the
ConnEventListener interface as well as the processing of the events being pushed into
the listener.

EventQueueManager interface

The EventQueueManager interface is used as a handle by the server-side implementation
for the registration of event listeners. This interface defines the the following
operations.first.

How to return the EventQueueManager

An EventQueueManager object is created upon ORB initialization. Server-side
implementation returns the EventQueueManager object reference using the following
code:

CORBA::Object *object =
orb->resolve_initial_references("VisiBrokerInterceptorControl");
interceptor::InterceptorManagerControl_var control =
interceptor::InterceptorManagerControl::_narrow(object);
interceptor::InterceptorManager_var manager =
control->get_manager("EventQueueManager");
EventQueue::EventQueueManager_var eq_mgr =
EventQueue::EventQueueManager::_narrow(manager);Note

Event Queue code samples

This section contains some code samples for registering EventListeners and
implementing a connection EventListener.

Registering EventListeners
The SampleServerLoader class contains the init() method which is called by the ORB
during initialization. The purpose of the ServerLoader is to register an EventListener by
creating and registering it to the EventQueueManager.

#ifdef _VIS_STD
#include <iostream>
#else
#include <iostream.h>
#endif
#include "vinit.h"
#include "ConnEventListenerImpl.h"

USE_STD_NS

Operation Description

void register_listener (in EventListener
listener, in EventType type)

This operation is provided for the
registration of an event listener with the
specified event type.

EventListeners get_listeners (in
EventType type)

This operation returns the list of
registered event listeners for the
specified type.

void unregister_listener (in
EventListener listener, in EventType
type)

This operation removes a pre-registered
listener of the specified type.

378 VisiBroker for C++ Developer ’s Guide

ConnInfo structure

class SampleServerLoader : VISInit {
private:

short int _conn_event_interceptors_installed;
public:

SampleServerLoader(){
_conn_event_interceptors_installed = 0;

}
void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb) {

if(_conn_event_interceptors_installed) return;
cout << "Installing Connection event interceptors" << endl;
ConnEventListenerImpl *interceptor =

new ConnEventListenerImpl("ConnEventListener");
// Get the interceptor manager control
CORBA::Object *object =

orb->resolve_initial_references("VisiBrokerInterceptorControl");
interceptor::InterceptorManagerControl_var control =

interceptor::InterceptorManagerControl::_narrow(object);
// Get the POA manager
interceptor::InterceptorManager_var manager =

control->get_manager("EventQueueManager");
EventQueue::EventQueueManager_var eq_mgr =

EventQueue::EventQueueManager::_narrow(manager);
// Add POA interceptor to the list
eq_mgr->register_listener(

(EventQueue::ConnEventListener *)interceptor,
EventQueue::CONN_EVENT_TYPE);

cout << "Event queue interceptors installed" << endl;
_conn_event_interceptors_installed = 1;
}

};

Implementing EventListeners

The ConnEventListenerImpl contains a connection event listener implementation
sample. The ConnEventListener interface implements the conn_established and
conn_closed operations at the server-side application. For more information, see
“ConnEventListeners interface”. The implementation enables the connection to idle for
30000 milliseconds while waiting for a request at the server-side.

These operations are called when the connection is established by the client and when
the connection is dropped, respectively.

#ifdef _VIS_STD
#include <iostream>
#else
#include <iostream.h>
#endif
#include "vextclosure.h"
#include "interceptor_c.hh"
#include "IOP_c.hh"
#include "EventQueue_c.hh"
#include "vutil.h"

// USE_STD_NS is a define setup by VisiBroker to use the std namespace
USE_STD_NS

//--
// defines the server interceptor functionality
//--

 26: Event Queue 379

ConnInfo st ructure

class ConnEventListenerImpl : EventQueue::ConnEventListener
{
private:
char * _id;
public:
ConnEventListenerImpl(const char* id) {
_id = new char[strlen(id) + 1];
strcpy(_id,id);
}
~ConnEventListenerImpl() {
delete[] _id;
_id = NULL;
}

//--
// This method gets called when a request arrives at the server end.
//--

void conn_established(const EventQueue::ConnInfo& connInfo){
cout <<"Processing connection established from" <<endl;
cout << connInfo;
cout <<endl;
VISUtil::sleep(30000);

}
void conn_closed(const EventQueue::ConnInfo & connInfo) {

cout <<"Processing connection closed from " <<endl ;
cout <<connInfo ;
cout << endl;
VISUtil::sleep(30000);

}
};

380 VisiBroker for C++ Developer ’s Guide

ConnInfo structure

 27: Using the dynamical ly managed types 381

Using the dynamically managed
types
This section describes the DynAny feature of VisiBroker, which allows you to construct
and interpret data types at runtime.

DynAny interface overview
The DynAny interface provides a way to dynamically create basic and constructed data
types at runtime. It also allows information to be interpreted and extracted from an Any
object, even if the type it contains was not known to the server at compile-time. Using
the DynAny interface, you can build powerful client and server applications that create
and interpret data types at runtime.

DynAny examples

Example client and server applications that illustrate the use of DynAny are included as
part of the VisiBroker distribution. The examples are located in the following directory:

<install_dir>\examples\Vbroker\dynany\

These example programs are used to illustrate DynAny concepts throughout this
section.

DynAny types
A DynAny object has an associated value that may either be a basic data type (such as
boolean, int, or float) or a constructed data type. The DynAny interface, its methods and
classes are also documented in the VisiBroker API References. “Programmer tools for
C++,” provides methods for determining the type of the contained data as well as for
setting and extracting the value of primitive data types.

382 VisiBroker for C++ Developer ’s Guide

DynAny types

Constructed data types are represented by the following interfaces, which are all
derived from DynAny. Each of these interfaces provides its own set of methods that are
appropriate for setting and extracting the values it contains.

DynAny usage restrictions

A DynAny object may only be used locally by the process which created it. Any attempt
to use a DynAny object as a parameter on an operation request for a bound object or to
externalize it using the ORB::object_to_string method will cause a MARSHAL exception to
be raised.

Furthermore, any attempt to use a DynAny object as a parameter on DII request will
cause a NO_IMPLEMENT exception to be raised.

This version does not support the long double and fixed types as specified in CORBA
3.0.

Creating a DynAny

A DynAny object is created by invoking an operation on a DynAnyFactory object. First
obtain a reference to the DynAnyFactory object, and then use that object to create the
new DynAny object.

CORBA::Object_var obj = orb->resolve_initial_references("DynAnyFactory");
DynamicAny::DynAnyFactory_var factory =
DynamicAny::DynAnyFactory::_narrow(obj);
// Create Dynamic struct
DynamicAny::DynAny_var dynany = factory->create_dyn_any_from_type_code(
 Printer::_tc_StructType);
DynamicAny::DynStruct_var info = DynamicAny::DynStruct::_narrow(dynany);
info->set_members(seq);
CORBA::Any_var any = info->to_any();

Initializing and accessing the value in a DynAny

The DynAny::insert_<type> methods allow you to initialize a DynAny object with a variety
of basic data types, where <type> is boolean, octet, char, and so on. Any attempt to
insert a type that does not match the TypeCode defined for the DynAny will cause an
TypeMismatch exception to be raised.

The DynAny::get_<type> methods in C++ or the DynAny.get_<type> methods in Java
allow you to access the value contained in a DynAny object, where <type> is boolean,
octet, char, and so on. Any attempt to access a value from a DynAny component which
does not match the TypeCode defined for the DynAny will cause a TypeMismatch exception
to be raised.

The DynAny interface also provides methods for copying, assigning, and converting to or
from an Any object. The sample programs, described in “DynAny example client
application” and “DynAny example server application”, provide examples of how to use
some of these methods.

Interface TypeCode Description

DynArray _tk_array An array of values with the same data type that has a fixed number
of elements.

DynEnum _tk_enum A single enumeration value.

DynFixed _tk_fixed Not supported.

DynSequence _tk_sequence A sequence of values with the same data type. The number of
elements may be increased or decreased.

DynStruct _tk_struct A structure.

DynUnion _tk_union A union.

DynValue _tk_value Not supported.

 27: Using the dynamical ly managed types 383

Constructed data types

Constructed data types
The following types are derived from the DynAny interface and are used to represent
constructed data types.

Traversing the components in a constructed data type

Several of the interfaces that are derived from DynAny actually contain multiple
components. The DynAny interface provides methods that allow you to iterate through
these components. The DynAny-derived objects that contain multiple components
maintain a pointer to the current component.

DynEnum

The DynEnum interface represents a single enumeration constant. Methods are provided
for setting and obtaining the value as a string or as an integral value.

DynStruct

The DynStruct interface represents a dynamically constructed struct type. The
members of the structure can be retrieved or set using a sequence of NameValuePair
objects. Each NameValuePair object contains the member's name and an Any containing
the member's Type and value.

You may use the rewind, next, current_component, and seek methods to traverse the
members in the structure. Methods are provided for setting and obtaining the
structure's members.

DynUnion

The DynUnion interface represents a union and contains two components. The first
component represents the discriminator and the second represents the member value.

You may use the rewind, next, current_component, and seek methods to traverse the
components. Methods are provided for setting and obtaining the union's discriminator
and member value.

DynSequence and DynArray

A DynSequence or DynArray represents a sequence of basic or constructed data types
without the need of generating a separate DynAny object for each component in the
sequence or array. The number of components in a DynSequence may be changed, while
the number of components in a DynArray is fixed.

You can use the rewind, next, current_component, and seek methods to traverse the
members in a DynArray or DynSequence.

DynAny method Description

rewind Resets the current component pointer to the first component. Has no effect
if the object contains only one component.

next Advances the pointer to the next component. If there are no more
components or if the object contains only one component, false is returned.

current_component Returns a DynAny object, which may be narrowed to the appropriate type,
based on the component's TypeCode.

seek Sets the current component pointer to the component with the specified,
zero-based index. Returns false if there is no component at the specified
index. Sets the current component pointer to -1 (no component) if specified
with a negative index.

384 VisiBroker for C++ Developer ’s Guide

DynAny example IDL

DynAny example IDL
The following code sample shows the IDL used in the example client and server
applications. The StructType structure contains two basic data types and an
enumeration value. The PrinterManager interface is used to display the contents of an
Any without any static information about the data type it contains.

// Printer.idl
module Printer {
 enum EnumType {first, second, third, fourth};
 struct StructType {
 string str;
 EnumType e;
 float fl;
 };
 interface PrinterManager {
 void printAny(in any info);
 oneway void shutdown();
 };
};

DynAny example client application
The following code sample shows a client application that can be found in the following
VisiBroker distribution directory:

<install_dir>\examples\Vbroker\dynany\

The client application uses the DynStruct interface to dynamically create a StructType
structure.

The DynStruct interface uses a sequence of NameValuePair objects to represent the
structure members and their corresponding values. Each name-value pair consists of a
string containing the structure member's name and an Any object containing the
structure member's value.

After initializing the VisiBroker ORB in the usual manner and binding to a PrintManager
object, the client performs the following steps:

1 Creates an empty DynStruct with the appropriate type.

2 Creates a sequence of NameValuePair objects that will contain the structure
members.

3 Creates and initializes Any objects for each of the structure member's values.

4 Initializes each NameValuePair with the appropriate member name and value.

5 Initializes the DynStruct object with the NameValuePair sequence.

6 Invokes the PrinterManager::printAny method, passing the DynStruct converted to a
regular Any.

Note

You must use the DynAny::to_any method to convert a DynAny object, or one of its
derived types, to an Any before passing it as a parameter on an operation request.

The following code sample is an example of a client application that uses DynStruct:

// Client.C
#include "Printer_c.hh"
#include "dynany.h"
int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

 27: Using the dynamical ly managed types 385

DynAny example server appl icat ion

 DynamicAny::DynAnyFactory_var factory =
 DynamicAny::DynAnyFactory::_narrow(
 orb->resolve_initial_references("DynAnyFactory"));
 // Get the manager Id
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("PrinterManager");
 // Locate an account manager. Give the full POA name and the servant ID.
 Printer::PrinterManager_ptr manager =
 Printer::PrinterManager::_bind("/serverPoa", managerId);
 DynamicAny::NameValuePairSeq seq(3);
 seq.length(3);
 CORBA::Any strAny,enumAny,floatAny;
 strAny <<= "String";
 enumAny <<= Printer::second;
 floatAny <<= (CORBA::Float)864.50;
 CORBA::NameValuePair nvpairs[3];
 nvpairs[0].id = CORBA::string_dup("str");
 nvpairs[0].value = strAny;
 nvpairs[1].id = CORBA::string_dup("e");
 nvpairs[1].value = enumAny;
 nvpairs[2].id = CORBA::string_dup("fl");
 nvpairs[2].value = floatAny;
 seq[0] = nvpairs[0];
 seq[1] = nvpairs[1];
 seq[2] = nvpairs[2];
 // Create Dynamic struct
 DynamicAny::DynStruct_var info =
 DynamicAny::DynStruct::_narrow(
 factory->create_dyn_any_from_type_code(
 Printer::_tc_StructType));
 info->set_members(seq);
 manager->printAny(*(info->to_any()));
 manager->shutdown();
 }
 catch(const CORBA::Exception& e) {
 cerr << "Caught " << e << "Exception" << endl;
 }
}

DynAny example server application
The following code sample shows a server application that can be found in the
following VisiBroker distribution directory:

<install_dir>\examples\Vbroker\dynany\

The server application performs the following steps.

1 Initializes the VisiBroker ORB.

2 Creates the policies for the POA.

3 Creates a PrintManager object.

4 Exports the PrintManager object.

5 Prints a message and waits for incoming operation requests.

...
int main(int argc, char* const* argv) {
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

386 VisiBroker for C++ Developer ’s Guide

DynAny example server appl icat ion

 int Verbose = 0;
 // get a reference to the root POA
 PortableServer::POA_var rootPOA =
 PortableServer::POA::_narrow(
 orb->resolve_initial_references("RootPOA"));
 CORBA::PolicyList policies;
 policies.length(1);
 policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(
 PortableServer::PERSISTENT);
 // Create serverPOA with the right policies
 PortableServer::POA_var serverPOA = rootPOA->create_POA("serverPoa",
 rootPOA->the_POAManager(),
 policies);
 // Resolve Dynamic Any Factory
 DynamicAny::DynAnyFactory_var factory =
 orb->resolve_initial_references("DynAnyFactory");
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("PrinterManager");
 // Create the printer manager object.
 PrinterManagerImpl manager(orb, factory, serverPOA, managerId);
 // Export the newly create object.
 serverPOA->activate_object_with_id(managerId,&manager);
 // Activate the POA Manager
 rootPOA->the_POAManager()->activate();
 cout << serverPOA->servant_to_reference(&manager)
 << " is ready" << endl;
 // Wait for incoming requests
 orb->run();
 }
 catch(const CORBA::Exception& e) {
 cerr << e << endl;
 }
}

The following code sample shows how the PrinterManager implementation follows
these steps in using a DynAny to process the Any object, without any compile-time
knowledge of the type the Any contains.

1 Creates a DynAny object, initializing it with the received Any.

2 Performs a switch on the DynAny object's type.

3 If the DynAny contains a basic data type, simply prints out the value.

4 If the DynAny contains an Any type, creates a DynAny for it, determines it's contents,
and then prints out the value.

5 If the DynAny contains an enum, creates a DynEnum for it and then prints out the string
value.

6 If the DynAny contains a union, creates a DynUnion for it and then prints out the union's
discriminator and the member.

7 If the DynAny contains a struct, array, or sequence, traverses through the contained
components and prints out each value.

// PrinterManager Implementation
class PrinterManagerImpl : public POA_Printer::PrinterManager
{
 CORBA::ORB_var _orb;
 DynamicAny::DynAnyFactory_var _factory;
 PortableServer::POA_var _poa;
 PortableServer::ObjectId_var _oid;

public:

 27: Using the dynamical ly managed types 387

DynAny example server appl icat ion

 PrinterManagerImpl(CORBA::ORB_ptr orb,
 DynamicAny::DynAnyFactory_ptr DynAnyFactory,
 PortableServer::POA_ptr poa,
 PortableServer::ObjectId_ptr oid
) : _orb(orb), _factory(DynAnyFactory),
 _poa(poa), _oid(oid) {}

 void printAny(const CORBA::Any& info) {
 try {
 // Create a DynAny object
 DynamicAny::DynAny_var dynAny = _factory->create_dyn_any(info);
 display(dynAny);
 }
 catch (CORBA::Exception& e) {
 cout << "Unable to create Dynamic Any from factory" << endl;
 }
 }
 void shutdown() {
 try {
 _poa->deactivate_object(_oid);
 cout << "Server shutting down..." << endl;
 _orb->shutdown(0UL);
 }
 catch (const CORBA::Exception& e) {
 cout << e << endl;
 }
 }

 void display(DynamicAny::DynAny_var value) {
 switch(value->type()->kind()) {
 case CORBA::tk_null:
 case CORBA::tk_void: {
 break;
 }
 case CORBA::tk_short: {
 cout << value->get_short() << endl;
 break;
 }
 case CORBA::tk_ushort: {
 cout << value->get_ushort() << endl;
 break;
 }
 case CORBA::tk_long: {
 cout << value->get_long() << endl;
 break;
 }
 case CORBA::tk_ulong: {
 cout << value->get_ulong() << endl;
 break;
 }
 case CORBA::tk_float: {
 cout << value->get_float() << endl;
 break;
 }
 case CORBA::tk_double: {
 cout << value->get_double() << endl;
 break;
 }
 case CORBA::tk_boolean: {
 cout << value->get_boolean() << endl;

388 VisiBroker for C++ Developer ’s Guide

DynAny example server appl icat ion

 break;
 }
 case CORBA::tk_char: {
 cout << value->get_char() << endl;
 break;
 }
 case CORBA::tk_octet: {
 cout << value->get_octet() << endl;
 break;
 }
 case CORBA::tk_string: {
 cout << value->get_string() << endl;
 break;
 }
 case CORBA::tk_any: {
 DynamicAny::DynAny_var dynAny = _factory->create_dyn_any(*(
 value->get_any()));
 display(dynAny);
 break;
 }
 case CORBA::tk_TypeCode: {
 cout << value->get_typecode() << endl;
 break;
 }
 case CORBA::tk_objref: {
 cout << value->get_reference() << endl;
 break;
 }
 case CORBA::tk_enum: {
 DynamicAny::DynEnum_var dynEnum = DynamicAny::DynEnum::_narrow(value);
 cout << dynEnum->get_as_string() << endl;
 break;
 }
 case CORBA::tk_union: {
 DynamicAny::DynUnion_var dynUnion =
DynamicAny::DynUnion::_narrow(value);
 display(dynUnion->get_discriminator());
 display(dynUnion->member());
 break;
 }
 case CORBA::tk_struct:
 case CORBA::tk_array:
 case CORBA::tk_sequence: {
 value->rewind();
 CORBA::Boolean next = 1UL;
 while(next) {
 DynamicAny::DynAny_var d = value->current_component();
 display(d);
 next = value->next();
 }
 break;
 }
 case CORBA::tk_longlong: {
 cout << value->get_longlong() << endl;
 break;
 }
 case CORBA::tk_ulonglong: {
 cout << value->get_ulonglong() << endl;
 break;
 }

 27: Using the dynamical ly managed types 389

DynAny example server appl icat ion

 case CORBA::tk_wstring: {
 cout << value->get_wstring() << endl;
 break;
 }
 case CORBA::tk_wchar: {
 cout << value->get_wchar() << endl;
 break;
 }
 default:
 cout << "Invalid Type" << endl;
 }
 }
};

390 VisiBroker for C++ Developer ’s Guide

 28: Using valuetypes 391

Using valuetypes
This section explains how to use the valuetype IDL type in VisiBroker.

Understanding valuetypes
The valuetype IDL type is used to pass state data over the wire. A valuetype is best
thought of as a struct with inheritance and methods. Valuetypes differ from normal
interfaces in that they contain properties to describe the valuetype's state, and contain
implementation details beyond that of an interface.

Valuetype IDL code sample

The following IDL code declares a simple valuetype:

module Map {
 valuetype Point {
 public long x;
 public long y;
 private string label;
 factory create (in long x, in long y, in string z);
 void print();
 };
};

Valuetypes are always local. They are not registered with the VisiBroker ORB, and
require no identity, as their value is their identity. They can not be called remotely.

Concrete valuetypes

Concrete valuetypes contain state data. They extend the expressive power of IDL
structs by allowing:

– Single concrete valuetype derivation and multiple abstract valuetype derivation
– Multiple interface support (one concrete and multiple abstract)
– Arbitrary recursive valuetype definitions
– Null value semantics
– Sharing semantics

392 VisiBroker for C++ Developer ’s Guide

Implement ing valuetypes

Valuetype derivation
You can derive a concrete valuetype from one other concrete valuetype. However,
valuetypes can be derived from multiple other abstract valuetypes.

Sharing semantics
Valuetype instances can be shared by other valuetypes across or within other
instances. Other IDL data types such as struct, union, or sequence cannot be shared.
Valuetypes that are shared are isomorphic between the sending context and the
receiving context.

In addition, when the same valuetype is passed into an operation for two or more
arguments, the receiving context receives the same valuetype reference for both
arguments.

Null semantics
Null valuetypes can be passed over the wire, unlike IDL data types such as structs,
unions, and sequences. For instance, by boxing a struct as a boxed valuetype, you can
pass a null value struct. For more information, see “Boxed valuetypes”.

Factories
Factories are methods that can be declared in valuetypes to create valuetypes in a
portable way. For more information on Factories, see “Implementing factories”.

Abstract valuetypes

Abstract valuetypes contain only methods and do not have state. They may not be
instantiated. Abstract valuetypes are a bundle of operation signatures with a purely
local implementation.

For instance, the following IDL defines an abstract valuetype Account that contains no
state, but one method, get_name:

abstract valuetype Account{
 string get_name();
}

Now, two valuetypes are defined that inherit the get_name method from the abstract
valuetype:

valuetype savingsAccount:Account{
 private long balance;
}
valuetype checkingAccount:Account{
 private long balance;
}

These two valuetypes contain a variable balance, and they inherit the get_name method
from the abstract valuetype Account.

Implementing valuetypes
To implement valuetypes in an application, do the following:
1 Define the valuetypes in an IDL file.

2 Compile the IDL file using idl2cpp

3 Implement your valuetypes by inheriting the valuetype base class.

4 Implement the Factory class to implement any factory methods defined in IDL.

5 Implement the create_for_unmarshal method.

6 Register your Factory with the VisiBroker ORB.

 28: Using valuetypes 393

Implement ing valuetypes

7 Either implement the _add_ref, _remove_ref, and _ref_countvalue methods or derive
from CORBA::DefaultValueRefCountBase.

Defining your valuetypes
In the IDL sample (for more information, see “Valuetype IDL code sample”), you define
a valuetype named Point that defines a point on a graph. It contains two public
variables, the x and y coordinates, one private variable that is the label of the point, the
valuetype's factory, and a print method to print the point.

Compiling your IDL file
When you have defined your IDL, compile it using idl2cpp to create source files. You
then modify the source files to implement your valuetypes.

If you compile the IDL shown in “Valuetype IDL code sample”, your output consists of
the following files:

– Map_c.cc
– Map_c.hh
– Map_s.cc
– Map_s.hh

Inheriting the valuetype base class
After compiling your IDL, create your implementation of the valuetype. The
implementation class will inherit the base class. This class contains the constructor that
is called in your ValueFactory, and contains all the variables and methods declared in
your IDL.

In the obv\PointImpl.java, the PointImpl class extends the Point class, which is
generated from the IDL.

Inheriting the valuetype base class:

class PointImpl : public Map::OBV_Point, public CORBA::DefaultValueRefCountBase
{
 public:
 PointImpl(){}
 virtual ~PointImpl(){}
 CORBA_ValueBase* _copy_value() {
 return new PointImpl(x(), y(), new Map::Label(
 CORBA::string_dup(label())));
 }
 PointImpl(CORBA::Long x, CORBA::Long y, Map::Label_ptr label)
 : OBV_Point(x,y,label->_boxed_in())
 {}
 virtual void print() {
 cout << "Point is [" << label() << ": ("
 << x() << ", " << y() << ")]" << endl << endl;
 }
};

Implementing the Factory class

When you have created an implementation class, implement the Factory for your
valuetype.

In the following example, the generated Point_init class contains the create method
declared in your IDL. This class extends CORBA::ValueFactoryBase . The
PointDefaultFactory class implements PointValueFactory as shown in the following
example.

class PointFactory: public CORBA::ValueFactoryBase {
 public:
 PointFactory(){}
 virtual ~PointFactory(){}

394 VisiBroker for C++ Developer ’s Guide

Implement ing factor ies

 CORBA::ValueBase* create_for_unmarshal() {
 return new PointImpl();
 }
};

Point_init contains a public method, create_for_unmarshal, that is output as a pure
virtual method in Map_c.hh. You must derive a class from Point_init and implement the
create_for_unmarshal method to produce the Factory class. When you compile your IDL
file, it does not create a skeleton class for this.

Registering your Factory with the VisiBroker ORB

To register your Factory with the VisiBroker ORB, call ORB::register_value_factory. For
more information on registering Factories, see “Registering valuetypes”.

Implementing factories
When the VisiBroker ORB receives a valuetype, it must first be demarshaled, and then
the appropriate factory for that type must be found in order to create a new instance of
that type. Once the instance has been created, the value data is unmarshaled into the
instance. The type is identified by the RepositoryID that is passed as part of the
invocation. The mapping between the type and the factory is language specific.

VisiBroker version 4.5 or later version will generate the correct signatures for either the
JDK 1.3 or JDK 1.4 default value factory method. Existing (version 4.0) generated code
is not designed to run under JDK 1.3, unless you modify the default value factory
method signature as shown below. If you use your existing code with JDK 1.3 and do
not modify default value factory, the code will not compile or will throw a NO_IMPLEMENT
exception. Consequently, we recommend that you regenerate your code to generate
the correct signatures.

The following code sample shows how you should modify the default value factory
method signature to make sure that it compiles under JDK 1.3:

class PointFactory: public CORBA::ValueFactoryBase
{
public:
 PointFactory(){}
 virtual ~PointFactory(){}
 CORBA::ValueBase* create_for_unmarshal() {
 return new PointImpl();
 }
};

Factories and valuetypes

When the VisiBroker ORB receives a valuetype, it will look for that type's factory. It will
look for a factory named <valuetype>DefaultFactory. For instance, the Point valuetype's
factory is called PointDefaultFactory. If the correct factory doesn't conform to this
naming schema (<valuetype>DefaultFactory), you must register the correct factory so
the VisiBroker ORB can create an instance of the valuetype.

If the VisiBroker ORB cannot find the correct factory for a given valuetype, a MARSHAL
exception is raised, with an identified minor code.

Registering valuetypes

Each language mapping specifies how and when registration occurs. If you created a
factory with the <valuetype>DefaultFactory naming convention, this is considered
implicitly registering that factory, and you do not need to explicitly register your factory
with the VisiBroker ORB.

To register a factory that does not conform to the <valuetype>DefaultFactory naming
convention, call register_value_factory. To unregister a factory, call

 28: Using valuetypes 395

Boxed valuetypes

unregister_value_factory on the VisiBroker ORB. You can also lookup a registered
valuetype factory by calling lookup_value_factory on the VisiBroker ORB.

Boxed valuetypes
Boxed valuetypes allow you to wrap non-value IDL data types as valuetypes. For
example, the following IDL boxed valuetype declaration,

valuetype Label string;

is equivalent to this IDL valuetype declaration:

valuetype Label{
 public string name;
}

By boxing other data types as valuetypes, it allows you to use valuetype's null
semantics and sharing semantics.

Valueboxes are implemented purely with generated code. No user code is required.

Abstract interfaces
Abstract interfaces allow you to choose at runtime whether the object will be passed by
value or by reference.

Abstract interfaces differ from IDL interfaces in the following ways:

– The actual parameter type determines whether the object is passed by reference or
a valuetype is passed. The parameter type is determined based on two rules. It is
treated as an object reference if it is a regular interface type or sub-type, the interface
type is a sub-type of the signature abstract interface type, and the object is already
registered with the VisiBroker ORB. It is treated as a value if it can not be passed as
an object reference, but can be passed as a value. If it fails to pass as a value, a
BAD_PARAM exception is raised.

– Abstract interfaces do not implicitly derive from CORBA::Object because they can
represent either object references or valuetypes. Valuetypes do not necessarily
support common object reference operations. If the abstract interface can be
successfully narrowed to an object reference type, you can invoke the operations of
CORBA::Object .

– Abstract interfaces may only inherit from other abstract interfaces.

– Valuetypes can support one or more abstract interfaces.

For example, examine the following abstract interface.

abstract interface ai{
};
interface itp : ai{
};
valuetype vtp supports ai{
};
interface x {
 void m(ai aitp);
};
valuetype y {
 void op(ai aitp);
};

For the argument to method m:

– itp is always passed as an object reference.

– vtp is passed as a value.

