
Micro Focus
VisiBroker-RT for C++

Version 6.0

Developer’s Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2020 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and VisiBroker are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2020-11-06

http://www.microfocus.com

VisiBroker-RT for C++ Developer ’s Guide 1

Contents

Preface ... 13
What’s new ... 13
What’s in this guide? .. 14
Manual conventions .. 16
Contacting Micro Focus ... 17

Further Information and Product Support .. 17
Information We Need ... 17
Contact information ... 18

Introducing VisiBroker-RT for C++ ... 3
What is CORBA? .. 3
What is VisiBroker-RT for C++? ... 4
VisiBroker-RT for C++ Features ... 4

VisiBroker-RT for C++ Smart Agent architecture .. 4
Enhanced object discovery with the Location Service 5
Implementation and object activation support ... 5
Robust thread and connection management .. 5
IDL compilers.. 5
Dynamic invocation with DII and DSI ... 6
Interface repositories ... 6
Server-side portability .. 6
Customizing the ORB with interceptors and object wrappers 6

VisiBroker-RT for C++ CORBA compliance ... 7
VisiBroker-RT for C++ Development Environment .. 7

Administration tools ... 7
Developer’s tools ... 7
VisiBroker-RT for C++ header files ... 7
VisiBroker ORB Libraries ... 7
VisiBroker Sample Applications .. 8
Interoperability with VisiBroker for Java .. 8

Interoperability with other ORB products ... 8

Setting up the Development Environment 9
Setting the VBROKERDIR Environment Variable .. 9

Setting VBROKERDIR on a Windows platform .. 9
Setting VBROKERDIR on a UNIX platform.. 9

Setting the Path environment variable .. 9
Updating the PATH on Windows ... 10
Setting the Path on a UNIX platform... 10

Setting VBROKER_ADM Environment Variable .. 10
Setting VBROKER_ADM on a Windows platform.. 10
Setting VBROKER_ADM on a UNIX platform... 10

Setting OSAGENT_PORT environment variable ... 10
Setting OSAGENT_PORT on a Windows platform .. 11
Setting OSAGENT_PORT on a UNIX platform.. 11

Logging Output on the Host System ... 11

Developing an Example Application with VisiBroker-RT for C++ 13
Development Process ... 13
Step 1: Defining object interfaces .. 14

Writing the account interface in IDL ... 15
Step 2: Generating client stubs and server servants ... 15

Files produced by the idl compiler .. 15
Step 3: Implementing the client ... 16

2 VisiBroker-RT for C++ Developer ’s Guide

corba_init.C... 16
client.C... 18

Step 4: Implementing the server ..20
server.C .. 20
Understanding the Account class hierarchy .. 22

Step 5: Building the example ...22
Step 6: Integrating VisiBroker-RT with Tornado/VxWorks23

The VisiBroker-RT Runtime .. 23
Integrating VisiBroker Libraries with Tornado 2.x .. 28
Integrating VisiBroker Libraries with Tornado 2.2 .. 29
Using VisiBroker with VxSim .. 33

Step 7: Starting the Smart Agent (osagent) Service ..37
Starting the server ... 39

Running the client ..40

Handling Exceptions ...41
Exceptions in the CORBA model ..41
System exceptions ...41

Obtaining completion status .. 42
Getting and setting the minor code... 42
Determining the type of a SystemException... 42
Catching system exceptions... 43
Downcasting exceptions to a system exception... 44

User exceptions ...45
Defining user exceptions ... 45

The VisiBroker C++ Exception Support ..47
The Exception Macros ... 47

Server basics ..51
Overview ...51
Initializing the ORB ...51
Creating the POA ..51

Obtaining a reference to the root POA... 52
Creating the child POA .. 52
Implementing servant methods.. 52
Activating the POA ... 54

Activating objects ...55
Complete example ..55

Using POAs ...61
What is a Portable Object Adapter? ...61

POA terminology .. 62
Steps for creating and using POAs .. 62

POA policies ...63
Minimum CORBA and POA Policies .. 63
Thread policy... 63
Lifespan policy... 63
Object ID Uniqueness policy .. 64
ID Assignment policy .. 64
Servant Retention policy ... 64
Request Processing policy.. 65
Implicit Activation policy ... 65
Bind Support policy .. 66
Server Engine policy ... 66

Creating POAs ..66
POA naming convention .. 66
Obtaining the rootPOA .. 67

VisiBroker-RT for C++ Developer ’s Guide 3

Setting the POA properties.. 67
Creating and activating the POA... 67

Activating objects .. 68
Activating objects explicitly ... 68
Activating objects on demand.. 69
Activating objects implicitly ... 69
Activating with the default servant ... 70
Deactivating objects... 71

Using servants and servant managers ... 71
ServantActivators .. 72
ServantLocators .. 75

Managing POAs with the POA manager .. 77
Getting the current state .. 78
Holding state .. 78
Active state .. 78
Discarding state .. 78
Inactive state.. 79

Adapter activators .. 79
Processing requests .. 80

Using the Tie Mechanism .. 81
How does the tie mechanism work? .. 81
Example program ... 81

Location of an example program using the tie mechanism 81
Looking at the tie template .. 81
Changing the server to use the _tie_account class .. 83

Building the tie example ... 84

Client basics ... 87
Initializing the ORB .. 87
Binding to objects .. 87
Invoking operations on an object ... 89
Manipulating object references ... 89

Checking for nil references.. 89
Obtaining a nil reference... 90
Duplicating an object reference ... 90
Releasing an object reference.. 90
Obtaining the reference count ... 91
Converting a reference to a string .. 91
Obtaining object and interface names... 92
Determining the type of an object reference.. 92
Determining the location and state of bound objects................................... 93
Checking for non-existent objects .. 93
Narrowing object references.. 93
Widening object references ... 94

Using Quality of Service .. 94
Understanding Quality of Service ... 94
QoS interfaces... 94

Using the VisiBroker-RT for C++ Console 103
What is the VisiBroker Console? ... 103
Navigating the VisiBroker Console .. 104

Menu bar.. 105
Toolbar... 105
Status bar .. 106
Pull down or context menus .. 106
Navigation pane .. 106

4 VisiBroker-RT for C++ Developer ’s Guide

Content pane... 106
Supported ORB Services .. 106

Location Service... 106
Naming Services .. 107
Interface Repositories ... 107
Implementation Repositories ... 107
Server Manager ... 107
GateKeeper ... 107
Integrated Transaction Services ... 108

Starting the VisiBroker Console .. 108
VisiBroker Console main menu ... 109

Console menu.. 109
View menu.. 109
Help menu .. 109

Setting the VisiBroker Console preferences .. 110
General tab ... 111
Security tab .. 112
State tab .. 112
Tools tab... 113

Setting Properties ...115
Overview ... 115
Setting Properties Through the Property Manager Interface 115
Environment variables ... 116
Setting Properties Through the Command-Line ... 117
Setting Properties Through a Property Table ... 117
ORB Default Properties .. 118

Using the IDL compiler ...121
Introduction to IDL ... 121
How the IDL compiler generates code ... 121

Example IDL specification.. 121
Looking at code generated for clients .. 121
Methods (stubs) generated by the IDL compiler.. 122
Pointer type <interface name>_ptr definition... 122
Automatic memory management <interface name>_var class.................... 123

Looking at code generated for CORBA server implementations 123
The PortableServer_RefCountServantBase class 124
The PortableServer_ServantBase class .. 124
Methods (skeletons) generated by the IDL compiler 125
Class template generated by the IDL compiler.. 125

Defining interface attributes in the IDL .. 126
Specifying oneway methods with no return value .. 126
Specifying an interface in IDL that inherits from another interface 127

Using the Smart Agent ..129
What is the Smart Agent? .. 129

Locating Smart Agents.. 129
Locating objects through Agent cooperation... 129
Starting a Smart Agent (osagent)... 130
Ensuring Agent availability .. 133

Working within ORB domains ... 134
Connecting Smart Agents on different local networks .. 135

Use of the OSAGENT_ADDR_FILE Environment Variable (applicable on Development
Host systems only)) ... 135

Use of the OSAGENT_ADDR_TABLE By Smart Agents (applicable on VxWorks Target
systems only).. 136

VisiBroker-RT for C++ Developer ’s Guide 5

How Smart Agents detect each other.. 137
Working with multihomed hosts ... 137

Specifying interface usage for Smart Agents.. 138
Using point-to-point communications .. 140

Specifying a host as a runtime parameter ... 140
Specifying an IP address with an environment variable 141
Specifying hosts with the agentaddr table ... 141

Ensuring object availability .. 141
Invoking methods on stateless objects.. 142
Achieving fault-tolerance for objects that maintain state 142

Migrating objects between VisiBrokerRT60 Systems .. 142
Migrating objects that maintain state.. 142
Migrating instantiated objects.. 142

Reporting all objects and services ... 143

Using the Location Service ... 145
What is the Location Service? .. 145
Location Service components ... 146

What is the Location Service agent? ... 146
What is a trigger? .. 149

Querying an agent ... 150
Finding all instances of an interface.. 150
Finding everything known to Smart Agents.. 151

Writing and registering a trigger handler ... 153
Implementing and registering a trigger handler 153

Using the Naming Service ... 157
Overview .. 157
Understanding the namespace ... 158

Naming contexts ... 158
Names and NameComponent .. 159
Name resolution .. 159

Running the Naming Service .. 160
Integrating the Naming Service into your application 161
Compiling and linking programs... 161
Sample programs .. 162
Starting the Naming Service.. 162

Bootstrapping a Naming Service .. 164
Calling resolve_initial_references ... 164
Using -ORBInitRef.. 165
-ORBDefaultInitRef .. 167

NamingContext .. 167
NamingContextExt ... 168
Default naming contexts ... 168

Obtaining the default context .. 168
Binding a name in C++ .. 169
Resolving a name in C++ ... 170

Using the Event Service .. 173
Overview .. 173

Proxy consumers and suppliers.. 174
OMG common object services specification.. 174

Communication models ... 175
Push model... 175
Pull model .. 176

Using event channels .. 177
Example push supplier and consumer ... 178

6 VisiBroker-RT for C++ Developer ’s Guide

Deriving a PushSupplier class .. 178
Deriving a PushConsumer class.. 181
Implementing the PushConsumer ... 181

Starting the Event Service ... 183
Installing the Event Service ... 183
Integrating the Naming Service into your application 184
Setting the queue length... 184

Compiling and linking programs ... 185
Interface reference ... 185

EventChannel .. 185
ConsumerAdmin .. 185
SupplierAdmin ... 186
ProxyPullConsumer... 186
ProxyPushConsumer ... 186
ProxyPullSupplier ... 187
ProxyPushSupplier.. 187
PullConsumer .. 187
PushConsumer... 187
PullSupplier ... 188
PullSupplier methods .. 188
PushSupplier ... 189

Real-Time CORBA Extensions ..199
Overview ... 199
Using the Real-Time CORBA Extensions ... 200
Real-Time CORBA ORB .. 200
Real-Time Object Adapters ... 202
Real-Time CORBA Priority .. 203
Priority Mappings .. 203

Priority Mapping Types .. 204
Rules for Priority Mappings .. 205
Default Priority Mapping.. 206
Replacing the Default Priority Mapping .. 207
Using Native Priorities in VisiBroker Application Code 208

Threadpools ... 208
Threadpool API .. 209
Threadpool Creation and Configuration.. 209
Association of an Object Adapter with a Threadpool 210
The General Threadpool .. 211
Threadpool Destruction ... 212

Real-Time CORBA Current .. 212
Real-Time CORBA Priority Models .. 213

Client Model Backwards Compatability with VisiBroker 3.2.2....................... 215
Setting Priority at the Object Level ... 215
Real-Time CORBA Mutex API .. 216
Control of Internal ORB Thread Priorities ... 216

Limiting the Internal ORB Thread Priority Range 217
Configuring Individual Internal ORB Thread Priorities 218

Protocol Configuration Policies .. 219
ServerProtocolPolicy ... 219
ClientProtocolPolicy .. 221

Listening and Dispatch Configuration223
Overview ... 223
When to Configure Listening and Dispatching ... 223
Listening and Dispatch Architecture .. 223

Interaction of an SCM and Threadpool during Dispatch 224

VisiBroker-RT for C++ Developer ’s Guide 7

Server Engines and SCM Configuration .. 228
Required Server Engine and SCM Properties .. 228
Optional Server Engine Properties .. 229
Optional SCM Properties ... 229

Server Engine and SCM Creation .. 230
Associating a POA with Server Engines .. 230
Default Server Engines ... 231
Restriction on POA/Server Engine Relationship ... 231
Code Example ... 231

Connection Management .. 235
VisiBroker Default Connection Behavior of VisiBrokerRT60 235
Overriding the Default Behavior with _clone() .. 236
Limiting the Number of Connections ... 236

Limiting Connections on the Server-Side ... 236
Limiting Connections on the Client-Side .. 237

Bidirectional Communication .. 239
Using bidirectional IIOP .. 239
Bidirectional ORB properties .. 239
About the examples ... 240
Enabling bidirectional IIOP for existing applications ... 241
Security considerations ... 241

VisiBroker Pluggable Transport Interface 243
Pluggable Transport Interface Files ... 243
Transport Layer Requirements ... 243

User-Provided Code Required for a Protocol Plugin 244
Unique Profile ID Tag.. 245

Example Code ... 245
Implementing a New Transport .. 246

Connection Class ... 246
Connection Factory Class .. 248
Listener Class.. 249
Listener Factory Class... 250
Profile Class .. 251
Profile Factory Class ... 252

Classes Provided by the Interface ... 253
Transport Bridge Class.. 253
Transport Registrar Class .. 254

Creating a Loadable Library ... 254

Using Portable Interceptors ... 255
Overview .. 255
Portable Interceptor and Information interfaces ... 256

Request Interceptor ... 256
IOR Interceptor ... 259
Portable Interceptor Current.. 260

Codec ... 260
CodecFactory ... 260

Creating a Portable Interceptor.. 261
Registering Portable Interceptors ... 261
Registering an ORBInitializer ... 262
VisiBroker Edition Extensions to Portable Interceptors............................... 263
Limitations of VisiBroker Edition Portable Interceptors Implementation........ 263

Examples .. 264
Example Code ... 264

8 VisiBroker-RT for C++ Developer ’s Guide

Example: client_server ... 264

Using VisiBroker Interceptors ...281
Overview ... 281
Interceptor interfaces and managers ... 281

Client interceptors.. 282
Server interceptors... 283
Registering interceptors with the VisiBroker-RT for C++ ORB 284
Creating interceptor objects... 285
Loading interceptors ... 285

Example interceptors .. 286
Example code .. 286
Code listings.. 288

Passing information between your interceptors ... 293
Using both Portable Interceptors and Interceptors simultaneously 293

Order of invocation of interception points .. 293
Client side interceptors ... 293
Server side Interceptors.. 293
Order of ORB events during POA creation .. 294
Order of ORB events during object reference creation 294

Using Object Wrappers ...295
Overview ... 295

Typed and un-typed object wrappers .. 295
Special idl2cpp requirements ... 296
Example applications .. 296

Un-typed object wrappers .. 296
Using multiple, un-typed object wrappers .. 297
Order of pre_method invocation ... 297
Order of post_method invocation.. 298

Using un-typed object wrappers ... 298
Implementing an un-typed object wrapper factory.................................... 298
Implementing an un-typed object wrapper .. 299
Creating and registering un-typed object wrapper factories........................ 300
Removing un-typed object wrappers ... 302

Typed object wrappers .. 302
Using multiple, typed object wrappers... 303
Order of invocation... 304
Typed object wrappers with co-located client and servers 304

Using typed object wrappers .. 304
Implementing typed object wrappers .. 305
Registering typed object wrappers for a client .. 305
Registering typed object wrappers for a server ... 306
Removing typed object wrappers.. 307

Combined use of un-typed and typed object wrappers 308
Command-line arguments for typed wrappers .. 308
Initializer for typed wrappers ... 308
Command-line arguments for un-typed wrappers 309
Initializers for un-typed wrappers ... 310
Executing the sample applications .. 311

Using Valuetypes ..313
Understanding valuetypes .. 313

Concrete valuetypes ... 313
Abstract valuetypes .. 314

Implementing valuetypes .. 314
Defining your valuetypes... 314

VisiBroker-RT for C++ Developer ’s Guide 9

Compiling your IDL file ... 315
Inheriting the valuetype base class .. 315
Implementing the Factory class ... 315
Registering your Factory with the ORB .. 316

Implementing factories ... 316
Factories and valuetypes... 316
Registering valuetypes ... 316

Boxed valuetypes ... 317
Abstract interfaces ... 317
Custom valuetypes ... 318
Truncatable valuetypes ... 318

VisiBroker Logging ... 319
Logging Overview .. 319
The Logger Manager ... 319
Configuring ORB Logging .. 320

ORB Log Levels ... 320
ORB Logging Components... 320
Controlling the Level of ORB Logging .. 321
Library liblog_message_catalog.o and Formatted ORB Log Messages 322
Controlling the Priority of ORB Logging ... 322
Enabling Forwarding of ORB Logging .. 323
Controlling the Destination of ORB Logging ... 323

Application Logging .. 323
Creating or Obtaining a Reference to a Logger ... 323
Setting the Forwarder Thread Priority of a Logger..................................... 324
Enabling Message Forwarding.. 325
Logging a Message to a Logger.. 326
Adding and Removing Logger Forwarders.. 327
Implementing a Logger Forwarder.. 328
The Default Logger Forwarder ... 330

Using Interface Repositories .. 335
What is an interface repository? ... 335

What does an interface repository contain? ... 336
How many interface repositories can you have? 336

Creating and viewing an interface repository with irep 336
Creating an interface repository with irep.. 337
Viewing the contents of the interface repository 338

Updating an interface repository with idl2ir .. 338
Understanding the structure of the interface repository 338

Identifying objects in the interface repository .. 339
Types of objects that can be stored in the interface repository 339
Inherited interfaces.. 340

Accessing an interface repository ... 341
Example programs ... 341

Using the Dynamic Invocation Interface 347
What is the Dynamic Invocation Interface? .. 347

Introducing the main DII concepts ... 348
Steps for invoking object operations dynamically 350
Location of example programs for using the DII 351

Obtaining a generic object reference ... 351
Creating and initializing a request .. 351

Request class .. 351
Ways to create and initialize a DII request .. 352
Using the create_request method .. 352

10 VisiBroker-RT for C++ Developer’s Guide

Using the _request method ... 352
Example of creating a Request object.. 353
Setting the context for the request ... 353
Setting arguments for the request .. 354
Passing type safely with the Any class... 355
Representing argument or attribute types with the TypeCode class 355

Sending DII requests and receiving results .. 357
Invoking a request ... 357
Sending a deferred DII request with the send_deferred() method 358
Sending an asynchronous DII request with the send_oneway method 359
Sending multiple requests ... 359
Receiving multiple requests ... 360

Using the interface repository with the DII ... 361

Using the Dynamic Skeleton Interface365
What is the Dynamic Skeleton Interface? ... 365
Steps for creating object implementations dynamically 366

Location of an example program for using the DSI.................................... 366
Extending the DynamicImplementation class .. 366

Example of designing objects for dynamic requests................................... 367
Specifying repository ids ... 369

Looking at the ServerRequest class ... 369
Implementing the Account object ... 370
Implementing the AccountManager object ... 370
Server implementation .. 371

Using the Dynamically Managed Types375
Overview ... 375
DynAny types .. 375

Usage restrictions .. 376
Creating a DynAny ... 376
Initializing and accessing the value in a DynAny 376

Constructed data types ... 377
DynEnum.. 377
DynStruct ... 377
DynUnion.. 378
DynSequence and DynArray .. 378

Example IDL .. 378
Example client application ... 378
Example server application .. 380

Using the BOA in VisiBroker-RT for C++ 6.0389
Compiling your BOA code with VisiBroker-RT for C++ 6.0 389
Supporting BOA options .. 389
Using object activators .. 389
Naming Objects under the BOA .. 389

Object names .. 389

Migrating VisiBroker Code ..391
Migrating BOA to POA ... 391

Looking at an example.. 391
Mapping BOA types to POA policies... 393

Migrating interceptors ... 393

VisiBroker-RT for C++ Developer’s Guide 11

CORBA exceptions .. 397

Glossary ... 405

12 VisiBroker-RT for C++ Developer’s Guide

VisiBroker-RT for C++ Developer ’s Guide xiii

Preface
VisiBroker-RT for C++ allows you to develop and deploy distributed object-
based applications, as defined in the Common Object Request Broker
Architecture (CORBA) specification.

The VisiBroker-RT for C++ Developer’s Guide provides you information on
how to get started with the VisiBroker-RT for C++ fundamentals, use the
VisiBroker-RT for C++ Console to simplify certain functions, and work with
the more advanced features. It is written for C++ programmers who are
familiar with object-oriented development.

This chapter highlights the latest features, and identifies typographical and
platform conventions used throughout the manual. It also tells you where to
find additional information about Common Object Request Broker
Architecture (CORBA) and the remaining VisiBroker-RT for C++
documentation set, as well as how to contact Borland Software developer
support.

What’s new
This manual has been updated to reflect the latest VisiBroker-RT for C++
release. The new features and enhancements include:

• CORBA 2.5 compliance: VisiBroker-RT for C++ is fully compliant with
the CORBA specification (version 2.5) from the Object Management
Group (OMG). For more details, refer to the CORBA specification located
at http://www.omg.org.

• Minimum CORBA 1.0 compliance. VisiBroker-RT for C++ is fully
compliant with the Minimum CORBA specification (version 1.0) from the
Object Management Group (OMG). For more details, refer to the
Minimum CORBA specification located at ftp:// ftp.omg.org/pub/docs/
orbos/98-08-04.pdf

Is this “Minimum spec” now called something else? Could Dev give
me an up to date link, please?

• Real-Time CORBA 1.0 compliance. VisiBroker-RT for C++ is fully
compliant with the Real-Time CORBA specification (version 1.0) from the
Object Management Group (OMG). For more details, refer to the Real-
Time CORBA specification located at https://www.omg.org/spec/RT/1.2/
PDF.

• Naming Service: The new VisiBroker-RT for C++ Naming Service.
Provides support for the OMG Interoperable Naming Service specification.
The corbaloc and corbaname functionality supports stringfied object
references which can be used in an Internet environment. This allows you
to refer to objects by a URL. See “Using the Naming Service”for a description
of how to use the Naming Service.

• Portable Object Adaptor (POA): The POA offers portability on the
server side. This feature replaces the Basic Object Adapter (BOA).
Although BOA is being deprecated, VisiBroker-RT for C++ 6.0 will still
support BOA functionality. See “Using POAs” for an explanation of how to
use the POA.

• Objects by Value (OBV) or Value types: Previous versions of
CORBA allowed you to pass objects between clients and servers by
reference. However, CORBA 2.3 allows you to pass objects by value
between clients and servers using VisiBroker-RT for C++. OBV is

http://www.omg.org
https://www.omg.org/spec/RT/1.2/PDF
https://www.omg.org/spec/RT/1.2/PDF
l
l
l
l
l
http://www.omg.org/
http://www.borland.com/newsgroups
http://www.borland.com/newsgroups
http://www.omg.org/
l
l
l
http://www.borland.com/visibroker_rt
http://info.borland.com/techpubs/books/visibroker_rt/pdfs/pdf_index.html
http://info.borland.com/techpubs/books/visibroker_rt/pdfs/pdf_index.html
l
l
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/corba/corbaiiop.html
l
l
l
l
l
l
l
l
http://www.windriver.com/corporate/html/tsmain.html
http://www.windriver.com/corporate/html/tsmain.html
l
l
l
l
l
l
l
l

xiv Vis iBroker-RT for C++ Developer ’s Guide

interoperable with other 2.3-compliant ORBs. See “Using Valuetypes” for
more information on this feature.

• Property Management: This feature provides you with a way to
centralize management of properties. Using Property Management, you
can get/set the value of configurable properties of VisiBroker. See “Setting
Properties” for more information on Property Management.

• Quality of Service (QoS): This feature, which implements the CORBA
2.3 Messaging Specification, allows you to define policies that influence
how connections are made. You perform client-side policy management
by setting properties that are associated with connections or client/server
pairs. See “Using Quality of Service” for a description of the VisiBroker-RT
for C++ 6.0 QoS features.

• Interceptors and Object Wrappers: The ORB provides a set of APIs
known as interceptors which provide a way to plug-in additional ORB
behavior such as support for transactions and security, which may be
defined on either the client or server side. One of the main difference in
this release is that now the interceptors have scope. See “Using Portable
Interceptors” for more information on how to use the VisiBroker-RT for
C++ 6.0 interceptor.

• Pluggable Transport Interface: This feature provides support for the
use of transport protocols besides TCP for the transmission of CORBA
invocations. The Interface supports the ‘plugging-in’ of multiple transport
protocols simultaneously and is designed to provide a common interface
that is suitable for use with a wide variety of transport types. The
interface uses CORBA standard classes wherever possible, but is itself
VisiBroker proprietary.

• VisiBroker Logging: This feature allows applications to log messages
and have them directed, via configurable logging forwarders, to an
appropriate destination or destinations. The ORB itself uses this
mechanism for the output of any error, warning or informational
messages. The application can choose to log its and the ORB’s messages
to the same destination, producing a single message log for the entire
system, or to log messages from different sources to independent
destinations.

Other updates include new sample code snippets to reflect the new
VisiBroker-RT for C++ features. New interfaces and methods are covered in
the VisiBroker-RT for C++ Programmer’s Reference Guide.

What’s in this guide?
This programmer’s guide provides detailed information on developing
distributed object-based applications using VisiBroker-RT for C++. It
contains the following sections:

• Part 1, “Basic Concepts”

This part presents an introduction to VisiBroker-RT for C++. It also includes
an overview of the CORBA model and a quick start example designed to
introduce you to the VisiBroker-RT for C++ development principles and the
handling of exceptions.

• Part 2, “Server Concepts”

This part describes how to develop a VisiBroker-RT for C++ server, use the
Portable Object Adapter (POA) and the tie mechanism.

• Part 3, “Client Concepts”

l
l
l

VisiBroker-RT for C++ Developer ’s Guide xv

This part describes how to develop a VisiBroker-RT for C++ client.

• Part 4, “Configuration and Management”

This part is designed to familiarize you with the configuration and
management of the VisiBroker-RT for C++ ORB and its CORBA services,
using the Console and its associated browsers. This allows you to perform
many of your configuration tasks in one location that previously were
performed on the command line. From the Console, you can access
browsers for the ORB services, repositories and the Server Managers. From
this central location, you can easily view, monitor, and manage VisiBroker-
RT for C++ Services, Servers and Objects. The configuration of VisiBroker-
RT for C++ using properties files is also described.

• Part 5, “Tools and Services”

This part describes the IDL compiler, the Smart Agent, the Location, Event,
and Naming services.

• Part 6, “Advanced Concepts”

This part describes advanced concepts such as the Real Time CORBA
Extensions, configuration of the Listening and Dispatching of CORBA
invocations, Connection Management, Pluggable Transports, Portable
Interceptors, Object Wrappers, Value Types and the VisiBroker Logging
Service.

• Part 7, “Dynamic CORBA Concepts”

This part describes the Dynamic features of CORBA. These concepts are the
Interface Repository, the Dynamic Invocation Interface, the Dynamic
Skeleton Interface and the DynAny class.

• Part 8, “Backward Compatibility”

This part describes compatibility issues between previous releases of
VisiBroker-RT for C++ and the current one.

• “CORBA exceptions”

This Appendix contains additional information about CORBA exceptions that
can be thrown by the VisiBroker ORB, and explains possible causes for
VisiBroker-RT for C++ to throw them.

• “Glossary”

Provides a glossary of commonly used terms.

xvi Vis iBroker-RT for C++ Developer ’s Guide

Manual conventions
This section identifies the VisiBroker-RT for C++ Programmer’s Reference
Guide’s typographical and platform conventions.

Typographic conventions

This manual uses the following conventions:

Platform conventions

This manual uses the following conventions—where necessary—to indicate
that information is platform-specific:

VisiBroker Library conventions

This manual uses the following conventions—where necessary—to indicate
that information is VisiBroker library specific or to indicate that VisiBroker
interfaces are not supported in certain versions of the VisiBroker libraries.

Not Supported in the VisiBroker-RT Minimum Corba Library

Where to find additional information

For more information about VisiBroker-RT for C++, refer to these
information sources:

• VisiBroker-RT for C++ Release Notes contain late-breaking information
about the current release of VisiBroker-RT for C++.

Convention Used for
Boldface Bold type indicates that syntax should be typed exactly

as shown. For UNIX, used to indicate database names,
file names, and similar terms.

italics Italics indicates information that the user or application
provides, such as variables in syntax diagrams. It is also
used to introduce new terms.

computer Computer typeface is used for sample command lines
and code.

bold computer In code examples, important statements appear in
boldface

UPPERCASE Uppercase letters indicate Windows file names.
[] Brackets indicate optional items.
... An ellipsis indicates the continuation of previous lines of

code or that the previous argument can be repeated.
| A vertical bar separates two mutually exclusive choices.

Convention Used for
Windows All Windows (Windows NT, Windows 2000, Windows

XP) development hosts
WinNT Windows NT development host platform
Win2000 Windows 2000/XP development host only
UNIX All UNIX development host platforms including Solari
Solaris Solaris development host only
Tornado VisiBroker-RT for C++ for Tornado only
C++ VisiBroker-RT for C++

VisiBroker-RT for C++ Developer ’s Guide xvii

• VisiBroker-RT for C++ for Tornado. This guide contains the instructions
for installing VisiBroker-RT for C++ on Windows and UNIX host systems
as well as information for deploying distributed applications built using
VisiBroker-RT for C++.

• VisiBroker-RT for C++ Programmer’s Reference Guide. This manual
contains information on the VisiBroker-RT for C++ C++ Application
Programmers Interfaces (API).

• For more information about the CORBA specification, refer to The
Common Object Request Broker: Architecture and Specification. This
document is available from the Object Management Group and describes
the architectural details of CORBA.

You can access the CORBA specification at the OMG web site:
https://www.omg.org/.

Contacting Micro Focus
Old version has been replaced with the standard MF section.

Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The Product Updates section of the Micro Focus SupportLine Web site,
where you can download fixes and documentation updates.

• The Examples and Utilities section of the Micro Focus SupportLine Web
site, including demos and additional product documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Also, visit:

• The Micro Focus Community Web site, where you can browse the
Knowledge Base, read articles and blogs, find demonstration programs
and examples, and discuss this product with other users and Micro Focus
specialists.

• The Micro Focus YouTube channel for videos related to your product.

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you

https://www.omg.org/
http://www.microfocus.com

xviii Vis iBroker-RT for C++ Developer’s Guide

think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the Product Updates section of the Micro Focus SupportLine Web
site, where you can download fixes and documentation updates. To
connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• https://www.microfocus.com/products/corba/visibroker/ (VisiBroker trial
software)

• https://supportline.microfocus.com/login.aspx (Micro Focus support
login)

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
https://software.microfocus.com/en-us/select/email-subscription

http://www.microfocus.com
https://www.microfocus.com/products/corba/visibroker/
https://supportline.microfocus.com/login.aspx
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
https://software.microfocus.com/en-us/select/email-subscription

Part 1
Basic Concepts

In this part
This part contains the following chapters:

Introducing VisiBroker-RT for C++ page 3

Setting up the Development Environment page 9

Developing an Example Application with VisiBroker-RT for
C++ page 13

Handling Exceptions page 41

VisiBroker-RT for C++ Developer ’s Guide 3

Introducing VisiBroker-RT
for C++
This chapter introduces VisiBroker-RT for C++, a complete implementation
of the CORBA 2.5 specification. This chapter describes VisiBroker-RT for C++
features and components.

What is CORBA?
The Common Object Request Broker Architecture (CORBA) allows distributed
applications to interoperate (application to application communication),
regardless of what language they are written in or where these applications
reside.

The CORBA specification was adopted by the Object Management Group to
address the complexity and high cost of developing distributed object
applications. CORBA uses an object-oriented approach for creating software
components that can be reused and shared between applications. Each
object encapsulates the details of its inner workings and presents a well
defined interface, which reduces application complexity. The cost of
developing applications is reduced, because once an object is implemented
and tested, it can be used over and over again.

The Object Request Broker (ORB) in Figure 1 connects a client application
with the objects it wants to use. The client program does not need to know
whether the object implementation it is in communication with resides on
the same computer or is located on a remote computer somewhere on the
network. The client program only needs to know the object’s name and
understand how to use the object’s interface. The ORB takes care of the
details of locating the object, routing the request, and returning the result.

Figure 1 Client program acting on an object

Note

The ORB itself is not a separate process/thread. It is a collection of libraries
and network resources that integrates within end-user applications, and
allows your client applications to locate and use objects.

4 VisiBroker-RT for C++ Developer ’s Guide

What is VisiBroker-RT for C++?
VisiBroker-RT for C++ provides a complete CORBA 2.3 ORB runtime and
supporting development environment for building, deploying, and managing
distributed C++ applications that are open, flexible, and inter-operable.
Objects built with VisiBroker-RT for C++ are easily accessed by Web-based
applications that communicate using OMG’s Internet Inter-ORB Protocol
(IIOP) standard for communication between distributed objects through the
Internet or through local intranets. VisiBroker-RT for C++ has a built-in
implementation of IIOP that ensures high-performance and inter-
operability.

Figure 2 VisiBroker-RT for C++ architecture

VisiBroker-RT for C++ Features
VisiBroker-RT for C++ has several key features as described in the following
sections.

VisiBroker-RT for C++ Smart Agent
architecture
VisiBroker-RT for C++’s Smart Agent (osagent) is a dynamic, distributed
directory service that provides facilities for both client applications and
object implementations. Multiple Smart Agents on a network cooperate to
provide load balancing and high availability for client access to server
objects. The Smart Agent keeps track of objects that are available on a
network, and locates objects for client applications at invocation time.
VisiBroker-RT for C++ can determine if the connection between your client
application and a server object has been lost, due to an error such as a
server crash or a network failure. When a failure is detected, an attempt is
automatically made to connect your client to another server on a different
node, if it is so configured. For details on the Smart Agent, see “Using the
Smart Agent” and “Using Quality of Service”.

VisiBroker-RT for C++ Developer ’s Guide 5

Enhanced object discovery with the Location
Service
VisiBroker-RT for C++ provides a powerful Location Service—an extension
to the CORBA specification—that enables you to access the information
from multiple Smart Agents.

Working with the Smart Agents on a network, the Location Service can see
all the available instances of an object to which a client can bind. Using
triggers, a callback mechanism, client applications can be instantly notified
of changes to an object’s availability. Used in combination with interceptors,
the Location Service is useful for developing enhanced load balancing of
client requests to server objects. See the chapter “Using the Location Service”
for more information.

Implementation and object activation support
VisiBroker-RT for C++ provides functionality that enables you to defer object
activation until a client request is received. You can defer activation for a
particular object or an entire class of objects. See the chapter “Using POAs”
for more information on servant managers.

Robust thread and connection management
VisiBroker-RT for C++ provides native support for multithreading thread
management. With VisiBroker-RT for C++’s thread pooling model, threads
are allocated based on the amount of request traffic to the server object.
This means that a highly active client will be serviced by multiple threads—
ensuring that the requests are quickly executed—while less active clients
can share a single thread, and still have their requests immediately
serviced.

VisiBroker-RT for C++’s connection management minimizes the number of
client connections to the server. All client requests for objects residing on
the same server are multiplexed over the same connection, even if they
originate from different threads.

Additionally, released client connections are recycled for subsequent
reconnects to the same server, eliminating the need for clients to incur the
overhead of new connections to the same server.

All thread and connection behavior is fully configurable. See the chapter
“Connection Management” for details on how VisiBroker-RT for C++ manages
connections.

Originally this referred to a “Thread and connection management”
chapter - which doesn’t exist. Is this the best place to point readers
to?

IDL compilers
VisiBroker-RT for C++ comes with two IDL compilers that make object
development easier:

• idl2cpp—The idl2cpp compiler takes IDL files as input and produces the
necessary client stubs and server skeletons (in C++).

• idl2ir—The idl2ir compiler takes an IDL file and populates an interface
repository with its contents.

6 VisiBroker-RT for C++ Developer ’s Guide

(The Interface Repository is available only on the Development Host - that is,
Solaris/Windows.)

See “Using the IDL compiler” and “Using Interface Repositories” for details on
these compilers.

Dynamic invocation with DII and DSI
For dynamic invocation, VisiBroker-RT for C++ provides implementations of
both the Dynamic Invocation Interface (DII) and the Dynamic Skeleton
Interface (DSI). The DII allows client applications to dynamically create
requests for objects that were not defined at compile time. The DII is
covered in the chapter “Using the Dynamic Invocation Interface”. The DSI allows
servers to dispatch client operation requests to objects that were not defined
at compile time. See “Using the Dynamic Skeleton Interface” for complete details.

Interface repositories
The Interface Repository (IR) is an online database of meta information
about ORB objects. Meta information stored for objects includes information
about modules, interfaces, operations, attributes, and exceptions. The
chapter “Using Interface Repositories” covers how to start an instance of the
Interface Repository, add information to an interface repository from an IDL
file, and extract information from an interface repository.

Note

The Interface Repository is available only as a Development Host utility (i.e.
Solaris/ WindowsNT)

Server-side portability
VisiBroker-RT for C++ supports the CORBA Portable Object Adapter (POA),
which is a replacement to the Basic Object Adapter (BOA). The POA shares
some of the same functionality as the BOA, such as activating objects,
support for transient or persistent objects, and so forth. The POA also has
new features, such as the POA Manager and Servant Manager which creates
and manages instances of your objects. See “Using POAs” for more
information.

Customizing the ORB with interceptors and
object wrappers
VisiBroker-RT for C++’s interceptors enable developers to view under-the-
cover communications between clients and servers. Interceptors can be
used to extend the ORB with customized client and server code that enables
load balancing, monitoring, or security to meet specialized needs of
distributed applications. See the chapter “Using Portable Interceptors” for
information.

VisiBroker-RT for C++’s object wrappers allow you to define methods that
are called when a client application invokes a method on a bound object or
when a server application receives an operation request. See “Using Object
Wrappers” for information.

VisiBroker-RT for C++ Developer ’s Guide 7

VisiBroker-RT for C++ CORBA compliance
VisiBroker-RT for C++ is fully compliant with the CORBA specification
(version 2.3) from the Object Management Group (OMG). For more details,
refer to the CORBA specification located at http://www.omg.org/.

VisiBroker-RT for C++ Development Environment
VisiBroker-RT for C++ is used in both the development and deployment
phases. The VisiBroker-RT for C++ development environment includes the
following components:

• Administration and Development tools
• C++ header files
• VisiBroker ORB libraries (including the VisiBroker Smart Agent)
• Sample applications

Administration tools
The following tools are used to administer the VisiBroker-RT for C++ ORB
during development:

Developer’s tools
The following tools are used during the development phase:

VisiBroker-RT for C++ header files
The VisiBroker-RT for C++ for Tornado header files have been installed
under <install location>/VisiBrokerRT60/include. Please refer to the
section “Development Process” for a description of how to develop VisiBroker-
RT for C++ for Tornado applications.

VisiBroker ORB Libraries
The VisiBroker-RT for C++ ORB libraries enable client and server
applications to use and provide distributed objects. The runtime support
services is included with the VisiBroker product.

VisiBroker-RT for C++ version 6.0 provides a set of libraries for each
supported CPU variant (that is for SPARC, PPC, etc). See “Step 6: Integrating
VisiBroker-RT with Tornado/VxWorks” for details on how to use the VisiBroker
run-time libraries.

Tool Purpose
osagent Used to manage the Smart Agent. See “Using the Smart

Agent”.
osfind Reports on objects running on a given network.
irep Used to manage the Interface Repository. See “Using

Interface Repositories” .

Tool Purpose
idl2ir This tool allows you to populate an interface repository

with interfaces defined in an IDL file.
idl2cpp This tool generates C++ stubs and skeletons from an IDL

file.

8 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker Sample Applications
VisiBroker-RT for C++ provides a set of sample applications as a starting
point for the user. These sample applications can be found in the <install
location>/VisiBrokerRT60/examples directory.

Interoperability with VisiBroker for Java
Applications created with VisiBroker-RT for C++ can communicate with
object implementations developed with VisiBroker for Java, which is sold
separately. Simply use the same IDL you used to develop your C++
application as input to the VisiBroker for Java IDL compiler, supplied with
VisiBroker for Java. You may then use the resulting Java skeletons to
develop the object implementation.

Also, object implementations written with VisiBroker-RT for C++ will work
with clients written in VisiBroker for Java. In fact, a server written with
VisiBroker-RT for C++ will work with any CORBA-compliant client; a client
written with VisiBroker-RT for C++ will work with any CORBA-compliant
server.

Interoperability with other ORB products
CORBA-compliant software objects communicate using the Internet Inter-
ORB Protocol (IIOP) and are fully interoperable, even when they are
developed by different vendors who have no knowledge of each other’s
implementations. VisiBroker-RT for C++’s use of IIOP allows client and
server applications you develop with VisiBroker-RT for C++ to interoperate
with a variety of ORB products from other vendors.

VisiBroker-RT for C++ Developer ’s Guide 9

Setting up the Development
Environment
VisiBroker-RT for C++ requires very little development host environment
configuration. The following section specifies what environment variables
VisiBroker uses. There are three mandatory environment variables which
must be set and/or modified:

• VBROKERDIR
• PATH
• VBROKER_ADM

Setting the VBROKERDIR Environment Variable
The VBROKERDIR environment variable defines the directory where the
VisiBroker-RT for C++ distribution was installed.

Note

This environment variable must be set in order for the VisiBroker
development host tools to work correctly.

Setting VBROKERDIR on a Windows platform
Assuming that the VisiBroker distribution is installed in the directory C:\
VisiBrokerRT60 the following commands can be used for setting the
VBROKERDIR environment variable in a DOS window:

Windows prompt> set VBROKERDIR=C:\VisiBrokerRT60

Setting VBROKERDIR on a UNIX platform
If you are using csh and you installed the VisiBroker distribution in the
default location the following commands can be used for setting the
VBROKERDIR environment variable.

Solaris prompt> setenv VBROKERDIR $HOME/VisiBrokerRT60

If you are using Bourne (or BASH) shell and you installed the VisiBroker
distribution in the default location the following commands can be used for
setting the VBROKERDIR environment variable:

Solaris prompt> VBROKERDIR=$HOME/VisiBrokerRT60
prompt> export VBROKERDIR

Setting the Path environment variable
The PATH environment variable should be set to include the bin directory
which contains the VisiBroker-RT for C++ distribution. The bin directory is
where the VisiBroker-RT for C++ tools/utilities for developers and users are
located.

If you choose to explicitly set the PATH environment variable, the following
sections explain how to do so.

10 VisiBroker-RT for C++ Developer’s Guide

Updating the PATH on Windows
Assuming that the VisiBroker distribution was installed in the C: directory
(C:\VisiBrokerRT60) you can set your PATH with the following DOS
command.

Windows prompt> set PATH=C:\VisiBrokerRT60\bin:%PATH%

Setting the Path on a UNIX platform
If you are using csh and you installed the VisiBroker distribution in the
default location the following commands can be used for updating the PATH
environment variable.

Solaris prompt> setenv PATH $HOME/VisiBrokerRT60/bin:$PATH

If you are using Bourne (or BASH) shell and you installed the VisiBroker
distribution in the default location the following commands can be used for
updating the PATH environment variable:

Solaris prompt> PATH=$PATH:$HOME/VisiBrokerRT60/bin

Setting VBROKER_ADM Environment Variable
The VBROKER_ADM environment variable defines the administration directory
where important configuration information for development host
environment tools such as VisiBroker’s interface repository and Smart
Agent are stored.

Setting VBROKER_ADM on a Windows platform
Assuming that the VisiBroker distribution is installed in the C: directory (C:\
VisiBrokerRT60) the following commands can be used for setting the
VBROKER_ADM environment variable. You can set your VBROKER_ADM
environment variable with the following DOS command.

Windows prompt> set VBROKER_ADM=C:\VisiBrokerRT60\adm

Setting VBROKER_ADM on a UNIX platform
If you are using csh and you installed the VisiBroker distribution in the
default location the following commands can be used for setting the
VBROKER_ADM environment variable.

Solaris prompt> setenv VBROKER_ADM $HOME/VisiBrokerRT60/adm

If you are using Bourne (or BASH) shell and you installed the VisiBroker
distribution in the default location the following commands can be used for
setting the VBROKER_ADM environment variable:

Solaris prompt> VBROKER_ADM=$HOME/VisiBrokerRT60/adm prompt> export
VBROKER_ADM

Setting OSAGENT_PORT environment variable
The OSAGENT_PORT environment variable defines the port number under
which the Smart Agent will listen. By default, the Smart Agent will listen on
port number 14000.

VisiBroker-RT for C++ Developer’s Guide 11

It is often desirable to have two or more separate Osagent domains running
at the same time. One domain might consist of the production versions of
client programs and object implementations while another domain might be
made up of test versions of the same clients and objects that have not yet
been released for general use. If several developers are working on the
same local network, each may want to establish their own ORB domain so
that their testing efforts do not conflict with one another. For details on
establishing multiple Osagent domains see “Working within ORB domains”.

Setting OSAGENT_PORT on a Windows
platform
The following commands can be used for setting the OSAGENT_PORT
environment variable. You can set your OSAGENT_PORT environment variable
with the following DOS command.

Windows prompt> set OSAGENT_PORT=10000

Setting OSAGENT_PORT on a UNIX
platform
If you are using csh and you want the Smart Agent to listen on port number
10000, set the OSAGENT_PORT environment variable as follows:

Solaris prompt> setenv OSAGENT_PORT 10000

If you are using Bourne (or BASH) shell and you want the Smart Agent to
listen on port number 10000, set the OSAGENT_PORT environment variable
as follows:

Solaris prompt> OSAGENT_PORT=10000 prompt> export OSAGENT_PORT

Logging Output on the Host System
Many VisiBroker tools offer a verbose mode that displays information about
the tool as it executes. In addition, any application that is linked with the
VisiBroker library may also produce output. On UNIX systems, this output is
written to the console, or the corresponding shell if invoking commands
from a shell. On Windows systems, this output is written to one of several
log files.

The following ta ble summarizes the names of the various log files that may
be produced on Windows Host systems when using the Windows “Host
Side” tools.

Table 1 Summary of log file names produced on Windows in verbose mode.

File Name Description
osagent.log Produced by the Smart Agent when started with the -v

flag.
visout.log Contains any output to cout that is produced by a client

or server.
vislog.log Contains any output to clog that is produced by a client

or server.
viserr.log Contains any output to cerr that is produced by a client

or server.

12 VisiBroker-RT for C++ Developer’s Guide

The location of these log files is determined by the following rules:

1 An attempt will be made to write the file to the log directory within the
directory pointed to by the VBROKER_ADM variable. Please refer to “Setting
VBROKER_ADM Environment Variable” for details on how to set the
VBROKER_ADM environment variable.

2 If step 1 fails, an attempt will then be made to write the file to the
current directory.

VisiBroker-RT for C++ Developer’s Guide 13

Developing an Example
Application with VisiBroker-
RT for C++
This chapter uses an example application to describe the development
process for creating distributed, object-based applications.

The code for this example application is provided in the <install_location>/
examples/basic/bank_account directory where the VisiBroker-RT for C++
distribution was installed. If you do not know the location of the VisiBroker-
RT for C++ distribution, see your system administrator.

Development Process
When you develop distributed applications with VisiBroker-RT for C++, you
must first identify the objects required by the application. You will then
usually follow these steps:

1 Write a specification for each object using the Interface Definition
Language (IDL).

IDL is the language that an implementer uses to specify the operations
that an object will provide and how they should be invoked. In this
example, we define, in IDL, the Account interface with a balance()
method and the AccountManager interface with an open() method.

2 Use the IDL compiler to generate the client stub code and server POA
servant skeleton code.

Using the idl2cpp compiler, we’ll produce client-side stubs (which provide
the interface to the Account and the AccountManager objects’ methods)
and server-side classes (which provides classes for the implementation of
the remote objects).

3 Write the client program code.

To complete the implementation of the client program, initialize the ORB,
bind to the Account and the AccountManager objects, invoke the methods
on these objects, and print out the balance.

4 Write the server object code.

To complete the implementation of the server object code, we must
derive from the POA_Account and POA_AccountManager classes, provide
implementations of the interfaces’ methods, and implement the server’s
“main/start” routine.

5 Compile the client and server code.

To create the client program, compile and link the client program code
with the client stub. To create the Account server, compile and link the
server object code with the server skeleton.

6 Integrate the VisiBroker libraries needed into VxWorks

7 Initialize the ORB for the Server processor and start the server.

8 Initialize the ORB for the Client processor and run the client program.

14 VisiBroker-RT for C++ Developer’s Guide

Figure 3 Developing the sample bank application

Step 1: Defining object interfaces
The first step to creating an application with VisiBroker-RT for C++ is to
specify all of your objects and their interfaces using the OMG’s Interface
Definition Language (IDL). The IDL can be mapped to a variety of
programming languages. The IDL mapping for C++ is summarized in the
VisiBroker-RT for C++ Reference Guide.

You then use the idl2cpp compiler to generate stub routines and servant
skeleton code from the IDL specification. The stub routines are used by your
client program to invoke operations on an object. You use the servant code,
along with code you write, to create a server that implements the object.
The code for the client and object, once completed, is used as input to your
C++ compiler to produce a client application and an object server.

VisiBroker-RT for C++ Developer’s Guide 15

Writing the account interface in IDL
IDL has a syntax similar to C++ and can be used to define modules,
interfaces, data structures, and more.

IDL sample 1 shows the contents of the Bank.idl file for the bank_account
example. The Account interface provides a single member function for
obtaining the current balance. The AccountManager interface creates an
account for the user if one does not already exist.

IDL sample 1 Bank.idl file provides the Account and Account Manager interface
definition

module Bank{
interface Account {

float balance();
};
interface AccountManager {

Account open(in string name);
};

};

Step 2: Generating client stubs and server servants
The interface specification you create in IDL is used by VisiBroker-RT for
C++’s idl2cpp compiler to generate C++ stub routines for the client
program, and skeleton code for the object implementation. The stub
routines are used by the client program for all member function invocations.
You use the skeleton code, along with code you write, to create the server
that implements the objects.

The code for the client program and server object, once completed, is used
as input to your C++ compiler and linker to produce the client and server.
These steps are shown in Figure 3.

Because the bank.idl file requires no special handling, it can be compiled
with the following command.

prompt> idl2cpp -source_ext cpp bank.idl

For more information on the command-line options for the idl2cpp compiler,
see “Using the IDL compiler”.

Files produced by the idl compiler
The idl2cpp compiler generates four files from the bank.idl file,

• bank_c.hh—Contains the definitions for the Account and AccountManager
classes.

• bank_c.cc—Contains internal stub routines used by the client.
• bank_s.hh—Contains the definitions for the POA_Account and

POA_AccountManager servant classes.

• bank_s.cc—Contains the internal routines used by the server.
You will use the bank_c.hh and bank_c.cc files to build the client
application. The bank_s.hh and bank_s.cc files are for building the server
object. All generated files have either a.cc or.hh suffix. (The suffix may be
controlled by the "-source_ext" option on the "idl2cpp" command line.)

16 VisiBroker-RT for C++ Developer’s Guide

Caution

You should never modify the contents of files generated by the idl2cpp
compiler.

Step 3: Implementing the client
Many of the classes used in implementing the bank client are contained in
the code generated by the idl2cpp compiler The file named client.cpp, part
of the bank_account example, contains the implementation of the client
program. Normally you would create this file.

Because your program uses the Account as well as the AccountManager IDL
interfaces, it must include the bank_c.hh file.

In order for a client and/or server application to be able to use the ORB, the
ORB object must be initialized. The file corba_init.C contains the ORB
initialization code for both the server and client objects. The function
start_corba can be called from the WindShell after loading the corba_init
program. Please refer to the bank_account.html file for a detailed
description of how to load (where applicable) and execute the bank_acount
client example on your VxWorks target.

The files corba_init.C and client.C implement the sequence of steps
required to run the start_account_client program. These are:

• Initialize the ORB (corba_init.C)

• Bind to an AccountManager object (client.C)

• Obtain a Account object by invoking open() on the AccountManager object
(client.C)

• Obtain the balance by invoking balance() on the Account object (client.C)

corba_init.C
The first task that your client application needs to do is initialize the ORB
object, as shown in Code example 1.

Code example 1 Initializing the ORB
#include <vxWorks.h>
#include "corba.h"
#include <taskLib.h>
#include "vutil.h"

#define OSAGENT_PORT "14000"

/*--*/
/* Forward Declarations. */
/*--*/

extern "C" void start_corba(char * ORB_options_string);
static void do_corba(char * ORB_options_string);

/*--*/
/* Global Variable Declarations */
/*--*/
CORBA::ORB_var orb;

/*--*/
/* function ==> start_corba*/
/* This function will spawn a vxWork task @*/
/* priority 100, which will perform the neccessary*/
/* initialization for the ORB (i.e. ORB_init,...)*/
/*--*/

VisiBroker-RT for C++ Developer’s Guide 17

void start_corba(char * ORB_options_string)
{

char * taskName = "DO_CORBA";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

/*--*/
/* Spawn do_corba task. */
/*--*/

taskSpawn(taskName,
Prio,

option,
stackSize,
(FUNCPTR)do_corba,
(int)ORB_options_string,0,0,0,0,0,0,0,0,0);

}

/*--*/
/* function ==>do_corba */
/* This function will perform the neccessary */
/* initialization for the ORB (i.e. ORB_init,...) */
/*--*/

void do_corba(char * ORB_options_string)

{

/*--*/
/* ORB_init options can be specified in two ways. */
/* 1) By calling start_corba and specifying the */
/* ORB initialization string */
/* (e.g. start_corba("-ORBagentport 19000") */
/* 2) Programatically by specifying the */
/* ORB_initialization_options in the */
/* default_argc and default_argv variables below. */
/* */
/* PLEASE NOTE THAT THE OPTIONS PASSED IN VIA start_corba*/
/* OVERRIDE THE OPTIONS THAT ARE SET PROGRAMATICALLY. */
/*--*/

int default_argc = 2;
char *default_argv[] = {"-ORBagentport", OSAGENT_PORT};
char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,
default_argc, ORB_options_string);

/*--*/
/* Call ORB_init */
/*--*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);

VISUtil::freeArgv(new_argc, new_argv);
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH

return;
}

18 VisiBroker-RT for C++ Developer’s Guide

client.C
The start_bank_client program implements the client application which
obtains the current balance of a bank account. The client programs
performs the following steps:

1 Bind to an AccountManager object (client.C)

2 Obtain a Account object by invoking open() on the AccountManager
object (client.C)

3 Obtain the balance by invoking balance() on the Account object
(client.C)

Code example 2 Client side program
//bank_account client

#include <vxWorks.h>
#include "corba.h"
#include <vport.h>
#include "bank_c.hh"

/*--*/
/* Forward Declarations */
/*--*/

extern "C" void start_bank_client(const char* name);
static void bank_client(const char* name);

/*--*/
/* Global Variable Declarations */
/*--*/

extern CORBA::ORB_var orb;

void start_bank_client(const char* name)
{

char * taskName = "BANK_CLNT";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_client,
(int)name,0,0,0,0,0,0,0,0,0);

}

void bank_client(const char* name)
{
// The client uses the "_bind" method by default which locates
// the Server Object via the OSAgent.There is also a provision
// for the client to use the Server's stringified IOR
// (eg. cases where using the OsAgent may not be supported). To
// use the IOR method, copy the stringified IOR in place of the
// NULL value below.This stringified IOR is typically displayed
// on the server console after the server has been activated.
char * IOR = NULL ;

VISTRY {

// Locate an account manager. Give the full POA name and the
// servant ID.
Bank::AccountManager_var manager;

if (IOR!=NULL) {
// convert the stringified IOR to an object reference

CORBA::Object_var object = orb->string_to_object(IOR);

VisiBroker-RT for C++ Developer’s Guide 19

VISIFNOT_EXCEP
manager = Bank::AccountManager::_narrow(object);

VISEND_IFNOT_EXCEP
}
else {

PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

VISIFNOT_EXCEP
manager = Bank::AccountManager::_bind("bank_account_poa",

(CORBA_OctetSequence &)managerId);
VISEND_IFNOT_EXCEP

}

Bank::Account_var account;

// Set the account name
if (name==NULL) {

name = "Jack B. Quick";
}

VISIFNOT_EXCEP
account = manager->open(name);

VISEND_IFNOT_EXCEP

// Get the balance of the account.
CORBA::Float balance;

VISIFNOT_EXCEP
balance = account->balance();

VISEND_IFNOT_EXCEP

// Print out the balance.
VISIFNOT_EXCEP

cout << "The balance in " << name << "'s account is $"
<< balance << endl; VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
}
VISEND_CATCH

return;
}

Binding to the AccountManager object
Before your client program can invoke the open(String name) member
function, it must first use the _bind() member function to establish a
connection to the server that implements the AccountManager object. The
implementation of the _bind() member function is generated automatically
by the idl2cpp compiler. The _bind() member function requests the ORB to
locate and establish a connection to the CORBA server object. If the server
object is successfully located and a connection is established, a proxy object
is created to represent the server’s POA_AccountManager object. A pointer to
this proxy AccountManager object is returned to your client program.

Obtaining an Account object
Next your client program needs to call the open() member function on the
AccountManager object to get a pointer to the Account object for the
specified customer name.

20 VisiBroker-RT for C++ Developer’s Guide

Obtaining the balance
Once your client program has established a connection with an Account
object, the balance() member function can be used to obtain the balance.
The balance() member function on the client side is actually a stub
generated by the idl2cpp compiler that gathers all the data required for the
request and sends it to the server object.

Other member functions
Several other member functions are provided that allow your client program
to manipulate an AccountManager object reference. Many of these are not
used in the example client application, but they are described in detail in
the VisiBroker-RT for C++ Reference Guide.

Step 4: Implementing the server
Just as with the client, many of the classes used in implementing the bank
server are contained in the header files generated by the idl2cpp compiler.
The server.C file is a server implementation included for the purposes of
illustrating this example. Normally you, the programmer, would create this
file.

Note, just as with the client, the server program requires the ORB to have
already been initialized. The file corba_init.C contains the ORB
initialization code for the server objects. Please refer to the
bank_account.html file for a detailed description of how to load and execute
the bank_acount example on your VxWorks target.

server.C
This file implements the Server class for the server side of our bank_account
example. The server program does the following:

1 Initialize the ORB (corba_init.C)

2 Creates a Portable Object Adapter with the required policies. (server.C)

3 Creates the account manager servant object. (server.C)

4 Activates the servant object. (server.C)

5 Activates the POA manager (and the POA). (server.C)

Code example 3 Initializing the ORB
//bank_account server
#include <vxWorks.h>
#include "corba.h"
#include "bankImpl.h"

/*--*/
/* Forward Declarations. */
/*--*/

extern "C" void start_bank_server(void);
static void bank_server(void);

extern CORBA::ORB_var orb;

// Declare global objects
AccountRegistry AccountManagerImpl::_accounts;

void start_bank_server(void)
{

char * taskName = "BANK_SRVR";

VisiBroker-RT for C++ Developer’s Guide 21

int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_server,
0,0,0,0,0,0,0,0,0,0);

}

void bank_server()
{

PortableServer::POA_var rootPOA;

VISTRY {

//get a reference to the root POA
CORBA::Object_var obj =
orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(1);

VISIFNOT_EXCEP
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

// get the POA Manager
PortableServer::POAManager_var poa_manager;

VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
myPOA = rootPOA->create_POA("bank_account_poa",

poa_manager, policies);
VISEND_IFNOT_EXCEP

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the object ID
PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
managerId =

PortableServer::string_to_ObjectId("BankManager");
VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id((CORBA_OctetSequence
&)managerId,managerServant);

VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

CORBA::Object_var ref;

22 VisiBroker-RT for C++ Developer’s Guide

VISIFNOT_EXCEP
ref = myPOA->servant_to_reference(managerServant);

VISEND_IFNOT_EXCEP

CORBA::String_var string_ref;

VISIFNOT_EXCEP
string_ref = orb->object_to_string(ref.in());

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << endl << "CORBA Object ==> " << endl << endl;
cout << ref << endl;
cout << string_ref << endl << endl;
cout << " is ready" << endl << endl;

VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

Understanding the Account class hierarchy
The Account class that you implement is derived from the
POA_Bank::Account class that was generated by the idl2cpp compiler.
Look closely at the POA_Bank::Account class definition that is defined in
the bank_s.hh file. Figure 4 shows the class hierarchy.

