Micro Focus
VisiBroker-RT for C++
Version 6.0

Developer’s Guide

Micro Focus

The Lawn

22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

© Copyright 2020 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and VisiBroker are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2020-11-06

http://www.microfocus.com

Contents

[=] = T ol =T C

LAV 1=t 0 =T 13
What's in this gUIdE? ..o e e ane s 14
1 =T a1 = Bl 0] 0 14 = 0 1 o T 16
(7o) g wt= ot o[a Vo [4 Tl o N o Y of U 1= P 17
Further Information and Product SUPPOrt......ccvviiiiiiiii e 17
INfOrmMaAtioN WE NEEA ..o ettt s et e s s raarsrreeesrranns 17
(@0eY g} wt= Tt fl o] o] o . =1 o 1o o T, 18

Introducing VisiBroker-RT for C++ ..ciiicciiiiiccimnncsnnsns s nssnsssnnnas 3

LA = L S O] 2 = 7 NP 3
What is VisSiBroKer-RT fOr Ca 2 oo re e e e 4
ViSiBroker-RT fOr C4+4 FEALUIES ...viiiiiiii i e e et e e e e aens 4
VisiBroker-RT for C++ Smart Agent architecturecooviiiiiiiiiiic s 4
Enhanced object discovery with the Location Servicecvieviiiiiiiiiiiiiiiinnns 5
Implementation and object activation supportccooiiiiiiiiiiiii 5
Robust thread and connection managementcooiv i it iiic e 5

|10 oo] o 1= = 5
Dynamic invocation with DII @and DSIcccviiiiiiiiiiiii i nne e nneeas 6
INterface FEPOSITOMIES vttt e e et aaae e 6
Server-side portability ...oovii i 6
Customizing the ORB with interceptors and object wrappers.........cccvevvvininnnns 6
VisiBroker-RT for C4++ CORBA COMPIANCe ..viiiiiiiiiiiii i e nernenens 7
VisiBroker-RT for C++ Development Environmentooiiiiiiiiiiiiiiininie e 7
AdMINIStration T0O0IS ... e 7
DEVEIOPEI'S T00IS . e 7
VisiBroker-RT for C4++ header fileso 7
ViSiBroker ORB LiDrari@s .. .ooueiuiiiiiiiiiii i st et et e e e e s aaeeens 7
VisiBroker Sample Applicationsoui i e 8
Interoperability with VisiBroker for Java......covoviiiiiiiii i 8
Interoperability with other ORB productsccooiiiiiiiiii 8
Setting up the Development Environmentccccccimmieerninncnnnnns 9
Setting the VBROKERDIR Environment Variable ..o 9
Setting VBROKERDIR on a Windows platformccooiiiiiiiiiiiiicieeeeeeee 9
Setting VBROKERDIR on a UNIX platform.......cccoooiiiiiiiii e 9
Setting the Path environment variable ... 9
Updating the PATH 0N WINAOWSoiiiiiiiiiii i re e e e eae e 10
Setting the Path on a UNIX platform ..o 10
Setting VBROKER_ADM Environment Variableccccoiiiiiiiiiiiiiiiiiiiiciii e 10
Setting VBROKER_ADM on a Windows platform.........coooiiiiiiiiiiiiiiiiciiens 10
Setting VBROKER_ADM on a UNIX platform......cccoeiiiiiiiiiiiiiiiic s 10
Setting OSAGENT_PORT environment variableccoiiiiiiiiiiiiiiiiiiciec e 10
Setting OSAGENT_PORT on a Windows platformccciiiiiiiiiiiciiiciinns 11
Setting OSAGENT_PORT on a UNIX platform......c.cciviiiiiiiiiiiiiicicinceeieeen 11
Logging Output on the HOSt SysStem ..ociiiiiiiii i i s e e 11
Developing an Example Application with VisiBroker-RT for C++ 13
(DoAY 7 (o] o] n =] g} ol o Yol 13
Step 1: Defining object iNterfacesccoiviiiiiii e 14
Writing the account interface in IDLo.veiiiiiii e 15

Step 2: Generating client stubs and server servantsccccvvviiiiiiiiiiiiiiiee, 15
Files produced by the idl compiler ... s 15

Step 3: Implementing the Clent ..o e 16

VisiBroker-RT for C++ Developer’s Guide

1

(000 o 1= TN 1 1L P 16

oL 1= 0 o o 18

Step 4: Implementing the Server ..o 20
E = Y= o PP 20
Understanding the Account class hierarcChyc.ooviiiiiiiii i e 22

Step 5: Building the example ... 22
Step 6: Integrating VisiBroker-RT with Tornado/VXWOrKscccovvviiiiiiiiiiiniininnnnnnns 23
The VisiBroKer-RT RUNEIMIE c.uiiiii i i e i s i e i e sane e rannaesrnneeenns 23
Integrating VisiBroker Libraries with Tornado 2.Xccooiiiiiiiiiiiiiiii, 28
Integrating VisiBroker Libraries with Tornado 2.2........cccciiiiiiiiiiii 29

Using VisiBroker With VXSIm ... 33

Step 7: Starting the Smart Agent (0sagent) ServiCeccvviviiiiiiiiiiiiiic e 37
StartiNg the SEIVET it e e 39
RUNNING the ClENt .o e e e aaes 40
Handling EXceptionsccciivcimmmsscsmmsnsssssssssssssssnssssssnsssnssnnnnnnnns 41
Exceptions in the CORBA MOlviiriiiiii i i reennes 41
Y 2 W= g =) CoL=] w [o =P 41
Obtaining completion Statuscviiiiii i i e e 42
Getting and setting the minor code......ccovviiiiiiiii 42
Determining the type of a SystemEXceptionccvvviiiiiiiiiiii e 42
Catching system eXCePEIONS. ... iii it e e e anens 43
Downcasting exceptions to a system exception..........cooeviiiiiiiiiiiiiiiic i 44

ULy =T g ool o w0 g 1= 45
Defining User eXCePHIONS .. .uiiii i e 45

The VisiBroker C++4 EXCepLion SUPPOIt .vviiriiiiiii i i i i e e e e anea e 47
The EXCEPLION MaACIOS «.uviiiiiiiiii ittt ieeiee et e e e a s et ane e aeeaneeaneans 47
Server basiCScccirirrrrsnisicr s srrrrrrssn s s rr s nnrrrrnnnnnnnnnns D4
L 1 51
| VL= L4 T o ol g L= 1= TP 51
Creating the PO oo s st 51
Obtaining a reference to the root POAo e 52
Creating the child POA ... e ae s 52
Implementing servant methods.........c.oooo i 52
Activating the POA ... e 54
AcCtiVating ODJECES .o e 55
(o] 00T o] 1 (oI Ne=T 0 0] o] [PP 55

What is a Portable Object Adapter? ... e 61
POA LerMINOIOgY cuviiii it e 62
Steps for creating and USING POASviiii i e e 62

(@7 N o o] o =T PP 63
Minimum CORBA and POA POlICIESviiviiiiiiiii e 63
BN == 1 o Yo 1T S 63
LI ES PN POLICY cuiiiii it e 63
Object ID UNIiqUeness POLICY .vuiriiieiiieiiiies s siessesnsesanesanesnnessnesannssnnenns 64
ID ASSIGNMENE POIICY vttt e e eaas 64
Servant Retention POlICY vvvvviriiii i e 64
Request Processing POlICY ... e 65
Implicit ACtiVation POLICY ..uvieie i e 65
Bind SUPPOIT POIICY .ot e e 66
Server ENGINE POIICY .ot 66

CrEatiNg POAS it e e 66
POA Naming CONVENTION Loiuiiiiii i i e e e e e e e e e e aneeeeans 66
Obtaining the FOOtPOA ... e e a e aeaaes 67

2 VisiBroker-RT for C++ Developer’s Guide

Setting the POA Properties ..ot i e e eaes 67

Creating and activating the POA.......oi i e 67
ACtiVating ODJeCES ...viiii i s 68
Activating objects exXpliCitlyccviiiiiiii e 68
Activating objects on demand.......c.cceviiiiii i 69
Activating objects impliCitlyooiiii e 69
Activating with the default servant ... 70
Deactivating ObJeCtS ... s 71
Using servants and servant Managersooevieiieiiiiieiieie e aeaaeeaeeaeeanens 71
SerVaNtACHIVATOrS .. e 72
SerVaANTLOCAtONS it 75
Managing POAs with the POA Manager ...ccviiiiiiiii i raeeeee s 77
Getting the current state ... 78
HOIdING State .. e 78
ACTIVE SEAtE e s 78
Discarding Stateviiiii i e 78
Inactive state ... 79
AdaPTEr ACHIVATOIS 1.ttt e 79
ProCeSSING rEOUESES ...uiitiiiiii e 80

Using the Tie Mechanismccccivccmicsmis s snse s s s ssssnsnnnnnes 81

How does the tie mechanism WOrK? ... e aeaeans 81
[Ee=Ta a] o] (= o] g'e o =1 o o PR PP 81
Location of an example program using the tie mechanism.................ceile. 81
Looking at the tie template ... 81
Changing the server to use the _tie_account classcoiiiiiiiiiiiiiiiici i 83
Building the tie example ..o 84

L0 1T=1) Bl o T 1 ol - ¥ 4
INItializing the ORB ..e.uiiii i e e s e aeaeaeaaeas 87
BiNdinNg t0 ObJ@CES .iuuriiii i s e 87
Invoking operations on an 0ObJeCtcviiiiiiii i 89
Manipulating 0bJeCt refErENCES ..ivviiii i s 89
Checking for nil referenCes.......cc i 89
Obtaining @ Nil referenCe. 90
Duplicating an object referencecoviiiiiiii 90
Releasing an object referencCe. ..o 90
Obtaining the reference CoUNt e 91
Converting a reference to @ StriNgccvveiieiiiiii 91
Obtaining object and interface NAmMEesSc.v i e 92
Determining the type of an object reference.......ccccviiiiiiiiiiiiii i 92
Determining the location and state of bound objects...........ccviiiiiiiiinnen, 93
Checking for non-existent ObJeCESvvviiiiiiiii i e 93
Narrowing object referenNCES...c.iivi it e 93
Widening object referenCesc.viviiii i 94
UsSiNg QUAlItY Of SEIVICE uiiriiiiiiii i e e e e e ea e 94
Understanding Quality of SErviCeovviiiiiiiiii i e e aes 94

(0o I T a1 =] o =Tl 1= PP 94
Using the VisiBroker-RT for C++ Consolecccccvveciinnnnceennns 103
What is the VisiBroker CoNSO0I@?ciiiiiiiiiiiiii i i e e naaaens 103
Navigating the ViSiBroker CONSOIEciuiiiiiiiiiiii it 104
=T 10 I o Y- ol PP 105

e To] Lo - 105
SEATUS DA e e 106

Pull down or conteXt MENUS ..o e 106

N E LV e =Y o] g I oY= o 1< PP 106

VisiBroker-RT for C++ Developer’'s Guide 3

(070] g} =T o Al o =] o = TR PP 106

SUPPOrtEd ORB SeIVICES ittt it ittt st e et ar e st sseaaneeraneenes 106
oot o (o] WY =T oY Aol 106
NV = [g o TS Y= YA Lol = PP 107
Interface REPOSIEOMES vttt e 107
Implementation REPOSIEONES .vvviiriiii i e 107
RS] V=T 1 =T g =T =T 107
L= =] =T o= P 107
Integrated TranSacCtion SEIrVICES ...viiuiiiii i e 108
Starting the VisiBroker CONSOIEoviiiiiiii i e e aee s 108
VisiBroker CONSOI€ Main MENU ..iueiiiiiiiiie it ettt et et et e e e e e e e aneaneanenes 109
(070] a1=To] [T 0 111 2 11 P PP 109
LY=L= 1 T PP 109
[[=1 o 30 0 1 1= 2 1 PP 109
Setting the VisiBroker Console preferenCeSs ..o.vvviviiiiiiiiiiiii i e 110
GeENErAl tAD .o e 111
SECUNIEY 1A .ot e 112
State LaD o 112
e To 30 = o P 113

Setting Propertiescccciiiimiiicccsnmsccssnns s sssssnsssssssssssssnnssssnnaas 115

L@ 1 Y 115
Setting Properties Through the Property Manager Interfacecoooeiviiiiiiiiiiiinnnn, 115
Environment variables ... e 116
Setting Properties Through the Command-Linecoooiiiiiiiiiiiiiiii e 117
Setting Properties Through a Property Tableccooiiiiiiiiiiiiiii e 117
ORB Default Properti@s ... et r e raees 118
Using the IDL compilerccccciiiiiciininnssmnsssssssssssssssnssssnnnnsnnns 121
| [a)oY 18 Lot To] o I o T 1 I 1 PP 121
How the IDL compiler generates codeiiiviiiiiiiiiiiiiii i e aneaaneas 121
Example IDL SpeCifiCation.....ccieiieiiiii i 121
Looking at code generated for clientS.......ccvviiiiiii i 121
Methods (stubs) generated by the IDL compiler.......cccvviiiiiiiiiiiiiiiiiieeans 122
Pointer type <interface name>_ptr definition...........ccoiiiiiiiiiiiiininn, 122
Automatic memory management <interface name>_var class.................... 123
Looking at code generated for CORBA server implementationscocvvevviiiinnnn, 123
The PortableServer_RefCountServantBase Classccvoeviiiiiiiiiiiiinniennnsns 124

The PortableServer_ServantBase ClasS ...cccvviiiiiiiiiiii i i enaees 124
Methods (skeletons) generated by the IDL compiler........cooovviiiiiiiiiinnnne. 125

Class template generated by the IDL compiler......c.cooviiiiiiiiiiiiiciiicie e 125
Defining interface attributes in the IDL ..ot e 126
Specifying oneway methods with no return valuecooiiiiiiiiiiiiiinic e 126
Specifying an interface in IDL that inherits from another interface 127

Using the Smart Agentcicccciiiiicsiniic s snnnns s s nnns s snnnn s snnnnannes 129

What is the Smart Agent? ..o e 129
Locating Smart AQeNtS ... 129
Locating objects through Agent cooperation........ccoovviiiiiiiiiiii i 129
Starting a Smart Agent (0Sagent)......ouvieiiieii e 130
Ensuring Agent availabilitycoooiiiii 133

Working within ORB dOMaiNscviiiiiiiiiii e e e e e e e aaenaenes 134

Connecting Smart Agents on different local networksccccovviiiiiiiiiiiiiiiiinnien, 135
Use of the OSAGENT_ADDR_FILE Environment Variable (applicable on Development

HOSE SYStemMS ONIY)) ciuriiiii i e e e eeas 135
Use of the OSAGENT_ADDR_TABLE By Smart Agents (applicable on VxWorks Target
3V (=T 0 T3 o] 01 V) I PP 136

4 VisiBroker-RT for C++ Developer’'s Guide

How Smart Agents detect each other.......ccoiiiiiiii 137

Working with multihomed hoStSciiiiiii i e 137
Specifying interface usage for Smart AGentsS......ccoeviiiiii i 138
Using point-to-point cOmMmMUNICAtIONS ...iiiiiiii i s e anee e 140
Specifying a host as a runtime parameteroovviiiiiii i e 140
Specifying an IP address with an environment variablecccevivinins 141
Specifying hosts with the agentaddr table ... 141
Ensuring object availabilitycooiiiii 141
Invoking methods on stateless objects......c.ccvvviiiiiii i 142
Achieving fault-tolerance for objects that maintain statei 142
Migrating objects between VisiBrokerRT60 Systemsccoceiiiiiiiiiiiiiiiiiiieen, 142
Migrating objects that maintain state.........cooviiiii 142
Migrating instantiated objects......ccoiiiiii i 142
Reporting all objects and ServiCesoiviiiiiii i i 143

Using the Location Serviceccccciiiiimmssssssnmsssssssssssssssnssnnns 145

What is the Location ServiCe?oiiiiiiiiiiiiii e 145
Location ServiCe COMPONENTS ...iiiriiiii i re s e s e raeesaneann e raneaarneaneanns 146
What is the Location Service agent?cviiiiiiiiiii i e 146
What 1S @ trigger? « e 149
QUENYING @N @GENT Li.uiii i e 150
Finding all instances of an interface.........cooviiiiii i 150
Finding everything known to Smart Agents........coooiiiiiiiiii i 151
Writing and registering a trigger handler ... 153
Implementing and registering a trigger handler ..., 153

Using the Naming Serviceccccrvmmmsnnsmsnnssssnssssnssssnssssnsssnnssnass 157

L@ YT TP 157
Understanding the NamesSpaceooeiiiiiiiii e e 158
NamMiNG CONEEXES .uviriiiii i e e e 158
Names and NameCompPONeNtuiii i ran e e anens 159
Name reSOIULION .. .u e 159
RUNNIiNg the Naming ServiCe ...uiiiiiiiiiii i et e e aanes 160
Integrating the Naming Service into your applicationc.covvviviiiininnnnn. 161
Compiling and liNKiNG ProgramiScouiie i e ae e e 161
SF=100] o1 [o] foTe =1 o 1 T PP 162
Starting the Naming SerViCe....couiiiii i e aeaeans 162
Bootstrapping @ Naming SErVICeoiiuiiiiiiiiiii e 164
Calling resolve_initial_referencescooviiiiiiiiiiiii 164
USING ~ORBINIERES ... ittt s e a e aeeaneans 165
—~ORBDeEfaUItINItRES ... s 167
(NN F= T g 1T T [0 =g o P 167
[N E= [1 Lo [0 g = ol = o 168
Default NamMING CONTEXES ..iuiiiiiiiiiiii i et e e e e eanaaes 168
Obtaining the default CoNteXto.vvviiiiiii i e 168
Binding @ Name iN G oo i s e 169
ResoIving @ NAame iN Ca oouiiiii it 170

Using the Event Servicecccccvimrvnmmnemmsnmssssnssnsssnsssnssnnssnnsnnss 173

L@ =T Y TP 173
Proxy consumers and SUPPIErS...ociii it e 174
OMG common object services specification........ccooeviiiiiiiiiii e 174
CommUNICAtION MOEIS ...eei e e e e e e e e e e aaeanans 175
PUSH MOAEL .. e e e e 175
PUIl MOAEL e e 176
USIiNG @VeNt Channels ..o e ne e aaneaas 177
Example push supplier and CONSUMET ..ottt 178

VisiBroker-RT for C++ Developer’s Guide

5

Deriving @ PUShSUpplier Classc.oeiiiiiiiiii e 178

Deriving @ PUShCONSUMEK ClasSciuiiiiiiiiiii et ae e 181
Implementing the PUShCONSUMEL ... viiiii i s eneens 181
Starting the EVENt SerVIiCe ..oiiviiiiiii i i i e e eraennes 183
Installing the EVent ServiCe ..oovviiiiiii i i s as 183
Integrating the Naming Service into your applicationccocevviiiiniinennn. 184
Setting the queue length ... 184
Compiling and [INKING Programs ..o e e e e as 185
INterface T N CE .o e 185
EVeNtChannelo e 185

160o] 011U] 0 =T oY |2 011 o TS 185

1] U] 0] 11T oY a0 P 186
PrOXYPUIICONSUMIEE . .ttt e e e e e e aeaneas 186
ProOXYPUSHCONSUMEK ..t e e e e e e aneas 186
)V U] | R UT o]] 1= o PP 187
PrOXYPUSH SUP DI . i e e 187
U110} o =] 8] 1= N 187

U] a1 @00 1= U1 o o 1= o PP 187
U111 8] o] 1= PPN 188
PullSupplier Methods ... e e ea 188
U] o IS U0 o] 1= 189
Real-Time CORBA EXtensionscccccorvsmmsnssssssssnssssnsssansssanssnas 199
L@ T YT 199
Using the Real-Time CORBA EXtENSIONSiiiiiiiiiiiiiiie it e e e e e eaaeas 200
Real-Time CORBA ORB ...ttt et e e e e e e e s e sanaanenans 200
Real-Time Object Adaptars ...viiiiiiii i i e rr e e ar e an e aneaaneas 202
Real-Time CORBA Priority .iiiiiiiiiiiiiii it i st e et a e s e sreanneraneanneas 203
(o ToT 1w VAN 4 =T o] o1 e 1= 203
Priority MappPing Ty PES cuviiii ittt ae e a s s s e ern e ran s rnesnneraneannes 204
Rules for Priority Mappings .oouui i e e e e e e e 205
Default Priority Mapping ..o e e e e e anaaeas 206
Replacing the Default Priority Mappingcvvviiiiiiiieicis e 207
Using Native Priorities in VisiBroker Application Codecvevviiviiiinnnnne. 208

LI 1 =3= L 1 o To | = PP 208
ThreadpOOl APl ... e 209
Threadpool Creation and Configuration.........ccoooiiiiiiiiiiii e 209
Association of an Object Adapter with a Threadpoolccooviiiiiiiiiennen. 210

The General Threadpoo! ...c.vviiiiiii i i e e es 211
Threadpool DestrUCHION ..uiui i e e e aneaes 212
Real-Time CORBA CUIMTENE ...t e s e e e e aens 212
Real-Time CORBA Priority MOdelSoiviiiiiiiii i e e rne e nernn e nneas 213
Client Model Backwards Compatability with VisiBroker 3.2.2..........ccovevvnnnns 215
Setting Priority at the Object Level ... 215
Real-Time CORBA MUEEX API ...ttt ea e e e e e s e e s e e annannennans 216
Control of Internal ORB Thread Prioritiescviiviiiiiiiiiiiir e 216
Limiting the Internal ORB Thread Priority Rangecccoooviiiiiiiiiiniiennns 217
Configuring Individual Internal ORB Thread Prioritiesccooovviiiiiiiiiiinnns 218
Protocol Configuration POLICIESc.oieiiiiiii e e 219
ServerProtOCOIPOIICY ... e 219
ClentProtoCOIPOlICY ..t e 221
Listening and Dispatch Configurationccccivicmvmnsnnsnsnnsn 223
L@ YL T PP 223
When to Configure Listening and Dispatchingcccoviiiiiiiiiiiiii e 223
Listening and Dispatch ArchiteCtureociviiiiiiii e 223
Interaction of an SCM and Threadpool during Dispatch............cccccvviininnne. 224

6 VisiBroker-RT for C++ Developer’s Guide

Server Engines and SCM Configurationcoooiiiiiiiiiiiii e 228

Required Server Engine and SCM Propertiescccovveiiiiiiiiiiiiiiiiecie e 228

Optional Server Engine Propertiesovviiiiiiiii i veevnae e 229

Optional SCM Properties .ouvuiii it i e e e raneenes 229

Server Engine and SCM Creationciiviiii i nie s ss s e snne e snnesanennneas 230
Associating a POA with Server ENGINEScoviiiiiiiiiiiiee e e e e 230
Default Server ENGINES ...o.vieiiiiii it ettt e e 231
Restriction on POA/Server Engine Relationshipcocoviiiiiiiiiiiiiii e 231

(@0 o [€= 2] o] 1= PR 231
Connection Managementcccccmimme s msssms s sssssssssnsssnnnnes 235
VisiBroker Default Connection Behavior of VisiBrokerRT60cccoovieviiiininnnnnn. 235
Overriding the Default Behavior with _clone()cooviiiiiiiiiii s 236
Limiting the Number of Connectionsciiiiiiiiiiii e 236
Limiting Connections on the Server-Side.......cociiiiiiiiiiiiiiiie e 236

Limiting Connections on the Client-Sidec.cooviiiiiiiiiiiii e 237
Bidirectional Communicationccvvemmirmssssssssssssssnnsssnnsnns 239
Using bidirectional IIOPciiiiiii i e e e s s e e e rne e anennnens 239
Bidirectional ORB properti@s ...ciiiiiiiiiiiii i i e re s s e re e e aaneanns 239
AbOUL the EXamPIEs .o e 240
Enabling bidirectional IIOP for existing applicationscccooviiiiiiiiiiicieens 241
ISY=Tel8] gl VAo] aF-YTe [T =1 u o] o = PP 241