396 VisiBroker for C++ Developer ’s Guide

Custom valuetypes

Custom valuetypes
By declaring a custom valuetype in IDL, you bypass the default marshalling and
unmarshalling model and are responsible for encoding and decoding.

custom valuetype customPoint{
 public long x;
 public long y;
 private string label;
 factory create(in long x, in long y, in string z);
};

You must implement the marshal and unmarshal methods from the CustomMarshal
interface.

When you declare a custom valuetype, the valuetype extends CORBA::CustomValue, as
opposed to CORBA::StreamableValue, as in a regular valuetype. The compiler doesn't
generate read or write methods for your valuetype.

You must implement your own read and write methods by using
CORBA::DataInputStream and CORBA::DataOutputStream to read and write the values,
respectively.

Truncatable valuetypes
Truncatable valuetypes allow you to treat an inherited valuetype as its parent.

The following IDL defines a valuetype checkingAccount that is inherited from the base
type Account and can be truncated in the receiving object.

valuetype checkingAccount: truncatable Account{
 private long balance;
}

This is useful if the receiving context doesn't need the new data members or methods
in the derived valuetype, and if the receiving context isn't aware of the derived
valuetype. However, any state data from the derived valuetype that isn't in the parent
data type will be lost when the valuetype is passed to the receiving context.

Note

You cannot make a custom valuetype truncatable.

 28: Using valuetypes 397

Truncatable valuetypes

398 VisiBroker for C++ Developer ’s Guide

 29: Bid irect ional Communicat ion 399

Bidirectional Communication
This section explains how to establish bidirectional connections in VisiBroker without
using the GateKeeper. For information about bidirectional communications when using
GateKeeper, see “Introduction to GateKeeper.”

Note

Before enabling bidirectional IIOP, please read about “Security considerations”.

Using bidirectional IIOP
Most clients and servers that exchange information by way of the Internet are typically
protected by corporate firewalls. In systems where requests are initiated only by the
clients, the presence of firewalls is usually transparent to the clients. However, there
are cases where clients need information asynchronously, that is, information must
arrive that is not in response to a request. Client-side firewalls prevent servers from
initiating connections back to clients. Therefore, if a client is to receive asynchronous
information, it usually requires additional configuration.

In earlier versions of IIOP and VisiBroker, the only way to make it possible for a server
to send asynchronous information to a client was to use a client-side GateKeeper to
handle the callbacks from the server.

If you use bidirectional IIOP, rather than having servers open separate connections to
clients when asynchronous information needs to be transmitted back to clients (these
would be rejected by client-side firewalls anyway), servers use the client-initiated
connections to transmit information to clients. The CORBA specification also adds a
new policy to portably control this feature.

Because bidirectional IIOP allows callbacks to be set up without a GateKeeper, it
greatly facilitates deployment of clients.

Bidirectional VisiBroker ORB properties
The following properties provide bidirectional support:

vbroker.orb.enableBiDir=client|server|both|none
vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir=true|false
vbroker.se.<sename>.scm.<scmname>.manager.importBiDir=true|false

400 VisiBroker for C++ Developer ’s Guide

About the BiDirect ional examples

enableBiDir property
The vbroker.orb.enableBiDir property can be used on both the server and the client to
enable bidirectional communication. This property allows you to change an existing
unidirectional application into a bidirectional one without changing any code. The
following table describes the vbroker.orb.enableBiDir property value options:

exportBiDir property
The vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir property is a client-side
property. By default, it is not set to anything by the VisiBroker ORB.

Setting it to true enables creation of a bidirectional callback POA on the specified
server engine.

Setting it to false disables creation of a bidirectional POA on the specified server
engine.

importBiDir property
The vbroker.se.<se-name>.scm.<scm-name>.manager.importBiDir property is a server-
side property. By default, it is not set to anything by the VisiBroker ORB.

Setting it to true allows the server-side to reuse the connection already established by
the client for sending requests to the client.

Setting it to false prevents reuse of connections in this fashion.

Note

These properties are evaluated only once—when the SCMs are created. In all cases,
the exportBiDir and importBiDir properties on the SCMs govern the enableBiDir
property. In other words, if both properties are set to conflicting values, the SCM-
specific properties take effect. This allows you to set the enableBiDir property globally
and specifically turn off BiDir in individual SCMs.

About the BiDirectional examples
Examples demonstrating use of this feature are installed as part of your VisiBroker
distribution in subdirectories in the following location:

<install_dir>\examples\Vbroker\bidir-iiop

All the examples are based on a simple stock quote callback application:

1 The client creates a CORBA object that processes stock quote updates.

2 The client sends the object reference of this CORBA object to the server.

3 The server invokes this callback object to periodically update stock quotes.

In the sections that follow, these examples are used to explain different aspects of the
bidirectional IIOP feature.

Value Description

client Enables bidirectional IIOP for all POAs and for all outgoing connections. This setting is
equivalent to creating all POAs with a setting of the BiDirectional policy to both and
setting the policy override for the BiDirectional policy to both on the VisiBroker ORB
level. Furthermore, all created SCMs will permit bidirectional connections, as if the
exportBiDir property had been set to true for every SCM.

server Causes the server to accept and use connections that are bidirectional. This is
equivalent to setting the importBiDir property on all SCMs to true.

both Sets the property to both client and server.

none Disables bidirectional IIOP altogether. This is the default value.

 29: Bid i rect ional Communicat ion 401

Enabl ing bid i rect ional I IOP for exist ing appl icat ions

Enabling bidirectional IIOP for existing applications
You can enable bidirectional communication in existing VisiBroker for Java and C++
applications without modifying any source code. A simple callback application that
does not use bidirectional IIOP at all is located in the following directory:

<install_dir>\examples\Vbroker\bidir-iiop\basic

To enable bidirectional IIOP for the callback example, you set the
vbroker.orb.enableBiDir property as follows:

1 Make sure the osagent is running.

2 Start the server.

UNIX

prompt> -Dvbroker.orb.enableBiDir=server Server &

Windows

prompt> start -Dvbroker.orb.enableBiDir=server Server

3 Start the client.

prompt> -Dvbroker.orb.enableBiDir=client RegularClient

The existing callback application now uses bidirectional IIOP and works through a
client-side firewall.

Explicitly enabling bidirectional IIOP
The client in directory <install_dir>\examples\Vbroker\bidir-iiop\basic is derived from
the RegularClient described in “Enabling bidirectional IIOP for existing applications”,
except that this client enables bidirectional IIOP programmatically.

The changes required are in the client code only. To convert the unidirectional client
into a bidirectional client, all you need to do is:

1 Include the BiDirectional policy in the list of policies for the callback POA.

2 Add the BiDirectional policy to the list of overrides for the object reference that refers
to the server for which we want to enable bidirectional IIOP.

3 Set the exportBiDir property to true in the client.

402 VisiBroker for C++ Developer ’s Guide

Expl ic i t ly enabl ing bid i rect ional I IOP

In the following code sample, the code that implements bidirectional IIOP is displayed
in bold:

try {

 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Get the manager Id
 PortableServer::ObjectId_var managerId =
 PortableServer::string_to_ObjectId("BankManager");
 PortableServer::ObjectId_var oid =
 PortableServer::string_to_ObjectId("QuoteServer");
 Quote::QuoteServer_var quoter =
 Quote::QuoteServer::_bind("/QuoteServer_poa", oid);

 // set up the callback object... first get the RootPOA
 CORBA::Object_var obj =
 orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var rootPOA =
 PortableServer::POA::_narrow(obj);
 PortableServer::POAManager_var the_manager =
 rootPOA->the_POAManager();
 PortableServer::POA_var consumer_poa;

 // Set up a policy.
 CORBA::Any policy_value;
 policy_value <<= BiDirPolicy::BOTH;
 CORBA::Policy_var policy =
 orb->create_policy(
 BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE,
 policy_value);
 CORBA::PolicyList policies;
 policies.length(1);
 policies[0] = CORBA::Policy::_duplicate(policy);
 consumer_poa = rootPOA->create_POA(
 "QuoteConsumer_poa", the_manager, policies);
 QuoteConsumerImpl* consumer = new QuoteConsumerImpl;
 oid = PortableServer::string_to_ObjectId("consumer");
 consumer_poa->activate_object_with_id(oid, consumer);
 the_manager->activate();
 CORBA::Object_var obj =
 quoter->set_policy_overrides(policies, CORBA::ADD_OVERRIDE);
 quoter = Quote::QuoteServer::_narrow(obj);
 obj = consumer_poa->id_to_reference(oid);
 Quote::QuoteConsumer_var quote_consumer =
 Quote::QuoteConsumer::_narrow(obj);
 quoter->registerConsumer(quote_consumer.in());
 cout << "implementation is running" << endl;
 orb->run();
}
catch(const CORBA::Exception& e) {
 cout << e << endl;
}

Unidirectional or bidirectional connections

A client connection can be either unidirectional or bidirectional. A server can use a
bidirectional connection to call back the client without opening a new connection.
Otherwise, the connection is considered unidirectional.

 29: Bid i rect ional Communicat ion 403

Secur i ty considerat ions

Enabling bidirectional IIOP for POAs

The POA on which the callback object is hosted must enable bidirectional IIOP by
setting the BiDirectional policy to BOTH. This POA must be created on an SCM which
has been enabled for bidirectional support by setting the
vbroker.<sename>.scm.<scmname>.manager.exportBiDir property on the SCM manager.
Otherwise, the POA will not be able to receive requests from the server over a client-
initiated connection.

If a POA does not specify the BiDirectional policy, it must not be exposed in outgoing
connections. To satisfy this requirement, a POA which does not have the BiDirectional
policy set cannot be created on a server engine which has even one SCM whose
exportBiDir property is set. If an attempt is made to create a POA on a unidirectional
SE, an InvalidPolicy exception is raised, with the ServerEnginePolicy in error.

Note

Different objects using the same client connection may set conflicting overrides for the
BiDirectional policy. Nevertheless, once a connection is made bidirectional, it always
remains bidirectional, regardless of the policy effective at a later time.

Once you have full control over the bidirectional configuration, you enable bidirectional
IIOP on the iiop_tp SCM only:

prompt> -Dvbroker.se.iiop_tp.scm.iiop_tp.manager.exportBiDir=
true Client

Security considerations
Use of bidirectional IIOP may raise significant security issues. In the absence of other
security mechanisms, a malicious client may claim that its connection is bidirectional
for use with any host and port it chooses. In particular, a client may specify the host
and port of security-sensitive objects not even resident on its host. In the absence of
other security mechanisms, a server that has accepted an incoming connection has no
way to discover the identity or verify the integrity of the client that initiated the
connection. Further, the server might gain access to other objects accessible through
the bidirectional connection. This is why use of a separate, bidirectional SCM for
callback objects is encouraged. If there are any doubts as to the integrity of the client, it
is recommended that bidirectional IIOP not be used.

For security reasons, a server running VisiBroker will not use bidirectional IIOP unless
explicitly configured to do so. The property
vbroker.<se>.<sename>.scm.<scmname>.manager.importBiDir gives you control of
bidirectionality on a per-SCM basis. For example, you might choose to enable
bidirectional IIOP only on a server engine that uses SSL to authenticate the client, and
to not make other, regular IIOP connections available for bidirectional use. (See
“Bidirectional VisiBroker ORB properties” for more information.) In addition, on the
client-side, you might want to enable bidirectional connections only to those servers
that do callbacks outside of the client firewall. To establish a high degree of security
between the client and server, you should use SSL with mutual authentication (set
vbroker.security.peerAuthenticationMode to REQUIRE_AND_TRUST on both the client and
server).

404 VisiBroker for C++ Developer ’s Guide

 30: Using the BOA with Vis iBroker 405

Using the BOA with VisiBroker
This section describes how to use the BOA with VisiBroker.

Note

BOA support is provided as backward compatibility for VisiBroker version 4.0 (CORBA
spec. 2.1) and 3.x versions. For current CORBA specification support, see “Using
POAs.”

Compiling your BOA code with VisiBroker
If you have existing BOA code that you developed with a previous version of
VisiBroker, you can continue to use it with the current version.

Note

To generate the necessary BOA base code, you must use the "-boa" option with the
idl2cpp tool. For more information on using idl2cpp to generate the code, see “IDL to
C++ mapping.”

Supporting BOA options
All BOA command line options supported by VisiBroker 4.x are still supported.

Using object activators
BOA object activators are supported by VisiBroker. However, these activators can be
used only with BOA, not POA. The POA uses servant activators and servant locators in
place of object activators.

In this release of VisiBroker, the Portable Object Adaptor (POA) supports the features
that were provided by the BOA in VisiBroker 3.x releases. For backward compatibility
reasons, you may still use the object activators with your code.

406 VisiBroker for C++ Developer ’s Guide

Naming objects under the BOA

Naming objects under the BOA
Though the BOA is deprecated in VisiBroker, you may still use it in conjunction with the
Smart Agent to specify a name for your server objects which may be bound to in your
client programs.

Object names

When creating an object, a server must specify an object name if the object is to be
made available to client applications through the osagent. When the server calls the
BOA.obj_is_ready method, the object's interface name will only be registered with the
VisiBroker osagent if the object is named. Objects that are given an object name when
they are created return persistent object references, while objects which are not given
object names are created as transient.

Note

If you pass an empty string for the object name to the object constructor in VisiBroker
for C++, a persistent object is created, (that is, an object which is registered with the
Smart Agent). If you pass a null reference to the constructor, a transient object is
created.

The use of an object name by your client application is required if it plans to bind to
more than one instance of an object at a time. The object name distinguishes between
multiple instances of an interface. If an object name is not specified when the bind()
method is called, the osagent will return any suitable object with the specified interface.

Note

In VisiBroker 3.x, it was possible to have a server process that provided different
interfaces, all of which had the same object name, but in the current version of
VisiBroker, different interfaces may not have string-equivalent names.

 31: Using object act ivators 407

Using object activators
This section describes how to use the VisiBroker object activators.

In this release, as well as the VisiBroker 4.1 release and later, the Portable Object
Adaptor (POA) supports the features that were provided by the BOA in the VisiBroker
3.x and 4.0 releases. For backward compatibility reasons, you may still use the object
activators as described in this section with your code. For more information on how to
use the BOA activators with this release, see “Using the BOA with VisiBroker.”

Deferring object activation
You can defer activation of multiple object implementations using service activation
with a single Activator when a server needs to provide implementations for a large
number of objects.

Activator interface
You can derive your own interface from the Activator class. This allows you to
implement the pure virtual activate and deactivate methods that the VisiBroker ORB
will use for the AccountImpl object. You can then delay the instantiation of the
AccountImpl object until the BOA receives a request for that object. It also allows you to
provide clean-up processing when the BOA deactivates the object.

The following code sample shows the Activator class.

class Activator {
 public:
 virtual CORBA::Object_ptr activate(
 extension::ImplementationDef impl)=0;
 virtual void deactivate(
 Object_ptr, extension::ImplementationDef_ptr impl)=0;
};

The following code sample shows you how to create an Activator for the AccountImpl
interface.

class extension {
 ...
 class AccountImplActivator : public extension::Activator {
 public:

408 VisiBroker for C++ Developer ’s Guide

Using the serv ice act ivat ion approach

 virtual CORBA::Object_ptr activate(
 CORBA::ImplementationDef_ptr impl);
 virtual void deactivate(CORBA::Object_ptr,
 CORBA::ImplementationDef_ptr impl);
 };
 CORBA::Object_ptr AccountImplActivator::activate(
 CORBA::ImplementationDef_ptr impl) {
 // When the BOA needs to activate us, instantiate the AccountImpl object.
 extension::ActivationImplDef* actImplDef =
 extension::ActivationImplDef::_downcast(impl);
 CORBA::Object_var obj = new AccountImpl(actImplDef->object_name());
 return CORBA::_duplicate(obj);
 }
 void AccountImplActivator::deactivate(CORBA::Object_ptr obj,
 CORBA::ImplementationDef_ptr impl) {
 // When the BOA deactivates us, release the Account object.
 obj->_release;
 }
}

Using the service activation approach
Service activation can be used when a server needs to provide implementations for a
large number of objects (commonly thousands of objects, possibly millions) but only a
small number of implementations need to be active at any specific time. The server can
supply a single Activator which is notified whenever any of these subsidiary objects
are needed. The server can also deactivate these objects when they are not in use.

For example, you might use service activation for a server that loads object
implementations whose states are stored in a database. The Activator is responsible
for loading all objects of a given type or logical distinction. When VisiBroker ORB
requests are made on the references to these objects, the Activator is notified and
creates a new implementation whose state is loaded from the database. When the
Activator determines that the object should no longer be in memory and, if the object
had been modified, it writes the object's state to the database and releases the
implementation.

Figure 31.1 Process of Deferring Activation for a Service

Deferring object activation using service activators

Assuming the objects that will make up the service have already been created, the
following steps are required to implement a server that uses service activation:

1 Define a service name that describes all objects activated and deactivated by the
Activator.

 31: Using object act ivators 409

Using the service act ivat ion approach

2 Provide implementations for the interface which are service objects, rather than
persistent objects. This is done when the object constructs itself as an activatable
part of a service.

3 Implement the Activator which creates the object implementations on demand. In
the implementation, you derive an Activator interface from extension::Activator,
overriding the activate and deactivate methods.

4 Register the service name and the Activator interface with the BOA.

Example of deferred object activation for a service

The following sections describe the odb example for service activation which is located
in the following VisiBroker directory:

<install_dir>/examples/Vbroker/boa/odb

This directory contains the following files:

The odb example shows how an arbitrary number of objects can be created by a single
service. The service alone is registered with the BOA, instead of each individual object,
with the reference data for each object stored as part of the IOR. This facilitates object-
oriented database (OODB) integration, since you can store object keys as part of an
object reference. When a client calls for an object that has not yet been created, the
BOA calls a user-defined Activator. The application can then load the appropriate
object from persistent storage.

In this example, an Activator is created that is responsible for activating and
deactivating objects for the service named "DBService." References to objects created
by this Activator contain enough information for the VisiBroker ORB to relocate the
Activator for the DBService service, and for the Activator to recreate these objects on
demand.

The DBService service is responsible for objects that implement the DBObject interface.
An interface (contained in odb.idl) is provided to enable manual creation of these
objects.

odb.idl interface
The odb.idl interface enables manual creation of objects that implement the DBObject
odb interface.

interface DBObject {
 string get_name();
};
typedef sequence<DBObject> DBObjectSequence;
interface DB {
 DBObject create_object(in string name);
};

The DBObject interface represents an object created by the DB interface, and can be
treated as a service object.

DBObjectSequence is a sequence of DBObjects. The server uses this sequence to keep
track of currently active objects.

Name Description

odb.idl IDL for DB and DBObject interfaces.

Server.C Creates objects using service activators, returns IORs for the objects, and
deactivates the objects.

Creator.C Calls the DB interface to create 100 objects and stores the resulting stringified
object references in a file (objref.out).

Client.C Reads the stringified object references to the objects from a file and makes calls on
them, causing the activators in the server to create the objects.

Makefile When make or nmake (on Windows) is invoked in the odb subdirectory, builds the
following client and server programs:
 Server.exe, Creator.exe, and Client.exe.

410 VisiBroker for C++ Developer ’s Guide

Using the serv ice act ivat ion approach

The DB interface creates one or more DBObjects using the create_object operation. The
objects created by the DB interface can be grouped together as a service.

Implementing a service-activated object
The idl2cpp compiler generates two kinds of constructors for the skeleton class
_sk_DBObject from boa/odb/odb.idl. The first constructor is for use by manually-
instantiated objects; the second constructor enables an object to become part of a
service. As shown below, the implementation of DBObject constructs its base
_sk_DBObject method using the service constructor, rather than the object_name
constructor typically used for manually-instantiated objects. By invoking this type of
constructor, the DBObject constructs itself as a part of a service called DBService.

class DBObjectImpl: public _sk_DBObject {
 private:
 CORBA::String_var _name;
 public:
 DBObjectImpl(const char *nm, const CORBA::ReferenceData& data)
 : _sk_DBObject("DBService", data), _name(nm) {}
 ...
};

The base constructor requires a service name as well as an opaque
CORBA::ReferenceData value. The Activator uses these parameters to uniquely identify
this object when it must be activated due to client requests. The reference data used to
distinguish among multiple instances in this example consists of the range of numbers
from 0 to 99.

Implementing a service activator
Normally, an object is activated when a server instantiates the classes implementing
the object, and then calls BOA::obj_is_ready followed by BOA::impl_is_ready . To defer
activation of objects, it is necessary to gain control of the activate method that the BOA
invokes during object activation. You obtain this control by deriving a new class from
extension::Activator and overriding the activate method, using the overridden
activate method to instantiate classes specific to the object.

In the odb example, the DBActivator class derives from extension::Activator , and
overrides the activate and deactivate methods. The DBObject is constructed in the
activate method.

Th following code sample is an example of overriding activate and deactivate.

class DBActivator: public extension::Activator {
 virtual CORBA::Object_ptr activate(CORBA::ImplementationDef_ptr impl);
 virtual void deactivate(CORBA::Object_ptr,
 CORBA::ImplementationDef_ptr impl);
 public:
 DBActivator(CORBA::BOA_ptr boa) : _boa(boa) {}
 private:
 CORBA::BOA_ptr _boa;
};

When the BOA receives a client request for an object under the responsibility of the
Activator, the BOA invokes the activate method on the Activator. When calling this
method, the BOA uniquely identifies the activated object implementation by passing
the Activator an ImplementationDef parameter, from which the implementation can
obtain the CORBA::ReferenceData , the requested object's unique identifier.

As shown in the following code sample, the DBActivator class creates an object based
on its CORBA::ReferenceData parameter.

CORBA::Object_ptr DBActivator::activate(CORBA::ImplementationDef_ptr impl) {
 extension::ActivationImplDef* actImplDef =
 extension::ActivationImplDef::_downcast(impl);
 CORBA::ReferenceData_var id(actImplDef->id());
 cout << "Activate called for object=[" << (char*) id->data()

 31: Using object act ivators 411

Using the service act ivat ion approach

 << "]" << endl;
 DBObjectImpl *obj = new DBObjectImpl((char *)id->data(), id);
 _impls.length(_impls.length() + 1);
 _impls[_impls.length()-1] = DBObject::_duplicate(obj);
 _boa->obj_is_ready(obj);
 return obj;
}

Instantiating the service activator
The DBActivator service activator is responsible for all objects that belong to the
DBService service. All requests for objects of the DBService service are directed through
the DBActivator service activator. All objects activated by this service activator have
references that inform the VisiBroker ORB that they belong to the DBService service.

As shown in the following code sample, the DBActivator service activator is created and
registered with the BOA using the BOA::impl_is_ready call in the main server program.

int main(int argc, char **argv) {
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
 CORBA::BOA_ptr boa = orb->BOA_init(argc, argv);
 MyDB db("Database Manager");
 boa->obj_is_ready(&db);
 DBObjectImplReaper reaper;
 reaper.start();
 cout << "Server is ready to receive requests" << endl;
 boa->impl_is_ready("DBService", new DBActivator(boa));
 return(0);
}

Note

The call to BOA::impl_is ready is a variation on the usual call to BOA::impl_is_ready . It
takes two arguments:

– Service name.

– Instance of an Activator interface that will be used by the BOA to activate objects
belonging to the service.

Using a service activator to activate an object
Whenever an object is constructed, BOA::obj_is_ready must be explicitly invoked in
DBActivator::activate. There are two calls to BOA::obj_is_ready in the server program.
One call occurs when the server creates a service object and returns an IOR to the
creator program.

DBObject_ptr create_object(const char *name) {
 char ref_data[100];
 memset(ref_data,'\0',100);
 sprintf(ref_data, "%s", name);
 CORBA::ReferenceData id(100, 100, (CORBA::Octet *)ref_data);
 DBObjectImpl *obj = new DBObjectImpl(name, id);
 _boa()->obj_is_ready(obj);
 _impls.length(_impls.length() + 1);
 _impls[_impls.length()-1] = DBObject::_duplicate(obj);
 return obj;
}

The second occurrence of BOA::obj_is_ready is in DBActivator::activate, and this
needs to be explicitly called.

412 VisiBroker for C++ Developer ’s Guide

Using the serv ice act ivat ion approach

Deactivating service-activated object implementations

The main use for service activation is to provide the illusion that a large number of
objects are active within a server, but to have only a small number of these objects
actually active at any given moment. To support this model, the server must be able to
temporarily remove objects from use. The multithreaded DBActivator example program
contains a reaper thread that deactivates all DBObjectImpls every 30 seconds. The
DBActivator simply releases the object reference when the deactivate method is
invoked. If a new client request arrives for a deactivated object, the VisiBroker ORB
informs the Activator that the object should be reactivated.

// static sequence of currently active Implementations
static VISMutex _implMtx;
static DBObjectSequence _impls;
// updated DBActivator to store activated implementations
// in the global sequence.
class DBActivator: public extension::Activator {
 virtual CORBA::Object_ptr activate(CORBA::ImplementationDef_ptr impl) {
 extension::ActivationImplDef* actImplDef =
 extension::ActivationImplDef::_downcast(impl);
 CORBA::ReferenceData_var id(actImplDef->id());
 DBObjectImpl *obj = new DBObjectImpl((char *)id->data(), id);
 VISMutex_var lock(_implMtx);
 _impls.length(_impls.length() + 1);
 _impls[_impls.length()-1] = DBObject::_duplicate(obj);
 return obj;
 }
 virtual void deactivate(CORBA::Object_ptr,
 CORBA::ImplementationDef_ptr impl) {
 obj->_release();
 }
};
// Multi-threaded Reaper for destroying all activated
// objects every 30 seconds.
class DBObjectImplReaper : public VISThread {
 public:
 // Reaper methods
 virtual void start() {
 run();
 }
 virtual CORBA::Boolean startTimer() {
 vsleep(30);
 return 1;
 virtual void begin() {
 while (startTimer()) {
 doOneReaping();
 }
 }
 protected:
 virtual void doOneReaping() {
 VISMutex_var lock(_implMtx);
 for (CORBA::ULong i=0; i < _impls.length(); i++) {
 // assigning nil into each element will release
 // the reference stored in the _var
 DBObject_var obj = DBObject::_duplicate(_impls[i-1];
 _impls[i] = DBObject::_nil();
 CORBA::BOA_var boa = obj->_boa();
 boa->deactivate_obj(obj);
 }
 _impls.length(0);
 }
};

 31: Using object act ivators 413

Using the service act ivat ion approach

414 VisiBroker for C++ Developer ’s Guide

 32: Real-Time CORBA Extensions 415

Real-Time CORBA Extensions
This section describes the Real-Time CORBA extensions, as defined in the Real-Time
CORBA 1.0 Specification, supported by VisiBroker for C++. It also explains how to
apply these Real-Time CORBA extensions in application code.

Note

Real-Time CORBA Extensions support is available only on the following platforms:

– Solaris
– HP–UX
– AIX
– Linux

Overview
VisiBroker for C++ provides the following Real-Time CORBA extensions:

– Real-Time ORB
Used to manage the creation and destruction of other Real-Time CORBA entities,
such as Threadpools and Mutexes.

– Real-Time Object Adapters
Enhanced Portable Object Adapters (POAs), which work with Threadpools and have
a number of configurable Real-Time CORBA properties.

– Real-Time CORBA Priority
A platform-independent priority scheme that is used to control the priority of threads
related to the VisiBroker application. Specifying priorities in terms of the Real-Time
CORBA priority scheme, instead of the priority scheme of a particular OS, allows
applications to be developed that schedule real-time activities consistently across
machines running different Operating Systems, both Real-Time and non-Real-Time.
It also aids the porting and/or extension of applications to different Operating
Systems at a later date.

416 VisiBroker for C++ Developer ’s Guide

Using the Real-Time CORBA Extensions

– Priority Mappings
The means by which the Real-Time CORBA Priority scheme is ‘mapped’ onto the
priority scheme of the underlying OS. You can install a Priority Mapping to control the
way the priorities are mapped or you can use the ‘default mapping’ that is provided
by the ORB.

– Threadpools
Real-Time CORBA entities that allow an application to control the threads used by
the ORB to execute CORBA invocations.

– Real-Time CORBA Current interface
An extension of the CORBA::Current interface that allows Real-Time CORBA priority
values to be assigned to application threads.

– Real-Time CORBA Priority Models
Two alternate models for deciding the priority at which CORBA invocations are
executed.

– Real-Time CORBA Mutex API
An IDL-defined mutex interface, which gives applications access to the same mutex
implementation as that used internally by the ORB. This guarantees consistent
priority inheritance behavior, as well as improving application portability.

– Control of Internal ORB Thread Priorities
Mechanisms to allow range limitation and explicit control of the priorities of additional
threads used internally within the ORB.

Note

Depending on the underlying Operating System, the control of Thread Priorities might
require superuser (root) privileges.

Using the Real-Time CORBA Extensions
Applications that want to make use of the Real-Time CORBA extensions must include
the C++ header file rtcorba.h that is provided in the VisiBroker include directory.