Figure 4 Class hierarchy for the AccountImpl interface

Step 5: Building the example
There are basically three types of VxWorks programs/modules which are
produced with each example:

• ORB Initializer (corba_init)

The server skeleton (i.e. bank_s.o) and the client stub (i.e. bank_c.o) are
compiled and linked in as part of this program, to support the use of the
Tornado linking loader via the “ld” command from the WindShell.

• Server implementation (i.e server)

Created from the server.C file.

• Client program (i.e. client)

VisiBroker-RT for C++ Developer’s Guide 23

Created from the client.C file.

The corba_init, server and client programs/modules are all dependant on
the VisiBroker-RT for C++ ORB libraries (i.e. liborb_dyn.o or liborb_min.o
and the libagentsupport.o or libagentsupport_min.o, depending on whether
you intend to use the Osagent location service). Please refer to “Step 6:
Integrating VisiBroker-RT with Tornado/VxWorks” for more information on the
delivered VisiBroker libraries.

Each example directory contains a html file detailing, in addtion to a
description of the example, the procedure for building that specific example.
The top level of the examples directory (i.e. <install_location/
VisiBrokerRT60/examples) also contains a README.html which contains
links to all the individual example html files.

Step 6: Integrating VisiBroker-RT with Tornado/
VxWorks

The VisiBroker-RT Runtime
The VisiBroker-RT for C++ run-time is composed of several libraries. Each
library supports a particular feature set of VisiBroker-RT. Which VisiBroker-
RT feature the VxWorks application requires will dictate which VisiBroker-RT
library is needed on the VxWorks target system.

VisiBroker-RT libraries are delivered in the following formats:

The old manual says “delivered in four formats” - and then lists
three! So I’ve changed the wording

• Relocatable object modules (e.g. liborb_min.o)

This format is provided to support linking the VisiBroker-RT library with
the VxWorks kernel to make a bootable VxWorks image when building a
VxWorks image from the command line. (e.g. "make vxWorks", from the
VxWorks Board Support Package directory)

• "munched" relocatable object modules (e.g. liborb_min_munched.o)

VisiBroker-RT provides "munched" libraries as “ease-of-use” libraries to
allow dynamic loading when using the Tornado WindShell or CrossWind
debugger. (e.g. from the Tornado WindShell ->"ld <
liborb_min_munched.o")

• VisiBroker-RT Tornado 2.2 Components

This format is provided to support building a VisiBroker-RT enabled
"bootable VxWorks image (custom configured)".

24 VisiBroker-RT for C++ Developer’s Guide

VisiBroker-RT runtime libraries
The following table describes the VisiBroker-RT runtime libraries and the
features provided by each:

Library Description
Relocatable Object Module:
liborb_dyn.o

"munched" Relocatable Object Module:
liborb_dyn_munched.o

Tornado 2.2 Component Name:
"Dynamic ORB"

Dynamic CORBA version of the
VisiBroker Object Request Broker
library; includes all Dynamic
functionality (i.e. DSI,DII,IR)

Note: the VisiBroker Object Activiation
Daemon is not supported in VisiBroker-
RT for C++.

Relocatable Object Module:
liborb_dyn_no_libc_llong.o

"munched" Relocatable Object Module:
liborb_dyn_no_libc_llong_munched.o

Tornado 2.2 Component Name:
Not Applicable

This library provides the same
funtionality as liborb_dyn.o library, with
the exception that it DOES NOT
INCLUDE the GCC libc long long
arithmetic operators.

The long long arithmetic operators are
not provided by the VxWorks libraries
(e.g. libPPC604gnuvx.a), but are
included for the default ORB libraries
(liborb_dyn, liborb_min), since full
support for the CORBA:Longlong is
dependent on them.

Since other VxWorks products also
include these long long arithmetic
operators as well, these "no_libc_llong"
libraries are delivered to support co-
existence with these other products (e.g.
VxWorks Personal JWorks).

Relocatable Object Module:
liborb_min.o

"munched" Relocatable Object Module:
liborb_min_munched.o

Tornado 2.2 Component Name:
"Minimal ORB"

“Minimum CORBA” version of the
VisiBroker Object Request Broker library

This version of the VisiBroker-RT for
C++ ORB has been “scaled down” by
removing functionality which typically
would not be required for embedded
applications. The following components
are not part of the liborb_min.o library:

• Dynamic Invocation Interface (DII)**

• Dynamic Skeleton Interface (DSI)**

• Interface Repository**

• Dynamic Any Types**

Note, however that this library still
provides support for the CORBA::Any
type.

**This functionality has been removed
based on the OMG Minimum CORBA
specification.

VisiBroker-RT for C++ Developer’s Guide 25

Relocatable Object Module:
liborb_no_libc_llong_min.o

"munched" Relocatable Object Module:
liborb_no_libc_llong_min_munched.o

Tornado 2.2 Component Name:
Not Applicable

This library provides the same
funtionality as liborb_min.o library, with
the exception that it DOES NOT
INCLUDE the GCC libc long long
arithmetic operators.

The long long arithmetic operators are
not provided by the VxWorks libraries
(e.g. libPPC604gnuvx.a), but are
included for the default ORB libraries
(liborb_dyn, liborb_min), since full
support for the CORBA:Longlong is
dependent on them.

Since other VxWorks products also
include these long long arithmetic
operators as well, these "no_libc_llong"
libraries are delivered to support co-
existence with these other products (e.g.
VxWorks Personal JWorks).

Relocatable Object Module:
libagentsupport.o

"munched" Relocatable Object Module:
libagentsupport_munched.o

Tornado 2.2 Component Name:
"Dynamic ORB"

Provides the functionality required for
the ORB to communicate with the
Osagent. This library is required if your
application requires the services of the
VisiBroker SmartAgent (Osagent).

Relocatable Object Module:
libboa.o

"munched" Relocatable Object Module:
libboa_munched.o

Tornado 2.2 Component Name:
"Basic Object Adaptor (BOA) Support"

This library provides support for the
Basic Object Adapter (BOA). Use of the
library is required if your application
requires the CORBA 2.1 BOA interface.

Relocatable Object Module:
libevchn_c_s.o

"munched" Relocatable Object Module:
libevchn_c_s_munched.o

Tornado 2.2 Component Name:
"Event Service Client Support"

This library provides the interfaces to
allow applications to be clients of the
Visi- Broker-RT for C++ Event Service. If
one of your VxWorks nodes intends to
start a Event Service channel and/or
factory it must include both this library
as well as the library libevchn.o
(described below)

Relocatable Object Module:
libevchn.o

"munched" Relocatable Object Module:
libevchn_munched.o

Tornado 2.2 Component Name:
"Event Service"

This library provides the interfaces for
creating and starting VisiBroker-RT for
C++ Event Service channels and/or
factories on a VxWorks node

Relocatable Object Module:
liblocsupport.o

"munched" Relocatable Object Module:
liblocsupport_munched.o

Tornado 2.2 Component Name:
"Location Service"

This library provides support for the
VisiBroker Location Service. Use of the
library is required if your application
requires use of the Location Service
interface.

See “Using the Location Service” for details
on the VisiBroker Location Service.

Library Description

26 VisiBroker-RT for C++ Developer’s Guide

Relocatable Object Module:
liblog_message_catalog.o

"munched" Relocatable Object Module:
liblog_message_catalog_munched.o

Tornado 2.2 Component Name:
"Log Message Catalog"

This library provides support for the
formatted output of ORB log messages.
Use of the library is required if your
application desires more verbose
logging. By default VisiBroker logging
only includes message keys not message
text.

Please refer to “VisiBroker Logging” for
details on the VisiBroker Location
Service.

Relocatable Object Module:
libmigrate.o

"munched" Relocatable Object Module:
libmigrate_munched.o

Tornado 2.2 Component Name:
"Migrate Interceptors"

This library provides support for the 3.x
style of VisiBroker Interceptors. Use of
the library is required if you are
migrating a 3.x application which use
Interceptors and want to keep the 3.x
style Interceptor API.

Please refer to “Migrating VisiBroker Code”
for details on migrating 3.x style
interceptor applications.

Relocatable Object Module:
libname_c_s.o

"munched" Relocatable Object Module:
libname_c_s_munched.o

Tornado 2.2 Component Name:
"Naming Service Client Support"

This library provides the interfaces for
client applications which intend to ONLY
use the VisiBroker-RT for C++ Naming
Service. If one of your VxWorks target
nodes intends to start a Naming Service
"root context" it must include both this
library as well as the library libname.o
(described below).

Relocatable Object Module:
libname.o

"munched" Relocatable Object Module:
libname_munched.o

Tornado 2.2 Component Name:
"Naming Service"

This library provides the interfaces for
creating and starting a VisiBroker-RT for
C++ Naming Service on a VxWorks
node.

Relocatable Object Module:
libobjwrap.o

"munched" Relocatable Object Module:
libobjwrap_munched.o

Tornado 2.2 Component Name:
"Object Wrappers"

This library provides support for
VisiBroker Object Wrappers. Use of the
library is required if your application
requires use of Object Wrappers.

Please refer to “Using Object Wrappers” for
details on the Object Wrappers type of
Interceptors.

Relocatable Object Module:
ibpluggable.o

"munched" Relocatable Object Module:
libpluggable_munched.o

Tornado 2.2 Component Name:
"Pluggable Trasnport Interface"

This library provides support for the
VisiBroker Pluggable Transport
interfaces. Use of the library is required
if your application requires use of a user
provided transport other than TCP/IP.

Relocatable Object Module:
libsrvmgr.o

"munched" Relocatable Object Module:
libsrvmgr_munched.o

Tornado 2.2 Component Name:
"Server Manager"

This library provide provides support for
communicating with the VisiBroker
Console.

Library Description

VisiBroker-RT for C++ Developer’s Guide 27

Figure 5 Interdependencies between the VisiBroker-RT libraries

Relocatable Object Module:
libservicesupport.o

"munched" Relocatable Object Module:
libservicesupport_munched.o

Tornado 2.2 Component Name:
"Support for Common Object Services"

This library provides support for the
VisiBroker Common Object Services. Use
of the library is required if your
application requires use of the Naming
or Event Service.

Relocatable Object Module:
osagent.o

"munched" Relocatable Object Module:
osagent_munched.o

Tornado 2.2 Component Name:
"Smart Agent"

The VisiBroker SmartAgent. This library
is required to run the VisiBroker Smart
Agent on a VxWorks node.

Library Description

28 VisiBroker-RT for C++ Developer’s Guide

VisiBroker-RT’s use of VxWorks TCB extensions
The VisiBroker-RT for C++ ORB makes use of the VxWorks Task Control
Block (TCB) spare fields. In particular the spare1 field of the WIND_TCB is
used by the liborb.

Note

This field must remain the exclusive use of the VisiBroker-RT for C++
liborb.

typedef struct windTcb /* WIND_TCB - task control block */
{
Q_NODE qNode; /* 0x00: multiway q node: rdy/pend q */
Q_NODE tickNode; /* 0x10: multiway q node: tick q */
Q_NODE activeNode; /* 0x20: multiway q node: active q */
.
.
.
spare1 <---Used by the liborb
}

Integrating VisiBroker Libraries with Tornado
2.x
There are a couple of alternative configuration methods that the Tornado
2.x environment provides that can be used to integrate the VisiBroker-RT
runtime libraries with VxWorks:

1 The first method involves modifying the VxWorks configuration files
(i.e. configAll.h config.h,...), as well as the VxWorks Makefile. This is
the more traditional VxWorks configuration method.

2 The second method makes use of the Tornado 2.x Project Facility. Both of
these configuration methods are described below.

Integrating with a VxWorks BSP Makefile
1 Configure the VisiBroker required VxWorks Components using the

VxWorks Configuration files (i.e. config.h, configAll.h)

The VxWorks components required by VisiBroker can be configured into a
bootable VxWorks image by either:

a modifying the file $WIND_BASE/target/config/all/configAll.h and
adding the appropriate “#define” line(s) to the “INCLUDED SOFTWARE
FACILITIES” section; or

b modifying the file $WIND_BASE/target/config/<your BSP directory>/
config.h and adding the appropriate “#define” line(s) to that file.

2 Link the VisiBroker Libraries into a VxWorks bootable image by modifying
the VxWorks Makefile.

The VisiBroker required VxWorks kernel components are (Note that they
MUST be configured into the VxWorks kernel to ensure correct operation
of the VisiBroker-RT for C++ for Tornado product):

a #define INCLUDE_TASK_HOOKS (part of VxWorks default configuration)

b To make use of VisiBroker-RT for C++ for Tornado “environment
variables” for setting options ENVIRONMENT VARIABLE support must
be included:

#define INCLUDE_ENV_VARS (part of VxWorks default configuration)

VisiBroker-RT for C++ Developer’s Guide 29

c C++ and IO STREAMS support must be included into the VxWorks
image.

1 C++ support
#define INCLUDE_CPLUS (part of VxWorks default configuration)

2 FULL IOSTREAMS support
#define INCLUDE_CPLUS_IOSTREAMS_FULL

d Additionally the VisiBroker-RT runtime assumes that the VxWorks
Networking component has been initialized prior to the ORB_init and
create_POA calls.

3 Link the VisiBroker Libraries into a VxWorks bootable image by modifying
the VxWorks Makefile.

The recommended way of using the VisiBroker-RT for C++ 2.x libraries is
to build them into the VxWorks kernel.

The relocatable VisiBroker-RT object modules are installed under the path
<install location>/VisiBrokerRT60/lib/<Tornado_Version>/
<your_target_cpu).

In order for an application to be able to make use of the VisiBroker-RT for
C++ runtime, a version of the liborb (i.e. liborb_dyn.o, liborb_min.o,...)
library must be linked in with the bootable VxWorks system image.

Linking the VisiBroker-RT runtime into a VxWorks system image can be
accomplished by modifying the “Makefile” under the appropriate VxWorks
Board Support Package (BSP) directory.

The example below assumes the following configuration:

• VxWorks node is a “ADS860” target board

• the Minimum CORBA version of the ORB library (i.e. liborb_min.o)
with support for Osagent communications (i.e.libagentsupport.o)
is required.

• and an osagent (osagent.o) is required to run on the node.

Change directory to the $WIND_BASE/target/config/ads860
directory, and modify the file Makefile as follows. Replace the following
line:

MACH_EXTRA =

with the line
MACH_EXTRA =
<install location>/VisiBrokerRT60/lib/T2_2/PPC860/liborb_min.o
\
<install location>/VisiBrokerRT60/lib/T2_2/PPC860/
libagentsupport.o
<install location>/VisiBrokerRT60/lib/T2_2/PPC860/osagent.o

Integrating VisiBroker Libraries with Tornado
2.2
There are a couple of alternative configuration methods that the
Tornado 2.2 product provides that can be used to integrate the VisiBroker-
RT runtime libraries with VxWorks:

1 The first method involves modifying the VxWorks configuration files (i.e.
configAll.h config.h,...), as well as the VxWorks Makefile. This is the more
traditional VxWorks configuration method. This method is described in
“Integrating with a VxWorks BSP Makefile”.

30 VisiBroker-RT for C++ Developer’s Guide

2 The second method makes use of the Tornado 2.2 Project Facilty and the
VisiBroker-RT Tornado 2.2 Components. This method is described below.

Integrating using the Tornado 2.2 Project facility

Configure the VisiBroker-RT required VxWorks Components using the
Tornado 2.2 Project facility

In addition to the VxWorks default Tornado 2.2 included components,
VisiBroker requires:

• Full IO STREAMS support (component name “full C++ iostreams”)

• Additionally the VisiBroker ORB assumes that the VxWorks Networking
component has been initialized prior to the ORB_init call.

The component “initialize network at boot time” is usually included as
part of the default VxWorks configuration, however this is NOT the case for
the FULL VxSim simulator. This component must be included if VxWorks is
to initialize the Networking subsystem for your application. Otherwise your
application MUST perform this initialization prior to initializing the VisiBroker
ORB.

Note

The VxWorks kernel components identified above MUST be configured into
the VxWorks system image to ensure proper operation of the VisiBroker-RT
runtime.

The VxWorks bootable system image must be configured to include these
components. This can be accomplished by updating the VxWorks view of
your Workspace to select each of these components for inclusion into the
VxWorks system image.

Figure 6 Including full iostreams component using the Project Workspace

VisiBroker-RT for C++ Developer’s Guide 31

Figure 7 Including “intialize network at boot time” component using the
Project Workspace

Build the VisiBroker-RT enabled bootable VxWorks system image

The recommended way of using any of the VisiBroker-RT runtime is to build
them as part of the VxWorks system image. This is accomplished by
selecting the VisiBroker-RT components to be included in the VxWorks
system image.

The VisiBroker-RT runtime components are integrated with the Tornado 2.2
Project facility during the VisiBroker-RT for C++ installation. Using the
Tornado 2.2 Project facility, VisiBroker-RT components can be included into
a "bootable VxWorks image (custom configured)" by selecting the desired
VisiBroker component, much like a VxWorks 5.5 component is selected.

32 VisiBroker-RT for C++ Developer’s Guide

Figure 8 Including VisiBroker-RT components into a bootable VxWorks 5.5
image

Failure to download

If your new VxWorks image fails to download (during a Network download using
a VxWorks ROM), it is possible that the “new” VxWorks image (which now
contains the ORB) may be overwriting the execution of your VxWorks BOOTROM
during the actual download phase.

An obvious symptom is the following:
VxWorks Bootrom prints
“Loading ###### “

(where #### is the size of your image). The system then “hangs” during
the download.

To correct this problem, you have two options:

1 Rebuild VxWorks bootroms increasing the value of
“RAM_HIGH_ADRS”. This must be done in the Board Support Package
directory in BOTH of the files config.h and Makefile.

VisiBroker-RT for C++ Developer’s Guide 33

For example to change the RAM high address from 1 megabyte to 2
megabytes you would make the following modification. (Please refer to
the “VxWorks Programmers Guide - Version 5.3.1 section 8.4 Alternative
VxWorks Configurations”, for more details on the proper setting of this
variable.)

change the line:
#define RAM_HIGH_ADRS 0x100000

to:
#define RAM_HIGH_ADRS 0x200000

2 Use the WindShell to download the munched version of the liborb
(liborb_min_munched.o).

Loading the liborb_munched version of the liborb dynamically from the
shell, requires the VxWorks image to have sufficient memory for the
VxWorks TOOLS. The portion of the VxWorks target systems heap which
is preallocated for the VxWorks HOST Tools (i.e. WindShell,
CrossWind,...) is controlled by the:

#define WDB_POOL_SIZE.

This definition is located in the $WIND_BASE/target/config/all/
configAll.h file. The default value of WDB_POOL_SIZE is 1/16 of the
VxWorks target system heap.

configAll.h WDB_POOL_SIZE default setting:

#define WDB_POOL_SIZE((sysMemTop() - FREE_RAM_ADRS)/16)

For example if your target system is a 68040 based VME board (mv162)
with 8 megabytes(MB) of RAM, and you are downloading the
liborb_munched version of the liborb using the WindShell, your target
system’s WDB_POOL_SIZE should be set to a value large enough to
support download of the liborb_munched.o (943124 bytes) plus your
CORBA application(s). So assuming you need ~1 M of additional host
tools memory for your application prototyping, your WDB_POOL_SIZE
needs to equa @ least 2M. On an 8 megabyte mv162 the setting of the
WDB_POOL_SIZE would look something like:

configAll.h WDB_POOL_SIZE default setting:

#define WDB_POOL_SIZE ((sysMemTop() - FREE_RAM_ADRS)/4)

Note

Option number 1 (rebuilding bootroms) is the recommended use.

Using VisiBroker with VxSim
VxSim, the VxWorks simulator, is available for Solaris as well as Windows
NT/2000. All delivered VisiBroker libraries support the VxWorks simulator;
however the VisiBroker-RT runtime is only available for VxSim as
relocatable object modules. This means that when working on either VxSim
for Solaris or VxSim for Windows NT/2000/XP, a VxWorks bootable system
image MUST include the VisiBroker-RT runtime libraries required for the
application. Please refer to “Integrating VisiBroker Libraries with Tornado 2.x” for
details on how to include the VisiBroker libraries as part of a bootable
VxWorks system image.

The configuration requirements for VxSim are different depending on
whether the Windows or the Solaris version of the VxSim simulator is being
used. In order to take advantage of the distributed aspects of VisiBroker,
the FULL version of the simulator is required, since VxWorks Networking is
included only in the FULL Simulator.

34 VisiBroker-RT for C++ Developer’s Guide

Using VisiBroker with VxSim for Solaris
To use VisiBroker-RT for C++ with the Tornado Solaris VxSim distribution,
configuration of VxSim is required in the following areas.

Network Interface configuration

When using the VisiBroker-RT for C++ VxSim target distribution, it is
recommended that VxSim be configured to use a PPP (Point-to-Point
Protocol) network interface, as the ULIP network interface is being phased
out by Wind River Systems.

As part of configuring VxSim to use the PPP network interface Wind River
Systems delivers an “asppd.cf” file (in the WIND_BASE/target/config/solaris
directory) which is used when configuring the PPP interface on your Solaris
system. The value in this file for the default IP address configuring the PPP
interface is typically “127.0.1.254”. This value must be changed to ensure
proper VisiBroker operation. The modified value should be a non-existent
subnet other than “127.xxx.xxx.xxx”. In addition in this same file the IP
address value of each of the VxSim targets must also be modified to reflect
the PPP IP address which was used for configuring the PPP interface on the
Solaris host. Below is a sample excerpt of the original asppp.cf file as
delivered by WindRiver Systems, followed by a modified asppp.cf file. Note,
the network-specific portion of the “modified” IP address is different. This is
very important.

Original asppp.cf file as delivered by WindRiver Systems:
ifconfig ipd0 plumb 127.0.1.254 up private netmask 0xffffff00

path
interface ipd0
peer_system_name vxsim0
peer_ip_address 127.0.1.0

path
interface ipd0
peer_system_name vxsim1
peer_ip_address 127.0.1.1

...

Modified asppp.cf file for correct operation of VisiBroker-RT for
C++:

ifconfig ipd0 plumb 200.200.200.254 up private netmask 0xffffff00

path
interface ipd0
peer_system_name vxsim0
peer_ip_address 200.200.200.0 (for Tornado 2)
peer_ip_address 200.200.200.1 (for Tornado AE)

path
interface ipd0 peer_system_name vxsim1
peer_ip_address 200.200.200.0 (for Tornado 2)
peer_ip_address 200.200.200.2 (for Tornado AE)

...

VxSim Boot parameters for Tornado 2

The VxSim boot parameters must also be modified to match the VxSim
target addresses which are specified in the “modified” asppp.cf file
described above. When the VxSim process is started it will attempt to read
a file named “VxWorks.nvram#” where # corresponds to the VxSim
processor number from the “Launch VxSim” dialog. This file must be
modified/ created to contain the SAME IP address which was used in the
“modified” asppp.cf file for that VxSim target.

VisiBroker-RT for C++ Developer’s Guide 35

For example:

If you are starting VxSim target #0. Then in the “Launch VxSim” dialog you
will specify Processor number => 0.

Upon starting, this VxSim target will attempt to read the file
“VxWorks.nvram0” to get its boot parameters. The IP address specified in
this file MUST match the IP address for vxsim0 specified in the “asppp.cf”
file. Here is a sample VxWorks.nvram0 for this scenario:

VxWorks.nram0 file

ppp(0,0)MYHOSTNAME:/MYWINDBASE/vxSim/target/config/solaris/
VxWorks e=200.200.200.0:ffffff00 h=192.192.192.60
g=200.200.200.254 u=vxuser tn=vxsim0

VxSim Host Table configuration (only applicable for
Tornado 2.x Solaris Simulator)
The VxSim target does not automatically make a host-table entry in its host
table for its own host name (e.g.“vxsim0” above). This is a difference
between VxSim and other VxWorks targets, where the target name is
automatically added to the VxWorks host table at boot time. The VisiBroker
ORB requires that the “local host name” of the target have an entry in the
VxWorks host table.

Adding an entry into the VxWorks host table can be accomplished by
making a call to the hostLib function “hostAdd” from the VxWorks start-up
function usrRoot (in file usrConfig.C). The modification to the usrConfig.c
file would look something like this:

hostAdd(“vxSim0”,”200.200.200.0”);...where “vxSim0” is the host
name of the VxSim target.

Tornado 2.x VxSim process Memory Size

When starting up VxSim the “Launch VxSim” dialog window appears. There
are two boxes in this dialog window, Processor number and Memory size
(bytes). The Memory size should be modified to 16000000 (16 megabytes)
to ensure proper operation of VxWorks with VisiBroker-RT for C++.

Using VisiBroker with VxSim for Windows NT/2000/
XP
To use VisiBroker-RT for C++ with the Windows NT/2000 VxSim
distribution, configuration of VxSim is required in the following areas.

Tornado 2.x VxSim process Memory Size

To ensure proper operation of VxSimNT with VisiBroker-RT for C++ the
recommended memory size for the VxSim process is 16 megabytes
(16000000). This can be configured as follows:

1 Create a dos batch file which contains the following (where -p specifies
VxWorks processor number and -r specifies VxSim process memory size
in bytes):

start vxWorks.exe -p1 -r16000000

2 When starting up VxSim the “VxSim Launch: Select Image and Options”
dialog window appears. Select the "Custom Built Simulator" button, and
specify the "Image" to be the dos batch file created above.

36 VisiBroker-RT for C++ Developer’s Guide

Figure 9 The “VxSim Launch: Select Image and Options” dialog window

Building a VisiBroker-ready VxSim NT/2000 Bootable VxWorks image

(only applicable for Tornado 2.x VxSimNT Simulator)

Attempting to link the multiple VisiBroker libraries (i.e. liborb_dyn.o,
libagentsupport.o) into a VxSim NT bootable image might fail with the
following error message:

Code example 4 VxSim NT Error when building a VisiBroker ready VxWorks
Bootable image

ccsimpc -BD:\Tornado\host\x86-win32\lib\gcc-lib\ -U WINNT -UWIN32
-U WINNT -UWINNT -U MINGW32 -U_WIN32 -U WIN32 -U WIN32
-U WIN32 -nostdlib -r -Wl,-X \
-Wl,@D:\Tornado\target\proj\testproj\prjObjs.lstversion.o D:\
Tornado\target\lib\libSIMNTgnuvx.a D:\Tornado\VisiBrokerRT60\lib\
T2_2\SIMNT\liborb.o D:\Tornado\VisiBrokerRT60\lib\T2_2\SIMNT\
libagentsupport.o -o partialImage.o

\\D\Tornado\host\x86-win32\i386-pc-mingw32\bin\ld.exe:
partialImage.o:

reloc overflow: 0x122fc > 0xffff

partialImage.o: final close failed: File truncated

make: *** [partialImage.o] Error 0x1

This is a known problem with the Tornado VxSim NT tools. In particular the
VxSim NT linker.:

"Your problem has been identified as the SPR#30726: Problem with
VxSim loader - can't handle multiple text, data sections.

The explanation/workaround below should be able to resolve your build
problem which is caused by the limitation of the OMF i.e. PE-COFF. The
COFF cannot represent more than 65535 relocations in a single section.
Using the linker option, split-by-reloc and the attached linker script
should be able to resolve the problem."

Please contact Wind River Technical support and obtain Patch SPR#30726.
This can be easily obtained by going to http://www.windriver.com/

VisiBroker-RT for C++ Developer’s Guide 37

corporate/html/tsmain.html and logging into WindSurf (you will need a
login ID and password).

The above windriver link is Page Not Found. Suggestions?

Step 7: Starting the Smart Agent (osagent) Service
The Smart Agent provides VisiBroker’s object location functions and must
be started on at least one node on the local network. The Smart Agent
(Osagent) is required to be initialized prior to any server objects attempting
to register, and prior to any client applications attempting to bind to any
server objects. The Smart Agent is described in detail in “Using the Smart
Agent”.

The VisiBroker SmartAgent is required if you are using the _bind operation
in your client application to locate and connect to server implementations.
For initial development and familiarity with the VisiBroker product use of the
Smart Agent is recommended. However if your application will eventually
use some alternative Location Service (e.g. VisiBroker Interoperable
Naming Service, custom location service,...) the Smart Agent will not be
required.

When use of the SmartAgent is not required, the library libagentsupport is
not required resulting in a smaller footprint for the required VisiBroker ORB
libraries. Please refer to “Step 6: Integrating VisiBroker-RT with Tornado/VxWorks”
for a description of these libraries and their dependencies.

There are 2 categories of osagent executables which are delivered with the
VisiBroker-RT for C++ product release, a Development Host osagent and
a VxWorks node osagent. In order to be able to “start” the VxWorks node
osagent, it MUST have been made available on the VxWorks node.

Configuring the Osagent to work with VxSim
Configuration of Osagent to ORB communications is required on both the
development host as well as the VxWorks VxSim virtual target.

Configuring the VisiBroker ORB running on VxSim to
support osagent communications
The default mechanism for establishing communications between the
VisiBroker ORB and the OSAGENT as well as between OSAGENTS, uses the
IP subnet broadcast mechanism. Since both the Windows Ulip driver and
the Solaris PPP driver are non-broadcast protocol interfaces, this method of
communications is not possible. Therefore use of the environment variable
OSAGENT_ADDR or the ORB_init parameter “-ORBagentAddr” is required.
See the section “ORB options” in the VisiBroker-RT for C++ Programmers’
Reference for details on the use of the -ORBAgentAddr parameter.

Configuring the Smart Agent running on vxsim targets
The primary mechanism for initial OSAGENT to ORB and OSAGENT to
OSAGENT communications is based on UDP broadcast. Since both the
Windows Ulip driver and the Solaris PPP driver are non-broadcast protocol
interfaces, this method of communications is not possible. So use of the
OSAGENT_LOCAL_FILE (on the host) or the OSAGENT_LOCAL_TABLE (on
the target) is required. See the section “Specifying interface usage for
Smart Agents” in the VisiBroker-RT for C++ Programmers’ Reference, for a
description of how to use the OSAGENT_LOCAL_TABLE. Additionally
“Working with multihomed hosts” in the VisiBroker-RT for C++

38 VisiBroker-RT for C++ Developer’s Guide

Programmers’ Reference discusses how to use the OSAGENT_LOCAL_TABLE
on target systems.

Starting the Osagent on a Windows Development Host
The VisiBroker Smart Agent can be started from a Windows DOS prompt in
console mode as follows:

prompt> osagent -C

Starting the Osagent on a Solaris Development Host
The VisiBroker Smart Agent can be started from any Unix shell as follows:

prompt> osagent &

Starting the Osagent on a VxWorks Node
The Osagent task is initialized and started via a call to the following
function:

startOsagent(
unsigned long priority,Osagent task priority (200 is default)
int verbose = 0,
int port=-1, (default is 14000)
short logger_priority=-1 (VisiBroker Logger Task
priority),
OSAGENT_LOCAL_ENTRY*local_table = NULL, (pointer to
OSAGENT_LOCAL_TABLE)
OSAGENT_ADDR_ENTRY *addr_table=NULL) (pointer to
OSAGENT_ADDR_TABLE)
long initial_heartbeat_window = 60, (Osagent to ORB
Heartbeat interval)
long initial_heartbeat_frequency = 5, (Osagent to ORB
initial Heartbeat frequency)
long heartbeat_frequency = 300); (Osagent to ORB
Heartbeat frequency)

The header file vosagent.h must be included in the file which is calling this
function. This header file provides the function prototype for startOsagent,
as well as a description on the use of the OSAGENT_LOCAL_TABLE and the
OSAGENT_ADDR_TABLE.

Please refer to the file corba_init.C in any of the example subdirectories
which are delivered as part of the VisiBroker-RT for C++ product
distribution. These example subdirectories can be found in the
<install_location>/VisiBrokerRT60/examples directory.

Note

To turn on the VERBOSE option for the osagent, set “Parameter #2 of
startOsagent” above to a value of 1. Likewise if you need the osagent to run
at a different port number than the default (14000) set “Parameter #3 of
startOsagent” above to the desired port number value.

Please refer to “Integrating with a VxWorks BSP Makefile” for details on how to
configure the osagent as part of your Tornado bootable VxWorks image.

The VisiBroker Smart Agent can be started from a Tornado WindShell as
follows:

--> startOsagent()

Step 8: Starting the server and running the example
You are now ready to run your first VisiBroker-RT for C++ application. Make
sure that you have:

1 Compiled your client program and server implementation

VisiBroker-RT for C++ Developer’s Guide 39

2 Created a VxWorks bootable image containing the required VisiBroker
libraries,

3 Started a VisiBroker Smart Agent (Osagent) on your local network.

In the scenario we describe below, the server will be running on VxWorks
node#1 and the client application will be running on VxWorks node#2.

Additionally, the steps below assume you are using the VxWorks WindShell
to dynamically load the sample VisiBroker applications.

Starting the server
From the Tornado WindShell:

1 Load the programs on VxWorks node#1.

From a Tornado 2 WindShell:
-> ld < corba_init
-> ld < server

Initialize the ORB on VxWorks node#1
-> start_corba

start_corba should be run only ONCE. This will initialize the ORB.

The program corba_init also has the server skeleton (bank_s.cc) and
the client stub (bank_c.cc) linked in. This has been done in order to
support loading the server and/or client program multiple times.

If you require multiple loads of the server skeleton or client stub, you will
need to reboot your target. However as long as the IDL interface does
not change (i.e. the bank_s(_c).cc files do not change, which is usually
the case) the server implementation and the client stub can be loaded
and unloaded multiple times. Without any adverse effects on the
VisiBroker ORB libraries.

2 Start the bank server on VxWorks node#1
-> start_bank_server

You should see output similar to:
CORBA Object ==>
Repository ID: IDL:Bank/AccountManager:1.0
Object name: NONE
IOR:002020200000001c49444c3a42616e6b2f4163636f756e744d616e6167
65723a312e300000000001000000000000004c000102200000000e3230302e
3230302e3230302e300004010000002b00504d4300000004000000102f6261
6e6b5f6167656e745f706f61000000000b42616e6b4d616e61676572200000
0000
is ready

3 Now you can run the osfind command from your Unix/Windows
development host to see what interfaces and objects are currently
available on the your network. You should see output similar to:

osfind: Found one agent at port 14000

HOST: <hostname where osagent is running>

osfind: There are no OADs running on in your domain.

osfind: There are no Object Implementations registered with
OADs.

osfind: Following are the list of Implementations started
manually.

HOST: <name of VxWorks target>

REPOSITORY ID: IDL:Bank::Account:1.0

OBJECT NAME: NONE

40 VisiBroker-RT for C++ Developer’s Guide

NOTE

An alternative to using the osfind utility is the VisiBroker Console. The
VisiBroker Console gives you a graphical interface into the VisiBroker Smart
Agent database. Additionally the Console provides a view into the ORB
instances running and the active objects on each as well as the
configuration of each ORB instance. For details on using the VisiBroker
Console see “Using the VisiBroker-RT for C++ Console”.

Running the client
Windows From the Tornado WindShell:

1 Load the programs on VxWorks node#2.

From a Tornado 2 WindShell:
-> ld < corba_init

-> ld < client

Initialize the ORB on VxWorks node#2
-> start_corba

start_corba should be run only ONCE. This will initialize the ORB.

The program corba_init also has the server skeleton (bank_s.cc) and
the client stub (bank_c.cc) linked in. This has been done in order to
support loading the server and/or client program multiple times.

If you require multiple loads of the server skeleton or client stub, you will
need to reboot your target. However as long as the IDL interface does
not change (i.e. the bank_s(_c).cc files do not change, which is usually
the case) the server implementation and the client stub can be loaded
and unloaded multiple times. Without any adverse effects on the
VisiBroker ORB libraries.

2 Run the bank client program.
-> start_bank_client "john"

At this point you should see the following output on both VxWorks target
#1 and VxWorks target #2’s output console window:

Client Server
Created john's account.

Returning john's account:
Repository ID:

IDL:Bank/Account:1.0

Object name: NONE

The balance in john's account is
$243.06

VisiBroker-RT for C++ Developer’s Guide 41

Handling Exceptions
Exceptions in the CORBA model

The exceptions in the CORBA model include both system and user
exceptions. The CORBA specification defines a set of system exceptions that
can be raised when errors occur in the processing of a client request. Also,
system exceptions are raised in the case of communication failures. System
exceptions can be raised at any time and they do not need to be declared in
the interface. You can define user exceptions in IDL for objects you create
and specify the circumstances under which those exceptions are to be
raised. They are included in the method signature. If an object raises an
exception while handling a client request, the ORB is responsible for
reflecting this information back to the client.

System exceptions
System exceptions are usually raised by the ORB, though it is possible for
object implementations to raise them through interceptors discussed in the
chapter “Using Portable Interceptors”. When the ORB raises a SystemException,
it will be one of the CORBA-defined error conditions shown in the following
table.

Table 2 CORBA-defined system exceptions

Exception name Description
BAD_CONTEXT Error processing context object.
BAD_INV_ORDER Routine invocations out of order.
BAD_OPERATION Invalid operation.
BAD_PARAM An invalid parameter was passed.
BAD_TYPECODE Invalid typecode.
COMM_FAILURE Communication failure.
DATA_CONVERSION Data conversion error.
FREE_MEM Unable to free memory.
IMP_LIMIT Implementation limit violated.
INITIALIZE ORB initialization failure.
INTERNAL ORB internal error.
INTF_REPOS Error accessing interface repository.
INV_FLAG Invalid flag was specified.
INV_INDENT Invalid identifier syntax.
INV_OBJREF Invalid object reference specified.
MARSHAL Error marshalling parameter or result.
INVALID_TRANSACTION Specified transaction was invalid (used in conjunction

with ITS/OTS).
NO_IMPLEMENT Operation implementation not available.
NO_MEMORY Dynamic memory allocation failure.
NO_PERMISSION No permission for attempted operation
NO_RESOURCES Insufficient resources to process request.
NO_RESPONSE Response to request not yet available.
OBJ_ADAPTOR Failure detected by object adaptor.
OBJECT_NOT_EXIST Object is not available.
PERSIST_STORE Persistent storage failure.

42 VisiBroker-RT for C++ Developer’s Guide

Code example 5 SystemException class
class SystemException : public CORBA::Exception {

public:
static const char*_id;
virtual ~SystemException();
CORBA::ULong minor() const;
void minor(CORBA::ULong val);
CORBA::CompletionStatus completed() const;
void completed(CORBA::CompletionStatus status);

...
static SystemException *_downcast(Exception *);
...

};

Obtaining completion status
System exceptions have a completion status that tells you whether or not
the operation that raised the exception was completed. The
CompletionStatus enumerated values are shown below. COMPLETED_MAYBE
is returned when the status of the operation cannot be determined.

IDL sample 2 CompletionStatus values
enum CompletionStatus {

COMPLETED_YES = 0;
COMPLETED_NO = 1;
COMPLETED_MAYBE = 2;

};

You can retrieve the completion status using these SystemException
methods.

Code example 6 Retrieving completion status
CompletionStatus completed();

Getting and setting the minor code
You can retrieve and set the minor code using these SystemException
methods. Minor codes are used to provide better information about the type
of error.

Code example 7 Retrieving and setting minor codes
ULong minor() const;
void minor(ULong val);

Determining the type of a SystemException
The design of the VisiBroker-RT for C++ exception classes allows your
program to catch any type of exception and then determine its type by
using the _downcast() method. A static method, _downcast() accepts a
pointer to any Exception object. As with the _downcast() method defined

TRANSIENT Transient failure.
TRANSACTION_REQUIRED Transaction is required (used in conjunction with ITS/

OTS).
TRANSACTION_ROLLEDBACK Transaction was rolled back (used in conjunction with

ITS/OTS).
TIMEOUT Request timeout.
UNKNOWN Unknown exception.

Exception name Description

VisiBroker-RT for C++ Developer’s Guide 43

on CORBA::Object, if the pointer is of type SystemException, _downcast()
will return the pointer to you. If the pointer is not of type SystemException,
_downcast() will return a NULL pointer. See Appendix A, “CORBA
exceptions,” for details.

Catching system exceptions
Your applications should enclose the ORB and remote calls in a try catch
block. Code example 8 illustrates how the account client program, discussed
in “Developing an Example Application with VisiBroker-RT for C++”, prints an
exception.

Code example 8 Printing an exception
#include "Bank_c.hh"
...

void start_client(const char* name)
{

// The client uses the "_bind" method by default which locates
// the Server Object via the OSAgent. There is a provision
// for the client to use the Server’s stringified IOR (cases
// where using the OsAgent may not be supported). To use the
// IOR method, copy the stringified IOR in place of the NULL
// value below.This stringified IOR is typically displayed on
// the server console after the server has been activated.
char * IOR = NULL ;

VISTRY {

// Locate an account manager. Give the full POA name and
// the servant ID.
Bank::AccountManager_var manager;

if (IOR!=NULL) {
// convert the stringified IOR to an object reference
CORBA::Object_var object = orb->string_to_object(IOR);

VISIFNOT_EXCEP
manager = Bank::AccountManager::_narrow(object);

VISEND_IFNOT_EXCEP
}

else {
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

VISIFNOT_EXCEP
manager = Bank::AccountManager::_bind("/bank_account_poa",

managerId);
VISEND_IFNOT_EXCEP

}

Bank::Account_var account;

....

}
VISCATCH(CORBA::Exception, e) {
cerr << e << endl;
}
VISEND_CATCH

return 0;
}

If you were to execute the client program with these modifications and
without a server present, the following output would indicate that the
operation did not complete and the reason for the exception.

44 VisiBroker-RT for C++ Developer’s Guide

-> start_bank_client
Exception: CORBA::OBJECT_NOT_EXIST

Minor: 0
Completion Status: NO

Downcasting exceptions to a system exception
You can modify the bank_account client program to attempt to downcast any
exception that is caught to a SystemException. Code example 9 shows how
you might modify the client program. Code example 10 shows how the output
would appear if a system exception occurred.

Code example 9 Downcasting an exception to a system exception
void bank_client(const char* name)

VISTRY {

// Bind to an account.
Account_var account = Account::_bind();

// Get the balance of the account.
CORBA::Float acct_balance;
VISIFNOT_EXCEP

acct_balance = account->balance(); VISEND_IFNOT_EXCEP

// Print out the balance
VISIFNOT_EXCEP.

cout << "The balance in the account is $"
<< acct_balance << endl VISEND_IFNOT_EXCEP;

}
VISCATCH(CORBA::Exception, e) {

CORBA::SystemException_var sys_excep;
sys_excep = CORBA::SystemException::_downcast(&e);

if(sys_excep != NULL) {
cerr << "System Exception occurred:" << endl;

cerr << "exception name: " <<
sys_excep->_name() << endl;
cerr << "minor code: " << sys_excep->minor() << endl;
cerr << "ccompletion code: " << sys_excep->completed() <<
endl;

}else {
cerr << "Not a system exception" << endl;
cerr << e << endl;
}

}
VISEND_CATCH

}

Code example 10 Output from the system exception
System Exception occurred:

exception name: CORBA::NO_IMPLEMENT
minor code: 0
completion code: 1

VisiBroker-RT for C++ Developer’s Guide 45

Catching specific types of system exceptions
Rather than catching all types of exceptions, you may choose to specifically
catch each type of exception that you expect. Code example 11 shows this
technique.

Code example 11 Catching specific types of exceptions
...
void bank_client(const char* name)

VISTRY {

// Bind to an account.
Account_var account = Account::_bind();

// Get the balance of the account.
CORBA::Float acct_balance;
VISIFNOT_EXCEP

acct_balance = account->balance();
VISEND_IFNOT_EXCEP

// Print out the balance
VISIFNOT_EXCEP.

cout << "The balance in the account is $"
<< acct_balance << endl

VISEND_IFNOT_EXCEP;
}
VISCATCH(CORBA::SystemException, sys_excep){
// Check for system errors

cout << "System Exception occurred:" << endl;
cout << "exception name: " << sys_excep->_name() << endl;

cout << "minor code: " << sys_excep->minor() << endl;
cout << "completion code: " << sys_excep->completed()
<< endl;

}
VISEND_CATCH

}
...

User exceptions
When you define your object’s interface in IDL you can specify the user
exceptions that the object may raise. Code example 12 shows the
UserException code from which the idl2cpp compiler will derive the user
exceptions you specify for your object.

Code example 12 UserException class
class UserException:

public Exception { public:
...
static const char*_id;
virtual ~UserException();

static UserException *_downcast(Exception *);
};

Defining user exceptions
Suppose that you want to enhance the bank_account application,
introduced in “Developing an Example Application with VisiBroker-RT for C++”, so
that the account object will raise an exception. If the account object has
insufficient funds, you want a user exception named AccountFrozen to be
raised. The additions required to add the user exception to the IDL
specification for the Account interface are shown in bold.

46 VisiBroker-RT for C++ Developer’s Guide

IDL sample 3 Defining user exceptions
// Bank.idl
module Bank {

interface Account {
exception AccountFrozen {
};
float balance() raises(AccountFrozen);

};
};

The idl2cpp compiler will generate the following code for a AccountFrozen
exception class.

Code example 13 AccountFrozen class generated by the idl compiler
class Account : public virtual CORBA::Object {

...
class AccountFrozen: public CORBA_UserException {
public:

static const CORBA_Exception::Description description;

AccountFrozen() {}
static CORBA::Exception *_factory() {

return new AccountFrozen();
}
~AccountFrozen() {}
virtual const CORBA_Exception::Description& _desc() const;
static AccountFrozen *_downcast(CORBA::Exception *exc);
CORBA::Exception *_deep_copy() const {

return new AccountFrozen(*this);

void _raise() const { VISTHROW_INST(this) }}
}
...

}

Modifying the object to raise the exception
The AccountImpl object must be modified to use the exception by raising
the exception under the appropriate error conditions.

Code example 14 Modifying the object implementation to raise an exception
CORBA::Float AccountImpl::balance()
{

if(_balance < 50) {
VISTHROW(Account::AccountFrozen());
VISRETURN(return 0.0;)

} else {
return _balance;

}

Catching user exceptions
When an object implementation raises an exception, the ORB is responsible
for reflecting the exception to your client program. Checking for a
UserException is similar to checking for a SystemException. To modify
the account client program to catch the AccountFrozen exception, make
modifications like those shown in Code example 15.

Code example 15 Catching a UserException
...

VISTRY {

// Bind to an account.
Account_var account = Account::_bind();

// Get the balance of the account.
CORBA::Float acct_balance;

VisiBroker-RT for C++ Developer’s Guide 47

VISIFNOT_EXCEP
acct_balance = account->balance();

VISEND_IFNOT_EXCEP
}
VISCATCH (Account::AccountFrozen, e){

cerr << "AccountFrozen returned:" << endl;
cerr << e << endl;
return(0);

}
// Check for system errors
VISAND_CATCH(CORBA::SystemException, sys_excep){

}
VISEND_CATCH

...

Adding fields to user exceptions
You can associate values with user exceptions. Code example 16 shows how to
modify the IDL interface specification to add a reason code to the
AccountFrozen user exception.The object implementation that raises the
exception is responsible for setting the reason code. The reason code is printed
automatically when the exception is put on the output stream.

Code example 16 Adding a reason code to the AccountFrozen exception
// Bank.idl
module Bank {

interface Account {
exception AccountFrozen {

int reason;
};
float balance() raises(AccountFrozen);

};
};

The VisiBroker C++ Exception Support
The CORBA specification defines an Environment class for reflecting
exceptions. VisiBroker uses the Environment class, along with a set of
macros, to provide your applications with efficient C++ exception handling
capabilities.

The Exception Macros
The Environment class is used internally by the ORB and is transparent to
you as a programmer. The only requirement is that you use these exception
macros to throw, try and catch exceptions. These macros will transparently
manipulate the Environment class and provide efficient, reentrant safe
exception handling.

Table 3 The VIS exception macros.

Macro name Purpose
VISTRY Use this as you would use the try statement.

VISTHROW(type_name) Throws the specified exception.

VISTHROW_LAST Used to re-throw the specified exception.
Used only in an event handler or in a method
called by an event han- dler.

VISCATCH(type_name,
variable_name)

Use this to catch an exception of the specified
type.

48 VisiBroker-RT for C++ Developer’s Guide

VISAND_CATCH If several exceptions are to be specified for a
VISTRY block, use VISCATCH for the first
catch statement and VISAND_CATCH for all
subsequent catch statements.

VISEND_CATCH Used to terminate a VISCATCH block.

VISCATCH_ALL Used to catch any exception which is thrown.
As opposed to VISCATCH which catches the
specified exception

VISAND_CATCHALL If several exceptions are to be specified for a
VISTRY block, use VISCATCH for the first
catch statement and VISAND_CATCHALL to
catch all other types of exceptions which are
thrown.

VISTHROW_INST Used to throw an exception from an object
instance’s “throw” method (e.g. instance-
>_throw)

VISIF_EXCEP Used to check if an exception was thrown and
perform a specified action which follows

VISCLEAR_EXCEP Clears the current environments, exception
information,

VISIFNOT_EXCEP Used to check if an exception was NOT
thrown and continue wtih the application
processing

VISEND_IFNOT_EXCEP Used to terminate a VISIFNOT_EXCEP block

VISRETURN(what) Used to return after a VISTHROW, for
example VISRETURN(return;)

Macro name Purpose

Part 2
Server Concepts

In this part
This part contains the following chapters:

Server basics page 51

Using POAs page 61

Using the Tie Mechanism page 81

VisiBroker-RT for C++ Developer’s Guide 51

Server basics
This chapter outlines the tasks that are necessary to set up a server to receive
client requests.

Overview
The basic steps that need to be performed in setting up your server are:

• Initialize the ORB

• Select policies and Create the POA

• Activate the POA Manager

• Activate objects

• Wait for client requests

This chapter describes each task in a global manner to give you an idea of
what you must consider. The specifics of each step is dependent on your
individual requirements.

Initializing the ORB
As stated in the previous chapter, the ORB provides a communication link
between client requests and object implementations. Each application must
initialize the ORB before communicating with it.

Code example 17 Initializing the ORB
// Initialize the ORB.
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

Creating the POA
Early versions of the CORBA object adapter (the Basic Object Adapter, or
BOA) didn’t permit portable object server code. A new specification was
developed by the OMG to address these issues and the Portable Object
Adapter (or POA) was created.

Note

A discussion of the POA can be quite extensive. This section introduces you
to some of the basic features of the POA. For detailed information, see
“Using POAs” and the OMG specification.

In basic terms, the POA (and its components) determine which servant
should be invoked when a client request is received, and then invokes that
servant. A servant is a programming object that provides the
implementation of an abstract object. A servant is not a CORBA object.

One POA (called the root POA) is supplied by each ORB. You can create
additional POAs and configure them with different behaviors. You can also
define the characteristics of the objects the POA controls.

The steps to setting up a POA with a servant include:

• Obtaining a reference to the root POA
• Defining the POA policies
• Creating a POA as a child of the root POA

52 VisiBroker-RT for C++ Developer’s Guide

• Creating a servant and activating it
• Activating the POA through its manager

Some of these steps may be different for your application.

Obtaining a reference to the root POA
All server applications must obtain a reference to the root POA to manage
objects or to create new POAs.

Code example 18 Obtaining a reference to the root POA
// get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references(“RootPOA”);
// narrow the object reference to a POA reference
PortableServer::POA_var rootPOA =
PortableServer::POA::_narrow(obj);

You can obtain a reference to the root POA by using
resolve_initial_references. resolve_initial_references returns a
value of type CORBA::Object. You are responsible for narrowing the
returned object reference to the desired type, which is
PortableServer::POA in the above example.

You can then use this reference to create other POAs, if needed.

Creating the child POA
The root POA has a predefined set of policies that cannot be changed. A
policy is an object that controls the behavior of a POA and the objects the
POA manages. If a different behavior, such as different lifespan policy is
desired, creation of a new POA is needed.

POAs are created as children of existing POAs using create_POA. As many
POAs as required can be created.

Note

Child POAs do not inherit the policies of their parent POAs.

In the following example, a child POA is created from the root POA and has
a persistent lifespan policy. The POA Manager for the root POA is used to
control the state of this child POA. More information on POA Managers are
described later in this chapter.

Code example 19 Creating the policies and the child POA
CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
// Create myPOA with the right policies
PortableServer::POAManager_var rootManager =

rootPOA->the_POAManager();
PortableServer::POA_var myPOA = rootPOA->create_POA(
"bank_account_poa", rootManager, policies);

Implementing servant methods
IDL has a syntax similar to C++ and can be used to define modules,
interfaces, data structures, and more. When you compile an IDL that
contains an interface, a class is generated which serves as the base class
for your servant. For example, in the bank.idl file, an AccountManager
interface is described.

VisiBroker-RT for C++ Developer’s Guide 53

Code example 20 Interfaces described in bank.idl
module Bank{

interface Account {
float balance();

};
interface AccountManager {

Account open (in string name);
};

};

The AccountManager implementation on the server side is shown below.

Code example 21 AccountManagerImpl code
//
// We inherit from PortableServer::RefCountServantBase so that
// the servant object will be automatically deleted when the
// object is deactivated
// The _remove_ref method is called as part object
// deactivation by the POA
//
class AccountManagerImpl : public POA_Bank::AccountManager,

public virtual
PortableServer::RefCountServantBase
{

public:
AccountManagerImpl() {}

Bank::Account_ptr open(const char* name) {
// Lookup the account in the account dictionary.
PortableServer::ServantBase_var servant =

_accounts.get(name);

if (servant == PortableServer::ServantBase::_nil()) {
// Seed the random number generator
srand((unsigned)time(&random_time));

// Make up the account’s balance, between 0 and 1000
dollars.

CORBA::Float balance = abs(rand()) % 100000 / 100.0;

// Create the account implementation, given the balance.
servant = new AccountImpl(balance);

// Print out the new account
cout << "Created " << name << "’s account." << endl;

// Save the account in the account dictionary.
_accounts.put(name, servant);
}

VISTRY {
// Activate it on the default POA which is root POA for this

servant
PortableServer::POA_var default_poa = _default_POA();

CORBA::Object_var ref;

VISIFNOT_EXCEP
ref = default_poa->servant_to_reference(servant);

VISEND_IFNOT_EXCEP

Bank::Account_var account;

VISIFNOT_EXCEP
account = Bank::Account::_narrow(ref);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Print out the new account
cout << "Returning " << name << "’s account: " << account

<< endl;

// Return the account

54 VisiBroker-RT for C++ Developer’s Guide

return Bank::Account::_duplicate(account);
VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e) {

cerr << "_narrow caught exception: " << e << endl;
return;

}
VISEND_CATCH

return Bank::Account::_nil();
}

private:
static AccountRegistry _accounts;

};

The AccountManager implementation must be created and activated in the
server code. In this example, AccountManager is activated with
activate_object_with_id, which passes the object ID to the Active Object
Map where it is recorded. The Active Object Map is simply a table that maps
IDs to servants. This approach ensures that this object is always available
when the POA is active and is called explicit object activation.

Code example 22 Creating and activating the servant
// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;
// Create the object ID PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
managerId = PortableServer::string_to_ObjectId("BankManager");

VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(managerId, managerServant);
VISEND_IFNOT_EXCEP

Activating the POA
The last step is to activate the POA Manager associated with your POA. By
default, POA Managers are created in a holding state. In this state, all
requests are routed to a holding queue and are not processed. To allow
requests to be dispatched, the POA Manager associated with the POA must
be changed from the holding state to an active state. A POA Manager is
simply an object that controls the state of the POA (whether requests are
queued, processed, or discarded.) A POA Manager is associated with a POA
during POA creation. If a POA Manager is not specified the system will
create a new one (enter NULL as the POA Manager name in create_POA()).

Code example 23 Activating the POA manager
// Activate the POA Manager
PortablServer::POAManager_var mgr=rootPoa ->the_POAManager();
VISIFNOT_EXCEP

mgr->activate();
VISEND_IFNOT_EXCEP

VisiBroker-RT for C++ Developer’s Guide 55

Activating objects
In the preceding section, there was a brief mention of explicit object
activation. There are several ways in which objects can be activated:

• Explicit—all objects are activated upon server start-up via calls to the POA

• On-demand—the servant manager activates an object when it receives a
request for a servant not yet associated with an object ID

• Implicit—objects are implicitly activated by the server in response to an
operation by the POA, not by any client request

• Default servant—the POA uses the default servant to process the client
request

A complete discussion of object activation is in the chapter “Using POAs”. For
now, just be aware that there are several means for activating objects.

Complete example
The following shows the complete code described in this chapter. You can
find this code in the example "bank_account", which is part of the
installation of VisiBrokerRT60.

Code example 24 Complete Servant Implementation for Server side code
(bankImpl.h)

//bankImpl.h

#include <vxWorks.h>
#include <math.h>
#include <time.h>
#include <vport.h>
#include <tickLib.h>
#include "bank_s.hh"

#define _MAX_SIZE256
#define _TYPE_SIZE 32

// The AccountRegistry is a holder of Bank account
// implementations
class AccountRegistry
{

public:
AccountRegistry() : _count(0), _max(16), _data((Data*)NULL)

{
_data = new Data[16];

}

~AccountRegistry() { delete[] _data; }

void put(const char* name, PortableServer::ServantBase_ptr
servant) {

VISMutex_var lock(_lock);
if (_count + 1 == _max) {

Data* oldData = _data;
_max += 16;
_data = new Data[_max];
for (CORBA::ULong i = 0; i < _count; i++)

_data[i] = oldData[i];
delete[] oldData;

}

_data[_count].name = name;
servant->_add_ref();
_data[_count].account = servant;
_count++;

}

56 VisiBroker-RT for C++ Developer’s Guide

PortableServer::ServantBase_ptr get(const char* name) {
VISMutex_var lock(_lock);
for (CORBA::ULong i = 0; i < _count; i++) {

if (strcmp(name, _data[i].name) == 0) {
_data[i].account->_add_ref();
return _data[i].account;

}
}
return PortableServer::ServantBase::_nil();

}

private:
struct Data {

CORBA::String_var name;
PortableServer::ServantBase_var account;

};

CORBA::ULong _count;
CORBA::ULong _max;
Data*_data;
VISMutex_lock; // Lock for synchronization

};

//
// We inherit from PortableServer::RefCountServantBase so that
// the servant object will be automatically deleted when the
// object is deactivated
// The _remove_ref method is called as part object
// deactivation by the POA
//
class AccountImpl : public virtual POA_Bank::Account,

public virtual PortableServer::RefCountServantBase
{

public:
AccountImpl(CORBA::Float balance) : _balance(balance){}
CORBA::Float balance() { return _balance; }

private:
CORBA::Float _balance;

};

//
// We inherit from PortableServer::RefCountServantBase so that
// the servant object will be automatically deleted when the
// object is deactivated
// The _remove_ref method is called as part object
// deactivation by the POA
//
class AccountManagerImpl : public POA_Bank::AccountManager,

public virtual
PortableServer::RefCountServantBase
{

public:
AccountManagerImpl() {}

Bank::Account_ptr open(const char* name) {
// Lookup the account in the account dictionary.
PortableServer::ServantBase_var servant =

_accounts.get(name);

if (servant == PortableServer::ServantBase::_nil()) {
// Seed the random number generator
srand((unsigned)tickGet());

// Make up the account’s balance, between 0 and 1000
// dollars.

