
Borland
VisiBroker™ 8.0

Security Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800
Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance
with the License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications
covering subject matter in this document. Please refer to the product CD or the About
dialog box for the list of applicable patents. The furnishing of this document does not give
you any license to these patents.

Copyright 1992–2006 Borland Software Corporation. All rights reserved. All Borland brand
and product names are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries. All other marks are the property of
their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB 80 VisiBroker Security Guide
April 2007

i

Contents

Chapter 1
Getting Started with VisiSecure 1
VisiSecure overview 1

VisiSecure design flexibility 1
Pluggability . 2
VisiSecure for Java 2
VisiSecure for Java features 2
VisiSecure for C++. 2
VisiSecure for C++ Features. 3

Basic security model 3
Authentication realm (user domain) 4
Setting up Resource domain 5
Authorization domain 5

Distributed Transmission 5

Chapter 2
Authentication 7
Managing authentication with JAAS 7

Basics of JAAS concepts 7
Subjects . 7
Principals . 8
Credentials 8
Public and private credentials 8
Authentication and pluggability 9

Identity, trust and authentication 9
Relationship between trust and authentication . . 9
Identities . 10

System identity 10
Client identity 10

Configuring authentication 11
Authentication property settings 11
Formatted target 12
Setting the config file for client authentication . . . 12
Setting up authentication realms 12

Different types of Authentication 13
Authentication mechanisms. 14

GSSUP mechanism 14
Authenticating clients with usernames

and passwords 14
Username/password authentication using APIs 15
Certificate-based authentication using KeyStores

through property settings:. 16
Certificate-based authentication using APIs . . 17
Certificate based authentication using APIs with

pkcs12Server 18
Certificate based authentication using Certificate

wallet . 19
pkcs12-based authentication using KeyStores . 20
pkcs12-based authentication using APIs 20

LoginContext class and LoginModule interface . . 20
Authentication and stacked LoginModules. 21

Associating a LoginModule with a realm 22
Syntax of a realm entry 23

Borland LoginModules 24
Using a Vault . 24

Creating a Vault 25
Example - using VaultGen 26

Example: Using API 26
To generate vault file: 27

Certificate Revocation List 27

Chapter 3
Authorization 29

Access Control 29
Access Control List 29

Pluggable Authorization 29
Configuring authorization using the rolemap file. . . 30

What is a rolemap 30
Syntax of Role DB. 30

Defining Roles in Roles DB. 31
Modifying authorization rolemap file 32

Specifying rules for authorization 32
Assertion syntax 32

Using logical operators with assertions 32
Wildcard assertions 32

Other assertions 33
Recycling an existing role 33

Configuring authorization domains 33
Specifying names to authorization domain 33

Naming authorization domains 34
Setting up default access 34
Setting up RoleDB. 34
Configuring authorization domains to run-as alias

34
Run-as Alias. 34

Creating Vault 35
Run-as mapping. 39

Setting up authorization for CORBA objects. 39
Configuring authorization requirements 40

Using vault for a domain 42
Context Propagation 42

Impersonation 43
Delegation 43

Identity assertions 43
Asserting Identity of the caller 44

Trusting Assertions 46
Trust assertions and plug-ins 46
Backward trust 47
Forward trust 47

Temporary privileges 47

Chapter 4
Secure Transportation 49
Enabling SSL . 49

Setting the level of encryption 49
Supported cipher suites 50

Enabling Security 50
vbroker.security.disable=false

Enabling SSL 50
Setting the Log Level 51

VisiSecure - Java 51
VisiSecure C++ 51

Encryption . 52

ii

Public-key encryption 52
Asymmetric encryption 52
Symmetric encryption 53

Certificates and Certificate Authority 53
Digital signatures 53
Generating a private key and certificate request . 53

Distinguished names 54
Certificate chains. 54

Using IIOP/HTTPS 55
Netscape Communicator/Navigator 55
Microsoft Internet Explorer 55

Chapter 5
Quality of Protection 57
Setting properties and QoP. 57
Configuring Quality of Protection(QoP) for both server

and the client. . 58
Configuring QoP for Server 58
Configuring QoP for client 59

Configuring Quality of Protection (QoP) parameters . 60

Chapter 6
Creating Custom Plugins 61

Creating Custom Plugins for c++ 61
LoginModules 61
CallbackHandlers 63
Authorization Service Provider 64
Trust Providers 71

Chapter 7
Making Secure Connections (Java) 73
JAAS and JSSE 73

JSSE Basic Concepts 73
Steps to secure clients and servers 74

Step One: Providing an identity 74
Username/password authentication, using JAAS

modules, for known realms 74
Username/password authentication, using APIs .

74
Certificate-based authentication, using KeyStores

through property settings 75
Certificate-based authentication, using KeyStores

through APIs 75
Certificate-based authentication, using APIs. . 75
pkcs12-based authentication, using KeyStores 75
pkcs12-based authentication, using APIs . . . 75

Step Two: Setting properties and Quality of
Protection (QoP) 75

Step Three: Setting up Trust 76
Step Four: Setting up the Pseudo-Random

Number Generator 76
Step Five: If necessary, set up identity assertion . 76

Security configuration while setting up a server engine
76

Examining SSL related information. 77
SSL Example . 77

Chapter 8
Making Secure Connections (C++) 79
Steps to secure clients and servers 79

Step One: Providing an identity 79
Username/password authentication using

LoginModules for known realms. 80
Username/password authentication using APIs 80
Certificate-based authentication using KeyStores

through property settings 80
Certificate-based authentication using KeyStores

through APIs 80
Certificate-based authentication using APIs . .80
pkcs12-based authentication using KeyStores .80
pkcs12-based authentication using APIs81

Step Two: Setting properties and Quality of
Protection (QoP) 81

Step Three: Setting up Trust81
Step Four: If necessary, set up identity assertion .81

Security configuration while setting up a server engine .
81

Examining SSL related information82
SSL example .82

Chapter 9
Security Properties for Java 85

Chapter 10
Security Properties for C++ 89
VisiSecure for C++ APIs 93
General API . .93

class vbsec::Current93
Include File 93

Methods .94
class vbsec::Context94

Include File 94
Methods .95
class vbsec::Principal 97

Include file 97
Methods .98
class vbsec::Credential 98

Include File 98
class vbsec::Subject98

Include File 98
Methods .98
class vbsec::Wallet99

Include File 99
Methods . 100
class vbsec::WalletFactory 100

Include File 100
Methods . 100

SSL API . 101
class vbsec::SSLSession 102

Include File 102
Methods . 102
class vbsec::VBSSLContext 103

Include File 103
Methods . 103
class ssl::CipherSuiteInfo 104

Include File 104
class CipherSuiteName 104

Include File 104
Methods . 104
class vbsec::SecureSocketProvider 104

iii

Include File 104
Methods . 105
class ssl::Current 105

Include File 106
Methods . 106

Certificate API. 108
class vbsec::CertificateFactory 108

Include File 108
Methods . 108
class CORBAsec::X509Cert 110

Include File 110
Methods . 110
class CORBAsec::X509CertExtension 112

Include File 112
QoP API. . 112

class vbsec::ServerConfigImpl 112
Include File 113

class ServerQoPPolicyImpl 113
Include File 113

Methods . 113
class vbsec::ClientConfigImpl 114

Include File 114
Methods . 114
class vbsec::ClientQoPPolicyImpl 114

Include File 114
Methods . 114

Authorization API 115
class csiv2::AccessPolicyManager 115

Include File 115
Methods . 115
class csiv2::ObjectAccessPolicy 115

Include File 115
Methods . 115

Security SPI for C++ 117
Plugin Mechanism and SPIs 117
Providers . 119

Providers and exceptions 119
vbsec::LoginModule. 120

Include File 120
Methods . 120

vbsec::CallbackHandler 121
Include file . 121
Methods . 121

vbsec::IdentityAdapter 121
IdentityAdapters included with the VisiSecure. . 121
Methods . 121
vbsec::MechanismAdapter 123
Methods . 123

vbsec::AuthenticationMechanisms 124
Credential-related methods 124
Context-related methods. 125

vbsec::Target . 127
Methods . 127

vbsec::AuthorizationServicesProvider 127
Methods . 128

vbsec::Resource 128
Methods . 129

vbsec::Privileges. 129
Constructors 129
Methods . 129

vbsec::AttributeCodec 130
Methods . 131

vbsec::Permission 133
Include file . 133
Methods . 133

vbsec::PermissionCollection 133
Include file . 134
Methods . 134

vbsec::RolePermission 134
Constructors 134
Methods . 134

vbsec::TrustProvider 135
Methods . 135

vbsec::InitOptions 136
Include file . 136
Data Members 136

vbsec::SimpleLogger 136
Include file . 136
Methods . 137

Appendix A
VisiSecure Error Codes 139

Modifying Minor Codes in C++:. 139
Modifying Minor Codes in Java: 139

General Errors . 140
PKI Errors . 140
SSL Errors . 140
PKCS12 Errors 141
General Security Policies (GSP) Errors 141
Common Secure Interoperable (CSI) Errors. 141
Authentication Errors 141
Authorization Errors 142

Appendix B
Appendix 143

Basic LoginModule 143
JDBC LoginModule 144
LDAP LoginModule 145
Host LoginModule 146

Shadow password for the Host LoginModule . 146
Creating user database for basic login module . . . 147
Using userdbadmin tool 147

Creating a new database 147
Creating groups and associating users with groups .

148
Adding new users 148
Listing exising users in the database 149
Listing all groups in the database 149
Create new groups and check using listgroups . 149
Assign groups to existing users 149
Remove group from database 149
Add a new user without any group 150
Remove group admin from user 150
Remove user from the group 150

iv

Exiting the userdbadmin program 150

Index 151

 1 : Gett ing Star ted wi th Vis iSecure 1

Getting Started with VisiSecure
As more businesses deploy distributed applications and conduct operations over the
Internet, the need for a high quality application security has grown.

Sensitive information routinely pass over Internet connections between web browsers
and commercial web servers; credit card numbers and bank balances are the two
examples. For example, users engaging in commerce with a bank over the Internet
must be confident that:

– They are in fact communicating with their bank's server, and not an imposter that
mimics the bank for illegal purposes.

– The data exchanged with the bank will be unintelligible to network eavesdroppers.

– The data exchanged with the bank software will arrive unaltered. An instruction to
pay $500 on a bill must not accidentally or maliciously become $5000.

VisiSecure lets the client authenticate the bank's server. The bank's server can also
take advantage of the secure connection to authenticate the client. In a traditional
application, once the connection has been established, the client sends the user's
name and password to authenticate. This technique can still be used once a
VisiSecure connection has been established, with the additional benefit that the user
name and password exchanges will be encrypted. VisiSecure provides support for any
number of authentication realms providing access to portions of distributed
applications. In addition, with VisiSecure you can create authorization domains that
delineate access-control rules for your applications.

VisiSecure overview
VisiSecure provides a framework for securing VisiBroker and AppServer. VisiSecure
lets you establish secure connections between clients and servers.

VisiSecure design flexibility

Borland has designed VisiSecure to work with a variety of application architectures, so
that it can support different types of current and future architectures. However, while
VisiSecure represents a powerful security architecture, it cannot fully protect your
servers by itself. You must be responsible for physical security, and configuring your
base web server (host) and operating system services in the most secure manner
possible.

2 VisiBroker Secur i ty Guide

VisiSecure overview

Pluggability

VisiSecure allows many security technologies to be plugged in. Pluggability is provided
at various levels. Security service providers can plug in and replace the entire set of
security services and application developers can plug in smaller modules to achieve
custom integration with their environment. The only layers which are not pluggable are
the CSIv2 layer and the transport layer which are tightly integrated with the internal
implementation of the VisiBroker ORB and interact heavily with each other.

VisiSecure for Java

VisiSecure is 100% Java and supports all security requirements of the J2EE 1.3
specification. VisiSecure uses the Java Authentication and Authorization System
(JAAS) for authentication, the Java Secure Socket Extension (JSSE) for SSL
communications, and the Java Cryptography Extension (JCE) for cryptographic
operations. Most of the APIs for Java applications reflect the existing JDK or additional
Java standard APIs. Care has been taken not to duplicate APIs at the different security
layers. In some cases, VisiSecure feature set exceeds the J2EE 1.3 security
requirements.

VisiSecure for Java features

VisiSecure has the following features:

– Enterprise Java Beans (EJB) Container Integration: VisiSecure seamlessly
integrates EJB security mechanisms with the underlying CORBA Security Service
and CSIv2. CORBA offers enhanced features to the security architecture of your
bean. By utilizing VisiSecure, you have additional options over the relatively simple
EJB security model.

– Web Container Integration: VisiSecure integrates with the web container by
providing mechanisms to the web container that allow its own authentication and
authorization engines to propagate security information to other EJB containers, as
necessary. For example, a servlet trying to invoke an EJB container's bean will act
on behalf of the original browser client that triggered the initial request. Security
information supplied from the client will be propagated seamlessly to the EJB
container. In addition, the web container authentication and authorization engine can
be configured to use authentication LoginModules and authorization rolemaps
supplied by Borland.

– Security Services Administrator: The administration and configuration of
VisiSecure is performed using simple-to-use properties and supports tools like the
Java keytool.

– GateKeeper: You can use GateKeeper to enable authenticated connections across
a high-level firewall. This allows clients to connect to the server, even if the server
and the application client are on opposite sides of a firewall. Use of the GateKeeper
is fully documented in the VisiBroker GateKeeper Guide.

– Secure Transport Layer: VisiSecure utilizes SSL, the primary secure transport level
communication protocol on the Internet, as a secure transport layer. SSL provides
message confidentiality, message integrity, and certificate-based authentication
support through a trust model.

VisiSecure for C++

VisiSecure for C++ offers similar feature as VisiSecure for Java. See “VisiSecure for
C++ APIs” and “Security Properties for C++” for detailed information.

 1 : Gett ing Star ted wi th Vis iSecure 3

Basic securi ty model

VisiSecure for C++ Features

VisiSecure for C++ has the following features:

– Authentication and Authorization: The Authentication and Authorization model are
similar to VisiSecure for Java. This extends the capability of VisiSecure for C++
applications.

– Security Services Administrator: The administration and configuration of
VisiSecure is performed using simple-to-use properties.

– Secure Transport Layer: VisiSecure utilizes SSL, the primary secure transport-level
communication protocol on the Internet, as a secure transport layer. SSL provides
message confidentiality, message integrity, and certificate-based authentication
support through a trust model

Basic security model
The basic security model describes VisiSecure and its components from a user's
perspective. This is the logical model that VisiSecure users need to understand,
configure and interact with. The security service groups entities of a system into the
following three logical groups (domains):

– Authentication realm (User domain): This is simply a database of users. Each
authentication realm describes a set of users and their associated credentials and
Privileges attributes.

– Resource Domain: This represents a collection of resources of a single application.
The application developer defines the access control policies for accessing
resources in the application.

– Authorization Domain: This defines the set of rules that determine whether an
access attempt to a particular resource is allowed.

4 VisiBroker Secur i ty Guide

Basic secur i ty model

The following figure displays the relationship among these domains.

Figure 1.1 Interaction Among Different Domains in VisiSecure

These three VisiSecure domains are closely related.

1 For authentication, you need an authentication realm. VisiBroker comes with a
simple one, or you can use an existing supported realm, like an LDAP server.

2 For authorization, you need to set up roles, and associate users with those roles.

3 Then, you need to set up a resource domain, and grant access to the resources in
that domain to certain roles.

Authentication realm (user domain)

An authentication realm is a database of users. Each authentication realm describes a
set of users and their associated credentials and privileges, such as the user's
password and the groups to which the user belongs, respectively.

Examples of authentication realms are: an NT domain, an NIS or yp database, or an
LDAP server.

A “realm” represents a configuration entry that represents an authenticating target.

An authentication realm is defined both by the authentication mechanism such as
LoginModules it uses, as well as a set of configuration options customized to point to
the source of the data which contains the user information.

For example, if you are using LDAP, then the authentication realm specifies LDAP as
the authentication protocol, specifies the name of the server, and specifies other
configuration parameters. When you log on to a system, the system is authenticating
you. For more information on setting up authentication realm, see “Setting up
authentication realms.”

As authentication realm uses a single user LoginModules. It can be used with multiple
user databases that support the same LoginModules. It allows the LoginModules to be
independent of the actual user database

For example, if a vendor writes an authentication module to work with LDAP, that
LoginModule can then be used to interact with different LDAP directories in different

 1 : Gett ing Star ted wi th Vis iSecure 5

Distr ibuted Transmission

environments, without having to rewrite or otherwise modify the authentication
mechanism.

Setting up Resource domain

A resource defines an application component that VisiSecure needs to protect.
VisiSecure organizes resources into resource domains containing every resource in an
application. This means every remote method or servlet that is exposed by a server is
essentially a resource.

The application developer defines access control policies for accessing resources in
the application. These are defined in terms of roles. Roles provide a logical collection of
permissions to access a set of resources. For more information, see “Authorization.”

In addition, applications may choose to be more security aware and provide access
control for more fine grained resources such as fields, or access to external resources
such as databases. The EJB and Servlet specifications provide standard deployment
descriptor information that allow applications to define their access policies in terms of
the set of roles required to access a given method.

Authorization domain

The authorization domain allows users to act in given roles. VisiSecure grants
privileges to access resources based on these roles. When VisiBroker applications
pass user identities from one application to another, the identity contains user
information, and the permissions based on the specified roles. The caller's identity is
then matched with the required rules to determine whether the caller satisfies the
required rules. If the caller satisfies the rules, access is granted. Otherwise, the access
is denied. For more information, on authorization domains, see “Authorization.”

Distributed Transmission
For a distributed environment, in addition to the three domains that make up the basic
security model, the following must be considered:

– Distributed transmission of the authorization privileges
– Assertion and trusting assertion

The VisiSecure Service Provider Interface (SPI) provides interfaces and classes to
address secure transportation, assertion, and assertion trust. The transmission (or
interoperability) is handled by the underlying CSIv2 implementation. Since the
implementation of the SPI is closely bundled with the VisiBroker ORB, it cannot be
separated from the core as a generic SPI for other languages.

Specifically, the VisiSecure SPI classes enable customization of your Security Service
in the following:

– Identification and Authentication
– Authorization (or access control decision making)
– Assertion trust

6 VisiBroker Secur i ty Guide

 2: Authent icat ion 7

Authentication
The first layer of security protection for any system is authentication. This layer defines
the process of verifying the entities who they claim to be. Most of the time, credentials
are required to verify the identity of an entity.

VisiSecure employs the Java Authentication and Authorization Service (JAAS)
framework to facilitate the interaction between the entities and the system. At the same
time, the authentication mechanism concept is employed to represent the format
(encoding and decoding process) for communicating or transporting authentication
information between various components of the security subsystem.

Authentication is the process of verifying that an entity (human user, service, or
component) is the one it claims to be. The authentication process includes:

1 acquiring credentials from the to-be-authenticated entity,

2 verifying the credentials.

Managing authentication with JAAS
The Java Authentication and Authorization Service (JAAS) defines extensions that
allow pluggable authorization and user-based authentication. This framework
effectively separates the implementation of authentication from authorization, allowing
greater flexibility and broader vendor support. The fine-grained access control
capabilities allow application developers to control access to critical resources at the
granularity level that makes the most sense.

Basics of JAAS concepts

VisiSecure employs the Java Authentication and Authorization Service (JAAS)
framework to facilitate the interaction between the entities and the system. Those who
are new to the JAAS should familiarize themselves with the terms JAAS uses for its
services. The concepts of subjects, principals, and credentials are of particular
importance.

Subjects
JAAS uses the term subject to refer to any user of a computing service or resource.
Another computing service or resource, therefore, is also considered a subject when it
requests another service or resource. The requested service or resource relies on

8 VisiBroker Secur i ty Guide

Managing authent icat ion with JAAS

names in order to authenticate a subject. However, different services may require
different names in order to use them.

For example, your email account may use one username/password combination, but
your ISP may requires a different combination. However, each service is authenticating
the same subject—;namely yourself. In other words, a single subject may have multiple
names associated with it. Unlike the example situation, in which the subject himself
must know a set of usernames, passwords, or other authentication mechanisms at a
specific time, JAAS is able to associate different names with a single subject and retain
that information. Each of these names is known as a principal.

Principals
A principal represents any name associated with a subject. A subject could have
multiple names, potentially one for each different service it needs to access. A subject,
therefore, comprises a set of principals, such as in the code sample below:

Java
public interface Principal {
 public String getName();
}
public final class Subject {
 public Set getPrincipals()
}

C++
class Principal {
 public:
 std::string getName() const=0;}
class Subject {
 public:
 Principal::set& getPrincipals();
}

Principals populate the subject when the subject successfully authenticates to a
service. You do not have to rely on public keys and/or certificates if your operational
environment has no need for such robust technologies.

To return the principle name(s) for a subject from the application context, use
getCallerPrincipal.

Note

Principals participating in transactions may not change their principal association within
those transactions.

Credentials
In the event that you want to associate other security-related attributes with a subject,
you may use what JAAS calls credentials. Credentials are generic security-related
attributes like passwords, public-key certificates, and such. Credentials can be any
type of object, allowing you to migrate any existing credential information or
implementation into JAAS. Or, if you want to keep some authentication data on a
separate server or other piece of hardware, you can simply store a reference to the
data as a credential. For example, you can use JAAS to support a security-card reader.

Public and private credentials
Credentials in JAAS come in two types, public and private. Public credentials do not
require permissions to access them. Private credentials require security checks. Public
credentials could contain public keys, and such, while private credentials are private
keys, encryption keys, sensitive passwords, and such. Consider the following subject:

Java
public final class Subject {
 ...
 public Set getPublicCredentials()
}

 2: Authent icat ion 9

Ident i ty, t rust and authent icat ion

C++
class Subject {
 public:
 Credential::set& getPrivateCredentials();
}

No additional permissions would be necessary to retrieve the public credentials from
the subject, except in the case:

Java
public final class Subject {
 ...
 public Set getPrivateCredentials()
}

C++
class Subject {
 public:
 Credential::set& getPrivateCredentials();
}

For Java, permissions are required for code to access the private credentials in a
Subject. For c++, all codes are local and are therefore trusted.

Credential identifies an identity for authentication or for verifying. It also determines the
identity and its associated roles. No permission is required to access both public and
private credentials.

Public credentials is used for authorization only. Private credentials are used for
caching purposes. These credentials are populated by login modules.

For more information on permissions in Java, see the JAAS Specification from Sun
Microsystems.

Authentication and pluggability
Authentication in VisiBroker is a JAAS implementation allowing pluggable
authentication. The JAAS logon service separates the configuration from
implementation. A low-level system programming interface called the LoginModule,
provides an anchor point for pluggable security modules.

At the same time as system identification, the authentication mechanism concept is
employed to represent the “format” for communicating (or transporting) authentication
information between various components of the security subsystem. The security
service provider for the authentication/identification process implements the specific
format (encoding and decoding process) that is to be used by the underlying core
system.

In a distributed environment, the authentication process is further complicated by the
fact that the representation of the entity and the corresponding credential must be
transported among peers in a generic fashion. Therefore, the VisiSecure Java SPI
employs the concept of the AuthenticationMechanism and defines a set of classes for doing
authentication/identification in a distributed environment.

Identity, trust and authentication

Relationship between trust and authentication

Authentication is a process of verifying an identity. When the verification is succesful,
the identity becomes a trusted identity. In other words: a successful authentication of
an identity puts trust on the identity. Trust is a result of a successful authentication. It is
also the result of the identity assertion.

If identity A is successfuly authenticated and therefore trusted. But later, identity A
asserts identity B and B is therefore trusted although we never verify that B of its
identity. This is because the system trusts A and all that A asserts.

10 VisiBroker Secur i ty Guide

Ident i ty, t rust and authent icat ion

Trust can be applied at the transport level if a certificate identity is presented, or at
even higher levels (at the CSIv2 layer) where the identity takes the form of a username/
password.

Java

For trusting certificates with Java code, VisiSecure provides mechanisms to support
user-provided JSSE X509TrustManager that indicates whether a given certificate chain is
trusted. You can also specify a Java keystore where certificate entries are trusted
using standard Java properties.

C++

For VisiBroker for C++ users, the a set of APIs that allow trustpoints (trusted
certificates) to be configured is provided as well. For more information, see “VisiSecure
for C++ APIs.”

Note: For certificate authentication, login modules cannot be used.

Identities

Any system that needs to engage in secure communication as a client must be
configured to have an identity that represents the user/client on whose behalf it is
acting. When using SSL with mutual authentication, a server also needs a certificate to
identify itself to the client.

In addition to many clients and users that need to be authenticated to the various
VisiBroker services, the VisiSecure itself needs to be provided with its own identity.
This allows the server to identify itself when it communicates with other secure servers
or services. It also allows end-tier servers to trust assertions made by this server in the
case where this server acts on behalf of other clients.

System identity
Any system first needs to identify itself before being allowed access to resources.
Client identification is always required for resource access. In a CORBA/J2EE
environment, the need for identification also exists for servers as well. Servers need
identification in two cases:

– One, when using SSL for transport layer security, the server typically needs to
identify itself to the client.

– Two, when mid-tier servers make further invocations to other mid-tier or end-tier
servers, they need to identify themselves before being allowed (potentially) to act on
behalf of the original caller.

Client identity
There are situations where the client process does not have any information on the
realm that it needs to authenticate against. In this case, by default, the client consults
the server's IOR for a list of available realms, and the user is given the option to choose
one to which to supply username and password. This username/password will be used
by the server, which will consult its configuration file for the specified realm, and use
the information collected from the client as data for its specified LoginModule.

For example, if the following is the server side configuration file, then the information
collected or entered by a user will be used for its JDBCLoginModule.

SecureRealm{
 com.borland.security.provider.authn.JDBCLoginModule required
 DRIVER=F"com.borland.datastore.jdbc.DataStoreDriver"
 URL="jdbc:borland:dslocal:../userdb.jds"
 USERNAMEFIELD="USERNAME"
 GROUPNAMEFIELD="GROUPNAME"
 GROUPTABLE="UserGroupTable"
};

The default behavior of the process can be changed through properties. You can set
the retry count by setting vbroker.security.authentication.retryCount. The default is 3. You
can change and set the new retry count.

 2: Authent icat ion 11

Conf igur ing authent icat ion

The security properties including those for authentication are listed and described in
the “Security Properties for Java” and “Security Properties for C++.”

Configuring authentication
The authentication config file contains the data necessary to authenticate a user to one
or more realms and defines an authentication mechanism and provides the code to
interact with a specific type of authentication mechanism (for example, LoginModules).

The configuration must specify which LoginModules should be used for a particular
application, and in what order the LoginModules should be invoked. For more
information, refer to “Associating a LoginModule with a realm”.

An example of config.jaas file looks like this:

customrealm {
 CustomLoginModule required;
};

This defines a realm called customrealm, which requires the use of the custom loginModule.

A login configuration contains the following information. Each realm entry has a
particular syntax that must be followed. For more information on realm syntax, refer to
“Syntax of a realm entry”.

Each entry in the configuration is indexed via realm name and contains a list of
LoginModules configured for that application.

Each LoginModule is specified via its fully qualified class name. Authentication
proceeds down the module list in the exact order specified. If an application does not
have specific entry, it defaults to the specific entry.

The Flag value controls the overall behavior as authentication proceeds down the
stack. For description of the valid values for Flag and their respective semantics, refer
to “Syntax of a realm entry”.

For information on LoginModules, see “Creating LoginModules.”

Authentication property settings

Whether it is server or client authentication and whether it is done using public-key
certificates or passwords, it is determined by property settings. For more information,
see “Security Properties for C++” and “Security Properties for Java.”

The security configuration uses properties and a configuration file to define the
identities that represent the system. This configuration file is populated with all the
LoginModules necessary for authentication to the various realms to which this process
needs to authenticate.

For example:

Set the property vbroker.security.login=true
Set the property vbroker.security.login.realms=payroll,hr
Set the following realm information in a file reference by
vbroker.security.authentication.config=<config-file>
Set the property vbroker.security.callbackhandler=<callback-handler>

In the <config-file> setup the following:
payroll {
com.borland.security.provider.authn.HostLoginModule required;
};

hr {
 com.borland.security.provider.authn.BasicLoginModule required
 DRIVER=com.borland.datastore.jdbc.DataStoreDriver
 URL="jdbc:borland:dslocal:../userdb.jds"
 TYPE=BASIC
 LOGINUSERID=admin
 LOGINPASSWORD=admin;
};

12 VisiBroker Secur i ty Guide

Conf igur ing authent icat ion

In this code sample:

– The process will already know something about the realms to which it needs to
authenticate through the property vbroker.security.login.realms.

– The process knows it will authenticate to the host on which it is running (logically
representing the “payroll” realm), and so sets itself up to invoke this LoginModule.

– The process also knows that it must log into the “hr” realm, and so sets up a
LoginModule to this end as well.

The format of the realm information passed into vbroker.security.login.realms is as
follows:

<authentication Mechanism>#<Authentication Target>

This format is called Formatted Target.

Formatted target

Formatted Target is the means of representing authentication mechanism.

A formatted target is of the form:
<authentication mechanism>#<mechanism specific target name>

For example:

Realm1, Realm3, GSSUP#Realm4,

In the above example, realm1, realm3 and realm4 are specific instances of GSSUP
authentication mechanism. (By default, if you don’t specify the authentication
mechanism, it is assumed to be GSSUP.)

This can be used to represent how LoginModules communicate with the authentication
mechanism and how the mechanism on one process communicates with an equivalent
mechanism on another process. The mechanism specific target name represents how
the mechanism represents this target.

For more information on authentication mechanism, refer to “Authentication
mechanisms”.

Setting the config file for client authentication

Each process uses its own configuration file containing the configuration for the set of
authentication realms that the system supports for client authentication.

To set the location of the configuration file:

1 Set the vbroker.security.authentication.config property to the path of the configuration
file.

2 If desired, you can specify more than one login configuration file as follows:
vbroker.security.authentication.configs=myconfig, yourconfig, hisconfig, herconfig
vbroker.security.authConfig.myconfig=<the physical file name for myconfig>
vbroker.security.authConfig.yourconfig=<the physical file name for yourconfig>
vbroker.security.authConfig.hisconfig=<the physical file name for hisconfig>
vbroker.security.authConfig.herconfig=<the physical file name for herconfig>

If more than one login configuration file is specified then the files are read and
concatenated into a single configuration.

Note: the use of forward or backward slashes are based on the underlying file system.
The URLs always use forward slashes, regardless of what operating system the user is
running.

Setting up authentication realms

A system administrator determines the authentication technologies, or Login Modules,
to be used for each application and configures them in the configuration file.

Following are the steps to setup the authentication realm:

 2: Authent icat ion 13

Dif ferent types of Authent icat ion

1 Create an authentication configuration file containing one or more realms. For
information on Creating configuration file, refer to “Configuring authentication”.

2 Use the property vbroker.security.authentication.config to involve the configuration file
into the runtime.

vbroker.security.authentication.config=<the filename of the config file>

An example:

customrealm {
 CustomLoginModule required;
};

In the above example, the realm entry is named "customrealm". This name must be
unique as it will be used by the VisiSecure to refer this entry. The entry specifies the
LoginModule to be used for the user authentication.

This LoginModule is “required” for the authentication to be considered successful. The
LoginModule will succeed only if the name and password supplied by the user are
successfully used to log the user into the system.

For setting up the configuration file for client and server, refer to the basic
authentication example in the \\Borland\VisiBroker\examples\vbroker\security\basic
folder. The example given here has all the basic setting needed to secure the
application.

Different types of Authentication
With the VisiBroker implementation of JAAS, you can set up different mechanisms of
authentication. You can have server authentication, where servers are authenticated
by clients using public-key certificates. You can also have client authentication. Clients
can be authenticated using passwords or public-key certificates. That is, the server can
be configured to authenticate clients with a password or clients with public-key
certificates. Whether it is server or client authentication and whether it is done using
public-key certificates or passwords, it is determined by property settings. For more
information see “Authentication property settings”

Servers

Authentication can be accomplished using a standard username/password
combination. For servers using username and password, authentication is performed
locally since the realms are always known.

There can be constraints on certificate identities, depending on whether they are stored
in a KeyStore or whether they are specified through APIs.

Clients

To authenticate clients using usernames and passwords, several things need to
happen. The server should expose a set of realms to which it can authenticate a client.
Each realm should correspond to a JAAS LoginModule that actually does the
authentication. Finally, the client should provide a username and password, and a
realm under which it wishes to authenticate itself.

For clients using usernames and passwords, there can be constraints about what the
client knows about the server's realms. Clients may have prior knowledge of the
server's supported realms or none at all at the time of identity inquiry.

Client always authenticates at the server end for which the client has to do the identity
enquiry.

If the client does not know about the server’s realm upfront, then it has to read the
server IOR and reactively do an identity enquiry to make the server authenticate.

Client can authenticate itself if the server’s realm is known upfront. Even in such case,
server will authenticate again.

14 VisiBroker Secur i ty Guide

Authent icat ion mechanisms

Keeping these constraints in mind, the VisiSecure supports the following usage of
authentication models: “GSSUP mechanism” and “Certificate mechanism”. You can
use any of these to provide an identity to the server or client.

Authentication mechanisms
An authentication mechanism represents the encoding/decoding format for
communicating authentication information between various components of the security
subsystem.

For example, it represents how LoginModules communicate with the mechanism and
how the mechanism on one process communicates with an equivalent mechanism on
another process.The mechanism specific target name represents how the mechanism
represents this target.

There are two types of authentication mechanisms supported by VisiSecure:

• GSSUP Mechanism

• Certificate Mechanism

GSSUP mechanism
VisiSecure provides a mechanism for a simple username/password authentication
scheme. This mechanism is called GSSUP. The OMG CSIv2 standard defines the
interoperable format for this mechanism. The LoginModule to mechanism interaction
model is defined by Borland. This is because the mechanism implementation needs to
translate the information provided by a LoginModule to information (to a specific
format) it can transmit over the wire using CSIv2.

As mentioned above, the target name for a mechanism is specific to that mechanism.
For the GSSUP mechanism, the target name is a simple string representing a target
realm (for example, in the JAAS configuration file, on the receiving tier). So, if a server
has a configuration file with one realm defined, for example “ServerRealm”, a client
side representation of this realm would be:

GSSUP#ServerRealm

Note

For convenience, since the GSSUP mechanism is always available in VisiBroker, you
can omit the “GSSUP#” from the target name. However, this is only for the GSSUP
mechanism. When the security service interprets a “realm” name, it first attempts to
resolve the realm name with a local JAAS configuration entry. If that fails, it treats that
realm name as representing “GSSUP#”.

GSSUP based authentication:

– “Authenticating clients with usernames and passwords”

– “Username/password authentication using APIs”

Authenticating clients with usernames and passwords
For authentication, you need username/password or certificates. Username/password
and certificates can be collected from user through JAAS callback handlers. These can
also be collected through APIs.

Username/password authentication using LoginModules for known realms
If the realm to which the client or server wishes to authenticate is known, the client-side
can be configured by setting properties as below:

vbroker.security.login=true
vbroker.security.login.realms=<known-realm>

 2: Authent icat ion 15

Authent icat ion mechanisms

Username/password authentication using APIs

For C++:

The following code sample demonstrates the use of the login APIs. This case uses a
wallet. For a full description of the four login modes supported, see “VisiSecure for C++
APIs” and “Security SPI for C++.”

int main(int argc, char* const* argv) {
 // initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->resolve_initial_references("VBSecurityContext");
 Context* c = dynamic_cast<Context*> (obj.in());
// Obtain a walletFactory
 CORBA::Object_var o = orb->resolve_initial_references("VBWalletFactory");
 vbsec::WalletFactory* wf = dynamic_cast<vbsec::WalletFactory*>(o.in());
 vbsec::Wallet* wallet = wf->createIdentityWallet(<username>, <password>, <realm>);
 c->login(*wallet);
}

For Java:

The following code sample demonstrates the use of the login APIs. This case uses a
wallet. For a full description of the four login modes supported, go to the VisiSecure for
Java API and SPI sections.

public static void main(String[] args) {
 //initialize the ORB
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 com.borland.security.Context ctx = (com.borland.security.Context)
 orb.resolve_initial_references("VBSecurityContext");
 if(ctx != null) {
 com.borland.securty.IdentityWallet wallet =
 new com.borland.security.IdentityWallet(<username>,
 <password>.toCharArray(), <realm>);
 ctx.login(wallet);
 }
}

Certificate mechanism
The Certificate mechanism is a mechanism that is used for identification using
certificates. This mechanism is different from GSSUP; Certificates are used instead of
username/password, and these identities are used at the SSL layer and not at the
higher CSIv2 over IIOP layer.

You can put certificates into VisiSecure using certificate login or wallet APIs. When
using wallet APIs, you need to specify the usage through the constant definitions in the
vbsec.h file, class vbsec::WalletFactory. For more information, see “class
vbsec::WalletFactory”.

For certificate based authentication using Java, see “Certificate based authentication
using Certificate wallet”.

Using certificate login, you need to specify the target realm using the following format:

Certificate#<target>

Note

If you do not specify the usage, the default is ALL.

16 VisiBroker Secur i ty Guide

Authent icat ion mechanisms

The following describes the available targets defined for the certificate login
mechanism.

A process can have either a client and server identity that are different or an identity
that is used in all roles, but not both. In other words, you cannot establish an identity in
the Certificate#CLIENT and the Certificate#ALL targets simultaneously.