Many of the Real-Time CORBA features have interfaces that are defined in IDL. The
IDL for these features is specified in a new RTCORBA module. This IDL is available for
inspection in the file RTCORBA.idl, which can be found in the idl directory of the
VisiBroker installation.

However, there is no need to compile the IDL in RTCORBA.idl to make use of the Real-
Time CORBA features. Applications need only to include the rtcorba.h header file that
is provided with the other VisiBroker header files.

This is because all of the interfaces in the module are specified as ‘locality
constrained’. That is, their object references cannot be passed off-node or used to
invoke operations on instances remotely. All manipulation of Real-Time CORBA
interfaces must be performed locally, as is the case with other CORBA entities such as
CORBA::ORB and PortableServer::POA.

Real-Time CORBA ORB
The Real-Time CORBA extensions include a Real-Time ORB interface, which is used
to manage other Real-Time CORBA entities. The interface is named
RTCORBA::RTORB, and has the following definition:

module RTCORBA {

 // locality constrained interface
 interface RTORB {

 Mutex create_mutex();

 32: Real-Time CORBA Extensions 417

Real-Time CORBA ORB

 void destroy_mutex(in Mutex the_mutex);
 exception InvalidThreadpool {};

 ThreadpoolId create_threadpool(
 in unsigned long stacksize,
 in unsigned long static_threads,
 in unsigned long dynamic_threads,
 in Priority default_priority,
 in boolean allow_request_buffering,
 in unsigned long max_buffered_requests,
 in unsigned long max_request_buffer_size);

 void destroy_threadpool(in ThreadpoolId threadpool)
 raises (InvalidThreadpool);

 void threadpool_idle_time(
 in ThreadpoolId threadpool,
 in unsigned long seconds)
 raises (InvalidThreadpool);
 };
};

The operations shown in the IDL are described in “Threadpools” and “Real-Time
CORBA Mutex API”.

The Real-Time ORB does not need to be explicitly initialized—it is initialized implicitly
as part of the regular CORBA::ORB_init call. Any Real-Time ORB initialization arguments
are passed in to the call to CORBA::ORB_init, along with non-Real-Time arguments. If
any Real-Time initialization argument is invalid, the ORB_init call fails, and a system
exception is raised.

To use the Real-Time ORB operations, the application must have a reference to the
RTCORBA::RTORB instance. This reference can be obtained any time after the call to
ORB_init, and is obtained by calling the resolve_initial_references operation on
CORBA::ORB, with the object id "RTORB" as the parameter. Because
resolve_initial_references returns the reference as a CORBA::Object_ptr, it must then
be narrowed to a RTCORBA::RTORB_ptr before it can be used.

Note

To support Real-Time CORBA Extensions, the VisiBroker for C++ ORB has to operate
in a special 'real-time compatible' mode, the behavior and semantics of which differ
from the regular mode of operation. Since obtaining an "RTORB" reference automatically
puts the ORB in this special mode, you should obtain an "RTORB" reference as early
as possible in your application code to avoid any possible inconsistency in behavior.

The code example below shows how to obtain the RTCORBA::RTORB reference. Similar
code can be found in the Real-Time CORBA examples included with the VisiBroker
release: priority_model, threadpool, visthread and rtmutex.

#include "corba.h"
#include "rtcorba.h"

// First initialize the ORB
CORBA::ORB_ptr orb;

VISTRY
{
 orb = ORB_init(argc, argv);
}
VISCATCH(CORBA::Exception, e)
{
 cerr << "Exception initializing ORB" << endl << e << endl;
 // handle error here
}
VISEND_CATCH

418 VisiBroker for C++ Developer ’s Guide

Real-Time Object Adapters

// Then obtain the RTORB reference
CORBA::Object_var ref;

// Note use of _var, so ref will be automatically released
VISTRY
{
 ref = orb->resolve_initial_references("RTORB");
}
VISCATCH
{
 cerr << "Exception obtaining RTORB reference" << endl << e << endl;
 // handle error here
}
VISEND_CATCH

// Finally, narrow the RTORB reference
RTCORBA::RTORB_ptr rtorb;
VISTRY
{
 rtorb = RTCORBA::RTORB::_narrow(ref);
 // ref is no longer needed. Will be automatically released as it is a _var
}
VISCATCH(CORBA::Exception, e)
{
 cerr << "Error narrowing RTORB reference" << endl << e << endl;
 // Handle error here
}
VISEND_CATCH

Real-Time Object Adapters
In Real-Time CORBA, all Object Adapters are Real-Time Object Adapters. This means
that all Object Adapters are aware of priorities and handle CORBA invocations
according to rules defined by Real-Time CORBA. It is necessary for all Object
Adapters on a node to be Real-Time. If some Object Adapters in the CORBA
application were non-Real-Time, their operation would interfere with the behavior of the
Real-Time Object Adapters (because threads associated with all Object Adapters must
be scheduled together by the OS.)

As all Object Adapters are Real-Time, the normal Portable Object Adapter (POA)
interface is used to manage them.

Real-Time Object Adapters are created in the normal way, through a call to create_POA.
Configuration of the extra, Real-Time properties is achieved through the passing of
new Real-Time policies in the policy list parameter. An example of POA creation
specifying one such new policy (and its associated value) is shown below:

// Create Real-Time CORBA Priority Model Policy
// (Already obtained RTORB reference)
RTCORBA::PriorityModelPolicy_ptr priority_model_policy =
 rtorb->create_priority_model_policy(
 RTCORBA::SERVER_DECLARED, 25);

// Create Policy List containing this RT CORBA Policy
// (Include any required non-Real-Time policies in the same list)
CORBA::PolicyList policies;
policies.length(1);
policies[0] = priority_model_policy;

// Create POA, using the Policy List
// (Associate POA with the Root POA's POA manager, if none other)

 32: Real-Time CORBA Extensions 419

Real-Time CORBA Prior i ty

// (Already obtained Root POA reference)
PortableServer::POAManager_var poa_manager =
 rootPOA->the_POAManager();
VISTRY
{
 poa = rootPOA->create_POA("myPOA", poa_manager, policies);
}
VISCATCH(CORBA::Exception, e)
{
 // handle exceptions here
}
VISEND_CATCH

The Real-Time policies that can be configured at the time of POA creation are
concerned with the Priority Model that the POA supports and which Threadpool it will
be associated with. The configuration of these properties is described in “Threadpools”
and “Real-Time CORBA Priority Models”.

If any of these Real-Time properties is not configured by the application at the time of
POA creation, the ORB initializes that property with a default value. The default Priority
Model behavior is for the POA to support the Server Declared Priority Model, and the
default Threadpool behavior is for the POA to be associated with the General
Threadpool. These defaults are explained in “Real-Time CORBA Priority Models” and
“Threadpools”.

Real-Time CORBA Priority
Real-Time CORBA defines a universal, platform independent priority scheme called
Real-Time CORBA Priority. It allows Real-Time CORBA applications to make
prioritized CORBA invocations in a consistent fashion between nodes running different
Operating Systems. Even if all nodes in the existing system are running the same
Operating System, its use aids the configuration of priorities in the system, improves
application portability, and simplifies future extension to a mixed OS environment.

For consistency and portability, Real-Time CORBA applications must use Real-
Time CORBA Priority to express the priorities in the CORBA part of the application,
even if all nodes in a system use the same OS, and hence the same priority scheme.

The RTCORBA::Priority type is used to represent Real-Time CORBA Priority:

module RTCORBA {
 typedef short Priority;
 const Priority minPriority = 0;
 const Priority maxPriority = 32767;
};

A signed short is used in order to accommodate the Java language mapping. However,
only values in the range 0 (minPriority) to 32767 (maxPriority) are valid.

Note

As per the Real-Time CORBA Specification, numerically higher RTCORBA::Priority
values are defined to be of higher priority.

In practice, an application does not need to use the entire range of valid
RTCORBA::Priority values (0 to 32767.) A smaller range, which suits the needs of the
application, can be defined as the only admissible range. This is achieved through
control of the Priority Mapping. Priority Mappings are described in the next section.

By default, VisiBroker for C++ installs a Priority Mapping that only allows
RTCORBA::Priority values in the range 0 to 31. (The POSIX threading range of
priorities.) See the next section for details.

420 VisiBroker for C++ Developer ’s Guide

Pr ior i ty Mappings

Priority Mappings
A given Real-Time Operating System has a particular priority scheme: the range and
direction of priority values that it uses. For example, the Pthreads priority scheme used
by some Operating Systems is POSIX compliant with priorities in the range 0 to 31. In
Real-Time CORBA, this is referred to as the Native Thread Priority Scheme and the
priority values are referred to as Native Priority values.

As the Real-Time CORBA application describes its priorities in terms of
RTCORBA::Priority values, and the OS works in terms of Native Priority values, a
mapping must be defined between these two priority schemes. The mapping is used by
the ORB, to obtain the Native Priority corresponding to a given RTCORBA::Priority
value, and vice versa, as is required. This is done, for example, when an application
specifies that it wants a Threadpool to have threads that are created with a particular
RTCORBA::Priority, and the ORB needs to know what Native Priority to tell the OS to
use when it actually creates the threads.

The Priority Mapping can also be used directly by the application, but this should only
occur in special circumstances. This is discussed further in “Using Native Priorities in
VisiBroker Application Code”.

The ORB comes with a default Priority Mapping, which is sufficient for experimenting
with the Real-Time CORBA features and might be sufficient for many Real-Time
applications (since it is based on the POSIX priority scheme.) Therefore, when first
becoming familiar with the Real-Time features of VisiBroker for C++, it might be
appropriate to skip the rest of this section, and learn about the rest of the Real-Time
CORBA features (beginning with “Threadpools”), before returning to this section to
understand the details of Priority Mappings and the reasons for installing one that is
different from the default.

Priority Mapping Types

To support Priority Mappings, a RTCORBA::NativePriority type and
RTCORBA::PriorityMapping type are defined:

module RTCORBA {
 typedef short NativePriority;
 native PriorityMapping
};

RTCORBA::NativePriority values must be integers in the range –32768 to +32767.
However, depending on the OS, the valid range is a subset of this range.

The RTCORBA::PriorityMapping type is defined as an IDL native interface. This means
that the interface is defined directly in each implementation language, rather than being
defined in IDL and mapped automatically to each language according to the rules of
the particular CORBA language mapping. This is done for reasons of efficiency.

The C++ mapping of the RTCORBA::PriorityMapping interface is:

class PriorityMapping {
 public:
 virtual CORBA::Boolean to_native(
 RTCORBA::Priority corba_priority,
 RTCORBA::NativePriority &native_priority);

 virtual CORBA::Boolean to_CORBA(
 RTCORBA::NativePriority native_priority,
 RTCORBA::Priority &corba_priority);

 virtual RTCORBA::Priority max_priority();

 PriorityMapping();
 virtual ~PriorityMapping() {}
 static RTCORBA::PriorityMapping * instance();
};

 32: Real-Time CORBA Extensions 421

Prior i ty Mappings

The methods that define the behavior of a particular Priority Mapping are to_native,
to_CORBA and max_priority. Their purpose is as follows:

– to_native
This method takes a RTCORBA::Priority value from the corba_priority parameter and
either maps it to a RTCORBA::NativePriority value or fails to map it. If the value is
mapped, the resulting Native Priority value is stored in the location referenced by the
parameter native_priority (which is a C++ reference parameter) and a true value is
returned to indicate that the mapping was successful. If the value is not mapped, the
contents of the native_priority parameter are not altered, and a false value is
returned to indicate that the mapping operation failed.

– to_CORBA
The converse of to_native, the to_CORBA method takes a RTCORBA::NativePriority
value from the native_priority parameter, and either maps it to a RTCORBA::Priority
value or fails to map it. If the value is mapped, the resulting RTCORBA::Priority value
is stored in the location referenced by the corba_priority parameter (which is a C++
reference parameter) and a true value is returned to indicate that the mapping was
successful. If the value is not mapped, the contents of the corba_priority parameter
are not altered, and a false value is returned to indicate that the mapping operation
failed.

– max_priority
This method just returns the highest RTCORBA::Priority value that is valid in this
mapping. The ORB needs to be explicitly told the highest value as there is no
efficient way for it to determine it by examining the behavior of the to_native and
to_CORBA methods given different input values.

The implementation of these methods must conform to certain rules, which are
described below.

Rules for Priority Mappings

Any Priority Mapping that is installed (including the default Priority Mapping) must
conform to the following rules:

– The to_native and to_CORBA methods should be able to handle all values of their input
parameter, in the range –32768 to +32767.

– to_native must definitely fail to map values outside the range 0 to 32767, and might
fail to map values within that range as well. (For example the default Priority Mapping
fails to map all values outside the range 0 to 31.)

– to_CORBA must definitely fail to map values outside the range of the Native Priority
scheme and might fail to map values within that range as well. (The default Priority
Mapping chooses to map all values in the 0 to 31 range.)

– Lower RTCORBA::Priority values should always map to lower importance Native
Priority values, and higher to higher. Note that in the case of a Pthreads based
operating system, this means mapping numerically lower RTCORBA::Priority values
to/from numerically higher Native Priorities. This follows the convention used by the
majority of Real Time Operations Systems. The convention maintains consistency
with Real-Time CORBA applications developed on other RTOSs. Otherwise future
porting and interworking with other Real-Time applications will be greatly
complicated.

– RTCORBA::Priority 0 should always be mapped, and always be mapped to the lowest
importance Native Priority value in the range of Native Priority values that is mapped
to/ from.

– max_priority must return the highest RTCORBA::Priority value that is mapped by the
mapping. (That is, the highest value for which a Native Priority value is returned.)

The following are not mandated, but will often be the case, unless there is special
reason to do otherwise:

422 VisiBroker for C++ Developer ’s Guide

Pr ior i ty Mappings

– to_native and to_CORBA usually return the same value (or fail to map) every time they
are called with the same input value.

– to_native and to_CORBA are usually reverse mappings of one another.

– The ranges of RTCORBA::Priority and Native Priority values that are mapped are
usually each a single contiguous range of priority values.

Default Priority Mapping

VisiBroker for C++ provides a default Priority Mapping. This is the Priority Mapping that
will be used unless a different one is written by the application developer and installed
using the process described in “Replacing the Default Priority Mapping”.

Note

Only one Priority Mapping can be installed at any one time on a given VisiBroker
application. The act of installing one Priority Mapping automatically un-installs the
previously installed Priority Mapping (usually the default Priority Mapping.)

The default Priority Mapping has the following characteristics:

– Valid RTCORBA::Priority range is 0 to 31 only. This follows the POSIX threading
model. All priorities outside of this range are invalid, which means an exception is
raised if an attempt is made to use them.

– The valid RTCORBA::Priority values are mapped one-to-one onto a 32 priority sub-
range of the native operating system—the "Native Priority range".

– The valid RTCORBA::Priority values are mapped onto the Native Priority range in
such a way that RTCORBA::Priority value 0 corresponds to the lowest-importance
Native Priority in the sub-range used, and RTCORBA::Priority 31 corresponds to the
highest-importance Native Priority in the sub-range used. The following table shows
the RTCORBA::Priority default mappings for the supported operating systems.

The default Priority Mapping is defined within the ORB, and hence the source code for
it is not included in the VisiBroker release. The source code for the mapping is shown
here, however, to show exactly how this mapping behaves:

VisiBroker for C++ Default 'to_corba' Priority Mapping CORBA::Boolean
VISDefaultPriorityMapping::to_CORBA(RTCORBA::NativePriority native_priority,

 RTCORBA::Priority &corba_priority)
#if defined(SOLARIS)
 native_priority = 10 + corba_priority; // 0 -> 10, 31 -> 41
#if defined(AIX)
 native_priority = 28 + corba_priority; // 0 -> 28, 31 -> 59
#elif defined(HPUX_11)
 native_priority = corba_priority; // 0 -> 0, 31 -> 31
#elif defined(__linux)
 native_priority = 30 + corba_priority; // 0 -> 30, 31 -> 61
#else
error Supported OS not detected
#endif
 return (CORBA::Boolean) 1;
 }
}

Operating System RTCORBA::Priority range Native Priority range

HPUX 0–31 0–31

Solaris 0-31 10-41

AIX 0-31 28-59

Linux 0-31 30-61

 32: Real-Time CORBA Extensions 423

Prior i ty Mappings

// VisiBroker for C++ Default 'to_corba' Priority Mapping
CORBA::Boolean
VISDefaultPriorityMapping::to_native(RTCORBA::Priority corba_priority,
 RTCORBA::NativePriority &native_priority)
#if defined(SOLARIS)
 if ((native_priority < 10) || (native_priority > 41))
#elif defined(AIX)
 if ((native_priority < 28) || (native_priority > 59))
#elif defined(HPUX_11)
 if ((native_priority < 0) || (native_priority > 31))
#elif defined(__linux)
 if ((native_priority < 30) || (native_priority > 61))
#else
error Supported OS not detected
#endif
 {
 return (CORBA::Boolean) 0;
 }
 else
 {
#if defined(SOLARIS)
 corba_priority = native_priority - 10; // 10 -> 0, 41 -> 31
#elif defined(AIX)
 corba_priority = native_priority - 28; // 28 -> 0, 59 -> 31

#elif defined(HPUX_11)
 corba_priority = native_priority; // 0 -> 0, 31 -> 31
#elif defined(__linux)
 corba_priority = native_priority - 30; // 30 -> 0, 61 -> 31
#else
error Supported OS not detected
#endif
 return (CORBA::Boolean) 1;
 }
}

// Default max method : returns the max RTCORBA::Priority supported
// by the default priority mapping
RTCORBA::Priority VISDefaultPriorityMapping::max_priority()
{
 return 31;
}

Replacing the Default Priority Mapping

Note

Only one Priority Mapping can be installed at any one time on a particular system. The
act of installing one Priority Mapping automatically uninstalls the previously installed
Priority Mapping (usually the default Priority Mapping.)

The application might wish to replace the default Priority Mapping on some or all nodes
in the system. Reasons for doing this include:

– To shift the range of Native Priority values that are mapped to/from higher or lower in
the overall Native Priority scheme. For example to take the default Priority Mapping’s
range of Native Priority 10 to 41, and replace it with the range 50 to 81 (higher
importance) or 200 to 231 (even higher importance.)

424 VisiBroker for C++ Developer ’s Guide

Pr ior i ty Mappings

– To have more or fewer RTCORBA::Priority values in the range of valid (mapped)
values. For example, to only map RTCORBA::Priority values in the range 0 to 8 or to
map values in the range 0 to 128.

– To have more or fewer Native Priority values in the range of valid (mapped) values.
For example, to map to/from Native Priority values in the range 128 to 256.

Note that the relationship between the ranges of RTCORBA::Priority and Native Priority
values that are valid in the mapping will determine whether the mapping is a one-to-
one mapping or not. The mapping does not have to be a one-to-one mapping, but this
can be convenient. The default Priority Mapping is a one-to-one mapping.

Note

Installed Priority Mappings should follow the convention, used in the default Priority
Mapping, of making the RTCORBA::Priority 0 have the lowest importance. This means
ensuring that RTCORBA::Priority 0 maps to the numerically smallest Native Priority
value (of the sub-range that is being mapped to.) This maintains consistency with Real-
Time CORBA applications developed across OSs. Otherwise future porting and
interworking with other Real-Time applications will be greatly complicated.

A new Priority Mapping is installed by defining a new class, which must inherit from the
class RTCORBA::PriorityMapping, and creating one static instance of it in the application.
When the static instance is initialized (during the execution of static constructors) the
base RTCORBA::PriorityMapping class constructor will register the new mapping with the
ORB.

For an example of writing and installing a new Priority Mapping, look at the files
mapping.h and mapping.C in the threadpool example included in the VisiBroker
installation. Note the single instance of the new class that is created in global scope in
mapping.C. When the resulting mapping.o is built with a VisiBroker application and static
constructor initialization takes place during the execution of the application, it is the
initialization of this instance that installs the mapping.

Using Native Priorities in VisiBroker Application Code

Although applications must use Real-Time CORBA Priority to discern the priority of
different parts of their CORBA application (and the priority of CORBA invocations
between parts of the application), there are cases in which the application needs to
discern Native Priority. Examples include configuring a sub-system outside of the
CORBA application, which only knows about the Native Priority scheme, or using an
OS call directly, which takes a Native Priority value as a parameter. In these cases, it
might be necessary to translate between Real-Time CORBA and Native Priority in the
application. To allow this, VisiBroker for C++ provides the static instance method on the
class RTCORBA::PriorityMapping. This method returns a pointer to the currently installed
Priority Mapping.

Using this method, it is guaranteed to the application code that any priority mapping
method calls it makes are executed on the currently installed mapping, regardless of
the internal implementation details of the mapping. This allows the code to continue to
work even if the installed mapping is changed. The following example uses the
installed Priority Mapping from application code.

RTCORBA::Priority corba_priority;

// Priority Mapping methods return boolean flag, rather than
// throwing exceptions
if
(!RTCORBA::PriorityMapping::instance()->to_CORBA(
 100,corba_priority))
{
 // Handle failure to map native priority to RT CORBA priority
}
// Use corba_priority value here ...

 32: Real-Time CORBA Extensions 425

Threadpools

Threadpools
VisiBroker for C++ uses Threadpools to manage the threads of execution on the
server-side of the ORB. Threadpools offer the following features:

– Pre-allocation of threads.
This helps guarantee Real-Time system behavior, by allowing the application
programmer to ensure that there are enough thread resources to satisfy a certain
number of concurrent invocations, and also helps reduce latency and increase
predictability, by avoiding the destruction and recreation of threads between
invocations.

– Partitioning of threads.
Having multiple Threadpools, associated with different Object Adapters allows one
part of the system to be isolated from the thread usage of another, possibly lower
priority, part of the application system. This can again be used to help achieve Real-
Time behavior of the system as a whole.

– Bounding of thread usage.
A Threadpool can be used to set a maximum limit on the number of threads that a
POA or set of POAs might use. In systems where the total number of threads that
can be used is constrained, this can be used in conjunction with Threadpool
partitioning to avoid thread starvation in a critical part of the system.

Threadpool API

Threadpools are managed using the following operations of the RTCORBA::RTORB
interface:

module RTCORBA {
 typedef unsigned long ThreadpoolId;

 // locality constrained object
 interface RTORB {
 exception InvalidThreadpool {};

 ThreadpoolId create_threadpool(
 in unsigned long stacksize,
 in unsigned long static_threads,
 in unsigned long dynamic_threads,
 in Priority default_priority,
 in boolean allow_request_buffering,
 in unsigned long max_buffered_requests,
 in unsigned long max_request_buffer_size);

 void destroy_threadpool(in ThreadpoolId threadpool)
 raises (InvalidThreadpool);

 void threadpool_idle_time(
 in ThreadpoolId threadpool,
 in unsigned long seconds)
 raises (InvalidThreadpool);
 };
};

These operations are described in the sections that follow. Examples of Threadpool
creation and their association with POAs can be found in the threadpool example
included with the VisiBroker installation.

426 VisiBroker for C++ Developer ’s Guide

Threadpools

Threadpool Creation and Configuration

A Threadpool is created by invoking the create_threadpool operation on the Real-Time
ORB. The arguments to create_threadpool have the following significance:

– stacksize
The stack size, in bytes, that each thread created for the Threadpool should have.

– static_threads
The number of threads that will be created and assigned to the pool at the time of
Threadpool creation. These threads will not be destroyed until the Threadpool itself is
destroyed. After they have been used to execute a CORBA invocation, they are
returned to the Threadpool, and await another invocation to execute.

– dynamic_threads
The number of threads that can be created dynamically, to execute CORBA
invocations received when all the static threads are currently in use. The number can
be zero, in which case no threads can be dynamically created after Threadpool
creation. (In this case, the number of concurrently executing invocations is limited by
the number of static threads.)

– default_priority
The RTCORBA::Priority at which idle threads should remain while in the pool waiting
for a CORBA invocation to execute. The priority at which the invocation is executed
depends on the Real-Time CORBA Priority Model in use. See “Real-Time CORBA
Priority Models” for details. This parameter determines the priority of the threads
when they are not handling invocations.

– allow_request_buffering, max_buffered_requests and max_request_buffer_size
These arguments support the Request Buffering feature from the Real-Time CORBA
specification, which allows for invocation requests to be queued once the static and
dynamic thread limits of a Threadpool have been reached. This feature is not
currently supported in VisiBroker for C++, and the value of these arguments is
ignored.

If dynamic_threads is greater than zero, so that threads can be created dynamically, the
threads are not immediately destroyed after they have completed executing the
CORBA invocation that they were created to handle. They are returned to the
Threadpool, in the same way that static threads are. However, dynamic threads that
remain idle in the Threadpool might eventually be destroyed during garbage collection
that occurs from time to time.

The amount of time a dynamically created thread must remain idle in a Threadpool
before it is destroyed can be set using the threadpool_idle_time operation of
RTCORBA::RTORB. If the idle time is not set using this operation, it defaults to 300 seconds.

If successful, create_threadpool returns an identifier for the new Threadpool. The
identifier is of type RTCORBA::ThreadpoolId (an unsigned long), and is subsequently
used to refer to that Threadpool.

Note

The semantics of dynamic_threads value here in the Real-Time context differs from that
of the Dispatcher Thread pool threadMax value. (See “Thread pool dispatch policy”) A
dynamic_threads value of zero means that, even if needed, no additional threads are
created for the RTCORBA Threadpool. In contrast, a threadMax value of zero for the
dispatcher threadpool means that the VisiBroker ORB has the freedom to create
additional threads, as and when required.

Association of an Object Adapter with a Threadpool

Every POA created using VisiBroker for C++ is associated with a Threadpool. Each
Threadpool, on the other hand, can be associated with any number of POAs. By
configuring multiple POAs to use the same or different Threadpools, the application
designer can control the use of threads by different sets of CORBA Objects.

 32: Real-Time CORBA Extensions 427

Threadpools

Which Threadpool a POA is associated with is determined by passing the
RTCORBA::ThreadpoolId of the desired Threadpool into the create_POA operation as the
value of a RTCORBA::ThreadpoolPolicy policy. The following example associates a
POA with a Threadpool at time of POA initialization.

// Obtain RTORB reference
CORBA::Object_var objref =
 orb->resolve_initial_references("RTORB");
RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow(objref);

// Create a Threadpool
RTCORBA::ThreadpoolId tpool_id =
 rtorb->create_threadpool(
 30000, // stacksize
 5, // num static threads
 0, // num dynamic threads
 20, // default RT CORBA priority
 0, 0, 0);

// Create Threadpool Policy object for use in POA initialization
RTCORBA::ThreadpoolPolicy_ptr tpool_policy =
 rtorb->create_threadpool_policy(tpool_id);

// Create Policy List for POA initialization
// (Include any required non-Real-Time policies in the same list)
CORBA::PolicyList policies;
policies.length(1);
policies[0] = tpool_policy;

// Create POA, using the Policy List
// (Associate POA with the Root POA's POA manager, if none other)
// (Already obtained Root POA reference)
PortableServer::POAManager_var poa_manager =
 rootPOA->the_POAManager();
VISTRY
{
 poa = rootPOA->create_POA("myPOA", poa_manager, policies);
}
VISCATCH(CORBA::Exception, e)
{
 // handle exceptions here
}
VISEND_CATCH

create_POA fails if any part of the Real-Time CORBA configuration is invalid. For
example, if the ThreadpoolId is not for a currently existing Threadpool, a
CORBA::BAD_PARAM system exception is raised.

The General Threadpool

If a Threadpool is not specified at POA creation time, as described in the previous
section, then the new POA that is created is associated with a special Threadpool,
called the General Threadpool.

The General Threadpool does not have to be created by a call to RTCORBA::RTORB’s
create_threadpool operation. Instead, the General Threadpool is created automatically
by the ORB the first time it is required.

The General Threadpool is created with the following configuration:

– stacksize = 30000

– static_threads = 0

428 VisiBroker for C++ Developer ’s Guide

Real-Time CORBA Current

– dynamic_threads = 1000

– default_priority = 0

– max_thread_idle_time = 300

If this configuration is not appropriate for the application, the General Threadpool
should not be used, and the application should explicitly associate each POA with an
appropriately configured Threadpool at POA creation time.

Threadpool Destruction

A Threadpool can be destroyed by passing its ThreadpoolId as the argument to a call
to the destroy_threadpool operation of RTCORBA::RTORB:

// RTORB reference and Threadpool id obtained previously

// Get RT ORB reference
CORBA::Object_var objref =
 orb->resolve_initial_references("RTORB");
RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow(objref);

VISTRY
{
 rtorb->destroy_threadpool(pool_id);
}
VISCATCH(CORBA::Exception, e)
{
 // handle error here
}
VISEND_CATCH

All POAs that have been associated with a particular Threadpool (that had this
Threadpool specified as the Threadpool to use, at the time of POA creation) must have
been destroyed before the destroy_threadpool operation will succeed.

If POAs still exist that are associated with the Threadpool, the call fails and a system
exception is raised.