CORBA::Float balance = abs(rand()) % 100000 / 100.0;

// Create the account implementation, given the balance.
servant = new AccountImpl(balance);

VisiBroker-RT for C++ Developer’s Guide 57

// Print out the new account
cout << "Created " << name << "’s account." << endl;

// Save the account in the account dictionary.
_accounts.put(name, servant);

}
VISTRY {

// Activate it on the default POA which is root POA for
// this servant
PortableServer::POA_var default_poa = _default_POA();

CORBA::Object_var ref;

VISIFNOT_EXCEP
ref = default_poa->servant_to_reference(servant);

VISEND_IFNOT_EXCEP

Bank::Account_var account;

VISIFNOT_EXCEP
account = Bank::Account::_narrow(ref);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Print out the new account
cout << "Returning " << name << "’s account: " <<

account << endl;

// Return the account
return Bank::Account::_duplicate(account);

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e) {

cerr << "_narrow caught exception: " << e << endl;
taskSuspend(0);

}
VISEND_CATCH

return Bank::Account::_nil();
}

private:
static AccountRegistry _accounts;

};

Code example 25 Server Implementation for Server side code (server.C)
//bank_account server

#include <vxWorks.h>
#include "bankImpl.h"

extern CORBA::ORB_var orb;

// Declare global objects
AccountRegistry AccountManagerImpl::_accounts;

static void bank_server(void);

void start_bank_server(void)
{

char * taskName = "BANK_SRVR";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_server,
0,0,0,0,0,0,0,0,0,0);

}

58 VisiBroker-RT for C++ Developer’s Guide

void bank_server()
{

PortableServer::POA_var rootPOA;

VISTRY {
//get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(1);

VISIFNOT_EXCEP
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(
PortableServer::PERSISTENT);

VISEND_IFNOT_EXCEP

// get the POA Manager
PortableServer::POAManager_var poa_manager;
VISIFNOT_EXCEP

poa_manager = rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;
VISIFNOT_EXCEP

myPOA = rootPOA->create_POA("bank_account_poa",
poa_manager, policies);

VISEND_IFNOT_EXCEP

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the object ID
PortableServer::ObjectId_var managerId;
VISIFNOT_EXCEP

managerId =
PortableServer::string_to_ObjectId("BankManager");

VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(managerId, managerServant);
VISEND_IFNOT_EXCEP

// Activate the POA Manager VISIFNOT_EXCEP
poa_manager->activate(); VISEND_IFNOT_EXCEP

CORBA::Object_var ref;

VISIFNOT_EXCEP
ref = myPOA->servant_to_reference(managerServant);

VISEND_IFNOT_EXCEP

CORBA::String_var string_ref;

VISIFNOT_EXCEP
string_ref = orb->object_to_string(ref.in());

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << endl << "CORBA Object ==> " << endl << endl;
cout << ref << endl;
cout << string_ref << endl << endl;
cout << " is ready" << endl << endl;

VISEND_IFNOT_EXCEP
}

VisiBroker-RT for C++ Developer’s Guide 59

VISCATCH(CORBA::Exception, e) {
cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH

return;
}

60 VisiBroker-RT for C++ Developer’s Guide

VisiBroker-RT for C++ Developer’s Guide 61

Using POAs
This chapter describes the Portable Object Adapter (POA), instances of which
are used in the construction of the server-side of VisiBroker applications. The
description of the POA in this chapter is derived from the corresponding
chapter of the CORBA specification, which should be consulted for a complete
description.

Advanced server-side configuration topics, which involve the POA, are
described in the chapters of Part 6 of this manual (’Advanced Concepts’).

What is a Portable Object Adapter?
A POA is the intermediary between the implementation of an object (a
‘servant’) and the ORB. In its role as an intermediary, a POA routes
requests to servants. If necessary, it may cause servants and even other
POAs to be created.

An ORB can support multiple POAs. At least one POA is always present,
which is called the rootPOA. The rootPOA is created automatically. All other
POAs are created by the application. The set of POAs is hierarchical; all
POAs have the rootPOA as an ancestor.

Servant managers locate and assign servants to objects for the POA. When
an abstract object is assigned to a servant, it is called an active object and
the servant is said to incarnate the active object. Every POA has one Active
Object Map which keeps track of the object IDs of active objects and their
associated active servants.

Figure 10 Overview of the POA

62 VisiBroker-RT for C++ Developer’s Guide

POA terminology
The following are definitions of some terms with which you will become more
familiar as you read through this chapter.

Table 4 Portable Object Adapter terminology

Steps for creating and using POAs
Although the exact process can vary, the following are the basic steps that
occur during the POA lifecycle:

• Define the POA’s policies.

• Create the POA.

• Activate the POA through its POA manager.

• Create and activate servants.

• Create and use servant managers.

• Use adapter activators.

Depending on your needs, some of these steps may be optional. For
example, you only have to activate the POA if you want it to process
requests.

Term Description
Active Object Map Table that maps active CORBA objects (through their

object IDs) to servants.

There is one Active Object Map per POA.
adapter activator Object that can create a POA on demand when a request

is received for a child POA that does not exist.
etherealize Remove the association between a servant and an

abstract CORBA object. incarnateAssociate a servant with
an abstract CORBA object.

ObjectID Way to identify a CORBA object within the object
adapter. An ObjectID can be assigned by the object
adapter or the application and is unique only within the
object adapter in which it was created. Servants are
associated with abstract objects through ObjectIDs.

persistent object CORBA objects that live beyond the ORB instance was
used to create them.

POA manager Object that controls the state of the POA; for example,
whether the POA is receiving or discarding incoming
requests.

Policy Object that controls the behavior of the associated POA
and the objects the POA manages.

rootPOA Each ORB is created with one POA called the rootPOA. You
can create additional POAs (if necessary) from the
rootPOA.

servant Any code that implements the methods of a CORBA
object, but is not the CORBA object itself.

servant manager An object responsible for managing the association
of objects with servants, and for determining
whether an object exists. More than one servant
manager can exist.

transient object A CORBA object that lives only within the ORB
instance that created it.

VisiBroker-RT for C++ Developer’s Guide 63

POA policies
Each POA has a set of policies that define its characteristics. When creating
a new POA, you can use the default set of policies or use different values to
suit your requirements. You can only set the policies when creating a POA;
you can not change the policies of an existing POA. POAs do not inherit the
policies from their parent POA.

The following sections lists the POA policies, their values, and the default
value (used by the rootPOA).

Minimum CORBA and POA Policies
VisiBroker delivers both a “full” and “minimum” version of the ORB libraries.
In VisiBroker-RT for C++ for Tornado the “minimum” version supports the
full set of POA policy values.

For details, see the minimum CORBA specification document, OMG
document number orbos/98-08-04. This document is available for download
using the URL ftp://ftp.omg.org/pub/docs/orbos/98-08-04.pdf.

Thread policy
The thread policy specifies the threading model to be used by the POA. The
thread policy can have the following values:

Default Values

• Root POA default: ORB_CTRL_MODEL

• Child POA default: ORB_CTRL_MODEL

Lifespan policy
The lifespan policy specifies the lifespan of the objects implemented in the
POA. The lifespan policy can have the following values:

ORB_CTRL_MODEL The POA is responsible for assigning requests to
threads.

In a multi-threaded environment, concurrent
requests may be delivered to the same servant via
using multiple threads.

SINGLE_THREAD_MODEL The POA processes requests sequentially. In a
multi-threaded environment, all calls made by the
POA to servants and servant managers are thread-
safe.

This policy value is NOT SUPPORTED in VisiBroker-
RT which always supports the multithreaded
behavio

TRANSIENT A transient object activated by a POA cannot
outlive the POA that created it. Once the POA
is deactivated, an OBJECT_NOT_EXIST
exception occurs if an attempt is made to use
any object references generated by the POA.

PERSISTENT A persistent object activated by a POA can
outlive the ORB instance under which it was
first created. Requests invoked on a
persistent object may result in the implicit
activation of a POA and the servant that
implements the object.

64 VisiBroker-RT for C++ Developer’s Guide

Default Values

• Root POA default: TRANSIENT

• Child POA default: TRANSIENT

Object ID Uniqueness policy
The Object ID Uniqueness policy allows a single servant to be shared by
many Object ID’s (and hence object references). The Object ID Uniqueness
policy can have the following values:

Default Values

• Root POA default: UNIQUE_ID

• Child POA default: UNIQUE_ID

ID Assignment policy
The ID assignment policy specifies whether object IDs are generated by
server applications or by the POA. The ID Assignment policy can have the
following values:

Typically, USER_ID is used for persistent objects, and SYSTEM_ID is used
for transient objects. If you want to use SYSTEM_ID value for persistent
objects, you can extract them from the servant or object reference.

Default Values

• Root POA default: SYSTEM_ID

• Child POA default: SYSTEM_ID

Servant Retention policy
The Servant Retention policy specifies whether the POA retains active
servants in the Active Object Map. The Servant Retention policy can have
the following values:

UNIQUE_ID Activated servants support only one Object
ID.

MULTIPLE_ID Activated servants can have one or more
Object IDs. The Object ID must be
determined within the method being invoked
at run time.

USER_ID Objects are assigned object IDs by the
application.

SYSTEM_ID Objects are assigned object IDs by the POA.
If the PERSISTENT policy is also set, object
IDs must be unique across all instantiations
of the same POA.

RETAIN The POA tracks object activations in the
Active Object Map. RETAIN is usually used
with ServantActivators or explicit activation
methods on POA.

NON_RETAIN The POA does not retain active servants in
the Active Object Map.

VisiBroker-RT for C++ Developer’s Guide 65

ServantActivators and ServantLocators are types of servant managers. For
more information on servant managers, see “Using servants and servant
managers”.

Default Values

• Root POA default: RETAIN

• Child POA default: RETAIN

Request Processing policy
The Request Processing policy specifies how requests are processed by the
POA. USE_ACTIVE_OBJECT_MAP_ONLY If the Object ID is not listed in the
Active Object Map, an OBJECT_NOT _EXIST exception is returned. The POA
must also use the RETAIN policy with this value.

Default Values

• Root POA default: USE_ACTIVE_OBJECT_MAP_ONLY

• Child POA default: USE_ACTIVE_OBJECT_MAP_ONLY

Implicit Activation policy
The Implicit Activation policy specifies whether the POA supports implicit
activation of servants. The Implicit Activation policy can have the following
values:

Default Values

• Root POA default: IMPLICIT_ACTIVATION

• Child POA default: NO_IMPLICIT_ACTIVATION

USE_DEFAULT_SERVANT If the Object ID is not listed in the Active
Object Map or the NON_RETAIN policy is set,
the request is dispatched to the default
servant. If no default servant has been
registered, an OBJ_ADAPTER exception is
returned. The POA must also use the
MULTIPLE_ID policy with this value.

USE_SERVANT_MANAGER If the Object ID is not listed in the Active
Object Map or the NON_RETAIN policy is set,
the servant manager is used to obtain a
servant.

IMPLICIT_ACTIVATION The POA supports implicit activation of
servants.

Servants can be activated by converting
them to an object reference with
POA::servant_to_reference() or by
invoking _this() on the servant. The POA
must also use the SYSTEM_ID and RETAIN
policies with this value.

NO_IMPLICIT_ACTIVATION The POA does not support implicit activation
of servants.

66 VisiBroker-RT for C++ Developer’s Guide

Bind Support policy
The Bind Support policy (a VisiBroker-RT for C++-specific policy) controls
the registration of POAs and active objects with the VisiBroker-RT for C++
osagent. If you have several thousands of objects, it is not feasible to
register all of them with the osagent. Instead, you can register the POA with
the osagent. When a client request is made, the POA name and the object
ID is included in the bind request so that the osagent can correctly forward
the request.

The BindSupport policy can have the following values:

Default Values

• Root POA default: BY_POA

• Child POA default: BY_POA

Server Engine policy
The Server Engine policy (a VisiBroker-RT for C++-specific policy) controls
the association of POAs with Server Engines.

The value of a Server Engine policy is a CORBA::StringSequence specifying
a list of Server Engines that a particular POA is to be associated with. For
details on using a Server Engine policy, see “Associating a POA with Server
Engines”.

Creating POAs
To implement objects using the POA, at least one POA object must exist on
the server. To ensure that a POA exists, a rootPOA is provided during the
ORB initialization. This POA uses the default POA policies described earlier in
this chapter.

Once the rootPOA is obtained, you can create child POAs that implement a
specific server-side policy set.

POA naming convention
Each POA keeps track of its name and its full POA name (the full hierarchical
path name.) The hierarchy is indicated by a slash (/). For example, /A/B/C
means that POA C is a child of POA B, which in turn is a child of POA A. The
first slash (see the above example) indicates the rootPOA. If the Bind
Support:BY_POA policy is set on POA C, then /A/B/C is registered with the
osagent and the client binds with /A/B/C.

BY_INSTANCE All active objects are registered with the
osagent. The POA must also use the
PERSISTENT and RETAIN policy with this
value.

BY_POA Only POAs are registered with the osagent.
The POA must also use the PERSISTENT
policy with this value.

NO_REGISTRATION Neither POAs nor active objects are
registered with the osagent.

VisiBroker-RT for C++ Developer’s Guide 67

If your POA name contains escape characters or other delimiters, VisiBroker
precedes these characters with a double backslash (\\) when recording the
names internally. For example, if you have two POAs in a hierarchy like

PortableServer::POA_var myPOA1 = rootPOA->create_POA("A/B",
poa_manager,policies);
PortableServer::POA_var myPOA2 = myPOA1->create_POA("\t",
poa_manager,policies);

a client would bind using:
Bank::AccountManager_var manager = Bank::AccountManager::_bind("/
A\\/B/\t", managerId);

Obtaining the rootPOA
The following code sample illustrates how a server application can obtain its
rootPOA.

Code example 26 Obtaining the rootPOA
// Initialize the ORB.
CORBA::Object_var obj =

orb->resolve_initial_references(“RootPOA”);
// get a reference to the root POA PortableServer::POA_var
rootPOA = PortableServer::POA::_narrow(obj);

Note

The resolve_initial_references method returns a value of type
CORBA::object. You are responsible for narrowing the returned object
reference to the desired type, which is PortableServer::POA in the
previous example.

Setting the POA properties
Policies are not inherited from the parent POA. If you want a POA to have a
specific characteristic, you must identify all the policies that are different
from the default value. For more information about POA policies, see “POA
policies”.

Code example 27 Example of creating policies for a POA
CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);

Creating and activating the POA
A POA is created using create_POA on its parent POA. You can name the
POA anything you like; however, the name must be unique with respect to
all other POAs with the same parent. If you attempt to give two POAs the
same name, a CORBA exception (AdapterAlreadyExists) is raised.

To create a new POA, use create_POA as follows:
PortableServer::POA_ptr create_POA(POA_Name, POAManager,
PolicyList);

The POA manager controls the state of the POA (for example, whether it is
processing requests). If null is passed to create_POA as the POA manager
name, a new POA manager object is created and associated with the POA.
Typically, you’ll want to have the same POA manager for all POAs. For more
information about the POA manager, see “Managing POAs with the POA
manager”.

68 VisiBroker-RT for C++ Developer’s Guide

POA managers (and POAs) are not automatically activated once created.
Use activate() to activate the POA manager associated with your POA.

Code example 28 Example of creating a POA
CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);

// Create myPOA with the right policies
VISIFNOT_EXCEP

PortableServer::POAManager_var rootManager =
rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
PortableServer::POA_var myPOA =rootPOA->create_POA

("bank_agent_poa", rootManager, policies);
VISEND_IFNOT_EXCEP

Activating objects
When CORBA objects are associated with an active servant, that CORBA
Object is considered Activated. If that POA’s Servant Retention Policy is
RETAIN, then the associated object ID of that CORBA Object is recorded in
the POA’s Active Object Map.

CORBA Object Activation can occur in one of several ways:

• Explicit activation

The server application itself explicitly activates objects by calling
activate_object or activate_object_with_id.

• On-demand activation

The server application instructs the POA to activate objects through a
user-supplied servant manager. The servant manager must first be
registered with the POA through set_servant_manager.

• Implicit activation

The server activates objects solely in response to certain operations. If a
servant is not active, there is nothing a client can do to make it active
(for example, requesting for an inactive object does not make it active.)

• Default servant

The POA uses a single servant to implement all of its objects.

Activating objects explicitly
By setting IdAssignmentPolicy::SYSTEM_ID on a POA, objects can be
explicitly activated without having to specify an object ID. The server
invokes activate_object on the POA which activates, assigns and returns
an object ID for the object. This type of activation is most common for
transient objects. No servant manager is required since neither the object
nor the servant is needed for very long.

Objects can also be explicitly activated using object IDs. A common scenario
is during server initialization where the user invokes
activate_object_with_id to activate all the objects managed by the
server. No servant manager is required since all the objects are already
activated. If a request for a non-existent object is received, an
OBJECT_NOT_EXIST exception is raised. This has obvious negative effects if
your server manages large numbers of objects.

VisiBroker-RT for C++ Developer’s Guide 69

Code example 29 Example of explicit activation using activate_object_with_id
// Create the servant
AccountManagerImpl managerServant;
// Decide on the ID for the servant
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");
// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(managerId,&managerServant);
VISEND_IFNOT_EXCEP
// Activate the POA Manager
VISIFNOT_EXCEP

PortableServer::POAManager_var rootManager =
rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

rootManger->activate();

Activating objects on demand
On-demand activation occurs when a client requests an object that does not
have an associated servant. After receiving the request, the POA searches
the Active Object Map for an active servant associated with the object ID. If
none is found, the POA invokes incarnate on the servant manager which
passes the object ID value to the servant manager. The servant manager
can do one of three things:

• Find an appropriate servant which then performs the appropriate
operation for the request

• Raise an OBJECT_NOT_EXIST exception that is returned to the client

• Forward the request to another object

The POA policies determine any additional steps that may occur. For
example, if RequestProcessingPolicy::USE_SERVANT_MANAGER and
ServantRetentionPolicy::RETAIN are enabled, the Active Object Map is
updated with the servant and object ID association.

An example of on-demand activation is shown in Code example 32.

Activating objects implicitly
A servant can be implicitly activated by certain operations if the POA has
been created with ImplicitActivationPolicy::IMPLICIT_ACTIVATION,
IdAssignmentPolicy::SYSTEM_ID and
ServantRetentionPolicy::RETAIN. Implicit activation can occur with:

• the POA::servant_to_reference member function
• the POA::servant_to_id member function
• the _this() servant member function

If the POA has ObjectIdUniquenessPolicy::UNIQUE_ID set, implicit
activation can occur when any of the above operations are performed on an
inactive servant.

If the POA has ObjectIdUniquenessPolicy::MULTIPLE_ID set,
servant_to_reference and servant_to_id operations always perform
implicit activation, even if the servant is already active.

70 VisiBroker-RT for C++ Developer’s Guide

Activating with the default servant
Use the RequestProcessing::USE_DEFAULT_SERVANT policy to have the
POA invoke the same servant no matter what the object ID is. This is useful
when little data is associated with each object.

Code example 30 Example of activating all objects with the same servant
void bank_server()
{

PortableServer::POA_var rootPOA;
PortableServer::Current_var cur;

VISTRY {
cur = PortableServer::Current::_instance();

CORBA::Object_var obj;
// get a reference to the root POA
VISIFNOT_EXCEP

obj = orb->resolve_initial_references("RootPOA");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

// Create policies for our persistent POA
CORBA::PolicyList policies;
policies.length(3);
VISIFNOT_EXCEP

policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(

PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)1] =

rootPOA->create_request_processing_policy(

PortableServer::USE_DEFAULT_SERVANT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)2] =

rootPOA->create_id_uniqueness_policy(

PortableServer::MULTIPLE_ID);
VISEND_IFNOT_EXCEP

PortableServer::POAManager_var poa_manager;
VISIFNOT_EXCEP

poa_manager = rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
myPOA = rootPOA->create_POA("bank_default_servant_poa",

poa_manager, policies);
VISEND_IFNOT_EXCEP

// Set the default servant
AccountManagerImpl *managerServant;
VISIFNOT_EXCEP

managerServant = new AccountManagerImpl(cur);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
myPOA->set_servant(managerServant);

VISEND_IFNOT_EXCEP

VisiBroker-RT for C++ Developer’s Guide 71

// Call _remove_ref since POA will invoke _add_ref on the
default servant

managerServant->_remove_ref();

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << "Bank Manager is ready" << endl;

VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
return;

}
VISEND_CATCH

return;
}

Deactivating objects
A POA can remove a servant from its Active Object Map. This may occur, for
example, as some form of garbage-collection scheme. When the servant is
removed from the map, it is deactivated. You can deactivate an object using
deactivate_object(). When an object is deactivated, it doesn’t mean this
object is lost forever. It can always be reactivated at a later time.

Code example 31 Example of deactivating an object
// DeActivatorThread
class DeActivatorThread: public VISThread {
private :

PortableServer::ObjectId _oid;
PortableServer::POA_ptr_poa;

public :
virtual ~DeActivatorThread(){}
// Constructor
DeActivatorThread(const PortableServer::ObjectId& oid,

PortableServer::POA_ptr poa): _oid(oid), _poa(poa) {
// start the thread
run();

}

// implement begin() callback
void begin() {

// Sleep for 15 seconds
VISPortable::vsleep(15);

CORBA::String_var s = PortableServer::ObjectId_to_string
(_oid);

// Deactivate Object
cout << "\nDeActivating the object with ID =" << s << endl;
if (_poa)

_poa->deactivate_object(_oid);
}

};

Using servants and servant managers
Servant managers perform two types of operations:

1 find and return a servant, and

72 VisiBroker-RT for C++ Developer’s Guide

2 deactivate a servant.

They allow the POA to activate objects when a request for an inactive object
is received. Servant managers are optional. For example, servant managers
are not needed when your application creates all CORBA objects at startup.
Servant managers may also inform clients to forward requests to another
object using ForwardRequest.

A servant is an active instance of an implementation. The POA maintains a
map of the active servants and the object IDs of the servants. When a client
request is received, the POA first checks this map to see if the object ID
(embedded in the client request) has been recorded. If it exists, then the
POA forwards the request to the servant. If the object ID is not found in the
map, the servant manager is asked to locate and activate the appropriate
servant. This is only an example scenario; the exact scenario depends on
what POA policies you have in place.

Figure 11 Example service manager function

There are two types of servant managers: ServantActivator and
ServantLocator. The type of policy already in place determines which
servant manager is used. For more information on POA policy, see “POA
policies”. Typically, a ServantActivator activates persistent objects and a
ServantLocator activates transient objects.

To use servant managers,
RequestProcessingPolicy::USE_SERVANT_MANAGER must be set as well as
the policy which defines the type of servant manager
(ServantRetentionPolicy::RETAIN for ServantActivator or
ServantRetentionPolicy::NON_RETAIN for ServantLocator.)

ServantActivators
ServantActivators are used when ServantRetentionPolicy::RETAIN and
RequestProcessingPolicy::USE_SERVANT_MANAGER are set. Servants
activated by this type of servant manager are tracked in the Active Object
Map.

VisiBroker-RT for C++ Developer’s Guide 73

The following events occur while processing requests using servant
activators:

1 A client request is received (client request contains the POA name, the
object ID.)

2 The POA first checks the active object map. If the object ID is found there,
the operation is passed to the servant, and the response is returned to
the client.

3 If the object ID is not found in the active object map, the POA invokes
incarnate on a servant manager. incarnate passes the object ID and
the POA in which the object is being activated.

4 The servant manager locates the appropriate servant.

5 The object ID is entered into the active object map, and the response is
returned to the client.

Note

The etheralize and incarnate method implementations are user-supplied
code.

At a later date, the servant can be deactivated. This may occur from several
sources, including the deactivate_object operation, deactivation of the
POA manager associated with that POA, and so forth. More information on
deactivating objects is described in “Deactivating objects”.

Code example 32 Example server code illustrating servant activator-type servant
manager

void bank_server()
{

VISTRY {
// get a reference to the root POA
CORBA::Object_var obj;
VISIFNOT_EXCEP

obj = orb->resolve_initial_references("RootPOA");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(2);
VISIFNOT_EXCEP
policies

[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(

PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)1] =

rootPOA->create_request_processing_policy(

PortableServer::USE_SERVANT_MANAGER);
VISEND_IFNOT_EXCEP

PortableServer::POAManager_var poa_manager;
VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager(); VISEND_IFNOT_EXCEP

PortableServer::POA_var myPOA; VISIFNOT_EXCEP
// Create myPOA with the right policies
myPOA = rootPOA->create_POA("bank_servant_activator_poa",
poa_manager, policies);
VISEND_IFNOT_EXCEP

74 VisiBroker-RT for C++ Developer’s Guide

// Create a Servant activator AccountManagerActivator
*servant_activator_impl;
VISIFNOT_EXCEP
servant_activator_impl = new AccountManagerActivator;
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Set the servant activator
myPOA->set_servant_manager(servant_activator_impl);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Activate the POA Manager poa_manager->activate();
VISEND_IFNOT_EXCEP

// Waiting for incoming requests
cout << " BankManager is ready" << endl;
}
VISCATCH(CORBA::Exception, e) { cerr << e << endl;
return;
} VISEND_CATCH

return;
}

The servant manager for this example follows.

Code example 33 Servant manager for servant activator example
// Servant Activator
class AccountManagerActivator : public
PortableServer::ServantActivator {

public:
virtual PortableServer::Servant incarnate (const

PortableServer::ObjectId& oid,
PortableServer::POA_ptr poa) {

CORBA::String_var s = PortableServer::ObjectId_to_string
(oid);

cout << "\nAccountManagerActivator.incarnate called with ID
= " << s << endl;

PortableServer::Servant servant;

if (VISPortable::vstricmp((char *)s,
"SavingsAccountManager") == 0)

// Create CheckingAccountManager Servant
servant = new SavingsAccountManagerImpl;

else if (VISPortable::vstricmp((char *)s,
"CheckingAccountManager") == 0)

// Create CheckingAccountManager Servant
servant = new CheckingAccountManagerImpl;

else
VISTHROW(CORBA::OBJECT_NOT_EXIST());

// Create a deactivator thread new DeActivatorThread(oid, poa
);

// return the servant
servant->_add_ref();
return servant;

}
virtual void etherealize (const PortableServer::ObjectId& oid,

PortableServer::POA_ptr adapter,
PortableServer::Servant servant,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations) {
// If there are no remaining activations i.e ObjectIds
// associated with the servant delete it.
CORBA::String_var s = PortableServer::ObjectId_to_string

(oid);
cout << "\nAccountManagerActivator.etherealize called with ID

= " << s << endl;
if (!remaining_activations) delete servant;
}

};

VisiBroker-RT for C++ Developer’s Guide 75

ServantLocators
In many situations, the POA’s Active Object Map could become quite large
and consume memory. To reduce memory consumption, a POA can be
created with RequestProcessingPolicy::USE_SERVANT_MANAGER and
ServantRetentionPolicy::NON_RETAIN, meaning that the servant-to-
object association is not stored in the active object map. Since no
association is stored, ServantLocator servant managers are invoked for
each request.

The following events occur while processing requests using servant
locators:

1 A client request, which contains the POA name and the object id, is
received.

2 Since ServantRetentionPolicy::NON_RETAIN is used, the POA does not
search the active object map for the object ID.

3 The POA invokes preinvoke on a servant manager. preinvoke passes the
object ID, the POA in which the object is being activated, and a few other
parameters.

4 The servant locator locates the appropriate servant.

5 The operation is performed on the servant and the response is returned
to the client.

6 The POA invokes postinvoke on the servant manager.

Note

The preinvoke and postinvoke methods are user-supplied code.

Code example 34 Example server code illustrating servant locator-type servant
managers

void bank_server()
{

VISTRY {
//get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

// Create a child POA with Persistence life span policy that
// uses servant manager with non-retain retention policy(no
// Active Object Map) causing the POA to use the servant locator.

CORBA::PolicyList policies;
policies.length(3);

VISIFNOT_EXCEP
policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(

PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)1] =

rootPOA->create_servant_retention_policy(

PortableServer::NON_RETAIN);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)2] =

76 VisiBroker-RT for C++ Developer’s Guide

rootPOA->create_request_processing_policy(

PortableServer::USE_SERVANT_MANAGER);
VISEND_IFNOT_EXCEP

PortableServer::POAManager_var poa_manager;
VISIFNOT_EXCEP

poa_manager = rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

PortableServer::POA_var myPOA;
VISIFNOT_EXCEP

myPOA = rootPOA->create_POA("bank_servant_locator_poa",
poa_manager, policies);

VISEND_IFNOT_EXCEP

// Create the servant locator
AccountManagerLocator *servant_locator_impl;
VISIFNOT_EXCEP

servant_locator_impl = new AccountManagerLocator;
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
myPOA->set_servant_manager(servant_locator_impl);

VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

// Ready for incoming requests
VISIFNOT_EXCEP

cout << "Bank Manager is ready" << endl;
VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)

{ cerr << e << endl;
return;

}
VISEND_CATCH

return;
}

The servant manager for this example follows.

Code example 35 Servant manager for servant locator example
// Servant Locator
class AccountManagerLocator : public

PortableServer::ServantLocator
{

public:
AccountManagerLocator (){}

// preinvoke is very similar to ServantActivator’s incarnate
// method but gets alled every time a request comes in unlike
// incarnate() which gets called every time the POA does not find
// a servant in the active object map

virtual PortableServer::Servant preinvoke (const
PortableServer::ObjectId& oid,

PortableServer::POA_ptr adapter,
const char* operation,
PortableServer::ServantLocator::Cookie& the_cookie) {

CORBA::String_var s = PortableServer::ObjectId_to_string
(oid);

cout << "\nAccountManagerLocator.preinvoke called with ID =
" << s << endl;

PortableServer::Servant servant;

if (VISPortable::vstricmp((char *)s, "SavingsAccountManager"
) == 0)

VisiBroker-RT for C++ Developer’s Guide 77

// Create CheckingAccountManager Servant
servant = new SavingsAccountManagerImpl;

else if (VISPortable::vstricmp((char *)s,
"CheckingAccountManager") == 0)

// Create CheckingAccountManager Servant
servant = new CheckingAccountManagerImpl;

else
VISTHROW(CORBA::OBJECT_NOT_EXIST());

// Note also that we do not spawn of a thread to explicitly
// deactivate an object unlike a servant activator, this is
// because the POA itself calls post invoke after the request is
// complete. In the case of a servant activator the POA calls
// etherealize() only if the object is deactivated by calling
// poa->de_activateobject or the POA itself is destroyed.

// return the servant
servant->_add_ref();
return servant;

}

virtual void postinvoke (const PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter,
const char* operation,
PortableServer::ServantLocator::Cookie the_cookie,
PortableServer::Servant the_servant) {

CORBA::String_var s = PortableServer::ObjectId_to_string
(oid);

cout << "\nAccountManagerLocator.postinvoke called with ID = "
<< s << endl;

the_servant->_remove_ref;
}

};

Managing POAs with the POA manager
A POA manager controls the state of the POA (whether requests are queued
or discarded), and can deactivate the POA. Each POA is associated with a
POA manager object. A POA manager can control one or many POAs.

A POA manager is associated with a POA when the POA is created. You can
specify the POA manager to use, or specify null to have a new POA
Manager created.

Code example 36 Naming the POA and its POA Manager
PortableServer::POAManager_var rootManager =
rootPOA->the_POAManager();

VISIFNOT_EXCEP
PortableServer::POA_var myPOA =

rootPOA->create_POA("bank_servant_locator_poa", rootManager,
policies);
VISEND_IFNOT_EXCEP

A POA manager is “destroyed” when all its associated POAs are destroyed.

A POA manager can have four states. These states in turn determine the
state of the POA.

• Holding
• Active
• Discarding
• Inactive

78 VisiBroker-RT for C++ Developer’s Guide

Getting the current state
To get the current state of the POA manager, use:

PortableServer::POAManager::State get_state();

The valid state values are:
enum State{HOLDING, ACTIVE, DISCARDING, INACTIVE};

Holding state
By default, when a POA manager is created, it is in the holding state. When
the POA manager is in the holding state, the POA queues all incoming
requests.

Requests that require an adapter activator are also queued when the POA
manager is in the holding state.

To change the state of a POA manager to holding, use void
hold_requests(wait_for_completion) raises (AdapterInactive);

wait_for_completion is Boolean. If FALSE, this operation returns
immediately after changing the state to holding. If TRUE, this operation
returns only when all requests started prior to the state change have
completed or when the POA manager is changed to a state other than
holding. AdapterInactive is the exception raised if the POA manager was
in the inactive state prior to calling this operation.

Note

POA managers in the inactive state cannot change to the holding state.

Any requests that have been queued but not yet started will continue to be
queued during the holding state.

Active state
When the POA manager is in the active state, its associated POAs process
requests.

To change the POA manager to the active state, use:
void activate()

raises (AdapterInactive);

AdapterInactive is the exception raised if the POA manager was in the
inactive state prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the active
state.

Discarding state
When the POA manager is in the discarding state, its associated POAs discard
all requests that have not yet started. In addition, the adapter activators
registered with the associated POAs are not called. This state is useful when
the POA is receiving too many requests. You need to notify the client that
their request has been discarded and to resend their request. There is no
inherent behavior for determining if and when the POA is receiving too
many requests.

To change the POA manager to the discarding state, use:

VisiBroker-RT for C++ Developer’s Guide 79

void discard_requests(wait_for_completion)
raises (AdapterInactive);

The wait_for_completion option is Boolean. If FALSE, this operation
returns immediately after changing the state to discarding. If TRUE, this
operation returns only when all requests started prior to the state change
have completed or when the POA manager is changed to a state other than
discarding. AdapterInactive is the exception raised if the POA manager
was in the inactive state prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the
discarding state.

Inactive state
When the POA manager is in the inactive state, its associated POAs reject
incoming requests. This state is used when the associated POAs are to be
shut down.

Note

POA managers in the inactive state can not change to any other state.

To change the POA manager to the inactive state, use
void deactivate(etherealize_objects, wait_for_completion)

raises (AdapterInactive);

After the state changes, if etherealize_objects is TRUE, then all
associated POAs that have Servant RetentionPolicy::RETAIN and
RequestProcessingPolicy::USE_SERVANT_MANAGER set call etherealize
on the servant manager for all active objects. If etherealize_objects is
FALSE, then etherealize is not called.

The wait_for_completion option is Boolean. If FALSE, this operation
returns immediately after changing the state to inactive. If TRUE, this
operation returns only when all requests started prior to the state change
have completed or etherealize has been called on all associated POAs (that
have Servant RetentionPolicy::RETAIN and
RequestProcessingPolicy::USE_SERVANT_MANAGER).

AdapterInactive is the exception raised if the POA manager was in the
inactive state prior to calling this operation.

Adapter activators
Adapter activators are associated with POAs and provide the ability to
create child POAs

on-demand. This can be done during the find_POA operation, or when a
request is received that names a specific child POA.

An adapter activator supplies a POA with the ability to create child POAs on
demand, as a side-effect of receiving a request that names the child POA
(or one of its children), or when find_POA is called with an activate
parameter value of TRUE. An application server that creates all its needed
POAs at the beginning of execution does not need to use or provide an
adapter activator; it is necessary only for the case in which POAs need to be
created during request processing.

While a request from the POA to an adapter activator is in progress, all
requests to objects managed by the new POA (or any descendant POAs) will

80 VisiBroker-RT for C++ Developer’s Guide

be queued. This serialization allows the adapter activator to complete any
initialization of the new POA before requests are delivered to that POA.

For an example on using adapter activators, see the POA
adaptor_activator example located in <install_location>/
VisiBrokerRT60/examples/poa/ adaptor_activator.

Processing requests
Requests contain the Object ID of the target object and the POA that
created the target object reference. When a client sends a request, the ORB
first locates the appropriate server, it then locates the appropriate POA
within that server.

Once the ORB has located the appropriate POA, it delivers the request to
that POA. How the request is processed at that point depends on the
policies of the POA and the object’s activation state. For information about
object activation states, see “Activating objects”.

• If the POA has ServantRetentionPolicy::RETAIN, the POA looks at the
Active Object Map to locate a servant associated with the Object ID from
the request. If a servant exists, the POA invokes the appropriate method
on the servant.

• If the POA has ServantRetentionPolicy::NON_RETAIN or has
ServantRetentionPolicy::RETAIN but did not find the appropriate
servant, the following may take place:

• If the POA has RequestProcessingPolicy::USE_DEFAULT_SERVANT,
the POA invokes the appropriate method on the default servant.

• If the POA has RequestProcessingPolicy::USE_SERVANT_MANAGER,
the POA invokes incarnate or preinvoke on the servant manager.

• If the POA has RequestProcessingPolicy::USE_OBJECT_MAP_ONLY, an
exception is raised.

If a servant manager has been invoked but can not incarnate the object, the
servant manager can raise a ForwardRequest exception.

VisiBroker-RT for C++ Developer’s Guide 81

Using the Tie Mechanism
This chapter describes how the tie mechanism may be used to integrate
existing C++ code into a distributed object system. This chapter will enable
you to create a delegation implementation or to provide implementation
inheritance.

How does the tie mechanism work?
Object implementation classes normally inherit from a servant class
generated by the idl2cpp compiler. The servant class, in turn, inherits
from PortableServer::Servant. When it is not convenient or possible to
change existing classes to inherit from the VisiBroker-RT for C++ servant
skeleton class, the tie mechanism offers an appropriate alternative.

The tie mechanism provides object servers with a delegator implementation
class that inherits from PortableServer::Servant. The delegator
implementation does not provide any semantics of its own. It simply
delegates every request it receives to the real implementation class, which
can be implemented separately. The real implementation class is not
required to inherit from PortableServer::Servant.

With using the tie mechanism, two additional generated classes are
required:

• <InterfaceName>POATie defers implementation of all IDL defined
methods to a delegate. The delegate implements the interface
<InterfaceName>Operations. Legacy implementations can be trivially
extended to implement the operations interface and in turn delegate to
the real implementation.

• <InterfaceName>Operations defines all of the methods that must be
implemented by the object implementation. This interface acts as the
delegate object for the associated <InterfaceName>POATie class when
the tie mechanism is used.

Example program

Location of an example program using the tie
mechanism
A version of the Bank example using the tie mechanism can be found in the
VisiBroker for C++ distribution under <install_location>/
VisiBrokerRT60/examples/basic/ bank_tie.

Looking at the tie template
The idl2cpp compiler will automatically generate a _tie_Account template
class, as shown in Code example 37. The POA_Bank_Account_tie class is
instantiated by the object server and initialized with an instance of
AccountImpl. The POA_Bank_Account_tie class delegates every operation
request it receives to AccountImpl, the real implementation class. In this
example, the class AccountImpl does not inherit from the
POA_Bank::Account class.

82 VisiBroker-RT for C++ Developer’s Guide

Code example 37 Looking at the POA_Bank_Account_tie template
...
template <class T> class POA_Bank_Account_tie : public
POA_Bank::Account {

private:
CORBA::Boolean _rel;
PortableServer::POA_ptr _poa;
T *_ptr;
POA_Bank_Account_tie(const POA_Bank_Account_tie&) {}
void operator=(const POA_Bank_Account_tie&) {}

public:
POA_Bank_Account_tie (T& t): _ptr(&t), _poa(NULL),

_rel((CORBA::Boolean)0) {}

POA_Bank_Account_tie (T& t, PortableServer::POA_ptr poa):
_ptr(&t),
_poa(PortableServer::_duplicate(poa)),
_rel((CORBA::Boolean)0) {}

POA_Bank_Account_tie (T *p, CORBA::Boolean release= 1) :
_ptr(p),
_poa(NULL), _rel(release) {}

POA_Bank_Account_tie (T *p, PortableServer::POA_ptr poa,
CORBA::Boolean release =1):

_ptr(p), _poa(PortableServer::_duplicate(poa)),
_rel(release) {}

virtual ~POA_Bank_Account_tie() {
CORBA::release(_poa);
if (_rel) {

delete _ptr;
}

}
T* _tied_object() { return _ptr; }

void _tied_object(T& t) {
if (_rel) {

delete _ptr;
}

_ptr = &t;
_rel = 0;

}

void _tied_object(T *p,

CORBA::Boolean release=1) { if (_rel) {
delete _ptr;
}
_ptr = p;
_rel = release;
}

CORBA::Boolean _is_owner() { return _rel; }

void _is_owner(CORBA::Boolean b) { _rel = b; }

CORBA::Float balance() {
return _ptr->balance();

}

PortableServer::POA_ptr _default_POA() {
if (!CORBA::is_nil(_poa)) {

return _poa;
} else {

return PortableServer_ServantBase::_default_POA();
}

}
};

VisiBroker-RT for C++ Developer’s Guide 83

Changing the server to use the _tie_account class
Code example 38 shows the modifications to the Server.C file required to use
the _tie_account class.

Code example 38 Example of a server using the _tie class
//bank_tie_server

#include <vxWorks.h>
#include "corba.h"
#include "bankImpl.h"
/*---*/
/* Forward Declarations. */
/*---*/
extern "C" void start_bank_server(void);
static void bank_server(void);

extern CORBA::ORB_var orb;

// Static initialization
AccountRegistry AccountManagerImpl::_accounts;

void start_bank_server(void)
{

char * taskName = "BANK_SRVR"; intPrio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_server,
0,0,0,0,0,0,0,0,0,0);

}

void bank_server()
{

PortableServer::POA_var rootPOA;

VISTRY {

//get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(1);

policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(
PortableServer::PERSISTENT);

// get the POA Manager
PortableServer::POAManager_varpoa_manager;

VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
myPOA = rootPOA->create_POA("bank_account_poa", poa_manager,

policies);
VISEND_IFNOT_EXCEP

// Create the servant

84 VisiBroker-RT for C++ Developer’s Guide

AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the delegator
POA_Bank_AccountManager_tie<AccountManagerImpl> *tieServer;

VISIFNOT_EXCEP
tieServer = new

POA_Bank_AccountManager_tie<AccountManagerImpl>(*managerServant);
VISEND_IFNOT_EXCEP

// Create the object ID for the servant
PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
managerId =

PortableServer::string_to_ObjectId("BankManager");
VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id((CORBA_OctetSequence
&)managerId,tieServer);

VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

CORBA::Object_var reference;
VISIFNOT_EXCEP

reference = myPOA->servant_to_reference(tieServer);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << endl << "CORBA Object ==> " << endl << endl;
cout << reference << endl;
cout << " is ready" << endl << endl;

VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

Building the tie example
The instructions described in the chapter “Developing an Example Application
with VisiBroker-RT for C++” are also valid for building the tie example.

Part 3
Client Concepts

In this part
This part contains the following chapters:

Client basics page 87

VisiBroker-RT for C++ Developer’s Guide 87

Client basics
This chapter describes how client programs access and use distributed
objects.

Initializing the ORB
The Object Request Broker (ORB) provides a communication link between
the client and the server. When a client makes a request, the ORB locates
the object implementation, delivers the request to the object (and activates
the object if necessary), and returns the response to the client. The client is
unaware that the object may be on the same machine or across a network.

Though much of the work done by the ORB is transparent to you, your client
program must explicitly initialize the ORB. ORB options, described in the
VisiBroker-RT for C++ Reference Guide can be specified as command-line
arguments. Therefore, you must pass argc and argv to ORB_init to ensure
that these options take effect.

Code example 39 Initializing the ORB
...

/*--*/
/* function ==>do_corba */
/* This function will perform the neccessary */
/* initialization for the ORB (i.e. ORB_init,...) */
/*--*/

void do_corba(void)
{

int argc = 3;
char *argv[] ={"DO_CORBA","-ORBagentport", OSAGENT_PORT};

/*--*/
/* Call ORB_init */
/*--*/

VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(argc, argv);

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH

return;
}

Binding to objects
A client program uses a remote object by obtaining a reference to the
object. Object references are usually obtained using the <interface>
_bind() member function. The ORB hides most of the details involved with
obtaining the object reference, such as locating the server that implements
the object and establishing a connection to that server.

88 VisiBroker-RT for C++ Developer’s Guide

Action performed during the bind process
When the CORBA server application starts, it performs a
CORBA::ORB_init() and announces POA names and object ids to Smart
Agents on the network.

When your client program invokes the _bind() member function, the ORB
performs several functions on behalf of your program.

• The ORB contacts the Smart Agent to locate an object implementation
that offers the requested interface. If an object name was specified when
_bind() was invoked, that name will be used to further qualify the
directory service search.

• When an object implementation is located, the ORB attempts to establish
a connection between the object implementation that was located and
your client program.

• Once the connection is successfully established, the ORB will create a
proxy object and return a reference to that object. The client will invoke
methods on the proxy object which will, in turn, interact with the server
object.

Figure 12 Client interaction with the Smart Agent

Note

Your client program will never invoke a constructor for the server class.
Instead, an object reference is obtained by invoking the static _bind()
member function

There are two forms of the static _bind() member functions which are
generated by the IDL2CPP compiler.

1 One form of the _bind interface must be used if the CORBA object
implementation that the Client intends to bind to has been activated on a
POA whose BIND SUPPORT POLICY was BY_POA. This is refered to as the
“2 parameter _bind interface”.An example of the use of the 2 parameter
_bind interface is shown below.

VisiBroker-RT for C++ Developer’s Guide 89

Note that BY_POA is the default policy value for the BIND SUPPORT
POLICY:

Code example 40 Example of use of the 2 parameter _bind interface.
...
PortableServer::ObjectId_var manager_id =
PortableServer::string_to_ObjectId(“BankManager”);
Bank::AccountManager_var = Bank::AccountManager::_bind(“/
bank_agent_poa“, manager_id);
...

2 The second form of the _bind interface must be used if the CORBA
object implementation that the Client intends to bind to has been
activated on a POA whose BIND SUPPORT POLICY value was
BY_INSTANCE. This is referred to as the “one parameter _bind interface”.
An example of the use of the one parameter _bind interface is shown
below.

Note the one parameter _bind interface gives equivalent functionality as
in prior versions of VisiBroker-RT for C++ (e.g version 3.2.2)

Code example 41 Example of use of the 1 parameter _bind interface.
...
Bank::AccountManager_var =
Bank::AccountManager::_bind(“BankManager”);
...

For more information on the BIND SUPPORT POLICY please refer to “Bind
Support policy”.

Invoking operations on an object
Your client program uses an object reference to invoke an operation on an
object or to reference data contained by the object. “Manipulating object
references” describes the variety of ways that object references can be
manipulated.

Code example 42 Invoking an operation using an object reference
...
// Invoke the balance operation.

balance = account->balance();
cout << "Balance is $" << balance << endl;

...

Manipulating object references
The object reference returned to your client program by the _bind()
member function represents a CORBA object. Your client program can use
the object reference to invoke operations on the object that have been
defined in the object’s IDL interface specification. In addition, there are
member functions that all ORB objects inherit from the class
CORBA::Object that you can use to manipulate the object.

Checking for nil references
You can use the CORBA class method is _nil() shown below to determine if
an object reference is nil. This method returns 1 if the object reference
passed is nil. It returns 0 if the object reference is not nil.

90 VisiBroker-RT for C++ Developer’s Guide

Code example 43 Method for checking for a nil object reference
class CORBA {
...
static Boolean is _nil(CORBA::Object_ptr obj);
...
};

Obtaining a nil reference
You can obtain a nil object reference using the CORBA::Object class
_nil() member function. It returns a NULL value that is cast to an
Object_ptr.

Code example 44 Method for obtaining a nil reference
class Object {

...
static CORBA::Object_ptr _nil();
...

};

Duplicating an object reference
When your client program invokes the _duplicate member function, the
reference count for the object reference is incremented by one and the
same object reference is returned. Your client program can use the
_duplicate() member function to increase the reference count for an
object reference so that the reference can be stored in a data structure or
passed as a parameter. Increasing the reference count ensures that the
memory associated with the object reference will not be freed until the
reference count has reached zero.

The IDL compiler generates a _duplicate() member function for each
object interface you specify. The _duplicate() member function accepts
and returns a generic Object_ptr.

Code example 45 Method for duplicating an object reference
class Object {

...
static CORBA::Object_ptr _duplicate(CORBA::Object_ptr obj);
...

};

Note

The _duplicate() member function has no meaning for the POA or ORB
because these objects do not support reference counting.

Releasing an object reference
You should release an object reference when it is no longer needed. One
way of releasing an object reference is by invoking the CORBA::Object class
_release() member function.

Caution

Always use the _release() member function. Never invoke operator
delete on an object reference.

Code example 46 Releasing an object reference
class CORBA { class Object {

...

VisiBroker-RT for C++ Developer’s Guide 91

void _release();
...
};

};

You may also use the CORBA class release() member function, which is
provided for compatibility with the CORBA specification.

Code example 47 CORBA method for releasing an object reference
class CORBA {

...
static void release(Object_ptr);

...
};

Obtaining the reference count
Each object reference has a reference count that you can use to determine
how many times the reference has been duplicated. When you first obtain
an object reference by invoking _bind(), the reference count is set to
one. Releasing an object reference will decrement the reference count
by one. Once the reference count reaches 0, VisiBroker-RT for C++
automatically deletes the object reference. Code example 48 shows the
_ref_count() member function for retrieving the reference count.

Note

When a remote client duplicates or releases an object reference, the
server’s object reference count is not affected.

Code example 48 Method for obtaining the reference count
class Object {

...
CORBA::Long _ref_count() const;

...
};

Converting a reference to a string
VisiBroker-RT for C++ provides an ORB class member function that allows
you to convert an object reference to a string or convert a string back into
an object reference. The CORBA specification refers to this process as
stringification.

Table 5 Member functions for stringification and de-stringification

A client program can use the object_to_string member function to
convert an object reference to a string and pass it to another client
program. The second client may then de-stringify the object reference,
using the string_to_object member function and use the object reference
without having to explicitly bind to the object.

Note

The caller of object_to_string() is responsible for calling
CORBA::string_free()on the returned string.

Method Description
object_to_str ing Converts an object reference e to a string.
string_to_object Converts a string to an object reference.

92 VisiBroker-RT for C++ Developer’s Guide

Note

Transient object references (i.e. Object references created via a POA whose
lifespan policy is set to TRANSIENT) that are stringified are not guaranteed
to be valid beyond the life of the ORB instance that created the reference.

Obtaining object and interface names
Table 6 shows the member functions provided by the Object class that you
can use to obtain the interface and object names as well as the repository id
associated with an object reference. The interface repository is discussed in
“Using Interface Repositories”.

Note

If you did not specify an object name when you invoked the _bind()
member function, invoking the _object_name() member function with the
resulting object reference will return NULL.

Table 6 Member functions for obtaining interface and object names

Determining the type of an object reference
You can check whether an object reference is of a particular type by using
the _is_a() member function. You must first obtain the repository id of the
type you wish to check using the _repository_id() member function. This
method returns 1 if the object is either an instance of the type represented
by repository_id() or if it is a sub-type. The member function returns 0 if
the object is not of the type specified. Note that this may require remote
invocation to determine the type.

You can use the _is_equivalent() member function to check if two object
references refer to the same object implementation. This member function
returns 1 if the object references are equivalent. This member function
returns 0 if the object references are distinct, but does not necessarily
indicate that the object references are two distinct objects. This is a
lightweight member function and does not involve actual communication
with the server object.

The _hash() member function can be used to obtain a hash value for an
object reference. While this value is not guaranteed to be unique, it will
remain consistent through the lifetime of the object reference and can be
stored in a hash table.

Table 7 Member functions for determining the type of an object reference

Method Description
_interface_name Returns the interface name of this object.
_object_name Returns this object’s name.
_repository_id Returns the repository’s type identifier.

Method Description
_hash Returns a hash value for the object reference.
_is_a Determines if an object implements a specified

interface.
_is_equivalent Returns true if two objects refer to the same

interface implementation.

VisiBroker-RT for C++ Developer’s Guide 93

Determining the location and state of bound
objects
Given a valid object reference, your client program can use the
_is_bound() member function to determine if the object is bound, (i.e. if a
connection is currently active for this object). The method returns 1 if the
object is bound and 0 if the object is not bound.

The _is_local() member function returns 1 if the client program and the
object implementation reside within the same address space.

The _is_remote() member function returns 1 if the client program and the
object implementation reside in a different address space.

Table 8 Member functions for determining location and state of object reference

Note

If the object is in the same address space where the method is invoked,
_is_local()returns 1.

Checking for non-existent objects
You can use the _non_existent() member function to determine if the
object implementation associated with an object reference still exists. This
method actually “pings” the object to determine if it still exists and returns
1 if it does not exist.

Narrowing object references
The process of converting an object reference’s type from a general super-
type to a more specific sub-type is called narrowing.

Note

The _narrow() member function may construct a new C++ object and
returns a pointer to that object. When you no longer need the object, you
must release the object reference returned by _narrow().

VisiBroker-RT for C++ maintains a typegraph for each object interface so that
narrowing can be accomplished by using the object’s _narrow() method. If the
narrow member function determines it is not possible to narrow an object to
the type you request, it will return NULL.

Code example 49 Narrow method generated for the AccountManager
Account *acct;
Account *acct2;
Objec *obj;

acct = Account::_bind();
obj = (CORBA::Object *)acct;
acct2 = Account::_narrow(obj);

Method Description
_is_bound Returns 1 if a connection is currently active for this

object.
_is_local Returns 1 if this object is implemented in the local

address space.
_is_remote Returns 1 if this object’s implementation does not

reside in the local address space.

94 VisiBroker-RT for C++ Developer’s Guide

Widening object references
Converting an object reference’s type to a super-type is called widening.
Code example 50 shows an example of widening an Account pointer to an
Object pointer. The pointer acct can be cast as an Object pointer
because the Account class inherits from the Object class.

Code example 50 Widening an object reference
...
Account *acct;
CORBA::Object *obj;
acct = Account::_bind();
obj= (CORBA::Object *)acct;
...

Using Quality of Service
Quality of Service (QoS) utilizes policies to define and manage the
connection between your client applications and the servers to which they
connect.

Understanding Quality of Service
Quality of Service policy management is performed through operations
accessible in the following contexts:

• ORB level policies are handled by a locality constrained PolicyManager,
through which you can set Policies and view the current Policy overrides.

Policies set at the ORB level override system defaults.

• Thread level policies are set through PolicyCurrent, which contains
operations for viewing and setting Policy overrides at the thread level.

Policies set at the thread level override system defaults and values set at
the ORB level.

• Object level policies can be applied by accessing the base Object
interface’s quality of service operations.

Policies applied at the Object level override system defaults and values
set at the ORB or thread level.

Policy overrides and effective policies
The effective policy is the policy that would be applied to a request after all
applicable policy overrides have been applied. The effective policy is
determined by comparing the Policy as specified by the IOR with the
effective override. The effective Policy is the intersection of the values
allowed by the effective override and the IOR-specified Policy. If the
intersection is empty a INV_POLICY exception is raised.

QoS interfaces
The following interfaces are used to get and set QoS policies.

CORBA::Object
CORBA::Object contains the following methods used to get the effective
policy and get or set the policy override.

VisiBroker-RT for C++ Developer’s Guide 95

• _get_policy returns the effective policy for an object reference.

• _set_policy_override returns a new object reference with the
requested list of Policy overrides at the object level.

• _get_client_policy returns the effective Policy for the object reference
without doing the intersection with the server-side policies. The effective
override is obtained by checking the specified overrides in first the object
level, then at the thread level, and finally at the ORB level. If no overrides
are specified for the requested PolicyType the system default value for
PolicyType is used.

• _get_policy_overrides returns a list of Policy overrides of the specified
policy types set at the object level. If the specified sequence is empty, all
overrides at the object level will be returned. If no PolicyTypes are
overridden at the object level, an empty sequence is returned.

• _validate_connection returns a boolean value based on whether the
current effective policies for the object will allow an invocation to be
made. If the object reference is not bound, a binding will occur. If the
object reference is already bound, but current policy overrides have
changed, or the binding is no longer valid, a rebind will be attempted,
regardless of the setting of the RebindPolicy overrides. A false return
value occurs if the current effective policies would raise an INV_POLICY
exception. If the current effective policies are incompatible, a sequence
of type PolicyList is returned listing the incompatible policies.

CORBA::PolicyManager
The PolicyManager is an interface that provides methods for getting and
setting Policy overrides for the ORB level.

• get_policy_overrides returns a PolicyList sequence of all the
overridden policies for the requested PolicyTypes. If the specified
sequence is empty, all Policy overrides at the current context level will
be returned. If none of the requested PolicyTypes are overridden at the
target PolicyManager, an empty sequence is returned.

• set_policy_overrides modifies the current set of overrides with the
requested list of Policy overrides. The first input parameter, policies,
is a sequence of references to Policy objects. The second parameter,
set_add, of type SetOverrideType indicates whether these policies
should be added onto any other overrides that already exist in the
PolicyManager using ADD_OVERRIDE, or they should be added to a
PolicyManager that doesn’t contain any overrides using SET_OVERRIDES.
Calling set_policy_overrides with an empty sequence of policies and a
SET_OVERRIDES mode removes all overrides from a PolicyManager.
Should you attempt to override policies that do not apply to your client, a
NO_PERMISSION exception will be raised. If the request would cause the
specified PolicyManager to be in an inconsistent state, no policies are
changed or added, and an CORBA::InvalidPolicies exception is raised.

CORBA::PolicyCurrent
The PolicyCurrent interface derives from PolicyManager without adding
new methods. It provides access to the policies overridden at the thread
level. A reference to a thread’s PolicyCurrent is obtained by invoking
resolve_initial_references and specifying an identifier of
“PolicyCurrent.”

96 VisiBroker-RT for C++ Developer’s Guide

Messaging::RebindPolicy
RebindPolicy reads in a value of type Messaging::RebindMode to define
the behavior of the client when rebinding. RebindPolicys are set only on the
client side. It can have one of six values that determines the behavior in the
case of a disconnection, an object forwarding request, or an object failure.
The currently supported values are:

• Messaging::TRANSPARENT allows the ORB to silently handle object-
forwarding and necessary reconnections during the course of making a
remote request.

• Messaging::NO_REBIND allows the ORB to silently handle reopening of
closed connections while making a remote request, but prevents any
transparent object-forwarding that would cause a change in client-visible
effective QoS policies. When RebindMode is set to NO_REBIND, only
explicit rebind is allowed.

• Messaging::NO_RECONNECT prevents the ORB from silently handling
object-forwards or the reopening of closed connections. You must
explicity rebind and reconnect when RebindMode is set to NO_RECONNECT.

• QoSExt::VB_TRANSPARENT is the default policy. It extends the
functionality of TRANSPARENT by allowing transparent rebinding with both
implicit and explicit binding. VB_TRANSPARENT is designed to be compatible
with the object failover implementation in VisiBroker-RT for C++ 3.x.

• QoSExt::VB_NOTIFY_REBIND throws an exception if a rebind is necessary.
The client catches this exception, and binds on the second invocation.

Note

Be aware that if the effective policy for your client is VB_TRANSPARENT and
your client is working with servers that hold state data, VB_TRANSPARENT
could connect the client to a new server without the client being aware of
the change of server, any state data held by the original server will be lost.

Note

In the case of NO_REBIND or NO_RECONNECT the reopening of the closed
connection or forwarding may be explicitly allowed by calling
_validate_connection on the CORBA::Object interface.

The following table lists the behavior of the different RebindMode types.

Table 9 RebindMode policies

1The appropriate CORBA exception will be thrown in the case of a
communication problem or an object failure.

RebindMode type

Reestablish closed
connection to the
same object?

Allow object
forwarding? Object failover?1

NO_RECONNECT No, throws REBIND
exception.

No, throws REBIND
exception.

No

NO_REBIND Yes Yes, if QoS policies
match

No

TRANSPARENT Yes Yes No
VB_NOTIFY_REBIND Yes Yes Yes. VB_NOTIFY_REBIND

throws an exception after
failure detection, and
then tries a failover on
subsequent requests.