Note

For backward compatibility, wallet properties and SSL APIs are supported; certificate
identities established this way are only treated as Certificate#ALL.

VisiSecure includes several common LoginModules for server and client authentication
as well as the Security Provider Interface classes for Java and C++ that enable you to
“plug-in” security service provider implementations of authentication and identification.

Certificate based authentication:

– “Certificate-based authentication using KeyStores through property settings:”

– “Certificate-based authentication using APIs”

– “Certificate based authentication using APIs with pkcs12Server”

– “Certificate based authentication using Certificate wallet”

– “pkcs12-based authentication using APIs”

Certificate-based authentication using KeyStores through property
settings:
This section demonstrates how to make a minimal SSL configuration on the simplest,
non-security aware VisiBroker example such that client and server communicate using
SSL that in turn enable them to perform mutual PKI authentication. Only executables
from basic/bank_agent are re-used to emphasize that in order to secure non-security
aware application no source code changes are required.

1 Firstly, please familiarize with the C++ version of the simplest VisiBroker examples
residing in the directory examples/basic/bank

2 Copy over only the executables of the Server (Server.exe on windows) and Client
(Client.exe on windows) to this directory.

3 Make sure that osagent is up and running as usual

4 Launch server using the command below:
prompt> Server -DORBpropStorage=cpp_server.properties -
Dvbroker.orb.dynamicLibs=<VisiSecure shared library name>

5 Launch client using the command below:
prompt> Client -DORBpropStorage=cpp_client.properties -
Dvbroker.orb.dynamicLibs=<VisiSecure shared library name>

6 Open property files cpp_server.properties, cpp_client.properties and notice how
the certificates and private keys are installed using wallet property set in that file.

Target Description

Certificate#CLIENT Identifies this process in a client role. When a user establishes an
identity for this target, the certificate identity established will be used
when this process acts as a client. In other words, this certificate will
identify this process when it establishes outgoing SSL connections.

Certificate#SERVER Identifies this process in a server role. When a user establishes an
identity for this target, this process will use the certificate identity
established to identify itself when it is accepting SSL connections.

Certificate#ALL Identifies this process in all roles. This identity is used in both of the
above roles.

 2: Authent icat ion 17

Authent icat ion mechanisms

C++ Server properties
vbroker.security.peerAuthenticationMode=require_and_trust
vbroker.security.requireauthentication=false

vbroker.security.trustpointsRepository=Directory:./trustpoints
vbroker.security.server.transport=SECURE_ONLY

vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity=frans
vbroker.security.wallet.password=frans

For description about these properties, refer to “Security Properties for Java”.

C++ client properties
vbroker.security.trustpointsRepository=Directory:./trustpoints
vbroker.security.peerAuthenticationMode=require_and_trust

vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity=charles
vbroker.security.wallet.password=charles

For description about these properties, refer to “Security Properties for C++”.

7 Browse through the content of subdirectory identities and trustpoints and
understand how the directory wallet and trustpoints are structured.

Note:

VisiSecure shared library name depends on the platforms.

For example:
on win32, it is vbsec.dll,
on Solaris 64 bit, it is vbsec64.so,
on HPUX 64 bit std build, it is vbsec64_p.sl.
It is recommended that you check your ${VBROKER_DIR}/lib directory

Certificate-based authentication using APIs
1 Build the example as mentioned in the basic/bank_SSL example in the example

folder by executing the command:
nmake cpp (for windows) or
make cpp (for unix).

When build successfully, there are executables created
SecureServer.exe on windows and SecureClient.exe on windows.

2 Make sure osagent is up and running.

3 Launch server using the command below:
prompt> SecureServer

4 Launch client using the command below:
prompt> SecureClient

5 Launch either server or client or both using -Dvbroker.app.useCRL=true, and notice how
the mutual SSL authentication fails and client gets NO_PERMISSION exception.
For example,
prompt> SecureClient -Dvbroker.app.useCRL=true

6 Read and learn from SecureServer.C, SecureClient.C
- how they perform the security initialization in their main() and after ORB_Init().
- how they impose peerAuthenticationMode=require_and_trust and alwaysSecure=true
through QoP

SecureServer.C

...

18 VisiBroker Secur i ty Guide

Authent icat ion mechanisms

if (ssp) {
 CORBAsec::ASN1ObjectList chain;
 chain.length(bank::numberOfCertificates);
 CORBA::ULong L;
 for (CORBA::ULong i = (CORBA::ULong)0; i < bank::numberOfCertificates; i++) {
 L = (CORBA::ULong) strlen(bank::certificate[i]);
 chain[i].replace (L, L, (CORBA::Octet*)bank::certificate[i],
 (CORBA::Boolean)false);
 } // Wrap the b64 certificate chain in an ASN1ObjectList as
 // required by the certificate factory

 CORBAsec::X509CertList_var certchain =
 ssp->getCertificateFactory().importCertificateChain(chain);
 // Consult the certificate factory to convert the chain
 // into an X509CertList as required to create an SSLContext

Note:

In the resulting list, the order is reversed: The root cert is list[0]

 L = (CORBA::ULong) strlen(bank::privateKey);
 CORBAsec::ASN1Object key (L, L, (CORBA::Octet*)bank::privateKey,
 (CORBA::Boolean)false);
 // Wrap the b64 private key in an ASN1Object

 CORBAsec::ASN1Object_var privatekey =
 ssp->getCertificateFactory().importPrivateKey(key);
 // Consult the certificate factory to convert the private key
 // into a DER wrapped inside an ASN1Object

 const char* const sword = "frans";
 L = (CORBA::ULong) strlen(sword);
 vbsec::VBSSLContext* sslctx = ssp->createSSLContext (
 *certchain,
 *privatekey,
 CSI::UTF8String(L, L, (CORBA::Octet*)sword, (CORBA::Boolean)false)
); // Consult the SecureSocketProvider to create an SSLContext
 // from the chain and the private key.

 CORBAsec::X509Cert* cacert = (*certchain)[(CORBA::ULong)0];
 sslctx->addTrustedCertificate(*cacert);

The root of this chain is implicit part of trustpoint. But it does not happen automatically

For Java:

If you do not want to use KeyStores directly, you can specify certificates and private
keys using the CertificateWalletAPI. This class also supports the pkcs12 file format.

X509Certificate[] certChain = ...list-of-X509-certificates...
PrivateKey privKey = private-key
com.borland.security.CertificateWallet wallet =
 new com.borland.security.CertificateWallet(alias,
 certChain, privKey, "password".toCharArray());

The first argument in the new Certificate wallet is an alias to the entry in the KeyStore,
if any. If you are not using keystores, set this argument to null.

Certificate based authentication using APIs with pkcs12Server
This section demonstrates how to use VisiSecure API for handling of a PKCS12
storage, a very widely acceptable storage format for certificates and private keys.

1 Build the example as mentioned in the bank_SSL example in the example folder by
executing the command:
nmake cpp (for windows) or
make cpp (for unix).

When build successful, there will be executables created
pkcs12Server.exe on windows

2 Make sure osagent is up and running

 2: Authent icat ion 19

Authent icat ion mechanisms

3 Launch server using the command below:
prompt> pkcs12Server frans.pfx frans

4 Launch client using the command below:
prompt> SecureClient

5 Launch client using -Dvbroker.app.useCRL=true, and notice how the mutual SSL
authentication fails and client gets NO_PERMISSION exception.
prompt> SecureClient -Dvbroker.app.useCRL=true

6 Read and learn from pkcs12Server.C
Notice how it installs certificates and a private key from a PKCS12 file.

PKCS12Server.C

...
if (ssp) {
 CORBA::ULong L = (CORBA::ULong) bank::BUF_SIZE;
 CORBAsec::ASN1Object pkcs12bytes(L, L, bank::gBuffer, (CORBA::Boolean)0);

 L = (CORBA::ULong) strlen(argv[2]);
 CSI::UTF8String sword(L, L, (CORBA::Octet*)argv[2], (CORBA::Boolean)0);
 CORBAsec::X509CertList_var certchain =
 ssp->getCertificateFactory().importCertificateChain (pkcs12bytes,
 sword);
 // Consult the certificate factory to convert the chain
 // into an X509CertList as required to create an SSLContext

It is IMPORTANT to note that in the resulting list, the order is reversed. The root cert is
list[0]

 CORBAsec::ASN1Object_var privatekey =
 ssp->getCertificateFactory().importPrivateKey(pkcs12bytes,
 sword);
 // Consult the certificate factory to convert the private key
 // into a DER wrapped inside an ASN1Object

 if (!certchain || !privatekey) {
 cerr << "Fail to import certificates and private key from pkcs12 "
 << "file named: " << argv[1] << endl;
 exit(1);
 }
 vbsec::VBSSLContext* sslctx = ssp->createSSLContext (
 *certchain,
 *privatekey,
 sword
); // Consult the SecureSocketProvider to create an SSLContext
 // from the chain and the private key.

Java only

Certificate based authentication using Certificate wallet
Create a new wallet

 com.borland.security.provider.CertificateWallet wallet =
 new com.borland.security.provider.CertificateWallet (null, certChain,
 encryptedPrivateKey.getBytes (), "Delt@$$$".toCharArray());

Get the security context:
// Login

 com.borland.security.Context ctx = (com.borland.security.Context)
 orb.resolve_initial_references ("VBSecurityContext");
 ctx.login (wallet);

Pass the wallet that was initially created in step 1
c->login(*wallet);
}

20 VisiBroker Secur i ty Guide

Authent icat ion mechanisms

Setting wallet properties:

You can set the transport level security by setting the properties below:

Use these properties below to set the transport identity for SSL
vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity=frans
vbroker.security.wallet.password=frans

pkcs12-based authentication using KeyStores
You can use the same APIs discussed in “Username/password authentication using
APIs” to login using pkcs12 KeyStores. The realm name in the IdentityWallet should be
CERTIFICATE#ALL, the username corresponds to an alias name in the default KeyStore that
refers to a Key entry, and the password refers to the password needed to unlock the
pkcs12 file. The property javax.net.ssl.KeyStore specifies the location of the pkcs12 file.

pkcs12-based authentication using APIs
If you do not want to use KeyStores directly, you can import certificates and private
keys using the CertificateFactoryAPI. This class also supports the pkcs12 file format.

CORBA::Object_var o = orb->resolve_initial_references("VBSecureSocketProvider");
vbsec::SecureSocketProvider* ssp = dynamic_cast<vbsec::SecureSocketProvider*>(o.in());

const vbsec::CertificateFactory& cf = ssp->getCertificateFactory ();

The first argument in the new Certificate wallet is an alias to the entry in the KeyStore,
if any. If you are not using keystores, set this argument to null.

Creating LoginModules
A LoginModule defines an authentication mechanism and provides the code to interact
with a specific type of authentication mechanism. Each LoginModule is customized
using authentication options that points it to a specific data source and provide other
customizable behavior as defined by the author of the LoginModule.

Each LoginModule authenticates to a particular authentication realm (any
authenticating body or authentication provider- for example, an NT domain). An
authentication realm is represented by a configuration entry in a JAAS configuration
file. A JAAS configuration entry contains one or more LoginModule entries with
associated options to configure the realm. For more information, see “Associating a
LoginModule with a realm”.

LoginContext class and LoginModule interface

VisiSecure uses the class LoginContext as the user API for the authentication
framework. The LoginContext class uses the JAAS configuration file to determine which
authentication service has to be plugged-in under the current application.

For Java
public final class LoginContext {
public LoginContext(String name)
public void login()
 public void logout()
 public Subject getSubject()
}

For C++
class LoginContext{
 public:
 LoginContext(const std::string& name, Subject *subject=0, CallbackHandler
*handler=0);
 void login();
 void logout();
 Subject &getSubject() const;
}

 2: Authent icat ion 21

Authent icat ion mechanisms

The authentication service itself uses the LoginModule interface to perform the relevant
authentication.

For Java
public interface LoginModule {
 boolean login();
 boolean commit();
 boolean abort();
 boolean logout();
}

for C++
class LoginModule {
 public:
 virtual bool login()=0;
 virtual bool logout()=0;
 virtual bool commit()=0;
 virtual bool abort()=0;
}

It is possible to stack LoginModules and authenticate a subject to several services at
one time.

Authentication and stacked LoginModules

Authentication proceeds in two phases in order to assure that all stacked LoginModules
succeed (or fail, otherwise).

1 The first phase is the “login phase,” during which the LoginContext invokes login() on
all configured LoginModules and instructs each of them to attempt authentication.

22 VisiBroker Secur i ty Guide

Associat ing a LoginModule with a realm

2 If all necessary LoginModules successfully pass, the second, “commit phase”
begins, and LoginContext calls commit() on each LoginModule to formally end the
authentication process. During this phase the LoginModules also populate the
subject with whatever credentials and/or authenticated principals are necessary for
continued work.

Note

If either phase fails, the LoginContext calls abort() on each LoginModule and ends all
authentication attempts.

Associating a LoginModule with a realm
The VisiSecure uses the JAAS configuration file to associate a LoginModule with a
realm and store that information. The JAAS configuration file contains an entry for each
authentication realm. The following is an example of a JAAS configuration entry:

MyLDAPRealm {
 com.borland.security.provider.authn.LDAPModule required URL=ldap://
directory.borland.com:389
}

 2: Authent icat ion 23

Associat ing a LoginModule wi th a realm

The following figure shows the elements of a realm entry in the JAAS configuration file.

Figure 2.1 Realm entry in a JAAS config

A server can support multiple realms. This allows clients to authenticate to any one of
those realms. In order for a server to support multiple realms, all you need to do is
configure the server with that many configuration entries. The name of the
configuration entries is not predefined and can be user defined, for example
PayrollDatabase.

Note

There must be at least one LoginModule with the authentication requirements
flag=required.

Syntax of a realm entry

The following code sample shows the generic syntax for a realm entry:

//server-side realms for clients to authenticate against
realm-name {
 loginModule-class-name required|sufficient|requisite|optional
 [loginModule-properties];
 ...
};

Note

The semicolon (;) character serves as the end-of-line for each LoginModule entry.

The following four elements are found in the realm entry:

– Realm Name: The logical name of the authentication realm represented by the
corresponding LoginModule configuration

– LoginModule Name: The fully-qualified class name of the LoginModule to be used

24 VisiBroker Secur i ty Guide

– Authentication Requirements Flag: There are four values for this flag - required,
requisite, sufficient, and optional.
You must provide a flag value for each LoginModule in the realm entry. Overall
authentication succeeds only if all required and requisite LoginModules succeed. If a
sufficient LoginModule is configured and succeeds, then only the required and
requisite LoginModules listed prior to that sufficient LoginModule need to have
succeeded for the overall authentication to succeed. If no required or requisite
LoginModules are configured for an application, then at least one sufficient or
optional LoginModule must succeed. The four flag values are defined as follows:

– required: The LoginModule is required to succeed. If it succeeds or fails,
authentication still continues to proceed down the LoginModule list for each
realm.

– requisite: The LoginModule is required to succeed. If it succeeds, authentication
continues down the LoginModule list in the realm entry. If it fails, control
immediately returns to the application—that is, authentication does not proceed
down the LoginModule list.

– sufficient: The LoginModule is not required to succeed. If it does succeed,
control immediately returns to the application—again, authentication does not
proceed down the LoginModule list. If it fails, authentication continues down the
list.

– optional: The LoginModule is not required to succeed. If it succeeds or fails,
authentication still continues to proceed down the LoginModule list.

– LoginModule-specific properties:Each LoginModule may have properties that
need to be provided by the server administrator. The necessary properties for each
LoginModule provided by Borland are described below.

Borland LoginModules
Borland provides the following common LoginModules for server and client
authentication. These LoginModules are used for both client authentication and
authentication of the VisiSecure server itself to its operating environment.

Not all LoginModules have the same properties, and your own LoginModules may have
different properties as well. Each LoginModule included with VisiBroker is described
below, its syntax and properties explained, and a realm entry code sample is provided.

– “Basic LoginModule” -This LoginModule uses a proprietary schema to store and
retrieve user information. It uses standard JDBC to store its data in any relational
database. This module also supports the proprietary schema used by the Tomcat
JDBC realm.

– “JDBC LoginModule” - This LoginModule uses a standard JDBC database interface
to authenticate the user against native database user tables.

– “LDAP LoginModule” - This LoginModule is similar to the JDBC LoginModule, but
uses LDAP as its authentication back-end.

– “Host LoginModule” - This LoginModule is used for authenticating the operating
system hosting the server. This is the only LoginModule supported for C++.

For creating the GUI Login, you will have to set the following property:
com.borland.security.provider.authn.DialogCallbackHandler

Using a Vault
When running clients, the security subsystem has the opportunity to interact with users
to acquire credentials for authentication. This is done using a callback handler as

 2 : Authent icat ion 25

defined by JAAS. However, when running servers (your Visibroker server or a
Partition), it is not desirable or even possible to have user interaction at start up time. A
typical example of this is when the server is started as a service at the startup time of a
host or from a automated script of some sort.

The vault is designed to provide the identity information to the security subsystem in
such environments. Vault is merely a tool to replace the user interaction. It is not
directly tied to the security subsystem.

In other words, a vault does not contain authenticated credentials. The security service
will perform all appropriate authentication, but will receive information from the vault
rather than by interacting with a callback handler. Due to the fact that no user
interaction is required, the data in the vault, while sufficiently secure, does contain
sensitive information (the usernames and passwords). Hence the vault file that is used
for authentication of such servers must be protected using host security mechanisms
(file permissions for example) or other equivalent approaches.

Creating a Vault

To create a vault, you can use the vaultgen command-line tool from your installation's
bin directory. It's usage is as follows:

vaultgen [<driver-options>] -config <config.jaas-file> -vault <vault-name> [<options>]
<command>

<driver-options> are optional, and can be any of the following:

– -J<option>: passes a -J Java option directly to the JVM

– -VBJVersion: prints VBJ version information

– -VBJDebug: prints VBJ debugging information

– -VBJClasspath: specify a classpath that will precede the CLASSPATH environment variable

– -VBJProp <name=value>: passes the name/value pair to the VM

– -VBJjavavm: specify the path to the Java VM

– -VBJaddJar <jar-file>: appends the JAR file to the CLASSPATH before executing the VM

-config <config.jaas-file> points to the location of the config.jaas file containing the
realms, that the identities in the vault will authenticate to.

-vault <vault-name> is the path to the vault to be generated. You must also specify an
existing vault in order to add additional identities to it.

<options> are other optional arguments, and can be any of the following:

– -?, -h, -help, -usage: prints usage information

– -driverusage: prints usage information, including driver options

– -interactive: enables an interactive shell

<command> is the command you want vaultgen to execute. You can select any one of the
following:

– login <realm|formatted-target>: establishes an identity in the vault for a given realm or
formatted target. The identity is first established when the vault is used for login
during system startup.

– logout <realm|formatted-target>: removes an identity from the vault for a given realm or
formatted target.

– runas <alias> <realm>: configures a run-as alias with the identity provided for a given
realm.

– removealias <alias>: removes a configured run-as alias from the vault.

– realms: lists the available realms for this configuration.

– mechanisms: lists the available mechanisms (for formatted targets) for this
configuration.

26 VisiBroker Secur i ty Guide

– aliases: lists configured aliases in the vault.

– identities: lists configured identities in the vault.

Example - using VaultGen
Let's look at an example of VaultGen. Let's say we want to create a vault called MyVault
for use with a domain called base. First, we need to know which security profile the
domain is using so that we can reference its config.jaas file. We check the value of the
domain's vbroker.security.profile property in the domain's orb.properties file:

#
Security for the user domain
#
Disable user domain security by default
vbroker.security.profile=default
vbroker.security.vault=${properties.file.path}/../security/scu_vault

The name of the security profile is default. This tells us that the path to the profile's
config.jaas file is:

Now we can check which realms are contained in the profile for which we want to
create identities. We navigate to the installation's bin directory, and use the realms
command:

prompt> vaultgen -config config.jaas -vault myVault realms

vaultgen tells us the following realms are available:
The following realms are available:
- UserRealm
- MikeRealm
- BenRealm

Next we execute vaultgen using the login command:
prompt> vaultgen -config config.jaas -vault myVault login UserRealm

vaultgen prompts us for the username and password for the UserRealm, which we enter.
We then repeat the process for each additional realm. At the end of each command,
vaultgen informs us that it has logged-in the new identity and saved changes to MyRealm.

Logged into realm BenRealm
Generating Vault to MyVault

The vault is created in the directory you specify in the command, in this case the bin
directory. A good place to put the actual vault files are in the domain's security
directory, located in:

<install-dir>/var/domains/<domain-name>/adm/security/

Example: Using API
This example illustrates the use of Security Context Interface's APIs
generateVault(std::osstream& os, CSI::UTF8String& pass), login(std::istream& is) which can
be used to explicitly login to the server. The example given here has all the basic
setting needed to secure an application.

The API generateVault will take a file output stream and stores the userid/password
and realm in a file. It generates a byte stream from the login information by encrypting
the login (Userid/password/realm) information. After encrypting, it closes the files and
logs out.

During authorization, the system uses the file created above to login rather than asking
the user to provide the information using FileInputStream API and gets the security
Context from the ORB and logs in using the file.

The example also illustrates the use of VisiBroker properties and JAAS configuration
file to secure your application. The example client and server uses username/
password authentication of client on the server and also for server's self authentication.

Look at the different properties files: server.properties, client.properties and Config
files: server.config and client config for clients in the basic vault example is in the \\
Borland\VisiBroker\examples\vbroker\security\basic folder. The Bank Agent example
has a simple AccountManager interface to open an Account and to query the balance
in that account.

To run the example, first generate the vault file as given below.

 2 : Authent icat ion 27

To generate vault file:
In the command prompt, enter the following command in the server window:

prompt% Server -DORBpropStorage=cpp_server.properties -genVault <vaultfileName>

It will ask for the userid/password, enter Host Login Name and password for the current
system. This information gets stored in the vaultfile.

To run the server with out providing authentication information:

prompt% Server -DORBpropStorage=cpp_server.properties -useVault <vaultfileName>

(start Server -DORBpropStorage=cpp_server.properties -useVault <vaultfileName> on
Windows)

To run the client, simply use the command:
prompt% Client -DORBpropStorage=cpp_client.properties
-Dvbroker.orb.dynamicLibs=<vbsec library>

where: <vbsec library>

(in windows): vbsec.dll located in %VBROKERDIR%/bin directory

(in UNIX): libvbsec shared library located in $VBROKERDIR/lib
The vaultfile uses this file information to log the user without user interaction.

It will ask for the userid/password, enter the Host Login Name and password for the
current system

Certificate Revocation List
For C++ only

When signed public key certificates are created by a Certificate Authority (CA), each
certificate has an expiry date that indicates when it is no longer valid. However, in order
to address the case where a certificate becomes invalid for some reason before the
date of expiry, the Certificate Revocation List (CRL) feature is provided for VisiSecure
for C++. For more information about Certificate Authorities (CA)s, see the “Certificates
and Certificate Authority”.

Using the VisiSecure for C++ Certificate Revocation List (CRL) feature, you can set up
CRLs and check peer certificates against this list during SSL handshake
communication.

The CRL files can be in either DER binary format or base 64 text format. When an
application adds a trusted certificate into a VBSSLContext instance, the coresponding
CRL of that trusted certificate can be passed as second parameter of the call to the
addTrustedCertificate() method. For this, the physical CRL bytes (if in DER) or string
characters (if in B64) need to be wrapped in an instance of CORBAsec::ASN1Object,
which is actually a CORBA octet sequence. Please see VBSSLContext API in header
file vbssp.h.

class _VBSECEXPORT VBSSLContext
{
 ...
 virtual void
 addTrustedCertificate(const CORBAsec::X509Cert& trusted,
 const CORBAsec::ASN1Object* crl = NULL) = 0;
 ...
};

Multiple trusted certificates can be installed along with their respective CRLs by means
of multiple calls on a VBSSLContext instance. Concrete examples of CRL installation is
in the bank_ssl example.

The method addTrustedCertificate() involves cryptographic verification to make sure
that the CRL is signed using the private key of the public key in the certificate.

Applications can call addTrustedCertificate() with only the first parameter, in which
case it is assumed that the trusted certificate has no coresponding CRL.

28 VisiBroker Secur i ty Guide

Note

There can be more than one CRL file within the CRL Repository directory structure.

Once the CRLs are loaded, VisiSecure examines all certificates sent by a peer during
SSL handshake. If any of the peer certificates appears in the CRLs, an exception will
be thrown and the connection will be refused.

 3: Authorizat ion 29

Authorization
Authorization is the process of verifying that the user has the authority to perform the
requested operations on the server. For example, when a client accesses an enterprise
bean method’ the application server must verify that the user of the client has the
authority to perform such an access. Authorization occurs after authentication
(confirming the user's identity).

Access Control
Authorization occurs after the user proves who he or she is (Authentication).
Authorization is the process of making access control decisions on requested
resources for an authenticated entity based on certain security attributes or privileges.
Following Java Security Architecture, VisiBroker adopts the notion of permission in
authorization. In VisiSecure, resource authorization decisions are based on
permissions. Borland uses a proprietary authorization framework based on users and
roles to accomplish authorization. For example, when a client accesses a CORBA or
Web request enterprise bean method, the application server must verify that the user
of the client has the authority to perform such an access. This process is called access
control or authorization.

Access Control List
Authorization is based on the user's identity and an access control list (ACL), which is a
list roles. Typically, an access control list specifies a set of roles that can use a
particular resource. It also designates the set of people whose attributes match those
of particular roles, and thus are allowed to perform those roles.

Roles-based access control

ACL in Corba is provided programatically The VisiSecure uses a role database (a file
whose default name is roles.db) to associate user identities with roles. If a user is
associated with at least one allowed role, the user may access the method. For more
information, refer to “Configuring authorization using the rolemap file”.

Pluggable Authorization

VisiSecure provides the ability to plug-in an authorization service that can map users to
roles. The implementer of the Authorization Service provides the collection of
permission objects granted access to certain resources.

30 VisiBroker Secur i ty Guide

Conf igur ing author izat ion using the rolemap f i le

A new class, RolePermission is defined to represent “role” as permission. The
RolePermission class provides the basis for authorization and trust in the VisiSecure
system. The Authorization Services Provider in turn provides the implementation on
the homogeneous collection of RolePermissions contained for an association between
given privileges and a particular resource.

For more information on RolePermission class, refer to “vbsec::RolePermission”

The Authorization service is tightly connected with the concept of Authorization
domain—each domain has exactly one Authorization Services Provider
implementation. The Authorization domain is the bridge between VisiSecure system
and the authorization service implementation.

During the initialization of the ORB itself, the authorization domains defined by the
property vbroker.security.authDomains are constructed, while the Authorization Services
Provider implementation is instantiated during the construction of the Authorization
domain itself.

The Authorization domain defines the set of rules that determine whether a user
belongs to a logical “role” or not.

The implementer of the Authorization Service provides the collection of permission
objects granted access to certain resources. Whenever an access decision is going to
be made, the AuthorizationServicesProvider is consulted. The Authorization Service is
closely associated with the Authorization domain concept. An Authorization Service is
installed per each Authorization domain implementation, and functions only for that
particular Authorization domain.

The AuthorizationServicesProvider is initialized during the construction of its
corresponding Authorization domain. Use the following property to set the
implementing class for the AuthorizationServicesProvider:

vbroker.security.domain.<domain-name>.provider

During runtime, this property is loaded by way of Java reflection.

Another import functionality of the Authorization Service is to return the run-as alias for
a particular role given. The security service is configured with a set of identities,
identified by aliases. When resources request to “run-as” a given role the
AuthorizationServices again is consulted to return the alias that must be used to “run-
as” in the context of the rules specified for this authorization domain.

For more information on RolePermission class, refer to
“vbsec::AuthorizationServicesProvider”.

Configuring authorization using the rolemap file
You can configure authorization by creating your own Authorization Rolemap by hand.

What is a rolemap

The authorization rolemap is captured in a .rolemap file. Typically, you would name this
file after your authorization domain. The rolemap file, also called Role DB, is a map of
users to roles. The rolemap designates the set of people whose attributes match those
of particular roles, and who are then allowed to perform those roles.

VisiSecure provides a mechanism for specifying role names and a set of attributes
which define the role.

Syntax of Role DB
The Role DB file itself has the following form, and can contain multiple role entries:

role-name {
 assertion1 [, assertion2, ...]
 ...
 [assertion-n]
 ...
}

 3: Authorizat ion 31

Conf iguring author izat ion using the ro lemap f i le

role-name2 {
 assertion3 [, assertion4, ...]
 ...
 [assertion-n]
 ...
}

A role entry is made up of a role name and a list of rules within curly braces (“{}”). A role
must be made up of one or more rules. Each rule is a single line containing a list of
comma-separated assertions for proper access identifications. Similarly, each rule
must contain one or more assertions.

Each line in the Role Entry is a rule. Rules are read top-to-bottom, and authorization
proceed until one succeeds or none succeed. That is, each rule is read as though
separated by an “OR” operator. Assertions are separated on the same line by a comma
(“,”). Assertions are read left-to-right, and all assertions must succeed in order for the
rule to succeed. That is, each assertions in a rule is read as though separated by an
“AND” operator.

Each rule must contain all necessary security information for a given Principal's
security credentials. That is, each principal must have at least those attributes required
from the rule—or exactly all the listed attributes. Otherwise authorization will not
succeed. For more information on specifying rules, see “Specifying rules for
authorization”.

For example, the contents of Role DB could be:
ServerAdministrator {
 CN=*, OU=Security, O=Borland, L=San Mateo, S=California, C=US
 *(CN=admin)
 *(GROUP=administrators)
}

Customer {
 role=ServerAdministrator
 *(CN=borland)
 *(CN=pclare)
 *(CN=jeeves)
 *(GROUP=RegularUsers)
}

This defines two roles, ServerAdministrator and Customer along with a set of rules and
attributes which define them.

Once the rolemap file is complete, it can be referenced using properties.

Defining Roles in Roles DB

Role DB is a text file containing the roles and the rules associated with those roles.
Each role in Role DB constitutes a role entry.

In VisiBroker, the location of the rolemap file is specified using the property:
vbroker.security.domain.<authorization-domain>.rolemap_path

The Role DB file is used to determine the access rights of principals (client identities).
Each role defined in the Role DB has client identities assigned to it. Access rights are
granted based on roles rather than specific client identities.

For example:

The application may recognize a Sales Clerk role. User identities for all sales clerks
can be assigned to the Sales Clerk role. Later, the Sales Clerk role is granted the right
to perform certain operations, such as an add_purchase_order method, for example. All
sales clerks associated with the Sales Clerk role are able to perform add_purchase_order.

32 VisiBroker Secur i ty Guide

Speci fy ing rules for author izat ion

Modifying authorization rolemap file

You can modify the authorization rolemap files by editing the rolemap file using
properties given in the example directory. You can specify rolenames and attributes
and thus associate users with roles. A role must be made up of one or more rules. For
more information on rules and role entries, refer to “Specifying rules for authorization.”.

For configuring database to store users, credentials and attibutes, refer to “Creating
groups and associating users with groups.”

Specifying rules for authorization

Assertion syntax

There are a variety of ways to specify rules using logical operators with attribute/value
pairs that represent the access identifications necessary for authorization. There is
also a simplified syntax using the wildcard character (“*”) to give your rules more
flexibility. Both of these are discussed below.

Using logical operators with assertions
Two logical operators are available in specifying attribute/value pairs.

A value can be any string, but the wildcard character, “*” has special uses. For
example, the attribute/value pair GROUP=* matches for all GROUPs. The following role
has two associated rules:

manager {
 CN=Kitty, GROUP=*
 GROUP=SalesForce1, CN=*
}

The role manager has two rules associated with it. In the first rule, anyone named Kitty
is authorized for manager, regardless of Kitty's associated group at the time. The second
rule authorizes anyone in the group SalesForce1, regardless of their common-name (CN).

Wildcard assertions
For complicated security hierarchies, you must be cautious to look for only one or two
attributes from the hierarchy in order to authorize a principal. Borland's security
hierarchy starts with GROUPs at the top, then branches out into ORGANIZATIONs (O)
and ORGANIZATIONAL UNITS (OU), and finally settles on COMMON NAMEs (CN).

For example, you may want to define a security role called SalesSupervisor that allows
method permissions for managers of the sales force. (For this example, “sales” is the
ORGANIZATION and “managers” is the ORGANIZATIONAL UNIT. You could do so
with the following rule:

SalesSupervisor {
 GROUP=*, O=sales, OU=managers, CN=*
}

This rule does not specify values for GROUP or for COMMON NAME (presumably
because they are not necessary). But remember, each rule must represent all possible
values for a Principal's credentials. There are other means of representing this same
information in a smaller space using wildcard assertions.

You make a wildcard assertion by placing the wildcard character (“*”) in front of the
assertion(s) in one of the two ways. You may place the wildcard character in front of a
single assertion, meaning that all possible security attributes are accepted but they

Operator Description Example

attribute =
value

equals: attribute must equal value for authorization rule
to succeed.

CN=Russ
Simmons

attribute !=
value

not equal: attribute must not equal value for
authorization rule to succeed.

CN!=Rick
Farber

 3: Authorizat ion 33

Conf iguring author izat ion domains

must contain the single assertion. Or, you may place the wildcard character in front of a
list of assertions separated by commas within parentheses. This means all possible
security attributes are accepted but they must contain the assertions listed in the
parentheses.

Making use of wildcard assertions, the role could also look like this:
SalesSupervisor {
 *O=sales, *OU=managers
}

Or, even more simply:
SalesSupervisor {
 *(O=sales, OU=managers)
}

All three code samples are different versions of the same rule.

Other assertions

Each role provides limited extensibility to others. You may, as a part of a role entry,
specify a role=existing-role-name assertion that can extend an earlier role. You can also
use customized code as your authorization mechanism rather than Role DB syntax by
using the Authorization Provider Interface.

Recycling an existing role
You can refer to the rules from an existing role by using the rule-reference assertion—
role=role-name.

For example, let's say we have a group of marketers who are also sales supervisors
that need to be authorized to the same code as Sales Supervisors. Building upon the
SalesSupervisor code sample, we can create a new role entry as follows:

MarketSales {
 role=SalesSupervisor
 *(OU=marketing)
}

Now, everyone in role SalesSupervisor has access to the MarketSales role, as does
anyone in the “marketing” OU.

Configuring authorization domains
The authorization domain defines the set of rules that determine whether a user
belongs to a logical “role” or not.

The authorization domain is the bridge between VisiSecure system and the
authorization service implementation.

During the initialization of the ORB itself, the authorization domain is defined by the
property vbroker.security.authDomains.

Specifying names to authorization domain

Each Role DB file is associated with an authorization domain. An authorization domain
is a security context that is used to separate role DBs and hence their authorization
permissions. For more information on the authorization domain in the context of the
basic security model, see “Basic security model”.

You may use as many authorization domains as you wish, provided they are all
registered with the VisiBroker ORB. You must do the following for each of your
authorization domains:

– give it a name,

– set up default access,

34 VisiBroker Secur i ty Guide

Conf igur ing author izat ion domains

– set up the Role DB,

To accomplish these items, the following ORB properties must be set. For more
information about these properties, see “Security Properties for Java” or “Security
Properties for C++”:

Naming authorization domains
You can give the authorization domain a name and list them using the property:

vbroker.security.authDomains=<domain1> [, <domain2>, <domain3>, ...]

Setting up default access
You can set up the default access and decide whether or not to grant access to the
domain in the absence of security roles for <domain-name>.

The property used to set up the default access is
vbroker.security.domain.<domain-name>.defaultAccessRole=grant|deny

Setting up RoleDB
Path of the Role DB file is associated with the authorization domain domain-name.
Although this can be a relative path, Borland recommends you make this path fully-
qualified.

The property you use to set up the RoleDB is
vbroker.security.domain.<domain-name>.rolemap_path=<path>

Configuring authorization domains to run-as alias
Authorization domains are then configured to run-as a given alias for a role in that
domain. When a request is made to run-as a given role, then the authorization domain
for that context is consulted to get the corresponding run-as alias. The run-as map is
then consulted to get the identity corresponding to that alias, and this identity is used.

Run-as identities can also be configured to be certificate identities and not just
username/password identities.

Run-as Alias is useful in particular when there are clients, middle-tier servers and end-
tier servers.

To set up run-as alias on corba application level:

1 Set the property in server.propeties file. This property specifies the name of the run-
as role. The value can be either use-caller-identity to have the caller principal be in
the run-as role, or specify an alias for a run-as principal for the run-as role name
vbroker.security.domain.<domain name>.runas.<run_as_role_name>

2 Specify a list of trusted roles as specified in the authorization domain.
This is uniquely identified for each trust assertion rule as a list of digits.

3 Trust all the assertion made by peers by setting the property below to true.

vbroker.security.assertions.trust.all

Run-as Alias
A Run-as Alias is a string identifying an authentication identity. It is defined in the vault
and scoped within the VisiBroker ORB. This alias then represents a particular user.
The identity is mapped to the alias using either the Context APIs or by defining it in the
vault. The vault can contain a list of run-as aliases and the corresponding
authenticating credentials for the identity to run-as. In both cases, the authenticating
credentials (from the vault or wallet) are passed to the LoginModules, which
authenticate those credentials and set them as fully authenticated identities
corresponding to those credentials in the run-as map.

You can set up an identity for the run-as role <role-name>. The alias denotes an alias
in the vault.

 3: Authorizat ion 35

Conf iguring author izat ion domains

Use use-caller-identity to use the caller principal itself as the principal identity for the
run-as role.