Real-Time CORBA Current
Real-Time CORBA defines a Real-Time CORBA Current interface to provide access to
the CORBA priority of a thread. The following sample shows the RTCORBA::Current
interface.

module RTCORBA {
 interface Current : CORBA::Current {
 attribute Priority base_priority;
 };
};

A Real-Time CORBA Priority can be associated with the current thread, by setting the
base_priority attribute of the RTCORBA::Current object. This has two effects:

– The Native Priority of the current thread is immediately set to the value mapped from
the Real-Time CORBA Priority value given as the parameter to the set attribute
operation. Thus setting this attribute has the effect of controlling the priority of
CORBA application threads.

– The Real-Time CORBA Priority value is stored, for use with any CORBA invocations
made from that thread. The value is only relevant when making invocations on
CORBA Objects that were created from POAs configured to support the ‘Client
Priority Propagation’ Priority Model. (See “Real-Time CORBA Priority Models”.)

 32: Real-Time CORBA Extensions 429

Real-Time CORBA Pr ior i ty Models

The priority value stays in effect (for both of the above purposes) until a new value is
set.

The current value can also be read, using the corresponding get attribute operation.

A CORBA::BAD_PARAM system exception is raised by the set attribute operation if an
attempt is made to set a priority outside of the valid 0 to 32767 range. A
CORBA::DATA_CONVERSION exception is raised if an attempt is made to set a priority that is
in the 0 to 32767 range, but outside of the range supported by the currently installed
Priority Mapping.

A CORBA::INITIALIZE system exception is raised if an attempt is made to get the priority
value from a thread that has not yet had a Real-Time CORBA Priority value set on it.
(The Native Priority of the current thread is not just mapped to a Real-Time CORBA
Priority and returned.)

To use the RTCORBA::Current object, a reference to it must be obtained. This is achieved
by calling the CORBA::ORB operation resolve_initial_references with the parameter
"RTCurrent", as shown in the following example:

// Obtain the RTCORBA::Current reference
CORBA::Object_var ref;

VISTRY
{
 ref = orb->resolve_initial_references("RTCurrent");
}
VISCATCH
{
 // handle error here
}
VISEND_CATCH

// Narrow the RTCORBA::Current reference
RTCORBA::Current_ptr rtcurrent;
VISTRY
{
 rtcurrent = RTCORBA::Current::_narrow(ref);
}
VISCATCH(CORBA::Exception, e)
{
 // handle error here
}
VISEND_CATCH

Note that the RTCORBA::Current reference only needs to be obtained once. The same
variable can be used by different threads, and will behave as if it is private to each of
them (setting and getting their thread-specific priority value.) This behavior is inherited
from the base CORBA::Current object.

Real-Time CORBA Priority Models
Real-Time CORBA supports two models for the coordination of priorities across a
system. These two models provide two alternate answers to the question: where does
the priority at which the CORBA invocation is executed come from? They are:

– Client Propagated Priority Model
In this model, the Real-Time CORBA Priority associated with a client CORBA
application thread, using RTCORBA::Current, is also used as the priority on the server-
side of the invocation. The thread that executes the invocation (which is taken from a
Threadpool) runs at a Native Priority that is mapped from the Real-Time CORBA
priority set on the client side prior to making the invocation.

– Server Declared Priority Model
In this model the Real-Time CORBA Priority associated with a client CORBA

430 VisiBroker for C++ Developer ’s Guide

Real-Time CORBA Prior i ty Models

application thread only affects the priority on the client-side of the invocation. The
priority that the invocation is handled at on the server-side is determined by the
configuration of the CORBA Object and the POA that created it.

Which Priority Model is used is a server-side issue, configured at the POA level. All
CORBA Objects created from the same POA will have their invocations processed
according to the Priority Model the POA is configured with.

The Priority Model is selected at POA initialization time, by including a
RTCORBA::PriorityModelPolicy instance in the Policy List passed as a parameter to
create_POA. The Policy is configured with one of the following values:

– RTCORBA::CLIENT_PROPAGATED

To select the Client Propagated Priority Model.

– RTCORBA::SERVER_DECLARED

To select the Server Declared Priority Model.

In either case, a RTCORBA::Priority value is also specified as part of the Policy. The two
models use this priority value differently:

– In the Client Propagated Priority Model, the value is the priority at which to execute
invocations from clients that did not set a priority prior to making the invocation. This
will include clients from non-Real-Time ORBs (including non-Real-Time ORBs from
other vendors), and also invocations from threads that have not yet set a priority
value using RTCORBA::Current.

– In the Server Declared Priority Model, the value is the priority at which invocations
will be executed, unless a different priority is set at the Object level. See the section
below for details on the setting of the priority at the Object level.

The Server Declared Priority Model is the default model. If a POA is initialized without
specifying which model to use, it will be configured to use the Server Declared Priority
Model. However, in this case there is a subtle difference in behavior; because a priority
has not been specified, the invocations run at the default priority of the Threadpool that
the POA is associated with. (The default priority is a configurable property of
Threadpools. It is the priority that threads remain at when idle in the pool. See
“Threadpools” for details.)

The following code demonstrates the setting of the Priority Model Policy at the time of
POA creation. In this case, the Client Propagated Priority Model is selected, with a
default priority of 7 (for invocations from non-Real-Time Clients).

// Create Real-Time CORBA Priority Model Policy

RTCORBA::PriorityModelPolicy_ptr priority_model_policy =
 rtorb->create_priority_model_policy(
 RTCORBA::CLIENT_PROPAGATED, 7);

// Create Policy List containing this RT CORBA Policy
// (Include any required non-Real-Time policies in the same list)
CORBA::PolicyList policies;
policies.length(1);
policies[0] = priority_model_policy;

// Create POA, using the Policy List
// (Associate POA with the Root POA's POA manager, if none other)
// (Already obtained Root POA reference)
PortableServer::POAManager_var poa_manager =
 rootPOA->the_POAManager();
VISTRY
{
 poa = rootPOA->create_POA("myPOA", poa_manager, policies);
}
VISCATCH(CORBA::Exception, e)
{

 32: Real-Time CORBA Extensions 431

Sett ing Prior i ty at the Object Level

 // handle exceptions here
}
VISEND_CATCH

See the priority_model example included with the VisiBroker installation for further
examples of configuring the two different Priority Models.

Setting Priority at the Object Level
When the Server Declared Priority Model is selected a priority value is supplied to
determine the priority at which invocations will be executed on the server-side of the
ORB. This priority value is used when handling invocations on behalf of any CORBA
Object created by that POA.

However, this scope of control of priority is too coarse for some applications. To
remedy this, Real-Time CORBA allows the priority that invocations will be executed at
in the Server Declared model to be overridden on a per-Object basis.

The priority to run invocations at can be overridden for a given object by using either
the operation activate_object_with_priority or activate_object_with_id_and_priority
to activate the object in question. These operations work in the same way as
activate_object and activate_object_with_id, but take a Real-Time CORBA Priority
value as an additional parameter.

The Real-Time CORBA Specification defines these methods in the RTPortableServer
module. However, VisiBroker for C++ defines these operations as part of the
VisiBroker Extended POA interface, PortableServerExt::POA, which is accessed by
narrowing a POA object reference using the static C++ method
PortableServerExt::POA::_narrow.

For an example of setting the priority on a per-Object basis, see the file model_srvr.C in
the priority_model example included with VisiBroker.

Real-Time CORBA Mutex API
VisiBroker for C++ implements the following Real-Time CORBA Mutex interface:

#include "timebase.idl"
module RTCORBA {

 // locality constrained interface
 interface Mutex {
 void lock();
 void unlock();
 boolean try_lock(in TimeBase::TimeT max_wait);
 // if max_wait = 0 then return immediately
 };

 interface RTORB {
 ...
 Mutex create_mutex();
 void destroy_mutex(in Mutex the_mutex);
 ...
 };
};

A new RTCORBA::Mutex object is obtained using the create_mutex operation of
RTCORBA::RTORB. A Mutex object has two states: locked and unlocked. Mutex objects are
created in the unlocked state. When the Mutex object is in the unlocked state the first
thread to call the lock() operation will cause the Mutex object to change to the locked
state and the calling thread will be assigned ownership of the Mutex object.

Subsequent threads that call the lock() operation while the Mutex object is still in the
locked state will block until the owner thread unlocks it by calling the unlock()
operation.

432 VisiBroker for C++ Developer ’s Guide

Real-Time CORBA Mutex API

The try_lock() operation works like the lock() operation except that if it does not get
the lock within max_wait time it returns false. If the try_lock() operation does get the
lock within the max_wait time period it returns true.

Control of Internal ORB Thread Priorities

VisiBroker for C++ allows the application to control the priority of the threads that the
ORB creates for internal use.

The internal ORB threads are:

– DSUser thread

A single DSUser thread is created the first time the ORB attempts to communicate
with the VisiBroker Smart Agent (osagent). This will usually happen the first time
either activate_object or a _bind method is called. This thread manages all
communication between the ORB and the Smart Agent. The thread name is
‘VISDSUser’.

– Listener threads

Listener Threads are created as part of the initialization of a Server Engine. (This
occurs during POA initialization, whenever a POA wishes to use a Server Engine
that has not been yet been used.) These threads wait for incoming CORBA
invocations to be received from network connections. Listener Threads for IIOP
communication have thread names of the form VISLis<N>, where <N> is an index
number that starts from zero and indicates the order in which the listeners were
created.

– Garbage Collection thread

A single instance of this is created the first time a Threadpool is created. This will
occur either when the application explicitly creates a Threadpool, or the first time the
application creates a POA without specifying a Threadpool (in which case the
General Threadpool is created so that it can be used.) Garbage Collection Threads
have thread names of the form VISGC<N>, where <N> corresponds to the Threadpool
Id of the threadpool they are associated with.

If the application does not configure the priority of these threads they all default to
running at the highest RTCORBA::Priority in the installed priority mapping. That is the
priority that is returned by the Priority Mapping’s max_priority method. Hence, with the
Default Priority Mapping installed, they will all run at RTCORBA::Priority 31.

There are two ways of configuring the priority of the different types of internal ORB
threads:

– On a per-type basis (and in some cases a per-instance basis), through VisiBroker
properties.

– Collectively, by setting a range limit on ORB internal threads. All the above types of
thread will all then run at the maximum priority in the specified range.

Configuring Individual Internal ORB Thread Priorities
The priority of different types (and in one case, different instances) of internal ORB
threads can be controlled by specifying values for certain of VisiBroker properties.

In all cases, the priority value is specified as a Real-Time CORBA Priority value. The
value must be a valid priority under the installed Priority Mapping:

– vbroker.se.default.socket.listener.priority

Sets the default priority that Listener threads will run at. Can be changed at any
time. The current value at the time of Server Engine creation (which occurs during
POA creation) is the value used for any new Listeners that are created. Can be
overridden, using the next property.

– vbroker.se.<SE name>.scm.<SCM name>.listener.priority

 32: Real-Time CORBA Extensions 433

Where <SE name> is the name of a Server Engine and <SCM name> is the name of a
Server Connection Manager. Sets the priority of the Listener thread associated with
a specific SCM in a specific Server Engine. Can be set at any time prior to the
creation of that Server Engine (which occurs during the creation of the first POA that
uses that Server Engine.)

– vbroker.agent.threadPriority

Sets the priority at which the ORB’s DSUser thread will run. Must be set no later
than the first time that the ORB attempts to communicate with a VisiBroker Smart
Agent (which is typically when a POA is created, an object is activated or a call to a
_bind method is made.)

– vbroker.garbageCollect.thread.priority

Sets the priority of all Garbage Collection threads. Can be changed at any time. The
current value at the time of Threadpool creation is the value used.

Note

In earlier versions of the VisiBroker-RT product, the vbroker.agent.threadPriority
property was called vbroker.dsuser.thread.priority. The name has been changed to
keep it in sync with other VisiBroker Smart Agent property names. However, the old
property name is still supported and you can continue to use it in existing deployments.

Limiting the Internal ORB Thread Priority Range
A range limit is set on internal ORB threads by passing the following argument to
ORB_init: -ORBRTPriorityRange <min>,<max>

-ORBRTPriorityRange is given as one argument, and the two values are given together in
another argument, separated by a comma, as shown in the following example.

// Prepare arguments for ORB_init
int argc = 3;
char * argv[] = { "app_name", "-ORBRTPriorityRange", "10,17" };

// Initialize ORB
CORBA::ORB_ptr = ORB_init(argc, argv);

The two values give the minimum RTCORBA::Priority followed by the maximum
RTCORBA::Priority value that internal ORB threads are permitted to run at. If this
argument is given, the VisiBroker internal ORB threads defaults to running at the
maximum priority that is specified.

If the range is invalid, the ORB_init call fails and raises a CORBA system exception. If
the range is invalid because one or both of the values is not a valid RTCORBA::Priority
value, or because min is greater than max, then a CORBA::BAD_PARAM exception is raised. If
the range is invalid because one or both of the values is outside of the range supported
by the installed Priority Mapping, then a CORBA::DATA_CONVERSION exception is raised.

434 VisiBroker for C++ Developer ’s Guide

 33: CORBA except ions 435

CORBA exceptions
This section provides information about CORBA exceptions that can be thrown by the
VisiBroker ORB, and explains possible causes for VisiBroker throwing them.

CORBA exception descriptions
The following table lists CORBA exceptions, and explains reasons why the VisiBroker
ORB might throw them.

Exception Explanation Possible causes

CORBA::BAD_CONTEXT An invalid context has been
passed to the server.

An operation may raise this exception if a client invokes
the operation, but the passed context does not contain
the context values required by the operation.

CORBA::BAD_INV_ORDER The necessary prerequisite
operations have not been
called prior to the offending
operation request.

An attempt to call theCORBA::Request::get_response()
orCORBA::Request::poll_response() methods may have
occurred prior to actually sending the request. An
attempt to call the exception::get_client_info() method
may have occurred outside of the implementation of a
remote method invocation. This function is only valid
within the implementation of a remote invocation. An
operation was called on the VisiBroker ORB that was
already shut down.

CORBA::BAD_OPERATION An invalid operation has been
performed.

A server throws this exception if a request is received
for an operation that is not defined on that
implementation's interface. Ensure that the client and
server were compiled from the same IDL. The
CORBA::Request::return_value() method throws this
exception if the request was not set to have a return
value. If a return value is expected when making a DII
call, be sure to set the return value type by calling the
CORBA::Request::set_return_type() method.

436 VisiBroker for C++ Developer ’s Guide

CORBA except ion descr ipt ions

CORBA::BAD_PARAM A parameter passed to the
VisiBroker ORB is invalid.

Sequences throw CORBA::BAD_PARAM if an access is
attempted to an invalid index. Make sure you use the
length() method to set the length of the sequence
before storing or retrieving elements of the sequence.

The VisiBroker ORB throws this exception if an invalid
Object_ptr is passed as an in argument; for example, if
a nil reference is passed.

An attempt may have been made to send a NULL pointer
where the IDL to C++ language mapping requires an
initialized C++ object to be sent. For example,
attempting to return NULL as a return value or out
parameter from a method that should be returning a
sequence will throw this exception. In this case a new
sequence (probably of length 0) should be returned
instead. The types which cannot be sent with the C++
NULL value include Any, Context, struct, or sequence.

An attempt may have been made to insert a nil object
reference into an Any.

An attempt was made to send a value that is out of
range for an enumerated data type.

An attempt may have been made to construct a
TypeCode with an invalid kind value.

Using the DII and one way method invocations, an OUT
argument may have been specified. An interface
repository throws this exception if an argument passed
into an IR object's operation conflicts with its existing
settings. See the compiler errors for more information.

CORBA::BAD_QOS Quality of service cannot be
supported.

Can be raised whenever an object cannot support the
quality of service required by an invocation parameter
that has a quality of service semantics associated with
it.

CORBA::BAD_TYPECODE The ORB has encountered a
malformed type code.

CORBA::CODESET_INCOMPATIBLE Communication between
client and server native code
sets fails because the code
sets are incompatible.

The code sets used by the client and server cannot
work together. For instance, the client uses ISO 8859-1
and the server uses the Japanese code set.

CORBA::COMM_FAILURE Communication is lost while
an operation is in progress,
after the request was sent by
the client, but before the reply
has been returned.

An existing connection may have closed due to failure
at the other end of the connection.

Potentially, the operation was invoked.

When COMM_FAILURE occurs due to system exceptions,
the system error number is set in the minor code of the
COMM_FAILURE. Check the minor code against the system-
specific error numbers (for example, in the include/sys/
errno.h or msdev\include\winerror.h files).

CORBA::DATA_CONVERSION The VisiBroker ORB cannot
convert the representation of
marshaled data into its native
representation or vice-versa.

An attempt to marshal Unicode characters
withOutput.write_char() or Output.write_stringfails.

CORBA::FREE_MEM The VisiBroker ORB failed to
free dynamic memory.

The memory segments that the VisiBroker ORB is
trying to free may be locked. The heap could be corrupt.

CORBA::IMP_LIMIT An implementation limit was
exceeded in the VisiBroker
ORB run time.

The VisiBroker ORB may have reached the maximum
number of references it can hold simultaneously in an
address space. The size of the parameter may have
exceeded the allowed maximum. The maximum
number of running clients and servers has been
exceeded.

 (continued)

Exception Explanation Possible causes

 33: CORBA except ions 437

CORBA except ion descr ipt ions

CORBA::INITIALIZE A necessary initialization has
not been performed.

The ORB_init() method may not have been called. All
clients must call the ORB_init() method prior to
performing any VisiBroker ORB-related operations.
This call is typically made immediately upon program
startup at the top of the main routine.

CORBA::INTERNAL An internal VisiBroker ORB
error has occurred.

An internal VisiBroker ORB error may have occurred.
For instance, the internal data structures of the
VisiBroker ORB may have been corrupted.

CORBA::INTF_REPOS An instance of the Interface
Repository could not be
located.

If an object implementation cannot locate an interface
repository during an invocation of the get_interface()
method, this exception will be thrown to the client.
Ensure that an Interface Repository is running, and that
the requested object's interface definition has been
loaded into the Interface Repository.

CORBA::INV_FLAG An invalid flag was passed to
an operation.

A Dynamic Invocation Interface request was created
with an invalid flag.

CORBA::INV_IDENT An IDL identifier is
syntactically invalid.

An identifier passed to the interface repository is not
well formed. An illegal operation name is used with the
Dynamic Invocation Interface.

CORBA::INV_OBJREF An invalid object reference
has been encountered.

The VisiBroker ORB will throw this exception if an
object reference is obtained that contains no usable
profiles. The ORB::string_to_object() method will throw
this exception if the stringified object reference does not
begin with the characters "IOR:".

CORBA::INV_POLICY An invalid policy override has
been encountered.

This exception can be thrown from any invocation. It
can be raised when an invocation cannot be made due
to an incompatibility between policy overrides that apply
to the particular invocation.

CORBA::INVALID_TRANSACTION A request carried an invalid
transaction context.

This exception could be raised if an error occurred
while trying to register a Resource.

CORBA::MARSHAL Error marshalling parameter
or result.

A request or reply from the network is structurally
invalid. This error typically indicates a bug in either the
client-side or server-side run time. For example, if a
reply from the server indicates that the message
contains 1000 bytes, but the actual message is shorter
or longer than 1000 bytes, the VisiBroker ORB raises
this exception. A MARSHAL exception can also be caused
by using the DII or DSI incorrectly. For example, if the
type of the actual parameters sent does not agree with
IDL signature of an operation.

CORBA::NO_IMPLEMENT The requested object could
not be located.

Indicates that even though the operation that was
invoked exists (it has an IDL definition), no
implementation for that operation exists. For example, a
NO_IMPLEMENTATION is raised when a server
doesn't exist or is not running when a client initiates a
bind.

CORBA::NO_MEMORY The VisiBroker ORB runtime
has run out of memory.

CORBA::NO_PERMISSION The caller has insufficient
privileges to complete an
invocation.

The Object::get_implementation() and BOA::dispose()
methods throw this exception if they are called on the
client side. It is only valid to call these methods within
the server that activated the object implementation.

An object other than the transaction originator has
attempted Current::commit() or Current::rollback().

 (continued)

Exception Explanation Possible causes

438 VisiBroker for C++ Developer ’s Guide

CORBA except ion descr ipt ions

CORBA::NO_RESOURCES A necessary resource could
not be acquired.

If a new thread cannot be created, this exception will be
thrown. A server will throw this exception when a
remote client attempts to establish a connection if the
server cannot create a socket—for example, if the
server runs out of file descriptors. The minor code
contains the system error number obtained after the
server's failed ::socket() or ::accept() call. A client will
similarly throw this exception if a ::connect() call fails
due to running out of file descriptors. Running out of
memory may also throw this exception.

CORBA::NO_RESPONSE A client attempts to retrieve
the result of a deferred
synchronous call, but the
response for the request is
not yet available.

If BindOptions are used to set timeouts, this exception
is raised when send and receive calls do not occur
within the specified time.

CORBA::OBJ_ADAPTER An administrative mismatch
has occurred.

A server has attempted to register itself with an
implementation repository under a name that is already
in use, or is unknown to the repository. The POA has
raised an OBJ_ADAPTER error due to problems with the
application's servant managers.

CORBA::OBJECT_NOT_EXIST The requested object does
not exist.

A server throws this exception if an attempt is made to
perform an operation on an implementation that does
not exist within that server. This will be seen by the
client when attempting to invoke operations on
deactivated implementations. For instance, if an
attempt to bind to an object fails, or an auto-rebind fails,
OBJECT_NOT_EXIST will be raised

CORBA::PERSIST_STORE A persistent storage failure
has occurred.

Attempts to establish a connection to a database has
failed, or the database is corrupt.

CORBA::REBIND The client has received an
IOR which conflicts with QOS
policies.

Thrown anytime the client gets an IOR which will
conflict with the QOS policies that have been set. If the
Rebind Policy has a value of NO_REBIND,NO_CONNECT, or
VB_NOTIFY_REBIND and an invocation on a bound object
reference results in an object forward or a location
forward message.

CORBA::TIMEOUT The VisiBroker ORB timed
out an operation

When attempting to establish a connection or waiting
for a request/reply, if the operation does not complete
before the specified time, a TIMEOUT exception is
thrown. CORBA::TIMEOUT has the following minor codes:

■ 0x56420001: connection timed out (could not
connect within the connection timeout)

■ 0x56420002: request timed out (could not send the
request within the timeout specified)

■ 0x56420003: Reply timed out (the reply was not
received within the round trip timeout specified)

CORBA::TRANSACTION_REQUIRED The request has a null
transaction context, and an
active transaction is required.

A method was invoked that must execute as part of a
transaction, but no transaction was active on the client
thread.

CORBA::TRANSACTION_ROLLEDBACK The transaction associated
with a request has already
been rolled back, or marked
for roll back.

A requested operation could not be performed because
the transaction has already been marked for rollback.

CORBA::TRANSACTION_MODE Raised by the VisiBroker
ORB, when it detects a
mismatch between the
TransactionPolicy in the IOR
and the current transaction
mode.

 (continued)

Exception Explanation Possible causes

 33: CORBA except ions 439

CORBA except ion descr ipt ions

CORBA::TRANSACTION_UNAVAILABLE Raised by the VisiBroker
ORB, when it cannot process
a transaction service context
because its connection to the
Transaction Service has
been abnormally terminated.

CORBA::TRANSIENT An error has occurred, but
the VisiBroker ORB believes
it is possible to retry the
operation.

A communications failure may have occurred and the
VisiBroker ORB is signalling that an attempt should be
made to rebind to the server with which communi-
cations have failed. This exception will not occur if the
BindOptions are set to false with the enable_rebind()
method, or the RebindPolicy is properly set.

A new connection request may have failed due to
resource limits on the client or server machine (the
maximum number of connections has been reached).
When TRANSIENT exceptions occur due to system
exceptions, the system error number is set in the minor
code of the COMM_FAILURE. Check the minor code against
the system-specific error numbers (for example, in the
include/sys/errno.h or msdev\include\winerror.h files).

CORBA::UNKNOWN The VisiBroker ORB could
not determine the thrown
exception.

The server throws something other than a correct
exception, such as a Java runtime exception. There is
an IDL mismatch between the server and the client, and
the exception is not defined in the client program. In DII,
if the server throws an exception not known to the client
at the time of compilation and the client did not specify
an exception list for the CORBA::Request. Set the property
vbroker.orb.warn=2 on the server to see which runtime
exception caused the problem.

CORBA::UnknownUser A user exception has been
received, but the client has
no compile-time knowledge
of that exception.

When a client reads in a user exception from a server, it
will generate this exception if it has no compile-time
knowledge of the exception type. The client can see the
type of the exception, and is given the marshalled
buffer containing the contents of the exception. The
VisiBroker ORB has no way to unmarshal the exception
on its own.

 (continued)

Exception Explanation Possible causes

Table 33.1

System exception Minor code Explanation

BAD_PARAM 1 Failure to register, unregister, or lookup the value factory

BAD_PARAM 2 RID already defined in the interface repository

BAD_PARAM 3 Name already used in the context in the interface repository

BAD_PARAM 4 Target is not a valid container

BAD_PARAM 5 Name clash in inherited context

BAD_PARAM 6 Incorrect type for abstract interface

MARSHAL 1 Unable to locate value factory

NO_IMPLEMENT 1 Missing local value implementation

NO_IMPLEMENT 2 Incompatible value implementation version

BAD_INV_ORDER 1 Dependency exists in the interface repository preventing the
destruction of the object

BAD_INV_ORDER 2 Attempt to destroy indestructible objects in the interface
repository

BAD_INV_ORDER 3 Operation would deadlock

BAD_INV_ORDER 4 VisiBroker ORB has shut down

OBJECT_NOT_EXIST 1 Attempt to pass a deactivated (unregistered) value as an
object reference

440 VisiBroker for C++ Developer ’s Guide

Heurist ic OMG-speci f ied except ions

Heuristic OMG-specified exceptions
A heuristic decision is a unilateral decision made by a participant in a transaction to
commit or rollback updates without first obtaining the consensus outcome determined
by the VisiTransact Transaction Service. See “Transaction completion” for more
information about heuristics.

The following table lists heuristic exceptions as defined by the OMG CORBAservices
specification, and explains reasons why they might be thrown.

Other OMG-specified exceptions
The following table lists other exceptions as defined by the OMG CORBAservices
specification, and explains reasons why the VisiTransact Transaction Service might
throw them. For more information about, see “Overview of transaction processing.”

Exception Description Possible causes

CosTransactions::
HeuristicCommit

A heuristic decision was
made and all relevant
updates have been
committed by the
Resource.

The VisiTransact Transaction Service invoked
rollback() on a Resource object that already
made a heuristic decision to commit its work.
The Resource raises the HeuristicCommit
exception to indicate its state to the
VisiTransact Transaction Service.

CosTransactions::
HeuristicHazard

A Resource may or may
not have made a heuristic
decision, and does not
know if all relevant
updates have been made.
For updates that are
known, all have been
committed or rolled back.
This exception takes
priority over
HeuristicMixed.

The VisiTransact Transaction Service invokes
commit() or rollback() on a Resource object
that may or may not have made a heuristic
decision.

The Resource raises this exception to
indicate to the VisiTransact Transaction
Service that its own state is not entirely
known. The VisiTransact Transaction Service
returns this exception to the application if it
does not know if all Resources have made
updates.

CosTransactions::
HeuristicMixed

A heuristic decision was
made, and some relevant
updates have been
committed, and others
have been rolled back.

The VisiTransact Transaction Service invokes
commit() or rollback() on a Resource object
that has made a heuristic decision, but not
made all the relevant updates.

The Resource raises this exception to
indicate to the VisiTransact Transaction
Service that its state is not entirely consistent.
The VisiTransact Transaction Service returns
this exception to the application if it receives
mixed responses from Resources.

CosTransactions::
HeuristicRollback

A heuristic decision was
made and all relevant
updates have been rolled
back by the Resource.

The VisiTransact Transaction Service invokes
commit() on a Resource object that has made
a heuristic decision to rollback its work. The
Resource raises the HeuristicRollback
exception to indicate its state to the
VisiTransact Transaction Service.

Exception Description Possible causes

CosTransactions::
Inactive

The transaction has
already been prepared or
terminated.

This exception could be raised if
register_synchronization() is invoked
after the transaction has already
been prepared.

CosTransactions::
InvalidControl

An invalid Control has
been passed.

This exception is raised when
resume() is invoked and the
parameter is not a null object
reference, and is also not valid in the
current execution environment.

 33: CORBA except ions 441

Other OMG-speci f ied except ions

CosTransactions::
NotPrepared

A Resource has not been
prepared.

An invocation of replay_completion()
or commit() on a Resource that has
not yet prepared will result in this
exception.

CosTransactions::
NoTransaction

No transaction is
associated with the client
thread.

The commit(), rollback(), or
rollback_only() methods may raise
this exception if there is no
transaction associated with the client
thread at invocation.

CosTransactions::
NotSubtransaction

The current transaction is
not a subtransaction.

This exception is not raised by
VisiTransact Transaction Manager
since nested transactions are not
supported. The NoTransaction
exception is raised instead.