VB_TRANSPARENT Yes Yes Yes, transparently

VisiBroker-RT for C++ Developer’s Guide 97

For more information on QoS policies and types, see the VisiBroker-RT for
C++ Reference Guide and the OMG Messaging specification. Our QoS
implementation is based on the OMG document orbos/98-05-05.

Messaging::RelativeRequestTimeoutPolicy
RelativeRequestTimeoutPolicy is a local object (i.e. locality constrained)
derived from CORBA::Policy. It is used to indicate the relative amount of
time for which a Request may be delivered. After this amount of time the
Request is cancelled. This policy is applied to both synchronous and
asynchronous invocations. If asynchronous invocation is used, this policy
only limits the amount of time during which the request may be processed.
Assuming the request completes within the specified timeout, the reply will
never be discarded due to timeout.

When instances of RelativeRequestTimeoutPolicy are created, a value of
type TimeBase::TimeT is passed to CORBA::ORB::create_policy. The
value specified is the number of 100 nanoseconds which the client
application will wait for a request to be delivered to the Server
implementation. If the time-out period expires before the message is
delivered to the Server implementation, a ::CORBA::NO_RESPONSE exception
is raised.

If a RelativeRequestTimeoutPolicy is not specified, RelativeRequestTimeout
is set to 0, indicating that your client program wishes to block indefinitely.

This policy is only applicable as a client-side override.

Messaging::RelativeRoundtripTimeoutPolicy
RelativeRoundtripTimeoutPolicy is a local object (i.e. locality constrained)
derived from CORBA::Policy. It is used to indicate the relative amount of
time for which a Request or its corresponding Reply may be delivered. After
this amount of time the Request is cancelled (if a response has not yet been
received from the target) or the Reply is discarded (if the Request had
already been delivered and a Reply returned from the target). This policy is
applied to both synchronous and asynchronous invocations.

When instances of RelativeRoundtripTimeoutPolicy are created, a value
of type TimeBase::TimeT is passed to CORBA::ORB::create_policy. The
value specified is the number of 100 nanoseconds which the client
application will wait for a request and its corresponding reply to be received.
If the time-out period expires before the invocation is completed (i.e. reply
received by the ORB), a CORBA::NO_RESPONSE exception is raised.

If a RelativeRoundtripTimeoutPolicy is not specified,
RelativeRoundtripTimeout is set to 0, indicating that your client program
wishes to block indefinitely.

This policy is only applicable as a client-side override.

QoSExt::RelativeConnectionTimeoutPolicy
RelativeConnectionTimeoutPolicy is a local object (i.e. locality constrained)
derived from CORBA::Policy. It is used to indicate the relative amount of
time after which an attempt to connect to the server ORB using one of the
available communication endpoints is aborted. This policy is applied to both
synchronous and asynchronous invocations.

When instances of RelativeConnectionTimeoutPolicy are created, a value
of type TimeBase::TimeT is passed to CORBA::ORB::create_policy. The
value specified is the number of 100 nanoseconds which the client
application will wait for a connection to be established. If the time-out

98 VisiBroker-RT for C++ Developer’s Guide

period expires before the connection to the server ORB is established, a
CORBA::TIMEOUT exception is raised.

If a RelativeConnectionTimeoutPolicy is not specified,
RelativeConnectionTimeoutPolicy is set to 0 seconds, indicating that your
client program wishes to block indefinitely.

This policy is only applicable as a client-side override.

QoSExt::DeferBindPolicy
The DeferBindPolicy determines if the ORB will attempt to contact the
remote object when it is first created, or to delay this contact until the first
invocation is made. The possible values of DeferBindPolicy are TRUE and
FALSE. If DeferBindPolicy is set to TRUE, all binds will be deferred until
the first invocation usng that Client proxy. The default value is FALSE.

If you create a client object, and DeferBindPolicy is set to true, you may
delay the server startup until the first invocation. This option existed with
prior versions of VisiBroker-RT for C++ as a bind option that could be
specified as a parameter to the _ bind method.

QoSExt::SmartBindPolicy
SmartBindPolicy is a local object (i.e. locality constrained) derived from
CORBA::Policy. It is used to control the VisiBroker SmartBinding
optimization. The currently supported values are:

• QosExt::SMARTBIND_OFF

When SmartBindPolicy is set to QosExt::SMARTBIND_OFF,
communications between the VisiBroker client and server will use the
local IP LOOPBACK interface, thereby ignoring any optimization. This
option existed with prior versions of VisiBroker-RT for C++ as a bind
option that could be specified as a parameter to the _ bind method.

• QosExt::SMARTBIND_POA_TRANSPARENT

When SmartBindPolicy is set to QosExt::SMARTBIND_POA_TRANSPARENT,
all co-located invocations (i.e. between VisiBroker clients and servants in
the same address space) are optimized. When using this policy value all
POA policies and states applicable to that CORBA Server are honored.

• QosExt::SMARTBIND_CACHED

When SmartBindPolicy is set to QosExt::SMARTBIND_CACHED, all co-
located invocations (i.e. between VisiBroker clients and servants in the
same address space) are optimized. Using this policy value the servant
pointer is cached during the initial invocation to the CORBA object.
Subsequent requests to this server will use this cached pointer, thereby
ignoring all POA policies and POA states. This policy value provides the
highest level of optimization.

This cached pointer to the servant can be updated by calling _bind. This
may be useful in cases where the servant goes away and the client needs
to update its cached pointer to a new instance of the servant. In that
case, the client application can catch the generated CORBA exception and
call _bind again to update the cached pointer.

If the POA that the servant is activated or is created with a value other
than USE_ACTIVE_OBJECT_MAP_ONLY for the RequestProcessingPolicy,
the SMARTBIND_CACHE behavior reverts to
QosExt::SMARTBIND_POA_TRANSPARENT.

The default value for this policy is QosExt::SMARTBIND_CACHED. This policy
applies to both synchronous and asynchronous invocations.

VisiBroker-RT for C++ Developer’s Guide 99

This policy is only applicable as a client-side override.

QoS exceptions
• CORBA::INV_POLICY is raised when there is an incompatibility between

Policy overrides.

• CORBA::REBIND is raised when the RebindPolicy has a value of
NO_REBIND, NO_RECONNECT, or VB_NOTIFY_REBIND and an invocation on a
bound object references results in an object-forward or location-forward
message.

• CORBA::PolicyError is raised when the requested Policy is not
supported.

• CORBA::InvalidPolicies can be raised when an operation is passed a
PolicyList sequence. The exception body contains the policies from the
sequence that are not valid, either because the policies are already
overridden within the current scope, or are not valid in conjuction with
other requested policies.

100 VisiBroker-RT for C++ Developer ’s Guide

Part 4
Configuration and

Management
In this part
This part contains the following chapters:

Using the VisiBroker-RT for C++ Console page 103

Setting Properties page 115

VisiBroker-RT for C++ Developer ’s Guide 103

Using the VisiBroker-RT for
C++ Console
VisiBroker-RT for C++ provides a graphical user interface, the VisiBroker
Console which functions as the main control point for the server. The
VisiBroker Console lets you view servers on the network, change server
configurations, and manage the services and tools that enable you to build,
deploy, and manage CORBA-based applications.

This section provides an overview of how to use the VisiBroker Console to
start and stop a server, change server configurations, and manage top-level
services.

NOTE

The library libsrvmgr.o is required when building a VisiBrokerRT60
application to support communicating with the VisiBroker Console. For a
description of all the libraries provided by the VisiBroker-RT for C++
product, see <~XRef>“Step 6: Integrating VisiBroker-RT with Tornado/
VxWorks”.

What is the VisiBroker Console?
The VisiBroker Console is a tool that allows you to view, configure, and
monitor the Borland Enterprise Server ORB Services in a graphical interface.
In particular, you can use the ORB Services browsers to manage object
servers, control the configuration of gatekeepers, browse the interface
repository, edit naming contexts, look up object instances, and view the
OADs on your network.

The design of the VisiBroker Console is similar to the graphical interfaces of
the Borland Enterprise Server Console product.

The VisiBroker Console provides browser support and is divided as follows
into the following areas, which correspond to the ORB Services that it
supports:

• Location Service

• Naming Services

• Interface Repositories1

• Implementation Repositories1

• Server Managers

• Gatekeepers1

• Integrated Transaction Services 1

1Note that the VisiBroker-RT for C++ for Tornado console can be used to
view and manage this service on the network; however the service itself
is not available on a VisiBroker-RT for C++ for Tornado system.

104 VisiBroker-RT for C++ Developer ’s Guide

Figure 13 The VisiBroker Console

Updated screen illustration, please? I presume the Borland
branding is going

Navigating the VisiBroker Console
The VisiBroker Console has a typical Explorer-style user interface with
elements such as menus, tools, and status bars; a navigation pane on the
left side of the viewing area; and a content pane on the right side. You
choose options from pull-down or context (right-click) menus to perform
common functions; select specific ORB Services from the navigation pane;
or perform tasks in the content pane (work area) related to the ORB Service
that you select.

VisiBroker-RT for C++ Developer ’s Guide 105

Figure 14 Elements of the VisiBroker Console

And updated version of this one too, please

The VisiBroker Console's main window consists of the following elements
that help you complete the tasks related to the specific ORB Service:

• Menu bar

• Toolbar

• Status bar

• Pull down or context menus

• Navigation pane

• Content pane

Menu bar
The menu bar is located at the top of the VisiBroker Console's main window.
The menu bar provides you with some of the common navigational and
management options in the VisiBroker Console.

Toolbar
The toolbar is located at the top of the VisiBroker Console main window,
just under the menu bar. The toolbar lets you perform some of the
VisiBroker Console functions with a single click of the mouse. Toolbar
functions are dimmed when their functions are not available in a specific
context.

106 VisiBroker-RT for C++ Developer ’s Guide

Status bar
The status bar is located at the bottom of the main window of the VisiBroker
Console. The status bar displays information about the status of your
actions and also displays any warning messages for the current session.

Pull down or context menus
The pull down menus are located in the menu bar area, at the top of the
VisiBroker Console's main window. The context menus display when you
right-click an item on the VisiBroker Console. You can perform many
common functions by either using pull-down or context (right-click) menus.
In some cases, you have the option to use either menu to perform the same
function.

Navigation pane
The VisiBroker Console's viewing area is divided into two major parts: the
Navigation pane on the left side and the Content pane on the right side.

The Navigation pane shows you a hierarchical tree structure in which you can
expand items to navigate to the next level. The hierarchical tree contains
folders that represent the ORB Services.

Clicking these folders selects the Service and displays a browser to the right
of the tree. Right- clicking provides a menu of possible actions on the folder.
Once you click an item, the right side of the panel--the Content pane--
shows you information about the item you just selected.

Content pane
The Content pane contains the content of the item you select in the
Navigation pane. Depending on which item you select, different sets of tabs
appear at the bottom of the Content pane. Selecting one of theses tabs
changes the information that appears in the Content pane.

Supported ORB Services
With the VisiBroker Console, you can view, configure, and monitor the ORB
Services. To access the ORB Services, click on a specific service in the
navigation pane. The selected ORB Service is displayed in the content pane.

To browse the ORB Services on a particular Smart Agent port, right click on
the root node (ORB Domain) of the navigation pane. The Smart Agent port
entry dialog will appear. After entering the desired Smart Agent port
number, a new VisiBroker ORB Services node will appear under the root
node.

The VisiBroker Console supports the following ORB Services:

Location Service
The Location Service is the interface to the Smart Agent. This browser
provides general purpose facilities for locating object instances and displays
all instances of an object to which a client can bind. Also, it provides a list of
all Smart Agents running on the current port.

VisiBroker-RT for C++ Developer ’s Guide 107

For more information about the Location Service, see “Using the Location
Service”.

Naming Services
The Naming Services displays, in a hierarchical format, the contents of the
naming services running on your Borland Enterprise Server domain. From
here, you can select, navigate, and edit naming contexts and name
bindings.

For more information about the Naming Service, see “Using the Naming
Service”.

Interface Repositories
The Interface Repositories browser displays, in a hierarchical format, the
contents of the interface repository on your Borland Enterprise Server
domain. An interface repository is like a database of CORBA object interface
information. The information in an interface repository is equivalent to the
information in an IDL file.

For more information about the Interface Repositories, see “Using Interface
Repositories”.

NOTE

The Interface Repository is NOT available on a VisiBrokerRT60 system;
however the Console may still be used to browse Interface Repositories
which may be present on other non-embedded VisiBroker nodes in your
network.

Implementation Repositories
The Implementation Repositories browser shows a list of all object
implementations registered with each Object Activation Daemon (OAD).

NOTE

The Implementation Repository is NOT available on a VisiBrokerRT60
system; however the Console may still be used to browse Implementation
Repositories which may be present on other non-embedded VisiBroker
nodes in your network.

Server Manager
From within the Server Manager, an object server can publish its own
properties. These properties appear in the content pane. The ORB
properties are published by default, but each server can hide or rearrange
the containers, methods, or properties if it chooses to. The Server Manager
allows you to monitor and manage running servers, view the POA hierarchy,
and set properties.

GateKeeper
The GateKeeper displays a list of active GateKeeper instances from which
you select, to browse and configure their properties. The selected
GateKeeper instance displays in the content pane.

108 VisiBroker-RT for C++ Developer ’s Guide

For more information on the GateKeeper, see the Borland Enterprise Server
VisiBroker GateKeeper Guide.

NOTE

The Gatekeeper is NOT available on a VisiBrokerRT60 system;
however the Console may still be used to browse Gatekeepers which may be
present on other non-embedded VisiBroker nodes in your network.

Integrated Transaction Services
The Integrated Transaction Services (ITS) provides a complex solution for
distributed transactional CORBA applications. Implemented on top of the
VisiBroker ORB, ITS simplifies the complexity of distributed transactions by
providing an essential set of services, which includes a transaction service,
recovery and logging, integration with database and legacy systems, and
administration facilities within one, integrated architecture..

For more information on the Integrated Transaction Services (ITS), see the
VisiBroker Integrated Transaction Services (ITS) Programmer's Guide by
going to http:// info.borland.com/techpubs/its/its12/.

NOTE

Integrated Transaction Service is NOT available on a VisiBroker-RT 60
system; however the Console may still be used to browse ITSs which may
be present on other non-embedded VisiBroker nodes in your network.

Starting the VisiBroker Console
To start the VisiBroker Console, use one of the following methods make
sure that the following environment variables have been set:

• VBROKERDIR set to <install_location>/VisiBrokerRT60.

• OSAGENT_PORT set to the port number where the osagent is running.
Use one of the following methods to start the Console:

Windows Run the vbconsole file from the <install_location>\VisiBrokerRT60\
bin directory

UNIX Run vbconsole.sh from the <install_location>/VisiBrokerRT60/bin
directory

Note

To recognize the console command, your path system variable must include
the Console bin directory (<install_location>/VisiBrokerRT60/bin), or
you can enter the path explicitly.

Once the Console starts, the preferences that were configured during
installation take effect. If you have problems, please check the path and
classpath settings.

1 When the Console login window appears, enter your user name,
password, and server realm (default User Name=> admin, Default
Password=> admin). After logging in to the Console, select VisiBroker
from the left most button bar of the Console to launch the VisiBroker
Console.

VisiBroker-RT for C++ Developer ’s Guide 109

erprise Server, you need to enter that information using the Console before
you can use it.

!!!The half-sentence above is in the original pdf. I’m not sure how
much material might be missing, but since there is a step numbered
1 with no corresponding 2 (or later numbers), it might be quite a
bit. Any ideas, developers?

Note

The library libsrvmgr.o is required when building a VisiBrokerRT60
application to support communicating with the VisiBroker Console. For a
description of all the libraries provided by the VisiBroker-RT for C++
product, see <~XRef>“Step 6: Integrating VisiBroker-RT with Tornado/
VxWorks”.

VisiBroker Console main menu
The VisiBroker Console provides the following main menu items:

• Console menu

• View menu

• Help menu

Console menu
The following table describes the commands on the VisiBroker Console
menu.

Table 10 VisiBroker Console menu commands

View menu
The following table describes the commands on the View menu.

Table 11 View menu commands

Select... To...
Refresh manually update server state information shown in the

VisiBroker Console.
Preferences... open the Preferences dialog box to set VisiBroker Console

and VisiBroker Server configurations settings. See “Setting
the VisiBroker Console preferences”.

Login log on to the console with your user name, password,
and realm credentials.

Logout log out of the console so that you can log on with new
user name, password, and realm credentials.

Exit dismiss the VisiBroker Console.

Select... To...
Messages show or hide the errors window.
Tool bar show or hide the tool bar at the top of the Console

window.
Status bar show or hide the status bar at the bottom of the Console

window.

110 VisiBroker-RT for C++ Developer ’s Guide

Help menu
The following table describes the commands on the Help menu.

OK, the following table definitely needs checking by developers and
updating! Are we linking to these documents, where I have replaced
“Borland” by “Micro Focus” or “VisiBroker-RT” is it correct, etc etc!!

Table 12 Help menu commands

Setting the VisiBroker Console preferences
VisiBroker Console preferences enable you to specify configuration,
operation, and appearance settings used by the VisiBroker Console such as
the Smart Agent port, the default polling interval for performance
information displayed, and so forth.

Select... To...
Installation Guide get online help on installing VisiBroker-RT
User's Guide get online help on using the Console and other tools

including the DDEditor and the Application Assembly
Tool.

Developer's Guide get online help on packaging, deployment, and
management of distributed object-based applications.

Deployment
Descriptor Editor
(DDE

get online help on using the DDEditor.

VisiBroker
Developer's Guide

get online help on how to develop VisiBroker applications
in Java or C++ and the configuration and management of
the VisiBroker ORB.

VisiBroker
Programmer's
Reference

get online help on the classes and interfaces supplied with
VisiBroker for Java and C++ and on using the
programming tools and command-line options

VisiBroker
GateKeeper Guide

get online help on the VisiBroker GateKeeper that enables
VisiBroker clients to communicate with servers across
networks while conforming to the security restrictions
imposed by web browses and firewalls.

VisiNotify Guide get online on using the VisiNotify notification message
framework.

Micro Focus Home
Page

Access the Micro Focus web site.

News Group Access the Micro Focus Newsgroups web site.
About open a dialog box containing the following tabs:

• About: Shows the Borland Enterprise Server version
number and copyright information.

• General System Information: Shows various
system configuration settings that Borland Enterprise
Server has detected such as the operating system,
Java version, Java vendor, Java Compiler, and so
forth.

• Java Properties: Shows the Java virtual machine
property settings in use by VisiBroker-RT.

VisiBroker-RT for C++ Developer ’s Guide 111

Figure 15 Setting Console Preferences

To set Console preferences:

1 Start the VisiBroker Console and choose Preferences from the Console
menu. A dialog box appears with a list of preferences grouped into the
following tabs:

a General menu

b Security tab

c State tab

d Tools tab

2 Navigate through the tabs and select the preferences as desired. (If you
want to restore the settings shown on a particular tab to the values last
saved, click Reset.)

3 When you have finished making your selections, click OK.

The following sections provide details on each of the Preferences tabs.

General tab
This tab provides the following options:

• Look and feel: Sets the display format and behavior of the Console
windows. The available options are: Metal, Windows or CDE/Motif.

112 VisiBroker-RT for C++ Developer ’s Guide

• Tab Memory: Specifies the view state information the Console uses. The
following options are available:

• Don't Remember last visited tab pane: Tells the Console to open
each node in the tree with the General tab displayed on the right.

• Remember last visited tab pane by type: Tells the Console to open
a node on the same type of tab (on a similar node) that was most
recently viewed. For example, if the Logs tab is currently in view and
you click on another node that has a Logs tab, the Console first
displays the Logs tab for that node.

• Remember last visited tab pane by type and name: Tells the
Console to open a node that had been expanded earlier in the Console
session to the tab that was last in view when that node was selected.

• Sound beep on errors:: If checked, the Console sounds an alarm when
an error occurs.

• Enable debug output: Tells the Console to report debugging information
in the Errors pane at the bottom of the Console.

Security tab
This tab provides the following options:

• Default Realm: Specifies the name of the authentication realm used by
the VisiBroker Console to interact with each Borland Enterprise Server.

• Default User: Specifies the user name used by the VisiBroker Console to
interact with each Borland Enterprise Server.

• Enable Security: Determines how the VisiBroker Console handles
security:

• When checked, enables the VisiBroker Console to communicate with a
server regardless if it has security enabled or not. When the VisiBroker
Console receives a request from a server with security enabled,
however, it must first pass the user's login credentials (realm,
username, and password) to that server for authentication before it
can access services on that server.

• When this box is not checked, the VisiBroker Console will communicate
only with servers that do not have security enabled.

State tab
This tab provides the following options:

• Enable polling for events: When checked, tells the Console to
automatically update information displayed about the state of the server
and services (such as running, stopped, and so forth). The following
settings determine the time intervals (in milliseconds) of how often the
Console checks to verify the state of Borland Enterprise Servers, and they
specify how often the state of services are updated in the tree in the
Console Servers View:

• Background polling interval: Determines how frequently the Console
checks the state of the server when no user interaction is initiated.

• Foreground polling interval: Determines how frequently the Console
checks server state of the server when the user performs any action
that causes the user name server state to change, such as stopping,
refreshing, or restarting a server.

VisiBroker-RT for C++ Developer ’s Guide 113

• Number of foreground cycles: Determines how many times within
the specified Foreground Polling Interval that the Console check the
server state.

• Enable background refreshes: When checked, tells the Console to
automatically update information displayed about the changes in the
navigation tree, such as when a server, service, or module is added or
removed. Clear this check box to reduce the processing overhead used by
Console polling activity. If this box is unchecked, however, the Console
will not display changes in the navigation tree until the box is checked, or
until you either restart the Console, or log out and log back in to the
Console.

• Refreshes every: Determines (in milliseconds) how frequently the
Console checks and refreshes the display of the state of the navigation
tree.

• State Legend: Shows the icons used by the Console to represent the
various server states.

Tools tab
Use this tab to specify an absolute (fully qualified) path location in which
OptimizeIt Profiler is installed on the machine on which the Console is
running. Enter a path or click Browse to locate the local OptimizeIt
installation directory. If you installed the OptimizeIt Suite, be sure to select
the second level OptimizeIt folder (the folder that contains the lib directory,
as well as other directories).

Note
If you are using the Console to manage a remote server, you must also
install OptimizeIt on the machine on which the server is running.

For more information about configuring OptimizeIt, see the Servers view in
the Borland Enterprise Server User's Guide.

I presume this BES User Guide is no longer available: do we actually
use OptimizeIt any more, even?

114 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 115

Setting Properties
This chapter describes how to set VisiBroker properties that can be used to
configure many aspects of VisiBroker’s behavior.

Overview
VisiBroker has number of properties that can be used to configure its
behavior. For example, vbroker.agent.debug directs the ORB to turn on
output of debugging information for all communication with the Smart
Agent. Each property has a predetermined data type, either string,
unsigned long or boolean, and one or more possible values. For example,
vbroker.agent.enableLocator=false disables lookups to the smart agent.

Properties can be set:

• prior to starting the application, via environment variables (only a few
properties may be set in this way)

• when starting applications - in a Property Table or as a command-line
argument,

• after ORB_init() via the Property Manager interface.

The order in which these properties take precedence (starting with the
highest precedence) is properties specified via:

1 the Property Manager interface

2 individually at ORB_init

3 a Property Table passed in at ORB_init

4 Environment variables

5 ORB defaults.

The properties data specified during ORB_init(), (i.e. item 3 above) are not
referenced again after those properties have been copied into the memory
of the Property Manager.

The following sections describe how to use each of the above methods for
specifying properties and their values.

Setting Properties Through the Property Manager
Interface

The following code sample shows how to set properties using the Property
Manager interface.

Code example 51 Using the Property Manager interface to set properties after
ORB_init()

...

void do_corba(void)
{

/*---*/
/* ORB_init options can be specified in two ways. */
/* 1) By calling start_corba and specifying the */
/* ORB initialization string */
/* (e.g. start_corba("-ORBagentport 19000") */
/* 2) Programatically by specifying the */
/* ORB_initialization_options in the */

116 VisiBroker-RT for C++ Developer ’s Guide

/* default_argc and default_argv variables below. */
/* */
/* PLEASE NOTE THAT THE OPTIONS PASSED IN VIA start_corba */
/* OVERRIDE THE OPTIONS THAT ARE SET PROGRAMATICALLY. */
/*---*/

int default_argc = 2;
char *default_argv[] = {"-ORBagentport", OSAGENT_PORT};
char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,
default_argc, ORB_options_string);

/*---*/
/* Call ORB_init */
/*---*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);

VISUtil::freeArgv(new_argc, & new_argv);
}
VISCATCH(CORBA::Exception,e)
{

//Handle exception here
}
VISEND_CATCH
// Get the property manager; notice the value returned is not
// placed into a 'var' type.
VISPropertyManager_ptr pm = orb->getPropertyManager();

VISTRY
pm->addProperty("vbroker.se.mySe.scms", "scm1");

pm->
addProperty("vbroker.se.mySe.scm.scm1.manager.connectionMax",
100UL);

pm->
addProperty("vbroker.se.mySe.scm.scm1.manager.connectionMaxIdl
e ", 300UL);

pm->addProperty("vbroker.se.mySe.scm.scm1.listener.type",
"IIOP");

pm->addProperty("vbroker.se.mySe.scm.scm1.listener.port",
1042UL);

pm->
addProperty("vbroker.se.mySe.scm.scm1.listener.proxyPort",
0UL);
}

VISCATCH(CORBA::Exception,e)
{

//Handle exception here
}

VISEND_CATCH

Environment variables
The following table lists the environment variables that are the equivalent of
some property names.

Property name Environment variable
vbroker.agent.port OSAGENT_PORT

vbroker.orb.clientPort OSAGENT_CLIENT_HANDLER_UDP_PORT

vbroker.agent.localFile OSAGENT_LOCAL_FILE

vbroker.agent.addr OSAGENT_ADDR

vbroker.agent.addrFile OSAGENT_ADD_RFILE

VisiBroker-RT for C++ Developer ’s Guide 117

Note

For information on setting VisiBroker-RT for C++ environment variables,
see the chapter “Configuring VisiBroker-RT for C++” in the VisiBroker-RT
for C++ Installation Guide.

Setting Properties Through the Command-Line
Any property can be set through command-line arguments, added to the
argument list passed into ORB_init().

Code example 52 Setting properties from the command-line

Tornado ->start_corba “-Dvbroker.agent.port=1024”

Properties set through the command-line override properties in the
properties Table of the same name.

Setting Properties Through a Property Table
A Property Table is a list of property entries, with the following format:

property_name=value

The ORB has a predefined set of property names available for use. These
names are case-insensitive.

There are only three property data types.

• String
• Unsigned long
• Boolean

If the string value is null, you can enter “null” as the property value.

Code example 53 Setting a null value
vbroker.repository.name=null

If the value is boolean, enter true or false.

Code example 54 Setting a boolean value
vbroker.agent.enableLocator=true

To use your properties, place them in a Property Table and reference the
Table through the following command-line argument:

-ORBpropTable=tableName

Code example 55 illustrates the steps involved in setting properties by
specifying a Property Table as a command line argument to ORB_init().

Query to developers: In the old manual the comment in the code
below reads “Define three manager property values”. As far as I can
see it only defines two (though with a blank line between the two).
I’ve fudged it by removing the word “three”, but can you tell if there
is anything missing here?

Code example 55 Using a Property Table to set properties at ORB_init()
void do_corba(void)
{

// VISPropertyTable defining VisiBroker Properties required
// for Server Engine configuration. Note that the array of
// property strings and the VISPropertyTable object can be
// destructed any time after the ORB_init that uses them.

// Get the property manager; notice the value returned
// is not placed into a 'var' type.
const char * my_properties[] =

118 VisiBroker-RT for C++ Developer ’s Guide

{
"vbroker.se.myServerEngine.scms=scm1",

// Define manager property values
"vbroker.se.myServerEngine.scm.scm1.manager.connectionMax=100"
"vbroker.se.myServerEngine.scm.scm1.manager.connectionMaxIdle=
300",

// Define three listener property values
"vbroker.se.myServerEngine.scm.scm1.listener.type=IIOP",
"vbroker.se.myServerEngine.scm.scm1.listener.port=1042",
"vbroker.se.myServerEngine.scm.scm1.listener.proxyPort=0",
NULL
};

VISPropertyTable property_table("my_properties",
my_properties);

cout << "Initialize the server" << endl; int argc = 5;

char *argv[] = {"DO_CORBA", "-ORBagentport", OSAGENT_PORT,
"-ORBpropTable", "my_properties"};

/*---*/
/* Call ORB_init */
/*---*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(argc, argv);

...

ORB Default Properties
If a property value is not specified for a given property by any of the above
methods, then the ORB default value for that property will be used.

For a list of all VisiBroker-RT for C++ properties and their corresponding
default values see Appendix B, “Using VisiBroker properties” in the
VisiBroker-RT for C++ Reference Manual.

Part 5
Tools and Services

In this part
This part contains the following chapters:

Using the IDL compiler page 121

Using the Smart Agent page 129

Using the Location Service page 145

Using the Naming Service page 157

Using the Event Service page 173

VisiBroker-RT for C++ Developer ’s Guide 121

Using the IDL compiler
This chapter describes how to use the IDL compiler.

Introduction to IDL
The Interface Definition Language (IDL) is a descriptive language (not a
programming language) to describe the interfaces being implemented by
the remote objects. Within IDL, you define the name of the interface, the
names of each of the attributes and methods, and so forth. Once you’ve
created the IDL file, you can use an IDL compiler to generate the client stub
file and the server skeleton file in the C++ programming language.

The OMG has defined specifications for such language mapping. Information
about the language mapping is not covered in this manual since VisiBroker-
RT for C++ adheres to the specification set forth by OMG. If you need more
information about language mapping, see the OMG web site at https://
www.omg.org/. (The CORBA formal specification can be found at http://
www.omg.org/corba/corbaiiop.html. See “Bidirectional Communication” for
mapping of OMG IDL to C++.)

Not sure what address to use in place of the corbaiiop one above

Discussions on the IDL can be quite extensive. Since VisiBroker-RT for C++
adheres to the specification defined by OMG, you can visit the OMG site for
more information about IDL.

How the IDL compiler generates code
You use the Interface Definition Language (IDL) to define the object
interfaces that client programs may use. The idl2cpp compiler uses your
interface definition to generate code.

For details on usage syntax for the idl2cpp compiler, see the VisiBroker-RT
for C++ Reference Guide.

Example IDL specification
Your interface definition defines the name of the object as well as all of the
methods the object offers. Each method specifies the parameters that will be
passed to the method, their type, and whether they are for input or output or
both. IDL sample4 shows an IDL specification for an object named example. The
example object has only one method, op1.

IDL sample 4 Example IDL specification
// IDL specification for the example object
interface example {

long op1(in char x, out short y);
};

Looking at code generated for clients
Code example 56 shows how the IDL compiler generates two client files—
example_c.hh and example_c.cc. These two files provide an example
class that the client uses. By convention, files generated by the IDL
compiler always have either a “.cc” or “.hh” suffix to make them easy to

https://www.omg.org/
https://www.omg.org/

122 VisiBroker-RT for C++ Developer ’s Guide

distinguish from files that you create yourself. If you wish, you can alter the
convention to produce files with a different suffix. See the VisiBroker-RT for
C++ Reference Guide.

Caution

Do not modify the contents of the files generated by the IDL compiler.

Code example 56 example generated class in example_c.hh generated file
class example : public virtual CORBA_Object {

protected:
example() {}
example(const example&) {}

public:
virtual ~example() {}
static const CORBA::TypeInfo *_desc();
virtual const CORBA::TypeInfo *_type_info() const;
virtual void *_safe_narrow(const CORBA::TypeInfo&) const;

static CORBA::Object*_factory();
example_ptr _this();
static example_ptr _duplicate(example_ptr _obj) { /*... */

}

static example_ptr _nil() { /*... */ }
static example_ptr _narrow(CORBA::Object* _obj);
static example_ptr _clone(example_ptr _obj) { /*... */ }

static example_ptr _bind(
const char *_object_name = NULL,
const char *_host_name = NULL,
const CORBA::BindOptions* _opt = NULL,
CORBA::ORB_ptr _orb = NULL);

static example_ptr _bind(
const char *_poa_name,
const CORBA::OctetSequence& _id,
const char *_host_name = NULL,
const CORBA::BindOptions* _opt = NULL,
CORBA::ORB_ptr _orb = NULL);

virtual CORBA::Long op1(CORBA::Char _x, CORBA::Short_out _y);
};

Methods (stubs) generated by the IDL compiler
Code example 56 shows the op1 method generated by the IDL complier, along
with several other methods. The op1 method is called a stub because when
your client program invokes it, it actually packages the interface request and
arguments into a message, sends the message to the object
implementation, waits for a response, decodes the response, and returns
the results to your program.

Since the example class is derived from the CORBA::Object class, several
inherited methods are available for your use.

Pointer type <interface name>_ptr definition
The IDL compiler always provides a pointer type definition. Code example 57
shows the type definition for the example class.

Code example 57 _ptr type definition in the example_c.hh generated file
typedef example *example_ptr;

VisiBroker-RT for C++ Developer ’s Guide 123

Automatic memory management <interface
name>_var class
The IDL compiler also generates a class named example_var, which you
can use instead of an example_ptr. The example_var class will
automatically manage the memory associated with the dynamically
allocated object reference. When the example_var object is deleted, the
object associated with example_ptr is released. When an example_var
object is assigned a new value, the old object reference pointed to by
example_ptr is released after the assignment takes place. A casting
operator is also provided to allow you to assign an example_var to a type
example_ptr.

Code example 58 example_var class in example_c.hh generated file
class example_var : public CORBA::_var {

...
public:

static example_ptr _duplicate(example_ptr);
static void _release(example_ptr);
example_var();
example_var(example_ptr);
example_var(const example_var &);
~example_var();
example_var& operator=(example_ptr);
example_var& operator=(const example_var& _var) { /*... */

}
operator example* () const { return _ptr; }
...

};

The following table describes the methods in the _var class.

Table 13 Methods in the _var class

Looking at code generated for CORBA server
implementations

Code example 59 shows how the IDL compiler generates two server files:
example_s.hh and example_s.cc. These two files provide a POA_example

Method Description
example_var() Constructor that initializes the _ptr to NULL.
example_var(example_ptr
ptr)

Constructor that creates an object with the _ptr
initialized to the argument passed. The var invokes
release() on _ptr at the time of destruction. When
the _ptr’s reference count reaches 0, that object will
be deleted.

example_var(const
example_var& var)

Constructor that makes a copy of the object passed as
a parameter var and points _ptr to the newly copied
object.

~example() Destructor that invokes _release() once on the
object to which _ptr points.

operator=(example_ptr p) Assignment operator invokes _release() on the
object to which _ptr points and then stores p in _ptr.

operator=(const
example_ptr p)

Assignment operator invokes _release() on the
object to which _ptr points and then stores a
_duplicate() of p in _ptr.

example_ptr operator->() Returns the _ptr stored in this object. This operator
should not be called until this object has been
properly initialized.

124 VisiBroker-RT for C++ Developer ’s Guide

class that the server uses to derive an implementation class. There are two
main classes which are generated for a CORBA Object implementation to
use when implementing their servants. The
PortableServer_RefCountServantBase and the PortableServer_ServantBase.
Each is described below.

The PortableServer_RefCountServantBase
class
The POA_example class is derived from the
PortableServer_RefCountServantBase class. The POA class
PortableServer_RefCountServantBase is a thread-safe reference counting
mix-in class which applications can use to obtain thread-safe reference
counting for their CORBA objects. This class extends the base POA
PortableServer_ServantBase who provide virtual empty implementations for
the _add_ref and _remove_ref methods. For details on the
PortableServer_ServantBase see “The PortableServer_ServantBase class”
below.

Caution

Do not modify the contents of the files generated by the IDL compiler.

Code example 59 example using the RefCountServantBase class in example_s.hh
generated file

class POA_example : public virtual
PortableServer_RefCountServantBase {
protected:

POA_example() {}
virtual ~POA_example() {}

public:
static const CORBA::TypeInfo _skel_info;
virtual const CORBA::TypeInfo *_type_info() const;
example_ptr _this();
virtual void *_safe_narrow(const CORBA::TypeInfo&) const;
static POA_example * _narrow(PortableServer_ServantBase

*_obj);
// The following operations need to be implemented
virtual CORBA::Long op1(CORBA::Char _x, CORBA::Short_out _y) =

0;
// Skeleton Operations implemented automatically
static void _op1(void *_obj, CORBA::MarshalInBuffer &_istrm,
const char *_oper, VISReplyHandler& handler);

};

The PortableServer_ServantBase class
The POA class PortableServer_ServantBase provides a base class for servants
to inherit from. Unlike the PortableServer_RefCountServantBase class above,
this class provides empty implementations for the _add_ref and _remove_ref
methods. A CORBA Object implementation can inherit from this class and
implement its own _add_ref and _remove_ref methods if it chooses to provide
its own reference counting mechanism; otherwise the recommendation when
developing applications with VisiBroker-RT for C++ is to use “The
PortableServer_RefCountServantBase class”.

Caution

Do not modify the contents of the files generated by the IDL compiler.

VisiBroker-RT for C++ Developer ’s Guide 125

Code example 60 example using the ServantBase class in example_s.hh generated
file

class POA_example : public virtual PortableServer_ServantBase {
protected:

POA_example() {}
virtual ~POA_example() {}

public:
static const CORBA::TypeInfo _skel_info;
virtual const CORBA::TypeInfo *_type_info() const;
example_ptr _this();
virtual void *_safe_narrow(const CORBA::TypeInfo&) const;

static POA_example * _narrow(PortableServer_ServantBase
*_obj);
// The following operations need to be implemented
virtual CORBA::Long op1(CORBA::Char _x, CORBA::Short_out _y)

= 0;
// Skeleton Operations implemented automatically
static void _op1(void *_obj, CORBA::MarshalInBuffer &_istrm,

const char *_oper, VISReplyHandler& handler);
};

Methods (skeletons) generated by the IDL
compiler
Notice that the op1 method declared in the IDL specification in IDL sample 4
is generated, along with an _op1 method. The POA_example class declares a
pure virtual method named op1. The implementation class that is derived
from POA_example must provide an implementation for this method.

The POA_example class is called a skeleton and its method (_op1) is invoked
by the POA when a client request is received. The skeleton’s internal
method will marshal all the parameters for the request, invoke your op1
method and then marshal the return parameters or exceptions into a
response message. The ORB will then send the response to the client
program.

The constructor and destructor are both protected and can only be invoked
by inherited members. The constructor accepts an object name so that
multiple distinct objects can be instantiated by a server.

Class template generated by the IDL compiler
In addition to the POA_example class, the IDL compiler generates a class
template named _tie_example. This template can be used if you wish to
avoid deriving a class from POA_example. Templates can be useful for
providing a wrapper class for existing applications that cannot be modified
to inherit from a new class. Code example 61 shows the template class
generated by the IDL compiler for the example class.

Code example 61 Template class generated for the example class
template <class T>
class POA_example_tie : public POA_example {

public:
POA_example_tie (T& t): _ptr(&t), _poa(NULL),

_rel((CORBA::Boolean)0) {}
POA_example_tie (T& t, PortableServer::POA_ptr poa):

_ptr(&t),
_poa(PortableServer::_duplicate(poa)),_rel((CORBA::Boolean)0) {}

POA_example_tie (T *p, CORBA::Boolean release= 1)
: _ptr(p),_poa(NULL), _rel(release) {}

POA_example_tie (T *p, PortableServer::POA_ptr poa,
CORBA::Boolean release =1)

: _ptr(p), _poa(PortableServer::_duplicate(poa)),
_rel(release) {}

126 VisiBroker-RT for C++ Developer ’s Guide

virtual ~POA_example_tie() { /*... */ }
T* _tied_object() { /*... */ }
void _tied_object(T& t) { /*... */ }
void _tied_object(T *p, CORBA::Boolean release=1) { /*...

*/ }

CORBA::Boolean _is_owner() { /*... */ }
void _is_owner(CORBA::Boolean b) { /*... */ }
CORBA::Long op1(CORBA::Char _x, CORBA::Short_out _y) { /*

... */ }
PortableServer::POA_ptr _default_POA() { /*... */ }

};

For complete details on using the _tie template class, see the chapter
“Using the Tie Mechanism”.

You may also generate a _ptie template for integrating an object database
with your servers.

Defining interface attributes in the IDL
In addition to operations, an interface specification can also define
attributes as part of the interface. By default, all attributes are read-write
and the IDL compiler will generate two methods—one to set the attribute’s
value, and one to get the attribute’s value. You can also specify read-only
attributes, for which only the reader method is generated.

IDL sample 5 shows an IDL specification that defines two attributes—one
read-write and one read-only. Code example 62 shows the operations class
generated for the interface declared in the IDL.

IDL sample 5 IDL specification with two attributes—one read-write and one read-
only

interface Test {
attribute long count;
readonly attribute string name;

};

Code example 62 Code generated for the testOperations interface
class test : public virtual CORBA::Object {

...
// Methods for read-write attribute
virtual CORBA::Long count();
virtual void count(CORBA::Long count);

// Method for read-only attribute.
virtual char * name();
...

};

Specifying oneway methods with no return value
IDL allows you to specify operations that have no return value, called
oneway methods. These operations may only have input parameters. When
a oneway method is invoked, a request is sent to the server but there is no
confirmation from the object implementation that the request was actually
received. VisiBroker-RT for C++ uses TCP/IP for connecting clients to
servers. This provides reliable delivery of all packets so the client can be
sure the request will be delivered to the server, as long as the server
remains available. Still, the client has no way of knowing if the request was
actually processed by the object implementation itself.

VisiBroker-RT for C++ Developer ’s Guide 127

Note

Oneway operations cannot raise exceptions or return values.

IDL sample 6 Defining a oneway operation
interface oneway_example {

oneway void set_value(in long val);
};

Specifying an interface in IDL that inherits from
another interface

IDL allows you to specify an interface that inherits from another interface.
The classes generated by the IDL compiler will reflect the inheritance
relationship. All methods, data type definitions, constants and enumerations
declared by the parent interface will be visible to the derived interface.

IDL sample 7 Example of inheritance in an interface specification
interface parent {

void operation1();
};
interface child : parent {

...
long operation2(in short s);

};

The following code sample shows the code that is generated from the
interface specification shown in the previous IDL sample.

Code example 63 Code generated from the previous IDL sample
...
class parent : public virtual CORBA::Object {

...
void operation1();
...

};

class child : public virtual parent {
...
CORBA::Long operation2(CORBA::Short s);
...

};

128 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 129

Using the Smart Agent
This chapter describes the Smart Agent (osagent), which Server programs
register with in order for Clients to find object implementations. This chapter
explains how to configure your own ORB domain, connect Smart Agents on
different local networks, and migrate objects from one host to another.

NOTE

The library libagentsupport.o is required to support ORB to Smart Agent
communications. If a Smart Agent is also required to be started on the
VxWorks embedded node, the library osagent.o is necessary. For a
description of all the libraries provided by the VisiBroker-RT for C++
product, see “Step 6: Integrating VisiBroker-RT with Tornado/VxWorks”.

What is the Smart Agent?
VisiBroker-RT for C++’s Smart Agent (osagent) is a dynamic, distributed
directory service that provides facilities used by both client programs and
object implementations. A Smart Agent must be started on at least one host
within your local network, if the Smart Agent is to be used as the Location
Service. When your client program invokes _bind() on an object, the
Smart Agent is automatically consulted. The Smart Agent locates the
specified implementation so that a connection can be established between
the client and the implementation. The communication with the Smart
Agent is completely transparent to the client program.

If the PERSISTENT policy is set on the POA, and activate_object_with_id
is used, the Smart Agent registers the object or implementation so that it
can be used by client programs. When an object or implementation is
deactivated, the Smart Agent removes it from the list of available objects.
As with client programs, the communication with the Smart Agent is
completely transparent to the object implementation.

Locating Smart Agents
VisiBroker-RT for C++ locates a Smart Agent for use by a client program or
object implementation using a UDP broadcast message. The first Smart
Agent to respond is used.

After a Smart Agent has been located, a point-to-point UDP connection is
used for sending registration and look-up requests to the Smart Agent. The
UDP protocol is used because it consumes fewer network resources than a
TCP connection. All registration and locate requests are dynamic, so there
are no required configuration files or mappings to maintain.

Note
Broadcast messages are used only to locate a Smart Agent. All other
communication with the Smart Agent makes use of point-to-point
communication. See “Using point-to-point communications” for information on
how to override the use of broadcast messages.

Locating objects through Agent cooperation
When a Smart Agent is started on more than one node in the local network,
each Smart Agent will recognize a subset of the objects available and

130 VisiBroker-RT for C++ Developer ’s Guide

communicate with other Smart Agents to locate objects it cannot find. If
one of the Smart Agent’s should terminate unexpectedly, all
implementations registered with that Smart Agent discover this event and
they will automatically reregister with another available Smart Agent.

Starting a Smart Agent (osagent)
At least one instance of the Smart Agent should be running on a node in
your local network. Local network refers to a subnetwork within which
broadcast message can be sent.

The VisiBroker-RT for C++ Smart Agent can be started in one of three
ways:

1 From a command line of the Development Host

2 From a command line on the target system

3 Programmatically from within a VisiBrokerRT60 application.

Starting the Smart Agent on the Development Host
To start the Smart Agent from a Windows or Unix Development Host, make
sure that the PATH environment variable has been updated to include the
VisiBroker-RT for C++ "bin" directory.

From a Windows host, enter the following command at the DOS prompt:

Windows prompt> osagent [options]

To start the Smart Agent on a UNIX system, enter the following command.

UNIX prompt> osagent &

The Development Host osgent command accepts the following command
line arguments:

The following example of the osagent command specifies a particular UDP
port:

osagent -p 17000

Starting the Smart Agent on the Target System
To start the Smart Agent from a VxWorks target system, make sure that
the osagent library has been included into the VxWorks target. Either the
library osagent.o must be linked with the VxWorks image or
osagent_munched.o must be downloaded to the VxWorks target to provide
this support.

To start the Smart Agent on the VxWorks target:

Tornado --> startOsagent()

Option Description
-p UDP_port Overrides the setting of OSAGENT_PORT and the registry

setting.
-v Turns verbose mode on, which provides information and

diagnostic messages during execution.
-help or -? Prints the help message.
-n, -N Disables system tray icon on Windows.

VisiBroker-RT for C++ Developer ’s Guide 131

Option Value range Description
Task Priority 0 - 255 The priority that the Osagent task will

run at. If not specified the Osagent
task defaults to run at priority 200.

Verbosity 0,1 Value=1 turns verbose mode on,
which provides information and
diagnostic messages during
execution. Default is Verbosity off.

Port 1024-65536 UDP Port which the Osagent
Communicates on. Default is 14000.

Logger Priority 0-255 The priority that the VisiBroker
Logger Task will be started at, if not
already running. If the priority is not
specified, the Logger task will run at
the priority specified for the osagent
thread, or the default Osagent task
priority if neither is specified.

This parameter only applies if
startOsagent is called before
ORB_init has been called, since the
call to ORB_init enables forwarding
for the Default Logger which includes
starting the Forwarder Thread.

Osagent_Local_Table Pointer to Array The OSAGENT_LOCAL_TABLE is an array
of network interfaces that the Smart
Agent should use. Each entry in the
OSAGENT_LOCAL_TABLE contains the IP
ADDRESS, SUBNET MASK and BROADCAST
ADDRESS for a single network
interface.

Default is the Primary Network
Interface.

Osagent_Addr_Table Pointer to Array The OSAGENT_ADDR_TABLE is an array
of IP Addresses which the Osagent
will use, when attempting to
communicate with other Osagents.

The configuration of the table is
relatively simple, just create array
entries containing the IP ADDRESS of
the NODE where the REMOTE Smart
Agent is running.

Default is the Primary Network.
initial_heartbeat_
window

Time in Seconds Specifies an "initial window size" for
the heartbeat_frequency period once
an Osagent has been started. After
this initial_heartbeat_window period
has passed, the rate of the Osagent
heartbeat is controlled by the
"heartbeat_frequency" parameter
below.

Default is 60.

132 VisiBroker-RT for C++ Developer ’s Guide

Starting the Smart Agent Programmatically from a
VisiBroker-RT Development Host
TheVisiBrokerRT60 Smart Agent can also be started from within a
VisiBrokerRT60 application. The library "libosagent" is neccessary to use the
Smart Agent programmatically on a target system. For a description of all
the libraries provided by the VisiBroker-RT for C++ product, see
<~XRef>“Step 6: Integrating VisiBroker-RT with Tornado/VxWorks”.

The sample application under <install-location>/VisiBrokerRT/examples/
osagent demonstrates the Smart Agent programatic API as well as the
usage of libosagent library. The following code section shows the
startOsagent prototype.

Code example 64 Starting the Smart Agent
startOsagent(
• unsigned long priority, Osagent task priority (200 is default)

int verbose = 0,
int port=-1, (default is 14000)
short logger_priority = -1 (VisiBroker Logger Task priority),
OSAGENT_LOCAL_ENTRY*local_table = NULL, (pointer to

OSAGENT_LOCAL_TABLE)
OSAGENT_ADDR_ENTRY *addr_table=NULL) (pointer to

OSAGENT_ADDR_TABLE)
long initial_heartbeat_window = 60, (Osagent to ORB

Heartbeat interval)
long initial_heartbeat_frequency = 5, (Osagent to ORB

initial Heartbeat frequency)
long heartbeat_frequency = 300); (Osagent to ORB

Heartbeat frequency)

Verbose output
UNIX On a UNIX and VisiBrokerRT target system, the verbose output for the

Smart Agent is sent to stdout.

Windows On a Windows system, the verbose output for the Smart Agent is written to
a log file stored at <installation_location>\VisiBrokerRT60\log\
osagent.log or to the directory specified by the VBROKER_ADM

initial_heartbeat_
frequency

Time in Seconds Specifies the initial rate of the
Osagent heartbeat. This heartbeat is
used by the Osagent to manage and
maintain Osagent to Osagent
communications. This parameter will
dictate the initial rate at which the
heartbeat message is sent, once the
Osagent is started. After the period
specified by the
"initial_heartbeat_window" above,
has passed, the rate of the Osagent
heartbeat is controlled by the
"heartbeat_frequency" parameter
below.

Default is 5.
heartbeat_frequency Time in Seconds Specifies the rate of the Osagent

heartbeat. This heartbeat is used by
the Osagent to manage and maintain
Osagent to Osagent communications.
This parameter will dictate the rate at
which the heartbeat message is sent.

Default is 300.

Option Value range Description

VisiBroker-RT for C++ Developer ’s Guide 133

environment variable or use OSAGENT_LOG_DIR to specify a different
directory to put the log.

Disabling the agent
Communication with the Smart Agent can be disabled in two ways:

1 The preferred way is to not use the Osagent support library as part of
your application. This is accomplished by not linking or loading the
osagent support library (i.e. libagentsupport.o).

2 If the Osagent support library is part of your VisiBrokerRT60 application,
an alternative to turning off communication with the Osagent is to pass an
ORB property at ORB_init time:

Code example 65 Turning Off Agent Communication via a ORB property
void do_corba(void)
{

/*---*/
/* ORB_init options can be specified in two ways. */
/* 1) By calling start_corba and specifying the */
/* ORB initialization string */
/* (e.g. start_corba("-ORBagentport 19000") */
/* 2) Programatically by specifying the */
/* ORB_initialization_options in the */
/* default_argc and default_argv variables below. */
/* */
/* PLEASE NOTE THAT THE OPTIONS PASSED IN VIA start_corba*/
/* OVERRIDE THE OPTIONS THAT ARE SET PROGRAMATICALLY. */
/*---*/

int default_argc = 1;
char *default_argv[] = {"-Dvbroker.agent.enableLocator=false"};
char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);

/*---*/
/* Call ORB_init */
/*---*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);

VISUtil::freeArgv(new_argc, & new_argv);
}

...

...

If you use string-to-object references, a naming service, or pass in a URL
reference, the Smart Agent is not required, and support can be either
excluded or turned off. If your client uses the _bind() method, you must
use the Smart Agent.

Ensuring Agent availability
Starting a Smart Agent on more than one host within the local network
allows clients to continue to bind to objects, even if one of the Smart Agents
terminates unexpectedly. If a Smart Agent becomes unavailable, all object
implementations registered with that Smart Agent will be automatically re-
registered with another Smart Agent. If no Smart Agents are running on the
local network, object implementations will continue retrying until a new
Smart Agent can be contacted.

If a Smart Agent terminates, any connections between a client and an
object implementation that were established before the Smart Agent

134 VisiBroker-RT for C++ Developer ’s Guide

terminated will continue without interruption. However, any new _bind()
requests issued by a client will cause a new Smart Agent to be contacted.

No special coding techniques are required to take advantage of these fault-
tolerant features. You only need to make sure a Smart Agent is started on
one or more hosts on the local network.

Checking client existence
A Smart Agent sends an “Are You Alive” message (often called a heartbeat
message) to its clients (i.e. each ORB instance it is communcating with)
every two minutes to verify that the client ORB is still connected. If the
client ORB does not respond, the Smart Agent assumes the client ORB has
terminated the connection.

NOTE

You can not change the interval for polling the client ORB.

Working within ORB domains
It is often desirable to have two or more separate ORB domains running at
the same time. One domain might consist of the production versions of
client programs and object implementations while another domain might be
made up of test versions of the same clients and objects that have not yet
been released for general use. If several developers are working on the
same local network, each may want to establish their own ORB domain so
that their testing efforts do not conflict with one another.

Figure 16 Running separate ORB domains simultaneously

VisiBroker-RT for C++ allows you to distinguish between multiple ORB
domains on the same network by using a unique UDP port number for the
Smart Agents for each domain. By default, the OSAGENT_PORT variable is
set to 14000. If you wish to use a different port number, check with your
system administrator to determine what port numbers are available. To
override the default setting, the OSAGENT_PORT variable must be set
accordingly before running a Smart Agent, an OAD, object implementations,
or client programs assigned to that ORB domain.

VisiBroker-RT for C++ Developer ’s Guide 135

Code example 66 Setting the OSAGENT_PORT environment variable for a UNIX
system running csh

prompt> setenv OSAGENT_PORT 5678
prompt> osagent &

The Smart Agent also uses another port number internally. This port
number can be set by using the OSAGENT_CLIENT_HANDLER_PORT
environment variable. This port number is used for both TCP and UDP
protocols and is the same for both.

Windows Setting the OSAGENT_PORT environment variable will provide the same
behavior as above.

Connecting Smart Agents on different local
networks

If you start multiple Smart Agents on your local network, they will discover
each other by using UDP broadcast messages. Your network administrator
configures a local network by specifying the scope of broadcast messages
using the IP subnet mask. Figure 17 shows two local networks, located on
separate, connected local networks.

Figure 17 Two Smart Agents on separate local networks

To allow the Smart Agent on one network to contact a Smart Agent on
another local net- work, you must make the host name or IP address of the
remote Smart Agent available. On the host system, IP addresses of Smart
Agents outside of the local network are speci- fied in a file. The name of this
file may be specified by setting the OSAGENT_ADDR_FILE environment
variable.

On VisiBrokerRT60 target systems, the location of the Smart Agents outside
of your local network can also be specified via the OSAGENT_ADDR_FILE
interface when starting the osagent.

Use of the OSAGENT_ADDR_FILE Environment
Variable (applicable on Development Host
systems only))
The OSAGENT_ADDR_FILE environment variable specifies the filename of
the file containing the address of agents outside your local network. When a
client program or object implementation has this environment variable set,

136 VisiBroker-RT for C++ Developer ’s Guide

the ORB will try each address in the file until a Smart Agent is located. This
mechanism has the lowest precedence of all the mechanisms for specifying
a host. If this file is not specified, the <VBROKER_ADM Environment
variable>/agentaddr file is used.

Code example 67 shows what this file would need to contain to allow the
Smart Agent on local network #1 to connect to the Smart Agent on the
network #2.

Code example 67 Content of the agentaddr file for the osagent on network #1.
101.10.2.6

Use of the OSAGENT_ADDR_TABLE By Smart
Agents (applicable on VxWorks Target systems
only)
To allow the Smart Agent on one network to contact a Smart Agent on
another local network, you must make the IP address of the remote Smart
Agent available in the OSAGENT_ADDR_TABLE.

The OSAGENT_ADDR_TABLE is customer declared array data structure
specifiing the IP addresses of other Smart Agents. These addresses
represent Smart Agents executing on hosts/ targets located outside the
local network with which the osagent is to communicate.

The include file vosagent.h provides a typedef for the structure to use
when declaring your own OSAGENT_ADDR_TABLE. Additionally this header
file provides an example of how to declare and use your own
OSAGENT_ADDR_TABLE when starting the osagent.

Code example 68 Specifying an OSAGENT_ADDR_TABLE on VxWorks Target
System

#include “vosagent.h”
...
struct OSAGENT_ADDR_ENTRY {

char ip_address[INET_ADDR_LEN];
char subnet_mask[INET_ADDR_LEN];
char broadcast_address[INET_ADDR_LEN];

};
//
// Sample OSAGENT_LOCAL_TABLE
OSAGENT_ADDR_ENTRY my_osagent_addr_table[] =
{

{"101.10.2.6"},
{NULL}

}
// Then when starting the osagent specify the address of your
// OSAGENT_ADDR_TABLE when calling startOsagent

startOsagent(210, // Osagent task priority
0, // verbose = 0,

2100, //port=21000, (default is 14000)
100, //VisLogger task priority
NULL, //pointer to your

osagent_local_table))
my_osagent_addr_table);// pointer to your osagent_addr_table

...

Note

If a remote network has multiple Smart Agents running, you should list the
IP addresses of all of the Smart Agents on the remote network.

VisiBroker-RT for C++ Developer ’s Guide 137

How Smart Agents detect each other
Suppose two agents, Agent 1 and Agent 2, are listening on the same UDP
port from two different machines on the same subnet. Agent 1 starts before
Agent 2. The following events occur:

• When Agent 2 starts, it UDP broadcasts its existence and sends a request
message to locate any other Smart Agents.

• Agent 1 makes note that Agent 2 is available on the network and
responds to the request message.

• Agent 2 makes note that another agent, Agent 1, is available on the
network.

If Agent 2 is terminated gracefully (such as killing with Ctrl-C on Unix or
Windows), Agent 1 is notified that Agent 2 is no longer available.

If Agent 2 is terminated abnormally (such as rebooting the VisiBrokerRT60
target system that Agent 2 is running on), Agent 1 is not notified that
Agent 2 is no longer available. Agent 1 continues until:

• a client asks for an object reference that does not exist in Agent 1’s
dictionary, and Agent 1 forwards the request to Agent 2. Since Agent 2 is
no longer available, Agent 1 is forced to clean up.

or

• until the Agent to Agent heartbeat mechanism identifies that Agent to
Agent communication between Agent 1 and Agent 2 has failed at which
point Agent 1 will clean up knowledge of Agent 2 from its data structures.

Until Agent 1 is forced to clean up, osfind still shows two agents listed and
catches ObjLocation::Fail exception.

Working with multihomed hosts
When you start the Smart Agent on a host that has more than one IP
address (known as a multihomed host) it can provide a powerful
mechanism for bridging objects located on separate local networks. All local
networks to which the host is connected will be able to communicate with a
single Smart Agent, effectively bridging the local networks.

Figure 18 Smart Agent on a multihomed host

UNIX On a multi-homed UNIX development host or target system, the Smart
Agent dynamically configures itself to listen and broadcast on all of the
interfaces which support point-to-point connections or broadcast
connections. You may explicitly specify interface settings using the

138 VisiBroker-RT for C++ Developer ’s Guide

localaddr file, as described in “Specifying interface usage for Smart Agents”.

Windows On a multihomed Windows development host, the Smart Agent is not able
to dynamically determine the correct subnet mask and broadcast address
values. To overcome this limitation, you must explicitly specify the interface
settings you want the Smart Agent to use with the localaddr file.

