Borland
VisiBroker” 8.0

VisiBroker for C++
Developer's Guide

Borland Software Corporation

20450 Stevens Creek Blvd., Suite 800
Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance
with the License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications
covering subject matter in this document. Please refer to the product CD or the About
dialog box for the list of applicable patents. The furnishing of this document does not give
you any license to these patents.

Copyright 1992-2006 Borland Software Corporation. All rights reserved. All Borland brand
and product names are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries. All other marks are the property of
their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB 80 VisiBroker C++ API
April 2007

B I d‘ﬂ

Contents

Chapter 1

Understanding the CORBA model 1
WhatisCORBA? 1
What is VisiBroker? 2
VisiBroker Features. 3

VisiBroker's Smart Agent (osagent) Architecture . 3
Enhanced Object Discovery Using the

Location Service
Implementation and Object Activation Support . .
Robust thread and connection management . . .
IDL compilers
Dynamic invocation with DIl and DSI
Interface and implementation repositories.
Server-side portability 5
Customizing the VisiBroker ORB with

interceptors and object wrappers 5
EventQueue. 5
Backing stores in the Naming Service. 5
GateKeeper, 5

VisiBroker CORBA compliance 5
VisiBroker Development Environment 5
Programmer'stools 6
CORBA servicestools. 6
Administration Tools 6
Interoperability with VisiBroker 6
Interoperability with other ORB products 7
IDLtoC++Mapping 7
Chapter 2
Developing an example application
with VisiBroker 9
Developmentprocess. 9
Step 1: Defining object interfaces. 11
Writing the account interface inIDL 11
Step 2: Generating client stubs and server servants . 11
Files produced by the idl compiler. 11
Step 3: Implementing theclient. 12
ClientC, 12
Binding to the AccountManager object. 13
Obtaining an Accountobject 13
Obtaining the balance 13
Step 4: Implementingtheserver 13
Serverprograms. 13
Understanding the Account class hierarchy14
Step 5: Buildingthe example 14
Compilingtheexample 15

Step 6: Starting the server and running the example . 15
Starting the SmartAgent 15
Startingtheserver. 16

Runningtheclient 16
Deploying applications with VisiBroker 16
VisiBroker Applications 17
Deploying applications 17
Environmentvariables 17

Support service availability 18
Running the application

Executing client applications

Chapter 3

Programmer tools for C++
VisiBroker for C++ Switches for Header Files
_VIS_STD
_VIS_NOLIB
Arguments/Options
Generaloptions.
General information
idi2cpp.
idl2ir
ir2idl ...
idl2wsc.
Usageofidl2wsc
Limitation of idl2wsc

Chapter 4
IDL to C++ mapping

Primitive data types
Strings.
String_var Class
Constants
Special cases involving constants
Enumerations
Type definitions
Modules Lo
Complex data types
Structures o o
Fixed-length structures
Variable length structures
Memory management for structures
Unions
Managed types forunions.
Memory management for unions
Sequences
Managed types for sequences
Memory management for sequences

Array slices
Managed types forarrays
Type-safearrays.
Memory management for arrays
Principal
Valuetypes.
Valuebox
Abstract Interfaces.

Chapter 5

VisiBroker properties
Smart Agent properties
Smart Agent communication properties.
VisiBroker ORB properties.
ServerManager properties.

Additional Properties

21
21
21
21
22
22
22
22
25
26
26
26
27

29
29
30
30
31
32
32
32
33
34
34
34
35
35
36
37
37
37
39
39
40
40
40
41
41
42
42
45
45

53

Properties related to Server-side resource usage

53

Properties related to Client-side resource usage

54

Properties related to the Smart Agent
(SmartAgent). 54
Miscellaneous Properties 54
Location Service properties 55
Event Service properties 55
Naming Service (VisiNaming) properties. 55
Pluggable Backing Store Properties. 59
Default properties common to all adapters. . . 59
JDBC Adapter properties 60
DataExpress Adapter properties. 61
JNDI adapter properties 62

VisiNaming Service Security-related properties 62

OAD properties. 63
Interface Repository properties. 63
TypeCode properties 64
Client-Side LIOP Connection properties 64
Client-side IIOP connection properties. 65
QoS-related Properties. 66
Server-side server engine properties. 66
Server-side thread session IIOP_TS/IIOP_TS

connection properties. 67
Server-side thread session BOA_TS/BOA_TS

connection properties. L. 68
Server-side thread pool IIOP_TP/IIOP_TP

connection properties. L. 69
Server-side thread pool BOA_TP/BOA_TP

connection properties. 70
Server-side thread pool LIOP_TP/LIOP_TP

connection properties. 71

Server-side thread pool BOA_LTP/BOA_LTP connection
properties 72
Properties that support bi-directional communication 72

Debug Logging properties 73
Enabling and Filtering. 75
Appendingand Logging 76
Examples 77
Examples 77
Web Services Runtime Properties 78
Enabling the runtime 78
Web Services HTTP Listener properties 79
Web Services Connection Manager properties . . 79
SOAP Request Dispatcher properties. 79
Real-time Extensions related properties 80
Chapter 6
Handling exceptions 81
Exceptions in the CORBA model. 81
Systemexceptions L. 81
SystemExceptionclass 82
Obtaining completion status. 82
Getting and setting the minorcode 83
Determining the type of a system exception . 83
Catching system exceptions. 83
Downcasting exceptions to a system exception. . 84
Catching specific types of system exceptions. . . 84
Userexceptions 85
Defining user exceptions 85
Modifying the object to raise the exception . . 86
Catching user exceptions 86

Adding fields to user exceptions 86
Chapter 7
Server basics 89
Overview 89
Initializing the VisiBrokerORB 89
Creatingthe POA 90
Obtaining a reference to the root POA. 90
Creatingthe child POA. 90
Implementing servant methods 91
Creating and Activating the Servant. 92
Activatingthe POA. 92
Activatingobjectso 0oL 92
Waiting for clientrequests. 92
Completeexample 93
Chapter 8
Using POAs 97
What is a Portable Object Adapter?. 97
POAterminology. 98
Steps for creating and using POAs 99
POA policies. 99
CreatingPOAs 101
POA naming convention 101
Obtaining the rootPOA. 101
Setting the POA policies 102
Creating and activatingthe POA. 102
Activatingobjects oo 102
Activating objects explicitly. 103
Activating objectsondemand 103
Activating objects implicitly. 103
Activating with the default servant 104
Deactivatingobjects 105
Using servants and servant managers 106
ServantActivatorso 107
ServantLocators 109
Managing POAs with the POA manager 112
Getting the currentstate 112
Holdingstate. 112
Activestate. L. 113
Discardingstate 113
Inactivestate. 113

Listening and Dispatching: Server Engines,
Server Connection Managers, and their properties 114

Server Engineand POAs 114
Associating a POA with a Server Engine . . . 115
Defining Hosts for Endpoints for the

ServerEngine. 116

Server Connection Managers 116
Manager 116
Listener 117
Dispatcher 118

When to use these properties 118

Adapteractivators.o oL 119
Processingrequests. 120
Chapter 9

Managing threads and connections 121
Usingthreads 121

Listener thread, dispatcher thread, and worker threads
122

Thread policies 122
Thread poolpolicy 122
Thread-per-session policy 126
Connection management. 127
ServerEngineso 128
ServerEngine properties. 128
Setting dispatch policies and properties 129
Thread pool dispatch policy 129
Thread-per-session dispatch policy 130
Coding considerations 130
Setting connection management properties 131
Valid values for applicable properties 132
Effects of property changes 132
Dynamically alterable properties. 132
Determining whether property value
changestakeeffect 133
Impact of changing property values 133
Garbage collection 133
Chapter 10
Using the tie mechanism 135
How does the tie mechanism work? 135
Example program. 136
Location of an example program using the
tie mechanism 136
Looking at the tie template. 136

Changing the server to use the _tie_account class .
137

Building the tieexample 138
Chapter 11
Client basics 139
Initializing the VisiBrokerORB 139
Bindingtoobjects. oL 139
Action performed during the bind process. . . . 140
Invoking operations on an object 141
Manipulating object references 141
Checking for nil references 141
Obtaining a nil reference. 141
Duplicating an object reference 141
Releasing an object reference. 142
Obtaining the referencecount. 142
Converting a referencetoastring. 143
Obtaining object and interface names 143
Determining the type of an object reference. . . 143

Determining the location and state of bound objects
144

Checking for non-existent objects 144
Narrowing object references. 144
Widening object references 144
Using Quality of Service (QoS) 145
Understanding Quality of Service (QoS). 145
Policy overrides and effective policies 145
QoSiinterfaces. L. 146
CORBA::Object. 146

CORBA::Object 146
CORBA::PolicyManager. 146
CORBA::PolicyCurrent 146
QoSExt::DeferBindPolicy 147
QoSExt::RelativeConnectionTimeoutPolicy . . 147
Messaging::RebindPolicy 147

Messaging::RelativeRequestTimeoutPolicy . . 149
Messaging::RelativeRoundTripTimeoutPolicy . 149

Messaging::SyncScopePolicy 149
Exceptions 149
Chapter 12
Using IDL 151
IntroductiontoIDL. 151
How the IDL compiler generates code. 152
Example IDL specification 152
Looking at generated code forclients 152

Methods (stubs) generated by the IDL compiler .153

Pointer type <interface_name>_ptr definition. . .153
Automatic memory management

<interface_name>_varclass 153

Looking at generated code for servers 154

Methods (skeletons) generated by the IDL compiler .
154
Class template generated by the IDL compiler. . 154
Defining interface attributesin IDL.
Specifying one-way methods with no return value. .156
Specifying an interface in IDL that inherits

from anotherinterface 156
Chapter 13
Using the Smart Agent 157
What is the Smart Agent? 157
Best practices for Smart Agent
configuration and synchronization 157
General guidelines 158
Load balancing/ fault tolerance guidelines . .158
Location service guidelines 158
When not to use a Smart Agent. 159
Locating SmartAgents. 159

Locating objects through Smart Agent cooperation .
159

Cooperating with the OAD to connect with objects. .
159

Starting a Smart Agent (osagent) 160
Verboseoutput L. 161
Disablingtheagent 161

Ensuring Smart Agent availability 161
Checking client existence 161

Working within VisiBroker ORB domains 162

Connecting Smart Agents on different local networks. .
163

How Smart Agents detect each other 163
Working with multihomed hosts 164
Specifying interface usage for Smart Agents. . . 164
Using point-to-point communications 165
Specifying a host as a runtime parameter165

Specifying an IP address with an

environmentvariable. 166
Specifying hosts with the agentaddr file. 166
Ensuring object availability 166
Invoking methods on stateless objects 167
Achieving fault-tolerance for objects that
maintainstate 167
Replicating objects registered with the OAD . . 167
Migrating objects between hosts 167
Migrating objects that maintain state 167
Migrating instantiated objects 168
Migrating objects registered with the OAD . . . 168
Reporting all objects and services 168
Bindingto Objects 169
Chapter 14
Using the Location Service 171
What is the Location Service? 171
Location Service components 172
What is the Location Service agent? 172
Obtaining addresses of all hosts running
SmartAgents. 173
Finding all accessible interfaces 173

Obtaining references to instances of an interface
174
Obtaining references to like-named

instances of aninterface 174
Whatisatrigger? 174
Looking at trigger methods. 174
Creatingtriggers 175
Looking at only the first instance found
byatrigger 175
Queryinganagent 175
Finding all instances of an interface. 175
Finding interfaces and instances known to
SmartAgents 176
Writing and registering a trigger handler 178
Chapter 15
Using the VisiNaming Service 183
Overview 183
Understanding the namespace. 184
Namingcontexts. 185
Naming context factories 185
Names and NameComponent. 186
Nameresolution. 186
Stringified names. L. 186
Simple and complex names 186
Running the VisiNaming Service. 187
Installing the VisiNaming Service 187
Configuring the VisiNaming Service. 187
Starting the VisiNaming Service 188

Invoking the VisiNaming Service from the command line
188
Configuring nsutil
Running nsutil 189
Shutting down the VisiNaming Service using nsuitil .
189

Bootstrapping the VisiNaming Service

Calling resolve_initial_references

Using -DSVCnameroot. 190
Using-ORBInitRef 190
UsingacorbalocURL. 190
Usingacorbaname URL 191
-ORBDefaulthnitRef. 191
Using -ORBDefaultInitRef with a corbaloc URL. .
191

Using -ORBDefaultInitRef with corbaname . . 191

NamingContext 191
NamingContextExt 192
Default namingcontexts. 192
Obtaining the default context. 192
Obtaining naming context factories 193
VisiNaming Service properties 193
Pluggable backing store. 196
Types of backing stores 196
In-memory adapter L. 197
JDBCadapter. 197
DataExpressadapter 197
JNDladapter 197
Configurationanduse 197
Propertiesfile. 198
JDBC Adapter properties 198
DataExpress Adapter properties 200

JNDI adapter properties 200
Configuration for OpenLDAP. 200
Cachingfacility 200

Important Notes for users of Caching Facility. 201

ObjectClusters 201
Object Clustering criteria 202
Cluster and ClusterManager interfaces 202
IDL Specification for the Cluster interface . . 202

IDL Specification for the ClusterManager interface
203
IDL Specification for the

NamingContextExtExtended interface . . . 203
Creating an objectcluster 204
Explicit and implicit object clusters 204
Load balancing., 205
Object failover 205
Pruning stale object references in
VisiNaming objectclusters 205
VisiNaming Service Clusters for Failover and
LoadBalancing 206
Configuring the VisiNaming Service Cluster. . . 207
Configuring the VisiNaming Service in Master/
Slavemode. 207

Starting up with a large number of connecting clients
208

VisiNaming service federation 209
VisiNaming Service Security 209
Naming client authentication. 210
Configuring VisiNamingtouse SSL 210
Method Level Authorization 211
Compiling and linking programs. 212
Sampleprogramso 212
Configuring VisiNaming with JdataStore HA 213
Create a DB for the Primary mirror. 213

Invoke JdsServer for each listening connection . 213
Configure JDataStore HA 214
Run the VisiNaming Explicit Clustering example. 215

Run the VisiNaming Naming Failover example . 216

Chapter 16
Using the Event Service 221
Overview 221
Proxy consumers and suppliers 222
OMG Common Object Services specification . . 224
Communicationmodels. 224
Pushmodel 225
Pullmodel 225
Usingeventchannels. 226
Creating eventchannels 227
Examples of push supplier and consumer 227
Push supplier and consumer example. 227
Deriving a PushSupplierclass 227
Implementing the PushSupplier 228
Complete implementation for a sample
push supplier 230
Deriving a PushConsumerclass 234
Implementing the PushConsumer 234
Setting the queue length. 236
Compiling and linking programs 237
Chapter 17
Using the VisiBroker Server Manager 239
Getting Started with the Server Manager. 239
Enabling the Server Manager on a server. . . . 239
Obtaining a Server Manager reference 240
Working with Containers. 240
The Storage Interface 241
The Container Interface. 241
Container Methods 241
Methods related to property
manipulation and queries. 241
Methods related to operations 242
Methods related to children containers. . . . 242
Methods related to storage 242
The Storage Interface. 242
Storage Interface Methods. 242
Limiting access to the Server Manager. 243
ServerManagerIDL. 244
Server Managerexamples 246

Obtaining the reference to the top-level container246

Getting all the containers and their properties. . 246

Getting and Setting properties and saving
themintothefile 247

Invoking an operation in a Container 247
Custom Containers 248

Chapter 18

Using VisiBroker Native Messaging 249

Introduction oL 249
Two-phase invocation 2PI) 249
Polling-Pulling and Callback models. 249
Non-native messaging and IDL mangling 250
Native Messaging solution. 250

RequestAgent. 250

Native Messaging Current 251
Coreoperations 251
StockManagerexample L. 251
Polling-pullingmodel 252
Callbackmodel 254
Advanced Topics. 256
Grouppolling., 256

Cookie and reply de-multiplexing in reply recipients .
258

Evolving invocations into two-phases. 260
Replydropping 261
Manual trash collection. 262
Unsuppressed premature return mode. 262
Suppress poller generation in callback model . .263
Native Messaging API Specification. 263
Interface RequestAgentEx 264
create_request_proxy() 264
destroy_request() 264
Interface RequestProxy. 265
the_receiver. 265
poll). 265
destroy(). L. 266
Local interface Current 266
suppress_mode() 266
wait_timeout. L. 266
the_cookie. 266
request tag L 266
the_poller 267
reply_not_available 267
Interface ReplyRecipient 269
reply_available(). 269

Semantics of core operations
Native Messaging Interoperability Specification. . .269

Native Messaging uses native GIOP 270
Native Messaging service context 270
NativeMessaging tagged component. 271
Using Borland Native Messaging 271
Using request agent and client model 271
Start the Borland Request Agent 271
Borland Request Agent URL 272
Using the Borland Native Messaging client model
272
Borland Request Agent vbroker properties. . . .272
vbroker.requestagent.maxThreads 272
vbroker.requestagent.maxOutstandingRequests .
272

vbroker.requestagent.blockingTimeout272
vbroker.requestagent.router.ior 272
vbroker.requestagent.listener.port. 273
vbroker.requestagent.requestTimeout273
Interoperability with CORBA Messaging 273

Migrating from previous versions of
VisiBroker Native Messaging. 273

Migrating from previous versions of
VisiBroker Native Messaging. 274

Chapter 19
Using the Object Activation Daemon (OAD)
275

Automatic activation of objects and servers 275
Locating the Implementation Repository data. . 275
Activatingservers 276

Usingthe OAD 276
Startingthe OAD 276

Using the OAD utilities 277
Converting interface names to repository IDs. . 277
Listing objects with oadutil list. 278
Registering objects with oadutil 279

Example: Specifying repository ID. 280
Example: Specifying IDL interface name. . . 280
Remote registrationtoan OAD 281

Using the OAD without using the Smart Agent281

Using the OAD with the Naming Service. . . 281
Distinguishing between multiple instances
ofanobject 282
Setting activation properties using the
CreationlmplDefclass 282

Dynamically changing an ORB implementation. 283
OAD Registration using OAD::reg_implementation .
283

Arguments passed by the OAD 284
Un-registeringobjects 284
Un-registering objects using the oadutil tool 284
Unregistration example. 285
Unregistering with the OAD operations 285
Displaying the contents of the
Implementation Repository 285
IDL interfacetothe OAD 286
Chapter 20
Using Interface Repositories 287
What is an Interface Repository?. 287
What does an Interface Repository contain? . . 287

How many Interface Repositories can you have? 288
Creating and viewing an Interface Repository with irep
288
Creating an Interface Repository withirep . . . 288
Viewing the contents of the Interface Repository 289
Updating an Interface Repository with idl2ir 289
Understanding the structure of the Interface Repository
290
Identifying objects in the Interface Repository. . 291
Types of objects that can be stored in the

Interface Repository 291
Inherited interfaces 292
Accessing an Interface Repository 292
Interface Repository example program. 292

Chapter 21
Using the Dynamic Invocation Interface 295

What is the dynamic invocation interface? 295
Introducing the main DIl concepts. 296
Using requestobjects 296

Encapsulating arguments with the Any type . 297
Options for sending requests. 297
Options for receiving replies

Vi

Steps for invoking object operations dynamically 298

Example programs for usingthe DIl 298
Obtaining a generic object reference 298
Creating and initializingarequest. 299

Requestclass 299

Ways to create and initialize a DIl request. . . . 299

Using the create_request method 300

Using the _requestmethod 300

Example of creating a Request object. 300

Setting the context for the request 301

Setting arguments forthe request 301

Implementing a list of arguments with the NVList.
301
Setting input and output arguments with

the NamedValueClass 302
Passing type safely with the Any class. 302
Representing argument or attribute types

wit the TypeCodeclass. 302
Sending DIl requests and receiving results 304
Invokingarequest 304
Sending a deferred DIl request with the
send_deferredmethod 305
Sending an asynchronous DIl request with
the send_oneway method 305
Sending multiplerequests 306
Receiving multiple requests 306
Using the interface repository with the DIl 307

Chapter 22

Using the Dynamic Skeleton Interface 311
311
Steps for creating object implementations dynamically .
311
Example program for usingthe DSI
Extending the Dynamiclmplementation class 312
Example of designing objects for dynamic requests .
312

Specifying repositoryids. 314
Looking at the ServerRequestclass 314
Implementing the Accountobject 315
Implementing the AccountManager object 315

Processing input parameters. 315

Setting the returnvalue 316
Server implementation 316
Chapter 23
Using Portable Interceptors 319
Portable Interceptors overview 319

Types of interceptors. 320

Types of Portable Interceptors 320
Portable Interceptor and Information interfaces . . . 320

Interceptorclass 320

Request Interceptor 320

ClientRequestinterceptor 321
Client-siderules. 322
ServerRequestinterceptor 322
Server-siderules 323

IOR Interceptor. 323

Portable Interceptor (PI) Current. 323

Codec 324

CodecFactory 324
Creating a Portable Interceptor 324
Example: Creating a PortableInterceptor. . . 325
Registering Portable Interceptors 325
Registering an ORBlnitializer 326
Example: Registering ORBlnitializer 326
VisiBroker extensions to Portable Interceptors . 327
POA scoped Server Request Interceptors . . 327
Limitations of VisiBroker Portable
Interceptors implementation 327
ClientRequestinfo limitations 327
ServerRequestinfo limitations 327
Portable Interceptors examples. 328
Example: client_server 328
Objective of example 328
Importing required packages 328
Client-side request interceptor initialization
and registrationtothe ORB 329
Implementing the ORBInitializer for a
server-side Interceptor. 331
Implementing the Requestinterceptor for
client- or server-side Request Interceptor . . . 332

Implementing the ClientRequestinterceptor for Client
333

Implementation of the public void
send_request(ClientRequestinfo ri) interface 333

Implementation of the void
send_poll(ClientRequestinfo ri) interface .

Implementation of the void
receive_reply(ClientRequestinfo ri) interface 333

Implementation of the void
receive_exception(ClientRequestinfo ri)

. 333

interfface. oL 333
Implementation of the void
receive_request_service_contexts
(ServerRequestinfo ri) interface. 336
Implementation of the void receive_request
(ServerRequestinfo ri) interface. 336
Implementation of the void receive_reply
(ServerRequestinfo ri)interface 336
Implementation of the void receive_exception
(ServerRequestinfo ri) interface. 336
Implementation of the void receive_other
(ServerRequestinfo ri) interface. 337
Developing the Client and Server Application . . 339
Implementation of the client application . . . 339
Implementation of the server application. . . 340
Compilation procedure. 341
Execution or deployment of Client and
Server Applications 342
Chapter 24
Using VisiBroker Interceptors 345
Interceptorsoverview 345
Interceptor interfaces and managers 345
ClientInterceptors 346
Bindinterceptor 346

vii

ClientRequestinterceptor 346
Servernterceptors. 347
POALifeCyclelnterceptor 347
ActiveObjectLifeCyclelnterceptor 347
ServerRequestinterceptor. 347
IORCreationinterceptor 348
Service Resolver Interceptor 348

Registering Interceptors with the VisiBroker ORB349

Creating Interceptor objects 349
Loading Interceptors 350
Example Interceptors 350
Examplecode 350
Client-server Interceptors example 350
Codelistings 351
SampleServerLoader 351
SamplePOALifeCyclelnterceptor 352
SampleServerinterceptor 353
SampleClientinterceptor. 353
SampleClientLoader. 354
SampleBindInterceptor 355
Passing information between your Interceptors . . .356
Using both Portable Interceptors and
VisiBroker Interceptors simultaneously 356
Order of invocation of interception points. 357
Client side Interceptors. 357
Server side Interceptors L. 357
Order of ORB events during POA creation. . . .357
Order of ORB events during object
reference creation. 358
Chapter 25
Using object wrappers 359
Object wrappers overview 359
Typed and un-typed object wrappers. 359
Special idl2cpp requirements. 360
Object wrapper example applications 360
Untyped object wrappers 360
Using multiple, untyped object wrappers 361
Order of pre_method invocation 361
Order of post_method invocation. 361
Using untyped object wrappers 362

Implementing an untyped object wrapper factory 362

Implementing an untyped object wrapper363
pre_method and post_method parameters . .363
Creating and registering untyped object
wrapper factories 364
Removing untyped object wrappers 365
Typed objectwrappers. 365
Using multiple, typed object wrappers 366
Order of invocation 367
Typed object wrappers with co-located
clientandservers. 367
Using typed object wrappers 368
Implementing typed object wrappers. 368

Registering typed object wrappers for a client . .369
Registering typed object wrappers for a server. .369
Removing typed object wrappers.

Combined use of untyped and typed object wrappers .
370

Command-line arguments for typed wrappers . 371
Initializer for typed wrappers. 371
Command-line arguments for untyped wrappers 372
Initializers for untyped wrappers 372
Executing the sample applications 373
Turning on timing and tracing object wrappers 373

Turning on caching and security object wrappers

374

Turning on typesd and untyped wrappers . . 374
Executing a CO-located client and server . . 374
Chapter 26
Event Queue 375
Eventtypes. L. 375
Connectionevents 375
Eventlisteners 375
IDL definition 375
Conninfo structure 376
EventlListenerinterface 376
ConnEventListenersinterface. 376
EventQueueManager interface 377
How to return the EventQueueManager. 377
Event Queue code samples. 377
Registering EventListeners. 377
Implementing EventListeners 378

Chapter 27
Using the dynamically managed types 381

DynAny interface overview 381
DynAny examples. 381
DynAnytypes. L. 381
DynAny usage restrictions. 382
CreatingaDynAny 382

Initializing and accessing the value in a DynAny 382

Constructed datatypes. 383
Traversing the components in a
constructed datatype 383
DynEnumo 383
DynStruct 383
DynUnion 383
DynSequence and DynArray 383
DynAnyexampleIDL. 384
DynAny example client application. 384
DynAny example server application 385
Chapter 28
Using valuetypes 391
Understanding valuetypes 391
Valuetype IDL code sample 391
Concrete valuetypes. 391
Valuetype derivation 392
Sharingsemantics 392
Nullsemantics 392
Factories. 392
Abstractvaluetypes 392
Implementing valuetypes. 392
Defining your valuetypes 393
Compiling your IDLfile 393

viii

Inheriting the valuetype base class

Implementing the Factory class 393

Registering your Factory with the VisiBroker ORB. .
394

Implementing factories 394
Factories and valuetypes. 394
Registering valuetypes. 394

Boxed valuetypes 395

Abstractinterfaces. 395

Customvaluetypes 396

Truncatable valuetypes 396

Chapter 29

Bidirectional Communication 399

Using bidirectional IOP 399

Bidirectional VisiBroker ORB properties 399

About the BiDirectional examples. 400

Enabling bidirectional IIOP for existing applications. 401

Explicitly enabling bidirectional IOP 401
Unidirectional or bidirectional connections. . . . 402
Enabling bidirectional IIOP for POAs. 403

Security considerations L. 403

Chapter 30

Using the BOA with VisiBroker 405

Compiling your BOA code with VisiBroker 405

Supporting BOA options. 405

Using object activators 405

Naming objects underthe BOA 406
Objectnames 406

Chapter 31

Using object activators 407

Deferring object activation. 407

Activatorinterface 407

Using the service activation approach 408

Deferring object activation using service activators .
408

Example of deferred object activation for a service .
409

odb.dlinterface 409
Implementing a service-activated object . . . 410
Implementing a service activator 410
Instantiating the service activator. 411

Using a service activator to activate an object 411
Deactivating service-activated object

implementations, .. 412
Chapter 32
Real-Time CORBA Extensions 415
Overview 415
Using the Real-Time CORBA Extensions. 416
Real-Time CORBAORB 416
Real-Time Object Adapters 418
Real-Time CORBA Priority 419
Priority Mappings 420
Priority Mapping Types. 420
Rules for Priority Mappings 421
Default Priority Mapping 422
Replacing the Default Priority Mapping 423

Using Native Priorities in VisiBroker

ApplicatonCode 424
Threadpools. 425
Threadpool APl 425
Threadpool Creation and Configuration 426

Association of an Object Adapter with a Threadpool
426

The General Threadpool. 427
Threadpool Destruction 428
Real-Time CORBACurrent. 428
Real-Time CORBA Priority Models 429
Setting Priority at the Object Level 431
Real-Time CORBA Mutex APl 431
Control of Internal ORB Thread Priorities 432
Configuring Individual Internal ORB

Thread Priorities 432

Limiting the Internal ORB Thread Priority Range.

433
Chapter 33
CORBA exceptions 435
CORBA exception descriptions. 435
Heuristic OMG-specified exceptions 440
Other OMG-specified exceptions 440

Chapter 34
VisiBroker Pluggable Transport Interface
443

Pluggable Transport Interface Files
Transport Layer Requirements 443
User-Provided Code Required for a Protocol Plugin 444

Unique ProfileIDTag 444
ExampleCode 445
Implementing a New Transport 445
VISPTransConnection and
VISPTransConnectionFactory 445

VISPTransListener and VISPTransListenerFactory .
446

VISPTransProfileBase and VISPTransProfileFactory
447

Additional classes—VISPTransBridge and

VISPTransRegistrar 447
Chapter 35
VisiBroker Logging 451
Logging Overview. 451
Logger Manager 453
Logging 453
Fitering 454
Reservednames 455
Customization. 455
Configuration, 457
Log manager configuration 457
Appender and layout registration configuration . 458
Setting appenders and layouts on loggers. . . . 458
Filter configuration. 459

Setting the properties. 459
Chapter 36
Web Services Overview 461
Web Services Architecture 461
Standard Web Services Architecture 462
VisiBroker Web Services Architecture. 462
Web Services Artifacts 462
Web Service Runtime 463
Exposing a CORBA object as Web Service 465
Development., 466
Generating WSDL fromIDL 466

Generating the C++ interface type specific bridge . .
466

Deployment 467
Creating DeploymentWSDD 467
Using the created WSDD to deploy 467
A sample axiscpp.conffile 467
Web Services Runtime Configuration 468

WSDD Reference 468

Limitations 469

SOAP/WSDL compatibility. 469

Chapter 37

Reducing ORB runtime footprints 471

Different ORB Libraries 471
CoreORBlibrary 472
Smart Agent (osagent) Usage library 472
Location Service library 472
Server Manager Usage library 472
Interface Repository library. 473
Dynamic Any library 473
Gatekeeper (firewall) library 473

Index 475

Xi

Xii

Understanding the CORBA model

This section introduces VisiBroker, which comprises both the VisiBroker for C++ and
the VisiBroker for Java ORBs. Both are complete implementations of the CORBA 3.0
specification (excluding CCM and GIOP 1.3). This section describes VisiBroker
features and components.

What is CORBA?

The Common Object Request Broker Architecture (CORBA) allows distributed
applications to interoperate (application-to-application communication), regardless of
what language they are written in or where these applications reside.

The CORBA specification was adopted by the Object Management Group to address
the complexity and high cost of developing distributed object applications. CORBA
uses an object-oriented approach for creating software components that can be reused
and shared between applications. Each object encapsulates the details of its inner
workings by presenting a well-defined interface. Use of these interfaces, themselves
written in the standardized Interface Definition Language (IDL) reduces application
complexity. The cost of developing applications is reduced, because once an object is
implemented and tested, it can be used over and over again.

The role of the Object Request Broker (ORB) is to track and maintain these interfaces,
facilitate communication between them, and provide services to applications making
use of them. The ORB itself is not a separate process. It is a collection of libraries and
network resources that integrates within end-user applications, and allows your client
applications to locate and use disparate objects.

The Object Request Broker in the following figure connects a client application with the
objects it wants to use. The client program does not need to know whether the object it
seeks resides on the same computer or is located on a remote computer somewhere
on the network. The client program only needs to know the object's name and

1: Understanding the CORBA model 1

What is VisiBroker?

understand how to use the object's interface. The ORB takes care of the details of
locating the object, routing the request, and returning the result.

Figure 1.1 Client program acting on an object

Client
Ohiject 2,
" Client Program ORE locates
O requests a reference G Ohject & and
to Object &, hinds client to it
| Object Request Broker I

What is VisiBroker?

VisiBroker provides a complete CORBA 3.0 ORB runtime and supporting development
environment for building, deploying, and managing distributed applications for both
C++ and Java that are open, flexible, and interoperable. Objects built with VisiBroker
are easily accessed by Web-based applications that communicate using the Internet
Inter-ORB Protocol (IIOP) standard for communication between distributed objects
through the Internet or through local intranets. VisiBroker has a built-in implementation
of IIOP that ensures high-performance and interoperability.

2 VisiBroker for C++ Developer’s Guide

VisiBroker Features

Figure 1.2 VisiBroker Architecture

Imtranet

= Coek Olject Client
- Naming Service

VisBiok Java

siBroker Apple
for Java
Runtime

Web Server

Internet - GateKeeper VisiBroker
- SmartAgent for lava
Runtime

Java Intranatsf
Applet Enterprise IHOF
VisiBroker VisiBroker VisiBroker N Enterprisa
Runtime forlava for C++
Rurtime Runtime
= Java Object
- Event Service
= SmartAgent
WisiBroker
for C4++
Runtime
VisiBroker Features

VisiBroker has several key features as described in the following sections.

VisiBroker's Smart Agent (osagent) Architecture

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory service that
provides naming facilities for both client applications and object implementations.
Multiple Smart Agents on a network cooperate to provide load-balancing and high
availability for client access to server objects. The Smart Agent keeps track of objects
that are available on a network, and locates objects for client applications at object-
invocation time. VisiBroker can determine if the connection between your client
application and a server object has been lost (due to an error such as a server crash or
a network failure). When a failure is detected, an attempt is automatically made to
connect your client to another server on a different host, if it is so configured. For
?Stasilf on the Smart Agent see “Using the Smart Agent” and “Using Quality of Service
0S)”.

Enhanced Object Discovery Using the Location Service

VisiBroker provides a powerful Location Service—an extension to the CORBA
specification—that enables you to access the information from multiple Smart Agents.
Working with the Smart Agents on a network, the Location Service can see all the
available instances of an object to which a client can bind. Using triggers, a callback
mechanism, client applications can be instantly notified of changes to an object's
availability. Used in combination with interceptors, the Location Service is useful for
developing enhanced load balancing of client requests to server objects. See “Using
the Location Service.”

Implementation and Object Activation Support

The Object Activation Daemon (OAD) is the VisiBroker implementation of the
Implementation Repository. The OAD can be used to automatically start object

1: Understanding the CORBA model 3

VisiBroker Features

implementations when clients need to use them. Additionally, VisiBroker provides
functionality that enables you to defer object activation until a client request is received.
You can defer activation for a particular object or an entire class of objects on a server.

Robust thread and connection management

VisiBroker provides native support for single- and multi-threaded thread management.
With VisiBroker's thread-per-session model, threads are automatically allocated on the
server (per client connection) to service multiple requests, and then are terminated
when each connection ends. With the thread pooling model, threads are allocated
based on the amount of request traffic to and from server objects. This means that a
highly active client will be serviced by multiple threads—ensuring that the requests are
quickly executed—while less active clients can share a single thread and still have their
requests immediately serviced.

VisiBroker's connection management minimizes the number of client connections to
the server. All client requests for objects residing on the same server are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same
server, eliminating the need for clients to incur the overhead of new connections to the
same server.

All thread and connection behavior is fully configurable. See “Managing threads and
connections” for details on how VisiBroker manages threads and connections.

IDL compilers

VisiBroker comes with three IDL compilers that make object development easier,

- idl2java: The id12java compiler takes IDL files as input and produces the necessary
client stubs and server skeletons in Java.

- idl2cpp: The id12cpp compiler takes IDL files as input and produces the necessary
client stubs and server skeletons in C++.

- idl12ir: The id12ir compiler takes an IDL file and populates an interface repository
with its contents. Unlike the previous two compilers, id12ir functions with both the
C++ and Java ORBs.

See “Using IDL” and “Using Interface Repositories” for details on these compilers.

Dynamic invocation with DIl and DSI

VisiBroker provides implementations of both the Dynamic Invocation Interface (DII) and
the Dynamic Skeleton Interface (DSI) for dynamic invocation. The DIl allows client
applications to dynamically create requests for objects that were not defined at compile
time. The DSI allows servers to dispatch client operation requests to objects that were
not defined at compile time. See “Using the Dynamic Invocation Interface” and “Using
the Dynamic Skeleton Interface” for more information.

Interface and implementation repositories

The Interface Repository (IR) is an online database of meta information about the
VisiBroker ORB objects. Meta information stored for objects includes information about
modules, interfaces, operations, attributes, and exceptions. “Using Interface
Repositories” covers how to start an instance of the Interface Repository, add
information to an interface repository from an IDL file, and extract information from an
interface repository.

The Object Activation Daemon is a VisiBroker interface to the Implementation
Repository that is used to automatically activate the implementation when a client
references the object. See “Using the Object Activation Daemon (OAD)” for more
information.

4 VisiBroker for C++ Developer’s Guide

VisiBroker CORBA compliance

Server-side portability

VisiBroker supports the CORBA Portable Object Adapter (POA), which is a
replacement to the Basic Object Adapter (BOA). The POA shares some of the same
functionality as the BOA, such as activating objects, support for transient or persistent
objects, and so forth. The POA also has additional functionality, such as the POA
Manager and Servant Manager which create and manages instances of your objects.
See “Using POAs” for more information.

Customizing the VisiBroker ORB with interceptors and object
wrappers

VisiBroker's Interceptors enable developers to view under-the-cover communications
between clients and servers. The VisiBroker Interceptors are Borland's proprietary
interceptors. Interceptors can be used to extend the VisiBroker ORB with customized
client and server code that enables load balancing, monitoring, or security to meet the
sr;ecialized needs of distributed applications. See “Using Portable Interceptors” for
information.

VisiBroker also includes the Portable Interceptors, based on the OMG standardized
feature, that allow you to write portable code for interceptors and use it with different
vendor ORBs. For more information, refer to the COBRA 3.0 specification.

VisiBroker's object wrappers allow you to define methods that are called when a client
application invokes a method on a bound object or when a server application receives
an operation request. See “Using object wrappers” for information.

Event Queue

The event queue is designed as a server-side only feature. A server can register the
listeners to the event queue based on the event types that the server is interested in,
and the server processes those events when the need arises.

Backing stores in the Naming Service

The new interoperable Naming Service integrates with pluggable backing stores to
make its state persistent. This ensures easy fault tolerance and failover functionality in
the Naming Service. See “Pluggable backing store” for more information.

GateKeeper

The GateKeeper allows client programs to issue operation requests to objects that
reside on a web server and to receive callbacks from those objects, all the while
conforming to the security restrictions imposed by web browsers. The Gatekeeper also
handles communication through firewalls and can be used as an HTTP daemon. It is
fully compliant with the OMG CORBA Firewall Specification. For more information see
the VisiBroker “Introduction to GateKeeper.”

VisiBroker CORBA compliance

VisiBroker is fully compliant with the CORBA specification (version 3.0) (excluding
CCM and GIOP 1.3) from the Object Management Group (OMG). For more details,
refer to the CORBA specification located at http://www.omg.org/.

VisiBroker Development Environment

VisiBroker can be used in both the development and deployment phases. The
development environment includes the following components:

1: Understanding the CORBA model 5

http://www.omg.org/

Interoperability with VisiBroker

- Administration and programming tools
- VisiBroker ORB

Programmer's tools

The following tools are used during the development phase:

Tool Purpose

idl2ir This tool allows you to populate an interface repository with interfaces defined in an
IDL file for both the VisiBroker for Java and VisiBroker for C++.

idl2cpp This tool generates C++ stubs and skeletons from an IDL file.

idl2java | This tool generates Java stubs and skeletons from an IDL file

java2iiop | Generates Java stubs and skeletons from a Java file. This tool allows you to define
your interfaces in Java, rather than in IDL.

java2idl | Generates an IDL file from a file containing Java bytecode.

CORBA services tools

The following tools are used to administer the VisiBroker ORB during development:

Tool Purpose
irep Used to manage the Interface Repository. See “Using Interface Repositories.”
oad Used to manage the Object Activation Daemon (OAD). See “Using the Object

Activation Daemon (OAD).”

nameserv | Used to start an instance of the Naming Service. See “Using the VisiNaming
Service.”

Administration Tools

The following tools are used to administer the VisiBroker ORB during development:

Tool Purpose

oadutil list |Lists VisiBroker ORB object implementations registered with the OAD.

oadutil reg Registers an VisiBroker ORB object implementation with the OAD.

oadutil unreg |Unregisters an VisiBroker ORB object implementation with the OAD.

osagent Used to manage the Smart Agent. See “Using the Smart Agent.”

osfind Reports on objects running on a given network.

Interoperability with VisiBroker

Applications created with VisiBroker for Java can communicate with object
implementations developed with VisiBroker for C++. Likewise, for applications created
with VisiBroker for C++, these applications can also communicate with objects
implementations developed with VisiBroker for Java. For example, if you want to use
Java application on VisiBroker for C++, use the same IDL you used to develop your
Java application as input to the VisiBroker IDL compiler, supplied with VisiBroker for
C++. You may then use the resulting C++ skeletons to develop the object
implementation. To use the C++ application on VisiBroker for Java, repeat the process.
However, you will use the VisiBroker IDL complier with VisiBroker for Java instead.

Also, object implementations written with VisiBroker for Java will work with clients
written in VisiBroker for C++. In fact, a server written with VisiBroker for Java will work
with any CORBA-compliant client; a client written with VisiBroker for Java will work with
any CORBA-compliant server. This also applies to any VisiBroker for C++ object
implementations.

6 VisiBroker for C++ Developer’s Guide

Interoperability with other ORB products

Interoperability with other ORB products

CORBA-compliant software objects communicate using the Internet Inter-ORB
Protocol (IIOP) and are fully interoperable, even when they are developed by different
vendors who have no knowledge of each other's implementations. VisiBroker's use of
IIOP allows client and server applications you develop with VisiBroker to interoperate
with a variety of ORB products from other vendors.

IDL to C++ Mapping

VisiBroker conforms with the OMG IDL/C++ Language Mapping Specification. See the
VisiBroker Programmer's Reference for a summary of VisiBroker's current IDL to C++
language mapping, as implemented by the id12cpp compiler. For each IDL construct
there Iis a section that describes the corresponding C++ construct, along with code
samples.

For more information about the mapping specification, refer to the OMG IDL/C++
Language Mapping Specification.

1: Understanding the CORBA model 7

8 VisiBroker for C++ Developer’s Guide

Developing an example application
with VisiBroker

This section uses an example application to describe the development process for
creating distributed, object-based applications for both Java and C++.

The code for the example application is provided in the bank_agent .html file. You can
find this file in:

<install_dir>/examples/vbroker/basic/bank_agent/

Development process

When you develop distributed applications with VisiBroker, you must first identify the
objects required by the application. The following figure illustrates the steps to develop
a sample bank application. Here is a summary of the steps taken to develop the bank
sample:

1

Write a specification for each object using the Interface Definition Language (IDL).

IDL is the language that an implementer uses to specify the operations that an
object will provide and how they should be invoked. In this example, we define, in
IDL, the Account interface with a balance () method and the AccountManager interface
with an open () method.

Use the IDL compilers to generate the client stub code and server POA servant
code.

With the interface specification described in step 1, use the id12java or idl2cpp
compilers to generate the client-side stubs and the server-side classes for the
implementation of the remote objects.

Write the client program code.

To complete the implementation of the client program, initialize the VisiBroker ORB,
bind to the Account and the AccountManager objects, invoke the methods on these
objects, and print out the balance.

2: Developing an example application with VisiBroker 9

Development process

4 Write the server object code.

To complete the implementation of the server object code, we must derive from the
AccountPOA and AccountManagerPOA classes, provide implementations of the
interfaces' methods, and implement the server's main routine.

5 Compile the client and server code using the appropriate stubs and skeletons.
6 Start the server.
7 Run the client program.

Figure 2.1 Developing the sample bank application

n Object specification in DL

idlZcpp
idlZjava

Add client
Frogram Code

Add Object
Implementation

5 (”f:'++mava n Crvidava
CompilerLinker CompilerLinke

- * .
client |——— client program Senrer .Senrertlbjec
classes nning claszes nning

Client | Senrar |

| “isiBroker Edition Object Request

* C++ If you are creating the application in C++,
you will need to compile and link the server object code

10 VisiBroker for C++ Developer’s Guide

Step 1: Defining object interfaces

Step 1: Defining object interfaces

The first step to creating an application with VisiBroker is to specify all of your objects
and their interfaces using the OMG's Interface Definition Language (IDL). The IDL can
be mapped to a variety of programming languages.

You then use the idl2cpp compiler to generate stub routines and servant code
compliant with the IDL specification. The stub routines are used by your client program
to invoke operations on an object. You use the servant code, along with code you write,
to create a server that implements the object.

Writing the account interface in IDL

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data
structures, and more.

The sample below shows the contents of the Bank.id1 file for the bank_agent example.
The Account interface provides a single member function for obtaining the current
balance. The AccountManager interface creates an account for the user if one does not
already exist.

module Bank{
interface Account {
float balance();
}i
interface AccountManager {
Account open(in string name);
}i
}i

Step 2: Generating client stubs and server servants

The interface specification you create in IDL is used by VisiBroker's id12cpp to
generate C++ stub routines for the client program, and skeleton code for the object
implementation.

The client program uses the stub routines for all member function invocations.

You use the skeleton code, along with code you write, to create the server that
implements the objects.

The code for the client program and server object, once completed, is used as input to
your C++ compiler and linker to produce the client and server.

Because the Bank.idl file requires no special handling, you can compile the file with the
following command.

prompt> 1dl2cpp Bank.idl

For more information on the command-line options for the id12cpp compiler, see “Using
IDL.”

Files produced by the idl compiler

The idl12cpp compiler generates four files from the Bank.id1 file:
Bank_c.hh: Contains the definitions for the Account and AccountManager classes.

Bank_c.cc: Contains internal stub routines used by the client.

Bank_s.hh: Contains the definitions for the AccountPOA and AccountManagerPOA servant
classes.

Bank_s.cpp: Contains the internal routines used by the server.

2: Developing an example application with VisiBroker 11

Step 3: Implementing the client

You will use the Bank_c.hh and Bank_c. cpp files to build the client application. The
Bank_s.hh and Bank_s.cpp files are for building the server object. All generated files have
either a .cpp or .hh suffix to help you distinguish them from source files.

Windows

The default suffix for generated files from the id12cpp compiler is .cpp. However, the
Makefiles associated with the examples for VisiBroker use the -src suffix to change the
output to the specified extension.

Caution

You should never modify the contents of files generated by the id12cpp compiler.

Step 3: Implementing the client

Many of the classes used in implementing the bank client are contained in the Bank
code generated by the id12cpp compiler as shown in the previous example.

The Client.C file illustrates this example and is included in the bank_agent directory.
Normally, you would create this file.

Client.C

The Client program implements the client application which obtains the current
balance of a bank account. The bank client program performs these steps:

1 Initializes the VisiBroker ORB.

2 Binds to an AccountManager object.

3 Obtains the balance of the Account using the object reference returned by bind ().
4 Obtains the balance by invoking balance on the Account object.

#include "Bank_c.hh"
int main(int argc, char* const* argv) {
try {
// Initialize the ORB.
CORBA: :ORB_ptr orb = CORBA::ORB_init (argc, argv);
// Get the manager Id
PortableServer::0bjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");

// Locate an account manager. Give the full POA name and the servant ID.
Bank: :AccountManager_ptr manager =
Bank: :AccountManager::_bind("/bank_agent_poa", managerId);
// use argv[l] as the account name, or a default.
const char* name = argc > 1 ? argv[l] : "Jack B. Quick";

// Request the account manager to open a named account.

Bank::Account_ptr account = manager->open(name);

// Get the balance of the account.

float balance = account->balance();

// Print out the balance.

cout << "The balance in " << name << "'s account 1s $" << balance <<
endl;

} catch(const CORBA::Exception& e) {
cerr << e << endl;

12 VisiBroker for C++ Developer’s Guide

Step 4: Implementing the server

}

Binding to the AccountManager object

Before your client program can invoke the open (String name) member function, the
client must first use the bind () member function to establish a connection to the server
that implements the AccountManager object.

The implementation of the bind () member function is implemented automatically by
id12cpp. The bind() member function requests the VisiBroker ORB to locate and
establish a connection to the server.

If the server is successfully located and a connection is established, a proxy object is
created to represent the server's AccountManagerPO2 object. A pointer is returned to your
client program.

Obtaining an Account object

Next, your client program needs to call the open() member function on the
AccountManager object to get a pointer to the Account object for the specified customer
name.

Obtaining the balance

Once your client program has established a connection with an Account object, the
balance () member function can be used to obtain the balance. The balance () member
function on the client side is actually a stub generated by the id12cpp compiler that
gathers all the data required for the request and sends it to the server object.

Several other member functions are provided that allow your client program to
manipulate an AccountManager object reference.

Step 4: Implementing the server

Just as with the client, many of the classes used in implementing the bank server are
contained in the header files of Bank generated by the id12cpp compiler. The Server.C
file is a server implementation included for the purposes of illustrating this example.
Normally you, the programmer, would create this file.

Server programs

This file implements the Server class for the server side of our banking example. The
code sample below ia an example of a server side program. The server program does
the following:

Initializes the Object Request Broker.

Creates a Portable Object Adapter with the required policies.

Creates the account manager servant object.

Activates the servant object.
Activates the POA manager (and the POA).

Waits for incoming requests.

#include "BankImpl.h"
int main(int argc, char* const* argv) {
try {

// Initialize the ORB.
CORBA: :0RB_var orb = CORBA::ORB_init (argc, argv);
// get a reference to the root POA
CORBA: :Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

2: Developing an example application with VisiBroker 13

Step 5: Building the example

endl;

CORBA: :PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy (PortableServer: :PERSISTENT) ;

// get the POA Manager

PortableServer: :POAManager_var poa_manager = rootPOA->the_POAManager () ;

// Create myPOA with the right policies

PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",
poa_manager, policies);

// Create the servant

AccountManagerImpl managerServant;

// Decide on the ID for the servant

PortableServer::0bjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");

// Activate the servant with the ID on myPOA

myPOA->activate_object_with_id(managerId, &managerServant);

// Activate the POA Manager

poa_manager->activate();

cout << myPOA->servant_to_reference(&managerServant) << " is ready" <<

// Wait for incoming requests
orb->run() ;

} catch(const CORBA::Exception& e) {

}

cerr << e << endl;
return 1;

return 0;

Understanding the Account class hierarchy

The Account class that you implement is derived from the POA_Bank: :Account class that
was generated by the 1d12cpp compiler. Look closely at the POA_Bank: :Account class
definition that is defined in the Bank_c.hh file and notice that it is derived from the
Account class. The figure below shows the class hierarchy.

Figure 2.2 Class hierarchy for the Accountimpl interface
Account olass in Pod_Bank: : Account
Bank_g.hh class in Bank_s.hh

e

hccount Ingl class
written by the
programmer and
used by the sener

Step 5: Building the example

The examples directory of your VisiBroker release contains a Makefile.cpp for this
example and other VisiBroker examples.

14 VisiBroker for C++ Developer’s Guide

Step 6: Starting the server and running the example

The Client.C that you created and the generated Bank_c.cc file are compiled and linked
together to create the client program. The Server.C file that you created, along with the
generated Bank_s.cpp and the Bank_c.cpp files, are compiled and linked to create the
bank account server. Both the client program and the server must be linked with the
VisiBroker ORB library.

Note:

VisiBroker for C++ 8.0 has a kernel library, the ORB Core, and six component libraries.
The ORB Core must be linked to any VBC application, while the component libraries
can be selected on demand by linking or using property.

To reduce the migration effort, VisiBroker for C++ 8.0 also provides a library having the
same name as previous single ORB library. Although, the library suffix may be different
on some platforms.

The examples directory also contains a file named stdmk (for UNIX) or stdmk_nt (for
Windows NT), and defines file location and variable settings to be used by the
Makefile.

You may need to customize the stdmk or stdmk_nt file if your compiler does not support
the specified flags.

Compiling the example

Windows

Assuming VisiBroker is installed in C: \vbroker, type the following to compile the
example:

prompt> C:
prompt> cd vbroker\examples\basic\bank_agent
prompt> nmake -f Makefile.cpp

The Visual C++ nmake command runs the id12cpp compiler and then compiles each file.

If you encounter some problems while running nake , check that your path environment
variable points to the bin directory where you installed the VisiBroker software.

Also, try setting the VBROKERDIR environment variable to the directory where you
installed the VisiBroker software.
UNIX

Assuming VisiBroker is installed in /usr/local, type the following to compile the
example:

prompt> cd /usr/local/vbroker/examples/basic/bank_agent
prompt> make cpp

In this example, make is the standard UNIX facility. If you do not have it in your PATH, see
your system administrator.

Step 6: Starting the server and running the example

Now that you have compiled your client program and server implementation, you are
ready to run your first VisiBroker application.

Starting the Smart Agent

Before you attempt to run VisiBroker client programs or server implementations, you
must first start the Smart Agent on at least one host in your local network.

The basic command for starting the Smart Agent is as follows:
prompt> osagent

The Smart Agent is described in detail in “Using the Smart Agent.”

2: Developing an example application with VisiBroker 15

Deploying applications with VisiBroker

Starting the server

Windows

Open a DOS prompt window and start your server by using the following DOS
command:

prompt> start Server

UNIX

Start your Account server by typing:

prompt> Server&

Running the client

Windows

Open a separate DOS prompt window and start your client by using the following DOS
command:

prompt> Client

UNIX
To start your client program, type the following command:
prompt> Client

You should see output similar to that shown below (the account balance is computed
randomly).

The balance in the account in $168.38.

Deploying applications with VisiBroker

VisiBroker is also used in the deployment phase. This phase occurs when a developer
has created client programs or server applications that have been tested and are ready
for production. At this point a system administrator is ready to deploy the client
programs on end-users' desktops or server applications on server-class machines.

For deployment, the VisiBroker ORB supports client programs on the front end. You
must install the VisiBroker ORB on each machine that runs the client program. Clients
(that make use of the VisiBroker ORB) on the same host share the VisiBroker ORB.
The VisiBroker ORB also supports server applications on the middle tier. You must
install the full VisiBroker ORB on each machine that runs the server application. Server
applications or objects (that make use of the VisiBroker ORB) on the same server
machine share the VisiBroker ORB. Clients may be GUI front ends, applets, or client
programs. Server implementations contain the business logic on the middle tier.

16 VisiBroker for C++ Developer’s Guide

Deploying applications with VisiBroker

Figure 2.3 Client and server programs deployed with VisiBroker ORBs

Client
Pragram

WisiBroker =

--l-“‘—'—-—..:f

GUI frent
end

VisiBroker FE X

Java Applet
Wiz iBroker

| mternatil ntranat

Object A
Object B

Object C

WisiBroker
ORB

-

Server

VisiBroker Applications

Deploying applications

In order to deploy applications developed with VisiBroker, you must first set up a
runtime environment on the host where the application is to be executed and ensure
that the necessary support services are available on the local network.

The runtime environment required for applications developed with VisiBroker for C++
includes these components:

- The VisiBroker libraries, located in the bin sub-directory where the product is
installed.

- The availability of the support services required by the application.

The VisiBroker ORB libraries must be installed on the host where the deployed
application is to execute. The location of these libraries must be included in the PATH
for the application's environment.

Environment variables

If the deployed application is to use a Smart Agent (osagent) on a particular host, you
must set the 0SAGENT_ADDR environment variable before running the application. You can
use the ORBagentAddr property as a command-line argument to specify a hostname or
IP address. The table below lists the necessary command-line arguments.

If the deployed application is to use a particular UDP port when communicating with a
Smart Agent, you must set the 0SAGENT_PORT environment variable before running the
application.

You can use the ORBagentPort (C++) command-line argument to specify the IP port
number.

For more information about environment variables, see the Borland VisiBroker
Installation Guide.

2: Developing an example application with VisiBroker 17

Deploying applications with VisiBroker

Support service availability

A Smart Agent must be executing somewhere on the network where the deployed
application is to be executed. Depending on the requirements of the application being
deployed, you may need to ensure that other VisiBroker runtime support services are
available, as well. These services include:

Support services Needed when:

Object Activation Daemon (0zd) | A deployed application is a server that implements object
which needs to be started on demand.

Interface Repository (irep) A deployed application uses either the dynamic skeleton
interface or dynamic implementation interface. See “Using
Interface Repositories” for a description of these interfaces.

GateKeeper A deployed application needs to execute in an environment
that uses firewalls for network security.

Running the application

Before you attempt to run VisiBroker client programs or server implementations, you
must first start the Smart Agent on at least one host in your local network. The Smart
Agent is described in detail in “Starting the Smart Agent”.

Executing client applications
A client application is one that uses VisiBroker ORB objects, but does not offer any
VisiBroker ORB objects of its own to other client applications.

The following table summarizes the command-line arguments that may be specified for
a client application. These arguments also are applicable to servers.

18 VisiBroker for C++ Developer’s Guide

Deploying applications with VisiBroker

Options

Description

-ORBagentAddr <hostnamel|ip_address>

Specifies the hostname or IP address of the host running
the Smart Agent this client should use. If a Smart Agent
is not found at the specified address or if this option is not
specified, broadcast messages will be used to locate a
Smart Agent.

-ORBagentPort <port_number>

Specifies the port number of the Smart Agent. This
option can be useful if multiple VisiBroker ORB domains
are required. If not specified, a default port number of
14000 will be used.

-ORBbackcompat <0|1>

If set to 1, this option specifies that backward
compatibility with VisiBroker for C++ version 2.0 should
be provided. The default is 0.

-ORBbackdii <0]1>

If set to 1, this option specifies that support for the 1.0
IDL-to-C++ mapping should be provided. If set to 0 or not
specified at all, the new 1.1 mapping will be used. The
default setting is 0. If -OrRBbackcompat is set to 1, this option
will automatically be set to 1.

-ORBir_name <ir_name>

Specifies the name of the Interface Repository to be
accessed when the Object::get_interface() method is
invoked on object implementations.

-ORBir_ior <ior_string>

Specifies the IOR of the Interface Repository to be
accessed when the Object::get_interface() method is
invoked on object implementations.

-ORBnullstring <0|1>

If set to 1, this option specifies that the VisiBroker ORB
will allow C++ NULL strings to be streamed. The NULL
strings will be marshalled as strings of length 0 opposed
to the empty string ("") which is marshalled as a string of
length 1, with the sole character of \0. If set to 0, attempts
to marshal out a NULL string will throw CORBA: : BAD_PARAM.
Attempts to marshal in a NULL string will throw

CORBA: :MARSHAL. The default setting is 0. If -ORBbackcompat is
set to 1, this option will automatically be set to 1.

-ORBrcvbufsize <buffer_size>

Specifies the size of the TCP buffer (in bytes) used to
receive responses. If not specified, a default buffer size
will be used. This argument can be used to significantly
impact performance or benchmark results.

-ORBsendbufsize <buffer_size>

Specifies the size of the TCP buffer (in bytes) used to
send client requests. If not specified, a default buffer size
will be used. This argument can be used to significantly
impact performance or benchmark results.