VisiBroker Pluggable Transport Interfacecccvicvvncinnncnrnnnnns 243

Pluggable Transport Interface FileSoociiiiiiiiiii e e 243
Transport Layer ReqQUIrEMENES ..o e s ee s 243
User-Provided Code Required for a Protocol Pluginccooeiiiiiiiiiiiiiinnnnns 244
UNIQUE Profile ID Tag .. e ieeeiiniateieee ettt e e et e et e e saeraeaaeeneeneeeeeaeaneans 245
&=] o] L @l Yo [P 245
Implementing @ NeW TransSP Ot ..oiiiiiii i i e e e e aneeaneaaneas 246
(o] 0] pT=ToiwTe] o IO 1= 11 246
Connection FACtory Class ..vuiiiiiriiie i i r s e er e e raneanes 248
IS =T 1= O = 1= 249
Listener Factory Class. . iuiiiiiii i s e e r e e neeanens 250
0] 11 F T O = TP 251
Profile FACtOry Class ..uviiriii i e e e s 252
Classes Provided by the INnterfacecoovviiiiiiiii s 253
TranspPOrt Bridge Class ...t e e e e e ae e 253
Transport REGIStrar Classoiuviei i e e e 254
Creating a Loadable Libraryoo.ooeiiiiiiii i ettt aans 254
Using Portable Interceptorsccorvicmmmesmssssssssssssssssnsssnnssnass 255
L@ Y= TP 255
Portable Interceptor and Information interfacesccoviiiiiiiiiiiiiiii i 256
Request INterCePiOr cvvu i e e e 256

| (O] 2§ g} (=T gol=T] o] (PP 259
Portable Interceptor CUMeNt. .. oo e r e eneas 260
o o [o 260
@0 T [=Tol =T 0] VPP 260
Creating a Portable Interceplor......ovi i 261
Registering Portable Interceptorscoovveiiiiiiii e 261
Registering an ORBINItializerccoviiiii e 262
VisiBroker Edition Extensions to Portable Interceptors........c.coovviieiiiiininnnnn. 263
Limitations of VisiBroker Edition Portable Interceptors Implementation........ 263
= 0 0] o] L= PP 264
o =]] o] [Ol Yo [PP 264

VisiBroker-RT for C++ Developer’'s Guide 7

EXample: Cli@Nt _SeIVEr vttt e e 264

Using VisiBroker Interceptorscccivviimmnsnmnmscssnssnssnnnnnnnnns 281

L@ Y= T PP 281
Interceptor interfaces and ManNAgErSvviiiiiiiiii i e e 281
(O 11T oL T gL o= ol = o]] o= PP 282
Y= V= [(=] el =T 0 oo ol P 283
Registering interceptors with the VisiBroker-RT for C++ ORBcceuutne.. 284
Creating interceptor ObJectS.. ..o 285
(o T=To [T gTa I o o= o=t o) o] =3P 285
EXample INEerCEPEOrS e 286
Ee=Y 0 0] o] L= ol Yo [T 286
160 o [1= o[o 1= PP 288
Passing information between your interceptorsc.iviviiiiiiiiiii i 293
Using both Portable Interceptors and Interceptors simultaneouslyccccvvueen. 293
Order of invocation of interception pointsccvviiiiiiiiiiiii e 293
Client side INtErCEPLOIS «iviii i erreenens 293
Server side INterCePIOrS . vu it e 293
Order of ORB events during POA Creationcovveviiiiiiiiiiiiinici i vie e 294
Order of ORB events during object reference creationc.ccovviviiiinnnns 294

Using Object Wrappersc.ccivemiemmsmmmsmsssmsssssnsssmssnsssnsssnssnnsnnss 295

L@ =T Y T 295
Typed and un-typed Object Wrappersccivvviiiiiiiiiii e ae e aeeneas 295
Special idI2cpp reqUIreMENES ... 296
Example applications ..o e 296

6] o V7o Te lo] o} (=Tl d Y] =T 0] o =1 3PP 296
Using multiple, un-typed object Wrappersccoviiiiiii i 297
Order of pre_method invocationccviiiiiii i e 297
Order of post_method iNVoCation......c.coiiiiiiiiii e 298

Using un-typed ObJeCt WrapPeIS .viiriiiiiiii i v e e e e aneenneas 298
Implementing an un-typed object wrapper factory........ccoveviiiiiiiiiiininnennn, 298
Implementing an un-typed object Wrapperccoviiiiiiiiiiii e 299
Creating and registering un-typed object wrapper factories........................ 300
Removing un-typed 0bject Wrappers . ..o veiiiiiiiiii e e ea e 302

1Y 01=1e Moo} [=Tol aiV] oY) o 1= =T RPRPP 302
Using multiple, typed object Wrappers.......covoviiiiiiiiiii e 303
Order of INVOCAION ... et e e eeaas 304
Typed object wrappers with co-located client and serverscovvviinennnn. 304

U [aTeuV7ol=Te Mol) [=Tol RVl =] o] o 1=] o= PP 304
Implementing typed object Wrappers ..o 305
Registering typed object wrappers fora clientccoooiiiiiiiiiiii i 305
Registering typed object wrappers for @ server.......ccvivviiiiiiie i 306
Removing typed ObjeCt WrapperS...ovi i i i aees 307

Combined use of un-typed and typed object Wrappersccocevviviiiiiiiiiiiiiniinnnnnns, 308
Command-line arguments for typed WIrappersc.oovvviiiiiiiiii i i nienieannans 308
Initializer for typed WrapPersS .. ee s 308
Command-line arguments for un-typed Wrappersc.vovvieiiivieiieiienienneannnns 309
Initializers for UN-typed WIapPeIrS cuvvi ittt e e e e 310
Executing the sample applications ..o 311

Using Valuetypescicccrmicmmimmsssmsesmsssssssssssssssnssssnnsssnnsssnnsnns 313

Understanding ValUetypeso e e 313
Concrete ValUBtyPeS ..o e 313
ADSEraCt ValuelyPes .o e 314

Implementing Valuely PeS .vviiiiiiiii i i i 314
Defining your Valuelypes .. .o i e 314

8 VisiBroker-RT for C++ Developer’s Guide

Compiling YOUr IDL fil@ uiuiiiii i e e e e e ae e 315

Inheriting the valuetype base Classccviiiiiiiiii i 315
Implementing the Factory Classvvviiiiiii i e e e e 315
Registering your Factory with the ORBccoiiiiiiiiiiii e eeees 316
Implementing faCtories ..ot e 316
Factories and valuelypes.....viiiiiiiiii i e 316
Registering ValULyPeSovii i e 316
BOXEA ValUB Y DS ittt 317
ADSEract INTEIACES ..o e 317
CUSTOM ValUBEY DS it e e aans 318
Truncatable ValuGtyPeSviii e 318

VisiBroker LOGgingccccrvscmmvanmmsnnsssnnsssnssssansssnnsssnnssnnsssnnnssnnnses 319

(o Yo o1 aTe @AY Z=T oV = A P 319
R = MeTe o= gl (-] aF=To <] ol PP 319
Configuring ORB LOGgiNg .iuiiiiiiiiii i i e i e e e e ne s areaaneas 320
L@ 2= 30 o o [=Y 7= 320

(O]21=18 WoTa o] 1Yo I @] o o oo] g =T o o= 320
Controlling the Level of ORB LOGQING ..civiiviieiiiiiiiiiiiiie i e sieseseaeas 321
Library liblog_message_catalog.o and Formatted ORB Log Messages 322
Controlling the Priority of ORB LOGgIiNG ...iviiviiiiiiiiiiiiiiienie v e venennens 322
Enabling Forwarding of ORB LOGQGIiNG +..viiviiiiiiiiiiiiiiiiieiie e veeeeene e 323
Controlling the Destination of ORB LOGGINGcviviiiiiiiiiiiiiiiiieiieeieieaneanans 323
PaY] o] L Tot=1 o To] o I o Yo [« 1 T [P 323
Creating or Obtaining a Reference to @ Logger.......cvvviiiiiiiiiiiiiiiiieiieieennes 323
Setting the Forwarder Thread Priority of @ Logger........cccvvviiiiiiiiiiniinennnens 324
Enabling Message FOrwardinNgcviieiiiiiiiieiiie i iieie i s s eseaaneeannens 325
Logging @ Message t0 @ LOGQer...uiiiiiiiiii i i aie et s e e neeeaeeas 326
Adding and Removing Logger FOrwarders......cooovivviiiiiiiiiiii e 327
Implementing @ Logger FOrwarder......ooviuviiiiiiiiiiiii s e eaas 328

The Default Logger FOrwarderviviiieiii it et e e e e e e neees 330
Using Interface Repositoriesccivemiemmmrnsessnmsssssnsssnssnssnnss 335
What is an interface repOSItOry ? .o e e 335
What does an interface repository contain?cviviiiiiiiiii i 336

How many interface repositories can you have?ccooveiiiiiii i iieieenen 336
Creating and viewing an interface repository with irepc.coiiiiiiiiiiiiiiiii s 336
Creating an interface repository with irep.......ccoovviiiiiiii e 337
Viewing the contents of the interface repository.......c.cooviiiiiiiiiiiinnn. 338
Updating an interface repository with idI2ir ... 338
Understanding the structure of the interface repository ..., 338
Identifying objects in the interface repositorycccoeviiiiiiiiiii i e 339
Types of objects that can be stored in the interface repository 339
Inherited INTErfaCeS. ... i e 340
Accessing an interface rePOSItONY .i.viiiiiiii i e 341
=D&z] o] LI o] o T] =1 1= 341

Using the Dynamic Invocation Interfaceccccvvicmmvncssvncsnnnss 347

What is the Dynamic Invocation Interface?ccooiiiiiiiiiiiiiii e 347
Introducing the main DII CONCEPES ...uviviiiiiii e 348
Steps for invoking object operations dynamicallyccooviiiiiiiiiiiiiiinnnns 350
Location of example programs for using the DII.........ccocoiiiiiiiiiiiiiiiinienne. 351

Obtaining a generic object referencCe ..o 351

Creating and initializing @ reqUEestcciiiiiiiii e 351
o [[<E o = [PP 351
Ways to create and initialize @ DII requestccviiviiiiiiiiiiic e 352
Using the create_request method ..o 352

VisiBroker-RT for C++ Developer’'s Guide 9

Using the _request methodcoiiiiii i e 352

Example of creating a Request object.......cooviiiiiiiiiiii 353
Setting the context for the request.......ccoviiiii i 353
Setting arguments for the request.. ..o 354
Passing type safely with the ANy ClassS......cciiiiiiiiiiiiiiccc e 355
Representing argument or attribute types with the TypeCode class 355
Sending DII requests and receiving resultsSccooiiiiiiiiiiiiiii e 357
INVOKING @ FreQUESE ..o eeii e 357
Sending a deferred DII request with the send_deferred() method............... 358
Sending an asynchronous DII request with the send_oneway method 359
Sending MuUItiple reqUESES ... 359
Receiving multiple reqUESES ...vviiiiii i e e e 360
Using the interface repository with the DIIccoiiiiiiiiiii i e 361
Using the Dynamic Skeleton Interfacecccccvviviicircncsnnnn . 365
What is the Dynamic Skeleton Interface?cooiviiiiiiiiiii i e 365
Steps for creating object implementations dynamicallyc.ccooiiiiiiiiiiiiennenne, 366
Location of an example program for using the DSI........ccocovviiiiiiiiiiiinnennn, 366
Extending the DynamicImplementation Classccovvviiiiii i 366
Example of designing objects for dynamic requests........ccccvvviiiiiiiieiieinnnnnns 367
SPECIfYiNg rePOSItONY IS «iiuiiiiiiii i e ee s 369
Looking at the ServerRequest Classo.viviriieiiiii e 369
Implementing the Account object ... 370
Implementing the AccountManager Objectccoooiiiiiiiiiiii e 370
Server IMplementation ... e 371

Using the Dynamically Managed Typescivicrrmmmmssnsssnnsssnnsnnas 375

L@ YL T PP 375
DY VAN o}V 0V o = PP 375
(U To [N =T o o [t f o] 1= PR 376
Creating @ DY NANY oot et e a e 376
Initializing and accessing the value in @ DYNANY ..ooiiiiiiiiciii i 376
Constructed data LY PES cvviiiiii i i 377
)3 5 o 0 377
32T 0 1 o U o 377
52V 0 1 T o 378
DynSequence and DYNAITAY ..oeeieiiee ittt eaeeaeeaeeaeaaee et ae e saeeanaanaaeenens 378
= o 0] o L= 1 PN 378
Example client appliCationciiiiiiiiii i 378
Example server appliCation ..o 380

Using the BOA in VisiBroker-RT for C++ 6.0cvocervnnmnnnnnnnns 389

Compiling your BOA code with VisiBroker-RT for C4++ 6.0cccovviiiiiiiiiiiiiiinennne, 389
Supporting BOA OPLIONS .o.uiiiiiii it 389

W15 [aTe o] o) [T ot slt=To AV |] o= 389
Naming Objects under the BOA ..o e e aaneas 389
(@]} =T oLl o = 1= PP 389
Migrating VisiBroker Codecccvvimmmrimmnmmmsesmsmssnmsssssnssnnnns 391
Migrating BOA £0 POA .ottt s et 391
LOOKING @t @n eXamiple ..o e 391

Mapping BOA types t0 POA POlICIES . .iviiiitiii i e e ie e e 393

Migrating iINtErCEPEOrS vt e 393

10 VisiBroker-RT for C++ Developer’s Guide

CORBA exceptioOnNSccccrvsemrisssmssssmsssssssssssansssnssssnssssnsssnnnssnnnnnns 397
GlOSSArY .ecivicerrscmrsansrsnsmsnnssssnsmsansssansssansssnnsssnnssnnnsssnnssnnnnsnnnnnns 405

VisiBroker-RT for C++ Developer’'s Guide 11

12 VisiBroker-RT for C++ Developer’s Guide

Preface

VisiBroker-RT for C++ allows you to develop and deploy distributed object-
based applications, as defined in the Common Object Request Broker
Architecture (CORBA) specification.

The VisiBroker-RT for C++ Developer’s Guide provides you information on
how to get started with the VisiBroker-RT for C++ fundamentals, use the
VisiBroker-RT for C++ Console to simplify certain functions, and work with
the more advanced features. It is written for C++ programmers who are
familiar with object-oriented development.

This chapter highlights the latest features, and identifies typographical and
platform conventions used throughout the manual. It also tells you where to
find additional information about Common Object Request Broker
Architecture (CORBA) and the remaining VisiBroker-RT for C++
documentation set, as well as how to contact Borland Software developer
support.

What’'s new

This manual has been updated to reflect the latest VisiBroker-RT for C++
release. The new features and enhancements include:

« CORBA 2.5 compliance: VisiBroker-RT for C++ is fully compliant with
the CORBA specification (version 2.5) from the Object Management
Group (OMG). For more details, refer to the CORBA specification located
at http://www.omg.org.

« Minimum CORBA 1.0 compliance. VisiBroker-RT for C++ is fully
compliant with the Minimum CORBA specification (version 1.0) from the
Object Management Group (OMG). For more details, refer to the
Minimum CORBA specification located at ftp:// ftp.omg.org/pub/docs/
orbos/98-08-04.pdf

Is this "Minimum spec” now called something else? Could Dev give
me an up to date link, please?

* Real-Time CORBA 1.0 compliance. VisiBroker-RT for C++ is fully
compliant with the Real-Time CORBA specification (version 1.0) from the
Object Management Group (OMG). For more details, refer to the Real-
Time CORBA specification located at https://www.omg.org/spec/RT/1.2/
PDF.

« Naming Service: The new VisiBroker-RT for C++ Naming Service.
Provides support for the OMG Interoperable Naming Service specification.
The corbaloc and corbaname functionality supports stringfied object
references which can be used in an Internet environment. This allows you
to refer to objects by a URL. See “Using the Naming Service”for a description
of how to use the Naming Service.

+ Portable Object Adaptor (POA): The POA offers portability on the
server side. This feature replaces the Basic Object Adapter (BOA).
Although BOA is being deprecated, VisiBroker-RT for C++ 6.0 will still
support BOA functionality. See “Using POAs” for an explanation of how to
use the POA.

« Objects by Value (OBV) or Value types: Previous versions of
CORBA allowed you to pass objects between clients and servers by
reference. However, CORBA 2.3 allows you to pass objects by value
between clients and servers using VisiBroker-RT for C++. OBV is

VisiBroker-RT for C++ Developer’s Guide Xiii

http://www.omg.org
https://www.omg.org/spec/RT/1.2/PDF
https://www.omg.org/spec/RT/1.2/PDF
l
l
l
l
l
http://www.omg.org/
http://www.borland.com/newsgroups
http://www.borland.com/newsgroups
http://www.omg.org/
l
l
l
http://www.borland.com/visibroker_rt
http://info.borland.com/techpubs/books/visibroker_rt/pdfs/pdf_index.html
http://info.borland.com/techpubs/books/visibroker_rt/pdfs/pdf_index.html
l
l
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/corba/corbaiiop.html
l
l
l
l
l
l
l
l
http://www.windriver.com/corporate/html/tsmain.html
http://www.windriver.com/corporate/html/tsmain.html
l
l
l
l
l
l
l
l

interoperable with other 2.3-compliant ORBs. See “Using Valuetypes” for
more information on this feature.

+ Property Management: This feature provides you with a way to
centralize management of properties. Using Property Management, you
can get/set the value of configurable properties of VisiBroker. See “Setting
Properties” for more information on Property Management.

+ Quality of Service (QoS): This feature, which implements the CORBA
2.3 Messaging Specification, allows you to define policies that influence
how connections are made. You perform client-side policy management
by setting properties that are associated with connections or client/server
pairs. See “Using Quality of Service” for a description of the VisiBroker-RT
for C++ 6.0 QoS features.

« Interceptors and Object Wrappers: The ORB provides a set of APIs
known as interceptors which provide a way to plug-in additional ORB
behavior such as support for transactions and security, which may be
defined on either the client or server side. One of the main difference in
this release is that now the interceptors have scope. See “Using Portable
Interceptors” for more information on how to use the VisiBroker-RT for
C++ 6.0 interceptor.

« Pluggable Transport Interface: This feature provides support for the
use of transport protocols besides TCP for the transmission of CORBA
invocations. The Interface supports the ‘plugging-in’ of multiple transport
protocols simultaneously and is designed to provide a common interface
that is suitable for use with a wide variety of transport types. The
interface uses CORBA standard classes wherever possible, but is itself
VisiBroker proprietary.

» VisiBroker Logging: This feature allows applications to log messages
and have them directed, via configurable logging forwarders, to an
appropriate destination or destinations. The ORB itself uses this
mechanism for the output of any error, warning or informational
messages. The application can choose to log its and the ORB’s messages
to the same destination, producing a single message log for the entire
system, or to log messages from different sources to independent
destinations.

Other updates include new sample code snippets to reflect the new
VisiBroker-RT for C++ features. New interfaces and methods are covered in
the VisiBroker-RT for C++ Programmer’s Reference Guide.

What's in this guide?

This programmer’s guide provides detailed information on developing
distributed object-based applications using VisiBroker-RT for C++. It
contains the following sections:

e Part 1, “Basic Concepts”

This part presents an introduction to VisiBroker-RT for C++. It also includes
an overview of the CORBA model and a quick start example designed to
introduce you to the VisiBroker-RT for C++ development principles and the
handling of exceptions.

* Part 2, “Server Concepts”

This part describes how to develop a VisiBroker-RT for C++ server, use the
Portable Object Adapter (POA) and the tie mechanism.

e Part 3, “Client Concepts”

Xiv VisiBroker-RT for C++ Developer’'s Guide

l
l
l

This part describes how to develop a VisiBroker-RT for C++ client.
« Part 4, “Configuration and Management”

This part is designed to familiarize you with the configuration and
management of the VisiBroker-RT for C++ ORB and its CORBA services,
using the Console and its associated browsers. This allows you to perform
many of your configuration tasks in one location that previously were
performed on the command line. From the Console, you can access
browsers for the ORB services, repositories and the Server Managers. From
this central location, you can easily view, monitor, and manage VisiBroker-
RT for C++ Services, Servers and Objects. The configuration of VisiBroker-
RT for C++ using properties files is also described.

* Part 5, “Tools and Services”

This part describes the IDL compiler, the Smart Agent, the Location, Event,
and Naming services.

- Part 6, “Advanced Concepts”

This part describes advanced concepts such as the Real Time CORBA
Extensions, configuration of the Listening and Dispatching of CORBA
invocations, Connection Management, Pluggable Transports, Portable
Interceptors, Object Wrappers, Value Types and the VisiBroker Logging
Service.

e Part 7, “Dynamic CORBA Concepts”

This part describes the Dynamic features of CORBA. These concepts are the
Interface Repository, the Dynamic Invocation Interface, the Dynamic
Skeleton Interface and the DynAny class.

« Part 8, “Backward Compatibility”

This part describes compatibility issues between previous releases of
VisiBroker-RT for C++ and the current one.

+ “CORBA exceptions”

This Appendix contains additional information about CORBA exceptions that
can be thrown by the VisiBroker ORB, and explains possible causes for
VisiBroker-RT for C++ to throw them.

o “Glossary”

Provides a glossary of commonly used terms.

VisiBroker-RT for C++ Developer’s Guide Xv

Manual conventions

This section identifies the VisiBroker-RT for C++ Programmer’s Reference
Guide's typographical and platform conventions.

Typographic conventions

This manual uses the following conventions:

Convention Used for

Boldface Bold type indicates that syntax should be typed exactly
as shown. For UNIX, used to indicate database names,
file names, and similar terms.

italics Italics indicates information that the user or application
provides, such as variables in syntax diagrams. It is also
used to introduce new terms.

computer Computer typeface is used for sample command lines
and code.

bold computer In code examples, important statements appear in
boldface

UPPERCASE Uppercase letters indicate Windows file names.

[1] Brackets indicate optional items.

An ellipsis indicates the continuation of previous lines of
code or thatthe previous argument can be repeated.

[A vertical bar separates two mutually exclusive choices.

Platform conventions

This manual uses the following conventions—where necessary—to indicate
that information is platform-specific:

Convention Used for

Windows All Windows (Windows NT, Windows 2000, Windows
XP) development hosts

WinNT Windows NT development host platform

Win2000 Windows 2000/XP development host only

UNIX All UNIX development host platforms including Solari

Solaris Solaris development host only

Tornado VisiBroker-RT for C++ for Tornado only

C++ VisiBroker-RT for C++

VisiBroker Library conventions

This manual uses the following conventions—where necessary—to indicate
that information is VisiBroker library specific or to indicate that VisiBroker
interfaces are not supported in certain versions of the VisiBroker libraries.

i Not Supported in the VisiBroker-RT Minimum Corba Library

Where to find additional information

For more information about VisiBroker-RT for C++, refer to these
information sources:

» VisiBroker-RT for C++ Release Notes contain late-breaking information
about the current release of VisiBroker-RT for C++.

Xvi VisiBroker-RT for C++ Developer’'s Guide

» VisiBroker-RT for C++ for Tornado. This guide contains the instructions
for installing VisiBroker-RT for C++ on Windows and UNIX host systems
as well as information for deploying distributed applications built using
VisiBroker-RT for C++.

» VisiBroker-RT for C++ Programmer’s Reference Guide. This manual
contains information on the VisiBroker-RT for C++ C++ Application
Programmers Interfaces (API).

« For more information about the CORBA specification, refer to The
Common Object Request Broker: Architecture and Specification. This
document is available from the Object Management Group and describes
the architectural details of CORBA.

You can access the CORBA specification at the OMG web site:
https://www.omg.org/.

Contacting Micro Focus

Old version has been replaced with the standard MF section.
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support

Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

« The Product Updates section of the Micro Focus SupportLine Web site,
where you can download fixes and documentation updates.

» The Examples and Utilities section of the Micro Focus SupportLine Web
site, including demos and additional product documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Also, visit:

+ The Micro Focus Community Web site, where you can browse the
Knowledge Base, read articles and blogs, find demonstration programs
and examples, and discuss this product with other users and Micro Focus
specialists.

» The Micro Focus YouTube channel for videos related to your product.

Information We Need

However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you

VisiBroker-RT for C++ Developer’'s Guide Xxvii

https://www.omg.org/
http://www.microfocus.com

Xviii

think some are irrelevant to your problem, please give whatever
information you have.

« The name and version number of all products that you think might be
causing a problem.

* Your computer make and model.

* Your operating system version humber and details of any networking
software you are using.

» The amount of memory in your computer.
« The relevant page reference or section in the documentation.

* Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact humbers and addresses.
Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the Product Updates section of the Micro Focus SupportLine Web
site, where you can download fixes and documentation updates. To
connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

» https://www.microfocus.com/products/corba/visibroker/ (VisiBroker trial
software)

» https://supportline.microfocus.com/login.aspx (Micro Focus support
login)
e https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
https://software.microfocus.com/en-us/select/email-subscription

VisiBroker-RT for C++ Developer’s Guide

http://www.microfocus.com
https://www.microfocus.com/products/corba/visibroker/
https://supportline.microfocus.com/login.aspx
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
https://software.microfocus.com/en-us/select/email-subscription

Part 1

Basic Concepts

In this part

This part contains the following chapters:

Introducing VisiBroker-RT for C++ page 3

Setting up the Development Environment page 9

Developing an Example Application with VisiBroker-RT for
C++ page 13

Handling Exceptions page 41

Introducing VisiBroker-RT
for C++

This chapter introduces VisiBroker-RT for C++, a complete implementation
of the CORBA 2.5 specification. This chapter describes VisiBroker-RT for C++
features and components.

What is CORBA?

The Common Object Request Broker Architecture (CORBA) allows distributed
applications to interoperate (application to application communication),
regardless of what language they are written in or where these applications
reside.

The CORBA specification was adopted by the Object Management Group to
address the complexity and high cost of developing distributed object
applications. CORBA uses an object-oriented approach for creating software
components that can be reused and shared between applications. Each
object encapsulates the details of its inner workings and presents a well
defined interface, which reduces application complexity. The cost of
developing applications is reduced, because once an object is implemented
and tested, it can be used over and over again.

The Object Request Broker (ORB) in Figure 1 connects a client application
with the objects it wants to use. The client program does not need to know
whether the object implementation it is in communication with resides on
the same computer or is located on a remote computer somewhere on the
network. The client program only needs to know the object’s name and
understand how to use the object’s interface. The ORB takes care of the
details of locating the object, routing the request, and returning the result.

Client

ORB locates ObjectA

Client Program requests a and binds client to it

reference to Object A

Object Request

Figure 1 Client program acting on an object

Note

The ORB itself is not a separate process/thread. It is a collection of libraries
and network resources that integrates within end-user applications, and
allows your client applications to locate and use objects.

VisiBroker-RT for C++ Developer’'s Guide 3

What is VisiBroker-RT for C++?

VisiBroker-RT for C++ provides a complete CORBA 2.3 ORB runtime and
supporting development environment for building, deploying, and managing
distributed C++ applications that are open, flexible, and inter-operable.
Objects built with VisiBroker-RT for C++ are easily accessed by Web-based
applications that communicate using OMG’s Internet Inter-ORB Protocol
(IIOP) standard for communication between distributed objects through the
Internet or through local intranets. VisiBroker-RT for C++ has a built-in
implementation of IIOP that ensures high-performance and inter-

operability.
® C+= Object VisiBroker Intranet
B Maminz Service for Tava Client
Faettirea
Weh Zarver
Coatal VisiBroker
Iu'qamu Firewrall ¢ BEpEr for Java
Clieat B Smartazent Fauntime
- ViziBraker
VisEroker ;u’fﬁﬂgm for O+
Famtime a— Fartirne
VisiBroker
@ Tavz Object for G+
® EvantService Pamtime

® Smart 4zent

Figure 2 VisiBroker-RT for C++ architecture

VisiBroker-RT for C++ Features

VisiBroker-RT for C++ has several key features as described in the following
sections.

VisiBroker-RT for C++ Smart Agent
architecture

VisiBroker-RT for C++’'s Smart Agent (osagent) is a dynamic, distributed
directory service that provides facilities for both client applications and
object implementations. Multiple Smart Agents on a network cooperate to
provide load balancing and high availability for client access to server
objects. The Smart Agent keeps track of objects that are available on a
network, and locates objects for client applications at invocation time.
VisiBroker-RT for C++ can determine if the connection between your client
application and a server object has been lost, due to an error such as a
server crash or a network failure. When a failure is detected, an attempt is
automatically made to connect your client to another server on a different
node, if it is so configured. For details on the Smart Agent, see “Using the
Smart Agent” and “Using Quality of Service”.

4 VisiBroker-RT for C++ Developer’'s Guide

Enhanced object discovery with the Location
Service

VisiBroker-RT for C++ provides a powerful Location Service—an extension
to the CORBA specification—that enables you to access the information
from multiple Smart Agents.

Working with the Smart Agents on a network, the Location Service can see
all the available instances of an object to which a client can bind. Using
triggers, a callback mechanism, client applications can be instantly notified
of changes to an object’s availability. Used in combination with interceptors,
the Location Service is useful for developing enhanced load balancing of
client requests to server objects. See the chapter “Using the Location Service”
for more information.

Implementation and object activation support

VisiBroker-RT for C++ provides functionality that enables you to defer object
activation until a client request is received. You can defer activation for a
particular object or an entire class of objects. See the chapter “Using POAs”
for more information on servant managers.

Robust thread and connection management

VisiBroker-RT for C++ provides native support for multithreading thread
management. With VisiBroker-RT for C++'s thread pooling model, threads
are allocated based on the amount of request traffic to the server object.
This means that a highly active client will be serviced by multiple threads—
ensuring that the requests are quickly executed—while less active clients
can share a single thread, and still have their requests immediately
serviced.

VisiBroker-RT for C++’s connection management minimizes the number of
client connections to the server. All client requests for objects residing on
the same server are multiplexed over the same connection, even if they
originate from different threads.

Additionally, released client connections are recycled for subsequent
reconnects to the same server, eliminating the need for clients to incur the
overhead of new connections to the same server.

All thread and connection behavior is fully configurable. See the chapter
“Connection Management” for details on how VisiBroker-RT for C++ manages
connections.

Originally this referred to a "Thread and connection management”
chapter - which doesn’t exist. Is this the best place to point readers
to?

IDL compilers
VisiBroker-RT for C++4+ comes with two IDL compilers that make object
development easier:

e idl2cpp—The idl2cpp compiler takes IDL files as input and produces the
necessary client stubs and server skeletons (in C++).

e idl2ir—The id12ir compiler takes an IDL file and populates an interface
repository with its contents.

VisiBroker-RT for C++ Developer’'s Guide 5

(The Interface Repository is available only on the Development Host - that is,
Solaris/Windows.)

See “Using the IDL compiler” and “Using Interface Repositories” for details on
these compilers.

Dynamic invocation with DII and DSI

For dynamic invocation, VisiBroker-RT for C++ provides implementations of
both the Dynamic Invocation Interface (DII) and the Dynamic Skeleton
Interface (DSI). The DII allows client applications to dynamically create
requests for objects that were not defined at compile time. The DII is
covered in the chapter “Using the Dynamic Invocation Interface”. The DSI allows
servers to dispatch client operation requests to objects that were not defined
at compile time. See “Using the Dynamic Skeleton Interface” for complete details.

Interface repositories

The Interface Repository (IR) is an online database of meta information
about ORB objects. Meta information stored for objects includes information
about modules, interfaces, operations, attributes, and exceptions. The
chapter “Using Interface Repositories” covers how to start an instance of the
Interface Repository, add information to an interface repository from an IDL
file, and extract information from an interface repository.

Note

The Interface Repository is available only as a Development Host utility (i.e.
Solaris/ WindowsNT)

Server-side portability

VisiBroker-RT for C++ supports the CORBA Portable Object Adapter (POA),
which is a replacement to the Basic Object Adapter (BOA). The POA shares
some of the same functionality as the BOA, such as activating objects,
support for transient or persistent objects, and so forth. The POA also has
new features, such as the POA Manager and Servant Manager which creates
and manages instances of your objects. See “Using POAs” for more
information.

Customizing the ORB with interceptors and
object wrappers

VisiBroker-RT for C++'s interceptors enable developers to view under-the-
cover communications between clients and servers. Interceptors can be
used to extend the ORB with customized client and server code that enables
load balancing, monitoring, or security to meet specialized needs of
distributed applications. See the chapter “Using Portable Interceptors” for
information.

VisiBroker-RT for C++'s object wrappers allow you to define methods that
are called when a client application invokes a method on a bound object or
when a server application receives an operation request. See “Using Object

Wrappers” for information.

6 VisiBroker-RT for C++ Developer’s Guide

VisiBroker-RT for C++ CORBA compliance

VisiBroker-RT for C++ is fully compliant with the CORBA specification
(version 2.3) from the Object Management Group (OMG). For more details,
refer to the CORBA specification located at http://www.omg.org/.

VisiBroker-RT for C++ Development Environment

VisiBroker-RT for C++ is used in both the development and deployment
phases. The VisiBroker-RT for C++ development environment includes the
following components:

« Administration and Development tools

¢ C++ header files

» VisiBroker ORB libraries (including the VisiBroker Smart Agent)
» Sample applications

Administration tools

The following tools are used to administer the VisiBroker-RT for C++ ORB
during development:

Tool Purpose

osagent Used to manage the Smart Agent. See “Using the Smart
Agent”.

osfind Reports on objects running on a given network.

irep Used to manage the Interface Repository. See “Using

Interface Repositories” .

Developer’s tools

The following tools are used during the development phase:

Tool Purpose

idl2ir This tool allows you to populate an interface repository
with interfaces defined in an IDL file.

idl2cpp This tool generates C++ stubs and skeletons from an IDL
file.

VisiBroker-RT for C++ header files

The VisiBroker-RT for C++ for Tornado header files have been installed
under <install location>/VisiBrokerRT60/include. Please refer to the
section “Development Process” for a description of how to develop VisiBroker-
RT for C++ for Tornado applications.

VisiBroker ORB Libraries

The VisiBroker-RT for C++ ORB libraries enable client and server
applications to use and provide distributed objects. The runtime support
services is included with the VisiBroker product.

VisiBroker-RT for C++ version 6.0 provides a set of libraries for each
supported CPU variant (that is for SPARC, PPC, etc). See “Step 6: Integrating
VisiBroker-RT with Tornado/VxWorks” for details on how to use the VisiBroker
run-time libraries.

VisiBroker-RT for C++ Developer’'s Guide 7

VisiBroker Sample Applications

VisiBroker-RT for C++ provides a set of sample applications as a starting
point for the user. These sample applications can be found in the <install
location>/VisiBrokerRT60/examples directory.

Interoperability with VisiBroker for Java

Applications created with VisiBroker-RT for C++ can communicate with
object implementations developed with VisiBroker for Java, which is sold
separately. Simply use the same IDL you used to develop your C++
application as input to the VisiBroker for Java IDL compiler, supplied with
VisiBroker for Java. You may then use the resulting Java skeletons to
develop the object implementation.

Also, object implementations written with VisiBroker-RT for C++ will work
with clients written in VisiBroker for Java. In fact, a server written with
VisiBroker-RT for C++ will work with any CORBA-compliant client; a client
written with VisiBroker-RT for C++ will work with any CORBA-compliant
server.

Interoperability with other ORB products

CORBA-compliant software objects communicate using the Internet Inter-
ORB Protocol (IIOP) and are fully interoperable, even when they are
developed by different vendors who have no knowledge of each other’s
implementations. VisiBroker-RT for C++'s use of IIOP allows client and
server applications you develop with VisiBroker-RT for C++ to interoperate
with a variety of ORB products from other vendors.

8 VisiBroker-RT for C++ Developer’s Guide

Setting up the Development
Environment

VisiBroker-RT for C++ requires very little development host environment
configuration. The following section specifies what environment variables
VisiBroker uses. There are three mandatory environment variables which
must be set and/or modified:

* VBROKERDIR
« PATH
* VBROKER_ADM

Setting the VBROKERDIR Environment Variable

Windows

Solaris

Solaris

The VBROKERDIR environment variable defines the directory where the
VisiBroker-RT for C++ distribution was installed.

Note

This environment variable must be set in order for the VisiBroker
development host tools to work correctly.

Setting VBROKERDIR on a Windows platform

Assuming that the VisiBroker distribution is installed in the directory c:\
VisiBrokerRT60 the following commands can be used for setting the
VBROKERDIR environment variable in a DOS window:

prompt> set VBROKERDIR=C:\VisiBrokerRT60

Setting VBROKERDIR on a UNIX platform

If you are using csh and you installed the VisiBroker distribution in the
default location the following commands can be used for setting the
VBROKERDIR environment variable.

prompt> setenv VBROKERDIR S$HOME/VisiBrokerRT60

If you are using Bourne (or BASH) shell and you installed the VisiBroker
distribution in the default location the following commands can be used for
setting the VBROKERDIR environment variable:

prompt> VBROKERDIR=S$HOME/VisiBrokerRT60
prompt> export VBROKERDIR

Setting the Path environment variable

The paTH environment variable should be set to include the bin directory
which contains the VisiBroker-RT for C++ distribution. The bin directory is
where the VisiBroker-RT for C++ tools/utilities for developers and users are
located.

If you choose to explicitly set the pPATH environment variable, the following
sections explain how to do so.

VisiBroker-RT for C++ Developer’'s Guide 9

Windows

Solaris

Solaris

Updating the PATH on Windows

Assuming that the VisiBroker distribution was installed in the C: directory
(c:\visiBrokerRT60) you can set your pATH with the following DOS
command.

prompt> set PATH=C:\VisiBrokerRT60\bin:%PATHS

Setting the Path on a UNIX platform

If you are using cshand you installed the VisiBroker distribution in the
default location the following commands can be used for updating the PATH
environment variable.

prompt> setenv PATH $HOME/VisiBrokerRT60/bin:SPATH

If you are using Bourne (or BASH) shell and you installed the VisiBroker
distribution in the default location the following commands can be used for
updating the pATH environment variable:

prompt> PATH=S$SPATH:S$HOME/VisiBrokerRT60/bin

Setting VBROKER_ADM Environment Variable

Windows

Solaris

Solaris

The vBROKER aDMenvironment variable defines the administration directory
where important configuration information for development host
environment tools such as VisiBroker’s interface repository and Smart
Agent are stored.

Setting VBROKER_ADM on a Windows platform

Assuming that the VisiBroker distribution is installed in the C: directory (c:\
VisiBrokerRT60) the following commands can be used for setting the
VBROKER ADM environment variable. You can set your VBROKER ADM
environment variable with the following DOS command.

prompt> set VBROKER ADM=C:\VisiBrokerRT60\adm

Setting VBROKER_ADM on a UNIX platform

If you are using cshand you installed the VisiBroker distribution in the
default location the following commands can be used for setting the
VBROKER ADMenvironment variable.

prompt> setenv VBROKER ADM S$HOME/VisiBrokerRT60/adm

If you are using Bourne (or BASH) shell and you installed the VisiBroker
distribution in the default location the following commands can be used for
setting the vBROKER ADM environment variable:

prompt> VBROKER ADM=$HOME/VisiBrokerRT60/adm prompt> export
VBROKER_ADM

Setting OSAGENT_PORT environment variable

The 0saGENT PORT environment variable defines the port number under
which the Smart Agent will listen. By default, the Smart Agent will listen on
port number 14000.

10 VisiBroker-RT for C++ Developer’'s Guide

Windows

Solaris

Solaris

It is often desirable to have two or more separate Osagent domains running
at the same time. One domain might consist of the production versions of
client programs and object implementations while another domain might be
made up of test versions of the same clients and objects that have not yet
been released for general use. If several developers are working on the
same local network, each may want to establish their own ORB domain so
that their testing efforts do not conflict with one another. For details on
establishing multiple Osagent domains see “Working within ORB domains”.

Setting OSAGENT_PORT on a Windows
platform
The following commands can be used for setting the 0SAGENT PORT

environment variable. You can set your 0SAGENT PORT environment variable
with the following DOS command.

prompt> set OSAGENT PORT=10000

Setting OSAGENT _PORT on a UNIX
platform

If you are using csh and you want the Smart Agent to listen on port humber
10000, set the OSAGENT_PORT environment variable as follows:

prompt> setenv OSAGENT PORT 10000

If you are using Bourne (or BASH) shell and you want the Smart Agent to
listen on port number 10000, set the OSAGENT_PORT environment variable
as follows:

prompt> OSAGENT PORT=10000 prompt> export OSAGENT PORT

Logging Output on the Host System

Many VisiBroker tools offer a verbose mode that displays information about
the tool as it executes. In addition, any application that is linked with the
VisiBroker library may also produce output. On UNIX systems, this output is
written to the console, or the corresponding shell if invoking commands
from a shell. On Windows systems, this output is written to one of several
log files.

The following ta ble summarizes the names of the various log files that may
be produced on Windows Host systems when using the Windows “Host
Side” tools.

Table 1 Summary of log file names produced on Windows in verbose mode.

File Name Description

osagent.log Produced by the Smart Agent when started with the -v
flag.

visout.log Contains any output to cout that is produced by a client
or server.

vislog.log Contains any output to clog that is produced by a client
or server.

viserr.log Contains any output to cerr that is produced by a client
or server.

VisiBroker-RT for C++ Developer’s Guide 11

The location of these log files is determined by the following rules:

1 An attempt will be made to write the file to the log directory within the
directory pointed to by the vBrOKER aADM variable. Please refer to “Setting
VBROKER_ADM Environment Variable” for details on how to set the
VBROKER_ADM environment variable.

2 If step 1 fails, an attempt will then be made to write the file to the
current directory.

12 VisiBroker-RT for C++ Developer’'s Guide

Developing an Example
Application with VisiBroker-
RT for C++

This chapter uses an example application to describe the development
process for creating distributed, object-based applications.

The code for this example application is provided in the <install location>/
examples/basic/bank_account directory where the VisiBroker-RT for C++
distribution was installed. If you do not know the location of the VisiBroker-
RT for C++ distribution, see your system administrator.

Development Process

When you develop distributed applications with VisiBroker-RT for C++, you
must first identify the objects required by the application. You will then
usually follow these steps:

1 Write a specification for each object using the Interface Definition
Language (IDL).

IDL is the language that an implementer uses to specify the operations
that an object will provide and how they should be invoked. In this
example, we define, in IDL, the Account interface with a balance()
method and the aAccountManager interface with an open() method.

2 Use the IDL compiler to generate the client stub code and server POA
servant skeleton code.

Using the id12cpp compiler, we'll produce client-side stubs (which provide
the interface to the account and the AccountManager objects’” methods)
and server-side classes (which provides classes for the implementation of
the remote objects).

3 Write the client program code.

To complete the implementation of the client program, initialize the ORB,
bind to the Account and the AccountManager objects, invoke the methods
on these objects, and print out the balance.

4 Write the server object code.

To complete the implementation of the server object code, we must
derive from the POA_aAccount and POA_AccountManager classes, provide
implementations of the interfaces’ methods, and implement the server’s
“main/start” routine.

5 Compile the client and server code.

To create the client program, compile and link the client program code
with the client stub. To create the Account server, compile and link the
server object code with the server skeleton.

6 Integrate the VisiBroker libraries needed into VxWorks
7 Initialize the ORB for the Server processor and start the server.
8 Initialize the ORB for the Client processor and run the client program.

VisiBroker-RT for C++ Developer’s Guide 13

n Object specifications

H id12epp

Add client Add object
H program Code implementation

v "

E Eelect VisiBroker - Efﬁ"@eled VlsiBrukéF"

A v

T L N g

I, cgmpilen'linker) 't. Cump”W

y Y
Cient | ——® Ciient Server | Server
Classes

classes program object
Client Server
‘ VisiBroker-RT forC++ Object
VisiBroker-RT Client Mode VisiBroker-RT Server Node

Figure 3 Developing the sample bank application

Step 1: Defining object interfaces

The first step to creating an application with VisiBroker-RT for C++ is to
specify all of your objects and their interfaces using the OMG's Interface
Definition Language (IDL). The IDL can be mapped to a variety of
programming languages. The IDL mapping for C++ is summarized in the
VisiBroker-RT for C++ Reference Guide.

You then use the id12cpp compiler to generate stub routines and servant
skeleton code from the IDL specification. The stub routines are used by your
client program to invoke operations on an object. You use the servant code,
along with code you write, to create a server that implements the object.
The code for the client and object, once completed, is used as input to your
C++ compiler to produce a client application and an object server.

14 VisiBroker-RT for C++ Developer’'s Guide

Writing the account interface in IDL

IDL has a syntax similar to C++ and can be used to define modules,
interfaces, data structures, and more.

IDL sample 1 shows the contents of the Bank.id1 file for the bank account
example. The account interface provides a single member function for
obtaining the current balance. The AccountManager interface creates an
account for the user if one does not already exist.

IDL sample 1 Bank.idl file provides the Account and Account Manager interface
definition
module Bank({
interface Account {
float balance();
}i
interface AccountManager {
Account open(in string name);
}i
}i

Step 2: Generating client stubs and server servants

The interface specification you create in IDL is used by VisiBroker-RT for
C++'s id12cpp compiler to generate C++ stub routines for the client
program, and skeleton code for the object implementation. The stub
routines are used by the client program for all member function invocations.
You use the skeleton code, along with code you write, to create the server
that implements the objects.

The code for the client program and server object, once completed, is used
as input to your C++ compiler and linker to produce the client and server.
These steps are shown in Figure 3.

Because the bank. id1 file requires no special handling, it can be compiled
with the following command.

prompt> idl2cpp -source ext cpp bank.idl

For more information on the command-line options for the idl2cpp compiler,
see “Using the IDL compiler”.

Files produced by the idl compiler

The id12cpp compiler generates four files from the bank.id1 file,

e bank c.hh—Contains the definitions for the account and AccountManager
classes.

* bank_c.cc—Contains internal stub routines used by the client.

* bank s.hh—Contains the definitions for the poa Accountand
POA AccountManager Servant classes.

* bank s.cc—Contains the internal routines used by the server.

You will use the bank c.hh and bank c.cc files to build the client
application. The bank_s.hh and bank_s.cc files are for building the server
object. All generated files have either a.cc or.nhh suffix. (The suffix may be
controlled by the "-source_ext" option on the "idl2cpp" command line.)

VisiBroker-RT for C++ Developer’s Guide 15

Caution

You should never modify the contents of files generated by the idi12cpp
compiler.

Step 3: Implementing the client

Many of the classes used in implementing the bank client are contained in
the code generated by the id12cpp compiler The file named client.cpp, part
of the bank_account example, contains the implementation of the client
program. Normally you would create this file.

Because your program uses the aAccount as well as the AccountManager IDL
interfaces, it must include the bank_c.hh file.

In order for a client and/or server application to be able to use the ORB, the
ORB object must be initialized. The file corba_init.c contains the ORB
initialization code for both the server and client objects. The function
start _corba can be called from the WindShell after loading the corba_init
program. Please refer to the bank account.html file for a detailed
description of how to load (where applicable) and execute the bank acount
client example on your VxWorks target.

The files corba init.C and client.Cimplement the sequence of steps
required to run the start_account_client program. These are:

» Initialize the ORB (corba_init.C)
« Bind to an AccountManager object (client.C)

« Obtain a Account object by invoking open () on the AccountManager object
(client.C)

» Obtain the balance by invoking balance () on the Account object (client.C)

corba_init.C

The first task that your client application needs to do is initialize the ORB
object, as shown in Code example 1.