When you start the Smart Agent with the verbose option, each interface
that the Smart Agent uses will be listed at the beginning of the messages
produced. Code example 69 shows the sample output from a Smart Agent
started with the verbose option on a multihomed host.

Code example 69 Verbose output from a Smart Agent started on a multihomed host
Bound to the following interfaces:
Address: 199.10.9.5 Subnet: 255.255.255.0 Broadcast:199.10.9.255
Address: 101.10.2.6 Subnet: 255.255.255.0 Broadcast:101.10.2.255
...

As shown in Code example 69, the output shows the address, subnet mask,
and broadcast address for each interface in the machine.

UNIX • This output should match the results from the command ifconfig -a.

• For Tornado targets this output should match the results from the
WindShell function call ifShow.

Windows • This output should match the results from the Windows command
ipconfig -a.

If you wish to override these settings, you can specify this interface
information in the localaddr file. See “Specifying interface usage for Smart
Agents” below for details.

Specifying interface usage for Smart Agents

Use of the LOCAL_ADDR_FILE For Multi-Homed hosts
Note
It is not necessary to specify interface information on a single-homed host.

You can specify interface information for each interface you wish the Smart
Agent to use on your multihomed host in the localaddr file. The localaddr
file should have a separate line for each interface that contains the host’s IP
address, subnet mask, and broadcast address. By default, VisiBroker-RT for
C++ searches for the localaddr file in the VBROKER_ADM directory. You can
override this location by setting the OSAGENT_LOCAL_FILE environment
variable to point to this file. Lines in this file that begin with a “#” character
are treated as comments and ignored. Code example 70 shows the contents
of the localaddr file for the multihomed host listed above.

Code example 70 Contents of an example localaddr file
#entries of format <address> <subnet_mask> <broadcast address>
199.10.9.5 255.255.255.0 199.10.9.255
101.10.2.6 255.255.255.0 101.10.2.255

UNIX Though the Smart Agent can automatically configure itself on a multihomed
host running UNIX, you can use the localaddr file to explicitly specify the
interfaces that your host contains. You can display all the available interface
values for your host by using the following command:

prompt> ifconfig -a

Output from this command appears similar to the following:
lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232

inet 127.0.0.1 netmask ff000000

VisiBroker-RT for C++ Developer ’s Guide 139

le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu
1500

inet 199.10.9.5 netmask ffffff00 broadcast 199.10.9.255
le1: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu
1500

inet 101.10.2.6 netmask ffffff00 broadcast 101.10.2.255

Windows The use of the localaddr file with multihomed hosts is required for hosts
running Windows because the Smart Agent is not able to automatically
configure itself. You can obtain the appropriate values for this file by
accessing the TCP/IP protocol properties from the Network Control Panel. If
your host is running Windows NT, the ipconfig command will provide the
needed values. You run this command as follows:

prompt>ipconfig

Output from this command appears similar to the following:
Ethernet adapter El59x1:

IP Address........... : 199.10.9.5
Subnet Mask......... : 255.255.255.0
Default Gateway..... : 199.10.9.1

Ethernet adapter Elnk32:
IP Address........... : 101.10.2.6
Subnet Mask......... : 255.255.255.0
Default Gateway...... : 101.10.2.1

Use of the LOCAL_ADDR_FILE For Multi-Homed
VxWorks Targets

Note

This is applicable on VxWorks Target systems only.

You can specify multiple network interface information in the
OSAGENT_LOCAL_TABLE table. The OSAGENT_LOCAL_TABLE is a
customer defined table which contains a list of the network interfaces that
the osagent is to use. Each entry in this table should contain the IP address,
subnet mask, and broadcast address for a single interface.

The include file vosagent.h provides a typedef for the structure to use when
declaring your own OSAGENT_LOCAL_TABLE. Additionally this header file
provides an example of how to declare and use your own
OSAGENT_LOCAL_TABLE when starting the osagent.

Code example 71 Specifying an OSAGENT_LOCAL_TABLE on VxWorks Target
System

#include “vosagent.h”
...
struct OSAGENT_LOCAL_ENTRY {

char ip_address[INET_ADDR_LEN];
char subnet_mask[INET_ADDR_LEN];
char broadcast_address[INET_ADDR_LEN];

};

// --
// Sample OSAGENT_LOCAL_TABLE
OSAGENT_LOCAL_ENTRY my_osagent_local_table[] =
{

{"224.192.128.56","255.255.255.0","224.192.128.255"},
{"196.192.86.99","255.255.255.0","196.192.86.99"},
{NULL}

}

// Then when starting the osagent specify the address of your
// OSAGENT_LOCAL_TABLE when calling startOsagent

startOsagent(210, // Osgent task priority
0, // verbose = 0,

140 VisiBroker-RT for C++ Developer ’s Guide

2100. //port=21000, (default is 14000)
100, //VisLogger task priority

my_osagent_addr_table, //pointer to your osagent_local_table))
NULL); // pointer to your osagent_addr_table

...

Using point-to-point communications
VisiBroker-RT for C++ provides you with three different mechanisms for
circumventing the use of UDP broadcast messages for locating Smart
Agents. When a Smart Agent is located with any of these alternate
approaches, that Smart Agent will be used for all subsequent interactions. If
a Smart Agent cannot be located using any of these alternate approaches,
the ORB will revert to using the broadcast message scheme to locate a
Smart Agent.

Specifying a host as a runtime parameter
Code example 70 shows how you can specify the IP address where a Smart
Agent is running as a runtime parameter for your client program or object
implementation. Since specifying an IP address will cause a point-to-point
connection to be established, you can even specify an IP address of a node
located outside your local network. This mechanism takes precedence over
any other node address specification.

Code example 72 Turning Off Agent Communication via a ORB property
void do_corba(void)
{

/*--*/
/* ORB_init options can be specified in two ways. */
/* 1) By calling start_corba and specifying the */
/* ORB initialization string */
/* (e.g. start_corba("-ORBagentport 19000") */
/* 2) Programatically by specifying the */
/* ORB_initialization_options in the */
/* default_argc and default_argv variables below. */
/* */
/* PLEASE NOTE THAT THE OPTIONS PASSED IN VIA start_corba */
/* OVERRIDE THE OPTIONS THAT ARE SET PROGRAMATICALLY. */
/*--*/

// Get the property manager; notice the value returned
// is not placed into a 'var' type.
const char * my_properties[] =
{
"vbroker.agent.addr=<ip address>",

NULL
};

VISPropertyTable property_table("my_properties",
my_properties);

int default_argc = 2;
char *default_argv[] = {"ORBpropTable", "my_properties""};
char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);

/*--*/
/* Call ORB_init */
/*--*/
VISTRY
{

// Initialize the ORB

VisiBroker-RT for C++ Developer ’s Guide 141

orb = CORBA::ORB_init(new_argc, new_argv);
VISUtil::freeArgv(new_argc, & new_argv);

...

...

By default, vbroker.agent.addr is set to NULL.

Specifying an IP address with an environment
variable
You can specify the IP address of a Smart Agent by setting the OSAGENT_ADDR
environment variable prior to starting your client program or object
implementation. This environment variable takes precedence if a node
address is not specified as a runtime parameter.

Figure 19 Setting the OSAGENT_ADDR environment variable using the
Tornado WindShell

Tornado --> putenv(“OSAGENT_ADDR=199.10.9.5”)
--> start_corba

Note

This requires ENV_VARS as part of VxWorks Kernel.

Specifying hosts with the agentaddr table
Your client program or object implementation can use the agentaddr table,
described in “Connecting Smart Agents on different local networks”, to circumvent
the use of UDP broadcast message to locate a Smart Agent. Simply create a
table containing the IP addresses or fully qualified hostname of each node
where a Smart Agent is running and then specify this
OSAGENT_ADDR_TABLE during ORB_init(). When a client program or object
implementation has specified an OSAGENT_ADDR_TABLE, the ORB will try
each address in the table until a Smart Agent is located. This mechanism
has the lowest precedence of all the mechanisms for specifying a host. If an
OSAGENT_ADDR_TABLE is not specified, the ORB will default to using UDP
Broadcast to find a Smart Agent.

Ensuring object availability
You can provide fault tolerance for objects by starting instances of those
objects on multiple nodes. If an implementation becomes unavailable, the
ORB will detect the loss of the connection between the client program and
the object implementation and will automatically contact the Smart Agent
to establish a connection with another instance of the object
implementation, depending on the effective rebind policy established by the
client. See “Using Quality of Service” for more information on establishing
client policies.

Caution

The rebind option must be enabled if the ORB is to attempt to reconnect the
client with a replica object implementation. This is the default behavior.

142 VisiBroker-RT for C++ Developer ’s Guide

Invoking methods on stateless objects
Your client program can invoke a method on an object implementation
which does not maintain state without being concerned if a new instance of
the object is being used.

Achieving fault-tolerance for objects that
maintain state
Fault tolerance can also be achieved with object implementations that
maintain state, but it will not be transparent to the client program. In these
cases, your client program must either use the Quality of Service (QoS)
policy VB_NOTIFY_REBIND or register an interceptor for the ORB object.
For information on using QoS, see “Using Quality of Service”.

When the connection to an object implementation fails and the ORB
reconnects the client to a replica object implementation, the bind() method
of the bind interceptor will be invoked by the ORB. The client must provide
an implementation of this bind method to bring the state of the replica up to
date. Interceptors are described in “Using Portable Interceptors” .

Migrating objects between VisiBrokerRT60 Systems
Object migration is the process of terminating an object implementation on
one VisiBrokerRT60 system, and then starting it on another VisiBrokerRT60.
Object migration can be used to provide load balancing by moving objects
from overloaded systems to systems that have more resources or
processing power (there is no load balancing between servers registered
with different osagents.) Object migration can also be used to keep objects
available when a target has to be shutdown for hardware or software
maintenance.

Note
The migration of objects that do not maintain state is transparent to the
client program. If a client is connected to an object implementation that has
migrated, the Smart Agent will detect the loss of the connection and
transparently reconnect the client to the new object on the new
VisiBrokerRT60 system.

Migrating objects that maintain state
The migration of objects that maintain state is also possible, but it will not
be transparent to a client program that has connected before the migration
process begins. In these cases, the client program must register an
interceptor for the object. When the connection to the original object is lost
and the ORB reconnects the client to the object, the interceptor’s
rebind_succeeded() member function will be invoked by the ORB. The
client can implement this member function to bring the state of the object
up to date. Interceptors are described in “Using Portable Interceptors”.

Migrating instantiated objects
If the objects that you wish to migrate were created by a VisiBrokerRT60
system instantiating the implementation’s class, you need only start it on a
new system and deactivate the object implementation from the original
system. When the original instance is deactivated, it will be unregistered

VisiBroker-RT for C++ Developer ’s Guide 143

with the Smart Agent. When the new instance is started on the new system,
it will register with the Smart Agent. From that point on, client invocations
will be routed to the object implementation on the new system.

Reporting all objects and services
The Smart Finder (osfind) development host command reports on all
VisiBroker-RT for C++ related objects and services which are currently
available on a given network.

You can use osfind to determine the number of Smart Agent processes
running on the network and the exact target on which they are executing.
The osfind command also reports on all VisiBroker-RT for C++ objects that
are active on the network. You can use osfind to monitor the status of the
network and locate stray objects during the debugging phase.

The osfind command has the following syntax and can be run from any
Windows or Unix development host:

osfind [options]

The following options are valid with osfind. If no options are specified,
osfind lists all of the agents, OAD’s, and implementations in your domain.

Option Description
-a Lists all Smart Agents in your domain.
-o Lists all Object Activation Daemons in your domain.
-d Prints hostnames as quad addresses.

144 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 145

Using the Location Service
The VisiBroker-RT for C++ Location Service provides enhanced object
discovery that enables you to find object instances based on particular
attributes. Working with VisiBroker-RT for C++ Smart Agents, the Location
Service notifies you of what objects are presently accessible on the network,
and where they reside. The Location Service is a VisiBroker-RT for C++
extension to the CORBA specification and is only useful for finding objects
implemented with VisiBroker-RT for C++.

NOTE

The libraries libagentsupport.o and liblocsupport.o are required when
building a VisiBrokerRT60 application to support use of the VisiBroker
Location Service. For a description of all the libraries provided by the
VisiBroker-RT for C++ product please refer to “Step 6: Integrating VisiBroker-RT
with Tornado/VxWorks”.

What is the Location Service?
The Location Service is an extension to the CORBA specification that
provides general-purpose facilities for locating object instances. The
Location Service communicates directly with one Smart Agent which
maintains a catalog, which contains the list of the instances it knows about
and the information it knows about the instances. When queried by the
Location Service, a Smart Agent forwards the query to the other Smart
Agents, and aggregates their replies in the result it returns to the Location
Service.

The Location Service knows about all object instances that are registered on
a POA with the BY_INSTANCE Policy and objects that are registered as
persistent on a BOA.

The following diagram illustrates this concept.

Figure 20 Using the Smart Agent to find instances of objects

Note

A server specifies an instance’s scope when it creates the instance. Only
globally-scoped instances are registered with Smart Agents.

The Location Service can make use of the information the Smart Agent
keeps about each object instance. For each object instance, the Location
Service maintains information encapsulated in the structure
ObjLocation::Desc shown in IDL sample 8.

146 VisiBroker-RT for C++ Developer ’s Guide

IDL sample 8 IDL for the Desc structure
struct Desc {

Object ref;
IIOP::ProfileBodyValue iiop_locator;
string repository_id;
string instance_name;
boolean activable;
string agent_hostname;

};
typedef sequence<Desc> DescSeq;

The IDL for the Desc structure contains the following information:

• Object reference, or a handle for invoking the object.

• iiop_locator interface allows access to the host name and the port of the
instance’s server. This information is only meaningful if the object is
connected with IIOP, which is the only supported protocol. Host names
are returned as strings in the instance description.

• Repository ID, which is the interface designation for the object instance
that can be looked up in the Interface and Implementation Repositories.
If an instance satisfies multiple interfaces, the catalog contains an entry
for each interface, as if there were an instance for each interface.

• Instance name, or the name given to the object by its server.

• Activatable flag which differentiates between instances that can be
activated by an OAD, and instances that are manually started.

• Host name of the Smart Agent with which the instance is registered.

The Location Service is useful for purposes such as load balancing and
monitoring. Suppose that replicas of an object are located on several
VisiBrokerRT60 systems. You could deploy a bind interceptor that maintains
a cache of the VisiBrokerRT60 systems names that offer a replica and each
target’s recent load average. The interceptor updates its cache by asking
the Location Service for the systems currently offering instances of the
object, and then queries the targets to obtain their load averages. The
interceptor then returns an object reference for the replica on the target
with the lightest load. See “Using Portable Interceptors” for more information
about writing interceptors.

Location Service components
The Location Service is accessible through the Agent interface. Methods for
the Agent interface can be divided into two groups: those that query a
Smart Agent for data describing instances and those that register and
unregister triggers. Triggers provide a mechanism by which clients of the
Location Service can be notified of changes to the availability of instances.

What is the Location Service agent?
The Location Service Agent is a collection of methods that enable you to
discover objects on a network of Smart Agents. You can query based on the
interface’s repository ID, or based on a combination of the interface’s
repository ID and the instance name. Results of a query can be returned as
either object references or more complete instance descriptions. An object
reference is simply a handle to a specific instance of the object located by a
Smart Agent.

Instance descriptions contain the object reference, as well as the instance’s
interface name, instance name, host name and port number, and

VisiBroker-RT for C++ Developer ’s Guide 147

information about its state (for example, whether it is running or can be
activated).

Note
The Location Service is provided as a separate ORB library. To use the
Location Service, you must add Location Service support to the
VisiBrokerRT60 target system. Location Service support is delivered as
"Add-On" functionality for VisiBroker-RT for C++.support can be included
into a VisiBrokerRT60 application by building the application with the
libagentsupport library. Please refer to “Step 6: Integrating VisiBroker-RT with
Tornado/VxWorks” for information on adding the libagentsupport library to
your application.

Figure 21 illustrates the use of interface repository IDs and instance names
given the following example IDL:

module Automobile {
interface Car{...};
interface Sedan:Car {...};

}

Figure 21 Use of interface repository IDs and instance names

Given the example in Figure 21, the following diagram visually depicts Smart
Agents on a network with references to instances of Car. In this example,
there are three instances: one instance of Kerri’s Car and two replicas of
Tom’s Car.

Figure 22 Smart Agents on a network with instances of an interface

The following sections explain how the methods provided by the Agent class
can be used to query VisiBroker-RT for C++ Smart Agents for information.
Each of the query methods can raise the Fail exception, which provides a
reason for the failure.

Obtaining names of all hosts running Smart Agents
Using the HostnameSeq all_agent_locations() method, you can find out
which servers are hosting VisiBroker-RT for C++ Smart Agents. In the
example shown in Figure 22, this method would return the names of two
hosts: Athena and Zeus.

148 VisiBroker-RT for C++ Developer ’s Guide

Finding all accessible interfaces
You can query the VisiBroker-RT for C++ Smart Agents on a network to find
out about all accessible interfaces. To do so, you can use the
RepositoryIDSeq all_repository_ids() method. In the example shown
in Figure 22, this method would return the repository IDs of two interfaces:
Car and Sedan.

Note
Earlier versions of the VisiBroker-RT for C++ ORB used IDL interface names
to identify interfaces, but the Location Service uses the repository id
instead. To illustrate the difference, if an interface name is
::module1::module2::interface, the equivalent repository id is
IDL:module1/module2/interface:1.0. For the example shown in Figure 21,
the repository ID for Car would be IDL:Automobile/Car:1.0, and the
repository ID for Sedan would be IDL:Automobile/Sedan:1.0.

Obtaining references to instances of an interface
You can query VisiBroker-RT for C++ Smart Agents on a network to find all
available instances of a particular interface. When performing the query,
you can use either of these methods:

Table 14 Obtaining references to objects that implement a given interface

In the example shown in Figure 22, a call to either method with the requestn
IDL:Automobile/Car:1.0 would return three instances of the Car interface:
Tom’s Car on Athena, Tom’s Car on Zeus, and Kerri’s Car. The Tom’s Car
instance is returned twice because there are occurrences of it with two
different Smart Agents.

Obtaining references to like-named instances of an
interface
Using one of the following methods, you can query VisiBroker-RT for C++
Smart Agents on a network to return all occurrences of a particular instance
name.

Table 15 References to like-named instances of an interface

In the example shown in Figure 22, a call to either method specifying the
repository ID IDL:Automobile/Sedan:1.0 and instance name Tom’s Car
would return two instances because there are occurrences of it with two
different Smart Agents.

Method Description
ObjSeq all_instances(in string
repository_id)

Use this method to return object
references to instances of the
interface.

DescSeq all_instance_descs(in string
repository_id)

Use this method to return an
instance description for instances of
the interface.

Method Description
ObjSeq all_replica(in string
repository_id, in string
instance_name)

Use this method to return object
references to like-named instances
of the interface.

DescSeq all_replica_descs(in string
repository_id, in string
instance_name)

Use this method to return an
instance description for like-named
instances of the interface.

VisiBroker-RT for C++ Developer ’s Guide 149

What is a trigger?
A trigger is essentially a callback mechanism that lets you determine
changes to the availability of a specified instance. It is an asynchronous
alternative to polling an Agent, and is typically used to recover after the
connection to an object has been lost. Whereas queries can be employed in
many ways, triggers are special-purpose.

Looking at trigger methods
The trigger methods in the Agent class are described in the following table:

Table 16 Trigger methods

Both of the Agent trigger methods can raise the Fail exception, which
provides a reason for the failure.

The TriggerHandler interface consists of the methods described in the
following table:

Table 14.4 TriggerHandler interface method

Creating triggers
A TriggerHandler is a callback object. You implement a TriggerHandler by
deriving from the TriggerHandlerPOA class (or the TriggerHandlerImpl
class if using BOA), and implementing its impl_is_ready() and
impl_is_down() methods. To register a trigger with the Location Service,
you use the reg_trigger() method in the Agent interface. This method
requires that you provide a description of the instance you want to monitor,
and the TriggerHandler object you want invoked when the availability of
the instance changes. The instance description (TriggerDesc) can contain
combinations of the following instance information: repository ID, instance
name, and host name. The more instance information you provide, the more
particular your specification of the instance.

IDL sample 9 IDL for TriggerDesc
struct TriggerDesc {

string repository_id;
string instance_name;
string host_name;

};

Note
If a field in the TriggerDesc is set to the empty string (“”), it is ignored. The
default for each field value is the empty string.

Method Description
void reg_trigger(in TriggerDesc
desc, in TriggerHandler handler)

Use this method to register a trigger
handler.

void unreg_trigger(in TriggerDesc
desc, in TriggerHandler handler)

Use this method to unregister a
trigger handler.

Method Description
void impl_is_ready(in Desc desc) This method is called by the

Location Service when an instance
matching the desc becomes
accessible.

void impl_is_down(in Desc desc) This method is called by the
Location Service when an instance
becomes unavailable.

150 VisiBroker-RT for C++ Developer ’s Guide

For example, a TriggerDesc containing only a repository ID matches any
instance of the interface. Looking back to our example in Figure 22, a trigger
for any instance of IDL:Automobile/Car:1.0 would occur when one of the
following instances becomes available or unavailable: Tom’s Car on Athena,
Tom’s Car on Zeus, or Kerri’s Car. Adding an instance name of “Tom’s Car”
to the TriggerDesc tightens the specification so that the trigger only occurs
when the availability of one of the two “Tom’s Car” instances changes.
Finally, adding a host name of Athena refines the trigger further so that it
only occurs when the instance of Tom’s Car on Athena becomes available or
unavailable.

Looking at only the first instance found by a trigger
Triggers are “sticky.” A TriggerHandler is invoked every time an object
satisfying the trigger description becomes accessible. You may only be
interested in learning when the first instance becomes accessible. If this is
the case, invoke the Agent’s unreg_trigger() method to unregister the
trigger after the first occurrence is found.

Querying an agent
This section contains two examples of using the Location Service to find
instances of an interface. The first example uses the Account interface
shown in the following IDL excerpt:

IDL sample 10 Account example interface definition
// Bank.idl
module Bank {

interface Account {
float balance();

};
interface AccountManager {

Account open (in string name);
};

};

Finding all instances of an interface
The following code sample uses the all_instances() method to locate all
instances of the Account interface. Notice that the Smart Agents are queried
by passing “LocationService” to the ORB::resolve_initial_references()
method, then narrowing the object returned by that method to an
ObjLocation::Agent. Notice, as well, the format of the Account repository
id—IDL:Bank/Account:1.0.

Code example 73 Finding all instances satisfying the AccountManager interface
...

void account_finder()
{

VISTRY
{

// Obtain a reference to the Location Service
CORBA::Object_var obj =

orb->resolve_initial_references("LocationService");

if (CORBA::is_nil(obj))
{

cout << "Unable to locate initial LocationService" <<
endl;

return;
}

VisiBroker-RT for C++ Developer ’s Guide 151

ObjLocation::Agent_var the_agent =
ObjLocation::Agent::_narrow(obj);

// Query the Location Service for all implementations of
// the Account interface
ObjLocation::ObjSeq_var accountRefs;
VISIFNOT_EXCEP
accountRefs = the_agent->

all_instances("IDL:Bank/AccountManager:1.0");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << "Obtained " << accountRefs->length()
<< " Account objects" << endl;

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
for (CORBA::ULong i=0; i < accountRefs->length(); i++)

{
cout << "Stringified IOR for account #" << i << ":" <<

endl;
CORBA::String_var

stringified_ior(orb->object_to_string(accountRefs[i]));
cout << stringified_ior << "\n" << endl;

} VISEND_IFNOT_EXCEP

}
VISCATCH (CORBA::Exception, e)

{
cout << "Caught exception: " << e << endl; return;

}
VISEND_CATCH

return;
}

Finding everything known to Smart Agents
The following code sample shows how to find everything known to Smart
Agents. It does this by invoking the all_repository_ids() method to
obtain all known interfaces. Then it invokes the all_instances_descs()
method for each interface to obtain the instance descriptions.

Code example 74 Finding everything known to a Smart Agent
...

void finder()
{

VISTRY
{

CORBA::Object_var obj =
orb->resolve_initial_references("LocationService");

if (CORBA::is_nil(obj))
{

cout << "Unable to locate initial LocationService" <<
endl;

return;
}

ObjLocation::Agent_var the_agent =
ObjLocation::Agent::_narrow(obj);

//Report all hosts running osagents
ObjLocation::HostnameSeq_var HostsRunningAgents;
VISIFNOT_EXCEP

152 VisiBroker-RT for C++ Developer ’s Guide

HostsRunningAgents = the_agent->all_agent_locations();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << "Located " << HostsRunningAgents->length()

<< " Hosts running Agents" << endl;
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
for (CORBA::ULong k=0; k<HostsRunningAgents->length();

k++)
{

cout << "\tHost #" << (k+1) << ": "
<< (const char*) HostsRunningAgents[k] << endl;

}
cout << endl;
VISEND_IFNOT_EXCEP

// Findand display all Repository Ids
ObjLocation::RepositoryIdSeq_var repIds;
VISIFNOT_EXCEP

repIds = the_agent->all_repository_ids();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << "Located" << repIds->length() << " Repository Ids"

<< endl;
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
for (CORBA::ULong j=0; j<repIds->length(); j++)

cout << "\tRepository ID #" << (j+1) << ": " << repIds[j]
<< endl;

VISEND_IFNOT_EXCEP

// Find all Object Descriptors for each Repository Id
VISIFNOT_EXCEP

for (CORBA::ULong i=0; i < repIds->length(); i++)
{

ObjLocation::DescSeq_var descriptors =
the_agent->all_instances_descs(repIds[i]);

VISIF_EXCEP(break;)

cout << endl;
cout << "Located " << descriptors->length() << " objects

for "

<< (const char*) (repIds[i]) << " (Repository Id #" <<
(i+1)

<< "):" << endl;

for (CORBA::ULong j=0; j < descriptors->length(); j++)
{

cout << endl;
cout << (const char*) repIds[i] << " #" << (j+1) <<

":" << endl;

cout << "\tInstance Name \t= "
<< descriptors[j].instance_name << endl;

cout << "\tHost\t= "
<< descriptors[j].iiop_locator.host <<endl;

cout << "\tPort\t= "
<< descriptors[j].iiop_locator.port <<endl;

cout << "\tAgent Host \t= "
<< descriptors[j].agent_hostname <<endl;

cout << "\tActivable \t= " <<
(descriptors[j].activable?"YES":"NO")
<< endl;

}
}

VisiBroker-RT for C++ Developer ’s Guide 153

VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{
cout << "CORBA Exception during execution of find_all: " << e

<< endl;
return;

}
VISEND_CATCH

return;
}

Writing and registering a trigger handler
The following section illustrates how a trigger is implemented and
registered.

Implementing and registering a trigger handler
The following code sample implements and registers a TriggerHandler.
The TriggerHandlerImpl’s impl_is_ready() and impl_is_down()
methods display the description of the instance that caused the trigger to
be invoked, and optionally unregister itself. If it unregisters itself, the
method calls the CORBA::BOA::deactivate_obj() method followed by
CORBA::release(). This will remove the Trigger from the BOA’s Active
Object Map and finally call the Triggers destructor to finish cleanup of the
Trigger object instance.

Notice that the TriggerHandlerImpl class keeps a copy of the desc and
Agent parameters with which it was created. The unreg_trigger() method
requires the desc parameter. The Agent parameter is duplicated in case the
reference from the main program is released.

Code example 75 Implementing a trigger handler
...

// Instances of this class will be called back by the Agent when
the
// event for which it is registered happens.

class TriggerHandlerImpl : public
_sk_ObjLocation::_sk_TriggerHandler
{

public:

TriggerHandlerImpl(ObjLocation::Agent_ptr agent,
const ObjLocation::TriggerDesc& initial_desc)

: _agent(ObjLocation::Agent::_duplicate(agent)),
_initial_desc(initial_desc) {}

void impl_is_ready(const ObjLocation::Desc& desc)
{

notification(desc, 1);
}

void impl_is_down(const ObjLocation::Desc& desc)
{

notification(desc, 0);
}

private:
ObjLocation::Agent_var _agent;
ObjLocation::TriggerDesc _initial_desc;

154 VisiBroker-RT for C++ Developer ’s Guide

void notification(
const ObjLocation::Desc& desc, CORBA::Boolean isReady)

{
if (isReady)
{
cout << "Implementation is ready:" << endl ;
}

else
{

cout << "Implementation is down:" << endl ;
}

cout << "\tRepository Id = " << desc.repository_id << endl;
cout << "\tInstance Name = " << desc.instance_name << endl;

cout << "\tHost Name = " << desc.iiop_locator.host << endl;
cout << "\tPort = " << desc.iiop_locator.port << endl;
cout << "\tAgent Host = " << desc.agent_hostname << endl;
cout << "\tActivable= " << (desc.activable? "YES" : "NO") <<

endl;
cout << endl;
cout << "Unregister this handler and exit (y/n)? " << endl;

char prompt[256];
cin >> prompt;

if ((prompt[0] == 'y') || (prompt[0] == 'Y'))
{

VISTRY
{

agent->unreg_trigger(_initial_desc, this);
}

VISCATCH(ObjLocation::Fail, e)
{
cout << "Failed to unregister trigger with reason=["

<< (int) e.reason << "]" << endl;

return;
}

VISEND_CATCH

cout << "Deactivate and release account trigger...." <<
endl ;

VISTRY
{

boa->deactivate_obj(trig);
}
VISCATCH(ObjLocation::Fail, e)
{

cout << "Failed to deactivate trigger" << endl ;
cerr << e << endl;
return;

}
VISEND_CATCH

CORBA::release(trig);
}

}
};

void account_trigger(void)
{

VISTRY
{

int argc = 1;
char*argv[] ={"DO_CORBA"};

VISIFNOT_EXCEP
// Initialize the BOA.

VisiBroker-RT for C++ Developer ’s Guide 155

boa = orb->BOA_init(argc, argv);
VISEND_IFNOT_EXCEP

CORBA::Object_ptr obj = orb->
resolve_initial_references("LocationService");

if (CORBA::is_nil(obj))
{

cout << "Unable to locate initial LocationService" <<
endl;

}
else
{

ObjLocation::Agent_var the_agent =
ObjLocation::Agent::_narrow(obj);

// Create the trigger descriptor to notify us about
// OSAgent changes with respect to Account objects
ObjLocation::TriggerDesc *desc = new

ObjLocation::TriggerDesc;

desc->repository_id = (const char*) "IDL:Bank/
AccountManager:1.0";

desc->instance_name = (const char*)"";
desc->host_name = (const char*)"";

trig = new TriggerHandlerImpl(the_agent, *desc);

boa->obj_is_ready(trig);

VISIFNOT_EXCEP
the_agent->reg_trigger(*desc,trig); VISEND_IFNOT_EXCEP

}
}
VISCATCH (CORBA::Exception, e)

{
cout << "account_trigger caught Exception:" << endl ;
cerr << e << endl;
return;

}
VISEND_CATCH

return;
}

156 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 157

Using the Naming Service
This chapter describes how to use the VisiBroker-RT for C++ Naming Service
which is a complete implementation of the Interoperable Naming Specification
document (orbos/98-10-11) from the OMG.

NOTE

The libraries:
• libservicesupport.o
• libname_c_s.o
• libname.o

are required when building a VisiBrokerRT60 application to support use of
the VisiBroker Naming Service. For a description of all the libraries provided
by the VisiBroker-RT for C++ product please refer to “Step 6: Integrating
VisiBroker-RT with Tornado/VxWorks”.

Overview
The Naming Service allows you to associate one or more logical names with
an object reference and store those names in a namespace. It also allows
your client applications to use the Naming Service to obtain an object
reference by using the logical name assigned to that object.

Figure 23 contains a simplified view of the Naming Service that shows how:

1 An object implementation can bind a name to one of its objects within a
namespace.

2 Client applications can then use the same namespace to resolve a name
which returns an object reference to a naming context or an object.

Figure 23 Binding, resolving, and using an object name from a naming
context within a namespace

There are some important differences to consider between locating an
object implementation with the VisiBroker-RT for C++ Naming Service as
opposed to the Smart Agent:

158 VisiBroker-RT for C++ Developer ’s Guide

• Smart Agent uses a flat namespace, while the Naming Service uses a
hierarchical one.

• Object’s interface name is defined at the time you compile your client and
server applications. Changing an interface name requires that you
recompile your applications. In contrast, the Naming Service allows
object implementations to bind logical names to its objects at runtime.

• Object may implement only one interface name, but the Naming Service
allows you to bind more than one logical name to a single object.

Understanding the namespace
Figure 24 shows how the Naming Service might be used to name objects that
make up an order entry system. This hypothetical order entry system
organizes its namespace by geographic region, then by department, and so
on. The Naming Service allows you to organize the namespace in a
hierarchical structure of NamingContext objects that can be traversed to
locate a particular name. For example, the logical name NorthAmerica/
ShippingDepartment/Orders could be used to locate an Order object.

Figure 24 Naming scheme for an order entry system

Naming contexts
To implement the namespace shown in Figure 24 with the VisiBroker-RT for
C++ Naming Service, each of the shadowed boxes would be implemented
by a NamingContext object. A NamingContext object contains a list of Name
structures that have been bound to object implementations or to other
NamingContext objects. Though a logical name may be bound to a
NamingContext, it is important to realize that a NamingContext does not,
by default, have a logical name associated with it nor is such a name
required.

VisiBroker-RT for C++ Developer ’s Guide 159

Object implementations use a NamingContext object to bind a name to an
object that they offer. Client applications use a NamingContext to resolve a
bound name to an object reference.

A NamingContextExt interface is also available which provides methods
necessary for using stringified names.

Names and NameComponent
A CosNaming::Name represents an identifier that can be bound to an object
implementation or a CosNaming::NamingContext. A Name is not simply a
string of alphanumeric characters; it is a sequence of one or more
NameComponent structures.

Each NameComponent contains two attribute strings, id and kind. The
naming service does not interpret or manage these strings, except to
ensure that each id and kind is unique within a given NamingContext.

The id and kind attributes are strings which uniquely identify the object to
which the name is bound. The kind member adds a descriptive quality to
the name. For example, the name “Inventory.RDBMS” has an id member of
“Inventory” and a kind member of “RDBMS.”

IDL sample 11 IDL Specification for the NameComponent structure
module CosNaming

typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

};

The id and kind attributes of a NameComponent must be a character from
the ISO 8859-1 (Latin-1) character set, excluding the null character (0x00)
and other non-printable characters. Neither of the strings in a
NameComponent can exceed 255 characters.

Furthermore, the Naming Service does not support NameComponent which
use wide strings.

Note
The id attribute of a Name cannot be an empty string, but the kind attribute
can be an empty string.

Name resolution
Your client applications use the NamingContext method resolve to obtain
an object reference, given a logical Name. Because a Name consists of one or
more NameComponent objects, the resolution process requires that all of the
NameComponent structures that make up the Name be traversed.

Stringified names
Because the representation of CosNaming::Name is not in a form that is
readable or convenient for exchange, a stringfied name has been defined to
resolve this problem. A stringified name is a one-to-one mapping between a
string and a CosNaming::Name. If two CosNaming::Name objects are equal,
then their stringified representations are equal and vice versa. In a
stringified name, a forward slash “/” serves as a name component
separator; a period “.” serves as the id and kind attributes separator; and
a backslash “\” serves as an escape character. By convention a

160 VisiBroker-RT for C++ Developer ’s Guide

NameComponent with an empty kind attribute does not use a period (for
example, Order).

Code example 76 Stringified name example
"Inprise.Company/Engineering.Department/Printer.Resource"

Note
In the following examples, NameComponent structures are given in their
stringified representations.

Simple and complex names
A simple name, such as Billing, has only a single NameComponent and is
always resolved relative to the target naming context. A simple name may
be bound to an object implementation or to a NamingContext.

A complex name, such as NorthAmerican/ShippingDepartment/
Inventory, consists of a sequence of three NameComponent structures. If a
complex name consisting of n NameComponent objects has been bound to an
object implementation, then the first (n–1) NameComponent objects in the
sequence must each resolve to a NamingContext, and the last
NameComponent object must resolve to an object implementation.

If a Name is bound to a NamingContext, each NameComponent structure in
the sequence must refer to a NamingContext.

Code example 77 shows a complex name, consisting of three components
and bound to a CORBA object. This name corresponds to the stringfied
name, NorthAmerica/ SalesDepartment/Order. When resolved within the
topmost naming context, the first two components of this complex name
resolve to NamingContext objects, while the last component resolves to an
object implementation with the logical name “Order.”

Code example 77 Example of a complex name bound to an ORB object
...
// Name stringifies to “NorthAmerica/SalesDepartment/Order”
CosNaming::Name_var continentName =
rootNamingContext->to_name("NorthAmerica");
CosNaming::NamingContext_var continentContext =

rootNamingContext->bind_new_context(continentName);

CosNaming::Name_var departmentName =
continentContext->to_name("SalesDepartment");
CosNaming::NamingContext_var departmentContext =

rootNamingContext->bind_new_context(departmentName);
CosNaming::Name_var objectName =
departmentContext->to_name("Order");
departmentContext->rebind(objectName,
myPOA->servant_to_reference(managerServant));
...

Running the Naming Service
The VisiBroker-RT for C++ Naming Service is comprised of a set of libraries,
header files and sample applications, which are delivered as part of the base
VisiBroker distribution.

The Naming Service is a CORBA service which provides a set of interfaces
(that is, APIs) to support:

• Creation of Naming Context Servants

A Naming Context Servant is created and then activated on the users
POA, to create a Naming Context object reference.

VisiBroker-RT for C++ Developer ’s Guide 161

• Registration of a Naming Context Object as the "NameService" root
context

• Interfaces for Binding Names to Objects

• Interfaces for Iterating through a naming tree

Installing, configuring and running the Naming Service is described below.
Once you have created a Naming Tree, you may browse its contents by
using the VisiBroker-RT for C++ Console. For more details see “Naming
Services”.

Integrating the Naming Service into your
application
The steps required to integrate the Naming Service with your
VisiBrokerRT60 application are very similiar to the steps for integrating the
VisiBroker ORB libraries. Please refer to “Step 6: Integrating VisiBroker-RT with
Tornado/VxWorks” for details on the process to follow when adding additional
libraries to your VisiBrokerRT60 application.

VisiBrokerRT60 Naming Service libraries
The VisiBroker-RT for C++ Naming Service consist of the following libraries:

Table 17 VisiBroker Name Service Libraries

Compiling and linking programs
• C++ applications that use the Naming Service

C++ applications that use the naming service need to include the
generated file “CosNaming_c.hh”.

• C++ applications that start a Naming Service need to include the
following files:

• CosNaming_c.hh

• CosNaming.hh

• NamingLib.h

Library Description Dependencies
libname_c_s.o This library provides the interfaces

for the clients which intend to ONLY
use the VisiBroker-RT for C++
Naming Service. If a one of your
VisiBrokerRT60 nodes intends to
start a Naming Service factory it
must include both this library as well
as the library libname_fact.o
(described below).

liborb_dyn.o o and
libservicessupport.o

or

liborb_min.o and
libservicesupport.o

libname.o This library provides the interfaces
for creating and start ing a
VisiBroker-RT for C++ Naming
Service Cos Extended Factory
Server.

Inclusion of this library also requires
the inclusion of the client interface
library libname_c_s.o.

liborb.dyn.o and
libservicesupport.o

or

liborb_min.o and
libservicesupport_min.o
and libname_c_s.o

162 VisiBroker-RT for C++ Developer ’s Guide

Sample programs
Several example programs that illustrate the use of the Naming Service are
provided with VisiBroker-RT for C++. They illustrate the new INS features
that are now available with the Naming Service and they can be found in
the <install_location>/VisiBrokerRT60/examples/ins directory. In
addition, a Bank Naming example that illustrates basic usage of the Naming
Service can be found in the <install_location>/VisiBrokerRT60/
examples/basic/bank_naming directory.

Before running the example programs, you must first start the naming
service, as described in “Starting the Naming Service”. This will automatically
create the initial "root context".

Warning If no naming context has been created, a CORBA::NO_IMPLEMENT exception
will be raised when the client attempts to issue a
CosNaming::NamingContext::_bind.

Starting the Naming Service
Starting a VisiBroker-RT for C++ Naming Service, involves performing the
following steps.

• Create a Naming Service Servant

• Activate that Servant on your Application POA to Establish the "Initial
Naming Service Context" CORBA Object.

• Register the "Initial Naming Service Context" CORBA Object with the
VisiBroker ORB as the "NameService" service.

These steps are demonstrated as part of the VisiBroker Sample application
<install_location>/VisiBrokerRT60/examples/basic/bank_naming. The
file start_namingservice.cpp, shows how to start a VisiBroker Naming
Service.

Code example 78 Starting a VisiBroker Naming Service on an Application POA
....

void naming_service(char* objectKey, CORBA::Boolean debug, char *
ORB_options_string)
{

// --
// Initalize the ORB
// --

PortableServer::POA_var application_POA;

VISTRY
{

int default_argc = 2;
char *default_argv[] ={"-ORBagentport", OSAGENT_PORT};
char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv,

default_argv, default_argc,
ORB_options_string);

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);

// --
// Create an application POA
// --
CORBA::Object_var obj;

PortableServer::POA_var root_POA;
PortableServer::POAManager_var POA_mgr;

VisiBroker-RT for C++ Developer ’s Guide 163

VISIFNOT_EXCEP
// get a reference to the root POA
obj = orb->resolve_initial_references("RootPOA");

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
root_POA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Create our POA manager from the root POA Manager. POA_mgr

= root_POA->the_POAManager();
VISEND_IFNOT_EXCEP

// Create POA policies.
CORBA::PolicyList policies;
policies.length(2);

VISIFNOT_EXCEP
policies[(CORBA::ULong)0] =

root_POA->create_lifespan_policy(PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong) 1] = root_POA->

create_id_assignment_policy(PortableServer::USER_ID);
VISEND_IFNOT_EXCEP

// Create a application poa.
// exceptions: AdapterAlreadyExist Invalid Policy

// Thread Policy: ORB_CTRL_MODEL
// Lifespan Policy: PERSISTENT
// Object Id Uniqueness Policy: UNIQUE_ID
// Id Assignment Policy: USER_ID
// Server Retention Policy: RETAIN
// Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY
// Implicit Activation Policy NO_IMPLICIT_ACTIVATION

VISIFNOT_EXCEP
application_POA = root_POA->

create_POA("application_POA",POA_mgr, policies);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Activate the Market POA
POA_mgr->activate();

VISEND_IFNOT_EXCEP

// --
// Create and start Name Service
// --

PortableServer::ObjectId_var namingContextId;
POA_CosNaming::NamingContext* namingContextServant;

// Create a namingContext servant. namingContextServant =
NamingLib::create_RootContextNamingServant(objectKey,
application_POA);

VISIFNOT_EXCEP
// Create a object Id for naming context servant.

namingContextId =
PortableServer::string_to_ObjectId(objectKey);
VISEND_IFNOT_EXCEP

CosNaming::NamingContext_var root_context;

// Activate the servant with the ID on Event Channel POA.
// exceptions: ServantAlreadyActive, ObjectAlreadyActive,
// and WrongPolicy

164 VisiBroker-RT for C++ Developer ’s Guide

VISIFNOT_EXCEP
application_POA->activate_object_with_id(namingContextId,

namingContextServant); VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
obj = application_POA->id_to_reference(namingContextId);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
root_context = CosNaming::NamingContext::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::String_var str;
VISIFNOT_EXCEP

str = orb->object_to_string(obj);
VISEND_IFNOT_EXCEP

cout << "\n\nInitial NamingContext Registered\n" << str <<
endl;

VISIFNOT_EXCEP
// Register a namingContext servant with URL Locator.

SupportServices::instance()-
>register_service_object(objectKey, obj);

VISEND_IFNOT_EXCEP
}

VISCATCH(CORBA::Exception, e)
{

cerr << "exception is " << e << endl;

taskSuspend(0);
}
VISEND_CATCH

return;
}

Bootstrapping a Naming Service
There are three ways to start a client application so that it can obtain an
initial object reference to a specified Naming Service. You can use the
following two options when calling ORB_init from your Naming Service
Client application:

• ORBInitRef

• ORBDefaultInitRef

Calling resolve_initial_references
The new Naming Service provides a simple mechanism by which the
resolve_initial_references method can be configured to return a
common naming context. You use the resolve_initial_references
method which returns the root context of the Naming Server to which the
client program connects.

Three simple examples will illustrate how to use these three options.
Suppose there are three VisiBroker-RT for C++ Naming Services running on
the host TestHost: ns1, ns2, and ns3. And there are three server
applications: sr1, sr2, sr3, each running on a different port (20001, 20002,
and 20003) on the host TestHost. Server sr1 binds itself in ns1, sr2 in ns2,
and sr3 in ns3. Additionally sr3 has a naming tree hierarchy of
<NorthAmerica/ShippingDepartment/Inventory>.

VisiBroker-RT for C++ Developer ’s Guide 165

Code example 79 Code snippet showing how to obtain the root naming context
...

CORBA::ORB_ptr orb = CORBA::ORB_init(argv, argc, NULL);
CORBA::Object_var rootObj =

orb->resolve_initial_references(“NameService”);
...

Using -ORBInitRef
You can use either the corbaloc or corbaname URL naming schemes to
specify which VisiBroker-RT for C++ Naming Service you want to bootstrap.

Using a corbaloc URL
If you want to bootstrap into Naming Service ns2 by using the corbaloc
locator, then you should start your client application and obtain the root
context of ns2 by calling the resolve_initial_references method on an
ORB reference inside your client application as illustrated in Code example 80.

Code example 80 BootStrapping to the Naming Service Using corbaloc URL
...
void do_corba(char * ORB_options_string)
{

char *nameServiceLocator_URL =
"NameService=corbaloc::TestHost:20002/ns2";

// OR
// char *nameServiceLocator_URL =

"NameService=corbaloc:iiiop:TestHost:20002/ns2";

int default_argc = 2;
char *default_argv[] ={""-ORBInitRef",nameServiceLocator};

char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);

/* --*/
/* Call ORB_init, obtain the Root POA, and bootstrap to */
/* Name Service initial root context. */
/* --*/

VISTRY
{

// Initialize the ORB.
orb = CORBA::ORB_init(new_argc, new_argv);

VISIFNOT_EXCEP
// Get a reference to the Naming Service root_context obj

= CosNaming::NamingContext::_narrow(
orb->resolve_initial_references("NameService"));

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
CORBA::String_var str = orb->object_to_string(obj);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
rootContext = CosNaming::NamingContext::_narrow(obj);

VISEND_IFNOT_EXCEP
}

VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
return;

}
VISEND_CATCH

166 VisiBroker-RT for C++ Developer ’s Guide

return;
}

Note
This example will work only if there is a Naming Service Object
implementation running on an ORB instance at host "TestHost" and port
20002.

Using a corbaname URL
If you want to bootstrap into Naming Service ns3 by using the corbaname
locator, then you should start your client application and obtain the root
context of ns3 by calling the resolve_initial_references method on an
ORB reference inside your client application as illustrated in Code example 81.

Code example 81 BootStrapping to the Naming Service Using corbaname URL
...
void do_corba(char * ORB_options_string)
{

char *nameServiceLocator_URL =
"NameService=corbaname:TestHost:20003#NorthAmerica/
ShippingDepartment'";

// OR
// char *nameServiceLocator_URL =

"NameService=corbaname:iiiop:TestHost:20003#NorthAmerica/
ShippingDepartment'";

int default_argc = 2;
char *default_argv[] ={""-ORBInitRef",nameServiceLocator};

char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);

/*--*/
/* Call ORB_init, obtain the Root POA, and bootstrap to */
/* Name Service initial root context.*/
/*--*/
VISTRY
{

// Initialize the ORB.
orb = CORBA::ORB_init(new_argc, new_argv);

VISIFNOT_EXCEP
// Get a reference to the Naming Service root_context
obj = CosNaming::NamingContext::_narrow(

orb->resolve_initial_references("NameService"));

CORBA::String_var str = orb->object_to_string(obj);

rootContext = CosNaming::NamingContext::_narrow(obj);

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
return;

}
VISEND_CATCH
return;

}

Note
This example will work only if there is a Naming Service Object
implementation running on an ORB instance at port 20003.

VisiBroker-RT for C++ Developer ’s Guide 167

-ORBDefaultInitRef
You can use either an corbaloc or corbaname URL to specify which
VisiBroker-RT for C++ Naming Service you want to bootstrap.

Using -ORBDefaultInitRef with an corbaloc URL
If you want to bootstrap into ns2, then start your client program as:

Code example 82 BootStrapping to the Naming Service Using -ORBDefaultInitRef
with the corbaloc URL

...
void do_corba()
{

char *nameServiceLocator =
"NameService=corbaloc://TestHost:20002/";

int default_argc = 2;
char *default_argv[]

={""-ORBDefaultInitRef",nameServiceLocator};

char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);

/*--*/
/* Call ORB_init, obtain the Root POA, and bootstrap to Name*/
/* Service initial root context. */
/*--*/
VISTRY
{

// Initialize the ORB.
orb = CORBA::ORB_init(argc, argv);

VISIFNOT_EXCEP
// Get a reference to the Naming Service root_context
obj = CosNaming::NamingContext::_narrow(

orb->resolve_initial_references("NameService"));

...

Using -ORBDefaultInitRef with corbaname
The combination of -ORBDefaultInitRef and corbaname works differently
from what is expected. If -ORBDefaultInitRef is specified, a slash and the
stringified object key "NameService" is always appended to the corbaname.
For example, if the URL is corbaname://TestHost:20002, then by
specifying -ORBDefaultInitRef, resolve_initial_references will result
in a new URL: corbaname://TestHost:20002/NameService.

NamingContext
This object is used to contain and manipulate a list of names that are bound
to ORB objects or to other NamingContext objects. Client applications use
this interface to resolve or list all of the names within that context.
Object implementations use this object to bind names to object
implementations or to bind a name to a NamingContext object.

The following sample shows the IDL specification for the NamingContext.

IDL sample 12 Specification for the NamingContext interface
module CosNaming {

interface NamingContext {

168 VisiBroker-RT for C++ Developer ’s Guide

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve(in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName); NamingContext

new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void destroy()

raises(NotEmpty);
void list(in unsigned long how_many,

out BindingList bl,
out BindingIterator bi);

};
};

NamingContextExt
The NamingContextExt interface, which extends NamingContext, provides
the operations required to use stringified names and URLs.

IDL sample 13 Specification for the NamingContextExt interface
module CosNaming {

interface NamingContextExt : NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n)
raises(InvalidName);

Name to_name(in StringName sn)
raises(InvalidName);

exception InvalidAddress {};
URLString to_url(in Address addr, in StringName sn)

raises(InvalidAddress, InvalidName);
Object resolve_str(in StringName n)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
};

};

Default naming contexts
A client application can specify a default naming context, which is the
naming context that the application will consider to be its root context. Note
that the default naming context is the root only in relation to this client
application and, in fact, it may be contained by another context.

Obtaining the default context
The ORB method resolve_initial_references can be used by a client
application to obtain the default naming context. The default naming
context must have been specified by passing the ORBInitRef command-
line argument when the client application was started. Code example 79
shows how a C++ client application could invoke this method.

VisiBroker-RT for C++ Developer ’s Guide 169

Binding a name in C++
The bind example uses two simple interfaces, shown in IDL sample 14, which
offer two methods Bank::Account::balance and
Bank::AccountManager::open. This definition is found in the Bank.idl file.

IDL sample 14 IDL specification for the Bank::Account and Bank::AccountManager
interfaces

module Bank {
interface Account {
float balance();
};
interface AccountManager {

Account open(in string name);
};

};

The naming_server.cpp file for the.../examples/basic/bank_naming
example contains the server-side code, which create a AccountManager
CORBA Object and binds a name to the Object.

Code example 83 bank_naming/naming_server.cpp, object server binding a name to
an ORB object

#include <vxWorks.h>
#include "CosNaming_c.hh"
#include "bankImpl.h"

extern CORBA::ORB_var orb;

extern PortableServer::POA_var rootPOA;
extern CosNaming::NamingContext_var rootContext;

...

void bank_server()
{
VISTRY {

CORBA::PolicyList policies;
policies.length(1);

policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);

// get the POA Manager
PortableServer::POAManager_var poa_manager;

VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
// Create myPOA with the right policies
myPOA = rootPOA->create_POA("bank_agent_poa", poa_manager,

policies);
VISEND_IFNOT_EXCEP

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
// Decide on the ID for the servant
managerId = PortableServer::string_to_ObjectId("BankManager");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP

170 VisiBroker-RT for C++ Developer ’s Guide

// Activate the servant with the ID on myPOA
myPOA->activate_object_with_id(managerId, managerServant);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Activate the POA Manager
poa_manager->activate();
VISEND_IFNOT_EXCEP

CORBA::Object_var reference;

VISIFNOT_EXCEP
reference = myPOA->servant_to_reference(managerServant);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Associate the bank manager with the name at the root
context
CosNaming::Name name;
name.length(1);

name[0].id = (const char *) "BankManager";
name[0].kind = (const char *) "";
rootContext->rebind(name, reference);
VISEND_IFNOT_EXCEP

cout << reference << " is ready" << endl;

}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH

return;
}

Resolving a name in C++
The following code sample shows the client program that use the Naming
Service to resolve a Name Binding to an Object Reference.

Code example 84 banke_naming/client.C file for resolving an ORB object by name
#include <vxWorks.h>
#include "CosNaming_c.hh"
#include "bank_c.hh"

extern CosNaming::NamingContext_var rootContext;

....

void bank_client(void)
{

VISTRY {

// Locate an account manager through the Naming Service
CosNaming::Name name;

name.length(1);
name[0].id = (const char *) "BankManager";
name[0].kind = (const char *) "";
Bank::AccountManager_var manager =

Bank::AccountManager::_narrow(rootContext->resolve(name));

// Set the account name
const char* account_name = "Jack B. Quick";
Bank::Account_var account;
VISIFNOT_EXCEP
// Request the account manager to open a named account
account = manager->open(account_name); VISEND_IFNOT_EXCEP

VisiBroker-RT for C++ Developer ’s Guide 171

CORBA::Float balance;
VISIFNOT_EXCEP
// Get the balance of the account
balance = account->balance(); VISEND_IFNOT_EXCEP

// Print out the balance
cout << "The balance in " << account_name << "'s account is $"
<< balance << endl;
}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH

return;
}

172 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 173

Using the Event Service
This chapter describes the VisiBroker-RT for C++ Event Service.

NOTE

The libraries:
• libservicesupport.a
• libevchn_c_s.a
• libevchn.a

are required when building a VisiBrokerRT60 application to support use of
the VisiBroker Event Service. For a description of all the libraries provided
by the VisiBroker-RT for C++ product please refer to “Step 6: Integrating
VisiBroker-RT with Tornado/VxWorks”.

Overview
The Event Service package provides a facility that de-couples the
communication between objects. It provides a supplier-consumer
communication model that allows multiple supplier objects to send data
asynchronously to multiple consumer objects through an event channel.
The supplier-consumer communication model allows an object to
communicate an important change in state, such as a disk running out of
free space, to any other objects that might be interested in such an event.

Figure 25 Supplier-Consumer communication model

Figure 25 shows three supplier objects communicating through an event
channel with two consumer objects. The flow of data into the event channel
is handled by the supplier objects, while the flow of data out of the event
channel is handled by the consumer objects. If the three suppliers shown in
Figure 25 each send one message every second, then each consumer will
receive three messages every second and the event channel will forward a
total of six messages per second.

The event channel is both a consumer of events and a supplier of events.
The data communicated between suppliers and consumers are represented
by the Any class, allowing any CORBA type to be passed in a type safe

174 VisiBroker-RT for C++ Developer ’s Guide

manner. Supplier and consumer objects communicate through the event
channel using standard CORBA requests.

Proxy consumers and suppliers
Consumers and suppliers are completely de-coupled from one another
through the use of proxy objects. Instead of directly interacting with each
other, they obtain a proxy object from the EventChannel and communicate
with it. Supplier objects obtain a consumer proxy and consumer objects
obtain a supplier proxy. The EventChannel facilitates the data transfer
between consumer and supplier proxy objects. Figure 26 shows how one
supplier can distribute data to multiple consumers.

Figure 26 Consumer and supplier proxy objects

Note
The event channel is shown in Figure 26 as a separate process, but it
may also be implemented as part of the supplier object’s process. See
“Starting the Event Service” for more information.

OMG common object services specification
The VisiBroker-RT for C++ Event Service implementation conforms to the
OMG Common Object Services Specification, with the exception of these
two items,

• The VisiBroker-RT for C++ Event Service only supports generic events.
There is currently no support for typed events in the VisiBroker-RT for
C++ Event Service.

VisiBroker-RT for C++ Developer ’s Guide 175

• The VisiBroker-RT for C++ Event Service offers no confirmation of the
delivery of data to either the event channel or to consumer applications.
TCP/IP is used to implement the communication between consumers,
suppliers and the event channel and this provides reliable delivery of data
to both the channel and the consumer. However, this does not guarantee
that all of the data that is sent will actually processed by the receiver.

Communication models
The event service provides both a pull and push communication model for
suppliers and consumers. In the push model, supplier objects control the
flow of data by pushing it to consumers. In the pull model, consumer
objects control the flow of data by pulling data from the supplier.

The EventChannel insulates suppliers and consumers from having to know
which model is being used by other objects on the channel. This means that
a pull supplier can provide data to a push consumer and a push supplier can
provide data to a pull consumer.

Figure 27 Push model

Note
The event channel is shown in Figure 27 as a separate process, but it
may also be implemented as part of the supplier object’s process. See
“Starting the Event Service” for more information.

Push model
The push model is the more common of the two communication models. An
example use of the push model is a supplier that monitors available free

176 VisiBroker-RT for C++ Developer ’s Guide

space on a disk and notifies interested consumers when the disk is filling up.
The push supplier sends data to its ProxyPushConsumer in response to
events that it is monitoring.

The PushConsumer’s push method is invoked by the EventChannel upon the
ProxyPushSupplier retrievingdata from the EventChannel. The
EventChannel facilitates the transfer of data from the ProxyPushSupplier
to the ProxyPushConsumer.

Figure 27 shows a push supplier and its corresponding ProxyPushConsumer
object. It also shows three push consumers and their respective
ProxyPushSupplier objects.

Pull model
In the pull model, the event channel regularly pulls data from a supplier
object, puts the data in a queue, and makes it available to be pulled by a
consumer object. An example of a pull consumer would be one or more
network monitors that periodically poll a network router for statistics.

The pull supplier implements a "pull" method which is invoked by the
ProxyPullConsumer. The ProxyPullConsumer spends most of its time
in an event loop invoking the pull supplier’s "pull" method. The pull
consumer requests data from the ProxyPullSupplier when it is ready for
more data. The EventChannel pulls data from the supplier to a queue and
makes it available to the ProxyPullSupplier.

Figure 28 shows a pull supplier and its corresponding ProxyPullConsumer
object. It also shows three pull consumers and their respective
ProxyPullSupplier objects.

Figure 28 Pull model

VisiBroker-RT for C++ Developer ’s Guide 177

Note
The event channel is shown in Figure 28 as a separate process, but it may
also be implemented as part of the supplier object’s process.

Using event channels
When an EventChannel is first created, it has no suppliers or consumers. A
supplier or consumer connects to and uses an event channel by following
these steps:

1 Connect to the EventChannel.

2 Obtain an administrative object from the channel and use it to obtain a
proxy object.

3 Connect to the proxy object.

4 Begin transferring or receiving data.

The methods used for these steps vary, depending on whether the object
being connected is a supplier or a consumer, and on the communication
model being used. Table 18 shows the appropriate methods for suppliers and
Table 19 shows the methods for consumers.

Table 18 Connecting Suppliers to an EventChannel

Table 19 Connecting Consumers to an EventChannel

Steps Push supplier Pull supplier
Bind to the
Event
Channel.