-ORBshmsize <size>

Specifies the size of the send and receive segments (in
bytes) in shared memory. If your client program and
object implementation communicate via shared memory,
you may use this option to enhance performance. This
option is only supported on Windows platforms.

-ORBtcpnodelay <01>

When set to 1, it sets all sockets to immediately send
requests. The default value of 0 allows sockets to send
requests in batches as buffers fill. This argument can be
used to significantly impact performance or benchmark
results.

2: Developing an example application with VisiBroker 19

20 VisiBroker for C++ Developer’s Guide

Programmer tools for C++

This chapter describes the programmer tools offered by VisiBroker for C++.

VisiBroker for C++ Switches for Header Files

The following switches are used to point consumers of the header files to the proper
code libraries.

_VIS_STD

On platforms where VisiBroker for C++ supports development of both classical and
standard C++ applications, defining _vIS_sTD enables inclusion of the correct C++
header files for the C++ libraries in the VisiBroker for C++ header files. For developing
standard C++ applications, use the _vIS_sTD flag while compiling. For classical C++
application development, do not use this flag.

_VIS_NOLIB

On Windows, a VisiBroker for C++ header file (vdef.h) automatically places the
VisiBroker for C++ library search records in the object files. This is done using the
#pragma comment for both MSVC and BCB compilers. Depending on certain other
definition such as _DEBUG, VISDEBUG or _VIS_STD, appropriate library search records are
selected. If this behavior is not required and VisiBroker for C++ library names are to be
specified explicitly in the application link command, then _vIS_NOLIB should be defined.
By default it is not defined.

3: Programmer tools for C++ 21

Arguments/Options

Arguments/Options

There is a set of arguments common to all VisiBroker programmer's tools and, in
addition, each tool has its own arguments. The specific arguments and options for
each tool are listed in the section for the tool. The general options are listed below.

General options

The following options are common to all programmer tools:

Option Description

-J<java option> Passes the java_option directly to the Java Virtual Machine.

-VBJversion Prints the VisiBroker version.

-VBJdebug Prints the VisiBroker debug information.

-VBJclasspath Specifies the classpath, precedes the CLASSPATH environment
variable.

-VBJprop <name> [=<value>] |Passes the name/value pair to the Java Virtual Machine.

-VBJjavavm <jvmpath> Specifies the path of the Java Virtual Machine.

-VBJaddJar <jarfile> Appends the jarfile to the CLASSPATH before executing the Java
Virtual Machine.

Note

On UNIX platforms, the -J option is only available with VisiBroker for Java on Solaris.

General information

The syntax of the VisiBroker programming tools described in this chapter differs
depending on whether you call them from a UNIX or a Windows environment. The
UNIX version of each tool is listed first followed by the Windows version.

UNIX

To display the options of a command under UNIX, enter:
Syntax Example

command name -\? idl2cpp -\?

Windows

To display the options of a command under Windows, enter:

Syntax Example

command name -? idl2cpp -?

idl2cpp

This command implements VisiBroker's IDL to C++ compiler, which generates client
stubs and server skeleton code from an IDL file.

Syntax
id12cpp [arguments] infile(s)

id12cpp takes an IDL file as input and generates the corresponding C++ classes for the
client and server side, client stubs, and server skeleton code.

The infile parameter represents the IDL file for which you wish C++ code to be
generated and the arguments provide various controls over the resulting code.

22 VisiBroker for C++ Developer’s Guide

Windows

Example

idl2cpp

id12cpp -hdr_suffix hx -server_ext _serv -no_tie -no_excep-spec bank.idl

When linking implementations based on the stubs and skeletons id12cpp generates,
use the -DSTRICT preprocessor option. Otherwise, the linker may display an error
message stating that a constructor is missing from orb.1ib.

Argument

Description

-D, -defined foo[=bar]

Defines a preprocessor macro foo, optionally with a value
bar. To specify more than one preprocessor macro, use the -
D option multiple times. For example: -Dfoo=bar -Dhello=world

-H, -list_includes

Prints the full paths of included files on the standard error
output. The default is off.

-I, -include <dir>

Specifies an additional directory for #include searching. To
specify more than one additional #include directory for
searching, use the -1 option multiple times. For example: -1/
home/include -I /app/include

-P, no_line_directives

Suppresses the generation of line number information. The
default is off.

-U, -undefine foo

Undefines a preprocessor macro foo.

-client_ext <file_extension>

Specifies the file extension to be used for client files that are
generated. The default extension is (_c). To generate client
files without an extension, specify none as the value for
<file_extension>.

-[no_]back_compat_mapping

In the current release this option does not do anything. It
could change in the next release.

[no]boa

Specifies the generation of BOA compatible code. By default,
this code is not generated.

- [no_] comments

Includes comments in the generated code. By default, the
comments are displayed in the generated code.

-[no_]idl_strict

Specifies strict OMG standard interpretation of the IDL
source. By default, the OMG standard interpretation is not
used.

- [no_]obj_wrapper

Generates stubs and skeletons with object wrapper support.
It also generates the base typed object wrapper from which
all other object wrappers inherit, and a default object wrapper
that performs the untyped object wrapper calls. When this
option is not set, id12cpp does not generate code for object
wrappers.

-[no_]preprocess

Preprocesses the IDL file before parsing. The default value is
set to on.

- [no_]preprocess_only

Stops parsing the IDL file after preprocess. This option
causes the compiler to generate the result of the preprocess
phase to stdout. The default is on.

-[no_]pretty_print

Generates the _pretty_print method. By default, this is set to
on.

-[no_]servant

Specifies the generation of the server-side code. By default,
the servant is generated.

-[no_]stdstream

Generates class stream operators with standard iostrean
classes in their signature. The default is on.

-[no_]tie

Generates the _tie template classes. By default, _tie classes
are generated.

-[no_Jwarn_all

Suppresses all warnings. The default is off.

-[no_]warn_missing_define

Warns if any forward declared names were never defined.
The default is on.

-[no_]warn_unrecognized_pragmas

Generates a warning if a #pragma is not recognized.

-corba_inc <filename>

Causes the #include <filename> directive to be inserted in
generated code instead of the usual#include <corba.h>
directive. By default, #include <corba.h> is inserted into
generated code.

3: Programmer tools for C++ 23

idl2cpp

Argument

Description

-[no_J]examples

Specifies the generation of sample implementations. By
default, the sample implementations are not generated.

-excep_spec

Generates exception specifications for methods. By default,
exception specifications are not generated.

Windows: -export <tag>

Defines a tag name to be inserted into every client-side
declaration (class, function, etc.) that is generated.
Specifying-export _MY_TAG when invoking id12cpp results in a
class definition like this: class _MY_TAG Bank{...} instead of

class Bark {...} By default, no tag names for client-side
declarations are generated.

Windows: -export_skel <tag>

Defines a tag name to be inserted into just the server-side
declarations that are generated. Specifying -export _MY_TAG
when invoking id12cpp results in a class definition like

this: class _MY_TAG POA_Bank{...} instead of class POA_Bank
{...} By default, no tag names for server-side declarations
are generated.

-gen_include_files

Specifies the generation of code for #include files. By default,
this code is not generated.

-h, -help, -usage, -?

Specifies that help information be printed.

-hdr_suffix <string>

Specifies the header filename extension. The default is .hh.

-impl_inherit

Generates implementation inheritance. The default is off.

-list_files

Specifies that files written during code generation be listed.
By default, this list is not created.

-map_keyword <keywrd> <map>

Adds <keywrd> as a keyword and associates with it the
mapping indicated. Any IDL identifier that conflicts with
<keywrd> will be mapped in C++ to <map>. This prevents
clashes between keywords and names used in C++ code. All
C++ keywords have default mappings—they do not need to
be specified using this option.

-namespace

Implements modules as namespaces. The default is off.

-root_dir <path>

Specifies the directory where the generated code is to be
written. By default, the code is written to the current directory.

-server_ext <file_extension>

Specifies the file extension to be used for server files that are
generated. The default extension is (_s). To generate server
files without an extension, specify none as the value for
<file_extension>.

-src_suffix <string>

Specifies the source filename extension. The default is .cc.

-target <compiler>

Specifies the compiler used to generate the C++ code. The
default compiler used is Solaris.

-type_code_info

Enables the generation of type code information needed for
client programs that intend to use the Dynamic Invocation
Interface. By default, type code information is not generated.

-version

Displays the software version number of VisiBroker.

-corba_style

Requires -type_code_info flag. Generates pointer insertion/
extraction into/from CORBA: : Any. By default, it is off.

-corba_style_tie

Requires -tie flag. Generate a tie class within same scope as
skeleton class. By default, it is off.

filel [file2] ...

“

Specifies one or more files to be processed, or “-” for stdin.

CPP

The orb.idl has conditional definitions which are specific to
either VisiBroker for C++ or VisiBroker for Java. Therefore, if
you want to include the orb.idl in your IDL, you must turn on
the VisiBroker for C++-specific definitions using the cpp
macro. For example, use the following: idl2cpp -D CPP
test.idl. Alternately, you may put the following line at the top
of your IDL file:

#define CPP

24 VisiBroker for C++ Developer’s Guide

idI2ir

idl2ir

This command allows you to populate an interface repository with objects defined in an
Interface Definition Language source file.

Syntax

id12ir [-ir <IR_name>] [-replace] <filename>.idl [<filename2>.idl ...]

Example

1d12ir -ir my_repository -replace bank/Bank.idl

Description

The id12ir command takes the name of an IDL file as input, binds itself to an interface
repository server, and populates the repository with the IDL constructs contained in
<filenames>.idl. If the -replace option is specified, if the repository already contains an
item with the same name as an item in the IDL file, the old item is replaced.

Note

The id12ir command does not handle anonymous arrays or sequences properly. To
work around this problem, typedefs must be used for all sequences and arrays.

Option

Description

-D, -define foo[=bar]

Defines a preprocessor macro foo, optionally with a value
bar.

-I, -include <dir>

Specifies an additional directory for #include searching.

-P, no_line_directives

Suppresses the generation of line number information. The
default is off; line numbering is not suppressed.

-H, _list_includes

Prints the names of included files on the standard error
output. The default is off.

-U, -undefine foo

Undefines a preprocessor macro foo.

- [no_J]back_compat_mapping

Specifies the use of mapping that is backward compatible
with VisiBroker 3.x.

-{no_]idl_strict

Specifies strict OMG standard interpretation of the IDL
source. By default, the OMG standard interpretation is not
used.

- [no_]preprocess

Preprocesses the IDL file before parsing. The default value is
set to on.

- [no_]preprocess_only

Stops parsing the IDL file after preprocess. This option
causes the compiler to generate the result of the preprocess
phase to stdout. The default is on.

-[no_Jwarn_all

Suppresses all warnings. The default is off.

-[no_J]warn_unrecognized_pragmas

Generates a warning if a #pragna is not recognized.

-deep

Specifies deep (rather than shallow) merges. If you specify -
deep, only differences between the new contents and the
existing contents will be merged. In a -shallow merge, all
existing content is replaced with new content if the new
content defines the same names. The default is off.

-h, -help, -usage, -?

Prints help information.

-irep <name>

Specifies the instance name of the interface repository to
which id12ir will attempt to bind. If no name is specified,
idl2ir will bind itself to the interface repository server found
in the current domain. The current domain is defined by the
OSAGENT_PORT environment variable.

-replace

Replaces definitions instead of updating them.

-version

Displays the software version number of VisiBroker.

filel [file2] ...

Specifies one or more files to be processed, or “-” for stdin.

3: Programmer tools for C++ 25

ir2idl

ir2idl

This command allows you to create an Interface Definition Language (IDL) source file
with objects from an interface repository.

Syntax
ir2idl [options]

Example

The following example dumps the contents of the IR named foo into the file named
foo.1idl:

ir2idl -irep foo -o foo.idl

Description
The ir2idl command extracts the contents of an IR and prints it out as IDL.
Options

The following options are available for ir2idl.

Option Description

-irep <irep name> Specifies the name of the interface repository.

-0, <file> Specifies the name of the output file, or “-” for stdout.

-strict Specifies strict adherence to OMG-standard code generation. The

default is on. The compiler will complain upon occurrences of Borland-
proprietary syntax extensions in input IDL.

-version Displays or prints out the version of VisiBroker that you are currently
running

-h, -help, -usage, -? |Prints help information.

idl2wsc

idl2wsc generates C++ code similar to Axis C++ v1.5 WSDL2WSs Server side
generated code and it also generates the necessary CORBA calls to the CORBA
server. This constitutes the C++ Web Services CORBA Bridge Code.

Given an IDL name “Foo.idlI” by default the idI2wsc tool will generate the files
“Foo_ws_s.cc, Foo_ws_c.hh, Foo.wsdl, corba.wsdl and Foo.wsdd”. Note that the
“*.cc, *.hh, *.wsdl” files should not be modified. The generated WSDD file can be
modified by the user to point to the compiled shared library that will be loaded by the
C++ Web Services Run-time Library.

The options available to idl2cpp are also available to idl2wsc. In addition to the idl2cpp
options, the following are specific to idl2wsc

Option Description

-encoding_wsi_only Generate specific WS—I encodings only. Defaults to OFF
-encoding_soap_only Generate specific SOAP encodings only. Defaults to OFF
-gen_cpp_bridge Generate VisiBroker for C++ bridge code. Defaults to OFF.
Usage of idl2wsc

Before passing any IDL file to idl2wsc to generate the C++ bridge code, you will have to
pass the IDL file to idl2cpp to generate the CORBA stub code. Note that you should
apply the same idI2cpp options that you use to generate the CORBA stub code to the
idl2wsc tool because the idl2wsc tool references names of files and/or signatures that
should have been generated by idl2cpp.

26 VisiBroker for C++ Developer’s Guide

idl2wsc

Note that any changes to the idl2cpp generated code or to a new version of “include\
vbws.h” requires a recompilation of the idl2wsc-generated code.

Limitation of idl2wsc

Note that the Axis C++ v1.5 WSDL2WS tool does not support a WSDL file that defines
more than one “portType” and it will only generate only one of the “portTypes” defined.
This itself is a limitation of Axis C++ v1.5 and therefore an IDL file containing more than
one interface is not supported.

3: Programmer tools for C++ 27

28 VisiBroker for C++ Developer’s Guide

IDL to C++ mapping

This section discusses the IDL to C++ language mapping provided by the VisiBroker
for C++ id12cpp compiler, which strictly complies with the CORBA C++ language
mapping specification.

Primitive data types

The basic data types provided by the Interface Definition Language are summarized in
the table below. Due to hardware differences between platforms, some of the IDL
primitive data types have a definition that is marked “platform dependent.” On a
platform that has 64—bit integral representations, for example, the g type, would still be
only 32 bits. You should refer to the included file orbtypes.h for the exact mapping of
these primitive data types for your particular platform.

IDL type VisiBroker type C++ definition
short CORBA::Short short
long CORBA::Long platform dependent

unsigned short

CORBA::UShort

unsigned short

unsigned long

CORBA::ULong

unsigned long

float CORBA::Float float

double CORBA::Double double

char CORBA::Char char

wchar CORBA::WChar wchar_t

boolean CORBA::Boolean unsigned char
octet CORBA::Octet unsigned char

long long CORBA::LongLong | platform dependent
ulong long CORBA::ULongLong | platform dependent
Caution

The IDL boolean type is defined by the CORBA specification to have only one of two
values: 1 or 0. Using other values for a boolean will result in undefined behavior.

4: IDL to C++ mapping 29

Strings

Strings

Both bounded and unbounded String types in IDL are mapped to the C++ type char *.

Note

All CORBA string types are null-terminated.

To ensure that your applications use the same memory management facilities as
VisiBroker does, use the following functions to dynamically allocate and de-allocate
strings:

class CORBA
{

static char *string_alloc(CORBA::ULong len);
static void string_free(char *data);

b
CORBA::char *string_alloc(CORBA::ULong len);

Dynamically allocates a string and returns a pointer to it. Returns a NULL pointer if the
allocation fails.

Parameter | Description

len The length specified by the 1en parameter need not include the NULL terminator.

CORBA::void *string_free(char *data);

Releases the memory associated with a string that was allocated with
CORBA::string_alloc.

Parameter | Description

data Pointer to a string that was allocated with CORBA: :string_alloc.

String_var Class

Whenever it maps an IDL string to achar *, the IDL compiler also generates a
String_var class that contains a pointer to the memory allocated to hold the string.
When a String_var object is destroyed or goes out of scope, the memory allocated to
the string is automatically freed.

Following are the members and methods in the String_var class:
class CORBA {

class String var {
protected:
char *_p;

public:
String var();
String_var(char *p);
~String var();
String_varé& operator=(const char *p);
String_vark operator=(char *p);
String_vark operator=(const String_varé& s);
operator const char *() const;
operator char *();

char &operator[] (CORBA::ULong index);

30 VisiBroker for C++ Developer’s Guide

Constants

Constants

char operator[] (CORBA::ULong index) const;
operator<< (ostream&, const

friend ostream&
String_varé&);

inline friend Boolean
const String_var& s2);

operator==(const String_var& sl,

IDL constants defined outside of any interface specification are mapped directly to a
C++ constant declaration. For example:

This code sample shows the top-level definitions in IDL.

const string str_example = "this is an example";
const long long_example = 100;
const boolean bool_example = TRUE;

This code sample shows the resulting C++ code for constants.

const char * str_example = "this is an example";
const CORBA::Long long_example = 100;
const CORBA::Boolean bool_example = 1;

IDL constants defined within an interface specification are declared in the C++ include
file and assigned values in the C++ source file. For example:

This code sample shows the IDL definitions from the example.idl file.

interface example {

const string str_example = "this is an example";
const long long_example = 100;
const boolean bool_example = TRUE;

}i

This code sample shows the C++ code generated to the example_client.hh file.

class example :: public virtua

{

1 CORBA::0bject

static const char *str_example; /* "this is an example" */
long_example; /* 100 */
bool_example; /* 1 */

static const CORBA::Long
static const CORBA::Boolean

}i

This code sample shows the C++ code generated to the example_client.cc file.

const char *example::str_example = "this is an example";

const CORBA::Long
const CORBA::Boolean

example::long_example
example: :bool _example

100;
1;

4: IDL to C++ mapping 31

Enumerations

Special cases involving constants

Under some circumstances, the IDL compiler must generate C++ code that contains
the value of an IDL constant rather than the name of the constant. For example, in the
following code samples, the value of the constant 1ength must be generated for the
typedef v to allow the C++ code to compile properly.

The code sample shows the definition of an IDL constant with a value.

// IDL
interface foo {
const long length = 10;
typedef long V[length];
1Y
This code sample shows the generation of an IDL constant's value in C++.

class foo : public virtual CORBA::Object

{
const CORBA::Long length;

typedef CORBA::Long VI[10];
b

Enumerations

Enumerations in IDL map directly to C++ enumerations. For example:

// IDL
enum enum_type {
first,
second,
third
}i
This code sample shows the enumerations in IDL map directly to C++ enums.

// C++ code

enum enum_type {
first,
second,
third

}i

Type definitions

Type definitions in IDL map directly to C++ type definitions. If the original IDL type
definition maps to several C++ types, the IDL compiler generates the corresponding
aliases for each type in C++. For example:

// IDL
typedef octet example_octet;
typedef enum enum_values {
first,
second,
third
} enum_example;

32 VisiBroker for C++ Developer’s Guide

Modules

Modules

This code sample shows the mapping of simple type definitions from IDL to C++.

/] C++
typedef octet example_octet;
enum enum_values {
first,
second,
third
}i
typedef enum_values enum_example;

The following code samples provide other type definition mapping examples.
This code sample shows the IDL typedef of an interface.

// IDL
interface Al;
typedef Al A2;

This code sample shows the mapping the IDL interface type definition in C++.

/] Ct++

class Al;

typedef Al *Al_ptr;
typedef Al _ptr AlRef;
class Al_var;

typedef Al A2;

typedef Al_ptr A2_ptr;
typedef AlRef A2Ref;
typedef Al_var A2_var;

This code sample shows the IDL typedef of a sequence.

// IDL
typedef sequence<long> S1;
typedef 81 82;

This code sample shows the mapping the IDL sequence type definition to C++.

/] Ct++

class S1;

typedef S1 *S1_ptr;
typedef S1_ptr SlRef;
class Sl_var;

typedef S1 S2;

typedef S1_ptr S2_ptr;
typedef S1Ref S2Ref;
typedef S1_var S2_var;

The OMG IDL to C++ language mapping specifies that each IDL module be mapped to
a C++ namespace with the same name. However, few compilers currently support the
use of namespaces. Therefore, VisiBroker currently supports module to class mapping
only. The code samples below show how VisiBroker's IDL compiler maps a module
definition to a class

This code sample shows the IDL module definition.

// IDL
module ABC
{

b
This code sample shows the generated C++ class.

4: IDL to C++ mapping 33

Complex data types

/] C++
class ABC
{

}i

Complex data types

Structures

In this section, we discuss how the following complex data types are mapped from IDL
to C++:

- Any type

- string type, bounded or unbounded

- sequence type, bounded or unbounded

- Obiject reference

- Other structures or unions that contain a variable-length member
- array with variable-length elements

- typedef with variable-length elements.

IDL type C++ mapping

struct (fixed length) struct and _var class

struct (variable length) |struct and _var class

(variable length members are declared with their respective T_var
class)

union class and _var class

sequence class and _var class

array array, array_slice, array_forany, and array_var

Fixed-length structures

For each fixed-length IDL structure mapped to C++, VisiBroker's IDL compiler
generates a structure as well as a _var class for the structure. The code samples below
show how this is done. For more information on the _var class, see
“<class_name>_var” in the VisiBroker for C++ API Reference.

This code sample shows the fixed-length structure definition in IDL.

// IDL
struct example {
short a;
long b;
}i
This code sample shows the mapping of a fixed-length IDL structure to C++.

/] Ct++

struct example {
CORBA::Short a;
CORBA::Long b;

}i

class example_var

{

private:

34 VisiBroker for C++ Developer’s Guide

Structures

example *_ptr;
¥
Using fixed-length structures
When accessing fields of the _var class, you must always use the -> operator. For
example, the code sample below shows that to access the fields of the _var class ex2,

the -> operator must always be used. When ex2 goes out of scope, the memory
allocated to it will be freed automatically.

This code sample shows the use of the example structure and the example_var class.

// Declare an example struct and initialize its fields.

example ex1 = { 2, 5 };

// Declare a _var class and assign it to a newly created example structure.
// The _var points to an allocated struct with un-initialized fields.
example_var ex2 = new example;

// Initialize the fields of ex2 from exl

ex2->a = exl.b;

Variable length structures

The C++ code generated when a structure contains variable-length members is
different than when the structure is of fixed length. For example, the code samples
below show what would happen if in the example structure first described previously
where the 1long member were replaced with a string and an object reference were
added, so that example became a variable-length structure.

This code sample shows the variable length structure definitions in IDL.

// IDL
interface ABC {

¥
struct vexample {
short a;
ABC c;
string name;
b
This code sample shows the mapping of a variable-length structure to C++.

/] C++
struct vexample {
CORBA: : Short a;
ABC_var c;
CORBA::String_var name;
vexample& operator=(const vexample& s);
}i
class vexample_var {

}i

Notice how the ABC object reference is mapped to an ABC_var class. In a similar fashion,
the string name is mapped to a CORBA: :String_var class. In addition, an assignment
operator is generated for variable-length structures.

Memory management for structures

The use of _var classes in variable-length structures ensures that memory allocated to
the variable-length members is managed transparently.

- If a structure goes out of scope, all memory associated with variable-length members
is freed automatically.

4: IDL to C++ mapping 35

Structures

- If a structure is initialized or assigned and then re-initialized or reassigned, the
memory associated with the original data is always freed.

- When a variable-length member is assigned to an object reference, a copy is always
made of the object reference. If a variable-length member is assigned to a pointer, no
copying takes place.

Unions

Each IDL union is mapped to a C++ class with methods for setting and retrieving the
value of the data members. Every member in the IDL union is mapped to a set of
functions that serve as accessors and mutators. A mutator function sets the value of
the data member. An accessor function returns the data in the data member.

A special, pre-defined data member, named_d, of the discriminant type is also
generated. The value of this discriminant is not set when the union is first created, so
an application must set it before using the union. Setting any data member using one of
the methods provided automatically sets the discriminant. A special accessor function,
_d{(), provides access to the discriminant.

For example, the code samples below show how a union, example_union, would be
generated in C++:

This code sample shows the IDL union containing a struct.

// IDL
struct example_struct

{
long abc;
}i
union example_union switch(long)

{

case 1: long X; // a primitive data type
case 2: string v; // a simple data type
case 3: example_struct z; // a complex data type

b
This code sample shows the mapping of an IDL union to a C++ class.

/] C++
struct example_struct

{

CORBA: :Long abc;
1
class example_union

{

private:
CORBA: :Long _disc;
CORBA: :Long _X;
CORBA: :String_var Y
example_struct _z;
public:

example_union();

~example_union();

example_union(const example_union& obj);
example_union& operator=(const example_union& obj);
void X (const CORBA::Long val);

const CORBA::Long x() const;

void y(char *val);

void y(const char *val);

void y(const CORBA::String_var& val);
const char *y () const;

void z(const example_struct& val);

const example_structé z() const;

36 VisiBroker for C++ Developer’s Guide

Structures

example_struct& z();
CORBA::Long _d();
void _d(CORBA::Long);

}i
The table below describes some of the methods in the example_union class.

Method Description
_d() This Method returns the value of the discriminator.
_d(CORBA: :Long) This method is used for setting the value of the

discriminator. (In the case of the example, the
discriminator is of type long). Note that based on the
data type of the discriminator, the input argument's
type will be different.

example_union/() The default constructor sets the discriminant to the
default value but does not initialize any of the other
data members.

example_union(const example_union& The copy constructor performs a deep copy of the
obj) source object.

~example_union() The destructor frees all memory owned by the union.
operator=(const example union& obj) The assignment operator performs a deep copy,

releasing old storage, if necessary.

Managed types for unions

In addition to the example_union class shown in the following code sample, an
example_union_var class would also be generated. See “<class_name>_var” in the
VisiBroker for C++ API Reference for details on the _var classes.

Memory management for unions

Here are some important points to remember about memory management of complex
data types within a union:

- When you use an accessor method to set the value of a data member, a deep copy
is performed. You should pass parameters to accessor methods by value for smaller
types or by constant reference for larger types.

- When you set a data member using an accessor method, any memory previously
associated with that member is freed. If the member being assigned is an object
reference, the reference count of that object is incremented before the accessor
method returns.

- A char * accessor method frees any storage before ownership of the passed pointer
is assumed.

- Both const char * and String_var accessor methods free any old memory before the
new parameter's storage is copied.

- Accessor methods for array data members return a pointer to the array slice. For
more information, see “Array slices”.

Sequences

IDL sequences, both bounded and unbounded, are mapped to a C++ class that has a
current length and a maximum length. The maximum length of a bounded sequence is
defined by the sequence's type. Unbounded sequences can specify their maximum
length when their C++ constructor is called. The current length can be modified
programmatically. The code samples below show how an IDL sequence is mapped to
a C++ class with accessor methods.

4: IDL to C++ mapping 37

Structures

Note

When the length of an unbounded sequence exceeds the maximum length you specify,
VisiBroker transparently allocates a larger buffer, copies the old buffer to the new
buffer, and frees the memory allocated to the old buffer. However, no attempt is made
to free unused memory if the maximum length decreases.

This code sample shows the IDL unbounded sequence.
// IDL
typedef sequence<long> LongSeq;

This code sample shows the mapping of an IDL unbounded sequence to a C++ class.
/] C++

class LongSeq
{
public:
LongSeq (CORBA: :ULong max=0) ;
LongSeq (CORBA: :ULong max=0, CORBA::ULong length,
CORBA::Long *data, CORBA::Boolean release = 0);

LongSeq (const LongSeq&) ;
~LongSeq () ;

LongSeq&

CORBA: :ULong

void

CORBA: :ULong
const CORBA::ULong&

static LongSeq

static void

operator=(const LongSeq&) ;
maximum() const;

length (CORBA: :ULong len);

length() const;
operator[] (CORBA: :ULong index) const;

* duplicate(LongSeq* ptr);
_release(LongSeq *ptr);

static CORBA::Long *allocbuf (CORBA: :ULong nelems);
static void freebuf (CORBA: :Long *data);
private:
CORBA: :Long * _contents;
CORBA: :ULong _count;
CORBA: :ULong _num_allocated;
CORBA: :Boolean _release_flag;
CORBA: :Long _ref_count;
}i
Method Description

LongSeq (CORBA: : ULong max=0)

The constructor for an unbounded sequence takes a maximum
length as an argument. Bounded sequences have a defined
maximum length.

LongSeq (CORBA: :ULong max=0,
CORBA: :ULong length,

CORBA: :Long *data,

CORBA: :Boolean release=0)

This constructor allows you to set the maximum length, the
current length, a pointer to the data buffer associated and a
release flag. If release is not zero, VisiBroker will free memory
associated with the data buffer when increasing the size of the
sequence. If release is zero, the old data buffer's memory is not
freed. Bounded sequences have all of these parameters except
for max.

LongSeq (const LongSeqé&)

The copy constructor performs a deep copy of the source object.

~LongSeq () ;

The destructor frees all memory owned by the sequence only if
the release flag had a non-zero value when constructed.

operator=(const LongSeq&7)

The assignment operator performs a deep copy, then releases
old storage, if necessary.

maximum()

Returns the size of the sequence.

38 VisiBroker for C++ Developer’s Guide

length() Two methods are defined for setting and returning the length of
the sequence.
operator[] () Two indexing operators are provided for accessing an element

within a sequence. One operator allows the element to be
modified and one allows only read access to the element.

Structures

Method Description

_release() Releases the sequence. If the constructor's release flag was non-
zero when the object was created and the sequence element
type is a string or object reference, each element is released
before the buffer is released.

allochbuf () You should use these two static methods to allocate or free any
freebuf () memory used by a sequence.

Managed types for sequences

In addition to the LongSeq class shown in the code sample below, a LongSeq_var class is
also generated. See “<class_name>_var” in the VisiBroker for C++ API Reference for
details on the classes. In addition to the usual methods, there are two indexing
methods defined for sequences.

CORBA: :Longé& operator[] (CORBA::ULong index);
const CORBA::Longé& operator[] (CORBA::ULong index) const;

Memory management for sequences

You should carefully consider the memory management issues listed below. The code
sample below contains sample C++ code that illustrates these points.

- If the release flag was set to a non-zero value when the sequence was created, the
sequence assumes management of the user's memory. When an element is
assigned, the old memory is freed before ownership of the memory on the right-hand
side of the expression is assumed.

- If the release flag was set to a non-zero value when a sequence containing strings or
object references was created, each element is released before the sequence's
contents buffer is released and the object is destroyed.

- Memory management errors may occur if you assign a sequence element using the
[] operator unless the release flag was set to one.

- Do not use sequences created with the release flag set to zero as input/output
parameters because memory management errors in the object server may result.

- Always use allocbuf and freebuf to create and free storage used with sequences.
This code sample shows the IDL specification for an unbounded sequence.

// IDL

typedef sequence<string, 3> String_seq;

This code sample shows is an example of memory management with two bounded
sequences.

/] C++

char *static_array[] = ("1", "2", "3"};
char *dynamic_array = StringSeq::allocbuf (3);

// Create a sequence, release flag is set to FALSE by default

StringSeq static_seq(3, static_array);
// Create another sequence, release flag set to TRUE
StringSeq dynamic_seq(3, dynamic_array, 1);

static_seq[1] = “1”; // old memory not freed, no copying occurschar *str =
string_alloc(2);

dynamic_seq[l] = str; // old memory is freed, no copying occurs

4: IDL to C++ mapping 39

Structures

Arrays

IDL arrays are mapped to C++ arrays, which can be statically initialized. If the array
elements are strings or object references, the elements of the C++ array are of type
_var. The following code samples show three arrays with different element types.

This code sample shows the IDL array definitions.
// IDL

interface Intf

{

b

typedef long L[10];
typedef string S[10];
typedef Intf A[10];

This code sample shows the mapping of IDL arrays to C++ arrays.
/] C++

typedef CORBA::Long L[10];
typedef CORBA::String_var S[10];
typedef Intf_var A[10];

The use of the managed type _var for strings and object references allows memory to
be managed transparently when array elements are assigned.

Array slices

The array_slice type is used when passing parameters for multi-dimensional arrays.
VisiBroker's IDL compiler also generates a _slice type for arrays that contains all but
the first dimension of the array. The array _slice type provides a convenient way to
pass and return parameters. The following code samples show two examples of the
_slice type.

This code sample shows the IDL definition of multi-dimensional arrays.
// IDL

typedef long L[10];
typedef string str([1][2][3];

This code sample shows the generation of the _slice type.

/] Ct++
typedef CORBA::Long L_slice;
typedef CORBA::String_var str_slice[2][3];

Managed types for arrays
In addition to generating a C++ array for IDL arrays, VisiBroker's IDL compiler will also
generate a _var class. This class offers some additional features for array.

- operator[] is overloaded to provide intuitive access to array elements.

- Constructor and assignment operator are provided that take a pointer to an array
_slice object as an argument.

This code sample shows the IDL definition of an array.
// IDL
typedef long L[10];
This code sample shows the _var class generated for arrays.

/] C++
class L_var
{

public:

40 VisiBroker for C++ Developer’s Guide

Structures

L_var();

L_var(L_slice *slice);

L_var(const L_var& var);

~L_var();

L_var& operator=(L_slice *slice);

L_vark operator=(const L_var& var);

CORBA: :Longé& operator[] (CORBA: :ULong index);
operator L_slice *();

operator L &() const;

private:
L_slice *_ptr;
}i

Type-safe arrays

A special _forany class is generated to handle arrays with elements mapped to the type
any. As with the _var class, the _forany class allows you to access the underlying array
type. The _forany class does not release any memory upon destruction because the
_any type maintains ownership of the memory. The _forany class is not implemented as
a typedef because it must be distinguishable from other types if overloading is to
function properly.

This code sample shows the IDL array definition.
// IDL
typedef long L[10];

This code sample shows _for any class generated for an IDL array.
/] C++

class L_forany
{
public:

L_forany();
L_forany(L_slice *slice);
~L_forany();
CORBA: :Longé operator[] (CORBA: :ULong index);
const CORBA::Longé& operator[] (CORBA: :ULong index) const;
operator L_slice *();
operator L &() const;
operator const L & () const;
operator const L& () const;
L_forany& operator=(const L_forany obj);

private:
L_slice *_ptr;
}i

Memory management for arrays

VisiBroker's IDL compiler generates four functions for allocating, duplicating, copying,
and releasing the memory associated with arrays. These functions allow the VisiBroker
ORB to manage memory without having to override the new and delete operators.

This code sample shows the IDL array definition.
// IDL
typedef long L[10];

This code sample shows the methods generated for allocating and releasing array
memory.

/] C++

4: IDL to C++ mapping 41

Valuetypes

Valuetypes

inline L_slice *L_alloc();

// Dynamically allocates array. Returns

// NULL on failure.

inline void L_free(L_slice *data);

// Releases array memory allocated with

// L_alloc.

inline void L_copy(L:slice *_to, L_slice *_from)

//Copies the contents of the _from array to the _to array
inline L_slice *L_dup(const L_slice *_date)

//Returns a new copy of _date array

Principal

A Principal represents information about client applications that are making operation
requests on an object implementation. The IDL interface of Principal does not define
any operations. The Principal is implemented as a sequence of octets. The Principal
is set by the client application and checked by the VisiBroker ORB implementation.
VisiBroker for C++ treats the Principal as an opaque type and its contents are never
examined by the VisiBroker ORB.

An IDL valuetype is mapped to a C++ class with the same name as the IDL valuetype.
This class is an abstract base class with pure virtual accessor and modifier functions
corresponding to the state members of the valuetype and pure virtual functions
corresponding to the operations of valuetype.

A C++ class whose name is formed by adding an “0Bv_”" to the fully scoped name of the
valuetype provides default implementations for the accessors and modifiers of the
abstract base class.

Applications are responsible for the creation of valuetype instances. After creation,
these applications deal with those instances using only pointers. Unlike object
references which map to C++ _ptr types that may be implemented either as actual
C++ pointers or as C++ pointer-like objects, handles to C++ valuetype instances are
actual C++ pointers. This helps to distinguish them from object references.

Unlike mapping for interfaces, reference counting for valuetype must be implemented
by the instance of the valuetypes. The _var type for a valuetype automates the
reference counting. The code sample below illustrates these features.

valuetype Example {

Short opl();
Long op2(in Example x);
Private short vall;
Public long val2;
Y

The code sample below shows the C++ mapping of the IDL definition for the following
three classes.

class Example : public virtual CORBA::ValueBase {
public:
virtual CORBA::Short opl() = 0;
virtual CORBA::Long op2 (Example_ptr _x) = 0;
// pure virtual getter/setters for all public state
// These accessors are just like C++ union members since
// by reference accessors allow read/write access
virtual void val2(const CORBA::Long _val2) = 0;
virtual const CORBA::Long val2() const = 0;
protected:
Example() {}
virtual ~Example() {}

42 VisiBroker for C++ Developer’s Guide

Valuetypes

virtual void vall(const CORBA::Short _vall) = 0;
virtual const CORBA::Short vall() const = 0;
private:
void operator=(const Example&);
}i
class OBV_Example: public virtual Example{
public:
virtual void val2(const CORBA::Long _val2) {
_obv_val2 = _val2;
}
virtual const CORBA::Long val2() const {
return _obv_val?;
}
protected:
virtual void vall(const CORBA::Short _vall) {
_obv_vall = _vall;
}
virtual const CORBA::Short vall() const {
return _obv_vall; }
OBV_Example() {}
virtual ~OBV_Example() {}
OBV_Example (const CORBA::Short _vall,
const CORBA::Long _val2) {
_obv_vall = _vall;
_obv_val2 = _val2;
}
CORBA: :Short _obv_vall;
CORBA: :Long _obv_val2;
}i
class Example_init : public CORBA::ValueFactoryBase {
}i
The _init class provides a way to implement a factory for the valuetypes. Since
valuetypes are passed by value over the wire, the receiving end of a streamed out
valuetype usually implements a factory to create a valuetype instance from the stream.
Both the server and the client should implement it if there is a possibility of receiving a
valuetype over the stream. The _init class, as shown in the following code sample,
which must also implement create_for_unmarshal that returns a CORBA: :ValueBase *.

This code sample shows the -init class example.
class Example_init_impl: public Example_init({
public:

Example_init; _impl();
virtual ~Example_init();
CORBA::ValueBase * create_for_unmarshal () {
...// return an Example_ptr

}
}i

A valuetype can derive from other valuetypes as follows:
This code sample shows the IDL for the valuetype derived from other valuetypes.
valuetype DerivedExample: Example{

Short op3();
}i

The C++ interfaces for the DerivedExample class are as follows:
// IDL valuetype: DerivedExample

class DerivedExample : public virtual Example {
public:
virtual CORBA::Short op3() = 0;

4: IDL to C++ mapping 43

Valuetypes

protected:
DerivedExample () {}
virtual ~DerivedExample() {}
private:
void operator=(const DerivedExample&);
}i
class OBV_DerivedExample: public virtual DerivedExample, public virtual
OBV_Example(
protected:
OBV_DerivedExample() {}
virtual ~OBV_DerivedExample() {}
}i
class DerivedExample_init : public CORBA::ValueFactoryBase { };

A derived valuetype can be truncated to the base valuetype as shown in the following
code sample. This is required if the receiving end of the stream does not know how to
construct a derived valuetype but can construct only the base valuetype.

This code sample shows the truncated derived valuetype.
valuetype DerivedExample : truncatable Example { };

The mapping is similar to regular derived valuetypes except that extra information is
added to the Type information of the DerivedExample class to indicate the truncatability to
the base class Example.

A valuetype can not derive from an interface but it can support one or more interfaces
by providing all the operations of the interfaces. An IDL keyword, supports, is
introduced for this purpose.

This code sample shows the IDL keyword support for the derived valuetype.

interface myInterface{

long op5();

}i

valuetype IderivedExample supports myInterface {
Short opb6();

}i

The C++ mapping for this will be as follows:
This code sample shows the C++ for the derived valuetype.

// IDL valuetype: DerivedExample
class IderivedExample : public virtual CORBA::ValueBase {
public:
virtual CORBA::Short op6() = 0;
virtual CORBA::Long op5() = 0;
protected:
IderivedExample() {}
virtual ~IderivedExample() {}
private:
void operator=(const IderivedExample&);
}i
class OBV_IderivedExample: public virtual IderivedExamplef{
protected:
OBV_IderivedExample() {}
virtual ~OBV_IderivedExample() {}
}i
For reference counting, the C++ mapping provides two standard classes. The first
class is CORBA: :DefaultValueRefCountBase, which serves as a base class for any
application provided concrete valuetypes that do not derive from any IDL interfaces.
For these kinds of valuetypes, the applications are also free to implement their own
reference counting mechanisms. The second class is
PortableServer: :ValueRefCountBase, which must serve as a base class for any

application provided a concrete valuetype class which does derive from one or more
IDL interfaces.

44 VisiBroker for C++ Developer’s Guide

Abstract Interfaces

Valuebox

A valuebox is a valuetype applied to structures, unions, any, string, basic types, object
references, enums, sequence, and array types. These types do not support method,
inheritance, or interfaces. A valuebox is ref counted and is derived from

CORBA: :DefaultValueRefCountBase. The mapping is different for different underlying
types. All valuebox C++ classes provide _boxed_in(), boxed_out (), and _boxed_inout ()
for mapping to the underlying types. The factory for a valuebox id automatically
registered by the generated stub.

See the OMG CORBA 2.3 idl2cpp specification, Chapter 1.17, for more information.
The factory for a valuebox is automatically registered by the generated stub.

Abstract Interfaces

Abstract interfaces are used to determine at runtime, if an object is passed by
reference (IOR) or by value (valuetype.) A prefix “abstract” is used for this purpose
before an interface declaration.

This code sample shows the IDL code sample.

abstract interface foo {
Void func():
}

A valuetype that supports an abstract interface, can be passes as that abstract
interface. The abstract interface is declared as follows:

valuetype vt supports foo {

}i

Similarly, an interface that needs to be passed as an abstract interface is declared as
follows:

interface intf : foo {

}

The C++ mapping for the previously declared abstract interface foo, results in the
following classes:

class foo_var : public CORBA::_var{

}

class foo_out{

¥
class foo : public virtual CORBA:::AbstractBase{
private:

void operator=(const foo&) {}
protected:
foo();
foo(const foo& ref) {}
virtual ~foo() {}
public:
static CORBA::Object* _factory():
foo_ptr _this();
static foo_ptr _nil() { ...}
static foo_ptr _narrow(CORBA::AbstractBase* _obj);
static foo_ptr _narrow(CORBA::Object_ptr _obj);
static foo_ptr _narrow(CORBA::ValueBase_ptr _obj);
virtual void func() = 0;

4: IDL to C++ mapping 45

Abstract Interfaces

class _vis_foo_stub : public virtual foo, public virtual CORBA_Object {
public :
_vis_foo_stub() {}
virtual ~ vis foo_stub() {}

virtual void func():

}

There is a _var class, an _out class, and a class derived from CORBA: : AbstractBase that
implements the methods described in the previous code samples.

46 VisiBroker for C++ Developer’s Guide

VisiBroker properties

This section describes the Borland VisiBroker properties.

Smart Agent properties

Property

Default

Old property

Description

vbroker.agent.addrFile

null

ORBagentAddrF
ile

Specifies a file that stores the IP
address or host name of a host
running a Smart Agent.

vbroker.agent.localFile

null

N/A

Specifies which network
interface to use on multi-home
machines. This used to be the
OSAGENT_LOCAL_FILE environment
variable.

vbroker.agent.clientHandle
rPort

null

N/A

Specifies the port that the Smart
Agent uses to verify the
existence of a client—in this
case, a VisiBroker application.
When you use the default value,
null, the Smart Agent connects
using a random port number.

vbroker.agent .keepAliveTim
er

120
second
S

N/A

Smart agent will wake up after
this timeout and based on the
vbroker.agent.keepAliveThresho
Id value, will compute whether to
do client verification. The logic is
if the last received heart beat
value is less than current time -
(keepAliveTimer +
keepAliveThreshold), then do
client verification. The value of
this property should be greater
than 1 second and less than 120
seconds. The number of times
the client verification is tried can
be controlled by
vbroker.agent.maxRetries

property.

5: VisiBroker properties 47

Smart Agent communication properties

Property Default | Old property Description
vbroker.agent .keepAliveThr |40 N/A Refer to documentation on
eshold second vbroker.agent.keepAliveTimer.
s This value should be greater
than 0.
vbroker.agent .maxRetries NA N/A The number of times the agent

will do client verification on not
receiving a heart beat from the
client. Values can be 1 to 10.

vbroker.agent.port 14000 ORBagentPort Specifies the port number that
defines a domain within your
network. VisiBroker applications
and the Smart Agent work
together when they have the
same port number. This is the
same property as the
OSAGENT_PORT environment
variable.

Smart Agent communication properties

The properties described in the table below are used by the ORB for Smart Agent
communication.

Property Default | Old property Description
vbroker.agent .keepAliveT |120 N/A The duration in seconds during
imer which the ORB will send keep-

alive messages to the Smart
Agent (applicable to both clients
and servers). Valid values are
integers between 1 and 120,

inclusive.
vbroker.agent.retryDelay |0 N/A The duration in seconds that
(zero) the process will pause before

trying to reconnect to the Smart
Agent in the event of
disconnection from the Smart
Agent. If the value is -1, the
process will exit upon
disconnection from the Smart
Agent. The default value of 0
(zero) means that reconnection
will be made without any pause.

vbroker.agent.addr null ORBagentAddr Specifies the IP address or host
name of a host running a Smart
Agent. The default value, null,
instructs VisiBroker applications
to use the value from the
OSAGENT_ADDR environment
variable. If this 0SAGENT_ADDR
variable is not set, then it is
assumed that the Smart Agent
is running on a local host.

vbroker.agent.addrFile null ORBagentAddrFil | Specifies a file that stores the IP
e address or host name of a host

running a Smart Agent.
vbroker.agent.debug false ORBdebug When set to true, specifies that

the system will display
debugging information about
communication of VisiBroker
applications with the Smart
Agent.

48 VisiBroker for C++ Developer’s Guide

VisiBroker ORB properties

Property Default | Old property Description

vbroker.agent.enableLoca |true ORBdisableLocat |When setto false, does not

tor or allow VisiBroker applications to
communicate with the Smart
Agent.

vbroker.agent.port 14000 ORBagentPort Specifies the port number that

defines a domain within your
network. VisiBroker applications
and the Smart Agent work
together when they have the
same port number. This is the
same property as the
OSAGENT_PORT environment
variable.

vbroker.agent.failOver true ORBagentNoFailO |When set to true, allows a
ver VisiBroker application to fail
over to another Smart Agent.

vborker.agent.clientPort |0 N/A Specifies the starting port
(zero) number to bind to the dsuser
socket.

vbroker.agent.clientPort |0 N/A Specifies a range of port

Range (zero) numbers to bind to the dsuser
socket. This property should be
used in conjunction with the
vbroker.agent.clientPort
property.

VisiBroker ORB properties

The following table describes the VisiBroker ORB properties.

Property Default Description
vbroker.orb.defaultThreadS |0 (Zero) This property indicates the default
tackSize size to be used by any thread

created by the ORB.

A default value of zero indicates a
system default value. If the value is
set and falls below the minimum
system requirement, then the
minimum system requirement value
is used. Dispatchers may have
their own threadStackSize property
set and as such their values are
used instead during thread
creation.

vbroker.orb.enableFirewall |false When set to true, application will
dynamically load the "fw" library to
make the Gatekeeper firewall
component available.

By default, the property is false.
when false, the "fw" library is not
loaded, so the gatekeeper firewall
component is not available

vbroker.orb.cacheDSQuery true When set to true, allows VisiBroker
applications to cache IOR.

5: VisiBroker properties 49

VisiBroker ORB properties

Property

Default

Description

vbroker.orb.

rebindForward

0 (zero)

This value determines the number
of times a client will try to connect
to a forwarded target. You can use
this property when the client cannot
communicate with the forwarded
target (because of network failure,
for example). The default value of 0
(zero) means that the client will
keep trying to connect.

vbroker.orb.

activationIOR

null

Allows the launched server to easily
establish contact with the OAD that
launched it.

vbroker.orb.

0adUID

0 (zero)

Used to ensure that the OAD that
launched the server still exists. A
value of 1 indicates that the OAD is
still running.

vbroker.orb.

propStorage

null

Specifies a property file that
contains property values.

vbroker.orb.

backCompat

FALSE

When set to TRUE, the server is
operating in backward compatibility
mode.

vbroker.orb.

nullstring

FALSE

When set to TRUE, enables
marshaling of null strings. Note that
this property is no longer used, and
has been replaced by the
vbroker.orb.enableNullString

property.

vbroker.orb.

admDir

null

Specifies the administration
directory at which various system
files are located. This property can
be set using the VBROKER_ADM
environment variable.

vbroker.orb.

1sNTService

FALSE

When set to TRUE, this property
coupled with the compile flag
WIN32, enables any NT service/
COM+ app to stay running when a
user logs out.

nager

vbroker.orb.

enableServerMa

FALSE

When set to TRUE, this property
enables Server Manager when the
server is started, so that clients can
access it.

rs

vbroker.orb.

input.maxBuffe

16

Specifies the maximum number of
input buffers retained in a pool.

vbroker.orb.

input.buffSize

255

Specifies the size of the input
buffer.

ers

vbroker.orb.

output.maxBuff

16

Specifies the maximum number of
output buffers retained in a pool.

e

vbroker.orb.

output.buffSiz

255

Specifies the size of the output
buffer.

vbroker.orb.

initRef

50 VisiBroker for C++ Developer’s Guide

null

Specifies the initial reference.
Object URL formats such as
corbaloc can be used in addition to
stringified IOR. “file://” URL as
described below is also supported if
the stringified IOR is in a file.

VisiBroker ORB properties

Property

Default

Description

vbroker.

orb.defaultInitRef

null

Specifies the default initial
reference. Object URL formats
such as corbaloc can be used in
addition to stringified IOR. “file://”
URL as described below is also
supported if the stringified IOR is in
a file.

vbroker.

e

orb.boa_map.TSingl

boa_s

Maps the BOA bid policy of a single
thread to boa_s.

vbroker.

orb.boa_map.TPool

boa_tp

Maps the BOA bid policy of a
thread pool to boa_tp.

vbroker.

on

orb.boa_map.TSessi

boa_ts

Maps the BOA bid policy of a
thread session to boa_ts.

vbroker.

LIOP

orb.boa_map.TPool_

boa_ltp

Maps the BOA bid policy of a local
thread pool to boa_ltp.

vbroker.

orb.alwaysProxy

false

When set to true, specifies that
clients must always connect to the
server using the GateKeeper.

vbroker

.orb.gatekeeper.ior

null

Forces the client application to
connect to the server through the
GateKeeper whose IOR is
provided.

vbroker.

locator.ior

null

Specifies the IOR of the
GateKeeper that will be used as
proxy to the Smart Agent. If this
property is not set, the GateKeeper
specified by the
vbroker.orb.gatekeeper.ior property
is used for this purpose. For more
information, go to the VisiBroker
“Introduction to GateKeeper.”

vbroker.

Path

orb.exportFirewall

false

Forces the server application to
include firewall information as part
of any servant's IOR which this
server exposes (use
Firewall::FirewallPolicy in your
code to force it selectively per
POA).

vbroker.

orb.proxyPassthru

false

If set to true, forces PASSTHROUGH
firewall mode globally in the
application scope (use

QoSExt : : ProxyModePolicy in your code
to force it selectively per object or
per ORB).

vbroker.

orb.bids.critical

inprocess

The critical bid has highest
precedence no matter where it is
specified in the bid order. If there
are multiple values for critical bids,
then their relative importance is
decided by the bidorder property.

5: VisiBroker properties 51

VisiBroker ORB properties

Property

Default

Description

vbroker.orb.bidOrder

inprocess:liop:ssl:
iiop:proxy:hiop:loc
ator

You can specify the relative order
of importance for the various
transports. Transports are given
precedence as follows:

1 inprocess
liop

ssl

iiop

pProxy

D g B W N

hiop
7 locator

The transports that appear first
have higher precedence. For
example, if an IOR contains both
LIOP and IIOP profiles, the first
chance goes to L10?. Only if the LI0P
fails is 110P used. (The critical bid,
specified by the
vbroker.orb.bids.critical property,
has highest precedence no matter
where it is specified in the bid
order.)

vbroker.orb.dynamicLibs

null

Specifies a list of available services
used by the VisiBroker ORB. Each
service is separated by a comma.

vbroker.orb.embedCodeset

true

When an IOR is created, the
VisiBroker ORB embeds the
codeset components into the IOR.
This may produce problems with
some non-compliant ORBs. By
turning off the embedCodeset
property, you instruct the Visibroker
ORB not to embed codesets in
IORs. When set to false, specifies
that character and wide character
conversions between the client and
the server are not to be negotiated.

vbroker.orb.enableVB4backc
ompat

false

This property enables work-
arounds to deal with behavior that
is not GIOP 1.2-compliant in
VisiBroker 4.0 and 4.1. Any
VisiBroker client running on
VisiBroker 4.1.1 or a release
previous to 4.1.1 is affected,
especially if GateKeeper is
involved. To work with a Visibroker
4.0 or 4.1 client, this flag needs to
be set to true. This is a server-side
only flag. There is no corresponding
flag on the client-side.

vbroker.orb.enableNullStri
ng

false

If set to TRUE, enables marshaling of
null strings.

vbroker.orb.procId

Specifies the process ID of the
server.

vbroker.orb.usingPoll

true

On UNIX platforms, the ORB uses

the system calls select() or poll() for
I/0O multiplexing based on the value
of this property. If the value is true,

poll() is used. Otherwise, select() is
used. True is the default value.

52 VisiBroker for C++ Developer’s Guide

ServerManager properties

The file URL conforms to the standard format of “file://domain name/path/file”.
However, there are some constraints in the format supported by VisiBroker for C++.

The protocol part of the URL must be file://
The domain name of the URL must be empty
All path specifications are absolute (relative paths are not allowed)

The path may not contain the character “.”. The path separator must be “/”

- For Windows, the drive letter colon (“:”) must be replaced by the “I” symbol.
The following paths show examples of valid paths:
- file:///home/user/appl.ior
- file:///Cl/My Documents/User/root.txt
ServerManager properties
This table lists the Server Manager properties.
Property Default | Description
vbroker.serverManager.name null Specifies the name of the Server Manager.
vbroker.serverManager.enableOpera |true When set to true, enables operations,

tions

exposed by the Server Manager, to be
invoked.

vbroker.serverManager.enableSetPr
operty

true When set to true, enables properties,

exposed by the Server Manager, to be
changed.

Additional Properties

The following section describes the new properties supported by the Server Manager.
These properties can be queried through their containers.

Properties related to Server-side resource usage

Property

Description

ack

vbroker.se.<SE_name>.

scm.<SCM_name>.listener.preferIPv4dSt

This is applicable to the Windows platforms only.
It is a boolean value indicating whether the
listener has to use IPv4 or IPv6. The default
value is false, which will enforce usage of IPv6.

If the property "vbroker.se.<SE_name>.host" is
given an IPv4 or IPv6 address value, then you
can ignore the property setting.

Descriptors

vbroker.se.<SE_name>.

scm.<SCM_name>.manager.allocatedFile

The current number of file descriptors used by the
Server Connection Manager (SCM). This value is
typically equal to the current number of incoming
connections plus two used by the listener.

ptor

vbroker.se.<SE_name>.

scm. <SCM_name>.manager .maxFileDescri

The maximum value of the file descriptor with the
SCM.

ons

vbroker.se.<SE_name>.

scm.<SCM_name>.manager . inUseConnecti

The number of incoming connections for which
there are requests executing in the ORB.

ns

vbroker.se.<SE_name>.

scm.<SCM_name>.manager.idleConnectio

The number of incoming connections for which
there are not any requests currently being
executed in the ORB.

5: VisiBroker properties 53

ServerManager properties

Property

Description

vbroker.se.<SE_name>.scm.<SCM_name>.manager.idledTimeoutC | The number of idle connections which have also

onnections

idled past their idle timeout setting but have yet to
be closed (due to garbage collection restrictions,
for example).

vbroker.se.<SE_name>.scm.<SCM_name>.dispatcher.inUseThrea | The number of threads currently executing

ds

requests within the dispatcher.

vbroker.se.<SE_name>.scm.<SCM_name>.dispatcher.idleThread |The number of threads which are currently idle

S

waiting for work to be assigned.

Properties related to Client-side resource usage

Property

Description

r

vbroker.ce.<CE_name>.ccm.maxFileDescripto | The maximum number of file descriptors

within the Client Connection Manager
(CCM).

S

vbroker.ce.<CE_name>.ccm.activeConnection | The number of connections in the active

pool; that is, object references are using
these connections.

S

vbroker.ce.<CE_name>.ccm.cachedConnection | The number of connections in the cache

pool; no object references are using these
connections.

vbroker.ce.<CE_name>.ccm. inUseConnections | The number of outgoing connections with

pending requests.

vbroker.ce.<CE_name>.ccm.idleConnections | The number of outgoing connections with

no pending requests.

ections

vbroker.ce.<CE_name>.ccm.idledTimeoutConn | The number of idle connections which have

idled past their timeout setting, but have not
been closed.

Properties related to the Smart Agent (Smart Agent)

Property

Description

vbroker.agent.currentAgentIP

The IP address of the current ORB's Smart Agent
(Smart Agent).

vbroker.agent.currentAgentClie
ntPort

The port of the Smart Agent to which the ORB is
sending requests.

Miscellaneous Properties

Property

Description

vbroker.env.path

The value of the PATH environment variable under which
the ORB is running.

vbroker.env.shlibPath

The value of the shared library path environment
variable. In HP-UX, it corresponds to the SHLIB_PATH
environment variable.

vbroker.env.orbVersion

This is the ORB version of the currently loaded ORB. It
can also be obtained by running vbver liborb_r.sl in HP-
UX.

vbroker.process.fileDescripto
rLimit

The maximum number of file descriptors for the current
process.

vbroker.orb.uid

The user ID of the user who started the VisiBroker server
application.

vbroker.orb.commandLine

The command-line argument passed to the
CORBA: :0RB_init method.

54 VisiBroker for C++ Developer’s Guide

Location Service properties

Location Service properties

The following table lists the Location Service properties.

Property Default | Description
vbroker.locationservice.de |false |When setto true, allows the Location Service to
bug display debugging information.
Note: This property has been deprecated. Refer to
the new Debug Logger Properties.
vbroker.locationservice.ve |false |When setto true, allows the Location Service to
rify check for the existence of an object referred by an
object reference sent from the Smart Agent. Only
objects registered BY_INSTANCE are verified for
existence. Objects that are either registered with
OAD, or those registered BY_po policy are not
verified for existence.
vbroker.locationservice.ti |1 Specifies the connect/receive/send timeout, in
meout seconds, when trying to interact with the Location
Service.