Code example 1 Initializing the ORB

#include <vxWorks.h>
#include "corba.h"
#include <taskLib.h>
#include "vutil.h"

#define OSAGENT_ PORT "14000"

¥ */
/* Forward Declarations. */
/2 */

extern "C" void start corba(char * ORB options string);
static void do corba(char * ORB options string);

2 — */
/* Global Variable Declarations */
22— */
CORBA::0RB var orb;

2 ———— */

/* function ==> start corba*/

/* This function will spawn a vxWork task @*/

/* priority 100, which will perform the neccessary*/
/* initialization for the ORB (i.e. ORB init,...)*/

16 VisiBroker-RT for C++ Developer’'s Guide

void start corba(char * ORB options string)

{

/*
/*

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

in
ch
ch
in
de

VI
{

}
VI

{

}

char * taskName = "DO CORBA";
int Prio = 100;
int option = VX FP_ TASK;
int stackSize = 20000;
__ */
Spawn do_corba task. */
__ */
taskSpawn (taskName,
Prio,
option,
stackSize,

(FUNCPTR) do corba,
(int)ORB_options_string,0,0,0,0,0,0,0,0,0);
__ */
function ==>do_corba */
This function will perform the neccessary */
initialization for the ORB (i.e. ORB init,...) */
__ */

id do corba(char * ORB options string)
__ */
ORB init options can be specified in two ways. */
1) By calling start corba and specifying the */
ORB initialization string */
(e.g. start corba ("-ORBagentport 19000") */
2) Programatically by specifying the */
ORB_initialization options in the */
default argc and default argv variables below. */
*/
PLEASE NOTE THAT THE OPTIONS PASSED IN VIA starticorba*/
OVERRIDE THE OPTIONS THAT ARE SET PROGRAMATICALLY. */
__ */

t default argc = 2
[

ar *default argv[] = {"-ORBagentport", OSAGENT PORT};

ar **new argv;

t new argc = VISUtil::stringToArgv(&new argv, default argv,
fault argc, ORB options string);
__ */
Call ORB init */
__ */
STRY

// Initialize the ORB
orb = CORBA::0RB_init (new_argc, new_argv);

VISUtil::freeArgv(new_argc, new argv) ;
SCATCH (CORBA: :Exception, e)

cerr << e << endl;
taskSuspend (0) ;

VISEND CATCH

return;

}

VisiBroker-RT for C++ Developer’'s Guide

17

client.C

The start bank client program implements the client application which
obtains the current balance of a bank account. The client programs
performs the following steps:

1
2

Bind to an AccountManager object (client.C)

Obtain a Account object by invoking open () on the AccountManager
object (client.C)

Obtain the balance by invoking balance () on the Account object
(client.C)

Code example 2 Client side program

//bank_account client

#include <vxWorks.h>
#include "corba.h"
#include <vport.h>
#include "bank c.hh"

/* __ */
/* Forward Declarations */
/* __ */

extern "C" void start bank client (const char* name);
static void bank client (const char* name);

) */
/* Global Variable Declarations */
) */

extern CORBA::0RB var orb;

void start bank client (const char* name)

{

char * taskName = "BANK CLNT";
int Prio = 100; -
int option = VX FP TASK;
int stackSize = 20000;
taskSpawn (taskName,

Prio,

option,

stackSize,

(FUNCPTR) bank client,
(int)name,0,0,0,0,0,0,0,0,0);
}

void bank client (const char* name)

{
// The client uses the " bind" method by default which locates
// the Server Object via the OSAgent.There is also a provision
// for the client to use the Server's stringified IOR
// (eg. cases where using the OsAgent may not be supported). To
// use the IOR method, copy the stringified IOR in place of the
// NULL value below.This stringified IOR is typically displayed
// on the server console after the server has been activated.

char * IOR = NULL ;

VISTRY {
// Locate an account manager. Give the full POA name and the
// servant ID.

Bank::AccountManager var manager;

if (IOR!=NULL) {
// convert the stringified IOR to an object reference

CORBA: :Object var object = orb->string to object (IOR);

18 VisiBroker-RT for C++ Developer’'s Guide

VISIFNOT EXCEP
manager = Bank::AccountManager:: narrow (object);
VISEND IFNOT EXCEP
}

else {
PortableServer: :0bjectId var managerId =

PortableServer::string to ObjectId("BankManager");

VISIFNOT EXCEP
manager = Bank::AccountManager:: bind("bank account poa",
(CORBA OctetSequence &)managerId);
VISEND IFNOT EXCEP B
}

Bank::Account var account;

// Set the account name
if (name==NULL) {
name = "Jack B. Quick";

}

VISIFNOT EXCEP
account = manager->open (name) ;
VISEND IFNOT EXCEP

// Get the balance of the account.
CORBA: :Float balance;

VISIFNOT_EXCEP
balance = account->balance ()
VISEND_IFNOT_EXCEP

// Print out the balance.
VISIFNOT EXCEP
cout << "The balance in " << name << "'s account is $"
<< balance << endl; VISENDilFNOTiEXCEP

}
VISCATCH (CORBA: :Exception, e) {
cerr << e << endl;

}
VISEND CATCH

return;

}

Binding to the AccountManager object

Before your client program can invoke the open (String name) member
function, it must first use the _bind () member function to establish a
connection to the server that implements the AccountManager object. The
implementation of the _bind () member function is generated automatically
by the id12cpp compiler. The _bind () member function requests the ORB to
locate and establish a connection to the CORBA server object. If the server
object is successfully located and a connection is established, a proxy object
is created to represent the server’s POA AccountManager Object. A pointer to
this proxy AccountManager object is returned to your client program.

Obtaining an Account object

Next your client program needs to call the open () member function on the
AccountManager Object to get a pointer to the account object for the
specified customer name.

VisiBroker-RT for C++ Developer’s Guide 19

Obtaining the balance

Once your client program has established a connection with an Account
object, the balance () member function can be used to obtain the balance.
The balance () member function on the client side is actually a stub
generated by the id12cpp compiler that gathers all the data required for the
request and sends it to the server object.

Other member functions

Several other member functions are provided that allow your client program
to manipulate an AccountManager object reference. Many of these are not
used in the example client application, but they are described in detail in
the VisiBroker-RT for C++ Reference Guide.

Step 4: Implementing the server

Just as with the client, many of the classes used in implementing the bank
server are contained in the header files generated by the id12cpp compiler.
The server.c file is a server implementation included for the purposes of
illustrating this example. Normally you, the programmer, would create this
file.

Note, just as with the client, the server program requires the ORB to have
already been initialized. The file corba init.c contains the ORB
initialization code for the server objects. Please refer to the
bank_account.html file for a detailed description of how to load and execute
the bank acount example on your VxWorks target.

server.C

This file implements the Server class for the server side of our bank_account
example. The server program does the following:

1 Initialize the ORB (corba_init.C)

2 Creates a Portable Object Adapter with the required policies. (server.C)
3 Creates the account manager servant object. (server.C)

4 Activates the servant object. (server.C)

5 Activates the POA manager (and the POA). (server.C)

Code example 3 Initializing the ORB

//bank _account server
#include <vxWorks.h>
#include "corba.h"

#include "bankImpl.h"

R */
/* Forward Declarations. */
) */

extern "C" void start bank server (void);
static void bank server (void);

extern CORBA::O0RB var orb;

// Declare global objects
AccountRegistry AccountManagerImpl:: accounts;

void start bank server (void)

{
char * taskName = "BANK SRVR";

20 VisiBroker-RT for C++ Developer’'s Guide

}

int Prio = 100;

int option = VX FP TASK;
int stackSize = 20000;
taskSpawn (taskName,

Prio,

option,

stackSize,

(FUNCPTR)bank_server,
6,0,0,0,0,0,0,0,0,0);

void bank server ()

{

PortableServer: :POA var rootPOA;
VISTRY {

//get a reference to the root POA
CORBA: :Object var obj =
orb->resolve initial references ("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA:: narrow(obj);
VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(1l);

VISIFNOT EXCEP
policies[(CORBA: :ULong) 0] =
rootPOA->create lifespan policy(PortableServer::PERSISTENT) ;
VISEND IFNOT EXCEP B

// get the POA Manager
PortableServer::POAManager var poa manager;

VISIFNOT EXCEP
poa manager = rootPOA->the POAManager () ;
VISEND IFNOT EXCEP

// Create myPOA with the right policies
PortableServer::POA var myPOA;

VISIFNOT EXCEP
myPOA = rootPOA->create POA ("bank account poa",
poa manager, policies);
VISEND IFNOT EXCEP

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the object ID
PortableServer::0bjectId var managerId;

VISIFNOT EXCEP
managerld =
PortableServer::string to ObjectId("BankManager");
VISEND IFNOT EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT EXCEP
myPOA->activate object with id((CORBA OctetSequence
&)managerId, managerServant) ;
VISEND IFNOT EXCEP

// Activate the POA Manager
VISIFNOT EXCEP

poa_manager—>activate();
VISEND IFNOT EXCEP

CORBA: :Object var ref;

VisiBroker-RT for C++ Developer’'s Guide 21

VISIFNOT EXCEP

ref = myPOA->servant to reference (managerServant);
VISEND IFNOT EXCEP

CORBA::String var string ref;

VISIFNOT_EXCEP
string ref = orb->object to string(ref.in());
VISEND_IFNOT_EXCEP

VISIFNOT EXCEP
cout << endl << "CORBA Object ==> " << endl << endl;
cout << ref << endl;
cout << string ref << endl << endl;
cout << " is ready" << endl << endl;
VISEND IFNOT EXCEP

}

VISCATCH (CORBA: :Exception, e) {
cerr << e << endl;
taskSuspend (0) ;

}

VISEND_CATCH

return;

Understanding the Account class hierarchy

The account class that you implement is derived from the

POA Bank::Account class that was generated by the idi2cpp compiler.
Look closely at the poa Bank::Account class definition that is defined in
the pank_s.nnfile. Figure 4 shows the class hierarchy.

r#idlchp

Aocount dass BJR Bank: tRccoun
in bank_c.hh t clags in bank_s.hh

I

LecountInmpl class
written by the
programmer and used
by the server

Figure 4 Class hierarchy for the AccountImpl interface

Step 5: Building the example

There are basically three types of VxWorks programs/modules which are
produced with each example:

« ORB Initializer (corba_init)

The server skeleton (i.e. bank_s.0) and the client stub (i.e. bank_c.0) are
compiled and linked in as part of this program, to support the use of the
Tornado linking loader via the “Id” command from the WindShell.

» Server implementation (i.e server)
Created from the server.C file.
» Client program (i.e. client)

22 VisiBroker-RT for C++ Developer’'s Guide

Created from the client.C file.

The corba_init, server and client programs/modules are all dependant on
the VisiBroker-RT for C++ ORB libraries (i.e. liborb_dyn.o or liborb_min.o
and the libagentsupport.o or libagentsupport_min.o, depending on whether
you intend to use the Osagent location service). Please refer to “Step 6:
Integrating VisiBroker-RT with Tornado/VxWorks” for more information on the
delivered VisiBroker libraries.

Each example directory contains a html file detailing, in addtion to a
description of the example, the procedure for building that specific example.
The top level of the examples directory (i.e. <install_location/
VisiBrokerRT60/examples) also contains a README.html which contains
links to all the individual example html files.

Step 6: Integrating VisiBroker-RT with Tornado/
VxWorks

The VisiBroker-RT Runtime

The VisiBroker-RT for C++ run-time is composed of several libraries. Each
library supports a particular feature set of VisiBroker-RT. Which VisiBroker-
RT feature the VxWorks application requires will dictate which VisiBroker-RT
library is needed on the VxWorks target system.

VisiBroker-RT libraries are delivered in the following formats:

The old manual says "“delivered in four formats” - and then lists
three! So I've changed the wording

» Relocatable object modules (e.g. liborb_min.o)

This format is provided to support linking the VisiBroker-RT library with
the VxWorks kernel to make a bootable VxWorks image when building a
VxWorks image from the command line. (e.g. "make vxWorks", from the
VxWorks Board Support Package directory)

* "munched" relocatable object modules (e.g. liborb_min_munched.o)

VisiBroker-RT provides "munched" libraries as “ease-of-use” libraries to
allow dynamic loading when using the Tornado WindShell or CrossWind
debugger. (e.g. from the Tornado WindShell ->"Id <
liborb_min_munched.o")

» VisiBroker-RT Tornado 2.2 Components

This format is provided to support building a VisiBroker-RT enabled
"bootable VxWorks image (custom configured)".

VisiBroker-RT for C++ Developer’s Guide 23

VisiBroker-RT runtime libraries

The following table describes the VisiBroker-RT runtime libraries and the

features provided by each:

Library

Description

Relocatable Object Module:
liborb_dyn.o

"munched" Relocatable Object Module:

liborb_dyn_munched.o

Tornado 2.2 Component Name:
"Dynamic ORB"

Dynamic CORBA version of the
VisiBroker Object Request Broker
library; includes all Dynamic
functionality (i.e. DSI,DII,IR)

Note: the VisiBroker Object Activiation
Daemon is not supported in VisiBroker-
RT for C++.

Relocatable Object Module:
liborb_dyn_no_libc_llong.o

"munched" Relocatable Object Module:

liborb_dyn_no_libc_llong_munched.o

Tornado 2.2 Component Name:
Not Applicable

This library provides the same
funtionality as liborb_dyn.o library, with
the exception that it DOES NOT
INCLUDE the GCC libc 1ong long
arithmetic operators.

The long long arithmetic operators are
not provided by the VxWorks libraries
(e.g. 1ibPPC604gnuvx.a), but are
included for the default ORB libraries
(liborb_dyn, liborb_min), since full
support for the CORBA:Longlong is
dependent on them.

Since other VxWorks products also
include these 1ong long arithmetic
operators as well, these "no_1ibc_1long"
libraries are delivered to support co-
existence with these other products (e.g.
VxWorks Personal JWorks).

Relocatable Object Module:
liborb_min.o

"munched" Relocatable Object Module:

liborb_min_munched.o

Tornado 2.2 Component Name:
"Minimal ORB"

24 VisiBroker-RT for C++ Developer’'s Guide

“Minimum CORBA" version of the
VisiBroker Object Request Broker library

This version of the VisiBroker-RT for
C++ ORB has been “scaled down” by
removing functionality which typically
would not be required for embedded
applications. The following components
are not part of the 1iborb min.o library:

¢ Dynamic Invocation Interface (DII)**
¢ Dynamic Skeleton Interface (DSI)**
e Interface Repository**

¢ Dynamic Any Types**

Note, however that this library still
provides support for the corsa: :Any

type.
**This functionality has been removed

based on the OMG Minimum CORBA
specification.

Library

Description

Relocatable Object Module:
liborb_no_libc_Illong_min.o

"munched" Relocatable Object Module:

liborb_no_libc_llong_min_munched.o

Tornado 2.2 Component Name:
Not Applicable

This library provides the same
funtionality as liborb_min.o library, with
the exception that it DOES NOT
INCLUDE the GCC libc 10ong long
arithmetic operators.

The long long arithmetic operators are
not provided by the VxWorks libraries
(e.g. 1ibPPC604gnuvx.a), but are
included for the default ORB libraries
(liborb_dyn, liborb_min), since full
support for the CORBA:Longlong is
dependent on them.

Since other VxWorks products also
include these 1ong long arithmetic
operators as well, these "no_1libc 1long"
libraries are delivered to support co-
existence with these other products (e.g.
VxWorks Personal JWorks).

Relocatable Object Module:
libagentsupport.o

"munched" Relocatable Object Module:

libagentsupport_munched.o

Tornado 2.2 Component Name:
"Dynamic ORB"

Provides the functionality required for
the ORB to communicate with the
Osagent. This library is required if your
application requires the services of the
VisiBroker SmartAgent (Osagent).

Relocatable Object Module:
libboa.o

"munched" Relocatable Object Module:

libboa_munched.o

Tornado 2.2 Component Name:
"Basic Object Adaptor (BOA) Support”

This library provides support for the
Basic Object Adapter (BOA). Use of the
library is required if your application
requires the CORBA 2.1 BOA interface.

Relocatable Object Module:
libevchn_c_s.o

"munched" Relocatable Object Module:

libevchn_c_s_munched.o

Tornado 2.2 Component Name:
"Event Service Client Support"

This library provides the interfaces to
allow applications to be clients of the
Visi- Broker-RT for C++ Event Service. If
one of your VxWorks nodes intends to
start a Event Service channel and/or
factory it must include both this library
as well as the library libevchn.o
(described below)

Relocatable Object Module:
libevchn.o

"munched" Relocatable Object Module:

libevchn_munched.o

Tornado 2.2 Component Name:
"Event Service"

This library provides the interfaces for
creating and starting VisiBroker-RT for
C++ Event Service channels and/or
factories on a VxWorks node

Relocatable Object Module:
liblocsupport.o

"munched" Relocatable Object Module:

liblocsupport_munched.o

Tornado 2.2 Component Name:
"Location Service"

VisiBroker-RT for C++ Developer’s Guide

This library provides support for the
VisiBroker Location Service. Use of the
library is required if your application
requires use of the Location Service
interface.

See “Using the Location Service” for details
on the VisiBroker Location Service.

25

Library Description

Relocatable Object Module: This library provides support for the
liblog_message_catalog.o formatted output of ORB log messages.
Use of the library is required if your

"munched" Relocatable Object Module: application desires more verbose

liblog_message_catalog_munched.o logging. By default VisiBroker logging
Tornado 2.2 Component Name: only includes message keys not message
"Log Message Catalog" text.

Please refer to “VisiBroker Logging” for
details on the VisiBroker Location

Service.
Relocatable Object Module: This library provides support for the 3.x
libmigrate.o style of VisiBroker Interceptors. Use of

the library is required if you are
migrating a 3.x application which use
Interceptors and want to keep the 3.x
Tornado 2.2 Component Name: style Interceptor API.

"Migrate Interceptors” Please refer to “Migrating VisiBroker Code”
for details on migrating 3.x style
interceptor applications.

"munched" Relocatable Object Module:
libmigrate_munched.o

Relocatable Object Module: This library provides the interfaces for
libname_c_s.o client applications which intend to ONLY
use the VisiBroker-RT for C++ Naming
Service. If one of your VxWorks target
nodes intends to start a Naming Service

"munched" Relocatable Object Module:
libname_c_s_munched.o

Tornado 2.2 Component Name: "root context" it must include both this

"Naming Service Client Support" library as well as the library libname.o
(described below).

Relocatable Object Module: This library provides the interfaces for

libname.o creating and starting a VisiBroker-RT for

++ i i

"munched" Relocatable Object Module: ﬁode Naming Service on a VxWorks

libname_munched.o)

Tornado 2.2 Component Name:

"Naming Service"

Relocatable Object Module: This library provides support for

libobjwrap.o VisiBroker Object Wrappers. Use of the

library is required if your application

"munched" Relocatable Object Module: requires use of Object Wrappers.

libobjwrap_munched.o
Please refer to “Using Object Wrappers” for

Tornado 2.2 Component Name: details on the Object Wrappers type of

"Object Wrappers"

Interceptors.
Relocatable Object Module: This library provides support for the
ibpluggable.o VisiBroker Pluggable Transport

interfaces. Use of the library is required
if your application requires use of a user
provided transport other than TCP/IP.

"munched" Relocatable Object Module:
libpluggable_munched.o

Tornado 2.2 Component Name:
"Pluggable Trasnport Interface"

Relocatable Object Module: This library provide provides support for
libsrvmgr.o communicating with the VisiBroker
Console.

"munched" Relocatable Object Module:
libsrvmgr_munched.o

Tornado 2.2 Component Name:
"Server Manager"

26 VisiBroker-RT for C++ Developer’'s Guide

Library

Description

Relocatable Object Module:
libservicesupport.o

"munched" Relocatable Object Module:
libservicesupport_munched.o

Tornado 2.2 Component Name:
"Support for Common Object Services"

This library provides support for the
VisiBroker Common Object Services. Use
of the library is required if your
application requires use of the Naming
or Event Service.

Relocatable Object Module:
osagent.o

"munched" Relocatable Object Module:
osagent_munched.o

Tornado 2.2 Component Name:
"Smart Agent"

The VisiBroker SmartAgent. This library
is required to run the VisiBroker Smart
Agent on a VxWorks node.

./__..-.-- ;/.z .::-I- ; " x\\l
| ' e I OR
M I"\ .-:'I'I-:u:-r:-_ml'u_'“‘;. /"'
T S
.. A)
libobjwrap f."r I.
; |
/ :
d 'Iil:.-.:'..-;artal. ppart :
. |
-‘ A L libboa

~Tibort,_dyn_no_libe_llong .

or

\. liborh_no_libc Wong min S

- v ~
% & Implggake)
,
*
1 libmigrate
"I liblog_mes=age_catalog

“libservicesupport

VR
AN

-) i 'II \\
osagent liblocsupport i ™
© libevchn o s libname ¢ =
libsrw romgr i
fibevchn lipnams
‘ Wleans library depends on
Figure 5 Interdependencies between the VisiBroker-RT libraries

VisiBroker-RT for C++ Developer’s Guide 27

VisiBroker-RT’s use of VxWorks TCB extensions

The VisiBroker-RT for C++ ORB makes use of the VxWorks Task Control
Block (TCB) spare fields. In particular the sparei field of the WIND_TCB is
used by the liborb.

Note
This field must remain the exclusive use of the VisiBroker-RT for C++
liborb.
typedef struct windTcb /* WIND TCB - task control block */
{
Q_ NODE gNode; /* 0x00: multiway g node: rdy/pend g */
Q NODE tickNode; /* 0x10: multiway g node: tick g */

Q:NODE activeNode; /* 0x20: multiway g node: active q */

sparel <---Used by the liborb
}

Integrating VisiBroker Libraries with Tornado
2.X

There are a couple of alternative configuration methods that the Tornado
2.x environment provides that can be used to integrate the VisiBroker-RT
runtime libraries with VxWorks:

1 The first method involves modifying the VxWorks configuration files
(i.e. configAll.h config.h,...), as well as the VxWorks vakerile. This is
the more traditional VxWorks configuration method.

2 The second method makes use of the Tornado 2.x Project Facility. Both of
these configuration methods are described below.

Integrating with a VxWorks BSP Makefile

1 Configure the VisiBroker required VxWorks Components using the
VxWorks Configuration files (i.e. config.h, configAll.h)

The VxWorks components required by VisiBroker can be configured into a
bootable VxWorks image by either:

a modifying the file $WIND BASE/target/config/all/configaAll.h and
adding the appropriate “#define” line(s) to the "INCLUDED SOFTWARE
FACILITIES” section; or

b modifying the file $wIND BASE/target/config/<your BSP directory>/
config.h and adding the appropriate “#define” line(s) to that file.

2 Link the VisiBroker Libraries into a VxWorks bootable image by modifying
the VxWorks Makefile.

The VisiBroker required VxWorks kernel components are (Note that they
MUST be configured into the VxWorks kernel to ensure correct operation
of the VisiBroker-RT for C++ for Tornado product):

a #define INCLUDE_ TaASK Hooks (part of VxWorks default configuration)

b To make use of VisiBroker-RT for C++ for Tornado “environment
variables” for setting options ENVIRONMENT VARIABLE support must
be included:

#define INCLUDE ENV VARS (part of VxWorks default configuration)

28 VisiBroker-RT for C++ Developer’'s Guide

¢ C++ and IO STREAMS support must be included into the VxWorks
image.

1 C++ support
#define INCLUDE cprus (part of VxWorks default configuration)

2 FULL IOSTREAMS support
#define INCLUDE CPLUS IOSTREAMS FULL

d Additionally the VisiBroker-RT runtime assumes that the VxWorks
Networking component has been initialized prior to the ors_init and
create POAcalls.

3 Link the VisiBroker Libraries into a VxWorks bootable image by modifying
the VxWorks Makefile.

The recommended way of using the VisiBroker-RT for C++ 2.x libraries is
to build them into the VxWorks kernel.

The relocatable VisiBroker-RT object modules are installed under the path
<install location>/VisiBrokerRT60/lib/<Tornado_Version>/
<your_target _cpu).

In order for an application to be able to make use of the VisiBroker-RT for
C++ runtime, a version of the liborb (i.e. liborb_dyn.o, liborb_min.o,...)
library must be linked in with the bootable VxWorks system image.

Linking the VisiBroker-RT runtime into a VxWorks system image can be
accomplished by modifying the “Makefile” under the appropriate VxWorks
Board Support Package (BSP) directory.

The example below assumes the following configuration:
* VxWorks node is a "ADS860” target board

» the Minimum CORBA version of the ORB library (i.e. 1iborb min.o)
with support for Osagent communications (i.e.libagentsupport.o)
is required.

e and an osagent (0sagent.o) is required to run on the node.

Change directory to the $WIND_BASE/target/config/ads860
directory, and modify the file Makefile as follows. Replace the following
line:

MACH EXTRA =
with the line

MACH EXTRA =

<install location>/VisiBrokerRT60/1ib/T2 2/PPC860/liborb min.o
\

<install location>/VisiBrokerRT60/1ib/T2 2/PPC860/
libagentsupport.o

<install location>/VisiBrokerRT60/1ib/T2 2/PPC860/osagent.o

Integrating VisiBroker Libraries with Tornado
2.2

There are a couple of alternative configuration methods that the
Tornado 2.2 product provides that can be used to integrate the VisiBroker-
RT runtime libraries with VxWorks:

1 The first method involves modifying the VxWorks configuration files (i.e.
configAll.h config.h,...), as well as the VxWorks Makefile. This is the more
traditional VxWorks configuration method. This method is described in
“Integrating with a VxWorks BSP Makefile”.