CosEventChannelAdmin::EventChannel::
_narrow(orb::resolve_initial_
references(“EventService”))

CosEventChannelAdmin::EventChannel::
_narrow(orb::resolve_initial_
references(“EventService”))

Get a
Supplier
Admin.

EventChannel::for_supp liers() EventChannel::for_suppliers()

Get a
consumer
proxy.

SupplierAdmin:: obtain_push_consumer() SupplierAdmin:: obtain_pull_consumer()

Add the
supplier to
the Event
Channel.

ProxyPushConsumer::
connect_push_supplier()

ProxyPullConsumer::
connect_pull_supplier()

Data transfer ProxyPushConsumer::push() Implements pull() and try_pull()

Steps Push consumer Pull consumer
Bind to the
Event
Channel.

CosEventChannelAdmin::EventChannel::_
narrow(orb::resolve_initial_
references(“EventService”))

CosEventChannelAdmin::EventChannel::_n
arrow(orb::resolve_initial_
references(“EventService”))

Get a
Consumer
Admin.

EventChannel::for_consumers() EventChannel::for_consumers()

Obtain a
supplier
proxy.

ConsumerAdmin:: obtain_push_supplier() ConsumerAdmin:: obtain_pull_supplier()

Add the
consumer to
the Event
Channel.

ProxyPushSupplier::
connect_push_consumer()

ProxyPushSupplier::
connect_pull_consumer()

Data transfer Implements push() ProxyPushSupplier::pull() and
try_pull()

178 VisiBroker-RT for C++ Developer ’s Guide

Example push supplier and consumer
This section describes the example push supplier and consumer
applications. When executed, the supplier application prompts the user to
enter data and then pushes the data to the consumer application. The
consumer application receives the data and writes it to the screen.

The push supplier application is implemented in the
factoryPushSupplier.cpp file and the push consumer is implemented in
the factoryPushConsumer.cpp file. These files can be found in the
<install_location>/VisiBrokerRT60/examples/events directory on your
system.

Deriving a PushSupplier class
The first step in implementing a supplier is to derive our own PushModel
class from the PushSupplier interface, shown in the following code sample.

Code example 85 PushSupplier interface
module CosEventComm {

interface PushSupplier {
void disconnect_push_supplier();

};
};

This example shows the PushModel class, implemented in C++. The
disconnect_push_supplier method is called by the EventChannel to
disconnect the supplier when the channel is being destroyed. This
implementation simply prints out a message and exits. If the PushModel
object were persistent, this method might also call deactivate_obj to
deactivate the object.

Code example 86 PushModel class
// PushModel.C

#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"

class PushModel : public POA_CosEventComm::PushSupplier, public
VISThread {
public:

void disconnect_push_supplier() {
cout << "Model::disconnect_push_supplier()" << endl;
VISTRY {

PortableServer::ObjectId_var objId =
PortableServer::string_to_ObjectId("PushModel");

_myPOA->deactivate_object(objId);
}

VISCATCH(const CORBA::Exception, e) {
cout << e << endl;

}
}

};

Implementing the PushSupplier
The Push Supplier performs the following:

1 Binds to the Event Channel Factory

2 Does a lookup by name for the desired EventChannel

3 Creates a Push Supplier

4 Connects the Push Supplier to the Event Channel

VisiBroker-RT for C++ Developer ’s Guide 179

5 Goes into a loop to Push Data to the Event Channel

Code example 87 Complete implementation for a sample push supplier
// factorypushSupplier.C #include <vxWorks.h>

#include "CosEventComm_s.hh"
#include "ChannelLib.h"

/*--*/
/* Forward Declarations*/
/*--*/
extern "C" intsysClkRateGet (void);

/*--*/
/* Export Variable Declarations*/
/*--*/
extern CORBA::ORB_var orb;
extern PortableServer::POA_var ec_POA;

class PushSupplierImpl : public POA_CosEventComm::PushSupplier
{

public:
void disconnect_push_supplier()
{

cout << "disconnect_push_supplier()" << endl;
_alive = 0;

}

PushSupplierImpl() :
POA_CosEventComm::PushSupplier() { _alive = 1; }

CORBA::Boolean Alive() { return _alive; }

private:
CORBA::Boolean _alive;

};

static void factorypushSupplier(char * name, char*
factoryname);

void start_pushSupplier(char* channelName, char* factName)
{

char * taskName = "PUSHSUP";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)factorypushSupplier,
(int)channelName,
(int)factName,
0,0,0,0,0,0,0,0);

}

void factorypushSupplier(char* name, char* factoryname)
{

CosEventChannelAdmin::EventChannelFactory_var factory;

VISTRY
{

// Get the Channel Id from user's supplied name.
PortableServer::ObjectId_var factId =
PortableServer::string_to_ObjectId(factoryname);

// Bind to Event Factory by giving the full POA name
// and the Object ID..
factory = CosEventChannelAdmin::EventChannelFactory::

_bind("/ef_POA", factId);

180 VisiBroker-RT for C++ Developer ’s Guide

CosEventChannelAdmin::EventChannel_var channel;

VISIFNOT_EXCEP
// Bind to the Event Channel
channel = factory->lookup_by_name(name);
VISEND_IFNOT_EXCEP

CosEventChannelAdmin::SupplierAdmin_var for_supplier;
CosEventChannelAdmin::ProxyPushConsumer_var

proxyPushConsumer;

VISIFNOT_EXCEP
// Obtain Supplier Adminstrator
for_supplier = channel->for_suppliers();

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Obtain push_consumer proxy
proxyPushConsumer = for_supplier->obtain_push_consumer();
VISEND_IFNOT_EXCEP

PortableServer::ObjectId_var supplierId;
CosEventComm::PushSupplier_var pushSupplierObject;
PushSupplierImpl* pushSupplier = new PushSupplierImpl();

VISIFNOT_EXCEP
// Create a object Id for Supplier servant.
supplierId =

PortableServer::string_to_ObjectId("mypushSupplier");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Activate the servant with the ID on Event Channel POA.
// exceptions: ServantAlreadyActive, ObjectAlreadyActive,
// and WrongPolicy
ec_POA->activate_object_with_id(supplierId, pushSupplier);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
pushSupplierObject = CosEventComm::PushSupplier::

_narrow(ec_POA->id_to_reference(supplierId));
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Connect my push Supplier to the proxy push Consumer
proxyPushConsumer->

connect_push_supplier(pushSupplierObject);
VISEND_IFNOT_EXCEP

char string[1024]; CORBA::Any any;

while(pushSupplier->Alive())
{

cout << "(Type 'q' to quit)-> " << flush;
cin >> string;

if(!strcmp(string,"q"))
{

// Disconnect all suppliers and
// consumer and destroy channel channel->destroy();

} else {

any <<= (const char *)string;
}

VISTRY
{

proxyPushConsumer->push(any);
}
VISCATCH(CosEventComm::Disconnected, e)

{
cerr << "Disconnected" << endl;
break;

VisiBroker-RT for C++ Developer ’s Guide 181

}
VISEND_CATCH;

if (!strcmp(string,"q")) { break;}
}

}
VISCATCH(CORBA::Exception, err)
{

cerr << "Error: " << err << endl << flush;
taskSuspend(0);

}
VISEND_CATCH

return;
}

Deriving a PushConsumer class
The following code sample shows the complete implementation of the Push
Consumer Class which is derived from the PushConsumer interface, shown in
Code example 87.

Code example 88 PushConsumer interface
module CosEventComm {

exception Disconnected();
interface PushConsumer {

void push(in any data) raises(Disconnected);
void disconnect_push_consumer();

};
};

The push method receives an Any type and attempts to convert it to a
string and print it. The disconnect_push_supplier method is called by the
EventChannel to disconnect the consumer when the channel is destroying
itself.

Implementing the PushConsumer
Just like the Push Supplier, the Push Consumer needs to acquire a handle to
the Event Channel Factory, find the named Event Channel, and connect a
PushConsumer to the Event Channel. he factoryPushConsumer sample
application performs the following:

1 Binds to the Event Channel Factory

2 Does a lookup by name for the desired EventChannel

3 Creates a Push Consumer

4 Connects the Push Consumer to the Event Channel

Code example 89 Complete implementation for a sample push consumer
// factorypushConsumer.C
#include <vxWorks.h>

#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"

/*--*/
/* Forward Declarations */
/*--*/
extern "C" int sysClkRateGet (void);

/*--*/
/* Export Variable Declarations */
/*--*/
extern CORBA::ORB_var orb;

182 VisiBroker-RT for C++ Developer ’s Guide

extern PortableServer::POA_var ec_POA;

class PushConsumerImpl : public POA_CosEventComm::PushConsumer
{

public:

void push(const CORBA::Any& any)
{

char* string;
if(any >>= string)

{
cout << string << endl;

}
else
{

cout << "Non string: " << any << endl;
}
}

void disconnect_push_consumer()
{

cout << "disconnect_push_consumer()" << endl;
}

private:
};

static void factorypushConsumer(char * name, char* factoryname);

void start_pushConsumer(char* channelName, char* factName)
{

char * taskName = "PUSHCONS";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)factorypushConsumer,
(int)channelName,
(int)factName,
0,0,0,0,0,0,0,0);

}

void factorypushConsumer(char* name, char* factoryname)
{

CosEventChannelAdmin::EventChannelFactory_var factory;

VISTRY
{

// Get the Channel Id from user's supplied name.
PortableServer::ObjectId_var factId =
PortableServer::string_to_ObjectId(factoryname);

// Bind to Event Factory by giving the full POA name
// and the Object ID..

factory = CosEventChannelAdmin::EventChannelFactory::_bind
("/ ef_POA", factId);

CosEventChannelAdmin::EventChannel_var channel;
VISIFNOT_EXCEP
channel = factory->lookup_by_name(name);
VISEND_IFNOT_EXCEP

CosEventChannelAdmin::ConsumerAdmin_var for_consumer;
CosEventChannelAdmin::ProxyPushSupplier_var

proxyPushSupplier;
VISIFNOT_EXCEP
//obtain Consumer Admin
for_consumer = channel->for_consumers();

VisiBroker-RT for C++ Developer ’s Guide 183

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
proxyPushSupplier = for_consumer->obtain_push_supplier();

VISEND_IFNOT_EXCEP

PortableServer::ObjectId_var consumerId;
CosEventComm::PushConsumer_var pushConsumerObject;
PushConsumerImpl* pushConsumer = new PushConsumerImpl();

VISIFNOT_EXCEP
// Create a object Id for Supplier servant. consumerId =
PortableServer::string_to_ObjectId("mypushConsumer");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Activate the servant with the ID on Event Channel POA.
// exceptions: ServantAlreadyActive, ObjectAlreadyActive,
// and WrongPolicy

ec_POA->activate_object_with_id(consumerId, pushConsumer);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
pushConsumerObject = CosEventComm::PushConsumer::

_narrow(ec_POA->id_to_reference(consumerId));
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
//connect to push Consumer
proxyPushSupplier

->connect_push_consumer(pushConsumerObject);
VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, err)
{

cerr << "Error: " << err << endl << flush;
taskSuspend(0);

}
VISEND_CATCH

return;
}

Starting the Event Service
The VisiBroker-RT for C++ Event Service is comprised of a set of libraries,
header files and sample applications, which are delivered as part of the base
VisiBroker distribution.

The Event Service is a CORBA application which provides a set of interfaces
(APIs) to support:

1 Creation of Named Event Channels

2 Creation of Suppliers and Consumers and "connecting" them over a
specified Event Channel

3 Management of the Event Channel

4 Management of Event Channels through an Event Channel Factory
interface

Installing the Event Service
The Event Service is installed automatically when you install VisiBroker-RT
for C++ 6.0.

184 VisiBroker-RT for C++ Developer ’s Guide

Note that the existing manual refers to v4.0! I presume this is still
correct for 6.0?

Integrating the Naming Service into your
application
The steps required to integrate the Event Service into your VisiBrokerRT60
application are very similiar to the steps for integrating the VisiBroker ORB
libraries. Please refer to “Step 6: Integrating VisiBroker-RT with Tornado/VxWorks”
for details on the process to follow when adding additional libraries to your
VisiBrokerRT60 application.

VisiBroker Event Service libraries
The VisiBroker-RT for C++ Event Service consist of the following libraries:

Table 20 VisiBroker Event Service Libraries

VisiBroker Event Service “munched” libraries
Alternatively “munched” versions of the Event Service libraries are also
delivered as part of the VisiBroker-RT for C++ Event Service distribution.
These “munched” versions are made available for those users who prefer
to dynamically load the Event Service libraries from the Tornado WindShell:

Code example 90 Loading the Event Service libraries from the Tornado WindShell.
--> ld < libservicesupport_munched.o
--> ld < libevchn_c_s_munched.o
--> ld < libevchn_munched.o

Setting the queue length
In some environments, consumer applications may run slower than supplier
applications. The maxQueueLength parameter prevents out-of-memory
conditions by limiting the number of outstanding messages that will be held
for each consumer that cannot keep up with the rate of messages from the
supplier.

If a supplier generates 10 messages per second and a consumer can only
process one message per second, the queue will quickly fill up. Messages in
the queue have a fixed maximum length and if an attempt is made to add a

Library Description Dependencies
libevchn_c_s.o This library provides the interfaces for

the clients which intend ONLY to use an
already existing VisiBroker-RT for C++
Event Service channel and/or factory. If
a one of your VisiBrokerRT60 nodes
intends to start a Event Service channel
and/or factory it must include both this
library as well as the library libevchn.o
(described below)

liborb_dyn.o o and
libservicessupport.o

or

liborb_min.o and
libservicesupport.o

libevchn.o This library provides the interfaces for
creating and starting Visi- Broker-RT for
C++ Event Service channels and/or
factories.

Inclusion of this library also requires the
inclusion of the client interface library
libevchn_c_s.o.

liborb_dyn.o o and
libservicessupport.o

or

liborb_min.o and
libservicesupport.o

and libevchn_c_s.o

VisiBroker-RT for C++ Developer ’s Guide 185

message to a queue that is full, the channel will remove the oldest message
in the queue to make room for the new message.

Each consumer has a separate queue, so a slow consumer may miss
messages while another, faster consumer may not lose any. The Consumer
message queue length can be configured on a per Event Channel basis. This
means that all Cosumers for a given Channel will have separate but equal
size queues.

If maxQueueLength is not specified or if an invalid number is specified, a
default queue length of 100 is used.

Code example 91 Sample use of setting the Queue Length
myChannel = myfactory-> create_by_name("MyChannel",

150) // Queue Length

Compiling and linking programs
C++ applications that use the event service need to include the following
generated files:

#include “CosEventComm_s.hh” #include “CosEventChannelAdmin_c.hh”

Interface reference
The remainder of this chapter provides reference information on all of the
Event Service interfaces.

EventChannel
The EventChannel provides the administrative operations for adding
suppliers and consumers to the channel and for destroying the channel.

ConsumerAdmin for_consumers();

This method returns a ConsumerAdmin object that can be used to add
consumers to this EventChannel.

SupplierAdmin for_suppliers();

This method returns a SupplierAdmin object that can be used to add
suppliers to this EventChannel.

void destroy();

This method destroys this EventChannel.

ConsumerAdmin
This interface is used by consumer applications to obtain a reference to a
proxy supplier object. This is the second step in connecting a consumer
application to an EventChannel.

Code example 92 ConsumerAdmin interface
module CosEventChannelAdmin {

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};
};

186 VisiBroker-RT for C++ Developer ’s Guide

The obtain_push_supplier method is invoked if the calling consumer
application is implemented using the push model. If the application is
implemented using the pull model, the obtain_pull_supplier method
should be invoked.

The returned reference is used to invoke either the connect_push_consumer
 or the connect_pull_consumer method.

SupplierAdmin
This interface is used by supplier applications to obtain a reference to the
proxy consumer object. This is the second step in connecting a supplier
application to an EventChannel.

Code example 93 SupplierAdmin interface
module CosEventChannelAdmin {

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};
};

The obtain_push_consumer method is invoked if the supplier application is
implemented using the push model. If the application is implemented using
the pull model, the obtain_pull_consumer method should be invoked.

The returned reference is used to invoke the either the
connect_push_supplier or the connect_pull_supplier method.

ProxyPullConsumer
This interface is used by a pull supplier application and provides the
connect_pull_supplier method for connecting the supplier‘s
PullSupplier-derived object to the EventChannel. An AlreadyConnected
exception is raised if ProxyConsumer is already connected to a PullSupplier.

Code example 94 ProxyPullConsumer interface
module CosEventChannelAdmin {

exception AlreadyConnected();
interface ProxyPullConsumer : CosEventComm::PullConsumer {

void connect_pull_supplier(
in CosEventComm::PullSupplier pull_supplier)

raises(AlreadyConnected);
};

};

ProxyPushConsumer
This interface is used by a push supplier application and provides the
connect_push_supplier method, used for connecting the supplier‘s
PushSupplier-derived object to the EventChannel. An AlreadyConnected
exception is raised if ProxyConsumer is already connected to a PullSupplier.

Code example 95 ProxyPushConsumer interface
module CosEventChannelAdmin {

exception AlreadyConnected();
interface ProxyPushConsumer : CosEventComm::PushConsumer {

void connect_push_supplier(
in CosEventComm::PushSupplier push_supplier)

raises(AlreadyConnected);
};

};

VisiBroker-RT for C++ Developer ’s Guide 187

ProxyPullSupplier
This interface is used by a pull consumer application and provides the
connect_pull_consumer method, used for connecting the consumer‘s
PullConsumer-derived object to the EventChannel. An AlreadyConnected
exception is raised if ProxyConsumer is already connected to a
PullConsumer.

Code example 96 ProxyPullSupplier interface
module CosEventChannelAdmin {

exception AlreadyConnected();
interface ProxyPullSupplier : CosEventComm::PullSupplier {

void connect_pull_consumer(
in CosEventComm::PullConsumer pull_consumer)

raises(AlreadyConnected);
};

};

ProxyPushSupplier
This interface is used by a push consumer application and provides the
connect_push_consumer method, used for connecting the consumer‘s
PushConsumer-derived object to the EventChannel. An AlreadyConnected
exception is raised if ProxyConsumer is already connected to a PullSupplier.

Code example 97 ProxyPushSupplier interface
module CosEventChannelAdmin {

exception AlreadyConnected();
interface ProxyPushSupplier : CosEventComm::PushSupplier {

void connect_push_consumer(
in CosEventComm::PushConsumer push_consumer)

raises(AlreadyConnected);
};

};

PullConsumer
This interface is used to derive consumer objects that use the pull model of
communication. The pull method is called by a consumer whenever it
wants data from the supplier. A Disconnected exception will be raised if the
supplier has disconnected.

The disconnect_push_consumer method is used to deactivate this consumer
if the channel is destroyed.

Code example 98 PullConsumer nterface
module CosEventComm {

exception Disconnected {};
interface PullConsumer {

void disconnect_pull_consumer();
};

};

The only method that must be implemented in the derived classes of
PullConsumer is disconnect_pull_consumer, which is used to disconnect
the PullConsumer from the EventChannel. For instance, in the PullModel
example, the PullSupplier uses it to disconnect the pull consumer.

PushConsumer
This interface is used to derive consumer objects that use the push model of
communication. The push method is used by a supplier whenever it has

188 VisiBroker-RT for C++ Developer ’s Guide

data for the consumer. It raises a Disconnected exception if the consumer
has already been disconnected.

Code example 99 PushConsumer interface
module CosEventComm {

exception Disconnected();
interface PushConsumer {

void push(in any data) raises(Disconnected);
void disconnect_push_consumer();

};
};

The PushConsumer implements the push(in any data) method. This
method is called by the PushSupplier continuously to receive data until the
PushSupplier is explicitly disconnected from the PushConsumer by a call to
disconnect_push_supplier on the ProxyPushSupplier object.

PullSupplier
This interface is used to derive supplier objects that use the pull model of
communication.

Code example 100 PullSupplier interface

module CosEventComm {

exception Disconnected{}; interface PullSupplier {

any pull() raises(Disconnected); any try_pull() raises(Disconnected); void
disconnect_pull_supplier();

};

};

The PullConsumer pulls data from a PullSupplier. Once connected to a
ProxyPullSupplier, PullConsumer can pull()or try_pull() on the
ProxyPullSupplier object.

Try_pull() is for asynchronous pull (returns immediately, even if the data
is not yet available) and pull() is for synchronous pull (returns when the
data is available).

PullConsumer calls disconnect_pull_supplier() on ProxyPullServer when the
consumer wants to disconnect from the ProxyPullSupplier. The pull() and
try_pull() methods return CORBA::Any objects. In the example, the
returned Any object contains a numbered string that contains the value
"Hello".

PullSupplier methods

any pull();

This method blocks until there is data available from the supplier. The data
is returned an Any type. If the consumer has disconnected, this method
raises a Disconnected exception.

any try_pull(out boolean has_event);

This non-blocking method attempts to retrieve data from the supplier.
When this method returns, has_event is set to CORBA::TRUE and the data is
returned as an Any type if there was data available. If has_event is set to
CORBA::FALSE, then no data was available and the return value will be
NULL.

VisiBroker-RT for C++ Developer ’s Guide 189

void disconnect_pull_supplier();

This method deactivates this pull server if the channel is destroyed.

PushSupplier
This interface is used to derive supplier objects that use the push model of
communication. The disconnect_push_supplier method is used by the
EventChannel to disconnect supplier when it is destroyed.

Code example 101 PushSupplier interface
module CosEventComm {

exception Disconnected();
interface PushSupplier {

void disconnect_push_supplier();
};

};

PushSupplier should be implemented so that it constantly “pushes” data to
the consumer. In the PushModel example, once a PushModel object (a
PushSupplier-derived object) is created, it starts a new Thread that keeps
calling push(CORBA.Any) on the ProxyPushConsumer at intervals. The
pushed data is an Any with a message string (numbered Hello string)
inserted.

The only method that must be implemented in the derived classes of
PushSupplier is disconnect_pull_consumer, which is used to disconnect the
PullConsumer from the EventChannel. for instance, in the PushView
example, the PushConsumer uses it to disconnect the ProxyPushSupplier.

190 VisiBroker-RT for C++ Developer ’s Guide

Part 6
Advanced Concepts

In this part
This part contains the following chapters:

Real-Time CORBA Extensions page 199

Listening and Dispatch Configuration page 223

Connection Management page 235

Bidirectional Communication page 239

VisiBroker Pluggable Transport Interface page 243

Using Portable Interceptors page 255

Using VisiBroker Interceptors page 281

Using Object Wrappers page 295

Using Valuetypes page 313

VisiBroker Logging page 319

 194 Orbix Administrator’s Guide

 196 Orbix Administrator’s Guide

 198 Orbix Administrator’s Guide

VisiBroker-RT for C++ Developer ’s Guide 199

Real-Time CORBA
Extensions
VisiBroker-RT for C++ supports a number of Real-Time CORBA extensions,
as defined in the Real-Time CORBA 1.0 Specification. This chapter describes
these extensions and how to apply them in application code.

Overview
VisiBroker-RT for C++ provides the following Real-Time CORBA extensions:

• Real-Time CORBA Priority

A platform-independent priority scheme, that is used to control the
priority of threads related to the VisiBrokerRT60 application. Specifying
priorities in terms of the Real-Time CORBA priority scheme, instead of the
priority scheme of the particular RTOS, allows applications to be
developed that schedule real-time activities consistently across machines
running different RTOSs and even non-Real-Time Operating Systems. It
also aids the porting and/or extension of applications to different
Operating Systems at a later date.

• Priority Mappings

The means by which the Real-Time CORBA Priority scheme is ‘mapped’
onto the priority scheme of the underlying RTOS. The user may install a
Priority Mapping, to control the way the priorities are mapped, or use the
default mapping that is provided by the ORB.

• Threadpools
Real-Time CORBA entities that allow an application to control the threads
used by the ORB to execute CORBA invocations.

• Real-Time Object Adapters
Enhanced Portable Object Adapters (POAs), that work with Threadpools
and have a number of configurable Real-Time CORBA properties.

• Real-Time CORBA Current interface
An extension of the CORBA::Current interface, that allows Real-Time
CORBA priority values to be assigned to application threads.

• Real-Time CORBA Priority Models
Two alternate models for deciding the priority at which CORBA
invocations are executed.

• Real-Time CORBA Mutex API
An IDL-defined mutex interface, that gives applications access to the
same mutex implementation as that used internally by the ORB. This
guarantees consistent priority inheritance behavior, as well as improving
application portability.

• Real-Time ORB
Used to manage the creation and destruction of other Real-Time CORBA
entities, such as Threadpools and Mutexes.

• Control of Internal ORB Thread Priorities
Mechanisms to allow range limitation and explicit control of the priorities
of all additional threads used internally within the ORB.

These features are explained in the sections that follow.

200 VisiBroker-RT for C++ Developer ’s Guide

Using the Real-Time CORBA Extensions
Applications that want to make use of the Real-Time CORBA extensions
must include the C++ header file rtcorba.h, that is provided in the
VisiBroker include directory.

Many of the Real-Time CORBA features have interfaces that are defined in
IDL. The IDL for these features is specified in a new RTCORBA module. This
IDL is available for inspection in the file RTCORBA.idl, which can be found in
the idl directory of the VisiBroker installation.

However, there is no need to compile the IDL in RTCORBA.idl to make use of
the Real-Time CORBA features. Applications need only to include the
rtcorba.h header file that is provided with the other VisiBroker header
files.

This is because all of the interfaces in the module are specified as ‘locality
constrained’. That is, their object references cannot be passed off-node or
used to invoke operations on instances remotely. All manipulation of Real-
Time CORBA interfaces must be performed locally, as is the case with other
CORBA entities, such as CORBA::ORB and PortableServer::POA.

Real-Time CORBA ORB
The Real-Time CORBA extensions include a Real-Time ORB interface, which
is used to manage other Real-Time CORBA entities. The interface is named
RTCORBA::RTORB, and has the following definition.

Code example 102 Real-Time CORBA ORB IDL : interface RTCORBA::RTORB.
module RTCORBA {

// locality constrained interface
interface RTORB {

Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);

exception InvalidThreadpool {};

ThreadpoolId create_threadpool(
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool(in ThreadpoolId threadpool)
raises (InvalidThreadpool);

void threadpool_idle_time(
in ThreadpoolId threadpool,
in unsigned long seconds)

raises (InvalidThreadpool);
};

};

The operations shown in the IDL are described below, in the sections
“Threadpools” and “Real-Time CORBA Mutex API”.

The Real-Time ORB does not need to be explicitly initialized - it is initialized
implicitly as part of the regular CORBA::ORB_init call. Any Real-Time ORB
initialization arguments are passed in to the call to CORBA::ORB_init, along
with non-Real-Time arguments. If any Real-Time initialization argument is
invalid, the ORB_init call will fail, and a system exception will be thrown.

VisiBroker-RT for C++ Developer ’s Guide 201

To use the Real-Time ORB operations, the application must have a
reference to the RTCORBA::RTORB instance. This reference can be obtained
any time after the call to ORB_init, and is obtained by calling the
resolve_initial_references operation on CORBA::ORB, with the object id
“RTORB” as the parameter. Because resolve_initial_references returns
the reference as a CORBA::Object_ptr, it must then be narrowed to a
RTCORBA::RTORB_ptr before it can be used.

The code example below shows how to obtain the RTCORBA::RTORB
reference. Similar code can be found in the Real-Time CORBA examples
included with the VisiBroker release : threadpool, priority_models and
rtmutex.

Code example 103 Obtaining a reference for the Real-Time ORB via
resolve_initial_references

#include “corba.h”
#include “rtcorba.h”

// First initialize the ORB
CORBA::ORB_ptr orb;
VISTRY
{

orb = ORB_init(argc, argv);
}
VISCATCH(CORBA::Exception, e)

{
cerr << “Exception initializing ORB” << endl << e << endl;
// handle error here

}
VISEND_CATCH

// Then obtain the RTORB reference
CORBA::Object_var ref;

// Note use of _var, so ref will be automatically released
VISTRY
{

ref = orb->resolve_initial_references(“RTORB”);
}
VISCATCH
{

cerr << “Exception obtaining RTORB reference” << endl << e <<
endl;

// handle error here
}
VISEND_CATCH

// Finally, narrow the RTORB reference
RTCORBA::RTORB_ptr rtorb;
VISTRY
{

rtorb = RTCORBA::RTORB::_narrow(ref);
// ref is no longer needed. Will be automatically released as

is a _var
}
VISCATCH(CORBA::Exception, e)
{

cerr << “Error narrowing RTORB reference” << endl << e <<
endl;

// Handle error here

}
VISEND_CATCH

202 VisiBroker-RT for C++ Developer ’s Guide

Real-Time Object Adapters
In Real-Time CORBA, all Object Adapters are Real-Time Object Adapters.
This means that all Object Adapters are aware of priorities and handle
CORBA invocations according to rules defined by Real-Time CORBA. It is
necessary for all Object Adapters on a node to be Real-Time: if some Object
Adapters in the CORBA application were non-Real-Time, their operation
would interfere with the behavior of the Real-Time Object Adapters
(because threads associated with all Object Adapters must be scheduled
together by the OS.)

As all Object Adapters are Real-Time, the normal Portable Object Adapter
(POA) interface is used to manage them.

Real-Time Object Adapters are created in the normal way, through a call to
create_POA. Configuration of the extra, Real-Time properties is achieved
through the passing of new Real-Time policies in the policy list parameter.
An example of POA creation specifying one such new policy (and its
associated value) is shown below:.

Code example 104 Configuration of a Real-Time Policy at time of POA creation
// Create Real-Time CORBA Priority Model Policy
// (Already obtained RTORB reference)
RTCORBA::PriorityModelPolicy_ptr priority_model_policy =

rtorb->create_priority_model_policy(
RTCORBA::SERVER_DECLARED, 25);

// Create Policy List containing this RT CORBA Policy
// (Include any required non-Real-Time policies in the same list)
CORBA::PolicyList policies;
policies.length(1);
policies[0] = priority_model_policy;

// Create POA, using the Policy List
// (Associate POA with the Root POA's POA manager, if none other)
// (Already obtained Root POA reference)
PortableServer::POAManager_var poa_manager =

rootPOA->the_POAManager();
VISTRY
{

poa = rootPOA->create_POA("myPOA", poa_manager, policies);

}

VISCATCH(CORBA::Exception, e)
{

// handle exceptions here
}
VISEND_CATCH

The Real-Time policies that can be configured at the time of POA creation are
concerned with the Priority Model that the POA supports and which
Threadpool it will be associated with.

The configuration of these properties is described in the sections
“Threadpools” and “Real-Time CORBA Mutex API”.

If any of these Real-Time properties is not configured by the application at
the time of POA creation, the ORB will initialize that property with a default
value. The default Priority Model behavior is for the POA to support the
Server Declared Priority Model, and the default Threadpool behavior is for
the POA to be associated with the General Threadpool. These defaults are
explained in the two sections on Priority Models and Threadpools.

VisiBroker-RT for C++ Developer ’s Guide 203

Real-Time CORBA Priority
Real-Time CORBA defines a universal, platform independent priority scheme
called Real-Time CORBA Priority. It allows Real-Time CORBA applications to
make prioritized CORBA invocations in a consistent fashion between nodes
running different Operating Systems. Even if all nodes in the existing
system are running the same Operating System, its use aids the
configuration of priorities in the system, and will improve application
portability and simplify future extension to a mixed OS environment.

For consistency and portability, Real-Time CORBA applications are obliged
to use Real-Time CORBA Priority to express the priorities in the (CORBA part
of the) application, even if all nodes in a system use the same OS, and
hence the same priority scheme.

The RTCORBA::Priority type is used to represent Real-Time CORBA Priority:
module RTCORBA {

typedef short Priority;
const Priority minPriority = 0;
const Priority maxPriority = 32767;

};

A signed short is used in order to accommodate the Java language
mapping. However, only values in the range 0 (minPriority) to 32767
(maxPriority) are valid.

NOTE

Numerically higher RTCORBA::Priority values are defined to be of higher
priority. This is the reverse of the priority scheme used by VxWorks, where
0 is the highest priority.

In practice, an application does not need to use the entire range of valid
RTCORBA::Priority values (0 to 32767.) A smaller range, that suits the
needs of the application, can be defined as the only admissible range. This
is achieved through control of the Priority Mapping. Priority Mappings are
described in the next section.

By default, VisiBroker-RT for C++ installs a Priority Mapping that only
allows RTCORBA::Priority values in the range 0 to 31. (The POSIX
threading range of priorities.) See the next section for details.

Priority Mappings
A given Real-Time Operating System has a particular priority ‘scheme’: the
range and direction of priority values that it uses. The VxWorks priority
scheme is priorities in the range 0 to 255, ranging from 255 as the lowest
priority to 0 as the highest priority. In Real-Time CORBA, this is referred to
as the Native priority scheme of VxWorks, and the VxWorks priority values
are referred to as Native Priority values.

As the Real-Time CORBA application will describe its priorities in terms of
RTCORBA::Priority values, and the OS works in terms of Native Priority
values, a mapping must be defined between these two priority schemes.
The mapping is used by the ORB, to obtain the Native Priority corresponding
to a given RTCORBA::Priority value, and vice versa, as is required. This is
done, for example, when an application specifies that it wants a Threadpool
to have threads that are created with a particular RTCORBA::Priority, and
the ORB needs to know what Native Priority to tell the OS to use when it
actually creates the threads.

204 VisiBroker-RT for C++ Developer ’s Guide

The Priority Mapping may also be used directly by the application. But this
should only occur in special circumstances. This is discussed further in
section “Using Native Priorities in VisiBroker Application Code”.

The ORB comes with a default Priority Mapping, which is sufficient for
experimenting with the Real-Time CORBA features and may be sufficient for
many Real-Time applications (since it is based on the POSIX priority
scheme.) Therefore, when first becoming familiar with the Real-Time
features of VisiBroker-RT for C++, it may be appropriate to skip the rest of
this section, and learn about the rest of the Real-Time CORBA features
(beginning in the section “Threadpools”), before returning to this section to
understand the details of Priority Mappings and the reasons for installing
one that is different from the default.

Priority Mapping Types
To support Priority Mappings, a RTCORBA::NativePriority type and
RTCORBA::PriorityMapping type are defined :

module RTCORBA {
typedef short NativePriority;
native PriorityMapping

};

RTCORBA::NativePriority values must be integers in the range -32768 to
+32767. However, for a particular RTOS, the valid range will be a sub-
range of this range. For VxWorks, the valid range is 0 to 255.

The RTCORBA::PriorityMapping type is defined as an IDL native interface.
This means that the interface is defined directly in each implementation
language, rather than being defined in IDL and mapped automatically to
each language according to the rules of the particular CORBA language
mapping. This is done for reasons of efficiency.

The C++ mapping of the RTCORBA::PriorityMapping interface is:
//C++
class PriorityMapping {

public:
virtual CORBA::Boolean to_native(

RTCORBA::Priority corba_priority,
RTCORBA::NativePriority &native_priority);

virtual CORBA::Boolean to_CORBA(
RTCORBA::NativePriority native_priority,
RTCORBA::Priority &corba_priority);

virtual RTCORBA::Priority max_priority();

PriorityMapping();
virtual ~PriorityMapping() {}
static RTCORBA::PriorityMapping * instance();

};

The methods that define the behavior of a particular Priority Mapping are
to_native, to_CORBA and max_priority. Their purpose is as follows:

to_native

This method takes a RTCORBA::Priority value from the corba_priority
parameter and either maps it to a RTCORBA::NativePriority value or fails to
map it. If the value is mapped, the resulting Native Priority value is stored
in the location referenced by the parameter native_priority (which is a
C++ reference parameter) and a true value is returned to indicate that the
mapping was successful. If the value is not mapped, the contents of the
native_priority parameter are not altered, and a false value is returned to
indicate that the mapping operation failed.

VisiBroker-RT for C++ Developer ’s Guide 205

to_CORBA

The converse of to_native, this method takes a RTCORBA::NativePriority
value from the native_priority parameter, and either maps it to a
RTCORBA::Priority value or fails to map it. If the value is mapped, the
resulting RTCORBA::Priority value is stored in the location referenced by
the corba_priority parameter (which is a C++ reference parameter) and a
true value is returned to indicate that the mapping was successful. If the
value is not mapped, the contents of the corba_priority parameter are not
altered, and a false value is returned to indicate that the mapping operation
failed.

max_priority

This method just returns the highest RTCORBA::Priority value that is valid
in this mapping. The ORB needs to be explicitly told the highest value as
there is no efficient way for it to determine it by examining the behavior of
the to_native and to_CORBA methods given different input values.

The implementation of these methods must conform to certain rules, that
are described below.

Rules for Priority Mappings
Any Priority Mapping that is installed (including the default Priority Mapping)
must conform to the following rules:

• The to_native and to_CORBA methods should be able to handle all values
of their input parameter, in the range -32768 to +32767.

• to_native must definitely fail to map values outside the range 0 to
32767, and may fail to map values within that range as well. (For
example the default Priority Mapping fails to map all values outside the
range 0 to 31.)

• to_CORBA must definitely fail to map values outside the range of the
Native Priority scheme and may fail to map values within that range as
well. (The default Priority Mapping chooses to only map from VxWorks
Native Priorities in the range 100 to 131.)

• Lower RTCORBA::Priority values should always map to/from lower
importance Native Priority values, and higher to higher. Note that in the
case of a VxWorks based operating system, this means mapping
numerically lower RTCORBA::Priority values to/from numerically higher
Native Priorities. This follows the convention used by the majority of Real
Time Operations Systems. VxWorks is at odds with this convention, in
making 0 the highest importance priority. The reason for following the
convention is to maintain consistency with Real-Time CORBA applications
developed on other RTOSs. Otherwise future porting and interworking
with other Real-Time applications will be greatly complicated

• RTCORBA::Priority 0 should always be mapped, and always be mapped
to the lowest importance Native Priority value in the range of Native
Priority values that is mapped to/ from. (The default Priority Mapping
maps RTCORBA::Priority 0 to VxWorks Priority 131, which is the lowest
importance priority in the default mapping.)

• max_priority must return the highest RTCORBA::Priority value that is
mapped by the mapping. (That is, the highest value for which a Native
Priority value is returned.)

The following are not mandated, but will often be the case, unless there is
special reason to do otherwise:

206 VisiBroker-RT for C++ Developer ’s Guide

• to_native and to_CORBA will usually return the same value (or fail to
map) every time they are called with the same input value.

• to_native and to_CORBA will usually be reverse mappings of one another.

• The ranges of RTCORBA::Priority and Native Priority values that are
mapped will usually each be a single contiguous range of priority values.

Default Priority Mapping
VisiBroker-RT for C++ provides a default Priority Mapping. This is the Priority
Mapping that will be used unless a different one is written by the application
developer and installed using the process described below, in the section
“Replacing the Default Priority Mapping”.

Note
Only one Priority Mapping may be installed at any one time on a given
VisiBrokerRT60 system. The act of installing one Priority Mapping
automatically un-installs the previously installed Priority Mapping (which will
usually be the default Priority Mapping.)

The default Priority Mapping has the following characteristics:

• Valid RTCORBA::Priority range is 0 to 31 only. This follows the POSIX
threading model. All priorities outside of this range are invalid, which
means an exception will be thrown if an attempt is made to use them.

• The valid RTCORBA::Priority values are mapped one-to-one onto a 32
priority sub-range of the VxWorks Native Priority range. Specifically, they
are mapped onto the Native Priority range 100 to 131.

• The valid RTCORBA::Priority values are mapped onto the Native Priority
range in such a way that RTCORBA::Priority value 0 corresponds to the
lowest-importance Native Priority in the sub-range used, and
RTCORBA::Priority 31 corresponds to the highest-importance Native
Priority in the sub-range used. Specifically:

RTCORBA::Priority 0 maps to VxWorks Native Priority 131; and
RTCORBA::Priority 31 maps to VxWorks Native Priority 100.

The default Priority Mapping is defined within the ORB, and hence the
source code for it is not included in the VisiBrokerRT60 release. The source
code for the mapping is shown here, however, to show exactly how this
mapping behaves,

Code example 105 The default Priority Mapping implementation
// VisiBroker for C++ for Tornado Default Priority Mapping
CORBA::Boolean
VISDefaultPriorityMapping::to_native(

RTCORBA::Priority corba_priority,
RTCORBA::NativePriority &native_priority)

{
if ((corba_priority < 0) || (corba_priority > 31))
{

return FALSE;
}

else
{

native_priority = 131 - corba_priority; // 0 -> 131, 31 ->
100 return TRUE;

}
}

// Default ’to_corba’ mapping CORBA::Boolean
VISDefaultPriorityMapping::to_CORBA(

VisiBroker-RT for C++ Developer ’s Guide 207

RTCORBA::NativePriority native_priority RTCORBA::Priority
&corba_priority)
{

if ((native_priority < 100) || (native_priority > 131))
{
return FALSE;
}
else
{
corba_priority = 131 - native_priority; // 131 -> 0, 100 -> 31
return TRUE;
}

}

// Default max method : returns the max RTCORBA::Priority
// supported by the default priority mapping
RTCORBA::Priority VISDefaultPriorityMapping::max_priority()
{

return 31;
}

Replacing the Default Priority Mapping

Note

Only one Priority Mapping may be installed at any one time on a particular
machine. The act of installing one Priority Mapping automatically uninstalls
the previously installed Priority Mapping (which will usually be the default
Priority Mapping.)

The application may wish to replace the default Priority Mapping on some or
all nodes in the system. Reasons for doing this include:

• To ‘shift’ the range of Native Priority values that are mapped to/from
higher or lower in the overall Native Priority scheme. For example to take
the default Priority Mapping’s range of Native Priority 100 to 131, and
replace it with the range 50 to 81 (higher importance) or 200 to 231
(lower importance.)

• To have more or less RTCORBA::Priority values in the range of valid
(i.e. mapped) values. For example, to only map RTCORBA::Priority
values in the range 0 to 8 or to map values in the range 0 to 128.

• To have more or less Native Priority values in the range of valid (i.e.
mapped) values. For example, to map to/from Native Priority values in
the range 128 to 256.

Note that the relationship between the ranges of RTCORBA::Priority and
Native Priority values that are valid in the mapping will determine whether
the mapping is a one-to-one mapping or not. The mapping does not have to
be a one-to-one mapping, but this may be convenient. The default Priority
Mapping is a one-to-one mapping.

NOTE

Installed Priority Mappings should follow the convention, used in the default
Priority Mapping, of making the RTCORBA::Priority 0 have the lowest
importance. On VxWorks, this means ensuring that RTCORBA::Priority 0
maps to the numerically largest VxWorks Native Priority value (of the sub-
range that is being mapped to.) The reason for doing this is to maintain
consistency with Real-Time CORBA applications developed on other RTOSs.
Otherwise future porting and interworking with other Real-Time applications
will be greatly complicated.

A new Priority Mapping is installed by defining a new class, which must
inherit from the class TCORBA::PriorityMapping, and creating one static

208 VisiBroker-RT for C++ Developer ’s Guide

instance of it in the application. When the static instance is initialized
(during the execution of static constructors) the base
RTCORBA::PriorityMapping class’ constructor will register the new mapping
with the ORB.

For an example of a writing and installing a new Priority Mapping, look at
the files mapping.h and mapping.C in the threadpool example included in
the <install_location>/VisiBrokerRT60/examples directory under the
VisiBroker installation. Note the single instance of the new class that is
created in global scope in mapping.C. When the resulting mapping.o is
loaded onto a VxWorks target, and static constructor initialization takes
place, it is the initialization of this instance that installs the mapping.

(To see the effect of installing the mapping, compare the behavior of
loading and running the corba_init and corba_init_mapping executables.
corba_init_mapping has mapping.o linked in, corba_init does not.)

Using Native Priorities in VisiBroker Application
Code
Although applications are obliged to use Real-Time CORBA Priority to reason
about the priority of different parts of their CORBA application (and the
priority of CORBA invocations between parts of the application), there are
cases in which the application will need to deal in terms of Native Priority.
For example, to configure some sub-system outside of the CORBA
application, that only knows about the Native Priority scheme, or to use
some OS call directly, that takes a (Native) priority value as a parameter.

Hence, it may be necessary to translate between Real-Time CORBA and
Native Priority in the application. To allow this, VisiBroker-RT for C++ offers
a convenience method, that returns a pointer to the currently installed
Priority Mapping. The method is the static instance method on the class
RTCORBA::PriorityMapping.

Using this, the application can call the Priority Mapping’s methods directly,
but is always guaranteed to be working with the installed mapping. This
allows the code to continue to work if the mapping is changed.

Code example 106 An example of using the installed Priority Mapping from application
code

RTCORBA::Priority corba_priority;

// Priority Mapping methods return boolean flag, rather than
// throwing exceptions
if
(!RTCORBA::PriorityMapping::instance()- >to_CORBA(100,

corba_priority
))
{

// Handle failure to map native priority to RT CORBA priority
}

// Use corba_priority value here...

Threadpools
VisiBroker-RT for C++ uses Threadpools to manage the threads of
execution on the server-side of the ORB. Threadpools offer the following
features:

• Pre-allocation of threads.

VisiBroker-RT for C++ Developer ’s Guide 209

This helps guarantee Real-Time system behavior, by allowing the
application programmer to ensure that there are enough thread
resources to satisfy a certain number of concurrent invocations, and also
helps reduce latency and increase predictability, by avoiding the
destruction and recreation of threads between invocations.

• Partitioning of threads.
Having multiple Threadpools, associated with different Object Adapters
allows one part of the system to be isolated from the thread usage of
another, possibly lower priority, part of the application system. This can
again be used to help achieve Real-Time behavior of the system as a
whole.

• Bounding of thread usage.
A Threadpool can be used to set a maximum limit on the number of
threads that a POA or set of POAs may use. In systems where the total
number of threads that may be used is constrained, this can be used in
conjunction with Threadpool partitioning to avoid thread starvation in a
critical part of the system.

Threadpool API
Threadpools are managed using the following operations of the
RTCORBA::RTORB interface:

module RTCORBA {

typedef unsigned long ThreadpoolId;

// locality constrained object
interface RTORB {

exception InvalidThreadpool {};

ThreadpoolId create_threadpool(
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool(in ThreadpoolId threadpool)
raises (InvalidThreadpool);

void threadpool_idle_time(
in ThreadpoolIdthreadpool,
in unsigned long seconds)

raises (InvalidThreadpool);
};

};

These operations are described in the sections that follow. Examples of
Threadpool creation and their association with POAs can be found in the
threadpool example included with the VisiBroker installation.

Threadpool Creation and Configuration
A Threadpool is created by invoking the create_threadpool operation on the
Real-Time ORB. The arguments to create_threadpool have the following
significance:

• stacksize

210 VisiBroker-RT for C++ Developer ’s Guide

The stack size, in bytes, that each thread created for the Threadpool
should have.

• static_threads
The number of threads that will be created and assigned to the pool at
the time of Threadpool creation. These threads will not be destroyed until
the Threadpool itself is destroyed. After they have been used to execute
a CORBA invocation, they are returned to the Threadpool, and await
another invocation to execute.

• dynamic_threads
The number of threads that may be created dynamically, to execute
CORBA invocations received when all the static threads are currently in
use. The number may be zero, in which case no threads may be
dynamically created after Threadpool creation. (In this case, the number
of concurrently executing invocations is limited by the number of static
threads.)

• default_priority
The RTCORBA::Priority at which idle threads should remain while in the
pool waiting for a CORBA invocation to execute. The priority at which the
invocation will be executed depends on the Real-Time CORBA Priority
Model in use. See the section “Real-Time CORBA Priority Models” for details.
This parameter determines the priority of the threads when they are not
handling invocations.

• allow_request_buffering, max_buffered_requests and
max_request_buffer_size
These arguments support the Request Buffering feature from the Real-
Time CORBA specification, that allows for invocation requests to be
queued once the static and dynamic thread limits of a Threadpool have
been reached. This feature is not currently supported in VisiBroker-RT for
C++, and the value of these arguments is ignored.

If dynamic_threads is greater than zero, so that threads may be created
dynamically, the threads are not immediately destroyed after they have
completed executing the CORBA invocation that they were created to
handle. They are returned to the Threadpool, in the same way that static
threads are. However, dynamic threads that remain idle in the Threadpool
may eventually be destroyed during garbage collection that occurs from
time to time.

The amount of time a dynamically created thread must remain idle in a
Threadpool before it is destroyed may be set using the
threadpool_idle_time operation of RTCORBA::RTORB. If the idle time is not
set using this operation, it defaults to 300 seconds.

If successful, create_threadpool returns an identifier for the new
Threadpool. The identifier is of type RTCORBA::ThreadpoolId (an unsigned
long), and is subsequently used to refer to that Threadpool.

Association of an Object Adapter with a
Threadpool
Every POA created using VisiBroker-RT for C++ is associated with a
Threadpool. Each Threadpool, on the other hand, may be associated with
any number of POAs. By configuring multiple POAs to use the same or
different Threadpools, the application designer can control the use of
threads by different sets of CORBA Objects.

VisiBroker-RT for C++ Developer ’s Guide 211

Which Threadpool a POA is associated with is determined by passing the
RTCORBA::ThreadpoolId of the desired Threadpool into the create_POA
operation as the value of a RTCORBA::ThreadpoolPolicy policy.

Code example 107 Associating a POA with a Threadpool at time of POA initialization
// Obtain RTORB refereence
CORBA::Object_var objref =
orb->resolve_initial_references("RTORB");
RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow(objref);

// Create a Threadpool
RTCORBA::ThreadpoolId tpool_id = rtorb->create_threadpool(

30000, // stacksize
5, // num static threads
0, // num dynamic threads
20, // default RT CORBA priority
0, 0, 0);

// Create Threadpool Policy object for use in POA initialization
RTCORBA::ThreadpoolPolicy_ptr tpool_policy =

rtorb->create_threadpool_policy(tpool_id);

// Create Policy List for POA initialization
// (Include any required non-Real-Time policies in the same list)
CORBA::PolicyList policies;

policies.length(1);
policies[0] = tpool_policy;

// Create POA, using the Policy List
// (Associate POA with the Root POA's POA manager, if none other)
// (Already obtained Root POA reference)
PortableServer::POAManager_var poa_manager =

rootPOA->the_POAManager();
VISTRY
{

poa = rootPOA->create_POA("myPOA", poa_manager, policies);
}

VISCATCH(CORBA::Exception, e)
{

// handle exceptions here
}
VISEND_CATCH

The create_POA fails if any part of the Real-Time CORBA configuration is
invalid. For example, if the ThreadpoolId is not for a currently existing
Threadpool, a CORBA::BAD_PARAM system exception will be thrown.

The General Threadpool
If a Threadpool is not specified at POA creation time, as described in the
previous section, then the new POA that is created is associated with a
special Threadpool, called the General Threadpool.

The General Threadpool does not have to be created by a call to
RTCORBA::RTORB’s create_threadpool operation. Instead, the General
Threadpool is created automatically by the ORB the first time it is required.
That is, it is created the first time create_POA is called without specifying a
Threadpool. Hence, if all POAs are created specifying

application-created Threadpools, the General Threadpool will not be
created. The General Threadpool will be created with the following
configuration:

• stacksize = 30000

• static_threads = 0

• dynamic_threads = 1000

212 VisiBroker-RT for C++ Developer ’s Guide

• default_priority = 0

• max_thread_idle_time = 300

If this configuration is not appropriate for the application, the General
Threadpool should not be used, and the application should explicitly
associate each POA with an appropriately configured Threadpool at POA
creation time.

Threadpool Destruction
A Threadpool may be destroyed by passing its ThreadpoolId as the
argument to a call to the destroy_threadpool operation of RTCORBA::RTORB:

// RTORB reference and Threadpool id obtained previously

// Get RT ORB reference
CORBA::Object_var objref =

orb->resolve_initial_references("RTORB");

RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow(objref);

VISTRY
{

rtorb->destroy_threadpool(pool_id);
}
VISCATCH(CORBA::Exception, e)
{

// handle error here
}
VISEND_CATCH

All POAs that have been associated with a particular Threadpool (i.e. that
had this Threadpool specified as the Threadpool to use, at the time of POA
creation) must have been destroyed before the destroy_threadpool
operation will succeed.

If POAs still exist that are associated with the Threadpool, the call fails and
a system exception is thrown.

Real-Time CORBA Current
Real-Time CORBA defines a Real-Time CORBA Current interface to provide
access to the CORBA priority of a thread.

Code example 108 The RTCORBA::Current interface
module RTCORBA {

interface Current : CORBA::Current {
attribute Priority base_priority;

};
};

A Real-Time CORBA Priority may be associated with the current thread, by
setting the base_priority attribute of the RTCORBA::Current object. This
has two effects:

• The Native Priority of the current thread will immediately be set to the
value mapped from the Real-Time CORBA Priority value given as the
parameter to the set attribute operation. Thus setting this attribute has
the effect of controlling the priority of CORBA application threads.

• The Real-Time CORBA Priority value is stored, for use with any CORBA
invocations made from that thread. The value is only relevant when
making invocations on CORBA Objects that were created from POAs that
are configured to support the ‘Client Priority Propagation’ Priority Model.

VisiBroker-RT for C++ Developer ’s Guide 213

(See the next section, “Real-Time CORBA Priority Models”.)

The priority value stays in effect (for both of the above purposes) until a
new value is set. The current value can also be read, using the
corresponding get attribute operation.

A CORBA::BAD_PARAM system exception will be thrown by the set attribute
operation if an attempt is made to set a priority outside of the valid 0 to
32767 range. A CORBA::DATA_CONVERSION exception will be thrown if an
attempt is made to set a priority that is in the 0 to 32767 range, but outside
of the range supported by the currently installed Priority Mapping.

A CORBA::INITIALIZE system exception will be thrown if an attempt is
made to get the priority value from a thread that has not yet had a Real-
Time CORBA Priority value set on it. (The Native Priority of the current
thread is not just mapped to a Real-Time CORBA Priority and returned.)

To use the RTCORBA::Current object, a reference to it must be obtained. This
is achieved by calling the CORBA::ORB operation
resolve_initial_references with the parameter “RTCurrent”, as in the
following example.

Code example 109 Obtaining the reference of RTCORBA::Current
// ORB previously initialized CORBA::ORB_ptr orb;

// Obtain the RTCORBA::Current reference
CORBA::Object_var ref;
// Note use of _ptr. The reference will be autoatically released

VISTRY
{

ref = orb->resolve_initial_references(“RTCurrent”);
}
VISCATCH
{

// handle error here
}
VISEND_CATCH

// Narrow the RTCORBA::Current reference
RTCORBA::Current_ptr rtcurrent;
VISTRY
{

rtcurrent = RTCORBA::Current::_narrow(ref);
// ref is no longer needed. Will be automatically released
// as is a _var

}
VISCATCH(CORBA::Exception, e)
{

// handle error here
}
VISEND_CATCH

Note that the RTCORBA::Current reference only needs to be obtained once.
The same variable may be used by different threads, and will behave as if it
is private to each of them (setting and getting their thread-specific priority
value.) This behavior is inherited from the base CORBA::Current object.

Real-Time CORBA Priority Models
Real-Time CORBA supports two models for the coordination of priorities
across a system. These two models provide two alternate answers to the
question: where does the priority at which the CORBA invocation is
executed come from? They are:

• Client Propagated Priority Model

214 VisiBroker-RT for C++ Developer ’s Guide

In this model, the Real-Time CORBA Priority associated with a client
CORBA application thread, using RTCORBA::Current, is also used as the
priority on the server-side of the invocation. The thread that executes the
invocation (which is taken from a Threadpool) runs at a Native Priority
that is mapped from the Real-Time CORBA priority set on the client side
prior to making the invocation.

• Server Declared Priority Model

In this model the Real-Time CORBA Priority associated with a client
CORBA application thread only affects the priority on the client-side of
the invocation. The priority that the invocation is handled at on the
server-side is determined by the configuration of the CORBA Object and
the POA that created it.

Which Priority Model is used is a server-side issue, configured at the POA
level. All CORBA Objects created from the same POA will have their
invocations processed according to the Priority Model the POA is configured
with.

The Priority Model is selected at POA initialization time, by including a
RTCORBA::PriorityModelPolicy instance in the Policy List passed as a
parameter to create_POA. The Policy is configured with one or other of the
two values:
• RTCORBA::CLIENT_PROPAGATED

To select the Client Priority Propagation Model.
• RTCORBA::SERVER_DECLARED

To select the Server Declared Model.

In either case a RTCORBA::Priority value is also specified as part of the
Policy. The two models use this priority value differently:

• In the Client Priority Propagation Model, the value is the priority at which
to execute invocations from clients that did not set a priority prior to
making the invocation. This will include clients from non-Real-Time ORBs
(including non-Real-Time ORBs from other vendors), and also invocations
from threads that have not yet set a priority value using
RTCORBA::Current.

• In the Server Declared Model, the value is the priority at which
invocations will be executed, unless a different priority is set at the Object
level. See the section below for details on the setting of the priority at the
Object level.

The Server Declared Model is the default model. If a POA is initialized
without specifying which model to use, it will be configured to use the
Server Declared Model. However, in this case there is a subtle difference in
behavior; because a priority has not been specified, the invocations run at
the default priority of the Threadpool that the POA is associated with. (The
default priority is a configurable property of Threadpools. It is the priority
that threads remain at when idle in the pool. See the section on
Threadpools for details.)

The following code demonstrates the setting of the Priority Model Policy at
the time of POA creation. In this case, the Client Priority Propagation Model
is selected, with a default priority of 7 (for invocations from non-Real-Time
Clients).

Code example 110 Configuration of Real-Time Priority Model Policy at POA creation
// Create Real-Time CORBA Priority Model Policy
// (Already obtained RTORB reference)
RTCORBA::PriorityModelPolicy_ptr priority_model_policy =

rtorb->create_priority_model_policy(
RTCORBA::CLIENT_PROPAGATED,7);

VisiBroker-RT for C++ Developer ’s Guide 215

// Create Policy List containing this RT CORBA Policy
// (Include any required non-Real-Time policies in the same list)
CORBA::PolicyList policies;
policies.length(1);
policies[0] = priority_model_policy;

// Create POA, using the Policy List
// (Associate POA with the Root POA's POA manager, if none other)
// (Already obtained Root POA reference)
PortableServer::POAManager_var poa_manager =

rootPOA->the_POAManager();
VISTRY
{

poa = rootPOA->create_POA("myPOA", poa_manager, policies);
}

VISCATCH(CORBA::Exception, e)
{

// handle exceptions here
}
VISEND_CATCH

See the priority_models example included with the VisiBroker installation
for further examples of configuring the two different Priority Models.

Client Model Backwards Compatability with
VisiBroker 3.2.2
VisiBroker-RT for C++ 3.2.2 was implemented before the Real-Time CORBA
Specification was finalized. As a consequence, it uses a non-standard value
for the ServiceId of the Service Context used to propagate the client
thread's Real-Time CORBA Priority from the client to the server.

By default, VisiBroker-RT for C++ 6.0 sends only the standard ServiceId
value. Setting the property vbroker.orb.clientModel.backCompat to true
causes two Service Contexts to be sent:

• one with the standard Service Id and

• one with the old 322 Service Id.

This allows a VisiBroker 6.0 client to propagate Real-Time CORBA Priority
values to a VisiBroker 3.2.2 server.

NOTE

VisiBroker-RT for C++ 6.0 servers always accept Real-Time CORBA Priority
values from VisiBroker 3.2.2 clients, whether this property is true or false.

Setting Priority at the Object Level
When the Server Declared Model is selected a priority value is supplied to
determine the priority at which invocations will be executed on the server-
side of the ORB. This priority value is used when handling invocations on
behalf of any CORBA Object created by that POA.

However, this scope of control of priority is too coarse for some
applications. To remedy this, Real-Time CORBA allows the priority that
invocations will be executed at in the Server Declared model to be
overridden on a per-Object basis.