The propery you use to set up aliases is
vbroker.security.domain.<domain-name>.runas.<role-name>=<alias>|use-caller-identity

Note

Run-as aliases are not available under C++.

Creating Vault

To create a new vault, modify the following files below in the corbaauthz example in the
\\VisiBroker\examples\vbroker\security\example folder:

– java_server.properties
– AccountImpl.java
– Server.java
– Bank.idl

You may need to add the following files:

– ConverterImpl.java
– ConverterServer.java (many parts are just cut-paste Server.java)
– Create a new vault named 'fault' as shown in created in step (4)

In the java server properties file, add the following properties:

vbroker.security.domain.bank.runas.jeeves_runasrole=jeeves_alias
vbroker.security.assertions.trust.all=true

In Bank.idl file, make the following changes

module Bank {
 interface Converter {
 float toSGD(in float USD);
 };
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};

In AccountImpl.java file, modify as shown in bold below.

// AccountImpl.java
import com.borland.security.csiv2.ObjectAccessPolicy;
import org.omg.CORBA.BAD_OPERATION;
import org.omg.CORBA.ORB;

public class AccountImpl extends Bank.AccountPOA implements ObjectAccessPolicy {

 public String[] getRequiredRoles(String op) {
 if (op.equals("balance")) {
 return new String[] {"Customer", "Teller"};
 }
 throw new BAD_OPERATION("No operation named " + op);
 }

36 VisiBroker Secur i ty Guide

 public String getRunAsRole(String op) {
// return "jeeves_runasrole";
 return null;
 }

 public AccountImpl(float balance) {
 _balance = balance;
 }
 public float balance() {
 return _converter.toSGD(_balance);
 }
 private float _balance;

 public static Bank.Converter _converter;
}

In server.java, to write the AccountManager’s reference to a file for the client to access,
add the following commands:

FileWriter output = new FileWriter("bank.ior");
 output.write(orb.object_to_string(object));
 output.close();
 System.out.println(object + " is ready.");
 // Wait for incoming requests
 orb.run();
 }

// AccountManagerImpl.java
import org.omg.PortableServer.*;
import com.borland.security.csiv2.ObjectAccessPolicy;
import org.omg.CORBA.BAD_OPERATION;
import org.omg.CORBA.ORB;

import java.util.*;

public class ConverterImpl extends Bank.ConverterPOA implements ObjectAccessPolicy {

 public String[] getRequiredRoles(String op) {
 if (op.equals("toSGD")) {
 return new String[] {"Manager"};
 }
 throw new BAD_OPERATION("No operation named " + op);
 }

 public String getRunAsRole(String op) {
 return null;
 }

 public float toSGD(float USD) {
 System.out.println("*** Converter.toSGD is called");
 javax.security.auth.Subject caller = _current.getCallerSubject();
 System.out.println("THE CALLER = " + caller.toString());
 return _rate * USD;
 }

 // Use const for now
 private static final float _rate = 1.65676f;
 com.borland.security.Current _current;

 ConverterImpl(com.borland.security.Current current) {
 _current = current;
 }

}

 3: Authorizat ion 37

Add a new file ConverterServer.java. This file is the same server.java file that is in the
corba authz example. Add the following that is given in bold:

// Server.java
import org.omg.PortableServer.*;
import java.io.*;
import org.omg.CORBA.Any;
import org.omg.CORBA.Policy;
import org.omg.CORBA.PolicyManager;
import org.omg.CORBA.PolicyManagerHelper;
import org.omg.CORBA.SetOverrideType;
import com.borland.security.csiv2.SERVER_QOP_CONFIG_TYPE;
import com.borland.security.csiv2.ServerQoPConfigDefaultFactory;
import com.borland.security.csiv2.ServerQoPConfig;
import com.borland.security.csiv2.ServerQoPConfigHelper;
import com.borland.security.csiv2.ServerQoPPolicy;
import com.borland.security.csiv2.AccessPolicyManager;
import com.borland.security.csiv2.ObjectAccessPolicy;

public class ConverterServer {

 public static void main(String[] args) {
 try {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // get a reference to the root POA
 POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

 ServerQoPConfig config =
 new ServerQoPConfigDefaultFactory().create(false,
 ServerQoPPolicy.ALL,
 true,
 new AccessPolicyManager() {
 public String domain () {
 return "bank";
 }

 public ObjectAccessPolicy getAccessPolicy (Servant servant,
 byte[] id,
 byte[] adapter_id) {
 return (ObjectAccessPolicy) servant;
 }
 });
 Any any = orb.create_any();
 ServerQoPConfigHelper.insert(any, config);
 Policy qop = orb.create_policy(SERVER_QOP_CONFIG_TYPE.value, any);

 PolicyManager polmgr =
 PolicyManagerHelper.narrow(orb.resolve_initial_references
("ORBPolicyManager"));
 polmgr.set_policy_overrides(new Policy[] {qop},SetOverrideType.SET_OVERRIDE);

 // Create policies for our persistent POA
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
 };
 // Create myPOA with the right policies
 POA myPOA = rootPOA.create_POA("converter_poa", rootPOA.the_POAManager(),
 policies);
 // Create the servant
 com.borland.security.Current current =
 (com.borland.security.Current) orb.resolve_initial_references (
 "VBSecurityCurrent"
);
 ConverterImpl converterServant = new ConverterImpl(current);

38 VisiBroker Secur i ty Guide

 // Decide on the ID for the servant
 byte[] converterId = "CurrencyConverter".getBytes();

 // Activate the servant with the ID on myPOA
 myPOA.activate_object_with_id(converterId, converterServant);

 // Activate the POA manager
 rootPOA.the_POAManager().activate();

 // convert servant to an object reference
 org.omg.CORBA.Object object = myPOA.servant_to_reference(converterServant);

 // Write the AccountManager's reference to a file,
 // so clients can access it.
 FileWriter output = new FileWriter("converter.ior");
 output.write(orb.object_to_string(object));
 output.close();
 System.out.println(object + " is ready.");
 // Wait for incoming requests
 orb.run();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

}

In this example, we are creating a vault called fault:

1 At the command prompt, enter the following command
> vaultgen -vault fault -config java_server.config -interactive

2 Enter "quit" to quit.

3 Login to the realm
> login myrealm

JDataStore: Developer's License (no connection limit)
JDataStore: Copyright (c) 1996-2004 Borland Software Corporation. All rights
reserved.
JDataStore: License for JDataStore development only - not for redistribution
JDataStore: Registered to:
JDataStore: JDataStore
JDataStore: Developer's license with unlimited connections

4 Enter authentication information for realm myrealm

5 Enter username: admin

6 Enter password: admin

Logged into realm myrealm

7 > runas jeeves_alias myrealm

8 Enter authentication information for realm myrealm

9 Enter username: jeeves

10 Enter password: jeeves

Added runas alias jeeves_alias

11 > quit

Generating Vault to fault

To launch run-as alias:

Open three different commandline consoles (DOS prompts on NT)

 3: Authorizat ion 39

Start the osagent

1 In console1, launch client as follows
vbj -DORBpropStorage=java_client.properties Client

2 When prompted, enter borland/borland.

3 In console2, launch server as follows
vbj -DORBpropStorage=java_server.properties Server

4 In console 3, launch currency converter server as follows
vbj -DORBpropStorage=java_server.properties ConverterServer

5 In console 3,
*** Converter.toSGD is called
THE CALLER = Subject:
Principal: jeeves@myrealm
Public Credential: Privileges for jeeves@myrealm
Private Credential: Destroyed authentication context for null
Private Credential: com.borland.security.provider.ATSCodec$EncoderCache@e93999

6 Open and edit the AccountImpl.java file and change the following:
 public String getRunAsRole(String op) {
 return "jeeves_runasrole";
 }
to
public String getRunAsRole(String op) {
 return null;
 }

7 In console1, launch client as follows
vbj -DORBpropStorage=java_client.properties Client

8 When prompted, login as borland/borland

See console3 again,
*** Converter.toSGD is called
THE CALLER = Subject:
Principal: borland@myrealm
Public Credential: Privileges for borland@myrealm
Private Credential: Destroyed authentication context for null
Private Credential: com.borland.security.provider.ATSCodec$EncoderCache@e9399
9

This time, the original caller borland@myrealm is propagated properly all the way to
the ConverterServer. But previously, this identity was translated into jeeves@myrealm

There are three things that together specifies jeeves@myrealm

1. AccountImpl.java getRunAsRole() returns "jeeves_runasrole"

2. java_server.properties translates "jeeves_runasrole" into "jeeves_alias" using

 vbroker.security.domain.bank.runas.jeeves_runasrole=jeeves_alias

3. The vault contains runas entry with alias "jeeves_alias".

Run-as mapping

Note

Run-as mapping is not available under C++.

Setting the vbroker.security.domain.<domain-name>.runas.<role-name> property effectively
maps an alias to a bean's run-as role. Upon successful authorization, but before
method invocation, the container checks the Run-as role specified in the EJB's
deployment descriptor for the called method. If a run-as role exists, the container
checks to see if there is an alias as well. If there is, when the bean makes an outgoing
invocation it switches to the identity for that alias.

If, however, no alias is specified (that is, the run-as role name is set to use-caller-
identity), the caller principal name is used.

40 VisiBroker Secur i ty Guide

Setting up authorization for CORBA objects
Authorization in the CORBA environment allows only identities in specific roles for a
given object that can access that object. An object's access policy is specified by
means of a Quality of Protection policy for the Portable Object Adapter (POA) hosting
the object in question. Note that access policies can only be applied at the POA level.

Rolemaps are also used to implement authorization for CORBA objects.

In order to set up authorization for an object, you need to perform the following:

1 Create a ServerQopPolicy.

2 Initialize the ServerQopPolicy with a ServerQopConfig object.

3 Implement an AccessPolicyManager interface, which takes the following form:

Java
interface AccessPolicyManager {
 public java.lang.String domain();
 public com.borland.security.csiv2.ObjectAccessPolicy getAccessPolicy(
 org.omg.PortableServer.Servant servant, byte[] object_id byte [] adapter_id);
}

C++
class AccessPolicyManager {
 public:
 virtual char* domain() =0;
 ObjectAccessPolicy_ptr getAccessPolicy(PortableServer_ServantBase* _servant,
 const ::PortableServer::ObjectId& id,
 const::CORBA::OctetSequence& _adapter_id) =0;
}

Setting up name

This interface should return the authorization domain from the domain() method and set
the access manager in the ServerQopConfig object. The domain specifies the name of the
authorization domain associated with the proper rolemap.

You set the location and name of the rolemap by setting the property:
 vbroker.security.domain.<authorization-domain-name>.<rolemap-path>

where <authorization-domain-name> is a tautology, and <rolemap-path> is a relative path to
the rolemap file.

Setting up default access

The getAccessPolicy() method takes an instance of the servant, the object identity, and
the adapter identity and returns an implementation of the ObjectAccessPolicy interface.

1 It implements the ObjectAccessPolicy interface that returns the required roles and a
run-as role for accessing a method of the object. There is no difference between
J2EE and CORBA run-as roles in Borland's implementation. The ObjectAccessPolicy
interface takes the following form:

Java
interface ObjectAccessPolicy {
 public java.lang.String[] getRequiredRoles(java.lang.String method);
 public java.lang,String getRunAsRole(java.lang.String method);
}

C++
class ObjectAccessPolicy {
 public:
 getRequiredRoles (const char* _method) =0;
}

 3: Authorizat ion 41

Setting up Alias(es)

The getRequiredRoles() method takes a method name as its argument and returns a
sequence of roles. The getRunAsRole() method returns a run-as role, if any, for
accessing the method.

Identities can be supplied using Callback Handlers. For more details, see
“Authentication.”

Configuring authorization requirements
You must configure authorization requirement for the components in the server, as the
client needs to have these authorizations in order to access these components in the
server

In the corbaauthz example in \\VisiBroker\examples\vbroker\security folder, the
authorization requirement for the BankManager object is that the clients should be a
member of the "Manager" role and for the Account it is "Customer" or "Teller" role.

The rolemap file contains the authorization data from the Role DB file
Members of the roles Manager, Customer and Teller are described in the
bank.rolemap file whose snippet is shown below:

Example for bank.rolemap file for Java:

Manager {
*CN=admin
*group=user

}
Customer {

*CN=admin
}
Teller {

*CN=admin
*group=user

}

Example for bank.rolemap file for C++:

Manager {
*group=cceng

}
Customer {

*group=cceng
}
Teller {

*group=cceng
}

Any authenticated user with username=Administrator is a member of role ‘Manager’.
Any authenticated user with group=cceng is a member of both role ‘Customer’ and role
‘Teller’.

You can use this example and change the username and group to use valid, existing
username and group in your system as required.

The example illustrates the use of VisiBroker properties and JAAS configuration file to
secure your application. The example client and server uses username/password
authentication of client on the server and also for server's self authentication.

Look at the different properties files (server.properties, client.properties) and config
files (server.config and client.config) in the \\Borland\VisiBroker\examples\vbroker\
security/corbaauthz folder.

The server or the client configuration file is the JAAS configuration file which defines
the login modules.

42 VisiBroker Secur i ty Guide

To enable security, you must set up certain properties. Following are the properties set
up in the server or client properties file:

Properties Description

vbroker.security.disable=false The default value is false. If set to true,
disables all security services.

vbroker.security.login=true If this property is set to true, during
initialization, this property tries to log on to
all the realms listed by property
vbroker.security.login.realms.

vbroker.security.authentication.config=c
pp_server.config

This specifies the path to the
configuration file used for authentication.
The default value is null.

vbroker.security.authDomains=bank Specifies a comma-separated list of
available authorization domains. For
example:

vbroker.security.authDomains=domain1,domai
n2

vbroker.security.domain.bank.rolemap_pat
h=./cpp_bank.rolemap

Specifies the location of the RoleDB file
that describes the roles used for
authorization. This is scoped within the
domain <domain_name> specified in:
vbroker.security.authDomains.

vbroker.security.domain.bank.defaultAcce
ssRule=grant

Specifies whether to grant or deny access
to the domain by default in the absence of
security roles for the provided domain. It
handles requests for methods not in the
rolemap file. Acceptable values are grant
or deny.

vbroker.security.peerAuthenticationMode=
none

Sets the peer authentication Mode.

when set to NONE—Authentication is not
required. During handshake, no
certificate request will be sent to the peer.
Regardless of whether the peer has
certificates, a connection will be
accepted. There will be no transport
identity for the peer.

For other authentication mode values,
refer to the properties section
“vbroker.security.peerAuthenticationMod
e”

vbroker.security.login.realms=myrealm This gives a list of comma-separated
realms to login to. This is used when
login takes place, either through property
vbroker.security.login (set to true) or
API login.

vbroker.security.authentication.callback
Handler=com.borland.security.provider.au
thn.HostCallbackHandler

Specifies the callback handler for login
modules used for interacting with the user
for credentials. You can specify one of the
following or your own custom callback
handler. For more information, see
“VisiSecure for C++ APIs.”

com.borland.security.provider.authn.CmdLin
eCallbackHandler
com.borland.security.provider.authn.HostCa
llbackHandler

CmdLineCallbackHandler has password
echo on, while HostCallbackHandler has
password echo off.

 3: Authorizat ion 43

The properties allow you to customize the behavior of VisiSecure. Depending on
whether your application is Java, C++, or both, you may have to set different properties
with different types of values. See “Security Properties for C++” and “Security
Properties for Java” for all the properties you can set in this file.

Using vault for a domain

If you are using a vault to store system identities, you associate it with a domain so that
it can be used. You do this by setting the domain's vbroker.security.vault property in the
domain's orb.properties file.

Set the property to the location of the domain's vault. For example:
vbroker.security.vault=c:/BDP/var/domains/base/adm/security/MyVault

Similar to the vault are other properties which only belong to the orb.properties file.
These include secure listener ports, thread monitoring, and so forth.

As a general rule, add only those properties that can be shared by multiple
applications. Otherwise, use the appropriate process-specific ORB properties file to
specify the property.

Context Propagation
In addition to ensuring the confidentiality and integrity of transmitted messages, you
need to communicate caller identity and authentication information between clients and
servers. This is called delegation. The caller identity also needs to be maintained in the
presence of multiple tiers in an invocation path. This is because a single call to a mid-
tier system may result in further calls being invoked on other systems which must be
executed based on the privileges attributed to the original caller.

In a distributed environment, it is common for a mid-tier server to make identity
assertions and act on behalf of the caller. The end-tier server must make a decision
whether the assertion is trusted or not. When propagating context, the client transfers
the following information:

– Authentication token—client's identity and authentication credentials.

– Identity token—any identity assertion made by this client.

– Authorization elements—privilege information that a client may push about the
caller and/or itself.

Impersonation
Impersonation is the form of identity assertion where there is no restriction on what
resources the mid-tier server can access on the end-tier server. The mid-tier server
can perform any task on behalf of the client.

Delegation
Delegation is the form of identity assertion where the client explicitly delegates certain
privileges to the server. It is the inverse of impersonation. It is a mechanism to
communicate caller identity and authentication information between clients and
servers. In this case, the server is allowed to perform only certain actions as dictated
by the client. VisiSecure performs only simple delegation.

Identity assertions

Identity assertion occurs when several servers with secure components are involved in
a client request. At times, it is necessary for a server to act on behalf of its clients—
when a client request is passed from one server to another. This is typical in the case
where a client calls a mid-tier server, and the server further needs to call an end-tier
server to perform a part of the service requested by the client. At such times, the mid-
tier server typically needs to act on behalf of the client. In other words, it needs to let

44 VisiBroker Secur i ty Guide

the end-tier server know that while it (the mid-tier server) is communicating with the
end-tier server, access control decisions must be based on the original caller's
privileges and not its privileges.

For example, a client request goes to Server 1, and Server 1 performs the
authentication of the identity of the client. However, Server 1 passes the client request
to Server 2, which may in turn pass the request to Server 3, and so forth.

Each subsequent server (Server 2 and Server 3) can assume that the client identity
has been verified by Server 1 and thus the identity is trusted. The server that ultimately
fulfills the client request, such as Server 3, need only perform the access control
authorization.

By default, the identity is authenticated only at the first tier server and is asserted. It is
the asserted identity that propagates to other tiers.

Asserting Identity of the caller
The identity assertion example in the \\VisiBroker\examples\vbroker\security\assertion
example folder illustrates the use of identity assertion APIs which can be used to
explicitly assert an identity as caller.

This example uses APIs provided by security context to create a new identity and
assert the identity as caller before making the invocation. The server first checks if the
assertion is made by the trusted peer and then checks if the asserted identity is
authorized to make the invocation.

You can change the attribute to suite your own environment before running the
example. In this example, server is setup with assertion trust and authorization rules.

To make assertion, use the following command:

 3: Authorizat ion 45

 for (int i=0; i<argc; ++i) {

 if (strcmp(argv[i], "-assert") == 0) {
 CORBA::Object_var obj1 = orb->resolve_initial_references("VBSecurityContext");
 Context* context = dynamic_cast<Context*>(obj1.in());

 CORBA::Object_var obj2 = orb->resolve_initial_references("VBSecurityCurrent");
 Current* current = dynamic_cast<Current*>(obj2.in());

 CORBA::Object_var obj3 = orb->resolve_initial_references("VBWalletFactory");
 WalletFactory* factory = dynamic_cast<WalletFactory*>(obj3.in());

 Wallet* wallet = factory->createIdentityWallet("asserted", "password",
"myrealm");
 Subject* subject = context->importIdentity(*wallet);
 current->asserting(subject);
 cout << "New caller identity asserted." << endl;
 break;
 }
 }

The assertion trust rule on the server requires the asserter, which is the client in this
example. The same must be a member of Asserter role for authorization domain bank.

Members of the role Asserter is described in the bank.rolemap as follows:

Asserter {
*group=cceng
}

This means, any authenticated user that belongs to group cceng must be a member of
role Asserter.

The authorization rule on the server requires the caller, which is the identity asserted
by the client in this example, must be of Manager role for authorization domain bank.

Member of the role Manager is described in the bank.rolemap as follows:

Manager {
*cn=asserted
}

The client code asserts an identity that user name is asserted, thus the asserted
identity is member of role Manager and access will be granted.

1 Launch the server using the following command:

prompt> Server -DORBpropStorage=cpp_server.properties &
(start Server -DORBpropStorage=cpp_server.properties on Windows)

2 Launch the client with assertion using the following command:

prompt> Client -DORBpropStorage=cpp_client.properties -assert

3 Enter your userid/password, when prompted, for the current host machine.

The program runs successfully.

To run the client without assertion:

1 Launch the client using the following command:

prompt> Client -DORBpropStorage=cpp_client.properties

2 Enter the userid/password, when prompted, for the current host machine.

You shall see exception of CORBA::NO_PERMISSION is thrown as only the asserted identity is
authorized to make the invocation under the server configuration.

46 VisiBroker Secur i ty Guide

In this example, the following properties are set on the server side:

The following properties are set on the client side:

Property Description

vbroker.security.disable=false To enable the security service, set it to
false.

vbroker.security.login=false If set to true, at initialization-time this
property tries to log on to all realms listed
by property
vbroker.security.login.realms.

vbroker.security.authentication.config
=cpp_server.config

This specifies the path to the
configuration file used for authentication.

vbroker.security.peerAuthenticationMod
e=none

This is to set the peer authentication
mode.

NONE—Authentication is not required.
During handshake, no certificate request
will be sent to the peer. Regardless of
whether the peer has certificates, a
connection will be accepted. There will be
no transport identity for the peer.

vbroker.security.assertions.trust.1=As
serter@bank

This property is used to specify a list of
trusted roles (specify with the format
<role>@<authorization_domain>). <n> is
uniquely identified for each trust assertion
rule as a list of digits.

For example, setting
vbroker.security.assertions.trust.1=Se
rverAdmin@default means this process
trusts any assertion made by the
ServerAdmin role in the default
authorization domain.

vbroker.security.authDomains=bank Specifies a list of available authorization
domains separated by comma.

vbroker.security.domain.bank.rolemap_p
ath=cpp_bank.rolemap

Specifies the location of the RoleDB file
that describes the roles used for
authorization. This is scoped within the
domain <domain_name> specified in:
vbroker.security.authDomains.

Property Description

vbroker.security.server.transport=CLEA
R_ONLY

It determines whether to use secure
transport only or not.

Note: To use secure transport only, the
secureTransport property must also be
set to true.

vbroker.security.login=true If set to true, at initialization-time this
property tries to login to all the realms
listed by property
vbroker.security.login.realms.

On client side, this property is set to true,

vbroker.security.login.realms=myrealm

vbroker.security.disable=false To enable the security service, set it to
false.

 3: Authorizat ion 47

Trusting Assertions

A server (end-tier) may choose to accept or not accept identity assertions.

In the case where it chooses to accept identity assertions, there are trust issues that
present themselves. While the server may know that the peer is authentic, it must also
confirm that the peer has the privilege to assert another caller or act on behalf of the
caller. Since the caller itself is not authenticated by the end-tier, and the end-tier
accepts the mid-tier's assertion, the end-tier needs to ensure that it trusts the mid-tier
to have performed proper authentication of the original caller. It, in turn, trusts the mid-
tier's trust in the authenticity of the caller.

There may be many peers to an end-tier system, some of whom are trusted as mid-
tiers, and some that are just clients. Therefore, the privilege to speak for other callers
must be granted only to certain peers.

Trust assertions and plug-ins
When a remote peer (server or process) makes identity assertions while acting on
behalf of the callers, the end-tier server needs to trust the peer to make such
assertions. The Security Provider Interface (SPI) allows you to plug in a Trust Services
Provider to determine whether the assertion is allowed (trusted) for a given caller and a
given set of privileges for the asserter. Specifically, you use the TrustProvider class to
implement trust rules that determine whether the server will accept identity assertions
from a given asserting subject. This allows you to plug in an assertion trust mechanism.

Assertion can happen in multi-hop scenario, or explicitly called through assertion API.
The server can have rules to determine whether the peer is trusted to make the
assertion or not. The default implementation uses property setting to configure trusted
peers on the server side. During runtime, the peer must pass authentication and
authorization in order to be trusted to make assertions.

Like the other pluggable services, you will need to define the authorization service with
properties which are then passed as string maps. For example:

vbroker.security.trust.trustProvider=MyProvider
vbroker.security.trust.trustProvider.MyProvider.property1=xxx
vbroker.security.trust.trustProvider.MyProvider.property2=xxx

There can be only one trust provider specified for the whole security service.

For more information, refer to “vbsec::TrustProvider”

Backward trust
Backward trust is provided “out of the box”, and is the form of trust where the server
has rules to decide who it trusts to perform assertions. With backward trust, the client
has no say whether the mid-tier server has the privilege to act on its behalf.

Assertion example in the example folder is an example of backward trust.

vbroker.security.alwaysSecure=false This property determines whether to use
secure transport only or not.

Note: To use secure transport only, the
secureTransport property must also be
set to true.

vbroker.security.peerAuthenticationMod
e=none

This is to set the peer authentication
mode.

NONE—Authentication is not required.
During handshake, no certificate request
will be sent to the peer. Regardless of
whether the peer has certificates, a
connection will be accepted. There will be
no transport identity for the peer.

48 VisiBroker Secur i ty Guide

Forward trust
Forward trust is similar to delegation in that the client explicitly provides certain mid-tier
servers the privilege to act on its behalf. Forward Trust is currently not being supported
in VisiSecure

Temporary privileges

At times, a server needs to access a privileged resource to perform a service for a
client. However, the client itself may not have access to that privileged resource.
Typically, in the context of an invocation, access to all resources are evaluated based
on the original caller's identity. Therefore, it would not be possible to allow this
scenario, as the original caller does not have access to such privileged resource. To
support this scenario, the application may choose to assume an identity different from
that of the caller, temporarily while performing that service. Usually, this identity is
described as a logical role, as the application effectively requires to assume an identity
that has access to all resources that require the user to be in that role.

The privileges class gives an abstraction of the privileges for a subject. It is the
container of authorization privilege attributes, such as Distinguished Name (DN)
attributes, and such. The AuthorizationService makes the decision on whether the
subject has permission to access the certain resource based on the privileges object of
the subject.

The privileges object is stored inside the subject as one of the PublicCredentials. At the
same time, privileges hold one reference to the referring subject. Privileges also
contain a DN attributes map, as well as a map of other.

 4 : Secure Transportat ion 49

Secure Transportation
In intranet scenarios, it may be safe to transfer information (including sensitive data,
such as user authentication credentials) using IIOP over plain sockets. However, when
the network environment is not trusted (such as the Internet, or even an intranet), you
need to guarantee integrity (the message was not modified or tampered with during the
transmission) and confidentiality (the message cannot be read by anybody even if they
intercepted it during transmission) of messages being transmitted over the network.
This is achieved by using secure sockets (SSL).

VisiSecure functions in two transport environments:

– using IIOP over plain sockets - (clear mode)

– using secure sockets (SSL) - (encrypted mode)

Enabling SSL
For Java only

VisiSecure uses Java Secure Sockets Extension (JSSE) to perform SSL
communication. VisiSecure SPI Secure Socket Provider class provides access to the
underline SSL implementation. Any appropriate implementation following Java Secure
Socket Extension (JSSE) framework can be easily plugged in, independent of other
provider mechanisms. The only necessary step is mapping the interfaces (or, in
another word, callback methods) defined to the corresponding JSSE implementation.
For more information on the SPI Secure Socket Provider class, see VisiSecure SPI for
Java and “Security SPI for C++.”

For the “out-of-box” installation of VisiBroker, the JSSE implementation provided by
Java SDK is used.

Setting the level of encryption

The SSL product uses a number of encryption mechanisms. These mechanisms are
industry-standard combinations of authentication, privacy, and message integrity
algorithms. This combination of characteristics is referred to as a cipher suite.

The client and server have a static list of supported cipher suites. This list is used
during the handshake phase of the connection to determine which cipher suite will be
used. The client sends a list of all cipher suites it knows to the server. The server then
takes this information and determines which cipher suites both the server and client
understand. By default, the server selects the strongest available cipher suite.

50 VisiBroker Secur i ty Guide

Enabl ing Secur i ty

While this cipher suite order ensures strong security, you may want to adopt a different
cipher suite order based on application-specific security requirements. When you want
to change the order of the cipher suites, use the Quality of Protection (QoP) API
function calls; you can retrieve a list of the currently available cipher suites, then set the
list to a new order so weaker cipher suites are used before stronger cipher suites.

Note

You cannot add new cipher suites. You can modify only the order of the cipher suites
that are available and remove cipher suites you do not want to use.

Supported cipher suites
A cipher suite is a set of valid encoding algorithms used to encrypt data. Cipher suites
have different security levels and can serve different purposes. For example, some
ciphers provide for authentication while others do not; some provide for encryption and
others do not. Segments of the name of the cipher indicate what the cipher suite does
or does not provide.

The following table shows the cipher name segments and what these segments mean.

The list of supported ciphers for VisiSecure for Java, is determined by the JSSE
package used. As for VisiSecure for C++, the list can be located at csstring.h file
bundled with the installation.

Enabling Security
For a ORB to be secure, it must have the following property set:

vbroker.security.disable=false

Enabling SSL
To use SSL, your security in the ORB must be enabled. Once the security is enabled,
ssl is enabled by default.

To disable the SSL:

To disable the SSL on the client side, set the property on the client side as given below.

Vbroker.security.secureTransport=false

To disable the SSL on the server side, you must set the property on the server side as
given below.

vBroker.security.server.transport=CLEAR_ONLY

For more information on SSL, refer to “Enabling SSL”.

Cipher name Description

RC4 (through RC8) Symmetric encryption used in the cipher

MD5 Data integrity mechanism.

Data is sent clear, but a hash code is used at the receiving end to ensure
data integrity.

SHA Data integrity mechanism

WITH Authentication with encryption

ANON Uses DLT, an anonymous key exchange algorithm

NULL No encryption

EXPORT Public key size is limited.

Note: The larger the size of a public/private key, the more secure that
key is. This option is typically used for international (outside the United
States) users.

EXPORT1024 The maximum key size is limited to 1024 bytes.

 4 : Secure Transportat ion 51

Enabl ing Secur i ty

Setting the Log Level

Logging in VisiBroker employs one or more Logger objects. Applications can log
messages to the Default Logger as well, to integrate their logging output with that of the
ORB, or they can create one or more other Loggers, to log messages independently as
said earlier.

All log messages to a single logger are bound to a common set of destinations. By
using multiple loggers for logging, messages from different components could be made
output to various independent end points.

ORB and all its C++ services use a special Logger instance (the ‘Default Logger’ with
the name “default”), which is created automatically the first time the ORB logs a
message. For more information, refer to the chapter on ‘VisiBroker logging’ in the
VisiBroker for C++ Developer’s Guide.

SimpleLogger class is a mechanism to log information of various levels. Currently, it
supports four different levels: LEVEL_WARNING, LEVEL_NOTICE, LEVEL_INFO, and LEVEL_DEBUG,
with increasing detailed information. There is only one logger in the whole security
service. For information on SimpleLogger class, refer to “vbsec::SimpleLogger”.

VisiSecure - Java
Messages from VisiSecure java internal are logged under source name "secure".

For setting VisiSecure java logging messages to level info, set the following property to
true.

vbroker.log.enable=true

vbroker.log.default.filter.secure.logLevel=info

The default value is "debug".

The VisiBroker Java logging mechanism applies to VisiSecure java as well.

VisiSecure C++

VisiBroker for C++ provides a logging mechanism, which allows applications to log
messages and have them directed, via configurable logging forwarders called
appenders, to appropriate destination or destinations. The ORB and all its services
themselves use this mechanism for the output of any error, warning or informational
messages.

The VisiBroker C++ logging mechanism applies to VisiSecure C++ as well.

For more information, refer to VisiBroker java logging in the Developer’s Guide.

For setting VisiSecure csiv2 related logging messages, set the following property to
true.

vbroker.log.enable=true

vbroker.log.default.filter.v_seccsiv2.logLevel=info

The default value is "debug".

Messages from VisiSecure C++ internal are logged under four separate source names
as given below.

Types of Messages Source Names

Authentication related messages v_secauthn

Authorization related messages v_secauthz
SSL related messages v_secssl
CSIV2 related messages v_seccsiv2

52 VisiBroker Secur i ty Guide

Encrypt ion

Encryption

Public-key encryption

In addition to username/password-based authentication, VisiSecure also supports
public-key encryption. In public-key encryption, each user holds two keys: a public key
and a private key. A user makes the public key widely available, but keeps the private
key secret.

Data that has not been encrypted is often referred to as clear-text, while data that has
been encrypted is called cipher-text. When a public key and a private key are used with
the public-key encryption algorithm, they perform inverse functions of one another, as
shown in the following diagram.

– In the first case, the public key is used to encrypt a clear-text message into a cipher-
text message; the private key is used to decrypt the resulting cipher-text message.

– In the second case, the private key is used to encrypt a message (typically in the
case of digital signatures—that is, “signed” messages), while the public key is used
to decrypt it.

If someone wants to send you sensitive data, they acquire your public key and use it to
encrypt that data. Once encrypted, the data can only be decrypted with the private key.
Not even the sender of the data will be able to decrypt the data. The encryption can be
asymmetric or symmetric.

Asymmetric encryption
Asymmetric encryptions has both a public and a private key. Both keys are linked
together such that you can encrypt with the public key but can only decrypt with the
private key, and vice-versa. This is the most secure form of encryption.

 4 : Secure Transportat ion 53

Encryption

Symmetric encryption
Symmetric encryption uses only one key for both encryption and decryption. Although
faster than asymmetric encryption, is requires an already secure channel to exchange
the keys, and allows only a single communication.

Certificates and Certificate Authority

When you distribute your public key, the recipients of that key need some sort of
assurance that you are indeed who you claim to be. The ISO X.509 standard defines a
mechanism called a certificate, which contains a user's public key that has been
digitally signed by a trusted entity called a Certificate Authority (CA). When a client
application receives a certificate from a server, or vice-versa, the CA that issued the
certificate can be used to verify that it did indeed issue the certificate. The CA acts like
a notary and a certificate is like a notarized document.

You obtain a certificate by constructing a certificate request and sending it to a CA.

Digital signatures

Digital signatures are similar to handwritten signatures in terms of their purpose; they
identify a unique author. Digital signatures can be created through a variety of
methods. Currently, one of the more popular methods involves an encrypted hash of
data.

1 The sender produces a one-way hash of the data to be sent.

2 The sender digitally signs the data by encrypting the hash with a private key.

3 The sender sends the encrypted hash and the original data to the recipient.

4 The recipient decrypts the encrypted hash using the sender's public key.

5 The recipient produces a one-way hash of the data using the same hashing
algorithm as the sender.

6 If the original hash and the derived hash are identical, the digital signature is valid,
implying that the document is unchanged and the signature was created by the
owner of the public key.

Generating a private key and certificate request

To obtain a certificate to use in your application, you need to first generate a private
key and certificate request. To automate this process, for Java applications you can
use the Java keytool, or for C++ applications you can use open source tools like
OpenSSL utility.

After you generate the files, you should submit the certificate request to a CA. The
procedure for submitting your certificate request to a CA is determined by the
certificate authority which you are using.

If you are using a CA that is internal to your organization, contact your system
administrator for instructions.

If you are using a commercial CA, you should contact them for instructions on
submitting your certificate request.

The certificate request you send to the CA will contain your public key and your
distinguished name.

54 VisiBroker Secur i ty Guide

Distinguished names
A distinguished name represents the name of a user or the CA that issued the user's
certificate. When you submit a certificate request, it includes a distinguished name for
the user that is made up of the components listed in the following table.

Certificate chains
The ISO X.509 standard provides a mechanism for peers who wish to communicate,
but whose certificates were issued by different certificate authorities. Consider the
following figure, in which Joe and Ted have certificates issued by different CAs.

For Joe to verify the validity of Ted's certificate, he must inspect each CA in the chain
until a trusted CA is found. If a trusted CA is not found, it is the responsibility of the
server to choose whether to accept or reject the connection. In the case shown in the
preceding figure, Joe would follow these steps:

1 Joe obtains Ted's certificate and determines the issuing CA, Acme.

2 Since the Acme CA is not in Joe's certificate chain, Joe obtains the issuer of the
certificate for CA_2.

3 Because CA_2 is not a trusted CA, the server decides whether to accept or reject the
connection.

Note

The manner in which you obtain certificate information from a CA is defined by that CA.

Tag Description Required Component

Common-Name The name to be associated with the user. Yes

Organization The name of the user's company or
organization.

Yes

Country The two character country code that identifies
the user's location.

Yes

Email The person to contact for more information
about this user.

No

Phone The user's phone number. No

Organizational Unit The user's department name. No

Locality The city in which the user resides. No

 4 : Secure Transportat ion 55

Using IIOP/HTTPS
VisiBroker has a feature that allows tunneling of IIOP inside the HTTP protocol. This is
an extended feature in VisiBroker called HIOP. With VisiSecure enabled, the secure
version of HIOP is available. This allows tunneling of IIOP inside HTTPS.

You can make use of HTTPS, featured in most browsers. The following guidelines
should be followed:

– The VisiBroker proxy server GateKeeper must be running with SSL enabled on the
exterior.

– An applet that only uses IIOP/HTTPS requires no pre installation of software (either
classes or native libraries) on the client as long as the browser or applet viewer is
HTTPS enabled.

– An applet using IIOP/HTTPS cannot use the X509Certificate[] class to set or
examine identities. All certificate and private key administration is handled by the
browser. Furthermore, when the ORBalwaysTunnel parameter in the applet tag is set to
true, the ORB cannot resolve SSLCurrent objects.