Event Service properties

The following table lists the Event Service properties.

ve

Property Default |Description
vbroker.events.maxQueuelL |100 Specifies the number of messages to be queued for
ength slow consumers.
vbroker.events.factory false |When set to true, allows the event channel factory to
be instantiated, instead of an event channel.
vbroker.events.debug false |When set to true, allows output of debugging
information.
Note: This property is deprecated. Refer to the new
Debug logger properties.
vbroker.events.interacti |false |When setto true, allows the event channel to be

executed in a console-driven, interactive mode.

Naming Service (VisiNaming) properties

The following tables list the VisiNaming Service properties.

Table 5.1 Core Visinaming Service properties
Property Default | Description
vbroker.naming.adminPw |inpris |Password required by administrative VisiBroker naming

d e

service operations.

vbroker.naming.enableS |0
lave

If 1, enables master/slave naming services
configuration. See “VisiNaming Service Clusters for
Failover and Load Balancing” for information about
configuring master/slave naming services.

vbroker.naming.iorFile

ns.ior

This property specifies the full path name for storing the
naming service IOR. If you do not set this property, the
naming service will try to output its IOR into a file named
ns.
silently ignores file access permission exceptions when
it tries to output its IOR.

ior in the current directory. The naming service

5: VisiBroker properties 55

Naming Service (VisiNaming) properties

Table 5.1

Core Visinaming Service properties

Property

Default

Description

vbroker.naming.logLeve
1

emerg

This property specifies the level of log messages to be
output from the naming service. Acceptable values are:

emerg (0): indicates some panic condition.

alert (1): a condition that requires user attention—for
example, if security has been disabled.

crit (2): critical conditions, such as a device error.
err (3): error conditions.

warning (4): warning conditions—these may include
some troubleshooting advice.

notice (5): conditions that are not errors but may require
some attention, such as the opening of a connection.

info (6): informational, such as binding in progress.
debug (7): debug messages for developers.

Note: This property is deprecated. Refer to the new
Debug logger properties

vbroker.naming.logUpda
te

false

This property allows special logging for all of the update
operations on the CosNaming: :NamingContext,
CosNamingExt : :Cluster, and CosNamingExt: :ClusterManager
interfaces.

The CosNaming: :NamingContext interface operations for
which this property is effective are: bind, bind_context,
bind_new_context, destroy, rebind, rebind_context,
unbind.

The CosNamingExt : : Cluster interface operations for which
this property is effective are: bind, rebind, unbind,
destroy.

The CosNamingExt : :ClusterManager interface operation for
which this property is effective is: create_cluster.

When this property value is set to true and any of the
above methods is invoked, the following log message is
printed (the output shows a bind operation being
executed):

00000007,5/26/04 10:11 AM,127.0.0.1,00000000,
VBJ-Application,VBJ ThreadPool Worker, INFO,

OPERATION NAME : bind

CLIENT END POINT : Connection[socket=Socket
[addr=/127.0.0.1, port=2026, localport=1993]]
PARAMETER 0 : [(Tom.LoanAccount)]

PARAMETER 1 : Stub[repository_id=IDL:Bank/
LoanAccount:1.0, key=TransientId[poaName=/,

id={4 bytes: (0)(0)(0)(0)},sec=505,usec=990917734,
key_string=%00VB%01%00%00%00%02/%00%20%20%00%00%00%
04%00%00%00%00%00%00%01%£9;%104£], codebase=null]

For more information see the Object Clusters section.

Table5.2 Object Clustering Related properties
Property Default | Description
vbroker.naming.enableClusterFa |true When set to true, it specifies that an

ilover

56 VisiBroker for C++ Developer’s Guide

interceptor be installed to handle fail-over for
objects that were retrieved from the
VisiNaming Service. In case of an object
failure, an attempt is made to transparently
reconnect to another object from the same
cluster as the original.

Naming Service (VisiNaming) properties

Table5.2 Object Clustering Related properties

Property Default | Description

vbroker.naming.propBindOn 0 If 1, the implicit clustering feature is turned on.
vbroker.naming.smrr.pruneStale |1 This property is relevant when the name

Ref

service cluster uses the Smart Round Robin
criterion. When this property is set to 1, a stale
object reference that was previously bound to
a cluster with the Smart Round Robin criterion
will be removed from the bindings when the
name service discovers it. If this property is
set to 0, stale object reference bindings under
the cluster are not eliminated. However, a
cluster with Smart Round Robin criterion will
always return an active object reference upon
a resolve() or select () call if such an object
binding exists, regardless of the value of the
vbroker.naming.smrr.pruneStaleRef property. By
default, the implicit clustering in the name
service uses the Smart Round Robin criterion
with the property value set to 1. If set to 2, this
property disables the clearing of stale
references completely, and the responsibility
of cleaning up the bindings belongs to the
application, rather than to VisiNaming.

For more information see “VisiNaming Service Clusters for Failover and

Load Balancing”.
Table 5.3

Visinaming Service Cluster Related properties

Property

Default

Description

vbroker.naming.enableSlave

0

See “VisiNaming Service
properties”.

vbroker.naming.slaveMode

No

or

default.
Can be set
to cluster

slave.

This property is used to configure
VisiNaming Service instances in the
cluster mode or in the master/slave
mode. The
vbroker.naming.enableSlave property
must be set to 1 for this property to
take effect.

Set this property to cluster to
configure VisiNaming Service
instances in the cluster mode.
VisiNaming Service clients will then
be load balanced among the
VisiNaming Service instances that
comprise the cluster. Client failover
across these instances are enabled.

Set this property to slave to
configure VisiNaming Service
instances in the master/slave mode.
VisiNaming Service clients will
always be bound to the master
server if the master is running but
failover to the slave server when the
master server is down.

vbroker.naming.serverClusterName

null

This property specifies the name of
a VisiNaming Service cluster.
Multiple VisiNaming Service
instances belong to a particular
cluster (for example, clusterxyz)
when they are configured with the
cluster name using this property.

5: VisiBroker properties 57

Naming Service (VisiNaming) properties

Table 5.3 Visinaming Service Cluster Related properties

Property Default Description

vbroker.naming.serverNames null This property specifies the factory
names of the VisiNaming Service
instances that belong to a cluster.
Each VisiNaming Service instance
within the cluster should be
configured using this property to be
aware of all the instances that
constitute the cluster. Each name in
the list must be unique. This
property supports the format:

vbroker.naming. serverNames=
Serverl:Server?2:Server3

See the related property,
vbroker.naming.serverAddresses.

vbroker.naming.serverAddresses null This property specifies the host and
listening port for the VisiNaming
Service instances that comprise a
VisiNaming Service cluster. The
order of VisiNaming Service
instances in this list must be
identical to that of the related
property vbroker.naming. serverNames,
which specifies the names of the
VisiNaming Service instances that
comprise a VisiNaming Service
Cluster. This property supports the
format:

vbroker.naming.
serverAddresses=hostl:portl;
host2:port2;host3:port3

vbroker.naming.anyServiceOrder false This property must be set to true on
(To be set on VisiNaming Service the VisiNaming Service client to
clients) utilize the load balancing and
failover features available when
VisiNaming Service instances are
configured in the VisiNaming
Service cluster mode. The following
is an example of how to use this

property:

client -DVbroker.
naming.anyServiceOrder=true

58 VisiBroker for C++ Developer’s Guide

Naming Service (VisiNaming) properties

Pluggable Backing Store Properties

The following tables show property information for the VisiNaming service pluggable

backing store types.

Default properties common to all adapters

Property

Default

Description

vbroker.naming.backingStoreT
ype

InMemory

Specifies the naming service adapter type to
use. This property specifies which type of
backing store you want the VisiNaming
Service to use. The valid options are:
InMemory, JDBC, Dx, JNDI. The default is
InMemory.

vbroker.naming.cacheOn

Specifies whether to use the Naming Service
cache. A value of 1 (one) enables caching.

vbroker.naming.cache.connect
String

N/A

This property is required when the Naming
Service cache is enabled
(vbroker.naming.cacheOn=1) and the Naming
Service instances are configured in Cluster
or Master/Slave mode. It helps locate an
Event Service instance in the format
<hostname>:<port>. For example:

vbroker.naming.cache.connectString=1
27.0.0.1:14500

See “Caching facility” for details about
enabling the caching facility and setting
the appropriate properties.

vbroker.naming.cache.size

2000

This property specifies the size of the
Naming Service cache. Higher values will
mean caching of more data at the cost of
increased memory consumption.

vbroker.naming.cache.timeout

0 (no
limit)

This property specifies the time, in seconds,
since the last time a piece of data was
accessed, after which the data in the cache
will be purged in order to free memory. The
cached entries are deleted in LRU (Least
Recently Used) order.

5: VisiBroker properties 59

Naming Service (VisiNaming) properties

JDBC Adapter properties

Property

Default

Description

vbroker.naming.jd
bcDriver

com.borland.datastore.j
dbc.DataStoreDriver

This property specifies the JDBC driver
that is needed to access the database
used as your backing store. The
VisiNaming Service loads the
appropriate JDBC driver specified. Valid
values are:

m com.borland.datastore.jdbc.DataStoreDri
ver
JDataStore driver

m com.sybase.jdbc.SybDriver
Sybase driver

m oracle.jdbc.driver.OracleDriver
Oracle driver

m interbase.interclient.Driver
Interbase driver

m weblogic.jdbc.mssqglserverd.Driver
WebLogic MS SQLServer Driver

m COM.ibm.db2.jdbc.app.DB2Driver
IBM DB2 Driver

60 VisiBroker for C++ Developer’s Guide

vbroker.naming.re |True Sets Auto Commit on the JDBC

solveAutoCommit connection when doing a "resolve"
operation.

vbroker.naming.lo |VisiNaming The login name associated with the

ginName database.

vbroker.naming.lo |VisiNaming The login password associated with the

ginPwd database.

vbroker.naming.po |5 This property specifies the number of

0lSize database connections in your

connection pool when using the JDBC
Adapter as your backing store.

Naming Service (VisiNaming) properties

Property Default

Description

1 otDB.jds

vbroker.naming.ur |jdbc:borland:dslocal:ro

This property specifies the location of
the database which you want the
Naming Service to access. The setting
is dependent upon the database in use.
Acceptable values are:

m jdbc:borland:dslocal:<db-name>

JDataStore UTL

m jdbc:sybase:Tds:<host-name>:
<port-number>/<db-name>

Sybase URL

m jdbc:oracle:thin@<host-name>:

<port-number>:<sid>
Oracle URL

m jdbc:interbase://<server-name>/
<full-db-path>
Interbase URL

m jdbc:weblogic:mssglserverd:
<db-name>@<host-name>: <port-number>
WebLogic MS SQLSever URL

m jdbc:db2:<db-name>
IBM DB2 URL

m <full-path-JDataStore-db>
DataExpress URL for the native
driver

vbroker.naming.mi |30
nReconInterval

This property sets the Naming Service's
database reconnection interval time, in
seconds. The default value is 30. The
Naming Service will ignore the
reconnection request and throw a
CannotProceed exception if the time
interval between this request and the
last reconnection time is less than the
vset value. Valid values for this property
are non-negative integers. If set to 0, the
Naming Service will try to reconnect to
the database for every request.

DataExpress Adapter properties

The following table describes the DataExpress Adapter properties:

Property Description

eType

vbroker.naming.backingStor | This property should be set to Dx.

vbroker.naming.loginName This property is the login name associated with the database.
The default is VisiNaming.

vbroker.naming.loginPwd

This property is the login password associated with the
database. The default value is VisiNaming.

vbroker.naming.url

This property specifies the location of the database.

5: VisiBroker properties 61

Naming Service (VisiNaming) properties

JNDI adapter properties

The following is an example of settings that can appear in the configuration file for a

JNDI adapter:

Setting

Description

vbroker.naming.backingStoreType=JNDI

This setting specifies the backing
store type which is JnpI for the JNDI
adapter.

vbroker.naming.loginName=<user_name>

The user login name on the JNDI
backing server.

vbroker.naming.loginPwd=<password>

The password for the JNDI backing
server user.

vbroker.naming.jndiInitialFactory=com.sun.jn
di.ldap.LdapCtxFactory

This setting specifies the JNDI initial
factory.

vbroker.naming. jndiProviderURL=1dap://
<hostname>:389/<initial root context>

This setting specifies the JNDI
provider URL

vbroker.naming.jndiAuthentication=simple

This setting specifies the JNDI
authentication type supported by the
JNDI backing server.

VisiNaming Service Security-related properties

Property

Value

Default

Description

vbroker.

naming.security.disable

boolean

true

This property indicates whether
the security service is disabled.

vbroker.
n

naming.security.authDomai

string

This property indicates the
authorization domain name to be
used for the naming service
method access authorization.

vbroker.

naming.security.transport

int

This property indicates what
transport the Naming Service will
use. The available values are:

ServerQoPPolicy.SECURE_ONLY=1
ServerQoPPolicy.CLEAR_ONLY=0
ServerQoPPolicy.ALL=3

vbroker.
thentica

naming.security.requireAu
tion

boolean

false

This property indicates whether
naming client authentication is
required. However, when the
vbroker.naming.security.disable
property is set to true, no client
authentication will be performed
regardless of the value of this
requireAuthentication property.

horizati

vbroker.naming.security.enableAut

on

boolean

false

This property indicates whether
method access authorization is
enabled.

vbroker.
olesFile

naming.security.requiredR

string

null

This property points to the file
containing the required roles that
are necessary for invocation of
each method in the protected
object types. For more
information see “Method Level
Authorization”.

62 VisiBroker for C++ Developer’s Guide

OAD properties

OAD properties

This following table lists the configurable OAD properties.

ation

Property Default | Description

vbroker.oad.spawnTimeOut 20 After the OAD spawns an executable, specifies how
long, in seconds, the system will wait to receive a
callback from the desired object before throwing a
NO_RESPONSE exception.

vbroker.oad.verbose false Allows the OAD to print detailed information about
its operations.

vbroker.oad.readOnly false When set to true, does not allow you to register,
unregister, or change the OAD implementation.

vbroker.oad.iorFile 0adj.i | Specifies the filename for the OAD's stringified IOR.

or

vbroker.oad.quoteSpaces false Specifies whether to quote a command.

vbroker.oad.killOnUnregis |false Specifies whether to kill spawned server processes,

ter once they are unregistered.

vbroker.oad.verifyRegistr |false Specifies whether to verify the object registration.

This table list the OAD properties that cannot be overridden in a property file. They can
however be overridden with environment variables or from the command line.

Property Default Description

vbroker.oad. implName impl_rep Specifies the filename for the
implementation repository.

vbroker.oad.implPath null Specifies the directory where the
implementation repository is stored.

vbroker.oad.path null Specifies the directory for the OAD.

vbroker.oad. systemRoot null Specifies the root directory.

vbroker.oad.windir null Specifies the Windows directory.

Interface Repository properties

The following table lists the Interface Repository (IR) properties.

Property Default

Description

vbroker.ir.debug false

When set to true, allows the IR resolver to display
debugging information.

Note: This property is deprecated. Refer to the new
Debug logger properties.

vbroker.ir.ior null When the vbroker.ir.name property is set to the default
value, null, the VisiBroker ORB will try to use this
property to locate the IR.

vbroker.ir.name null Specifies the name that is used by the VisiBroker ORB

to locate the IR.

5: VisiBroker properties 63

TypeCode properties

TypeCode properties

The table below lists the VisiBroker for C++ TypeCode properties.

ame

Property Default |Description
vbroker. typecode.debug FALSE | When set to TRUE, this property allows the typecode
code to display debugging.
Note: This property is deprecated. Refer to the new
Debug logger properties.
vbroker.typecode.noIndire |FALSE | When set to TRUE, this property does not allow the
ction use of indirection when writing a recursive typecode.
vbroker.typecode.marshalN | TRUE Marshalling of names inside typecode data can now

be suppressed by replacing these with empty
strings, since the OMG spec allows. This will save
network bandwidth by reducing the length of GIOP
messages. However, the API functions relying on
this data will not function correctly when
compression is used. By default, the compression is
not done. To enable this, set this property to false.

Client-Side LIOP Connection properties

The table below lists the VisiBroker for C++ client-side LIOP connection properties.

Table 5.4

Client-side LIOP connection properties

Property

Default Description

vbroker.ce.liop.ccm.connectionCacheMax 5

Specifies the maximum
number of cached connections
on a client. The connection is
cached when a client releases
it. Therefore, the next time a
client needs a new connection,
it can retrieve one from the
cache instead of creating a
new one.

vbroker.ce.liop.ccm.disableConnectionCache

When set to true, this property
disables connection caching on
the client side.

false

vbroker.ce.liop.ccm.connectionMax

0 Specifies the maximum
number of total connections for
a client. This includes the
active connections, plus the
ones that are cached. The
default value of 0 (zero)
specifies that the client will not
try to close any of the old active
or cached connections.

vbroker.ce.liop.ccm.connectionMaxIdle 360

Specifies the time, in seconds,
that the client uses to
determine if a cached
connection should be closed. If
a cached connection has been
idle longer than this time, then
the client will close the
connection.

64 VisiBroker for C++ Developer’s Guide

vbroker.ce.liop.ccm.type

Pool Specifies the type of client
connection management used
by a client. The default value
Pool means connection pool.
This is currently the only valid
value for this property.

Client-side IIOP connection properties

Table 54 Client-side LIOP connection properties

Property

Default Description

vbroker.ce.liop.connection.rcvBufSize

0

Specifies the size of the
receive socket buffer. The
default value 0 (zero) implies a
system dependent value.

vbroker.ce.liop.connection.sendBufSize

Specifies the size of the send
socket buffer. The default value
0 (zero) implies a system
dependent value.

vbroker.ce.liop.connection.shmSize

4096

Specifies the size, in bytes, of
shared memory. If your client
program and object
implementation communicate
via shared memory, you may
use this option to enhance
performance.

sgSize

vbroker.se.default.local.listener.doorMaxM

0

1,000,00 |Specifies the maximum

message size which will be
sent through the fast IPC (door)
mechanism in Solaris (when
the client and server are
running on the same machine).
If the message size is greater
than the default value
(1,000,000), it will not be sent
using the IPC, and will default
to the next available
mechanism (UNIX domain
socket or TCP/IP socket).

Client-side IIOP connection properties

The table below lists the VisiBroker for C++ Client-side IIOP Connection properties.

Table5.5 Client-side IIOP Connection properties

Property

Default

Description

vbroker.ce.iiop.ccm.connectionCacheMax

5

Specifies the maximum number of
cached connections for a client. The
connection is cached when a client
releases it. Therefore, the next time a
client needs a new connection, it first
tries to retrieve one from the cache,
instead of just creating a new one.

vbroker.ce.iiop.ccm.disableConnectionC
ache

false

If you set this property to true, it
disables connection caching on the
client side.

vbroker.ce.iiop.ccm.connectionMax

Specifies the maximum number of
total connections for a client. This is
equal to the number of active
connections plus cached
connections. The default value of
zero specifies that the client will not
try to close any of the old active or
cached connections.

vbroker.ce.iiop.ccm.connectionMaxIdle

Specifies the time, in seconds, that
the client uses to determine if a
cached connection should be closed.
If a cached connection has been idle
longer than this time, then the client
closes the connection.

5: VisiBroker properties 65

QoS-related Properties

Table55 Client-side IIOP Connection properties

Property

Default

Description

vbroker.ce.iiop.ccm.type

Pool

Specifies the type of client
connection management used by a
client. The value Pool means
connection pool. This is currently the
only valid value for this property.

vbroker.ce.iiop.connection.rcvBufSize |0

Specifies the size of the receive
socket buffer. The default value 0
(zero) implies a system dependent
value.

vbroker.ce.iiop.connection.sendBufSize |0

Specifies the size of the send socket
buffer. The default value 0 (zero)
implies a system dependent value.

vbroker.ce.iiop.connection.tcpNoDelay |FALSE

When set to TRUE, the server's
sockets are configured to send any
data written to them immediately
instead of batching the data as the
buffer fills.

vbroker.ce.iiop.host

none

Binds the client side sockets to the
desired interface. If the value is null,
the wild-card interface is used.

vbroker.ce.iiop.connection.noCallback |FALSE

When set to TRUE, this property allows
the server to call back to the client.

r

vbroker.ce.iiop.connection.socketLinge |0

A TCP/IP setting.

vbroker.ce.iiop.connection.keepAlive TRUE

A TCP/IP setting.

QoS-related Properties

Property Default Description
vbroker.qgos.cache True Specifies if QoS policies should
be cached per delegate, instead
of being checked prior to every
request made by the client.
vbroker.gos.defaul tRRTTimeout 0 milli- Sets the default value of relative
secs round trip request timeout.
Default 0 means no timeout.
vbroker.qgos.defaul tRRQTimeout 0 milli- Sets the default value of relative
secs request timeout. Default 0 means
no timeout
vbroker.gos.defaultConnectTimeout |0 milli- Sets the default value of
secs connection timeout. Default 0
means no timeout.

Server-side server engine properties

This table lists the server-side server engine properties.

Property

Default Description

vbroker.se.default

iiop_tp Specifies the default server engine.

66 VisiBroker for C++ Developer’s Guide

Server-side thread session IIOP_TS/IIOP_TS connection properties

Server-side thread session IOP_TS/IIOP_TS connection properties

The following table lists the server-side thread session IIOP_TS/IIOP_TS connection

properties.

Property Default Description

vbroker.se.iiop_ts.scm.iiop_ts.listener.preferIPv |false This is applicable to the Windows

AStack platforms only. It is a boolean value
indicating whether the listener has to use
IPv4 or IPv6. The default value is false,
which will enforce usage of IPv6.
If the property
"vbroker.se.<SE_name>.host"is given an
IPv4 or IPv6 address value, then you can
ignore the property setting.

vbroker.se.iiop_ts.host null Specifies the host name used by this
server engine. The default value, null,
means use the host name from the
system.

vbroker.se.iiop_ts.proxyHost null Specifies the proxy host name used by
this server engine. The default value, null,
means use the host name from the
system.

vbroker.se.iiop_ts.scms iiop_ts Specifies the list of Server Connection
Manager name(s).

vbroker.se.iiop_ts.scm.iiop_ts.manager.type Socket Specifies the type of Server Connection
Manager.

vbroker.se.iiop_ts.scm.iiop_ts.manager.connection |0 Specifies the maximum number of

Max connections the server will accept. The
default value, 0 (zero), implies no
restriction.

vbroker.se.iiop_ts.scm.iiop_ts.manager.connection |0 Specifies the time in seconds the server

MaxIdle uses to determine if an inactive
connection should be closed.

vbroker.se.iiop_ts.scm.iliop_ts.manager.garbageCol |30 The number of seconds between garbage-

lectTimer collection for connection objects.

vbroker.se.iiop_ts.scm.iiop_ts.listener.type 1I0P Specifies the type of protocol the listener
is using.

vbroker.se.iiop_ts.scm.iiop_ts.listener.port 0 Specifies the port number that is used with
the host name property. The default value,
0 (zero), specifies that the system will pick
a random port number.

vbroker.se.iiop_ts.scm.iiop_ts.listener.proxyPort |0 Specifies the proxy port number used with
the proxy host name property. The default
value, 0 (zero), specifies that the system
will pick a random port number.

vbroker.se.iiop_ts.scm.iiop_ts.listener.rcvBufSiz |0 Specifies the size of the receive socket

e buffer. The default value 0 implies system
dependent value.

vbroker.se.ilop_ts.scm.iiop_ts.listener.sendBufSi |0 Specifies the size of the send buffer. The

ze default value 0 implies a system
dependent value.

vbroker.se.iiop_ts.scm.iiop_ts.listener.socketLin |0 A TCP/IP setting

ger

vbroker.se.iiop_ts.scm.iiop_ts.listener.keepAlive |true A TCP/IP setting

5: VisiBroker properties 67

Server-side thread session BOA_TS/BOA_TS connection properties

Property Default Description
vbroker.se.iiop_ts.scm.iiop_ts.listener.giopVersi |[1.2 This property can be used to resolve
on interoperability problems with older

VisiBroker ORBs that cannot handle
unknown minor GIOP versions correctly.
Legal values for this property are 1.0, 1.1
and 1.2. For example, to make the
nameservice produce a GIOP 1.1 ior, start
it like this:

nameserv -VBJprop

vbroker.se.iiop_tp.scm.iiop_tp.listener

.glopVersion=1.1

vbroker.se.iiop_ts.scm.iiop_ts.dispatcher.type "ThreadSessi | Specifies the type of thread dispatcher
on" used in the Server Connection Manager.

vbroker.se.iiop_ts.scm.iiop_ts.dispatcher.threadS |0 The size of the thread stack. The default

tackSize value, 0, indicates system default.

However, on the HP-UX platform, the
default value is 128 KB.

vbroker.se.iiop_ts.scm.iiop_ts.dispatcher.cooling |3 Time duration in seconds when a

Time connection is considered hot (expecting
more requests). After the time is elapsed,
the connection is returned back from the

dispatcher.
vbroker.se.iiop_ts.scm.iiop_ts.connection.rcvBufS |0 Specifies the size of the receive socket
ize buffer. The default value 0 implies system
dependent value.
vbroker.se.iiop_ts.scm.iiop_ts.connection.sendBuf |0 Specifies the size of the send buffer. The
Size default value 0 implies a system
dependent value.
vbroker.se.iiop_ts.scm.iiop_ts.connection.socketL |0 A TCP/IP setting
inger
vbroker.se.iiop_ts.scm.iiop_ts.connection.keepAli |true A TCP/IP setting
ve
vbroker.se.iiop_ts.scm.iiop_ts.connection.tcpNoDe |true When this property is set to false, this
lay turns on buffering for the socket. The

default value, true, turns off buffering, so
that all packets are sent as soon as they
are ready.

Server-side thread session BOA_TS/BOA_TS connection properties

This protocol has the same set of properties as the Server-side thread session
IIOP_TS/IIOP_TS connection properties, by replacing alliiop_ts with boa_ts in all the
properties. For example, the vbroker.se.iiop_ts.scm.iiop_ts.manager.connectionMax
will become vbroker.se.boa_ts.scm.boa_ts.manager.connectionMax. Also, the default
value for vbroker.se.boa_ts.scms is boa_ts.

68 VisiBroker for C++ Developer’s Guide

Server-side thread pool IIOP_TP/IIOP_TP connection properties

Server-side thread pool IIOP_TP/IIOP_TP connection properties

The following table lists the server-side thread pool IOP_TP/IIOP_TP connection

properties.

Property Default Description

vbroker.se.iiop_tp.scm.iiop_tp.listener.preferIPv |false This is applicable to the Windows platforms

4Stack only. Itis a boolean value indicating whether
the listener has to use IPv4 or IPv6. The
default value is false, which will enforce usage
of IPv6.
If the property "vbroker.se.<SE_name>.host" is
given an |Pv4 or IPv6 address value, then you
can ignore the property setting.

vbroker.se.iiop_tp.host null Specifies the host name that can be used by
this server engine. The default value, null,
means use the host name from the system.
Host names or IP addresses are acceptable
values.

vbroker.se.iiop_tp.proxyHost null Specifies the proxy host name that can be
used by this server engine. The default value,
null, means use the host name from the
system. Host names or IP addresses are
acceptable values.

vbroker.se.iiop_tp.scms iiop_tp Specifies the list of Server Connection
Manager name(s).

vbroker.se.iiop_tp.scm.iiop_tp.manager.type Socket Specifies the type of Server Connection
Manager.

vbroker.se.iiop_tp.scm.iliop_tp.manager.connection |0 Specifies the maximum number of cache

Max connections on the server. The default value, 0
(zero), implies no restriction.

vbroker.se.iiop_tp.scm.iiop_tp.manager.connection |0 Specifies the time, in seconds, that the server

MaxIdle uses to determine if an inactive connection
should be closed.

vbroker.se.iiop_tp.scm.iiop_tp.manager.garbageCol |30 The garbage-collection timer (in seconds) for

lectTimer connections.

vbroker.se.iiop_tp.scm.iiop_tp.listener.type 1I0P Specifies the type of protocol the listener is
using.

vbroker.se.iiop_tp.scm.iiop_tp.listener.port 0 Specifies the port number used with the host
name property. The default value, 0 (zero),
means that the system will pick a random port
number.

vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort |0 Specifies the proxy port number used with the
proxy host name property. The default value, 0
(zero), means that the system will pick a
random port number.

vbroker.se.iiop_tp.scm.iiop_tp.listener.rcvBufSiz |0 Specifies the size of the receive socket buffer.

e The default value 0 implies a system
dependent value.

vbroker.se.ilop_tp.scm.iiop_tp.listener.sendBufSi |0 Specifies the size of the send buffer. The

ze default value 0 implies a system dependent
value.

vbroker.se.iiop_tp.scm.iiop_tp.listener.socketLin |0 A TCP/IP setting

ger

vbroker.se.iiop_tp.scm.iiop_tp.listener.keepAlive |true A TCP/IP setting

vbroker.se.iiop_tp.scm.iiop_tp.listener.giopVersi |[1.2 This property can be used to resolve

on interoperability problems with older VisiBroker
ORBs, that cannot handle unknown minor
GIOP versions correctly. Acceptable values for
this property are 1.0, 1.1 and 1.2.

5: VisiBroker properties 69

Server-side thread pool BOA_TP/BOA_TP connection properties

Property Default Description
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.type ThreadPo | Specifies the type of thread dispatcher used in
ol the Server Connection Manager.
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadd |0 Specifies the minimum number of threads that
in the Server Connection Manager can create.
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadd |0 Specifies the maximum number of threads that
ax the Server Connection Manager can create.

The default value, 0 (zero) implies the ORB will
control the thread generation using an internal
algorithm based on heuristics.

Setting the property
vbroker.se.iiop_tp.scm.iiop_tp.dispatche
r.unlimitedConcurrency=true will imply that
setting this property to 0 will enable unlimited
number of threads in the thread pool to be

created.
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadd |300 Specifies the time in seconds before an idle
axIdle thread will be destroyed.
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadS |0 The size of the thread stack. The default value
tackSize 0 indicates the system default. However, on the

HP-UX platform, the default value is 128 KB.
vbroker.se.iiop_tp.scm.iliop_tp.dispatcher.cooling |3 Time duration, in seconds, when a connection
Time is considered hot (expecting more requests).

After the time is elapsed, the connection is
returned back from the dispatcher.

vbroker.se.iiop_tp.scm.iliop_tp.connection.rcvBufS |0 Specifies the size of the receive socket buffer.

ize The default value 0 implies a system
dependent value.

vbroker.se.iiop_tp.scm.iiop_tp.connection.sendBuf |0 Specifies the size of the send buffer. The

Size default value 0 implies a system dependent
value.

vbroker.se.iiop_tp.scm.iliop_tp.connection.socketL |0 A TCP/IP setting

inger

vbroker.se.iiop_tp.scm.iiop_tp.connection.keepAli |true A TCP/IP setting

ve

vbroker.se.iiop_tp.scm.iliop_tp.connection.tcpNoDe |true When this property is set to false, this turns on

lay buffering for the socket. The default value, true,

turns off buffering, so that all packets are sent
as soon as they are ready.

Server-side thread pool BOA_TP/BOA_TP connection properties

This protocol has the same set of properties as the Server-side thread pool IIOP_TP/
IIOP_TP connection properties, by replacing all iiop_tp with boa_tp in all the properties.
For example, the vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax will become
vbroker.se.boa_tp.scm.boa_tp.manager.connectionMax. Also, the default value for
vbroker.se.boa_tp.scms is boa_tp.

70 VisiBroker for C++ Developer’s Guide

Server-side thread pool LIOP_TP/LIOP_TP connection properties

Server-side thread pool LIOP_TP/LIOP_TP connection properties

The following table lists the server-side thread pool LIOP_TP/LIOP_TP connection
properties.

Property

Default

Description

vbroker.

se

.liop_tp.

host

null

Specifies the host name that can be used by
this server engine. The default value, null,
means use the host name from the system.
Host names or IP addresses are acceptable
values.

vbroker.

se.

liop_tp.

proxyHost

null

Specifies the proxy host name that can be
used by this server engine. The default value,
null, means use the host name from the
system. Host names or IP addresses are
acceptable values.

vbroker.

se.

liop_tp.

SCms

liop_tp

Specifies the list of Server Connection
Manager name(s).

vbroker.

se.

liop_tp.

Scm

.liop_tp.

manager.type

Local

Specifies the type of Server Connection
Manager.

vbroker.

Max

.liop_tp.

scm

.liop_tp.

manager.connection

Specifies the maximum number of cache
connections on the server. The default value, 0
(zero), implies no restriction.

vbroker.

MaxIdle

se.

liop_tp.

scm

.liop_tp.

manager.connection

Specifies the time, in seconds, that the server
uses to determine if an inactive connection
should be closed.

vbroker.

se

lectTimer

.liop_tp.

scm

.liop_tp.

manager.garbageCol

30

The garbage-collection timer (in seconds) for
connections.

vbroker.

se.

liop_tp.

scm

.liop_tp.

listener.type

LIOP

Specifies the type of protocol the listener is
using.

vbroker.

se.

liop_tp.

scm

.liop_tp.

listener.port

Specifies the port number used with the host
name property. The default value, 0 (zero),
means that the system will pick a random port
number.

vbroker.

se.

liop_tp.

scm

.liop_tp.

listener.proxyPort

Specifies the proxy port number used with the
proxy host name property. The default value, 0
(zero), specifies that the system will pick a
random port number.

vbroker.

se.

default.

local.listener.door

true

Specifies whether the Door API has to be used
for the Client and Server to communicate when
running on the same machine. When set to
true, the Door APl is used for the LIOP. When
set to false, the LIOP uses a UNIX Domain
Socket for IPC. This property is only for Solaris
operating systems.

vbroker.

se.

XXX.SCm.yyy.listener.shmSize

4096

The size, in bytes, of the shared memory
allocation. If your client program and object
implementation communicate via shared
memory, you may use this option to enhance
performance.

vbroker.

se.

XXX.scm.yyy.listener.userConstrained

When set to true, the file is hidden in a
directory accessible only by the owner.

vbroker.

on

se.

liop_tp.

scm. liop_tp.listener.giopVersi

1.2

This property can be used to resolve
interoperability problems with older VisiBroker
ORBs, that cannot handle unknown minor
GIOP versions correctly. Acceptable values for
this property are 1.0, 1.1 and 1.2.

5: VisiBroker properties 71

Server-side thread pool BOA_LTP/BOA_LTP connection properties

Time

Property Default Description
vbroker.se.liop_tp.scm.liop_tp.listener.allowedGr |null Allows server applications to control the
oups trustees to the securable synchronization
objects, used for Local IPC communication on
Windows. Allows semicolon-separated
Windows User groups to access servers using
LIOP. Users not belonging to the groups
specified will not be allowed to connect and will
failover to 1IOP.
vbroker.se.liop_tp.scm.liop_tp.dispatcher.type ThreadPo | Specifies the type of thread dispatcher used in
ol the Server Connection Manager.
vbroker.se.liop_tp.scm.liop_tp.dispatcher.threadd |0 Specifies the minimum number of threads that
in the Server Connection Manager can create.
vbroker.se.liop_tp.scm.liop_tp.dispatcher.threadd |0 Specifies the maximum number of threads that
ax the Server Connection Manager can create.
The default value, 0 (zero), implies the ORB
will control the thread generation using an
internal algorithm based on heuristics.
vbroker.se.liop_tp.scm.liop_tp.dispatcher.threadd |300 Specifies the time, in seconds, before an idle
axIdle thread will be destroyed.
vbroker.se.liop_ts.scm.liop_ts.dispatcher.threadS |0 The size of the thread stack. The default value,
tackSize 0, indicates a system default. However, on the
HP-UX platform, the default value is 128 KB.
vbroker.se.liop_tp.scm.liop_tp.dispatcher.cooling |3 Time duration, in seconds, when a connection

is considered hot (expecting more requests).
After the time is elapsed, the connection is
returned back from the dispatcher.

Server-side thread pool BOA_LTP/BOA_LTP connection properties

This protocol has the same set of properties as the thread pool 1iop_tp/liop_tp
connection properties, by replacing all 1iop_tp with boa_1tp in all the properties. For
example, the vbroker.se.liop_tp.scm.liop_tp.manager.connectionMax will become
vbroker.se.boa_ltp.scm.boa_ltp.manager.connectionMax. Also, the default value for
vbroker.se.boa_ltp.scms is boa_ltp.

Properties that support bi-directional communication

The following table lists the properties that support bi-directional communication.
These properties are evaluated only once—when the SCMs are created. In all cases,
the exportBiDir and importBiDir properties on the SCMs are given priority over the
enableBiDir property. In other words, if both properties are set to conflicting values, the

72 VisiBroker for C++ Developer’s Guide

Debug Logging properties

SCM-specific properties will take effect. This allows you to set the enableBiDir property
globally and specifically turn off bi-directionality in individual SCMs.

Property Default Description

vbroker.orb.enableBiDir none You can selectively make
bi-directional connections. If
the client defines
vbroker.orb.enableBiDir=client
and the server defines
vbroker.orb.enableBiDir=server
the value of
vbroker.orb.enableBiDir at the
GateKeeper determines the
state of the connection. Values
of this property are: server,
client, both Or none.

vbroker.se.<se>.scm.<scm>.manager.expo | By default, This is a client-side property.
rtBiDir this property | Setting it to true enables

is not set by | creation of a bi-directional

the ORB. callback POA on the specified

server engine. Setting it to
false disables creation of a
bidirectional POA on the
specified server engine.

vbroker.se.<se>.scm.<scm>.manager. impo | By default, This is a server-side property.
TtBiDir not set by Setting it to true allows the
the ORB. server-side to reuse the

connection already established
by the client for sending
requests to the client. Setting it
to false prevents reuse of
connections in this fashion.

Debug Logging properties

This section details the properties that can be used to control and configure the output
of debug log statements.

The debug log statements are categorized according to the areas of the ORB from
where they are logged. These categories are called source names. Currently the
following source names are logged:

- connection — logs from the connection-related source areas such as client side
connection, server side connection, connection pool etc.

- client — logs from the client side invocation path

- agent — logs for Osagent communication

- cdr — logs for GIOP areas

- se —logs from the server engine, such as dispatcher, listener etc.
- server — logs from the server side invocation path.

orb — logs from the ORB.

For VisiNotify, the following source names are logged:

- v_vntfy - logs from the process.
- v_vnchnl - logs from the channel object.
- v_vn_pxsup - logs from proxy supplier objects.

- v_vnper - logs from persistency module.

5: VisiBroker properties 73

Debug Logging properties

- v_vndb - logs from low level circular file based db layer

- v_vnlogdiscard - Details of any events that are discarded

For VisiTelcoLog, the following source names are logged:

- v_vtlog - logs from the process.

- v_vtlper - logs from the log persistence layer.

- v_vndb - logs from low level circular file based db layer.

For VisiTransact, the following source names are logged:

- v_ots_txncontext - logs from transaction factory, control and coordinator.

- v_ots_interceptor - logs from client and server interceptors and transaction current
related operations.

- v_ots_completion - logs related to transaction completion.
- v_ots_pc - logs related to resource and synchronization objects registered.
For VisiSecure C++, the following source names are logged:

- v_secauthn - logs from authentication related code (i.e. login module, callback
handler, identity services and alike).

- v_secauthz - logs from authorization related code (i.e. Authorization provider,
Authorization domain, role map and alike).

- v_secssl - logs from SSL transport related code (i.e. SecureSocketProvider,
CertificateFactory and alike).

- v_seccsiv2 - logs from CSIV2 service context protocol related code (i.e. Security
context management code and alike).

- v_secmisc - logs from the rest of code.

74 VisiBroker for C++ Developer’s Guide

Enabling and Filtering

Debug Logging properties

The following table describes the properties used to enable logging and filtering.

Property

Default

Description

vbroker.log.enable

false

When set to true, all logging
statements will be produced
unless the log is being filtered.

Values are true or false.

vbroker.log.logLevel

debug

Specifies the logging level of the
log message. When set at a
level, the logs with log levels
equal to the specified level or
above are forwarded. This
property is applied at the global
level.

Values are energ, alert, crit, err,
warning, notice, info and debug
ranking from the highest to the
lowest.

The meaning of the log levels
are:

m energ—indicates a panic
condition.

m alert—a condition that
requires user attention—for
example, if security has been
disabled.

m crit—critical conditions, such
as a device error.

err—error conditions.

warning—warning
conditions—these may
accompany some
troubleshooting advice, such
as on the opening of a
connection.

m info—informational, such as
binding in progress.

m debug—debug conditions used
by developers.

vbroker.log.default.filter.register

null

Register source name for
controlling (filtering) the logs from
that source.

Values are client, server,
connection, cdr, se, agent and orb.
Multiple values can be provided
as a comma-separated string.

Note: The source names must be
registered using this property
before they can be explicitly
controlled using

vbroker.log.default.filter.<source-
name>.enableand

vbroker.log.default filter.<source-
name>.logLevel properties..

vbroker.log.default.filter.<source-
name>.enable

true

Once a source name is
registered, log output from the
source can be explicitly
controlled using this property.

Values are true or false.

5: VisiBroker properties 75

Debug Logging properties

Property Default | Description
vbroker.log.default.filter.<source- debug | This property provides finer-
name>. logLevel grained control over the global

log level property. The log level
specified using this property
explicitly applies to the given
source name.

The possible values are similar to
the global logLevel values.

vbroker.log.default.filter.all.enable true This is a special case of the
previous property where an
inbuilt source name “all” is being
used. “all” here denotes all the
source names that have not been
registered.

vbroker.log.enableSigHandler false |When setto true, installs a signal
handler based on SIGUSR2 to
allow toggling of logging at
runtime.

Values are true or false.

Note: This applies only to UNIX
platforms.

Appending and Logging

The output of the logs can be appended (forwarded) to either the Console or a rolling
local file system file (or both), either in a simple layout or in a more complicated Log4J
XML event layout (format). By default, the logs are appended to the Console in a
simple layout. The names of the various appenders and layouts supported are:

- stdout — Name of the Console appender.

rolling — Name of the rolling file appender.

simple — Name of a simple predefined output layout.

xnl — Name of Log4J XML event layout.

full — Name of a full record fields printout layout.

The following table describes the properties used to configure the destination of the log
output and its format.

Property Default |Description

vbroker.log.default.appenders List of comma-
separated
appenders instance
names for

specifying log
output destination.

vbroker.log.default.appender.<appender-inst- stdout | Type of the

name> . appenderType appender instance
that needs to be
configured with the
logger. Values
could be stdout or
rolling or a custom

appender type.
vbroker.log.default.appender.<appender-inst- simple |Type of layout
name>. layoutType (format) to be

associated with the
registered appender
destination.

Values are simple or
xml Or a custom
layout type.

76 VisiBroker for C++ Developer’s Guide

Debug Logging properties

Examples

For the built-in rolling appender type, you can create the following configurations. The
properties are described below, assuming that for each appender instance, the
appender type is specified as “rolling”.

Property Default Description
vbroker.log.default.appender.<appender- <current_dir Diregtory for .the .roIIing
inst-name>.logDir ectory> log file to reside in.
vbroker.log.default.appender.<appender- vbrolling.lo |Name of rolling log file.
inst-name>.fileNam g
vbroker.log.default.appender.<appender- 10 Size in MB for eaqh
inst-name>.maxFileSize backup before rolling
over.

Values >= 1.
vbroker.log.default.appender.<appender- 1 Number of backups
inst-name>.maxBackupIndex needed. When set to 0

(zero), no backup is

created and logging will

keep on appending to the
file.

Values >= 0.

The following properties can be used to define custom appender and layout types.

Property Default | Description

vbroker.log.appender.register Comma-separated new
appender type names being
introduced to the logger

framework
vbroker.log.appender.<appender-type- Complete path including file
name>.sharedLib name of the shared library or

the DLL containing the custom

appender
vbroker.log.layout.register Comma-separated new layout

type names being introduced
to the logger framework

vbroker.log.appender.<layout-type- Complete path including file

name>.sharedLib name of the shared library or
the DLL containing the custom
layout

Examples

The following examples explain some of the debug logging properties' usage
scenarios. In the example commands, vbapp is a VisiBroker for C++ application.

1 To turn on logging with default log level.

prompt> vhapp -Dvbroker.log.enable=true
2 To trace only info level and above.

prompt> vbapp -Dvbroker.log.enable=true -Dvbroker.log.logLevel=info
3 To turn off agent-related component statements.

prompt> vhapp -Dvbroker.log.enable=true \
-Dvbroker.log.default.filter.register=agent \
-Dvbroker.log.default.filter.agent.enable=false

4 To trace the client and connection-related area only.

5: VisiBroker properties 77

Web Services Runtime Properties

prompt> vhapp -Dvbroker.log.enable=true \
-Dvbroker.log.default.filter.all.enable=false \
-Dvbroker.log.default.register=client, connection

5 To trace emerg on se and err on the cdr areas and the rest on info level.

prompt> vbapp -Dvbroker.log.enable=true \
-Dvbroker.log.logLevel=info \
-Dvbroker.log.default.filter.register=se,cdr \
-Dvbroker.log.default.filter.se.logLevel=emerg \
-Dvbroker.log.default.filter.cdr.logLevel=err

6 To set up output to local file systems with three backups.

prompt> vbapp -Dvbroker.log.enable=true -
Dvbroker.log.default.appenders=myappinstl \

-Dvbroker.log.default.appender.myappinstl.appenderType=rolling \
-Dvbroker.log.default.appender.myappinstl.logDir=/opt/vbc \
-Dvbroker.log.default.appender.myappinstl.fileName=vbc.log \
-Dvbroker.log.default.appender.myappinstl.maxBackupIndex=3

7 To set up output to both console and local filesystems in xml format.

prompt> vhapp -Dvbroker.log.enable=true -
Dvbroker.log.default.appenders=myappinstl, myappinst2\

-Dvbroker.log.default.appender.myappinstl.appenderType=rolling \
-Dvbroker.log.default.appender.myappinst?.appenderType=stdout \
-Dvbroker.log.default.appender.myappinstl.logDir=/opt/vbc \
-Dvbroker.log.default.appender.myappinstl.fileName=vbc.log \
-Dvbroker.log.default.appender.myappinstl.layoutType=xml \
-Dvbroker.log.default.appender.myappinst?2.layoutType=xml

To set the output to two appender instances, one of type stdout and the other
a custom appender, using a simple layout and a custom layout.

prompt> vbapp -Dvbroker.log.enable=true \
-Dvbroker.log.appender.register=mycustomapp \
-Dvbroker.log.appender.mycustomapp.sharedLib=1ibCustomApp.so \
-Dvbroker.log.layout.register=mycustomlyt \
-Dvbroker.log.layout.mycustomlyt.sharedLib=1ibCustomLyt.so \
-Dvbroker.log.default.appenders=myappinstl,myappinst2 \
-Dvbroker.log.default.appender.myappinstl.appenderType=mycustomapp \
-Dvbroker.log.default.appender.myappinstl.layoutType=simple \
-Dvbroker.log.default.appender.myappinst2.appenderType=stdout \
-Dvbroker.log.default.appender.myappinst2.layoutType=mycustomlyt

Web Services Runtime Properties

Enabling the runtime

Property Default | Description

vbroker.ws.enable |false Takes in a Boolean true or false parameter. Setting this value to
true will enable the VisiBroker Web Services Runtime.

78 VisiBroker for C++ Developer’s Guide

Web Services HTTP Listener properties

Property Default

Description

vbroker.ws.listener. |Null
host

Specify the host name to be used by the listener.
Default null means the host name from the system

vbroker.ws.listener. |<TO
port DO>

Specify the port number to be used by the listener
socket.

Web Services Connection Manager properties

Property

Default |Description

vbroke.ws.keepAliveConnectio
n

False |HTTP server closes a connection after use.
If set to true, it tries to maintain the
connection.

vbroker.ws.connectionMax

0 If keepAliveConnection is true, this
property specifies the maximum number of
connections the server will accept. Default
0 indicates no restriction.

vbroker.ws.connectionMaxIdle

0 If keepAliveConnection is true, this
property determines the maximum time an
unused connection will remain alive.

vbroker.ws.garbageCollectTim
er

30 If keepAliveConnection is true, this
property determines the garbage collection
cycle time for reaping unused connections.
Default is 30 seconds.

vbroker.ws.connection.rcvBuf
Size

0 Receive Buffer Socket option for the client
connection sockets. Default 0 implies
system dependent value.

vbroker.ws.connection.

0 Send Buffer Socket option for the client

sendBufSize connection sockets. Default 0 implies
system dependent value.

vbroker.ws.connection.socket |0 TCP Socket option for the client connection

Linger sockets.

vbroker.ws.connection.keepAl |true TCP Socket option for the client connection

ive sockets.

SOAP Request Dispatcher properties

Soap Request Dispatcher properties

Property

Default |Description

vbroker.ws.dispatcher.threadMax

0 Maximum number of threads to be
present in the thread pool dispatcher.
Default value 0 indicates unlimited
number of threads.

vbroker.ws.dispatcher.threadMin |0 Minimum number of threads to be
present in the thread pool dispatcher.

vbroker.ws.dispatcher.threadMax |[300 Time in seconds before an idled thread

1dle in the thread pool is destroyed.

vbroker.ws.dispatcher.threadSta |0 Stack size of the thread pool dispatcher

ckSize thread. Default value 0 indicates system
dependent.

5: VisiBroker properties 79

Real-time Extensions related properties

The properties in the following table can be used to configure individual internal ORB

thread priorities.

Property

Description

vbroker.se.default.socket.listener.priori
ty

Sets the default priority that Listener
threads will run at. Can be changed at
any time. The current value at the time
of Server Engine creation (which
occurs during POA creation) is the
value used for any new Listeners that
are created. Can be overridden, using
the next property.

vbroker.se.<se name>.SCm.<SCm name>
.listener.priority

Where <SE name> is the name of a
Server Engine and <SCM name> is the
name of a Server Connection Manager.
Sets the priority of the Listener thread
associated with a specific SCM in a
specific Server Engine. Can be set at
any time prior to the creation of that
Server Engine (which occurs during the
creation of the first POA that uses that
Server Engine.)

vbroker.agent.threadPriority

Sets the priority at which the ORB’s
DSUser thread will run. Must be set no
later than the first time that the ORB
attempts to communicate with a
VisiBroker Smart Agent (which is
typically when a POA is created, an
object is activated or a call to a _bind
method is made.)

vbroker.garbageCollect.thread.priority

Sets the priority of all Garbage
Collection threads. Can be changed at
any time. The current value at the time
of Threadpool creation is the value
used.

80 VisiBroker for C++ Developer’s Guide

Handling exceptions

Exceptions in the CORBA model

The exceptions in the CORBA model include both system and user exceptions. The
CORBA specification defines a set of system exceptions that can be raised when
errors occur in the processing of a client request. Also, system exceptions are raised in
the case of communication failures. System exceptions can be raised at any time and
they do not need to be declared in the interface.

You can define user exceptions in IDL for objects you create and specify the
circumstances under which those exceptions are to be raised. They are included in the
method signature. If an object raises an exception while handling a client request, the

VisiBroker ORB is responsible for reflecting this information back to the client.

System exceptions

System exceptions are usually raised by the VisiBroker ORB, though it is possible for
object implementations to raise them through interceptors discussed in “Using

VisiBroker Interceptors.” When the VisiBroker ORB raises a SystemException, one of

the CORBA-defined error conditions is displayed as shown below.

For a listing of explanations and possible causes of these exceptions, see “CORBA

exceptions.”.

Exception name

Description

BAD_CONTEXT

Error processing context object.

BAD_INV_ORDER

Routine invocations out of order.

BAD_OPERATION

Invalid operation.

BAD_PARAM

An invalid parameter was passed.

BAD_QOS

Quality of service cannot be supported.

BAD_TYPECODE

Invalid typecode.

COMM_FAILURE

Communication failure.

DATA_CONVERSION

Data conversion error.

FREE_MEM Unable to free memory.
IMP_LIMIT Implementation limit violated.
INITIALIZE VisiBroker ORB initialization failure.

6: Handling exceptions

81

System exceptions

Exception name Description

INTERNAL VisiBroker ORB internal error.

INTF_REPOS Error accessing interface repository.

INV_FLAG Invalid flag was specified.

INV_INDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference specified.

INVALID_TRANSACTION Specified transaction was invalid (used in conjunction with
VisiTransact).

MARSHAL Error marshalling parameter or result.

NO_IMPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted operation.

NO_RESOURCES Insufficient resources to process request.

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTOR Failure detected by object adaptor.

OBJECT_NOT_EXIST Object is not available.

PERSIST_STORE Persistent storage failure.

TRANSIENT Transient failure.

TRANSACTION_MODE Mismatch detected between the TransactionPolicy in the IOR and the
current transaction mode (used in conjunction with VisiTransact).

TRANSACTION_REQUIRED Transaction is required (used in conjunction with VisiTransact).

TRANSACTION_ROLLEDBACK | Transaction was rolled back (used in conjunction with VisiTransact).

TRANSACTION_UNAVAILABLE | Connection to the VisiTransact Transaction Service has been
abnormally terminated.

TIMEQUT Request timeout.

UNKNOWN Unknown exception.

For a listing of explanations and possible causes of the above exceptions, see
“CORBA exceptions.”

SystemException class

class SystemException : public CORBA::Exception {
public:
static const char *_1d;
virtual ~SystemException();
CORBA: :ULong minor() const;
void minor (CORBA: :ULong val);
CORBA: :CompletionStatus completed() const;
void completed(CORBA::CompletionStatus status);

static SystemException *_downcast (Exception *);

¥

Obtaining completion status

System exceptions have a completion status that tells you whether or not the operation
that raised the exception was completed. The sample below illustrates the
CompletionStatus enumerated values for the CompletionStatus. COMPLETED_MAYRE is
returned when the status of the operation cannot be determined.

enum CompletionStatus {
COMPLETED_YES = 0;
COMPLETED_NO = 1;

82 VisiBroker for C++ Developer’s Guide

System exceptions

COMPLETED_MAYBE = 2;
}i
You can retrieve the completion status using these SystemException methods.
CompletionStatus completed();

Getting and setting the minor code

You can retrieve and set the minor code using these SystemException methods. Minor
codes are used to provide better information about the type of error.

ULong minor () const;
void minor (ULong val);

Determining the type of a system exception

The design of the VisiBroker exception classes allows your program to catch any type
of exception and then determine its type by using the _downcast () method. A static
method, _downcast () accepts a pointer to any Exception object. As with the _downcast ()
method defined on CORBA: :Object, if the pointer is of type SystemException, _downcast ()
will return the pointer to you. If the pointer is not of type SystemnException, _downcast ()
will return a NULL pointer.

Catching system exceptions

Your applications should enclose the VisiBroker ORB and remote calls in a try catch
block. The code samples below illustrate how the account client program, discussed in
“Developing an example application with VisiBroker,” prints an exception.

#include "Bank_c.hh"
int main(int argc, char* const* argv) {
try {
CORBA::0RB_var orb = CORBA::0RB_init (argc, argv);
PortableServer: :0bjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");
Bank: :AccountManager_var manager =
Bank: :AccountManager::_bind ("/bank_agent_poa", managerId);
const char* name = argc > 1 ? argv[l] : "Jack B. Quick";
Bank::Account_var account = manager->open(name);
CORBA: :Float balance = account->balance();
cout << "The balance in " << name << "'s account 1s $" << balance <<
endl;
} catch(const CORBA::Exception& e) {
cerr << e << endl;
return 1;
1
return 0;

}

If you were to execute the client program with these modifications and without a server
present, the following output would indicate that the operation did not complete and the
reason for the exception.

prompt>Client

Exception: CORBA::0BJECT_NOT_EXIST
Minor: 0
Completion Status: NO

6: Handling exceptions 83

System exceptions

Downcasting exceptions to a system exception

You can modify the account client program to attempt to downcast any exception that
is caught to a SystemException. The following code sample shows you how to modify
the client program.

int main(int argc, char* const* argv) {
try {
// Initialize the ORB.
CORBA: :0RB_ptr orb = CORBA::0RB_init (argc, argv);
// Bind to an account.
Account_var account = Account::_bind();
// Get the balance of the account.
CORBA: :Float acct_balance = account->balance();
// Print out the balance.
cout << "The balance in the account is §$"
<< acct_balance << endl;
} catch(const CORBA::Exception& e) {
CORBA: : SystemException* sys_excep;
sys_excep = CORBA::SystemException::_downcast ((CORBA: :Exception*)&e);
if(sys_excep != NULL) {
cerr << "System Exception occurred:" << endl;
cerr << "exception name: " <<
sys_excep->_name () << endl;
cerr << "minor code: " << sys_excep->minor() << endl;
cerr << "completion code: " << sys_excep->completed() << endl;
} else {
cerr << "Not a system exception" << endl;
cerr << e << endl;

}

}
The following code sample displays the resulting output if a system exception occurs.

System Exception occurred:
exception name: CORBA::NO_IMPLEMENT
minor code: 0
completion code: 1

Catching specific types of system exceptions

Rather than catching all types of exceptions, you may choose to specifically catch each
type of exception that you expect. The following code sample show this technique.

int main(int argc, char* const* argv) {
try {

// Initialize the ORB.
CORBA: :0RB_ptr orb = CORBA::0RB_init (argc, argv);
// Bind to an account.
Account_var account = Account::_bind();
// Get account balance.
CORBA: :Float acct_balance = account->balance();

// Print out the balance.
cout << "The balance in the account is $" << acct_balance
<< endl;
}
// Check for system errors
catch(const CORBA::SystemException& sys_excep) {

84 VisiBroker for C++ Developer’s Guide

User exceptions

cout << "System Exception occurred:" << endl;

cout << " exception name: " << SyS_excep-
> name() << endl;
cout << " minor code: " << sys_excep->minor () << endl;
cout << " completion code: " << sys_excep->completed()
<< endl;

}
}

User exceptions

When you define your object's interface in IDL, you can specify the user exceptions
that the object may raise. The following code sample shows the UserException code
from which the id12cpp compiler will derive the user exceptions you specify for your

object.
class UserException: public Exception {
public:
static const char * 1d;

virtual ~UserException();
static UserException *_downcast (Exception *);

¥

Defining user exceptions

Suppose that you want to enhance the account application, introduced in “Developing
an example application with VisiBroker,” so that the account object will raise an
exception. If the account object has insufficient funds, you want a user exception
named AccountFrozen to be raised. The additions required to add the user exception to
the IDL specification for the Account interface are shown in bold.

// Bank.idl
module Bank {
interface Account {
exception AccountFrozen {
}i
float balance() raises(AccountFrozen);
}i
}i
The idl2cpp compiler will generate the following code for a AccountFrozen exception
class.

class Account : public virtual CORBA::Object {

class AccountFrozen: public CORBA_UserException {
public:
static const CORBA_Exception::Description description;
AccountFrozen() {}
static CORBA::Exception *_factory() {
return new AccountFrozen();
}
~AccountFrozen() {}
virtual const CORBA_Exception::Description& _desc() const;
static AccountFrozen *_downcast (CORBA::Exception *exc);
CORBA: :Exception *_deep_copy() const {
return new AccountFrozen(*this);
}

void _raise() const {

6: Handling exceptions 85

User exceptions

raise *this;

}

Modifying the object to raise the exception
The AccountImpl object must be modified to use the exception by raising the exception
under the appropriate error conditions.