The priority to run invocations at may be overridden for a given object by
using either the operation activate_object_with_priority or
activate_object_with_id_and_priority to activate the object in question.
These operations work in the same way as activate_object and

216 VisiBroker-RT for C++ Developer ’s Guide

activate_object_with_id, but take a Real-Time CORBA Priority value as an
additional parameter.

These operations are specified as part of the VisiBroker Extended POA
interface, PortableServerExt::POA, which is accessed by narrowing a POA
object reference using the static C++ method
PortableServerExt::POA::_narrow.

For an example of setting the priority on a per-Object basis, see the file
model_server.C in the priority_models example included with VisiBroker.

Real-Time CORBA Mutex API
VisiBroker-RT for C++ implements the following Real-Time CORBA Mutex
interface:

#include “timebase.idl”
module RTCORBA {

// locality constrained interface
interface Mutex {

void lock();
void unlock();
boolean try_lock(in TimeBase::TimeT max_wait);

// if max_wait = 0 then return immediately
};

interface RTORB {
...

Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);

...

};
};

A new RTCORBA::Mutex object is obtained using the create_mutex operation
of RTCORBA::RTORB. A Mutex object has two states: locked and unlocked.
Mutex objects are created in the unlocked state. When the Mutex object is in
the unlocked state the first thread to call the lock() operation will cause the
Mutex object to change to the locked state.

Subsequent threads that call the lock() operation while the Mutex object is
still in the locked state will block until the owner thread unlocks it by calling
the unlock() operation.

The try_lock() operation works like the lock() operation except that if it
does not get the lock within max_wait time it returns FALSE. If the
try_lock() operation does get the lock within the max_wait time period it
returns TRUE.

The mutex returned by create_mutex must have the same priority
inheritance properties as those used by the ORB to protect resources. If a
Real-Time CORBA implementation offers a choice of priority inheritance
protocols, or offers a protocol that requires configuration, the selection or
configuration will be controlled through an implementation specific
interface.

Control of Internal ORB Thread Priorities
VisiBroker-RT for C++ allows the application to control the priority of the
threads that the ORB creates for internal use.

The internal ORB threads are:

VisiBroker-RT for C++ Developer ’s Guide 217

• VISLogger threads

These are the threads that VisiBroker Logger Forwarders run on. One
Logger Forwarder thread is created at ORB initialization time.The thread
name is ‘VISLogger’. Other instances will be created if more Loggers are
created by the application. The additional Logger Forwarder threads have
task names of the form ‘VISLogger<n>’, where <n> is an index number
that starts from one and corresponds to the order in which the Loggers
were created.

• DSUser thread

A single DSUser thread is created the first time the ORB attempts to
communicate with the OS Agent. This will usually happen the first time
either activate_object or a _bind method is called. This thread
manages all communication between the ORB and the OS Agent. The
task name is ‘VISDSUser’.

• Listener threads

Listener Threads will be created as part of the initialization of a Server
Engine. (This occurs during POA initialization, whenever a POA wishes to
use a Server Engine that has not been yet been used.) These threads
wait for incoming CORBA invocations to be received from network
connections. Listener Threads for IIOP communication have task names
of the form ‘VISLis<n>’, where <n> is an index number that starts from
zero and indicates the order in which the listeners were created.

• Garbage Collection thread

A single instance of this is created the first time a Threadpool is created.
This will occur either when the application explicitly creates a Threadpool,
or the first time the application creates a POA without specifying a
Threadpool (in which case the General Threadpool will be created so that
it can be used.) Garbage Collection Threads have task names of the form
‘VISGC<n>’, where <n> corresponds to the Threadpool Id of the
threadpool they are associated with.

If the application does not configure the priority of these threads they all
default to running at the highest RTCORBA::Priority in the installed priority
mapping. That is the priority that is returned by the Priority Mapping’s
max_priority method. Hence, with the Default Priority Mapping installed,
they will all run at RTCORBA::Priority 31, which maps to VxWorks Native
Priority 100.

There are two ways of configuring the priority of the different types of
internal ORB threads:

• Collectively, by setting a range limit on ORB internal threads. All the above
types of thread will all then run at the maximum priority in the specified
range.

• On a per-type basis (and in some cases a per-instance basis), through
VisiBroker properties.

Limiting the Internal ORB Thread Priority
Range
A range limit is set on internal ORB threads by passing the following
argument to ORB_init:

--ORBRTPriorityRange <min>,<max>

-ORBRTPriorityRange is given as one argument, and the two values are
given together in another argument, separated by a comma. For example:

218 VisiBroker-RT for C++ Developer ’s Guide

// Prepare arguments for ORB_init
int argc = 3;
char * argv[] = { “app_name”, “-ORBRTPriorityRange”, “10,17” };

// Initialize ORB
CORBA::ORB_ptr = ORB_init(argc, argv);

The two values give the minimum RTCORBA::Priority followed by the
maximum RTCORBA::Priority value that internal ORB threads are permitted
to run at. If this argument is given, the VisiBroker internal ORB threads will
default to running at the maximum priority that is specified.

If the range is invalid for some reason the ORB_init call fails and throws a
CORBA system exception. If the range is invalid because one or both of the
values is not a valid RTCORBA::Priority value, or because min is greater
than max, then a CORBA::BAD_PARAM exception is thrown. If the range is
invalid because one or both of the values is outside of the range supported
by the installed Priority Mapping, then a CORBA::DATA_CONVERSION exception
is thrown.

Configuring Individual Internal ORB Thread
Priorities
The priority of different types (and in one case, different instances) of
internal ORB threads may be controlled by specifying values for certain of
VisiBroker properties.

In all cases, the priority value is specified as a Real-Time CORBA Priority
value. The value must be a valid priority under the installed Priority
Mapping:
• vbroker.logger.default.thread.priority

Sets the default priority for Logger Forwarder threads. Must be set no
later than the first time that CORBA::ORB_init is called. Note that the
priority of Logger Forwarder Threads can be set on a per-instance basis
using the VISLogger::forwarder_priority() method. See the chapter
“VisiBroker Logging” for details.

• vbroker.se.default.socket.listener.priority

Sets the default priority that Listener threads will run at. Can be changed
at any time. The current value at the time of Server Engine creation
(which occurs during POA creation) is the value used for any new
Listeners that are created. Can be overridden, using the next property.

• vbroker.se.<SE name>.scm.<SCM name>.listener.priority

Where <SE name> is the name of a Server Engine and <SCM name> is
the name of a Server Connection Manger. Sets the priority of the Listener
thread associated with a specific SCM in a specific Server Engine. Can be
set at any time prior to the creation of that Server Engine (which occurs
during the creation of the first POA that uses that Server Engine.)

• vbroker.dsuser.thread.priority

Sets the priority at which the ORB’s DSUser thread will run. Must be set
no later than the first time that the ORB attempts to communicate with
an OSAgent (which is typically when a POA is created, an object is
activated or a call to a _bind method is made.)

• vbroker.garbageCollect.thread.priority

Sets the priority of all Garbage Collection threads. Can be changed at any
time. The current value at the time of Threadpool creation is the value
used.

VisiBroker-RT for C++ Developer ’s Guide 219

Protocol Configuration Policies
Real-Time CORBA uses two Policy types, based on a common protocol
configuration framework, to enable the selection of protocols on the server
and client side of the ORB.

ServerProtocolPolicy
The ServerProtocolPolicy policy type is used to select communication
protocols on the server-side of VisiBroker-RT for C++ applications.

IDL sample 15 Server Protocol Policy IDL
// IDL
module RTCORBA {

// Locality Constrained interface
interface ProtocolProperties {};
struct Protocol {

IOP::ProfileId protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};
typedef sequence <Protocol> ProtocolList;
// Server Protocol Policy
const CORBA::PolicyType SERVER_PROTOCOL_POLICY_TYPE = 1236;
// locality constrained interface
interface ServerProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;
};
interface RTORB {
...
ServerProtocolPolicy create_server_protocol_policy (

in ProtocolList protocols
);

};

An instance of the ServerProtocolPolicy is created with the
RTORB::create_server_protocol_policy() operation. The attribute of the
policy is initialized with the parameter of the same name.

A ServerProtocolPolicy allows any number of protocols to be specified. The
order of the Protocols in the ProtocolList indicates the order of preference
for the use of the different protocols. Information regarding the protocols is
placed into IORs in that order, and the client will take that order as the
default order of preference for choice of protocol to bind to the object.

The type of protocol is indicated by an IOP::ProfileId, which is an unsigned
long. This means that a protocol is defined as a specific pairing of an ORB
protocol (such as GIOP) and a transport protocol (such as TCP.) Hence IIOP
would be selected, rather than GIOP plus TCP being selected separately.
IIOP in particular is represented by the value TAG_INTERNET_IIOP (or the
value 0, that it is defined as.)

A Protocol type contains a ProfileId plus two ProtocolProperties1, one each
for the ORB protocol and the transport protocol.

(VisiBroker-RT for C++ does not use the Protocol Properties as a means of
configuring protocols used by the ORB; instead Protocol Properties are
configured via VisiBroker Properties. Please refer to “Server Engines and SCM
Configuration” for details.)

Code example 111 Using the ServerProtocolPolicy to create a ProtocolList
//poa_server_engine_policy_bankImpl.h

...
void bank_server()
{

220 VisiBroker-RT for C++ Developer ’s Guide

VISTRY
{
CORBA::Object_var obj;

VISIFNOT_EXCEP
// get a reference to the root POA
obj = orb->resolve_initial_references("RootPOA");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
rootPOA_extended = PortableServerExt::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

// Create the policies
CORBA::StringSequence engines;
CORBA::PolicyList policies;

VISIFNOT_EXCEP
policies.length(4);
policies[(CORBA::ULong)0] = rootPOA_extended->

create_lifespan_policy(PortableServer::PERSISTENT);

policies[(CORBA::ULong)1] = rootPOA_extended->
create_id_assignment_policy(PortableServer::USER_ID);

// Define the policies for the POA, Server Engine,
// and Server Connection Manager.
engines.length(1);

engines[0] = CORBA::string_dup("myServerEngine");

policies[(CORBA::ULong)2] = rootPOA_extended->
create_server_engine_policy(engines);

VISEND_IFNOT_EXCEP

// Define the RTCORBA Protocol List used in the
// ServerProtocolPolicy
RTCORBA::ProtocolList protocols;

VISIFNOT_EXCEP
protocols.length(2);
// MQ example transport
protocols[0].protocol_type = 0x48454900;
// IIOP (=TCP/IP)
protocols[1].protocol_type = IOP::TAG_INTERNET_IOP;

VISEND_IFNOT_EXCEP

RTCORBA::RTORB_var rORB;
VISIFNOT_EXCEP

CORBA::Object_var resolved =
orb->resolve_initial_references("RTORB");

rORB = RTCORBA::RTORB::_narrow(resolved);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)3] =

rORB->create_server_protocol_policy(protocols);
VISEND_IFNOT_EXCEP

PortableServer::POAManager_var manager;

VISIFNOT_EXCEP
manager = rootPOA_extended->the_POAManager();
VISEND_IFNOT_EXCEP

PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
// Create our POA with our policies
myPOA = rootPOA_extended->

create_POA("bank_mq_transport_poa", manager, policies);

...

VisiBroker-RT for C++ Developer ’s Guide 221

Scope of ServerProtocolPolicy
By default the POA will use all the protocols specified within all the Server
Engines that are associated with that POA. Applying a ServerProtocolPolicy
to the creation of a POA subsets and controls the order of these protocols.
Hence, if no ServerProtocolPolicy is given at POA creation, the POA will use
all the available protocols.

Only one ServerProtocolPolicy should be included in a given PolicyList, and
including more than one will result in a CORBA::INV_POLICY system
exception being raised.

ClientProtocolPolicy
The ClientProtocolPolicy policy type is used to configure the selection of
communication protocols on the client-side of VisiBroker-RT for C++
applications. It is defined in terms of the same
RTCORBA::ProtocolProperties type as the ServerProtocolPolicy:

IDL sample 16 Client Protocol Policy IDL
// IDL
module RTCORBA {

// Locality Constrained interface
interface ProtocolProperties {};
struct Protocol {

IOP::ProfileId protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};
typedef sequence <Protocol> ProtocolList;
// Client Protocol Policy
const CORBA::PolicyType CLIENT_PROTOCOL_POLICY_TYPE = 1237;
// locality constrained interface
interface ClientProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;
};
interface RTORB {

...
ClientProtocolPolicy create_client_protocol_policy (

in ProtocolList protocols
);

};

An instance of the ClientProtocolPolicy is created with the
RTORB::create_client_protocol_policy() operation. The attribute of the
policy is initialized with the parameter of the same name.

The ClientProtocolPolicy indicates the protocols that may be used to make a
connection to the specified object, in order of preference. If the ORB fails to
make a connection because none of the protocols is available on the client
ORB, a CORBA::INV_POLICY system exception is raised. If one or more of
the protocols is available, but the ORB still fails to make a connection a
CORBA::COMM_FAILURE system exception is raised. Otherwise the ORB will
use the first protocol in the list that can successfully connect.

If no ClientProtocolPolicy is provided, then the protocol selection is made by
the ORB based on the target object’s available protocols, as described in its
IOR, and the protocols supported by the client ORB.

The ClientProtocolPolicy is applied on the client-side, at the time of
connection establishment to an Object Reference.

Code example 112 Using the ClientProtocolPolicy to create a ProtocolList
// mq_bank/client.C

...

222 VisiBroker-RT for C++ Developer ’s Guide

void bank_client(const char* ior, const char* name)
{

VISTRY
{
// Define the RTCORBA Protocol List used in the
// ClientProtocolPolicy
RTCORBA::ProtocolList protocols;

protocols.length(2);
// MQ example transport
protocols[0].protocol_type = 0x48454900;
// IIOP (=TCP/IP)
protocols[1].protocol_type = IOP::TAG_INTERNET_IOP;

RTCORBA::RTORB_var rORB;
CORBA::Object_var resolved =

orb->resolve_initial_references("RTORB");
rORB = RTCORBA::RTORB::_narrow(resolved);

CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] =

rORB->create_client_protocol_policy(protocols);

// Find PolicyCurrent for this thread
CORBA::PolicyCurrent_var curr;
resolved = orb->resolve_initial_references("PolicyCurrent");
curr = CORBA::PolicyCurrent::_narrow(resolved);

curr->set_policy_overrides(policies, CORBA::SET_OVERRIDE);

// Get the manager Id
PortableServe23r::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Locate an account manager. Give the full POA name and
// the servant ID.
Bank::AccountManager_var manager;

VISIFNOT_EXCEP
// Convert given IOR string to object reference
CORBA::Object_var obj = orb->string_to_object(ior);
manager = Bank::AccountManager::_narrow(obj);
VISEND_IFNOT_EXCEP

...

VisiBroker-RT for C++ Developer ’s Guide 223

Listening and Dispatch
Configuration
This chapter describes the listening and dispatch mechanism of VisiBroker-
RT for C++, how it may be configured and reasons why it may need to be
configured.

Overview
The listening and dispatch mechanism is the part of the server-side of
VisiBroker-RT for C++ that is responsible for detecting new connections and
requests from clients (’listening’) and, whenever a request is received,
obtaining a thread for the request to be executed on (’dispatching’).

The following sections describe the entities involved in the listening and
dispatch mechanism, how they may be configured and reasons for
configuring them.

When to Configure Listening and Dispatching
Reasons to configure the listening and dispatch properties of VisiBroker-RT
for C++ include:

• to make objects reachable at a particular (’well known’) host and port

• to make objects reachable via multiple network interfaces

• to make different sets of objects reachable via different network
interfaces

• to use one or more pluggable protocols

• to control the maximum number of client connections that a server will
support

Listening and Dispatch Architecture
The POA is the primary entity used to configure application objects on the
server-side of a VisiBroker-RT for C++ application. But other entities are
used to configure the following server-side properties:

• which communication protocols objects may be contacted via,

• what (and how many) protocol endpoints (address and port, for IP
networking) objects may be contacted via,

• what (and how many) threads are available to execute calls to those
objects and

• garbage collection characteristics for idle connections and threads.

Protocol endpoints (address and port, for IP networking) are represented in
VisiBroker-RT for C++ by entities called Server Connection Managers
(SCMs). SCMs are contained within entities called Server Engines (SEs).
POAs are associated with Server Engines, and hence (indirectly) with SCMs.
Which Server Engines a POA is associated with can be specified through a
Server Engine policy at the time of POA creation.

224 VisiBroker-RT for C++ Developer ’s Guide

A given POA may be associated with any number of Server Engines, and
each Server Engine may be associated with any number of POAs. Figure 29
shows the relationships between POAs, Server Engines and Server
Connection Managers.

Figure 29 Relationship between POAs, Server Engines and SCMs

The dispatching properties of VisiBroker-RT for C++ (which and how many
threads can be used to execute client requests) are governed by
Threadpools. Every POA is associated with exactly one Threadpool, and one
Threadpool may be associated with any number of POAs. It is actually the
SCMs which interact with Threadpools, at the time of dispatching a client
request. The relationship between SCMs and Threadpools is described in the
section “Interaction of an SCM and Threadpool during Dispatch”.

VisiBroker Threadpools conform to the Real-Time CORBA specification. For
details of how to create and configure Threadpools, and associate them with
POAs, see the section “Threadpools”.

Interaction of an SCM and Threadpool during
Dispatch
The diagrams below illustrate the way that an SCM and a Threadpool
interact, to perform the dispatch function. (The diagrams start from the
point after the SCM and Threadpool are initialized. Initialization of Server

VisiBroker-RT for C++ Developer ’s Guide 225

Engines and SCMs, and their association with POAs and Threadpools are
discussed in later sections in this chapter.)

Figure 30 SCM and Threadpool ready to handle client requests

Figure 30 shows a scenario in which a SCM (contained within a Server
Engine) has been initialized, and is ready to handle requests from CORBA
clients. The SCM is associated with a Threadpool that contains three
’Worker’ threads.

The SCM’s Listener thread is shown. This is an additional ORB thread,
outside of the Threadpool, that performs the SCM’s listening and dispatch
functions - waiting for new connections and requests from clients.

226 VisiBroker-RT for C++ Developer ’s Guide

Two client CORBA applications are also shown, running on different nodes.

Figure 31 Client application#1 sends a request

In Figure 31, Client application #1 makes a request on a CORBA object that
belongs to a POA that is associated (via a Server Engine) with this SCM.

As this is the first request from the node that the client is running on, a
connection must first be established. The client application’s ORB initiates
the establishment of a connection to the protocol endpoint (host and port
number, for IP networking) associated with this SCM. On the server-side, the
connection establishment is detected and handled by the SCM’s Listener
thread.

Once a connection has been established, the client application’s ORB sends
the client’s request. The incoming request is detected by the SCM’s Listener
thread, which assigns the request to a Worker thread. That Worker thread
is removed from the Threadpool and executes the request in the context of
the appropriate POA and object implementation. Upon completion of the
processing of the request, the Worker thread returns to the Threadpool.

VisiBroker-RT for C++ Developer ’s Guide 227

Figure 32 Client application #1 sends a second request and client
application #2 sends a request

Figure 32 shows the situation when the following additional events have
occurred:

• Client application #1 has made a second request via this SCM (to either
the same or another object that belongs to a POA associated with this
SCM). The second request has been made before the first request from
that client has finished being processed by Worker thread 1.

• Client application #2 has also made a request on an object that belongs to
a POA associated with this SCM.

By default, the second request from Client application #1 is sent over the
connection that was established to send the first request. This is because by
default VisiBroker-RT for C++ shares connections between all clients and
objects on the same pair of nodes, in order to conserve Operating System
resources. However, this behavior may be overridden. For details see
“Connection Management”.

The request from Client application #2 is sent over a new connection,
because this is the first request made from the node that Client application
#2 resides on.

228 VisiBroker-RT for C++ Developer ’s Guide

Because the second request from Client application #1 was made before the
first request had finished being executed and Worker thread 1 had not yet
been returned to the Threadpool, a second Worker thread was taken from
the pool to execute this request. Similarly, because neither of these
requests had finished and returned its Worker thread to the Threadpool
before the request from Client application #2 was dispatched, a third
Worker thread was taken from the Threadpool to execute that request.

What would happen if a fourth request is received before any of the three
current requests finishes executing depends on the configuration of the
Threadpool. Either the fourth request will have to wait for a Worker thread
to be returned to the Threadpool (if the Threadpool is configured to not
dynamically grow beyond three Worket threads), or an extra Worker thread
will be created to handle the new request. For details of the Threadpool
configuration options, see the section “Threadpool Creation and Configuration”.

Server Engines and SCM Configuration
Server Engines and the SCMs within them are configured by specifying a
number of VisiBroker properties. The properties that can be specified are
described in the following sub-sections. For information on how to set
properties, see “Setting Properties”.

Required Server Engine and SCM Properties
The following Server Engine property must be specified, before a Server
Engine may be associated with a POA:
• vbroker.se.<Server_Engine_name>.host

This property specifies the host (hostname or dot-notation IP address)
that the SCMs contained within this Server Engine will use. This property
can be used to select a particular network interface on a machine with
multiple network interfaces.

• vbroker.se.<Server_Engine_name>.scms
This property specifies a list (comma or space separated) of the names of
the SCMs that this Server Engine will contain.

The following property must be specified for each SCM named in the.scms
property:
• vbroker.se.<Server_Engine_name>.scm.<SCM_name>.listener.type

This property identifies the listener type to be used for this SCM. This
corresponds to the protocol to be used. Supported values for VisiBroker-
RT for C++ are ’IIOP’ and the name of any protocol plugged in through
the Pluggable Protocol Interface.

Note
On some platforms, VisiBroker also supports a ’LIOP’ local IPC protocol.
This is not supported by VisiBroker-RT for C++ for Tornado.

Note

Note that SCM names only have to be unique within the scope of the Server
Engine they are contained by. Hence the following is valid:

vbroker.se.SE1.scms=iiop1 vbroker.se.SE2.scms=iiop1

In this case, there are two Server Engines (named ’SE1’ and ’SE2’), each
containing an SCM named ’iiop1’. The SCM instances are not shared
between Server Engines, and even though some of them have the same
name, they are unique and must be configured separately.

VisiBroker-RT for C++ Developer ’s Guide 229

Optional Server Engine Properties
In addition to the above required properties, either of the following two
properties may optionally be specifed for a Server Engine:
• vbroker.se.<server_engine_name>.proxyHost

This property allows a host (hostname or dot-notation IP address) to be
specified in IORs that is different to the actual host address that the SCM
is listening on. The.host value determines the address that the SCM will
actually listen on. If no.proxyHost value is specified, the.host value is
also used in the IORs generated for objects belonging to POAs that are
associated with this SCM. But if a.proxyHost value is specified, that value
is used instead.

This property could be used in conjunction with a firewall, or in any other
situation where a proxy is required to be contacted rather than contacting
the object directly.

Note that both the.host and.proxyHost property are only for use with the
IIOP protocol. If a different protocol is plugged in, via the Pluggable Protocol
Interface, the implementation of the plugged in protocol must offer its own
properties (at the SCM level) to support configuration of endpoint
addressing information.

Optional SCM Properties
A number of additional properties may be specified for any of the SCMs
specified within a Server Engine.

• vbroker.se.<Server_Engine_name>.scm.<SCM_name>.connectionMax

This property defines the maximum number of concurrent, incoming
connections allowed. The default value is 0, meaning an unlimited
number of connections.

• vbroker.se.<Server_Engine_name>.scm.<SCM_name>.connectionMaxI dle

This property defines the maximum number of seconds a connection may
be idle before it is shut down. The default value is 0, meaning there is no
timeout.

• vbroker.se.<Server_Engine_name>.scm.<SCM_name>.listener.port

This property defines the listening port that this SCM will use. The default
value is 0 (zero), meaning that the system will assign the port number.

• vbroker.se.<Server_Engine_name>.scm.<SCM_name>.listener.proxy Port

This property specifies a proxy port number to use with the.proxyHost
property. The default value, 0 (zero), means that the true port number
(assigned via the.port property or by the system) will be used in IORs,
rather than a proxy value.

Note that, as with the.host and.proxyHost properties,.port and.proxyPort
are only for use with the IIOP protocol. If a different protocol is plugged in,
via the Pluggable Protocol Interface, the implementation of the plugged in
protocol must offer its own properties (at the SCM level) to support
configuration of endpoint addressing information.

230 VisiBroker-RT for C++ Developer ’s Guide

Server Engine and SCM Creation
A Server Engine (and all the SCMs it is specified as containing) is created
automatically by VisiBroker the first time a POA is created that is associated
with that Server Engine.

The following sections describe how to associate a POA with particular
Server Engines, and the default behavior that occurs if Server Engines are
not specified for a particular POA.

Associating a POA with Server Engines
A POA must be associated with one or more Server Engines. Which Server
Engines a POA is to be associated with can be specified at the time of POA
creation, by including a ServerEnginePolicy in the policy list passed in to the
create_POA call.

If a ServerEnginePolicy is not specifed at the time of POA creation, the ORB
determines which Server Engines the POA will be associated with. See the
section “Default Server Engines” for details.

Each Server Engine (and the SCMs it contains) is created automatically by
VisiBroker the first time a POA is created that is associated with that Server
Engine.

If the creation or initialization of a Server Engine (or any of the SCMs it
contains) fails for any reason, the create_POA call will fail with a
CORBA::INITIALIZE system exception.

VisiBroker will also log a warning level (level 2) log message explaining the
reason for the failure.

The following code sample shows an example of specifying which Server
Engines a POA will be associated with. In this case, the POA is associated
with two Server Engines, called ’mySE1’ and ’mySE2’.

Code example 113 Specifying association with particular Server Engines at time of
POA creation

// Create sequence of Server Engine names
// (The ServerEnginePolicy requires a sequence, even if only one
Server Engine is being specified)
CORBA::StringSequence_var engines = new CORBA::StringSequence(2);

engines->length(2);
engines[0] = CORBA::string_dup("mySE1");
engines[1] = CORBA::string_dup("mySE2");

// Place string sequence into an Any
CORBA::Any_var seAny(new CORBA::Any);
seAny <<= engines;

// Create ServerEnginePolicy
CORBA::PolicyList_var policies = new CORBA::PolicyList(1);
policies->length(1);
policies[0] = orb->create_policy(

PortableServerExt::SERVER_ENGINE_POLICY_TYPE, seAny);

// Create POA using policy
PortableServer::POAManager_var manager =

rootPOA->the_POAManager();
PortableServer::POA_var myPOA = rootPOA->create_POA(

"my_poa", manager, policies);

VisiBroker-RT for C++ Developer ’s Guide 231

Default Server Engines
If a ServerEnginePolicy is not specified at the time of POA creation,
VisiBroker determines which Server Engines the POA will be associated
with.

VisiBroker-RT for C++ will associate a POA with a Server Engine named
se_iiop_tp<n>, where <n> is the Id of the Threadpool that that POA is to
be associated with. (For details about Real-Time CORBA Threadpools and
Threadpool Ids, see “Threadpools”).

The Server Engine will have the following property values automatically set
for it:

vbroker.se.se_iiop_tp<n>.scms=scm_iiop_tp<n>
vbroker.se.se_iiop_tp<n>.host=null
vbroker.se.se_iiop_tp<n>.scms.scm_iiop_tp<n>.listener.type=IIOP

That is, it will be configured to support IIOP only, and to use a default
configuration, including a host and port assigned by the system.

If the POA using the Server Engine has not been explicitly associated with a
particular Threadpool, it will default to using the General Threadpool, which
has a Threadpool Id of 0. In this case the Server Engine name is
se_iiop_tp0.

Restriction on POA/Server Engine Relationship
Each POA is associated with exactly one Threadpool. Each Server Engine
must be associated with exactly one Threadpool as well. A Server Engine
becomes associated with the same Threadpool as the first POA that it is
associated with.

There is one restriction on this relationship:

• It is not possible to associate POAs that use different Threadpools with
the same Server Engine.

The first association between a POA and a particular Server Engine will
always succeed (because at that time, the Server Engine is created and
associated with that POAs Threadpool). But subsequent attempts to
associate other POAs with the same Server Engine will fail if the other POAs
do not use the same Threadpool as the first POA.

In the case that an association cannot be made between a particular POA
and an existing Server Engine, the call to create_POA will fail with a
CORBA::INV_POLICY system exception, and a warning level (level 2)
message will be logged.

Code Example
The code below demonstrates the steps involved in configuring a Server
Engine and associating it with a POA. The example stops at the point at
which the POA has been created, and is ready to have objects activated on
it. A similar code example, based on the VisiBroker bank example, can be
found in the VisiBroker-RT for C++ sample application located at
<install_location>/VisiBrokerRT60/examples/poa/
server_engine_policy.

A Property Table is used to specify the properties required. For more
information on Property Tables, see “Setting Properties”.

232 VisiBroker-RT for C++ Developer ’s Guide

Code example 114 Creating a property table for a server engine (corba_init.C)
...
void do_corba(char * ORB_options_string)
{
#if defined(BUILD_SERVER)

// VISPropertyTable defining VisiBroker Properties required for
// Server Engine configuration. Note that the array of property
// strings and the VISPropertyTable object can be destructed
// any time after the ORB_init that uses them.

// Get the property manager; notice the value returned
// is not placed into a 'var' type.
const char * my_properties[] = {

"vbroker.se.myServerEngine.scms=scm1",
"vbroker.se.myServerEngine.host=null",

// Define two manager property values
"vbroker.se.myServerEngine.scm.scm1.manager.connectionMax=100",
"vbroker.se.myServerEngine.scm.scm1.manager.connectionMaxIdle=

300",

// Define three listener property values
"vbroker.se.myServerEngine.scm.scm1.listener.type=IIOP",

"vbroker.se.myServerEngine.scm.scm1.listener.port=1042",
"vbroker.se.myServerEngine.scm.scm1.listener.proxyPort=0",

// Define dispatcher property value
"vbroker.se.myServerEngine.scm.scm1.dispatcher.coolingTime=3",

NULL
};

VISPropertyTable property_table("my_properties",
my_properties);

cout << "Initialize the server" << endl;
int default_argc = 4;

char *default_argv[] = {"-ORBagentport", OSAGENT_PORT,
"-ORBpropTable", "my_properties"};

#else

cout << "Initialize the client" << endl;
int default_argc = 2;
char *default_argv[] = {"-ORBagentport", OSAGENT_PORT};

#endif

char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc,
ORB_options_string);

/*--*/
/* Call ORB_init */
/*--*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH

return;
}

VisiBroker-RT for C++ Developer ’s Guide 233

Code example 115 Creating a POA with a specific server engine (server.C)
...
void bank_server()
{

VISTRY
{
CORBA::Object_var obj;

// get a reference to the root POA
obj = orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA_extended = PortableServerExt::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

// Create the policies
CORBA::StringSequence engines;
CORBA::PolicyList policies;

// Define the policies for the POA, Server Engine,
// and Server Connection Manager.

engines.length(1);
engines[0] = CORBA::string_dup("myServerEngine");

policies.length(3);
VISIFNOT_EXCEP

policies[(CORBA::ULong)0] = rootPOA_extended->
create_lifespan_policy(PortableServer::PERSISTENT);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)1] = rootPOA_extended->

create_id_assignment_policy(PortableServer::USER_ID);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)2] = rootPOA_extended->

create_server_engine_policy(engines);
VISEND_IFNOT_EXCEP

PortableServer::POAManager_var manager;
VISIFNOT_EXCEP

manager = rootPOA_extended->the_POAManager();
VISEND_IFNOT_EXCEP

PortableServer::POA_var myPOA;
VISIFNOT_EXCEP

// Create our POA with our policies
myPOA = rootPOA_extended->
create_POA("bank_se_policy_poa", manager, policies);

VISEND_IFNOT_EXCEP

// Ready to activate objects on the new POA.
// The objects will be contactable via myServerEngine
//....

}

234 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 235

Connection Management
This chapter describes the connection management available in VisiBroker-
RT for C++.

VisiBroker Default Connection Behavior of
VisiBrokerRT60

By default, VisiBroker-RT for C++’s connection management minimizes the
number of client connections to the server. All client requests from one
node to objects on another node are multiplexed over the same
connection, even if they originate from different threads.

Additionally, released client connections are recycled for subsequent
reconnects to the same server, eliminating the need for clients to incur the
overhead of establishing a new connection to the server.

In the scenario shown in Figure 33, a client application is bound to two
objects on one node. Communication from the client shares a common
connection to the server, even though the targets are two different
objects.

Figure 33 Binding to two objects on the same node

Figure 34 Binding to an object from multiple threads on the same node

Figure 34 shows a multi-threaded client that has several threads bound to an
object on the same remote node. The invocations from all threads are
serviced by the same connection.

236 VisiBroker-RT for C++ Developer ’s Guide

Overriding the Default Behavior with _clone()
VisiBroker-RT for C++ provides a _clone() operation, that can be called by
the application to establish a new, separate connection to an object on a
remote node.

The _clone() operation is defined for CORBA::Object and for all generated
IDL interface types.

Code example 116 _clone() operation is available for CORBA::Object and all specific
IDL interfaces

class CORBA {
class Object {
...
static CORBA::Object_ptr _clone(CORBA::Object_ptr obj);
...
};

};

// Generated for IDL interface Account
class Account : public virtual CORBA::Object {

...
static Account_ptr _clone(Account_ptr obj);
...

};

In Figure 35 two threads have called _bind() (or obtained a reference to the
object on the remote node by some other means) and hence experience the
default behavior of sharing a connection to the remote node. The third
thread has called _clone(), and its requests are serviced via a separate
connection.

Figure 35 _clone() establishes a separate connection to a remote node

Note that the different connections are not tied to particular threads. Once a
connection has been created by one thread, it can be shared by any number
of threads, by sharing or duplicating the same instance of the object
reference.

Limiting the Number of Connections

Limiting Connections on the Server-Side
The maximum number of concurrent connections that VisiBroker will accept
on the server-side can be configured as part of the configuration of the
listening and dispatch mechanism. See ““Optional SCM Properties”.

The least recently used connections will be recycled when the maximum is
reached, ensuring resource conservation.

VisiBroker-RT for C++ Developer ’s Guide 237

Limiting Connections on the Client-Side
The maximum number of concurrent connections that VisiBroker will
establish on the client-side can be configured as part of the configuration of
the client connection properties. See “Client-Side IIOP Connection
properties" in the VisiBroker-RT for C++ Reference Guide. The least
recently used connections will be recycled when the maximum is reached,
ensuring resource conservation.

238 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 239

Bidirectional
Communication
This chapter explains how to establish bidirectional connections in VisiBroker-
RT for C++ without using the Gatekeeper. For information about bidirectional
communications when using Gatekeeper, go to the Borland Enterprise Server
GateKeeper Guide.

Note
Before enabling bidirectional IIOP, please read about“Security considerations”.

Using bidirectional IIOP
Most clients and servers that exchange information via the Internet are
typically protected by corporate firewalls. In systems where requests are
initiated only by the clients, the presence of firewalls is usually transparent
to the clients. However, there are cases where clients need information
asynchronously, that is, information must arrive that is not in response to a
request. Client-side firewalls prevent servers from initiating connections
back to clients.

Therefore, if a client is to receive asynchronous information, it usually
requires additional configuration.

In earlier versions of GIOP and VisiBroker, the only way to make it possible
for a server to send asynchronous information to a client was to use a
client-side Gatekeeper to handle the callbacks from the server.

If you use bidirectional IIOP, rather than having servers open separate
connections to clients when asynchronous information needs to be
transmitted back to clients (these would be rejected by client-side firewalls
anyway), servers use the client-initiated connections to transmit
information to clients. The CORBA specification also adds a new policy to
portably control this feature.

Because bidirectional IIOP allows callbacks to be set up without a
Gatekeeper, it greatly facilitates deployment of clients.

Bidirectional ORB properties
Three properties provide bidirectional support:

vbroker.orb.enableBiDir=client|server|both|none

vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir=true|false
vbroker.se.<sename>.scm.<scmname>.manager.importBiDir=true|false

vbroker.orb.enableBiDir property

The vbroker.orb.enableBiDir property can be used on both the server and
the client to enable bidirectional communication. This property allows you to
change an existing unidirectional application into a bidirectional one without

240 VisiBroker-RT for C++ Developer ’s Guide

changing any code. The vbroker.orb.enableBiDir property may be set to the
following values:

vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir property

The vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir property
is a client-side property. By default, it is not set to anything by the
VisiBroker ORB. Setting it to true enables creation of a bidirectional callback
POA on the specified server engine. Setting it to false disables creation of a
bidirectional POA on the specified server engine.

vbroker.se.<sename>.scm.<scmname>.manager.importBiDir property

The vbroker.se.<sename>.scm.<scmname>.manager.importBiDir property
is a server-side property. By default, it is not set to anything by the
VisiBroker ORB. Setting it to true allows the server-side to reuse the
connection already established by the client for sending requests to the
client. Setting it to false prevents reuse of connections in this fashion.

Note
These properties are evaluated only once--when the SCMs are created. In
all cases, the exportBiDir and importBiDir properties on the SCMs govern
the enableBiDir property. In other words, if both properties are set to
conflicting values, the SCM-specific properties will take effect. This allows
you to set the enableBiDir property globally and specifically turn off BiDir in
individual SCMs.

About the examples
Examples demonstrating use of this feature are located in subdirectories of
examples/bidir-iiop in the VisiBroker installation directory.

All the examples are based on a simple stock quote callback application:

• The client creates a CORBA object that processes stock quote updates;

• The client sends the object reference of this CORBA object to the server;

• The server invokes this callback object to periodically update stock
quotes.

In the sections that follow, these examples are used to explain different
aspects of the bidirectional IIOP feature.

Value Description
client Enables bidirectional IIOP for all POAs and for all

outgoing connections. This setting is equivalent to
creating all POAs with a setting of the BiDirectional
policy to both and setting the policy override for the
BiDirectional policy to both on the VisiBroker ORB
level. Furthermore, all created SCMs will permit
bidirectional connections, as if the exportBiDir
property had been set to true for every SCM.

server Causes the server to accept and use connections
that are bidirectional. This is equivalent to setting
the importBiDir property on all SCMs to true.

both Sets the property to both client and server.
none Disables bidirectional GIOP altogether. This is the

default value.

VisiBroker-RT for C++ Developer ’s Guide 241

Enabling bidirectional IIOP for existing applications
You can enable bidirectional communication in existing VisiBroker-RT for
C++ applications without modifying any source code. A simple callback
application that does not use Bidirectional IIOP at all is stored in the
examples/bidir-iiop/basic/ directory.

To enable bidirectional IIOP for this application, you set the
vbroker.orb.enableBiDir property:

1 Make sure the osagent is running.

2 Initialize the server ORB
prompt-> start_corba ("-Dvbroker.orb.enableBiDir=server -
Dvbroker.se.default.local.manager.enabled=false"

3 Initialize the client ORB
prompt-> start_corba ("-Dvbroker.orb.enableBiDir=client -
Dvbroker.se.default.local.manager.enabled=false")

4 Start the Server
prompt-> start_bidir_server

5 Start the Client
prompt-> start_bidir_client

The existing callback application now uses bidirectional IIOP and works
through a client- side firewall.

Security considerations
Use of bidirectional IIOP may raise significant security issues. In the absence
of other security mechanisms, a malicious client may claim that its
connection is bidirectional for use with any host and port it chooses. In
particular, a client may specify the host and port of security- sensitive
objects not even resident on its host. In the absence of other security
mechanisms, a server that has accepted an incoming connection has no
way to discover the identity or verify the integrity of the client that initiated
the connection. Further, the server might gain access to other objects
accessible through the bidirectional connection. This is why use of a
separate, bidirectional SCM for callback objects is encouraged. If there are
any doubts as to the integrity of the client, it is recommended that
bidirectional IIOP not be used.

For security reasons, a server running VisiBroker will not use bidirectional
IIOP unless explicitly configured to do so. The property
vbroker.<se>.<sename>.scm.<scmname>.manager.importBiDir gives you
control of bidirectionality on a per-SCM basis. For example, you might
choose to enable bidirectional IIOP only on a server engine that uses SSL to
authenticate the client, and to not make other, regular IIOP connections
available for bidirectional use. (See “Bidirectional ORB properties” for more
information about how to do this.) In addition, on the client-side, you might
want to enable bidirectional connections only to those servers that do
callbacks outside of the client firewall. To establish a high degree of security
between the client and server, you should use SSL with mutual
authentication (set vbroker.security.peerAuthenticationMode to
REQUIRE_AND_TRUST on both the client and server).

242 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 243

VisiBroker Pluggable
Transport Interface
VisiBroker-RT for C++ provides a Pluggable Transport Interface, to support
the use of transport protocols besides TCP for the transmission of CORBA
invocations. The Interface supports the ‘plugging in’ of multiple transport
protocols simultaneously, and is designed to provide a common interface that
is suitable for use with a wide variety of transport types. The interface uses
CORBA standard classes wherever possible, but is itself VisiBroker poprietary.

NOTE

The library libpluggable.o is required when building a VisiBrokerRT60
application to support use of the VisiBroker Pluggable Transport Interface.
For a description of all the libraries provided by the VisiBroker-RT for C++
product please refer to “Step 6: Integrating VisiBroker-RT with Tornado/VxWorks”.

Pluggable Transport Interface Files
The VisiBroker Pluggable Transport Interface is delivered as a library and a
supporting header file:

• The library libpluggable.o can be found in the lib directory of the
VisiBroker installation (.../<installation_dir>/VisiBrokerRT60/lib/
<CPU>/).

• The header file vptrans.h can be found in the include directory of the
VisiBroker installation (.../<installation_dir>/VisiBrokerRT60/
include).

The library libpluggable.o must be linked in, in addition to the ORB library
(liborb_dyn.o or liborb_min.o), in order to use the Pluggable Transport
Interface. Vptrans.h contains the declarations of the types used in the
Pluggable Transport Interface. It will be included in the files that the
developer writes to interface a given transport protocol to the ORB.

Transport Layer Requirements
Any transport protocol plugged in to VisiBroker via the Pluggable Transport
Interface will be used by the ORB to send and receive messages encoded
using the standard GIOP protocol that is defined as part of the CORBA
specification.

GIOP makes certain assumptions about the transport layer used to
exchange these messages. The same assumptions have been used in the
design of the Pluggable Transport Interface.

Therefore, the user code that interfaces a specific transport to the ORB
must ‘mask’ any differences between these requirements and the actual
behavior of the transport.

The Pluggable Transport Interface assumes:

• A reliable, bi-directional data exchange channel (connection) is used to
send data ‘point-to-point’ between a single server endpoint of the
transport and a single client endpoint of the transport. Thus it is assumed
that any reply message from a server may be reliably received by

244 VisiBroker-RT for C++ Developer ’s Guide

examining a connection endpoint after a request was sent via that
connection. (This does not preclud the ORB from using the same
connection to multiplex client requests to the same server.)

• Data sent through the transport is (in principle) unlimited in size and can
be viewed as a continuous stream of bytes. All packaging of data and
issues related to flow control, package reassembly, and error handling
must be hidden.

• Connections can be dynamically opened and closed at the request of the
client. The request to open a connection is made on a specific endpoint,
which the client obtains from the IOR generated by the server.

Note that the connection request message is not part of the GIOP
protocol, but resides in the scope of the pluggable transport connection
management and must be handled by the transport specific code.

• A server connection endpoint is described in a way that can be stored in
an IOR as specified in the CORBA specification. Such an endpoint must be
unique in the transport’s addressing scheme and it must be usable at any
time to contact the server. Conversion functions must be provided to
create a CDR compliant representation of the endpoint address, so it can
be used as part of a Profile in an IOR.

User-Provided Code Required for a Protocol
Plugin
Three main classes must be implemented by the user for each transport
protocol that is to be plugged in to the ORB via the Pluggable Transport
Interface:

1 Connection Class

Provides the means to write and read data from the transport layer,
associating the data with a particular ‘connection’ between a client and a
server. The use of the concept of a ‘connection’ does not mean that the
physical transport layer used must support connection oriented IO,
however the user code must present such a view to the Pluggable
Transport Interface and provide all the related functionality described
below.

2 Listener Class

Represents a server-side ‘endpoint’ of the transport. It receives client
requests to create a ‘connection’ instance, handles the dynamic opening
and closing of such connections, and initiates the ‘dispatch’ of incoming
client requests through open connections.

3 Profile Class

Enables the description of the server-side endpoint information of
Listener instances in a way that is ‘portable’, meaning it can be included
in an IOR as defined in the CORBA specification, and thus can exchanged
with other ORBs using GIOP or other suitable protocols.

Additionally, the Pluggable Transport Interface uses a “Factory” pattern to
manage the instantiation each of these classes. Therefore three Factory
classes must be provided, each creating instances of one of the above
classes.

A transport protocol is initialized by instantiating the three Factory classes
and registering them with the ORB via the Pluggable Protocol Interface. The
registration is performed by calling a static function of the Pluggable

VisiBroker-RT for C++ Developer ’s Guide 245

Protocol Interface during the system initialization stage, before starting any
CORBA server or client code.

Unique Profile ID Tag
Each plugged in transport is required to have a unique 4 byte Profile ID tag,
to distinguish it from other protocols. Profile ID tags are managed by the
OMG.

Note: changed Borland to Micro Focus below.

Micro Focus has a range of Profile ID tags registered with the OMG, and four
of these tags are available for use by protocol plugins:

• 0x48454901 (“HEI\001”)

• 0x48454902 (“HEI\002”)

• 0x48454903 (“HEI\003”)

• 0x48454904 (“HEI\004”)

One of these tags should be used rather than a randomly chosen value, to
avoid conflict with any third-party CORBA-based products.

Note, however, that there will still be the possibility of conflict, if the system
that uses the protocol plugin is integrated with other systems based on
VisiBroker-RT for C++ that happen to contain a protocol plugin that choose
the same Profile ID tag. This could occur either when different sub-systems,
developed independently within the same organization, are integrated, or if
the final system is required to interoperate with another CORBA-based
system developed by another organization.

Note: I’ve updated the link in the following para

If either of the above scenarios is a serious possibility, a reserved number
should be obtained from the OMG. See the OMG FAQ on CORBA tags,
available at http://www4.cs.fau.de/Lehre/WS00/V_OODS1/Tutorial/
CORBA/ptc/99-02-01.pdf, for details. The minimum number of tags
required should be reserved, bearing in mind that a set of tags may
normally only be reserved once per year. It is recommended that the
numbers only be reserved as the developed system nears deployment.

Example Code
There are two example transports provided in the ‘examples/pluggable’
directory of the VisiBroker installation, and an example client and server
program using an added transport.

• The ‘PROTO’ transport is non-functional but contains all the neccessary
classes and class methods to document the Pluggable Transport API. It
compiles and can be loaded and registered with the ORB. However, it will
give errors when you try to use it to send ORB requests.

• The ‘MQ’ transport is functional and is based on shared message queues
in the target’s address space. It demonstrates in more detail how to
implement a transport successfully. Although it is functional, it is only an
unsupported contribution. Please, do not use this code for any
actual application.

• The ‘mq_bank’ example programs implementing the standard Bank
example using the MQ transport layer. It shows how to use the VisiBroker
property system to add a new transport to a POA, and how to bind the

http://www4.cs.fau.de/Lehre/WS00/V_OODS1/Tutorial/CORBA/ptc/99-02-01.pdf
http://www4.cs.fau.de/Lehre/WS00/V_OODS1/Tutorial/CORBA/ptc/99-02-01.pdf

246 VisiBroker-RT for C++ Developer ’s Guide

client to the server by using the stringified IOR created by the MQ
transport library.

The directories contain HTML files that explain how to compile and run these
examples.

Implementing a New Transport
The following sections describe in detail the classes that must be
implemented by the user to plug in a new transport protocol into the ORB.
Each method is described, and the PROTO and MQ examples should be
referred to, to see how they might be implemented and used.

Connection Class

Base Class
VISPTransConnection from file vptrans.h

Abstract Methods to be Implemented by Subclass

void write(CORBA::Boolean _isFirst, CORBA::Boolean
_isLast, const char* _data, CORBA::ULong _offset,
CORBA::ULong _length, CORBA::ULongLong _timeout)

void read(CORBA::Boolean _isFirst, CORBA::Boolean
_isLast, char* _data, CORBA::ULong _offset,
CORBA::ULong _length, CORBA::ULongLong _timeout)

void flush() void close()

void connect(CORBA::ULongLong _timeout) CORBA::Long
id()

CORBA::Boolean isConnected()

CORBA::Boolean isDataAvailable() CORBA::Boolean
no_callback() CORBA::Boolean isBridgeSignalling()

CORBA::Boolean waitNextMessage(CORBA::ULong _timeout)
IOP::ProfileValue_ptr getPeerProfile()

void setupProfile(const char* prefix,
VISPTransProfileBase_ptr peer)

Other Neccessary Methods

Default constructor Destructor

Class Description
This class represents a single connection between a server and a client.
Whenever a program reads or writes to it, that data will be received or sent
to one single peer endpoint on the remote side. When a client wants to send
a request to a server, the ORB will look for a valid connection to that server
and create one, if it does not exist, yet. The remote endpoint of the
connection is setup using the given Profile of the server and communicating
with the Listener (see “Listener Class” below) on the server side. Besides

VisiBroker-RT for C++ Developer ’s Guide 247

general status information, this class also must either (a) provide a method
to wait for data coming through the connection, that times out after a given
number of seconds, or (b) use the ‘Pluggable Transport Bridge’ class to
perform that function by signalling incoming data to the Bridge when it is
available.

Method Descriptions

write()

Sends data through the connection to the remote peer. It does not return
any error code, but must signal transport related errors by throwing
exceptions. The arguments describe a byte array with a given length that
needs to be sent. This function must either send the complete byte array
successfully, timeout, or throw an exception. By default, the timeout is not
used (0 value) until the user sets its value to something different, through
the VisiBroker property system. Therefore, if this transport does not support
timeouts on read/write, it still can be used successfully. In this case the
write call must block until all the data has been sent. The call arguments
also include two boolean flags that indicate whether this is the first or the
last time that data is being sent through the connection.

read()

Reads data from the connection sent by the remote peer. It does not return
any error code, but must signal transport related errors by throwing
exceptions. The arguments describe a byte array with a given length that
needs to be filled. This function must either fill the complete byte array
successfully, timeout, or throw an exception. By default, the timeout is not
used (0 value) until the user sets its value to a different value, through the
VisiBroker property system. Therefore, if this transport does not support
timeouts on read/write, it still can be used successfully. In this case the read
call must block until all data has arrived. The call arguments also include two
boolean flags, that indicate whether this is the first or the last time data will
be read from the connection.

flush()

If this transport buffers data, this call is used to flush them on the local side
and send/receive all data immediately.

close()

Orderly close of a connection on both sides should be performed.

connect()

Communicate with the remote peer’s ‘Listener’ instance to setup a new
connection on the server side. The function does not return any error code,
but should throw execptions if any transport layer errors occur. By default,
the timeout is not used (0 value) until the user sets it to a different value,
through the VisiBroker policy system. Therefore, if this transport does not
support timeouts on connect, it still can be used successfully. In this case the
connect call must block until the connection is established or has failed.

id()

This method must return a unique number for each connection instance.
The ID only needs to be unique for this transport. It is used to lookup/locate
a connection instance during request dispatching for this transport.

248 VisiBroker-RT for C++ Developer ’s Guide

isConnected()

Should return 1 (TRUE), if the remote peer is still connected. If the
connection was closed by the peer or any error condition exists that
prevents the use of this connection, it must return 0 (FALSE).

isDataAvailable()

Should return 1 (TRUE), if data is ready to be read from the connection.
Otherwise, it must return 0 (FALSE).

no_callback()

Status flag signalling if a connection in this transport can be used to reverse
the client/server setup and callback to a servant in the client code. Return 0
(FALSE) if it can not, which will cause the ORB to create a new connection
for this kind of call, or 1 (TRUE) if it can. (See the GIOP-1.2 specification
from the OMG for details.)

isBridgeSignalling()

Flag to tell the ORB to use the bridge to wait for new incoming data with a
timeout. To optimize the dispatching of requests, new incoming data may
be read from a connection that was previously used. This action must
timeout to free the related thread for other purposes. If this transport can
not support such a timeout by itself, 1 (TRUE) must be returned and the
Pluggable Transport Bridge (see “Transport Bridge Class” below) is used to
perform the timeout logic. Otherwise, 0 (FALSE) is returned and the
necessary logic should be implemented in the following method.

waitNextMessage()

Block the calling thread until either data has arrived on this connection or
the given timeout (in seconds) has expired. Return 1 (TRUE) if data is
available, or 0 (FALSE) if not.

getPeerProfile()

Returns a copy of the Profile describing the peer endpoint used in this
connection. The copy must be created on the heap and the caller is
responsible for releasing the used memory. The Profile does not describe
the actual connection for this instance, but the Profile of the ‘Listener’
endpoint used during the ‘connect’ call.

setupProfile()

This call is used to tell a newly created connection what peer it should try to
connect to in later steps. (When connect() is called.) The given base class
should be cast to the expected subclass, if needed, and member data in the
connection instance should be initialized from that profile. A prefix string is
also passed, for property lookup, in case additional property parameters
need to be read.

Connection Factory Class

Base Class
VISPTransConnectionFactory from file vptrans.h

VisiBroker-RT for C++ Developer ’s Guide 249

Abstract Methods to be Implemented by Subclass

VISPTransConnection_ptr create(const char* prefix)

Other Neccessary Methods

Constructor, Destructor

Class Description
This class is used by the Pluggable Transport Interface to generically create
a Connection instance for this transport. It is passed to the caller as a
pointer to its base class and the virtual functions are used to interface to it.

Method Description

create()

Create a new instance and return the pointer to it. The caller is responsible
for the memory used by this instance. We pass a string prefix as parameter
which can be used to read properties for a connection of this type.

Listener Class

Base Class
VISPTransListener from file vptrans.h

Abstract Methods to be Implemented by Subclass

void setBridge(VISPTransBridge* up)
IOP::ProfileValue_ptr getListenerProfile() void
completedData(CORBA::Long id)

CORBA::Boolean isDataAvailable(CORBA::Long id)

void destroy()

Other Neccessary Methods
None

Class Description
This class is used by the server-side code to wait for incoming connections
and requests from clients. New connections and requests on existing
connections are signalled to the ORB via the Pluggable Transport Interface’s
Bridge class (see “Transport Bridge Class”, below).

Instances of this class are created each time a Server Engine is created that
includes Server Connection Managers (‘SCMs’) that specify the particular
transport protocol. One instance is created per SCM instance that specifies
the protocol.

When a request is received on an existing connection, the connection goes
through a ‘Dispatch Cycle’. The Dispatch Cycle starts when the connection
delivers data to the transport layer. In this initial state, the arrival of this
data must be signalled to the ORB via the Bridge (see “Transport Bridge
Class”, below) and then the Listener ignores the connection until the

250 VisiBroker-RT for C++ Developer ’s Guide

Dispatch process is completed (in the mean time, the connection is said to
be in the ‘dispatch state’). The connection is returned to the initial state
when the ORB makes a call to the Listener’s completedData() method.
During the dispatch state the ORB will read directly from the connection until
all requests are exhausted, avoiding any overhead incurred by the Bridge-
Listener communication.

In most cases, the transport layer uses blocking calls that wait for new
connections. In order to handle this situation, the Listener should be made a
subclass of the class VISThread and start a separate thread of execution
that can be blocked without holding up the whole ORB. (See the MQ
example transport.)

Method Description

setBridge()

This call establishes the ‘link’ to the Pluggable Transport Bridge instance to
be used by this Listener instance. The pointer it passes to the Listener
should be stored to allow ‘upcalls’ to be made into ORB when necessary.

destroy()

Instructs the Listener instance to tear down its endpoint and close all
related active connections.

getListenerProfile()

This call should return the Profile describing the Listeners endpoint on this
transport. The returned Profile should be a copy on the heap and the caller
(the ORB) takes over memory management of it.

isDataAvailable()

Should return 1 (TRUE), if the connection with the given id number has data
ready to be read. Returns 0 (FALSE) otherwise. Normally the call should
just be forwarded to the transport layer to find out.

completedData()

Called when the ORB has completed reading a request for the given id and
wants the Listener to once again signal (via the Bridge) any new incoming
request.

Constructor()

A string prefix can be passed to the constructor to enable the reading of
transport specific properties. To support this, the string used in the Listener
Factory method needs to be passed.

Listener Factory Class

Base Class
VISPTransListenerFactory from file vptrans.h

VisiBroker-RT for C++ Developer ’s Guide 251

Abstract Methods to be Implemented by Subclass

VISPTransListener_ptr create(const char* propPrefix)

Other Neccessary Methods

Constructor, Destructor

Class Description
This class allows the Pluggable Transport library to provide Listener classes
to the ORB when needed. It should create an instance of this transport’s
Listener and return a pointer to it (as its base class type). The ORB will use
the virtual functions to perform ‘down calls’ into the created instance.

Method Description

create()

Make a new instance of this class (optionally passing along the given string
prefix). Return a pointer to it. The caller takes over management of this
instance.

Profile Class

Base Class
VISPTransProfileBase from file vptrans.h

Abstract Methods to be Implemented by Subclass

IOP::ProfileId tag() IOP::TaggedProfile*
toTaggedProfile() IOP::ProfileValue_ptr copy()

CORBA::Boolean matchesTemplate(IOP::ProfileValue_ptr
body)

Other Neccessary Methods

Default constructor, Destructor

static _downcast method accepting
‘IOP::ProfileValue_ptr’ as argument virtual void*
_safe_downcast(const VISValueInfo &info) const

Recommended methods

Constructor with ‘const IOP::TaggedProfile&’ argument
Accessor and Mutator methods for any member data

Class Description
This class provides the functionality to convert between a transport specific
endpoint description and an IOP based IOR that can be exchanged with
other CORBA implementations. It is also used during the process of binding
a client to a server, by passing a ProfileValue to a ‘parsing’ function that has
to return TRUE or FALSE, depending on whether an IOR usable for this
transport was found inside of it.

252 VisiBroker-RT for C++ Developer ’s Guide

An instance of this class is frequently passed to functions via a pointer to its
base class type. In order to support safe runtime downcasting with any C++
compiler, a ‘_downcast’ function must be provided that can test if the cast is
legal or not. See the ‘MQ’ example code for an example.

Method Description

tag()

Return the unique tag value for this Profile (see note above).

toTaggedProfile()

Return a tagged (stringified) Profile instance created with the values read
from this instance’s member data.

copy()

Make an exact copy on the free store and return a pointer to it. It is good
coding practice to use the copy constructor inside of this function.

matchesTemplate()

Return 1 (TRUE) if there is an IOR in the given data, that can be used to
connect through this transport. Otherwise return 0 (FALSE).

static _downcast()

Function to downcast a base class pointer to an instance of this Profile class.

_safe_downcast()

Virtual method called by ORB during downcast, to check type info data.

Profile Factory Class

Base class
VISPTransProfileFactory from file vptrans.h

Abstract Methods to be Implemented by Subclass

IOP::ProfileValue_ptr create(const IOP::TaggedProfile&
profile) CORBA::ULong hash(VISPTransProfileBase_ptr
prof) IOP::ProfileId getTag()

Other Neccessary Methods

Constructor

Recommended Methods
None

Class description:
This class is used to generically create a new C++ Profile object, to
represent an IOR Profile in memory. It will return a pointer to the new
Profile instance, cast to the base type ‘IOP::ProfileValue_ptr’.

VisiBroker-RT for C++ Developer ’s Guide 253

Method description:

create()

Read the tagged IOR and create a Profile describing a Listener endpoint.

hash()

Support the optimized storage of profiles in a hashed lookup table by
calculating a hash number for the given instance. Return 0 if you do not
provide hash values.

getTag()

Return the unique Profile Id tag for the type of Profile created by this
factory.

Classes Provided by the Interface
Two additional classes are provided by the Pluggable Transport Interface,
that the user-provided transport plugin code will make calls to.