– To enable an applet to use only IIOP/HTTPS, set ORBalwaysTunnel to true in the
HTML page. If ORBalwaysTunnel is set to false (or unspecified) the ORB first tries to
use IIOP/SSL, which requires the SSL classes and native SSL library to be installed
locally.

– In general, IIOP/HTTPS is not available to Java applications because HTTPS is not
supported by the JDK. However, there are no restrictions in VisiBroker for Java that
prevent the addition of HTTPS support to the JDK and the use of IIOP/HTTPS in
Java applications.

Netscape Communicator/Navigator
You can freely use Netscape Communicator with IIOP/HTTPS, however, some
versions of Navigator require the installation of the CA certificate before allowing an
IIOP/HTTPS connection. Follow these guidelines to use IIOP/HTTPS with Netscape
Navigator:

– Make sure your server certificates are issued by a CA already trusted by Navigator.

– Install the root certificate into Navigator as a trusted certificate. Opening a certificate
file (for example, cacert.crt in bank_https) gives you the opportunity to install the
certificate.

– Use the GateKeeper to download the root certificate to the browser. The bank_https
example shows how to do this.

– Commercial CAs usually provide a link that allows you to install their root certificate.

– GateKeeper, by default, does not ask for the client identity. You can enable this
function by setting ssl_request_client_certificate to true in the GateKeeper
configuration file.

Microsoft Internet Explorer
To use IIOP/HTTPS with Microsoft Internet Explorer, you must make sure that the
HTTPS connection requires no user interaction. For example, if the browser visits a
HTTPS site with an untrusted root certificate, the browser will ask for permission before
establishing an HTTPS connection. The Microsoft JVM, due to a known bug, fails on
this connection.

56 VisiBroker Secur i ty Guide

Here are several examples that illustrate this condition and ways in which you can
work:

– Internet Explorer ships with a list of trusted Network Server Certificates Authority. If
your server certificate is not issued by one of the trusted CAs, (the certificates
shipped with bank_https, for example) IE asks for permission before establishing an
HTTPS connection. The IIOP/HTTPS operation fails because the Microsoft JVM
does not seem to support an HTTPS connection that requires user interaction. There
are a number of ways to handle this situation:

– Make sure your server certificates are issued by a CA already trusted by Internet
Explorer.

– Install the root certificate into IE as a trusted Network Server certificate. Opening a
certificate file (for example, cacert.crt in bank_https) gives you the opportunity to
install the certificate.

– Use the GateKeeper to download the root certificate to the browser. The
bank_https example shows how to do this.

– Commercial CAs usually provide a link that allows you to install their root
certificate.

– GateKeeper, by default, does not ask for the client identity. Although, you can enable
this function by setting ssl_request_client_certificate=true in the GateKeeper
configuration file, you cannot use IIOP/HTTPS because the browser asks for
permission before responding with the user's credentials.

Internet Explorer optionally requires the Common Name field within the server
certificate to be the same as the host name of the server.

– From the View|Internet Options menu, select the Advanced tab and scroll to the
Security section.

– Make sure the box next to Warn about is invalid.

– Make sure the site certificates are not checked. If checked, it would allow using a
server certificate that does not contain the host name of the server.

 5: Qual i ty of Protect ion 57

Quality of Protection
Quality of Protection (QoP) is an OMG policy. It enforces some requirement on the run-
time and it is installed on a POA. Server QOP must be installed on a POA. Client QOP
can be installed on an object.

The Portable Object Adapter (POA) is the piece of the ORB that manages server-side
resources for scalability. By deactivating objects' servants when they have no work to
do, and activating them again when they're needed, we can stretch the same amount
of hardware to service many more clients.

Although it is architecturally a separate piece of the ORB, and ORBs can have more
than one type of object adapter, the POA is not a piece of software that you can buy
separately from the ORB. In fact, the interfaces that connect the ORB and the POA are
proprietary. The POA is the second object adapter that OMG has specified. First was
the Basic Object Adapter or BOA, now deprecated.

The programmer fixes resource allocation/de-allocation patterns by setting POA
Policies. These determine whether object references created by the POA are transient
or persistent; whether activation is per-method-call or longer or shorter; and how
multiple CORBA objects (either of a single type, or multiple types) map to servants.
There are seven POA policies; when you multiply out the different settings, you come
up with nearly 200 possible

Setting properties and QoP
There are several properties that can be used to ensure connection Quality of
protection. The VisiBroker ORB security properties for C++ can be used to fine tune
connection quality.

For example, you can set the cipherList property for SSL connections to set
cryptography strength.

vbroker.security.cipherList

This property is set to a list of comma-separated ciphers to be enabled by default on
startup. If not set, a default list of ciphersuites will be enabled. There should be valid
SSL Ciphers.

QOP properties can be set using ServerQoPConfig and the ClientQoPConfig for servers and
clients, repectively. For more information, see “Configuring Quality of Protection(QoP)
for both server and the client.”.

These APIs allow you to set target trust (whether or not targets must authenticate), the
transport policy (whether or not to use SSL or another secure transport mechanism
specified separately). For servers, an AccessPolicyManager that can access the

58 VisiBroker Secur i ty Guide

Conf igur ing Qual i ty of Protect ion(QoP) for both server and the cl ient .

RoleDB is set to access policies for POA objects. For more information on
AccessPolicyManager, see “class csiv2::AccessPolicyManager”

Configuring Quality of Protection(QoP) for both server and the client.

Configuring QoP for Server

The complete code of ServerQoPConfigValueFactory is as follows,
package com.borland.security.csiv2;
import com.borland.security.csiv2.ServerQoPConfigValueFactory;
import com.borland.security.csiv2.ServerQoPConfig;
import com.borland.security.csiv2.AccessPolicyManager
public class ServerQoPConfigDefaultFactory
implements ServerQoPConfigValueFactory {
public ServerQoPConfig createConfig (boolean disable,

short transport,
short idType,
boolean
enableIdAssertion,
java.lang.String[]

realms, AccessPolicyManager access_manager)
{
return new ServerQoPConfigImpl(disable, transport, idType, enableIdAssertion, realms,
access_manager);
 }
}
disable = security is disabled/enabled for this POA, When security is disabled, the rest
of the settings become irelevant.

The transport methods has three possible values of CLEAR_ONLY or SECURE_ONLY
or ALL of com.borland.security.csiv2.ServerQoPPolicyOperations.

where ServerQoPPolicyOperations is the class.

CLEAR_ONLY: Uses only clear listener to accept request

SECURE_ONLY: Uses only SSL listener to accept request

ALL: Uses both

The IdType has possible values of com.borland.security.csiv2.ServerQoPPolicy.

enableIdAssertion = true/false, when this is set to false, this server can not accept caller
identity propagated through CSIV2 Authorization token.

realms[] = is an array of strings, specifying the names of all realms that this POA can
accept identity of. The default value is ‘null’ meaning there are no configured realms in
this ORB.

access_manager = For authorization purposes, this is the AccessPolicyManager
responsible for this POA; The default value is ‘null’ meaning there is no authorization.

For configuring Quality of Protection(QoP) for server, follow the steps as given below:

For server, QoP is set as follows:

To enable access controls, set disable = false

For method to be secure, set transport = secure only
For server to require clients credentials for authentication, set trust in client = true.

NO_ID means expecting no identity

UP means expecting Username Password
identity

PK means expecting transport identity

UP_AND_PK means expecting both must present and
valid

UP_OR_PK means expecting either one must
present and valid

 5: Qual i ty of Protect ion 59

For more information on transport methods and other QoP related parameters, see
“class vbsec::ServerConfigImpl”

1 To create server QoP configuration object

ServerQoPConfig config = new
ServerQoPConfigDefaultFactory().create(false,ServerQoPPolicy.SECURE_ONLY,true, null);

2 To activate the server with QoP

Any any = orb.create_any();
ServerQoPConfigHelper.insert(any, config);
Policy qop = orb.create_policy(SERVER_QOP_CONFIG_TYPE.value, any);

Configuring QoP for client

The initial step of creating a QoP is to create a QoPConfig and specify the security
requirements that must be enforced through the config.

To create a ClientQoPConfig, you can use its default factory as follows:
...

...
com.borland.security.csiv2.ClientQoPConfig myconfig =
new com.borland.security.csiv2.ClientQoPConfigDefaultFactory().create

/* transport = */ com.borland.security.csiv2.ClientQoPPolicyOperations.CLEAR_ONLY,

 /* Other possible values for above are SECURE_ONLY and USE_ANY*/

/* trustInTarget= */ true

);

The complete code of ClientQoPConfigDefaultFactory is as follows,
package com.borland.security.csiv2;

public class ClientQoPConfigDefaultFactory

 implements com.borland.security.csiv2.ClientQoPConfigValueFactory {
public com.borland.security.csiv2.ClientQoPConfig create (short trans,
 boolean trustInTarget) {
 return new ClientQoPConfigImpl(trans, trustInTarget);
 }
}

1. Initialize the ORB/
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

byte[] managerId = "BankManager".getBytes();

Note: For client, QoP is set as follows:
For method to be secure, set transport = secure only
Set trust in target = false. (With this, server need not provide authentication for
client).

For more information on transport methods and other QoP parameters, see “class
vbsec::ClientConfigImpl”

ClientQoPConfig cc = new ClientQoPConfigDefaultFactory().create(
ClientQoPPolicy.SECURE_ONLY, false);
org.omg.CORBA.Object managerObject =
Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa", managerId);

Transport methods trustInTarget=true trustInTarget=false
CLEAR_ONLY Invalid conf, will

throw PolicyError
For outgoing, use
clear IIOP transport

SECURE_ONLY For outgoing, use
SSL and make sure
that server cert is
trusted

For outgoing, use
SSL and server cert
can be non trusted

USE_ANY Invalid conf, will
throw PolicyError

For outgoing, try
SSL then fallback
to clear when fail,
server cert can be
non trusted

60 VisiBroker Secur i ty Guide

2. Insert client QoP into any object
Any any = orb.create_any();
ClientQoPConfigHelper.insert(any, cc);

3. Narrow the reference to Bank Manager using the policy
 Bank.AccountManager manager = Bank.AccountManagerHelper.narrow(

managerObject._set_policy_override(
new Policy[] { orb.create_policy(CLIENT_QOP_CONFIG_TYPE.value, any)

},
SetOverrideType.SET_OVERRIDE));

4. Create or open an account for the user. This returns a generic Account object
reference.

 org.omg.CORBA.Object accountObject = manager.open(name);

5. Narrow the reference to Bank Account
 Bank.Account account = Bank.AccountHelper.narrow(

accountObject._set_policy_override(
new Policy[] { orb.create_policy(CLIENT_QOP_CONFIG_TYPE.value, any) },

SetOverrideType.SET_OVERRIDE
)

);

6. Get the balance from the account and print it on the console
 System.out.println("The balance in " + name + "'s account is $" +
account.balance());

} catch(Throwable e) {
synchronized(System.err) {

e.printStackTrace();
}

}
}

public static void main(String[] args) {
 if (args.length != 0) {
 System.err.println("Usage : vbj -DORBpropStorage=client.properties Client");
 System.exit(1);
 }
 Client cln = new Client();
 cln.test(args);
 }
}

Configuring Quality of Protection (QoP) parameters
When clients and servers communicate, they both need to agree on certain parameters
for the Quality of Protection (QoP) that will be provided. The resource host (the server)
will:

– publish all the QoP parameters that it can support, and

– impose a set of required QoP parameters on the clients.

Note

By definition, a required QoP is also a supported QoP.

For example, a server may support and require secure transport (SSL) while it may
support authentication but not require it. This is useful, for example, in the case where
some resources are not sensitive and anonymous access is acceptable. For more
information about QoP and QoS parameters:

For C++, See “QoP API”.

For Java, See com.borland.security.csiv2 in ..//VisiBroker/doc/sec-api-doc/com/borland/
security/csiv2/package-frame.html.

 6 : Creat ing Custom Plugins 61

Creating Custom Plugins

Creating Custom Plugins for c++

There are various components of VisiSecure that allow for custom plug-ins. They are:

– LoginModules

– CallBack Handlers

– Authorization service provider via the SPI

– Assertion Trust via the SPI

In order for VisiSecure for C++ to find user implementations, all plugins must use the
REGISTER_CLASS macro provided by VisiSecure to register their classes to the security
service. When specifying the registered class, the name of the class must be specified
in full together with the name space. Name spaces must be specified in a normalized
form, with either a “.” or “::” separated string starting from the outermost name space.
For example:

MyNameSpace {
 class MyLoginModule {

 }
}

would be specified as either MyNameSpace.MyLoginModule or MyNameSpace::MyLoginModule.

LoginModules

LoginModule describes the interface implemented by authentication technology
providers. LoginModules are plugged under applications to provide a particular type of
authentication.

While applications write to the LoginContext API, authentication technology providers
implement the LoginModule interface. A Configuration specifies the LoginModule(s) to
be used with a particular login application. Therefore different LoginModules can be
plugged in under the application without requiring any modifications to the application
itself.

You can implement your own LoginModules by extending vbsec::LoginModule.

62 VisiBroker Secur i ty Guide

Creat ing Custom Plugins

LoginModule serves as the parent of all login modules. User plugin login modules must
extend this class. Login modules are configured in the authentication configuration file
and called during the login process. Login modules are responsible of authenticating
the given subject and associating relevant Principals and Credentials with the subject.
It is also responsible for removing and disposing of such security information during
logout.

To use the LoginModule, you need to set it in the authentication configuration file, just
like any other LoginModule. During runtime, the new customized module will need to
be loaded by the secured application.

The syntax of the authentication configuration is as follows:
<realm-name> {
 <class-name-of-customized-LoginModule> <required|optional>;
}

Note: There is implicit replacement of the character “.” to “::” by VisiSecure. Hence,
com.borland.security.provider.authn.HostLoginModule is equivalent to
com::borland::security::provider::authn::HostLoginModule.

For more information, see “vbsec::LoginModule”.

The first thing you need to do is to determine whether or not your LoginModule will
require some form of user interaction (retrieving a user name and password, for
example). If so, you will need to become familiar with the CallbackHandler interfaces
readily available. (Alternatively, you can create your own Callback implementations.)

The LoginModule will invoke the CallbackHandler specified by the application itself and
passed to the LoginModule's initialize method. The LoginModule passes the
CallbackHandler which is an array of appropriate Callbacks.

If the LoginModule implementations have no end-user interactions, the LoginModules
would not need to access the callback package.

You must also determine what configuration options you want to make available to the
user, who specifies configuration information in whatever form the current
Configuration implementation expects (for example, in files). For each option, decide
the option name and possible values.

For example, if a LoginModule may be configured to consult a particular authentication
server host, decide on the option's key name ("auth_server", for example), as well as
the possible server hostnames valid for that option.

To implement the login module, you first have to decide on the proper package and
class name for your LoginModule.

The LoginModule interface specifies five abstract methods that require
implementations: initialize, login, commit, abort, logout

For more information on implementing login modules, see Login Module Developer’s
Guide in Sun JDK - JAAS Documentation.

In addition to these methods, a LoginModule implementation must provide a public
constructor with no arguments. This allows for its proper instantiation by a
LoginContext.

Note: If no such constructor is provided in your LoginModule implementation, a default
no-argument constructor is automatically inherited from the Object class.

The LoginContext is responsible for reading the configuration and instantiating the
appropriate LoginModules. Each LoginModule is initialized with a subject, a
CallbackHandler, shared LoginModule state, and LoginModule-specific options. The
subject represents the subject currently being authenticated and is updated with
relevant credentials if authentication succeeds.

The LoginModule-specific options represent the options configured for this
LoginModule by an administrator or user in the login configuration. The options are
defined by the LoginModule itself and control the behavior within it.

The calling application sees the authentication process as a single operation. However,
the authentication process within the LoginModule proceeds in two distinct phases.

In the first phase, the LoginModule's login method gets invoked by the LoginContext's
login method. The login method for the LoginModule then performs the actual
authentication (prompt for and verify a password for example) and saves its
authentication status as private state information. Once finished, the LoginModule's
login method either returns true (if it succeeded) or false (if it should be ignored), or

 6 : Creat ing Custom Plugins 63

Creat ing Custom Plugins

throws a LoginException to specify a failure. In the failure case, the LoginModule must
not retry the authentication or introduce delays. The responsibility of such tasks
belongs to the application. If the application attempts to retry the authentication, the
LoginModule's login method will be called again.

In the second phase, if the LoginContext's overall authentication succeeded (the
relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules
succeeded), then the commit method for the LoginModule gets invoked. The commit
method for a LoginModule checks its privately saved state to see if its own
authentication succeeded. If the overall LoginContext authentication succeeded and
the LoginModule's own authentication succeeded, then the commit method associates
the relevant principals (authenticated identities) and credentials (authentication data
such as cryptographic keys) with the subject located within the LoginModule.

If the LoginContext's overall authentication failed (the relevant REQUIRED,
REQUISITE, SUFFICIENT and OPTIONAL LoginModules did not succeed), then the
abort method for each LoginModule gets invoked. In this case, the LoginModule
removes/destroys any authentication state originally saved.

Logging out a subject involves only one phase. The LoginContext invokes the
LoginModule's logout method. The logout method for the LoginModule then performs
the logout procedures, such as removing principals or credentials from the subject or
logging session information.

A LoginModule implementation must have a constructor with no arguments. This
allows classes which load the LoginModule to instantiate it.

CallbackHandlers

CallbackHandler is the mechanism that produces any necessary user callbacks for
authentication credentials and other information. Callbacks are an array of callback
objects which contain the information requested by an underlying security service that
has the ability to interact with a calling application to retrieve specific authentication
data such as usernames and passwords, or to display certain information, such as
errors and warning messages.

The CallbackHandler may be used to prompt for usernames and passwords, for
example. Note that the CallbackHandler may be null. LoginModules which absolutely
require a CallbackHandler to authenticate the subject may throw a LoginException.
LoginModules optionally use the shared state to share information or data among
themselves.

Underlying security services make requests for different types of information by
passing individual callbacks to the CallbackHandler. The CallbackHandler
implementation decides how to retrieve and display information depending on the
callbacks passed to it.

For example, if the underlying service needs a username and password to authenticate
a user, it uses a NameCallback and PasswordCallback. The CallbackHandler can then
choose to prompt for a username and password serially, or to prompt for both in a
single window.

There are seven types of callbacks provided. There is a default handler that handles all
callbacks in interactive text mode.

You can implement your own callback by extending vbsec::CallbackHandler. To use the
callback, you need to set the property
vbroker.security.authentication.callbackHandler=<custom-handler-class-name> in the security
property file, just like any other callback handler.

This property specifies the callback handler that is used by login modules for
interacting with users for credentials. You can specify one of the following or your own
custom callback handler. Refer to C++ Security API for more details.
com.borland.security.provider.authn.CmdLineCallbackHandler

com.borland.security.provider.authn.HostCallbackHandler

CmdLineCallbackHandler has password echo on, while HostCallbackHandler has password
echo off.

During runtime, the new customized module will need to be loaded by the secured
application.

64 VisiBroker Secur i ty Guide

Creat ing Custom Plugins

For more information on implementing call back handlers, see
“vbsec::CallbackHandler”.

Implementations of the calback interface are passed to a CallbackHandler, allowing
underlying security services that has the ability to interact with a calling application to
retrieve specific authentication data such as usernames and passwords, or to display
certain information, such as error and warning messages.

Callback implementations do not retrieve or display the information requested by
underlying security services. Callback implementations simply provide the means to
pass such requests to applications, and for applications, if appropriate, to return
requested information back to the underlying security services.

Authorization Service Provider

Authorization is the process of making access control decisions on behalf of certain
resources based on security attributes or privileges. VisiSecure uses the notion of
Permission in authorization. The class RolePermission is defined to represent a “role” as
a permission. Authorization Services Providers in turn provide the implementation on
the homogeneous collection of role permissions that associate privileges with particular
resources.
The implementer of the Authorization Service provides the collection of permission
objects granted access to certain resources. Whenever an access decision is going to
be made, the AuthorizationServicesProvider is consulted. The Authorization Service is
closely associated with the Authorization domain concept. An Authorization Service is
installed per each Authorization domain implementation, and functions only for that
particular Authorization domain.

The AuthorizationServicesProvider is initialized during the construction of its
corresponding Authorization domain.

Use the following property to set the implementing class for the
AuthorizationServicesProvider:

vbroker.security.domain.<domain-name>.provider

During the runtime, this property is loaded by way of Java reflection.

Another import functionality of the Authorization Service is to return the run-as alias for
a particular role given. The security service is configured with a set of identities,
identified by aliases. When resources request to “run-as” a given role the
AuthorizationServices again is consulted to return the alias that must be used to “run-
as” in the context of the rules specified for this authorization domain.

Authorization service providers are tightly connected with Authorization Domains. Each
domain has exactly one authorization service provider implementation. During the
initialization of the ORB, the authorization domains defined by
vbroker.security.authDomains is constructed, while the Authorization Service Provider
implementation is instantiated during the construction of domain itself.

To plugin authorization service, you need to set the following properties:
vbroker.security.auth.domains=MyDomain
vbroker.security.domain.MyDomain.provider=MyProvider
vbroker.security.domain.MyDomain.property1=xxx
vbroker.security.domain.MyDomain.property2=xxx

vbroker.security.identity.attributeCodecs=MyCodec
vbroker.security.adapter.MyCodec.property1=xxx
vbroker.security.adapter.MyCodec.property2=xxx

The properties specified will be passed to the user plugin following the same
mechanism as above.

Example:

You can write a custom authorization module using both user names and groups. Use
a HostLoginModule, since that is the only supported login module for C++ Visibroker
security applications. HostLoginModule must show the configurations required and the
code required for corba components to use the authorization framework. The Client
needs to have these authorizations in order to access these components in the server.

The roles must be hardcoded into the authorization provider code. The groups for a
user can also be obtained from a different source programmatically and the subject can

 6 : Creat ing Custom Plugins 65

be populated with groups as privileges added to the public credentials of the subject in
question, at runtime, for use by VisiSecure authorization mechanism.

You can match the user/group with roles obtained from an external source(for
example, a legacy system) other than the Borland rolemap mechanism.

USE_STD_NS is a define setup by VisiBroker to use the std namespace

USE_STD_NS
typedef pair<std::string, std::string> String_String_Pair;

typedef pair< std::string, std::set<std::string> > String_Set_Pair;

const std::string USE_CALLER_IDENTITY = (const char*)"use-caller-identity";

const std::string RUNAS = (const char*)"runas.";

void CustomProviderImpl::initialize (const std::string& name, vbsec::InitOptions& opts)

{

To store name of the module:
_name = name;

cout << "Custom authorization service Provider : " << name << endl;

 custProvider = this;

To print out the options given to the custom autorization service provider

 std::map<std::string, std::string> t_options;

std::map<std::string, std::string>::iterator itr;

std::basic_string <char>::size_type index1;

static const std::basic_string <char>::size_type npos = -1;

 std::basic_string<char> t_key, ts;

t_options = *(opts.options);

for (itr = t_options.begin(); itr!=t_options.end(); itr++) {

cout << "Options key :" << itr->first << ", value : " << itr->second << endl;

t_key = (itr->first).substr(0,RUNAS.size()-1);

if (t_key == RUNAS) {

cout << "runas property found :" << itr->first << endl;;

 ts = itr->first;

 index1 = ts.find_last_of(".", ts.size()-1);

 if (index1 != npos)

 ts = ts.substr(index1+1, ts.size()-1);

 else

 ts = "";

 cout << "runas role : " << ts << endl;

 if (itr->second == USE_CALLER_IDENTITY)

 _callerRunAsRoles.insert(ts);

 else

 _runAsMap.insert(String_String_Pair(ts, itr->second));

 }

 }

To store the logger reference:

_logger = opts.logger;

To store logLevel:
_logLevel = opts.logLevel;

You can also use an in-memory role table. To create the in-memory DB that holds the
users and groups, do the following:
 createInMemoryDB();

66 VisiBroker Secur i ty Guide

return;

}

vbsec::PermissionCollection* CustomProviderImpl::getPermissions(const vbsec::Resource* res,
const vbsec::Privileges* prv)

{

CustomProviderImpl::CustomPermissionCollectionImpl* perm_coll = new
CustomProviderImpl::CustomPermissionCollectionImpl();

perm_coll->init((vbsec::Privileges*)prv);

return ((vbsec::PermissionCollection*) perm_coll);

}

std::string CustomProviderImpl::getRunAsAlias(const std::string& s)

{

std::string s1;

 std::map<std::string, std::string>::iterator it;

std::map< std::string, std::set<std::string> >::iterator it2;

 std::set<std::string>::iterator it3;

 it = _runAsMap.find(s);

 if (it == _runAsMap.end()) {

 it2 = _inMemoryDB.find(s);

 if (it2 == _inMemoryDB.end())

 throw CORBA::NO_PERMISSION((CORBA::ULong)0x56422501,
CORBA::CompletionStatus::COMPLETED_NO, (const char*)"The RunAs Role specified does not
exist");

 it3 = _callerRunAsRoles.find(s);

 if (it3 != _callerRunAsRoles.end())

 s1 = USE_CALLER_IDENTITY;

 else

 s1 = (const char*)"";

}

 else

 s1 = it->second;

return s1;

}

void CustomProviderImpl::createInMemoryDB()

{

For example,

If the authorization requirement for the BankManager object is that the clients should
be member of the "Manager" role and for the Account object, it is "Customer" or "Teller"
role.

- To create role entry "Manager" along with its user(s) and/or group(s) as a set:

 _role1_ug.insert("jjagadeesan"); // user "jjagadeesan"
_role1_ug.insert("FI.PSO"); // group "FI.PSO"

_inMemoryDB.insert(String_Set_Pair("Manager", _role1_ug));

- To create role entry "Customer" along with its user(s) and/or group(s) as a set:
 _role2_ug.insert("admin"); // user "admin"

 _inMemoryDB.insert(String_Set_Pair("Customer", _role2_ug));

- To create role entry "Teller" along with its user(s) and/or group(s) as a set:
 _role3_ug.insert("admin"); //user "admin"

 _role3_ug.insert("user"); // group "user"

 6 : Creat ing Custom Plugins 67

 _inMemoryDB.insert(String_Set_Pair("Teller", _role3_ug));

}

std::set<std::string>* CustomProviderImpl::getRoleEntries(std::string& role)

{

 std::set<std::string> * roleEntries;

 std::map< std::string, std::set<std::string> >::iterator it;

 it = _inMemoryDB.find(role);

 if (it == _inMemoryDB.end()) {

 roleEntries = new std::set<std::string>();

 roleEntries->clear();

 }

 else {

 roleEntries = new std::set<std::string>(it->second);

 }

 return roleEntries;

}

Implementation of the functions of the CustomePermissionCollectionPmpl class
void CustomProviderImpl::CustomPermissionCollectionImpl::init(vbsec::Privileges *prv)

{

_privileges = prv;

_provider = CustomProviderImpl::custProvider;

}

bool CustomProviderImpl::CustomPermissionCollectionImpl::implies (const ::vbsec::Permission&
p) const

{

bool matchedRole = false;

std::string userName;

std::string groupName;

string s = p.getName();

// if(_logLevel >= 5)

// _logger.notice(null, "Permission: " + s);

cout << "In CustomAuthorizationProvider::implies: Permission role: " << s << endl;

vbsec::Privileges *privileges = _privileges;

vbsec::Subject& subject = privileges->getSubject();

std::set<vbsec::Principal *> principals = subject.getPrincipals();

std::multimap<std::string, std::string> groupMap = privileges->getAttributes();

std::multimap<std::string, std::string>::iterator it_groups;

std::set<std::string> groups;

it_groups = groupMap.find("group");

while (it_groups != groupMap.end()) {

if (it_groups->first == "group") {

groups.insert(it_groups->second);

break;

}

++it_groups;

}

std::set<std::string> * roleEntities = _provider->getRoleEntries(s);

- To check the given role for existence in the internal table:
if (!roleEntities)

{

68 VisiBroker Secur i ty Guide

cout << "In CustomAuthorizationProvider::implies: Role: " << s << " not found in roles
table" << endl;

return false;

}

if(roleEntities->empty())

{

cout << "In CustomAuthorizationProvider::implies: Role: " << s << " not found in roles
table" << endl;

delete roleEntities;

return false;

}

- To check if one of the principals matched for role
if (principals.empty())

{

delete roleEntities;

return false;

}

std::set<vbsec::Principal *>::iterator i;

std::set<std::string>::iterator i_set_str, i_set_str2;

for (i = principals.begin(); i != principals.end(); i++) {

vbsec::UserPrincipal *up = dynamic_cast<vbsec::UserPrincipal*>(*i);

userName = up->getUserName();

cout << "In CustomAuthorizationProvider::implies: Checking for username match: " <<
userName << endl;

i_set_str = roleEntities->find(userName);

if (i_set_str != roleEntities->end()) {

 cout << "In CustomAuthorizationProvider::implies: Found role entry for username:" <<
userName << endl;

 delete roleEntities;

 return true;

}

}

- To check now if at least a user group can be found for the role
if (groups.empty())

{

delete roleEntities;

return false;

}

for (i_set_str = groups.begin(); i_set_str != groups.end(); i_set_str++) {

groupName = (*i_set_str);

cout << "In CustomAuthorizationProvider::implies: Checking for groupname match: " <<
groupName << endl;

i_set_str2 = roleEntities->find(groupName);

if (i_set_str2 != roleEntities->end()) {

 cout << "In CustomAuthorizationProvider::implies: Found role entry for groupname:"
<< groupName << endl;

 delete roleEntities;

 return true;

}

}

delete roleEntities;

return false; // all match failed

 6 : Creat ing Custom Plugins 69

}

#ifndef _CUSTOMPROVIDER_H_

#define _CUSTOMPROVIDER_H_

#include "vbauthz.h"

#include <map>

#include <set>

#include <hash_map>

#include <string>

#include <iostream>

// typedef pair<std::string, std::string> String_String_Pair;

// typedef pair<std::string, std::set> String_Set_Pair;

// USE_STD_NS is a define setup by VisiBroker to use the std namespace

USE_STD_NS

class CustomProviderImpl : public vbsec::AuthorizationServiceProvider

{

 class CustomPermissionCollectionImpl : public vbsec::PermissionCollection

{

 public:

 CustomPermissionCollectionImpl() {}

 void init(vbsec::Privileges* prv);

virtual bool implies (const vbsec::Permission& p) const;

virtual ~CustomPermissionCollectionImpl () {}

private:

vbsec::Privileges* _privileges;

 CustomProviderImpl* _provider;

};

public:

CustomProviderImpl() : _logLevel((int)0), _name(""), _logger((vbsec::SimpleLogger*)NULL)

 {}

virtual std::string getName() const

 {

 return _name;

 }

virtual void initialize (const std::string& name, vbsec::InitOptions& opts);

vbsec::PermissionCollection* getPermissions(const vbsec::Resource* res, const
vbsec::Privileges* prv);

std::string getRunAsAlias(const std::string& s);

void createInMemoryDB();

std::set<std::string>* getRoleEntries(std::string& role);

static CustomProviderImpl * custProvider;

private:

 CORBA::ULong _logLevel;

 ::vbsec::SimpleLogger* _logger;

std::map<std::string, std::string> _runAsMap;

 std::set<std::string> _callerRunAsRoles;

 std::string _name;

std::map<std::string, std::set<std::string> > _inMemoryDB; // contains the known roles

 std::set<std::string> _role1_ug, _role2_ug, _role3_ug; // contains the users and/or
groups for the roles in _inMemoryDB

};

70 VisiBroker Secur i ty Guide

REGISTER_CLASS(CustomProviderImpl)

CustomProviderImpl * CustomProviderImpl::custProvider;

#endif

You can secure your application using VisiBroker properties and JAAS configuration
file to secure your application. The example client and server uses username/
password authentication of the client on the server and also for server's self
authentication.

Look at the different properties files (server.properties, client.properties) and config
files (server.config and client.config) in the C:\Borland\VisiBroker\examples\vbroker\
security/corbaauthz folder.

The server configuration file is the JASS configuration file which defines the Hostlogin
modules.
myrealm {

 com.borland.security.provider.authn.HostLoginModule required debug=true;

};

To enable security, you must set up certain porperties. Following are the properties set
up in the server or client properties file:

Properties Description

vbroker.security.disable=false The default value is false. If set to true,
disables all security services.

vbroker.security.login=true IIf this property is set to true, during
initialization, this property tries to log on to
all the realms listed by property
vbroker.security.login.realms.

vbroker.security.login.realms=myrealm This gives a list of comma-separated
realms to login to. This is used when
login takes place, either through property
vbroker.security.login (set to true) or
API login.

vbroker.security.peerAuthenticationMode=
none

Sets the peer authentication Mode.

when set to NONE—Authentication is not
required. During handshake, no certificate
request will be sent to the peer.
Regardless of whether the peer has
certificates, a connection will be accepted.
There will be no transport identity for the
peer.

For other authentication mode values,
refer to the properties section
“vbroker.security.peerAuthenticationMode”

vbroker.security.domain.bank.defaultAcce
ssRule=grant

Specifies whether to grant or deny access
to the domain by default in the absence of
security roles for the provided domain. It
handles requests for methods not in
the rolemap file.

Acceptable values are grant or deny.

vbroker.security.authDomains=bank Specifies a comma-separated list of
available authorization domains. For
example:

vbroker.security.authDomains=domain1,domai
n2

 6 : Creat ing Custom Plugins 71

Trust Providers

You can also plugin the assertion trust mechanism. Assertion can happen in a multi-
hop scenario, or explicitly called through the assertion API. Server can have rules to
determine whether the peer is trusted to make the assertion or not. The default
implementation uses property setting to configure trusted peers on the server side.
During runtime, peers must pass authentication and authorization in order to be trusted
for making assertions. There can be only one Trust Provider for the entire security
service.

To plugin the assertion trust mechanism, you will need to set the following properties:
vbroker.security.trust.trustProvider=MyProvider
vbroker.security.trust.trustProvider.MyProvider.property1=xxx
vbroker.security.trust.trustProvider.MyProvider.property2=xxx

The properties specified will be passed to the user plugin following the same
mechanism as above.

vbroker.secuirty.logLevel=LEVEL_DEBUG Use this property to control the degree of
logging.

vbroker.security.login.realms=GSSUP#myre
alm

This gives a list of comma-separated
realms to login to. This is used when login
takes place, either through property
vbroker.security.login (set to true) or API
login.

72 VisiBroker Secur i ty Guide

 7 : Making Secure Connect ions (Java) 73

Making Secure Connections (Java)
This section describes how to make secure connections for Java applications using
VisiSecure. A brief introduction to the Java Secure Socket Extension (JSSE) is
followed by the step-by-step details to securing an application.

JAAS and JSSE
VisiSecure uses the Java Authentication and Authorization Service (JAAS) to
authenticate clients and servers to one another in J2EE applications. It provides a
framework and standard interface for authentication users and assigning privileges.
The VisiBroker Server uses the Java Secure Socket Extension (JSSE) to provide
mechanisms for supporting SSL.

For information on the terms JAAS uses for its services, see “Basics of JAAS
concepts”.

JSSE Basic Concepts

The VisiBroker ORB uses Internet Inter-ORB Protocol (IIOP) as its communication
protocol. The Java Secure Socket Extension (JSSE) enables secure internet
communications. It is a Java implementation of SSL and TLS protocols which include
the functionality of data encryption, server and client authentication, and message
integrity. JSSE also serves as a building block that can be simply and directly
implemented in Java applications.

JSSE provides not only an API but also an implementation of that API.
Implementations include socket classes, trust managers, key managers, SSLContexts,
and a socket factory framework, in addition to public key certificate APIs.

JSSE also provides support for the underlying handshake mechanisms that are a part
of SSL implementations. This includes cipher suite negotiation, client/server
authentication, server session-management, and licensed code from RSA Data
Security, Inc. JSSE uses Java KeyStores as a repository of Certificates and Private
Keys. Further information on KeyStores can be obtained from Sun Microsystems’ JDK
documentation. You can use JSSE properties for specifying trusted KeyStores and
identity KeyStores.

74 VisiBroker Secur i ty Guide

Steps to secure cl ients and servers

Steps to secure clients and servers
Listed below are the common steps required for developing a secure client or secure
server. For CORBA users the properties are all stored in files that are located through
config files. Where ever appropriate the usage models for clients and servers are
separately discussed. All properties can be set in the VisiBroker Management Console
by right-clicking the node of interest in the Navigation Pane and selecting “Edit
Properties.”

Note

These steps are similar for both Java and C++ applications.

Step One: Providing an identity

For authentication, you need username/password or certificates. Username/password
and certificates can be collected from user through JAAS callback handlers. These can
also be collected through LoginModules or through APIs.

For more information on server side and client side authentication, see “Authenticating
clients with usernames and passwords”

For clients using usernames and passwords, there can be constraints about what the
client knows about the server's realms.

For servers using username and password identities, authentication is performed
locally since the realms are always known. There can be constraints on certificate
identities as well, depending on whether they are stored in a KeyStore or whether they
are specified through APIs. The KeyStore in VisiSecure for C++ refers to a directory
structure similar to a trustpointRepository, which contains certificate chain.

Keeping these constraints in mind, the VisiSecure supports the following usage
models: GSSUP based authentication and certificate based authentication.

You can use any of these to provide an identity to the server or client.