CosTransactions::
SubtransactionsUnavailable

The client thread already
has an associated
transaction. The
VisiTransact Transaction
Service does not support
nested transactions.

A subsequent begin() invocation was
performed after a transaction was
already begun. If your transactional
object needs to operate within a
transaction, it must first check to see
if a transaction has already begun
before invoking begin().

The create_subtransaction() method
was invoked, but VisiTransact
Transaction Manager does not
support subtransactions.

CosTransactions::
SynchronizationUnavailable

The Coordinator does not
support Synchronization
objects.

This exception is not raised by
VisiTransact Transaction Manager
since Synchronization objects are
supported.

CosTransactions::
Unavailable

The requested object
cannot be provided.

The Control object cannot provide
the Terminator or Coordinator
objects when
Control::get_terminator() or
Control::get_coordinator() are
invoked.

The VisiTransact Transaction
Service restricts the availability of
the PropagationContext, and will not
return it upon an invocation of
Coordinator::get_txcontext().

CORBA::
WrongTransaction

Raised by the ORB when
returning the response to
a deferred synchronous
request. This exception
can only be raised if the
request is implicitly
associated with the
current transaction at the
time the request was
issued.

The get_response() and
get_next_response() methods may
raise this exception if the transaction
associated with the request is not
the same as the transaction
associated with the invoking thread.

Exception Description Possible causes

442 VisiBroker for C++ Developer ’s Guide

Other OMG-speci f ied except ions

 34: Vis iBroker Pluggable Transport Interface 443

VisiBroker Pluggable Transport
Interface
VisiBroker for C++ provides a Pluggable Transport Interface, to support the use of
transport protocols besides the ones inbuilt in the ORB for the transmission of CORBA
invocations. The Interface supports the ‘plugging in’ of multiple transport protocols
simultaneously, and is designed to provide a common interface that is suitable for use
with a wide variety of transport types. The interface uses CORBA standard classes
wherever possible, but is itself VisiBroker proprietary.

Pluggable Transport Interface Files
The VisiBroker Pluggable Transport Interface is delivered as a library and a supporting
header file:

– binpluggable<bitmode>_<p>r_<version>.dll on Windows

– lib/libpluggable<bitmode>_<p>r.so.<version> on Solaris and Linux

– lib/libpluggable<bitmode>_<p>r.sl.<version> on HP–UX

– lib/libpluggable<bitmode>_<p>r.a.<version> on AIX

– The header file vptrans.h can be found in the include directory

where bitmode is 64 on 64 bit platforms, “p” refers to the standard C++ version, and
“version” refers to the version of VisiBroker. The APIs of the library are exposed
through the vptrans.h header file.

Transport Layer Requirements
Any transport protocol plugged in to VisiBroker via the Pluggable Transport Interface
will be used by the ORB to send and receive messages encoded using the standard
GIOP protocol that is defined as part of the CORBA specification.

GIOP makes certain assumptions about the transport layer used to exchange these
messages. The same assumptions have been used in the design of the Pluggable
Transport Interface. Therefore, the user code that interfaces a specific transport to the
ORB must ‘mask’ any differences between these requirements and the actual behavior
of the transport.

444 VisiBroker for C++ Developer ’s Guide

User-Provided Code Required for a Protocol Plugin

The Pluggable Transport Interface assumes:

– A reliable, bi-directional data exchange channel (connection) is used to send data
‘point-to-point’ between a single server endpoint of the transport and a single client
endpoint of the transport. Thus it is assumed that any reply message from a server
may be reliably received by examining a connection endpoint after a request was
sent via that connection. (This does not preclude the ORB from using the same
connection to multiplex client requests to the same server.)

– Data sent through the transport is (in principle) unlimited in size and can be viewed
as a continuous stream of bytes. All packaging of data and issues related to flow
control, package reassembly, and error handling must be hidden.

– Connections can be dynamically opened and closed at the request of the client. The
request to open a connection is made on a specific endpoint, which the client obtains
from the IOR generated by the server. Note that the connection request message is
not part of the GIOP protocol, but resides in the scope of the pluggable transport
connection management and must be handled by the transport specific code.

– A server connection endpoint is described in a way that can be stored in an IOR as
specified in the CORBA specification. Such an endpoint must be unique in the
transport’s addressing scheme and it must be usable at any time to contact the
server. Conversion functions must be provided to create a CDR compliant
representation of the endpoint address, so it can be used as part of a Profile in an
IOR.

User-Provided Code Required for a Protocol Plugin
Three main classes must be implemented by the user for each transport protocol that is
to be plugged in to the ORB via the Pluggable Transport Interface:

1 Connection Class—Provides the means to write and read data from the transport
layer, associating the data with a particular ‘connection’ between a client and a
server. The use of the concept of a ‘connection’ does not mean that the physical
transport layer used must support connection oriented IO, however the user code
must present such a view to the Pluggable Transport Interface and provide all the
related functionality described below.

2 Listener Class—Represents a server-side ‘endpoint’ of the transport. It receives
client requests to create a ‘connection’ instance, handles the dynamic opening and
closing of such connections, and initiates the ‘dispatch’ of incoming client requests
through open connections.

3 Profile Class—Enables the description of the server-side endpoint information of
Listener instances in a way that is ‘portable’, meaning it can be included in an IOR
as defined in the CORBA specification, and thus can exchanged with other ORBs
using GIOP or other suitable protocols.

Additionally, the Pluggable Transport Interface uses a “Factory” pattern to manage the
instantiation each of these classes. Therefore three Factory classes must be provided,
each creating instances of one of the above classes.

A transport protocol is initialized by instantiating the three Factory classes and
registering them with the ORB via the Pluggable Protocol Interface. Calling a static
function of the Pluggable Protocol Interface during the system initialization stage,
before starting any CORBA server or client code, performs the registration.

Unique Profile ID Tag
Each plugged in transport is required to have a unique 4 byte Profile ID tag, to
distinguish it from other protocols. Profile ID tags are managed by the OMG. Borland
has a range of Profile ID tags registered with the OMG, and four of these tags are
available for use by protocol plugins:

 34: Vis iBroker Pluggable Transport Interface 445

Example Code

1 0x48454901 (“HEI\001”)

2 0x48454902 (“HEI\002”)

3 0x48454903 (“HEI\003”)

4 0x48454904 (“HEI\004”)

One of these tags should be used rather than a randomly chosen value, to avoid
conflict with any third-party CORBA-based products.

Note, however, that there will still be the possibility of conflict, if the system that uses
the protocol plugin is integrated with other systems based on VisiBroker for C++ that
happen to contain a protocol plugin that choose the same Profile ID tag. This could
occur either when different sub-systems, developed independently within the same
organization, are integrated, or if the final system is required to interoperate with
another CORBA-based system developed by another organization.

If either of the above scenarios is a serious possibility, a reserved number should be
obtained from the OMG. See the OMG FAQ on CORBA tags, available at ftp://
ftp.omg.org/pub/docs/ptc/99–02–01.txt, for details. The minimum number of tags
required should be reserved, bearing in mind that a set of tags may normally only be
reserved once per year. It is recommended that the numbers only be reserved as the
developed system nears deployment.

Example Code
Two examples are provided in the examples/pluggable directory that illustrates how a
plug-in transport could be implemented and how it could be used by a CORBA
application. The example makes use of TCP/IP as transport to lay emphasis on the
interface itself rather than to explain the intricacies of a transport layer.

Implementing a New Transport
The following interfaces, exposed in the vptrans.h header file, need to be implemented.

VISPTransConnection and VISPTransConnectionFactory

This class represents a single connection between a server and a client. Whenever a
program reads or writes to it, that data will be received or sent to one single peer
endpoint on the remote side. When a client wants to send a request to a server, the
ORB will look for a valid connection to that server and create one, if it does not exist,
yet. The remote endpoint of the connection is setup using the given Profile of the
server and communicating with the Listener (see “Listener Class” below) on the server
side. Besides general status information, this class also must either (a) provide a
method to wait for data coming through the connection, that times out after a given
number of seconds, or (b) use the ‘Pluggable Transport Bridge’ class to perform that
function by signalling incoming data to the Bridge when it is available.

The Factory class is used to create instances of the plug-in connection and needs to be
registered with a registrar using the static VISPTransRegistrar::addTransport API.

class _VBPTEXPORT VISPTransConnection {
public:
...

// send data to remote peer
virtual void write(CORBA::Boolean _isFirst, const char* _data,
CORBA::ULong_offset,
CORBA::ULong _length, CORBA::ULongLong _timeout) = 0;

// read data sent from the connection from remote peer
virtual void read(CORBA::Boolean _isFirst,
char* _data, CORBA::ULong _offset,

446 VisiBroker for C++ Developer ’s Guide

Implement ing a New Transport

CORBA::ULong _length,
CORBA::ULongLong _timeout) = 0;

// helpful for buffering transport to flush data immediately
virtual void flush() = 0;

// orderly close of the connection
virtual void close() = 0;

// communicate with remote peer listener to set up a new connection
virtual void connect(CORBA::ULongLong _timeout) = 0;

// should return unique Id (for this transport) for each connection instance
virtual CORBA::Long id() = 0;

// should return true if remote peer is still connected
virtual CORBA::Boolean isConnected() = 0;

// should return true if data is ready to be read
virtual CORBA::Boolean isDataAvailable() = 0;

// should return true if the transport can be used on reverse client-server
setup

virtual CORBA::Boolean no_callback() = 0;

// should return true if transport cannot wait for next message. This
makes the ORB

// use the bridge for timing out while waiting for next message
virtual CORBA::Boolean isBridgeSignalling() = 0;

// blocks till data arrives or timeout. Should return true if data is available
virtual CORBA::Boolean waitNextMessage(CORBA::ULong _timeout) = 0;

// Should return a copy of the profile describing the peer endpoint
virtual IOP::ProfileValue_ptr getPeerProfile() = 0;

// input peer profile telling the connection regarding its peer.
Used while connecting

virtual void setupProfile(const char* prefix, VISPTransProfileBase_ptr peer)
= 0;

};

class _VBPTEXPORT VISPTransConnectionFactory {
public:
...

// should return a new connection instance and return pointer to it
virtual VISPTransConnection_ptr create(const char* prefix) = 0;

};

VISPTransListener and VISPTransListenerFactory

This class is used on the server-side code to wait for incoming connections and
requests from clients. New connections and requests on existing connections are
signalled to the ORB via the Pluggable Transport Interface’s Bridge class (see
“Transport Bridge Class”, below).

Instances of this class are created each time a Server Engine is created that includes
Server Connection Managers (‘SCMs’) that specify the particular transport protocol.
One instance is created per SCM instance that specifies the protocol.

When a request is received on an existing connection, the connection goes through a
‘Dispatch Cycle’. The Dispatch Cycle starts when the connection delivers data to the
transport layer. In this initial state, the arrival of this data must be signalled to the ORB
via the Bridge (see “Transport Bridge Class”, below) and then the Listener ignores the
connection until the Dispatch process is completed (in the mean time, the connection is
said to be in the ‘dispatch state’). The connection is returned to the initial state when
the ORB makes a call to the Listener’s completedData() method. During the dispatch

 34: Vis iBroker Pluggable Transport Interface 447

Implement ing a New Transport

state the ORB will read directly from the connection until all requests are exhausted,
avoiding any overhead incurred by the Bridge-Listener communication.

In most cases, the transport layer uses blocking calls that wait for new connections. In
order to handle this situation, the Listener should be made a subclass of the class
VISThread and start a separate thread of execution that can be blocked without
holding up the whole ORB.

The factory instance as with the connection should return instances of the implemented
plug-in listener and should be registered using VISPTransRegistrar::addTransportAPI.

class _VBPTEXPORT VISPTransListener {
public:
...

// Called by ORB to establish link to the bridge, so that listener-ORB
// communication can occur
virtual void setBridge(VISPTransBridge* up) = 0;

// Should return a profile describing the listener endpoint
virtual IOP::ProfileValue_ptr getListenerProfile() = 0;

// Called when the ORB has completed reading a request for the given id
// and wants the listener to once again signal via the bridge on any

new requests.
virtual void completedData(CORBA::Long id) = 0;

// Should return true if connection with given id has data ready to be read

virtual CORBA::Boolean isDataAvailable(CORBA::Long id) = 0;

// Called when the listener needs to tear down the endpoint and close
all related

// active connections.
virtual void destroy() = 0;

};

class _VBPTEXPORT VISPTransListenerFactory {
public:
...

// Makes an new instance of the listener and should return pointer to it
virtual VISPTransListener_ptr create(const char* propPrefix) = 0;

};

VISPTransProfileBase and VISPTransProfileFactory

This class provides the functionality to convert between a transport-specific endpoint
description and an IOP based IOR that can be exchanged with other CORBA
implementations. It is also used during the process of binding a client to a server, by
passing a ProfileValue to a ‘parsing’ function that has to return TRUE or FALSE,
depending on whether an IOR usable for this transport was found inside of it.

An instance of this class is frequently passed to functions via a pointer to its base class
type. In order to support safe runtime down casting with any C++ compiler, a
‘_downcast’ function must be provided that can test if the cast is legal or not.

Additional classes—VISPTransBridge and VISPTransRegistrar

Two additional classes are provided by the Pluggable Transport Interface, that the
user-provided transport plugin code will make calls to.

VISPTransBridge is a generic interface between the ORB and the transport plug-in to
communicate various events. Some of the communications are:

1 Communicate to the ORB about a new connection request

2 Communicate to the ORB about new input data

448 VisiBroker for C++ Developer ’s Guide

Implement ing a New Transport

3 Communicate to the ORB about peer connection closure

Class _VBPTEXPORT VISPTransBridge {
public:

// Tell ORB about a new connection request passing the connection pointer
// Returns true if the ORB has accepted the connection, else false
virtual CORBA::Boolean addInput(VISPTransConnection_ptr con);

// Tell ORB of a new request on a connection. Typically this will start off the
// dispatch cycle
virtual void signalDataAvailable(CORBA::Long conId);

// Tell the ORB that the connection was closed by the remote peer.
virtual void closedByPeer(CORBA::Long conId)=0;

VISPTransRegistrar is the class that must be used to register a new transport with the
ORB. The string given during registration is used as identifier of this transport and must
be unique in the scope of that ORB. It will also be used in the prefix string of properties
related to this transport.

class _VBPTEXPORT VISPTransRegistrar {
public:
// register the transport identifier string and the three factories used

to specific instances
// of this new transport
static void addTransport(const char* protocolName,

VISPTransConnectionFactory* connFac,
 VISPTransListenerFactory* listFac,

VISPTransProfileFactory* profFac);

};

 34: Vis iBroker Pluggable Transport Interface 449

Implement ing a New Transport

450 VisiBroker for C++ Developer ’s Guide

 35: Vis iBroker Logging 451

VisiBroker Logging
VisiBroker for C++ provides a logging mechanism, which allows applications to log
messages and have them directed, via configurable logging forwarders called
appenders, to appropriate destination or destinations. The ORB and all its services
themselves use this mechanism for the output of any error, warning or informational
messages. By using this feature, the application can choose to log its and the ORB’s
messages to the same destination, producing a single message log for the entire
system, or to log messages from different sources to independent destinations. Filters
and layouts give additional capability for filtering and formatting the log messages.

Please note that this logging mechanism is different from the OMG’s Telecom Logging
Service (VisiTelcoLog). This is a lightweight C++ only logging library, which the ORB
and its services including VisiTelcoLog use to log internal messages. The entire
logging framework and the inbuilt appenders and layouts are in a shared library named
vdlog<bitmode>_<p>r_<version>.dll on Windows, libvdlog<bitmode>_r.so.<version>
on Solaris and Linux, libvdlog<bitmode>_<p>r.sl.<version> on HPUX and
libvdlog<bitmode>_<p>r.a.<version> on AIX. Here “p” is for Standard C++ libraries,
bitmode is “64” for 64 bit platforms, and version is the version of VisiBroker. The APIs
of the library are exposed in vdlog.h header file.

Logging Overview
Logging in VisiBroker employs one or more Logger objects, that applications (including
the ORB) may log messages to. ORB and all its C++ services use a special Logger
instance (the ‘Default Logger’ with the name “default”), which is created automatically
the first time the ORB logs a message. Applications can log messages to the Default
Logger as well, to integrate their logging output with that of the ORB, or they can create
one or more other Loggers, to log messages independently as said earlier.

A Logger in the framework can have one or more appenders associated with them to
which all the log messages are sequentially forwarded and each appender inturn is
responsible to output to desired destinations such as standard error, a file, over a
network, an OMG Telecom Logging Service log etc. The figure below explains how a

452 VisiBroker for C++ Developer ’s Guide

Logging Overview

logger is associated with three appenders named A1, A2 and A3 where each appender
is of a different type forwarding the logs to different types of destinations.

Along with forwarding the message, an appender may optionally choose to use a
configured layout to format the log before outputting. Here, appenders A1 and A3 are
using layouts L1 and L3. With no explicit configuration, by default, a logger logs to an
appender of type “stdout” using a layout instance of type “simple”.

The logger has another feature to allow it to filter the log messages. Prior to sending
the log message to the list of appenders, the logger processes the message for its
source name and log level using a filter and based on the outcome, does the logger
decide whether to forward to the appenders or discard the message. By changing the
settings of the allowable source names and their log levels, high filtering fidelity can be
achieved.

In this chapter, the following topics will be covered:

– Logger manager

– Logging

– Filtering

– Custom appenders and layouts

– Configuration

 35: Vis iBroker Logging 453

Logger Manager

Logger Manager
Logger Manager is the starting point for using the functionality provided by the logger
framework and one of the main functionality of the Logger Manager is to manage the
lifecycle of Loggers. The Logger Manager is a singleton object and a reference to it is
obtained by calling its static instance method. No reference counting is performed upon
the Logger Manager. The code snippet below explains how the static instance function
can be used to access the singleton logger manager object.

// Use static instance function to obtain Logger Manager reference
VISLoggerManager_ptr logger_manager = VISLoggerManager::instance();
VISLogger_ptr logger = logger_manager->get_default_logger();
...
// Alternatively, the Logger Manager reference may be obtained each time it
// is used. Here, for example, when calling its get_default_logger method
VISLogger_ptr logger = VISLoggerManager::instance()->get_default_logger();

Apart from giving access to the loggers, this singleton is also responsible for being a
registrar for the custom appender and layout factories. It is also responsible for
providing and configuring the global enabling switch and the verbosity level.

Logging
As mentioned earlier applications can make use of the logging interface to log
messages either using the default logger or a separate logger. All log messages to a
single logger are bound to a common set of destinations and by using multiple loggers
for logging, messages from different components could be output to various
independent end points.

In the code snippet below, the server application is using the default logger to log its
application specific messages. It is using the source name “bankagentserver” to
identify its log messages from server code and “bankagentimpl” from the
implementation code. Source names can be a very helpful tool for modularization and
proves its worth during the filter configuration stages.

#define MYLOG(LVL, COMP, MESG) \
 if (VISDLoggerMgr::instance()->global_log_enabled()) { \

 VISDLoggerMgr::instance()->get_default_logger()->log(\
 LVL, COMP, MESG \
 , __FILE__, __LINE__ \
); \

 }

#define MYLOGDBG(COMP, MESG) \
 MYLOG(VISDLogLevel::DEBUG_, COMP, MESG)

#define MYLOGINF(COMP, MESG) \
 MYLOG(VISDLogLevel::INFO_, COMP, MESG)

#define BAS "bankagentserver"
#define BAS_LOGDBG(MESG) MYLOGDBG(BAS,MESG)
#define BAS_LOGINF(MESG) MYLOGINF(BAS,MESG)

#define BAI "bankagentimpl"
#define BAI_LOGDBG(MESG) MYLOGDBG(BAI,MESG)
#define BAI_LOGINF(MESG) MYLOGINF(BAI,MESG)

int main(int argc, char* const* argv)
{
 BAS_LOGINF("Bank agent server start");
 try {
 BAS_LOGINF("Initializing ORB");
 // Initialize the ORB.

454 VisiBroker for C++ Developer ’s Guide

Fi l ter ing

 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 BAS_LOGINF("Resolving Initial reference to Root POA");
 // get a reference to the root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");

...
}

Alternatively, the application could have chosen to use a logger specific for it’s logging
by changing the macro MYLOG as follows:

#define MYLOG(LVL, COMP, MESG) \
 if (VISDLoggerMgr::instance()->global_log_enabled()) { \

 VISDLoggerMgr::instance()->get_logger(“mylogger”)->log(\
 LVL, COMP, MESG \
 , __FILE__, __LINE__ \
); \

 }

All the log messages from the source “bankagentserver” and “bankagentimpl” will then
be directed to “mylogger” logger and its configured appenders. The log messages
coming from the ORB will go to the appenders configured on the default logger.

Filtering
During trouble shooting exercises sometimes it is very useful to filter out log messages
from particular modules or source names or change their verbosity. The logger
framework provides a powerful yet simple means to have a sophisticated filtering
mechanism using the logger filters. The filter in each logger considers two components
of a logged message based on which a message is forwarded to the appenders. Each
log message has information regarding its source of logging and its log level. The filter
uses this information and following the logic below, recommends forwarding:

If source name is registered with the filter
If source name is enabled
If log’s log level is greater than or equal to source’s log level
Forward
Else
Reject
Else
Reject
Else If the source name “all” is enabled
If the log’s log level is greater than or equal to the global log level
(on the log manager) setting
Forward
Else
Reject
Else
Reject

“all” is a special source name indicating all the sources that have not been registered
with the filter.

The ORB has modularized itself using the following source names:

– connection – logs from the connection related source areas such as server side
connection, client side connection, connection pool etc.

– client – logs from client side invocation path

– agent – logs for Osagent communication

– cdr – logs for GIOP areas

 35: Vis iBroker Logging 455

Reserved names

– se – logs from the server engine, such as dispatcher, listener etc

– server – logs from server side invocation path

– orb – log outputs from the ORB.

Each of the services have also modularized their components and used appropriate
source names.

Some examples given below illustrate how some filtering objectives can be achieved.
For more information about the properties, see the configuration section below.

The following properties enable logging and set the global verbosity level to info. Any
log messages with lower level are filtered out.

vbroker.log.enable=true
vbroker.log.logLevel=info

The following properties enable logging and only turns off the log messages from the
component that performs osagent communication. All other messages are logged.

vbroker.log.enable=true
vbroker.log.default.filter.register=agent
vroker.log.default.filter.agent.enable=false

The following set of properties enable logging and allow all log messages but for
messages from the component that performs osagent communication with verbosity
lower than info.

vbroker.log.enable=true
vbroker.log.default.filter.register=agent
vbroker.log.default.filter.agent.enable=true
vbroker.log.default.filter.agent.logLevel=info

The following set of properties enable logging and allow only the logs from osagent
communication component whose verbosity is either greater or equal to info. All other
log messages are filtered out.

vbroker.log.enable=true
vbroker.log.default.filter.register=agent
vbroker.log.default.filter.agent.enable=true
vbroker.log.default.filter.agent.logLevel=info
vbroker.log.default.filter.all.enable=false

Reserved names
The following names are reserved and cannot be used for naming loggers, appender
and layout types, appender instances or source names – “default”, “appender”,
“appenders”, “layout”, filter”, “simple”, “full”, “xml”, “stdout”, “rolling”, “all” and any name
starting with “v”. Behavior is indeterminate if such strings are used.

Customization
If the built in appenders and layouts are not sufficient, then custom objects can be
implemented and provided in shared library and the logger framework made to load
them at runtime.

To do this, the following steps need to be performed.

1 VISDAppenderFactory and VISDAppender interfaces implemented in a shared
library or DLL.

2 A global instance of the implemented factory should register with the logger
manager using register_app_factory in its constructor

3 Using the property configuration as described below, the logger framework can be
then made to load the library and use this custom factory and its appenders.

Similar steps could be also performed for custom layouts.

456 VisiBroker for C++ Developer ’s Guide

Customizat ion

For example, if an application wanted to use its own appender that logged to the
console, using a custom layout that just printed the log message and omitted all other
details, first the appender and layout interface need to be implemented as described
below.

The following code snippet shows the classes that implement the appender factory and
the appender.

class StdOutAppFactory : public VISDAppenderFactory {
public:
 // Constructor
 StdOutAppFactory() {
// register when the global instance object is created
VISDLoggerMgr::instance()->register_app_factory(this);

 }
 ...
 // unique appender type name for this custom appender
 virtual const char* type_name() { return “mystdout”; }
 // API that the framework will call when it needs an appender
 // instance of this type
 virtual VISDAppender_ptr create(const char* logger_name,
VISDConfig::LogAppenderConfig_ptr p);

 // API that the framework will call when it needs to destroy
 // an appender instance created by this factory
 virtual void destroy(VISDAppender_ptr app);
 // global instance object that gets created when the library
 // or DLL gets loaded
 static StdOutAppFactory _instance;

};
class StdOutApp : public VISDAppender {
public:
 ...
 // should return TRUE if the appender is using ORB features else FALSE.
 // Since this appender type does not need any ORB feature
 // it returns FALSE
 virtual CORBA::Boolean ORB_initialized(void* orb_ptr);
 // After shutdown notification, ORB features should not be used
 virtual void ORB_shutdown();
 // actual append implementation. Should return TRUE is append
 // operation is successful
 virtual CORBA::Boolean append(const VISDLogRecord& record);
 ...

};

The following code snippet similarly explains an implementation for a custom layout.

class SimpleLayoutFactory : public VISDLayoutFactory {
public:
 // Constructor
 SimpleLayoutFactory() {

 // register when the global instance object is created
 VISDLoggerMgr::instance()->register_lyt_factory(this);

 }
 // unique type name for this layout
 virtual const char* type_name() { return “mysimple”; }
 // logger framework will call this API when it desires a layout instance
 // of this type
 virtual VISDLayout_ptr create(const char* logger_name,
VISDConfig::LogAppenderConfig_ptrp);

 // calls this API when a layout instance created by this factory
 // is to be destroyed
 virtual void destroy(VISDLayout_ptr layout);
 // global instance object that gets created when the library

 35: Vis iBroker Logging 457

Configurat ion

 // or DLL gets loaded
 static SimpleLayoutFactory _instance;
 ...

};
class SimpleLayout : public VISDLayout {
public:
 ...
 // API that will be called by an appender using this layout to format
 // the message
 virtual void format(const VISDLogRecord& record,

 char* buf,
 CORBA::ULong buf_size,
 CORBA::String_var& other_buf);

...
};

If the above was built into a library say Custom.dll (or libCutom.so), then by using the
following properties, the framework could be made to use this:

vbroker.log.enable=true

Define the appender and layout types for the framework to use
vbroker.log.appender.register=”mystdout”
vbroker.log.appender.mystdout.sharedLib=Custom.dll (or libCustom.so)
vbroker.log.layout.register=”mysimple”
vbroker.log.layout.mysimple.sharedLib=Custom.dll (or libCustom.so)

Attach an instance of the above custom types on the default logger
vbroker.log.default.appenders=app1
vbroker.log.default.appender.app1.appenderType=mystdout
vbroker.log.default.appender.app1.layoutType=mysimple

At runtime, when the default logger is first accessed, the framework will read the
configuration information, will identify that the appenders needed for the default logger
are in a shared library, will try to load the shared library assuming that the custom
objects contained within would have registered themselves with the logger manager
using the register_<>_factory APIs and assemble the logger.

Configuration
All the composition of the logger framework setup is done through configuration and
using a runtime property based mechanism; the following aspects can be configured –

1 Global switch on the logger manager indicating whether the logger framework is
enabled and global log message verbosity

2 Custom appender and layout factory registration

3 Appender settings on loggers and the individual appender instance configuration on
each logger

4 Filter settings on the logger for filtering and to have finer control on the verbosity

Log manager configuration

vbroker.log.enable={true|false}

Setting the above property enables or disables the logger manager. The values input
are “true” or “false” and by default the value is “false”

vbroker.log.logLevel={emerg|alert|crit|err|warning|notice|info|debug}

Setting the above property sets the global coarse-grained verbosity setting for the
logger framework. This setting however can be refined for further control by configuring
the filter on the logger. By default, the value chosen is debug.

458 VisiBroker for C++ Developer ’s Guide

Conf igurat ion

Though there are totally 8 log levels, the ORB and all its services use only the following
four:

– debug—Lowest level; Specifies fine-grained informational events that are most
useful to debug an application for the developers; Similar to an offline debugger, For
example, parameter or argument values, contents of a complex data structure like
the marshalling buffer, peek on a certain memory contents like the message on the
connection wire, etc.

– info—Specifies informational messages that highlight the progress of the application
at coarse-grained level; These are general tracing statements. It gives a linear view
of how objects are created/destroyed, the flow of various calling and called functions,
how certain actions are carried out, and how different components interact together.

– err—Specifies error events that might still allow the application to continue running.;
These are scenarios where an error condition was detected, but corrective action
could be taken and progress continued.; Log statements in exception handlers can
have this log level.