CORBA: :Float AccountImpl::balance()
{
i1f(_balance < 50) {
raise Account::AccountFrozen();
} else {
return _balance;

}

Catching user exceptions

When an object implementation raises an exception, the VisiBroker ORB is responsible
for reflecting the exception to your client program. Checking for a UserException is
similar to checking for a SystemException. To modify the account client program to catch
the AccountFrozen exception, make modifications to the code as shown below.

try {
// Initialize the ORB.
CORBA: :ORB_ptr orb = CORBA::ORB_init (argc, argv);
// Bind to an account.
Account_var account = Account::_bind();
// Get the balance of the account.
CORBA: :Float acct_balance = account->balance();
}
catch(const Account::AccountFrozen& e) {
cerr << "AccountFrozen returned:" << endl;
cerr << e << endl;
return(0) ;
1
// Check for system errors
catch(const CORBA::SystemException& sys_excep) {
}

Adding fields to user exceptions

You can associate values with user exceptions. The code sample below shows how to
modify the IDL interface specification to add a reason code to the AccountFrozen user
exception. The object implementation that raises the exception is responsible for
setting the reason code. The reason code is printed automatically when the exception
is put on the output stream.

// Bank.idl
module Bank {
interface Account {
exception AccountFrozen {
int reason;
}i
float balance() raises(AccountFrozen);
}i
}i

86 VisiBroker for C++ Developer’s Guide

User exceptions

6: Handling exceptions 87

88 VisiBroker for C++ Developer’s Guide

Overview

Server basics

This section outlines the tasks that are necessary to set up a server to receive client
requests.

The basic steps that you'll perform in setting up your server are:
Initialize the VisiBroker ORB

Create and setup the POA
Activate the POA Manager

Activate objects

Wait for client requests

This section describes each task in a global manner to give you an idea of what you
must consider. The specifics of each step are dependent on your individual
requirements.

Initializing the VisiBroker ORB

As stated in the previous section, the VisiBroker ORB provides a communication link
between client requests and object implementations. Each application must initialize
the VisiBroker ORB before communicating with it as follows:

// Initialize the VisiBroker ORB.
CORBA: :ORB_ptr orb = CORBA::0RB_init (argc, argv);

7: Server basics 89

Creating the POA

Creating the POA

Early versions of the CORBA object adapter (the Basic Object Adapter, or BOA) did not
permit portable object server code. A new specification was developed by the OMG to
address these issues and the Portable Object Adapter (POA) was created.

Note

A discussion of the POA can be quite extensive. This section introduces you to some of
the basic features of the POA. For detailed information, see “Using POAs” and the
OMG specification.

In basic terms, the POA (and its components) determine which servant should be
invoked when a client request is received, and then invokes that servant. A servantis a
programming object that provides the implementation of an abstract object. A servant
is not a CORBA object.

One POA (called the rootPOA) is supplied by each VisiBroker ORB. You can create
additional POAs and configure them with different behaviors. You can also define the
characteristics of the objects the POA controls.

The steps to setting up a POA with a servant include:

Obtaining a reference to the root POA

Defining the POA policies
Creating a POA as a child of the root POA

Creating a servant and activating it

Activating the POA through its manager
Some of these steps may be different for your application.

Obtaining a reference to the root POA

All server applications must obtain a reference to the root POA to manage objects or to
create new POAs.

// get a reference to the root POA

CORBA: :Object_var obj = orb->resolve_initial_references("RootPOA");
// narrow the object reference to a POA reference
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

You can obtain a reference to the root POA by using resolve_initial_references which
returns a value of type CORBA: :0bject. You are responsible for narrowing the returned
object reference to the desired type, which is PortableServer: :POA in the above
example.

You can then use this reference to create other POAs, if needed.

Creating the child POA

The root POA has a predefined set of policies that cannot be changed. A policy is an
object that controls the behavior of a POA and the objects the POA manages. If you

need a different behavior, such as different lifespan policy, you will need to create a

new POA.

POAs are created as children of existing POAs using create_POA. You can create as
many POAs as you think are required.

Note
Child POAs do not inherit the policies of their parent POAs.

90 VisiBroker for C++ Developer’s Guide

Creating the POA

In the following example, a child POA is created from the root POA and has a
persistent lifespan policy. The POA Manager for the root POA is used to control the
state of this child POA.

CORBA: :PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy (
PortableServer: :PERSISTENT) ;

// Create myPOA with the right policies

PortableServer: :POAManager_var rootManager = rootPOA->the_POAManager () ;

PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",
rootManager, policies);

Implementing servant methods

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data

structures, and more. When you compile IDL that contains an interface, a class is
generated which serves as the base class for your servant. For example, in the
Bank.IDL file, an >AccountManager

module Bank{
interface Account {
float balance();
b
interface AccountManager {
Account open (in string name);
}i
}i
The following shows the AccountManager implementation on the server side.

class AccountManagerImpl : public POA_Bank::AccountManager {
private:
Dictionary _accounts;
public:
virtual Bank::Account_ptr open(const char* name) {
// Lookup the account in the account dictionary.
Bank::Account_ptr account = (Bank::Account_ptr) _accounts.get (name);
if (account == Bank::Account:: _nil()) {
// Make up the account's balance, between 0 and 1000 dollars.
float balance = abs(rand()) % 100000 / 100.0;
// Create the account implementation, given the balance.
AccountImpl *accountServant = new AccountImpl (balance);
try {
// Activate it on the default POA which is root POA for this
servant
PortableServer::POA_var rootPOA = _default_POA();
CORBA: :Object_var obj =
root POA->servant _to_reference (accountServant);
account = Bank::Account::_narrow(obj);
} catch(const CORBA::Exception& e) {
cerr << "_narrow caught exception: " << e << endl;
}
// Print out the new account.
cout << "Created " << name << "'s account: " << account << endl;
// Save the account in the account dictionary.
_accounts.put (name, account);

7: Server basics

91

Creating and Activating the Servant

// Return the account.
return Bank::Account::_duplicate(account);

}i

Creating and Activating the Servant

The AccountManager implementation must be created and activated in the server
code. In this example, AccountManager is activated with activate_object_with_id,
which passes the object ID to the Active Object Map where it is recorded. The Active
Object Map is simply a table that maps IDs to servants. This approach ensures that this
object is always available when the POA is active and is called explicit object
activation.

// Create the servant

AccountManagerImpl managerServant;

// Decide on the ID for the servant

PortableServer::0bjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");

// Activate the servant with the ID on myPOA

myPOA->activate_object_with_id(managerId, &managerServant) ;

Activating the POA

The last step is to activate the POA Manager associated with your POA. By default,
POA Managers are created in a holding state. In this state, all requests are routed to a
holding queue and are not processed. To allow requests to be dispatched, the POA
Manager associated with the POA must be changed from the holding state to an active
state. A POA Manager is simply an object that controls the state of the POA (whether
requests are queued, processed, or discarded.) A POA Manager is associated with a
POA during POA creation. You can specify a POA Manager to use, or let the system
create a new one for you by passing a null value as the POA Manager name in
create_POA()).

// Activate the POA manager
rootPOA.the_POAManager () .activate();

Activating objects

In the preceding section, there was a brief mention of explicit object activation. There
are several ways in which objects can be activated:

- Explicit: All objects are activated upon server start-up via calls to the POA

- On-demand: The servant manager activates an object when it receives a request for
a servant not yet associated with an object ID

- Implicit: Objects are implicitly activated by the server in response to an operation by
the POA, not by any client request

- Default servant: The POA uses the default servant to process the client request

A complete discussion of object activation is in “Using POAs.” For now, just be aware
that there are several means for activating objects.

Waiting for client requests

Once your POA is set up, you can wait for client requests by using orb.run(). This
process will run until the server is terminated.

92 VisiBroker for C++ Developer’s Guide

Complete example

// Wait for incoming requests
orb.run();

Complete example

The samples below shows the complete example code.

// Server.C
tinclude "Bank_s.hh"
tinclude <math.h>
class Dictionary {
private:
struct Data {
const char* name;
void* value;
}i
unsigned _count;
Data* _data;
public:
Dictionary() {
_count = 0;
1
void put (const char* name, void* value) {
Data* oldData = _data;
_data = new Data[_count + 1];
for(unsigned 1 = 0; 1 < _count; 1++) {
_data[i] = oldpatal[il;
}
_data[_count].name = strdup(name);
_data[_count].value = value;
_count++;
}
void* get(const char* name) {
for(unsigned 1 = 0; 1 < _count; i++) {
if (!strcmp(name, _data[i].name)) {
return _data[i].value;
}
}
return 0;
1
}i
class AccountImpl : public POA_Bank::Account {
private:
float _balance;
public:
AccountImpl (float balance) {
_balance = balance;
}
virtual float balance() {
return _balance;

}

b
class AccountManagerImpl : public POA_Bank::AccountManager {
private:
Dictionary _accounts;
public:

virtual Bank::Account_ptr open(const char* name) {

7: Server basics 93

Complete example

// Lookup the account in the account dictionary.
Bank::Account_ptr account = (Bank::Account_ptr) _accounts.get (name);
if (account == Bank::Account:: _nil()) {
// Make up the account's balance, between 0 and 1000 dollars.
float balance = abs(rand()) % 100000 / 100.0;
// Create the account implementation, given the balance.
AccountImpl *accountServant = new AccountImpl (balance);
try {
// Activate it on the default POA which is root POA for this
servant
PortableServer::POA_var rootPOA = _default_POA();
CORBA: :Object_var obj =
rootPOA->servant _to_reference (accountServant) ;
account = Bank::Account::_narrow(obj);
} catch(const CORBA::Exception& e) {
cerr << "_narrow caught exception: " << e << endl;
}
// Print out the new account.
cout << "Created " << name << "'s account: " << account << endl;
// Save the account in the account dictionary.
_accounts.put (name, account);
}
// Return the account.
return Bank::Account::_duplicate(account);
}
}i
int main(int argc, char* const* argv) {
try {
// Initialize the ORB.
CORBA: :ORB_ptr orb = CORBA::0RB_init (argc, argv);
// get a reference to the root POA
CORBA: :0Object_var obj = orb->resolve_initial_references("RootPOA");
// narrow the object reference to a POA reference
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);
CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(
PortableServer: : PERSISTENT
)i
// Create myPOA with the right policies
PortableServer: :POAManager_var rootManager = rootPOA->the_POAManager () ;
PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",
rootManager, policies);
// Create the servant
AccountManagerImpl managerServant;
// Decide on the ID for the servant
PortableServer::0bjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");
// Activate the servant with the ID on myPOA
myPOA->activate_object_with_id(managerId, &managerServant);
// Activate the POA Manager
root POA->the_POAManager () ->activate();
cout << myPOA->servant_to_reference (&managerServant) << " is ready" <<

endl;
// Wait for incoming requests
orb->run();
} catch(const CORBA::Exception& e) {
cerr << e << endl;

94 VisiBroker for C++ Developer’s Guide

7: Server basics 95

96 VisiBroker for C++ Developer’s Guide

Using POAs

What is a Portable Object Adapter?

Portable Object Adapters replace Basic Object Adapters; they provide portability on the
server side.

A POA is the intermediary between the implementation of an object and the VisiBroker
ORB. In its role as an intermediary, a POA routes requests to servants and, as a result
may cause servants to run and create child POAs if necessary.

Servers can support multiple POAs. At least one POA must be present, which is called
the rootPOA. The rootPOA is created automatically for you. The set of POAs is
hierarchical; all POAs have the rootPOA as their ancestor.

Servant managers locate and assign servants to objects for the POA. When an
abstract object is assigned to a servant, it is called an active object and the servant is
said to incarnate the active object. Every POA has one Active Object Map which keeps
track of the object IDs of active objects and their associated active servants.

Note

Users familiar with versions of VisiBroker prior to 6.0 should note the change in
inheritance hierarchy to support CORBA Specification 3.0, which requires local
interfaces. For example, a ServantLocator implementation would now extend from
org.omg.PortableServer._ServantLocatorLocalBase instead of
org.omg.PortableServer.ServantLocatorPOA.

8: Using POAs 97

What is a Portable Object Adapter?

Figure 8.1

Overview of the POA

request ——

2t =5

POA Servant Manager

react PO,

Servant Manager -

-~

N\

Active Object Map
ObjgetiD f;’?
ObiectlD —1 |

ObjetiD

N

POA terminology

Following are definitions of some terms with which you will become more familiar as

you read through

this section.

Term

Description

Active Object Map

Table that maps active VisiBroker CORBA objects (through their object
IDs) to servants. There is one Active Object Map per POA.

adapter activator

Object that can create a POA on demand when a request is received for a
child POA that does not exist.

etherealize Remove the association between a servant and an abstract CORBA
object.

incarnate Associate a servant with an abstract CORBA object.

ObjectID Way to identify a CORBA object within the object adapter. An ObjectID

can be assigned by the object adapter or the application and is unique
only within the object adapter in which it was created. Servants are
associated with abstract objects through ObjectIDs.

persistent object

CORBA objects that live beyond the server process that created them.

POA manager

Object that controls the state of the POA; for example, whether the POA
is receiving or discarding incoming requests.

Policy Object that controls the behavior of the associated POA and the objects
the POA manages.

rootPOA Each VisiBroker ORB is created with one POA called the rootPOA. You
can create additional POAs (if necessary) from the rootPOA.

servant Any code that implements the methods of a CORBA object, but is not the

CORBA object itself.

servant manager

An object responsible for managing the association of objects with
servants, and for determining whether an object exists. More than one
servant manager can exist.

transient object

A CORBA object that lives only within the process that created it.

98 VisiBroker for C++ Developer’s Guide

POA policies

POA policies

Steps for creating and using POAs

Although the exact process can vary, following are the basic steps that occur during the
POA lifecycle are:

1 Define the POA's policies.

Create the POA.

Activate the POA through its POA manager.
Create and activate servants.

o B W N

Create and use servant managers.
6 Use adapter activators.

Depending on your needs, some of these steps may be optional. For example, you
only have to activate the POA if you want it to process requests.

Each POA has a set of policies that define its characteristics. When creating a new
POA, you can use the default set of policies or use different values to suit your
requirements. You can only set the policies when creating a POA; you can not change
the policies of an existing POA. POAs do not inherit the policies from their parent POA.

The following lists the POA policies, their values, and the default value (used by the
rootPOA).

- Thread policy The thread policy specifies the threading model to be used by the
POA.

The thread policy can have the following values:

- ORB_CTRL_MODEL: (Default) The POA is responsible for assigning requests to
threads. In a multi-threaded environment, concurrent requests may be delivered
using multiple threads. Note that VisiBroker uses multi-threading model.

- SINGLE_THREAD_MODEL: The POA processes requests sequentially. In a
multi-threaded environment, all calls made by the POA to servants and servant
managers are thread-safe.

- MAIN_THREAD_MODEL: Calls are processed on a distinguished “main” thread.
Requests for all main-thread POAs are processed sequentially. In a multi-
threaded environment, all calls processed by all POAs with this policy are thread-
safe. The application programmer designates the main thread by calling
ORB::run() or ORB::perform_work(). For more information about these methods,
see “Activating objects”.

- Lifespan policy The lifespan policy specifies the lifespan of the objects
implemented in the POA.

The lifespan policy can have the following values:

- TRANSIENT: (Default) A transient object activated by a POA cannot outlive the
POA that created it. Once the POA is deactivated, an OBJECT_NOT_EXIST
exception occurs if an attempt is made to use any object references generated by
the POA.

- PERSISTENT: A persistent object activated by a POA can outlive the process in
which it was first created. Requests invoked on a persistent object may result in
the implicit activation of a process, a POA and the servant that implements the
object.

- Object ID Uniqueness policy The Object ID Uniqueness policy allows a single
servant to be shared by many abstract objects.

The Object ID Uniqueness policy can have the following values:

8: Using POAs 99

POA policies

- UNIQUE_ID: (Default) Activated servants support only one Object ID.

- MULTIPLE_ID: Activated servants can have one or more Object IDs. The Object
ID must be determined within the method being invoked at run time.

- ID Assignment policy The ID assignment policy specifies whether object IDs are
generated by server applications or by the POA.

The ID Assignment policy can have the following values:
- USER_ID: Objects are assigned object IDs by the application.

- SYSTEM_ID: (Default) Objects are assigned object IDs by the POA. If the
PERSISTENT policy is also set, object IDs must be unique across all
instantiations of the same POA.

Typically, USER_ID is for persistent objects, and SYSTEM_ID is for transient

objects. If you want to use SYSTEM_ID for persistent objects, you can extract them

from the servant or object reference.
- Servant Retention policy The Servant Retention policy specifies whether the POA
retains active servants in the Active Object Map.

The Servant Retention policy can have the following values:

- RETAIN: (Default) The POA tracks object activations in the Active Object Map.
RETAIN is usually used with ServantActivators or explicit activation methods on
POA.

- NON_RETAIN: The POA does not retain active servants in the Active Object
Map. NON_RETAIN must be used with ServantLocators.

ServantActivators and ServantLocators are types of servant managers. For more
information on servant managers, see Using servants and servant managers.

- Request Processing policy The Request Processing policy specifies how requests
are processed by the POA.

- USE_ACTIVE_OBJECT_MAP_ONLY: (Default) If the Object ID is not listed in
the Active Object Map, an OBJECT_NOT _EXIST exception is returned. The
POA must also use the RETAIN policy with this value.

- USE_DEFAULT_SERVANT: If the Object ID is not listed in the Active Object Map
or the NON_RETAIN policy is set, the request is dispatched to the default servant.
If no default servant has been registered, an OBJ_ADAPTER exception is
returned. The POA must also use the MULTIPLE_ID policy with this value.

- USE_SERVANT_MANAGER: If the Object ID is not listed in the Active Object
Map or the NON_RETAIN policy is set, the servant manager is used to obtain a

servant.
- Implicit Activation policy The Implicit Activation policy specifies whether the POA
supports implicit activation of servants.
The Implicit Activation policy can have the following values:

- IMPLICIT_ACTIVATION: The POA supports implicit activation of servants. There
are two ways to activate the servants as follows:

- Converting them to an object reference with POA: :servant_to_reference() .

- Invoking _this() on the servant.

The POA must also use the SYSTEM_ID and RETAIN policies with this value.
- NO_IMPLICIT_ACTIVATION: (Default) The POA does not support implicit

activation of servants.

- Bind Support policy The Bind Support policy (a VisiBroker-specific policy) controls
the registration of POAs and active objects with the VisiBroker osagent. If you have
several thousands of objects, it is not feasible to register all of them with the osagent.

100 VisiBroker for C++ Developer’s Guide

Creating POAs

Instead, you can register the POA with the osagent. When a client request is made,
the POA name and the object ID is included in the bind request so that the osagent
can correctly forward the request.

The BindSupport policy can have the following values:

- BY_INSTANCE: All active objects are registered with the osagent. The POA must
also use the PERSISTENT and RETAIN policy with this value.

- BY_POA: (Default) Only POAs are registered with the osagent. The POA must
also use the PERSISTENT policy with this value.

- NONE: Neither POAs nor active objects are registered with the smart agent.

Note

The rootPOA is created with NONE activation policy.

Creating POAs

To implement objects using the POA, at least one POA object must exist on the server.
To ensure that a POA exists, a rootPOA is provided during the VisiBroker ORB
initialization. This POA uses the default POA policies described earlier in this section.

Once the rootPOA is obtained, you can create child POAs that implement a specific
server-side policy set.

POA naming convention

Each POA keeps track of its name and its full POA name (the full hierarchical path
name.) The hierarchy is indicated by a slash (/). For example, /2/B/C means that POA
C is a child of POA B, which in turn is a child of POA A. The first slash (see the
previous example) indicates the rootPOA. If the BindSupport:BY_POA policy is set on
POA C, then /A/B/C is registered with the osagent and the client binds with /A/B/C.

If your POA name contains escape characters or other delimiters, VisiBroker precedes
these characters with a double back slash (\\) when recording the names internally. For
example, if you have coded two POAs in the following hierarchy,

PortableServer::POA_var myPOAl = rootPOA->create_POA("A/B",
poa_manager,
policies);

PortableServer::POA_var myPOA2 = myPOAl->create_ POA("\t",
poa_manager,
policies);

then the client would bind using:

Bank: :AccountManager_var manager = Bank::AccountManager::_bind("/A\\/B/\t",
managerId);

Obtaining the rootPOA

The following code sample illustrates how a server application can obtain its rootPOA.

// Initialize the ORB.

CORBA: :Object_var obj = orb->resolve_initial_references("RootPOA");
// get a reference to the root POA

PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

Note
The resolve_initial_references method returns a value of type CORBA: :Object . You are

responsible for narrowing the returned object reference to the desired type, which is
PortableServer: :POA in the previous example.

8: Using POAs 101

Activating objects

Setting the POA policies

Policies are not inherited from the parent POA. If you want a POA to have a specific
characteristic, you must identify all the policies that are different from the default value.
For more information about POA policies, see “POA policies”.

CORBA::PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] = rootPOA-

>create_lifespan_policy (PortableServer: :PERSISTENT) ;

Creating and activating the POA

A POA is created using create_PO2 on its parent POA. You can name the POA anything
you like; however, the name must be unique with respect to all other POAs with the
same parent. If you attempt to give two POAs the same name, a CORBA exception
(AdapterAlreadyExists) is raised.

To create a new POA, use create_POA as follows:
POA create_POA(POA_Name, POAManager, PolicyList);

The POA manager controls the state of the POA (for example, whether it is processing
requests). If null is passed to create_POA as the POA manager name, a new POA
manager object is created and associated with the POA. Typically, you will want to
have the same POA manager for all POAs. For more information about the POA
manager, see “Managing POAs with the POA manager”.

POA managers (and POAs) are not automatically activated once created. Use
activate() to activate the POA manager associated with your POA. The following code
sample is an example of creating a POA.

CORBA: :PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] = rootPOA-
>create_lifespan_policy (PortableServer: :PERSISTENT) ;
// Create myPOA with the right policies
PortableServer: :POAManager_var rootManager = rootPOA->the_POAManager () ;
PortableServer::POA_var myPOA =
rootPOA->create_POA("bank_agent_poa", rootManager, policies);

Activating objects

When CORBA objects are associated with an active servant, if the POA's Servant
Retention Policy is RETAIN, the associated object ID is recorded in the Active Object
Map and the object is activated. Activation can occur in one of several ways:

Explicit activation The server application itself explicitly activates objects by
calling activate_object or activate_object_with_id.

On-demand activation [The server application instructs the POA to activate objects
through a user-supplied servant manager. The servant
manager must first be registered with the POA through
set_servant_manager.

Implicit activation IThe server activates objects solely by in response to
certain operations. If a servant is not active, there is nothing
a client can do to make it active (for example, requesting
for an inactive object does not make it active.)

Default servant The POA uses a single servant to implement all of its
objects.

102 VisiBroker for C++ Developer’s Guide

Activating objects

Activating objects explicitly

By setting TdAssignmentPolicy::SYSTEM_ID on a POA, objects can be explicitly activated
without having to specify an object ID. The server invokes activate_object on the POA
which activates, assigns and returns an object ID for the object. This type of activation
is most common for transient objects. No servant manager is required since neither the
object nor the servant is needed for very long.

Objects can also be explicitly activated using object IDs. A common scenario is during
server initialization where the user invokes activate_object_with_id to activate all the
objects managed by the server. No servant manager is required since all the objects
are already activated. If a request for a non-existent object is received, an
OBJECT_NOT_EXIST exception is raised. This has obvious negative effects if your server
manages large numbers of objects.

This code sample is an example of explicit activation using activate_object_with_id.

// Create the servant

AccountManagerImpl managerServant;

// Decide on the ID for the servant

PortableServer::0bjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");

// Activate the servant with the ID on myPOA

myPOA->activate_object_with_id(managerId, &managerServant) ;

// Activate the POA Manager

PortableServer: :POAManager_var rootManager = rootPOA->the_POAManager () ;

rootManger->activate();

Activating objects on demand

On-demand activation occurs when a client requests an object that does not have an
associated servant. After receiving the request, the POA searches the Active Object
Map for an active servant associated with the object ID. If none is found, the POA
invokes incarnate on the servant manager which passes the object ID value to the
servant manager. The servant manager can do one of three things:

- Find an appropriate servant which then performs the appropriate operation for the
request.

- Raise an 0BJECT_NOT_EXIST exception that is returned to the client.
- Forward the request to another object.

The POA policies determine any additional steps that may occur. For example, if
RequestProcessingPolicy: :USE_SERVANT MANAGER and ServantRetentionPolicy::RETAIN are
enabled, the Active Object Map is updated with the servant and object ID association.

An example of on-demand activation is shown below.

Activating objects implicitly

A servant can be implicitly activated by certain operations if the POA has been created
with TmplicitActivationPolicy::IMPLICIT_ACTIVATION, IdAssignmentPolicy::SYSTEM_ID,
and ServantRetentionPolicy: :RETAIN. Implicit activation can occur with:

- POA::servant_to_reference member function
- POA::servant_to_id member function
- _this() servant member function

If the POA has IdUniquenessPolicy::UNIQUE_ID set, implicit activation can occur when
any of the above operations are performed on an inactive servant.

If the POA has IdUniquenessPolicy: :MULTIPLE_ID set, servant_to_reference and
servant_to_id operations always perform implicit activation, even if the servant is
already active.

8: Using POAs 103

Activating objects

Activating with the default servant

Use the RequestProcessing: :USE_DEFAULT_SERVANT policy to have the POA invoke the
same servant no matter what the object ID is. This is useful when little data is
associated with each object.

This is an example of activating all objects with the same servants

int main(int argc, char* const* argv) {
try {

CORBA:

// Initialize the ORB.
CORBA: :ORB_ptr orb = CORBA::ORB_init (argc, argv);
PortableServer::Current_var cur = PortableServer::Current::_instance();
// get a reference to the root POA
CORBA: :Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);
:PolicyList policies;
policies.length(3);
// Create policies for our persistent POA
policies[(CORBA::ULong)0] =

root POA->create_lifespan_policy (PortableServer: :PERSISTENT) ;
policies[(CORBA::ULong)1l] =

root POA>create_request_processing_policy (PortableServer: :USE_DEFAULT_SERVANT) ;

policies[(CORBA::ULong)2] =
root POA->create_id_uniqueness_policy (PortableServer: :MULTIPLE_ID);
// Create myPOA with the right policies
PortableServer: :POAManager_var rootManager = rootPOA->the_POAManager () ;
PortableServer::POA_var myPOA =
rootPOA->create_POA("bank_default_servant_poa",

rootManager,policies);

// Set the default servant
AccountManagerImpl managerServant (cur);
myPOA->set_servant (&managerServant);
// Activate the POA Manager
rootManager->activate();

// Generate two references - one for checking and another for savings.

//Note that we are not creating any

// servants here and just manufacturing a reference which is not

// yet backed by a servant

PortableServer::0bjectId_var an_oid =
PortableServer::string_to_ObjectId("CheckingAccountManager");

CORBA: :Object_var cref = myPOA->create_reference_with_id(an_oid.in(),
"IDL:Bank/AccountManager:1.0");

an_oid = PortableServer::string_to_ObjectId("SavingsAccountManager");

CORBA: :0Object_var sref = myPOA->create_reference_with_id(an_oid.in(),
"IDL:Bank/AccountManager:1.0");

// Write out Checking reference

CORBA::String_var string_ref = orb->object_to_string(cref.in());

ofstream crefFile("cref.dat");

crefFile << string_ref << endl;

crefFile.close();

// Now write out the Savings reference

string_ref = orb->object_to_string(sref.in());

ofstream srefFile("sref.dat");

srefFile << string_ref << endl;

srefFile.close();

cout << "Bank Manager is ready" << endl;

// Wait for incoming requests

104 VisiBroker for C++ Developer’s Guide

Activating objects

orb->run() ;
}
catch(const CORBA::Exception& e) {
cerr << e << endl;

}

return 1;

Deactivating objects

A POA can remove a servant from its Active Object Map. This may occur, for example,
as a form of garbage-collection scheme. When the servant is removed from the map, it
is deactivated. You can deactivate an object using deactivate_object (). When an
object is deactivated, it doesn't mean this object is lost forever. It can always be
reactivated at a later time.

This is an example of deactivating an object:

// DeActivatorThread
class DeActivatorThread: public VISThread {
private :
PortableServer::0bjectId _oid;
PortableServer::POA_ptr _poa;
public :
virtual ~DeActivatorThread(){}
// Constructor
DeActivatorThread(const PortableServer::0bjectId& oid,
PortableServer::POA_ptr poa): _oid(oid), _poa(poa) {
// start the thread
run();
1
// implement begin() callback
void begin() {
// Sleep for 15 seconds
VISPortable::vsleep(15);
CORBA::String_var s = PortableServer::0bjectId_to_string (_oid);
// Deactivate Object
cout << "\nDeActivating the object with ID =" << s << endl;
if (_poa)
_poa->deactivate_object (_oid);
}
}i
// Servant Activator
class AccountManagerActivator : public PortableServer::ServantActivator {
public:
virtual PortableServer::Servant incarnate (const
PortableServer::0bjectId& oid,
PortableServer::POA_ptr poa) {
CORBA::String_var s = PortableServer::0bjectId_to_string (oid);

cout << "\nAccountManagerActivator.incarnate called with ID = " << s
<<

endl;

PortableServer::Servant servant;

if (VISPortable::vstricmp((char *)s, "SavingsAccountManager") == 0

// Create CheckingAccountManager Servant
servant = new SavingsAccountManagerImpl;
else if (VISPortable::vstricmp((char *)s,
"CheckingAccountManager")==0)
// Create CheckingAccountManager Servant
servant = new CheckingAccountManagerImpl;

8: Using POAs 105

Using servants and servant managers

else
throw CORBA::0BJECT_NOT_EXIST();
// Create a deactivator thread
new DeActivatorThread(oid, poa);
// return the servant
return servant;
}
virtual void etherealize (const PortableServer::0ObjectId& oid,
PortableServer::POA_ptr adapter,
PortableServer::Servant servant,
CORBA: :Boolean cleanup_in_progress,
CORBA: :Boolean remaining_activations) {
// If there are no remaining activations i.e. ObjectIds associated
// with the servant delete it.
CORBA::String_var s = PortableServer::0bjectId_to_string (oid);
cout << "\nAccountManagerActivator.etherealize called with ID = " << s
<< endl;
if (!remaining_activations)
delete servant;

}i

Using servants and servant managers

Servant managers perform two types of operations: find and return a servant, and
deactivate a servant. They allow the POA to activate objects when a request for an
inactive object is received. Servant managers are optional. For example, servant
managers are not needed when your server loads all objects at startup. Servant
managers may also inform clients to forward requests to another object using the
ForwardRequest exception.

A servant is an active instance of an implementation. The POA maintains a map of the
active servants and the object IDs of the servants. When a client request is received,
the POA first checks this map to see if the object ID (embedded in the client request)
has been recorded. If it exists, then the POA forwards the request to the servant. If the
object ID is not found in the map, the servant manager is asked to locate and activate
the appropriate servant. This is only an example scenario; the exact scenario depends
on what POA policies you have in place.

106 VisiBroker for C++ Developer’s Guide

Using servants and servant managers

Figure 8.2 Example servant manager function

Server
2. POA asks the servant manager o
Client makes a find an appropriate object
request, but the -~ e,
reqquirer] cbject i net Sorvant
present, - POA Manager
Aotive Obgect Map

ObiectiD

CbjectlD

ChectiD

3. Seneant Manager constructs the
appropriate servant and returns it o the
PO, which completes the request.

There are two types of servant managers: ServantActivator and ServantLocator. The
type of policy already in place determines which type of servant manager is used. For
more information on POA policy, see “POA policies”. Typically, a Servant Activator
activates persistent objects and a Servant Locator activates transient objects.

To use servant managers, RequestProcessingPolicy: :USE_SERVANT_MANAGER must be set
as well as the policy which defines the type of servant manager
(ServantRetentionPolicy: :RETAIN for Servant Activator or
ServantRetentionPolicy::NON_RETAIN for Servant Locator.)

ServantActivators

ServantActivators are used when ServantRetentionPolicy: :RETAIN and
RequestProcessingPolicy: :USE_SERVANT_MANAGER are set.

Servants activated by this type of servant manager are tracked in the Active Object
Map.

The following events occur while processing requests using ServantActivators:

1 A client request is received (client request contains POA name, the object ID, and a
few others.)

2 The POA first checks the active object map. If the object ID is found there, the
operation is passed to the servant, and the response is returned to the client.

3 Ifthe object ID is not found in the active object map, the POA invokes incarnate on a
servant manager. incarnate passes the object ID and the POA in which the object is
being activated.

4 The servant manager locates the appropriate servant.

5 The servant ID is entered into the active object map, and the response is returned to
the client.

Note

The etherealize and incarnate method implementations are user-supplied code.

At a later date, the servant can be deactivated. This may occur from several sources,
including the deactivate_object operation, deactivation of the POA manager
associated with that POA, and so forth. More information on deactivating objects is
described in “Deactivating objects”.

This code sample is an example of servant activator-type servant manager:

8: Using POAs 107

Using servants and servant managers

int main(int argc, char* const* argv) {
try {
// Initialize the ORB.
CORBA: :0RB_ptr orb = CORBA::0RB_init (argc, argv);
// get a reference to the root POA
CORBA: :Object_var obj = orb->resolve_initial_references("RootPOA");

PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

CORBA: :PolicyList policies;
policies.length(2);
policies[(CORBA::ULong)0] =
root POA->create_lifespan_policy (PortableServer: :PERSISTENT) ;
policies[(CORBA::ULong)1l] =
root POA->create_request_processing_policy (
PortableServer: :USE_SERVANT_MANAGER) ;
// Create myPOA with the right policies
PortableServer: :POAManager_var rootManager = rootPOA->the_POAManager () ;
PortableServer::POA_var myPOA =
oot POA->create_POA("bank_servant_activator_poa", rootManager,
policies);
// Create a Servant activator
AccountManagerActivator servant_activator_impl;
// Set the servant activator
myPOA->set _servant_manager (&servant_activator_impl);
// Generate two references - one for checking and another for savings.
// Note that we are not creating any
// servants here and just manufacturing a reference which is not
// yet backed by a servant
PortableServer::0bjectId_var an_oid =
PortableServer::string_to_ObjectId("CheckingAccountManager");
CORBA: :0Object_var cref = myPOA->create_reference_with_id(an_oid.in(),
"IDL:Bank/AccountManager:1.0");
an_oid = PortableServer::string_to_ObjectId("SavingsAccountManager");
CORBA: :0Object_var sref = myPOA->create_reference_with_id(an_oid.in(),
"IDL:Bank/AccountManager:1.0");
// Activate the POA Manager
rootManager->activate();

// Write out Checking reference
CORBA::String_var string ref = orb->object_to_string(cref.in());
ofstream crefFile("cref.dat");
crefFile << string_ref << endl;
crefFile.close();
// Now write out the Savings reference
string_ref = orb->object_to_string(sref.in());
ofstream srefFile("sref.dat");
srefFile << string_ref << endl;
srefFile.close();
// Waiting for incoming requests
cout << " BankManager Server is ready" << endl;
orb->run();

}

catch(const CORBA::Exception& e) {
cerr << e << endl;

}

return 1;

}
The servant manager for the servant activator example follows:

108 VisiBroker for C++ Developer’s Guide

Using servants and servant managers

// Servant Activator
class AccountManagerActivator : public PortableServer::ServantActivator {

public:
virtual PortableServer::Servant incarnate (const
PortableServer::ObjectId& oid,
PortableServer::POA_ptr poa) {
CORBA::String_var s = PortableServer::0bjectId_to_string (oid);
cout << "\nAccountManagerActivator.incarnate called with ID = " << s
<<
endl;
PortableServer::Servant servant;
if (VISPortable::vstricmp((char *)s, "SavingsAccountManager") == 0
// Create CheckingAccountManager Servant
servant = new SavingsAccountManagerImpl;
else if (VISPortable::vstricmp((char *)s, "CheckingAccountManager"

0)
// Create CheckingAccountManager Servant
servant = new CheckingAccountManagerImpl;
else
throw CORBA::0BJECT_NOT_EXIST();
// Create a deactivator thread
new DeActivatorThread(oid, poa);
// return the servant
return servant;
1
virtual void etherealize (const PortableServer::0ObjectId& oid,
PortableServer::POA_ptr adapter,
PortableServer::Servant servant,
CORBA: :Boolean cleanup_in_progress,
CORBA: :Boolean remaining_activations) {
// If there are no remaining activations i.e. ObjectIds associated
// with the servant delete it.
CORBA::String_var s = PortableServer::0bjectId_to_string (oid);
cout << "\nAccountManagerActivator.etherealize called with ID =
endl;
if (!remaining_activations)
delete servant;

"< 5 <<

¥

ServantLocators

In many situations, the POA's Active Object Map could become quite large and
consume memory. To reduce memory consumption, a POA can be created with
RequestProcessingPolicy: :USE_SERVANT MANAGER and
ServantRetentionPolicy::.NON_RETAIN, meaning that the servant-to-object association is
not stored in the active object map. Since no association is stored, ServantLocator
servant managers are invoked for each request.

The following events occur while processing requests using ServantLocators:
1 A client request, which contains the POA name and the object id, is received.

2 Since ServantRetentionPolicy::NON_RETAIN is used, the POA does not search the
active object map for the object ID.

3 The POA invokes preinvoke on a servant manager. preinvoke passes the object ID,
the POA in which the object is being activated, and a few other parameters.

4 The servant locator locates the appropriate servant.

8: Using POAs 109

Using servants and servant managers

5 The operation is performed on the servant and the response is returned to the client.

6 The POA invokes postinvoke on the servant manager.

Note

The preinvoke and postinvoke methods are user-supplied code.
This is some example server code illustrating servant locator-type servant managers:

int main(int argc, char* const* argv) {
try {
// Initialize the ORB.
CORBA: :0RB_ptr orb = CORBA::0RB_init (argc, argv);
// get a reference to the root POA
CORBA: :Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

CORBA: :PolicyList policies;
policies.length(3);
// Create a child POA with Persistence life span policy
// that uses servant manager with non-retain retention policy
// (no Active Object Map) causing the POA to use
// the servant locator.
policies|[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy (PortableServer: :PERSISTENT) ;
policies[(CORBA::ULong)1l] =
root POA->create_servant_retention_policy (PortableServer::
NON_RETAIN) ;
policies[(CORBA::ULong)2] =

r00t POA->create_request_processing_policy (PortableServer::
USE_SERVANT _MANAGER) ;

PortableServer: :POAManager_var rootManager = rootPOA->the_POAManager () ;

PortableServer::POA_var myPOA =
r00tPOA-

>create_POA ("bank_servant_locator_poa",rootManager,policies);

// Create the servant locator

AccountManagerLocator servant_locator_impl;

myPOA->set _servant_manager (&servant_locator_impl);

// Generate two references - one for checking and another for savings.

// Note that we are not creating any

// servants here and just manufacturing a reference which

// is not yet backed by a servant

PortableServer::0bjectId_var an_oid =
PortableServer::string_to_ObjectId("CheckingAccountManager") ;

CORBA: :Object_var cref = myPOA->create_reference_with_id(an_oid.in(),
"IDL:Bank/AccountManager:1.0");

an_oid = PortableServer::string_to_ObjectId("SavingsAccountManager");

CORBA: :Object_var sref = myPOA->create_reference_with_id(an_oid.in(),
"IDL:Bank/AccountManager:1.0");

// Activate the POA Manager

rootManager->activate();

// Write out Checking reference

CORBA::String_var string_ref = orb->object_to_string(cref.in());
ofstream crefFile("cref.dat");

crefFile << string_ref << endl;

crefFile.close();

110 VisiBroker for C++ Developer’s Guide

Using servants and servant managers

// Now write out the Savings reference
string_ref = orb->object_to_string(sref.in());
ofstream srefFile("sref.dat");
srefFile << string_ref << endl;
srefFile.close();
// Wait for incoming requests
cout << "Bank Manager is ready" << endl;
orb->run();

}

catch(const CORBA::Exception& e)
cerr << e << endl;

}

return 1;

}
The servant manager for this example follows:

// Servant Locator
class AccountManagerLocator : public PortableServer::ServantLocator ({
public:
AccountManagerLocator () {}
// preinvoke is very similar to ServantActivator's incarnate method but
gets
// called every time a request comes in unlike incarnate() which gets
called
// every time the POA does not find a servant in the active object map
virtual PortableServer::Servant preinvoke (const
PortableServer::0bjectId& oid,
PortableServer::POA_ptr adapter,
const char* operation,
PortableServer::ServantLocator::Cookie& the_cookie) {
CORBA::String_var s = PortableServer::0bjectId_to_string (oid);

cout << "\nAccountManagerLocator.preinvoke called with ID = " << s <<
endl;
PortableServer::Servant servant;
if (VISPortable::vstricmp((char *)s, "SavingsAccountManager") == 0
)
// Create CheckingAccountManager Servant
servant = new SavingsAccountManagerImpl;
else if (VISPortable::vstricmp((char *)s, "CheckingAccountManager"
)
==0)

// Create CheckingAccountManager Servant
servant = new CheckingAccountManagerImpl;
else
throw CORBA::0BJECT_NOT_EXIST();
// Note also that we do not spawn of a thread to explicitly deactivate
an object
// unlike a servant activator , this is because the POA itself calls
post invoke
// after the request is complete. In the case of a servant activator
the POA calls
// etherealize() only if the object is deactivated by calling
// poa->de_activateobject or the POA itself is destroyed.
// return the servant
return servant;
1
virtual void postinvoke (const PortableServer::0bjectId& oid,
PortableServer::POA_ptr adapter,
const char* operation,
PortableServer::ServantLocator::Cookie the_cookie,

8: Using POAs 111

Managing POAs with the POA manager

PortableServer::Servant the_servant) {
CORBA::String_var s = PortableServer::0bjectId_to_string (oid);
cout << "\nAccountManagerLocator.postinvoke called with ID = " << s <<
endl;
delete the_servant;
}
}i

Managing POAs with the POA manager

A POA manager controls the state of the POA (whether requests are queued or
discarded), and deactivates the POA. Each POA is associated with a POA manager
object. A POA manager can control one or several POAs.

A POA manager is associated with a POA when the POA is created. POA Managers
can be created implicitly, by passing a nil POAManager reference to the create_POA
operation
PortableServer: :POAManager_var rootManager = rootPOA->the_POAManager () ;
PortableServer::POA_var myPOA = rootPOA->create_POA (
"bank_servant_locator_poa", rootManager, policies);
PortableServer::POA_var myPOA = rootPOA.create_POA("bank_servant_locator_poa",
null, policies);

They can also be created explicitly using a POA Manager Factory
PortableServer: :POAManagerFactory_var poaMgrFactory = rootPOA->
the_POAManagerFactory () ;
PortableServer: :POAManager_var poalgr = poaMgrFactory->
create_POAManager ("MyPOAManager", null);
PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa", poalMgr,
policies);
Explicit creation of a POA Manager permits application control of the POA Manager's
identity, whereas implicit creation results in creation of a unique identity by the ORB

run-time. There is a single instance of POA Manager Factory in an ORB and is created
with root POA. It can also be used to get the list of all POA Managers in an ORB.

Getting the current state

To get the current state of the POA manager, use

enum State{HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

Holding state

By default, when a POA manager is created, it is in the holding state. When the POA
manager is in the holding state, the POA queues all incoming requests.

Requests that require an adapter activator are also queued when the POA manager is
in the holding state.

To change the state of a POA manager to holding, use

void hold_requests (in boolean wait_for_completion)
raises (AdapterInactive);

wait_for_completion is Boolean. If FALSE, this operation returns immediately after
changing the state to holding. If TRUE, this operation returns only when all requests
started prior to the state change have completed or when the POA manager is
changed to a state other than holding. AdapterInactive is the exception raised if the
POA manager was in the inactive state prior to calling this operation.

112 VisiBroker for C++ Developer’s Guide

Managing POAs with the POA manager

Note

POA managers in the inactive state cannot change to the holding state.

Any requests that have been queued but not yet started will continue to be queued
during the holding state.

Active state

When the POA manager is in the active state, its associated POAs process requests.
To change the POA manager to the active state, use

void activate()
raises (AdapterInactive);

AdapterInactive is the exception raised if the POA manager was in the inactive state
prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the active state.

Discarding state

When the POA manager is in the discarding state, its associated POAs discard all
requests that have not yet started. In addition, the adapter activators registered with
the associated POAs are not called. This state is useful when the POA is receiving too
many requests. You need to notify the client that their request has been discarded and
to resend their request. There is no inherent behavior for determining if and when the
POA is receiving too many requests. It is up to you to set-up thread monitoring if so
desired.

To change the POA manager to the discarding state, use

void discard_requests(in boolean wait_for_completion)
raises (AdapterInactive);

The wait_for_completion option is Boolean. If FALSE, this operation returns immediately
after changing the state to holding. If TRUE, this operation returns only when all requests
started prior to the state change have completed or when the POA manager is
changed to a state other than discarding. AdapterInactive is the exception raised if the
POA manager was in the inactive state prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the discarding state.

Inactive state

When the POA manager is in the inactive state, its associated POAs reject incoming
requests. This state is used when the associated POAs are to be shut down.

Note

POA managers in the inactive state cannot change to any other state.
To change the POA manager to the inactive state, use

void deactivate (in boolean etherealize_objects, in boolean
walt_for_completion)
raises (AdapterInactive);

After the state changes, if etherealize_objects is TRUE, then all associated POAs that
have Servant RetentionPolicy::RETAIN and

RequestProcessingPolicy: :USE_SERVANT MANAGER set call etherealize on the servant
manager for all active objects. If etherealize_objects is FALSE, then etherealize is not
called. The wait_for_completion option is Boolean. If FALSE, this operation returns
immediately after changing the state to inactive. If TRUE, this operation returns only

8: Using POAs 113

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

when all requests started prior to the state change have completed or etherealize has
been called on all associated POAs (that have ServantRetentionPolicy::RETAIN and
RequestProcessingPolicy: :USE_SERVANT MANAGER). AdapterInactive is the exception
raised if the POA manager was in the inactive state prior to calling this operation.

Listening and Dispatching: Server Engines, Server Connection
Managers, and their properties

Note

Policies that cover listener and dispatcher features previously supported by the BOA
are not supported by POAs. In order to provide these features, a VisiBroker-specific
policy (ServerEnginePolicy) can be used.

Visibroker provides a very flexible mechanism to define and tune endpoints for
Visibroker servers. An endpoint in this context is a destination for a communication
channel for clients to communicate with servers. A Server Engine is a virtual
abstraction for connection endpoint provided as a configurable set of properties.

A ServerEngine abstraction can provide control in terms of:
- types of connection resources

- connection management
- threading model and request dispatching

Server Engine and POAs

A POA on Visibroker can have many-to-many relationship with a ServerEngine. A POA
can be associated with many ServerEngines and vice-versa. The manifestation of this
fact is that a POA, and hence the CORBA objects on the POA, can support multiple
communication channels.

Figure 8.3 Server engine overview

Server
2, POM ashks the servant manager to
Client makes a find an appropriate object
request, but the ~ ~,
required object & net Sorvant
present. - PO Manager
Aotive Obgect Map

CibjectlD

CrbjectlD

ObjectlD

3. Servant Manager constructs the
appropriate sarvant and returns it to the
PO, whizh completes the request.

The simplest case is where POAs have their own unique single server engine. Here,
requests for different POAs arrive on different ports. A POA can also have multiple
server engines. In this scenario, a single POA supports requests coming from multiple
input ports.

Notice that POAs can share server engines. When server engines are shared, the
POAs listen to the same port. Even though the requests for (multiple) POAs arrive at
the same port, they are dispatched correctly because of the POA name embedded in
the request. This scenario occurs, for example, when you use a default server engine
and create multiple POAs (without specifying a new server engine during the POA
creation).

114 VisiBroker for C++ Developer’s Guide

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Server Engines are identified by a name and is defined the first time its name is
introduced. By default Visibroker defines three Server Engine names. They are:

- iiop_tp: TCP transport with thread pool dispatcher

- iiop_ts: TCP transport with thread per session dispatcher

- iiop_tm: TCP transport with main thread dispatcher
Additionally, VisiBroker for C++ defines following Server Engines:
- liop_tp: Local ICP transport with thread pool dispatcher

- liop_ts: Local ICP transport with thread per session dispatcher
- liop_tm: Local ICP transport with main thread dispatcher

Two more Server Engines, boa_tp and boa_ts, are available for BOA backward
compatibility.

Associating a POA with a Server Engine

The default Server Engine associated with POA can be changed by using the property
vbroker.se.default. For example, setting

vbroker.se.default=MySE

defines a new server engine with the name MySEt. Root POA and all child POAs created
will be associated with this Server Engine by default.

A POA can also be associated with a particular ServerEngine explicitly by using the
SERVER_ENGINE_POLICY_TYPE POA policy. For example:

// create ServerEngine policy value
CORBA: :Any_var se(new CORBA::Any);
CORBA: :StringSequence_var engines =

new CORBA::StringSequence (1UL);
engines->length(1UL);
engines[(CORBA: :ULong)0] = CORBA::string_dup("MySE");
se <<= engines;

// create POA policies

CORBA: :PolicyList_var policies =
new CORBA::PolicyList (2UL);

policies->length(2UL);

policies[(CORBA::ULong)0] =
orb->create_policy(
PortableServerExt: : SERVER_ENGINE_POLICY_TYPE,
se);

policies[(CORBA::ULong)l] =
oot POA->create_lifespan_policy(
PortableServer: :PERSISTENT) ;

// create POA with policies

PortableServer::POA_var myPOA = rootPOA->create_POA (
"bank_se_policy_poa", manager,
policies);

The POA has an IOR template, profiles for which, are obtained from the Server
Engines associated with it.

If you don't specify a server engine policy, the POA assumes a server engine name of
iiop_tp and uses the following default values:

vbroker.se.iiop_tp.host=null
vbroker.se.iiop_tp.proxyHost=null
vbroker.se.iiop_tp.scms=iiop_tp
vbroker.se.liop_tp.host=null
vbroker.se.liop_tp.proxyHost=null
vbroker.se.liop_tp.scms=1liop_tp

8: Using POAs 115

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

To change the default server engine policy, enter its name using the
vbroker.se.default property and define the values for all the components of the new
server engine. For example:

vbroker.se.default=abc,def
vbroker.se.abc.host=cob
vbroker.se.abc.proxyHost=null
vbroker.se.abc.scms=cobscml, cobscm?
vbroker.se.def.host=gob
vbroker.se.def.proxyHost=null
vbroker.se.def.scms=gobscml

Defining Hosts for Endpoints for the Server Engine
Since Server Engines help define a connection's endpoints, the following properties
are provided to specify their hosts:

- vbroker.se.<se-name>.host=<host-URL>: vbroker.se.mySE.host=host .borland.com, for
example.

- vbroker.se.<se-name>.proxyHost=<proxy-host-URL-or-IP-address>
vbroker.se.mySE.proxyHost=proxy.borland.com, for example.

The proxyHost property can also take an IP address as its value. Doing so replaces the
default hostname in the IOR with this IP address.

The endpoint abstraction of ServerEngine is further fine-grained in terms of
configurable set of entities referred to as Server Connection Managers (SCM). A
ServerEngine can have multiple SCMs. SCMs are not shareable between
ServerEngines. SCMs are also identified using a name and are defined for a
ServerEngine using:

vbroker.se.<se-name>.scms=<SCM-name> [, <SCM-name>, . ..]

Note

the iiop_tp and liop_tp Server Engines have SCMs named iiop_tp and liop_tp created
for them, respectively.

Server Connection Managers

The Server Connection Manager defines the configurable components of an endpoint.
Its responsibilities are connection resource management, listening for requests, and
dispatching requests to its associated POA. Three logical entities, defined through
property groups, are provided by the SCM to fulfill these responsibilities:

- Manager
- Listener
- Dispatcher

Each SCM has one Manager, Listener, and Dispatcher. All three, when defined, form a
single endpoint definition allowing clients to contact servers.

Manager

Manager is a set of properties defining the configurable portions of a connection
resource. VisiBroker provides a manager of type Socket.

Additionally, VisiBroker for C++ defines another manager of type Local. The Local type
corresponds to Local IPC connections, while the Socket manager type expects TCP
connections. To select either Local or Socket, set the following property:

vbroker.se.<se-name>. SCm.<scm-name>.manager . type=Local | Socket

You can specify the maximum number of concurrent connections acceptable to the
server endpoint using the connectionMax property:

vbroker.se.<se-name>.sCm.<scm-name>.manager . connectionMax=<integer>

116 VisiBroker for C++ Developer’s Guide

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Setting connectionlax to 0 (zero) indicates that there is no restriction on the number of
connections, which is the default setting.

You specify the maximum number of idle seconds using the connectionMaxIdle
property:

vbroker.se.<se-name>.scm.<scm-name>.manager.connectionMaxIdle=<seconds>

Setting connectionMaxIdle to 0 (zero) indicates that there is no timeout, which is the
default setting.

Garbage collection time can also be specified for the manager to garbage-collect idled
connections. (Connections can idle after the connectionMaxIdle time until they are
garbage-collected.) You can use the garbageCollectTimer property to specify the period
of garbage collection in seconds:

vbroker.se.<se-name>.scm.<scm-name>.manager.garbageCollectTimer=<seconds>

A value of 0 (zero) means that the connection will never be garbage collected.

Listener

The Listener is the SCM component that determines how and where the SCM listens
for messages. Like the Manager, the Listener is also a set of properties. VisiBroker
defines a IIOP listener for the TCP connections.

Additionally, VisiBroker for C++ defines a LIOP listerner for local IPC connections. You
specify which type of listener you want to use with the property:

vbroker.se.<se-name>.scm.<scm-name>.listener.type=LIOP|IIOP

Since listeners are close to the actual underlying transport mechanism, their properties
are not portable across listener types. Each listener type has its own set of properties,
defined below.

LIOP listener properties

For systems using shared memory Local IPC, the shnSize property is used to control
the shared memory size, in bytes:

vbroker.se.<se-name>.scm.<scm-name>. listener.shmSize=<bytes>

If the shared memory-mapped file needs to be hidden in a directory accessible only by
the user, the following boolean property needs to be set:

vbroker.se.<se-name>.scm.<scm-name>. listener.userConstrained=true|false
IIOP listener properties

IIOP listners need to define a port and (if desired) a proxy port in conjunction with their
hosts. These are set using the port and proxyPort properties, as follows:

vbroker.se.<se-name>.scm.<scm-name>. listener.port=<port>
vbroker.se.<se-name>.scm.<scm-name>. listener.proxyPort=<proxy-port>

Note

If you do not set the port property (or set it to 0 [zero]), a random port will be selected. A
0 value for the proxyPort property means that the IOR will contain the actual port
(defined by the 1istener.port property or selected by the system randomly). If it is not
required to advertise the actual port, set the proxy port to a non-zero (positive) value.

Setting properties to define standard TCP socket options is also supported for send|
receive buffer sizes, socket lingering time, and whether or not to keep inactive sockets
alive. The following properties are provided for these mechanisms:

vbroker.se.<se-name>.scm.<scm-name>.listener.rcvBuffSize=<bytes>
vbroker.se.<se-name>.scm.<scm-name>. listener.sendBuffSize=<bytes>
vbroker.se.<se-name>.scm.<scm-name>. listener.socketLinger=<seconds>
vbroker.se.<se-name>.scm.<scm-name>.connection.keepAlive=true|false

If for any reason you wish to simply use your system's defaults for the TCP socket
properties, simply set the appropriate property to a value of 0 (zero).

8: Using POAs 117

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Dispatcher

The Dispatcher defines a set of properties that determine how the SCM dispatches
requests to threads. Three types of dispatchers are provided: ThreadPool,
ThreadSession, and MainThread. You set the dispatcher type with the type property:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher. type=ThreadPool | ThreadSession]|
MainThread

Further control is provided through the SCM for the ThreadPool dispatcher type. The
ThreadPool defines the minimum and maximum number of threads that can be created
in the thread pool, as well as the maximum time in seconds after which an idled thread
is destroyed. These values are controlled with the following properties:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher. threadMin=<integer>
vbroker.se.<se-name>.scm.<scm-name>.dispatcher. threaddax=<integer>
vbroker.se.<se-name>.scm.<scm-name>.dispatcher.threadMaxIdle=<seconds>

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is said to be “hot”
when the GIOP connection being served is potentially readable, either upon creation of
the connection or upon the arrival of a request. After the cooling time (in seconds), the
thread can be returned to the thread pool.

The following property is used to set the cooling time:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher.coolingTime=<seconds>

When to use these properties

There are many times where you need to change some of the server engine properties.
The method for changing these properties depends on what you need. For example,
suppose you want to change the port number. You could accomplish this by:

- Changing the default 1istener.port property
- Creating a new server engine

Changing the default 1istener.port property is the simplest method, but this affects all
POAs that use the default server engine. This may or may not be what you want.

If you want to change the port number on a specific POA, then you'll have to create a
new server engine, define the properties for this new server engine, and then reference
the new server engine when creating the POA. The previous sections show how to
update the server engine properties. The following code snippet shows how to define
properties of a server engine and create a POA with a user-defined server engine
policy:
// static initialization
AccountRegistry AccountManagerImpl::_accounts;
int main(int argc, char* const* argv)
{
try {
// Initialize the orb
CORBA: :ORB_var orb = CORBA::0RB_init (argc, argv);
// Get the property manager; notice the value returned is not placed into a
// 'var' type.
VISPropertyManager_ptr pm = orb->getPropertyManager () ;
pm->addProperty ("vbroker.se.mySe.host", "");
pm->addProperty ("vbroker.se.mySe.proxyHost", "");
pm->addProperty ("vbroker.se.mySe.scms", "scmlist");
pm->addProperty ("vbroker.se.mySe.scm.scmlist.manager.type", "Socket");
pm->addProperty ("vbroker.se.mySe.scm.scmlist.manager.connectionMax", 100UL);
pm->addProperty ("vbroker.se.mySe.scm.scmlist.manager.connectionMaxIdle",
300UL) ;
pm->addProperty ("vbroker.se.mySe.scm.scmlist.listener.type", "IIOP");
pm->addProperty ("vbroker.se.mySe.scm.scmlist.listener.port", 55000UL);
pm->addProperty ("vbroker.se.mySe.scm.scmlist.listener.proxyPort", 0UL);
pm->addProperty ("vbroker.se.mySe.scm.scmlist.dispatcher.type", "ThreadPool");

118 VisiBroker for C++ Developer’s Guide

Adapter activators

pm->addProperty ("vbroker.se.mySe.scm.scmlist.dispatcher.threadMax", 100UL);

pm->addProperty ("vbroker.se.mySe.scm.scmlist.dispatcher.threadMin", 5UL);

pm->addProperty ("vbroker.se.mySe.scm.scmlist.dispatcher.threadMaxIdle",
300UL) ;

// Get a reference to the root POA

CORBA: :Object_var obj = orb->resolve_initial_references("RootPOA");

PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

// Create the policies

CORBA: :Any_var seAny (new CORBA::Any);

// The SERVER_ENGINE_POLICY_TYPE requires a sequence, even if

// only one engine is being specified.