– “Username/password authentication, using JAAS modules, for known realms”

– “Username/password authentication, using APIs”

– “Certificate-based authentication, using KeyStores through property settings”

– “Certificate-based authentication, using KeyStores through APIs”

– “Certificate-based authentication, using APIs”

– “pkcs12-based authentication, using KeyStores”

– “pkcs12-based authentication, using APIs”

Username/password authentication, using JAAS modules, for known
realms
If the realm to which the client wishes to authenticate is known, the client-side JAAS
configuration would take the following form:

vbroker.security.login=true
vbroker.security.login.realms=<known-realm>

Username/password authentication, using APIs
The following code sample demonstrates the use of the login APIs. This case uses a
wallet. For a full description of the four login modes supported, go to the VisiSecure for
Java API and SPI sections.

public static void main(String[] args) {
 //initialize the ORB
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 com.borland.security.Context ctx = (com.borland.security.Context)

 7 : Making Secure Connect ions (Java) 75

Steps to secure c l ients and servers

 orb.resolve_initial_references("VBSecurityContext");
 if(ctx != null) {
 com.borland.securty.IdentityWallet wallet =
 new com.borland.security.IdentityWallet(<username>,
 <password>.toCharArray(), <realm>);
 ctx.login(wallet);
 }
}

Certificate-based authentication, using KeyStores through property
settings
By setting the property vbroker.security.login.realms=Certificate#ALL, the client will be
prompted for keystore location and access information. For valid values, see
“Certificate mechanism”.

Certificate-based authentication, using KeyStores through APIs
You can use the same APIs discussed in ““Username/password authentication, using
APIs”” to log in using certificates through KeyStores. The realm name in the
IdentityWallet should be CERTIFICATE#ALL. The username corresponds to an alias name in
the default KeyStore that refers to a Key entry, and the password refers to the Private
Key password (also the KeyStore password) corresponding to the same Key entry.

Certificate-based authentication, using APIs
If you do not want to use KeyStores directly, you can specify certificates and private
keys using the CertificateWalletAPI. This class also supports the pkcs12 file format.

X509Certificate[] certChain = ...list-of-X509-certificates...
PrivateKey privKey = private-key
com.borland.security.CertificateWallet wallet =
 new com.borland.security.CertificateWallet(alias,
 certChain, privKey, "password".toCharArray());

The first argument in the new Certificate wallet is an alias to the entry in the KeyStore,
if any. If you are not using keystores, set this argument to null.

pkcs12-based authentication, using KeyStores
You can use the same APIs discussed in “Username/password authentication, using
APIs” to login using pkcs12 KeyStores. The realm name in the IdentityWallet should be
CERTIFICATE#ALL, the username corresponds to an alias name in the default KeyStore that
refers to a Key entry, and the password refers to the password needed to unlock the
pkcs12 file. The property javax.net.ssl.KeyStore specifies the location of the pkcs12 file.

pkcs12-based authentication, using APIs
See “Certificate-based authentication, using APIs”.

Step Two: Setting properties and Quality of Protection (QoP)

There are several properties that can be used to ensure connection with QoP. The
VisiBroker ORB security properties for Java can be used to fine-tune connection
quality. For example, you can set the cipherList property for SSL connections to set the
cryptography strength.

QoP policies can be set using the ServerQoPConfig and the ClientQoPConfig APIs for
servers and clients, respectively. These APIs allow you set target trust (whether or not
targets must authenticate), the transport policy (whether or not to use SSL or another
secure transport mechanism specified separately), and, for servers, an
AccessPolicyManager that can access the RoleDB to set up access policies for POA
objects. For QoP API information, see the VisiSecure for Java API and SPI section.

76 VisiBroker Secur i ty Guide

Secur i ty conf igurat ion whi le sett ing up a server engine

Step Three: Setting up Trust

Use the API setTrustManager for the proper security context to provide an X509TrustManager
interface implementation. If you have certificates that need to be trusted, place them in
a KeyStore and use javax.net.ssl.trustStore property to set it. A default X509TrustManager
provided by the security service will be used if one is not provided.

Other trust policies are set in the QoP configurations. See “Step Two: Setting
properties and Quality of Protection (QoP)”.

Step Four: Setting up the Pseudo-Random Number Generator

Setting up the PRNG is required if you intend to use SSL communication.

– Construct a SecureRandom object and seed it.

– Set this object as your PRNG by using the com.borland.security.Context interface,
setSecureRandom method.

For detailed information on the com.borland.security.Context interface, go to the
VisiSecure for Java API and SPI book.

Step Five: If necessary, set up identity assertion

When a client invokes a method in a mid-tier server which, in the context of this
request, invokes an end-tier server, then the identity of the client is internally asserted
by the mid-tier server by default. Therefore, if getCallerPrincipal is called on the end-tier
server, it will return the Client's principal.

Here the client's identity is asserted by the mid-tier server. The identity can be a
username or a certificate. The client's private credentials such as private keys or
passwords are not propagated on assertion. This implies that such an identity cannot
be authenticated at the end-tier.

If the user would like to override the default identity assertion, there are APIs available
to assert a given Principal. These APIs can be called only on mid-tier servers in the
context of an invocation and with special permissions. For more information, see the
VisiSecure for Java API and SPI section.

Security configuration while setting up a server engine
In order to use the secure transport while defining a custom server engine, the
following properties need to be set for VisiSecure Java.

vbroker.se.<SE_NAME>.scms=<SSL_SCM_NAME>
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.manager.type=Socket
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.manager.ConnectionMax=0
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.manager.ConnectionMaxIdle=0
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.listener.type=SSL
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.listener.port=0
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.dispatcher.type=ThreadPool
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.dispatcher.threadMin=0
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.dispatcher.threadMax=0
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.dispatcher.threadMaxIdle=0

where:

<SE_NAME> is the name of the custom-defined server engine.

<SSL_SCM_NAME> is the name to be given to the SSL server connection manager (scm).

It is important to note that 'manager.type' and 'listener.type' must be initialized to the
values indicated above whereas the rest of the properties can be set to any of the
allowable values. For more information, see Chapter 8 in Visibroker Developer's Guide.
Here the properties are initialized to their defaults for illustration purpose.

 7 : Making Secure Connect ions (Java) 77

Examining SSL related informat ion

Examining SSL related information
VisiSecure Server provides APIs to inspect and set SSL-related information. The
SecureContext API is used to specify a Trust Manager, PRNG, inspect the SSL
ciphersuites, and enable select ciphers.

Clients

To examine peer certificates, use the getPeerSession() to return an SSLSession object
associated with the target. You can then use the standard JSSE APIs to obtain the
information thereafter.

Servers

To examine peer certificates on the server side, you must set up the SSL connection
with com.borland.security.Context and use the APIs with com.borland.security.Current to
examine the SSLSession object associated with the thread.

SSL Example
The Bank SSL example included in the example folder of the visibroker directory
contains a simple Bank interface to open a bank account and to query the balance. It
illustrates basic communication using the ORB and SSL with VisiBroker for C++ and
Java. In addition, this example demonstrates a modular approach to security by
moving the code required to setup an SSL connection into initializers and properties.

From this example, you will learn how to:

– Request for secure transport in an application

– Install certificate identities in a server or a client

– Install a certificate in the trustpoint repository using the API or the property
vbroker.security.trustpointsRepository

– Check the cipher suite and the identity of a peer

– Interoperate between C++ and Java

To run the example, ensure VisiBroker Smart Agent (osagent executable) is running on
your network.

– Build the example in the directory by tying

make -f Makefile_java or

nmake /f Makefile_java on Windows

This will run the Bank.idl through the idl2java compiler. It will also build
SecureServer.class, SecureClient.class and other class files.

This is the new and recommended way to add certificate-chain identity and to construct
a CertificateWallet and log in with security context. The old method of inserting
certificate chain, by resolving initial reference of "SecurityCurrent" on the orb, and
using the API setPKprincipal using(byte [][]derCertChain, byte[] privateKey, String
passPhrase)), still exists for backward compatibility.

For making the server run in the background, enter the following command:
prompt> vbj -DORBpropStorage=java_server.properties SecureServer

(start vbj -DORBpropStorage=java_server.properties SecureServer on Windows)

For making the C++ server run in the background, enter the following command:
prompt> SecureServer -DORBpropStorage=cpp_server.properties \ -
Dvbroker.orb.dynamicLibs="path to the dynamic library"/Init.so & (start SecureServer
...args... on Windows)

For connecting to java SecureClient,
prompt>vbj -DORBpropStorage=java_client.properties SecureClient

For connecting to C++ SecureClient
prompt>SecureClient -DORBpropStorage=cpp_client.properties

78 VisiBroker Secur i ty Guide

SSL Example

For setting up identity for the server, enter the commands below in the SecureServer
 byte [][] certChain = {
 user_cert_1.getBytes (),
 user_cert_2.getBytes (),
 user_cert_3.getBytes (),
 user_cert_4.getBytes (),
 ca_cert.getBytes ()
 };

To construct a CertificateWallet, enter the following commands in the SecureServer
com.borland.security.provider.CertificateWallet wallet =
 new com.borland.security.provider.CertificateWallet (null, certChain,
 encryptedPrivateKey.getBytes (), "Delt@$$$".toCharArray());

 8 : Making Secure Connect ions (C++) 79

Making Secure Connections (C++)
This section describes how to make secure connections for C++ applications using
VisiSecure.

Steps to secure clients and servers
Listed below are the common steps required for developing a secure client or secure
server. For CORBA users the properties are all stored in files that are located through
config files. Where ever appropriate the usage models for clients and servers are
separately discussed. All properties can be set in the VisiBroker Management Console
by right-clicking the node of interest in the Navigation Pane and selecting “Edit
Properties.”

Note

These steps are similar for both Java and C++ applications.

Step One: Providing an identity

For authentication, you need username/password or certificates. Username/password
and certificates can be collected from the user using JAAS callback handlers. These
can also be collected through LoginModules or through APIs.

For more information on server side and client side authentication, see “Authenticating
clients with usernames and passwords”

For clients using usernames and passwords, there can be constraints about what the
client knows about the server's realms.

For servers using username and password identities, authentication is performed
locally since the realms are always known. There can be constraints on certificate
identities as well, depending on whether they are stored in a KeyStore or whether they
are specified through APIs. The KeyStore in VisiSecure for C++ refers to a directory
structure similar to a trustpointRepository, which contains certificate chain.

Keeping these constraints in mind, the VisiSecure supports the following usage
models: GSSUP based authentication and certificate based authentication.

You can use any of these to provide an identity to the server or client.

– “Username/password authentication using LoginModules for known realms”

80 VisiBroker Secur i ty Guide

Steps to secure cl ients and servers

– “Username/password authentication using APIs”

– “Certificate-based authentication using KeyStores through property settings”

– “Certificate-based authentication using KeyStores through APIs”

– “Certificate-based authentication using APIs”

– “pkcs12-based authentication using KeyStores”

– “pkcs12-based authentication using APIs”

Username/password authentication using LoginModules for known realms
If the realm to which the client wishes to authenticate is known, the client-side
configuration would take the following form:

vbroker.security.login=true
vbroker.security.login.realms=<known-realm>

Username/password authentication using APIs
The following code sample demonstrates the use of the login APIs. This case uses a
wallet. For a full description of the four login modes supported, see “VisiSecure for C++
APIs” and “Security SPI for C++.”

int main(int argc, char* const* argv) {
 // initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->resolve_initial_references("VBSecurityContext");
 Context* c = dynamic_cast<Context*> (obj.in());
 // Obtain a walletFactory
 CORBA::Object_var o = orb->resolve_initial_references("VBWalletFactory");
 vbsec::WalletFactory* wf = dynamic_cast<vbsec::WalletFactory*>(o.in());
 vbsec::Wallet* wallet = wf->createIdentityWallet(<username>, <password>, <realm>);
 c->login(*wallet);
}

Certificate-based authentication using KeyStores through property settings
By setting the property vbroker.security.login.realms=Certificate#ALL, the client will be
prompted for the keystore location and the access information. For valid values, see
“For Java:”.

Certificate-based authentication using KeyStores through APIs
You can use the same APIs discussed in ““Username/password authentication using
APIs”” to log in using certificates through KeyStores. The realm name in the
IdentityWallet should be CERTIFICATE#ALL. The username corresponds to an alias name in
the default KeyStore that refers to a Key entry, and the password refers to the Private
Key password (also the KeyStore password) corresponding to the same Key entry.

Certificate-based authentication using APIs
If you do not want to use KeyStores directly, you can import certificates and private
keys using the CertificateFactoryAPI. This class also supports the pkcs12 file format.

CORBA::Object_var o = orb->resolve_initial_references("VBSecureSocketProvider");
vbsec::SecureSocketProvider* ssp = dynamic_cast<vbsec::SecureSocketProvider*>(o.in());

const vbsec::CertificateFactory& cf = ssp->getCertificateFactory ();

The first argument in the new Certificate wallet is an alias to the entry in the KeyStore,
if any. If you are not using keystores, set this argument to null.

pkcs12-based authentication using KeyStores
You can use the same APIs discussed in “Username/password authentication using
APIs” to log in using pkcs12 KeyStores. The realm name in the IdentityWallet should
be CERTIFICATE#ALL, the username corresponds to an alias name in the default KeyStore

 8 : Making Secure Connect ions (C++) 81

Securi ty conf igurat ion whi le sett ing up a server engine

that refers to a Key entry, and the password refers to the password needed to unlock the
pkcs12 file. The property javax.net.ssl.KeyStore specifies the location of the pkcs12 file.

pkcs12-based authentication using APIs
See “Certificate-based authentication using APIs”.

Step Two: Setting properties and Quality of Protection (QoP)

There are several properties that can be used to ensure connection QoP. The
VisiBroker ORB security properties for C++ can be used to fine-tune connection
quality. For example, you can set the cipherList property for SSL connections to set up
the cryptography strength.

QoP policies can be set using the ServerQoPConfig and the ClientQoPConfig APIs for
servers and clients, respectively. These APIs allow you set target trust (whether or not
targets must authenticate), the transport policy (whether or not to use SSL or another
secure transport mechanism specified separately), and, for servers, an
AccessPolicyManager that can access the RoleDB to set access policies for POA objects.

Step Three: Setting up Trust

Setting up of trust can be done through property
vbroker.security.trustpointRepository=Directory:<path to directory>, where the directory
contains the trusted certificates.

Other trust policies are set up in the QoP configurations. See “Step Two: Setting
properties and Quality of Protection (QoP)”.

Step Four: If necessary, set up identity assertion

When a client invokes a method in a mid-tier server which, in the context of this
request, invokes an end-tier server, then the identity of the client is internally asserted
by the mid-tier server by default. Therefore, if getCallerSubject is called on the end-tier
server, it will return the Client's principal. Here the client's identity is asserted by the
mid-tier server. The identity can be a username or certificate. The client's private
credentials such as private keys ore passwords are not propagated on assertion. This
implies that such an identity cannot be authenticated at the end-tier.

If the user would like to override the default identity assertion, there are APIs available
to assert a given Principal. These APIs can be called only on mid-tier servers in the
context of an invocation and with special permissions.

Security configuration while setting up a server engine
In order to be able to use secure transport while defining a custom server engine, the
following properties needs to be set for VisiSecure for C++.

vbroker.se.<SE_NAME>.scms=<IIOP_SCM_NAME>,<SSL_SCM_NAME>
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.manager.type=Socket
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.listener.type=SSL
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.dispatcher.type=ThreadPool

Where:

<SE_NAME> is the name of the custom-defined server engine.

<SSL_SCM_NAME> is the name to be given to the SSL server connection manager (scm).

<IIOP_SCM_NAME> is the name of an IIOP scm defined within the same sever engine.

It is important to note that the 'manager.type' and the 'listener.type' must be initialized
to the values indicated above whereas the 'dispatcher.type' can be any of the allowable
types (For more information, see Chapter 8 in the Visibroker Developer's Guide. The
default value is ThreadPool.

82 VisiBroker Secur i ty Guide

Examining SSL related informat ion

Another important point to be noted here is that a valid IIOP scm (<IIOP_SCM_NAME> in this
case) must be defined before the SSL scm in the SCM list of custom server engine. All
the properties of the IIOP scm can be set to any of the allowable values with the
following two exceptions.
vbroker.se.<SE_NAME>.scm.<IIOP_SCM_NAME>.manager.type=Socket

vbroker.se.<SE_NAME>.scm.<IIOP_SCM_NAME>.listener.type=IIOP

For more information, see Chapter 8 in the VisiBroker Developer's Guide

Examining SSL related information
Borland VisiBroker provides APIs to inspect and set SSL-related information. The
SecureContext API is used to inspect the SSL ciphersuites and enable select ciphers.

Clients

To examine peer certificates, use getPeerSession() to return an SSLSession object
associated with the target. You can then use the standard JSSE APIs to obtain the
information thereafter.

Servers

To examine peer certificates on the server side, you set up the SSL connection with
com.borland.security.Context and use the APIs with com.borland.security.Current to
examine the SSLSession object associated with the thread.

SSL example
This section demonstrates how to make a minimal SSL configuration for the client and
server to communicate using SSL to enable them to perform mutual PKI authentication
on the simplest, non-security aware VisiBroker example.

If you are using the same executables from basic/bank_agent to secure the non-
security aware application, then no changes in the source codes are required.

Using properties to install certificates, private key and trustpoints

1 Copy only the executables of the Server (Server.exe on windows) and Client
(Client.exe on windows) to this directory.

2 Make sure that osagent is up and running as usual

3 Launch the server using the command below:
prompt> Server -DORBpropStorage=cpp_server.properties -
Dvbroker.orb.dynamicLibs=<VisiSecure shared library name>

4 Launch the client using the command below:
prompt> Client -DORBpropStorage=cpp_client.properties -
Dvbroker.orb.dynamicLibs=<VisiSecure shared library name>

5 Open the property files cpp_server.properties, cpp_client.properties and notice
how certificates and private keys are installed using wallet property set in that file.

6 Browse through the content of subdirectory identities and trustpoints and
understand how the directory wallet and trustpoints are structured.

Note: VisiSecure shared library name> depends on the platforms.
For example:
on win32, it is vbsec.dll,
on Solaris 64 bit, it is vbsec64.so,
on HPUX 64 bit std build, it is vbsec64_p.sl.
It is recommended that you check your ${VBROKER_DIR}/lib directory

 8 : Making Secure Connect ions (C++) 83

SSL example

Using initializers to install certificates, private key, trustpoints and CRL

This section is similar to previous section, except that rather than using properties,
shared libraries are used at runtime to install the certificates, keys, trustpoints and
CRL. The advantage over the use of properties is that the shared library may also
perform more security related initializations that are not possible to be done using
properties, while at the same time, shared libraries keep the original non-secure aware
application code intact. The shared libraries are transparent from the application point
of view.

Build this example if you have not done so. In the previous section, we did not build, we
just copied the executables. Building this example successfully, will create shared
libraries: ServerInit.<ext> and ClientInit.<ext>.

Where <ext> depends on your platform.
for Windows, it is dll,

for Linux and Solaris, it is so,

for IBM, it is a and

for HP-UX, it is sl

1 Build the example by executing the command
nmake cpp (for windows) or
make cpp (for unix).

2 Make sure osagent is up and running.

3 Launch the server using the command below:

prompt> Server -DORBpropStorage=cpp_server.properties -

Dvbroker.orb.dynamicLibs=ServerInit.<ext>

4 Launch the client using the command below:

prompt> Client -DORBpropStorage=cpp_server.properties -

Dvbroker.orb.dynamicLibs=ClientInit.<ext>

5 Open the shared library source code ServerInit.C and ClientInit.C to notice how
certificates, keys, trustpoints and CRL are installed on the ORB. The difference
between ServerInit.C and ClientInit.C is only the set of certificates, keys, trustpoints
and CRL that is installed. You can swap, for instance: ServerInit for client and
ClientInit for server.

6 Reading through the code, you may notice that CRL will be installed only when we
provide additional -Dvbroker.app.useCRL and therfore launching the server, for
example, becomes,
prompt> Server -DORBpropStorage=cpp_server.properties -Dvboker.app.useCRL=true -
Dvbroker.orb.dynamicLibs=ServerInit.<ext>

Note: CRL, for this example, is prepared in such a way that when installed, the
certificate that is directly issued by a trustpoint is revoked.

There is only one certificate directly issued by a trustpoint in this example. Therefore,
any usage of CRL in any server or client or both will result in the SSL authentication
failure and in turn, client will get NO_PERMISSION exception.

The failure can be because the client is not trusted by the server (if CRL is installed on
the server) or vice versa (if the CRL is installed on the client) or both.

Using APIs with Security aware applications: SecureServer and SecureClient

This section demonstrates how the applications that are written with VisiSecure in mind
take full advantage of control and power of VisiSecure features using API.

1 Build this example in this directory by executing the command:
nmake cpp (for windows) or
make cpp (for unix).

When build successful, there will be executables created
SecureServer.exe on windows and SecureClient.exe on windows.

2 Make sure the osagent is up and running.

84 VisiBroker Secur i ty Guide

SSL example

3 Launch the server using the command below:
prompt> SecureServer

4 Launch the client using the command below:
prompt> SecureClient

5 Launch either the server or client or both using -Dvbroker.app.useCRL=true, and notice
how the mutual SSL authentication fails and client gets NO_PERMISSION exception.
For example,
prompt> SecureClient -Dvbroker.app.useCRL=true

6 Read and learn from SecureServer.C, SecureClient.C
- how they perform the security initialization in their main() and after ORB_Init().
- how they impose peerAuthenticationMode=require_and_trust and alwaysSecure=true
through QoP

Using APIs with pkcs12Server

This section demonstrates how to use VisiSecure API for handling of a PKCS12
storage, a very widely acceptable storage format for certificates and private keys.

1 Build this example in this directory by executing the command:
nmake cpp (for windows) or
make cpp (for unix).

When build successfully, there will be executables created
pkcs12Server.exe on windows

1 Make sure the osagent is up and running

2 Launch the server using the command below:
prompt> pkcs12Server frans.pfx frans

3 Launch the client using the command below:
prompt> SecureClient

4 Launch the client using -Dvbroker.app.useCRL=true, and notice how the mutual SSL
authentication fails and client gets NO_PERMISSION exception.
prompt> SecureClient -Dvbroker.app.useCRL=true

5 Read and learn from pkcs12Server.C
how it installs certificates and a private key from a PKCS12 file.

 9 : Secur i ty Propert ies for Java 85

Security Properties for Java

Property Description Default

vbroker.security.logLevel This property is used to control the degree of logging. 0
means no logging and 7 means maximum logging (debug
messages).

0

vbroker.security.secureTransport This property controls whether the transport connection is
encrypted or not. If set to true, transport messages are
encrypted. If set to false they are in the clear.

true

vbroker.security.alwaysSecure This property together with the secureTransport property
controls the default QoP on the client-side. If both are set to
true, then the transport QoP is set to SECURE_ONLY; which
means the client will only accept the secure transport. If
either of them is set to false, then the client does not
mandate security at the transport layer.

false

vbroker.security.server.transport This property is used on the server side to define the server
transport QoP. Acceptable values are CLEAR_ONLY, SECURE_ONLY
or ALL. This allows the client that needs either CLEAR_ONLY or
SECURE_ONLY to be able to connect to a server. This property
will take effect only when the property secureTransport is true.

SECURE_ONLY

vbroker.security.disable If this property is set to true, it disables all security services. true

vbroker.security.transport.protocol This property is used to select a security transport protocol.
Possible values are SSL, SSLv2, SSLv3, TLS and TLSv1. For
information on these protocols, see the Sun Microsystems
documentation at: http://java.sun.com/products/jsse/doc/
guide/API_users_guide.html#SSC.

TLSv1

vbroker.security.requireAuthentication This server-side property is used to specify whether the client
is required to authenticate or not

false

vbroker.security.authentication.
callbackHandler

This property specifies the callback handler used for login
modules used for interacting with users for credentials. You
can specify one of the following or your own custom callback
handler:

com.borland.security.provider.authn.CmdLineCallbackHandler
com.borland.security.provider.authn.HostCallbackHandler

CmdLineCallbackHandler has password echo on, while
HostCallbackHandler has password echo off.

n/a

86 VisiBroker Secur i ty Guide

Secur i ty Propert ies for Java

vbroker.security.cipherList This property is used to set a list of comma-separated
ciphers to be enabled by default on a startup. If not set, a
default list of cipher suites will be enabled. These should be
valid SSL Ciphers.

n/a

vbroker.security.authentication.config This property specifies the path to the configuration file used
for authentication.

null

vbroker.security.authentication.retryCount This property specifies the number of retries count if remote
authentication failed.

3

vbroker.security.authentication.
clearCredentialsOnFailure

By default, if the authorization realm finds the authenticator
to be incorrect after attaining the maximum number of retries,
the ORB retains the authenticator. If you want the ORB to
clear the authenticator (the credential) after the maximum
number of retries, set this property to true.

false

vbroker.security.login If set to true, at initialization-time, this property tries to log in
to all the realms listed by property
vbroker.security.login.realms.

false

vbroker.security.login.realms This property gives a list of comma-separated realms to login
to. This is used when the login takes place, either through
property vbroker.security.login (set to true) or API login
using login().

n/a

vbroker.security.vault This property is used to specify the path to the vault file. This
property will take effect regardless of whether
vbroker.security.login is set to true or false.

n/a

vbroker.security.identity.
reauthenticateOnFailure

When set to true, the security service will attempt
reacquiring authentication information using the
CallbackHandler. This property require the callback handler to
be set either using the appropriate property or at runtime by
calling the appropriate method.

false

vbroker.security.identity.enableReactiveLogin When set to true, the security service behaves as follows:

If the security service cannot find an identity for any of the
targets supported by a server it is attempting to communicate
with, it will then attempt to acquire credentials for one of the
targets in the target object's IOR. If a corresponding
authentication realm is available for this target (that the user
chooses to provide credentials for), then authentication is
also attempted locally.

The Reactive login requires a callback handler to be set
either using the appropriate property or at runtime by calling
the appropriate method.

true

vbroker.security.authDomains This property specifies a comma-separated list of available
authorization domains. For example:

vbroker.security.authDomains=<dom1>,<doma2>…

null

vbroker.security.domain.<domain_name>.
rolemap_path

This property specifies the location of the RoleDB file that
describes the roles used for authorization. This is scoped
within the domain <domain_name> specified in
vbroker.security.authDomains.

n/a

vbroker.security.domain.<domain_name>.
rolemap_enableRefresh

When set to true, this property enables dynamic loading of
the RoleDB file specified in
vbroker.security.domain.<domain_name>.rolemap_path property.
The interval of dynamic loading is specified by property
vbroker.security.domain.<domain_name>.rolemap_refreshTimeInSe
conds.

false

vbroker.security.domain.<domain_name>.
rolemap_refreshTimeInSeconds

This property specifies the rolemap refresh time in seconds. 300

vbroker.security.domain.<domain name>.runas.
<run_as_role_name>

This property specifies the name of the run-as role. The
value can be either use-caller-identity to have the caller
principal be in the run-as role, or specify an alias for a run-as
principal for the run-as role name.

n/a

Property Description Default

 9: Secur i ty Propert ies for Java 87

Secur i ty Propert ies for Java

vbroker.security.peerAuthenticationMode This property sets the peer authentication Mode. The
possible values are:

REQUIRE
REQUIRE_AND_TRUST
REQUEST
REQUEST_AND_TRUST
NONE

Note that the REQUEST and REQUEST_AND_TRUST modes cannot
receive peer certificate chains due to JSSE restrictions.

NONE

vbroker.security.trustpointsRepository This propery specifies a path to the directory containing
trusted certificates and CRLs or to a trusted Keystore whose
values are implementations of TrustedCertificateEntry.
Default values are either a directory, given in the format
Directory:<path_to_certs> or a Keystore, given in the format
Keystore:<path_to_keystore>.

n/a

vbroker.security.defaultJSSETrust If this property is set to true, the JSSE default trust files like
cacerts and jssecacerts, if present in JRE, it will be used to
load trusted certificates.

false

vbroker.security.assertions.trust.<n> This property is used to specify a list of trusted roles
(specified with the format <role>@<authorization_domain>.)

<n> is a uniquely identified for each trust assertion rule as a
list of digits.

For example, setting
vbroker.security.assertions.trust.1=ServerAdmin@default
means this process trusts any assertions made by the
ServerAdmin role in the default authorization domain.

n/a

vbroker.security.assertions.trust.all Setting this property to true will trust all assertions made by
peers.

false

vbroker.security.server.requireUPIdentity Set this property to true, if the server requires the client to
send a Username/Password for authentication (regardless of
certificate-based authentication). This is a server-sided
property.

n/a

vbroker.security.cipherList Using this property, you can set a list of comma-separated
ciphers to be enabled by default on startup. If not set, a
default list of ciphersuites will be enabled. These should be
valid SSL Ciphers.

n/a

vbroker.security.controlAdminAccess Set this property to true for enabling Server Manager
operations on a Secure Server.

false

vbroker.security.serverManager.authDomain This property points to a security domain listed in
vbroker.security.authDomains. The specified domain is used
for the Server Manager's role-based access control checks.
A rolemap must be specified for the domain.

n/a

vbroker.security.serverManager.role.all This property specifies the role name required for accessing
all Server Manager operations.

n/a

vbroker.security.serverManager.role.
<method_name>

This property specifies the role name required for accessing
the specified method of the Server Manager.

n/a

vbroker.security.domain.<domain_name>.
defaultAccessRule

This property specifies whether to grant or deny access to the
domain by default in the absence of security roles for the
provided domain. Acceptable values are grant or deny.

grant

vbroker.se.iiop_tp.scm.ssl.listener.
trustInClient

This is a server-sided property. Set this property to true to
have the server require certificates from the client. These
certificates must also be trusted by the server by setting the
appropriate server-side trust properties.

For more information, see the
vbroker.security.trustpointsRepository property and the
vbroker.security.defaultJSSETrust property.

false

vbroker.security.wallet.type A wallet is a set of directories containing encrypted private
keys and certificate chains for each identity. Use this
property to point to the directory containing the directories for
all identities, using the format: Directory:<path_to_identities>

n/a

Property Description Default

88 VisiBroker Secur i ty Guide

vbroker.security.wallet.identity This property is used to point to a directory within the path
defined in vbroker.security.wallet.type that contains keys
and/or certificate information for a specific identity. Note that
the value of this property must consist of lower-case letters
only.

n/a

vbroker.security.wallet.password This property specifies the password used to decrypt the
private key or the password associated with the login.

n/a

vbroker.security.TSS.authenticationTimeToLive This property sets the time for reauthentication. 600 sec

vbroker.security.TSS.stateful This coresponds to the IOR component
CompoundSecMechList field 'stateful' (see OMG specs).

This signifies whether or not the server supports 'stateful'
SAS session and therefore the client can make decisions
according to the standard behaviour as defined by the OMG
specifications.

true

vbroker.security.trustProvider This property is a part of the trust provider plugability
mechanism:

vbroker.security.trust.trustProvider=xyz <==
where xyz can be any string.

The FQCN of the trustprovider class implementation:
vbroker.security.trustProvider.xyz.provider=<FQCN of the
trustprovider class impl>

You can set properties specific to the trustprovider xyz:

vbroker.security.trustProvider.xyz.property1=value1 <==

vbroker.security.trustProvider.xyz.property2=value2 <==

set any
string

vbroker.security.supportIdentityAssertion This property corresponds to the IdentityAssertion flag in the
IOR sub-component SASContextSec (See the OMG
specifications)

The default value is true. When set to true, it will set the
coresponding bit in the component. When set to false, it will
reset it.

This bit signifies whether or not the server supports identity
assertion and therfore, the client can react according to the
pre-defined behaviour associated with this bit. (See OMG
specifications).

true

vbroker.security.rolemap_path This property specifies the location of the RoleDB file that
describes the roles used for the authorization. This is scoped
within the domain <domain_name> specified in:
vbroker.security.authDomains.

n/a

vbroker.security.authentication.callbackHandl
er=com.borland.security.provider.authn.Dialog
CallbackHandler

This property when set to
com.borland.security.provider.authn.DialogCallbackHandler

enables to pop out a GUI Login.

com.borland.
security.pro
vider.authn.
DialogCallba
ckHandler

Property Description Default

 10: Secur i ty Propert ies for C++ 89

Security Properties for C++

Property Description Default

vbroker.security.logLevel This property is used to control the degree of logging.
Acceptable values are: LEVEL_WARN, LEVEL_NOTICE, LEVEL_INFO,
and LEVEL_DEBUG strings.

LEVEL_WARN

vbroker.security.logFile This property is used to redirect the log output to a file. The
default log output is to std::cerr.

null

vbroker.security.secureTransport This property determines whether the secure transport is
supported or not. If set to false, transport uses CLEAR_ONLY.
This property also determines if the client side of the ORB is
always connected to the server using SSl. In cases, when
server does not support SSL, it will not connect.

true

vbroker.security.alwaysSecure This is a client-side only property. It determines whether to
use secure transport only or not.

Note: To use secure transport only, the secureTransport
property must also be set to true.

true

vbroker.security.server.transport This is a server-side only property. It defines whether the
server transport is: CLEAR_ONLY, SECURE_ONLY or ALL. This
property will not take effect when the secureTransport property
is set to false.

SECURE_ONLY

vbroker.security.disable If this property is set to true, it disables all security services. false

vbroker.security.
requireAuthentication

A server-side only property. It is used to specify whether the
client is required to authenticate.

true

vbroker.security.authentication.
callbackHandler

Thid property specifies the callback handler for login
modules to use for interacting with the user for credentials.
You can specify one of the following or your own custom
callback handler. For more information, see “VisiSecure for
C++ APIs.”

com.borland.security.provider.authn.CmdLineCallbackHandler
com.borland.security.provider.authn.HostCallbackHandler

CmdLineCallbackHandler has password echo on, while
HostCallbackHandler has password echo off.

HostCallbackHandler

vbroker.security.authentication.
config

This property specifies the path to the configuration file used
for authentication.

null

vbroker.security.authentication.
retryCount

This property specifies the number of retries if the remote
authentication failed.

3

90 VisiBroker Secur i ty Guide

Secur i ty Propert ies for C++

vbroker.security.login If set to true at initialization-time, this property tries to login to
all the realms listed by property:
vbroker.security.login.realms.

true

vbroker.security.login.realms This gives a list of comma-separated realms to login to. This
is used when login takes place, either through property
vbroker.security.login (set to true) or API login.

n/a

vbroker.security.vault This property is used to specify the path to the vault file. This
property will take effect regardless of whether
vbroker.security.login is set to true or false.

n/a

vbroker.security.identity.
reactiveLogin

When set to true, the security service behaves as follows. If
the security service cannot find an identity for any of the
targets supported by a server it is attempting to communicate
with, it then attempts to acquire credentials for one of the
targets in the target object's IOR. If a corresponding
authentication realm is available for this target (that the user
chooses to provide credentials for), then authentication is
also attempted locally.

Reactive login requires a callback handler to be set either
using the appropriate property or at runtime by calling the
appropriate method. The default handler is
HostCallbackHandler.

true

vbroker.security.authDomains This property specifies a comma-separated list of available
authorization domains. For example:

vbroker.security.authDomains=domain1,domain2

n/a

vbroker.security.domain.<domain-name>.
rolemap_path

This property specifies the location of the RoleDB file that
describes the roles used for authorization. This is scoped
within the domain <domain_name> specified in:
vbroker.security.authDomains.

n/a

vbroker.security.domain.<domain_name>.
rolemap_enableRefresh

When set to true, this property enables dynamic loading of
the RoleDB file specified in
vbroker.security.domain.<domain_name>.rolemap_path property.
The interval of dynamic loading is specified by the property
vbroker.security.domain.<domain_name>.rolemap_refreshTimeInSe
conds.

false

vbroker.security.domain.<domain_name>.
rolemap_refreshTimeInSeconds

This property specifies the rolemap refresh time in seconds. 300

vbroker.security.domain.<domain_name>.
defaultAccessRule

When clients are just about to access CORBA resources,
access control decides whether to allow or disallow.
Decisions are made based on what roles are required to
access the resources and compared against the fact whether
the client exists atleast in one of the roles.

Unfortunately, there are situations, in which system fails to
know the roles required to access some resource, the value
of the above property [grant/deny] will determine the decision
being made in this kind of situation.

grant/deny

vbroker.security.cert.basicConstraintC
ritical

As per the new X509 V3 standard, non end-user certificates
in a certificate chain must have extensions that is called
“basic constraint”. According to the standard, when present,
this extension must be marked as “critical” enforcing the
recipient to “must understand” and process accordingly. As
the later enforcement is too strict in respect to the earlier
implementation that is aware only of X509 V1.

True/false.
The default is
false.

vbroker.security.config.root This is an absolute path of the directory, in respect to which
all relative file system references are being made for various
VisiSecure config files.

vbroker.security.server.requireUPIdent
ity

The server side on this ORB will require incoming requests to
carry valid CSIV2 service context based identity.

vbroker.security.trust

vbroker.security.identityAssertion=[tr
ue/false]

The server side of this ORB is enabled to propogate the
IdentityTokem sent as part of CSIV2 service context to the
next tier (if any)

Property Description Default

 10: Secur i ty Propert ies for C++ 91

Secur i ty Propert ies for C++

vbroker.security.
peerAuthenticationMode

This property sets the peer authentication Mode. Possible
values are:

REQUIRE—Peer certificates are required to establish a
connection. If the peer does not present its certificates, the
connection will be refused. Peer certificates will also be
authenticated, if not valid, the connection will be refused. If
required, transport identity can be established using these
certificates. In this mode, peer certificates are not required to
be trusted.

REQUIRE_AND_TRUST—Same as REQUIRE mode, except that
the peer certificates need to be trusted, otherwise the
connection will be refused.