– emerg—Highest level; Designates very severe error events that will presumably lead
the application to abort.; These are scenarios where ORB cannot proceed with the
functional requirements and no corrective actions can be taken which lead to
undefined behavior.

Appender and layout registration configuration

vbroker.log.appender.register=<comma separated list of appender type names>
vbroker.log.appender.<at>.sharedLib=< shared library file >
vbroker.log.layout.register=<comma separated list of layout type names>
vbroker.log.layout.<lt>.sharedLib=<shared library file>

Using the above properties, custom appender and layout type names and their
implementation location in shared libraries and DLLs can be made known to the logger
framework. Here, “at” and “lt” are names of appender and layout types respectively
which are among the comma separated type names being introduced.

Setting appenders and layouts on loggers

vbroker.log.<ln>.appenders=<comma separated list of app instance names>
vbroker.log.<ln>.appender.<an>.appenderType=<at>
vbroker.log.<ln>.appender.<an>.layoutType=<lt>

To configure appender instances on the loggers, the above set of properties can be
used. “ln”, here denotes the logger name. Using the first two properties, the logger
framework is instructed on all the appender instance names associated with the logger
and their types. If an appender type is not inbuilt, then the shared libraries as explained
in the previous set of properties are loaded and appenders obtained. Please note that
the logger framework assumes that the shared library on being loaded will
automatically register all the appender and layout factories implemented within with the
logger manager.

The third property instructs the appender instance of the desired layout. If the
appender does not use any layouts, this information is ignored. Otherwise, an instance
of the layout type is obtained.

Apart from providing a means to use custom appenders and layouts, the framework
also comes inbuilt with some appender and layout types. “stdout” outputs all its
messages to console, while “rolling” performs the log append operation on a rolling file
based data store. Both these appenders use layouts and can be set with “simple”, “full”
or “xml” layouts or any custom layouts. “xml” formats the messages in Log4J xml
format.

 35: Vis iBroker Logging 459

Configurat ion

Filter configuration

vbroker.log.<ln>.filter.register=<Comma separated source names>
vbroker.log.<ln>.filter.<sn>.enable=true/false
vbroker.log.<ln>.filter.<sn>.logLevel={emerg|alert|crit|err|warning|

notice|info|debug}

Each log message being output records the source from where it is emanating. This
source name is actually a part of the log record itself. A fine-grained filtering
mechanism is provided which allows filtering based on the source names in addition to
the global switch provided in the log manager. Using properties, the filter in a logger
can be configured to allow log messages based on particular source names and
verbosity in context of the source name to be forwarded to the appenders. To configure
these attributes of the filter, the above properties can be used. “ln”, here denotes the
logger name. First all the source names that we want to control are registered with the
filter using the first property. Then setting for each source name is fine tuned using the
second and the third properties. “sn” denotes a source name that is registered in the
comma separated source names in the first property. A special source name “all”
denotes all the source names that have not been configured using the above
properties.

Setting the properties

The above properties can be fed into the logger framework using a properties file
containing these properties, pointed to by the environment variable
VDLOG_PROP_FILE.

ORB and all its services use the default logger named “default” and hence the ORB
overrides the setting of the default logger again by using the VisiBroker for C++
property manager when the above properties are fed in using either “–D” command line
parameters or through a properties file pointed to by “–ORBpropStorage” command
line parameter.

460 VisiBroker for C++ Developer ’s Guide

 36: Web Services Overview 461

Web Services Overview
A Web Service is an application component that you can describe, publish, locate, and
invoke over a network using standardized XML messaging. Defined by new
technologies like SOAP, Web Services Description Language (WSDL), and Universal
Discovery, Description and Integration (UDDI), this is a new model for creating
e-business applications from reusable software modules that are accessed on the
World Wide Web and also providing a means for integration of older disparate
applications.

Web Services Architecture
The standard Web Service architecture consists of the three roles that perform the web
services publish, find, and bind operations:

– The Service Provider registers all available web services with the Service Broker

– The Service Broker publishes the web services for the Service Requestor to access.
The information published describes the web service and its location. Apart from
publishing the web service, it also co-ordinates in hosting the web service.

– The Service Requestor interacts with the Service Broker to find the web services.
The Service Requestor can then bind or invoke the web services.

The Service Provider hosts the web service and makes it available to clients via the
Web. The Service Provider publishes the web service definition and binding
information to the Universal Description, Discovery, and Integration (UDDI) registry.
The Web Service Description Language (WSDL) documents contain the information
about the web service, including its incoming message and returning response
messages.

The Service Requestor is a client program that consumes the web service. The Service
Requestor finds web services by using UDDI or through other means, such as email. It
then binds or invokes the web service.

The Service Broker manages the interaction between the Service Provider and Service
Requestor. The Service Broker makes available all service definitions and binding
information. Currently, SOAP (an XML-based, messaging and encoding protocol
format for exchange of information in a decentralized, distributed environment) is the
standard for communication between the Service Requestor and Service Broker.

462 VisiBroker for C++ Developer ’s Guide

Standard Web Services Archi tecture

Standard Web Services Architecture

VisiBroker Web Services Architecture
There are two aspects to the architecture:

– Exposing the CORBA interface for Service Requestors to make invocations using
WSDL.

– Providing a runtime environment for enabling CORBA objects to be accessible for
the Service Requestors through SOAP/HTTP. This involves the infrastructure to
support Services Providers and a Service Broker.

The first aspect is achieved by using a Web Service development tool that converts an
IDL interface to a WSDL document using the standard as specified by OMG’s CORBA
to WSDL/SOAP Inter-working specification. Service Requestors or Web Services
clients to make invocations can use the generated WSDL using SOAP over HTTP as
transport.

To provide a Web services runtime, VisiBroker uses Apache Axis technology to handle
the intricacies of a Services Broker. Using a proprietary type-specific bridge (generated
by the tool), deployed stateless CORBA objects can be made accessible. The type-
specific bridge instances act as the Service Providers bringing forward the functionality
of the CORBA object back end to the Service Requestors.

Web Services Artifacts

The figure below explains the Web Services development tool provided with VisiBroker
that generates the WSDL document and the Bridge code from an IDL file. The WSDL
document is useful for the Services Requesters and along with the service description;
it also provides the SOAP binding information, which allows any SOAP compliant client
to make invocation.

 36: Web Services Overview 463

VisiBroker Web Services Archi tecture

The generated bridge artifact is actually a language/type-specific service provider
component that gets deployed in the Service Broker (Axis runtime) and an instance of
this is responsible for adapting the incoming SOAP message from the Service
Requester to a bound CORBA object.

Web Service Runtime

To explain the runtime behavior, the figure below shows a SOAP client making use of
the generated WSDL to make SOAP/HTTP invocations on three CORBA objects
exposed as Web Services in VisiBroker for C++, Java and a pre-7.0 VisiBroker
process.

VisiBroker process comes with the infrastructure for a HTTP/SOAP listener (internally
Apache Axis Technlogy), which is by default turned off. By setting the command line
property vbroker.ws.enable=true, this runtime infrastructure can be started. Once the
infrastructure is started, the Service providers (bridge) for the CORBA objects can be
deployed using Axis’s WSDD mechanism. Using few VisiBroker proprietary CORBA
object binding related WSDD elements, the deployed bridge instances can be bound to
CORBA objects and any SOAP invocations on the bridge is adapted to an in-process
CORBA invocation. The bridge in reality is a morph of the Axis’s server side generated
code, with each web service implementation skeleton mapped to a method on a type
specific CORBA object stub. Because the bridge is generated directly from IDL, all the
type-safety and fidelity of IDL types is inherently built in. Also, because the bridge is
loaded in the same process as the CORBA objects, all invocation on the CORBA
object from the bridge is optimized because of VisiBroker’s “inprocess” bidder.

In the figure the cloud "Ax" depicts the Axis + HTTP listener component loaded into the
VisiBroker process. "Ob" cloud depicts a CORBA object inside the ORB. The
association between the "Ax" and "Ob" cloud as shown by the two small circles
between them indicates the deployment of a bridge on the Axis runtime exposing the
CORBA object to Service Requesters. Existing CORBA clients can continue making

464 VisiBroker for C++ Developer ’s Guide

Vis iBroker Web Services Archi tecture

GIOP over IIOP invocations through the GIOP/IIOP listener as usual without any
impact.

To support exposing CORBA objects in Pre 7.0 VisiBroker deployments, the bridge can
be deployed on an Axis instance running externally to the VisiBroker process. The only
difference in this case is that that SOAP to GIOP adaptation will be remote and hence
will be over the wire. In the above figure, this is shown by deploying the bridge on Axis
for Java embedded in Apache Tomcat. The cloud "Ob" indicates the CORBA object
instance running on a remote Pre 7 VisiBroker Process and the request from the bridge
comes in through the GIOP/IIOP end point.

The figure below explains the components inside a VisiBroker process. The "Axis
runtime" cloud contains the Axis runtime, the HTTP listener along with the SOAP
request dispatcher. A CORBA object inside the process is exposed as a Web Service
by deploying its Service provider or the bridge as a Web Service using the Axis WSDD
mechanism. When a SOAP client makes an invocation on the Web Service, the HTTP
listener picks up the SOAP request and the request is passed to the dispatcher. The
dispatcher invokes on the Axis runtime passing in the SOAP request. The Axis runtime
decodes the SOAP request and makes invocation on an instance of the deployed
Service provider (bridge). The bridge then makes use of the binding information

 36: Web Services Overview 465

Exposing a CORBA object as Web Service

provided in the WSDD to bind to the actual CORBA object and make the CORBA
invocation.

In the above context, the Service Broker includes only a SOAP node on a HTTP
transport. Other services needed for a Web Services deployment such as a UDDI
service etc are not provided. Various implementations of these are available and can
easily be used.

Exposing a CORBA object as Web Service
To expose a CORBA object as a Web Service in VisiBroker for C++, the following
steps need to be performed.

Development:

1 Generate WSDL document for the IDL interface from IDL file

2 Generate the interface type specific C++ bridge from IDL file

3 Build the bridge into a shared library

Deployment:

1 Enable/Configure Web Service Runtime

2 Deploy the bridge-shared library in the VisiBroker process using Axis WSDD
mechanism.

This section illustrates an example provided in the "vbroker/ws/bank" sub directory of
examples directory. This example is an adaptation of the "vbroker/basic/bank_agent"
example and consists of two interfaces Account and AccountManager. The
AccountManager allows for creation of new named accounts. If an account for a
particular name already exists, the account is retrieved without creating a new account.
Account interface allows for querying of balance in the account. The Server sets up a
POA under the root POA and activates an object implementing the AccountManager
interface. On making the open operation on this object, separate objects implementing
Account interface are created, stored and returned. The code sample shown below
illustrates the two interfaces.

466 VisiBroker for C++ Developer ’s Guide

Development

// Bank.idl
 module Bank {interface Account {float balance();
};
 interface AccountManager {Account open(in string name);

};

};

In this example, it will be shown how this state-full application can be enhanced to
support SOA using Web Services. As a first step in the development, the state-full
operations need to be converted to a coarser grained abstraction suitable for SOA. The
interface shown below is one such example. This interface as shown, supports a single
operation that opens a named account if the account does not already exist and returns
the balance in the account.

// BankWebService.idl
module BankWebService {
interface AccountManagerWebService {

// opens account if not already opened, and returns balance
float openAndQueryBalance(in string name);

};
};

A CORBA object is then implemented which implements this interface, which internally
uses the Account and AccountManager interfaces and activated on a known POA with
a well known object ID.

Once the server has been enhanced to for stateless operations, web service support
can be implemented as illustrated in the following sections.

Development

Generating WSDL from IDL

The idl2wsc compiler (idl2wsc.exe on Windows) generates WSDL document for the
IDL file according to OMG’s CORBA to WSDL/SOAP Inter-working specification.
Running the compiler as below for the BankWebService.idl generates a WSDL
document named BankWebService.wsdl. This WSDL document can then be published
through external means to potential Web Service clients or Client development teams.

prompt> idl2wsc BankWebService.idl

Generating the C++ interface type specific bridge

Using the idl2wsc compiler with –gen_cpp_bridge option, the C++ Bridge for a
particular interface type can also be generated. The following command will generate
the bridge code in file named BankWebService_ws_s.cpp and
BankWebService_ws_s.hh. This code is opaque to the applications and should not be
changed.

prompt> idl2wsc –src_suffix cpp –gen_cpp_bridge BankWebService.idl

Please note that the above two commands can be combined.

The generated C++ Bridge needs to be then packaged as a shared library linked in
with the stub code of BankWebService.idl to be deployed as a Web Service.

For a complete list of the options available, refer the idl2wsc section of "Programmer
tools for C++" chapter.

 36: Web Services Overview 467

Deployment

Deployment

Creating Deployment WSDD

The first step to deploy is to edit the Axis WSDD document for the bridge or the service
provider. WSDD or Web Service Deployment Descriptor is a standard Axis means to
instruct on deployment related information. A template WSDD for the bridge is created
during the bridge creation. A sample WSDD is shown below which aims to deploy a
Web Service hosted in a CORBA object with object id "BankManagerWebService" in a
poa with name "bank_agent_poa". The object reference to this object is bound using
osagent.

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:CPP="http://xml.apache.org/axis/wsdd/providers/CPP">
<service
name="BankWebService.AccountManagerWebServiceService"

 provider="CPP:RPC"
 description="VisiBroker C++ web service">

 <parameter
 name="className"
 value="[PATH]/libbridge.so"/>

 <parameter
 name="allowedMethods"
 value="openAndQueryBalance"/>

 <parameter
 name="objectName"

 value="BankManagerWebService"/>
 <parameter

 name="locateUsing"
 value="osagent"/>

<parameter name="poaName" value="/bank_agent_poa"/>
 </service>

</deployment>

Using the created WSDD to deploy

During initialization, Axis C++ reads a configuration file named axiscpp.conf, which is
located in $AXISCPP_DEPLOY/etc on Unix or %AXISCPP_DEPLOY% on Windows,
to let the user specify preferences such as parser library to be used and the location of
deployment descriptor file.

In the configuration file, WSDDFilePath has to be defined so that Axis knows where to
find the WSDD and what services are deployed. XMLParser is only required when the
user wants to use a different parser from which is shipped with VisiBroker. VisiBroker
WSRT has its own transport implementation, so the settings for transport and the
channel are not used.

A sample axiscpp.conf file

The comment character is '#'
#
WSDDFilePath: The path to the WSDD
XMLParser: Axis XML parser library

WSDDFilePath: /usr/local/VisiBroker/etc/server.wsdd

There are two ways to deploy a service:

– Modify the WSDD file to add the service manually.

– Using the tool AdminClient from Axis C++.

468 VisiBroker for C++ Developer ’s Guide

WSDD Reference

Note

Because AdminClient depends on the Axis C++ client side libraries, which are not
shipped with VisiBroker for C++, to use the tool; one has to get the tool and the
required libraries from Apache Axis. (AdminClient is not available in Axis C++ 1.5)

Web Services Runtime Configuration

Create a property file server.prop to set up the Web Service runtime. Following is a
sample property file. The following properties configure the Service Broker to start up a
HTTP server on host 143.186.141.54 at port 19000. The connection manager is set up
to allow maximum of 30 concurrent connections with 300 seconds to mark the
connection idle time. The thread pool to service the incoming SOAP request is setup to
have maximum of 300 threads with thread idle time set to 300 seconds. For a complete
list of configurable properties, refer the "Web Service Runtime Properties" section of
"VisiBroker properties" chapter.

vbroker.ws.enable=true
vbroker.ws.listener.host=143.186.141.54
vbroker.ws.listener.port=19000
vbroke.ws.keepAliveConnection=true
vbroker.ws.connectionMax=30
vbroker.ws.connectionMaxIdle=300
vbroker.ws.dispatcher.threadMin=0
vbroker.ws.dispatcher.threadMax=300
vbroker.ws.dispatcher.threadMaxIdle=300

Run the Server as follows:

prompt> Server –ORBpropStorage server.prop

WSDD Reference
Users may go to http://www.oio.de/axis-wsdd/ or http://www.oio.de/axis-wsdd/ for the
details of the WSDD.

The parameters used by VisiBroker include:

– className: The name of the shared (dynamic link) library that is loaded by Axis
Server Engine when a request arrives on this service. Typically, this is the interface
name based on the IDL.

– allowedMethods: The methods that are allowed to be invoked on this class. The
CORBA object can have more methods than listed here; the methods listed here are
available for Web Service.

– objectName: The name of the object. This is a mandatory parameter.

– locateUsing: This parameter specifies which mechanism the provider uses to locate
the object. It has three possible values:

osagent —The object is assumed to be in osagent. The bind() method is used to
locate the object. If poaName is also specified, objectName is located under that POA. This
is the default value of the parameter.

nameservice The object is assumed to be in Naming Service. The resolve() method on
the root context is used to locate the object. The objectName must be the full name of
the object starting from root context.

ior —The objectName provided is assumed to be an IOR. The string_to_object()
method on the ORB is used to obtain the object. The IOR can be in standard form. For
example:

corbaname::xxx
IOR:xxx
corbaloc::xxx

A sample of the service element in WSDD:

 36: Web Services Overview 469

Limitat ions

<service
 name="AServiceBankWebService.AccountManagerWebServiceService"
 provider="CPP:RPC " description="VisiBroker C++ web service">
 <parameter name="className"

 value="/usr/local/VisiBroker/servies/libaccount_manager.so"/>
 <parameter name="allowedMethods" value="openAndQueryBalance"/>
 <parameter name="objectName" value="BankManagerWebService" />
 <parameter name="locateUsing" value="osagent" />
 <parameter name="poaName" value="/bank_agent_poa">

 </parameter>
</service>

Limitations
Because of some Axis limitations, the following restrictions apply in the current version.

– An IDL file can have only a single interface definition. This is because Axis
WSDL2WS tool currently does not support multiple port-types in the WSDL.

– Every single bridge needs to be bundled in a separate shared library.

SOAP/WSDL compatibility
SOAP version 1.1 and WSDL version 1.1 is supported.

470 VisiBroker for C++ Developer ’s Guide

 37: Reducing ORB runt ime footpr ints 471

Reducing ORB runtime footprints
The ORB functionality is separated into various libraries instead of having all
functionalities in one monolithic library. This gives VisiBroker application the
advantage of using only the specified ORB functionality required.

However, this does not mean that the VisiBroker application developed will be smaller
in size. But rather, it helps in linking up the application with the minimum required ORB
libraries, that the application would need, for reduced ORB memory footprint usage.

Note that the previous CORBA applications do not need to change their build process
and link with the new ORB library names. Existing applications also do not have to
modify their build process as they can still link up their application with ”orb_r” libraries
on Windows or "liborb" libraries on UNIX or Linux platforms.

These libraries are now just the archives of all the dynamically linked ORB libraries.
Most compilers can determine the dynamically linked ORB libraries in "orb_r" or
"liborb" that the application depends on and thus determine which should be loaded
during the runtime.

Different ORB Libraries
The ORB is broken into several libraries pertaining to the ORB functionality or usage.
The VisiBroker applications can now decide which libraries should be used during the
runtime.

These ORB libraries are listed below:

– “Core ORB library” (orbcore library)

– “Smart Agent (osagent) Usage library” (dsuser library)

– “Location Service library”(locsvc library)

– “Interface Repository library” (ir library)

– “Dynamic Any library” (dynany library)

– “Server Manager Usage library” (svrmgr library)

– “Gatekeeper (firewall) library” (fw library)

472 VisiBroker for C++ Developer ’s Guide

Di f ferent ORB Librar ies

Core ORB library

The Core ORB library has all the basic ORB functionality without the components of
using the Smart Agent (osagent), Location Service, Interface Repository, Dynamic Any
& Server Manager. All VisiBroker applications must at least link with the Core ORB
library.

Based on our product examples, an example of link usage for UNIX and Windows
platforms is shown below.

UNIX:
Server: Bank_s.o Bank_c.o Server.o

$(CC) -o Server Server.o Bank_s.o Bank_c.o \
$(LIBPATH) $(LIBORBCORE) $(STDCC_LIBS)

Windows :
Server.exe: Bank_s.obj Bank_c.obj Server.obj

$(LINK_EXE) /out:Server.exe Server.obj \
Bank_s.obj Bank_c.obj $(LIBORBCORE) $(STDCC_LIBS)

Smart Agent (osagent) Usage library

For those VisiBroker applications that require the usage of VisiBroker's Smart Agent
(osagent), the applications will not need to link explicitly with the "dsuser" library as the
Core ORB library will automatically load the "dsuser" library during the ORB
initialization.

However, an application that sets the property "vbroker.agent.enableLocator" to "false" will
not load the "dsuser" library during the runtime.

See “Using the Smart Agent” for usage on VisiBroker's Smart Agent.

Location Service library

For those VisiBroker applications that require the usage of the Location Service, the
application must link with the "locsvc" library explicitly as well as with the Core ORB
library.

See “Using the Location Service” for the usage on Location Service.

Based on our product examples, an example of link usage for the UNIX and the
Windows platforms is shown below.

UNIX
Server: Bank_s.o Bank_c.o Server.o

$(CC) -o Server Server.o Bank_s.o Bank_c.o \
$(LIBPATH) $(LIBORBCORE) $(LIBLOCSVC) $(STDCC_LIBS)

Windows
Server.exe: Bank_s.obj Bank_c.obj Server.obj

$(LINK_EXE) /out:Server.exe Server.obj \
Bank_s.obj Bank_c.obj $(LIBORBCORE) $(LIBLOCSVC) $(STDCC_LIBS)

Server Manager Usage library

For those VisiBroker applications that require the usage of the VisiBroker's Server Manager,
the applications will not need to link explicitly with the "srvmgr" library as the Core ORB
library will automatically load the "srvrmgr" library during the ORB initialization, if an
application sets the property "vbroker.orb.enableServerManager" to "true".

See “Using the VisiBroker Server Manager” for usage on VisiBroker's Server Manager.

 37: Reducing ORB runt ime footpr ints 473

Dif ferent ORB Librar ies

Interface Repository library

For those VisiBroker applications that require the usage of an Interface Repository, the
application will need to link explicitly with the "ir" library as well as with the Core ORB library.

See “Using Interface Repositories” for usage on Interface Repositories.

Based on our product examples, an example of link usage for UNIX and Windows
platforms is shown below.

UNIX
Server: Bank_s.o Bank_c.o Server.o

$(CC) -o Server Server.o Bank_s.o Bank_c.o \
$(LIBPATH) $(LIBORBCORE) $(LIBIR) $(STDCC_LIBS)

Windows
Server.exe: Bank_s.obj Bank_c.obj Server.obj

$(LINK_EXE) /out:Server.exe Server.obj \
Bank_s.obj Bank_c.obj $(LIBORBCORE) $(LIBIR) $(STDCC_LIBS)

Dynamic Any library

For VisiBroker applications that require usage of CORBA Dynamic Anys, the application will
need to link with the "dynany" library explicitly as well as the Core ORB library. Please see
Chapter 28 for usage on Dynamically Managed Types. Based on our product examples, an
example link usage for UNIX and Windows platforms is shown below.

UNIX
Server: Bank_s.o Bank_c.o Server.o

$(CC) -o Server Server.o Bank_s.o Bank_c.o \
$(LIBPATH) $(LIBORBCORE) $(LIBDYNANY) $(STDCC_LIBS)

Windows
Server.exe: Bank_s.obj Bank_c.obj Server.obj

$(LINK_EXE) /out:Server.exe Server.obj \
Bank_s.obj Bank_c.obj $(LIBORBCORE) $(LIBDYNANY) $(STDCC_LIBS)

Gatekeeper (firewall) library

For those VisiBroker applications that require the usage of VisiBroker's Gatekeeper firewall,
the applications will not need to link explicitly with the "fw" library as the Core ORB library
will automatically load the "fw" library during ORB initialization, if an application sets the
property "vbroker.orb.enableFirewall" to "true".

See the Gatekeeper Guide for usage details of Gatekeeper library.

474 VisiBroker for C++ Developer ’s Guide

Di f ferent ORB Librar ies

Index 475

Symbols
#pragma mechanisms 278
*_interface_name() method 143
*_repository_id() method 143
*object_to_string() method 143
_duplicate() method 141
_get_policy 146
_is_a() method 143
_is_bound() method 144
_is_local() method 144
_is_remote() method 144
_narrow() method 83
_nil() method 141
_ptr, generated by idl2cpp compiler 153
_ref_count() method 142
_release() method 142
_set_policy_override method 146
_tie class 135

delegator implementation 135
examples 136, 137
generated by idl2cpp compiler 154
template class 136

_var class, generated by idl2cpp compiler 153
_VIS_NOLIB, C++ header file switch 21
_VIS_STD, C++ header file switch 21

A
abstract

interfaces 395
valuetypes 392

accessor function 36
account.idl

files produced from account_c.cc 11
files produced from account_c.hh 11
files produced from account_s.cc 11
files produced from account_s.hh 11

AccountManager interface, DSI 315
activate() method 407
activating objects 283

arguments passed by OAD 284
deferring 407
deferring with service activators 408

activation 3
service activation 408

Activator class
deactivating an ORB object 407
deferring object activation 407, 409

ActiveObjectLifeCycleInterceptor 347
class 345

adapter
Naming Service 198
VisiNaming Service 198

adapters, DII 296
adding fields to user exceptions 86
administration commands

oadutil list 278
oadutil unreg 284
osfind 168

Agent interface 172
agent reporting 168
agentaddr file, specifying IP addresses 166

Any
class 302
object 296
type, DSI 315

application development costs, reducing 1
applications

defining object interfaces 11
deploying 16
enabling bidirectional IIOP 401
running 15
starting client program 16
starting server object 16
starting Smart Agent 15
thread pool 124
thread-per-session 127

arguments
-corba_inc 22
-export 22
-export_skel 22
-hdr_suffix 22
-no_excep_spec 22
-type_code_info 22
-version 22

array slice, passing parameters for multi-dimensional
arrays 40

arrays 40
managed types 40
memory management 41
type-safe 40

asynchronous communication 399
authentication

bidirectional IIOP 403
Naming Service client 209
VisiNaming client 209

authorization
method level for the Naming Service 211
method level for VisiNaming 211
Naming Service method level 209
VisiNaming method level 209

B
backing store 196

improving performance 200
backingStoreType 59
backward compatibility, Event Service 221
BAD_CONTEXT exception 435
BAD_INV_ORDER exception 435
BAD_OPERATION exception 435
BAD_PARAM exception 435
BAD_TYPECODE exception 435
bidirectional

properties 399
SCM 399, 403

bidirectional IIOP 399
enabling for existing applications 401
examples 400, 402
InvalidPolicy exception 403
POAs 403
security 403
unidirectional connections 402

BiDirectional policy 403
bind

Index

476 VisiBroker for C++ Developer ’s Guide

generic object references 298
nsutil 189
process 140

bind process
actions performed by _bind() 140
binding to objects 140
connection to objects established 140
proxy object created 140

bind(), osagent 161
bind_context, nsutil 189
bind_new_context, nsutil 189
binding, ORB’s tasks 169
BindInterceptor class 345
BOA

backward support 407
binding 169
class moved 405
compiling code 405
naming objects 406
object activators 405, 407
options 405
supported options 405
using with VisiBroker 405

BOA_init, change to package 405
bound objects, determining location and state 144
boxed valuetypes 395
bridges, DII 296
broadcast address 164
broadcast messages 159

C
C++

classes 22
compiler 22

C++ header file switches
_VIS_NOLIB 21
_VIS_STD 21

caching facility 200
casting to a system exception 83
catching exceptions

modifying object to 86
system exceptions 84
user exceptions 86

ChainUntypedObjectWrapper 363, 378
class

_tie 154
_var 153
ActiveObjectLifeCycleInterceptor 345
Any 302
BindInterceptor 345
ClientRequestInterceptor 321, 345
Codec 324
CodecFactory 324
CreationImplDef 282
DynamicImplementation 311, 312
Interceptor 320
IORCreationInterceptor 345
IORInterceptor 323
Naming Context 191
NVList 315
NVList ARG_IN parameter 315
NVList ARG_INOUT parameter 315
NVList ARG_OUT parameter 315
ORBInitInfo 325
ORInfoExt 327

POALifeCycleInterceptor 345
Repository 292
Request 299
ServerRequest 314
ServerRequestInterceptor 345
String_var 30
TypeCode 302

class template, generating 154
classes

_tie 135, 136
PICurrent 323

client
bidirectional connection to server 402
bidirectional IIOP 399
implementing 12
initializing the ORB 139
Interceptors 345
receiving asynchronous information 399
referencing a Server Manager 240
unidirectional connection to server 402
using the DII 298
using thread pool 124
using thread-per-session 127

client and server, running 15, 17
client authentication, Naming Service 209
client request interceptors, examples 332
client stubs, generating 11
ClientRequestInterceptor 346

class 321, 345
implementing 331

clients, building with Dynamic Invocation Interface 296
Client-Side LIOP Connection properties 64
Cluster Manager interface 204
cluster, creating in a Naming Server 204
ClusterManager 201
clusters 201
code

building 14
building with nmake 15
building with vbmake 15
compiling BOA 405

code generation 11
Codec 324

class 324
interface 324

CodecFactory 324
class 324
interface 324

COMM_FAILURE exception 435
commands, idl2ir 25, 26
Common Object Request Broker. See CORBA
compilers