CORBA: :StringSequence_var engines = new CORBA::StringSequence (1UL);

engines->length(1UL);

engines[0UL] = CORBA::string_dup("mySe");

seAny <<= engines;

CORBA: :PolicyList_var policies = new CORBA::PolicyList (2UL);

policies->length(2UL);

policies[0UL] = orb->create_policy(
PortableServerExt: : SERVER_ENGINE_POLICY_TYPE, seAny);

policies[1Ul] = rootPOA->create_lifespan_policy(PortableServer::PERSISTENT) ;

// Create our POA with our policies

PortableServer: :POAManager_var manager = rootPOA->the_POAManager () ;

PortableServer::POA_var myPOA = rootPOA->create_POA (
"bank_se_policy_poa", manager, policies);

// Create the servant
AccountManagerImpl* managerServant = new AccountManagerImpl ();
// Activate the servant
PortableServer::0bjectId_var oid =
PortableServer::string_to_ObjectId("BankManager");
myPOA->activate_object_with_id(oid ,managerServant);
// Obtain the reference
CORBA: :0Object_var ref = myPOA->servant_to_reference(managerServant) ;
CORBA::String_var string_ref = orb->object_to_string(ref.in());
ofstream refFile("ref.dat");
refFile << string_ref << endl;
refFile.close();
// Activate the POA manager
manager->activate();
// Wait for Incoming Requests
cout << "AccountManager Server ready" << endl;
orb->run();
}
catch(const CORBA::Exception& e) {
cerr << e << endl;
return (1);
1
return (0);

}

Adapter activators

Adapter activators are associated with POAs and provide the ability to create child
POAs on-demand. This can be done during the find_POA operation, or when a request
is received that names a specific child POA.

An adapter activator supplies a POA with the ability to create child POAs on demand,
as a side-effect of receiving a request that names the child POA (or one of its children),
or when find_PO2 is called with an activate parameter value of TRUE. An application
server that creates all its needed POAs at the beginning of execution does not need to

8: Using POAs 119

Processing requests

use or provide an adapter activator; it is necessary only for the case in which POAs
need to be created during request processing.

While a request from the POA to an adapter activator is in progress, all requests to
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new POA
before requests are delivered to that POA.

For an example on using adapter activators, see the POA adaptor_activator example
included with the product.

Processing requests

Requests contain the Object ID of the target object and the POA that created the target
object reference. When a client sends a request, the VisiBroker ORB first locates the
appropriate server, or starts the server if needed. It then locates the appropriate POA
within that server.

Once the VisiBroker ORB has located the appropriate POA, it delivers the request to

that POA. How the request is processed at that point depends on the policies of the

POA and the object's activation state. For information about object activation states,

see “Activating objects”.

- If the POA has ServantRetentionPolicy::RETAIN , the POA looks at the Active Object
Map to locate a servant associated with the Object ID from the request. If a servant
exists, the POA invokes the appropriate method on the servant.

- If the POA has ServantRetentionPolicy: :NON_RETAIN or has
ServantRetentionPolicy::RETAIN but did not find the appropriate servant, the following
may take place:

- If the POA has RequestProcessingPolicy: :USE_DEFAULT_SERVANT , the POA invokes
the appropriate method on the default servant.

- If the POA has RequestProcessingPolicy: :USE_SERVANT MANAGER , the POA invokes
incarnate or preinvoke on the servant manager.

- If the POA has RequestProcessingPolicy: :USE_OBJECT_MAP_ONLY , an exception is
raised.

If a servant manager has been invoked but can not incarnate the object, the servant
manager can raise a ForwardRequest exception.

120 VisiBroker for C++ Developer’s Guide

Managing threads and connections

This section discusses the use of multiple threads in client programs and object
implementations, and will help you understand the VisiBroker thread and connection
model.

Using threads

A thread, or a single sequential flow of control within a process, is also called a
lightweight process that reduces overhead by sharing fundamental parts with other
threads. Threads are lightweight so that there can be many of them present within a
process.

Using multiple threads provides concurrency within an application and improves
performance. Applications can be structured efficiently with threads servicing several
independent computations simultaneously. For example, a database system may have
many user interactions in progress while at the same time performing several file and
network operations.

Although it is possible to write the software as one thread of control moving
asynchronously from request to request, the code may be simplified by writing each
request as a separate sequence, and letting the underlying system handle the
synchronous interleaving of the different operations.

Multiple threads are useful when:

- There are groups of lengthy operations that do not necessarily depend on other
processing (like painting a window, printing a document, responding to a mouse-
click, calculating a spreadsheet column, signal handling).

- There will be few locks on data (the amount of shared data is identifiable and small).

- The task can be broken into various responsibilities. For example, one thread can
handle the signals and another thread can handle the user interface.

Thread and connection management occurs within the scope of an entity known as a
server engine. Several default server engines are created automatically by VisiBroker,
which include thread pool engines for IIOP, for LIOP, and so forth. Additional server
engines can be used and created in a VisiBroker server by applications. See the
example in:

<install_dir>/examples/Vbroker/poa/server_engine_policy/Server.C

Server engines are created, configured, and used independently. The creation and
configuration of one server engine does not affect other server engines in the same

9: Managing threads and connections 121

Listener thread, dispatcher thread, and worker threads

server. Usually, each server engine has one transport end point, called the listen point/
socket.

The relationship between server engines and POAs is many-to-many. Each server
engine can be used by multiple POAs, and each POA may also use multiple server
engines.

Server engines can consist of multiple Server Connection Managers (SCMs). An SCM
is composed of managers, listeners, and dispatchers. The properties of managers,
listeners and dispatchers can be configured to determine how the SCM functions.
These properties are discussed in “Setting connection management properties”.

Listener thread, dispatcher thread, and worker threads

Each server engine has a listener and a dispatcher thread. The listener thread is
responsible for:

- Accepting new connections. Therefore, it listens on the listen end-point.
- Monitoring readability on idle GIOP connections.

- Updating the monitoring list.

- ldle connection garbage collection based on property settings.

The dispatcher determines which threads to send requests.

Each server engine uses a certain number of worker threads to receive and process
requests. Different requests may handled by different worker threads. For a given
request, the request reading, processing (include server side interceptor intercepting),
and replying are all handled by the same thread. The number of worker threads used
by a server engine depends on:

- The thread model.
- The number of concurrent requests or connections.

- The property settings.

Thread policies

The two major thread models supported by VisiBroker are the thread pool (also known
as thread-per-request, or TPool) and thread-per-session (also known as thread-per-
connection, or TSession). Single-thread and main-thread models are not discussed in
this document. The thread pool and thread-per-session models differ in these
fundamental ways:

- Situation in which they are created
- How simultaneous requests from the same client are handled
- When and how threads are released

The default thread policy is the thread pool. For information about setting thread-per-
session or changing properties for the thread pool model, see “Setting dispatch policies
and properties”.

Thread pool policy

When your server uses the thread pool policy, it defines the maximum number of
threads that can be allocated to handle client requests. A worker thread is assigned for
each client request, but only for the duration of that particular request. When a request
is completed, the worker thread that was assigned to that request is placed into a pool
of available threads so that it may be reassigned to process future requests from any of
the clients.

Using this model, threads are allocated based on the amount of request traffic to the
server object. This means that a highly active client that makes many requests to the

122 VisiBroker for C++ Developer’s Guide

Thread pool policy

server at the same time will be serviced by multiple threads, ensuring that the requests
are quickly executed, while less active clients can share a single thread, and still have
their requests immediately serviced. Additionally, the overhead associated with the
creation and destruction of worker threads is reduced, because threads are reused
rather than destroyed, and can be assigned to multiple new connections.

VisiBroker conserves system resources by dynamically allocating the number of
threads in the thread pool based on the number of concurrent client requests by
default. If the client becomes very active, new threads are allocated to meet its needs.
If threads remain inactive, VisiBroker releases them, only keeping enough threads to
meet current client demand. This enables the optimal number of threads to be active in
the server at all times.

The size of the thread pool grows based upon server activity and is fully configurable,
either before or during execution, to meet the needs of specific distributed systems.
With the thread pool model, you can configure the following:

- Maximum and minimum number of threads
- Maximum idle time

Each time a client request is received, an attempt is made to assign a thread from the
thread pool to process the request. If this is the first client request and the pool is
empty, a thread will be created. Likewise, if all threads are busy, a new thread will be
created to service the request.

A server can define a maximum number of threads that can be allocated to handle
client requests. If there are no threads available in the pool and the maximum number
of threads have already been created, the request will block until a thread currently in
use has been released back into the pool.

Thread pool is the default thread policy. You do not have to set up anything to define
this environment. If you want to set properties for the thread pool, see “Setting dispatch
policies and properties”.

Figure 9.1 Pool of threads is available

I/— ch"-p:\-:{
Implerienitation:

R
anplcation #25

The figure above shows the object implementation using the thread pool policy. As the
name implies, there is an available pool of worker threads in this policy.

9: Managing threads and connections 123

Thread pool policy

Figure9.2 Client application #1 sends a request

-

e) W
g)} Connesion thread 2§
gapplmmmn #15 : § MEEEEES - :

Worker ¢
thread 3§ -

In the above figure, Client application #1 establishes a connection to the Object
Implementation and a thread is created to handle requests. In the thread pool, there is
one connection per client and one thread per connection. When a request comes in, a
worker thread receives the request; that worker thread is no longer in the pool.

A worker thread is removed from the thread pool and is always listening for requests.
When a request comes in, that worker thread reads in the request and dispatches the
request to the appropriate object implementation. Prior to dispatching the request, the
worker thread wakes up one other worker thread which then listens for the next

request.

124 VisiBroker for C++ Developer’s Guide

Figure 9.3 Client application #2 sends a request

Clist

application #1%

it
application #24%

ety

-

Thread pool policy

Chiect
Irplermata tiod

Warker tiesd 2
liztening for the
neizt mouast
fmom

Application 1§

Equesty

"

= \Worker
thimad 15

Worker
thmead 24

Workertiesd 4
liztering for e
rezt mguest

fmorn
Application 2%

As the above figure shows, when Client application #2 establishes its own connection
and sends a request, a second worker thread is created. Worker thread #3 is now

listening for incoming requests.

9: Managing threads and connections

125

Thread-per-session policy

Figure 9.4 Client application #1 sends a second request

Cliarit
application #1%

-

it
licath
application #24% —

The above figure shows that when a second request comes in from Client application
#1, it uses worker thread #4. Worker thread #5 is spawned to listen for new requests. If
more requests came in from Client application #1, more threads would be assigned to
handle them, each spawned after the listening thread receives a request. As worker
threads complete their tasks, they are returned to the pool and become available to

handle requests from any client.

Thread-per-session policy

With the thread-per-session (TSession) policy, threading is driven by connections
between the client and server processes. When your server selects the thread-per-
session policy, a new thread is allocated each time a new client connects to a server. A
thread is assigned to handle all the requests received from a particular client. Because
of this, thread-per-session is also referred to as thread-per-connection. When the client
disconnects from the server, the thread is destroyed. You may limit the maximum
number of threads that can be allocated for client connections by setting the

vbroker.se.iiop_ts.scm.iiop_ts.manager.connectionMax property.

126 VisiBroker for C++ Developer’s Guide

Connection management

Figure 9.5 Object implementation using the thread-per-session policy

Chjact
Implerneritationd
comrectiond . — -
-~ L
Clent Theadg
application #14
— -
C:liet
application #2¢ E -
Thirsad

The above figure shows the use of the thread-per-session policy. The Client application
#1 establishes a connection with the object implementation. A separate connection
exists between Client application #2 and the object implementation. When a request
comes in to the object implementation from Client application #1, a worker thread
handles the request. When a request from Client application #2 comes in, a different
worker thread is assigned to handle this request.

Figure 9.6 Second request comes in from the same client

Object
Imnpl ernantation

connection -
. —

-~

requesti

Client
application *1

request?

connection
_—— =

request

Client
application® 2

In the above figure, a second request has come in to the object implementation from
Client application #1. The same thread that handles request 1 will handle request 2.
The thread blocks request 2 until it completes request 1. (With thread-per-session,
requests from the same Client are not handled in parallel.) When request 1 has
completed, the thread can handle request 2 from Client application #1. Multiple
requests may come in from Client application #1. They are handled in the order that
they come in; no additional threads are assigned to Client application #1.

Connection management

Overall, VisiBroker's connection management minimizes the number of client
connections to the server. In other words there is only one connection per server
process which is shared. All requests from a single client application are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same

9: Managing threads and connections 127

ServerEngines

server, eliminating the need for clients to incur the overhead of new connections to the
server.

In the following scenario, a client application is bound to two objects in the server
process. Each bind() shares a common connection to the server process, even though
the bind() is for a different object in the server process.

Figure 9.7 Binding to two objects in the same server process

V- bind() to object & m %EI object I,|
¥\ - bind() to object A ——

- Server Process

V1 - bind(} to object A _—1—

Client Application Requests from three threads
serviced through a single connection

The following figure shows the connections for a client using multiple threads that has
several threads bound to an object on the server.

Figure 9.8 Binding to an object in a server process

Bind() to Object A 7\

Bind(} to Object B [] object a
Client Application
5[] object B
Both Requests are serviced
through a =iingle connection Server Process

As the above figure shows, all invocations from all threads are serviced by the same
connection. For that scenario, the most efficient multi threading model to use is the
thread pool model. If the thread-per-session model is used in this scenario, only one
thread on the server will be allocated to service all requests from all threads in the
client application, which could easily result in poor performance.

The maximum number of connections to a server, or from a client, can be configured.
Inactive connections will be recycled when the maximum is reached, ensuring resource
conservation.

ServerEngines

Thread and connection management on the server side is performed by
ServerEngines, which can consist of one or more Server Connection Managers
(SCMs). An SCM is a collection of properties of the manager, listener, and dispatcher.

Defining a ServerEngine consists of specifying a set of properties in a properties file.
For example, if on UNIX the property file called myprops.properties is in home directory,
the command line is

prompt> vbj -DORBpropStorage=~/myprops.properties myServer

ServerEngine properties

vbroker.se.<srvr_eng_name>.SCms=<Srvr_connection_mngr_namel>,<srvr_connection_m
ngr_name2>

The set of Server Connection Managers associated with a ServerEngine is defined by
this property. The name specified in the above property as the <svr_eng_nane> is the
name of the ServerEngine. The SCMs listed here will be the list of SCMs for the
associated server engine. SCMs cannot be shared between ServerEngines. However,
ServerEngines can be shared by multiple POAs.

128 VisiBroker for C++ Developer’s Guide

Setting dispatch policies and properties

The other properties are
vbroker.se.<se>.host

The host property is the IP address for the server engine to listen for messages.
vbroker.se.<se>.proxyHost

The proxyHost property specifies the proxy IP address to send to the client in the case
where the server does not want to publish its real hostname.

Setting dispatch policies and properties

Each POA in a multi-threaded object server can choose between two dispatch models:
thread-per-session or thread pool. You choose a dispatch policy by setting the
dispatcher.type property of the ServerEngine.

vbroker.se.<srvr_eng_name>.SCm.<Srvr_connection_mngr_name>.dispatcher.type=
ThreadPool

vbroker.se.<srvr_eng_name>.SCm.<sSrvr_connection_mngr_name>.dispatcher.type=
ThreadSession

For more information about these properties see “Using POAs” and the VisiBroker
Programmer's Reference.

Thread pool dispatch policy

ThreadPool (thread pooling) is the default dispatch policy when you create a POA
without specifying the ServerEnginePolicy.

For ThreadPool, you can set the following properties:
- vbroker.se.default.dispatcher.tp.threaddax

This property sets a TPool server engine's maximum number of worker threads in
the thread pool. The property can be set statically on server startup or dynamically
reconfigured using the property API. For instance, the start up property

vbroker.se.default.dispatcher.tp.threadMax=32
or
vbroker.se.iiop_tp.scm.1liop_tp.dispatcher.threadMax=32

sets the initial maximum worker thread limitation to 32 for the default Tpool server
engine. The default value of this property is unlimited (0). If there are no threads
available in the pool and the maximum number of threads have already been
created, the request is blocked until a thread currently in use has been released
back into the pool.

- vbroker.se.default.dispatcher.tp.threaddin

This property sets a TPool server engine's minimum number of worker threads in the
thread pool. The property can be set statically on server startup or dynamically
reconfigured using the property API. For instance, the start up property

vbroker.se.default.dispatcher.tp.threadMin=8
or
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMin=8

sets the initial worker thread minimum number to 8 for the default TPool server
engine. The default value of this property is 0 (no worker threads).

- vbroker.se.default.dispatcher.tp.threadMaxIdle

This property sets a TPool server engine's idle thread check interval. The property
can be set statically on server startup or dynamically reconfigured using the property
API. For instance, the start up property

9: Managing threads and connections 129

Setting dispatch policies and properties

vbroker.se.default.dispatcher.tp.threadMaxIdle=120
or
vbroker.se.iiop_tp.scm.1liop_tp.dispatcher.threadMaxIdle=120

sets the initial idle worker thread check interval to 120 seconds for the default TPool
server engine. The default value of this property is 300 seconds. With this setting,
the server engine will check the idle state of each worker thread every 120 seconds.
If a worker thread has been idle across two consecutive checks, it will be recycled
(terminated) at the second check. Therefore, the actual idle thread garbage
collection time is between 120 to 240 seconds under the above setting, instead of
exactly 120 seconds.

- vbroker.se.default.dispatcher.tp.coolingTime

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is said to be
“hot” when the GIOP connection being served is potentially readable, either upon
creation of the connection or upon the arrival of a request. After the cooling time (in
seconds), the thread can be returned to the thread pool. The property can be set
statically on server startup or dynamically reconfigured using the property API. For
instance, the startup property

vbroker.se.default.dispatcher.tp.coolingTime=6
or
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.coolingTime=6

sets the initial cooling time to 6 seconds for the default engine (or the 1IOP TPool
server engine).

The default value of this property is 3 seconds. The maximum value is 10 seconds.

Note

The vbroker.se.default.xxx.tp.xxx property is recommended when
vbroker.se.default=iiop_tp. When using with ThreadSession, it is recommended that
you use the vbroker.se.iiop_ts.scm.iiop_ts.xxx property.

Thread-per-session dispatch policy

When using the ThreadSession as the dispatcher type, you must set the se.default
property to iiop_ts.

vbroker.se.default=1iop_ts

Note

In thread-per-session, there are no threadMin, threadMax, threadMaxIdle, and
coolingTime dispatcher properties. Only the Connection and Manager properties are
valid properties for ThreadSession.

Coding considerations

All code within a server that implements the VisiBroker ORB object must be thread-
safe. You must take special care when accessing a system-wide resource within an
object implementation. For example, many database access methods are not thread-
safe. Before your object implementation attempts to access such a resource, it must
first lock access to the resource using a synchronized block.

If serialized access to an object is required, you need to create the POA on which this
object is activated with the STNGLE_THREAD_MODEL value for the ThreadpPolicy.

130 VisiBroker for C++ Developer’s Guide

Setting connection management properties

Setting connection management properties

The following properties are used to configure connection management. Properties
whose names start with vbroker.se are server-side properties. The client side
properties have their names starting with vbroker.ce.

Note

The command line options for VisiBroker 3.x backward-compatibility are less obvious
in terms of whether they are client-side or server-side. However, the connection and
thread management options that start with the -0RB prefix set the client-side options
whereas the options with the -0a prefix are used for the server-side options. There are
no common properties which are used for both client-side and server-side thread and
connection management.

The distinction between client and server vanishes if callback or bidirectional GIOP is
used.

- vbroker.se.default.socket.manager.connectionMax

This property sets the maximum allowable client connections to a server engine.
The property can be set statically on server startup or dynamically reconfigured
using the property API. For instance, the start up property

-Dvbroker.se.default.socket .manager.connectionMax=128
or
-Dvbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax=128

sets the initial maximum connection limitation on this server engine to 128. The
default value of this property is unlimited (0 [zero]). When the server engine reaches
this limitation, before accepting a new client connection, the server engine needs to
reuse an idle connection. This is called connection swapping. When a new
connection arrives at the server, it will try to detach the oldest unused connection. If
all the connections are busy, the new connection will be dropped. The client may
retry again until some timeout expires.

- vbroker.se.default.socket.manager.connectionMaxIdle

This property sets the maximum length of time an idle connection will remain open
on a server engine. The property can be set statically on server startup or
dynamically reconfigured using property API. For instance, the start up property

-Dvbroker.se.default.socket .manager.connectionMaxIdle=300
or
-Dvbroker.se.iliop_tp.scm.iiop_tp.manager.connectionMaxIdle=300

S

ets the initial idle connection maximum lifetime to 300 seconds. The default value of
this property is 0 (unlimited). When a client connection has been idle longer than this
value, it becomes a candidate for garbage collection.

- vbroker.ce.iiop.ccm.connectionMax

Specifies the maximum number of the total connections within a client. This is equal
to active connections plus the ones that are cached. The default value of zero
means that the client does not try to close any of the old active or cached
connections. If a new client connection will result in exceeding the limit set by this
property, the VisiBroker for C++ will try to release one of the cached connections. If
there are no cached connections, it will try to close the oldest idle connection. If both
of them fail, the CORBA: :NO_RESOURCE exception will result.

9: Managing threads and connections 131

Setting connection management properties

Valid values for applicable properties

The following properties have a fixed set or range of valid values:
- vbroker.ce.iiop.ccm.type=Pool
Currently, Pool is the only supported type.

In the following properties, xxx is the server engine name and yyy is the server
connection manager name:

- vbroker.se.xxx.scm.yyy.manager.type=Socket

Other possible values are Local for LIOP and BIDIR for bidir (bidirectional) SCMs.

vbroker.se.xxx.scm.yyy.listener.type=IIOP

You can also use the value L10P for local IPC and SSL for security.

vbroker.se.xxx.scm.yyy.disptacher.type=ThreadPool

The other possible values are ThreadSession and MainThread.

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.coolingTime

The default value is 3, and the maximum value is 10, so a value greater than 10 will
be clamped to 10.

Effects of property changes

The effect of a change in a property value depends on the actions associated with the
properties. Most of the actions are directly or indirectly related to the utilization of
system resources. The availability and restrictions of the system resources to the
CORBA application vary depending on the system and the nature of the application.

For instance, increasing the garbage collector timer may increase the system activities,
as the garbage collector will run more frequently. On the other hand, increasing its
value means the idle threads will remain in system unclaimed for longer periods of
time.

Dynamically alterable properties

The following properties can be changed dynamically and the effect will be immediate
unless stated otherwise:

vbroker.ce.iiop.ccm.connectionCacheMax=5
vbroker.ce.iiop.ccm.connectionMax=0
vbroker.ce.iiop.ccm.connectionMaxIdle=360
vbroker.ce.iiop.connection.rcvBufSize=0
vbroker.ce.iiop.connection.sendBufSize=0
vbroker.ce.iiop.connection.tcpNoDelay=false
vbroker.ce.iiop.connection.socketLinger=0
vbroker.ce.iiop.connection.keepAlive=true
vbroker.ce.liop.ccm.connectionMax=0
vbroker.ce.liop.ccm.connectionMaxIdle=360
vbroker.ce.liop.connection.rcvBufSize=0
vbroker.ce.liop.connection.sendBufSize=0
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax=0
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxIdle=0
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMin=0
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMax=100

The new dispatcher threadMax properties will be reflected after the next garbage
collector run.

vbroker.se.iiop_tp.scm.1liop_tp.dispatcher.threadMaxIdle=300
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.coolingTime=3

132 VisiBroker for C++ Developer’s Guide

Garbage collection

vbroker.se.iiop_tp.scm.iiop_tp.manager.garbageCollectTimer=30
vbroker.se.liop_tp.scm.liop_tp.listener.userConstrained=false

Determining whether property value changes take effect

For this purpose, the server manager needs to be enabled, using the property
vbroker.orb.enableServerManager=true, and the properties can be obtained through the
server manager query either through the Console or through a command-line utility.

Impact of changing property values

It is very difficult to determine the impact of changing the value of a property to
something other than the default. For thread and connection limits, the available
system resources vary depending on the machine configuration and the number of
other processes running. The setting of properties allows performance tuning for a
given system.

Garbage collection

A dispatcher's thread pool in VisiBroker has an idle timeout

vbroker.se.xxx.scm. xxx.dispatcher.threaddaxIdle. The default value is 300 seconds,
and after the idle timeout expires the dispatcher will remove any idle worker threads in
the thread pool.

A Server Connection Manager (SCM) has its own garbage collection timeout
vbroker.se.xxx.scm.xxx.manager.garbageCollectTimer. The default value is 30 seconds,
and after the timeout expires any idle connections are garbage collected.

Since the SCM only garbage collects idle connections, the property
vbroker.se.xxx.scm.xxx.manager .connectionMaxIdle needs to be set greater than 0
(zero) in order for connections to go to an idle state. The default value is 0 (zero), which
means that a connection is never considered idle and nothing is collected, even if the
SCM's garbage collection timeout expires.

The dispatcher and the SCM perform garbage collection independently and there is no
garbage collection performed by the ORB itself. Hence given the values below.

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle=5
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxIdle=5
vbroker.se.iliop_tp.scm.iiop_tp.manager.garbageCollectTimer=10

When the thread pool worker thread, T1, has been idle for 5 seconds it is immediately
removed from the dispatcher's thread pool. The connection, C1, which has been idle for
5 seconds is only garbage collected by the SCM after 10 seconds.

Figure 9.9 Collection of resources by the SCM GC

LagtSChgabage TLAIL idletime T1k collectedtnt S0 grtage colk da
colledio starte Cl & ordyelichk oxe ad C1 & colleded
b collection

N } /

]
T
] 1 2 3 4 5 & 7 E: 9 10 secs

On the Client side the Client Connection Manager's (CCM) cached connections can be
given an idle timeout by setting the property vbroker.ce.xxx.ccm.connectionMaxIdle.
The default value is 0 (zero), meaning that the cached connections do not have an idle
timeout. Given an idle timeout, the idle cached connections in the connection pool/
cache are marked eligible for garbage collection. Unlike the SCM, the CCM has no
garbage collection timer, however whenever any connection is being cached it will
attempt to garbage collect any cached connections that are marked eligible for
collection.

9: Managing threads and connections 133

Garbage collection

134 VisiBroker for C++ Developer’s Guide

Using the tie mechanism

This section describes how the tie mechanism may be used to integrate existing C++
code into a distributed object system. This section will enable you to create a
delegation implementation or to provide implementation inheritance.

How does the tie mechanism work?

Object implementation classes normally inherit from a servant class generated by the
id12cpp compiler. The servant class, in turn, inherits from
PortableServer.Servant::Servant . When it is not convenient or possible to alter existing
classes to inherit from the VisiBroker servant class, the tie mechanism offers an
attractive alternative.

The tie mechanism provides object servers with a delegator implementation class that
inherits from PortableServer::Servant . The delegator implementation does not provide
any semantics of its own. The delegator implementation simply delegates every
request it receives to the real implementation class, which can be implemented
separately. The real implementation class is not required to inherit from
PortableServer::Servant .

With using the tie mechanism, two additional files are generated from the IDL compiler:

- <interface_name>POATie defers implementation of all IDL defined methods to a
delegate. The delegate implements the interface <interface_name>Operations. Legacy
implementations can be trivially extended to implement the operations interface and
in turn delegate to the real implementation.

- <interface_name>Operations defines all of the methods that must be implemented by
the object implementation. This interface acts as the delegate object for the
associated <interface_name>POATie class when the tie mechanism is used.

10: Using the tie mechanism 135

Example program

Example program

Location of an example program using the tie mechanism

A version of the Bank example using the tie mechanism can be found in:

<install_dir>\vbroker\examples\basic\bank_tie

Looking at the tie template

The idl2cpp compiler will automatically generate a _tie_Account template class, as
shown in the code sample below. The POA_Bank_Account_tie class is instantiated by the
object server and initialized with an instance of Account Impl. The POA_Bank_Account_tie
class delegates every operation request it receives to AccountImpl, the real
implementation class. In this example, the class AccountImpl does not inherit from the
POA_Bank: :Account class.

template <class T> class POA_Bank_Account_tie :
public POA_Bank::Account {
private:
CORBA: :Boolean _rel;
PortableServer::POA_ptr _poa;
T *_ptr;
POA_Bank_Account_tie(const POA_Bank_Account_tie&) {}
void operator=(const POA_Bank_Account_tie&) {}
public:
POA_Bank_Account_tie (T& t): _ptr(&t), _poa(NULL),
_rel ((CORBA::Boolean)0) {}
POA_Bank_Account_tie (T& t,
PortableServer::POA_ptr poa): _ptr(&t),
_poa(PortableServer::_duplicate(poa)),
_rel ((CORBA::Boolean)0) {}
POA_Bank_Account_tie (T *p, CORBA::Boolean release= 1) : _ptr(p),
_poa (NULL), _rel(release) {}
POA_Bank_Account_tie (T *p, PortableServer::POA_ptr poa,
CORBA: :Boolean release =1): _ptr(p),
_poa (PortableServer::_duplicate(poa)), _rel(release) {}
virtual ~POA_Bank_Account_tie() {
CORBA: :release(_poa);
if (_rel) {
delete _ptr;
1
1
T* _tied_object() { return _ptr; }
void _tied_object (T& t) {
if (_rel) {
delete _ptr;
1
_ptr = &t;
_rel = 0;
}
void _tied_object (T *p, CORBA::Boolean release=1) {
if (_rel) {
delete _ptr;
1
_pbtr = p;
_rel = release;

}

136 VisiBroker for C++ Developer’s Guide

Example program

CORBA: :Boolean _is_owner() { return _rel; }
void _is_owner (CORBA::Boolean b) { _rel = b; }
CORBA: :Float balance() {
return _ptr->balance();
}
PortableServer::POA_ptr _default_POA() {
if (!'CORBA::is_nil(_poa)) {
return _poa;
} else {
return PortableServer_ServantBase::_default_POA();
1
}
¥

Changing the server to use the _tie_account class

The code sample below shows the modifications to the Server.C file required to use the

_tie_account class.

#include "Bank_s.hh"
#include <math.h>

int main(int argc, char* const* argv) {
try {

// Initialize the ORB.

CORBA: :0ORB_var orb = CORBA::0ORB_init (argc, argv);

// get a reference to the root POA

PortableServer::POA_var rootPOA =
PortableServer::POA::_narrow(

orb->resolve_initial_references("RootPOA"));

CORBA::PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy (
PortableServer: :PERSISTENT) ;

// get the POA Manager

PortableServer::POAManager_var poa_manager =
rootPOA->the_POAManager () ;

// Create myPOA with the right policies

PortableServer::POA_var myPOA = rootPOA->create_POA (
"bank_agent_poa", poa_manager, policies);

// Create the servant

AccountManagerImpl managerServant (rootPOA);

// Create the delegator

POA_Bank_AccountManager_tie<AccountManagerImpl>
tieServer (managerServant) ;

// Decide on the ID for the servant

PortableServer::0bjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");

// Activate the servant with the ID on myPOA

myPOA->activate_object_with_id(managerId, &tieServer);

// Activate the POA Manager

poa_manager->activate();

cout << myPOA->servant_to_reference(&tieServer) <<
" is ready" << endl;

// Wait for incoming requests

orb->run();

} catch(const CORBA::Exception& e) {
cerr << e << endl;

10: Using the tie mechanism

137

Example program

return 1;

}

return 0;

}

Building the tie example

The instructions described in “Developing an example application with VisiBroker” are
also valid for building the tie example.

138 VisiBroker for C++ Developer’s Guide

Client basics

This section describes how client programs access and use distributed objects.

Initializing the VisiBroker ORB

The Object Request Broker (ORB) provides a communication link between the client
and the server. When a client makes a request, the VisiBroker ORB locates the object
implementation, activates the object if necessary, delivers the request to the object,
and returns the response to the client. The client is unaware whether the object is on
the same machine or across a network.

Though much of the work done by the VisiBroker ORB is transparent to you, your client
program must explicitly initialize the VisiBroker ORB. VisiBroker ORB options,
described in the VisiBroker Programmer's Reference, Programmer tools for C++ can
be specified as command-line arguments. To ensure these options take effect you will
need to pass the supplied argc and argv arguments to ORB_init. The code samples
below illustrate the VisiBroker ORB initialization.

tinclude <fstream.h>
#include "Bank_c.hh"

int main(int arge, char* const* argv) {
CORBA: :0RB_var orb;
CORBA::Float balance;
try {
// Initialize the ORB.
orb = CORBA::ORB_init(argc, argv);

Binding to objects

A client program uses a remote object by obtaining a reference to the object. Object
references are usually obtained using the <interface> _bind() method. The VisiBroker
ORB hides most of the details involved with obtaining the object reference, such as
locating the server that implements the object and establishing a connection to that
server.

11: Client basics 139

Binding to objects

Action performed during the bind process

When the server process starts, it performs CORBA: :0RB.init () and announces itself to
Smart Agents on the network.

When your client program invokes the _bind () method, the VisiBroker ORB performs
several functions on behalf of your program.

- The VisiBroker ORB contacts the Smart Agent to locate an object implementation
that offers the requested interface. If an object name is specified when _bind() is
invoked, that name is used to further qualify the directory service search. The Object
Activation Daemon (OAD), described in “Using the Object Activation Daemon
(OAD),” may be involved in this process if the server object has been registered with
the OAD.

- When an object implementation is located, the VisiBroker ORB attempts to establish
a connection between the object implementation that was located and your client
program.

- Once the connection is successfully established, the VisiBroker ORB will create a
proxy object and return a reference to that object. The client will invoke methods on
the proxy object which will, in turn, interact with the server object.

Figure 11.1 Client interaction with the Smart Agent

Client)) Server
2. Once the object reference is

received, the client can issue
request= to the appropriate
server object

1. Client locates smart Agent.
When found, the client obtains
an object reference by calling
bind()

Agent

Note

Your client program will never invoke a constructor for the server class. Instead, an
object reference is obtained by invoking the static _bind () method.

PortableServer::0bjectId_var manager_id =
PortableServer::string_to_ObjectId("BankManager");
Bank: :AccountManager_var =

Bank: :AccountManager::_bind("/bank_agent_poa", manager_id);

140 VisiBroker for C++ Developer’s Guide

Invoking operations on an object

Invoking operations on an object

Your client program uses an object reference to invoke an operation on an object or to
reference data contained by the object. “Manipulating object references” describes the
variety of ways that object references can be manipulated.

The following example shows how to invoke an operation using an object reference:

// Invoke the balance operation.
balance = account->balance();
cout << "Balance is $" << balance << endl;

Manipulating object references

The _bind() method returns a reference to a CORBA object to your client program.
Your client program can use the object reference to invoke operations on the object
that have been defined in the object's IDL interface specification. In addition, there are
methods that all VisiBroker ORB objects inherit from the class CORBA: :Object that you
can use to manipulate the object.

Checking for nil references

You can use the CORBA class method is_nil() shown below to determine if an object
reference is nil. This method returns 1 if the object reference passed is nil. It returns 0
(zero) if the object reference is not nil.

class CORBA {
static Boolean is _nil(CORBA::Object_ptr obj);

}i

Obtaining a nil reference

You can obtain a nil object reference using the CORBA: :Object class _nil() member
function. It returns a NULL value that is cast to an Object_ptr.

class Object {
static CORBA::Object_ptr _nil();

}i

Duplicating an object reference

When your client program invokes the _duplicate member function, the reference
count for the object reference is incremented by one and the same object reference is
returned. Your client program can use the _duplicate member function to increase the
reference count for an object reference so that the reference can be stored in a data
structure or passed as a parameter. Increasing the reference count ensures that the
memory associated with the object reference will not be freed until the reference count
has reached zero.

11: Client basics 141

Manipulating object references

The IDL compiler generates a _duplicate member function for each object interface
you specify. The _duplicate member function accepts and returns a generic Object_ptr.

class Object {
static CORBA::0Object_ptr _duplicate(CORBA::Object_ptr obj);
}i

Note

The _duplicate member function has no meaning for the POA or VisiBroker ORB
because these objects do not support reference counting.

Releasing an object reference

You should release an object reference when it is no longer needed. One way of
releasing an object reference is by invoking the CORBA: :0bject class _release member
function.

Caution

Always use the release member function. Never invoke operator delete on an object
reference.

class CORBA {
class Object {

void _release();

¥
¥

You may also use the CORBA class release member function, which is provided for
compatibility with the CORBA specification.

class CORBA {

static void release();

¥

Obtaining the reference count

Each object reference has a reference count that you can use to determine how many
times the reference has been duplicated. When you first obtain an object reference by
invoking _bind(), the reference count is set to one. Releasing an object reference will
decrement the reference count by one. Once the reference count reaches 0 (zero),
VisiBroker automatically deletes the object reference. The code sample below shows
the _ref_count member function for retrieving the reference count.

Note

When a remote client duplicates or releases an object reference, the server's object
reference count is not affected.

class Object {
CORBA::Long _ref_count() const;

¥

142 VisiBroker for C++ Developer’s Guide

Manipulating object references

Converting a reference to a string

VisiBroker provides a VisiBroker ORB class with methods that allow you to convert an
object reference to a string or convert a string back into an object reference. The
CORBA specification refers to this process as stringification.

Method Description

object_to_string |Converts an object reference to a string.
string_to_object | Converts a string to an object reference.

A client program can use the object_to_string method to convert an object reference
to a string and pass it to another client program. The second client may then de-
stringify the object reference, using the string_to_object method, and use the object
reference without having to explicitly bind to the object.

The caller of object_to_string is responsible for calling CORBA: :string_free() on the
returned string.

Note

Locally-scoped object references like the VisiBroker ORB or the POA cannot be
stringified. If an attempt is made to do so, a MARSHAL exception is raised with the minor
code 4.

Obtaining object and interface names

The table below shows the methods provided by the Object class that you can use to
obtain the interface and object names as well as the repository id associated with an
object reference. The interface repository is discussed in “Using Interface
Repositories.”

Note

When you invoke _bind () without specifying an object name, invoking the
_object_name () method with the resulting object reference will return NULL .

Method Description

_interface_name | Returns the interface name of this object.
_object_name Returns this object's name.
_repository_id | Returns the repository's type identifier.

Determining the type of an object reference

You can use the _hash() member function to obtain a hash value for an object
reference. While this value is not guaranteed to be unique, it will remain consistent
through the lifetime of the object reference and can be stored in a hash table.

You can check whether an object reference is of a particular type by using the _is_a()
method. You must first obtain the repository id of the type you wish to check using the
_repository_id() method. This method returns 1 if the object is either an instance of the
type represented by _repository_id() orifitis a sub-type. The member function returns
0 (zero) if the object is not of the type specified. Note that this may require remote
invocation to determine the type.

You can use _is_equivalent () to check if two object references refer to the same object
implementation. This method returns 1 if the object references are equivalent. It returns
0 (zero) if the object references are distinct, but it does not necessarily indicate that the
object references are two distinct objects. This is a lightweight method and does not
involve actual communication with the server object.

Method Description
_hash Returns a hash value for the object reference.

11: Client basics 143

Manipulating object references

Method Description

_is_a Determines if an object implements a specified interface.

_is_equivalent Returns true if two objects refer to the same interface implementation.

Determining the location and state of bound objects

Given a valid object reference, your client program can use _is_bound() to determine if
the object bound. The method returns 1 if the object is bound and returns 0 (zero) if the
object is not bound.

The _is_local () method returns 1 if the client program and the object implementation
reside within the same process or address space where the method is invoked.

The _is_remote() method returns 1 if the client program and the object implementation
reside in different processes, which may or may not be located on the same host.

Method Description

_is_bound | Determines if a connection is currently active for this object.

_is_local |Determines if this object is implemented in the local address space.

_is_remote | Determines if this object's implementation does not reside in the local address
space.

Checking for non-existent objects

You can use the _non_existent () member function to determine if the object
implementation associated with an object reference still exists. This method actually
“pings” the object to determine if it still exists and returns 1 if it does exist.

Narrowing object references

The process of converting an object reference's type from a general super-type to a
more specific sub-type is called narrowing.

The _narrow() member function may construct a new C++ object and returns a pointer
to that object. When you no longer need the object, you must release the object
reference returned by _narrow().

VisiBroker maintains a type graph for each object interface so that narrowing can be
accomplished by using the object's narrow() method.

If the narrow member function determines it is not possible to narrow an object to the
type you request, it will return NULL.

Account *acct;

Account *acct?2;

Object *obj;

acct = Account::_bind();

obj = (CORBA::Object *)acct;
acct2 = Account::_narrow(obj);

Widening object references

Converting an object reference's type to a super-type is called widening. The code
sample below shows an example of widening an Account pointer to an Object pointer.
The pointer acct can be cast as an Object pointer because the Account class inherits
from the Object class.

Account *acct;

CORBA: :Object *obj;

acct = Account::_bind();

obj = (CORBA::Object *)acct;...

144 VisiBroker for C++ Developer’s Guide

Using Quality of Service (QoS)

Using Quality of Service (QoS)

Quality of Service (QoS) utilizes policies to define and manage the connection between
your client applications and the servers to which they connect.

Understanding Quality of Service (QoS)

QoS policy management is performed through operations accessible in the following
contexts:

- The VisiBroker ORB level policies are handled by a locality constrained
PolicyManager, through which you can set Policies and view the current Policy
overrides. Policies set at the VisiBroker ORB level override system defaults.

- Thread level policies are set through PolicyCurrent, which contains operations for
viewing and setting Policy overrides at the thread level. Policies set at the thread
level override system defaults and values set at the VisiBroker ORB level.

Note

- Object level policies can be applied by accessing the base Object interface's quality
of service operations. Policies applied at the Object level override system defaults
and values set in at the VisiBroker ORB or thread level.

Note

The QoS policies installed at the ORB level will only affect those objects on which no
method is called before installing the policies, for example a non_existent call internally
makes a call on a server object. If ORB level QoS policies are installed after the
non_existent call, then the policies do not apply.

Policy overrides and effective policies

The effective policy is the policy that would be applied to a request after all applicable
policy overrides have been applied. The effective policy is determined by comparing
the Policy as specified by the IOR with the effective override. The effective Policy is the
intersection of the values allowed by the effective override and the IOR-specified
Policy. If the intersection is empty a org.omg.CORBA. INV_POLICY exception is raised.

11: Client basics 145

Using Quality of Service (QoS)

QoS interfaces

The following interfaces are used to get and set QoS policies.

CORBA::Object

Contains the following methods used to get the effective policy and get or set the policy
override.

- _get_policy returns the effective policy for an object reference.

- _set_policy_override returns a new object reference with the requested list of Policy
overrides at the object level.

CORBA::Object

- _get_client_policy returns the effective Policy for the object reference without doing
the intersection with the server-side policies. The effective override is obtained by
checking the specified overrides in first the object level, then at the thread level, and
finally at the VisiBroker ORB level. If no overrides are specified for the requested
PolicyType the system default value for PolicyType is used.

- _get_policy_overrides returns a list of Policy overrides of the specified policy types
set at the object level. If the specified sequence is empty, all overrides at the object
level will be returned. If no PolicyTypes are overridden at the object level, an empty
sequence is returned.

- _validate_connection returns a boolean value based on whether the current effective
policies for the object will allow an invocation to be made. If the object reference is
not bound, a binding will occur. If the object reference is already bound, but current
policy overrides have changed, or the binding is no longer valid, a rebind will be
attempted, regardless of the setting of the RebindPolicy overrides. A false return
value occurs if the current effective policies would raise an INV_POLICY exception. If
the current effective policies are incompatible, a sequence of type PolicylList is
returned listing the incompatible policies.

CORBA::PolicyManager

The PolicyManager is an interface that provides methods for getting and setting Policy
overrides for the VisiBroker ORB level.

- get_policy_overrides returns a PolicyList sequence of all the overridden policies for
the requested PolicyTypes. If the specified sequence is empty, all Policy overrides at
the current context level will be returned. If none of the requested PolicyTypes are
overridden at the target PolicyManager, an empty sequence is returned.

- set_policy_overrides modifies the current set of overrides with the requested list of
Policy overrides. The first input parameter, policies, is a sequence of references to
Policy objects. The second parameter, set_add, of type SetOverrideType indicates
whether these policies should be added onto any other overrides that already exist in
the PolicyManager using ADD_OVERRIDE, or they should be added to a PolicyManager that
doesn't contain any overrides using SET_OVERRIDES. Calling set_policy_overrides with
an empty sequence of policies and a SET_OVERRIDES mode removes all overrides from
a PolicyManager. Should you attempt to override policies that do not apply to your
client, NO_PERMISSION will be raised. If the request would cause the specified
PolicyManager to be in an inconsistent state, no policies are changed or added, and
an Invalidpolicies exception is raised.

CORBA::PolicyCurrent

The PolicyCurrent interface derives from PolicyManager without adding new methods.
It provides access to the policies overridden at the thread level. A reference to a
thread'sPolicyCurrent is obtained by invoking ORB::resolve_initial_references() and
specifying an identifier of PolicyCurrent.

146 VisiBroker for C++ Developer’s Guide

Using Quality of Service (QoS)

QoSExt::DeferBindPolicy

The DeferBindPolicy determines if the VisiBroker ORB will attempt to contact the
remote object when it is first created, or to delay this contact until the first invocation is
made. The values of DeferBindPolicy are true and false. If DeferBindPolicy is set to
true all binds will be deferred until the first invocation of a binding instance. The default
value is false.

If you create a client object, and DeferBindpPolicy is set to true, you may delay the
server startup until the first invocation. This option existed before as an option to the
Bind method on the generated helper classes.

The code sample below illustrates an example for creating a DeferBindPolicy and
setting the policy on the VisiBroker ORB.

//Initialize the flag and references

CORBA: :Boolean deferMode = (CORBA::Boolean) 1;

CORBA: :Any policy_value;

policy_value <<= CORBA::Any::from_boolean(deferMode);

CORBA: :Policy_var policy =
orb->create_policy (QoSExt::DEFER_BIND_POLICY_TYPE, policy_value);

CORBA::PolicyList policies;
policies.length(1);
policies[0] = CORBA::Policy::_duplicate(policy);

// Get a reference to the thread manager
CORBA: :Object_var obj = orb->resolve_initial_references("ORBPolicyManager");
CORBA: :PolicyManager_var orb_mgr = CORBA::PolicyManager::_narrow(obj);

// Set the policy on the ORB level
orb_mgr->set_policy_overrides(policies, CORBA::SET_OVERRIDE);

QoSExt::RelativeConnectionTimeoutPolicy

The RelativeConnectionTimeoutPolicy indicates a timeout after which attempts to
connect to an object using one of the available endpoints is aborted. The timeout
situation is likely to happen with objects protected by firewalls, where HTTP tunneling
is the only way to connect to the object.

Messaging::RebindPolicy

RebindPolicy is used to indicate whether the ORB may transparently rebind once
successfully bound to a target. An object reference is considered bound once itis in a
state where a LocateRequest message would result in a LocateReply message with
status OBJECT_HERE. RebindPolicy accepts values of type Messaging: :RebindMode and are
set only on the client side. It can have one of six values that determine the behavior in
the case of a disconnection, an object forwarding request, or an object failure after an
object reference is bound. The supported values are:

- Messaging::TRANSPARENT allows the VisiBroker ORB to silently handle object-
forwarding and necessary reconnections during the course of making a remote
request.

- Messaging::NO_REBIND allows the VisiBroker ORB to silently handle reopening of
closed connections while making a remote request, but prevents any transparent
object-forwarding that would cause a change in client-visible effective QoS policies.
When RebindMode is set to NO_REBIND, only explicit rebind is allowed.

- Messaging::NO_RECONNECT prevents the VisiBroker ORB from silently handling object-
forwards or the reopening of closed connections. You must explicitly rebind and
reconnect when RebindMode is set to NO_RECONNECT.

11: Client basics 147

Using Quality of Service (QoS)

- QoSExt::VB_TRANSPARENT is the default policy. It extends the functionality of TRANSPARENT
by allowing transparent rebinding with both implicit and explicit binding.
VB_TRANSPARENT is designed to be compatible with the object failover implementation
in VisiBroker 3.x.

- QoSExt::VB_NOTIFY_REBIND throws an exception if a rebind is necessary. The client
catches this exception, and binds on the second invocation. If a client has received a
CloseConnection message before, it will also reestablish the closed connection.

- QoSExt::VB_NO_REBIND does not enable failover. It only allows the client VisiBroker
ORB to reopen a closed connection to the same server; it does not allow object
forwarding of any kind.

Note

Be aware that if the effective policy for your client is VB_TRANSPARENT and your client is

working with servers that hold state data, VB_TRANSPARENT could connect the client to a
new server without the client being aware of the change of server, any state data held
by the original server will be lost.

Note

If the Client has set RebindPolicy and the RebindMode is anything other that the
default(VB_TRANSPARENT), then the RebindPolicy is propagated in a special
ServiceContext as per the CORBA specification. The propagation of the ServiceContext
occurs only when the client invokes the server through a GateKeeper or a RequestAgent.
This propagation does not occur in a normal Client/Server scenario.

In the case of NO_REBIND or NO_RECONNECT, the reopening of the closed connection or
forwarding may be explicitly allowed by calling _validate_connection on the
CORBA: :Object interface.

The following table describes the behavior of the different RebindMode types.

Reestablish closed

connection to the | Allow object
RebindMode type |same object? forwarding? Object failover?
NO_RECONNECT No, throws No, throws No
REBIND REBIND
exception. exception.
NO_REBIND Yes Yes, if policies No
match. No, throws
REBIND
exception.
TRANSPARENT Yes Yes No
VB_NO_REBIND Yes No, throws No
REBIND
exception.
VB_NOTIFY_REBIND | No, throws Yes Yes. VB_NOTIFY_REBIND
exception. throws an exception after
failure detection, and then
tries a failover on subsequent
requests.
VB_TRANSPARENT Yes Yes Yes, transparently.

The appropriate CORBA exception will be thrown in the case of a communication
problem or an object failure.

For more information on QoS policies and types, see the Messaging section of the
CORBA specification.

148 VisiBroker for C++ Developer’s Guide

Using Quality of Service (QoS)

Messaging::RelativeRequestTimeoutPolicy

The RelativeRequestTimeoutPolicy indicates the relative amount of time which a
Request or its responding Reply may be delivered. After this amount of time, the
Request is canceled. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout, the Reply
will never be discarded due to timeout. The timeout value is specified in 100s of
nanoseconds. This policy is only effective on established connections, and is not
applicable to establishing a connection.

Messaging::RelativeRoundTripTimeoutPolicy

The RelativeRoundTripTimeoutPolicy specifies the relative amount of time for which a
Request or its corresponding Reply may be delivered. If a response has not yet been
delivered after this amount of time, the Request is canceled. Also, if a Request had
already been delivered and a Reply is returned from the target, the Reply is discarded
after this amount of time. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout, the Reply
will never be discarded due to timeout. The timeout value is specified in 100s of
nanoseconds. This policy is only effective on established connections, and is not
applicable to establishing a connection.

Messaging::SyncScopePolicy

The SyncScopePolicy defines the level of synchronization for a request with respect to
the target. Values of type SyncScope are used in conjunction with a SyncScopePolicy to
control the behavior of one-way operations.

The default SyncScopePolicy is SYNC_WITH_TRANSPORT. To perform one-way operations via
the OAD, you must use SyncScopePolicy=SYNC_WITH_SERVER. Valid values for
SyncScopePolicy are defined by the OMG.

Note

Applications must explicitly set an VisiBroker ORB-level SyncScopePolicy to ensure
portability across VisiBroker ORB implementations. When instances of SyncScopePolicy
are created, a value of type Messaging: : SyncScope is passed to

CORBA: :0RB: :create_policy. This policy is only applicable as a client-side override.

Exceptions

Exception Description

CORBA::INV_POLICY Raised when there is an incompatibility between policy
overrides.

CORBA::REBIND Raised when the RebindPolicy has a value of NO_REBIND,
NO_RECONNECT, Or VB_NO_REBIND and an invocation on a bound object
references results in an object-forward or location-forward
message.

CORBA::PolicyError Raised when the requested Policy is not supported.

CORBA::InvalidPolicies Raised when an operation is passed a policyList sequence. The

exception body contains the policies from the sequence that are
not valid, either because the policies are already overridden
within the current scope, or are not valid in conjunction with other
requested policies.

CORBA::COMM_FAILURE | Raised by the client side ORB if communication is lost while an
operation is in progress. Potentially, the operation was
completed.

CORBA:: TRANSIENT Raised by the client side ORB if it attempted to reach the object
and failed. The operation was not successful.

11: Client basics 149

150 VisiBroker for C++ Developer’s Guide

Using IDL

This section describes how to use the CORBA interface description language (IDL).

Introduction to IDL

The Interface Definition Language (IDL) is a descriptive language (not a programming
language) to describe the interfaces being implemented by the remote objects. Within
IDL, you define the name of the interface, the names of each of the attributes and
methods, and so forth. Once you've created the IDL file, you can use an IDL compiler
}o generate the client stub file and the server skeleton file in the C++ programming
anguage.

For more information see the VisiBroker Programmer's Reference Programmer's tools
for C++ .

The OMG has defined specifications for such language mapping. Information about the
language mapping is not covered in this manual since VisiBroker adheres to the
specification set forth by OMG. If you need more information about language mapping,
see the OMG web site at http://www.ong.org.

Note

The CORBA 3.0 formal specification can be found at: http://www.omg.org/technology/
documents/vault .htm#CORBA_IIOP.

Discussions on the IDL can be quite extensive. Because VisiBroker adheres to the
specification defined by OMG, you can visit the OMG site for more information about
IDL.

12: Using IDL 151

How the IDL compiler generates code

How the IDL compiler generates code

You use the Interface Definition Language (IDL) to define the object interfaces that
client programs may use. The idl2cpp compiler uses your interface definition to
generate code.

Example IDL specification

Your interface definition defines the name of the object as well as all of the methods the
object offers. Each method specifies the parameters that will be passed to the method,
their type, and whether they are for input or output or both. The IDL sample below
shows an IDL specification for an object named example. The example object has only
one method, opl.

// IDL specification for the example object
interface example {
long opl(in char x, out short y);

} !

Looking at generated code for clients

The code sample below shows how the IDL compiler generates two client files,
example_c.hh and example_c.cc from the “Using IDL.” These two files provide an example
class that the client uses. By convention, files generated by the IDL compiler always
have either a .cc or an .hh suffix to make them easy to distinguish from files that you
create yourself. If you wish, you can alter the convention to produce files with a
different suffix.

Important

Do not modify the contents of the files generated by the IDL compiler.

class example : public virtual CORBA_Object {
protected:
example() {}
example (const example&) {}
public:
virtual ~example() {}
static const CORBA::TypeInfo *_desc();
virtual const CORBA::TypeInfo *_type_info() const;
virtual void *_safe_narrow(const CORBA::TypeInfo&) const;
static CORBA::0bject*_factory();
example_ptr _this();
static example_ptr _duplicate(example_ptr _obj) { /* ... */ }
static example_ptr _nil() { /* ... */ }
static example_ptr _narrow(CORBA::Object* _obj);
static example_ptr _clone(example_ptr _obj) { /* ... */ }
static example_ptr _bind(
const char *_object_name = NULL,
const char *_host_name = NULL,
const CORBA::BindOptions* _opt = NULL,
CORBA: :ORB_ptr _orb = NULL);
static example_ptr _bind(
const char *_poa_name,
const CORBA::OctetSequence& _id,
const char *_host_name = NULL,
const CORBA::BindOptions* _opt = NULL,
CORBA::ORB_ptr _orb = NULL);
virtual CORBA::Long opl(
CORBA: :Char _x, CORBA::Short_out _y);

152 VisiBroker for C++ Developer’s Guide

Looking at generated code for clients

Methods (stubs) generated by the IDL compiler

The code sample above shows the opl method generated by the IDL complier, along
with several other methods. The opl method is called a stub because when your client
program invokes it, it actually packages the interface request and arguments into a
message, sends the message to the object implementation, waits for a response,
decodes the response, and returns the results to your program.

Since the example class is derived from the CORBA: :Object class, several inherited
methods are available for your use.

Pointer type <interface_name>_ptr definition

The IDL compiler always provides a pointer type definition. The code sample below
shows the type definition for the example class.

typedef example *example_ptr;

Automatic memory management <interface_name>_var class

The IDL compiler also generates a class named example_var, which you can use
instead of an example_ptr. The example_var class will automatically manage the memory
associated with the dynamically allocated object reference. When the example_var
object is deleted, the object associated with example_ptr is released. When an
example_var object is assigned a new value, the old object reference pointed to by
example_ptr is released after the assignment takes place. A casting operator is also
provided to allow you to assign an example_var to a type example_ptr.

class example_var : public CORBA::_var {
public:

static example_ptr _duplicate(example_ptr);
static void _release(example_ptr);
example_var();
example_var (example_ptr);
example_var (const example_var &);
~example_var();
example_var& operator=(example_ptr);
example_var& operator=(const example_var& _var) { /* ... */ }
operator example* () const { return _ptr; }

}i
The following table describes the methods in the _var class.

Method Description
example_var () Constructor that initializes the_ptr to NULL.
example_var (example_ptr ptr) Constructor that creates an object with the_ptr initialized

to the argument passed. The var invokes release() on
_ptr at the time of destruction. When the _ptr's reference
count reaches 0, that object will be deleted.

example_var (const example var& var) |Constructor that makes a copy of the object passed as a
parameter var and points _ptr to the newly copied object.

~example () Destructor that invokes _release() once on the object to
which _ptr points.
operator= (example_ptr p) Assignment operator invokes _release() on the object to

which _ptr points and then stores p in _ptr.

12: Using IDL 153

Looking at generated code for servers

Method Description

operator=(const example_ptr p) Assignment operator invokes _release() on the object to
which _ptr points and then stores a _duplicate() of pin
_ptr.

example_ptr operator->() Returns the ptr stored in this object. This operator
should not be called until this object has been properly
initialized.

Looking at generated code for servers

The code sample below shows how the IDL compiler generates two server files:
example_s.hh and example_s.cc. These two files provide a POA_example class that the
server uses to derive an implementation class. The POA_example class is derived from
the PortableServer_ServantBase class.