REQUEST—Peer certificates will be requested. The peer is not
required to have certificates; no transport identity will be
established when peer does not have certificates. However,
if a peer does present certificates, the certificates will be
authenticated; if not valid, the connection will be refused. If
required, transport identity can be established using these
certificates. In this mode, peer certificates are not required to
be trusted.

REQUEST_AND_TRUST—Same as REQUEST mode except that the
peer certificates need to be trusted, otherwise the connection
will be refused.

NONE—Authentication is not required. During handshake, no
certificate request will be sent to the peer. Regardless of
whether the peer has certificates, a connection will be
accepted. There will be no transport identity for the peer.

REQUIRE_AND_TRUST

vbroker.security.trustpointsRepository Specifies a path to the directory containing trusted
certificates. These are given in the form
Directory:<certs_dir>. For example:

vbroker.security.trustpointsRepository=Directory:c:\data\
identities\Delta

n/a

vbroker.security.assertions.trust.<n> This property is used to specify a list of trusted roles.
(specified within the format <role>@<authorization_domain>).
<n> is uniquely identified for each trust assertion rule as a list
of digits.

For example, setting
vbroker.security.assertions.trust.1=ServerAdmin@default
means this process trusts any assertion made by the
ServerAdmin role in the default authorization domain.

n/a

vbroker.security.assertions.trust.all Setting this property to true will trust all the assertion made
by peers.

false

vbroker.security.server.
requireUPIdentity

A server-side only property. If the server requires the client to
send a username/password for authentication (regardless of
certificate-based authentication), set it to true. If
vbroker.security.login.realms is set, then this property is
automatically set to true. However, you can override it by
explicitly setting it in the property file.

n/a

vbroker.security.cipherList This property can be set to a list of comma-separated ciphers
to be enabled by default on startup. If not set, a default list of
cipher suites will be enabled. These should be valid SSL
Ciphers.

n/a

vbroker.security.wallet.type A wallet is a set of directories containing encrypted private
keys and certificate chains for each identity. Use this
property to point to the directory containing the directories for
all identities, using the format: Directory:<path_to_identities>

n/a

vbroker.security.wallet.identity This property points to a directory within the path defined in
vbroker.security.wallet.type that contains keys and/or
certificate information for a specific identity.

n/a

vbroker.security.wallet.password This property specifies the password used to decrypt the
private key or the password associated with the login.

n/a

Property Description Default

92 VisiBroker Secur i ty Guide

 : Vis iSecure for C++ APIs 93

VisiSecure for C++ APIs
This section describes APIs that are defined in the VisiSecure for C++. It is separated
into subsections including:

– General APIs

– SSL and Certificate APIs

– QoP APIs

– Authorization APIs

All classes are under the namespace vbsec unless otherwise specified.

General API
The general VisiSecure API describes the Current and Context APIs. It provides the API
information for Principals, Credentials, and Subjects. In addition, the Wallet API is
discussed.

class vbsec::Current

Current represents the view to the thread specific security context. Some calls are
relevant only in an request execution context. This object can be obtained through the
following code:

CORBA::Object_var obj = orb-
>resolve_initial_references("VBSecurityCurrent");
Current* c = dynamic_cast(obj.in());

Include File
The vbsec.h file should be included when you use this class.

94 VisiBroker Secur i ty Guide

General API

Methods

void asserting (const vbsec::Subject* caller)

Assert a subject as caller identity.

void clearAssertion ()

Clear an assertion made by any previous API call of asserting. The caller before the
assertion is made will be restored as the caller for next invocation. This API shall be
used in conjunction with asserting. Mismatching calls of these two methods may cause
undesired caller identities or unexpected exceptions.

const vbsec::Subject* getPeerSubject ()

Accesses the peer subject.

Returns

The pointer to a Subject object representing the peer.

const vbsec::Subject* getCallerSubject ()

Accesses the caller subject.

Returns

The pointer to a Subject object representing the caller.

const vbsec::SSLSession* getPeerSession (CORBA::Object* peer)

Get the peer SSLSession. This call returns the SSLSession of the client peer for this
request. This method cannot be called outside the context of a request.

Returns

The pointer to a SSLSession currently established.

Exceptions

BAD_OPERATION is thrown if this method is called outside the context of a request or when
called in a request context where the request was received over a clear TCP
connection.

class vbsec::Context

Context represents the security context under which a client will execute. This class can
be obtained through the following code:

CORBA::Object_var obj = orb-
>resolve_initial_references("VBSecurityContext");
Context* c = dynamic_cast(obj.in());

Include File
The vbsec.h file should be included when you use this class.

Parameter Description

caller The caller name of the subject.

Parameter Description

peer A peer object retrieved from the bind.

 : V is iSecure for C++ APIs 95

General API

Methods

void login()

Login into the system. This logs-in to the realms defined in the property
vbroker.security.loginRealms. It traverses the list of realms specified and authenticates
against each realm.

void login (vbsec::CallbackHandler& handler)

Use this to login to the system using the specified CallbackHandler to obtain the login
information.

void login (const std::string& realm)

Use this to login into the system for a specific realm.

void login (const std::string& realm, vbsec::CallbackHandler& handler)

Use this to login into the system for a given realm, using a given callback handler for
acquiring information.

void login (const vbsec::Wallet& wallet)

Use this login into the system with a wallet. Wallet can be created using WalletFactory
API.

void login (const std::vector<const vbsec::Wallet*>& wallet)

Use this to login into the system with a set of wallets specified as a vector.

const vbsec::Subject* getSubject (const std::string& realm)

Gets the Subject corresponding to a given realm.

Returns

A pointer to the Subject object representing the subject of the realm.

Parameter Description

handler The default callback handler to be use for acquiring information.

Parameter Description

realm The realm to login to.

Parameter Description

realm The realm to login to.
handler The default callback handler to be use for acquiring information.

Parameter Description

wallet The wallet to be used for login.

Parameter Description

wallet A wallet to be used for login

Parameter Description

realm The Realm for the Principal

96 VisiBroker Secur i ty Guide

General API

void loadVault (std::istream& stream, const CSI::UTF8String& vaultPass)

Loads a given vault. The identities in the vault are loaded into the system. No login
required when this method is used.

void logout()

Log the user out from all the realms.

void logout (const std::string& realm)

Log the user out from a given realm.

void setCallbackHandler (vbsec::CallbackHandler* handler)

Set the default callback handler programmatically. This is similar to using the property
vbroker.security.authentication.callbackHandler.

void generateVault(std::ostream& stream, const CSI::UTF8String& password)

This generates a vault. The vault is written out to the stream that is passed in and
encrypted using the password provided (also used to decrypt the vault). The password
may be null. The vault contains all of the system's identities.

vbsec::Subject* authenticateUser (const vbsec::Wallet& wallet)

This authenticates the given wallet credential. The login will be performed using the
wallet but the authenticated subject will not be used as one of the system identities.

vbsec::Subject* importIdentity (const vbsec::Wallet& wallet)

Import a subject using the given wallet credential. No login is required with this method.
The subject will not be used as one of the system identities.

Parameter Description

stream Stream that the vault information will be read from, in binary
format.

vaultPass Password used to decrypt the vault information.

Parameter Description

realm The realm to logout
from.

Parameter Description

handler The CallbackHandler to be
set.

Parameter Description

stream The stream that the vault information will be written into, in binary
format.

password The password used to encrypt the vault information.

Parameter Description

wallet The wallet to be used for authentication

Parameter Description

wallet The wallet corresponding to the identity to be imported.

 : V is iSecure for C++ APIs 97

General API

void setPRNGSeed (const CORBA::OctetSequence& seed)

This sets a seed for the pseudo-random generator used by the SSL layer.

ssl::CipherSuiteInfoList* listAvailableCipherSuites()

This gets the list of cipher suites that are available for use with the SSL layer. Note that
this is different from the getEnabledCipherSuites call in that not all the available cipher
suites may be currently enabled.

Returns

List of cipher suits that are available but may not be enabled for use with the SSL layer.

void enableCipherSuites (const ssl::CipherSuiteInfoList& suites)

This sets the cipher suites that should be enabled for all SSL sessions.

ssl::CipherSuiteInfoList* getEnabledCipherSuites()

Gets the set of cipher suites that are currently enabled for all SSL sessions.

Returns

the Cipher suits that are currently enabled for all SSL sessions.

void setSSLContext (vbsec::VBSSLContext* ctx)

This sets the SSL context. This will allow establishing of an SSL session using the
information defined in VBSSLContext. A VBSSLContext can be created using the
SecureSocketProvider API.

VBSSLContext& getSSLContext()

Get the VBSSLContext that is set using the setSSLContext() or return a default
VBSSLContext object.

Returns

The VBSSLContext that will be used for any SSLSession establishment.

class vbsec::Principal

The Principal represents the identity of a user. This is a virtual class.

Include file
The vbsec.h file should be included when you use this class.

Parameter Description

seed The seed for the PRNG.

Parameter Description

suites An IDL-generated
CipherSuiteInfoList type.

Parameter Description

ctx The VBSSLContext that is to be used for any SSL session
establishment.

98 VisiBroker Secur i ty Guide

General API

Methods

std::string getName() const

Returns

The name of the Principal.

std::string toString() const

Get the string representation of the Principal.

Returns

The string representation of the Principal.

class vbsec::Credential

Credential represents the information used to authenticate an identity, such as user
name and password. This is a virtual class.

Include File
The vbsec.h file should be included when you use this class.

class vbsec::Subject

The Subject represents a grouping of related information for a single entity, such as a
person. Such information includes the Subject's identities as well as its security-related
attributes (passwords and cryptographic keys, for example).

Include File
The vbsec.h file should be included when you use this class.

Methods

Principal::set& getPrincipals()

Gets the principals in the subject.

Returns

The set of the principals in the subject. Modifying the content of the set will have no
effect on the subject.

void clearPrincipals()

Clears the principals from the subject. All principals in the subject are removed.

Credential::set& getPublicCredentials()

Get the public credentials in the subject—public keys for example.

Returns

The set of the public credential in the subject. Modifying the content of the set will have
no effect on the subject.

void clearPublicCredentials()

Clear the public credentials in the subject. All public credentials in the subject will be
destroyed and removed.

 : V is iSecure for C++ APIs 99

General API

Credential::set& getPrivateCredentials()

Get the private credentials in the subject—private keys for example.

Returns

The set of the private credential in the subject. Modifying the content of the set will
have no effect on the subject.

void clearPrivateCredentials()

Clear the private credentials in the subject. All private credentials in the subject will be
destroyed and removed.

Principal::set getPrincipals (const type_info& info) const

Gets a set of principals in the subject which have the same runtime type information as
provided.

Returns

A set of the principals in the subject which have same runtime information as the given
one. Modifying the content of the set will have no effect on the subject.

Credential::set getPublicCredentials (const type_info& info) const

Get set of public credentials in the subject which have the same runtime type
information as provided.

Returns

A set of the public credential in the subject which have same runtime information as the
given one. Modifying the content of the set will have no effect on the subject.

Credential::set getPrivateCredentials (const type_info& info) const

Get set of private credentials in the subject which have the same runtime type
information as provided.

Returns

A set of the private credentials in the subject which have same runtime information as
the given one. Modifying the content of the set will have no effect on the subject.

class vbsec::Wallet

A Wallet is a holder of credentials usually used in login API calls. A Wallet can be
created using WalletFactory APIs and contain multiple types of credentials.

Include File
The vbsec.h file should be included when you use this class.

Parameter Description

info The runtime type information that the returned principals shall have.

Parameter Description

info The runtime type information that the returned public credential
shall have.

Parameter Description

info The runtime type information that the returned private credentials
shall have.

100 VisiBroker Secur i ty Guide

General API

Methods

std::string getTarget () const

Get the target to which wallet authenticates.

Returns

The string representation of the target information.

void populateSubject (Subject& subject)

Populate the given subject with necessary credentials or other information for
authentication.

class vbsec::WalletFactory

WalletFactory is a factory class to create multiple types of wallets.

Include File
The vbsec.h file should be included when you use this class.

Methods

Wallet* createCertificateWallet (const std::string& name,
 const std::string& password,
 const std::string& alias,
 const std::string& keypassword,
 short usage)

Create a certificate wallet using a C++ keystore. The C++ keystore is similar to the
Java keystore but is implemented using a directory structure. When logging in with a
wallet created by this API, the certificate chain will be used in the SSL layer.

Returns

Certificate wallet that contains the given information.

Parameter Description

subject The subject for the wallet to populate.

Parameter Description

name The directory name of the keystore.
password The password for the keystore, not used for this release.
alias The alias to be used in the keystore.
keypassword The password for the private key of the given alias.
short usage The usage of the certificate information, CLIENT, SERVER or

ALL.

 : Vis iSecure for C++ APIs 101

SSL API

Wallet* createCertificateWallet (const CORBAsec::X509CertList& chain,
 const CORBAsec::ASN1Object& privkey,
 const CSI::UTF8String& password)

Create a certificate wallet using a certificate chain, private key and password.

Returns

Certificate wallet that contains the given information.

Wallet* createIdentityWallet (const std::string& username,
 const std::string& password,
 const std::string& realm)

Create a identity wallet using a username, password and realm that the wallet to which
the wallet authenticates.

Returns

Identity wallet that contains the given information.

Wallet* createIdentityWallet (const std::string& username,
 const std::string& password,
 const std::string& realm,
 const std::vector<std::string>& groups)

Create a identity wallet using a username, password, realm to which the wallet
authenticates, and a set of group attributes.

Returns

Identity wallet that contains the given information.

SSL API
This section explains the various SSL APIs that interact with VisiSecure's SSL
implementation.

Parameter Description

chain The certificate chain to create the wallet.
privkey The private key of the certificate chain.
password The password for the private key.

Parameter Description

username The username of the identity.
password The password for the identity.
realm The realm to which the wallet authenticates.

Parameter Description

username The username of the identity.
password The password for the identity.
realm The realm to which the wallet authenticates.
groups A set of group attributes to which the identity belongs.

102 VisiBroker Secur i ty Guide

SSL API

class vbsec::SSLSession

SSLSession represents the session of the current SSL connection. The SSLSession can
be gotten from vbsec::Context using getPeerSession().

Include File
The vbssp.h file should be included when you use this class.

Methods

time_t getEstablishmentTime() const

Get the time when the SSL connection was established.

Returns

The time when the SSL connection was established.

const ssl::CipherSuiteInfo& getNegotiatedCipher() const

This method returns the negotiated cipher from the peer for a given SSL connection.

Returns

The negotiated cipher from the peer for a given SSL connection.

const CORBAsec::X509CertList& getPeerCertificates() const

Get the certificate chain of the peer.

Returns

Peer certificate chain.

const CORBAsec::X509Cert* getTrustpoint() const

Get the trust point by which the peer is trusted. Null will be returned if peer does not
have certificates or its certificates are not trusted.

Returns

The trust point by which the peer is trusted, or null if not.

char* getPeerAddress() const

Get the IP address of the peer.

Returns

Peer IP address in a string with the following format: xxx.xx.xx.xx.

CORBA::UShort getPeerPort() const

Returns the peer port number used by this connection.

Returns

The port number of the peer on the connection.

 : Vis iSecure for C++ APIs 103

SSL API

void prettyPrint (std::ostream& os) const

Print the SSLSession information into the given output stream.

class vbsec::VBSSLContext

VBSSLContext contains information needed to establish an SSLSession. This object is
created using SecureSocketProvider::createSSLContext().

Include File
The vbssp.h file should be included when you use this class.

Methods

const CORBAsec::X509CertList& getCertificates() const

Get the certificate chain representing the identity to be used for the SSL layer.

Returns

The certificate chain representing the identity to be used for the SSL layer.

void setCipherSuiteList (const ssl::CipherSuiteInfoList& list)

This method is used to specify the ciphers available for the SSL connections.

const ssl::CipherSuiteInfoList& getCipherSuiteList() const

Return the ciphers that are currently used by the SSL layer.

Returns

The ciphers that are currently used by the SSL layer.

void addTrustedCertificate
(const CORBAsec::X509Cert& trusted,const CORBAsec::ASN1Object* crl = NULL)

Programmatically add trusted certificate into the SSL context.

CORBAsec::X509CertList* getTrustedCertificates() const

Get list of certificates that are trusted.

Returns

List of certificates that are trusted.

Parameter Description

os The output stream to print the SSLSession information.

Parameter Description

list A list of ciphers that should be available for the SSL
connections.

Parameter Description

trusted Certificate that is to be trusted.
crl The CRL issued by the trusted certificate default value of

NULL means no CRL Applications can call this method
passing only the first argument, in which case the default
value of NULL applies.

104 VisiBroker Secur i ty Guide

SSL API

class ssl::CipherSuiteInfo

CipherSuiteInfo is a structure containing two fields:

– CORBA::ULong SuiteID

– CORBA::String_var Name

This IDL structure contains two fields which describe ciphers according to the SSL
specification. The list of SuiteID values and their names is in the include file, ssl_c.h.

Include File
The ssl_c.hh file should be included when you use this class.

class CipherSuiteName

This class provides information about the ciphers used in the Security Service.

Include File
The csstring.h file should be included when you use this class.

Methods

static const char* toString (int tag)

Return a standard representation of a supported SSL cipher.

Returns

Returns a stringified description of the cipher.

static const int fromString (char* description)

Give the tag associated to the given cipher description.

Returns

The tag associated with the cipher name provided as the argument.

class vbsec::SecureSocketProvider

A SecureSocketProvider is the provider for secure socket connections. It provides the
function of creating the SSL context, handling SSL certificates, and managing other
secure socket-related information.

Include File
The vbssp.h file should be included when you use this class.

Parameter Description

tag tag associated with the cipher name.

Parameter Description

description The stringified description of the cipher.

 : Vis iSecure for C++ APIs 105

SSL API

Methods

vbsec::VBSSLContext* createSSLContext (const CORBAsec::X509CertList& chain,
 const CORBAsec::ASN1Object& privkey,
 const CSI::UTF8String& password)

This method create a SSL context using the given information. The SSL context can
then be passed into vbsec::Context and used to establish an SSL connection.

Returns

VBSSLcontext containing the given information.

void setPRNGSeed (const ssl::Current::PRNGSeed& seed)

Sets a seed for the pseudo-random number generator used by the SSL layer.

const ssl::CipherSuiteInfoList& listAvailableCipherSuites() const

Gets the list of cipher suites that are available for use with the SSL layer. Note that this
is different from the getEnabledCipherSuites call in that not all the available cipher suites
may be currently enabled.

Returns

List of cipher suits that are available but may not be enabled for use with the SSL layer.

const CertificateFactory& getCertificateFactory() const

Gets a certificate Factory.

Returns

A CertificateFactory object.

class ssl::Current

The ssl::Current lets your client application or server object set its private key and offer
its certificate information to its peer. This interface also lets you configure the SSL
connection and associate your certificates and private key with an SSL connection.

Be aware that private keys and certificates contain header and trailer lines, which mark
the beginning and end of the key or certificate. All of the methods offered by this
interface for setting private keys and certificate chains require that these header and
trailer lines be present. The parsing rules for these lines is:

– The recognized header line format for certificates is:

-----BEGIN CERTIFICATE-----

– The recognized header line format for private keys is:

-----BEGIN ENCRYPTED PRIVATE KEY-----

– All header lines must end with a new line character.

Parameter Description

chain The certificate chain
privkey The private key object.
password The password for the private key.

Parameter Description

seed The seed for the PRNG.

106 VisiBroker Secur i ty Guide

SSL API

– All trailer lines must be preceded with, and end with, a newline character. PEM-style
private keys have two additional header lines that other private keys do not have:
Proc-Type and DEK-Info. Both of these lines must be present and they must end with
new line characters.

This object can be obtained through the following code:

CORBA::Object_var obj = orb->resolve_initial_references("SSLCurrent");
ssl::Current_var current = ssl::Current::_narrow(obj);

Include File
The ssl_c.hh file should be included when you use this class.

Methods

CORBA::ULong getNegotiatedCipher(CORBA::Object_ptr peer)

This method returns the negotiated cipher from the peer for a given SSL connection.

Returns

A value (tag) representing the cipher used. (Use CipherSuiteName::toString to get a
String representation.)

Exceptions
CORBA::BAD_OPERATION if the object is null or the connection is not using SSL.

CORBAsec::X509CertList_ptr getPeerCertificateChain(CORBA::Object_ptr peer)

This method obtains the peer's certificate chain. It is usually invoked by a client
application to obtain information from a server, but a server can optionally request
information from a client.

Returns

A value representing the cipher used. (Use CipherSuiteName::toString to get
a String representation.)

Exceptions

CORBA::BAD_OPERATION if the object is null or the connection is not using SSL.

char* getPeerAddress(CORBA::Object_ptr peer)

Returns a description of the socket parameters used by this connection.

Returns

Peer IP address in a string with the following format: xxx.xx.xx.xx

Exceptions

CORBA::BAD_OPERATION if the object is null or the connection is not using SSL.

Parameter Description

peer The peer from which you obtain the negotiated cipher.

Parameter Description

peer The peer from which you obtain the negotiated cipher.

Parameter Description

peer The peer from which you obtain the information.

 : Vis iSecure for C++ APIs 107

SSL API

CORBA::Boolean isPeerTrusted(CORBA::Object_ptr peer)

Tests if the certificate chain of the peer is trusted—that is, if one certificate of the chain
is in the trustpoint.

Returns

true if the chain is trusted, false otherwise.

Exceptions

CORBA::BAD_OPERATION if the object is null or the connection is not using SSL.

trust::Trustpoints_ptr Trustpoints getTrustpointsObject()

Returns a reference to the trustpoint repository. Use this API to access trustpoints
object and set trustpoints.

Returns

A reference to the trustpoint repository, which should be assigned to a _var.

void setPRNGSeed (const ssl::Current::PRNGseed& seed)

Sets a seed for the pseudo-random number generator used by the SSL layer.

void setPKprincipal (const CORBAsec::ASN1ObjectList chain,&
 const CORBAsec::ASN1Object& privkey,&
 const char* password);

This method is used in the client or the server to set the certificate chain and private
key that must be used for the SSL connections. This is required for servers and
optional for clients. Also look at the peerAuthenticationMode property documented in
“Security Properties for C++.”

Exceptions

CORBA::BAD_PARAM if the user name or password is null.

void setCipherSuiteList (const ssl::CipherSuiteInfoList& list)

This method is used in the client or the server to specify the ciphers available for the
SSL connections.

Parameter Description

peer The peer from which you obtain the information.

Parameter Description

seed The OctetSequenceseed for the PRNG.

Parameter Description

chain The certificate chain.
privkey The private key used for the SSL

connection.
passwor
d

The password for the private key.

Parameter Description

list A comma-separated list of cipher
suites.

108 VisiBroker Secur i ty Guide

Cert i f icate API

ssl::CipherSuiteInfoList* listAvailableCipherSuites()

Returns a list of cipher suites available in VisiSecure. You are responsible for freeing
memory.

Returns

A list of cipher suites.

ssl::CipherSuiteInfoList* getCipherSuiteList()

Returns the ciphers that are currently used by the SSL layer.

Returns

A list of cipher suites.

void setP12Identity (const CORBASEC::ASNIOBJECT& pks12cert, const char*
password)

Certificate API
This API contains classes and methods for working with certificates.

class vbsec::CertificateFactory

This is a utility class for handling of certificates and keys.

Include File
The vbssp.h file should be included when you use this class.

Methods

CORBAsec::ASN1Object* importCRL(const CORBAsec::ASN1Object& b64crl) const

Import a crl in b64 encoded DER, so it is in the format ready for passing across method
VBSSLContext::addTrustedCertificate() second argument

CORBAsec::X509CertList* importCertificateChain (const
CORBAsec::ASN1ObjectList& certs) const

Import the certification chain in the form of CORBAsec::ASN1ObjectList into
CORBAsec::X509CertList, which could be use in VBSSLContext.

Returns

CORBAsec::X509CertList representation of the certificate chain for CORBA
transportation.

Parameter Description

pks12cert PKCS#12 formatted data.
password The private key password.

Parameter Description

certs ASN1ObjectList representation of the certificate chain.
b64crl The CRL string in B64 text format to be converted

 : Vis iSecure for C++ APIs 109

Cert i f icate API

CORBAsec::X509CertList* importCertificates (const CORBAsec::ASN1ObjectList&
certs) const

Import the certification list in the form of CORBAsec::ASN1ObjectList into
CORBAsec::X509CertList. Certificates need not be related to each other. The original
order is preserved after importing.

Returns

CORBAsec::X509CertList representation of the certificate list.

CORBAsec::ASN1Object* importPrivateKey (const CORBAsec::ASN1Object& key)
const

Convert the private key from BASE64 or PEM format to DER format.

Returns

DER format of the private key.

CORBAsec::X509CertList* importCertificateChain (const CORBAsec::ASN1Object&
pkcs12bytes,
const CSI::UTF8String& password) const

Imports a certificate chain from pkcs12 binary.

Returns

CORBAsec::X509CertList representation of the certificate chain.

CORBAsec::ASN1Object* importPrivateKey (const CORBAsec::ASN1Object&
pkcs12bytes,
const CSI::UTF8String& password) const

Import private key from pkcs12 binary.

Returns

CORBAsec::ASN1Object representation of the private key object.

Parameter Description

certs ASN1ObjectList representation of
certificate list

Parameter Description

key ASN1ObjectList representation of private key
object.

Parameter Description

pkcs12bytes ASN1ObjectList representation of pkcs12 binary.
password Password for the pkcs12 binary.

Parameter Description

pkcs12bytes ASN1ObjectList representation of pkcs12 binary.
password Password for the pkcs12 binary.

110 VisiBroker Secur i ty Guide

Cert i f icate API

const CertificateFactory& printCertificate (const CORBAsec::X509Cert& certificate,
std::ostream& stream) const

Print out the certification information into an output stream.

Returns

the CertificateFactory.

bool passwordForPrivatekey (const CSI::UTF8String& password, const
CORBAsec::ASN1Object& privkey) const

Test if the given password can decrypt the given private key object.

Returns

true if decryption is successful, false if not.

class CORBAsec::X509Cert

This class represents an X509 certificate. When a client application binds to a CORBA
object, the client uses this interface to obtain the server’s certificate information. The
server can use this interface to obtain the client’s certification information, if the client
has a certificate.

Include File
The X509Cert_c.hh file should be included when you use this class.

Methods

char* getSubjectDN()

Returns the subject DN contained in the certificate.

Returns

The subject name is returned in the following format:

CN=<value>, OU=<value>, O=<value>, L=<value>, S=<value>, C=<value>

char* getIssuerDN()

Returns the issuer DN contained in the certificate.

Returns

The subject name is returned in the following format:

CN=<value>, OU=<value>, O=<value>, L=<value>, S=<value>, C=<value>

Parameter Description

certificate certificate to be printed.
stream stream to which to output.

Parameter Description

password The password to be tested.
privkey The private key object to be

decrypted.

 : Vis iSecure for C++ APIs 111

Cert i f icate API

CORBA::OctetSequence * getSignatureAlgorithm()

Returns the signature algorithm used in the certificate.

Returns

The signature algorithm used in the certificate.

CORBA::OctetSequence * getHash(CORBASEC::HashAlgorithm algorithm)

Returns a hash of the certificate.

Returns

A hash of the certificate using the specified algorithm.

CORBAsec::ASN1Object_ptr getDER()

Returns the DER encoded form of this certificate.

Returns

The ASN.1 DER encoded form of this certificate (assign to a _var).

CORBAsec::SerialNumberValue_ptr getSerialNumber()

Retrieves the serial number of the certificate.

Returns

The serial number of the certificate.

CORBAsec::X509CertExtensionList_ptr getExtensions()

Returns all the extensions available in this certificate as a list of X509CertExtension.

Returns

Returns all the extensions available in this certificate as a list of X509CertExtension. Or, if
this certificate has no extensions, the method returns an array of length null. The
extensions are not parsed.

CORBA::Boolean isValid (CORBA::ULong_out date)

Checks if a certificate date is between the valid start and end dates.

Returns

true if the certificate is valid, false otherwise.

CORBA::ULong startDate()

Gets the date from which a certificate’s validity starts.

Returns

Returns an int representing the number of seconds from midnight, January 1st, 1970.

Parameter Description

algorithm The hash algorithm. The possible values are: CORBASec::MD5,
CORBASec::MD2 and CORBASec::SHA1

Parameter Description

date An out argument that is set to the expiration date of the certificate,
using UNIX time format.

112 VisiBroker Secur i ty Guide

QoP API

CORBA::ULong endDate()

Gets the expiration date of the certificate.

Returns

Returns an int representing the number of seconds from midnight, January 1st, 1970.

CORBA::Boolean equals (CORBAsec::X509Cert_ptr other)

Compares two CORBAsec::X509Cert certificates.

Returns

Returns true (1UL) if the two certificates are identical; otherwise, returns false (0UL).

CORBA::Boolean isTrustpoint()

Checks if this certificate is a trustpoint—that is, if it is a trusted certificate

Returns

If the certificate is a trustpoint, returns true.

class CORBAsec::X509CertExtension

This class is an IDL structure that represents an X509 certificate extension, as follows:

struct X509CertExtension {
long seq;
sequence<long> oid;
boolean critical;
sequence<octet> value;
};

Include File
The X509Cert_c.hh file should be included when you use this class.

QoP API
The following section details the Quality of Protection API provided with VisiSecure.

class vbsec::ServerConfigImpl

ServerConfigImpl is the implementation of the csiv2::ServerQoPConfig, which is an IDL
structure as follows:

ServerConfigImpl (
 CORBA::Boolean disable,
 CORBA::Short transport,

Parameter Description

other The other certificate to compare to this certificate.

Parameter Description

seq A unique number of the extension in the certificate.
oid The oid of the extension.
value The value of the extension encoded according to the format specified

by the oid.

 : Vis iSecure for C++ APIs 113

QoP API

 CORBA::Boolean trustInClient,
 csiv2::AccessPolicyManager* access_manager,
 const CORBA::StringSequence& realms = _available,
 CORBA::Short requiredIdentityType = csiv2::ServerQoPConfig::UP_OR_PK,
 CORBA::Boolean supportIdentityAssertion =
static_cast<CORBA::Boolean>(1)
);

To define the ServerQoPPolicy, you create this object which defines the various
characteristics of the policy.

Include File
The CSIV2Policies.h file should be included when you use this class.

class ServerQoPPolicyImpl

ServerQoPPolicyImpl is the implementation of the csiv2::ServerQoPPolicy. The
ServerQoPPolicyImpl object impacts the QoP behaviour of the server.

Include File
The CSIV2Policies.h file should be included when you use this class.

Methods

ServerQoPPolicyImpl (const csiv2::ServerQoPConfig_var& conf);

Constructor of the ServerQoPPolicyImpl object.

Parameter Description

disable Whether or not to disable security.
transport The transport mechanism to use. Valid values are:

■ csiv2::CLEAR_ONLY: no secure transport is necessary

■ csiv2::SECURE_ONLY: only secure connections are permitted

■ csiv2::ALL: any method of transport is allowed

trustInClient Whether or not the target requests the client to
authenticate. This value is set on CSIV2 layer.

access_manager An access manager for the QoP implementation, an
implementation of csiv2::AccessPolicyManager defined by
the user. If null, it uses a default value.

realms The available realms in which to implement the policy.
requiredIdentityType The required identity for the QoP policy implementation.

The default value is csiv2::ServerQoPConfig::UP_OR_PK.
Possible values are: csiv2:ServerQoPConfig::NO_ID,
csiv2::ServerQoPConfig::UP, csiv2::ServerQoPConfig::PK,
csiv2::ServerQoPConfig::UP_OR_PK and
csiv2::ServerQoPConfig::UP_AND_PK

supportIdentityAsser
tion

Whether or not the application supports Identity
Assertion.

Parameter Description

conf ServerQoPConfig object which contains the designed QoP
configuration.

114 VisiBroker Secur i ty Guide

QoP API

virtual csiv2::ServerQoPConfig_ptr config();

Get the ServerQoPConfigImpl object from the ServerQoPPolicyImpl.

Returns

The ServerQoPConfigImpl object from the ServerQoPPolicyImpl.

class vbsec::ClientConfigImpl

ClientConfigImpl is the implementation of the csiv2::ClientQoPConfig. To define the
ClientQoPPolicy, you create this object which defines the various characteristics of the
policy.

Include File
The CSIV2Policies.h file should be included when you use this class

Methods

ClientConfigImpl (const CORBA::Short transport, const CORBA::Boolean
trustInTarget)

Constructor of ClientConfigImpl object.

class vbsec::ClientQoPPolicyImpl

ClientQoPPolicyImpl is the implementation of the csiv2::ClientQoPPolicy. The
ClientQoPPolicyImpl object impacts the QoP behaviour of the server.

Include File
The CSIV2Policies.h file should be included when you use this class.

Methods

ClientQoPPolicyImpl(const csiv2::ClientQoPConfig_var& conf);

Constructor for ClientQoPPolicyImpl object.

virtual csiv2::ClientQoPConfig_ptr config();

Returns

The ClientConfigImpl object of this ClientQopPolicyImpl.

Parameter Description

transport The transport mechanism to use. Valid values are:
■ csiv2::CLEAR_ONLY: no secure transport is necessary

■ csiv2::SECURE_ONLY: only secure connections are
permitted

■ csiv2::ALL: any method of transport is allowed

trustInTarg
et

Whether or not to require the client to authenticate.

Parameter Description

conf ClientConfigImpl object to be use for the
policy.

 : Vis iSecure for C++ APIs 115

Authorization API
The following section describes the classes and methods used for authorization in
VisiSecure.

class csiv2::AccessPolicyManager

AccessPolicyManager is used define your Access Policy for authorization a client's
method calls.

Include File
The CSIV2Policies.h file should be included when you use this class.

Methods

char* domain()

Returns the authorization domain name for the AccessPolicyManager.

Returns

The authorization domain name for the object that uses this AccessPolicyManager.

csiv2::ObjectAccessPolicy* getAccessPolicy (PortableServer_ServantBase* servant,
const PortableServer::ObjectId& id, const CORBA::OctetSequence& adapter_id)

Returns the objectAccessPolicy for the servant with the objectId (id) and poa id.

Returns

ObjectAccessPolicy of the servant object.

class csiv2::ObjectAccessPolicy

This class represents the access policy from AccessPolicyManager.

Include File
The CSIV2Policies.h file should be included when you use this class.

Methods

CORBA::StringSequence* getRequiredRoles (const char* method)

Returned the list of required roles to access the method.

Parameter Description

servant The CORBA servant object.
id the id of the servant object.
adapter_id The poa id of the servant

object.

Parameter Description

method The method name of interest.

116 VisiBroker Secur i ty Guide

Returns

A list of required roles to access the method.

char* getRunAsRole (const char* method)

Return the run-as role for the method. This method is not used in this release.

Returns

The run-as role configured to access the method.

Parameter Description

method The method name of interest.

 : Secur i ty SPI for C++ 117

Security SPI for C++
This section describes the Service Provider Interface (SPI) classes as defined for the
VisiSecure for C++. These SPI classes provide advanced security functionality and
allow other security providers to plug their own implementation of security services into
VisiSecure for their use.

Plugin Mechanism and SPIs
VisiSecure for C++ provides interfaces for you to plug in your own security
implementations. In order for the ORB to find your implementation, all plug-ins must
use the REGISTER_CLASS macro provided by the VisiSecure to register your classes. The
name of the class must be specified in full, together with its namespace upon
registration. Namespace must be specified in a normalized form supported by
VisiSecure, using either a '.' or '::' separated-string starting from the outer namespace.
For example:

MyNameSpace {
 class MyLoginModule {

 }
}

Thus MyLoginModule shall be specified as either MyNameSpace.MyLoginModule or
MyNameSpace::MyLoginModule.

There are six pluggable components:

– LoginModules: You can implement your own login models by extending the
vbsec::LoginModule. To use the login module, you need to set it in the authentication
configuration file, just like any other login module.
Additionally, you will also need to register your class using MAP_LOGIN_MODULE
(<CLASS_NAME>) macro in your implementation file which would enable security runtime
to dynamically load your login module.

– Callback handlers: You can implement your own callback by extending the
vbsec::CallbackHandler. To use the callback, you need to set it in the authentication
configuration file, just like any other callback handler.
Additionally, you will also need to register your class using
MAP_CALLBACK_HANDLER(<CLASS_NAME>) macro in your implementation file which would
enable security runtime to dynamically load your callback handler.

118 VisiBroker Secur i ty Guide

Plugin Mechanism and SPIs

– Identity adapters, Mechanism adapters, and Authentication Mechanisms: these
interfaces are provided for users to implement their own authentication mechanisms
and identity interpretations. IdentityAdaptor is to interpret identities, MechanismAdaptor
is a specialized identity adaptor which also changes target information.
AuthenticationMechanism is a pluggable service to authenticate users.

To use these plug-ins, you need to set the vbroker.security.identity.xxx properties
to define the plug-ins and their properties. For example, an identity adapter or
mechanism adapter must specify:
vbroker.security.identity.adapters=MyAdapter
vbroker.security.adapter.MyAdapter.property1=value1
vbroker.security.adapter.MyAdapter.property2=value1

while an authentication mechanism must provide:
vbroker.security.identity.mechanisms=MyMechanism
vbroker.security.adapter.MyMechanism.property1=value1
vbroker.security.adapter.MyMechanism.property2=value2

The properties specified must be passed to the user plug-in during initialization as a
string map. The map contains truncated key/value pair like property1, value1.