IDL, feature summary 4
nmake 15
vbmake 15

compiling BOA code 405
completion status 82

obtaining for system exceptions 82
complex name 186
connecction management 127
connecting

client applications with objects 1
point-to-point communications 165
Smart Agents on different local networks 163

connection management 4
properties 131

Index 477

Index

connections
garbage collection 133
managing, feature summary 4

Container class 241
container, Server Manager 240
CORBA

C++ language mapping specifications 29
Common Object Request Broker Architecture 1
defined 1
definition 135
description of 1
exceptions 435
VisiBroker compliance 5

-corba_inc argument 22
corbaloc URL 190
corbaname URL 190
Core ORB library 472
CosNaming

calling from the command line 188
operations supported by VisiNaming 189

creating software components 1
CreationImplDef class 282

activation_policy property 282
args property 282
env property 282
path_name property 282

CreationImplDef struct, activating an object 283
Current interface 323
custom valuetypes 396

D
-D_VIS_INCLUDE_IR flag 292
data types

sequences 37
unions 36

DATA_CONVERSION exception 435
DataExpress adapter 196
deactivate() method 407
deactivating

objects 412
service activated object implementations 412

debug logging properties 73
default factories 394
default naming context, obtaining 192
deferring object activation 408

service activation 409
deployment description 16
destroy nsutil 189
development, defining object interfaces 11
DII 4

Any objects 296
asynchronous requests 305
building clients 296
client 298
concepts 296
creating a DII request 299
creating a request 299
disadvantages 295
examples 298
feature summary 4
generic object reference 298

initializing a DII request 301
initializing a request 299
Interface Repository 287, 307
NamedValue class 302
NamedValue interface 302
NVList objects 297
overview 295
receiving multiple requests 306
receiving replies 298
receiving results 304
Reply recieving options 296
Request class 299
Request objects 296
Request sending options 296
send_deferred method 305
send_oneway method 305
sending a request 304
sending multiple requests 306
sending requests 297
setting request arguments 301
setting the context 301
Typecode objects 296
using request objects 296
using the _request method 300
using the create_request method 300

disabling Smart Agent 160
discriminant 36
dispatch policies and properties 129
dispatch policy

thread pool 129
thread-per-session 130

Dispatcher properties 118
distributed applications, development process for 9
domains, running multiple 162
DSI

AccountManager interface 315
activating objects 316
Any type 315
BAD_OPERATION exception 315
compiling object servers 311
creating object implementations dynamically 311
deriving classes 312
deriving from DynamicImplementation class 312
dynamic invocation 4
examples 312
feature summary 4
implementing server object 315
input parameters 315
inter-protocol bridging 311
object dynamic creation 311
overview 311
processing input in DSI 315
protocol bridging 311
return values 315
scope resolution operator 314
ServerRequest class 314

-DSTRICT preprocessor option 22
Dynamic Invocation Interface. See DII
Dynamic Skeleton Interface. See DSI
DynamicImplementation class 311, 312

example of deriving from 312
DynAny

478 VisiBroker for C++ Developer ’s Guide

access and initializing 382
creating 382
initializing and accessing the value 382
overview 381
types 381

DynAny interface 381
constructed data types 383
current_component method 383
DynAnyFactory object 382
DynArray data type 383
DynEnum interface 383
DynSequrence data type 383
DynStruct interface 383, 384
DynUnion interface 383
example application 384
example client application 384
example IDL 384
example server application 385
examples 381
NameValuePair 384
next method 383
restrictions 382
rewind method 383
seek method 383
to_any method 384

DynArray data type 383
DynEnum interface 383
DynSequence data type 383
DynStruct interface 383
DynUnion interface 383

E
effective policies 145
enableBiDir property 399
environment variables

for OAD 276
OSAGENT_ADDR 166
OSAGENT_LOCAL_FILE 164

event channel 226
Event Service

communication models 224
compiling and linking 237
deriving a push supplier 228
deriving a PushConsumer 230
examples 227
implementing a push consumer 234
overview 221
pull model 225
push model 225
setting queue length 236

EventChannel 225
example

DynAny IDL 384
oadutil unreg utility 285

example application
building the example 14
compiling 15
defining object interfaces 11
deploying the application 16
development process 9
generating client stubs 11
implementing the client 12
implementing the server 13
running the example 15
server servants 11

starting the server 15
with VisiBroker 9
writing account interface in IDL 11

examples
_tie class 136, 137
activating objects 409, 410, 412
activation 409
bidirectional IIOP 400
deferred method in object activation 409
DSI 312
Interceptors 350
Interface Repository 292
IR 292
Naming Service 212
object wrappers 360, 376
odb 409
Portable Interceptors 328
push consumer 227
push supplier 227
request interceptors 332
Server Manager 246
Smart Agent localaddr file 164
using the DII 298
VisiBroker Interceptors 350
VisiNaming Service 212

exceptions
adding fields to user exceptions 86
casting to a system exception 83
catching user exceptions 86
completion status for exceptions 82
CORBA 435
CORBA overview 81
CORBA-defined system exceptions 81
handling 83
heuristic 440
InvalidPolicy 403
narrowing to system exceptions 84
system, SystemException class 81
throwing 85

-export argument 22
-export_skel argument 22
exportBiDir property 399

F
Factories 392

default 394
implementing 394
valuetypes 394

Factory class 393
factory_name 189
failover

Naming Service 206
VisiNaming Service 206

fault tolerance 3
Naming Service 207
replicating objects registered with OAD 167
VisiNaming Service 207

features of VisiBroker 3
activating objects and implementations 3
compilers, IDL 4
connection management 4
dynamic invocation 4
IDL compilers 4
IDL interface to Smart Agent 3
implementation activation 3

Index 479

Index

implementation repository 4
interface repository 4
Location Service 3
multithreading 4
object activation 3
object database integration 5
Smart Agent architecture 3
thread management 4

file extensions 11
files

impl_rep 275
localaddr 164
produced by compiling 11
produced by idl compiler 11

fixed-length structures 34
FREE_MEM exception 435

G
garbage collection 133
generating

_var class 153
a String_var class 30

Generating C++ code 22
Generic object testers, DII 296
globally scoped objects, Smart Agent registration 157

H
handling system exceptions 83
-hdr_suffix argument 22
header file switches (C++)

_VIS_NOLIB 21
_VIS_STD 21

header files, C++ switches 21
heuristic exceptions 440

I
id field, NameComponent 186
IDL

arrays 40
client code generated by idl2cpp 152
compiler 22, 25
compilers 11
constructs represented in Interface Repository 287
defining one-way methods 156
DynAny example 384
example specification 152
information contained in IR 287
interface inheritance 156
mapping to Java 7, 11
OAD interface 286
primitive data types 29
Server Manager 241
specifying objects 11
to C++ language mapping 29
unions 36

IDL file, #pragma mechanisms 278
IDL type, valuetype 42
idl2cpp compiler 11

_op1 method 154
attribute methods 155

-corba_inc 22
defining one-way methods 156
-export 22
-export_skel 22
generated by _tie 154
generated by _var 153
generated by client code 152
generated by_ptr 153
generating code 152
-hdr_suffix 22
interface inheritance 156
-no_excep_spec 22
op1 method 153
-type_code_info 22
-version 22

idl2cpp tool 22
idl2ir

command info 25, 26
description 25, 26

idl2ir compiler 289
command info 6
description 6

idl2ir tool 25
IIOP

bidirectional examples 400, 402
enabling bidirectional 401
using bidirectional 399

IMP_LIMIT exception 435
impl_rep file 275
implementation

activation 3, 410
connections with Smart Agents 157
fault tolerance 166
stateless, invoking methods on 167
support 3
unregistering with the OAD 284

Implementation Repository 4
feature summary 4
for OAD 278
impl_rep file 275
listing contents 285
removed when unregistered with the OAD 284
specifying directory with OAD 276
stored registration information 275
unregistering objects 284
using OAD 276

implementations
binding 169
reporting 168
unregistering with OAD 284, 285
using thread-per-session 127

implementing
the server 13
valuetypes 392

importBiDi property 399
importBiDir 403
inheritance

allowing from implementations 135
interface 156

inheritance of interfaces, specifying 156
INITIALIZE exception 435
In-memory adapter 196

480 VisiBroker for C++ Developer ’s Guide

input parameters, processing in DSI 315
instances

determining for object reference 143
finding with Location Service 171

interception points
order of invocation 357
request interception points 320, 322
ServerRequestInterceptor 322

Interceptor
class 320
interface 320

Interceptor interface
example 350
registering with the ORB 349

Interceptor objects, creating 349
Interceptors

ActiveObjectLifeCycleInterceptor 347
and client side Portable Interceptors 357
and server side Portable Interceptors 357
API classes 345
BindInterceptor 346
client 346
client Interceptors 345
ClientRequestInterceptor 346
creating Interceptor objects 349
example program 350
interfaces 345
IORCreationInterceptor 348
loading 350
managers 345
overview 345
passing data between 356
POALifeCycleInterceptor 347
registering Interceptors with the ORB 349
server 347
server Interceptors 345
ServerRequestInterceptor 347
ServiceResolverInterceptor 348
using 345
using with Porable Interceptors 356

interceptors
customizing the ORB 5
IOR 319

interface
attributes 155
Codec 324
CodecFactory 324
Current 323
defining in IDL 11
inheritance 156
Interceptor 320
IORInterceptor 323
looking up 292
ORBInitializer 325
ORBInitInfo 325
ORInfoExt 327

Interface Definition Language (IDL) 11
interface name

converting to repository ID 277
defining 152
obtaining 143
unregistering objects with OAD 284

Interface Repository
_get_interface() method 288
accessing object information 292
contents 291

contents of 287
creating 288
description 287
examples 292
feature summary 4
identifying objects within 291
inherited interfaces 292
populating with idl2ir 6, 25, 26
properties 63
structure 290
types of objects stored in 291
updating contents with idl2ir 289
viewing contents of 289

InterfaceDef object, in Interface Repository 287
interfaces

descriptions of in Interface Repository 287
NamingContextExt 192
Quality of Service 146
reporting 168
specifying inheritance 156

INTERNAL exception 435
interoperability 6

ORB interoperability 6
with other ORB products 7
with VisiBroker for C++ 6
with VisiBroker for Java 6

INTF_REPOS exception 435
INV_FLAG exception 435
INV_INDENT exception 435
INV_OBJREF exception 435
INVALID_TRANSACTION exception 435
InvalidPolicy exception 403
invocation feature summary 4
invoke() method 311

example of implementing 312
IOR interceptors 319
IORCreationInterceptor 348

class 345
IORInfoExt class 327
IORInterceptor

class 323
interface 323

IP subnet mask
broadcast messages specifying scope of 163
localaddr file 164

IR. See Interface Repository
ir2idl utility, viewing contents of IR 289
ir2idl, options 26
irep tool

creating an Interface Repository 288
creating Interface Repository 288
viewing Interface Repository 289

is_nil() method 141

J
JDBC adapter 196
JDBC Adapter properties 59
jdbcDriver 59

K
kind field, NameComponent 186

Index 481

Index

L
linking errors 22
list, nsutil 189
Listener properties 117
listener threads 122
load balancing

migrating objects between hosts 167
Naming Service 205
using Location Service 172
VisiNaming Service 205

localaddr file, specifying interface usage 164
Location Service 171

Agent interface 172
components of agent 172
enhanced object discovery 3
feature summary 3
properties 55
trigger 174
triggers 172

Location Service library 472
location service, Smart Agent 158
location, determining for an object reference 144
logging properties, debug 73
loginPwd 59

M
makefile, sample for Solaris 15
managed types, arrays 40
mapping

abstract interfaces 45
IDL modules to C++ namespace 33
IDL to Java 7

MARSHAL exception 435
maxQueueLength 236
memory management

arrays 41
for object references 153
for sequences 39
for structures 35

messages, broadcast 159
method 146
method level authorization, Naming Service 209
methods

*_interface_name() 143
*_object_name() 143
*_repository_id() 143
*object_to_string() 143
_duplicate() 141
_get_policy 146
_is_a() 143
_is_bound() 144
_is_local() 144
_is_remote() 144
_narrow() 83
_nil() 141
_ref_count() 142
_release() 142
_set_policy_override method 146
activate() 407
boa.obj_is_ready() 311

deactivate() 407
defining one-way 156
example of implementing invoke() 312
generating 154
invoke() 311
is_nil() 141
minor() 83
objects maintaining state 167
release() 142
stateless objects, invoking on 167
string_to_object() 143

migrating
instantiated objects 168
objects 167
objects between hosts 167
objects registered with OAD 168
objects with state 167

migration 273, 274
minor code, getting and setting for system

exceptions 83
minor() method 83
modifying object to throwing exceptions 85
ModuleDef object, in Interface Repository 287
modules, mapping IDL modules to C++ namespace 33
multihomed hosts 164

specifying interface usage 164
multithreading 121

feature summary 4
mutator function 36

N
name

complex 186
defined 186
resolution 186
simple 186
stringified 186

Name, binding names to objects 183
NameComponent

defined 186
id field 186
kind field 186

NamedValue, objects 301
namespace 183
naming contexts, default 192
Naming Service

adapters 198
bootstrapping 190, 211
caching facility 200
client authentication 209
clusters 201
configuring 187
CosNaming operations supported 189
creating a cluster 204
default naming context 192
examples 212
failover 206
fault tolerance 207
installing 187
load balancing 205
method level authorization 209, 211

482 VisiBroker for C++ Developer ’s Guide

pluggable backing store 196
properties 193
properties file 198
properties for SSL (C++) 210
properties for SSL (Java) 210
sample programs 212
security 209
shutting down 189
starting 187, 188

naming service, properties 55
NamingContext

bootstrapping 185
class 191
factories 185

NamingContextExt 192
NamingContexts

defined 185
use by client applications 185
use by object implementations 185

narrowing, exceptions to system exception 84
Native Messaging 249
network, reporting objects and services 168
new_context, nsutil 189
nil reference

checking for 141
obtaining 141

nmake
compiler 15
compiling with 15

-no_excep_spec argument 22
NO_IMPLEMENT exception 435
NO_MEMORY exception 435
NO_PERMISSION exception 435
NO_RESOURCES exception 435
NO_RESPONSE exception 435
nsutil 188

bind 189
bind_context 189
bind_new_context 189
destroy 189
list 189
new_context 189
rebind 189
rebind_context 189
resolve 189
shutdown 189
unbind 189

null
semantics 395
valuetypes 392

NVList class 315
ARG_IN parameter 315
ARG_INOUT parameter 315
ARG_OUT parameter 315
implementing a list of arguments 301

NVList object 297

O
OAD

and osagent 159
and Smart Agent 159
and the Smart Agent 276
arguments passed by 284
IDL interface to 286
impl_rep file 275

Implementation Repository 275
interface names 277
listing objects 278
migrating objects registered with 168
oadutil list 278
overview 276
programming interface 286
properties 63
registering objects 279, 283
registration information 275
replicating objects registered with 167
repository IDs 277
setting the activation policy 283
specifying time-out 276
starting 276
storing registration info 278
unregistering objects 284

OAD command, setting environment variables 276
oadj, reporting 168
oadutil

list 278
listing objects registered with OAD 278
unregistering implementations 284

oadutil tool
displaying contents of Implementation

Repository 285
registering object implementations 275

OBJ_ADAPTOR exception 435
object

accessing information from Interface
Repository 292

activating 409
activation 410
changing characteristics dynamically 283
connecting to with OAD 159
connections with Smart Agents 157
deactivating 412
dynamic creation with DSI 311
finding with Location Service 171
listing 278
multiple instances 282
registering 283
replicating 167
reporting objects on a network 168
setting the activation policy 283
specifying in IDL 11
state invoking methods on 167
stateless, invoking methods on 167
unregistering with the OAD 284
using CreationImplDef struct 283

object activation 3
defering 407
example of deferred method 409
service activation 408
support 3

Object Activation Daemon (OAD) 159
object activators 407
Object Database Activator, feature summary 5
object discovery, enhanced with the Location Service 3
object implementation

changing dynamically 283
fault tolerance 166
implementations that maintain state 167

Object Management Group 1
object migration 167
object names

Index 483

Index

obtaining 143
qualifying binding with 140

object reference
checking equivalent implementations 143
checking for nil references 141
converting to string 143
converting to super-type 144
converting type 144
determining instance of type 143
determining location 144
determining state 144
determining type 143
duplicating 141
memory management for 153
narrowing 144
obtaining a nil reference 141
obtaining hash value 143
obtaining interface name 143
obtaining object name 143
obtaining reference count 142
obtaining repository id 143
operations on 141
releasing 142
sub-type 143
using the _is_a() method 143
widening 144

object references, persistent 406
object registration, changing 283
Object Request Broker. See ORB 1
object wrappers

adding factories 364
adding typed wrappers 369
co-located client and server 367
customizing the ORB 5
deriving a typed wrapper 368
description 359, 376
example programs 360, 376
idl2cpp requirement 360
implementing untyped 362, 377
installing untyped 363, 378
overview 359, 376
post_method 361, 377
pre_method 361, 377
removing typed wrappers 370
removing untyped factories 365
running sample applications 373
typed 359, 365
typed order of invocation 367
un-typed 359
untyped 360, 376
untyped factory 362, 377
using both typed and untyped wrappers 370
using multiple typed 366
using untyped 362

OBJECT_NOT_EXIST exception 435
object-oriented approach, software component

creation 1
objects

binding 169
executable's path 283
registering 282

ObjectWrapper 368

OMG 1
Common Object Services specification 224
Event Service 221
Notification Service 221

one-way methods, defining 156
open() method 315
OpenLDAP 200
OperationDef object, in Interface Repository 287
operator, scope resolution 314
options and arguments 22
ORB

binding to objects 140
connection to objects during bind process 140
creating proxy 169
customizing with interceptors and object wrappers 5
definition 169
domains 162
function of 1
initializing 89, 139
interoperability 6
object implementations 278
properties 49
resolve_initial_references 190

ORB Libraries 471
ORB runtime footprints 471
orb.lib 22
ORBDefaultInitRef property 191
ORBInitializer

implementing 329
interface 325
registering 326
registration 329

ORBInitInfo
class 325
interface 325

ORBInitRef 188
ORBInitRef property 190
ORInfoExt interface 327
osagent

bind() 161
binding 169
checking client existing (heartbeat) 161
detecting other agents 163
disabling 160, 161
ensuring availability 161
locating objects 159
object name 406
reporting 168
Smart Agent 157
starting 160
starting Smart Agents with 15
verbose output 160

OSAgent (Smart Agent), VisiBroker architecture 3
osagent log file, options 161
OSAGENT_ADDR environment variable 166
OSAGENT_LOCAL_FILE, environment variable 164
osfind, command info 168
overrides, policy 145
overview

VisiNaming Service 183

484 VisiBroker for C++ Developer ’s Guide

P
parameter passing, for multi-dimensional arrays 40
PERSIST_STORE exception 435
persistent objects, ODA, feature summary 5
PICurrent class 323
pluggable backing store

configuration 197
properties file 197
types 196

POA
activating 102
activating objects 102, 106
activating with default servant 104
Active Object Map 98
adapter activator 98
adapter activators 119
and Server Engine 114
BiDirectional policy 403
creating 90, 99, 101
deactivating objects 105
definition 97
dispatcher properties 118
dispatching properties 114
enabling bidirectional IIOP 403
etherealize 98
incarnate 98
listener port property 118
listener properties 117
listening properties 114
managing POAs 112
ObjectID 98
POA manager 98, 112
policies 99
Policy 98
processing requests 120
rootPOA 98, 101
servant 98
servant manager 98
servant managers 106
ServantLocators 109
Server Connection Managers 116
transient object 98
using servants 106

POALifeCycleInterceptor 347
class 345

pointer, _ptr definition 153
point-to-point communication 165
policies 145

effective 145
POA 99

policy overrides 145
poolSize 59
populating the interface repository 25
port number, listener 118
portability, server-side 5
Portable Interceptors

creating 324
Current 323
examples 328
extensions 327
interception points 322
Interceptor 320
IOR Interceptor 323
IOR interceptors 319
limitations 327

overview 319
PICurrent 323
POA scoped server request 327
registering 325
request interception points 320
request interceptor 320
request interceptors 319
ServerRequestInterceptor 322
types 319

Portable Object Adapter (POA)
definition 97
policies 99

primitive data types 29
Principal, IDL interface 42
process, bind 140
programmer tools 22

general information 22
idl2cpp 22
idl2ir 25
ir2idl 26

properties
Client-Side LIOP Connection 64
DataExpress adapter 59
debug logging 73
dispatcher 118
enableBiDir 399
Interface Repository 63
JDBC adapter 59
JNDI adapter 59
listener 117
Location Service 55
Naming Service 193
naming service 55
OAD 63
ORB 49
ORBDefaultInitRef 191
ORBInitRef 190
POA dispatching 114
POA listening 114
QoS 66
Server Manager 53
server-side server engine 66, 72
server-side thread Pool BOA_TP connection 70
server-side thread pool IIOP_TP connection 69
server-side thread session BOA_TS connection 68
server-side thread session IIOP_TS connection 67
setting connection management 131
Smart Agent 47, 48
SVCnameroot 190
thread management 132
vbroker.naming.cache 200
vbroker.naming.enableSlave 207
vbroker.naming.propBindOn 204
vbroker.naming.serverAddresses 207
vbroker.naming.serverClusterName 207
vbroker.naming.serverNames 207
vbroker.naming.slaveMode 207
vbroker.orb.dynamicLibs 350
vbroker.orb.enableBiDir 399
vbroker.orb.enableServerManager 243
vbroker.serverManager.enableOperations 243
vbroker.serverManager.enableSetProperty 243
vbroker.serverManager.name 240
VisiBroker BiDirectional 399
VisiNaming Service 55, 193

properties file, VisiNaming Service 198

Index 485

Index

proxy
consumer 222
supplier 222

proxy object, created during binding process 140
proxy objects, binding 169
ProxyPullConsumer 225
ProxyPullSupplier 225
ProxyPushConsumer 225
ProxyPushSupplier 225
pull

consumer 225
model 225
supplier 225

push
consumer 225
model 225

push supplier 225
deriving 228
example 227
implementin 227

PushConsumer
deriving 230
example 227
implementing 234

PushConsumer interface 234
PushModel class 227
PushSupplier

implementing 227
interface 227

Q
QoS 145
Quality of Service (Qos) 145

interfaces 146
properties 66

queue length, setting 236

R
Real-Time CORBA Extensions 415
rebind, nsutil 189
rebind_context, nsutil 189
rebinds, enabling in Smart Agent 166
reducing application development costs 1
Reducing ORB runtime footpri 471
ref_data parameter 282
reference count 142

incrementing 141
obtaining 142

reference data 282
registering objects, using oadutil 279
registration

OAD Implementation Repository 275
Smart Agents 157

release() method 142
Reply recieving options 296
Repository class 292
repository id, obtaining 143, 277
Request class 299
request interceptor 320
request interceptors 319

examples 332, 337

interception points 320, 322
POA scoped server request 327
ServerRequestInterceptor 322

Request object 296
request objects, DII 296
Request sending options 296
RequestInterceptor, implementing 331
REQUIRE_AND_TRUST 403
resolve, nsutil 189
root NamingContext 185
rootPOA 101
RoundRobin

Naming Service 205
VisiNaming Service 205

running applications, starting client program 16

S
sample programs

Naming Service 212
VisiNaming Service 212

SCM, bidirectional IIOP 399
scope resolution operator 314
security

bidirectional IIOP 403
Naming Service 209
Naming Service client authentication 209
Naming Service method level authorization 209
VisiNaming Service 209
VisiNaming Service client authentication 209
VisiNaming Service method level authorization 209

sequences 37
sequences, memory management 39
server

and receiving client requests 89
bidirectional IIOP 399
implementing 13
initiating connections to clients 399
sending asynchronous info. to clients 399
Server Manager 240
setting the activation policy 283
setup 89
unidirectional connection to clients 402
waiting for client requests 92

Server Connnection Managers and POAs 116
Server Engine and POAs 115
server Interceptors 345
Server Manager

accessibility 243
Container interface 241
container methods for C++ 241
containers 240
custom containers 248
enabling 239
examples 246
getting started 239
IDL definition 244
obtaining a reference 240
overview 239
properties 53
Storage interface 241, 242
writing custom containers 248

486 VisiBroker for C++ Developer ’s Guide

Server Manager IDL 241
Server Manager Usage library 472
server request interceptors

examples 332, 337
POA scoped 327

server servants, generating 11
ServerRequest class 314
ServerRequestInterceptor 347

class 345
implementing 331
interception points 322

servers
callbacks without a GateKeeper 399
threading considerations 130

server-side server engine, properties 66, 72
server-side thread Pool BOA_TP connection,

properties 70
server-side thread pool IIOP_TP connection,

properties 69
server-side thread session BOA_TS connection,

properties 68
server-side thread session IIOP_TS connection,

properties 67
server-side, portability 5
service activation

deactivating service-activated objects 412
deferring object activation 408
example 409
implementing a service Activator 410
implementing deferred 409

service activator, implementing 410
ServiceInit class 350
ServiceLoader interface 349, 350
ServiceResolverInterceptor 348
services, reporting services on a network 168
sharing semantics 395
shutdown, nsutil 189
simple name 186
skeletons 11
Smart Agent

about 157
and OAD 159, 276
availability 161
best practices 158
bind() 161
binding 169
checking client existing (heartbeat) 161
communication 159
connecting on different networks 163
connecting to objects with OAD 159
cooperation with other agents 159
detecting other agents 163
disabling 160, 161
fault tolerance for objects 166
feature summary 3
locating 159
Location Service 171
location service 158
multihomed hosts 164
Naming Service load balancing 205
object name 406
objects removed from 284
osagent 157
OSAGENT_ADDR environment variable 166
OSAGENT_LOCAL_FILE file 164
point-to-point

communication 165
properties 47, 48
reregistration of objects automatically 161
running under multiple domains 162
specifying interface usage 164
starting 160
starting multiple instances 159
verbose output 160

Smart Agent (osagent) Usage library 472
Smart Agent (OSAgent), architecture 3
specifying IP addresses 166
SSL, bidirectional IIOP 403
state, determining for an object reference 144
stateless objects, invoking methods on 167
status completion, obtaining for system exceptions 82
Storage interface 242

Server Manager 241
string

converting to object references 143
types 30

string_alloc 30
string_free 30
string_to_object() method 143
String_var, class 30
stringification, using object_to_string() method 143
stringified names 186
strings, allocating and de-allocating dynamically 30
structures

fixed-length 34
memory management 35
variable length 35

stub, routines 11
subnet mask 163, 164
supplier-consumer communication model 221
suppliers, connecting to an EventChannel 226
support, implementation and object activation 3
SVCnameroot 188
SVCnameroot property 190
system exceptions

BAD_CONTEXT 435
BAD_INV_ORDER 435
BAD_OPERATION 435
BAD_PARAM 435
BAD_QOS 435
BAD_TYPECODE 435
catching 84
COMM_FAILURE 435
CompletionStatus values 82
CORBA-defined 81
DATA_CONVERSION 435
FREE_MEM 435
getting and setting minor code 83
handling 83
IMP_LIMIT 435
INITIALIZE 435
INTERNAL 435
INTF_REPOS 435
INV_FLAG 435
INV_INDENT 435
INV_OBJREF 435
INVALID_TRANSACTION 435
MARSHAL 435
narrowing exceptions to 84
NO_IMPLEMENT 435
NO_MEMORY 435
NO_PERMISSION 435

Index 487

Index

NO_RESOURCES 435
NO_RESPONSE 435
OBJ_ADAPTOR 435
OBJECT_NOT_EXIST 435
obtaining completion status 82
PERSIST_STORE 435
SystemException class 81
TRANSACTION_MODE 435
TRANSACTION_REQUIRED 435
TRANSACTION_ROLLEDBACK 435
TRANSACTION_UNAVAILABLE 435
TRANSIENT 435
UNKNOWN 435

T
thread management 4
thread policies 122
thread pool dispatch policy 129
threading

dispatch policies and properties 129
garbage collection 133
listener threads 122
properties 132
thread policies 122
thread pool policy 122
thread-per-session policy 126
using synchronized block 130
using threads 121
worker threads 122, 126

thread-per-session
dispatch policy 130
implementation 127

threads
multithreading, feature summary 4
using 121

throwing user exceptions 85
tools

administration 6
CORBA services 6
idl2cpp 11
idl2ir 6, 25, 26
oadutil 279
oadutil unreg 284
osfind 168
programming 6

TRANSACTION_MODE exception 435
TRANSACTION_REQUIRED exception 435
TRANSACTION_ROLLEDBACK exception 435
TRANSACTION_UNAVAILABLE exception 435
TRANSIENT exception 435
trigger 172, 174

creating 175
truncatable valuetypes 396
type

Any 315
determining for an object reference 143
determining instance 143
determining sub-type 143
determining system exceptions 83