VisiBroker-RT for C++ Developer’'s Guide 29

2 The second method makes use of the Tornado 2.2 Project Facilty and the
VisiBroker-RT Tornado 2.2 Components. This method is described below.

Integrating using the Tornado 2.2 Project facility

Configure the VisiBroker-RT required VxWorks Components using the
Tornado 2.2 Project facility

In addition to the VxWorks default Tornado 2.2 included components,
VisiBroker requires:

e Full IO STREAMS support (component name “full C++ iostreams”)

« Additionally the VisiBroker ORB assumes that the VxWorks Networking
component has been initialized prior to the orB init call.

The component “initialize network at boot time” is usually included as

part of the default VxWorks configuration, however this is NOT the case for
the FULL VxSim simulator. This component must be included if VxWorks is
to initialize the Networking subsystem for your application. Otherwise your
application MUST perform this initialization prior to initializing the VisiBroker
ORB.

Note

The VxWorks kernel components identified above MUST be configured into
the VxWorks system image to ensure proper operation of the VisiBroker-RT
runtime.

The VxWorks bootable system image must be configured to include these
components. This can be accomplished by updating the VxWorks view of
your Workspace to select each of these components for inclusion into the
VxWorks system image.

= Workspace: VBCPPT 322

Buld Spec | defaul =|

= @ VBCPPT 322 .
= & VB3IZ2_veWoiks VeWoiks
- j@i C++ components

C++ wntime suppot Thefull C++ iostrazms component
Ny i ‘wind Foundation Classes st be included by selecting the
= i standard library :ijt:- ”‘*“;“'::‘i’f “'-"-:T’i?"-t_'
. mouss button 2nd sslecting Faciude
5 Co+ complex number i/o “flil C++ fostreams™ i
3 C#+ complex number type .
g Lo+ inchieams best = Elal bfujlbg‘lginnrem-:ampm:a:t
&5 Cv+ standard template library T
g Ce+ shing ifa
ﬁ Co+ shing lype

& basic Co+ instreams
EAul G- iostieanc IR
+ f@ application components
+ fl development tool components
+ il hardware
+ il nelwork components
- cbeokete compansris ﬂ

1 ES asar alims ssalaem asmeasanba

Fles Vytworks | Buids |

Figure 6 Including full iostreams component using the Project Workspace

30 VisiBroker-RT for C++ Developer’'s Guide

i Workspace: VBCPPT322 0] %

Buid Spec | gefaut M
/@ application components ﬂ
f@ development tool components
{@ hardware
~| {@ network components
= i basic network initialization components
g basic network support e st cetct ot e
& network buffer initialization s component st be includ-
& network mux initialization :;F_j'fj'jf:‘-zﬁ ;ﬁj:
= { bootline processing components buttonznd selecting
ﬁ network device name selection fffww “puiaize nenworiat oot
& network device netmask setup

o Er dhcp device address initialization
= ﬁr network initialization
g“' defer network, inibiization
& -
+ [network devices
+ {@l networking protocols
(+- i obsolete components
i@ operaling spstem components

L1

Fles Viworks [Bulds |

Figure 7 Including “intialize network at boot time” component using the
Project Workspace

Build the VisiBroker-RT enabled bootable VxWorks system image

The recommended way of using any of the VisiBroker-RT runtime is to build
them as part of the VxWorks system image. This is accomplished by
selecting the VisiBroker-RT components to be included in the VxWorks

system image.

The VisiBroker-RT runtime components are integrated with the Tornado 2.2
Project facility during the VisiBroker-RT for C++ installation. Using the
Tornado 2.2 Project facility, VisiBroker-RT components can be included into
a "bootable VxWorks image (custom configured)" by selecting the desired
VisiBroker component, much like a VxWorks 5.5 component is selected.

VisiBroker-RT for C++ Developer’'s Guide 31

R

Buld Spec |default =]

ﬁ Workspacel "
= §% Project ViWorks
+jml C++ components
= il VisiBroker C++ Components
= E«DFIB Components

& Omamic OFE
B Hll'llll'llal ORB The required FERrker-RT Compo-
= i ORB Servces nent con be ucuded by sdacting
= jl Event Service the componsnt, Mien cligding the
5 Evert Semvice right-mouss bution 2nd sslacting it

&5 Event Service Client Suppart tobeinclusd
For exampls to includs the "Smare

B i Name Service Agesm” compongig, selecting it right
ﬁ MName Semvice mowse ciick and select "Taciude
Mame Service Client Support "SmarrAgent”
= § Optional ORE Componenits
Basic Object Adapter [B0A) Support
&) Location Service
&9 Log Message Catalog
5 Migrate Interceptors
a9 Obiect Wrappers for Minimal ORB
5 Flhazaable Teansport infedace
& SeverManaper

E= S mart Agen ..E%
& Smart Agent Support

= ¥*COM [Comporent Object Model]

i V+DCOM [Distibuted Component Object Mode -

—— T

‘| | »

Files Viworks | Bulds |

—

-4

Figure 8 Including VisiBroker-RT components into a bootable VxWorks 5.5
image

Failure to download

If your new VxWorks image fails to download (during a Network download using
a VxWorks ROM), it is possible that the “"new” VxWorks image (which now
contains the ORB) may be overwriting the execution of your VxWorks BOOTROM
during the actual download phase.

An obvious symptom is the following:

VxWorks Bootrom prints
“Loading ######

(where #### is the size of your image). The system then “hangs” during
the download.

To correct this problem, you have two options:

1 Rebuild VxWorks bootroms increasing the value of
“RAM_HIGH_ADRS". This must be done in the Board Support Package
directory in BOTH of the files config.h and Makefile.

32 VisiBroker-RT for C++ Developer’'s Guide

For example to change the RAM high address from 1 megabyte to 2
megabytes you would make the following modification. (Please refer to
the “VxWorks Programmers Guide - Version 5.3.1 section 8.4 Alternative
VxWorks Configurations”, for more details on the proper setting of this
variable.)

change the line:

#define RAM HIGH ADRS 0x100000
to:

#define RAM HIGH ADRS 0x200000

2 Use the WindShell to download the munched version of the liborb
(liborb min munched.o).

Loading the liborb_munched version of the liborb dynamically from the
shell, requires the VxWorks image to have sufficient memory for the
VxWorks TOOLS. The portion of the VxWorks target systems heap which
is preallocated for the VxWorks HOST Tools (i.e. WindShell,
CrossWind,...) is controlled by the:

#define WDB_POOL_SIZE.

This definition is located in the $WIND BASE/target/config/all/
configall.h file. The default value of WDB_POOL_SIZE is 1/16 of the
VxWorks target system heap.

configAll.h WDB POOL SIZE default setting:
#define WDB POOL_SIZE ((sysMemTop () - FREE RAM ADRS)/16)

For example if your target system is a 68040 based VME board (mv162)
with 8 megabytes(MB) of RAM, and you are downloading the
liborb_munched version of the liborb using the WindShell, your target
system’s WDB_POOL_SIZE should be set to a value large enough to
support download of the liborb_munched.o (943124 bytes) plus your
CORBA application(s). So assuming you need ~1 M of additional host
tools memory for your application prototyping, your WDB_POOL_SIZE
needs to equa @ least 2M. On an 8 megabyte mv162 the setting of the
WDB_POOL_SIZE would look something like:

configAll.h WDB POOL SIZE default setting:
#define WDB POOL_SIZE ((sysMemTop() - FREE RAM ADRS) /4)

Note
Option number 1 (rebuilding bootroms) is the recommended use.

Using VisiBroker with VxSim

VxSim, the VxWorks simulator, is available for Solaris as well as Windows
NT/2000. All delivered VisiBroker libraries support the VxWorks simulator;
however the VisiBroker-RT runtime is only available for VxSim as
relocatable object modules. This means that when working on either VxSim
for Solaris or VxSim for Windows NT/2000/XP, a VxWorks bootable system
image MUST include the VisiBroker-RT runtime libraries required for the
application. Please refer to “Integrating VisiBroker Libraries with Tornado 2.x” for
details on how to include the VisiBroker libraries as part of a bootable
VxWorks system image.

The configuration requirements for VxSim are different depending on
whether the Windows or the Solaris version of the VxSim simulator is being
used. In order to take advantage of the distributed aspects of VisiBroker,
the FULL version of the simulator is required, since VxWorks Networking is
included only in the FULL Simulator.

VisiBroker-RT for C++ Developer’s Guide 33

Using VisiBroker with VxSim for Solaris

To use VisiBroker-RT for C++ with the Tornado Solaris VxSim distribution,
configuration of VxSim is required in the following areas.

Network Interface configuration

When using the VisiBroker-RT for C++ VxSim target distribution, it is
recommended that VxSim be configured to use a PPP (Point-to-Point
Protocol) network interface, as the ULIP network interface is being phased
out by Wind River Systems.

As part of configuring VxSim to use the PPP network interface Wind River
Systems delivers an “asppd.cf” file (in the winp BASE/target/config/solaris
directory) which is used when configuring the PPP interface on your Solaris
system. The value in this file for the default IP address configuring the PPP
interface is typically “127.0.1.254". This value must be changed to ensure
proper VisiBroker operation. The modified value should be a non-existent
subnet other than "127.xxx.xxx.xxx"”. In addition in this same file the IP
address value of each of the VxSim targets must also be modified to reflect
the PPP IP address which was used for configuring the PPP interface on the
Solaris host. Below is a sample excerpt of the original asppp.cf file as
delivered by WindRiver Systems, followed by a modified asppp.cf file. Note,
the network-specific portion of the "modified” IP address is different. This is
very important.

Original asppp.cf file as delivered by WindRiver Systems:

ifconfig ipd0 plumb 127.0.1.254 up private netmask Oxffffff00

path
interface ipdO0
peer system name vxsim0
peer ip address 127.0.1.0

path
interface ipdO0
peer system name vxsiml
peer ip address 127.0.1.1

Modified asppp.cf file for correct operation of VisiBroker-RT for
C++:

ifconfig ipdO plumb 200.200.200.254 up private netmask Oxffffff00

path
interface ipdO
peer system name vxsim0

peer ip address 200.200.200.0 (for Tornado 2)

peer ip address 200.200.200.1 (for Tornado AE)
path

interface ipd0 peer system name vxsiml

peer ip address 200.200.200.0 (for Tornado 2)

peer ip address 200.200.200.2 (for Tornado AE)

VxSim Boot parameters for Tornado 2

The VxSim boot parameters must also be modified to match the VxSim
target addresses which are specified in the "modified” asppp.cf file
described above. When the VxSim process is started it will attempt to read
a file named “Vxworks.nvram#” where # corresponds to the VxSim
processor number from the “Launch VxSim” dialog. This file must be
modified/ created to contain the SAME IP address which was used in the
“modified” asppp.cf file for that VxSim target.

34 VisiBroker-RT for C++ Developer’'s Guide

For example:

If you are starting VxSim target #0. Then in the “Launch VxSim” dialog you
will specify Processor number => 0

Upon starting, this VxSim target will attempt to read the file
“"VxWorks.nvramO0” to get its boot parameters. The IP address specified in
this file MUST match the IP address for vxsimO specified in the “asppp.ct”
file. Here is a sample VxWorks.nvramO for this scenario:

VxWorks.nram0 file

ppp (0, 0) MYHOSTNAME : /MYWINDBASE /vxSim/target/config/solaris/
VxWorks e=200.200.200.0:£f£f££f£f£f00 h=192.192.192.60
g=200.200.200.254 u=vxuser tn=vxsim0

VxSim Host Table configuration (only applicable for
Tornado 2.x Solaris Simulator)

The VxSim target does not automatically make a host-table entry in its host
table for its own host name (e.g."vxsimQ” above). This is a difference
between VxSim and other VxWorks targets, where the target name is
automatically added to the VxWorks host table at boot time. The VisiBroker
ORB requires that the “local host name” of the target have an entry in the
VxWorks host table.

Adding an entry into the VxWorks host table can be accomplished by
making a call to the hostLib function “hostAdd” from the VxWorks start-up
function usrRoot (in file usrConfig.C). The modification to the usrConfig.c
file would look something like this:

hostAdd (“vxSim0”,”200.200.200.0”);...where “wxSim0” is the host
name of the VxSim target.

Tornado 2.x VxSim process Memory Size

When starting up VxSim the “Launch VxSim” dialog window appears. There
are two boxes in this dialog window, Processor number and Memory size
(bytes). The Memory size should be modified to 16000000 (16 megabytes)
to ensure proper operation of VxWorks with VisiBroker-RT for C++.

Using VisiBroker with VxSim for Windows NT/2000/
XP

To use VisiBroker-RT for C++ with the Windows NT/2000 VXSim
distribution, configuration of VxSim is required in the following areas.

Tornado 2.x VxSim process Memory Size

To ensure proper operation of VXSIimNT with VisiBroker-RT for C++ the
recommended memory size for the VxSim process is 16 megabytes
(16000000). This can be configured as follows:

1 Create a dos batch file which contains the following (where -p specifies
VxWorks processor humber and -r specifies VXSim process memory size
in bytes):

start vxWorks.exe -pl -r16000000

2 When starting up VxSim the “VxSim Launch: Select Image and Options”
dialog window appears. Select the "Custom Built Simulator" button, and
specify the "Image” to be the dos batch file created above.

VisiBroker-RT for C++ Developer’'s Guide 35

¥xSim Launch: Select Image and Options EHE

—Vew'orks Image

WiSim includes a fullp-operational version of Windyiew.
WindYiew support for additional targets 1z avalable separately.

Select the executable Vidwiorks image to be launched:
" Standard simulator

& Custom-built simulator Browse... |

Image: |I::";T omadotarget\proj\Project] \defaulth_vxworks2 ba

r— Launch Options

Processor no.; [0-9) |U

Cancel Help

Figure 9 The “VxSim Launch: Select Image and Options” dialog window

Building a VisiBroker-ready VxSim NT/2000 Bootable VxWorks image
(only applicable for Tornado 2.x VXSimNT Simulator)

Attempting to link the multiple VisiBroker libraries (i.e. liborb_dyn.o,
libagentsupport.o) into a VxSim NT bootable image might fail with the
following error message:

Code example 4 VxSim NT Error when building a VisiBroker ready VxWorks
Bootable image

ccsimpc -BD:\Tornado\host\x86-win32\1lib\gcc-1ib\ -U WINNT -UWIN32
-U WINNT -UWINNT -U MINGW32 -U WIN32 -U WIN32 -U WIN32

-U WIN32 -nostdlib -r -Wl,-X \
-W1l,@D:\Tornado\target\proj\testproj\prjObjs.lstversion.o D:\
Tornado\target\1ib\1ibSIMNTgnuvx.a D:\Tornado\VisiBrokerRT60\1ib\
T2 _2\SIMNT\liborb.o D:\Tornado\VisiBrokerRT60\1ib\T2_ 2\SIMNT\
libagentsupport.o -o partiallmage.o

\\D\Tornado\host\x86-win32\1i386-pc-mingw32\bin\1ld.exe:
partialImage.o:

reloc overflow: 0x122fc > Oxffff
partialImage.o: final close failed: File truncated
make: *** [partiallmage.o] Error 0Oxl

This is a known problem with the Tornado VxSim NT tools. In particular the
VxSim NT linker.:

"Your problem has been identified as the SPR#30726: Problem with
VxSim loader - can't handle multiple text, data sections.

The explanation/workaround below should be able to resolve your build
problem which is caused by the limitation of the OMF i.e. PE-COFF. The
COFF cannot represent more than 65535 relocations in a single section.
Using the linker option, split-by-reloc and the attached linker script
should be able to resolve the problem."

Please contact Wind River Technical support and obtain Patch SPR#30726.
This can be easily obtained by going to http://www.windriver.com/

36 VisiBroker-RT for C++ Developer’'s Guide

corporate/html/tsmain.html and logging into WindSurf (you will need a
login ID and password).

The above windriver link is Page Not Found. Suggestions?

Step 7: Starting the Smart Agent (osagent) Service

The Smart Agent provides VisiBroker’s object location functions and must
be started on at least one node on the local network. The Smart Agent
(Osagent) is required to be initialized prior to any server objects attempting
to register, and prior to any client applications attempting to bind to any
server objects. The Smart Agent is described in detail in “Using the Smart
Agent”.

The VisiBroker SmartAgent is required if you are using the _bind operation
in your client application to locate and connect to server implementations.
For initial development and familiarity with the VisiBroker product use of the
Smart Agent is recommended. However if your application will eventually
use some alternative Location Service (e.g. VisiBroker Interoperable
Naming Service, custom location service,...) the Smart Agent will nhot be
required.

When use of the SmartAgent is not required, the library libagentsupport is
not required resulting in a smaller footprint for the required VisiBroker ORB
libraries. Please refer to “Step 6: Integrating VisiBroker-RT with Tornado/VxWorks”
for a description of these libraries and their dependencies.

There are 2 categories of osagent executables which are delivered with the
VisiBroker-RT for C++ product release, a Development Host osagent and
a VxWorks node osagent. In order to be able to “start” the VxWorks node
osagent, it MUST have been made available on the VxWorks node.

Configuring the Osagent to work with VxSim

Configuration of Osagent to ORB communications is required on both the
development host as well as the VxWorks VxSim virtual target.

Configuring the VisiBroker ORB running on VxSim to
support osagent communications

The default mechanism for establishing communications between the
VisiBroker ORB and the OSAGENT as well as between OSAGENTS, uses the
IP subnet broadcast mechanism. Since both the Windows Ulip driver and
the Solaris PPP driver are non-broadcast protocol interfaces, this method of
communications is not possible. Therefore use of the environment variable
OSAGENT_ADDR or the ORB_.init parameter “-ORBagentAddr” is required.
See the section "ORB options” in the VisiBroker-RT for C++ Programmers’
Reference for details on the use of the -orBagentaddr parameter.

Configuring the Smart Agent running on vxsim targets

The primary mechanism for initial OSAGENT to ORB and OSAGENT to
OSAGENT communications is based on UDP broadcast. Since both the
Windows Ulip driver and the Solaris PPP driver are non-broadcast protocol
interfaces, this method of communications is not possible. So use of the
OSAGENT_LOCAL_FILE (on the host) or the OSAGENT_LOCAL_TABLE (on
the target) is required. See the section “Specifying interface usage for
Smart Agents” in the VisiBroker-RT for C++ Programmers’ Reference, for a
description of how to use the OSAGENT_LOCAL_TABLE. Additionally
“Working with multihomed hosts” in the VisiBroker-RT for C++

VisiBroker-RT for C++ Developer’s Guide 37

Programmers’ Reference discusses how to use the OSAGENT_LOCAL_TABLE
on target systems.
Starting the Osagent on a Windows Development Host

The VisiBroker Smart Agent can be started from a Windows DOS prompt in
console mode as follows:

prompt> osagent -C

Starting the Osagent on a Solaris Development Host

The VisiBroker Smart Agent can be started from any Unix shell as follows:

prompt> osagent &

Starting the Osagent on a VxWorks Node

The Osagent task is initialized and started via a call to the following

function:
startOsagent (
unsigned long priority,Osagent task priority (200 is default)
int verbose = 0,
int port=-1, (default is 14000)
short logger priority=-1 (VisiBroker Logger Task

priority),
OSAGENT LOCAL ENTRY*local table = NULL, (pointer to
OSAGENT_LOCAL_TABLE)

OSAGENT ADDR ENTRY *addr table=NULL) (pointer to
OSAGENT ADDR TABLE)

long initial heartbeat window = 60, (Osagent to ORB
Heartbeat interval)

long initial heartbeat frequency = 5, (Osagent to ORB
initial Heartbeat frequency)

long heartbeat frequency = 300); (Osagent to ORB

Heartbeat frequency)

The header file vosagent.h must be included in the file which is calling this
function. This header file provides the function prototype for startosagent,
as well as a description on the use of the OSAGENT_LOCAL_TABLE and the
OSAGENT_ADDR_TABLE.

Please refer to the file corba init.c in any of the example subdirectories
which are delivered as part of the VisiBroker-RT for C++ product
distribution. These example subdirectories can be found in the

<install location>/VisiBrokerRT60/examples directory.

Note

To turn on the VERBOSE option for the osagent, set “Parameter #2 of
startOsagent” above to a value of 1. Likewise if you need the osagent to run
at a different port number than the default (14000) set “Parameter #3 of
startOsagent” above to the desired port number value.

Please refer to “Integrating with a VxWorks BSP Makefile” for details on how to
configure the osagent as part of your Tornado bootable VxWorks image.

The VisiBroker Smart Agent can be started from a Tornado WindShell as
follows:

--> startOsagent ()
Step 8: Starting the server and running the example

You are now ready to run your first VisiBroker-RT for C++ application. Make
sure that you have:

1 Compiled your client program and server implementation

38 VisiBroker-RT for C++ Developer’'s Guide

2 Created a VxWorks bootable image containing the required VisiBroker
libraries,

3 Started a VisiBroker Smart Agent (Osagent) on your local network.

In the scenario we describe below, the server will be running on VxWorks
node#1 and the client application will be running on VxWorks node#2.

Additionally, the steps below assume you are using the VxWorks WindShell
to dynamically load the sample VisiBroker applications.

Starting the server

From the Tornado WindShell:
1 Load the programs on VxWorks node#1.
From a Tornado 2 WindShell:

-> 1d < corba init
-> 1ld < server

Initialize the ORB on VxWorks node#1

-> start corba

start_corba should be run only ONCE. This will initialize the ORB.

The program corba_init also has the server skeleton (bank_s.cc) and
the client stub (bank_c.cc) linked in. This has been done in order to
support loading the server and/or client program multiple times.

If you require multiple loads of the server skeleton or client stub, you will
need to reboot your target. However as long as the IDL interface does
not change (i.e. the bank_s(_c).cc files do not change, which is usually
the case) the server implementation and the client stub can be loaded
and unloaded multiple times. Without any adverse effects on the
VisiBroker ORB libraries.

2 Start the bank server on VxWorks node#1
-> start bank server
You should see output similar to:

CORBA Object ==>

Repository ID: IDL:Bank/AccountManager:1.0

Object name: NONE
IOR:002020200000001c49444c3a42616e6b2f4163636£756e744d616e6167
65723a312e300000000001000000000000004c000102200000000e3230302e
3230302e3230302e300004010000002b00504d4300000004000000102£6261
6e6b5£6167656e745£706£61000000000b42616e6b4d616e61676572200000
0000

is ready

3 Now you can run the osfind command from your Unix/Windows
development host to see what interfaces and objects are currently
available on the your network. You should see output similar to:

osfind: Found one agent at port 14000
HOST: <hostname where osagent 1is running>
osfind: There are no OADs running on in your domain.

osfind: There are no Object Implementations registered with
OADs.

osfind: Following are the list of Implementations started
manually.

HOST: <name of VxWorks target>
REPOSITORY ID: IDL:Bank::Account:1.0
OBJECT NAME: NONE

VisiBroker-RT for C++ Developer’s Guide 39

NOTE

An alternative to using the osfind utility is the VisiBroker Console. The
VisiBroker Console gives you a graphical interface into the VisiBroker Smart
Agent database. Additionally the Console provides a view into the ORB
instances running and the active objects on each as well as the
configuration of each ORB instance. For details on using the VisiBroker
Console see “Using the VisiBroker-RT for C++ Console”.

Running the client

Windows From the Tornado WindShell:
1 Load the programs on VxWorks node#2.
From a Tornado 2 WindShell:

-> 1d < corba init
-> 1d < client

Initialize the ORB on VxWorks node#2

-> start corba

start_corba should be run only ONCE. This will initialize the ORB.

The program corba_init also has the server skeleton (bank s.cc) and
the client stub (bank c.cc) linked in. This has been done in order to
support loading the server and/or client program multiple times.

If you require multiple loads of the server skeleton or client stub, you will
need to reboot your target. However as long as the IDL interface does
not change (i.e. the bank s (c) .cc files do not change, which is usually
the case) the server implementation and the client stub can be loaded
and unloaded multiple times. Without any adverse effects on the
VisiBroker ORB libraries.

2 Run the bank client program.
-> start bank client "john"

At this point you should see the following output on both VxWorks target
#1 and VxWorks target #2’s output console window:

Client Server

Created john's account.