– Attribute codec: This allows you to plug in an attribute codec to encode and decode
attributes in their own format. VisiSecure for C++ has one build-in codec, the ATS
codec.

To use your codec plug-in, you need to set properties to define the codecs and their
properties. For example:

vbroker.security.identity.attributeCodecs=MyCodec
vbroker.security.adapter.attributeCodec.property1=xxx
vbroker.security.adapter.attributeCodec.property2=xxx

The properties specified will be passed to the user plug-in during initialization as a
string map.

– Authorization service provider: You can plug-in an authorization service for each
authorization domain. VisiSecure has its default implementation, which uses the
rolemap. Like the other pluggable services, you will need to define the authorization
service with properties which are then passed as string maps. For example:

vbroker.security.auth.domains=MyDomain
vbroker.security.domain.MyDomain.provider=MyProvider
vbroker.security.domain.MyDomain.property1=xxx
vbroker.security.domain.MyDomain.property2=xxx

– Trust provider: This allows you to plug in an assertion trust mechanism. Assertion
can happen in multi-hop scenario, or explicitly called through assertion API. The
server can have rules to determine whether the peer is trusted to make the assertion
or not. The default implementation uses the property setting to configure trusted
peers on the server side. During the runtime, the peer must pass authentication and
authorization in order to be trusted to make assertions.

Like the other pluggable services, you will need to define the authorization service
with properties which are then passed as string maps. For example:

vbroker.security.trust.trustProvider=MyProvider
vbroker.security.trust.trustProvider.MyProvider.property1=xxx
vbroker.security.trust.trustProvider.MyProvider.property2=xxx

There can be only one trust provider specified for the whole security service.

 : Secur i ty SPI for C++ 119

Providers

Providers
Each provider instance is created by the VisiSecure using a Java reflection API. After
the instance has been constructed, the initialize method, which must be provided by
the implementer, is called passing in a map of options specific for the implementation.
The options entries are defined by the implementers of the particular provider. Users
specify the options in a property file and the VisiSecure parses the property and passes
the options to the corresponding provider. The following table shows the properties for
plugging in different provider implementations.

In the preceding table:

– The first column lists the provider module names.

– The second column lists the property you set to define each module. Use a comma
to separate multiple modules. For example, the following property has two additional
IdentityAdapter implementations installed for the ORB:
vbroker.security.identity.adapters=ID_ADA1,ID_ADA2

– The third column gives the interface each implementation must implement. The
interface defines a contract between the implementers and the core VisiSecure.

– The final column gives the options prefix for the specific module. The ORB parses
the property file and passes the corresponding entries to each of the modules in the
initial method as the (Map options) parameter.

– For example, for the ID_ADA1 IdentityAdapter defined in the previous example, all the
entries with the vbroker.security.identity.adapters.ID_ADA1 prefix will be passed to
the initial method of ID_ADA1 IdentityAdapter.

Providers and exceptions

During the initialization, if anything goes wrong, the initialize method should throw an
instance of InitializationException. For certain categories of providers, there can be
multiple instances with different implementations co-existing. Each of them is identified
by the name within the VisiSecure system, which is passed as the first parameter in the
initialize method. While for some categories of providers there can be only one
instance existing for the whole ORB (such as in the case of the TrustProvider, in this
case, the initialize method has only one single parameter -the options map.

Module Name Property to set
Interface to
implement Options Prefix

IdentityAdapter vbroker.security.ide
ntity.
adapters

vbsec::IdentityAdap
ter

vbroker.security.identi
ty.adapter.
<name>

AuthenticationMech
anism

vbroker.security.ide
ntity.
mechanisms

vbsec::
AuthenticationMecha
nisms

vbroker.security.identi
ty.mechanism.
<name>

AttributeCodec vbroker.security.ide
ntity.
attributeCodecs

vbsec::AttributeCod
ec

vbroker.security.identi
ty.
attributeCodec.<name>

TrustProvider vbroker.security.
trustProvider

vbsec::TrustProvide
r

vbroker.security.trust.
trustProvider.
<name>

120 VisiBroker Secur i ty Guide

vbsec::LoginModule

vbsec::LoginModule
The LoginModule serves as the parent of all login modules. The user plug-in login
modules must extend this class. The login modules are configured in the authentication
configuration file and are called during the login process. The login modules are
responsible of authenticating the given subject and associating the relevant Principals
and Credentials with the subject. It is also responsible for removing and disposing of
such security information during the logout.

Include File

The vbauthn.h file should be included when you use this class.

Methods

void initialize (Subject* subj=0,
 CallbackHandler *handler=0,
 LoginModule::states* sharedStates=0,
 LoginModule::options* options=0)

This method initializes the login module.

Arguments

This method utilizes the following four arguments:

– subj: the subject to be authenticated.

– handler: the callback handler to use.

– sharedStates: the additional authentication state provided by other login modules.
Currently not used.

– options: configuration options specified in the authentication configuration file.

Returns

Void.
bool login()

Performs the login. This is called during the login process. The login module shall
authenticate the subject located in the module and determine if the login is successful.

Returns

true if the login succeeds, false otherwise.
bool logout()

Performs the logout. This is called during the logout process. The login module shall
logout the subject located in the module and determine if the logout is successful. The
login module may remove any credentials or identities that were established during the
login and dispose them.

Returns

true if the logout succeeds, false otherwise.
bool commit()

Commits the login. This is part of the login process, called when the login succeeds
according to the configuration options specified in the pertinent login modules. The
login module then associates relevant Principals and Credentials with the Subject
located in the module if its own authentication attempt succeeded. Or if not, it shall
remove and destroy any state that was saved before.

Returns

true if the commit succeeds, false otherwise.

 : Secur i ty SPI for C++ 121

vbsec::Cal lbackHandler

bool abort()

Aborts the login. This is part of the login process, called when the overall login fails
according to the configuration options specified in the login modules. The login module
shall remove and destroy any state that was saved before.

Returns

true if the abort succeeds, false otherwise.

vbsec::CallbackHandler
The CallbackHandler is the mechanism that produces any necessary user callbacks for
authentication credentials and other information. Seven types of callbacks are
provided. There is a default handler that handles all callbacks in an interactive text
mode.

Include file

The vbauthn.h file should be included when you use this class.

Methods

void handle (Callback::array& callbacks)

Handle the callbacks.

Arguments

The array of callbacks to be processed.

Returns

Void.

vbsec::IdentityAdapter
IdentityAdapter binds to a particular mechanism. The main purpose of an
IdentityAdapter is to interpret identities that are specific to a mechanism. It is used to
perform the decoding and encoding between the mechanism-specific and the
mechanism-independent representations of the entities.

IdentityAdapters included with the VisiSecure

The following IdentityAdapters are provided with the VisiSecure:

– AnonymousAdapter, with the name "anonymous"

– DNAdapter, with the name "DN"

– X509CertificateAdapter (as an implementation of the sub-interface
AuthenticationMechanism)

– GSSUPAuthenticationMechanism (as an implementation of the sub-interface
AuthenticationMechanism)

Methods

Virtual void initialize (const std::string& name, ::vbsec::InitOptions&) =0;

This method initializes the IdentityAdapter with the given name and the set of options.

122 VisiBroker Secur i ty Guide

vbsec:: Ident i tyAdapter

Arguments

This method takes the following two arguments:

– The IdentityAdapter name.

– A set of InitOptions for the specified IdentityAdapter.

Exceptions

Throws InitializationException if initialization fails.
virtual std::string getName() const=0;

This returns the name of the IdentityAdapter.

Returns

The name of the IdentityAdapter.

Exceptions

none
virtual ::CSI::IdentityToken* exportIdentity(::vbsec::Subject&, ::CSI::IdentityToken&)
=0;

Exports the identity of the IdentityAdapter as an IdentityToken.

Arguments

The subject whose identity is to be exported.

Returns

An IdentityToken data.

Exceptions

Throws NoCredentialsException if no credentials recognized by this IdentityAdapter
are found in the subject.

virtual void importIdentity (::vbsec::Subject&, ::CSI::IdentityToken&) =0;

Imports the IdentityToken and populates the caller subject with the appropriate
principals associated with this identity.

Arguments

The subject whose identity is to be imported.

Exceptions

Throws NoCredentialsException if no credentials recognized by this IdentityAdapter
are found in the subject.

virtual ::vbsec::Privileges* getPrincipal (::vbsec::Subject&anp;) =0;

Returns a Principal representing this identity. This method is used for interfacing with
EJBs and servlets.

Arguments

The principal subject.

Returns

A principle object.

Exceptions

none
virtual ::vbsec::Privileges* getPrivileges (::vbsec::Subect&) =0;

 : Secur i ty SPI for C++ 123

vbsec:: Ident i tyAdapter

Arguments

The target subject.

Returns

The privilege attributes for this target subject recognized by this IdentityAdapter.

Exceptions

none
virtual ::vbsec::setPrivileges (::vbsec::Privileges*) =0;

This methods sets the privilege attribute for the identity.

Arguments

The privilege attribute to be set for the identity.

Exceptions

none
virtual void deleteIdentity (::vbsec::Subject&) =0;

This method deletes the principals and the credentials associated with the specified
target subject.

Arguments

The target subject for which the principals and the credentials recognized by this
IdentityAdapter are to be deleted.

Exceptions

none

vbsec::MechanismAdapter

Extending from IdentityAdapter, a MechanismAdapter has the additional capability of
changing the target information. This is very useful in the case where the mechanism
used in a remote site is not available locally. Therefore, the local identity must be
adapted before sending to the remote site.

In the out-of-box installation of VisiSecure, there is no class direct implementation of
MechanismAdapter, while a few classes implement the sub-interface
AuthenticationMechanism, which in turn gives the support of this interface.

Methods

virtual const ::CSI::StringOID_var getOid() const =0;

Returns a string representation of the mechanism OID. For example, the string
representation for a GSSUP mechanism would be oid:2.23.130.1.1.1.

Returns

The mechanism OID string.

Exceptions

none
virtual ::vbsec::Target* getTarget (const std::string& realm, const
std::vector<AppConfigurationEntry*>&) =0;

Given a realm name and a list of AppConfigurationEntry objects, returns the
corresponding target.

124 VisiBroker Secur i ty Guide

vbsec::Authent icat ionMechanisms

Arguments

This method takes the following two arguments:

– A realm name.

– A list of AppConfigurationEntry objects.

Returns

Returns the corresponding target object.

Exceptions

none
virtual ::vbsec::Target* getTarget (const ::CSI::GSS_NT_ExportedName&) =0;

Returns a Target object representing the encoded target representation.

Arguments

A Target encoded in GSS Mechanism-Independent Exported Name format (as defined
in [IETF RFC2743]).

Returns

A Target object.

Exceptions

none

vbsec::AuthenticationMechanisms
This class represents a full-fledged mechanism which provides all the functionality
needed to support an authentication mechanism in conjunction with the CSIv2
protocol.

Included with VisiSecure are the following implementations for GSSUP based and
X509 Certificate based authentication mechanisms respectively:

– GSSUPAuthenticationMechanism

– X509CertificateAdapter

In addition to the methods inherited from its super interfaces, AuthenticationMechanism
also has the following categories of methods defined.

Credential-related methods

Use these methods to acquire and/or destroy credentials.
virtual ::vbsec::Subject* acquireCredentials (::vbsec::Target&,
::vbsec::CallbackHandler*) =0;

This method acquires credentials for a given target. The credentials acquired depend
on the mechanism and the information it requires for authentication.

Arguments

This method takes the following two arguments:

– A Target object.

– The callback handler to be used to communicate with the user for acquiring the
credentials for this Target.

 : Secur i ty SPI for C++ 125

vbsec::Authent icat ionMechanisms

Returns

The Subject containing the acquired credentials (will be null in the case where the
operation fails).

Exceptions

none
virtual ::vbsec::Subject* acquireCredentials (const std::string& target,
::vbsec::CallbackHandler*) =0;

This method acquires credentials for a given string representation of the Target. The
credentials acquired depend on the mechanism and the information it requires for
authentication.

Arguments

This method takes the following two arguments:

– A string representation of the Target.

– The corresponding callback handlers used to communicate with user for acquiring
the credential.

Returns

A subject object containing the acquired credentials (It will be null in cases where the
operations fail).

Exceptions

none
virtual void destroyPrivateCredentials (::vbsec::Subject&) =0;

This method destroys the private credentials of the specified subject.

Arguments

The subject for which the private credentials are to be destroyed.

Exceptions

none

Context-related methods

virtual ::CORBA::OctetSeq* createInitContext (::vbsec::Subject&) =0;

Returns a mechanism-specific client authentication token. The token represents the
authentication credentials for the specified target.

Arguments

The target subject.

Returns

The authentication token for the specified target subject.

Exceptions

Throws NoCredentialsException if no authentication credentials recognized by this
mechanism exist in this Subject.

virtual ::vbsec::Target* processInitContext (::vbsec::Subject&, ::CORBA::OctetSeq&) =0;

This method consumes the mechanism-specific client authentication token. The initial
authentication token is decoded and the method populates the given subject with the
corresponding authentication credentials.

126 VisiBroker Secur i ty Guide

vbsec::Authent icat ionMechanisms

Arguments

The subject to be populated with authentication credentials.

Exceptions

none
virtual ::CSI::GSSToken* createFinalContext (::vbsec::Subject&) =0;

This method creates a final context token to return to a client.

Arguments

The Subject.

Returns

A final context token.

Exceptions

none
virtual void processFinalContext (::vbsec::Subject&, ::CORBA::OctetSeq&) =0;

Consumes a final context token returned by the server.

Arguments

The target subject.

Exceptions

none
virtual ::CSI::GSSToken* createErrorContext (::vbsec::Subject&) =0;

Creates an error context token in the case of an authentication failure.

Arguments

The target subject.

Returns

An error context token.

Exceptions

none
virtual ::vbsec::Subject* processErrorContext (::vbsec::Subject&, ::CSI::GSSToken&,
::vbsec::CallbackHandler*) =0;

Consumes an error token returned from server. The callback handler is used to interact
with a user trying to re-acquire credentials. If credentials are required, the client-side
security service attempts to establish the context again.

Arguments

This method takes the following two arguments:

– A target subject.

– A callback handler.

Exceptions

none

 : Secur i ty SPI for C++ 127

vbsec::Target

vbsec::Target
This class gives the runtime representation of a target authenticating principal. The
context includes names for the target required in different scenarios, such as the
display name, or the DER representation of the OID.

Methods

virtual std::string getName () const =0;

This method returns the display name of the target.

Returns

The target name string.

Exceptions

none
virtual ::CSI::OID getOid () const =0;

This method returns the target OID.

Returns

The target OID string.

Exceptions

none
virtual ::CORBA::OctetSeq getEncodedName () const =0;

This method returns the mechanism-specific encoding of the target name.

Returns

The encoded target name.

Exceptions

none

vbsec::AuthorizationServicesProvider
The implementer of the Authorization Service provides the collection of permission
objects granted access to certain resources. Whenever an access decision is going to
be made, the AuthorizationServicesProvider is consulted. The Authorization Service is
closely associated with the Authorization domain concept. An Authorization Service is
installed for each Authorization domain implementation, and functions only for that
particular Authorization domain.

The AuthorizationServicesProvider is initialized during the construction of its
corresponding Authorization domain. Use the following property to set the
implementing class for the AuthorizationServicesProvider:

vbroker.security.domain.<domain-name>.provider

During the runtime, this property is loaded by the way of Java reflection.

Another import functionality of the Authorization Service is to return the run-as alias for
a particular role given. The security service is configured with a set of identities,
identified by aliases. When resources request to “run-as” a given role the
AuthorizationService again is consulted to return the alias that must be used to “run-as”
in the context of the rules specified for this authorization domain.

128 VisiBroker Secur i ty Guide

vbsec::Resource

Methods
virtual void initialize (const std::string& name, ::vbsec::InitOptions& options) =0;

This method initializes an Authorization Services provider.

Arguments

This method takes the following arguments:

– A provider name.

– The provider options.

In addition to the provider's options, the following information is passed to facilitate the
interaction between this Authorization Service provider and the VisiBroker ORB:

Exceptions

Throws InitializationException if initialization of the Authorization provider fails.
virtual std::string getName() const =0;

Returns the name for this Authorization Service implementation.

Returns

The Authorization Service name.

Exceptions

none
virtual ::vbsec::PermissionCollection* getPermissions (const ::vbsec::Resource*
resource, const ::vbsec::Privileges* callerPrivileges) =0;

Returns a homogeneous collection of permission attributes for the given privileges as
well as the resource upon which the access is attempted.

Arguments

This method takes the following two arguments:

– The caller Privileges.

– The resource object upon which access is to be attempted.

Returns

A PermissionCollection object represents this subject's Permissions.

Exceptions

none

vbsec::Resource
The Resource interface gives a generic abstraction of resource. The resource can be
anything upon which the access will be made, such as a remote method of a CORBA
object, or a servlet which is essentially a resource.

Name Description

ORB The ORB instance used for the current system.

Logger A SimpleLogger instance used for login in the current
system.

LogLeve
l

An integer value denoting the security logging level.

 : Secur i ty SPI for C++ 129

vbsec::Priv i leges

Methods

virtual std::string getName () const =0;

Returns the string representation of the resource being accessed.

Returns

Name of the resource.

Exceptions

none

vbsec::Privileges
The Privileges class gives an abstraction of the privileges for a subject. It is the
container of authorization privilege attributes, such as Distinguished Name (DN)
attributes, and such. The AuthorizationService makes the decision on whether the
subject has permission to access the certain resource based on the privileges object of
the subject.

The privileges object is stored inside the subject as one of the PublicCredentials. At the
same time, privileges hold one reference to the referring subject. Privileges also
contain a DN attributes map, as well as a map of other authorization attributes.

The Privileges class implements the javax.security.auth.Destroyable interface.

Constructors

Privileges (const std::string& name, ::vbsec::Subject& subject);

This constructor creates a privileges object with the given name and associates it with
the given subject.

Arguments

The method takes the following two arguments:

– Name of the Privileges object, which is actually the associated Subject's name.

– The target subject.

Exceptions

none

Methods

::vbsec::Subject& getSubject() const ;

This method returns the subject that the privileges object represents.

Returns

The target subject.

Exceptions

none
std::string getSubjectName() const;

This method returns the name of the associated subject object.

Returns

The target subject.

130 VisiBroker Secur i ty Guide

vbsec::Attr ibuteCodec

Exceptions

none
const ::vbsec::ATTRIBUTE_MAP& getAttributes() const ;

This method returns the attribute map of the user.

Returns

The user's attribute map.

Exceptions

none
void setDBAttributes (const ::vbsec::ATTRIBUTE_MAP& map);

This method updates the DN Attributes of the user.

Arguments

The new DN Attributes Map.

Note

After the DN Attributes Map has been set, the Privileges object will set the underlying
DN Attributes Map as unmodifiable.

Exceptions

none
const ::vbsec::ATTRIBUTE_MAP* getDNAttributes() const;

This method returns the DN Attributes of the Privileges object, which can be null.

Returns

User's DN Attributes map, which is not modifiable.

Exceptions

none
bool isDestroyed() const;

This method checks whether the privileges object has been destroyed or not.

Returns

true|false

Exceptions

none
std::string toString() const;

This method overrides the default toString implementation of java.lang.Object, and
returns “Privileges for <subject name>” information.

Returns

List of privileges for each subject name.

Exceptions

none

vbsec::AttributeCodec
The AttributeCodec objects are responsible for encoding and decoding privileges
attributes of a given subject. This allows clients and servers to communicate the

 : Secur i ty SPI for C++ 131

vbsec::Attr ibuteCodec

privilege information to each other. Though the privilege information is used as the
basis for the Authorization decision-making process, AttributeCodec selection is based
on the information presented in the IOR published by the server. Inside the IOR, the
server publishes information on the encoding scheme supported, while clients select
an AttributeCodec that supports the given encoding.

All the AttributeCodecs implementations are registered with the IdentityServices, which
are called upon during the import/export of the authorization elements process.

Methods

virtual void initialize (const std::string& name, vbsec::InitOptions& options) =0;

This method initializes this instance of the AttributeCodec implementation. There can
be multiple implementations existing in one ORB, and each is addressed internally
using the name provided.

Arguments

This method takes the following arguments:

– A string of AttributeCodec implementation names.

– Provider options.

For the provider's options, the following additional information is also passed during the
initialization:

Exceptions

Throws InitializationException if initialization of this AttributeCodec object fails.
virtual std::string getName() const =0;

This method returns the name of the provider implementation.

Returns

The provider name string.

Exceptions

none
virtual CSIIOP::ServiceConfigurationList* getPrivilegeAuthorities() const =0;

This method returns a list of supported privilege authorities.

Returns

A list of privilege authorities.

Exceptions

none
4. virtual CSI::AuthorizationElementType getSupportedEncoding() const = 0;

This method returns the supported AuthorizationElement type.

Returns

An AuthorizationElement type.

Name Description

ORB The ORB instance used for the current system.

Logger A SimpleLogger instance used for the current system for the purpose of logging.

LogLeve
l

An integer value denoting the security logging level.

132 VisiBroker Secur i ty Guide

vbsec::Attr ibuteCodec

Exceptions

none
virtual bool supportsClientDelegation() const =0;

Returns whether this implementation supports ClientDelegation.

Returns

true|false

Exceptions

none
virtual CSI::AuthorizationToken* encode (const CSIIOP::ServiceConfigurationList&
privilege_authorities, vbsec::Privileges& caller_privileges, vbsec::Privileges&
asserter_privileges) =0;

This method encodes privileges as AuthorizationElements. This method encodes the
privilege attributes of the given caller and the given asserter, if there is one. It will
extract the privilege information from the subject and privilege map of the caller and the
asserter.

Additionally, an implementation of the AttributeCodec (if supports ClientDelegation) may
choose to verify whether the asserter is allowed to assert the caller based on the client
delegation information presented by this caller.

Arguments

This method takes the following arguments:

– A set of caller privileges attributes.

– A set of asserter privileges attributes.

Returns

Encoded caller and asserter privileges.

Exceptions

Throws NoDelegationPermissionException if the assertion is not allowed.
virtual void decode (const ::CSI::AuthorizationToken& encoded_attributes,
vbsec::Privileges& caller_privileges, vbsec::Privileges& asserter_privileges) =0;

This method decodes authorization elements and populates the corresponding
privileges objects. This is the inversion process of the encode method. When a server
receives a set of encoded AuthorizationElements, it passes these elements to the
AttributeCodec for interpretation. Based on the encoding method, one particular
AttributeCodec consumes the attributes it understands. It may update the caller's or
asserter's Privileges, or may add RolePermission directly to the subject's public
credentials.

Arguments

This method takes the following arguments:

– A set of encoded Authorization Elements.

– A set of caller privileges.

– A set of asserter privileges.

Returns

This method returns nothing. Upon a successful processing, this AttributeCode object
updates the caller's or asserter's Privileges maps as appropriate based on the
information available in the authorization elements.

Exceptions

Throws NoDelegationPermissionException if the assertion is not authorized.

 : Secur i ty SPI for C++ 133

vbsec::Permission

vbsec::Permission
Permission represents the authorization information to access resources. Every
permission has a name, which can be interpreted only by the actual implementation.

Include file

The vbsecspishared.h file should be included when you use this class.

Methods

bool implies (const Permission& p) const

Evaluate if the permission implies another given permission. This is used during the
authorization process to determine if the caller permissions imply the permissions
required by the resource. Access will be granted if the caller permissions imply the
required permission, or denied if not.

Arguments

The permission p to be evaluated.

Returns

true if the permission implies an existing permission, false otherwise.
bool operator==(const Permission& p) const

Checks if the permission equals another given permission.

Arguments

The permission p to be evaluated.

Returns

true if the permissions are equal, false otherwise.
std::string getName () const

Gets the name of the permission.

Returns

The name of the permission.
std::string getActions () const

Get the actions of the permission as a string. It is only interpreted by the actual
implementation.

Returns

The string representation of the action for the permission.
std::string toString () const

Get the string representation of the permission.

Returns

The string representation of the permission.

vbsec::PermissionCollection
PermissionCollection represents a collection of permissions.

134 VisiBroker Secur i ty Guide

vbsec: :RolePermission

Include file

The vbsecspishared.h file should be included when you use this class.

Methods

bool implies (const Permission& p) const

Evaluate if the PermissionCollection implies the given permission.

Arguments

the permission p to be evaluated.

Returns

true if the PermissionCollection implies the given one, false otherwise.

vbsec::RolePermission
The RolePermission class provides the basis for authorization and trust in the
VisiSecure system.

Constructors

RolePermission (const std::string& role)

This constructor creates a RolePermission object representing a logic role.

Arguments

A logical role string this RolePermission object represents.

Returns

A RolePermission object.

Exceptions

none

Methods

virtual bool implies (const Permission& permission) const;

This method checks whether the permission object passed in implies this
RolePermission object. The check is based on strict equality, as the method only
returns true (implies) when ALL the following conditions exist:

1 the permission object given is an instance of RolePermission, and

2 the name of the permission object given equals the name of this RolePermission.

Arguments

A Permission object to check.

Returns

True|False

Exceptions

none
virtual std::string getActions() const;

 : Secur i ty SPI for C++ 135

This method returns the action associated with this RolePermission.

Returns

Always returns null, since there are no actions associated with a RolePermission
object.

Exceptions

none

vbsec::TrustProvider
When a remote peer (server or process) makes identity assertions in order to act on
behalf of the callers, the end-tier server needs to trust the peer to make such
assertions. This is meant to prevent untrusted clients from making assertions.

The key method is isAssertionTrusted, which is called to determine whether the
assertion is trusted given the caller subject and asserter's privileges. This method is
called (by the underline implementation) after the corresponding authorization
elements transmitted from a client to the server have been consumed.

You use the TrustProvider class to implement trust rules which determine whether the
end-tier server accepts identity assertions from a given asserting subject. The
TrustProvider class is very closely related to the implementation of the AttributeCodec
objects and the privileges. For example, it is possible to provide the decision-making
implementation as follows:

1 Provide class implementations representing a proxy endorsement attribute,

2 AttributeCodec implements the necessary logic then passes the attributes and
imports them to the caller subject on the server-side. It is also necessary to return
true for the method supportsClientDelegation defined in the AttributeCodec
interface.

3 Provide the method implementation based on the proxy endorsement attribute of
the caller and the privileges of the asserter.

This type of evaluation of trust, which is based on rules provided by the caller, is
referred to as Forward Trust. Backward Trust is when the evaluation of trust is based
on the rules of the target. Backward Trust is the default provided with the VisiSecure
installation. For more information, see “Trust assertions and plug-ins”.

Methods

virtual void initialize (::vbsec::InitOptions&, std::map<std::string, std::string>&) =0;

This method initializes the TrustProvider. There can be only one instance of the
TrustProvider implementation existing for each process.

Arguments

For the provider's options, the following additional information is also passed during the
initialization:

Exceptions

Throws InitializationException if initialization of the TrustProvider fails.

Name Description

ORB The ORB instance used for the current system.

Logger A SimpleLogger instance used for the current system for the purpose of logging.

LogLeve
l

An integer value denoting the security logging level.

136 VisiBroker Secur i ty Guide

virtual bool isAssertionTrusted (const ::vbsec::Subject&, const ::vbsec::Privileges&)
=0;

This method verifies whether an assertion of the caller by the asserter with the
provided privileges is trusted or not. The implementation makes use of the internal trust
rules for this process to determine the validity of the assertion.

Arguments

This method takes the following two arguments:

– The caller.

– The set of asserter privileges.

Returns

true|false

Exceptions

none

vbsec::InitOptions
InitOptions is a data structure passed to user plug-ins during initialization calls that
facilitates the initialization process.

Include file

The vbsecspishared.h file should be included when you use this class.

Data Members

std::map<std::string, std::string>* options

A string map containing name/value pair presenting parsed property setting.
::PortableInterceptor::ORBInitInfo* initInfo

Object representing the ORB initialization information.
::IOP::Codec* codec

An IOP Codec object.
::vbsec::SimpleLogger* logger

A logger object.
int logLevel

The log level currently configured for the security service.

vbsec::SimpleLogger
SimpleLogger is a mechanism to log information of various levels. Currently, it supports
four different levels: LEVEL_WARNING, LEVEL_NOTICE, LEVEL_INFO, and LEVEL_DEBUG, with
increasing detailed information. There is only one logger in the whole security service.

Include file

The vbsecspishared.h file should be included when you use this class.

 : Secur i ty SPI for C++ 137

Methods

::std::ostream& WARNING()

Returns the logging output stream for warning messages.

Returns

The logging output stream for LEVEL_WARNING.
::std::ostream& NOTICE()

Returns the logging output stream for notice messages.

Returns

The logging output stream for LEVEL_NOTICE, or a fake stream if the log level is set below
LEVEL_NOTICE.

::std::ostream& INFO()

Returns the logging output stream for info messages.

Returns

The logging output stream for LEVEL_INFO, or a fake stream if the log level is set below
LEVEL_INFO.

::std::ostream& DEBUG()

Returns the logging output stream for debug messages.

Returns

The logging output stream for LEVEL_DEBUG, or a fake stream if the log level is set below
LEVEL_DEBUG.

138 VisiBroker Secur i ty Guide

 A: Vis iSecure Error Codes 139

Appendix AVisiSecure Error Codes
This appendix provides information about error codes for VisiSecure.

The tables in the subsequent sections lists most of the minor codes and their
corresponding descriptions that accompany the CORBA system exceptions thrown
from within VisiSecure Java and/or C++ module. ERROR_ID helps you to identify/
represent these errors inside the code as illustrated in the following sections:

Modifying Minor Codes in C++:

The header file "vbsecminors.h" needs to be included for ERROR_IDs to be made
available. Then, in the code, you can use vbsec::MinorCodes::<ERROR_ID>\

For example;

vbsec::MinorCodes::ERROR_PARSING_CERTIFICATE helps to identify a given error (returned
in the form of minor code as part of a CORBA system exception).

Modifying Minor Codes in Java:

You can use com.borland.security.util.MinorCodes.<ERROR_ID>

For example: com.borland.security.util.MinorCodes.ERROR_PARSING_CERTIFICATE can be
used to identify a given error (returned in the form of minor code as part of a CORBA
system exception).

The static method String getMinorCodeDescription (int minor) of class
com.borland.security.util.MinorCodesUtil can be used to fetch the brief textual
description of the error code.

140 VisiBroker Secur i ty Guide

General Errors

General Errors

PKI Errors

SSL Errors
The followings are the translation of SSL Error alerts as per the SSL (see http://
wp.netscape.com/eng/ssl3/ssl-toc.html)

Error Minor code
Error Identifier
(ERROR_ID) Error Description Associated Corba Exception

0x56422100 INTERNAL_ERROR Unrecoverable internal runtime error NO_PERMISSION
BAD_PARAM
INTERNAL

0x56422101 UNTRUSTED_ASSERTION Peer has insufficient privilege to assert the
caller.
See the description of the following properties/
scheme: vbroker.security.trust.*

NO_PERMISSION

Error Minor
code

Error Identifier
(ERROR_ID) Error Description Associated Corba Exception

0x56422201 ERROR_PARSING_CERTIFICA
TE

Unknown error when parsing the certificate data
Example cause: corrupted DER/Base64 data
often happens when copying over via ftp that
may involve translation for UNIX<->DOS CR-LF

NO_PERMISSION
BAD_PARAM

0x56422202 ERROR_PARSING_PRIVATE_K
EY

Unknown/unclassified error when parsing the
private key data.
Example cause: corrupted DER/Base64 data
often happens when copying over via ftp that
may involve translation for UNIX<->DOS CR-LF

BAD_PARAM

Error Minor
code

Error Identifier
(ERROR_ID) Error Description Associated Corba Exception

0x56422221 UNKNOWN_CERTIFICATE Translated from SSL alerts: certificate_unknown NO_PERMISSION
BAD_PARAM

0x56422222 UNSUPPORTED_CERTIFICATE Translated from SSL alerts:
unsupported_certificate

NO_PERMISSION

0x56422223 BAD_CERTIFICATE Translated from SSL alerts: bad_certificate NO_PERMISSION
BAD_PARAM

0x56422224 CERTIFICATE_REVOKED Translated from SSL alerts: certificate_revoked NO_PERMISSION

0x56422225 CERTIFICATE_EXPIRED Translated from SSL alerts: certificate_expired NO_PERMISSION
BAD_PARAM

0x56422226 BAD_RECORD_MAC Translated from SSL alerts: bad_record_mac NO_PERMISSION

0x56422227 HANDSHAKE_FAILURE Translated from SSL alerts: handshake_failure NO_PERMISSION
BAD_INV_ORDER

http://wp.netscape.com/eng/ssl3/ssl-toc.html
http://wp.netscape.com/eng/ssl3/ssl-toc.html
http://wp.netscape.com/eng/ssl3/ssl-toc.html
http://wp.netscape.com/eng/ssl3/ssl-toc.html

 A: Vis iSecure Error Codes 141

PKCS12 Errors

PKCS12 Errors

General Security Policies (GSP) Errors

Common Secure Interoperable (CSI) Errors

Authentication Errors

Error Minor
code

Error Identifier
(ERROR_ID) Error Description Associated Corba Exception

0x56422251 P12_GENERAL_ERROR Unknown error when processing PKCS12 data BAD_PARAM
NO_RESOURCES

0x56422252 P12_INVALID_DATA_FORMAT Corrupted PKCS12 data BAD_PARAM

0x56422253 P12_INVALID_PK_FORMAT The private key retrieved from PKCS12 data is
of unsupported format

BAD_PARAM

0x56422255 P12_MISSING_DATA The PKCS12 data does not contain the required
item

BAD_PARAM

Error Minor
code

Error Identifier
(ERROR_ID) Error Description Associated Corba Exception

0x56422271 SERVER_REQUIRES_SECURE
_CONNECTIONS

Secure transport is not available in this client
while the server requires it to connect using a
secure connection

NO_PERMISSION

0x56422272 SECURITY_CURRENT_UNAVAI
LABLE

SSL session is not available, possible causes:
not in a request context, not an SSL connection
or invalid object reference (on client side)

BAD_OPERATION

0x56422273 NO_POSSIBLE_CONNECTION All available connections to the server do not
meet the security requirements set up on this
client

NO_PERMISSION

0x56422274 SERVER_REQUIRES_TRANSP
ORT_IDENTITY

The server requires transport identity while this
client does not have any

NO_PERMISSION

Error Minor
code

Error Identifier
(ERROR_ID) Error Description Associated Corba Exception

0x56422300 NO_IDENTITY The server requires at least an identity while this
client does not send any

NO_PERMISSION

0x56422301 BAD_SAS_DISC This client sends SAS (Security Attribute
Service, see OMG-CSI) that the server fails to
interpret

NO_PERMISSION
BAD_PARAM

0x56422302 UP_IDENTITY_REQD The server requires a service context based U/P
identity while this client does not send any

NO_PERMISSION

0x56422303 NO_CONTEXT This is the minor code of the NO_PERMISSION
exception thrown back to the client carrying
ContextError with major = 4 and minor = 1 for
'no context' semantic as per OMG-CSI

NO_PERMISSION
TRANSIENT

0x56422304 CONFLICTING_EVIDENCE This is the minor code of the NO_PERMISSION
exception thrown back to the client carrying
ContextError with major = 3 and minor = 1 for
'conflicting evidence' semantic as per OMG-CSI

NO_PERMISSION
TRANSIENT

0x56422305 ASSERTION_UNAUTHORIZED This is the end-tier that is not supposed to make
another call to the next tier on behalf of the
caller. Please see
vbroker.security.supportIdentityAssertion=true/
false (default=true)

NO_PERMISSION

Error Minor
code

Error Identifier
(ERROR_ID) Error Description Associated Corba Exception

0x56422400 LOGIN_FAILED This is the minor code of the NO_PERMISSION
exception thrown back to the client carrying
ContextError with major = 1 and minor = 1 for
'invalid evidence' semantic as per OMG-CSI

NO_PERMISSION
BAD_PARAM

142 VisiBroker Secur i ty Guide

Authorizat ion Errors

Authorization Errors

Error Minor
code

Error Identifier
(ERROR_ID) Error Description Associated Corba Exception

0x56422500 FAILED_AUTHORIZATION The caller has insufficient privileges required to
perform the action

NO_PERMISSION

0x56422501 INVALID_ROLE The required run-as role is not configured on
this system

NO_PERMISSION

0x56422502 EMPTY_ALIAS_FOR_ROLE The required alias for the specified run-as role is
not configured on this system

NO_PERMISSION

0x56422503 ACCESSED_BY_UNKNOWN_U
SER

Access is denied because the caller is
unknown. Caller is either null or anonymous

NO_PERMISSION

0x56422504 ACCESSED_BY_UNAUTHENTI
CATED_USER

Access is denied because the caller is not
trusted

NO_PERMISSION

 B: Appendix 143

Appendix BAppendix
Basic LoginModule
This LoginModule uses a proprietary schema to store and retrieve the user information.
It uses the standard JDBC to store its data in any relational database. This module also
supports the proprietary schema used by the Tomcat JDBC realm.

realm-name {
 com.borland.security.provider.authn.BasicLoginModule authentication-requirements-flag
 DRIVER=driver-name
 URL=database-URL
 TYPE=basic|tomcat
 LOGINUSERID=user-name
 LOGINPASSWORD=password
 [USERTABLE=user-table-name]
 [GROUPTABLE=group-table-name]
 [GROUPNAMEFIELD=group-name-field-of-GROUPTABLE]
 [PASSWORDFIELD=field-name]
 [USERNAMEFIELDINUSERTABLE=field-name]
 [USERNAMEFIELDINGROUPTABLE=field-name]
 [DIGEST=digest-name]
};

The elements in square brackets (“[..]”) are used only when authenticating to the
Tomcat Realm, where they would be required. Otherwise, the remaining properties are
sufficient.