-type_code_info argument 22
TypeCode class 302

Typecode object 296
typecodes, represented in Interface Repository 287
types

DynAny 381
IDL primitive data types 29
primitive 29
sequences 37
strings 30
unions 36
valuetype 42

type-safe, arrays 40

U
UDP protocol 159
unbind, nsutil 189
UNKNOWN exception 435
unregistering objects

OAD 284
using oadutil 284

untyped object wrappers 360, 376
UntypedObjectWrapper

post_method 363, 378
pre_method 363, 378

user exceptions
adding fields to 86
adding to fields 86
defining 85
modifying object to catch 86
modifying object to throwing exceptions 85
UserException class 85

utilities
idl2ir 289
irep 288
osagent 15

V
value types, abstract interfaces 45
valuebox 45
valuetype 42

valuebox 45
valuetypes 391

abstract 392
abstract interfaces 395
base classes 393
boxed 395
compiling the IDL file 393
concrete 392
custom 396
CustomMarshal interface 396
defining 393
derivation 391
Factories 392
factories 391, 394
implementation class 393
implementing 392
implementing factories 394
implementing the Factory class 393
inheriting valuetype base classes 393
isomorphic 392
marshal method 396
marshalling 396

488 VisiBroker for C++ Developer ’s Guide

null 392
null semantics 395
overview 391
registering 394
registering Factory with the ORB 394
shared 392
sharing semantics 395
truncatable 396
unmarshal method 396
unmarshalling 396

variable length, structures 35
vbmake, compiling with 15
vbroker.naming.backingStore 59
vbroker.naming.cache 200
vbroker.naming.enableSlave property 207
vbroker.naming.jdbcDriver 59
vbroker.naming.loginName 59
vbroker.naming.loginPwd 59
vbroker.naming.poolSize 59
vbroker.naming.propBindOn 204
vbroker.naming.serverAddresses property 207
vbroker.naming.serverClusterName property 207
vbroker.naming.serverNames property 207
vbroker.naming.slaveMode property 207
vbroker.naming.url 59
vbroker.orb.dynamicLibs property 350
vbroker.orb.enableBiDir property 399
vbroker.orb.enableServerManager property 243
vbroker.security.peerAuthenticationMode 403
vbroker.serverManager.enableOperations

property 243
vbroker.serverManager.enableSetProperty

property 243
vbroker.serverManager.name property 240
-version argument 22
version of product 6, 26
VisiBroker

BOA backward compatibility 405
CORBA compliance 5
described 2
example application 9
features of 3

VisiBroker for C++, header file switches 21
VisiBroker Interceptors (Interceptors) 345
VisiBroker Interceptors, example 350
VisiBroker ORB, initializing 139
VisiNaming

bootstrapping 211
caching facility 200
configuring OpenLDAP 200
method level authorization 211
properties for SSL (C++) 210
properties for SSL (Java) 210

VisiNaming Service
adapters 198
bootstrapping 190
client authentication 209
clusters 201
configuring 187
CosNaming operations supported 189
creating a cluster 204
default naming context 192
examples 212
failover 206
fault tolerance 207
installing 187

load balancing 205
master/slave mode 207
method level authorization 209
nsutil utility 188
overview 183
pluggable backing store 196
properties 55, 193
properties file 198
sample programs 212
security 209
shutting down 189
starting 187, 188

VISObjectWrapper::ChainUntypedObjectWrapper 363,
378

VISObjectWrapper::UntypedObjectWrapper 363, 378
VISObjectWrapper::UntypedObjectWrapperFactory 36

2, 377
Visual C++ nmake compiler 15

	Contents
	Understanding the CORBA model
	What is CORBA?
	What is VisiBroker?
	VisiBroker Features
	VisiBroker's Smart Agent (osagent) Architecture
	Enhanced Object Discovery Using the Location Service
	Implementation and Object Activation Support
	Robust thread and connection management
	IDL compilers
	Dynamic invocation with DII and DSI
	Interface and implementation repositories
	Server-side portability
	Customizing the VisiBroker ORB with interceptors and object wrappers
	Event Queue
	Backing stores in the Naming Service
	GateKeeper

	VisiBroker CORBA compliance
	VisiBroker Development Environment
	Programmer's tools
	CORBA services tools
	Administration Tools

	Interoperability with VisiBroker
	Interoperability with other ORB products
	IDL to C++ Mapping

	Developing an example application with VisiBroker
	Development process
	Step 1: Defining object interfaces
	Writing the account interface in IDL

	Step 2: Generating client stubs and server servants
	Files produced by the idl compiler

	Step 3: Implementing the client
	Client.C
	Binding to the AccountManager object
	Obtaining an Account object
	Obtaining the balance

	Step 4: Implementing the server
	Server programs
	Understanding the Account class hierarchy

	Step 5: Building the example
	Compiling the example

	Step 6: Starting the server and running the example
	Starting the Smart Agent
	Starting the server
	Running the client

	Deploying applications with VisiBroker
	VisiBroker Applications
	Deploying applications
	Environment variables
	Support service availability
	Running the application
	Executing client applications

	Programmer tools for C++
	VisiBroker for C++ Switches for Header Files
	_VIS_STD
	_VIS_NOLIB

	Arguments/Options
	General options

	General information
	idl2cpp
	idl2ir
	ir2idl
	idl2wsc
	Usage of idl2wsc
	Limitation of idl2wsc

	IDL to C++ mapping
	Primitive data types
	Strings
	String_var Class

	Constants
	Special cases involving constants

	Enumerations
	Type definitions
	Modules
	Complex data types
	Structures
	Fixed-length structures
	Variable length structures
	Memory management for structures
	Unions
	Managed types for unions
	Memory management for unions

	Sequences
	Managed types for sequences
	Memory management for sequences

	Arrays
	Array slices
	Managed types for arrays
	Type-safe arrays
	Memory management for arrays

	Principal

	Valuetypes
	Valuebox

	Abstract Interfaces

	VisiBroker properties
	Smart Agent properties
	Smart Agent communication properties
	VisiBroker ORB properties
	ServerManager properties
	Additional Properties
	Properties related to Server-side resource usage
	Properties related to Client-side resource usage
	Properties related to the Smart Agent (Smart Agent)
	Miscellaneous Properties

	Location Service properties
	Event Service properties
	Naming Service (VisiNaming) properties
	Pluggable Backing Store Properties
	Default properties common to all adapters
	JDBC Adapter properties
	DataExpress Adapter properties
	JNDI adapter properties
	VisiNaming Service Security-related properties

	OAD properties
	Interface Repository properties
	TypeCode properties
	Client-Side LIOP Connection properties
	Client-side IIOP connection properties
	QoS-related Properties
	Server-side server engine properties
	Server-side thread session IIOP_TS/IIOP_TS connection properties
	Server-side thread session BOA_TS/BOA_TS connection properties
	Server-side thread pool IIOP_TP/IIOP_TP connection properties
	Server-side thread pool BOA_TP/BOA_TP connection properties
	Server-side thread pool LIOP_TP/LIOP_TP connection properties
	Server-side thread pool BOA_LTP/BOA_LTP connection properties
	Properties that support bi-directional communication
	Debug Logging properties
	Enabling and Filtering
	Appending and Logging

	Examples
	Examples

	Web Services Runtime Properties
	Enabling the runtime
	Web Services HTTP Listener properties
	Web Services Connection Manager properties
	SOAP Request Dispatcher properties

	Real-time Extensions related properties

	Handling exceptions
	Exceptions in the CORBA model
	System exceptions
	SystemException class
	Obtaining completion status
	Getting and setting the minor code
	Determining the type of a system exception
	Catching system exceptions
	Downcasting exceptions to a system exception
	Catching specific types of system exceptions

	User exceptions
	Defining user exceptions
	Modifying the object to raise the exception
	Catching user exceptions
	Adding fields to user exceptions

	Server basics
	Overview
	Initializing the VisiBroker ORB
	Creating the POA
	Obtaining a reference to the root POA
	Creating the child POA
	Implementing servant methods

	Creating and Activating the Servant
	Activating the POA

	Activating objects
	Waiting for client requests
	Complete example

	Using POAs
	What is a Portable Object Adapter?
	POA terminology
	Steps for creating and using POAs

	POA policies
	Creating POAs
	POA naming convention
	Obtaining the rootPOA
	Setting the POA policies
	Creating and activating the POA

	Activating objects
	Activating objects explicitly
	Activating objects on demand
	Activating objects implicitly
	Activating with the default servant
	Deactivating objects

	Using servants and servant managers
	ServantActivators
	ServantLocators

	Managing POAs with the POA manager
	Getting the current state
	Holding state
	Active state
	Discarding state
	Inactive state

	Listening and Dispatching: Server Engines, Server Connection Managers, and their properties
	Server Engine and POAs
	Associating a POA with a Server Engine
	Defining Hosts for Endpoints for the Server Engine

	Server Connection Managers
	Manager
	Listener
	Dispatcher

	When to use these properties

	Adapter activators
	Processing requests

	Managing threads and connections
	Using threads
	Listener thread, dispatcher thread, and worker threads
	Thread policies
	Thread pool policy
	Thread-per-session policy
	Connection management
	ServerEngines
	ServerEngine properties

	Setting dispatch policies and properties
	Thread pool dispatch policy
	Thread-per-session dispatch policy
	Coding considerations

	Setting connection management properties
	Valid values for applicable properties
	Effects of property changes
	Dynamically alterable properties
	Determining whether property value changes take effect
	Impact of changing property values

	Garbage collection

	Using the tie mechanism
	How does the tie mechanism work?
	Example program
	Location of an example program using the tie mechanism
	Looking at the tie template
	Changing the server to use the _tie_account class
	Building the tie example

	Client basics
	Initializing the VisiBroker ORB
	Binding to objects
	Action performed during the bind process

	Invoking operations on an object
	Manipulating object references
	Checking for nil references
	Obtaining a nil reference
	Duplicating an object reference
	Releasing an object reference
	Obtaining the reference count
	Converting a reference to a string
	Obtaining object and interface names
	Determining the type of an object reference
	Determining the location and state of bound objects
	Checking for non-existent objects
	Narrowing object references
	Widening object references

	Using Quality of Service (QoS)
	Understanding Quality of Service (QoS)
	Policy overrides and effective policies

	QoS interfaces
	CORBA::Object
	CORBA::Object
	CORBA::PolicyManager
	CORBA::PolicyCurrent
	QoSExt::DeferBindPolicy
	QoSExt::RelativeConnectionTimeoutPolicy
	Messaging::RebindPolicy
	Messaging::RelativeRequestTimeoutPolicy
	Messaging::RelativeRoundTripTimeoutPolicy
	Messaging::SyncScopePolicy

	Exceptions

	Using IDL
	Introduction to IDL
	How the IDL compiler generates code
	Example IDL specification

	Looking at generated code for clients
	Methods (stubs) generated by the IDL compiler
	Pointer type <interface_name>_ptr definition
	Automatic memory management <interface_name>_var class

	Looking at generated code for servers
	Methods (skeletons) generated by the IDL compiler
	Class template generated by the IDL compiler

	Defining interface attributes in IDL
	Specifying one-way methods with no return value
	Specifying an interface in IDL that inherits from another interface

	Using the Smart Agent
	What is the Smart Agent?
	Best practices for Smart Agent configuration and synchronization
	General guidelines
	Load balancing/ fault tolerance guidelines
	Location service guidelines
	When not to use a Smart Agent

	Locating Smart Agents
	Locating objects through Smart Agent cooperation
	Cooperating with the OAD to connect with objects
	Starting a Smart Agent (osagent)
	Verbose output
	Disabling the agent

	Ensuring Smart Agent availability
	Checking client existence

	Working within VisiBroker ORB domains
	Connecting Smart Agents on different local networks
	How Smart Agents detect each other

	Working with multihomed hosts
	Specifying interface usage for Smart Agents

	Using point-to-point communications
	Specifying a host as a runtime parameter
	Specifying an IP address with an environment variable
	Specifying hosts with the agentaddr file

	Ensuring object availability
	Invoking methods on stateless objects
	Achieving fault-tolerance for objects that maintain state
	Replicating objects registered with the OAD

	Migrating objects between hosts
	Migrating objects that maintain state
	Migrating instantiated objects
	Migrating objects registered with the OAD

	Reporting all objects and services
	Binding to Objects

	Using the Location Service
	What is the Location Service?
	Location Service components
	What is the Location Service agent?
	Obtaining addresses of all hosts running Smart Agents
	Finding all accessible interfaces
	Obtaining references to instances of an interface
	Obtaining references to like-named instances of an interface

	What is a trigger?
	Looking at trigger methods
	Creating triggers
	Looking at only the first instance found by a trigger

	Querying an agent
	Finding all instances of an interface
	Finding interfaces and instances known to Smart Agents

	Writing and registering a trigger handler

	Using the VisiNaming Service
	Overview
	Understanding the namespace
	Naming contexts
	Naming context factories
	Names and NameComponent
	Name resolution
	Stringified names
	Simple and complex names

	Running the VisiNaming Service
	Installing the VisiNaming Service
	Configuring the VisiNaming Service
	Starting the VisiNaming Service

	Invoking the VisiNaming Service from the command line
	Configuring nsutil
	Running nsutil
	Shutting down the VisiNaming Service using nsutil

	Bootstrapping the VisiNaming Service
	Calling resolve_initial_references
	Using -DSVCnameroot
	Using -ORBInitRef
	Using a corbaloc URL
	Using a corbaname URL

	-ORBDefaultInitRef
	Using -ORBDefaultInitRef with a corbaloc URL
	Using -ORBDefaultInitRef with corbaname

	NamingContext
	NamingContextExt
	Default naming contexts
	Obtaining the default context
	Obtaining naming context factories

	VisiNaming Service properties
	Pluggable backing store
	Types of backing stores
	In-memory adapter
	JDBC adapter
	DataExpress adapter
	JNDI adapter

	Configuration and use
	Properties file
	JDBC Adapter properties
	DataExpress Adapter properties
	JNDI adapter properties

	Configuration for OpenLDAP
	Caching facility
	Important Notes for users of Caching Facility

	Object Clusters
	Object Clustering criteria
	Cluster and ClusterManager interfaces
	IDL Specification for the Cluster interface
	IDL Specification for the ClusterManager interface
	IDL Specification for the NamingContextExtExtended interface

	Creating an object cluster
	Explicit and implicit object clusters

	Load balancing
	Object failover
	Pruning stale object references in VisiNaming object clusters

	VisiNaming Service Clusters for Failover and Load Balancing
	Configuring the VisiNaming Service Cluster
	Configuring the VisiNaming Service in Master/Slave mode
	Starting up with a large number of connecting clients
	VisiNaming service federation

	VisiNaming Service Security
	Naming client authentication
	Configuring VisiNaming to use SSL
	Method Level Authorization

	Compiling and linking programs
	Sample programs
	Configuring VisiNaming with JdataStore HA
	Create a DB for the Primary mirror
	Invoke JdsServer for each listening connection
	Configure JDataStore HA
	Run the VisiNaming Explicit Clustering example
	Run the VisiNaming Naming Failover example

	Using the Event Service
	Overview
	Proxy consumers and suppliers
	OMG Common Object Services specification

	Communication models
	Push model
	Pull model

	Using event channels
	Creating event channels
	Examples of push supplier and consumer
	Push supplier and consumer example
	Deriving a PushSupplier class
	Implementing the PushSupplier
	Complete implementation for a sample push supplier
	Deriving a PushConsumer class
	Implementing the PushConsumer

	Setting the queue length

	Compiling and linking programs

	Using the VisiBroker Server Manager
	Getting Started with the Server Manager
	Enabling the Server Manager on a server
	Obtaining a Server Manager reference
	Working with Containers
	The Storage Interface

	The Container Interface
	Container Methods
	Methods related to property manipulation and queries
	Methods related to operations
	Methods related to children containers
	Methods related to storage

	The Storage Interface
	Storage Interface Methods

	Limiting access to the Server Manager
	Server Manager IDL

	Server Manager examples
	Obtaining the reference to the top-level container
	Getting all the containers and their properties
	Getting and Setting properties and saving them into the file
	Invoking an operation in a Container
	Custom Containers

	Using VisiBroker Native Messaging
	Introduction
	Two-phase invocation (2PI)
	Polling-Pulling and Callback models
	Non-native messaging and IDL mangling
	Native Messaging solution
	Request Agent
	Native Messaging Current
	Core operations

	StockManager example
	Polling-pulling model
	Callback model

	Advanced Topics
	Group polling
	Cookie and reply de-multiplexing in reply recipients
	Evolving invocations into two-phases
	Reply dropping
	Manual trash collection
	Unsuppressed premature return mode
	Suppress poller generation in callback model

	Native Messaging API Specification
	Interface RequestAgentEx
	create_request_proxy()
	destroy_request()

	Interface RequestProxy
	the_receiver
	poll()
	destroy()

	Local interface Current
	suppress_mode()
	wait_timeout
	the_cookie
	request_tag
	the_poller
	reply_not_available

	Interface ReplyRecipient
	reply_available()

	Semantics of core operations

	Native Messaging Interoperability Specification
	Native Messaging uses native GIOP
	Native Messaging service context
	NativeMessaging tagged component

	Using Borland Native Messaging
	Using request agent and client model
	Start the Borland Request Agent
	Borland Request Agent URL
	Using the Borland Native Messaging client model

	Borland Request Agent vbroker properties
	vbroker.requestagent.maxThreads
	vbroker.requestagent.maxOutstandingRequests
	vbroker.requestagent.blockingTimeout
	vbroker.requestagent.router.ior
	vbroker.requestagent.listener.port
	vbroker.requestagent.requestTimeout

	Interoperability with CORBA Messaging

	Migrating from previous versions of VisiBroker Native Messaging
	Migrating from previous versions of VisiBroker Native Messaging

	Using the Object Activation Daemon (OAD)
	Automatic activation of objects and servers
	Locating the Implementation Repository data
	Activating servers

	Using the OAD
	Starting the OAD

	Using the OAD utilities
	Converting interface names to repository IDs
	Listing objects with oadutil list
	Registering objects with oadutil
	Example: Specifying repository ID
	Example: Specifying IDL interface name
	Remote registration to an OAD
	Using the OAD without using the Smart Agent
	Using the OAD with the Naming Service

	Distinguishing between multiple instances of an object
	Setting activation properties using the CreationImplDef class
	Dynamically changing an ORB implementation
	OAD Registration using OAD::reg_implementation
	Arguments passed by the OAD

	Un-registering objects
	Un-registering objects using the oadutil tool
	Unregistration example

	Unregistering with the OAD operations
	Displaying the contents of the Implementation Repository

	IDL interface to the OAD

	Using Interface Repositories
	What is an Interface Repository?
	What does an Interface Repository contain?
	How many Interface Repositories can you have?

	Creating and viewing an Interface Repository with irep
	Creating an Interface Repository with irep
	Viewing the contents of the Interface Repository

	Updating an Interface Repository with idl2ir
	Understanding the structure of the Interface Repository
	Identifying objects in the Interface Repository
	Types of objects that can be stored in the Interface Repository
	Inherited interfaces

	Accessing an Interface Repository
	Interface Repository example program

	Using the Dynamic Invocation Interface
	What is the dynamic invocation interface?
	Introducing the main DII concepts
	Using request objects
	Encapsulating arguments with the Any type
	Options for sending requests
	Options for receiving replies

	Steps for invoking object operations dynamically
	Example programs for using the DII

	Obtaining a generic object reference
	Creating and initializing a request
	Request class
	Ways to create and initialize a DII request
	Using the create_request method
	Using the _request method
	Example of creating a Request object
	Setting the context for the request
	Setting arguments for the request
	Implementing a list of arguments with the NVList
	Setting input and output arguments with the NamedValue Class

	Passing type safely with the Any class
	Representing argument or attribute types wit the TypeCode class

	Sending DII requests and receiving results
	Invoking a request
	Sending a deferred DII request with the send_deferred method
	Sending an asynchronous DII request with the send_oneway method
	Sending multiple requests
	Receiving multiple requests

	Using the interface repository with the DII

	Using the Dynamic Skeleton Interface
	What is the Dynamic Skeleton Interface?
	Steps for creating object implementations dynamically
	Example program for using the DSI

	Extending the DynamicImplementation class
	Example of designing objects for dynamic requests
	Specifying repository ids

	Looking at the ServerRequest class
	Implementing the Account object
	Implementing the AccountManager object
	Processing input parameters
	Setting the return value

	Server implementation

	Using Portable Interceptors
	Portable Interceptors overview
	Types of interceptors
	Types of Portable Interceptors

	Portable Interceptor and Information interfaces
	Interceptor class
	Request Interceptor
	ClientRequestInterceptor
	Client-side rules
	ServerRequestInterceptor
	Server-side rules

	IOR Interceptor
	Portable Interceptor (PI) Current
	Codec
	CodecFactory
	Creating a Portable Interceptor
	Example: Creating a PortableInterceptor

	Registering Portable Interceptors
	Registering an ORBInitializer
	Example: Registering ORBInitializer

	VisiBroker extensions to Portable Interceptors
	POA scoped Server Request Interceptors

	Limitations of VisiBroker Portable Interceptors implementation
	ClientRequestInfo limitations
	ServerRequestInfo limitations

	Portable Interceptors examples
	Example: client_server
	Objective of example
	Importing required packages
	Client-side request interceptor initialization and registration to the ORB
	Implementing the ORBInitializer for a server-side Interceptor
	Implementing the RequestInterceptor for client- or server-side Request Interceptor
	Implementing the ClientRequestInterceptor for Client
	Implementation of the public void send_request(ClientRequestInfo ri) interface
	Implementation of the void send_poll(ClientRequestInfo ri) interface
	Implementation of the void receive_reply(ClientRequestInfo ri) interface
	Implementation of the void receive_exception(ClientRequestInfo ri) interface
	Implementation of the void receive_request_service_contexts (ServerRequestInfo ri) interface
	Implementation of the void receive_request (ServerRequestInfo ri) interface
	Implementation of the void receive_reply (ServerRequestInfo ri)interface
	Implementation of the void receive_exception (ServerRequestInfo ri) interface
	Implementation of the void receive_other (ServerRequestInfo ri) interface

	Developing the Client and Server Application
	Implementation of the client application
	Implementation of the server application

	Compilation procedure
	Execution or deployment of Client and Server Applications

	Using VisiBroker Interceptors
	Interceptors overview
	Interceptor interfaces and managers
	Client Interceptors
	BindInterceptor
	ClientRequestInterceptor

	Server Interceptors
	POALifeCycleInterceptor
	ActiveObjectLifeCycleInterceptor
	ServerRequestInterceptor
	IORCreationInterceptor

	Service Resolver Interceptor
	Registering Interceptors with the VisiBroker ORB
	Creating Interceptor objects
	Loading Interceptors

	Example Interceptors
	Example code
	Client-server Interceptors example

	Code listings
	SampleServerLoader
	SamplePOALifeCycleInterceptor
	SampleServerInterceptor
	SampleClientInterceptor
	SampleClientLoader
	SampleBindInterceptor

	Passing information between your Interceptors
	Using both Portable Interceptors and VisiBroker Interceptors simultaneously
	Order of invocation of interception points
	Client side Interceptors
	Server side Interceptors
	Order of ORB events during POA creation
	Order of ORB events during object reference creation

	Using object wrappers
	Object wrappers overview
	Typed and un-typed object wrappers
	Special idl2cpp requirements
	Object wrapper example applications

	Untyped object wrappers
	Using multiple, untyped object wrappers
	Order of pre_method invocation
	Order of post_method invocation

	Using untyped object wrappers
	Implementing an untyped object wrapper factory
	Implementing an untyped object wrapper
	pre_method and post_method parameters

	Creating and registering untyped object wrapper factories
	Removing untyped object wrappers

	Typed object wrappers
	Using multiple, typed object wrappers
	Order of invocation
	Typed object wrappers with co-located client and servers

	Using typed object wrappers
	Implementing typed object wrappers
	Registering typed object wrappers for a client
	Registering typed object wrappers for a server
	Removing typed object wrappers

	Combined use of untyped and typed object wrappers
	Command-line arguments for typed wrappers
	Initializer for typed wrappers
	Command-line arguments for untyped wrappers
	Initializers for untyped wrappers
	Executing the sample applications
	Turning on timing and tracing object wrappers
	Turning on caching and security object wrappers
	Turning on typesd and untyped wrappers
	Executing a CO-located client and server

	Event Queue
	Event types
	Connection events
	Event listeners
	IDL definition

	ConnInfo structure
	EventListener interface
	ConnEventListeners interface
	EventQueueManager interface
	How to return the EventQueueManager
	Event Queue code samples
	Registering EventListeners

	Implementing EventListeners

	Using the dynamically managed types
	DynAny interface overview
	DynAny examples

	DynAny types
	DynAny usage restrictions
	Creating a DynAny
	Initializing and accessing the value in a DynAny

	Constructed data types
	Traversing the components in a constructed data type
	DynEnum
	DynStruct
	DynUnion
	DynSequence and DynArray

	DynAny example IDL
	DynAny example client application
	DynAny example server application

	Using valuetypes
	Understanding valuetypes
	Valuetype IDL code sample
	Concrete valuetypes
	Valuetype derivation
	Sharing semantics
	Null semantics
	Factories

	Abstract valuetypes

	Implementing valuetypes
	Defining your valuetypes
	Compiling your IDL file
	Inheriting the valuetype base class
	Implementing the Factory class
	Registering your Factory with the VisiBroker ORB

	Implementing factories
	Factories and valuetypes
	Registering valuetypes

	Boxed valuetypes
	Abstract interfaces
	Custom valuetypes
	Truncatable valuetypes

	Bidirectional Communication
	Using bidirectional IIOP
	Bidirectional VisiBroker ORB properties
	About the BiDirectional examples
	Enabling bidirectional IIOP for existing applications
	Explicitly enabling bidirectional IIOP
	Unidirectional or bidirectional connections
	Enabling bidirectional IIOP for POAs

	Security considerations

	Using the BOA with VisiBroker
	Compiling your BOA code with VisiBroker
	Supporting BOA options
	Using object activators
	Naming objects under the BOA
	Object names

	Using object activators
	Deferring object activation
	Activator interface
	Using the service activation approach
	Deferring object activation using service activators
	Example of deferred object activation for a service
	odb.idl interface
	Implementing a service-activated object
	Implementing a service activator
	Instantiating the service activator
	Using a service activator to activate an object

	Deactivating service-activated object implementations

	Real-Time CORBA Extensions
	Overview
	Using the Real-Time CORBA Extensions
	Real-Time CORBA ORB
	Real-Time Object Adapters
	Real-Time CORBA Priority
	Priority Mappings
	Priority Mapping Types
	Rules for Priority Mappings
	Default Priority Mapping
	Replacing the Default Priority Mapping
	Using Native Priorities in VisiBroker Application Code

	Threadpools
	Threadpool API
	Threadpool Creation and Configuration
	Association of an Object Adapter with a Threadpool
	The General Threadpool
	Threadpool Destruction

	Real-Time CORBA Current
	Real-Time CORBA Priority Models
	Setting Priority at the Object Level
	Real-Time CORBA Mutex API
	Control of Internal ORB Thread Priorities
	Configuring Individual Internal ORB Thread Priorities
	Limiting the Internal ORB Thread Priority Range

	CORBA exceptions
	CORBA exception descriptions
	Heuristic OMG-specified exceptions
	Other OMG-specified exceptions

	VisiBroker Pluggable Transport Interface
	Pluggable Transport Interface Files
	Transport Layer Requirements
	User-Provided Code Required for a Protocol Plugin
	Unique Profile ID Tag
	Example Code
	Implementing a New Transport
	VISPTransConnection and VISPTransConnectionFactory
	VISPTransListener and VISPTransListenerFactory
	VISPTransProfileBase and VISPTransProfileFactory
	Additional classes-VISPTransBridge and VISPTransRegistrar

	VisiBroker Logging
	Logging Overview
	Logger Manager
	Logging
	Filtering
	Reserved names
	Customization
	Configuration
	Log manager configuration
	Appender and layout registration configuration
	Setting appenders and layouts on loggers
	Filter configuration
	Setting the properties

	Web Services Overview
	Web Services Architecture
	Standard Web Services Architecture
	VisiBroker Web Services Architecture
	Web Services Artifacts
	Web Service Runtime

	Exposing a CORBA object as Web Service
	Development
	Generating WSDL from IDL
	Generating the C++ interface type specific bridge

	Deployment
	Creating Deployment WSDD
	Using the created WSDD to deploy
	A sample axiscpp.conf file
	Web Services Runtime Configuration

	WSDD Reference
	Limitations
	SOAP/WSDL compatibility

	Reducing ORB runtime footprints
	Different ORB Libraries
	Core ORB library
	Smart Agent (osagent) Usage library
	Location Service library
	Server Manager Usage library
	Interface Repository library
	Dynamic Any library
	Gatekeeper (firewall) library