Returning john's account:
Repository ID:

IDL:Bank/Account:1.0
Object name: NONE

The balance in john's account is
$243.06

40 VisiBroker-RT for C++ Developer’'s Guide

Handling Exceptions

Exceptions in the CORBA model

The exceptions in the CORBA model include both system and user
exceptions. The CORBA specification defines a set of system exceptions that
can be raised when errors occur in the processing of a client request. Also,
system exceptions are raised in the case of communication failures. System
exceptions can be raised at any time and they do not need to be declared in
the interface. You can define user exceptions in IDL for objects you create
and specify the circumstances under which those exceptions are to be
raised. They are included in the method signature. If an object raises an
exception while handling a client request, the ORB is responsible for
reflecting this information back to the client.

System exceptions

System exceptions are usually raised by the ORB, though it is possible for

object implementations to raise them through interceptors discussed in the
chapter “Using Portable Interceptors”. When the ORB raises a SystemException,
it will be one of the CORBA-defined error conditions shown in the following
table.

Table2 CORBA-defined system exceptions

Exception name Description

BAD CONTEXT Error processing context object.

BAD_ INV_ORDER Routine invocations out of order.

BAD_OPERATION Invalid operation.

BAD PARAM An invalid parameter was passed.

BAD TYPECODE Invalid typecode.

COMM_FAILURE Communication failure.

DATA_CONVERSION Data conversion error.

FREE_MEM Unable to free memory.

IMP LIMIT Implementation limit violated.

INITIALIZE ORB initialization failure.

INTERNAL ORB internal error.

INTF REPOS Error accessing interface repository.

INV_FLAG Invalid flag was specified.

INV_INDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference specified.

MARSHAL Error marshalling parameter or result.

INVALID TRANSACTION Specified transaction was invalid (used in conjunction
with ITS/OTS).

NO_IMPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted operation

NO_RESOURCES Insufficient resources to process request.

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTOR Failure detected by object adaptor.

OBJECT NOT_EXIST Object is not available.

PERSIST STORE Persistent storage failure.

VisiBroker-RT for C++ Developer’s Guide 41

Exception name Description

TRANSIENT Transient failure.

TRANSACTION REQUIRED Transaction is required (used in conjunction with ITS/
OTS).

TRANSACTION ROLLEDBACK Transaction was rolled back (used in conjunction with
ITS/OTS).

TIMEOUT Request timeout.

UNKNOWN Unknown exception.

Code example 5 SystemException class

class SystemException : public CORBA::Exception {
public:
static const char* id;
virtual ~SystemException();
CORBA: :ULong minor () const;
void minor (CORBA: :ULong val);
CORBA: :CompletionStatus completed() const;
void completed (CORBA: :CompletionStatus status);

static SystemException * downcast (Exception *);

};...

Obtaining completion status

System exceptions have a completion status that tells you whether or not
the operation that raised the exception was completed. The
CompletionStatus enumerated values are shown below. COMPLETED MAYBE
is returned when the status of the operation cannot be determined.

IDL sample 2 CompletionStatus values

enum CompletionStatus {
COMPLETED YES = 0;
COMPLETED NO = 1;
COMPLETED MAYBE = 2;
}i
You can retrieve the completion status using these SystemException
methods.

Code example 6 Retrieving completion status
CompletionStatus completed() ;

Getting and setting the minor code

You can retrieve and set the minor code using these SystemException
methods. Minor codes are used to provide better information about the type
of error.

Code example 7 Retrieving and setting minor codes

ULong minor () const;
void minor (ULong val);

Determining the type of a SystemException

The design of the VisiBroker-RT for C++ exception classes allows your
program to catch any type of exception and then determine its type by
using the downcast () method. A static method, downcast () accepts a
pointer to any Exception object. As with the downcast () method defined

42 VisiBroker-RT for C++ Developer's Guide

on CORBA: :Object, if the pointer is of type SystemException, downcast ()
will return the pointer to you. If the pointer is not of type SystemException,
_downcast () will return a NULL pointer. See Appendix A, “CORBA
exceptions,” for details.

Catching system exceptions

Your applications should enclose the ORB and remote calls in a try catch
block. Code example 8 illustrates how the account client program, discussed
in “Developing an Example Application with VisiBroker-RT for C++”, prints an
exception.

Code example 8 Printing an exception
#include "Bank c.hh"

void start client (const char* name)

{
// The client uses the " bind" method by default which locates
// the Server Object via the OSAgent. There is a provision
// for the client to use the Server’s stringified IOR (cases
// where using the OsAgent may not be supported). To use the
// IOR method, copy the stringified IOR in place of the NULL
// value below.This stringified IOR is typically displayed on
// the server console after the server has been activated.
char * IOR = NULL ;

VISTRY {

// Locate an account manager. Give the full POA name and
// the servant ID.
Bank: :AccountManager var manager;

if (IOR!=NULL) {
// convert the stringified IOR to an object reference
CORBA: :0Object var object = orb->string to object (IOR);

VISIFNOT EXCEP
manager = Bank::AccountManager:: narrow (object);
VISEND IFNOT EXCEP

else {
PortableServer: :0bjectId var managerId =
PortableServer::string to ObjectId("BankManager");

VISIFNOT EXCEP
manager =Bank::AccountManager:: bind("/bank account poa",
managerId) ;

VISEND IFNOT EXCEP
}

Bank: :Account var account;

}
VISCATCH (CORBA: :Exception, e) {
cerr << e << endl;

VISEND CATCH

return 0;

If you were to execute the client program with these modifications and
without a server present, the following output would indicate that the
operation did not complete and the reason for the exception.

VisiBroker-RT for C++ Developer’'s Guide 43

-> start bank client
Exception: CORBA::0OBJECT NOT EXIST
Minor: O B B
Completion Status: NO

Downcasting exceptions to a system exception

You can modify the bank_account client program to attempt to downcast any
exception that is caught to a SystemException. Code example 9 shows how
you might modify the client program. Code example 10 shows how the output
would appear if a system exception occurred.

Code example 9 Downcasting an exception to a system exception

void bank client (const char* name)
VISTRY {

// Bind to an account.
Account var account = Account::_bind();

// Get the balance of the account.
CORBA::Float acct balance;
VISIFNOT EXCEP
acct balance = account->balance(); VISEND IFNOT EXCEP

// Print out the balance

VISIFNOT EXCEP.

cout << "The balance in the account is $"
<< acct balance << endl VISEND IFNOT EXCEP;

}
VISCATCH (CORBA: : Exception, e) {

CORBA: :SystemException var sys excep;

sys_excep = CORBA::SystemException::_ downcast (&e);

if (sys_excep != NULL) {
cerr << "System Exception occurred:" << endl;
cerr << "exception name: " <<
sys excep-> name () << endl;
cerr << "minor code: " << sys_excep->minor () << endl;
cerr << "ccompletion code: " << sys excep->completed() <<
endl;
lelse {

cerr << "Not a system exception" << endl;
cerr << e << endl;
}
}
VISEND CATCH
}

Code example 10 Output from the system exception

System Exception occurred:
exception name: CORBA::NO IMPLEMENT
minor code: 0
completion code: 1

44 VisiBroker-RT for C++ Developer's Guide

Catching specific types of system exceptions

Rather than catching all types of exceptions, you may choose to specifically
catch each type of exception that you expect. Code example 11 shows this
technique.

Code example 11 Catching specific types of exceptions

void bank client (const char* name)
VISTRY {

// Bind to an account.
Account var account = Account:: bind();

// Get the balance of the account.
CORBA: :Float acct balance;
VISIFNOT EXCEP a

acct balance = account->balance () ;
VISEND IFNOT EXCEP

// Print out the balance
VISIFNOT EXCEP.
cout << "The balance in the account is $"
<< acct balance << endl
VISEND IFNOT EXCEP;
}
VISCATCH (CORBA: : SystemException, sys excep) {
// Check for system errors
cout << "System Exception occurred:" << endl;

cout << "exception name: " << sys excep-> name () << endl;
cout << "minor code: " << sys excep->minor() << endl;

cout << "completion code: " << sys_excep->completed ()

<< endl;

}
VISEND CATCH

User exceptions

When you define your object’s interface in IDL you can specify the user
exceptions that the object may raise. Code example 12 shows the
UserException code from which the id12cpp compiler will derive the user
exceptions you specify for your object.

Code example 12 UserException class

class UserException:
public Exception { public:

static const char* id;
virtual ~UserException();

static UserException * downcast (Exception *);

}i

Defining user exceptions

Suppose that you want to enhance the bank_account application,
introduced in “Developing an Example Application with VisiBroker-RT for C++”, so
that the account object will raise an exception. If the account object has
insufficient funds, you want a user exception named AccountFrozen to be
raised. The additions required to add the user exception to the IDL
specification for the Account interface are shown in bold.

VisiBroker-RT for C++ Developer’'s Guide 45

IDL sample 3 Defining user exceptions

// Bank.idl
module Bank {
interface Account {
exception AccountFrozen {
bi
float balance () raises(AccountFrozen);
bi
}i

The id12cpp compiler will generate the following code for @ AccountFrozen
exception class.

Code example 13 AccountFrozen class generated by the idl compiler
class Account : public virtual CORBA::0Object {

class AccountFrozen: public CORBA UserException {
public:
static const CORBA Exception::Description description;

AccountFrozen () {}
static CORBA::Exception *_ factory() ({
return new AccountFrozen();

}
~AccountFrozen () {}
virtual const CORBA Exception::Description& _desc () const;
static AccountFrozen * downcast (CORBA: :Exception *exc);
CORBA: :Exception * deep copy() const {

return new AccountFrozen (*this);

void _raise() const { VISTHROW INST (this) }}
}

}

Modifying the object to raise the exception

The AccountImpl object must be modified to use the exception by raising
the exception under the appropriate error conditions.

Code example 14 Modifying the object implementation to raise an exception

CORBA::Float AccountImpl::balance ()
{
if(balance < 50) {
VISTHROW (Account: :AccountFrozen()) ;
VISRETURN (return 0.0;)
} else {
return balance;

}

Catching user exceptions

When an object implementation raises an exception, the ORB is responsible
for reflecting the exception to your client program. Checking for a
UserException is similar to checking for a SystemException. To modify
the account client program to catch the AccountFrozenexception, make
modifications like those shown in Code example 15.

Code example 15 Catching a UserException

VISTRY {

// Bind to an account.
Account var account = Account::_bind();

// Get the balance of the account.
CORBA::Float acct balance;

46 VisiBroker-RT for C++ Developer's Guide

VIS IFNOT_EXCEP
acct balance = account->balance() ;
VI SEND_I FNOT_EXCEP

}

VISCATCH (Account::AccountFrozen, e){
cerr << "AccountFrozen returned:" << endl;
cerr << e << endl;
return (0) ;

}
// Check for system errors
VISAND CATCH(CORBA::SystemException, sys_excep) {

}
VISEND CATCH

Adding fields to user exceptions

You can associate values with user exceptions. Code example 16 shows how to
modify the IDL interface specification to add a reason code to the
AccountFrozen user exception.The object implementation that raises the
exception is responsible for setting the reason code. The reason code is printed
automatically when the exception is put on the output stream.

Code example 16 Adding a reason code to the AccountFrozen exception

// Bank.idl
module Bank {
interface Account {
exception AccountFrozen ({
int reason;
}i
float balance () raises (AccountFrozen);
}i
bi

The VisiBroker C++ Exception Support

The CORBA specification defines an Environmentclass for reflecting
exceptions. VisiBroker uses the Environment class, along with a set of
macros, to provide your applications with efficient C++ exception handling
capabilities.

The Exception Macros

The Environment class is used internally by the ORB and is transparent to
you as a programmer. The only requirement is that you use these exception
macros to throw, try and catch exceptions. These macros will transparently
manipulate the Environmentclass and provide efficient, reentrant safe
exception handling.

Table 3 The VIS exception macros.

Macro name Purpose

VISTRY Use this as you would use the try statement.
VISTHROW(type_name) Throws the specified exception.
VISTHROW_LAST Used to re-throw the specified exception.

Used only in an event handler or in a method
called by an event han- dler.

VISCATCH(type_name, Use this to catch an exception of the specified
variable_name) type.

VisiBroker-RT for C++ Developer’'s Guide 47

Macro name
VISAND_CATCH

VISEND_CATCH
VISCATCH_ALL

VISAND_CATCHALL

VISTHROW_INST

VISIF_EXCEP

VISCLEAR_EXCEP

VISIFNOT_EXCEP

VISEND_IFNOT_EXCEP
VISRETURN(what)

48 VisiBroker-RT for C++ Developer's Guide

Purpose

If several exceptions are to be specified for a
VISTRY block, use VISCATCH for the first
catch statement and VISAND_CATCH for all
subsequent catch statements.

Used to terminate a VISCATCH block.

Used to catch any exception which is thrown.
As opposed to VISCATCH which catches the
specified exception

If several exceptions are to be specified for a
VISTRY block, use VISCATCH for the first
catch statement and VISAND_CATCHALL to
catch all other types of exceptions which are
thrown.

Used to throw an exception from an object
instance’s “throw” method (e.g. instance-
>_throw)

Used to check if an exception was thrown and
perform a specified action which follows

Clears the current environments, exception
information,

Used to check if an exception was NOT
thrown and continue wtih the application
processing

Used to terminate a VISIFNOT_EXCEP block

Used to return after a VISTHROW, for
example VISRETURN (return;)

Part 2

Server Concepts

In this part

This part contains the following chapters:

Server basics page 51

Using POAs page 61

Using the Tie Mechanism page 81

Overview

Server basics

This chapter outlines the tasks that are necessary to set up a server to receive
client requests.

The basic steps that need to be performed in setting up your server are:
 Initialize the ORB

» Select policies and Create the POA

» Activate the POA Manager

» Activate objects

» Wait for client requests

This chapter describes each task in a global manner to give you an idea of
what you must consider. The specifics of each step is dependent on your
individual requirements.

Initializing the ORB

As stated in the previous chapter, the ORB provides a communication link
between client requests and object implementations. Each application must
initialize the ORB before communicating with it.

Code example 17 |Initializing the ORB

// Initialize the ORB.
CORBA::0RB ptr orb = CORBA::0ORB init(argc, argv);

Creating the POA

Early versions of the CORBA object adapter (the Basic Object Adapter, or
BOA) didn't permit portable object server code. A new specification was
developed by the OMG to address these issues and the Portable Object
Adapter (or POA) was created.

Note

A discussion of the POA can be quite extensive. This section introduces you
to some of the basic features of the POA. For detailed information, see
“Using POAs” and the OMG specification.

In basic terms, the POA (and its components) determine which servant
should be invoked when a client request is received, and then invokes that
servant. A servant is a programming object that provides the
implementation of an abstract object. A servant is not a CORBA object.

One POA (called the root POA) is supplied by each ORB. You can create
additional POAs and configure them with different behaviors. You can also
define the characteristics of the objects the POA controls.

The steps to setting up a POA with a servant include:

» Obtaining a reference to the root POA
» Defining the POA policies
» Creating a POA as a child of the root POA

VisiBroker-RT for C++ Developer’s Guide 51

« Creating a servant and activating it
« Activating the POA through its manager

Some of these steps may be different for your application.

Obtaining a reference to the root POA

All server applications must obtain a reference to the root POA to manage
objects or to create new POAs.

Code example 18 Obtaining a reference to the root POA
// get a reference to the root POA
CORBA: :Object var obj =
orb->resolve initial references (“RootPOA”) ;
// narrow the object reference to a POA reference
PortableServer: :POA var rootPOA =
PortableServer: :POA:: narrow(obj);

You can obtain a reference to the root POA by using

resolve initial references. resolve initial references returns a
value of type CORBA: :Object. You are responsible for narrowing the
returned object reference to the desired type, which is
PortableServer: :POA in the above example.

You can then use this reference to create other POAs, if needed.

Creating the child POA

The root POA has a predefined set of policies that cannot be changed. A
policy is an object that controls the behavior of a POA and the objects the
POA manages. If a different behavior, such as different lifespan policy is
desired, creation of a new POA is needed.

POAs are created as children of existing POAs using create POA. As many
POAs as required can be created.

Note
Child POAs do not inherit the policies of their parent POAs.

In the following example, a child POA is created from the root POA and has
a persistent lifespan policy. The POA Manager for the root POA is used to
control the state of this child POA. More information on POA Managers are
described later in this chapter.

Code example 19 Creating the policies and the child POA
CORBA::PolicyList policies;
policies.length(1l);
policies[(CORBA: :ULong)0] =
rootPOA->create lifespan policy(PortableServer::PERSISTENT) ;
// Create myPOA with the right policies
PortableServer::POAManager var rootManager =
rootPOA->the POAManager () ;
PortableServer::POA var myPOA = rootPOA->create POA (
"bank account poa", rootManager, policies);

Implementing servant methods

IDL has a syntax similar to C++ and can be used to define modules,
interfaces, data structures, and more. When you compile an IDL that
contains an interface, a class is generated which serves as the base class
for your servant. For example, in the bank.idl file, an AccountManager
interface is described.

52 VisiBroker-RT for C++ Developer’'s Guide

Code example 20 Interfaces described in bank.idl

module Bank{
interface Account {
float balance();
}i
interface AccountManager {
Account open (in string name) ;
bi
}i

The AccountManager implementation on the server side is shown below.

Code example 21 AccountManagerimpl code

// We inherit from PortableServer::RefCountServantBase so that
// the servant object will be automatically deleted when the
// object is deactivated

// The _remove ref method is called as part object

// deactivation by the POA

class AccountManagerImpl : public POA Bank::AccountManager,
public virtual
PortableServer: :RefCountServantBase
{
public:
AccountManagerImpl () {}

Bank::Account ptr open(const char* name) {
// Lookup the account in the account dictionary.
PortableServer::ServantBase var servant =
_accounts.get (name) ;

if (servant == PortableServer::ServantBase:: nil()) {
// Seed the random number generator
srand((unsigned) time (&random time)) ;

// Make up the account’s balance, between 0 and 1000
dollars.
CORBA::Float balance = abs(rand()) % 100000 / 100.0;

// Create the account implementation, given the balance.
servant = new AccountImpl (balance);

// Print out the new account
cout << "Created " << name << "’'s account." << endl;

// Save the account in the account dictionary.
_accounts.put (name, servant);
}
VISTRY {
// Activate it on the default POA which is root POA for this
servant
PortableServer::POA var default poa = default POA();

CORBA: :Object var ref;
VISIFNOT EXCEP
ref = default poa->servant to reference (servant);
VISEND IFNOT EXCEP
Bank: :Account var account;
VISIFNOT EXCEP
account = Bank::Account:: narrow(ref);
VISEND IFNOT EXCEP
VISIFNOT EXCEP
// Print out the new account
cout << "Returning " << name << "’'s account: " << account
<< endl;

// Return the account

VisiBroker-RT for C++ Developer’'s Guide 53

return Bank::Account:: duplicate (account);
VISEND IFNOT EXCEP

}

VISCATCH (CORBA: :Exception, e) {
cerr << " narrow caught exception: " << e << endl;
return;

}
VISEND CATCH

return Bank::Account:: nil();

}

private:
static AccountRegistry accounts;

}i

The AccountManager implementation must be created and activated in the
server code. In this example, AccountManager is activated with

activate object with id, which passes the object ID to the Active Object
Map where it is recorded. The Active Object Map is simply a table that maps
IDs to servants. This approach ensures that this object is always available
when the POA is active and is called explicit object activation.

Code example 22 Creating and activating the servant

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;
// Create the object ID PortableServer::0bjectId var managerId;

VISIFNOT EXCEP
managerId = PortableServer::string to ObjectId("BankManager");
VISEND IFNOT EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT EXCEP

myPOA->activate object with id(managerId, managerServant);
VISEND IFNOT EXCEP

Activating the POA

The last step is to activate the POA Manager associated with your POA. By
default, POA Managers are created in a holding state. In this state, all
requests are routed to a holding queue and are not processed. To allow
requests to be dispatched, the POA Manager associated with the POA must
be changed from the holding state to an active state. A POA Manager is
simply an object that controls the state of the POA (whether requests are
queued, processed, or discarded.) A POA Manager is associated with a POA
during POA creation. If a POA Manager is not specified the system will
create a new one (enter NULL as the POA Manager name in create POA()).

Code example 23 Activating the POA manager

// Activate the POA Manager

PortablServer: :POAManager var mgr=rootPoa ->the POAManager () ;

VISIFNOT EXCEP B N
mgr->activate () ;

VISEND IFNOT EXCEP

54 VisiBroker-RT for C++ Developer’'s Guide

Activating objects

In the preceding section, there was a brief mention of explicit object
activation. There are several ways in which objects can be activated:

» Explicit—all objects are activated upon server start-up via calls to the POA

+ On-demand—the servant manager activates an object when it receives a
request for a servant not yet associated with an object ID

« Implicit—objects are implicitly activated by the server in response to an
operation by the POA, not by any client request

» Default servant—the POA uses the default servant to process the client
request

A complete discussion of object activation is in the chapter “Using POAs”. For
now, just be aware that there are several means for activating objects.

Complete example

The following shows the complete code described in this chapter. You can
find this code in the example "bank_account", which is part of the
installation of VisiBrokerRT60.

Code example 24 Complete Servant Implementation for Server side code
(bankimpl.h)

//bankImpl.h

#include <vxWorks.h>
#include <math.h>
#include <time.h>
#include <vport.h>
#include <tickLib.h>
#include "bank s.hh"

#define MAX SIZE256
#define _TYPE SIZE 32

// The AccountRegistry is a holder of Bank account
// implementations
class AccountRegistry
{
public:
AccountRegistry() : count(0), max(l6), data((Data*)NULL)
{
_data = new Datal[l6];
}

~AccountRegistry () { deletel] _data; }
void put (const char* name, PortableServer::ServantBase ptr
servant) {
VISMutex var lock(lock);
if (_count + 1 == max) {
Data* oldData = data;

_max += 16;
data = new Data[max];
for (CORBA::ULong i = 0; i < count; i++)
_data[i] = oldDatal[i];
delete[] oldData;

_data[count].name = name;
servant-> add ref ();

_data[count].account = servant;
_count++;

}

VisiBroker-RT for C++ Developer’s Guide 55

PortableServer::ServantBase ptr get(const char* name) {
VISMutex var lock(lock):;
for (CORBA::ULong i = 0; i < count; i++) {
if (strcmp(name, datal[i].name) == 0) {
_datali].account-> add ref();
return datali].account;
}
}
return PortableServer::ServantBase:: nil();

}

private:
struct Data {
CORBA::String var name;
PortableServef::ServantBaseivar account;

}i

CORBA: :ULong count;

CORBA: :ULong max;

Data* data;

VISMutex lock; // Lock for synchronization

// We inherit from PortableServer::RefCountServantBase so that
// the servant object will be automatically deleted when the
// object is deactivated

// The remove ref method is called as part object

// deactivation by the POA

class AccountImpl : public virtual POA Bank::Account,
public virtual PortableServer::RefCountServantBase
{
public:
AccountImpl (CORBA: :Float balance) : balance (balance) {}
CORBA::Float balance() { return balance; }

private:
CORBA::Float balance;

// We inherit from PortableServer::RefCountServantBase so that
// the servant object will be automatically deleted when the
// object is deactivated

// The _remove ref method is called as part object

// deactivation by the POA

class AccountManagerImpl : public POA Bank::AccountManager,
public virtual
PortableServer: :RefCountServantBase
{
public:
AccountManagerImpl () {}

Bank::Account ptr open(const char* name) {

// Lookup the account in the account dictionary.

PortableServer::ServantBase var servant =
_accounts.get (name) ;

if (servant == PortableServer::ServantBase:: nil()) {
// Seed the random number generator
srand ((unsigned) tickGet ()) ;

// Make up the account’s balance, between 0 and 1000
// dollars.