Important

You should not modify the contents of the files generated by the IDL compiler.

class POA_example : public virtual PortableServer_ServantBase {
protected:
POA_example() {}
virtual ~POA_example() {}
public:
static const CORBA::TypeInfo _skel_info;
virtual const CORBA::TypeInfo *_type_info() const;
example_ptr _this();
virtual void *_safe_narrow(const CORBA::TypeInfo&) const;
static POA_example * _narrow(PortableServer_ServantBase *_obj);
// The following operations need to be implemented
virtual CORBA::Long opl(CORBA::Char _x, CORBA::Short_out _y) = 0;
// Skeleton Operations implemented automatically
static void _opl(void *_obj, CORBA::MarshalInBuffer &_istrm,
const char *_oper, VISReplyHandler& handler);
}i

Methods (skeletons) generated by the IDL compiler

Notice that the opl method declared in the IDL specification below is generated, along
with an _opl method. The POA_example class declares a pure virtual method named opl.
The implementation class that is derived from POA_example must provide an
implementation for this method.

The POA_example class is called a skeleton and its method (_opl) is invoked by the POA
when a client request is received. The skeleton's internal method will marshal all the
parameters for the request, invoke your opl method and then marshal the return
parameters or exceptions into a response message. The ORB will then send the
response to the client program.

The constructor and destructor are both protected and can only be invoked by inherited
members. The constructor accepts an object name so that multiple distinct objects can
be instantiated by a server.

Class template generated by the IDL compiler

In addition to the POA_example class, the IDL compiler generates a class template
named _tie_example. This template can be used if you wish to avoid deriving a class
from POA_example. Templates can be useful for providing a wrapper class for existing
applications that cannot be modified to inherit from a new class. The sample below
shows the template class generated by the IDL compiler for the example class.

154 VisiBroker for C++ Developer’s Guide

Defining interface attributes in IDL

template <class T>
class POA_example_tie : public POA_example {
public:
POA_example_tie (T& t): _ptr(&t),
_poa (NULL), _rel((CORBA::Boolean)0) {}
POA_example_tie (T& t,
PortableServer::POA_ptr poa): _ptr(&t),
_poa (PortableServer::_duplicate(poa)),
_rel ((CORBA::Boolean)0) {}
POA_example_tie (T *p, CORBA::Boolean release= 1)
. _ptr(p),_poa(NULL), _rel(release) {}
POA_example_tie (T *p, PortableServer::POA_ptr poa,
CORBA: :Boolean release =1)
: _ptr(p), _poa(PortableServer::_duplicate(poa)), _rel(release) {}
virtual ~POA_example_tie() { /* ... */ }
T* _tied_object() { /* ... */ }
void _tied_object (T& t) { /* ... */ }
void _tied_object (T *p, CORBA::Boolean release=1) { /* ... */ }
CORBA::Boolean _is_owner() { /* ... */ }
void _is_owner (CORBA::Boolean b) { /* ... */ }
CORBA: :Long opl(CORBA::Char _x, CORBA::Short_out _y) { /* ... */ }
PortableServer::POA_ptr _default_POA() { /* ... */ }
}i

For complete details on using the _tie template class, see “Using the tie mechanism.”

You may also generate a _ptie template for integrating an object database with your
servers.

Defining interface attributes in IDL

In addition to operations, an interface specification can also define attributes as part of
the interface. By default, all attributes are read-write and the IDL compiler will generate
two methods, one to set the attribute's value, and one to get the attribute's value. You
can also specify read-only attributes, for which only the reader method is generated.

The IDL sample below shows an IDL specification that defines two attributes, one read-
write and one read-only.
interface Test {
attribute long count;
readonly attribute string name;
N

12: Using IDL 155

Specifying one-way methods with no return value

The following code sample shows the operations class generated for the interface
declared in the IDL.

class test : public virtual CORBA::Object {

// Methods for read-write attribute
virtual CORBA::Long count();

virtual void count (CORBA::Long __count);
// Method for read-only attribute.
virtual char * name();

}i

Specifying one-way methods with no return value

IDL allows you to specify operations that have no return value, called one-way
methods. These operations may only have input parameters. When a oneway method is
invoked, a request is sent to the server, but there is no confirmation from the object
implementation that the request was actually received.

VisiBroker uses TCP/IP for connecting clients to servers. This provides reliable delivery
of all packets so the client can be sure the request will be delivered to the server, as
long as the server remains available. Still, the client has no way of knowing if the
request was actually processed by the object implementation itself.

Note
One-way operations cannot raise exceptions or return values.

interface oneway_example {
oneway void set_value(in long val);

¥

Specifying an interface in IDL that inherits from another interface

IDL allows you to specify an interface that inherits from another interface. The classes
generated by the IDL compiler will reflect the inheritance relationship. All methods, data
type definitions, constants and enumerations declared by the parent interface will be
visible to the derived interface.

interface parent {
void operationl();

¥

interface child : parent {

long operation2(in short s);
}i

The code sample below shows the code that is generated from the interface
specification shown above.

class parent : public virtual CORBA::Object {
void operationl();

}i
class child : public virtual parent {

CORBA: :Long operation2 (CORBA::Short s);

}i

156 VisiBroker for C++ Developer’s Guide

Using the Smart Agent

This section describes the Smart Agent (osagent), which client programs register with in
order to find object implementations. It explains how to configure your own VisiBroker
ORB domain, connect Smart Agents on different local networks, and migrate objects
from one host to another.

What is the Smart Agent?

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory service that
provides facilities used by both client programs and object implementations. A Smart
Agent must be started on at least one host within your local network. When your client
program invokes bind () on an object, the Smart Agent is automatically consulted. The
Smart Agent locates the specified implementation so that a connection can be
established between the client and the implementation. The communication with the
Smart Agent is completely transparent to the client program.

If the PERSISTENT policy is set on the POA, and activate_object_with_id is used, the
Smart Agent registers the object or implementation so that it can be used by client
programs. When an object or implementation is deactivated, the Smart Agent removes
it from the list of available objects. Like client programs, the communication with the
Smart Agent is completely transparent to the object implementation. For more
information about POAs, see “Using POAs.”

Best practices for Smart Agent configuration and synchronization

While the Smart Agent imposes no hard limits on the numbers and types of objects that
it can support, there are reasonable best practices that can be followed when
incorporating the it into a larger architecture.

The Smart Agent is designed to be a lightweight directory service with a flat, simple
namespace, which can support a small number of well known objects within a local
network.

Since all objects' registered services are stored in memory, scalability cannot be
optimized and be fault tolerant at the same time. Applications should use well known
objects to bootstrap to other distributed services so as not to rely on the Smart Agent
for all directory needs. If a heavy services lookup load is necessary, it is advisable to
use the VisiBroker Naming Service (VisiNaming). VisiNaming provides persistent
storage capability and cluster load balancing whereas the Smart Agent only provides a
simple round robin on a per osagent basis. Due to the in-memory design of the Smart
Agent, if it is terminated by a proper shutdown or an abnormal termination, it does not

13: Using the Smart Agent 157

What is the Smart Agent?

failover to another Smart Agent in the same ORB domain, that is to the same
OSAGENT_PORT number, whereas the VisiNaming Service provides such failover
functionality. For more information on the VisiBroker naming service, see “Using the
VisiNaming Service.”

General guidelines
The following are some general guidelines for best practice Smart Agent usage.

- Server registrations should be limited to less than 100 object instances or POAs per
ORB domain.

- The Smart Agent keeps track of all clients (not just CORBA servers), so every client
creates a small load on the Smart Agent. Within any 10 minute period, the client
population should generally not exceed 100 clients.

Note

The GateKeeper counts as one client even though it is acting on behalf of many real
clients.

- Applications should use the Smart Agent sparsely by binding to small sets of well
known objects at startup and then using those objects for further discovery. The
Smart Agent communications are based on UDP. Although the message protocol
built on top of UDP is reliable, UDP is often not reliable or allowed in wide area
networks. Since the Smart Agent is designed for intranet use, it is not recommended
over wide area networks that involve firewall configurations.

- The real default IP of the Smart Agent must be accessible to clients on a subnet that
is not directly connected to the Smart Agent host. The Smart Agent cannot be
configured for client access behind a Network Address Translation (NAT) firewall.

- The Smart Agent configures itself at startup using the network information available
at that time. It is not able to detect new network interfaces that are added later, such
as interfaces associated with a dial up connection. Therefore, the Smart Agent is
meant for use in static network configurations.

Load balancing/ fault tolerance guidelines

- The Smart Agent implements load balancing using a simple round-robin algorithm on
a per agent basis, not on an ORB domain basis. For load balancing between server
replicas, when you have more than one Smart Agent in the ORB domain, make sure
all servers are registered with the same Smart Agent.

- The ORB runtime caches access to the Smart Agent, so multiple binds to the same
server object from the same ORB process do not result in round-robin behavior
because all subsequent attempts to bind to the object us the cache rather than
sending a new request to the Smart Agent. This behavior can be changed using ORB
properties. For more information, refer to the VisiBroker Programmer's Reference,
“Using VisiBroker properties.”

- When a Smart Agent is terminated, all servers that were registered with that agent
attempt to locate another agent with which to register. This process is automatic, but
may take up to two minutes for the server to perform this function. During that two
minute window, the server is not registered in the ORB domain and therefore is not
available to new clients. However, this does not affect ongoing IIOP communications
between the server and clients that were previously bound.

Location service guidelines
The location service is built upon the Smart Agent technology. Therefore, the location
service is subject to the same guidelines described above.

- The location service triggers generate UDP traffic between the Smart Agent and the
trigger handlers registered by applications. Use of this feature should be limited to
less than 10 objects, monitored by less than 10 processes.

158 VisiBroker for C++ Developer’s Guide

What is the Smart Agent?

- The location service triggers fire when the Smart Agent determines that an object is
available or down. There may be a delay of up to four minutes for a “down” trigger to
fire. For this reason, you may not want to use this feature for time critical
applications.

For more information about the Location Service, refer to “Using the Location Service.”

When not to use a Smart Agent

- When the ORB domain spans a large number (greater than 5) of subnets.
Maintaining the agentaddr files for a large ORB domain spread over a large number
of subnets is difficult to manage.

- When the name space requires a large number (greater than 100) of well known
objects.

- When the number of applications (clients) that require the Smart Agent consistently
exceeds 100 in a 10 minute period.
Note

In the above situations an alternative directory, such as the Naming Service, may be
more appropriate. Refer to “Using the VisiNaming Service” for more information.

Locating Smart Agents

VisiBroker locates a Smart Agent for use by a client program or object implementation
using a broadcast message. The first Smart Agent to respond is used. After a Smart
Agent has been located, a point-to-point UDP connection is used for sending
registration and look-up requests to the Smart Agent.

The UDP protocol is used because it consumes fewer network resources than a TCP
connection. All registration and locate requests are dynamic, so there are no required
configuration files or mappings to maintain.

Note

Broadcast messages are used only to locate a Smart Agent. All other communication
with the Smart Agent makes use of point-to-point communication. For information on
how to override the use of broadcast messages, see “Using point-to-point
communications”.

Locating objects through Smart Agent cooperation

When a Smart Agent is started on more than one host in the local network, each Smart
Agent will recognize a subset of the objects available and communicate with other
Smart Agents to locate objects it cannot find. If one of the Smart Agent processes
should terminate unexpectedly, all implementations registered with that Smart Agent
discover this event and they will automatically re register with another available Smart
Agent.

Cooperating with the OAD to connect with objects

Object implementations may be registered with the Object Activation Daemon (OAD)
so they can be started on demand. Such objects are registered with the Smart Agent
as if they are actually active and located within the OAD. When a client requests one of
these objects, it is directed to the OAD. The OAD then forwards the client request to
the actual server. The Smart Agent does not know that the object implementation is not
truly active within the OAD. For more information about the OAD, see “Using the Object
Activation Daemon (OAD).”

13: Using the Smart Agent 159

What is the Smart Agent?

Starting a Smart Agent (osagent)

At least one instance of the Smart Agent should be running on a host in your local
network. Local network refers to a subnetwork in which broadcast messages can be
sent.

Windows

To start the Smart Agent:
- Double-click the osagent executible osagent .exe located in:

<install_dir\bin\
or
- At the Command Prompt, enter: osagent [options]. For example:

prompt> osagent [options]

UNIX

To start the Smart Agent, enter: osagent &. For example:

prompt> osagent &

Note

Due to signal handling changes, bourne and korn shell users need to use the
ignoreSignal hup parameter when starting osagent in order to prevent the hangup (hup)
signal from terminating the process when the user logs out. For example:

nohup SVBROKERDIR/bin/osagent ignoreSignal hup &

The osagent command accepts the following command line arguments:

Option Description

-p <UDP_port> | Overrides the setting of 0saGENT_PORT and the registry setting.

-v Turns verbose mode on, which provides information and diagnostic
messages during execution.

-help or -? Prints the help message.

-1 Turns off logging if 0SAGENT_LOGGING_ON is set.

-1s <size> Specifies trimming log size of 1024KB block. Max value is 300, therefore
largest log size is 300MB

+1 <options> Show/enable logging level. Options supported are:
m Turnlogging on and enable level "ief" (== +1 oief), equivalent to

OSAGENT_LOGGING_ON set. Logs are auto-trim and written to 0SAGENT LOG_DIR
or VBROKER_ADM directory if set. Otherwise default is to /tmp on UNIX and
$TEMP% on Windows.

i - Informational
e - Error

w - Warning

f - Fatal

d - Debugging
a-All

-n, -N Disables system tray icon on Windows.

Example:
The following example of the osagent command specifies a particular UDP port:
osagent -p 17000

160 VisiBroker for C++ Developer’s Guide

What is the Smart Agent?

Verbose output

UNIX

On UNIX, the verbose output is sent to stdout.

Windows

On Windows, the verbose output is written to a log file stored in either of the following
locations:

- C:\TEMP\vbroker\log\osagent.log.

- the directory specified by the VBROKER_ADM environment variable.

Note

To specify a different directory in which to write the log file, use 0SAGENT_LOG_DIR. To
configure logging options you can right-click the Smart Agent icon and select Log
Options.

Disabling the agent

Communication with the Smart Agent can be disabled by passing the VisiBroker ORB
the property at runtime:

prompt> Server -Dvbroker.agent.enablelLocator=false

If using string-to-object references, a naming service, or passing in a URL reference,
the Smart Agent is not required and can be disabled. If you pass an object name to the
bind() method, you must use the Smart Agent.

Ensuring Smart Agent availability

Starting a Smart Agent on more than one host within the local network allows clients to
continually bind to objects, even if one Smart Agent terminates unexpectedly. If a
Smart Agent becomes unavailable, all object implementations registered with that
Smart Agent will be automatically re-registered with another Smart Agent. If no Smart
Agents are running on the local network, object implementations will continue retrying
until a new Smart Agent is contacted.

If a Smart Agent terminates, any connections between a client and an object
implementation established before the Smart Agent terminated will continue without
interruption. However, any new bind () requests issued by a client causes a new Smart
Agent to be contacted.

No special coding techniques are required to take advantage of these fault-tolerant
features. You only need to be sure a Smart Agent is started on one or more host on the
local network.

Checking client existence

A Smart Agent sends an “are you alive” message (often called a heartbeat message) to
its clients every two minutes to verify the client is still connected. If the client does not
respond, the Smart Agent assumes the client has terminated the connection.

You can not change the interval for polling the client.

Note

The use of the term “client” does not necessarily describe the function of the object or
process. Any program that connects to the Smart Agent for object references is a
client.

13: Using the Smart Agent 161

Working within VisiBroker ORB domains

Working within VisiBroker ORB domains

It is often useful to have two or more VisiBroker ORB domains running at the same
time. One domain might consist of production versions of client programs and object
implementations, while another domain might consist of test versions of the same
clients and objects that have not yet been released for general use. If several
developers are working on the same local network, each may want to establish their
own VisiBroker ORB domain so that their tests do not conflict with one another.

Figure 13.1 Running separate VisiBroker ORB domains simultaneously

Fvizibroker ORB &

Yizibroker ORB |
Smart agent

Smart agent

| Client &pplication § Clignt &pplication |

Test Domain

Production Darmain

Cbject Impl. Ohiject Impl.

Ohbject Impl. Ohbject Impl.

VisiBroker allows you to distinguish between multiple VisiBroker ORB domains on the
same network by using unique UDP port numbers for the Smart Agents of each
domain. By default, the 0SAGENT_PORT variable is set to 14000. If you wish to use a
different port number, check with your system administrator to determine what port
numbers are available.

To override the default setting, the 0SAGENT_PORT variable must be set accordingly
before running a Smart Agent, an OAD, object implementations, or client programs
assigned to that VisiBroker ORB domain. For example,

prompt> setenv OSAGENT_PORT 5678
prompt> osagent &
prompt> oad &

The Smart Agent uses an additional internal port number for both TCP and UDP
protocols, the port number is the same for both. This port number is set by using the
OSAGENT_CLIENT_HANDLER_PORT environment variable.

162 VisiBroker for C++ Developer’s Guide

Connecting Smart Agents on different local networks

Connecting Smart Agents on different local networks

If you start multiple Smart Agents on your local network, they will discover each other
by using UDP broadcast messages. Your network administrator configures a local
network by specifying the scope of broadcast messages using the IP subnet mask. The
following figure shows two local networks connected by a network link.

Figure 13.2 Two Smart Agents on separate local networks

wisibrojer ORBE
srmart agent
199.10.9.5

“Wisibrojer ORE

=mart agent
101.10.2.5

Local Metwork * Local Metwork * 2

Object Impl.

To allow the Smart Agent on one network to contact a Smart Agent on another local
network, use the 0SAGENT_ADDR_FILE environment variable, as shown in the following
example:

setenv OSAGENT_ADDR_FILE=<path to agent addr file>

Alternatively, use the vbroker.agent.addrFile property, as shown in the following
example:

vbj -Dvbroker.agent.addrFile=<path to agent addr file>

The following example shows what the agentaddr file would contain to allow a Smart
Agent on Local Network #1 to connect to a Smart Agent on another local network.

101.10.2.6

With the appropriate agentaddr file, a client program on Network #1 locates and uses
object implementations on Network #2. For more information on environment variables,
see the Borland VisiBroker Installation Guide.

Note

If a remote network has multiple Smart Agents running, you should list all the IP
addresses of the Smart Agents on the remote network.

How Smart Agents detect each other

Suppose two agents, Agent 1 and Agent 2, are listening on the same UDP port from
two different machines on the same subnet. Agent 1 starts before Agent 2. The
following events occur:

- When Agent 2 starts, it UDP broadcasts its existence and sends a request message
to locate any other Smart Agents.

- Agent 1 makes note that Agent 2 is available on the network and responds to the
request message.

- Agent 2 makes note that another agent, Agent 1, is available on the network.

If Agent 2 is terminated gracefully (such as killing with Ctri+C), Agent 1 is notified that
Agent 2 is no longer available.

13: Using the Smart Agent 163

Working with multihomed hosts

Working with multihomed hosts

When you start the Smart Agent on a host that has more than one IP address (known
as a multihomed host), it can provide a powerful mechanism for bridging objects
located on separate local networks. All local networks to which the host is connected
will be able to communicate with a single Smart Agent, therefore bridging the local
networks.

Figure 13.3 Smart Agent on a multihomed host

multimedia Host

r |
1

Local
netveork2

Local
netweork #1

IEliEI‘I‘t [alfals =Ty

UNIX

On a multihomed UNIX host, the Smart Agent dynamically configures itself to listen
and broadcast on all of the host's interfaces which support point-to-point connections
or broadcast connections. You can explicitly specify interface settings using the
localaddr file as described in “Specifying interface usage for Smart Agents”.

Windows

On a multihomed Windows host, the Smart Agent is not able to dynamically determine
the correct subnet mask and broadcast address values. To overcome this limitation,
you must explicitly specify the interface settings you want the Smart Agent to use with
the localaddr file.

When you start the Smart Agent with the -v (verbose) option, each interface that the
Smart Agent uses will be listed at the beginning of the messages produced. The
example below shows the sample output from a Smart Agent started with the verbose
option on a multihomed host.

Bound to the following interfaces:
Address: 199.10.9.5 Subnet: 255.255.255.0 Broadcast:199.10.9.255
Address: 101.10.2.6 Subnet: 255.255.255.0 Broadcast:101.10.2.255

The above output shows the address, subnet mask, and broadcast address for each
interface in the machine.

UNIX

The above output should match the results from the UNIX command ifconfig -a.

If want to override these settings, configure the interface information in the localaddr
file. See “Specifying interface usage for Smart Agents” for details.

Specifying interface usage for Smart Agents

Note

It is not necessary to specify interface information on a single-homed host.

You can specify interface information for each interface you wish the Smart Agent to
use on your multihomed host in the localaddr file. The localaddr file should have a
separate line for each interface that contains the host's IP address, subnet mask, and

164 VisiBroker for C++ Developer’s Guide

Using point-to-point communications

broadcast address. By default, VisiBroker searches for the localaddr file in the
VBROKER_ADM directory. You can override this location by setting the 0SAGENT_LOCAL_FILE
environment variable to point to this file. Lines in this file that begin with a “4” character,
and are treated as comments and ignored. The code sample below shows the contents
of the localaddr file for the multihomed host listed above.

tentries of format <address> <subnet_mask> <broadcast address>

199.10.9.5 255.255.255.0 199.10.9.255
101.10.2.6 255.255.255.0 101.10.2.255

UNIX

Though the Smart Agent can automatically configure itself on a multihomed host on
UNIX, you can use the localaddr file to explicitly specify the interfaces that your host
contains. You can display all available interface values for the UNIX host by using the
following command:

prompt> ifconfig -a
Output from this command appears similar to the following:

1o0: flags=849<UP, LOOPBACK, RUNNING, MULTICAST> mtu 8232
inet 127.0.0.1 netmask ££000000

le0: flags=863<UP, BROADCAST, NOTRAILERS, RUNNING, MULTICAST> mtu 1500
inet 199.10.9.5 netmask ffffff00 broadcast 199.10.9.255

lel: flags=863<UP, BROADCAST, NOTRAILERS, RUNNING, MULTICAST> mtu 1500
inet 101.10.2.6 netmask ffffff00 broadcast 101.10.2.255

Windows

The use of the localaddr file with multihomed hosts is required for hosts running
Windows because the Smart Agent is not able to automatically configure itself. You
can obtain the appropriate values for this file by accessing the TCP/IP protocol
properties from the Network Control Panel. If your host is running Windows, the
ipconfig command will provide the needed values. This command is as follows:

prompt> ipconfig
Output from this command appears similar to the following:
Ethernet adapter E190x1:

IP Address. : 172.20.30.56

Subnet Mask : 255.255.255.0

Default Gateway : 172.20.0.2
Ethernet adapter Elnk32:

IP Address. : 101.10.2.6

Subnet Mask : 255.255.255.0

Default Gateway : 101.10.2.1

Using point-to-point communications

VisiBroker provides three different mechanisms for circumventing the use of UDP
broadcast messages for locating Smart Agent processes. When a Smart Agent is
located with any of these alternate approaches, that Smart Agent will be used for all
subsequent interactions. If a Smart Agent cannot be located using any of these
alternate approaches, VisiBroker will revert to using the broadcast message scheme to
locate a Smart Agent.

Specifying a host as a runtime parameter

The code sample below shows how to specify the IP address where a Smart Agent is
running as a runtime parameter for your client program or object implementation. Since
specifying an IP address will cause a point-to-point connection to be established, you
can even specify an IP address of a host located outside your local network. This
mechanism takes precedence over any other host specification.

13: Using the Smart Agent 165

Ensuring object availability

prompt> Server -Dvbroker.agent.addr=<ip_address>

You can also specify the IP address through the properties file. Look for the
vbroker.agent.addr entry.

vbroker.agent.addr=<ip_address>
By default, vbroker.agent.addr in the properties file is set to NULL.

You can also list the host names where the agent might reside and then point to that
file with the vbroker.agent.addrFile option in the properties file.

Specifying an IP address with an environment variable

You can specify the IP address of a Smart Agent by setting the 0SAGENT_ADDR
environment variable prior to starting your client program or object implementation.
This environment variable takes precedence if a host is not specified as a runtime
parameter.

UNIX
prompt> setenv OSAGENT_ADDR 199.10.9.5
prompt> client

Windows

To set the 0SAGENT_ADDR environment variable on a Windows system, you can use the
System control panel and edit the environment variables:

1 Under System Variables, select any current variable.
2 Type OSAGENT_ADDR in the Variable edit box.
3 Type the IP address in the Value edit box. For example, 199.10.9.5.

Specifying hosts with the agentaddr file

Your client program or object implementation can use the agentaddr file to circumvent
the use of a UDP broadcast message to locate a Smart Agent. Simply create a file
containing the IP addresses or fully qualified hosthames of each host where a Smart
Agent is running and then set the 0SAGENT_ADDR_FILE environment variable to point to
the path of the file. When a client program or object implementation has this
environment variable set, VisiBroker will try each address in the file until a Smart Agent
is located. This mechanism has the lowest precedence of all the mechanisms for
specifying a host. If this file is not specified, the VBROKER_ADM/agentaddr file is used.

Ensuring object availability

You can provide fault tolerance for objects by starting instances of those objects on
multiple hosts. If an implementation becomes unavailable, the VisiBroker ORB will
detect the loss of the connection between the client program and the object
implementation and will automatically contact the Smart Agent to establish a
connection with another instance of the object implementation, depending on the
effective rebind policy established by the client. For more information on establishing
client policies, see “Using Quality of Service (QoS)”.

Note

The Smart Agent implements load balancing using a simple round-robin algorithm on a
per agent basis, not on an ORB domain basis. For load balancing between server
replicas, when you have more than one Smart Agent in the ORB domain, make sure all
servers are registered with the same Smart Agent.

Important

The rebind option must be enabled if VisiBroker is to attempt reconnecting the client
with an instance object implementation. This is the default behavior.

166 VisiBroker for C++ Developer’s Guide

Migrating objects between hosts

Invoking methods on stateless objects

Your client program can invoke a method on an object implementation which does not
maintain state without being concerned if a new instance of the object is being used.

Achieving fault-tolerance for objects that maintain state

Fault tolerance can also be achieved with object implementations that maintain state,
but it will not be transparent to the client program. In these cases, your client program
must either use the Quality of Service (QoS) policy VB_NOTIFY_REBIND or register an
interceptor for the VisiBroker ORB object. For information on using QoS, see “Using
Quality of Service (QoS)”.

When the connection to an object implementation fails and VisiBroker reconnects the
client to a replica object implementation, the bind method of the bind interceptor will be
invoked by VisiBroker. The client must provide an implementation of this bind method
to bring the state of the replica up to date. Client interceptors are described in “Client
Interceptors”.

Replicating objects registered with the OAD

The OAD ensures greater object availability because if the object goes down, the OAD
will restart it. If you want fault tolerance for hosts that may become unavailable, the
OAD must be started on multiple hosts and the objects must be registered with each
OAD instance.

Note

The type of object replication provided by VisiBroker does not provide a multicast or
mirroring facility. At any given time there is always a one-to-one correspondence
between a client program and a particular object implementation.

Migrating objects between hosts

Object migration is the process of terminating an object implementation on one host,
and then starting it on another host. Object migration can be used to provide load
balancing by moving objects from overloaded hosts to hosts that have more resources
or processing power (there is no load balancing between servers registered with
different Samrt Agents.) Object migration can also be used to keep objects available
when a host is shutdown for hardware or software maintenance.

Note

The migration of objects that do not maintain state is transparent to the client program.
If a client is connected to an object implementation that has migrated, the Smart Agent
will detect the loss of the connection and transparently reconnect the client to the new
object on the new host.

Migrating objects that maintain state

The migration of objects that maintain state is also possible, but it will not be
transparent to a client program that has connected before the migration process
begins. In these cases, the client program must register an interceptor for the object.

When the connection to the original object is lost and VisiBroker reconnects the client
to the object, the interceptor's rebind_succeeded () method will be invoked by VisiBroker.
The client can implement this method to bring the state of the object up to date.

Refer to “Using Portable Interceptors” for more information about how to use the
interceptors.

13: Using the Smart Agent 167

Reporting all objects and services

Migrating instantiated objects

If the objects that you wish to migrate were created by a server process instantiating
the implementation's class, you need only start it on a new host and terminate the
server process. When the original instance is terminated, it will be unregistered with the
Smart Agent. When the new instance is started on the new host, it will register with the
Smart Agent. From that point on, client invocations are routed to the object
implementation on the new host.

Migrating objects registered with the OAD

If VisiBroker objects that you wish to migrate are registered with the OAD, you must
first unregister them with the OAD on the old host. Then, reregister them with the OAD
on the new host.

Use the following procedure to migrate objects already registered with the OAD:
1 Unregister the object implementation from the OAD on the old host.

2 Register the object implementation with the OAD on the new host.

3 Terminate the object implementation on the old host.

See “Using the Object Activation Daemon (OAD)” for detailed information on
registering and unregistering object implementations.

Reporting all objects and services

The Smart Finder (0osfind) command reports on all VisiBroker related objects and
services which are currently available on a given network.

You can use osfind to determine the number of Smart Agent processes running on the
network and the exact host on which they are executing. The osfind command also
reports on all VisiBroker objects that are active on the network if these objects are
registered with the Smart Agent. You can use osfind to monitor the status of the
network and locate stray objects during the debugging phase.

The osfind command has the following syntax:
osfind [options]

The following options are valid with osfind. If no options are specified, osfind lists all of
the agents, OAD's, and implementations in your domain.

Option Description

-a Lists all Smart Agents in your domain.

-b Uses the VisiBroker 2.0 backward compatible osfind
mechanism.

-d Prints hostnames as quad addresses.

-f <agent_address_file_name> | Queries Smart Agents running on the hosts specified in the
file. This file contains one IP address or fully qualified host
name per line. Note that this file is not used when reporting
all Smart Agents; it is only used when reporting objects
implementations and services.

-g Verifies object existence. This can cause considerable delay
on loaded systems. Only objects registered BY_INSTANCE are

verified for existence. Objects that are either registered with
the OAD, or those registered Bv_poa policy are not verified for

existence.
-h, -help, -usage, -? Prints help information for this option.
-0 Lists all OADs in your domain.
-p Lists all POA instances activated on the same host. Without

this option only unique POA names are listed.

168 VisiBroker for C++ Developer’s Guide

Binding to Objects

Windows

osfind is a console application. If you start osfind from the Start menu, it runs until
completion and exits before you can view the results.

Binding to Objects

Before your client application invokes a method on an interface it must first obtain an
object reference using the bind () method.

When your client application invokes the bind () method, VisiBroker performs several
functions on behalf of your application. These are shown below.

- VisiBroker contacts the osagent to locate an object server that is offering the
requested interface. If an object name and a host name (or IP address) are specified,
they will be used to further qualify the directory service search.

- When an object implementation is located, VisiBroker attempts to establish a
connection between the object implementation that was located and your client
application.

- If the connection is successfully established, VisiBroker will create a proxy object if
necessary, and return a reference to that object.
Note

VisiBroker is not a separate process. It is a collection of classes and other resources
that allow communication between clients and servers.

13: Using the Smart Agent 169

170 VisiBroker for C++ Developer’s Guide

Using the Location Service

The VisiBroker Location Service provides enhanced object discovery that enables you
to find object instances based on particular attributes. Working with VisiBroker Smart
Agents, the Location Service notifies you of what objects are presently accessible on
the network, and where they reside. The Location Service is a VisiBroker extension to
the CORBA specification and is only useful for finding objects implemented with
VisiBroker. For more information on the Smart Agent (osagent), see “Using the Smart
Agent.”

What is the Location Service?

The Location Service is an extension to the CORBA specification that provides
general-purpose facilities for locating object instances. The Location Service
communicates directly with one Smart Agent which maintains a catalog, which
contains the list of the instances it knows about. When queried by the Location Service,
a Smart Agent forwards the query to the other Smart Agents, and aggregates their
replies in the result it returns to the Location Service.

The Location Service knows about all object instances that are registered on a POA
with the BY_INSTANCE Policy and objects that are registered as persistent on a BOA. The
server containing these objects may be started manually or automatically by the OAD.
For more information, see “Using POAs”, “Using the BOA with VisiBroker”, and “Using
the Object Activation Daemon (OAD).”

The following diagram illustrates this concept.
Figure 14.1 Using the Smart Agent to find instances of objects

. & Query for all
|] object retums
ul Smart agent EOE
Smart agent
e— .
Location W = Registration of an active object
Smart agent Service [] = Registration of an activable object

Note

A server specifies an instance's scope when it creates the instance. Only globally-
scoped instances are registered with Smart Agents.

14: Using the Location Service 171

Location Service components

The Location Service can make use of the information the Smart Agent keeps about
each object instance. For each object instance, the Location Service maintains
information encapsulated in the structure ObjLocation: :Desc shown below.

struct Desc {
Object ref;
::II0P::ProfileBodyValue iiop_locator;
string repository_id;
string instance_name;
boolean activable;
string agent_hostname;
}i
typedef sequence<Desc> DescSeq;

The IDL for the Desc structure contains the following information:
- The object reference, ref, is a handle for invoking the object.

- The iiop_locator interface provides access to the host name and the port of the
instance's server. This information is only meaningful if the object is connected with
IIOP, which is the only supported protocol. Host names are returned as strings in the
instance description.

- The repository_ id, which is the interface designation for the object instance that can
be looked up in the Interface and Implementation Repositories. If an instance
satisfies multiple interfaces, the catalog contains an entry for each interface, as if
there were an instance for each interface.

- The instance_name, which is the name given to the object by its server.

- The activable flag, which differentiates between instances that can be activated by
an OAD and instances that are started manually.

- The agent_hostname, the name of the Smart Agent with which the instance is
registered.

The Location Service is useful for purposes such as load balancing and monitoring.
Suppose that replicas of an object are located on several hosts. You could deploy a
bind interceptor that maintains a cache of the host names that offer a replica and each
host's recent load average. The interceptor updates its cache by asking the Location
Service for the hosts currently offering instances of the object, and then queries the
hosts to obtain their load averages. The interceptor then returns an object reference for
the replica on the host with the lightest load. For more information about writing
interceptors, see “Using Portable Interceptors” and “Using VisiBroker Interceptors.”

Location Service components

The Location Service is accessible through the Agent interface. Methods for the Agent
interface can be divided into two groups: those that query a Smart Agent for data
describing instances and those that register and unregister triggers. Triggers provide a
mechanism by which clients of the Location Service can be notified of changes to the
availability of instances.

What is the Location Service agent?

The Location Service agent is a collection of methods that enable you to discover
objects on a network of Smart Agents. You can query based on the interface's
repository ID, or based on a combination of the interface's repository ID and the
instance name. Results of a query can be returned as either object references or more
complete instance descriptions. An object reference is simply a handle to a specific
instance of the object located by a Smart Agent. Instance descriptions contain the
object reference, as well as the instance's interface name, instance name, host name
and port number, and information about its state (for example, whether it is running or
can be activated).

172 VisiBroker for C++ Developer’s Guide

Location Service components

Note

The locserv executable no longer exists since the service is now part of the core
VisiBroker ORB.

The figure below illustrates the use of interface repository IDs and instance names
given the following example IDL:

module Automobile {
interface Car{...};
interface Sedan:Car {...};

}
Figure 14.2 Use of interface repository IDs and instance names

IOL: ButornobiledCard.0 | < Keri's car ¢ 1 interface Repository

10L: dstornobilefSedan:1.0 |- . - . - -

Given the previous example, the following diagram visually depicts Smart Agents on a
network with references to instances of Car. In this example, there are three instances:
one instance of Keri's Car and two replicas of Tom's Car.

Figure 14.3 Smart Agents on a network with instances of an interface

i Lacation L =0bject instancy
Senvice
- - - - - - <>=Smart.au;|ent
Athena Server '!P?E__"__E__C_.a_f ; <>
.Tam's ¢ar
Zeus Senver

The following sections explain how the methods provided by the Agent class can be
used to query VisiBroker Smart Agents for information. Each of the query methods can
raise the Fail exception, which provides a reason for the failure.

Obtaining addresses of all hosts running Smart Agents

Using the HostnameSeq method, you can find out which servers are hosting VisiBroker
Smart Agents. In the example shown in the figure below, this method would return the
addresses (such as, IP address string) of two servers: Athena and Zeus.

Finding all accessible interfaces

You can query the VisiBroker Smart Agents on a network to find out about all
accessible interfaces. To do so, you can use the RepositoryIDSeq method. In the
example shown in the following figure, this method would return the repository IDs of
two interfaces: Car and Sedan.

Note

Earlier versions of the VisiBroker ORB used IDL interface names to identify interfaces,
but the Location Service uses the repository id instead. To illustrate the difference, if an
interface name is:

::modulel::module2::interface
the equivalent repository id is:
IDL:modulel/module2/interface:1.0
For the example shown in the figure above, the repository ID for Car would be:
IDL:Automobile/Car:1.0
and the repository ID for Sedan would be:
IDL:Automobile/Sedan:1.0

14: Using the Location Service 173

Location Service components

Obtaining references to instances of an interface
You can query VisiBroker Smart Agents on a network to find all available instances of a
particular interface. When performing the query, you can use either of these methods:

Method Description

CORBA: :ObjectSeq* all_instances (const char* _repository_id) |Use this method to return object
references to instances of the
interface.

DescSeq* all_instances_descs(const char* _repository_id) Use this method to return an
instance description for
instances of the interface.

In the example shown in the figure above, a call to either method with the request
IDL:Automobile/Car:1.0 would return three instances of the Car interface: Tom's Car on
Athena, Tom's Car on Zeus, and Keri's Car. The Tom's Car instance is returned twice
because there are occurrences of it with two different Smart Agents.

Obtaining references to like-named instances of an interface

Using one of the following methods, you can query VisiBroker Smart Agents on a
network to return all occurrences of a particular instance name.

Method Description

CORBA: :ObjectSeq* all_replica(const char* _repository_id, Use this method to return object

const char*_instance_name) references to like-named
instances of the interface.

DescSeq all_replica_descs (const char*_repository_id, Use this method to return an

const char* _instance_name) instance description for like-

named instances of the interface.

In the example shown in the previous figure, a call to either method specifying the
repository ID IDL:Automobile/Sedan:1.0 and instance name Tom's Car would return two
instances because there are occurrences of it with two different Smart Agents.

What is a trigger?

A trigger is essentially a callback mechanism that lets you determine changes to the
availability of a specified instance. It is an asynchronous alternative to polling an Agent,
and is typically used to recover after the connection to an object has been lost.
Whereas queries can be employed in many ways, triggers are special-purpose.

Looking at trigger methods
The trigger methods in the Agent class are described in the following tables:

Methods Description

void reg_trigger (const Use this method to register a trigger handler.
TriggerDescé _desc,TriggerHandler_ptr _handler)

void unreg_trigger (const Use this method to unregister a trigger
TriggerDesc& _desc,TriggerHandler_ptr _handler) |[handler.

Both of the Agent trigger methods can raise the Fail exception, which provides a
reason for the failure.

The TriggerHandler interface consists of the methods described in the following tables:

Method Description

void impl_is_ready(const Desc& _desc) |This method is called by the Location Service when an
instance matching the desc becomes accessible.

void impl_is_down(const Desc& _desc) | This method is called by the Location Service when an
instance becomes unavailable.

174 VisiBroker for C++ Developer’s Guide

Querying an agent

Creating triggers

A TriggerHandler is a callback object. You implement a TriggerHandler by deriving from
theTriggerHandlerPOA class (or the TriggerHandlerImpl class with BOA), and
implementing its impl_is_ready () and impl_is_down() methods. To register a trigger
with the Location Service, you use the reg_trigger () method in the Agent interface.
This method requires that you provide a description of the instance you want to
monitor, and the TriggerHandler object you want invoked when the availability of the
instance changes. The instance description (TriggerDesc) can contain combinations of
the following instance information: repository ID, instance name, and host name. The
more instance information you provide, the more particular your specification of the
instance.

struct TriggerDesc {
string repository_id;
string instance_name;
string host_name;

¥

Note

If a field in the TriggerDesc is set to the empty string (""), it is ignored. The default for
each field value is the empty string.

For example, a TriggerDesc containing only a repository ID matches any instance of the
interface. Looking back to our example in the figure above, a trigger for any instance of
IDL:Automobile/Car:1.0 would occur when one of the following instances becomes
available or unavailable: Tom's Car on Athena, Tom's Car on Zeus, or Keri's Car.
Adding an instance name of “Tom's Car” to the TriggerDesc tightens the specification
so that the trigger only occurs when the availability of one of the two “Tom's Car’
instances changes. Finally, adding a host name of Athena refines the trigger further so
that it only occurs when the instance Tom's Car on the Athena server becomes
available or unavailable.

Looking at only the first instance found by a trigger

Triggers are “sticky.” A TriggerHandler is invoked every time an object satisfying the
trigger description becomes accessible. You may only be interested in learning when
the first instance becomes accessible. If this is the case, invoke the Agent's
unreg_trigger () method to unregister the trigger after the first occurrence is found.

Querying an agent

This section contains two examples of using the Location Service to find instances of
an interface. The first example uses the Account interface shown in the following IDL
excerpt:

// Bank.idl
module Bank {
interface Account {
float balance();
}i
interface AccountManager {
Account open (in string name);
}i
}i

Finding all instances of an interface

The following code sample uses the all_instances () method to locate all instances of
the Account interface. Notice that the Smart Agents are queried by passing
“LocationService” to the ORB: :resolve_initial_references() method, then narrowing

14: Using the Location Service 175

Querying an agent

the object returned by that method to an ObjLocation: :Agent . Notice, as well, the
format of the Account repository id: IDL:Bank/Account:1.0.

Finding all instances satisfying the AccountManager interface:

#include "corba.h"
tinclude "locate_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the std namespace
USE_STD_NS
int main(int argc, char** argv) {
try {
// ORB initialization
CORBA: :ORB_var the_orb = CORBA::ORB_init (argc, argv);

// Obtain a reference to the Location Service

CORBA: :Object_var obj = the_orb->
resolve_initial_references("LocationService");

if (CORBA::is_nil(obj)) {
cout << "Unable to locate initial LocationService" << endl;
return 0;

}

ObjLocation::Agent_var the_agent = ObjLocation::Agent::_narrow(obj);

// Query the Location Service for all implementations of
// the Account interface
ObjLocation::0bjSeq _var accountRefs =
the_agent->all_instances ("IDL:Bank/AccountManager:1.0");
cout << "Obtained " << accountRefs->length()
<< " Account objects" << endl;
for (CORBA::ULong 1=0; 1 < accountRefs->length(); i++) {
cout << "Stringified IOR for account #" << 1 <<
"' << endl;
CORBA::String_var stringified_ior(the_orb
->object_to_string(accountRefs[i]));
cout << stringified_ior << endl;
cout << endl;
}
}
catch (const CORBA::Exception& e) {
cout << "Caught exception: " << e << endl;
return 0;

}

return 1;

}

Finding interfaces and instances known to Smart Agents

The following code sample shows how to find everything known to Smart Agents. It
does this by invoking the all_repository_ids() method to obtain all known interfaces.
Then it invokes the all_instances_descs () method for each interface to obtain the
instance descriptions.

Finding everything known to a Smart Agent:

tinclude "corba.h"
tinclude "locate_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the std namespace

// if it exists
USE_STD_NS

176 VisiBroker for C++ Developer’s Guide

Querying an agent

int DisplaybyRepID(CORBA::ORB_ptr the_orb,

}

ObjLocation::Agent_var the_agent,
char * myRepId) {

ObjLocation::0bjSeq_var accountRefs;
accountRefs = the_agent->all_instances (myRepId);
cout << "Obtained " << accountRefs->length()
<< " Account objects" << endl;
for (CORBA::ULong i1=0; i < accountRefs->length(); i++) {
cout << "Stringified IOR for account #" << 1 << ":"
<< endl;
CORBA: :String_var stringified_ior(
the_orb->object_to_string(accountRefs([i]));
cout << stringified_ior << endl;
cout << endl;
}

return(l);

void PrintUsage(char * name) {

}

cout << "\nUsage: \n" << endl;

cout << "\t" << name << " [Rep ID]" << endl;

cout << "\n\tWith no argument, finds and prints all objects" << endl;
cout << "\tOptional rep ID searches for specific rep ID\n" << endl;

int main(int argc, char** argv) {

char myRepId[255] = "";
if (argc == 2) {
if (!stremp(argv[l], "-h") |
Istremp (argv[1l], "-2")) {
PrintUsage (argv[0]);
exit(0);
} else {
strecpy (myRepld, argv[1]);

| !strcmp(argv([1l], "/?") |

else if (argc > 2) {
PrintUsage (argv[0]);
exit(0);
}
try {
CORBA: :ORB_ptr the_orb = CORBA::ORB_init (argc, argv);
CORBA: :Object_ptr obj = the_orb->
resolve_initial_references("LocationService");
if (CORBA::is_nil(obj)) {
cout << "Unable to locate initial LocationService" << endl;
return 0;
}
ObjLocation::Agent_var the_agent = ObjLocation::Agent::_narrow(obj);
ObjLocation::DescSeq_var descriptors;
//Display stringified IOR for RepID requested and exit

if (argc == 2) {
DisplaybyRepID(the_orb, the_agent, myRepId);
exit(0);

}

//Report all hosts running osagents

ObjLocation: :HostnameSeq_var HostsRunningAgents =
the_agent->all_agent_locations();

cout << "Located " << HostsRunningAgents->length()

14: Using the Location Service

177

Writing and registering a trigger handler

<< " Hosts running Agents" << endl;
for (CORBA::ULong k=0; k<HostsRunningAgents->length(); k++) {
cout << "\tHost #" << (k+1) << ": "
<< (const char*) HostsRunningAgents(k] << endl;
}
cout << endl;
// Find and display all Repository Ids
ObjLocation: :RepositoryIdSeq_var repIlds = the_agent->all_repository_ids();
cout << "Located " << replds->length() <<
" Repository Ids" << endl;
for (CORBA::ULong j=0; j<repIds->length(); j++) {
cout << "\tRepository ID #" << (j+1) << ": "
<< replds[j] << endl;
}
// Find all Object Descriptors for each Repository Id
for (CORBA::ULong i=0; 1 < repIds->length(); i++) {
descriptors = the_agent->all_instances_descs(repIds[i]);
cout << endl;
cout << "Located " << descriptors->length()
<< " objects for " << (const char*) (repIds[i])
<< " (Repository Id #" << (i+l) << "):"
<< endl;
for (CORBA::ULong j=0; j < descriptors->length(); j++) {
cout << endl;
cout << (const char*) repIds[i] << " #" << (j+1)

<< ":" << endl;
cout << "\tInstance Name \t= " << descriptors[j].instance_name <<endl;
cout << "\tHost \t= " << descriptors([j].1iop_locator.host
<<endl;
cout << "\tPort \t= " << descriptors([j].iiop_locator.port
<<endl;

cout << "\tAgent Host \t= " << descriptors[j].agent_hostname <<endl;
cout << "\tActivable \t= " << (descriptors([j].activable?"YES":"NO")
<< endl;
}
}
} catch (const CORBA::Exception& e) {
cout << "CORBA Exception during execution of find_all: " << e << endl;
return 0;
}
return 1;

}

Writing and registering a trigger handler

The following code sample implements and registers a TriggerHandler. The
TriggerHandlerImpl's impl_is_ready () and impl_is_down () methods display the
description of the instance that caused the trigger to be invoked, and optionally
unregister itself.

If it unregisters itself, the method calls the CORBA: : 0RB: : shutdown () method which directs
the BOA to exit the main program's impl_is_ready () method so the program can
terminate.

178 VisiBroker for C++ Developer’s Guide

Writing and registering a trigger handler

Notice that the TriggerHandlerImpl class keeps a copy of the desc and Agent parameters
with which it was created. The unreg_trigger () method requires the desc parameter.
The Agent parameter is duplicated in case the reference from the main program is

released.
Implementing a trigger handler:

// AccountTrigger.c
#include "locate_s.hh"

// USE_STD_NS is a define set up by
USE_STD_NS

VisiBroker to use the std namespace

// Instances of this class will be called back by the Agent when the
// event for which it is registered happens.

class TriggerHandlerImpl
{
public:
TriggerHandlerImpl (

: public _sk_ObjLocation::_sk_TriggerHandler

ObjLocation::Agent_var agent,

const ObjLocation::TriggerDesc& initial_desc)

: _agent (ObjLocation::Agent::_duplicate(agent)),
_initial_desc(initial_desc) {}

void impl_is_ready (const ObjLocation::Desc& desc) {

notification(desc, 1);

}

void impl_is_down(const ObjLocation::Desc& desc) {

notification(desc, 0);

}

private:

void notification(const ObjLocation::Desc& desc, CORBA::Boolean isReady)

if (isReady) {
cout << "Implementation

is ready:" << endl;

} else {

cout << "Implementation is down:" << endl;
}
cout << "\tRepository Id = " << desc.repository_id << endl;
cout << "\tInstance Name = " << desc.instance_name << endl;
cout << "\tHost Name = " << desc.liop_locator.host << endl;
cout << "\tPort = " << desc.iiop_locator.port << endl;
cout << "\tAgent Host = " << desc.agent_hostname << endl;
cout << "\tActivable = " << (desc.activable? "YES" : "NO")

<< endl;

cout << endl;
cout << "Unregister this handler and exit (yes/no)? " << endl;
char prompt [256];
cin >> prompt;
if ((prompt[0] == 'y') || (prompt[0] == 'Y')) {

try {

_agent->unreg_trigger(_initial_desc, this);
}
catch (const ObjLocation::Fail& e) {
cout << "Failed to unregister trigger with reason=["

14: Using the Location Service 179

Writing and registering a trigger handler

<< (int) e.reason << "]" << endl;

}
cout << "exiting..." << endl;
CORBA: :ORB: : shutdown () ;
}
1
private:

ObjLocation::Agent_var _agent;
ObjLocation::TriggerDesc _initial_desc;
}i

int main(int argc, char* const * argv)
{
try {
CORBA::0RB_var the_orb = CORBA::0RB_init (argc, argv);
CORBA: :BOA_var boa = the_orb->BOA_init (argc, argv);
CORBA: :Object_var obj = the_orb->
resolve_initial_references("LocationService");
if (CORBA::is_nil(obj)) {
cout << "Unable to locate initial LocationService" << endl;
return 0;
1

ObjLocation::Agent_var the_agent = ObjLocation::Agent::_narrow(obj);

// Create the trigger descriptor to notify us about

// OSAgent changes with respect to Account objects
ObjLocation::TriggerDesc desc;

desc.repository_id = (const char*) "IDL:Bank/AccountManager:1.0";
desc.instance_name = (const char*) "";

desc.host_name = (const char*) "";

ObjLocation::TriggerHandler_var trig = new TriggerHandlerImpl (the_agent,
desc);
boa->0bj_is_ready (trig);
the_agent->reg_trigger (desc,trig);
boa->impl_1is_ready();
}
catch (const CORBA::Exception& e) {
cout << "account_trigger caught Exception: " << e << endl;
return 0;
1

return 1;

180 VisiBroker for C++ Developer’s Guide

Writing and registering a trigger handler

14: Using the Location Service 181

182 VisiBroker for C++ Developer’s Guide

Overview

Using the VisiNaming Service

This section describes the usage of the VisiBroker VisiNaming Service which is a
complete implementation of the CORBA Naming Service Specification Version 1.2
(formal/02—-09-02).

The VisiNaming Service allows you to associate one or more logical names with an
object reference and store those names in a namespace. With the VisiNaming Service,
your client applications can obtain an object reference by using the logical name
assigned to that object.

The figure below contains a simplified view of the VisiNaming Service that shows how
1 an object implementation can bind a name to one of its objects within a namespace.

2 client applications can then use the same namespace to resolve a name which
returns an object reference to a naming context or an object.

15: Using the VisiNaming Service 183

Understanding the namespace

Figure 15.1 Binding, resolving, and using an object name from a naming context within a namespace

4. Invoke methods

Object implementation on objects

Hamespace
<name_1, objref_1-
<name_ 2, objref_2>
bind{name, object_ref)

3. resolve {} returns

<name_x-1, ohjref_x-1 an object reference

2. resolve{name)

Client Application

There are some important differences to consider between locating an object
implementation with the VisiNaming Service as opposed to the Smart Agent.

- Smart Agent uses a flat namespace, while the VisiNaming Service uses a
hierarchical one.

- If you use the Smart Agent, an object's interface name is defined at the time you
compile your client and server applications. This means that if you change an
interface name, you must recompile your applications. In contrast, the VisiNaming
service allows object implementations to bind logical names to its objects at runtime.

- If you use the Smart Agent, an object may implement only one interface name. The
VisiNaming service allows you to bind more than one logical name to a single object.

For more information about the Smart Agent (osagent), see “Using the Smart Agent.”

Understanding the namespace

The figure below shows how the VisiNaming Service might be used to name objects
that make up an order entry system. This hypothetical order entry system organizes its
namespace by geographic region, then by department, and so on. The VisiNaming
Service allows you to organize the namespace in a hierarchical structure of
NamingContext objects that can be traversed to locate a particular name. For example,
the logical name NorthAmerica/ShippingDepartment /Orders could be used to locate an
Order object.

184 VisiBroker for C++ Developer’s Guide

Understanding the namespace

Figure 15.2 Naming scheme for an order entry system

Az

Europe

Marth America

Shipping Department | @

B
Sales Department > Invertory .-E““L -

\ Crders : E
Implementation
Cihject

Billi !
ng bl L. Acine Lumber - S

Irternational Supplies "
m -NamingContext e

Order

Customers

C} =Ohjectimplementstion

Naming contexts

To implement the namespace shown above with the VisiNaming Service, each of the
shadowed boxes in the diagram above, would be implemented by a NamingContext
object. A NamingContext object contains a list of Name structures that have been bound to
object implementations or to other NamingContext objects. Though a logical name may
be bound to a NamingContext, it is important to realize that a NamingContext does not, by
default, have a logical name associated with it nor is such a name required.

Object implementations use a NamingContext object to bind a name to an object that
they offer. Client applications use a NamingContext to resolve a bound name to an object
reference.

A NamingContextExt interface is also available which provides methods necessary for
using stringified names.

Naming context factories

A naming context factory provides the interface for bootstrapping the VisiNaming
Service. It has operations for shutting down the VisiNaming Service and creating new
contexts when there are none. Factories also have an additional API that returns the
root context. The root context provides a very critical role as a reference point. This is
the common starting point to store all data that are supposed to be publicly available.

Two classes are provided with the VisiNaming Service that allow you to create a
namespace; the default naming context factory and the extended naming context
factory. The default naming context factory creates an empty namespace that has no
root NamingContext. You may find it more convenient to use the extended naming
context factory because it creates a namespace with a root NamingContext.

You must obtain at least one of these NamingContext objects before your object
implementations can bind names to their objects and before client applications can
resolve a name to an object reference.

Each of the NaningContext objects shown in the figure above could be implemented
within a single name service process, or they could be implemented within as many as
five distinct name server processes.

15: Using the VisiNaming Service 185

Understanding the namespace

Names and NameComponent

A CosNaming: :Name represents an identifier that can be bound to an object
implementation or a CosNaming: :NamingContext. A Name is not simply a string of
alphanumeric characters; it is a sequence of one or more NameComponent structures.

Each NameComponent contains two attribute strings, id and kind. The Naming service
does not interpret or manage these strings, except to ensure that each id and kind is
unique within a given NamingContext.

The id and kind attributes are strings which uniquely identify the object to which the
name is bound. The kind member adds a descriptive quality to the name. For example,
the name “Inventory.RDBMS” has an id member of “Inventory” and a kind member of
“RDBMS.”

module CosNaming
typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;
}i
typedef sequence<NameComponent> Name;
}i
The id and kind attributes of NameComponent in the code example above, must be a
character from the 1ISO 8859-1 (Latin—1) character set, excluding the null character
(0x00) and other non-printable characters. Neither of the strings in NameComponent can

exceed 255 characters. Furthermore, the VisiNaming Service does not support
NameComponent which uses wide strings.

Note

The id attribute of a Name cannot be an empty string, but the kind attribute can be an
empty string.

Name resolution

Your client applications use the NamingContext method resolve to obtain an object
reference, given a logical Name. Because a Name consists of one or more NameComponent
objects, the resolution process requires that all of the NaneComponent structures that
make up the Name be traversed.

Stringified names

Because the representation of CosNaming: :Name is not in a form that is readable or
convenient for exchange, a stringified name has been defined to resolve this problem.
A stringified name is a one-to-one mapping between a string and a CosNaming: :Name. If
two CosNaming: :Name objects are equal, then their stringified representations are equal
and vice versa. In a stringified name, a forward slash (/) serves as a name component
separator; a period (.) serves as the id and kind attributes separator; and a backslash
(\) serves as an escape character. By convention a NameComponent with an empty kind
attribute does not use a period (for example, Order).

"Borland.Company/Engineering.Department /Printer.Resource"

Note

In the following examples, NameComponent structures are given in their stringified
representations.

Simple and complex names

A simple name, such as Billing, has only a single NameComponent and is always resolved
relative to the target naming context. A simple name may be bound to an object
implementation or to a NamingContext.

186 VisiBroker for C++ Developer’s Guide

Running the VisiNaming Service

A complex name, such as NorthAmerica/ShippingDepartment/Inventory, consists of a
sequence of three NameComponent structures. If a complex name consisting of n
NameComponent objects has been bound to an object implementation, then the first (n—1)
NameComponent objects in the sequence must each resolve to a NamingContext, and the
last NameComponent object must resolve to an object implementation.

If a Name is bound to a NamingContext, each NameComponent structure in the sequence
must refer to a NamingContext.

The code sample below shows a complex name, consisting of three components and
bound to a CORBA object. This name corresponds to the stringified name,
NorthAmerica/SalesDepartment/Order. When resolved within the topmost naming
context, the first two components of this complex name resolve to NamingContext
objects, while the last component resolves to an object implementation with the logical
name “Order.”

// Neme stringifies to "NorthAmerica/SalesDepartment/Order"
CosNaming: :Name_var continentName =
rootNamingContext->to_name ("NorthAmerica");
CosNaming: :NamingContext_var continentContext =
rootNamingContext->bind_new_context (continentName) ;
CosNaming: :Name_var departmentName = continentContext-
>to_name ("SalesDepartment");

CosNaming: :NamingContext_var departmentContext =
rootNamingContext->bind_new_context (departmentName) ;
CosNaming: :Name_var objectName =
departmentContext->to_name ("Order");
departmentContext->rebind(objectName, myPOA-
>servant_to_reference (managerServant)) ;

Running the VisiNaming Service

The VisiNaming Service can be started with the following commands. Once you have
started the Naming service, you may browse its contents by using the VisiBroker
Console.

Installing the VisiNaming Service

The VisiNaming Service is installed automatically when you install VisiBroker. It
consists of a file nameserv, which for Windows is a binary executable and for UNIX is a
script, and Java class files which are stored in the vbjorb. jar file.

Configuring the VisiNaming Service

In previous versions of VisiBroker, the VisiNaming Service maintained persistence by
logging any modifying operations to a flat-file. From version 4.0 onward, the
VisiNaming Service works in conjunction with backing store adapters. It is important to
note that not all backing store adapters support persistence. The default InMemory
adapter is non-persistent while all the other adapters are. For more details about
adapters, see “Pluggable backing store”.