Property Description

DRIVER The fully-qualified class name of the database driver
to be used with the password backend. For example,
com.borland.datastore.jdbc.DataStoreDriver

URL The fully-qualified URL of the database used for the
realm.

TYPE The schema to use for this realm. This LoginModule
supports the schema used by the Tomcat JDBC
realm and can be made to use that schema. Set this
to “TOMCAT” to use the Tomcat schema. Set this to
“basic” to use the Borland schema.

Note: If this property is set to “TOMCAT,” all other
properties in square braces (“[..]”) must also be set.

LOGINUSERID Username needed to access the password backend
database.

LOGINPASSWORD Password needed to access the password backend
database.

144 VisiBroker Secur i ty Guide

Appendix

Premium {
 com.borland.security.provider.authn.BasicLoginModule required
 DRIVER="com.borland.datastore.jdbc.DataStoreDriver"
 URL="jdbc:borland:dslocal:/Security/java/prod/userauthinfo1.jds"
 Realm="Basic"
 LOGINUSERID="CreateTx"
 LOGINPASSWORD="";
};

Since password should never be stored in the clear text, VisiSecure always performs
digest on the password and stores the result in the database. The digesttype option
defines the digest algorithm for this. By default, an SHA algorithm is used for basic-
typed schema, while MD5 is used for tomcat-typed schema. You can change it by
including and setting a digesttype option. In the case where the corresponding digest
type engine cannot be found by the JVM, SHA is used instead. If an SHA engine
cannot be found either, the authentication will always fail.

JDBC LoginModule

This LoginModule uses a standard JDBC database interface for authentication.
realm-name {
 com.borland.security.provider.authn.JDBCLoginModule authentication-requirements-flag
 DRIVER=driver-name
 URL=database-URL
 [DBTYPE=type]
 USERTABLE=user-table-name
 USERNAMEFIELD=user-name-field-of-USERTABLE
 ROLETABLE=role-table-name
 ROLENAMEFIELD=field-name
 USERNAMEFIELDINROLETABLE=field-name
};

[USERTABLE] Table name under which the username/password to
be authenticated is stored.

[USERNAMEFIELDINUSER-TABLE] The field name in USERTABLE where the userID
can be read.

[USERNAMEFIELDIN-GROUPTABLE] The field name in GROUPTABLE where the userID
can be read, different from that in the USERTABLE.

[PASSWORDFIELD] The field name in USERTABLE containing the
password for the username to be authenticated.

[GROUPTABLE] The table name under where the group information
for the user is stored. When TYPE is set to
“TOMCAT,” the attribute represented by entries in
this table are treated as roles rather than groups.

[GROUPNAMEFIELD] Name of the field in GROUPTABLE containing the
group name to be associated with the user. When
the TYPE is set to “TOMCAT,” the attribute
represented by entries in this table are treated as
roles rather than groups.

[DIGEST] The algorithm to use for digesting the password. This
defaults to SHA under basic circumstances, but
defaults to MD5 when TYPE is set to “TOMCAT”.

Property Description

DRIVER Fully-qualified class name of the database
driver to be used with the realm. For
example,
com.borland.datastore.jdbc.DataStoreDriver

URL Fully-qualified URL of the database used for
the password backend.

Property Description

 B: Appendix 145

Appendix

LIMS {
 com.borland.security.provider.authn.JDBCLoginModule required
 DRIVER="com.borland.datastore.jdbc.DataStoreDriver"
 URL="jdbc:borland:dslocal:/Security/java/prod/userauthinfo.jds"
 USERTABLE=myUserTable
 USERNAMEFIELD=userNames
 ROLETABLE=myRoles
 ROLENAMEFIELD=roleNames
 USERNAMEFIELDINROLETABLE=userRole
 USERNAME="\n"
 PASSWORD="\n";
};

LDAP LoginModule

Similar to the JDBC LoginModule, but using LDAP as its authentication backend.
realm-name {
 com.borland.security.provider.authn.LDAPLoginModule authentication-requirements-flag
 INITIALCONTEXTFACTORY=connection-factory-name
 PROVIDERURL=database-URL
 SEARCHBASE=search-start-point
 USERATTRIBUTES=attribute1, attribute2, ...
 USERNAMEATTRIBUTE=attribute
 QUERY=dynamic-query
};

[DBTYPE=
ORACLE|SYBASE|SQLSERVER|
INTERBASE]

Supported database types. If this option is
specified, the table information is
preconfigured and need not be specified.
The username/password still need to be
specified to allow access to the system
tables.

USERTABLE Table name under where the database
stores users.

USERNAMEFIELD The field name in USERTABLE containing the
usernames.

ROLETABLE Table name where the database stores the
roles of users.

ROLENAMEFIELD Field name in ROLETABLE where role
information is stored.

USERNAMEFIELDINROLE-TABLE The username field name in the ROLETABLE.

USERNAME The username needed to access the
password backend database.

PASSWORD The password needed to access the
password backend database.

Property Description

INITIALCONTEXTFACTORY The InitialContextFactory class that is used by JNDI to bind
to LDAP.

PROVIDERURL The URL to the LDAP server of the form ldap://
<servername>:<port> .

SEARCHBASE The search base for the Directory to lookup.

USERATTRIBUTES This option controls the attributes that are retrieved for a
given user. This is a comma separated list of attributes that
will be retrieved and stored for an authenticated user. These
attributes can then be used in the authorization rules to
determine whether a user belongs to a given role.

Property Description

146 VisiBroker Secur i ty Guide

Appendix

Host LoginModule

The HostLoginModule is used to authenticate to a UNIX or NT-based network.
realm-name {
 com.borland.security.provider.authn.HostLoginModule authentication-requirements-flag;
};

No additional properties are necessary for the Host LoginModule.
Snoopy {
 com.borland.security.provider.authn.HostLoginModule required;
};

Shadow password for the Host LoginModule

On UNIX platforms:

The HostLoginModule shipped with VisiSecure for UNIX platforms utilizes simple APIs
that is uniform on most UNIX platforms. This is defined in the POSIX standard header
file pwd.h. Advanced shadow password APIs are available for deployments that
demand higher security measures. However, one problem associated with this is that
the process calling the APIs must run as root. Since the APIs are not in POSIX
standard, the login module code is less portable.

To write your own custom login module, refer to the ‘customlogin’ example inside
VisiSecure example folder. You may then incorporate shadow password APIs in your
custom login module.

These APIs are available in the system header file: ‘shadow.h’.

Please consult your system manual to find out more about them.

USERNAMEATTRIBUTE This attribute represents what the user types in as the
username. If set to uid, it would allow users to type their uid
when asked for a username. If set to mail, it would allow the
user to type their email when asked for a user name. When
set to DN, the user will types their full DN to authenticate
themselves.

QUERY The Query options provides a mechanism to dynamically
query the LDAP for other information and represent the
results as attributes. For example, a user can be a member
of a set of groups. It is useful to extract this information as the
GROUP attribute so that it can be used in rules in the
authorization domain. To achieve this, you can specify a
query. Queries are of the format:

query.<suffix>="<attrname>=<ldap filter>";

The suffix can be anything that uniquely identifies this
entry and there can be any number of queries
specified. To insert the user's DN as part of the query,
you should use {0}. The LDAPLoginModule will then
replace the {0} with the actual DN of the user. For
example, to query groups and store the results in the
GROUP attribute, you say:

query.1="GROUP=(&(ou=groups)(uniquemember={0}))";

This will select all the groups (whose ou attribute has
the value groups) that the user belongs to whose
uniquemember attribute contains the user's DN, then
stores the CN of the objects returned as the result as
the values for the GROUP attribute for that user. If the
attribute name specified is ROLE, then this attribute's
treatment is exactly like that of the JDBCLoginModule. This
mechanism can be used to store user roles in LDAP.

Property Description

 B: Appendix 147

Creat ing user database for basic login module

From the user's perspective, as already indicated above, any VisiBroker application
(client/server) configured with an authentication realm, employing such a login module,
must be invoked with root (or SUID root) system-level privileges."

Creating user database for basic login module
As a first step, we'll create/configure our database to store users and roles. Borland
provides the 'userdbadmin' tool (run from the command line) to auto-create required
tables, create groups and associate users with groups.

We'll use JDataStore for this example; though any backend - like Oracle, DB2, Sybase,
MS SQL Server, etc. can be used. A sample command is shown below. For
JDataStore, the command is to be run from the command prompt when the current
working directory is:

$BES/var/servers/[server_name]
 userdbadmin
 -create
 -db jdbc:borland:dslocal:adm/security/mydb.jds
 -driver com.borland.datastore.jdbc.DataStoreDriver
 -user admin
 -password admin
 -interactive
>addgroups accountant
 >addgroups clerk
 >adduser krish krishpwd accountant
 >adduser john johnpwd accountant
 >adduser bill billpwd clerk
 >adduser scott scottpwd clerk
 >quit

The above commands typed at the ">" prompt creates two groups 'accountant' and
'clerk' in the database. Two users with usernames krish and john are in an accountant
role; while bill and scott are in the role of clerks. (Type 'help' at the ">" prompt for a list
on available commands).

Using userdbadmin tool
The userdbadmin is a command-line tool that can be used to create and manage user
databases for the BasicLoginModule. The userdbadmin uses a properietary schema and
can be pointed at any database. Using this tool, you can administer users who can be
authenticated uing Basic login modules. Though the tool and BasicLoginModule work
using various JDBC databases, it is still recommended that you use Borland
JDataStore that is shipped with the VisiBroker.

To facilitate the use of popular databases, the userdbadmin tool comes pre-configured to
recognize database urls (keyed of the vendor and configure itself to use the
appropriate drivers.

If you wish to change that, you may override by specifying the driver information.

If you don't provide driver information, the userdbadmin does not recognize the
database and it will prompt for this information. Once it has successfully acquired this
information, it will write this information into a file called .userdbadmin.config in the
directory corresponding to the user.home system property or to the file specified by the -
config command line option.

Future users of userdbadmin will read the config file from either the user.home directory or
from the file specified by the -config option and will recognize the new database
configuration, so you don't have to type the driver information every time.

Creating a new database

To create a new database, use the following commands below.

Usage: userdbadmin [<driver options>] [<userdbadmin options>] [command]

148 VisiBroker Secur i ty Guide

The example below creates a new database namely mydb.jds.
prompt> userdbadmin -db jdbc:borland:dslocal:mydb.jds -driver
com.borland.datastore.jdbc.DataStoreDriver -user administrator -password b0rlanD -create

The username/password that you supply in the command line above is used by JDataStore
to protect the database as well as to access to the database subsequently.

Note: The username/password is for JDataStore itself. This has nothing to do with the
usernames and passwords that you may want to store in the database later.

UserdbAdminTool: Creating database jdbc:borland:dslocal:mydb.jds
JDataStore: Developer's License (no connection limit)
JDataStore: Copyright (c) 1996-2004 Borland Software Corporation. All rights reserved.
JDataStore: License for JDataStore development only - not for redistribution
JDataStore: Registered to:
JDataStore: JDataStore
JDataStore: Developer's license with unlimited connections
Password digest algorithm is SHA1
UserdbAdminTool: Created Database Schema

prompt>
After the execution of the command, in your current directory, a new set of JDataStore
database physical files will be created as follows:

mydb.jds
mydb_LOGA_0000000000
mydb_LOGA_ANCHOR
mydb_STATUS_0000000000

Creating groups and associating users with groups

Launch userdbadmin tool in an interactive mode with the created database. The
interactive mode helps you to issue multiple commands.

To launch userdbadmin tool in an interactive mode with the created database, enter the
command as given below at the command prompt.

prompt> userdbadmin -db jdbc:borland:dslocal:mydb.jds -driver
com.borland.datastore.jdbc.DataStoreDriver -user administrator -password b0rlanD -
interactive

JDataStore: Developer's License (no connection limit)
JDataStore: Copyright (c) 1996-2004 Borland Software Corporation.
All rights reserved.
JDataStore: License for JDataStore development only - not for redistribution
JDataStore: Registered to:
JDataStore: JDataStore
JDataStore: Developer's license with unlimited connections
Password digest algorithm is SHA1
Enter "quit" to quit.
>

Note: You are inside userdbadmin interactive mode that is waiting for you to type
commands at its '>' prompt.

Adding new users

To add a new username with password and make the user member of the group(s),
type the following below in the command line.

Example 1:
> adduser krish krishpwd accountant

Example 2:
> adduser bill billpwd clerk

 B: Appendix 149

In example 1, you have added a user whose name is Krish and password krishpwd and
added him as the user member of the group called accountant.

In example 2, you have added a user whose name is bill and password billpwd and
added him as the user member of the group called clerk.

Listing exising users in the database

To list existing users in the database, type ‘listusers’ in the command line to list all the
users and their groups:

> listusers
bill: [clerk]
john: [accountant]
krish: [accountant]

Listing all groups in the database

To list all groups and their membership, enter listgroup at the command prompt.
> listgroups
clerk: [bill]
accountant: [krish john]

Create new groups and check using listgroups

To create new groups and their membership, enter addgroup at the command prompt.
> addgroups dba admin

You can check the newly added group by running the command listgroup. The newly
added group dba would be listed.

> listgroups
dba: []
admin: []
clerk: [bill]

Assign groups to existing users

To assign user krish to group dba and group admin, enter the following command at
the prompt

> joingroups krish dba admin

You can check the newly added user by running the command listusers. The newly
added group dba would be listed.

> listusers
bill: [clerk]
john: [accountant]
krish: [accountant dba admin]

Remove group from database

To remove group accountant from the database permanently, enter the following
command removegroups at the prompt.

> removegroups accountant

You can check the newly removed group by running the command listusers. The newly
removed group accountant will not be listed.

> listusers
bill: [clerk]
john: []

150 VisiBroker Secur i ty Guide

krish: [dba admin]

Add a new user without any group

You can add a new user without adding him to any specific group. enter the command
adduser at the command prompt

> adduser jack jackpwd

You can check the newly added user by running the command listusers. The newly
added group dba would be listed.

> listusers
bill: [clerk]
jack: []
john: []
krish: [dba admin]

Remove group admin from user

To remove the group from the user, enter the command leavegroup at the command
prompt.

> leavegroups krish admin

You can check the check the newly removed user by running the command listusers.
The newly removed user would be listed.

> listusers
bill: [clerk]
jack: []
john: []
krish: [dba]

Remove user from the group

To remove the user from the group, enter the command leave group at the command
prompt.

> removeuser bill

You can check the check the newly removed user by running the command listusers.
The newly removed user would be listed.

> listusers
jack: []
john: []
krish: [dba]

Exiting the userdbadmin program

To exit out of the userdbadmin program, enter the command quit at the command.
> quit

Index 151

Symbols
.defaultAccessRule property 85
.rolemap_enableRefresh property 85, 89
.rolemap_path property 85, 89
.rolemap_refreshTimeInSeconds property 85, 89
.runas.< 85

A
access control list 29
ACL 29
AnonymousAdapter 121
API, C++ security 93
APIs

security for C++ 117
SPI for C++ 117

assertion 76, 81
trusting 46

assertion syntax 31
extensible 33
using logical operators 32
value 32
wildcard 32

asymmetric encryption 52
AttributeCodec 119

interface 130
authenticated target 12
authentication

Borland LoginModules 24
certificate-based using APIs 75, 80
certificate-based using KeyStores 15, 19, 75, 80
creating a vault 25
credentials 8
JAAS 7
JAAS config 22
LoginContext class 20
LoginModule 9
LoginModule and realm 22
LoginModule interface 20
LoginModules 14, 21
pkcs12-based using APIs 20, 75, 81
pkcs12-based using KeyStores 18, 20, 75, 80
pluggability 9
private credentials 8
public credentials 8
realm entry in config.jaas 23
realms 12
server and client 146
setting config file location 12
stacked LoginModules 21
system identification 10
username/password using APIs 74, 80
username/password using LoginModules 14, 74, 80
vault 16

Authentication Errors 141
authentication mechanism 12, 14
authentication mechanisms 20
authentication realm 3, 12
AuthenticationMechanism 9, 119
AuthenticationMechanisms 124
authorization 29

access control list 29

C++ API 114
CORBA 39
hierarchy 32
pluggability 29
Role DB 29
roles 29

authorization domains 3, 33
Authorization Errors 142
AuthorizationServiceProvider interface 29
AuthorizationServicesProvider 127

B
backward trust 47
Basic LoginModule

code sample 144
properties 143
realm entry syntax 143

BasicLoginModule 24
Borland LoginModules

Basic LoginModule 143
Host LoginModule 146
JDBC LoginModule 144
LDAP LoginModule 145

C
C++ applications

providing security identities 79
securing 79
setting QoP 81

C++, security APIs 93
CA 53, 54

distinguished name 54
revoked certificates 10

certificate authorities 54
Certificate Authority 53

distinguished name 54
Certificate Authority (CA)

Certification Revocation List (CRL) 10
revoked certificate serial numbers 10

Certificate based authentication using Certificate
wallet 19

certificate mechanism 15
certificate request 53
certificate, cipher suites 50
certificates 53

chains 54
creating 53
distinguished name 54
generated files 53
generating 53
obtaining 53
public key 10
using at the SSL layer 15

Certification Revocation List
creating 10
file format 10
VisiSecure for C++ 10

cipher suites 49
supported 50

CipherSuiteName 104
cipher-text 52

Index

152 VisiBroker Secur i ty Guide

clear-text 52
CN 32
Common Secure Interoperable (CSI) Errors 141
compiler options 24
config.jaas 22
Configuring Authentication 7
constructors

Privileges class 129
RolePermission class 134
vbsec::Privileges 129
vbsec::RolePermission 134

CORBA authorization 39
CORBAsec

X509Cert 110
X509CertExtension 112

credentials 8
CRL 10
csiv2

AccessPolicyManager 115
ObjectAccessPolicy 115

D
delegation 43
digital signatures 53
distinguished name 54
DN 54
DNAdapter 121
domain name> 85
domain_name> 85, 89
domains

authorization 33
Run-as 34
VisiBroker domain authorization properties 34

DS 53

E
encrypted hash 53
encryption

asymmetric encryption 52
public-key 52
setting level of 49
symmetric encryption 53

exceptions, Security Provider Interface for C++
(SPI) 119

F
files, certificate 53
formatted target 12
forward trust 47

G
General Security Policies (GSP) Errors 141
GROUP 32
GSSUP mechanism 14
GSSUPAuthenticationMechanism 121, 124
GUI Login 24

H
hashes, encrypted 53
Host LoginModule 24, 146

code sample 146
realm entry syntax 146

HTTPS 55

I
identities

setting up assertion 76, 81
ways to provide 74, 79

identity assertion
backward trust 47
delegation 43
forward trust 47
impersonation 43
trusting assertions 46

identity assertions 42, 43
TrustProvider interface 46

IdentityAdapter 119, 121
AnonymousAdapter 121
DNAdapter 121
GSSUPAuthenticationMechanism 121
X509CertificateAdapter 121

idl2cs
options 24

idl2csj
options 24

IIOP over HTTPS 55
Microsoft IE 55
Netscape Communicator 55

impersonation 43
ISO X.509 54

J
JAAS 7

JSSE and 73
pluggable authentication 9

JAAS authentication 7
concepts 7
credentials 8
principals 8
subjects 7

JAAS authentication credentials
private 8
public 8

Java applications
providing security identities 74
securing 73
setting QoP 75

Java Authentication and Authorization Service
(JAAS) 7

JDBC LoginModule 24
code sample 145
properties 144
realm entry syntax 144

JSSE
basic concepts 73
JAAS and 73

L
LDAP LoginModule 24

properties 145
Realm Entry syntax 145

logical operators for rules 32
LoginContext class 20
LoginModule

and realm 22

Index 153

Index

config.jaas 22
LoginModule interface 20
LoginModules 14, 20

authentication 21
authentication mechanisms 20
BasicLoginModule 24
Borland provided 24
commit phase 21
Host LoginModule 24
JDBC LoginModule 24
LDAP LoginModule 24
realm 22
stacked 21

M
MechanismAdapter interface 123
method_name> 85
methods

AttributeCodec interface 131
AuthenticationMechanisms interface 124, 125
AuthorizationServicesProvider interface 128
IdentityAdapter interface 121
MechanismAdapter interface 123
Privileges class 129
Resource interface 129
RolePermission class 134
Target interface 127
TrustProvider interface 135
vbsec::AttributeCodec 131
vbsec::AuthenticationMechanisms 124, 125
vbsec::AuthorizationServicesProvider 128
vbsec::IdentityAdapter 121
vbsec::MechanismAdapter 123
vbsec::Privileges 129
vbsec::Resource 129
vbsec::RolePermission 134
vbsec::Target 127
vbsec::TrustProvider 135

Modifying Minor Codes in C++ 139
Modifying Minor Codes in Java

139

N
n> 85, 89

O
O 32
OU 32

P
passwords authentication 14
PKC, cipher suite 50
PKCS12 Errors 141
PKI Errors 140
principals 8
private key 52

generating 53
priveleges, temporary 47
Privileges class 129

properties
C++ security 89
Java security 85

property 85, 89
Providers, security (C++) 119
public key 52
public key certificate, cipher suites 50
public-key encryption 52

Q
QoP 60

C++ API 112
cipher suites 49
setting 75, 81

Quality of Protection 57, 60
Quality of Protection (QoP)

C++ API 112
cipher suites 49
setting 75, 81

R
random number generator, seeding 76
realm entry

elements 23
elements in config.jaas 23
generic syntax 23
syntax 23

realms 12
resource domain 3
Resource interface 128
Role database 29

anatomy 31
code sample 30

Role Database, defining access control 29
Role DB 29
Role entry 31

rule 31
role, recycling rules 33
RolePermission class 134
RolePermissions class 29
roles 29
rule, using attribute/value pairs 32
run_as_role_name> 85
Run-as alias 35
Run-as mapping 34

example 39

S
SecureRandom object 76
Security

secure connections (C++) 79
secure connections (Java) 73

security
authentication 7
authentication realm 3
authorization 29
authorization domain 3
authorization hierarchy 32
basic model 3
basics 3

154 VisiBroker Secur i ty Guide

C++ APIs 93
Certification Revocation List 10
client identification 10
design 1
distributed environments 42
IIOP over plain sockets 49
JAAS 7
JAAS authentication 7
pluggability 2, 9
PRNG 76
providing identities 74, 79
providing identities (C++) 79
providing identities (Java) 74
Quality of Protection (QoP) 60
realms 12
resource domain 3
server identification 146
setting QoP 75, 81
setting up trust 76, 81
SSL 49
steps to secure clients and servers 74, 79
system identification 10
usernames and passwords 14
vault 16
VisiSecure 1
VisiSecure features 2

security (C++)
AttributeCodec 119, 130
AttributeCodec methods 131
AuthenticationMechanism 119
AuthenticationMechanisms 124
AuthenticationMechanisms methods 124, 125
AuthorizationServicesProvider 127
AuthorizationServicesProvider methods 128
com.borland.seucurity.spi.IdentityAdapter 121
IdentityAdapter 119, 121
IdentityAdapter methods 121
MechanismAdapter 123
MechanismAdapter methods 123
Privileges class 129
Privileges constructors 129
Privileges methods 129
Resource 128
Resource methods 129
RolePermission 134
RolePermission constructors 134
RolePermission methods 134
Service Provider Interface (SPI) 117
Service Provider Interface (SPI) exceptions 119
SPI exceptions 119
SPI provider settings 119
Target 127
Target methods 127
TrustProvider 119, 135
TrustProvider methods 135
vbsec::AttributeCodec 130
vbsec::AuthenticationMechanisms 124
vbsec::MechanismAdapter 123
vbsec::RolePermission 134
vbsec::Target 127
vbsec::TrustProvider 135

security (Java)
AuthenticationMechanism 9
distributed environment 5, 9
Security Provider Interface (SPI) 5
SPI 5, 9

security properties (C++) 89
security properties (Java) 85
Security Provider Interface for C++ (SPI)

AttributeCodec 119, 130
AuthenticationMechanism 119
AuthenticationMechanisms 124
AuthorizationServicesProvider 127
IdentityAdapter 119, 121
MechanismAdapter 123
Privileges class 129
Resource 128
RolePermission 134
Target 127
TrustProvider 119, 135

Security Provider Interface for Java (SPI) 5
TrustProvider interface 46

serial numbers, revoked 10
server identification 146
server, identity assertions 42
ServerQoPPolicyImpl 113
Service Provider Interface for C++ (SPI) 117
Shadow password 146
signatures, digital 53
SPI 5

AttributeCodec 119
SPI (C++) 117

AttributeCodec 130
AuthenticationMechanism 119
AuthenticationMechanisms 124
AuthorizationServicesProvider 127
exceptions 119
IdentityAdapter 119, 121
MechanismAdapter 123
modules 119
Privileges class 129
provider settings 119
Resource 128
RolePermission 134
Target interface 127
TrustProvider 119, 135

SPI (Java) 9
SSL

cipher suite 49
encryption 49
examining information 76, 81
layer, using certificates 15

ssl
CipherSuiteInfo 103
Current 105

SSL Errors 140
subjects 7
symmetric encryption 53

T
Target interface 127
temporary priveleges 47
trust

backward 47
forward 47
identity assertion 76, 81
setting 76, 81

TrustProvider 119
TrustProvider interface 135

Index 155

Index

U
user domain 3
usernames, authentication 14

V
vault 16

creating 25
VaultGen tool 25

VaultGen example 26
VaultGen tool 25
vbroker.se.iiop_tp.scm.ssl.listener.trustInClient

property 85
vbroker.security

alwaysSecure property 85, 89
assertions.trust.< 85, 89
assertions.trust.all property 85, 89
authDomains property 85, 89
authentication.callbackHandler property 85, 89
authentication.clearCredentialsOnFailure

property 85
authentication.config property 85, 89
authentication.retryCount property 85, 89
cipherList property 85, 89
controlAdminAccess property 85
CRLRepository 10, 89
defaultJSSETrust property 85
disable property 85, 89
domain.< 85, 89
enableAuthentication property 85
identity.enableReactiveLogin property 85
identity.reactiveLogin property 89
identity.reauthenticateOnFailure property 85
logFile property 89
login property 85, 89
login.realms property 85, 89
logLevel property 85, 89
peerAuthenticationMode property 85, 89
requireAuthentication property 85, 89
secureTransport property 85, 89
server.requireUPIdentity property 85, 89
server.transport property 85, 89
serverManager.authDomain property 85
serverManager.role.< 85
serverManager.role.all property 85
support.gatekeeper.replyForSAS property 85
transport.protocol property 85
trustpointsRepository property 85, 89
vault property 85, 89
wallet.identity property 85, 89
wallet.password property 85, 89
wallet.type property 85, 89

vbroker.security.authentication.config property 12
vbsec::AttributeCodec 130

methods 131
vbsec::AuthenticationMechanisms 124

methods 124, 125
vbsec::AuthorizationServicesProvider 127

methods 128
vbsec::CertificateFactory 108
vbsec::ClientConfigImpl 114

vbsec::ClientQoPPolicyImpl 114
vbsec::Context 94
vbsec::Credential 98
vbsec::Current 93
vbsec::IdentityAdapter 121

methods 121
vbsec::MechanismAdapter 123

methods 123
vbsec::Principal 97
vbsec::Privileges 129

constructors 129
methods 129

vbsec::Resource 128
methods 129

vbsec::RolePermission 134
constructors 134
methods 134

vbsec::SecureSocketProvider 104
vbsec::ServerConfigImpl 112
vbsec::SSLSession 101
vbsec::Subject 98
vbsec::Target 127

methods 127
vbsec::TrustProvider 135

methods 135
vbsec::VBSSLContext 103
vbsec::Wallet 99
vbsec::WalletFactory 100
VisiBroker for C++, security properties 89
VisiBroker for Java, security properties 85
VisiSecure 1
VisiSecure API (C++)

AccessPolicyManager 115
authorization API 114
Certificate APIs 108
CertificateFactory 108
CipherSuiteInfo 103
CipherSuiteName 104
class Credential 98
ClientConfigImpl 114
ClientQoPPolicyImpl 114
Context 94
Current 93, 105
general APIs 93
ObjectAccessPolicy 115
Principal 97
QoP APIs 112
SecureSocketProvider 104
ServerConfigImpl 112
ServerQoPPolicyImpl 113
SSL APIs 101
SSLSession 101
Subject 98
VBSSLContext 103
Wallet 99
WalletFactory 100
X509Cert 110
X509CertExtension 112

VisiSecure APIs (C++) 93
VisiSecure Error Codes 139
VisiSecure for C++, Certification Revocation List 10
VisiSecure SPI (C++) 117

156 VisiBroker Secur i ty Guide

AttributeCodec 119, 130
AttributeCodec methods 131
AuthenticationMechanism 119
AuthenticationMechanisms 124
AuthenticationMechanisms methods 124
AuthorizationServiceProvider 127
exceptions 119
IdentityAdapter 119, 121
IdentityAdapter methods 121
MechanismAdapter 123
MechanismAdapter methods 123
Privileges 129
Privileges constructors 129
Privileges methods 129
Providers 119
Resource 128
Resource methods 129
RolePermission 134
RolePermission constructors 134
RolePermission methods 134
SPI modules 119
Target 127
Target methods 127
TrustProvider 119, 135
TrustProvider methods 135

VisiSecure SPI(C++), Service Provider Interface (SPI)
provider settings 119

W
wildcard assertion, code sample 33
wildcard assertions 32

	Contents
	Getting Started with VisiSecure
	VisiSecure overview
	VisiSecure design flexibility
	Pluggability
	VisiSecure for Java
	VisiSecure for Java features
	VisiSecure for C++
	VisiSecure for C++ Features

	Basic security model
	Authentication realm (user domain)
	Setting up Resource domain
	Authorization domain

	Distributed Transmission

	Authentication
	Managing authentication with JAAS
	Basics of JAAS concepts
	Subjects
	Principals
	Credentials
	Public and private credentials
	Authentication and pluggability

	Identity, trust and authentication
	Relationship between trust and authentication
	Identities
	System identity
	Client identity

	Configuring authentication
	Authentication property settings
	Formatted target
	Setting the config file for client authentication
	Setting up authentication realms

	Different types of Authentication
	Authentication mechanisms
	GSSUP mechanism
	Authenticating clients with usernames and passwords
	Username/password authentication using APIs
	Certificate-based authentication using KeyStores through property settings:
	Certificate-based authentication using APIs
	Certificate based authentication using APIs with pkcs12Server
	Certificate based authentication using Certificate wallet
	pkcs12-based authentication using KeyStores
	pkcs12-based authentication using APIs
	LoginContext class and LoginModule interface
	Authentication and stacked LoginModules

	Associating a LoginModule with a realm
	Syntax of a realm entry

	Borland LoginModules
	Using a Vault
	Creating a Vault
	Example - using VaultGen
	Example: Using API
	To generate vault file:

	Certificate Revocation List

	Authorization
	Access Control
	Access Control List
	Pluggable Authorization
	Configuring authorization using the rolemap file
	What is a rolemap
	Syntax of Role DB

	Defining Roles in Roles DB
	Modifying authorization rolemap file

	Specifying rules for authorization
	Assertion syntax
	Using logical operators with assertions
	Wildcard assertions

	Other assertions
	Recycling an existing role

	Configuring authorization domains
	Specifying names to authorization domain
	Naming authorization domains
	Setting up default access
	Setting up RoleDB
	Configuring authorization domains to run-as alias
	Run-as Alias

	Creating Vault
	Run-as mapping

	Setting up authorization for CORBA objects
	Configuring authorization requirements
	Using vault for a domain

	Context Propagation
	Impersonation
	Delegation
	Identity assertions
	Asserting Identity of the caller

	Trusting Assertions
	Trust assertions and plug-ins
	Backward trust
	Forward trust

	Temporary privileges

	Secure Transportation
	Enabling SSL
	Setting the level of encryption
	Supported cipher suites

	Enabling Security
	vbroker.security.disable=false Enabling SSL
	Setting the Log Level
	VisiSecure - Java
	VisiSecure C++

	Encryption
	Public-key encryption
	Asymmetric encryption
	Symmetric encryption

	Certificates and Certificate Authority
	Digital signatures
	Generating a private key and certificate request
	Distinguished names
	Certificate chains

	Using IIOP/HTTPS
	Netscape Communicator/Navigator
	Microsoft Internet Explorer

	Quality of Protection
	Setting properties and QoP
	Configuring Quality of Protection(QoP) for both server and the client.
	Configuring QoP for Server
	Configuring QoP for client

	Configuring Quality of Protection (QoP) parameters

	Creating Custom Plugins
	Creating Custom Plugins for c++
	LoginModules
	CallbackHandlers
	Authorization Service Provider
	Trust Providers

	Making Secure Connections (Java)
	JAAS and JSSE
	JSSE Basic Concepts

	Steps to secure clients and servers
	Step One: Providing an identity
	Username/password authentication, using JAAS modules, for known realms
	Username/password authentication, using APIs
	Certificate-based authentication, using KeyStores through property settings
	Certificate-based authentication, using KeyStores through APIs
	Certificate-based authentication, using APIs
	pkcs12-based authentication, using KeyStores
	pkcs12-based authentication, using APIs

	Step Two: Setting properties and Quality of Protection (QoP)
	Step Three: Setting up Trust
	Step Four: Setting up the Pseudo-Random Number Generator
	Step Five: If necessary, set up identity assertion

	Security configuration while setting up a server engine
	Examining SSL related information
	SSL Example

	Making Secure Connections (C++)
	Steps to secure clients and servers
	Step One: Providing an identity
	Username/password authentication using LoginModules for known realms
	Username/password authentication using APIs
	Certificate-based authentication using KeyStores through property settings
	Certificate-based authentication using KeyStores through APIs
	Certificate-based authentication using APIs
	pkcs12-based authentication using KeyStores
	pkcs12-based authentication using APIs

	Step Two: Setting properties and Quality of Protection (QoP)
	Step Three: Setting up Trust
	Step Four: If necessary, set up identity assertion

	Security configuration while setting up a server engine
	Examining SSL related information
	SSL example

	Security Properties for Java
	Security Properties for C++
	VisiSecure for C++ APIs
	General API
	class vbsec::Current
	Include File

	Methods
	class vbsec::Context
	Include File

	Methods
	class vbsec::Principal
	Include file

	Methods
	class vbsec::Credential
	Include File

	class vbsec::Subject
	Include File

	Methods
	class vbsec::Wallet
	Include File

	Methods
	class vbsec::WalletFactory
	Include File

	Methods

	SSL API
	class vbsec::SSLSession
	Include File

	Methods
	class vbsec::VBSSLContext
	Include File

	Methods
	class ssl::CipherSuiteInfo
	Include File

	class CipherSuiteName
	Include File

	Methods
	class vbsec::SecureSocketProvider
	Include File

	Methods
	class ssl::Current
	Include File

	Methods

	Certificate API
	class vbsec::CertificateFactory
	Include File

	Methods
	class CORBAsec::X509Cert
	Include File

	Methods
	class CORBAsec::X509CertExtension
	Include File

	QoP API
	class vbsec::ServerConfigImpl
	Include File

	class ServerQoPPolicyImpl
	Include File

	Methods
	class vbsec::ClientConfigImpl
	Include File

	Methods
	class vbsec::ClientQoPPolicyImpl
	Include File

	Methods

	Authorization API
	class csiv2::AccessPolicyManager
	Include File

	Methods
	class csiv2::ObjectAccessPolicy
	Include File

	Methods

	Security SPI for C++
	Plugin Mechanism and SPIs
	Providers
	Providers and exceptions

	vbsec::LoginModule
	Include File
	Methods

	vbsec::CallbackHandler
	Include file
	Methods

	vbsec::IdentityAdapter
	IdentityAdapters included with the VisiSecure
	Methods
	vbsec::MechanismAdapter
	Methods

	vbsec::AuthenticationMechanisms
	Credential-related methods
	Context-related methods

	vbsec::Target
	Methods

	vbsec::AuthorizationServicesProvider
	Methods

	vbsec::Resource
	Methods

	vbsec::Privileges
	Constructors
	Methods

	vbsec::AttributeCodec
	Methods

	vbsec::Permission
	Include file
	Methods

	vbsec::PermissionCollection
	Include file
	Methods

	vbsec::RolePermission
	Constructors
	Methods

	vbsec::TrustProvider
	Methods

	vbsec::InitOptions
	Include file
	Data Members

	vbsec::SimpleLogger
	Include file
	Methods

	VisiSecure Error Codes
	Modifying Minor Codes in C++:
	Modifying Minor Codes in Java:
	General Errors
	PKI Errors
	SSL Errors
	PKCS12 Errors
	General Security Policies (GSP) Errors
	Common Secure Interoperable (CSI) Errors
	Authentication Errors
	Authorization Errors

	Appendix
	Basic LoginModule
	JDBC LoginModule
	LDAP LoginModule
	Host LoginModule
	Shadow password for the Host LoginModule

	Creating user database for basic login module
	Using userdbadmin tool
	Creating a new database
	Creating groups and associating users with groups
	Adding new users
	Listing exising users in the database
	Listing all groups in the database
	Create new groups and check using listgroups
	Assign groups to existing users
	Remove group from database
	Add a new user without any group
	Remove group admin from user
	Remove user from the group
	Exiting the userdbadmin program