CORBA::Float balance = abs(rand()) % 100000 / 100.0;

// Create the account implementation, given the balance.
servant = new AccountImpl (balance);

56 VisiBroker-RT for C++ Developer’'s Guide

// Print out the new account
cout << "Created " << name << "'s account." << endl;

// Save the account in the account dictionary.
_accounts.put(name, servant);

}

VISTRY {
// Activate it on the default POA which is root POA for
// this servant
PortableServer::POA var default poa = default POA();

CORBA: :0Object var ref;

VISIFNOT EXCEP
ref = default poa->servant to reference (servant);
VISEND IFNOT EXCEP

Bank::Account var account;

VISIFNOT EXCEP
account = Bank::Account:: narrow(ref);
VISEND IFNOT EXCEP

VISIFNOT EXCEP
// Print out the new account
cout << "Returning " << name << "’'s account: " <<

account << endl;

}i

// Return the account
return Bank::Account::7duplicate(account);
VISEND_IFNOT_EXCEP

}

VISCATCH (CORBA: :Exception, e) {
cerr << " narrow caught exception: " << e << endl;
taskSuspend (0) ;

}

VISEND CATCH

return Bank::Account:: nil();

private:
static AccountRegistry accounts;

Code example 25 Server Implementation for Server side code (server.C)

//bank account server

finclude <vxWorks.h>
#include "bankImpl.h"

extern CORBA::0RB var orb;

// Declare global objects
AccountRegistry AccountManagerImpl:: accounts;

static void bank server(void);

void start bank server (void)

{

char * taskName = "BANK SRVR";
int Prio = 100;

int option = VX FP TASK;
int stackSize = 20000;

taskSpawn (taskName,
Prio,
option,
stackSize,
(FUNCPTR) bank server,
6,0,0,0,0,0,0,0,0,0);

VisiBroker-RT for C++ Developer’'s Guide

57

void bank server()

{
PortableServer::POA var rootPOA;

VISTRY {
//get a reference to the root POA
CORBA: :Object var obj =
orb->resolve initial references ("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::inarrow(obj);
VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(1l);

VISIFNOT EXCEP
policies[(CORBA: :ULong) 0] =
rootPOA->create lifespan policy(
PortableServer: : PERSISTENT) ;

VISEND IFNOT EXCEP

// get the POA Manager
PortableServer::POAManager var poa manager;
VISIFNOT EXCEP B B

poa manager = rootPOA->the POAManager () ;
VISEND IFNOT EXCEP B

// Create myPOA with the right policies
PortableServer: :POA var myPOA;
VISIFNOT EXCEP n
myPOA = rootPOA->create POA ("bank account poa",
poa manager, policies);
" VISEND IFNOT EXCEP

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the object ID
PortableServer::0bjectId var managerId;
VISIFNOT EXCEP
managerld =
PortableServer::string to ObjectId("BankManager");
VISEND IFNOT EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT EXCEP

myPOA->activate object with id(managerId, managerServant);
VISEND IFNOT EXCEP

// Activate the POA Manager VISIFNOT EXCEP
poa_manager->activate(); VISEND IFNOT_ EXCEP

CORBA: :Object var ref;

VISIFNOT EXCEP
ref = myPOA->servant to reference (managerServant);
VISEND IFNOT EXCEP

CORBA::String var string ref;

VISIFNOT EXCEP
string ref = orb->object to string(ref.in());
VISEND IFNOT EXCEP

VISIFNOT EXCEP
cout << endl << "CORBA Object ==> " << endl << endl;
cout << ref << endl;
cout << string ref << endl << endl;
cout << " is ready" << endl << endl;
VISEND IFNOT EXCEP
}

58 VisiBroker-RT for C++ Developer’'s Guide

VISCATCH (CORBA: :Exception, e) {
cerr << e << endl;
taskSuspend (0) ;

}

VISEND_CATCH

return;

}

VisiBroker-RT for C++ Developer’s Guide 59

60 VisiBroker-RT for C++ Developer’'s Guide

Using POAs

This chapter describes the Portable Object Adapter (POA), instances of which
are used in the construction of the server-side of VisiBroker applications. The
description of the POA in this chapter is derived from the corresponding
chapter of the CORBA specification, which should be consulted for a complete
description.

Advanced server-side configuration topics, which involve the POA, are
described in the chapters of Part 6 of this manual ("Advanced Concepts’).

What is a Portable Object Adapter?

A POA is the intermediary between the implementation of an object (a
‘servant’) and the ORB. In its role as an intermediary, a POA routes
requests to servants. If necessary, it may cause servants and even other
POAs to be created.

An ORB can support multiple POAs. At least one POA is always present,
which is called the rootPOA. The rootPOA is created automatically. All other
POAs are created by the application. The set of POAs is hierarchical; all
POAs have the rootPOA as an ancestor.

Servant managers locate and assign servants to objects for the POA. When
an abstract object is assigned to a servant, it is called an active object and
the servant is said to incarnate the active object. Every POA has one Active
Object Map which keeps track of the object IDs of active objects and their

associated active servants.

SEerer POA

¢ POA .| Servant Manager
rootPOA

Servant f-'lﬂl'lﬂg&r".. d Servant

Client -

Active Object Map | ¢ eareant
ObjectD '
ObjectD e
Objecti _ | | A iy ervant B

Figure 10 Overview of the POA

VisiBroker-RT for C++ Developer’s Guide 61

POA terminology

The following are definitions of some terms with which you will become more
familiar as you read through this chapter.

Table 4 Portable Object Adapter terminology

Term
Active Object Map

adapter activator

etherealize

ObjectID

persistent object

POA manager

Policy

rootPOA

servant

servant manager

transient object

Description

Table that maps active CORBA objects (through their
object IDs) to servants.

There is one Active Object Map per POA.

Object that can create a POA on demand when a request
is received for a child POA that does not exist.

Remove the association between a servant and an
abstract CORBA object. incarnateAssociate a servant with
an abstract CORBA object.

Way to identify a CORBA object within the object
adapter. An ObjectID can be assigned by the object
adapter or the application and is unique only within the
object adapter in which it was created. Servants are
associated with abstract objects through ObjectIDs.
CORBA objects that live beyond the ORB instance was
used to create them.

Object that controls the state of the POA; for example,
whether the POA s receiving or discarding incoming
requests.

Object that controls the behavior of the associated POA
and the objects the POA manages.

Each ORB is created with one POA called the rootPOA. You
can create additional POAs (if necessary) from the
rootPOA.

Any code that implements the methods of a CORBA
object, but is not the CORBA object itself.

An object responsible for managing the association
of objects with servants, and for determining
whether an object exists. More than one servant
manager can exist.

A CORBA object that lives only within the ORB
instance that created it.

Steps for creating and using POAs

Although the exact process can vary, the following are the basic steps that
occur during the POA lifecycle:

» Define the POA’s policies.

» Create the POA.

« Activate the POA through its POA manager.
» Create and activate servants.

+ Create and use servant managers.

» Use adapter activators.

Depending on your needs, some of these steps may be optional. For
example, you only have to activate the POA if you want it to process

requests.

62 VisiBroker-RT for C++ Developer’'s Guide

POA policies

Each POA has a set of policies that define its characteristics. When creating
a new POA, you can use the default set of policies or use different values to
suit your requirements. You can only set the policies when creating a POA;
you can not change the policies of an existing POA. POAs do not inherit the
policies from their parent POA.

The following sections lists the POA policies, their values, and the default
value (used by the rootPOA).

Minimum CORBA and POA Policies

VisiBroker delivers both a “full” and “minimum” version of the ORB libraries.
In VisiBroker-RT for C++ for Tornado the “minimum” version supports the
full set of POA policy values.

For details, see the minimum CORBA specification document, OMG
document number orbos/98-08-04. This document is available for download
using the URL ftp://ftp.omg.org/pub/docs/orbos/98-08-04.pdf.

Thread policy

The thread policy specifies the threading model to be used by the POA. The
thread policy can have the following values:

ORB_CTRL_MODEL The POA is responsible for assigning requests to
threads.

In a multi-threaded environment, concurrent
requests may be delivered to the same servant via
using multiple threads.

SINGLE_THREAD_MODEL The POA processes requests sequentially. Ina
multi-threaded environment, all calls made by the
POA to servants and servant managers are thread-
safe.

This policy value is NOT SUPPORTED in VisiBroker-
RT which always supports the multithreaded
behavio

Default Values
* Root POA default: ORB_CTRL_MODEL
» Child POA default: ORB_CTRL_MODEL

Lifespan policy

The lifespan policy specifies the lifespan of the objects implemented in the
POA. The lifespan policy can have the following values:

TRANSIENT A transient object activated by a POA cannot
outlive the POA that created it. Once the POA
is deactivated, an OBJECT_NOT_EXIST
exception occurs if an attempt is made to use
any object references generated by the POA.

PERSISTENT A persistent object activated by a POA can
outlive the ORB instance under which it was
first created. Requests invoked on a
persistent object may result in the implicit
activation of a POA and the servant that
implements the object.

VisiBroker-RT for C++ Developer’'s Guide 63

Default Values
* Root POA default: TRANSIENT
» Child POA default: TRANSIENT

Object ID Uniqueness policy

The Object ID Uniqueness policy allows a single servant to be shared by
many Object ID’s (and hence object references). The Object ID Uniqueness
policy can have the following values:

UNIQUE_ID Activated servants support only one Object
ID.
MULTIPLE_ID Activated servants can have one or more

Object IDs. The Object ID must be
determined within the method being invoked
at run time.

Default Values
» Root POA default: UNIQUE_ID
» Child POA default: UNIQUE_ID

ID Assignment policy

The ID assighnment policy specifies whether object IDs are generated by
server applications or by the POA. The ID Assignment policy can have the
following values:

USER_ID Objects are assighed object IDs by the
application.
SYSTEM_ID Objects are assignhed object IDs by the POA.

If the PERSISTENT policy is also set, object
IDs must be unique across all instantiations
of the same POA.

Typically, USER_ID is used for persistent objects, and SYSTEM_ID is used
for transient objects. If you want to use SYSTEM_ID value for persistent
objects, you can extract them from the servant or object reference.

Default Values
e Root POA default: SYSTEM_ID
e Child POA default: SYSTEM_ID

Servant Retention policy

The Servant Retention policy specifies whether the POA retains active
servants in the Active Object Map. The Servant Retention policy can have
the following values:

RETAIN The POA tracks object activations in the
Active Object Map. RETAIN is usually used
with ServantActivators or explicit activation
methods on POA.

NON_RETAIN The POA does not retain active servants in
the Active Object Map.

64 VisiBroker-RT for C++ Developer’'s Guide

ServantActivators and ServantLocators are types of servant managers. For
more information on servant managers, see “Using servants and servant
managers”.

Default Values
» Root POA default: RETAIN
* Child POA default: RETAIN

Request Processing policy

The Request Processing policy specifies how requests are processed by the
POA. USE_ACTIVE_OBJECT_MAP_ONLY If the Object ID is not listed in the
Active Object Map, an OBJECT_NOT _EXIST exception is returned. The POA
must also use the RETAIN policy with this value.

USE_DEFAULT_SERVANT If the Object ID is not listed in the Active
Object Map or the NON_RETAIN policy is set,
the request is dispatched to the default
servant. If no default servant has been
registered, an OBJ_ADAPTER exception is
returned. The POA must also use the
MULTIPLE_ID policy with this value.

USE_SERVANT_MANAGER If the Object ID is not listed in the Active
Object Map or the NON_RETAIN policy is set,

the servant manager is used to obtain a
servant.

Default Values
« Root POA default: USE_ACTIVE_OBJECT_MAP_ONLY
* Child POA default: USE_ACTIVE_OBJECT_MAP_ONLY

Implicit Activation policy

The Implicit Activation policy specifies whether the POA supports implicit
activation of servants. The Implicit Activation policy can have the following
values:

IMPLICIT_ACTIVATION The POA supports implicit activation of
servants.

Servants can be activated by converting
them to an object reference with
POA::servant to reference() Or by
invoking this () on the servant. The POA
must also use the SYSTEM_ID and RETAIN
policies with this value.

NO_IMPLICIT_ACTIVATION The POA does not support implicit activation
of servants.

Default Values
« Root POA default: IMPLICIT_ACTIVATION
e Child POA default: NO_IMPLICIT_ACTIVATION

VisiBroker-RT for C++ Developer’'s Guide 65

Bind Support policy

The Bind Support policy (a VisiBroker-RT for C++-specific policy) controls
the registration of POAs and active objects with the VisiBroker-RT for C++
osagent. If you have several thousands of objects, it is not feasible to
register all of them with the osagent. Instead, you can register the POA with
the osagent. When a client request is made, the POA name and the object
ID is included in the bind request so that the osagent can correctly forward
the request.

The BindSupport policy can have the following values:

BY_INSTANCE All active objects are registered with the
osagent. The POA must also use the
PERSISTENT and RETAIN policy with this
value.

BY_POA Only POAs are registered with the osagent.
The POA must also use the PERSISTENT
policy with this value.

NO_REGISTRATION Neither POAs nor active objects are
registered with the osagent.

Default Values
» Root POA default: BY_POA
» Child POA default: BY_POA

Server Engine policy

The Server Engine policy (a VisiBroker-RT for C++-specific policy) controls
the association of POAs with Server Engines.

The value of a Server Engine policy is @ CORBA: : StringSequence Sspecifying
a list of Server Engines that a particular POA is to be associated with. For
details on using a Server Engine policy, see “Associating a POA with Server
Engines”.

Creating POAs

To implement objects using the POA, at least one POA object must exist on
the server. To ensure that a POA exists, a rootPOA is provided during the
ORB initialization. This POA uses the default POA policies described earlier in
this chapter.

Once the rootPOA is obtained, you can create child POAs that implement a
specific server-side policy set.

POA naming convention

Each POA keeps track of its name and its full POA name (the full hierarchical
path name.) The hierarchy is indicated by a slash (/). For example, /A/B/C
means that POA C is a child of POA B, which in turn is a child of POA A. The
first slash (see the above example) indicates the rootPOA. If the Bind
Support:BY_POA policy is set on POA C, then /a/B/C is registered with the
osagent and the client binds with /a/B/C.

66 VisiBroker-RT for C++ Developer’'s Guide

If your POA name contains escape characters or other delimiters, VisiBroker
precedes these characters with a double backslash (\\) when recording the
names internally. For example, if you have two POAs in a hierarchy like
PortableServer::POA var myPOAl = rootPOA->create POA("A/B",
poa manager,policies);
PortableServer::POA var myPOA2 = myPOAl->create POA("\t",
poa manager,policies);
a client would bind using:

Bank: :AccountManager var manager = Bank::AccountManager:: bind("/
A\\/B/\t", managerId);

Obtaining the rootPOA

The following code sample illustrates how a server application can obtain its
rootPOA.

Code example 26 Obtaining the rootPOA
// Initialize the ORB.
CORBA: :Object var obj =
orb->resolve initial references (“RootPOA”);
// get a reference to the root POA PortableServer::POA var
rootPOA = PortableServer::POA::_narrow(obj);

Note

The resolve initial references method returns a value of type
CORBA: :object. You are responsible for narrowing the returned object
reference to the desired type, which is PortableServer: :POAIN the
previous example.

Setting the POA properties

Policies are not inherited from the parent POA. If you want a POA to have a
specific characteristic, you must identify all the policies that are different
from the default value. For more information about POA policies, see “POA
policies”.
Code example 27 Example of creating policies for a POA

CORBA::PolicyList policies;

policies.length(1l);

policies[(CORBA::ULong)0] =
rootPOA->create lifespan policy(PortableServer::PERSISTENT) ;

Creating and activating the POA

A POA is created using create POAoON its parent POA. You can name the
POA anything you like; however, the name must be unique with respect to
all other POAs with the same parent. If you attempt to give two POAs the
same name, a CORBA exception (AdapterAlreadyExists) is raised.

To create a new POA, use create POA as follows:

PortableServer: :POA ptr create POA(POA Name, POAManager,

PolicyList);
The POA manager controls the state of the POA (for example, whether it is
processing requests). If null is passed to create POA as the POA manager
name, a new POA manager object is created and associated with the POA.
Typically, you'll want to have the same POA manager for all POAs. For more
information about the POA manager, see “Managing POAs with the POA
manager”.

VisiBroker-RT for C++ Developer’s Guide 67

POA managers (and POAs) are not automatically activated once created.
Use activate () to activate the POA manager associated with your POA.

Code example 28 Example of creating a POA

CORBA::PolicyList policies;

policies.length(1l);

policies[(CORBA: :ULong) 0] =

rootPOA->create lifespan policy(PortableServer::PERSISTENT) ;

// Create myPOA with the right policies
VISIFNOT EXCEP
PortableServer: :POAManager var rootManager =
rootPOA->the POAManager () ;
VISENDiIFNOTiEiCEP

VISIFNOT EXCEP
PortableServer: :POA var myPOA =rootPOA->create POA
("bank agent poa", rootManager, policies);
VISEND IFNOT EXCEP

Activating objects

When CORBA objects are associated with an active servant, that CORBA
Object is considered Activated. If that POA’s Servant Retention Policy is
RETAIN, then the associated object ID of that CORBA Object is recorded in
the POA’s Active Object Map.

CORBA Object Activation can occur in one of several ways:
» Explicit activation

The server application itself explicitly activates objects by calling
activate object Or activate object with id.

+ On-demand activation

The server application instructs the POA to activate objects through a
user-supplied servant manager. The servant manager must first be
registered with the POA through set servant manager.

« Implicit activation

The server activates objects solely in response to certain operations. If a
servant is not active, there is nothing a client can do to make it active
(for example, requesting for an inactive object does not make it active.)

» Default servant
The POA uses a single servant to implement all of its objects.

Activating objects explicitly

By setting IdAssignmentPolicy::SYSTEM ID on a POA, objects can be
explicitly activated without having to specify an object ID. The server
invokes activate object on the POA which activates, assigns and returns
an object ID for the object. This type of activation is most common for
transient objects. No servant manager is required since neither the object
nor the servant is needed for very long.

Objects can also be explicitly activated using object IDs. A common scenario
is during server initialization where the user invokes

activate object with id to activate all the objects managed by the
server. No servant manager is required since all the objects are already
activated. If a request for a non-existent object is received, an
OBJECT NOT EXIST exception is raised. This has obvious negative effects if
your server manages large numbers of objects.

68 VisiBroker-RT for C++ Developer’'s Guide

Code example 29 Example of explicit activation using activate_object_with_id

// Create the servant
AccountManagerImpl managerServant;
// Decide on the ID for the servant
PortableServer::0bjectId var managerlId =
PortableServer::string to ObjectId("BankManager");
// Activate the servant with the ID on myPOA
VISIFNOT EXCEP
myPOA->activate object with id(managerId, &managerServant);
VISEND IFNOT EXCEP
// Activate the POA Manager
VISIFNOT EXCEP
PortableServer::POAManager var rootManager =
rootPOA->the POAManager () ;
VISEND IFNOT EXCEP

rootManger->activate () ;

Activating objects on demand

On-demand activation occurs when a client requests an object that does not
have an associated servant. After receiving the request, the POA searches
the Active Object Map for an active servant associated with the object ID. If
none is found, the POA invokes incarnate on the servant manager which
passes the object ID value to the servant manager. The servant manager
can do one of three things:

» Find an appropriate servant which then performs the appropriate
operation for the request

+ Raise an OBJECT NOT EXIST exception that is returned to the client
» Forward the request to another object

The POA policies determine any additional steps that may occur. For
example, if RequestProcessingPolicy::USE_SERVANT MANAGER and
ServantRetentionPolicy: :RETAINare enabled, the Active Object Map is
updated with the servant and object ID association.

An example of on-demand activation is shown in Code example 32.

Activating objects implicitly

A servant can be implicitly activated by certain operations if the POA has
been created with ImplicitActivationPolicy::IMPLICIT ACTIVATION,
IdAssignmentPolicy::SYSTEM ID and

ServantRetentionPolicy: :RETAIN. Implicit activation can occur with:

+ the POA::servant to reference member function
+ the POA::servant to_ id member function
« the this() servant member function

If the POA has ObjectIdUniquenessPolicy: :UNIQUE ID set, implicit
activation can occur when any of the above operations are performed on an
inactive servant.

If the POA has ObjectIdUniquenessPolicy::MULTIPLE ID set,
servant to referenceand servant to_ idoperations always perform
implicit activation, even if the servant is already active.

VisiBroker-RT for C++ Developer’'s Guide 69

Activating with the default servant

Use the RequestProcessing: :USE _DEFAULT SERVANTpolicy to have the
POA invoke the same servant no matter what the object ID is. This is useful
when little data is associated with each object.

Code example 30 Example of activating all objects with the same servant

void bank server ()

{
PortableServer: :POA var rootPOA;
PortableServer::Current var cur;

VISTRY {
cur = PortableServer::Current:: instance();

CORBA: :Object var obj;
// get a reference to the root POA
VISIFNOT EXCEP
obj = orb->resolve initial references ("RootPOA") ;
VISEND IFNOT EXCEP B B

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::inarrow(obj);
VISEND_IFNOT_EXCEP

// Create policies for our persistent POA
CORBA::PolicyList policies;
policies.length(3);
VISIFNOT EXCEP
policies[(CORBA: :ULong) 0] =
rootPOA->create lifespan policy(

PortableServer: :PERSISTENT) ;
VISEND_IFNOT_EXCEP

VISIFNOT EXCEP
policies[(CORBA: :ULong)1l] =
rootPOA->create request processing policy(

PortableServer::USE DEFAULT SERVANT) ;
VISEND IFNOT EXCEP

VISIFNOT EXCEP
policies[(CORBA: :ULong)2] =
rootPOA->create id uniqueness policy(

PortableServer: :MULTIPLE ID);
VISEND IFNOT EXCEP

PortableServer::POAManager var poa manager;
VISIFNOT EXCEP

poa manager = rootPOA->the POAManager () ;
VISEND IFNOT EXCEP

// Create myPOA with the right policies
PortableServer::POA var myPOA;
VISIFNOT EXCEP
myPOA = rootPOA->create POA ("bank default servant poa",
poa manager, policies);
VISEND IFNOT_EXCEP

// Set the default servant
AccountManagerImpl *managerServant;
VISIFNOT EXCEP
managerServant = new AccountManagerImpl (cur) ;
VISEND IFNOT EXCEP

VISIFNOT EXCEP

myPOAJgsetiservant(managerServant);
VISEND IFNOT EXCEP

70 VisiBroker-RT for C++ Developer’'s Guide

// Call remove ref since POA will invoke _add ref on the
default servant
managerServant-> remove ref ();

// Activate the POA Manager
VISIFNOT EXCEP

poa manager->activate();
VISEND IFNOT EXCEP

VISIFNOT EXCEP
cout << "Bank Manager is ready" << endl;
VISEND IFNOT EXCEP

}

VISCATCH (CORBA: :Exception, e) {
cerr << e << endl;
return;

}
VISEND CATCH

return;

Deactivating objects

A POA can remove a servant from its Active Object Map. This may occur, for
example, as some form of garbage-collection scheme. When the servant is
removed from the map, it is deactivated. You can deactivate an object using
deactivate object (). When an object is deactivated, it doesn’t mean this
object is lost forever. It can always be reactivated at a later time.

Code example 31 Example of deactivating an object

// DeActivatorThread
class DeActivatorThread: public VISThread ({
private
PortableServer: :0bjectId oid;
PortableServer::POA ptr poa;

public
virtual ~DeActivatorThread () {}
// Constructor
DeActivatorThread (const PortableServer::0bjectId& oid,
PortableServer::POA ptr poa): oid(oid), poa(poa) {
// start the thread
run () ;

}

// implement begin () callback
void begin () {
// Sleep for 15 seconds
VISPortable::vsleep(15);

CORBA::String var s = PortableServer::0bjectId to string

(_oid);
// Deactivate Object
cout << "\nDeActivating the object with ID =" << s << endl;
if (poa)
_poa->deactivate object(oid);

}
bi

Using servants and servant managers

Servant managers perform two types of operations:

1 find and return a servant, and

VisiBroker-RT for C++ Developer’s Guide 71

2 deactivate a servant.

They allow the POA to activate objects when a request for an inactive object
is received. Servant managers are optional. For example, servant managers
are not needed when your application creates all CORBA objects at startup.
Servant managers may also inform clients to forward requests to another
object using ForwardRequest.

A servant is an active instance of an implementation. The POA maintains a
map of the active servants and the object IDs of the servants. When a client
request is received, the POA first checks this map to see if the object ID
(embedded in the client request) has been recorded. If it exists, then the
POA forwards the request to the servant. If the object ID is not found in the
map, the servant manager is asked to locate and activate the appropriate
servant. This is only an example scenario; the exact scenario depends on
what POA policies you have in place.