Note

A Naming Server is designed to register itself with the Smart Agent. In most cases you
should to run the Smart Agent to bootstrap the VisiNaming Service. This allows clients
to retrieve the initial root context by calling the resolve_initial references method. The
resolving function works through the Smart Agent for the retrieval of the required
references. Similarly, Naming Servers that participate in a federation also uses the
same mechanism for setting up a federation.

For more information about the Smart Agent, see “Using the Smart Agent.”

15: Using the VisiNaming Service 187

Invoking the VisiNaming Service from the command line

Starting the VisiNaming Service

You can start the VisiNaming Service by using the nameserv launcher program in the /
bin directory. The nameserv launcher uses the com. inprise.vbroker.naming.ExtFactory
factory class by default.

UNIX

nameserv [driver_options] [nameserv_options] <ns_name> &

Windows
start nameserv [driver_options] [nameserv_options] <ns_name>

See “General options” for descriptions of the driver options available to all of the
VisiBroker programmer tools.

nameserv_option Description

-2, -h, -help, -usage Print out the usage information.

-config <properties_file> |Use <properties_file> as the configuration file when starting up the
VisiNaming Service.

<ns_name> The name to use for this VisiNaming Service. This is optional; the
default name is NameService.

In order to force the VisiNaming Service to start on a particular port, the VisiNaming
Service must be started with the following command line option:

prompt> nameserv -J-Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port number>

The default name for VisiNaming is “NameService”, if you want to specify a name other
than this, you can start VisiNaming in the following way:

prompt> nameserv -J-Dvbroker.se.iliop_tp.scm.iilop_tp.listener.port=<port number>
<ns_name>

Invoking the VisiNaming Service from the command line

The VisiNaming Service Utility (nsutil) provides the ability to store and retrieve
bindings from the command line.

Configuring nsutil

To use nsutil, first configure the Naming service instance using the following
commands:

prompt>nameserv <ns_name>

prompt>nsutil -VBJprop <option> <cmd> [args]

Option Description
ns_name Configure the Naming service to contact
SVCnameroot=<ns_name> Note: Before using SvCnaneroot, you must first run OSAgent.

ORBInitRef=NameService=<url> | File name or URL, prefixed by its type, which may be (corbaloc:,
corbaname:, file:, ftp:, http:, or ior:). For example, to assign a
file in a local directory, the ns_config string would be:-vBJprop
ORBInitRef=NameService=<file:ns.ior>

cnd Any CosNaming operation, and, in addition, ping and shutdown.

188 VisiBroker for C++ Developer’s Guide

Invoking the VisiNaming Service from the command line

Running nsutil

The VisiNaming Service Utility supports all the CosNaming operations as well as three
additional commands. The CosNaming operations supported are:

cmd Parameter(s)
bind name objRef
bind_context name ctxRef

bind_new_context |name

destroy name

list [name1 name2 name3...]
new_context No parameter

rebind name objRef
rebind_context name ctxRef

resolve name

unbind name

Note

For the operations destroy and list, the name parameter must refer to existing naming
contexts. For the operation 1ist only, there can be zero or more naming contexts,
whose contents will be listed. In the case where no naming context is specified, the
content of the root naming context will be listed.

The additional nsutil commands are:

cmd Parameter Description
ping name Resolves the stringified name and contacts the object
to see if it is still alive.
shutdown <naming context | Shuts the VisiNaming Service down gracefully from
factory name the command line. The mandatory parameter of this

or stringified ior> | operation specifies either the naming context
factory's name as registered with the osagent or the
stringified IOR of the factory.

unbind_from_cluster |name objRef Unbinds a specific object in an implicit cluster. The
nane is the object's logical name and the objref is the
stringified object reference that is to be unbound.

To run an operation from the nsutil command, place the operation name and its
parameters as the <cnd> parameter. For example:

prompt>nsutil -VBJprop ORBInitRef=NameService=file://ns.ior resolve myName

Shutting down the VisiNaming Service using nsutil

To shut down the VisiNaming Service using nsutil, use the shutdown command:

prompt>nsutil -VBJprop ORBInitRef=NameService=file://ns.ior shutdown <ns_name>

15: Using the VisiNaming Service 189

Bootstrapping the VisiNaming Service

Bootstrapping the VisiNaming Service

There are three ways to start a client application to obtain an initial object reference to
a specified VisiNaming Service. You can use the following command-line options when
starting the VisiNaming Service:

- ORBInitRef

- ORBDefaultInitRef

— SVCnameroot

The following example illustrates how to use these options.

Suppose there are three VisiNaming Services running on the host TestHost:
nsl, ns2, and ns3

running on the ports 20001, 20002 and 20003 respectively.

And there are three server applications:
srl, sr2, sr3.

Server srl binds itself in ns1, Server sr2 binds itself in ns2, and server sr3 in ns3.

Calling resolve_initial_references

The VisiNaming Service provides a simple mechanism by which the
resolve_initial_references method can be configured to return a common naming
context. You use the resolve_initial_references method which returns the root context
of the Naming Server to which the client program connects.

CORBA: :ORB_ptr orb = CORBA::0RB_init (argv, argc, NULL);
CORBA: :Object_var rootObj = orb->resolve_initial_references("NameService");

Using -DSVCnameroot

You use the -DSVCnameroot option to specify into which VisiNaming Service instance
(especially important if several unrelated Naming service instances are running) you
want to bootstrap.

For instance, if you want to bootstrap into ns1, you would start your client program as:
<client_application> -DSVCnameroot=nsl

You can then obtain the root context of ns1 by calling the resolve_initial_references
method on an ORB reference inside your client application as illustrated below. The
Smart Agent must be running in order to use this option.

Keep in mind that the -DSvCnameroot bootstrapping mechanism is based on the
proprietary functionality that VisiBroker Smart Agent provides and it is not interoperable
with other CORBA implementations.

Using -ORBInitRef

You can use either the corbaloc or corbaname URL naming schemes to specify which
VisiNaming Service you want to bootstrap. This method does not rely on the Smart
Agent.

Using a corbaloc URL

If you want to bootstrap using VisiNaming Service ns2, then start your client application
as follows:

<client_application> -ORBInitRef=NameService=corbaloc://TestHost:20002/
NameService

190 VisiBroker for C++ Developer’s Guide

NamingContext

You can then obtain the root context of ns2 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated in
the example above.

Note

The deprecated iioploc and iiopname URL schemes are implemented by corbaloc and
corbanane, respectively. For backwards compatibility, the old schemes are still
supported.

Using a corbaname URL

If you want to bootstrap into ns3 by using corbanane, then you should start your client
program as:

<client_application> -ORBInitRef NameService=corbaname://TestHost:20003/

You can then obtain the root context of ns3 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated
above.

-ORBDefaultInitRef

You can use either a corbaloc or corbaname URL to specify which VisiNaming Service
you want to bootstrap. This method does not rely on the Smart Agent.

Using -ORBDefaultinitRef with a corbaloc URL

If you want to bootstrap into ns2, then you should start your client program as:
<client_application> -ORBDefaultInitRef corbaloc://TestHost:20002

You can then obtain the root context of ns2 by calling the resolve_initial_references
method on the VisiBroker ORB reference inside your client application as illustrated in
the sample above.

Using -ORBDefaultInitRef with corbaname

The combination of -ORBDefaultInitRef or -DORBDefaultInitRef and corbaname works
differently from what is expected. If -ORBDefaultInitRef or -DORBDefaultInitRef is
specified, a slash and the stringified object key is always appended to the corbaname.
For example, if the URL is corbaname: : TestHost:20002, then by specifying -

ORBDefaultInitRef, resolve_initial_references in C++ will resultin a new URL:
corbaname: : TestHost: 20003 /NameService.

NamingContext

This object is used to contain and manipulate a list of names that are bound to
VisiBroker ORB objects or to other NamingContext objects. Client applications use this
interface to resolve or 1ist all of the names within that context. Object implementations
use this object to bind names to object implementations or to bind a name to a
NamingContext object. The sample below shows the IDL specification for the
NamingContext.

Module CosNaming f{
interface NamingContext {

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context (in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context (in Name n, in NamingContext NC)
raises(NotFound, CannotProceed, InvalidName);

Object resolve(in Name n)

15: Using the VisiNaming Service 191

NamingContextExt

raises(NotFound, CannotProceed, InvalidName);
void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);
NamingContext new_context () ;
NamingContext bind_new_context (in Name n)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void destroy ()
raises (NotEmpty) ;
void list(in unsigned long how_many,
out BindingList bl,
out BindingIterator bi);
}i
}i

NamingContextExt

The NamingContextExt interface, which extends NamingContext, provides the operations
required to use stringified names and URLs.

Module CosNaming {
interface NamingContextExt : NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;
StringName to_string(in Name n)
raises(InvalidName) ;
Name to_name(in StringName sn)
raises(InvalidName);
exception InvalidAddress {};
URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);
Object resolve_str(in StringName n)
raises(NotFound, CannotProceed, InvalidName);
b
}i

Default naming contexts

A client application can specify a default naming context, which is the naming context
that the application will consider to be its root context. Note that the default naming
context is the root only in relation to this client application and, in fact, it can be
contained by another context.

Obtaining the default context

The VisiBroker ORB method resolve_initial_references can be used by a client
application to obtain the default naming context. The default naming context must have
been specified by passing the SvCnameroot or ORBInitRef command-line argument when
the client application was started. The sample below shows how a C++ client
application could invoke this method.

#include "CosNaming_c.hh"
int main(int argc, char* const* argv) {
try {
CORBA: :0RB_var orb = CORBA::ORB_init (argc, argv);

CORBA: :Object_var ref = orb->resolve_initial_references("NameService");

192 VisiBroker for C++ Developer’s Guide

VisiNaming Service properties

CosNaming: :NamingContext_var rootContext =
CosNaming: :NamingContext::_narrow(ref);

} catch(const CORBA::Exception& e) {
cout << "Failure: " << e << endl;

exit(1);
}
exit(0);

Obtaining naming context factories

If there is no osagent running on the network, a naming service client can get a
reference to the naming context factory by resolving the initial reference of the factory

as follows:

CORBA: :Object_var factRef = orb-

>resolve_initial_references("VisiNamingContextFactory");

CosNamingExt : :NamingContextFactory_var factory =
CosNamingExt: :NamingContextFactory::_narrow(factRef);

Start this client as shown in the following example:

Client -ORBInitRef = VisiNamingContextFactory =
corbaloc: :<host>:<port>/VisiNamingContextFactory

VisiNaming Service properties

The following tables list the VisiNaming Service properties:

Property Default | Description

vbroker.naming.adminPwd inprise | Password required by administrative VisiBroker Naming
service operations.

vbroker.naming.enableSlave |0 If 1, enables master/slave naming services
configuration. See “VisiNaming Service Clusters for
Failover and Load Balancing” for information about
configuring master/slave naming services.

vbroker.naming.iorFile ns.ior | This property specifies the full path name for storing the

Naming service IOR. If you do not set this property, the
Naming service will try to output its IOR into a file
named ns.ior in the current directory. The Naming
service silently ignores file access permission
exceptions when it tries to output its IOR.

15: Using the VisiNaming Service 193

VisiNaming Service properties

Property

Default

Description

vbroker.naming. logLevel

emerg

This property specifies the level of log messages to be
output from Naming service. Acceptable values are:

vbroker.log.enable=true
vbroker.log.filter.default.enable=false
vbroker.log.filter.default.register=naming
vbroker.log.filter.default.naming.enable=true
vbroker.log.filter.default.naming.logLevel=debug

vbroker .naming. logUpdate

false

This property allows special logging for all of the update
operations on the CosNaming: :NamingContext,
CosNamingExt: :Cluster, and CosNamingExt: :ClusterManager
interfaces.

The CosNaming: :NamingContext interface operations for
which this property is effective are:

bind, bind_context, bind_new_context, destroy, rebind,
rebind_context, unbind.

The CosNamingExt : : Cluster interface operations for which
this property is effective are:

bind, rebind, unbind, destroy.

The CosNamingExt : :ClusterManager interface operation for
which this property is effective is:

create_cluster

When this property value is set to true and any of the
above methods is invoked, the following log message is
printed (the output shows a bind operation being
executed):

00000007,5/26/04 10:11 AM,127.0.0.1,00000000,
VBJ-Application,VBJ ThreadPool Worker, INFO,

OPERATION NAME : bind

CLIENT END POINT : Connection[socket=Socket
[addr=/127.0.0.1, port=2026, localport=1993]]
PARAMETER 0 : [(Tom.LoanAccount)]

PARAMETER 1 : Stublrepository_id=IDL:Bank/
LoanAccount:1.0, key=TransientId[poaName=/,

id={4 bytes: (0)(0)(0)(0)},sec=505,usec=990917734,
key_string=%00VB%01%00%00%00%02/%00%20%20%00%00%00%
04%00%00%00%00%00%00%01%£9;%104f], codebase=null]

For more information see “Object Clusters”.

Property

Default | Description

vbroker.naming.enableClusterFailover

true When set to true, it specifies that an
interceptor be installed to handle fail-over for
objects that were retrieved from the
VisiNaming Service. In case of an object
failure, an attempt is made to transparently
reconnect to another object from the same
cluster as the original.

194 VisiBroker for C++ Developer’s Guide

VisiNaming Service properties

Property

Default | Description

vbroker.naming.propBindOn

0 If 1, the implicit clustering feature is turned on.

vbroker.naming.smrr.pruneStaleRef

—

This property is relevant when the name
service cluster uses the Smart Round Robin
criterion. When this property is set to 1, a stale
object reference that was previously bound to
a cluster with the Smart Round Robin criterion
will be removed from the bindings when the
name service discovers it. If this property is
set to 0, stale object reference bindings under
the cluster are not eliminated. However, a
cluster with Smart Round Robin criterion will
always return an active object reference upon
a resolve() or select () call if such an object
binding exists, regardless of the value of the
vbroker.naming.smrr.pruneStaleRef property. By
default, the implicit clustering in the name
service uses the Smart Round Robin criterion
with the property value set to 1. If set to 2, this
property disables the clearing of stale
references completely, and the responsibility
of cleaning up the bindings belongs to the
application, rather than to VisiNaming.

For more information see the VisiNaming Service Clusters for Failover and

Load Balancing section.

Property

Default Description

vbroker.naming.enableSlave

0 See “VisiNaming Service properties”.

vbroker .naming.slaveMode

No default. | This property is used to configure
Can be set | VisiNaming Service instances in the
cluster mode or in the master/slave
mode. The vbroker.naming.enableSlave
property must be set to 1 for this
property to take effect.

Set this property to cluster to
configure VisiNaming Service
instances in the cluster mode.
VisiNaming Service clients will then
be load balanced among the
VisiNaming Service instances that
comprise the cluster. Client failover
across these instances are enabled.

Set this property to slave to configure
VisiNaming Service instances in the
master/slave mode. VisiNaming
Service clients will always be bound
to the master server if the master is
running but failover to the slave
server when the master server is
down.

to cluster
or slave.

vbroker.naming.serverClusterName

null This property specifies the name of a
VisiNaming Service cluster. Multiple
VisiNaming Service instances belong
to a particular cluster (for example,
clusterxvz) when they are configured
with the cluster name using this

property.

15: Using the VisiNaming Service 195

Pluggable backing store

Property Default Description

vbroker.naming. serverNames null This property specifies the factory
names of the VisiNaming Service
instances that belong to a cluster.
Each VisiNaming Service instance
within the cluster should be
configured using this property to be
aware of all the instances that
constitute the cluster. Each name in
the list must be unique. This property
supports the format:

vbroker.naming. serverNames=
Serverl:Server2:Server3

See the related property,
vbroker.naming.serverAddresses.

vbroker.naming. serverAddresses null This property specifies the host and
listening port for the VisiNaming
Service instances that comprise a
VisiNaming Service cluster. The
order of VisiNaming Service
instances in this list must be identical
to that of the related property
vbroker.naming.serverNames, Which
specifies the names of the
VisiNaming Service instances that
comprise a VisiNaming Service
Cluster. This property supports the
format:

vbroker.naming.serverAddresses=
hostl:portl;host2:port2;host3:port3

vbroker.naming.anyServiceOrder false This property must be set to true on
(To be set on VisiNaming Service clients) the VisiNaming Service client to
utilize the load balancing and failover
features available when VisiNaming
Service instances are configured in
the VisiNaming Service cluster
mode. The following is an example of
how to use this property:

client -DVbroker.naming.
anyServiceOrder=true

Pluggable backing store

The VisiNaming Service maintains its namespace by using a pluggable backing store.
Whether or not the namespace is persistent, depends on how you configure the
backing store: to use JDBC adapter, the Java Naming and Directory Interface (JNDI,
which is certified for LDAP), or the default, in-memory adapter.

Types of backing stores

The types of backing store adapters supported are:

In-memory adapter

JDBC adapter for relational databases

DataExpress adapter
JNDI (for LDAP only)

Note
For an example using pluggable adapters, see the code located in the directory:

196 VisiBroker for C++ Developer’s Guide

Pluggable backing store

<install dir>/vbroker/examples/ins/pluggable_adaptors

In-memory adapter

The in-memory adapter keeps the namespace information in memory and is not
persistent. This is the adapter used by the VisiNaming Service by default.

JDBC adapter

JDBC adapter Relational databases are supported via JDBC. The following databases
have been certified to work with the VisiNaming Service JDBC adapter:

DataStore 7

Oracle 10G, Release 2
Microsoft SQLServer 2005
DB 28.2

InterBase 7

Multiple VisiNaming Service instances can use the same back-end relational database
if one of these is true:

- The VisiNaming Service instances are independent of each other and use different
factory names, or,

- The VisiNaming Service instances are all part of the same VisiNaming Service
Cluster.

DataExpress adapter

In addition to the JDBC adapter, there is also a DataExpress adapter which allows you
to access JDataStore databases natively. It is much faster than accessing JDataStore
through JDBC, but the DataExpress adapter has some limitations. It only supports a
local database running on the same machine as the Naming Server. To access a
remote JDataStore database, you must use the JDBC adapter.

JNDI adapter

A JNDI adapter is also supported. Sun's JNDI (Java Naming and Directory Interface)
provides a standard interface to multiple naming and directory services throughout the
enterprise. JNDI has a Service Provider Interface (SPI) with which different naming and
service vendors must conform. There are different SPI modules available for Netscape
LDAP server, Novell NDS, WebLogic Tengah, etc. By supporting JNDI, the VisiNaming
Service allows you to have portable access to these naming and directory services and
other future SPI providers.

The VisiNaming JNDI adapter is certified with the following LDAP implementations:
- iPlanet Directory Server 5.0

- OpenlLdap 2.3.35

You must use Sun and Netscape JNDI Driver version 1.2 to leverage LDAP.

Configuration and use

Backing store adapters are pluggable, which means that the type of adapter used can
be specified by user-defined information stored in a configuration (properties) file used
when starting up the VisiNaming Service. All adapters, except the in-memory one,
provide persistence. The in-memory adapter should be used when you want to use a
lightweight VisiNaming Service which keeps its namespace entirely in memory.

15: Using the VisiNaming Service 197

Pluggable backing store

Note

For the current version of the VisiNaming Service, you cannot change settings while
the VisiNaming Service is running. To change a setting, you must bring down the
service, make the change to the configuration file, and then restart the VisiNaming
Service.

Properties file

As with the VisiNaming Service in general, which adapter is to be used and any
specific configuration of it is handled in VisiNaming Service properties file. The default
properties common to all adapters are:

Property Default Description

vbroker.naming.backingStoreType InMemory Specifies the Naming service adapter type to
use. This property specifies which type of
backing store you want the VisiNaming
Service to use. The valid options are:
InMemory, JDBC, Dx, JNDI. The default is InMemory.

vbroker.naming.cacheOn 0 Specifies whether to use the Naming Service
cache. A value of 1 (one) enables caching.
vbroker.naming.cache.connectString This property is required when the Naming

Service cache is enabled
(vbroker.naming.cacheOn=1) and the Naming
Service instances are configured in Cluster or
Master/Slave mode. It helps locate an Event
Service/VisiNotify instance in the format
<hostnane>:<port>. For example:

vbroker.naming.cache.connectString=
127.0.0.1:14500

See “Caching facility” for details about
enabling the caching facility and setting
the appropriate properties.

vbroker.naming.cache.size 2000 This property specifies the size of the Naming
Service cache. Higher values will mean
caching of more data at the cost of increased
memory consumption.

vbroker.naming.cache. timeout 0 (no limit) | This property specifies the time, in seconds,
since the last time a piece of data was
accessed, after which the data in the cache
will be purged in order to free memory. The
cached entries are deleted in LRU (Least
Recently Used) order.

JDBC Adapter properties
The following sections describe the JDBC Adapter properties.
vbroker.naming.backingStoreType

This property should be set to JDBC. The poolSize , jdbcDriver, url, loginName, and
loginPwd properties must also be set for the JDBC adapter.

vbroker.naming.jdbcDriver

This property specifies the JDBC driver that is needed to access the database used as
your backing store. The VisiNaming Service loads the appropriate JDBC driver
specified. The default is the Java DataStore JDBC driver.

JDBC driver class name Description

com.borland.datastore.jdbc.DataStoreDriver |JDataStore JDBC Driver 7.0

com. sybase. jdbc2.jdbc. SybDriver Sybase driver (jConnect Version 5.0)

oracle.jdbc.driver.OracleDriver Oracle driver (using classes12.zip Version
8.1.7.0.0)

interbase.interclient.Driver Interbase driver (using InterClient.jar Version
3.0.12)

198 VisiBroker for C++ Developer’s Guide

Pluggable backing store

JDBC driver class name Description

weblogic. jdbc.mssglserverd.Driver WebLogic MS SQLServer 2005 JDBC driver
(Version 1.1)

com.ibm.db2.jcc.DB2Driver IBM DB2 driver (using db2jcc.jar Version 1.2.117)

vbroker.naming.minReconInterval

This property sets the database reconnection retry time by the Naming Service in
seconds. The default value is 30. The Naming Service will ignore the request and throw
a CannotProceed exception if the time interval between this request and the last
reconnection time is less than the value set by this property. The valid value for this
property is O (zero) or a greater integer. If the property value is 0 (zero), the VisiNaming
Service will try to reconnect to the database for every request, once disconnected.

vbroker.naming.loginName
This property is the login name associated with the database. The default is VisiNaming.
vbroker.naming.loginPwd

This property is the login password associated with the database. The default value is
VisiNaming.

vbroker.naming.poolSize

This property specifies the number of database connections in your connection pool
when using the JDBC Adapter as our backing store. The default value is 5, but it can be
increased to whatever value the database can handle. If you expect many requests will
be made to the VisiNaming Service, you should make this value larger.

vbroker.naming.url

This property specifies the location of the database which you want to access. The
setting is dependent on the database in use. The default is JDataStore and the
database location is the current directory and is called rootDB. jds. You can use any
name you like not necessarily rootDB. jds. The configuration file needs to be updated
accordingly.

URL value Description

jdbc:borland:dslocal : <db_name> JDataStore URL

jdbc:sybase:Tds: <host>:<port>/<db_name> Sybase URL
jdbc:oracle:thin:@<host>:<port>:<sid> Oracle URL
jdbc:interbase://<server>/<full_db_path> Interbase URL
jdbc:weblogic:mssqlserverd:<db_name>@<host>:<port> WebLogic MS SQLServer URL
jdbc:db2://<host_name>:<port-number>/<db_name> IBM DB2 URL
<full_path_JDataStore_db> DataExpress URL for the native driver

You should start InterServer before accessing InterBase via JDBC. If the InterBase
server resides on the local host, specify <server> as localhost; otherwise specify it as
the host name. If the InterBase database resides on Windows NT, specify the
<full_db_path> as driver:\\dirl\dir2\\db.gdb (the first backslash [\] is to escape the
second backslash [\]). If the InterBase database resides on UNIX, specify the
<full_db_path> as \dirl\dir2\db.gdb. You can get more information from
http://www.borland.com/interbase/.

2Before you access DB2 via JDBC, you must register the database by its alias
<db_name> using the Client Configuration Assistant. After the database has been
registered, you do not have to specify <host> and <port> for the vbroker.naming.url
property.

3 If the JDataStore database resides on Windows, the <full path of the JDataStore
database> should be Driver:\\dirl\\dir2\\db.Jds (the first backslash [\] is to escape the
second backslash [\]). If the JDataStore database resides on UNIX, the <full path of
the JDataStore database> should be /dirl/dir2/db.jds.

15: Using the VisiNaming Service 199

Pluggable backing store

DataExpress Adapter properties
The following table describes the DataExpress Adapter properties:

Property Description

vbroker.naming.backingStoreType | This property should be set to Dx.

vbroker.naming. loginName This property is the login name associated with the database.
The default is VisiNaming.

vbroker.naming. loginPwd This property is the login password associated with the
database. The default value is VisiNaming.

vbroker.naming.url This property specifies the location of the database.

JNDI adapter properties
The following is an example of settings that can appear in the configuration file for a
JNDI adapter:

Setting Description

vbroker.naming.backingStoreType=JNDI This setting specifies the backing store type which
is JnD1 for the JNDI adapter.

vbroker.naming. loginName=<user_name> The user login name on the JNDI backing server.

vbroker.naming.loginPwd=<password> The password for the JNDI backing server user.

vbroker.naming.jndiInitialFactory=com.sun. | This setting specifies the JNDI initial factory.
jndi.ldap.LdapCtxFactory

vbroker.naming. jndiProviderURL=1dap: This setting specifies the JNDI provider URL
//<hostname>:389/<initial root context>

vbroker.naming.jndiAuthentication=simple This setting specifies the JNDI authentication type
supported by the JNDI backing server.

Configuration for OpenLDAP

OpenLDAP is one of the supported VisiNaming back-end stores. When using OpenLDAP,
additional configuration is required on the OpenLDAP server. You must perform the
following actions:

1 Add corba.schema in the OpenLDAP server's config file (the default is slapd.conf). The
corba.schema is included with your OpenLDAP server installation.

2 Add openldap_ns.schema in the OpenLDAP config file. openldap_ns.schena is provided
with VisiBroker and is located in

<install-dir>/etc/ns_schema/

Note

The user must have the necessary privilege to add schemas/attributes to the Directory
Server.

Caching facility

By enabling the caching facility you can improve the performance of the Naming
Service when it uses a backing store. For example, in the case of the JDBC adapter,
directly accessing the database every time there is a resolve or bind operation is
relatively slow. If you cache the results, you can reduce the number of times you
access the database. You will only see improvement in the performance of the backing
store if the same piece of data is accessed multiple times.

Note

Multiple Naming Service instances can access the same backing store if they are
configured in the Naming Service Cluster mode or in the Master/Slave mode. In order
to use the caching facility in these two modes, each Naming Service instance must be
specially configured using the vbroker.naming.cache.connectString property. The

200 VisiBroker for C++ Developer’s Guide

Object Clusters

VisiBroker Event Service or VisiNotify is used to coordinate the caching facility
amongst the various Naming Service instances.

To enable the caching facility set the following property in your configuration file:
vbroker.naming.cacheOn=1

If multiple Naming Service instances in Cluster or Master/Slave mode will access the
cache, set the vbroker.naming.cache.connectString property so that the Naming
Services can locate the Event Service (or VisiNotify).

The format for vbroker.naming.cache.connectString is:
vbroker.naming.cache.connectString=<host>:<port>

Where <host> is the hostname or IP address of the machine where VisiBroker Event
Service is running and <port> is the port used by VisiBroker Event Service/VisiNotify
(default is 14500 for Event Service and 14100 for VisiNotify).

For example:
vbroker.naming.cache.connectString=127.0.0.1:14500
or
vbroker.naming.cache.connectString=myhost:14100
If the host address is an IPv6 style address then enclose it in square brackets.

To support IPv6 on windows, a new property has been introduced. See “Properties
related to Server-side resource usage” for more information.

Note

The VisiBroker Event Service (version 6.5 or later) should be started before starting the
Naming Service instances. If VisiNotify is used instead, VisiNotify should be started.
Start the Event Service/VisiNotify without any channel name (so the default name is
used) before Naming Service instances are started.

If the cache needs tuning, set the following properties:

vbroker.naming.cache.size
vbroker.naming.cache.timeout

See “Properties file” for more information about the caching facility properties.

Important Notes for users of Caching Facility

Consistent configuration is very important. It is extremely important to configure all
Naming Service instances in a Cluster to use the Caching Facility in a consistent
manner. Naming Service instances that constitute a Cluster must either all use the
caching facility or none use it. If certain Naming Service instances use the caching
facility while others do not, the behaviour of the Cluster will be inconsistent. This is also
true for Naming Services configured in the Master-Slave mode. If the Master is
configured to use the caching facility, it is required that the Slave also be configured to
use it, and vice versa.

The distributed cache depends on the Event Service/VisiNotify. If the Caching
Facility is used in Naming Service Cluster mode (or the Master-Slave mode), the
distributed cache needs synchronization across the multiple Naming Services
instances. This is achieved using the Event Service (or VisiNotify). Please note that in
such a configuration, the cached data might be stale. The quality of data would depend
on the health of the Event Service/VisiNotify. Applications that do not find this
acceptable are advised to avoid using the Caching Facility. It is advisable to perform
tests to gauge the suitability of the distributed Caching Facility for a particular
application.

Object Clusters

VisiBroker supports a clustering feature which allows a number of object bindings to be
associated with a single name. The VisiNaming Service can then perform load
balancing among the different bindings in a cluster. You can decide on a load

15: Using the VisiNaming Service 201

Object Clustering criteria

balancing criterion at the time a cluster is created. Clients, which subsequently resolve
name-object bindings against a cluster, are load balanced amongst different cluster
server members. These clusters of object bindings should not be confused with
“VisiNaming Service Clusters for Failover and Load Balancing”.

A cluster is a multi-bind mechanism that associates a Name with a group of object
references. The creation of a cluster is done through a ClusterManager reference. At
creation time, the create_cluster method for the ClusterManager takes in a string
parameter which specifies the criterion to be used. This method returns a reference to
a cluster, which you can add, remove, and iterate through its members. After deciding
on the composition of a cluster, you can bind its reference with a particular name to any
context in a VisiNaming Service. By doing so, subsequent resolve operations against
the Name will return a particular object reference in this cluster.

Obiject Clustering criteria

The VisiNaming Service uses a SmartRoundRobin criterion with clusters by default. After
a cluster has been created, its criterion cannot be changed. User-defined criteria are
not supported, but the list of supported criteria will grow as time goes on.
SmartRoundRobin performs some verifications to ensure that the CORBA object
reference is an active one; that the object reference is referring to a CORBA server
which is in a ready state.

Cluster and ClusterManager interfaces

Although a cluster is very similar to a naming context, there are certain methods found
in a context that are not relevant to a cluster. For example, it would not make sense to
bind a naming context to a cluster, because a cluster should contain a set of object
references, not naming contexts. However, a cluster interface shares many of the
same methods with the NamingContext interface, such as bind, rebind, resolve, unbind
and 1ist. This common set of operations mainly pertains to operations on a group. The
only cluster-specific operation is pick. Another crucial difference between the two is
that a cluster does not support compound names. It can only use a single component
name, because clusters do not have a hierarchical directory structure, rather it stores
its object references in a flat structure.

IDL Specification for the Cluster interface

CosNamingExt module {
typedef sequence<Cluster> ClusterList;
enum ClusterNotFoundReason {
missing_node,
not_context,
not_cluster_context
1
exception ClusterNotFound {
ClusterNotFoundReason why;
CosNaming: :Name rest_of_name;
}i
exception Empty {};
interface Cluster {
Object select() raises(Empty);
void bind(in CosNaming::NameComponent n, in Object obj)
raises(CosNaming: :NamingContext: :CannotProceed,
CosNaming: :NamingContext : : InvalidName,
CosNaming: :NamingContext : :AlreadyBound) ;
void rebind(in CosNaming::NameComponent n, in Object obj)
raises(CosNaming: :NamingContext: :CannotProceed,
CosNaming: :NamingContext : : InvalidName) ;
Object resolve(in CosNaming::NameComponent n)
raises(CosNaming: :NamingContext: :NotFound,
CosNaming: :NamingContext : : Cannot Proceed,

202 VisiBroker for C++ Developer’s Guide

Object Clustering criteria

CosNaming: :NamingContext : : InvalidName) ;
void unbind(in CosNaming::NameComponent n)
raises(CosNaming: :NamingContext: :NotFound,
CosNaming: :NamingContext : : Cannot Proceed,
CosNaming: :NamingContext : : InvalidName) ;
void destroy ()
raises(CosNaming: :NamingContext: :NotEmpty) ;
void list(in unsigned long how_many,
out CosNaming::BindingList bl,
out CosNaming::BindingIterator BI);
}i

IDL Specification for the ClusterManager interface

CosNamingExt module {
interface ClusterManager
Cluster create_cluster(in string algo);
Cluster find_cluster(in CosNaming::NamingContext ctx, in CosNaming::Name

raises(ClusterNotFound, CosNaming::NamingContext::CannotProceed,

CosNaming: :NamingContext: : InvalidName) ;

Cluster find_cluster_str(in CosNaming::NamingContext ctx, in string n)
raises(ClusterNotFound, CosNaming::NamingContext::CannotProceed,

CosNaming: :NamingContext : : InvalidName) ;

ClusterList clusters();

b
}i

IDL Specification for the NamingContextExtExtended interface

The NamingContextExtExtended interface, which extends NamingContextExt, provides
some operations required to remove an object reference from an implicit cluster. You
must narrow a NamingContext to NamingContextExtExtended in order to use these
operations. Note that these operations are proprietary to VisiBroker only.

module CosNamingExt {
interface NamingContextExtExtended : NamingContextExt {
void unbind_from_cluster(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);
boolean is_ncluster_type(in Name n, out Object cluster)
raises(NotFound, CannotProceed, InvalidName);
}i
}

unbind_from_cluster()

The unbind_from_cluster () method allows user to unbind a specific object in a cluster.
The object's logical name (such as “London.Branch/Jack.SavingAccount”) and the
object reference to be unbound need to be passed into this method. Whenever the
number of objects in the cluster reaches zero, the cluster is deleted as well.

This method is useful when automatic pruning of stale object references in a cluster is
not required. Call this method to unbind an object in a cluster based on the
application's specific rules.

Note

The unbind_from_cluster () method can only be used when the VisiNaming Service is
running in the implicit clustering mode and automatic pruning of stale object reference
is disabled. This means that the following two properties must be set at the VisiNaming
Service side:

vbroker.naming.smrr.pruneStaleRef=0

vbroker.naming.propBindOn=1

is_ncluster_type()

15: Using the VisiNaming Service 203

Object Clustering criteria

The is_ncluster_type() method lets you check whether a context is of a cluster type.
The object's logical name need to be passed into this method. It returns true when the
context is a cluster type and set the cluster object in the second argument value. It
returns false when the context is not a cluster type and set the second argument value
to null.

Creating an object cluster

To create a cluster, use the Cluster Manager interface. A single ClusterManager object
is automatically created when a Naming Server starts up. There is only one
ClusterManager per Naming Server. The role of a ClusterManager is to create, retrieve,
and keep track of the clusters that are in the Naming Server. Here are the general
steps in creating an object cluster:

1 Bind to the Naming Server with which you wish to create cluster objects.

2 Get a reference to the Cluster Manager by calling get _cluster_manager method on
the factory reference.

Create a cluster using a specified cluster criterion.
Bind objects to an Name using the cluster.

Bind the Cluster object itself to a Name.

oo g A W

Resolve through the Cluster reference for the specified cluster criterion.

ExtendedNamingContextFactory_var myFactory =
ExtendedNamingContextFactory::_bind(orb, "NamingService");
ClusterManager_var clusterMgr = myFactory->get_cluster_manager();
Cluster_var clusterObj = clusterMgr->create_cluster ("RoundRobin");
clusterObj->bind(new NameComponent ("memberl", "aCluster"), objl);
clusterObj->bind(new NameComponent ("member2", "aCluster"), obj2);
clusterObj->bind(new NameComponent ("member3", "aCluster"), obj3);
NameComponent _var myClusterName = new NameComponent ("ClusterName", "");
root->bind (myClusterName, clusterObj);
root->resolve (myClusterName); // a member of the Cluster is returned
root->resolve (myClusterName); // the next member of the Cluster is returned
root->resolve (myClusterName); // the last member of the Cluster is returned

Explicit and implicit object clusters

The clustering feature can be turned on automatically for a VisiNaming Service. The
caveat is that once this facility is on, a cluster is created transparently to bind the
object. The round robin criterion is used. The implication is that it is possible to bind
several objects to the same name in the Naming Server. Conversely, resolving that
name will return one of those objects, and an unbind operation would destroy the
cluster associated with that name. This means that the VisiNaming Service is no longer
compliant to the CORBA specification. The Interoperable Naming Specification
explicitly forbids the ability to bind several objects to the same name. For a compliant
VisiNaming Service, an AlreadyBound exception is thrown if a client tries to use the
same name to bind to a different object. You must decide whether to use this feature
for a dedicated server only.

Note

Do not switch from an implicit cluster mode to an explicit cluster mode as this can
corrupt the backing store.

Once a Naming Server is used with the implicit clustering feature, it must be activated
with that feature turned “on”. To turn on the clustering feature, define the following
property value in the configuration file:

vbroker.naming.propBindOn=1

204 VisiBroker for C++ Developer’s Guide

Object Clustering criteria

Note

For an example of both explicit and implicit clustering, see the code located in the
following directories:

<install_dir>/examples/vbroker/ins/implicit_clustering

<install_dir>/examples/vbroker/ins/explicit_clustering

Load balancing

Both the ClusterManager and the Smart Agent provide RoundRobin criterion load
balancing facilities, however, they are of very different nature. You get load balancing
from the Smart Agent transparently. When a server starts, it registers itself
automatically with the Smart Agent, and this in turn allows VisiBroker ORB to provide
an easy and proprietary way for the client to get a reference to the server. However,
you have no choice in determining what constitutes a group and the members of a
group. The Smart Agent makes all the decisions for you. This is where a Cluster
provides an alternative. It enables a programmatic way to define and create the
properties of a Cluster. You can define the criterion for a Cluster, including choosing
the members of a Cluster. Though the criterion is fixed at creation time, the client can
add or remove members from the Cluster throughout its existance.

Obiject failover

An advantage of using object clustering is the failover capability among the objects
clustered together in a VisiNaming service. These clustered objects support the same
interface. Once such a cluster is created and bound to a naming context, the failover
behavior is transparently handled by the ORB. Typically when a naming service client
does a resolution against this cluster, the VisiNaming service returns a member from
the cluster. In case any member of the cluster has crashed or is temporarily
unavailable, ORB and VisiNaming service perform transparent failover by handing over
thle next available cluster member to the client. This ensures high availability and fault-
tolerance.

Failover capability using object clustering is demonstrated in the example contained in
the following directory:

<install_dir>/examples/vbroker/ins/cluster_failover

Pruning stale object references in VisiNaming object clusters

Object references in VisiNaming service can become stale due to unavailability of the
servers. Implicit object clustering provides different strategies, which can be used to
configure the pruning of stale references. Note that this pruning facility only works in
implicit clustering using smart round-robin technique. VisiNaming service is started with
a pruning configuration using the property vbroker.naming.smrr.pruneStaleRef. This
property can take values 0, 1 (default) and 2. The working of pruning facility can be
understood as follows:

VisiNaming service holds the mapping between the names and object references in the
memory. When a client requests for an object reference against a name, VisiNaming
resolves the name, modifies the IOR and hands over the object reference to the client.
The modification pertains to putting the logic that in case, the server represented by the
object reference in unavailable, the client ORB, to which this object reference is being
handed to, can revert back to the VisiNaming service to look for an alternate object
reference (fail-over to another candidate). If the client is unable to find the server and it
do?s revert back to the VisiNaming service, VisiNaming marks that object reference as
stale.

Depending on the value of the property vbroker.naming. smrr.pruneStaleref, VisiNaming
decides whether to keep the object reference or remove it. Following are the possible
values:

- vbroker.naming.smrr.pruneStaleRef =0
In this case, if an object reference has been detected stale, VisiNaming only marks it
as stale but does not remove it from its in-memory hold. However, VisiNaming does

15: Using the VisiNaming Service 205

VisiNaming Service Clusters for Failover and Load Balancing

not ever hand over this reference to the client unless the server rebinds the object
reference against the same name.

- vbroker.naming.smrr.pruneStaleRef =1
VisiNaming service immediately removes the object reference both from the memory
and persistent backstore (if backing store is being used) as soon as the client
bounces back to the VisiNaming service indicating the object reference as stale.

- vbroker.naming.smrr.pruneStaleRef =2
In this case, VisiNaming does not modify the IOR before handing it over to the client.
In case the client is not able to contact the server represented by the object
reference, client ORB throws OBJECT_NOT_EXISTS exception back to the client
application. VisiNaming services does not take guarantee of providing the client
application with an active object reference.

VisiNaming Service Clusters for Failover and Load Balancing

Multiple instances of the VisiNaming Service can be clustered to provide for load
balancing and failover. These clusters of VisiNaming Service instances should not be
confused with the clustering of object bindings described in “Object Clusters”. Clients
can bind to any one of the VisiNaming Service instances that comprise the cluster,
which allows for load sharing across multiple VisiNaming Service instances. If a
particular VisiNaming Service instance becomes inactive or terminates, the client will
automatically fail over to another VisiNaming Service instance within the same cluster.

All instances of the VisiNaming Service within a cluster must use the common
underlying data in a persistent backing store. The caching facility is available to
Naming Service instances provided that a VisiBroker Event Service (or VisiNotify)
instance is made available to the Naming Service instances via the
vbroker.naming.cache.connectString property. There are certain restrictions regarding
the choice of backing store. See the following Note that discusses these restrictions.

When failover occurs, it is transparent to the client, but there can be a slight delay
because server objects might have to be activated on demand by the requests that are
coming in. Also, object reference transients like iterator references are no longer valid.
This is normal because clients using transient iterator references must be prepared for
those references becoming invalid. In general, a VisiNaming Service instance never
keeps too many resource-intensive iterator objects, and it may invalidate a client's
iterator reference at any time. Other than these transient references, any other client
request using persistent references will be rerouted to another VisiNaming Service
instance.

In addition to the VisiNaming Service cluster, a Master/Slave model is also supported.
This is a special cluster with the configuration of two VisiNaming Service instances. It is
useful only when failover is required. The two VisiNaming Services instances must be
running at the same time; the master in active mode and the slave in standby mode. If
both VisiNaming Services are active, the master is always preferred by clients that are
using VisiNaming Service. In the event that the master terminates unexpectedly, the
slave VisiNaming Service takes over. This changeover from master to slave is
seamless and transparent to clients. However, the slave VisiNaming Service does not
become the master server. Instead, it provides temporary backup when the master
server is unavailable. You must take whatever remedial actions necessary to revive the
master server. After the master comes back up again, only requests from the new
clients are sent to the master server. Clients that are already bound to a slave naming
server will not automatically switch back to the master.

Note

Clients that are bound to a slave naming server provide only one level of failover
support. They will not switch back to the master, therefore, if the slave naming server
terminates, the VisiNaming Service also becomes unavailable.

Note

VisiNaming Service Clusters configured in the Master/Slave mode may use either the
JNDI adapter or the JDBC adapter. Clusters not configured in the Master/Slave mode
must use the JDBC adapter for RDBMS. Each clustered service must obviously point

206 VisiBroker for C++ Developer’s Guide

VisiNaming Service Clusters for Failover and Load Balancing

to the same backing store. See “Pluggable backing store” for information on
configuring the backing store for the cluster.

Configuring the VisiNaming Service Cluster

The VisiNaming Service instances that comprise the cluster must be started with the
relevant properties set as illustrated in the code sample below. The configuration is set
to cluster mode using the enableSlave and the slaveMode properties. The instances of
the VisiNaming Service that comprise the cluster have to be started on the hosts and
ports specified using the serverAddresses property. The snippet shows the host and
port entries for the three VisiNaming Service instances in the sample cluster. The
serverNames property lists the factory names of the VisiNaming Service instances.
These names are unique and the ordering identical to the serverAddresses property.
Finally, the serverClusterName property names the cluster.

Note

Starting from VisiBroker 6.0, VisiNaming Service contains several properties for proxy
support:

- vbroker.naming.proxyEnable allows the VisiNaming Service to use a proxy. Turn off
this property (default is turned off), and the VisiNaming Service will ignore other
Naming service properties for the proxy.

- vbroker.naming.proxyAddresses gives each Naming service in the cluster a proxy host
and a proxy port. The ordering of the proxyAddresses is identical to the
serverAddresses.

C++ clients need to set the boolean property vbroker.naming.anyServiceOrder in order
to benefit from the load-balancing and failover capabilities provided by VisiNaming
Service clusters. Clients must use the corbaloc mechanism to resolve to a VisiNaming
Service instance within the cluster, provided osagent is being used.

The Naming Service instances comprising a Cluster can benefit from the Naming
Service Caching Facility. Use the vbroker.naming.cacheOn and
vbroker.naming.cache.connectString properties to configure caching for a Naming
Service cluster. See “Caching facility” for details.

The following code sample shows the configuration of the VisiNaming Service cluster:

vbroker.naming.enableSlave=1

vbroker.naming.slaveMode=cluster
vbroker.naming.serverAddresses=hostl:portl;host2:port2;host3:port3
vbroker.naming.serverNames=Serverl:Server2:Server3
vbroker.naming.serverClusterName=ClusterX

vbroker.naming.proxyEnable=1 //Any value other than 1 means proxy is not
enabled.
vbroker.naming.proxyAddresses=proxyHostl:proxyPortl;proxyHost2:proxyPort2; proxy
Host3:proxyPort3

Note

When using the vbroker.naming.proxyAddresses property, place a semicolon (;)
separator between each host and port pair.

Configuring the VisiNaming Service in Master/Slave mode

The two VisiNaming Services must be running. You must designate one as the master
and the other as the slave. The same property file can be used for both the servers.
The relevant property values in the property file are shown in the following code sample
to configure for the Master/Slave mode.

vbroker.naming.enableSlave=1

vbroker.naming.slaveMode=slave

vbroker.naming.masterServer=<Master Naming Server Name>
vbroker.naming.masterHost=<host ip address for Master>
vbroker.naming.masterPort=<port number that Master is listening on>

15: Using the VisiNaming Service 207

VisiNaming Service Clusters for Failover and Load Balancing

vbroker.naming.slaveServer=<Slave Naming Server Name>
vbroker.naming.slaveHost=<host ip address for Slave>
vbroker.naming.slavePort=<Slave Naming Server port address>
vbroker.naming.masterProxyHost=<proxy host ip address for Master>
vbroker.naming.masterPortPort=<proxy port number for Master>
vbroker.naming.slaveProxyHost=<proxy host ip address for Slave>
vbroker.naming.slavePortPort=<proxy port number for slave>

Note

There is no restriction in the start sequence of the master and the slave servers.

Starting up with a large number of connecting clients

In a production environment with a large number of clients it may be impossible to
avoid clients trying to connect to a Naming Service which is still in the startup phase
(still initializing and not yet ready to service requests). When a Naming Service is not
yet completely started up it may receive incoming requests and discard them.
Depending on the number of requests, which must be received then discarded, this
activity can use too many CPU resources which can disturb the startup process itself,
resulting in a long startup time for the Naming Service.

To solve this particular problem, and let the Naming Service start quickly, the following
configuration settings can be used:

1 Set the following property to true:
vbroker.se.iiop_tp.scm.iliop_tp.listener.deferAccept=true
2 Use a fixed listener port by setting the following properties:

vbroker.se.iiop_tp.scm.iiop_tp.scm.listener.port=<port_number>
vbroker.se.iiop_tp.scm.iiop_tp.listener.portRange=0

For this to succeed, make sure that the <port_number> is available on the host on
which the Naming Service is running. Make sure that the portRange property is set to
0 (zero). You can leave it at its default setting or explicitly set the property. Note that
both the port and portRange settings described above should be applied.

Clients that try to connect to a Naming Service configured in this manner while it is
starting up will be denied any connection. If they are accessing a Naming Service
Cluster, then they would fail over to another Naming Service that has finished its
initialization. If no Naming Services are up and running, the client application would get
an OBJECT_NOT_EXIST exception.

These settings are per SCM (Server Connection Manager). If needed, all SCMs can be
set to take advantage of this feature.

If SSL is involved in the Naming Service, in addition to the settings described above,
the following settings might also be needed:

vbroker.se.iiop_tp.scm.ssl.listener.deferAccept=true
vbroker.se.iiop_tp.scm.ssl.listener.port=<port_number_for_ssl>
vbroker.se.iiop_tp.scm.ssl.listener.portRange=0

Note

The deferAccept property should only be used for Naming Services. Using for other
services or user written servers can result in undefined behavior.

208 VisiBroker for C++ Developer’s Guide

VisiNaming Service Security

VisiNaming service federation

Federation enables more than one VisiNaming services to be configured to act as a
distributed namespace. This involves having a naming context in a name service
bound to the names in the naming contexts of other naming services, thereby providing
more than one naming hierarchy to access an object. The figure below shows two
instances of naming service ns1 and ns2. Grayed naming contexts are the initial
contexts of the respective naming services. An AccountManager object s1 is placed in
a naming context under nsl1.

Figure 15.3 Naming contexts with multiple access hierarchies

Naming Service ns1 Naming Service ns2

Branch . Branch .

Internet Banking Internet Banking

IOR of
AccounManager

Maming Service Boundary

As shown in the figure, naming context containing Paris is bound to Branch under
naming service ns1 and also bound to Remote under naming service ns2. Client can
retrieve the IOR of the AccountlManager object against s1 either by resolving ns1: Branch/
Paris/sl orns2: Branch/Paris/sl. In both cases, it gets the same IOR.

Setting up federation is as easy as binding the name Branch in the root context of ns2 in
the above example to the naming context containing the name Paris in nsl. The
example in the following location shows the working of VisiNaming federation:

<install_dir>/examples/vbroker/ins/federation

VisiNaming Service Security

The VisiNaming Service in the VisiBroker integrates with the Security Service,
providing two levels of security: Client authentication and Method level authorization.
This allows fine grained control over which clients can use the VisiNaming Service and
what methods they can call. The following properties are used to enable or disable
security and to configure the Security Service.

Property Value Default | Description

vbroker.naming.security.disable boolean |true This property indicates whether the
security service is disabled.

This property indicates the
authorization domain name to be
used for the Naming service method
access authorization.

vbroker.naming.security.authDomain | string

15: Using the VisiNaming Service 209

VisiNaming Service Security

Property Value Default | Description

vbroker.naming.security.transport |int 3 This property indicates what transport
to be used. The available values are:

ServerQoPPolicy.SECURE_ONLY=1
ServerQoPPolicy.CLEAR_ONLY=0
ServerQoPPolicy.ALL=3

vbroker.naming.security. boolean | false This property indicates whether
requireAuthentication naming client authentication is
required. When
vbroker.naming.security.disable is
true, no client authentication will be
performed regardless what value this

property takes.
vbroker.naming.security. boolean | false This property indicates whether
enableAuthorization method access authorization is
enabled.
vbroker.naming.security. string (none) | This property points to the file
requiredRolesFile containing the required roles that are

necessary for invocation of each
method in the protected object types.
For more information see “Method
Level Authorization”.

Naming client authentication

Note

For detailed information on authentication and authorization, see the “Authentication”
and “Authorization” chapters of the Borland VisiBroker Security Guide.

Configuring VisiNaming to use SSL

Depending on the security requirements, different properties can be set to configure
the VisiNaming service. For the full list of security properties and their descriptions, go
to the Security Guide, “Security Properties for Java” or the “Security Properties for
C++” section.

Important

In order to enable security in the VisiNaming Service, you must have a valid VisiSecure
license.

The following is a sample of the properties that can be used to configure the
VisiNaming Service to use SSL:

Enable Security in Naming Service
vbroker.naming.security.disable=false

Enabling Security Service
vbroker.security.disable=false

Setting SSL Layer Attributes
vbroker.security.peerAuthenticationMode=REQUIRE_AND_TRUST
vbroker.se.iiop_tp.scm.ssl.listener.trustInClient=true
vbroker.security.trustpointsRepository=Directory:./trustpoints

Set the certificate identity for the VisiNaming Service using wallet
properties

vbroker.security.wallet.type=Directory:./identities

vbroker.security.wallet.identity=delta

vbroker.security.wallet.password=Delt@$$S

210 VisiBroker for C++ Developer’s Guide

VisiNaming Service Security

For information about how to configure the client to use SSL, go to the Security Guide,
“Making secure connections (Java)” or the “Making secure connections (C++)” section.

Note

Currently, there is no way to specify security and secure transport components in an
IOR using corbaloc. So, when using SSL, bootstrapping a VisiNaming Service using
the corbaloc method at the Naming client side is not possible. However, the
SVCnameroot and stringified IOR methods can still be used.

Method Level Authorization

Method level authorization is supported for the following object types:

Context

ContextFactory

Cluster

ClusterManager

When security is enabled for the Naming service and enableAuthorization is set to true,
only authorized users of each method of these object types can invoke the
corresponding method.

The Naming service predefines two roles to support the method level authorization:
- Administrator role
- User role

Other roles can be defined if required. Users need to configure the roles map for these
two roles, assigning roles to clients. The following is an example role map definition:

Administrator {
*CN=admin
*group=admin
uid=*, group=admin

}

User {

*CN=admin
*group=user
uid=*, group=user

}

You need to specify the roles before invoking each method of the objects listed above.
This is done using the required_roles property for each method. Below is the list of
these properties and the corresponding default values. These default values are used
only when you do not define any required_roles specified using the property
vbroker.naming.security.requiredRolesFile. The values of these properties are space
or comma separated:

#
naming_required_roles.properties
#

all roles
required_roles.all=Administrator User

required_roles.Context.bind=Administrator
required_roles.Context.rebind=Administrator
required_roles.Context.bind_context=Administrator
required_roles.Context.rebind_context=Administrator
required_roles.Context.resolve=Administrator User
required_roles.Context.unbind=Administrator
required_roles.Context.new_context=Administrator User

15: Using the VisiNaming Service 211

Compiling and linking programs

required_roles.
required_roles.
required_roles.

required_roles.
required_roles.
required_roles.
required_roles.
required_roles.
required_roles.

Context.bind_new_context=Administrator User
Context.list=Administrator User
Context.destroy=Administrator

ContextFactory.
ContextFactory.
ContextFactory.
ContextFactory.
ContextFactory.
ContextFactory.

root_context=Administrator User
create_context=Administrator
get_cluster_manager=Administrator User
remove_stale_contexts=Administrator
list_all_roots=Administrator
shutdown=Administrator

Cluster.select=Administrator User
Cluster.bind=Administrator
Cluster.rebind=Administrator
Cluster.resolve=Administrator User
Cluster.unbind=Administrator
Cluster.destroy=Administrator
Cluster.list=Administrator User

required_roles.
required_roles.
required_roles.
required_roles.
required_roles.
required_roles.
required_roles.

ClusterManager.create_cluster=Administrator
ClusterManager.find_cluster=Administrator User
ClusterManager.find_cluster_str=Administrator User
ClusterManager.clusters=Administrator User

required_roles.
required_roles.
required_roles.
required_roles.

Compiling and linking programs

C++ applications that use the Naming service need to include the following generated
files:

#include "CosNaming_c.hh"
#include "CosNamingExt_c.hh"

UNIX
The UNIX applications need to be linked with the cosnm_r.so (multi-threaded) library.

Windows

The Windows applications need to be linked with the cosnm_r.1ib (cosnm_r_6.d11)
(multi-threaded) library.

Sample programs

Several example programs that illustrate the use of the VisiNaming Service are
provided with VisiBroker. They show all of the new features available with the
VisiNaming Service and are found in the <install_dir>/examples/vbroker/ins directory.
In addition, a Bank Naming example illustrates basic usage of the VisiNaming Service
is found in the <install_dir>/examples/vbroker/basic/bank_naming directory.

Before running the example programs, you must first start the VisiNaming Service, as
described in “Running the VisiNaming Service”. Furthermore, you must ensure that at
least one naming context has been created by doing one of the following:

Start the VisiNaming Service, as described in “Running the VisiNaming Service”
which will automatically create an initial context.

Use the VisiBroker Console.

Have your client bind to the NamingContextFactory and use the create_context
method.

Have your client use the ExtendedNamingContextFactory.

212 VisiBroker for C++ Developer’s Guide

Configuring VisiNaming with JdataStore HA

Important

If no naming context has been created, a CORBA: :NO_IMPLEMENT exception is raised when
the client attempts to issue a CosNaming: :NamingContext : :bind.

Configuring VisiNaming with JdataStore HA

This section helps you configure JDataStore High Available (HA) to work with
VisiNaming.

The Explicit Clustering example used throughout this section illustrates the usage of
JDataStore HA with VisiNaming. In this example, JDataStore will be configured to have
the following mirror types:

- One Primary mirror. This is the only mirror type that can accept both read and write
transactions. Only one Primary mirror at a time is allowed.

- Three Read-only mirrors. These can only perform read transactions, and they
provide a transactionally consistent view of the Primary mirror database.

- One Directory mirror. This contains only the mirror configuration table and other
system security tables. It redirects read-only connection requests to Read-only
mirrors, and writable connection requests to the Primary mirror. It also provides an
important feature for load balancing all read connections across all available Read-
only mirrors. However, this feature is not supported by Naming Service at this
version.

JDataStore HA supports automatic failover in the following circumstances:

- If a connection to the Primary mirror was made before the failure, this connection can
trigger an automatic failover by calling the rollback method on the connection object.
Note that this scenario is not described in this section.

- If the connection request is not for read-only operation, and the current Primary
mirror is not accessible, the Directory mirror automatically triggers the failover
operations to satisfy the request for a writable connection. This is done by promoting
one of the Read-only mirrors to the Primary mirror.

VisiNaming works with JDataStore HA when a connection is made to the Directory
mirror. When the Primary mirror is inaccessible, it will failover to one of the Read-only
mirrors. VisiNaming must work with one Primary, and at least two Read-only mirrors at
all times.

Notes

- The Directory Mirror is a single point of failure in the scenario described in this
section. Higher availability could be achieved by configuring Master and Slave
Naming Services to point to a different directory mirror.

- JDataStoreHA only works with JDataStore Version 7.04 or later.

Create a DB for the Primary mirror

To make use of the JDataStore Explorer (JdsExplorer) to create a new DB, select New
from the File menu.

Invoke JdsServer for each listening connection

In this example, the following connections are used:
- JdsServer —port 2511 (Primary mirror)

- JdsServer —port 2512 (Read-only mirror)

- JdsServer —port 2513 (Read-only mirror)

15: Using the VisiNaming Service 213

Configuring VisiNaming with JdataStore HA

- JdsServer —port 2514 (Read-only mirror)
- JdsServer —port 2515 (Directory mirror)

Note

Always start JdsServer from the location where the AutoFailover_* jds files are located.
Never start JdsServer from <JdataStore Install Directory>/bin unless
vbroker.naming.url is set according. The required jar files are:

- dbtools.jar

dbswing.jar

jdsremote.jar

jdsserver.jar

jds.jar

Configure JDataStore HA

To configure JDataStore HA, complete the following steps:
1 Invoke the JDS Server Console to configure JDataStore.