ViziBrokerRT
50 Node 2. PO& asks the servant
1, Client makes a manager to find an
request, but the appropriate DF&]ECT.
required cbject is /
not present,. ————m= POA Servant
- Manager
. . .\.
Active Object Map . -
\Hx .-f-{
Hx'\'\. - <.
Object!D .
Object!D L Servant
Objectllr --—7 -

/3. 5ervant Manager constructs the

) appropriate servant and returns
it to the POA, which completes
the reguest.

Figure 11 Example service manager function

There are two types of servant managers: ServantActivator and
ServantLocator. The type of policy already in place determines which
servant manager is used. For more information on POA policy, see “POA
policies”. Typically, a ServantActivator activates persistent objects and a
ServantLocator activates transient objects.

To use servant managers,

RequestProcessingPolicy: :USE_SERVANT MANAGER must be set as well as
the policy which defines the type of servant manager
(ServantRetentionPolicy: :RETAIN for ServantActivator or
ServantRetentionPolicy: :NON RETAIN for ServantLocator.)

ServantActivators

ServantActivators are used when ServantRetentionPolicy: :RETAIN and
RequestProcessingPolicy: :USE_SERVANT MANAGERare set. Servants
activated by this type of servant manager are tracked in the Active Object
Map.

72 VisiBroker-RT for C++ Developer’'s Guide

The following events occur while processing requests using servant
activators:

1 A client request is received (client request contains the POA name, the
object ID.)

2 The POA first checks the active object map. If the object ID is found there,
the operation is passed to the servant, and the response is returned to
the client.

3 If the object ID is not found in the active object map, the POA invokes
incarnate On a servant manager. incarnate passes the object ID and
the POA in which the object is being activated.

4 The servant manager locates the appropriate servant.

The object ID is entered into the active object map, and the response is
returned to the client.

Note

The etheralize and incarnate method implementations are user-supplied
code.

At a later date, the servant can be deactivated. This may occur from several
sources, including the deactivate object operation, deactivation of the
POA manager associated with that POA, and so forth. More information on
deactivating objects is described in “Deactivating objects”.

Code example 32 Example server code illustrating servant activator-type servant
manager

void bank server ()
{
VISTRY {
// get a reference to the root POA
CORBA: :0Object var obj;
VISIFNOT EXCEP
obj = orb->resolve initial references ("RootPOA");
VISEND IFNOT EXCEP B B

VISIFNOT EXCEP
rootPOA = PortableServer::POA::_narrow(obj);
VISEND IFNOT EXCEP

CORBA: :PolicyList policies;
policies.length(2);
VISIFNOT EXCEP
policies
[(CORBA: :ULong) 0] = rootPOA->create lifespan policy(

PortableServer: :PERSISTENT) ;
VISEND IFNOT EXCEP

VISIFNOT EXCEP
policies[(CORBA: :ULong)l] =
rootPOA->create request processing policy(

PortableServer::USE SERVANT MANAGER) ;
VISEND IFNOT EXCEP

PortableServer: :POAManager var poa manager;
VISIFNOT_ EXCEP
poa manager = rootPOA->the POAManager (); VISEND IFNOT EXCEP

PortableServer: :POA var myPOA; VISIFNOT EXCEP

// Create myPOA with the right policies

myPOA = rootPOA->create POA ("bank servant activator poa",
poa manager, policies);

VISEND IFNOT EXCEP

VisiBroker-RT for C++ Developer’s Guide 73

// Create a Servant activator AccountManagerActivator
*servant activator impl;

VISIFNOT EXCEP N

servant activator impl = new AccountManagerActivator;
VISEND IFNOT EXCEP

VISIFNOT EXCEP

// Set the servant activator

myPOA->set servant manager (servant activator impl);
VISEND IFNOT EXCEP B B

VISIFNOT EXCEP
// Activate the POA Manager poa manager->activate();
VISEND IFNOT EXCEP

// Waiting for incoming requests
cout << " BankManager is ready" << endl;

}

VISCATCH (CORBA: :Exception, e) { cerr << e << endl;
return;

} VISEND_CATCH

return;

}
The servant manager for this example follows.

Code example 33 Servant manager for servant activator example

// Servant Activator
class AccountManagerActivator : public
PortableServer: :ServantActivator {

public:

virtual PortableServer::Servant incarnate (const
PortableServer::0bjectIdé& oid,
PortableServer: :POA ptr poa) {

CORBA: :String var s = PortableServer::0bjectId to string
(oid);

cout << "\nAccountManagerActivator.incarnate called with ID
= " << s << endl;

PortableServer: :Servant servant;

if (VISPortable::vstricmp((char *)s,
"SavingsAccountManager") ==)
// Create CheckingAccountManager Servant
servant = new SavingsAccountManagerImpl;
else if (VISPortable::vstricmp((char *)s,
"CheckingAccountManager") == 0)
// Create CheckingAccountManager Servant
servant = new CheckingAccountManagerImpl;
else
VISTHROW (CORBA: : OBJECT NOT EXIST());
// Create a deactivator thread new DeActivatorThread(oid, poa
)

// return the servant

servant-> add ref ();

return servant;
}
virtual void etherealize (const PortableServer::0bjectIdé& oid,

PortableServer::POA ptr adapter,

PortableServer: :Servant servant,

CORBA::Boolean cleanup in progress,

CORBA: :Boolean remaining activations) {

// If there are no remaining activations i.e ObjectIds

// associated with the servant delete it.

CORBA::String var s = PortableServer::0bjectId to string
(oid) ;

cout << "\nAccountManagerActivator.etherealize called with ID
= " << s << endl;

if (!remaining activations) delete servant;

}
}i

74 VisiBroker-RT for C++ Developer’'s Guide

ServantLocators

In many situations, the POA’s Active Object Map could become quite large
and consume memory. To reduce memory consumption, a POA can be
created with RequestProcessingPolicy: :USE_SERVANT MANAGER and
ServantRetentionPolicy::NON RETAIN, meaning that the servant-to-
object association is not stored in the active object map. Since no
association is stored, ServantLocator servant managers are invoked for
each request.

The following events occur while processing requests using servant
locators:

1 A client request, which contains the POA name and the object id, is
received.

2 Since ServantRetentionPolicy::NON RETAINIis used, the POA does not
search the active object map for the object ID.

3 The POA invokes preinvoke on a servant manager. preinvoke passes the
object ID, the POA in which the object is being activated, and a few other
parameters.

4 The servant locator locates the appropriate servant.

The operation is performed on the servant and the response is returned
to the client.

6 The POA invokes postinvoke on the servant manager.

Note
The preinvoke and postinvoke methods are user-supplied code.

Code example 34 Example server code illustrating servant locator-type servant
managers

void bank server ()
{
VISTRY {
//get a reference to the root POA
CORBA: :Object var obj =
orb->resolve initial references ("RootPOA");

VISIFNOT EXCEP
rootPOA = PortableServer::POA:: narrow (obj);
VISEND IFNOT EXCEP

// Create a child POA with Persistence life span policy that
// uses servant manager with non-retain retention policy(no
// Active Object Map) causing the POA to use the servant locator.

CORBA::PolicyList policies;
policies.length(3);

VISIFNOT EXCEP
policies[(CORBA: :ULong) 0] = rootPOA->create lifespan policy(

PortableServer: :PERSISTENT) ;
VISEND_IFNOT_EXCEP

VISIFNOT EXCEP
policies[(CORBA: :ULong)l] =
rootPOA->create servant retention policy(

PortableServer: :NON RETAIN) ;
VISEND IFNOT EXCEP

VISIFNOT EXCEP
policies[(CORBA: :ULong) 2] =

VisiBroker-RT for C++ Developer’s Guide 75

rootPOA->create request processing policy(

PortableServer: :USE SERVANT MANAGER) ;
VISEND IFNOT EXCEP

PortableServer: :POAManager var poa manager;
VISIFNOT EXCEP B B

poa manager = rootPOA->the POAManager ();
VISEND IFNOT EXCEP B

PortableServer: :POA var myPOA;
VISIFNOT EXCEP -
myPOA = rootPOA->create POA ("bank servant locator poa",
poa manager, policies); n
VISEND IFNOT EXCEP

// Create the servant locator
AccountManagerLocator *servant locator impl;
VISIFNOT EXCEP N B

servant locator impl = new AccountManagerLocator;

VISEND IFNOT EXCEP

VISIFNOT EXCEP
myPOA->set servant manager (servant locator impl);

VISEND IFNOT EXCEP

// Activate the POA Manager
VISIFNOT EXCEP

poa manager->activate();
VISEND IFNOT EXCEP

// Ready for incoming requests
VISIFNOT EXCEP
cout << "Bank Manager is ready" << endl;
VISEND IFNOT EXCEP
}
VISCATCH (CORBA: :Exception, e)
{ cerr << e << endl;
return;

}
VISEND CATCH

return;

}

The servant manager for this example follows.
Code example 35 Servant manager for servant locator example

// Servant Locator
class AccountManagerLocator : public
PortableServer: :ServantLocator
{
public:
AccountManagerLocator () {}

// preinvoke is very similar to ServantActivator’s incarnate
// method but gets alled every time a request comes in unlike
// incarnate () which gets called every time the POA does not find
// a servant in the active object map
virtual PortableServer::Servant preinvoke (const
PortableServer::0bjectIdé& oid,
PortableServer: :POA ptr adapter,
const char* operation,
PortableServer::ServantLocator: :Cookie& the cookie) {
CORBA: :String var s = PortableServer::0bjectId to string
(oid);
cout << "\nAccountManagerLocator.preinvoke called with ID =
" << s << endl;
PortableServer: :Servant servant;

if (VISPortable::vstricmp((char *)s, "SavingsAccountManager"

) ==)

76 VisiBroker-RT for C++ Developer’'s Guide

// Create CheckingAccountManager Servant
servant = new SavingsAccountManagerImpl;
else if (VISPortable::vstricmp((char *)s,
"CheckingAccountManager") ==)
// Create CheckingAccountManager Servant
servant = new CheckingAccountManagerImpl;
else
VISTHROW (CORBA: :OBJECT NOT EXIST());

// Note also that we do not spawn of a thread to explicitly

// deactivate an object unlike a servant activator, this is

// because the POA itself calls post invoke after the request is
// complete. In the case of a servant activator the POA calls

// etherealize() only if the object is deactivated by calling

// poa->de activateobject or the POA itself is destroyed.

// return the servant
servant-> add ref ();
return servant;

}

virtual void postinvoke (const PortableServer::0bjectId& oid,
PortableServer: :POA ptr adapter,
const char* operation,
PortableServer: :ServantLocator::Cookie the cookie,
PortableServer::Servant the servant) { B
CORBA::String var s = PortableServer::0bjectId to string
(oid);
cout << "\nAccountManagerLocator.postinvoke called with ID = "
<< s << endl;
the servant-> remove ref;
}
bi

Managing POAs with the POA manager

A POA manager controls the state of the POA (whether requests are queued
or discarded), and can deactivate the POA. Each POA is associated with a
POA manager object. A POA manager can control one or many POAs.

A POA manager is associated with a POA when the POA is created. You can
specify the POA manager to use, or specify null to have a new POA
Manager created.

Code example 36 Naming the POA and its POA Manager

PortableServer::POAManager var rootManager =
rootPOA->the POAManager () ;

VISIFNOT_EXCEP

PortableServer::POA var myPOA =
rootPOA->create POA ("bank servant locator poa", rootManager,

policies);

VISEND TIFNOT_EXCEP

A POA manager is “destroyed” when all its associated POAs are destroyed.

A POA manager can have four states. These states in turn determine the
state of the POA.

» Holding

* Active

» Discarding
« Inactive

VisiBroker-RT for C++ Developer’s Guide 77

Getting the current state

To get the current state of the POA manager, use:
PortableServer: :POAManager::State get state();

The valid state values are:
enum State{HOLDING, ACTIVE, DISCARDING, INACTIVE};

Holding state

By default, when a POA manager is created, it is in the holding state. When
the POA manager is in the holding state, the POA queues all incoming
requests.

Requests that require an adapter activator are also queued when the POA
manager is in the holding state.

To change the state of a POA manager to holding, use void
hold_requests(wait_for_completion) raises (AdapterInactive);

wait for completionis Boolean. If FALSE, this operation returns
immediately after changing the state to holding. If TRUE, this operation
returns only when all requests started prior to the state change have
completed or when the POA manager is changed to a state other than
holding. AdapterInactive is the exception raised if the POA manager was
in the inactive state prior to calling this operation.

Note
POA managers in the inactive state cannot change to the holding state.

Any requests that have been queued but not yet started will continue to be
queued during the holding state.

Active state

When the POA manager is in the active state, its associated POAs process
requests.

To change the POA manager to the active state, use:

void activate ()
raises (AdapterInactive);
AdapterInactive is the exception raised if the POA manager was in the
inactive state prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the active
state.

Discarding state

When the POA manager is in the discarding state, its associated POAs discard
all requests that have not yet started. In addition, the adapter activators
registered with the associated POAs are not called. This state is useful when
the POA is receiving too many requests. You need to notify the client that
their request has been discarded and to resend their request. There is no
inherent behavior for determining if and when the POA is receiving too
many requests.

To change the POA manager to the discarding state, use:

78 VisiBroker-RT for C++ Developer’'s Guide

void discard requests(wait for completion)
raises (AdapterInactive);

The wait for completion option is Boolean. If FALSE, this operation
returns immediately after changing the state to discarding. If TRUE, this
operation returns only when all requests started prior to the state change
have completed or when the POA manager is changed to a state other than
discarding. AdapterInactive is the exception raised if the POA manager
was in the inactive state prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the
discarding state.

Inactive state

When the POA manager is in the inactive state, its associated POAs reject
incoming requests. This state is used when the associated POAs are to be
shut down.

Note
POA managers in the inactive state can not change to any other state.
To change the POA manager to the inactive state, use

void deactivate (etherealize objects, wait for completion)
raises (AdapterInactive);
After the state changes, if etherealize objectsis TRUE, then all
associated POAs that have Servant RetentionPolicy::RETAIN and
RequestProcessingPolicy::USE_SERVANT_MANAGER set call etherealize
on the servant manager for all active objects. If etherealize objects is
FALSE, then etherealize is not called.

The wait for completion option is Boolean. If FALSE, this operation
returns immediately after changing the state to inactive. If TRUE, this
operation returns only when all requests started prior to the state change
have completed or etherealize has been called on all associated POAs (that
have Servant RetentionPolicy::RETAIN and
RequestProcessingPolicy::USE_SERVANT_MANAGER).

AdapterInactive is the exception raised if the POA manager was in the
inactive state prior to calling this operation.

Adapter activators

Adapter activators are associated with POAs and provide the ability to
create child POAs

on-demand. This can be done during the find POA operation, or when a
request is received that names a specific child POA.

An adapter activator supplies a POA with the ability to create child POAs on
demand, as a side-effect of receiving a request that nhames the child POA
(or one of its children), or when find Ppoa is called with an activate
parameter value of TRUE. An application server that creates all its needed
POAs at the beginning of execution does not need to use or provide an
adapter activator; it is necessary only for the case in which POAs need to be
created during request processing.

While a request from the POA to an adapter activator is in progress, all
requests to objects managed by the new POA (or any descendant POAs) will

VisiBroker-RT for C++ Developer’s Guide 79

be queued. This serialization allows the adapter activator to complete any
initialization of the new POA before requests are delivered to that POA.

For an example on using adapter activators, see the POA
adaptor_activator example located in <install location>/
VisiBrokerRT60/examples/poa/ adaptor activator.

Processing requests

Requests contain the Object ID of the target object and the POA that
created the target object reference. When a client sends a request, the ORB

first locates the appropriate server, it then locates the appropriate POA
within that server.

Once the ORB has located the appropriate POA, it delivers the request to
that POA. How the request is processed at that point depends on the
policies of the POA and the object’s activation state. For information about
object activation states, see “Activating objects”.

« If the POA has ServantRetentionPolicy: :RETAIN, the POA looks at the
Active Object Map to locate a servant associated with the Object ID from

the request. If a servant exists, the POA invokes the appropriate method
on the servant.

» If the POA has ServantRetentionPolicy::NON RETAIN or has

ServantRetentionPolicy: :RETAIN but did not find the appropriate
servant, the following may take place:

+ If the POA has RequestProcessingPolicy: :USE DEFAULT SERVANT,
the POA invokes the appropriate method on the default servant.

If the POA has RequestProcessingPolicy: :USE_SERVANT MANAGER,
the POA invokes incarnate Or preinvoke on the servant manager.

If the POA has RequestProcessingPolicy: :USE_OBJECT MAP ONLY, an
exception is raised.

If a servant manager has been invoked but can not incarnate the object, the
servant manager can raise a ForwardRequest exception.

80 VisiBroker-RT for C++ Developer’'s Guide

Using the Tie Mechanism

This chapter describes how the tie mechanism may be used to integrate
existing C++ code into a distributed object system. This chapter will enable
you to create a delegation implementation or to provide implementation
inheritance.

How does the tie mechanism work?

Object implementation classes normally inherit from a servant class
generated by the id12cpp compiler. The servant class, in turn, inherits
from PortableServer: :Servant. When it is not convenient or possible to
change existing classes to inherit from the VisiBroker-RT for C++ servant
skeleton class, the tie mechanism offers an appropriate alternative.

The tie mechanism provides object servers with a delegator implementation
class that inherits from pPortableServer::Servant. The delegator
implementation does not provide any semantics of its own. It simply
delegates every request it receives to the real implementation class, which
can be implemented separately. The real implementation class is not
required to inherit from PortableServer: :Servant.

With using the tie mechanism, two additional generated classes are
required:

» <InterfaceName>proATie defers implementation of all IDL defined
methods to a delegate. The delegate implements the interface
<InterfaceName>oOperations. Legacy implementations can be trivially
extended to implement the operations interface and in turn delegate to
the real implementation.

» <InterfaceName>oOperationsdefines all of the methods that must be
implemented by the object implementation. This interface acts as the
delegate object for the associated <InterfaceName>POATie class when
the tie mechanism is used.

Example program

Location of an example program using the tie
mechanism

A version of the Bank example using the tie mechanism can be found in the
VisiBroker for C++ distribution under <install location>/
VisiBrokerRT60/examples/basic/ bank tie.

Looking at the tie template

The idl2cpp compiler will automatically generate a tie Account template
class, as shown in Code example 37. The POA Bank Account tie class is
instantiated by the object server and initialized with an instance of
AccountImpl. The POA Bank Account tie class delegates every operation
request it receives to AccountImpl, the real implementation class. In this
example, the class AccountImpl does not inherit from the

POA Bank: :Account class.

VisiBroker-RT for C++ Developer’s Guide 81

Code example 37 Looking at the POA_Bank_Account_tie template

template <class T> class POA Bank Account tie : public
POA Bank::Account {
private:
CORBA::Boolean rel;
PortableServer::POA ptr poa;
T * ptr;
POA Bank Account tie(const POA Bank Account tie&) {}
void operator=(const POA Bank Account tieé&) {}

public:
POA Bank Account tie (T& t): ptr(&t), poa(NULL),

_rel ((CORBA::Boolean)0) {}

POA Bank Account tie (T& t, PortableServer::POA ptr poa):
_ptr(st);
_poa(PortableServer::_duplicate(poa)),
_rel ((CORBA::Boolean)0) {}

POA Bank Account tie (T *p, CORBA::Boolean release= 1)

_ptr(p),
_poa(NULL), rel(release) {}

POA Bank Account tie (T *p, PortableServer::POA ptr poa,
CORBA: :Boolean release =1):
_ptr(p), _poa(PortableServer:: duplicate(poa)),
_rel(release) {}

virtual ~POA Bank Account tie() {
CORBA::release(_poa);
if (_rel) {
delete ptr;
}
}
T* tied object() { return ptr; }

void tied object(T& t) |
if ((rel) {
delete ptr;

_ptr = &ty
_rel = 0;

}
void tied object (T *p,
CORBA::Boolean release=1l) { if (_rel) {

delete ptr;
}

_ptr = p;
_rel = release;
}
CORBA::Boolean is owner() { return rel; }
void is owner (CORBA::Boolean b) { rel = b; }

CORBA: :Float balance() {
return ptr->balance();

}

PortableServer::POA ptr default POA() ({

if (!CORBA::is nil(poa)) {
return poa;
} else { -
return PortableServer ServantBase:: default POA();

}

82 VisiBroker-RT for C++ Developer’'s Guide

Changing the server to use the _tie_account class

Code example 38 shows the modifications to the Server.C file required to use
the tie account class.

Code example 38 Example of a server using the _tie class

//bank_tie server

#include <vxWorks.h>
#include "corba.h"
#include "bankImpl.h"

X */
/* Forward Declarations. */
2 OO */

extern "C" void start bank server (void);
static void bank server (void);

extern CORBA::0RB var orb;

// Static initialization
AccountRegistry AccountManagerImpl:: accounts;

void start bank server (void)

{

char * taskName = "BANK SRVR"; intPrio = 100;
int option = VX FP TASK;
int stackSize = 20000;
taskSpawn (taskName,
Prio,
option,
stackSize,

(FUNCPTR) bank server,
0,0,0,0,0,0,0,0,0,0);
}

void bank server()

{
PortableServer: :POA var rootPOA;

VISTRY {

//get a reference to the root POA
CORBA: :Object var obj =
orb->resolve initial references ("RootPOA");

VISIFNOT EXCEP
rootPOA = PortableServer::POA::_narrow(obj);
VISEND IFNOT EXCEP

CORBA::PolicyList policies;
policies.length(1l);

policies[(CORBA: :ULong) 0] = rootPOA->create lifespan policy(
PortableServer: :PERSISTENT) ;

// get the POA Manager
PortableServer::POAManager varpoa manager;

VISIFNOT EXCEP
poa manager = rootPOA->the POAManager () ;
VISEND IFNOT EXCEP

// Create myPOA with the right policies
PortableServer::POA var myPOA;

VISIFNOT EXCEP
myPOA = rootPOA->create POA ("bank account poa", poa manager,
policies);
VISEND IFNOT_EXCEP

// Create the servant

VisiBroker-RT for C++ Developer’'s Guide 83

AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the delegator
POA Bank AccountManager tie<AccountManagerImpl> *tieServer;

VISIFNOT EXCEP
tieServer = new
POA Bank AccountManager tie<AccountManagerImpl> (*managerServant) ;
VISEND IFNOT_ EXCEP

// Create the object ID for the servant
PortableServer::0bjectId var managerId;

VISIFNOT EXCEP
managerId =
PortableServer::string to ObjectId("BankManager") ;
VISEND IFNOT EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT EXCEP
myPOA->activate object with id((CORBA OctetSequence
&)managerld, tieServer) ;
VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT EXCEP

poa manager->activate();
VISEND IFNOT EXCEP

CORBA: :Object var reference;
VISIFNOT EXCEP
reference = myPOA->servant to reference(tieServer);
VISEND IFNOT EXCEP -

VISIFNOT EXCEP
cout << endl << "CORBA Object ==> " << endl << endl;
cout << reference << endl;
cout << " is ready" << endl << endl;

VISEND IFNOT EXCEP

VISCATCH (CORBA: :Exception, e) {
cerr << e << endl;
taskSuspend (0) ;

}

VISEND CATCH

return;

Building the tie example

The instructions described in the chapter “Developing an Example Application
with VisiBroker-RT for C++” are also valid for building the tie example.

84 VisiBroker-RT for C++ Developer’'s Guide

Part 3

Client Concepts

In this part

This part contains the following chapters:

Client basics page 87

Client basics

This chapter describes how client programs access and use distributed
objects.

Initializing the ORB

The Object Request Broker (ORB) provides a communication link between
the client and the server. When a client makes a request, the ORB locates
the object implementation, delivers the request to the object (and activates
the object if necessary), and returns the response to the client. The client is
unaware that the object may be on the same machine or across a network.

Though much of the work done by the ORB is transparent to you, your client
program must explicitly initialize the ORB. ORB options, described in the
VisiBroker-RT for C++ Reference Guide can be specified as command-line
arguments. Therefore, you must pass argc and argv to ORB_init to ensure
that these options take effect.

Code example 39 Initializing the ORB

/* __ */
/* function ==>do corba */
/* Th