2 Create a new project named NS_AutoFailover in the JDataStore Server Console.

Note

When creating a new DataSource, it is best to set its Protocol to Remote and
include the machine IP in the ServerName

3 Click pataSourcel (in the Structure pane) to open it for editing.
4 Right-click DataSourcel and select Connect from the context menu.

5 Right-click Mirror (in the Structure pane) and select Add mirror from the context
menu.

6 Edit Mirror1 so that the Type property is set to PRIMARY.

Each of the mirrors should also ensure that the host uses the IP of the machine
where they are located instead the default value of localhost. You can use a
different IP address for each of the mirrors, as long as the JdsServer is started for
that mirror at the IP. The Directory mirror must have access to each of the mirrors.

7 Set the 2uto Failover and Instant Synchronization properties to true.
8 Add Mirror2 and edit it to be a Read-only mirror.

Note that you do not need to create AutoFailover Mirror2 beforehand. It is created
automatically by JDataStore HA.

9 Setthe Auto Failover and Instant Synchronization properties to true for all Read-
only mirrors.

10 Repeat the previous two steps for Mirror3 and Mirror4.
11 Add Mirror5 and edit it be the Directory mirror.

12 Set the Auto Failover and Instant Synchronization properties to false for this
Directory mirror.

13 Choose Save Project "NS_AutoFailover.datasources" from the File menu to save the
project.

14 Right-click Mirrors (in the Structure pane) and choose Synchronize all mirrors.

15 Click Mirror Status (in the Structure pane) and verify that validate Primary is
checked for Mirror1 only.

214 VisiBroker for C++ Developer’s Guide

Configuring VisiNaming with JdataStore HA

Run the VisiNaming Explicit Clustering example

To run the VisiNaming Explicit Clustering example, complete the following steps:

1

2

7

Start osagent with the following command:
osagent
Create a file named autofailover.properties with the following properties:

vbroker.naming.backingStoreType=JDBC

vbroker.naming.poolSize=5

vbroker.naming. jdbcDriver=com.borland.datastore.jdbc.DataStoreDriver
vbroker.naming.url=jdbc:borland:dsremote://143.186.141.14/
AutoFailover_Mirror5.jds

vbroker.naming.loginName=SYSDBA

vbroker.naming.loginPwd=masterkey

vbroker.naming.traceOn=0

vbroker.naming.jdsSvrPort=2515

vbroker.naming.logLevel=debug

Start Naming Service with the following command:

nameserv -VBJclasspath <JDS_Install>\1ib\
jdsserver.jar -config autofailover.properties

Start ServerA with the following command:

Server ServerA -ORBpropStorage ns_client.properties &
Start ServerB with the following command:

Server ServerB -ORBpropStorage ns_client.properties &
Start Client with the following command:

Client -ORBInitRef NameService=<nsIOR>
Repeat the previous step several times and observe the output.

To verify the minimum requirement of one Primary and two Read-only mirrors,
complete the following steps:

1
2

Stop the JdsServer listening to port 2513.

Repeat the Start Client step several times.

Note that the behavior is the same as in the previous procedure.
Stop the JdsServer listening to port 2514.

Repeat the Start Client step several times.

Note that Client begins to raise a BAD_PARAM exception. This is as expected because
a failover requires that at least two read-only mirrors are available.

Restart the JdsServer listening to port 2513 and 2514.

This restores the original configuration, with three Read-only mirrors.

To verify the autofailover of JDatastore HA, complete the following steps:

1

Stop the JdsServer listening to port 2511, configured for Primary mirror, and repeat
the Start Client step several times.

Note that one of the Read-only mirrors has been promoted to Primary mirror.
Stop another active Read-only mirror and repeat the Start Client step several times.

Note that Client begins to raise a BAD_PARAM exception because a failover requires
that at least two read-only mirrors are available.

Restart the JdsServer listening to port 2511.

Note that this was previously configured for Primary mirror.

15: Using the VisiNaming Service 215

Configuring VisiNaming with JdataStore HA

4 Repeat the Start Client step several times.

Note that Mirror1 is now configured as Read-only mirror. You can check this from
the JDS Server Console by making a datasource connection to the Directory mirror
that the Naming Service uses.

Run the VisiNaming Naming Failover example

Run the following example to observe the failover capability of the VisiNaming service.

Note

Before using this procedure, create a JDataStore HA with one Primary mirror at port
1111, three Read-only mirrors at ports 1112, 1113, 1114 and two Directory mirrors at
ports 1115 and 1116.

1 Start osagent with the following command:
osagent
2 Create a file named autofailover.properties with the following properties:

Naming

vbroker.naming.backingStoreType=JDBC
vbroker.naming.poolSize=5

vbroker.naming. jdbcDriver=com.borland.datastore.jdbc.DataStoreDriver
vbroker.naming.loginName=SYSDBA
vbroker.naming.loginPwd=masterkey

vbroker.naming.traceOn=0

vbroker.naming.jdsSvrPort=1115

#vbroker.naming. logLevel=debug

#default value of enableslave is 0. 'l' Indicates cluster or
master-slave configuration

vbroker.naming.enableSlave=1

tindicate master-slave configuration
vbroker.naming.slaveMode=slave
vbroker.naming.masterHost=143.186.141.14
vbroker.naming.masterPort=12372
vbroker.naming.masterServer=Master
vbroker.naming.slaveHost=143.186.141.14
vbroker.naming.slavePort=12373
vbroker.naming.slaveServer=Slave

3 Start the JDataStore Servers as shown in the following example:

JdsServer.exe -port=1111
JdsServer.exe -port=1112
JdsServer.exe -port=1113
JdsServer.exe -port=1114
JdsServer.exe -port=1115
JdsServer.exe -port=1116

4 Start the Naming Service Master with the following command:

nameServ -VBJclasspath <JDS_Install>\1ib\

jdsserver.jar -config autofailover.properties -VJprop
vbroker.naming.url=jdbc:borland:dsremote:// 143.186.141.12
AutoFailover_Mirror 5.jds

VBJprop vbroker.se.iiop_tp.scm.iiop_tp.listener.port=12372 Master

216 VisiBroker for C++ Developer’s Guide

Configuring VisiNaming with JdataStore HA

5 Start the Naming Service Slave with the following command:
nameserv -VBJclasspath <JDS_Install>\1ib\
jdsserver.jar -config autofailover.properties -VBJIprop

vbroker.naming.url=jdbc:borland:dsremote://143.186.141.14/
AutoFailover_Mirror6.jds

-VBJprop vbroker.se.iliop_tp.scm.iiop_tp.listener.port=12373 -VBJprop
vbroker.naming.jdsSvrPort=1116 Slave

6 Start Server with the following command:
Server -ORBInitRef NameService=<Master Server IOR>
7 Start Client with the following command:
NamingClient -ORBInitRef NameService=<Master Server IOR>

8 Press the Enter key and observe the output.
Note that the balance returns a value.

9 Stop the Naming Service Master, repeat the previous step, and observe the output.
Note that the balance returns a value.

10 Press the Enter key to exit, and observe the output.
Note that the balance returns a value

To see how two Directory mirrors handle a single point of failure, complete the
following steps:

1 Stop the JdsServer listening to port 1115.

2 Without starting the Naming Service Master, repeat the Start Client step.
The CannotProceed exception is raised, which is the expected behavior.

3 Repeat the Start Client step several times.

Note that the balance will return a value. Once it can return a value, you can
observe that it is using the Directory mirror that is listening on port 1117.

4 Repeat the Start Client step and press the Enter key three times.
Note that the balance returns a value for three times.

To see how autofailover functions with two Directory mirrors, complete the following
steps:

1 Stop the JdsServer that is listening on port 1111.
2 Repeat the Start Client step.
3 Press the Enter key three times.

The CannotProceed exception is raised several times before it starts returning a
value. Once it returns a value, you can see that one of the mirrors is promoted to be
a Primary mirror. This can only be viewed using the JDS Server Console.

15: Using the VisiNaming Service 217

Configuring VisiNaming with JdataStore HA

218 VisiBroker for C++ Developer’s Guide

Configuring VisiNaming with JdataStore HA

15: Using the VisiNaming Service 219

220 VisiBroker for C++ Developer’s Guide

Using the Event Service

This section describes the VisiBroker Event Service.

Note

The OMG Event Service has been superseded by the OMG Notification Service. The
VisiBroker Event Service is still supported for backward compatibility and light weight
purposes. For mission critical applications, we strongly recommend using VisiBroker
VisiNotify. For more information, see “Introduction to VisiNotify.”

Overview

The Event Service package provides a facility that de-couples the communication
between objects. It provides a supplier-consumer communication model that allows
multiple supplier objects to send data asynchronously to multiple consumer objects
through an event channel. The supplier-consumer communication model allows an
object to communicate an important change in state, such as a disk running out of free
space, to any other objects that might be interested in such an event.

16: Using the Event Service 221

Overview

Figure 16.1 Supplier-Consumer communication model

Supplier
Object
#

............................. E data Consumer
= Object
n #
t | Sem—
Supplier C
Object b1 h
e a
--------------------- n Consumer
n
e |93ta (' oObject
|

w2

Supplier
Object
23

The figure above shows three supplier objects communicating through an event
channel with two consumer objects. The flow of data into the event channel is handled
by the supplier objects, while the flow of data out of the event channel is handled by the
consumer objects. If each of the three suppliers shown in the figure above sends one
message every second, then each consumer will receive three messages every
second and the event channel will forward a total of six messages per second.

The event channel is both a consumer of events and a supplier of events. The data
communicated between suppliers and consumers is represented by the Any class,
allowing any CORBA type to be passed in a type safe manner. Supplier and consumer
objects communicate through the event channel using standard CORBA requests.

Proxy consumers and suppliers

Consumers and suppliers are completely de-coupled from one another through the use
of proxy objects. Instead of interacting with each other directly, they obtain a proxy
object from the EventChannel and communicate with it. Supplier objects obtain a
consumer proxy and consumer objects obtain a supplier proxy. The EventChannel
facilitates the data transfer between consumer and supplier proxy objects. The figure
below shows how one supplier can distribute data to multiple consumers.

222 VisiBroker for C++ Developer’s Guide

Overview

Figure 16.2 Consumer and supplier proxy objects

Supplier
Object

Data

ﬁ_uerrt channel ¥ _“\

F

" ’ Sy s
-(Cunsumer o Consumer ;. Consumer
M 2 | &3
* \'\.L_ _\u

Supplier Supplier Supplier
Proxy #1 Proxy 72 Proxy &3
Fl
k_ | | | -
Data TI]ata I-Dﬂtﬂ
| Y

Note

The event channel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process.

16: Using the Event Service 223

Communication models

OMG Common Obiject Services specification

The VisiBroker Event Service implementation conforms to the OMG Common Object
Services Specification, with the following exceptions:

- The VisiBroker Event Service only supports generic events. There is currently no
support for typed events in the VisiBroker Event Service.

- The VisiBroker Event Service offers no confirmation of the delivery of data to either
the event channel or to consumer applications. TCP/IP is used to implement the
communication between consumers, suppliers and the event channel and this
provides reliable delivery of data to both the channel and the consumer. However,
this does not guarantee that all of the data that is sent is actually processed by the
receiver.

Communication models

The Event Service provides both a pull and push communication model for suppliers
and consumers. In the push model, supplier objects control the flow of data by pushing
it to consumers. In the pull model, consumer objects control the flow of data by pulling
data from the supplier.

The EventChannel insulates suppliers and consumers from having to know which model
is being used by other objects on the channel. This means that a pull supplier can
provide data to a push consumer and a push supplier can provide data to a pull
consumer.

Figure 16.3 Push model

Push Model

(/E_uent Channel ¥

Proxy Push

f"ﬁ'ruxy Puslr\,

Supplier
y

J

Supplier
w2

0

Proxy Push
Supplier
3

Data

Consumer
b

Data

Push

Consumer
2

Note

Data

Push
Consumer
3

The EventChannel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process.

224 VisiBroker for C++ Developer’s Guide

Communication models

Push model

The push model is the more common of the two communication models. An example
use of the push model is a supplier that monitors available free space on a disk and
notifies interested consumers when the disk is filling up. The push supplier sends data
to its ProxyPushConsumer in response to events that it is monitoring.

The push consumer spends most of its time in an event loop, waiting for data to arrive
from the ProxyPushSupplier. The EventChannel facilitates the transfer of data from the
ProxyPushSupplier to the ProxyPushConsumer.

The figure below shows a push supplier and its corresponding ProxyPushConsumer
object. It also shows three push consumers and their respective ProxyPushSupplier
objects.

Pull model

In the pull model, the event channel regularly pulls data from a supplier object, puts the
data in a queue, and makes it available to be pulled by a consumer object. An example
of a pull consumer would be one or more network monitors that periodically poll a
network router for statistics.

The pull supplier spends most of its time in an event loop waiting for data requests to
be received from the ProxyPullConsumer. The pull consumer requests data from the
ProxyPullSupplier when it is ready for more data. The EventChannel pulls data from the
supplier to a queue and makes it available to the ProxyPullSupplier.

The figure below shows a pull supplier and its corresponding ProxyPullConsumer object.
It also shows three pull consumers and their respective ProxyPullSupplier objects.

Figure 16.4 Pull model

Pull

__ Pull Pull
consumer

consumer § Consumer [

#1 2 #3

Data Data Data

T e
Proxy (,r Proxy

(pull pull
Supplier 2 Supplier #35

Proxy
Pull
consumer

Event Channel @ — ™

Data

Pull Supplier §

Note

The event channel is shown above as a separate process, but it may also be
implemented as part of the supplier object's process.

16: Using the Event Service 225

Using event channels

Using event channels

To create an EventChannel, connect a supplier or consumer to it and use it:
1 Create and start the EventChannel:

Windows

prompt> start vbj com.inprise.vbroker.CosEvent.EventServer -ior <iorFilename>
<channelName>

UNIX
prompt> vbj com.inprise.vbroker.CosEvent.EventServer -ior <iorFilename>
<channelName> &
Note

Only one instance of the EventChannel is supported. All binding to the EventChannel
is done through the call to orb.resolve_initial_references("EventService"), where
EventService is the hardcoded EventChannel name.

Connect to the EventChannel.
Obtain an administrative object from the channel and use it to obtain a proxy object.

Connect to the proxy object.

a B~ W N

Begin transferring or receiving data.

The methods used for these steps vary, depending on whether the object being
connected is a supplier or a consumer, and on the communication model being used.

226 VisiBroker for C++ Developer’s Guide

The table below shows the appropriate methods for suppliers.

consumer proxy

obtain_push_consumer ()

Steps Push supplier Pull supplier

Bind to the CosEventChannelAdmin: : CosEventChannelAdmin: :

EventChannel EventChannel:: EventChannel::
_narrow(orb:: _narrow(orb::
resolve_initial_references resolve_initial_references
("EventService")) ("EventService"))

Get a EventChannel::for_suppliers() EventChannel::for_suppliers()

SupplierAdmin

Geta SupplierAdmin: : SupplierAdmin: :

obtain_pull_consumer ()

Add the supplier to
the EventChannel

ProxyPushConsumer: :
connect_push_supplier()

ProxyPullConsumer: :
connect_pull_supplier()

Data transfer

ProxyPushConsumer: :push ()

Implements pull() and try_pull()

The table below shows the appropriate methods for consumers.

supplier proxy

ier()

Steps Push consumer Pull consumer

Bind to the CosEventChannelAdmin: : CosEventChannelAdmin: :

EventChannel EventChannel:: EventChannel::
_narrow(orb:: _narrow(orb::
resolve_initial_references resolve_initial_references
("EventService")) ("EventService"))

Geta EventChannel::for_consumers () EventChannel::for_consumers ()

ConsumerAdmin

Obtain a ConsumerAdmin: :obtain_push_suppl | ConsumerAdmin: :

obtain_pull_supplier()

Add the consumer to
the EventChannel

ProxyPushSupplier: :connect_push_

consumer ()

ProxyPushSupplier::
connect_pull_consumer ()

Data transfer

Implements push()

ProxyPushSupplier::
pull() and try_pull()

Creating event channels

Creating event channels

VisiBroker provides a proprietary interface called EventChannelFactory in the
CosEventChannelAdmin module to allow Event Service clients to create event
channels on demand. To enable this feature, start the event service for your operating
system as follows:

Windows

start vbj -Dvbroker.events.factory=true
com. inprise.vbroker.CosEvent .EventServer <factoryName>

UNIX

vbj -Dvbroker.events.factory=true
com.inprise.vbroker.CosEvent.EventServer <factoryName>

The property vbroker.events.factory instructs the service to create a factory object with
the name <factoryName> (with a default value of VisiEvent) instead of a channel
object. To write the IOR of the factory to a file, use the —ior option to provide the file
name. By default, the IOR is written to the console.

The factory object created can then be bound by the client, either using the IOR written
to the file (or console) or using the osagent bind mechanism to pass the factory object
name. Once the factory object reference is obtained, it can be used to create, look up,
or destroy event channel objects. An event channel object obtained from the factory
object can be used to connect suppliers and consumers.

Examples of push supplier and consumer

This section describes the example of the push supplier and the consumer
applications.

Push supplier and consumer example

This section describes the example push supplier and consumer applications. When
executed, the supplier application prompts the user to enter data and then pushes the
data to the consumer application. The consumer application receives the data and
writes it to the screen.

The push supplier application is implemented in the Pushiodel .C file and the push
consumer is implemented in the Pushview.C file. These files can be found in the
<install_dir>/examples/vbroker/events directory.

Deriving a PushSupplier class

The first step in implementing a supplier is to derive our own PushModel class from the
PushSupplier interface, shown below.

module CosEventComm {
interface PushSupplier {
void disconnect_push_supplier();
}i

16: Using the Event Service 227

Examples of push supplier and consumer

The code sample below shows the Pushiodel class, implemented in C++. The
disconnect_push_supplier method is called by the EventChannel to disconnect the
supplier when the channel is being destroyed. This implementation simply prints out a
message and exits. If the PushModel object were persistent, this method might also call
deactivate_obj to deactivate the object.

// PushModel.C
#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"
class PushModel : public POA_CosEventComm::PushSupplier, public VISThread {
public:
void disconnect_push_supplier() {
cout << "Model::disconnect_push_supplier()" << endl;
try {
PortableServer::0bjectId_var objId =
PortableServer::string_to_ObjectId("PushModel");
_myPOA->deactivate_object (objId);
1
catch(const CORBA::Exception& e) {
cout << e << endl;

}
¥

Implementing the PushSupplier

The first portion of the supplier implementation is fairly routine. After doing some
initialization, a local scope is set, resulting in a locally-scoped PushModel object.

int main(int argc, char* const* argv)
{
try {
// Initialize the ORB.
CORBA: :0RB_var orb = CORBA::ORB_init (argc, argv);

// get a reference to the root POA
CORBA: :0Object_var obj = orb->resolve_initial_references("RootPOA");
//Create the POA serverPOA

CPushModel* model = NULL;
CosEventChannelAdmin: : ProxyPushConsumer_var pushConsumer = NULL;

model = new PushModel (orb, pushConsumer, serverPOA);
CORBA::String_var supplier_name(CORBA::string_dup ("PushModel"));
PortableServer::0bjectId_var objId =
PortableServer::string_to_ObjectId(supplier_name);
serverPOA->activate_object_with_id(objId, model);

// Activate the POA Manager

serverPOA->the_POAManager () ->activate();

CORBA: :Object_var reference = serverPOA->servant_to_reference (model) ;
cout << "Created model: " << reference << endl;

}

The example uses command line options to implement the PushSupplier. When the
command line option is n, it initializes and instantiates the Pushlodel object.

If the command line option is p, the example binds to the EventChannel and obtains a

Supplieradmin object from the EventChannel. Note that the application could specify an
object name for a specific EventChannel. In a real implementation, the object could be
passed as an argument to the application or obtained from the naming service

228 VisiBroker for C++ Developer’s Guide

Examples of push supplier and consumer

(VisiNaming), if it is available. For more information, see “Using the VisiNaming
Service.” Next the SupplierAdmin object is used to obtain a proxy for the pushConsumer
object from the EventChannel.

If the command line option is ¢, the pushSupplier object is connected to the
EventChannel.

if (emd == 'p') {
if (channel == NULL) {
cout << "Need to locate an [e]vent channel" << endl;
1
else {
pushConsumer = channel->for_suppliers()->obtain_push_consumer();
cout << "Obtained push consumer: " << pushConsumer << endl;
continue;
}
}
else if (ecmd == '¢') {
if (model == NULL) {
cout << "Need to create a [m]odel" << endl;
}
else if (pushConsumer == NULL) {
cout << "Need to obtain a [p]ush consumer" << endl;
1
else {
cout << "Connecting..." << endl;
pushConsumer->connect_push_supplier (model->_this());
model->start () ;
continue;

}
A different thread of the supplier application prompts the user for a string, waits for a

string to be entered and converts the string to an Any object. Lastly, the data is “pushed”
to the consumer proxy object.

while(true) {
VISPortable::vsleep(_delay);
try {
char buf[81];
std::string str;
sprintf (buf, "%s%d", "Hello #", ++_counter);
str = buf;

CORBA: :Any_var message = new CORBA::Any();
*message <<= str.c_str();
cout << "Supplier pushing: " << str.c_str() << endl;

_pushConsumer->push (*message) ;
}
catch(CosEventComm: :Disconnected e) {
cout << "Disconnected #" << _counter << endl;
1
catch (CORBA: :OBJECT_NOT_EXIST e)
{
cout << "Push Consumer has been disconnected" << endl;
return;
1
catch(const CORBA::Exception& e) {
cout << e << endl;
disconnect_push_supplier();

16: Using the Event Service 229

Examples of push supplier and consumer

return;
}
catch(...) {
cout << "Unexpected exception" << endl;
disconnect_push_supplier();
return;

Complete implementation for a sample push supplier

tinclude "corba.h"

tinclude "CosEventComm_s.hh"
tinclude "CosEventChannelAdmin_c.hh"
#include "vport.h"

tinclude <string>

USE_STD_NS
class PushModel : public POA_CosEventComm::PushSupplier, public VISThread({
public:

PushModel (CORBA: :ORB_ptr orb,
CosEventComm: : PushConsumer_ptr pushConsumer,
PortableServer::POA_ptr myPOA)

_orb(orb), _pushConsumer (pushConsumer), _myPOA(myPOA), _counter(0),

_delay (1)

{}

void delay(int time) { delay = time; }

void start() {

// start the thread
run();
1
void disconnect_push_supplier() {
cout << "Model::disconnect_push_supplier()" << endl;
try {
PortableServer::0bjectId_var objId =
PortableServer::string_to_ObjectId("PushModel");
_myPOA->deactivate_object (objId);
}
catch(const CORBA::Exception& e) {
cout << e << endl;
}

1

// implement begin() callback

void begin() {

while(true) {

VISPortable::vsleep(_delay);

try {
char buf[81];
std::string str;
sprintf (buf, "%s%d", "Hello #", ++_counter);
str = buf;
CORBA: :Any_var message = new CORBA::Any();
*message <<= str.c_str();
cout << "Supplier pushing: " << str.c_str() << endl;
_pushConsumer->push (*message) ;

}

catch(CosEventComm: : Disconnected e) {
cout << "Disconnected #" << _counter << endl;

}

230 VisiBroker for C++ Developer’s Guide

Examples of push supplier and consumer

catch (CORBA: :OBJECT_NOT_EXIST e)

{
cout << "Push Consumer has been disconnected" << endl;
return;

}

catch(const CORBA::Exception& e) {
cout << e << endl;
disconnect_push_supplier();
return;

}

catch(...) {
cout << "Unexpected exception" << endl;
disconnect_push_supplier();
return;

}

private :
int _delay;
int _counter;
CORBA::ORB_var _orb;
PortableServer::POA_var _myPOA;
CosEventComm: : PushConsumer_var _pushConsumer;

¥

int main(int argc, char* const* argv)
{
try {
// Initialize the ORB.
CORBA: :0RB_var orb = CORBA::ORB_init (argc, argv);

// get a reference to the root POA
CORBA: :Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

// Create policies for our persistent POA
CORBA: :PolicyList policies;
policies.length(1);
policies|[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy (PortableServer: :PERSISTENT) ;

PortableServer: :POAManager_var poa_manager = rootPOA->the_POAManager () ;

// Create serverPOA with the right policies
PortableServer::POA_var serverPOA =
root POA->create_POA ("event_service_poa", poa_manager, policies);

CosEventChannelAdmin: :EventChannel var channel = NULL;
PushModel* model = NULL;

CosEventChannelAdmin: : ProxyPushConsumer_var pushConsumer = NULL;

while(true) {
try {

cout << "->";
cout.flush();

char cmd;

if (cin >> cmd) {

16: Using the Event Service 231

Examples of push supplier and consumer

if (emd == 'e') {
obj = orb->resolve_initial_references("EventService");
channel = CosEventChannelAdmin::EventChannel::_narrow(obj);
cout << "Located event channel: " << channel << endl;
continue;
}
else if (ecmd == 'p') {
if (channel == NULL) {
cout << "Need to locate an [e]vent channel" << endl;
1
else {
pushConsumer = channel->

for_suppliers()_>obtain_push_consumer();
cout << "Obtained push consumer: " << pushConsumer <<
endl;
continue;
}
}
else if (ecmd == 'm') {
if (pushConsumer == NULL) {
cout << "Need to obtain a [p]ush consumer" << endl;
}
else {
model = new PushModel (orb, pushConsumer, serverPOA);
CORBA: :String_var

supplier_name (CORBA: :string_dup ("PushModel"));
PortableServer::0bjectId_var objId =
PortableServer::string_to_ObjectId(supplier_name);
serverPOA->activate_object_with_id(objId, model);
// Activate the POA Manager
serverPOA->the_POAManager () ->activate();
CORBA: :Object_var reference = serverPOA->
servant_to_reference (model);
cout << "Created model: " << reference << endl;
continue;
}
}
else if (emd == 's') {
if (model == NULL) {
cout << "Need to create a [m]odel" << endl;
}
else {
int delay;
if (cin >> delay) {
if (delay < 0)
cout << "[s]leep delay must be positive" ;
else
model->delay (delay) ;
1
else {
cerr << "Invalid argument to [s]leep" << endl;
}
}
}
else if (ecmd == 'c¢') {
if (model == NULL) {
cout << "Need to create a [m]odel" << endl;

}

232 VisiBroker for C++ Developer’s Guide

Examples of push supplier and consumer

else if (pushConsumer == NULL) {
cout << "Need to obtain a [p]ush consumer" << endl;
}
else {
cout << "Connecting..." << endl;
pushConsumer->connect_push_supplier (model->_this());
model->start () ;
continue;
}
}
else if (emd == 'd') {
if (pushConsumer == NULL) {
cout << "Need to obtain a [p]ush consumer" << endl;

}

else {
cout << "Disconnecting..." << endl;
pushConsumer->disconnect _push_consumer () ;
continue;
}
}
else if (cmd == 'q') {
cout << "Quitting..." << endl;
CORBA: :ORB: : shutdown () ;
break;
}
else {
cout << "Commands: e [e]vent channel" << endl
<< " s <# seconds> set [s]leep delay" << endl
<< " P [plush consumer" << endl
<< " m [m]odel" << endl
<< " o [c]onnect" << endl
<< " d [d]isconnect" << endl
<< " q [qluit" << endl;
}

}
}
catch(const CORBA::SystemException& e) {
cerr << e << endl;
1
1
1
catch(const CORBA::Exception& e) {
cerr << e << endl;
}

return 0;

16: Using the Event Service 233

Examples of push supplier and consumer

Deriving a PushConsumer class

The code sample below shows the first part of the supplier application, which defines a
PushView class that is derived from the PushConsumer interface, shown below.

module CosEventComm {
exception Disconnected();
interface PushConsumer ({
void push(in any data) raises(Disconnected);
void disconnect_push_consumer();
}i
}i
The push method receives an Any type and attempts to convert it to a string and print it.

The disconnect_push_supplier method is called by the EventChannel to disconnect the
consumer when the channel is destroying itself.

// PushView.C
tinclude "CosEventComm_s.hh"
tinclude "CosEventChannelAdmin_c.hh"
class PushView : public POA_CosEventComm: :PushConsumer
{
public:
void push(const CORBA::Any& data) {
cout << "Consumer being pushed: " << data << endl;

}

void disconnect_push_consumer () {
cout << "PushView::disconnect_push_consumer" << endl;
1
¥

Implementing the PushConsumer

If the command line is v, then the PushConsumer object is instantiated and activated.
Different command line options cause it to bind to the EventChannel, obtain the supplier
proxy object and connect to the consumer object and wait to receive push requests.

// PushView.C
#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"

int main(int argc, char* const* argv)
{
try {
// Initialize the ORB.
CORBA::0RB_var orb = CORBA::ORB_init (argc, argv);

// get a reference to the root POA
CORBA: :Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

// Create policies for our persistent POA

CORBA: :PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] =

root POA->create_lifespan_policy (PortableServer: :PERSISTENT) ;

PortableServer: :POAManager_var poa_manager = rootPOA->the_POAManager () ;
// Create serverPOA with the right policies
PortableServer::POA_var serverPOA =

root POA->create_POA ("event_service_poa", poa_manager, policies);

234 VisiBroker for C++ Developer’s Guide

Examples of push supplier and consumer

CosEventChannelAdmin: :EventChannel _var channel = NULL;
PushView* view = NULL;
CosEventChannelAdmin: : ProxyPushSupplier_var pushSupplier = NULL;

while(true) {
try {
cout << "-> ",
cout.flush();
char cmd;
if (cin >> cmd) {
if (emd == 'e') {
obj = orb->resolve_initial_references("EventService");
channel = CosEventChannelAdmin::EventChannel::_narrow(obj);
cout << "Located event channel: " << channel << endl;
continue;
}
else if (emd == 'v') {
view = new PushView();
CORBA::String_var
consumer_name (CORBA: : string_dup ("PushView"));
PortableServer::0bjectId_var objId =
PortableServer::string_to_ObjectId(consumer_name);
serverPOA->activate_object_with_id(objId, view);
// Activate the POA Manager
serverPOA->the_POAManager () ->activate();
CORBA: :Object_var reference = serverPOA
>servant_to_reference(view);
cout << "Created view: " << reference << endl;
continue;
}
else if (ecmd == 'p') {
if (channel == NULL) {
cout << "Need to locate an [e]vent channel" << endl;
}
else {
pushSupplier = channel->for_consumers ()
->obtain_push_supplier();
cout << "Obtained push consumer: " << pushSupplier <<
endl;
continue;
}
}
else if (ecmd == '¢') {
if (view == NULL) {
cout << "Need to create a [v]iew" << endl;
1
else if (pushSupplier == NULL) {
cout << "Need to obtain a [pJush supplier" << endl;

}

else {
cout << "Connecting..." << endl;
pushSupplier->connect_push_consumer (view->_this());
continue;

}
}
else if (cmd == 'd') {
if (pushSupplier == NULL) {
cout << "Need to obtain a [p]ush supplier" << endl;

}

16: Using the Event Service 235

Examples of push supplier and consumer

else {

cout << "Disconnecting..." << endl;
pushSupplier->disconnect _push_supplier();
continue;

}
}

else if (cmd == 'g'

cout << "Quitting..." << endl;

break;

}
cout <<
<<
<<
<<
<<
<<

}
}

catch(const CORBA::SystemException& e) {

"Commands :

cerr << e << endl;

}
}
}

catch(const CORBA::Exception& e) {

cerr << e << endl;

}

Setting the queue length

Q o < ' o

e]vent channel"
plush supplier"
v]iew"
clonnect"
d]isconnect"
]

(
(
[
[
[
[qluit"

<<
<<
<<
<<
<<

endl
endl
endl
endl
endl

<< endl;

In some environments, consumer applications may run slower than supplier
applications. The maxQueueLength parameter prevents out-of-memory conditions by

limiting the number of outstanding messages that will be held for each consumer that

cannot keep up with the rate of messages from the supplier.

If a supplier generates 10 messages per second and a consumer can only process one
message per second, the queue will quickly fill up. Messages in the queue have a fixed
maximum length and if an attempt is made to add a message to a queue that is full, the

channel will remove the oldest message in the queue to make room for the new

message.

Each consumer has a separate queue, so a slow consumer may miss messages while
another, faster consumer may not lose any. The code sample below shows how to limit
each consumer to 15 outstanding messages.

CosEventChannel -maxQueuelLength=15 MyChannel

Note

If maxQueuelLength is not specified or if an invalid number is specified, a default queue

length of 100 is used.

236 VisiBroker for C++ Developer’s Guide

Compiling and linking programs

Applications that use the Event Service need to include the following generated files:
#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"

UNIX

UNIX applications need to be linked with one of the libraries:

- libcosev.a

- libcosev.so

Windows

Windows applications need to be linked with the cosev_r.1ib (cosev_r.dll) library.

16: Using the Event Service 237

238 VisiBroker for C++ Developer’s Guide

Using the VisiBroker Server Manager

The VisiBroker Server Manager allows client applications to monitor and manage
object servers, view and set properties at runtime for those servers, and view and
invoke methods on Server Manager objects. The Server Manager uses elements
known as containers which represent each major ORB component. A container can
contain properties, operations, and even other containers.

Note
Do not confuse the Server Manager container with J2EE containers. The Server

Manager container is simply a logical grouping of ORB components and selected
runtime properties.

Getting Started with the Server Manager

This section covers enabling the Server Manager on a server, obtaining a Server
Manager reference, working with containers, the Storage interface and the Server
Manager IDL.

Enabling the Server Manager on a server

A VisiBroker server is not enabled to be managed by default. The command which
starts the server must set the following property to manage the server:

vbroker.orb.enableServerManager=true

The property can be specified either through the command-line or through the server's
properties file.

17: Using the VisiBroker Server Manager 239

Getting Started with the Server Manager

Obtaining a Server Manager reference

The first step in interacting with a Server Manager is to obtain a reference to a server's
Server Manager. This reference points to the top level container. A client can obtain the
reference in two ways:

1

A server runner can choose to name the Server Manager using the property option
vbroker.serverManager .name. For example, the command:

prompt> Server -Dvbroker.serverManager.name=BigBadBoss

registers the Server Manager name “BigBadBoss” to the Smart Agent namespace.
From this point onward, the client can bind to that name and start invoking
operations on the reference. This property can be set in the properties file as well.
This method of locating a Server Manager can be used when the client does not
have object references to any other objects implemented by the server, for example:

ServerManager: :Container_var cont =
ServerManager: :Container::_bind("BigBadBoss");

If the client has an object reference to some other object implemented by the server,
then the client can perform _resolve_reference("ServerManager") on that object to
obtain the ServerManager for the ORB corresponding to the object. The following
code fragment obtains the Server Manager's top-level container from the

Bank: :AccountManager object.

Bank::AccountManager_var manager = Bank::AccountManager::_bind("/
bank_agent_poa", managerId);

ServerManager: :Container_var cont;

CORBA: :Object_var objCont = manager->_resolve_reference("ServerManager");

The client code needs to include the servermgr_c.hh to use the Server Manager
interfaces.

Working with Containers

Once a client application has obtained the reference to the top level container, it can:

get, set, or add properties on top level container.

iterate through containers container inside top level container.
get, set, or add containers.

invoke operations defined in containers.

get or set storage on the containers.

restore or persist properties to property storage.

The top-level container does not support any properties or operations but just contains
the ORB container. The ORB container in turn contains few ORB properties, a shutdown
method, and other containers like RootPOA, Agent, OAD, and so forth.

See “The Container Interface” for information on how to interact with containers. The
“Server Manager examples” shows Java and C++ interactions as well.

240 VisiBroker for C++ Developer’s Guide

The Container Interface

The Storage Interface

Server Manager provides an abstract notion of storage that can be implemented in any
fashion. Individual containers may choose to store their properties in the different ways.
Some containers may choose to store their properties in a database, while others may
choose to store them in files or in some other method. The Storage interface is defined
in Server Manager IDL.

Every container uses the same methods to get and set storage, along with the ability to
optionally set storage on all child containers of the parent. Similarly, each container
uses the same methods to read and write its properties from the storage.

For information on the Storage Interface and its methods, see “The Storage Interface”.

The Container Interface

The container interface defines an interface and associated methods for logically
grouping sets of objects, properties, operations, and so forth.

Container Methods

A container can hold properties, operations, and other containers. Each major ORB
component is represented as a container. The top-level container corresponds to the
ORB itself and includes a few ORB properties, the shutdown method, and a few other
commonly used containers like Root POA and Agent.

This section explains the C++ methods that can be executed on the container
interface. There are four categories:

- Methods related to property manipulation and quereies
- Methods related to operations
- Methods related to children containers

- Methods related to storage

Methods related to property manipulation and queries

CORBA: :StringSequence list_all_properties();
Returns the names of all the properties in the contianer as a StringSequence.
PropertySequence get_all_properties();

Returns the PropertySequence containing the names, values, and read-write status of all
the properties in the container.

Property get_property(in string name raises(NameInvalid);
Returns the value of the property name passed as an input parameter.

void add_property(in string name, in any value) raises(NameInvalid,
ValueInvalid, ValueNotSettable);

Sets the value of the property name to the requested value.
void persist_properties(in boolean recurse) raises(StorageException);

Causes the container to actually store its properties to the associated storage. If no
storage is associated with the container, a StorageException will be raised. When it is
invoked with the parameter recurse=true, the properties of the children containers are
also stored into the storage. It is up to the container to decide if it has to store all the
properties or only the changed properties.

void restore_properties(in boolean recurse) raises(StorageException);

Instructs the container to obtain its properties from the storage. A container knows
exactly what properties is manages and it attempts to read those properties from the
storage. The containers shipped with the ORB do not support restoring from the
storage. You must create containers that support this feature yourself.

17: Using the VisiBroker Server Manager 241

The Storage Interface

Methods related to operations

::CORBA: :StringSegence list_all_operations();
Returns the names of all the operations suppored in the container.
OperationSequence get_all_operations();

Returns all the operations along with the parameters and the type code of the
parameters so that the operation can be invoked with the appropriate parameters.

Operation get_operation(in string name) raises(NameInvalid);

Returns the parameter information of the operation specified by name which can be
used to invoke the operation.

any do_operation(in Operation op) raises(NameInvalid, ValueInvalid,
OperationFailed);

Invokes the method in the operation and returns the result.

Methods related to children containers

::CORBA: :StringSequence list_all_containers();

Returns the names of all the children containers of the current container.
NamedContainerSequence get_all_containers();

Returns all the children containers.
NamedContainer get_container(in string name) raises(NameInvalid);

Returns the child container identified by the name parameter. If there is not any child
container with this name, a NameInvalid exception is raised.

void add_container (in NamedContainer container) raises(NameAlreadyPresent,
ValueInvalid);

Adds the container as a child container of this container.

void set_container(in string name, in Container value) raises(NameInvalid,
ValueInvalid, ValueNotSettable);

Modifies the child container identified by the name parameter to one in the value
parameter.

Methods related to storage

void set_storage(in Storage s, in boolean recurse);

Sets the storage of this container. If recurse=true, it also sets the storage for all its
children as well.

Storage get_storage();

Returns the current storage of the container.

The Storage Interface

The Server Manager provides an abstract notion of storage that can be implemented in
any fashion. Individual containers may choose to store their properties in databases,
flat files, or some other means. The storage implementation included with the
VisiBroker ORB uses a flat-file-based approach.

Storage Interface Methods

void open() raises (StorageException);

242 VisiBroker for C++ Developer’s Guide

Limiting access to the Server Manager

Opens the storage and makes it ready for reading and writing the properties. For the
database-based implementation, logging into the database is performed in this
method.

void close() raises (StorageException);

Closes the storage. This method also updates the storage with any properties that
have been changed since the last Container::persist_properties call. In database
implementations, this method closes the database connection.

Container::PropertySequence read_properties() raises(StorageException);
Reads all the properties from the storage.

Container::Property read_property(in string propertyName)
raises(StorageException, Container::Namelnvalid);

Returns the property value for propertyName read from the storage.

void write_properties(in Container::PropertySequence p)
raises(StorageException);

Saves the property sequence into the storage.
void write_property(in Container::Property p) raises(StorageException);

Saves the single property into the storage.

Limiting access to the Server Manager

A client that obtains the Server Manager can control the entire ORB and hence security
is paramount. The following properties can limit a user's access to the Server Manager
functionality:

Property Default Value |Description

vbroker.orb.enableServerManager false Setting this property to True enables
the Server Manager.

vbroker.serverManager.enableOperations | true Controls the permission to invoke

operations in the containers. If set to
false, the client will not be able to
invoke do_operation on any container.

vbroker.serverManager.enableSetProperty |true Controls the setting of properties
from the client. If set to false, clients
cannot modify any of the container
properties.

17: Using the VisiBroker Server Manager 243

Limiting access to the Server Manager

Server Manager IDL

Server Manager IDL is as shown below:

module ServerManager f{
interface Storage;

exception StorageException {
string reason;

¥

interface Container
{
enum RWStatus {
READWRITE_ALL,
READONLY_IN_SESSION,
READONLY _ALL
}i

struct Property {
string name;
any value;
RWStatus rw_status;
}i
typedef sequence<Property> PropertySequence;

struct NamedContainer {
string name;
Container value;
boolean i1s_replaceable;
}i
typedef sequence<NamedContainer> NamedContainerSequence;

struct Parameter {
string name;
any value;
}i
typedef sequence<Parameter> ParameterSequence;

struct Operation {
string name;
ParameterSequence params;
::CORBA: : TypeCode result;

}i

typedef sequence<Operation> OperationSequence;

struct VersionInfo {
unsigned long major;
unsigned long minor;
}i

exception NameInvalid{};
exception NameAlreadyPresent{};
exception ValueInvalid{};
exception ValueNotSettable{};
exception OperationFailed{

string real_exception_reason;

}i

244 VisiBroker for C++ Developer’s Guide

Limiting access to the Server Manager

: :CORBA: : StringSequence list_all_properties();
PropertySequence get_all_properties();

Property get_property(in string name) raises (NameInvalid);
void add_property (in Property prop)

raises (NameAlreadyPresent, NameInvalid, ValuelInvalid);
void set_property(in string name, in any value)
raises(NameInvalid, ValueInvalid, ValueNotSettable);

: :CORBA: : StringSequence get_value_chain(in string propertyName) raises

(NameInvalid);

}i

voild persist_properties(in boolean recurse) raises (StorageException);
voild restore_properties(in boolean recurse) raises (StorageException);

: :CORBA: : StringSequence list_all_operations();
OperationSequence get_all_operations();

Operation get_operation(in string name)

raises (NameInvalid);

any do_operation(in Operation op)
raises(NameInvalid, ValueInvalid, OperationFailed);

: :CORBA: : StringSequence list_all_containers();
NamedContainerSequence get_all_containers();
NamedContainer get_container(in string name)

raises (NameInvalid);

void add_container (in NamedContainer container)

raises (NameAlreadyPresent, ValueInvalid);

void set_container(in string name, in Container value)
raises (NameInvalid, ValueInvalid, ValueNotSettable);

void set_storage(in Storage s, in boolean recurse);
Storage get_storage();

readonly attribute VersionInfo version;

interface Storage

{

void open() raises (StorageException);

void close() raises (StorageException);

Container::PropertySequence read_properties() raises

(StorageException);

Container::Property read_property(in string propertyName)

raises (StorageException, Container::NameInvalid);

void write_properties(in Container::PropertySequence p) raises
(StorageException) ;

void write_property(in Container::Property p) raises (StorageException);

17: Using the VisiBroker Server Manager

245

Server Manager examples

Server Manager examples

The following examples demonstrate how to:

1 Obtain a reference to the top-level container.

2 Get all containers and their properties recursively.

3 Getting, setting, and saving properties on different containers.

4 Invoke the shutdown() method on the ORB container.

These example files can be found in:
<install_dir>/examples/vbroker/ServerManager/

The following example uses the bank_agent server. This server should be started by
passing the property storage file. Initially the property file contains the properties to
enable the Server Manager and set its name. The file is used by the Server Manager to
update the properties if the user changes them. The properties to enable the Server
Manager and set its name can be passed as command-line options, but the property
file is required if any of the properties are to be modified and saved during the session.

Initially, the property file contains the following:

server properties
vbroker.orb.enableServerManager=true
vbroker.serverManager .name=BigBadBoss

The server is started from the command-line:
prompt> Server -ORBpropStorage prop.txt

Obtaining the reference to the top-level container

This example uses the second, or bind method since the Server Manager has been
started with a name (see “Obtaining a Server Manager reference”).

ServerManager::Container_var cont =
ServerManager: :Container::_bind("BigBadBoss");

Getting all the containers and their properties

The following example shows how get_all_properties, get_all_operations, and
get_all_containers can be used to query all the properties and operations of all the
containers below the current container recursively.

void SrvrmgrUtil::displayContainer(char * name, ServerManager::Container_ptr
cont) {
try {
ServerManager: :Container: :PropertySequence * props = cont-
>get_all_properties();
for (int 1 =0; 1 < props->length() ; i++) {
printProperty ((*props) [1]);
}
ServerManager::Container::OperationSequence * ops = cont-
>get_all_operations();
for (int j = 0; j < ops->length(); j++)
printOperation((*ops) [j]);
}
catch (ServerManager::Container::NameInvalid& ne) {
cerr << ne <<endl;

} catch (ServerManager::Container::ValueInvalid & ve) {
cerr << ve <<endl;

246 VisiBroker for C++ Developer’s Guide

Server Manager examples

} // Pass the remaining exceptions to the main function
ServerManager: :Container: :NamedContainerSequence* nc = cont-
>get_all_containers();
for (int j =0 ; j < nc->length(); j++) {
displayContainer((*nc) [j].name, (*nc)[j].value);

}

Getting and Setting properties and saving them into the file

The following code fragment shows how to query a property of a container. If the
container is not the top-level container, it needs to be reached first by traversing
through all its parents from the top container. The get and set methods can be called
only on the container which owns the property.

Note
Properties with RW_STATUS values of READONLY_ALL are not settable.

// querying for properties
ServerManager: :Container: :NamedContainer_var orbCont = cont-
>get_container ("ORB");
ServerManager: :Container: :NamedContainer_var sesCont =
orbCont->value->get_container ("ServerEngines");
ServerManager: :Container: :NamedContainer_var seCont =
sesCont->value->get_container ("iiop_tp");
ServerManager: :Container: :NamedContainer_var scmCont =
seCont->value->get_container ("iiop_tp");
SrvrmgrUtil::displayProperty ("vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.inUseTh
reads",
scmCont->value) ;

CORBA::Any_var a = new CORBA::Any;

a <<= (CORBA::ULong) 34001UL;

scmCont->value->set_property ("vbroker.se.iiop_tp.scm.iiop_tp.listener.port",
al;

scmCont->value->persist_properties(true);

Invoking an operation in a Container

The 0RB container supports the operation shutdown. The operation can be obtained by
calling get_operation on the container.

void SrvrmgrUtil::invokeShutdown (ServerManager::Container_ptr orbCont)
{

ServerManager: :Container: :Operation_var shutOp = orbCont-
>get_operation("shutdown");

shutOp->params[0] .value <<= CORBA::Any::from_boolean (0UL);

orbCont->do_operation(shutOp.in());

}

The operation returned by the get_operation call has the default parameters. If the
default values of the parameters are not the intended ones, these values should be
modified before calling the do_operation method.

17: Using the VisiBroker Server Manager 247

Server Manager examples

Custom Containers

It is possible for a user application to define containers and add them to the Server
Manager. The container manages two properties and defines one operation. It also
uses its own storage for storing the properties. The two properties are:

Property Description

manager . lockAllAccounts | This property has a read-write status of READWRITE_ALL, S0 it can be
modified and takes effect while the server is running. The purpose of
this property is to make AccountManager unavailable for client
applications. The initial value of this property is read by the server on
startup and saved to the same file when server shuts down/restarts.

manager .numAccounts This property has a read-write status of READONLY_ALL, so it can only be
read. The purpose of this property is to provide the number of
Accounts in the AccountManager. The value of this property is not
written to the storage.

The operation is:

Operation | Description

shutdown | Shuts down the server without starting it again. Before shutdown, the
manager.lockAllAccounts property is written (persisted) to the property file.

For a complete example, go to:
<install_dir>/examples/vbroker/ServerManager/custom_container/
The main steps in writing custom containers is follows:

1 Implement the Container interface defined in Serve Manager IDL.

2 Instantiate the servant that implements the Container interface and activate it on a
POA.

3 Obtain the reference to Server Manager top level container. Add the custom
container to the Container hierarchy.

The server then can be started with the Server Manager enabled and a client can
interact with the custom container.

If you want your application to implement its own storage, it has to implement the
Storage interface defined in Server Manager IDL. The basic steps are same as
implementing custom containers

248 VisiBroker for C++ Developer’s Guide

Introduction

Using VisiBroker Native Messaging

Native Messaging is a language independent, portable, interoperable, server side
transparent, and OMG compliant two-phase invocation framework for CORBA and
RMI/J2EE (RMI-over-11OP) applications.

Two-phase invocation (2PI)

In object-oriented vocabulary, invocations are method calls made on target objects.
Conceptually, an invocation is made up of two communication phases:

- sending a request to a target in the first phase
- receiving a reply from the target in the second phase

In classic object-oriented distributed frameworks, such as CORBA, RMI/J2EE, and
.NET, invocations on objects are one-phased (1Pl), in which the sending and receiving
phases are encapsulated together inside a single operation rather than exposed
individually. In a one-phased invocation the client calling thread blocks on the operation
after the first phase until the second phase completes or aborts.

If a client can be unblocked after the first phase, and the second phase can be carried
out separately, the invocation is called two-phased (2P1). The operation unblocking
before completing its two invocation phases is called a premature return (PR) in Native
Messaging.

A 2PI allows a client application to unblock immediately after the request sending
phase. Consequently, the client does not have to halt its calling thread and retain the
transport connection while waiting for a reply. The reply can be retrieved or received by
the client from an independent client execution context and/or through a different
transport connection.

Polling-Pulling and Callback models

In a two-phase invocation scenario, after sending out each request the client
application can either actively poll and pull the reply using a poller object provided by
the infrastructure, or the client can passively wait for the infrastructure to notify it and
send back the reply on a specified asynchronous callback handler. These two
scenarios are usually called the synchronous polling-pulling model and the
asynchronous callback model respectively.

18: Using VisiBroker Native Messaging 249

Introduction

Non-native messaging and IDL mangling

In non-native messaging, such as CORBA Messaging, two-phase invocations are not
made with native operation signatures on native IDL or RMI interfaces. Instead, at
different invocation phases, and with different reply retrieve models, client applications
have to call various mangled operations.

For instance, in CORBA Messaging, to make a two-phase invocation of operation
foo (<parameter_list>) on a target, the request sending is not made with the native
signature foo () itself, but it is made with either of the following mangled signatures:

// in polling-pulling model
sendp_foo (<input_parameter_list>);

// in callback model
sendc_foo(<callback_handler>, <input_parameter_list>);

The reply polling operation signature is:
foo(<timeout>, <return_and_output_parameter_list_as_output>);
The reply delivery callback operation signature is:
foo(<return_and_output_parameter_list_reversed_as_input>);

These mangled operations are either additional signatures added to the original
application specified interface, or defined in additional type specific interfaces or
valuetypes.

Problems of this non-native and mangling approach are:
- It ruins the intuitiveness of the original IDL interface and operation signatures.

It could conflict with other operation mangling, for instance, in case of Java RMI.

It could collide with operation signatures already used by the original IDL interface.

It introduces interface binary incompatibility. For instance, interfaces with and without
mangled signatures are not necessarily binary compatible in their language mapping.

It does not respect the natural mapping between IDL operations and native GIOP
messages, and therefore, introduces inconsistency and dilemmas when used with
other OMG CORBA features, such as Portablelnterceptor.

Native Messaging solution

Native Messaging only uses native IDL language mapping and native RMI interfaces
defined by applications, without any interface mangling and without introducing any
additional application specific interface or valuetype.

For instance, in Native Messaging, sending a request to foo (<parameter_list>) and
retrieving (or receiving) its reply in either the polling-pulling or callback models are
made with the exact native operation foo (<parameter_list>) itself and are made on
native IDL or RMI interfaces. No mangled operation signature and interfaces or
valuetypes are introduced or used.

This pure native and non-mangling approach is not only elegant and intuitive but
completely eliminates conflicts, name collision, and inconsistencies of operation
signature mangling.

Request Agent

Similar to the OMG Security and Transaction Services, Native Messaging is an object
service level solution, which is based on an fully interoperable broker server, the
Request Agent, and a client side portable request interceptor fully compliant with the
OMG Portable Interceptor specification.

When making two-phase invocations, Native Messaging applications do not send
requests directly to their target objects. Instead, request invocations are made on
delegate request proxies created on a specified Request Agent. The request proxy is

250 VisiBroker for C++ Developer’s Guide

StockManager example

responsible for delegating invocations to their specified target objects, and delivering
replies to client callback handlers or returning them later on client polling-pulling.

Therefore, a request agent needs to be known by client applications. Usually, this is
accomplished by initializing the client ORB using OMG standardized ORB initialization
command arguments:

-ORBInitRef RequestAgent=<request_agent_ior_or_url>

This command allows client applications to resolve the request agent reference from
this ORB as an initial service, for instance:

// Getting Request Agent reference in C++
CORBA: :Object_var ref

= orb->resolve_initial_references("RequestAgent");
NativeMessaging: :RequestAgentEx_var agent

= NativeMessaging::RequestAgentEx::_narrow(ref);

By default, the URL of a request agent is:
corbaloc: :<host>:<port>/RequestAgent

Here, <host> is the host name or dotted IP address of a RequestAgent server, and
<port> is the TCP listener port number of this server. By default, NativeMessaging
RequestAgent uses port 5555.

Native Messaging Current

Similar to the OMG Security and Transaction Services, Native Messaging uses a
thread local Current object to provide and access additional supplemental parameters
for making two-phase invocations. These parameters include blocking timeout, request
tag, cookie, poller reference, reply availability flag, and others. Semantic definitions
and usage descriptions of these parameters are given in later sections. Similarly, the
Native Messaging Current object reference can be resolved from an ORB as an initial
service, for instance:

// Getting Current object reference in C++
CORBA: :Object_var ref

= orb->resolve_initial_references("NativeMessagingCurrent");
NativeMessaging::Current_var current

= NativeMessaging::Current::_narrow(ref);

Core operations

A two-phase framework allows all normal invocations to be carried out in two separate
phases manageable by client applications. Nevertheless, on fulfilling or using this two-
phase invocation service, the framework and/or client may need some other primitive
core functions from the framework. Operations used to access primitive core functions
are called core operations. It is desirable that:

- Core operations are always accomplished in a single phase. An invocation on a core
operation always blocks until it completes or aborts.

- Core operations are always orthogonal to any normal two-phase invocations that
they are involved in.

In Native Messaging, all pseudo operations are reserved as core operations.

Note

In this document, if not explicitly stated, “invocation” or “operation” implies a non-core
two way operation.

StockManager example

The StockManager example is used in this section to illustrate the Native Messaging
usage scenarios. This example is abridged from the full scale version that is shipped

18: Using VisiBroker Native Messaging 251

StockManager example

with the product in the <install_dir>/examples/vbroker/NativeMessaging/stock_manager
directory, and it is provided to illustrate functionality that is equivalent to the CORBA
Messaging StockManager example.

The following example assumes a server object has its IDL interface, StockManager,
defined as follows:

// from: <install_dir>/examples/vbroker/NativeMessaging/
// stock_manager/StockManager.idl
interface StockManager {
boolean add_stock(in string symbol, in float price);
boolean find_closest_symbol (inout string symbol);
b
A conventional single-phase add_stock () or find_closest_symbol () call adds a stock

symbol to or finds a symbol in the targeted stock manager server. The following is an
example of the invocation code:

// invoke and block until return
CORBA: :Boolean stock_added
= stock_manager->add_stock ("ACME", 100.5);
CORBA::String_var symbol = (const char*)"ACMA";
CORBA: :Boolean closest_found
= stock_manager->find_closest_symbol (symbol.inout ());

In the above one-phase invocation case, the invocations are blocked until the client
receives its returns or exceptions.

Using Native Messaging, two-phase invocations can be made on the same stock
manager server. Replies to these invocations can be retrieved or returned using the
synchronous polling-pulling model or the asynchronous callback model, as illustrated in
the following sections, “Polling-pulling model”, and “Callback model”.

Note

This document illustrates the StockManager example code in C++. The corresponding
Java code is available in the “Using VisiBroker Native Messaging” chapter of the
VisiBroker for Java Developer's Guide.

Polling-pulling model

In the polling-pulling model, the result of a two-phase invocation is pulled back by client
applications. The steps for Native Messaging polling-pulling two-phase invocations are
summarized below.

1 Create a request proxy from a Native Messaging Request Agent. This proxy is
created for a specific target object (a stock manager server in our example) and is
used to delegate requests to the target.

2 Get the typed receiver or <I> interface of this proxy. This typed receiver is used by
the client application to send requests to the proxy. The typed receiver of a proxy
supports the same IDL interface as the target object. In this example, the typed
receiver supports the StockManager interface and can be narrowed down to a typed
StockManager stub.

3 Perform the first invocation phase, making several invocations on the typed receiver
stub. By default, invocations on a typed receiver are returned with dummy output
and return values. This is called a premature return. Receiving a premature return
from proxy's typed receiver without raising an exception indicates that a two-phase
invocation has been successfully initiated. It indicates that the request has been
accepted and assigned to a distinct poller object by the request agent. The poller
object of a two-phase invocation is available from the local NativeMessaging
Current. Like the typed receiver, all poller objects also support the same IDL
interface as the target (in this example the StockManager).

4 Carry out the second phase of the invocation, polling availability and pulling replies
back from the poller objects. The client application narrows the poller objects to their

252 VisiBroker for C++ Developer’s Guide

StockManager example

corresponding typed receiver stubs (StockManager in this example) and invokes the
same operations as those invoked in the request sending phase. When making an
invocation on poller objects input parameters are ignored. Also, the agent does not
deliver new requests to the delegated target object. The agent treats all invocations
made on the poller object as polling-pulling requests. Usually, a timeout value can
be provided as a supplemental parameter through NativeMessaging Current to
specify the maximum polling blocking timeout. If the reply is available before the
timeout, the polling invocation will receive a mature return with output parameters
and a return result from the real invocation. Otherwise, if the reply is not available
before the timeout expires, the poll ends up with a premature return again.
Applications should use the reply_not_available attribute of Native Messaging
Current to determine whether a polling return is premature.

The following code sample illustrates how to use Native Messaging to make polling-
pulling two-phase invocations on a stock manager object:

// from: <install_dir>/examples/vbroker/NativeMessaging/
// stock_manager/polling_client_main.C

// 1. create a request proxy from the request agent for making
// non-blocking requests on targeted stock_manager server.
NativeMessaging: :RequestProxy_var proxy
= agent->create_request_proxy (
stock_manager, "",
NULL, NativeMessaging::PropertySeq(0));

// 2. Get the request (typed) receiver of the proxy
CORBA: :Object_var ref;
StockManager_var