Transport Bridge Class

Class name
VISPTransBridge in file vptrans.h

Provided Methods

CORBA::Boolean addInput(VISPTransConnection_ptr con)
void signalDataAvailable(CORBA::Long conId)

void closedByPeer(CORBA::Long conId)

Class Description
Generic interface between the transport classes and the ORB. It provides
methods to signal various events occuring in the transport layer.

Method Description

addInput()

Send a connection request to the ORB through the bridge, by passing a
pointer to the Connection instance representing the newly established
connection. The returned flag signals whether the ORB has accepted the
new connection (returns 1 (TRUE)) or refused it (returns 0 (FALSE)). The
latter might happen due to resource constraints or due to a restriction on
connections (set up through the property system).

signalDataAvailable()

Passes to the ORB the connection id of a connection that just got new data
from the transport layer. This will start the dispatch cycle for incoming
requests.

254 VisiBroker-RT for C++ Developer ’s Guide

closedByPeer()

Tell the ORB that the connection with the given id was closed by the remote
peer.

Transport Registrar Class

Class Name
VISPTransRegistrar in file vptrans.h

Provided Methods

static void addTransport(const char* protocolName,
VISPTransConnectionFactory* connFac,
VISPTransListenerFactory* listFac,
VISPTransProfileFactory* profFac)

Class Description
This class must be used to register a new transport with the ORB. The string
given during registration is used as identifier of this transport and must be
unique in the scope of that ORB. It will also be used in the prefix string of
properties related to this transport.

Method Description

addTransport()

Register the transport identifier string and the three Factory instances used
to create specific classes for this transport. This method is static and can
therefore be called at any time during the initialization of the ORB.

Creating a Loadable Library
After compiling all classes described in the above chapter, you have to link
this code to the ORB library before you start any server or client.

Create an object file linking all transport specific object code and the
Pluggable Transport library code.

You must link this file with ORB into the kernel to plug in the new transport.

VisiBroker-RT for C++ Developer ’s Guide 255

Using Portable Interceptors
This chapter provides an overview of Portable Interceptors. It discusses
several Portable Interceptor examples and including the advanced features
of Portable Interceptor factories.

For a complete description of Portable Interceptor, refer to OMG Final Adopted
Specification, ptc/2001-04-03, Portable Interceptors.

Overview
The VisiBroker-RT for C++ ORB provides a set of interfaces known as
interceptors which provide a framework for plugging-in additional ORB
behavior such as security, transactions, or logging. These interceptor
interfaces are based on a callback mechanism. For example, using the
interceptors, you can be notified of communications between clients and
servers, and modify these communications if you wish, effectively altering
the behavior of the VisiBroker ORB.

At its simplest usage, the interceptor is useful for tracing through code.
Because you can see the messages being sent between clients and servers,
you can determine exactly how the ORB is processing requests.

If you are building a more sophisticated application such as a monitoring
tool or security layer, interceptors give you the information and control you
need to enable these lower-level applications. For example, you could
develop an application that monitors the activity of various servers and
performs load balancing.

Figure 36 How Interceptors work

There are two types of interceptors supported by the VisiBroker ORB; they
are Portable Interceptors and VisiBroker Interceptors. Portable Interceptors
are OMG standardized feature that allows writing of portable code as
interceptors, which can be used with different ORB vendors. VisiBroker
Interceptors are specific for VisiBroker-RT for C++. See “Using VisiBroker
Interceptors” for more information on VisiBroker Interceptors.

There are two kinds of Portable Interceptors defined by OMG specification:

• Request Interceptors can enable the VisiBroker ORB services to transfer
context information between clients and servers. Request Interceptors
are further divided into Client Request Interceptors and Server Request
Interceptors.

• An IOR interceptor is used to enable a VisiBroker ORB service to add
information in an IOR describing the server's or object's ORB-service-
related capabilities. For example, a security service (like SSL) can add its
tagged component into the IOR so that clients recognizing that

256 VisiBroker-RT for C++ Developer ’s Guide

component can establish the connection with the server based on the
information in the component.

For more details on Portable Interceptors, see the VisiBroker-RT for C++
Programmer's Reference.

For more details on using both Portable Interceptors and VisiBroker
Interceptors, see “Using VisiBroker Interceptors”.

Portable Interceptor and Information interfaces
All Portable Interceptors implement one of the following base interceptor
API classes which are defined and implemented by the VisiBroker ORB:

• Request Interceptor:

• ClientRequestInterceptor

• ServerRequestInterceptor

• IORInterceptor

All the interceptor classes listed above are derived from a common class:
Interceptor. This Interceptor class has defined common methods that are
available to its inherited classes.

The Interceptor class:
class PortableInterceptor::Interceptor
{

virtual char* name() = 0; virtual void destroy() = 0;
}

Request Interceptor
A request interceptor is used to intercept flow of a request/reply sequence
at specific interception points so that services can transfer context
information between clients and servers. For each interception point, the
VisiBroker ORB gives an object through which the Interceptor can access
request information. There are two kinds of Request Interceptor and their
respective request information interfaces:

• ClientRequestInterceptor and ClientRequestInfo

• ServerRequestInterceptor and ServerRequestInfo

VisiBroker-RT for C++ Developer ’s Guide 257

Figure 37 Request Interception Points

For more detail information on Request Interceptors, see the VisiBroker
Programmer's Reference.

ClientRequestInterceptor
ClientRequestInterceptor has its interception points implemented on the
client-side. There are five interception points defined in
ClientRequestInterceptor by OMG as shown in the table below,
"ClientRequestInterceptor interception points."

Table 21 ClientRequestInterceptor interception points

For more information on each interception point, see the VisiBroker-RT for
C++ Programmer's Reference.

Interception points Description
send_request lets a client-side Interceptor query a request and modify

the service context before the request is sent to the
server.

send_poll lets a client-side Interceptor query a request during a
Time-Independent Invocation (TII) polling get reply
sequence.

Note that TII is not implemented in the VisiBroker ORB.
As a result, the send_poll() interception point will never
be invoked.

receive_reply lets a client-side Interceptor query the reply information
after it is returned from the server and before the client
gains control.

receive_exception lets a client-side Interceptor query the exception's
information, when an exception occurs, before the
exception is sent to the client

receive_other lets a client-side Interceptor query the information which
is available when a request result other than normal reply
or an exception is received.

258 VisiBroker-RT for C++ Developer ’s Guide

ClientRequestInterceptor class

class _VISEXPORT ClientRequestInterceptor: public virtual
Interceptor
{

public:
virtual void send_request(ClientRequestInfo_ptr _ri) = 0;
virtual void send_poll(ClientRequestInfo_ptr _ri) = 0;
virtual void receive_reply(ClientRequestInfo_ptr _ri) = 0;
virtual void receive_exception(ClientRequestInfo_ptr _ri) =

0;
virtual void receive_other(ClientRequestInfo_ptr _ri) = 0;

};

The client-side rules are listed as below:

• The starting interception points are: send_request and send_poll. On any
given request/ reply sequence, one and only one of these interception
points is called.

• The ending interception points are: receive_reply, receive_exception and
receive_other.

• There is no intermediate interception point.

• An ending interception point is called if and only if send_request or
send_poll runs successfully.

• A receive_exception is called with the system exception BAD_INV_ORDER
with a minor code of 4 (ORB has shutdown) if a request is canceled
because of ORB shutdown.

• A receive_exception is called with the system exception TRANSIENT with
a minor code of 3 if a request is canceled for any other reason.

ServerRequestInterceptor
ServerRequestInterceptor has its interception points implemented on the
server-side. There are five interception points defined in
ServerRequestInterceptor. The table below shows the
ServerRequestInterceptor Interception points.

Table 22 ServerRequestInterceptor Interception points

Successful invocations send_request is followed by receive_reply - a
start point is followed by an end point

Retries send_request is followed by receive_other - a
start point is followed by an end point

Interception points Description
receive_request_
service_contexts

lets a server-side Interceptor get its service
context information from the incoming request and
transfer it to PortableInterceptor::Current's slot.

receive_request lets a server-side Interceptor query request
information after all information, including
operation parameters, is available.

send_reply lets a server-side Interceptor query reply
information and modify the reply service context
after the target operation has been invoked and
before the reply is returned to the client.

send_exception lets a server-side Interceptor query the exception's
information and modify the reply service context,
when an exception occurs, before the exception is
sent to the client.

send_other lets a server-side Interceptor query the information
which is available when a request result other than
normal reply or an exception is received.

VisiBroker-RT for C++ Developer ’s Guide 259

For more detail on each interception point, see the VisiBroker-RT for C++
Programmer's Reference.

ServerRequestInterceptor class

class _VISEXPORT ServerRequestInterceptor: public virtual
Interceptor
{
public:

virtual void
receive_request_service_contexts(ServerRequestInfo_ptr _ri) = 0;

virtual void receive_request(ServerRequestInfo_ptr _ri) = 0;
virtual void send_reply(ServerRequestInfo_ptr _ri) = 0;
virtual void send_exception(ServerRequestInfo_ptr _ri) = 0;
virtual void send_other(ServerRequestInfo_ptr _ri) = 0;

};

The server-side rules are listed as below:

• The starting interception point is: receive_request_service_contexts. This
interception point is called on any given request/reply sequence.

• The ending interception points are: send_reply, send_exception and
send_other. On any given request/reply sequence, one and only one of
these interception points is called.

• The intermediate interception point is receive_request. It is called after
receive_request_service_contexts and before an ending interception
point.

• On an exception, receive_request may not be called.

• An ending interception point is called if and only if send_request or
send_poll runs successfully.

• A send_exception is called with the system exception BAD_INV_ORDER
with a minor code of 4 (ORB has shutdown) if a request is canceled
because of ORB shutdown.

• A send_exception is called with the system exception TRANSIENT with a
minor code of 3 if a request is canceled for any other reason.

Successful invocations

The order of interception points: receive_request_service_contexts,
receive_request, send_reply - a start point is followed by an intermediate
point which is followed by an end point.

IOR Interceptor

IORInterceptor
IORInterceptors give applications the ability to add information describing
the server's or object's ORB service related capabilities to object references
to enable the VisiBroker ORB service implementation in the client to
function properly. This is done by calling the interception point,
establish_components. An instance of IORInfo is passed to the interception
point. For more information on IORInfo, see the VisiBroker-RT for C++
Programmer's Reference.

IORInterceptor class

class _VISEXPORT IORInterceptor: public virtual Interceptor
{

public:

260 VisiBroker-RT for C++ Developer ’s Guide

virtual void establish_components(IORInfo_ptr _info) = 0;
virtual void components_established(IORInfo_ptr _info) = 0;
virtual void adapter_manager_state_changed(

CORBA::Long _id, CORBA::Short _state) = 0;
virtual void adapter_state_changed(

const ObjectReferenceTemplateSeq& _templates,
CORBA::Short _state) = 0;

};

Portable Interceptor Current
The PortableInterceptor::Current object (hereafter referred to as PICurrent)
is a table of slots that can be used by Portable Interceptors to transfer
thread context information to request context. Use of PICurrent may not be
required. However, if a client's thread context information is required at
interception point, PICurrent can be used to transfer this information.

PICurrent is obtained through a call to:

PortableInterceptor::Current class

class _VISEXPORT Current: public virtual CORBA::Current, public
virtual CORBA_Object
{

public:
virtual CORBA::Any* get_slot(CORBA::ULong _id);
virtual void set_slot(CORBA::ULong _id, const CORBA::Any&

_data);
};

Codec
The Codec provides a mechanism for interceptors to transfer components
between their IDL data types and their CDR encapsulation representations.
A Codec is obtained from CodecFactory (see “CodecFactory”).

Codec class

class _VISEXPORT Codec
{
public:
virtual CORBA::OctetSequence* encode(const CORBA::Any& _data)
= 0;

= 0;
virtual CORBA::Any* decode(const CORBA::OctetSequence& _data)
virtual CORBA::OctetSequence* encode_value(const CORBA::Any&
_data) = 0;
virtual CORBA::Any* decode_value(const CORBA::OctetSequence&
_data,
CORBA::TypeCode_ptr _tc) = 0;
};

CodecFactory
This class is used to create a Codec object by specifying the encoding
format, the major and minor versions. CodecFactory can be obtained a call
to:

ORB->resolve_initial_references("CodecFactory")

VisiBroker-RT for C++ Developer ’s Guide 261

CodecFactory class

class _VISEXPORT CodecFactory
{

public:
virtual Codec_ptr create_codec(const Encoding& _enc) = 0;

};

Creating a Portable Interceptor
The generic steps to create a Portable Interceptor are:

• The Interceptor must be inherited from one of the following Interceptor
interfaces:

• ClientRequestInterceptor

• ServerRequestInterceptor

• IORInterceptor

• The Interceptor implements one or more interception points that are
available to the Interceptor.

• The Interceptor can be named or anonymous. All names must be unique
among all Interceptors of the same type. However, any number of
anonymous Interceptors can be registered with the VisiBroker ORB.

Example 17 Example of Creating a PortableInterceptor in C++
#include "PortableInterceptor_c.hh"

class SampleClientRequestInterceptor: public
PortableInterceptor::ClientRequestInterceptor
{

char * name() {
return "SampleClientRequestInterceptor";

}

void send_request(ClientRequestInfo_ptr _ri) {
....... // actual interceptor code here

}

void send_request(ClientRequestInfo_ptr _ri) {
....... // actual interceptor code here

}

void receive_reply(ClientRequestInfo_ptr _ri) {
....... // actual interceptor code here

}

void receive_exception(ClientRequestInfo_ptr _ri) {
....... // actual interceptor code here

}

void receive_other(ClientRequestInfo_ptr _ri) {
....... // actual interceptor code here

}
};

Registering Portable Interceptors
Portable Interceptors must be registered with the VisiBroker ORB before
they can be used. To register a Portable Interceptor, an ORBInitializer object
must be implemented and registered. Portable Interceptors are instantiated
and registered during ORB initialization by registering an associated
ORBInitializer object which implements its pre_init() or post_init() method,

262 VisiBroker-RT for C++ Developer ’s Guide

or both. The VisiBroker ORB will call each registered ORBInitializer with an
ORBInitInfo object during the initializing process.

ORBInitializer class

class _VISEXPORT ORBInitializer
{

public:

virtual void pre_init(ORBInitInfo_ptr _info) = 0;
virtual void post_init(ORBInitInfo_ptr _info) = 0;

};

ORBInitInfo class

class _VISEXPORT ORBInitInfo
{

public:
virtual CORBA::StringSequence* arguments() = 0;
virtual char* orb_id() = 0;
virtual IOP::CodecFactory_ptr codec_factory() = 0;
virtual void register_initial_reference(const char* _id,

CORBA::Object_ptr _obj) = 0;
virtual CORBA::Object_ptr resolve_initial_references(const

char* _id) = 0;
virtual void add_client_request_interceptor(

ClientRequestInterceptor_ptr _interceptor) = 0;
virtual void add_server_request_interceptor(

ServerRequestInterceptor_ptr _interceptor) = 0;
virtual void add_ior_interceptor(IORInterceptor_ptr

_interceptor) = 0;
virtual CORBA::ULong allocate_slot_id() = 0;
virtual void register_policy_factory(CORBA::ULong _type,

PolicyFactory_ptr _policy_factory) = 0;
};

Registering an ORBInitializer
To register a ORBInitializer, a global method register_orb_initializer is
provided. Each service that implements Interceptors provides an instance of
ORBInitializer. To use a service, an application:

1 calls register_orb_initializer() with the service's ORBInitializer; and
makes an instantiating ORB_Init() call with a new ORB identifier to
produce a new ORB. During ORB.init(), these ORB properties which begin
with org.omg.PortableInterceptor.ORBInitializerClass will be collected.

2 the <Service> portion of each property will be collected.

3 an object shall be instantiated with the <Service> string as its class
name.

4 the pre_init() and post_init() methods will be called on that object.

5 if there is any exception, the ORB will ignore them and proceed.

Note
To avoid name collisions, the reverse DNS name convention is
recommended. For example, if company ABC has two initializers, it could
define the following properties:

org.omg.PortableInterceptor.ORBInitializerClass.com.abc.ORBInit1

org.omg.PortableInterceptor.ORBInitializerClass.com.abc.ORBInit2

The register_orb_initializer method is defined in the PortableInterceptor
module as:

class _VISEXPORT PortableInterceptor {

VisiBroker-RT for C++ Developer ’s Guide 263

static void register_orb_initializer(ORBInitializer *init);
}

Example

A client-side monitoring tool written by company ABC may have the
following ORBInitializer implementation:

Code example 117 Example of Registering ORBInitializer in C++
#include "PortableInterceptor_c.hh"

class MonitoringService: public
PortableInterceptor::ORBInitializer

{
void pre_init(ORBInitInfo_ptr _info)
{

// instantiate the service's Interceptor.
Interceptor* interceptor = new MonitoringInterceptor();

// register the Monitoring's Interceptor.
_ info->add_client_request_interceptor(interceptor);
}

void post_init(ORBInitInfo_ptr _info)
{

// This init point is not needed.
}
};

MonitoringService * monitoring_service = new
MonitoringService();
PortableInterceptor::register_orb_initializer(monitoring_servi
ce);

VisiBroker Edition Extensions to Portable
Interceptors

POA scoped Server Request Interceptors
Portable Interceptors specified by OMG are scoped globally. VisiBroker
Edition has defined "POA scoped Server Request Interceptor", a public
extension to the Portable Interceptors, by adding a new module call
PortableInterceptorExt. This new module holds a local interface,
IORInfoExt, which is inherited from PortableInterceptor::IORInfo and has
additional methods to install POA scoped server request interceptor.

IORInfoExt class

#include "PortableInterceptorExt_c.hh"

class IORInfoExt: public PortableInterceptor::IORInfo
{

public:
virtual void add_server_request_interceptor(

ServerRequestInterceptor_ptr _interceptor) = 0;
virtual char* full_poa_name();

};

Limitations of VisiBroker Edition Portable
Interceptors Implementation
The following are limitations of the Portable Interceptor implementation in
VisiBroker for C++:

264 VisiBroker-RT for C++ Developer ’s Guide

ClientRequestInfo:

• arguments(), result(), exceptions(), contexts(), and operation_contexts()
are only available for DII invocations.

• operation_context(): not available, CORBA::NO_RESOURCES thrown.

• received_exception(): available only if typecode info is available (e.g. IDL
is compiled with -typecode_info and linked into program), otherwise
CORBA::UNKNOWN is always returned.

ServerRequestInfo:

• arguments(), result(), are only available for DSI invocations.

• exceptions(), contexts(), operation_context(): not available,
CORBA::NO_RESOURCES thrown.

• sending_exception(): available only if typecode info is available (e.g. IDL
is compiled with -typecode_info and linked into program), otherwise
CORBA::UNKNOWN is always returned.

Examples
This section discusses how applications are actually written to make use of
Portable Interceptors and how each request interceptor is implemented.
Each example consists of a set of client and server applications and their
respective interceptors written in C++. For more information on the
definition of each interface, see the VisiBroker Programmer's Reference. It is
also advisable that developers who want to make use of Portable
Interceptor read the chapter on Portable Interceptors in the latest CORBA
specification.

Example Code
Below is the list of examples that can be found in the directory,
<install_dir>/ VisiBrokerRT60/examples/pi. Each example is being
associated with a directory name to better illustrate the objective of that
example.

The following sections provide detailed description of the example on
client_server and an explanation on the example, the compilation
procedure, and their execution or deployment.

Example: client_server

Objective of example
This example demonstrates how easy a Portable Interceptor can be added
into an existing CORBA application without altering any code. The Portable
Interceptor can be added to any application, both client and server-side,
through executing the related application again, together with the specified
options or properties which can be configured during runtime.

The client and server application used is similar to the one found in
<install_dir>/ VisiBrokerRT60/examples/basic/bank_agent for UNIX or
<install_dir>\VisiBrokerRT60\ examples\basic\bank_agent for Windows.
The entire example was taken out and Portable Interceptors added during
runtime configuration. The reason to do so is to provide developers, who
are familiar with VisiBroker's Interceptor, a fast way of coding between
VisiBroker's Interceptors and OMG specific Portable Interceptors.

VisiBroker-RT for C++ Developer ’s Guide 265

Code explanation

Importing required packages

To use Portable Interceptor interfaces, the related packages or header files
are required to be included. Note that the ORBInitInfoPackage is optional if
you are using any Portable Interceptors' exceptions, such as DuplicateName
or InvalidName.

Required header files for using Portable Interceptor in C++:
#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

To load a client-side request interceptor, a class that uses the interface
ORBInitializer must be implemented. This is also applicable for server-side
request interceptor as far as initialization is concerned. The following
example shows the code for loading:

Proper inheritance of a ORBInitializer in order to load a server request
interceptor:

class SampleServerLoader : public
PortableInterceptor::ORBInitializer

Notice that each of the object that implements the interface, ORBInitializer,
is also required to inherit from the object LocalObject. This is necessary
because the IDL definition of ORBInitializer uses the keyword local. For
more information on the IDL keyword, local, see “Using Valuetypes”.

During the initialization of the ORB, each request Interceptor is added
through the implementation of the interface, pre_init(). Inside this
interface, the client request Interceptor is being added through the method,
add_client_request_interceptor(). The related client request interceptor is
required to be instantiated before adding itself into the ORB.

Client-side request interceptor initialization and registration to the
ORB

void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {
SampleClientInterceptor *interceptor = new

SampleClientInterceptor;
VISTRY {

_info->add_client_request_interceptor(interceptor);
...

According to the OMG specification, the required application will register the
respective interceptors through the method register_orb_initializer. Refer to
“Portable Interceptor and Information interfaces” for more details. VisiBroker-RT
for C++ provides an optional way of registering these interceptors through
dynamically loaded libraries. The advantage of using this method of
registering is that the applications do not require changing any code but
only the way they are executed.

In order to load the interceptor dynamically, the VISInit interface is used.
This is similar to the one used in 4.x Interceptors. For more information,
refer to “Using VisiBroker Interceptors”. The registration of each interceptor
loader is similar within the ORB_init implementation.

Registration of client-side ORBInitializer dynamical loading

void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb)
{

if(_bind_interceptors_installed) return;

SampleClientLoader *client = new SampleClientLoader();
PortableInterceptor::register_orb_initializer(client);

266 VisiBroker-RT for C++ Developer ’s Guide

...

Complete implementation of the client-side interceptor loader

// SampleClientLoader.C

#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

#include "sampleClientInterceptor.h"

#if !defined(DLL_COMPILE) #include "vinit.h"
#include "corba.h"
#endif

// USE_STD_NS is a define setup by VisiBroker to use the std
namespace

USE_STD_NS

class SampleClientLoader :
public PortableInterceptor::ORBInitializer
{
private:

short int _interceptors_installed;

#if defined(DLL_COMPILE)
static SampleClientLoader _instance; #endif

public:
SampleClientLoader() {

_interceptors_installed = 0;
}

void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {
if(_interceptors_installed) return;

cout << "=====>SampleClientLoader: Installing..." << endl;

SampleClientInterceptor *interceptor = new
SampleClientInterceptor;

VISTRY {
_info->add_client_request_interceptor(interceptor);
_interceptors_installed = 1;
cout << "=====>SampleClientLoader: Interceptors loaded."

<< endl;
}

VISCATCH(PortableInterceptor::ORBInitInfo::DuplicateName, e) {
cout << "=====>SampleClientLoader: "

<< e.name << " already installed!" << endl;
}

VISAND_CATCHALL {
cout << "=====>SampleClientLoader: other exception

occurred!"
<< endl;

}

VISEND_CATCH
}

void post_init(PortableInterceptor::ORBInitInfo_ptr _info) {
}

};

#if defined(DLL_COMPILE)
class VisiClientLoader : VISInit
{
private:

static VisiClientLoader _instance; short int _
bind_interceptors_installed;

VisiBroker-RT for C++ Developer ’s Guide 267

public:
VisiClientLoader() : VISInit(1) {
_bind_interceptors_installed = 0;
}

void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb) {
if(_bind_interceptors_installed) return;

VISTRY {
SampleClientLoader *client = new SampleClientLoader();
PortableInterceptor::register_orb_initializer(client);

_bind_interceptors_installed = 1;
}
VISCATCH(const CORBA::Exception, e)
{

cerr << e << endl;
}
VISEND_CATCH
}

};

// static instance
VisiClientLoader VisiClientLoader::_instance;

#endif

Implementing the ORBInitializer for a server-side Interceptor

At this stage, the client request interceptor should already have been
properly instantiated and added. Subsequent code thereafter only provides
exception handling and result display.

Similarly, on the server-side, the server request interceptor is also done the
same way except that it uses the, add_server_request_interceptor()
method to add the related server request interceptor into the ORB.

Server-side request interceptor initialization and registration to the
ORB

void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {
SampleServerInterceptor *interceptor = new

SampleServerInterceptor;

VISTRY {
_info->add_server_request_interceptor(interceptor);

...

This method also applies similarly to loading the server-side ORBInitializer
class through a DLL implementation.

Server-side request ORB Initializer dynamic loading

void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb)
{

if(_poa_interceptors_installed) return;

SampleServerLoader *server = new SampleServerLoader();
PortableInterceptor::register_orb_initializer(server);

...

The complete implementation of the server-side interceptor loader follows.

Complete implementation of the server-side interceptor loader

// SampleServerLoader.C
#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

268 VisiBroker-RT for C++ Developer ’s Guide

#if defined(DLL_COMPILE)
#include "vinit.h"
#include "corba.h"
#endif

#include "sampleServerInterceptor.h"

// USE_STD_NS is a define setup by VisiBroker to use the std
namespace
USE_STD_NS

class SampleServerLoader :
public PortableInterceptor::ORBInitializer

{
private:

short int _interceptors_installed;

public:
SampleServerLoader() {

_interceptors_installed = 0;
}

void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {

if(_interceptors_installed) return;

cout << "=====>SampleServerLoader: Installing..." << endl;

SampleServerInterceptor *interceptor = new
SampleServerInterceptor();

VISTRY {
_info->add_server_request_interceptor(interceptor);

_interceptors_installed = 1;
cout << "=====>SampleServerLoader: Interceptors loaded."

<< endl;
}

VISCATCH(PortableInterceptor::ORBInitInfo::DuplicateName, e) {
cout << "=====>SampleServerLoader: "

<< e.name << " already installed!" << endl;
}

VISAND_CATCHALL {
cout << "=====>SampleServerLoader: other exception

occurred!"
<< endl;

}
VISEND_CATCH

}

void post_init(PortableInterceptor::ORBInitInfo_ptr _info) {}
};

#if defined(DLL_COMPILE)

class VisiServerLoader : VISInit
{
private:

static VisiServerLoader _instance; short int
_poa_interceptors_installed;

public:
VisiServerLoader() : VISInit(1) {

_poa_interceptors_installed = 0;
}

void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr
orb) {

if(_poa_interceptors_installed) return;
VISTRY {
SampleServerLoader *server = new SampleServerLoader();
PortableInterceptor::register_orb_initializer(server);

VisiBroker-RT for C++ Developer ’s Guide 269

_poa_interceptors_installed = 1;
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
}

}
};

// static instance
VisiServerLoader VisiServerLoader::_instance;

#endif

Implementing the RequestInterceptor for Client- or Server-side
Request Interceptor

Upon implementation of either client- or server-side request interceptor,
two other interfaces must be implemented. They are name() and destroy().
The name() is important here because it provides the name to the ORB to
identify the correct interceptor that it will load and call during any request
or reply. According to the CORBA specification, an interceptor may be
anonymous, for example, it has an empty string as the name attribute. In
this example, the name, SampleClientInterceptor, is assigned to the client-
side interceptor and SampleServerInterceptor is assigned to the server-side
interceptor.

Implementation of interface attribute, readonly attribute name:
public:

char *name(void) {
return _name;

}

Implementing the ClientRequestInterceptor for Client

For the client request interceptor, it is necessary to implement the interface,
ClientRequestInterceptor, for the request interceptor to be working
properly. When the class implements the interface, five request interceptor
methods will be implemented regardless of any implementation. They are
send_request(), send_poll(), receive_reply(), receive_exception() and
receive_other(). In addition, the interface for the request interceptor must
be implemented before hand. On the client-side interceptor, the following
request interceptor point will be triggered in relation to its events.

send_request - provides an interception point for querying request
information and modifying the service context before the request is sent to
the server.

Implementation of the public void send_request(ClientRequestInfo ri)
interface

void send_request(PortableInterceptor::ClientRequestInfo_ptr ri)
{
...

Implementation of the void send_poll(ClientRequestInfo ri) interface

send_poll - provides an interception point for querying information during
a Time- Independent Invocation (TII) polling to get reply sequence.

void send_poll(PortableInterceptor::ClientRequestInfo_ptr ri) {
...

270 VisiBroker-RT for C++ Developer ’s Guide

Implementation of the void receive_reply(ClientRequestInfo ri)
interface

receive_reply - provides an interception point for querying information on
a reply after it is returned from the server and before control is returned to
the client.

void receive_reply(PortableInterceptor::ClientRequestInfo_ptr ri)
{

...

Implementation of the void receive_exception(ClientRequestInfo ri)
interface

receive_exception - provides an interception point for querying the
exception's information before it is raised to the client.

void receive_exception(PortableInterceptor::ClientRequestInfo_ptr
ri) {

...

receive_other - provides an interception point for querying information
when a request results in something other than a normal reply or an
exception. For example, a request could result in a retry (for example, a
GIOP Reply with a LOCATION_FORWARD status was received); or on
asynchronous calls, the reply does not immediately follow the request.
However, the control is returned to the client and an ending interception
point is called.

void receive_other(PortableInterceptor::ClientRequestInfo_ptr ri)
{

...

The complete implementation of the client-side request interceptor follows.

Complete C++ implementation of the client-side request interceptor

// SampleClientInterceptor.h

#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the std
namespace
USE_STD_NS

class SampleClientInterceptor :
public PortableInterceptor::ClientRequestInterceptor

{
private:

char *_name;

void init(char *name) {
_ name = new char[strlen(name)+1];

strcpy(_name, name);
}

public:
SampleClientInterceptor(char *name) {

init(name);
}

SampleClientInterceptor() {
init("SampleClientInterceptor");

}

char *name(void) {
return _name;

}

void destroy(void) {

VisiBroker-RT for C++ Developer ’s Guide 271

// do nothing here
cout << "=====>SampleServerLoader: Interceptors unloaded" <<

endl;
}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* void preinvoke_premarshal(CORBA::Object_ptr target,
* const char* operation,
* IOP::ServiceContextList&servicecontexts,
* VISClosure& closure) = 0;
*/
void send_request(PortableInterceptor::ClientRequestInfo_ptr ri)

{
cout << "=====> SampleClientInterceptor id " << ri->

request_id()
<< " send_request => " << ri->operation()
<< ": Target = " << ri->target()
<< endl;

}

/**
* There is no equivalent interface for VisiBroker 4.x
* ClientRequestInterceptor.
*/

void send_poll(PortableInterceptor::ClientRequestInfo_ptr ri) {
cout << "=====> SampleClientInterceptor id "

<< ri->request_id()
<< " send_poll => " << ri->operation()
<< ": Target = " << ri->target()
<< endl;

}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* void postinvoke(CORBA::Object_ptr target,
* const IOP::ServiceContextList& service_contexts,
* CORBA_MarshalInBuffer& payload,
* CORBA::Environment_ptr env,
* VISClosure& closure) = 0;
*
* with env not holding any exception value.
*/
void receive_reply(PortableInterceptor::ClientRequestInfo_ptr
ri){

cout << "=====> SampleClientInterceptor id " << ri-
>request_id()

<< " receive_reply => " << ri->operation()
<< endl;

}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* void postinvoke(CORBA::Object_ptr target,
* const IOP::ServiceContextList& service_contexts,
* CORBA_MarshalInBuffer& payload,
* CORBA::Environment_ptr env,
* VISClosure& closure) = 0;
*
* with env holding the exception value.
*/
void receive_exception(PortableInterceptor::ClientRequestInfo_ptr
ri) {

cout << "=====> SampleClientInterceptor id "
<< ri->request_id()
<< " receive_exception => " << ri->operation()
<< ": Exception = " << ri->received_exception()
<< endl;

272 VisiBroker-RT for C++ Developer ’s Guide

}

/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* void postinvoke(CORBA::Object_ptr target,
* const IOP::ServiceContextList& service_contexts,
* CORBA_MarshalInBuffer& payload,
* CORBA::Environment_ptr env,
* VISClosure& closure) = 0;
*
* with env holding the exception value.
*/
void receive_other(PortableInterceptor::ClientRequestInfo_ptr ri)
{ cout << "=====> SampleClientInterceptor id " << ri-
>request_id()
<< " receive_other => " << ri->operation()
<< ": Exception = " << ri->received_exception()
<< ", Reply Status = " << getReplyStatus(ri->reply_status())
<< endl;
}

protected:
char *getReplyStatus(CORBA::Short status) {

if(status == PortableInterceptor::SUCCESSFUL)
return "SUCCESSFUL";

else if(status == PortableInterceptor::SYSTEM_EXCEPTION)
return "SYSTEM_EXCEPTION";

else if(status == PortableInterceptor::USER_EXCEPTION)
return "USER_EXCEPTION";

else if(status == PortableInterceptor::LOCATION_FORWARD)
return "LOCATION_FORWARD";

else if(status == PortableInterceptor::TRANSPORT_RETRY)
return "TRANSPORT_RETRY";

else
return "invalid reply status id";

}
};

On the server-side interceptor, the following request interceptor point will
be triggered in relation to its events.

receive_request_service_contexts - provides an interception point for
getting service context information from the incoming request and
transferring it to PortableInterceptor::Current slot. This interception point is
called before the Servant Manager.

Implementation of the void receive_request_service_contexts
(ServerRequestInfo ri) interface

void receive_request_service_contexts(PortableInterceptor::
ServerRequest Info_ptr ri) {

...

receive_request provides an interception point for querying all the
information, including operation parameters.

Implementation of the void receive_request (ServerRequestInfo ri)
interface

void receive_request(PortableInterceptor::
ServerRequestInfo_ptr ri)
{

...

send_reply provides an interception point for querying reply information
and modifying the reply service context after the target operation has been
invoked and before the reply is returned to the client.

VisiBroker-RT for C++ Developer ’s Guide 273

Implementation of the void receive_reply
(ServerRequestInfo ri)interface

void send_reply(PortableInterceptor::ServerRequestInfo_ptr ri) {
...

send_exception provides an interception point for querying the exception
information and modifying the reply service context before the exception is
raised to the client.

Implementation of the void receive_exception (ServerRequestInfo ri)
interface

void send_exception(PortableInterceptor::ServerRequestInfo_ptr
ri)
{

...

send_other provides an interception point for querying the information
available when a request results in something other than a normal reply or
an exception. For example, a request could result in a retry (such as, a
GIOP Reply with a LOCATION_FORWARD status was received); or, on
asynchronous calls, the reply does not immediately follow the request, but
control is returned to the client and an ending interception point is called.

Implementation of the void receive_other (ServerRequestInfo ri)
interface

void send_other(PortableInterceptor::ServerRequestInfo_ptr ri) {
...

All the interception points allow both the client and server to obtain different
types of information at different points of an invocation. In the example,
this information is displayed as a debugging tool.

The following code example shows the complete implementation of the
server-side request interceptor:

Example 18 Complete C++ implementation of the server-side request interceptor
// SampleServerInterceptor.h

#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the std
namespace
USE_STD_NS

class SampleServerInterceptor :
public PortableInterceptor::ServerRequestInterceptor

{
private:

char *_name;

void init(char *name) {
_name = new char[strlen(name)+1];
strcpy(_name, name);

}

public:
SampleServerInterceptor(char *name) {

init(name);
}

SampleServerInterceptor() {
init("SampleServerInterceptor");

}

274 VisiBroker-RT for C++ Developer ’s Guide

char *name(void) {
return _name;

}

void destroy(void) {
// do nothing here
cout << "=====>SampleServerLoader: Interceptors unloaded"

<< endl;
}
/**
* This is similar to VisiBroker 4.x ClientRequestInterceptor,
*
* void preinvoke_premarshal(CORBA::Object_ptr target,
* const char* operation,
* IOP::ServiceContextList&

servicecontexts,
* VISClosure& closure) = 0;
*/
void
receive_request_service_contexts(PortableInterceptor::ServerReque
st
Info_ptr

ri) {
cout << "=====> SampleServerInterceptor id " << ri->

request_id()
<< " receive_request_service_contexts => " << ri->operation()
<< endl;

}

/**
* There is no equivalent interface for VisiBroker 4.x
* SeverRequestInterceptor.
*/
void receive_request(PortableInterceptor::ServerRequestInfo_ptr
ri)
{
cout << "=====> SampleServerInterceptor id " << ri->request_id()

<< " receive_request => " << ri->operation()
<< ": Object ID = " << ri->object_id()
<< ", Adapter ID = " << ri->adapter_id()
<< endl;
}

/**
* There is no equivalent interface for VisiBroker 4.x
* SeverRequestInterceptor.
*/
void send_reply(PortableInterceptor::ServerRequestInfo_ptr ri) {
cout << "=====> SampleServerInterceptor id " << ri->request_id()

<< " send_reply => " << ri->operation()
<< endl;

}

/**
* This is similar to VisiBroker 4.x ServerRequestInterceptor,
*
* virtual void postinvoke_premarshal(CORBA::Object_ptr _target,
* IOP::ServiceContextList&_service_contexts,
* CORBA::Environment_ptr _env,
* VISClosure& _closure) = 0;
*
* with env holding the exception value.
*/
void send_exception(PortableInterceptor::ServerRequestInfo_ptr
ri)
{
cout << "=====> SampleServerInterceptor id " << ri->request_id()

<< " send_exception => " << ri->operation()
<< ": Exception = " << ri->sending_exception()
<< ", Reply status = " << getReplyStatus(ri->reply_status())
<< endl;

}

VisiBroker-RT for C++ Developer ’s Guide 275

/**
* This is similar to VisiBroker 4.x ServerRequestInterceptor,
* virtual void postinvoke_premarshal(CORBA::Object_ptr _target,
* IOP::ServiceContextList&_service_contexts,
* CORBA::Environment_ptr _env,
* VISClosure& _closure) = 0;
*
* with env holding the exception value.
*/
void send_other(PortableInterceptor::ServerRequestInfo_ptr ri) {
cout << "=====> SampleServerInterceptor id " << ri->request_id()

<< " send_other => " << ri->operation()
<< ": Exception = " << ri->sending_exception()

<< ", Reply Status = " << getReplyStatus(ri->reply_status())
<< endl;

}

protected:
char *getReplyStatus(CORBA::Short status) {

if(status == PortableInterceptor::SUCCESSFUL)
return "SUCCESSFUL";

else if(status ==
PortableInterceptor::SYSTEM_EXCEPTION) return "SYSTEM_EXCEPTION";
else if(status == PortableInterceptor::USER_EXCEPTION)

return "USER_EXCEPTION";
else if(status == PortableInterceptor::LOCATION_FORWARD)

return "LOCATION_FORWARD";
else if(status == PortableInterceptor::TRANSPORT_RETRY)

return "TRANSPORT_RETRY";
else

return "invalid reply status id";
}

};

Developing the Client and Server Application

After the interceptor classes are written, you need to register them with
their respective client and server applications.

When running the server and client application on the VxWorks host, the
ORB initialization is again performed in the file “corba_init.C,” which
contains the registration calls for the respective interceptor loader. For the
server ORB there is the file “server_corba_init.C”, that contains the full
example code:

Implementation of the server ORB initialization

#include <vxWorks.h>
#include "corba.h"
#include <taskLib.h>
#include "vutil.h"

#include "sampleServerLoader.C"
#define OSAGENT_PORT "14000"

/*---*/
/* Forward Declarations. */
/*---*/

extern "C" void start_server_corba(char * ORB_options_string);
static void do_corba(char * ORB_options_string);

/*---*/
/* Global Variable Declarations */
/*---*/
CORBA::ORB_var orb;

/*---*/
/* function ==> start_corba */

276 VisiBroker-RT for C++ Developer ’s Guide

/* This function will spawn a vxWork task @ */
/* priority 100, which will perform the neccessary */
/* initialization for the ORB (i.e. ORB_init,...) */
/*---*/

void start_server_corba(char * ORB_options_string)
{
char * taskName = "DO_CORBA";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

/*---*/
/* Spawn do_corba task. */
/*---*/
taskSpawn(taskName,

Prio,
option,
stackSize,
(FUNCPTR)do_corba,
(int)ORB_options_string,0,0,0,0,0,0,0,0,0);

}

/*---*/
/* function ==>do_corba */
/* This function will perform the neccessary */
/* initialization for the ORB (i.e. ORB_init,...) */
/*---*/

void do_corba(char * ORB_options_string)
{
/*---*/
/* ORB_init options can be specified in two ways. */
/* 1) By calling start_corba and specifying the */
/* ORB initialization string */
/* (e.g. start_corba("-ORBagentport 19000") */
/* 2) Programatically by specifying the */
/* ORB_initialization_options in the */
/* default_argc and default_argv variables below. */
/* */
/* PLEASE NOTE THAT THE OPTIONS PASSED IN VIA start_corba */
/* OVERRIDE THE OPTIONS THAT ARE SET PROGRAMATICALLY. */
/*---*/

int default_argc = 2;
char *default_argv[] = {"-ORBagentport", OSAGENT_PORT};
char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);

/*---*/
/* Call ORB_init */
/*---*/

VISTRY
{

// Instantiate an interceptor loader before initializing the orb:
SampleServerLoader* loader = new SampleServerLoader();
PortableInterceptor::register_orb_initializer(loader);

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);

VISUtil::freeArgv(new_argc, new_argv);
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl; taskSuspend(0);
}
VISEND_CATCH

return;
}

VisiBroker-RT for C++ Developer ’s Guide 277

For the case where both the server and client applications run on the same
VxWorks node, the same ORB must be used to register both the client and
server interceptor loaders. This code can be found in
“colocated_corba_init.C”.

Following the loader registration(s), the client and server application code
need to be developed.

Implementation of the client application

#include "corba.h"
#include "bank_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the std
namespace
USE_STD_NS

/*---*/
/* Forward Declarations. */
/*---*/
extern "C" void start_cs_client(void);
static void cs_client(void);

extern CORBA::ORB_var orb;

void start_cs_client(void)
{

char * taskName = "CS_CLNT";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)cs_client,
0,0,0,0,0,0,0,0,0,0);

}

void cs_client(void)
{

VISTRY {
char *name = "Jack B. Quick";
// Get the manager Id
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Locate an account manager. Give the full POA name and the
servant ID.
Bank::AccountManager_var manager =

Bank::AccountManager::_bind("/bank_agent_poa", managerId);

// Request the account manager to open a named account.
Bank::Account_var account = manager->open(name);

// Get the balance of the account.
CORBA::Float balance = account->balance();

// Print out the balance.
cout << "The balance in " << name << "'s account is $" <<
balance << endl;
}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
return;

}
VISEND_CATCH

}

278 VisiBroker-RT for C++ Developer ’s Guide

Implementation of the server application

#include "corba.h"
#include "bankImpl.h"

// USE_STD_NS is a define setup by VisiBroker to use the std
namespace
USE_STD_NS

/*---*/
/* Forward Declarations. */
/*---*/

// Static initialization
AccountRegistry AccountManagerImpl::_accounts;

extern "C" void start_cs_server(void);
static void cs_server(void);

extern CORBA::ORB_var orb;

void start_cs_server(void)
{

char * taskName = "CS_SRVR";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)cs_server,
0,0,0,0,0,0,0,0,0,0);

}

void cs_server(void)
{
VISTRY
{

// get a reference to the root POA
CORBA::Object_var obj = orb->

resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA =

PortableServer::POA::_narrow(obj);

CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(

PortableServer::PERSISTENT);

// get the POA Manager
PortableServer::POAManager_var

poa_manager = rootPOA->the_POAManager();

// Create myPOA with the right policies
PortableServer::POA_var myPOA = rootPOA->

create_POA("bank_agent_poa",
poa_manager,
policies);

// Create the servant
PortableServer::ServantBase_var managerServant = new

AccountManagerImpl();

// Decide on the ID for the servant
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Activate the servant with the ID on myPOA
myPOA->activate_object_with_id(managerId, managerServant);

// Activate the POA Manager

VisiBroker-RT for C++ Developer ’s Guide 279

poa_manager->activate();

CORBA::Object_var reference = myPOA->
servant_to_reference(managerServant);

cout << reference << " is ready" << endl;

}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
return;

}
VISEND_CATCH
}

280 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 281

Using VisiBroker
Interceptors
This chapter provides an overview of the 4.x VisiBroker interceptors
framework, walks through a interceptor example, and describes some
advanced features such as interceptor factories and chaining interceptors.
Lastly, this section covers the expected behaviors when both Portable and
interceptors are used in the same service.

Overview
Similar to Portable Interceptors, VisiBroker interceptors offer CORBA
services a mechanism to intercept normal flow of execution of the ORB.
There are two kinds of VisiBroker-RT for C++ interceptors:

• Client interceptors are system-level interceptors which are called when a
method is invoked from a VisiBroker client.

• Server interceptors are system-level interceptors which are called when a
method is invoked on a server object.

To use interceptors you declare a class which implements one of the
interceptor interfaces. Once you have instantiated an interceptor object,
you register it with its corresponding interceptor manager. Your interceptor
object will then be notified by its manager whenever, for example, an object
has had one of its methods invoked or its parameters marshalled or
demarshalled.

Note
Use object wrappers, described in the chapter “Using Object Wrappers”, if you
want to intercept an operation request before it is marshalled on the client-
side or if you want to intercept an operation request just before it is
processed on the server-side.

Interceptor interfaces and managers
Interceptor developers derive classes from one or more of the following
base interceptor API classes which are defined and implemented by the
VisiBroker-RT for C++ ORB.

• Client interceptors

• BindInterceptor
• ClientRequestInterceptor

• Server interceptors

• POALifeCycleInterceptor

• ActiveObjectLifeCycleInterceptor

• ServerRequestInterceptor

• IORCreationInterceptor

282 VisiBroker-RT for C++ Developer ’s Guide

Client interceptors
There are currently two kinds of client interceptors and their respective
managers:

• BindInterceptor and BindInterceptorManager
• ClientRequestInterceptor and ClientRequestInterceptorManager

For more details about client interceptors see the chapter “Interceptor and
object wrapper interfaces and classes,” in the VisiBroker-RT for C++
Reference Guide.

BindInterceptor
A BindInterceptor object is a global interceptor which is called on the
client side before and after binds.

Code example 118 BindInterceptor class
class _VISEXPORT BindInterceptor : public virtual
VISPseudoInterface {

public:
virtual IOP::IORValue_ptr bind(IOP::IORValue_ptr ior,

CORBA_Object_ptr obj,
CORBA::Boolean rebind,
VISClosure& closure) = 0;

virtual IOP::IORValue_ptr bind_failed(IOP::IORValue_ptr ior,
CORBA_Object_ptr object,
VISClosure& closure) = 0;

virtual void bind_succeeded(IOP::IORValue_ptr ior,
CORBA_Object_ptr object,
CORBA::Long profile_index,
interceptor::InterceptorManagerControl_ptr control,
VISClosure& closure) = 0;

virtual void exception_occurred(IOP::IORValue_ptr ior,
CORBA_Object_ptr object,
CORBA_Environment_ptr env, VISClosure& closure) = 0;

};

ClientRequestInterceptor
A ClientRequestInterceptor object may be registered during a
bind_succeeded call of a BindInterceptor object, and it remains active
for the duration of the connection. Two of its methods are called before the
invocation on the client object, one (preinvoke_premarshal) before the
parameters are marshalled and the other (preinvoke_postmarshal) after
they are. The third method (postinvoke) is called after the request has
completed.

Code example 119 ClientRequestInterceptor class
class _VISEXPORT ClientRequestInterceptor : public virtual
VISPseudoInterface {
public:

virtual void preinvoke_premarshal(CORBA::Object_ptr target,
const char* operation,
IOP::ServiceContextList& servicecontexts,
VISClosure& closure) = 0;

virtual void preinvoke_postmarshal(CORBA::Object_ptr target,
CORBA_MarshalInBuffer& payload,
VISClosure& closure) = 0;

virtual void postinvoke(CORBA::Object_ptr target,
const IOP::ServiceContextList& service_contexts,
CORBA_MarshalInBuffer& payload,
CORBA::Environment_ptr env,
VISClosure& closure) = 0;

virtual void exception_occurred(CORBA::Object_ptr target,
CORBA::Environment_ptr env,
VISClosure& closure) = 0;

VisiBroker-RT for C++ Developer ’s Guide 283

};

Server interceptors
There are currently four kinds of server interceptors:

• POALifeCycleInterceptor and POALifeCycleInterceptorManager
• ActiveObjectLifeCycleInterceptor and

ActiveObjectLifeCycleInterceptorManager
• ServerRequestInterceptor and ServerRequestInterceptorManager
• IORCreationInterceptor and IORCreationInterceptorManager

For more details about server interceptors see the chapter “Interceptor and
object wrapper interfaces and classes,” in the VisiBroker-RT for C++
Reference Guide.

POALifeCycleInterceptor
A POALifeCycleInterceptor object is a global interceptor which is called
every time a POA is created (via the create method) or destroyed (via the
destroy method).

Code example 120 POALifeCycleInterceptor class
class _VISEXPORT POALifeCycleInterceptor : public virtual
VISPseudoInterface {

public:
virtual void create(PortableServer::POA_ptr _poa,

CORBA::PolicyList& _policies,
IOP::IORValue*& _iorTemplate,
interceptor::InterceptorManagerControl_ptr _poaAdmin) = 0;

virtual void destroy(PortableServer::POA_ptr _poa) = 0;
};

ActiveObjectLifeCycleInterceptor
An ActiveObjectLifeCycleInterceptor object is called whenever an
object is added to the Active Object Map (via the create method) or after
an object has been deactivated and etherealized (via the destroy method).
The interceptor may be registered by a POALifeCycleInterceptor on a per-
POA basis at POA creation time. This interceptor may only be
registered if the POA has the RETAIN policy.

Code example 121 ActiveObjectLifeCycleInterceptor class
class _VISEXPORT ActiveObjectLifeCycleInterceptor : public
virtual VISPseudoInterface {

public:
virtual void create(const PortableServer::ObjectId& _oid,

PortableServer_ServantBase* _servant,
PortableServer::POA_ptr _adapter) = 0;

virtual void destroy(const PortableServer::ObjectId& _oid,
PortableServer_ServantBase* _servant,
PortableServer::POA_ptr _adapter) = 0;

};

ServerRequestInterceptor
A ServerRequestInterceptor object is called at various stages in the
invocation of a server implementation of a remote object:

1 before the invocation (via the preinvoke method) and

284 VisiBroker-RT for C++ Developer ’s Guide

2 after the invocation both before and after the marshalling of the reply
(via the postinvoke_premarshal and postinvoke_postmarshal methods
respectively).

This interceptor may be registered by a POALifeCycleInterceptor object
at POA creation time on a per-POA basis.

Code example 122 ServerRequestInterceptor class
class _VISEXPORT ServerRequestInterceptor : public virtual
VISPseudoInterface {

public:
virtual void preinvoke(
CORBA::Object_ptr _target,

const char* _operation,
const IOP::ServiceContextList& _service_contexts,

CORBA_MarshalInBuffer& _payload,
VISClosure& _closure) = 0;

virtual void postinvoke_premarshal(
CORBA::Object_ptr _target,
IOP::ServiceContextList& _service_contexts,
CORBA::Environment_ptr _env,
VISClosure& _closure) = 0;

virtual void postinvoke_postmarshal(
CORBA::Object_ptr _target, CORBA_MarshalOutBuffer&

_payload,
VISClosure& _closure) = 0;

virtual void exception_occurred(
CORBA::Object_ptr _target,
CORBA::Environment_ptr _env,
VISClosure& _closure) = 0;

};

IORCreationInterceptor
An IORCreationInterceptor object is called whenever a POA creates an
object reference (via the create method). This interceptor may be
registered by a POALifeCycleInterceptor at POA creation time on a per-
POA basis.

IDL sample 19 IORCreationInterceptor class
class _VISEXPORT IORCreationInterceptor : public virtual
VISPseudoInterface {

public:
virtual void create(PortableServer::POA_ptr _poa,

IOP::IORValue*& _ior) = 0;
};

Registering interceptors with the VisiBroker-
RT for C++ ORB
Each interceptor interface has a corresponding interceptor manager
interface which is used to register your interceptor objects with the ORB.
The following steps are those necessary to register an interceptor:

1 Get a reference to an InterceptorManagerControl object by calling the
resolve_initial_references method on an ORB object with the
parameter “VisiBrokerInterceptorControl”.

2 Call the get_manager method on the InterceptorManagerControl object
with one of the String values in Table 23. (Be sure to cast the object
reference to its corresponding interceptor manager interface.)

VisiBroker-RT for C++ Developer ’s Guide 285

Table 23 String values to pass to the get_manager method of the
InterceptorManagerControl object

3 Create an instance of your interceptor.

4 Register your interceptor object with the manager object by calling the
add method.

5 Load your interceptor objects when running your client and server
programs.

Creating interceptor objects
Finally, you need to implement a factory class which creates instances of
your interceptor and registers them with the ORB. Your factory class must
derive from the VISInit class.

Code example 123 VISInit class
// in the vinit.h file
class _VISEXPORT VISInit {

public:
VISInit();
VISInit(CORBA::Long init_priority);
virtual ~VISInit();

// ORB_init is called toward the beginning of
CORBA::ORB_init()

virtual void ORB_init(int& /*argc*/,
char* const* /*argv*/,
CORBA_ORB* /*orb*/)

{}

// ORB_initialized is called at the end of CORBA::ORB_init()
virtual void ORB_initialized(CORBA_ORB* /*orb*/) {}

// shutdown is called when CORBA::ORB::shutdown() was called
// or process shutdown is detected

virtual void ORB_shutdown() {}
...

};

Note
You may also create new instances of your interceptors and register them
with the ORB from within other interceptors as in the example below.

Loading interceptors
To load your interceptor, simply instantiate the factory before the call to
CORBA::ORB_init in your application.

Value Corresponding interceptor interface
ClientRequest ClientRequestInterceptor
Bind BindInterceptor
POALifeCycle POALifeCycleInterceptor
ActiveObjectLifeCycle ActiveObjectLifeCycleInterceptor
ServerRequest ServerRequestInterceptor
IORCreation IORCreationInterceptor

286 VisiBroker-RT for C++ Developer ’s Guide

Example interceptors
The example interceptor below uses all of the interceptor API methods
(listed in the chapter “Interceptor and object wrapper interfaces and
classes” in the VisiBroker-RT for C++ Reference Guide) so that you can see
how these methods are used, and when they are invoked.

Example code
In “Code listings”, each of the interceptor API methods have been given
simple implementations which print out informational messages to the
standard output.

There are five example applications in the examples/interceptors
directory in your VisiBroker-RT for C++ installation:

• active_object_lifecycle
• authenticate
• client_server
• ior_creation
• encryption

Client-server interceptors example
To run the example, compile the files as you normally would. Then start up
the Server and the Client from the Tornado WindShell as follows:

On VxWorks embedded node 1:
-> ld < corba_init
-> ld < server
-> start_corba
-> start_bank_server

On VxWorks embedded node 2:
-> ld < corba_init
-> ld < client
-> start_corba
-> start_bank_client

You specify as ORB services the two classes which implement the
ServiceLoader interface.

The results of executing the example interceptor are shown in Table 24. The
execution by the client and server is listed in sequence.

VisiBroker-RT for C++ Developer ’s Guide 287

Table 24 Results of executing the example interceptor

Client Server
============>SampleServerLoader:Int
erceptors loaded

============>In POA /. Nothing to do.

============>In POA bank_agent_poa,

1 ServerRequest interceptor
installed
Stub[repository_id=IDL:Bank/
AccountManager:1.0,key=ServiceId[se
rvice=/bank_agent

_poa,id={11 bytes:
[B][a][n][k][M][a][n][a][g][e][r]}]

] is ready.

Bind Interceptors loaded

============>

SampleBindInterceptor bind

============>

SampleBindInterceptor bind_succeeded

============>

SampleClientInterceptor id
MyClientInterceptor
preinvoke_premarshal

=> open

============>

SampleClientInterceptor id
MyClientInterceptor
preinvoke_postmarshal

============>

SampleServerInterceptor id
MyServerInterceptor preinvoke =>
open

Created john's account:
Stub[repository_id=IDL:Bank/
Account:1.0,key=TransientId[
poaName=/,id={4 bytes:
(0)(0)(0)(0)},sec=0,usec=0]]

============>

SampleClientInterceptor id
MyClientInterceptor postinvoke

============>

SampleBindInterceptor bind

============>

SampleBindInterceptor bind_succeeded

============>

SampleClientInterceptor id
MyClientInterceptor
preinvoke_premarshal => balance

============>

SampleClientInterceptor id
MyClientInterceptor
preinvoke_postmarshal

288 VisiBroker-RT for C++ Developer ’s Guide

Since the OAD is not running, the bind() call fails and the server proceeds.
The client binds to the account object, and then calls the balance() method.
This request is received by the server, processed, and results are returned
to the client. The client prints the results.

As shown through the example code and results, the interceptors for both
the client and server are installed when the respective ORB instance starts.
Information about registering an interceptor is covered in “Registering
interceptors with the VisiBroker-RT for C++ ORB”.

Code listings
The SampleServerInterceptorLoader.h file contains the class
POAInterceptorLoader. This class implements an ORB_init() method which
is responsible for loading the POALifeCycleInterceptor implementation
and instantiating the interceptor object. The POAInterceptorLoader inherits
from the VISInit class, and therefore must implement an ORB_init() method
which will be called by the ORB during the ORB’s execution of ORB_init().
Its sole purpose is to install a POALifeCycleInterceptor object by
creating it and registering it with the InterceptorManager.

Code example 124 SampleServerInterceptorLoader.h
#include <iostream.h>
#include "vinit.h"
#include "SamplePOALifeCycleInterceptor.h"

class POAInterceptorLoader : VISInit {
private:

short int _poa_interceptors_installed;
public:

POAInterceptorLoader(){
_poa_interceptors_installed = 0;

}
void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr
orb) {

if(_poa_interceptors_installed) return;
cout << "Installing POA interceptors" << endl;

SamplePOALifeCycleInterceptor *interceptor = new
SamplePOALifeCycleInterceptor;
// Get the interceptor manager control
CORBA::Object *object = orb->
resolve_initial_references("VisiBrokerInterceptorControl");
interceptor::InterceptorManagerControl_var control =
interceptor::InterceptorManagerControl::_narrow(object);
// Get the POA manager interceptor::InterceptorManager_var
manager = control->get_manager("POALifeCycle");
PortableServerExt::POALifeCycleInterceptorManager_var
poa_mgr =

PortableServerExt::POALifeCycleInterceptorManager::_narrow(man
ager)
;

============>

SampleServerInterceptor id
MyServerInterceptor
postinvoke_premarshal

============>

SampleServerInterceptor id
MyServerInterceptor
postinvoke_postmarshal

============>

SampleClientInterceptor id
MyClientInterceptor postinvoke The
balance in john's account is $245.64

Client Server

VisiBroker-RT for C++ Developer ’s Guide 289

// Add POA interceptor to the list
poa_mgr->add

((PortableServerExt::POALifeCycleInterceptor*)interceptor);
cout << "POA interceptors installed" << endl;
_poa_interceptors_installed = 1;

}
};

The SamplePOALifeCycleInterceptor object is invoked every time a POA
is created or destroyed. Because we have two POAs in the client_server
example, this interceptor is invoked twice, first during rootPOA creation
and then at the creation of myPOA. We install the
SampleServerInterceptor only at the creation of MyPOA.

Code example 125 SamplePOALifeCycleInterceptor.h
#include "interceptor_c.hh"
#include "PortableServerExt_c.hh"
#include "IOP_c.hh"
#include "SampleServerInterceptor.h"

class SamplePOALifeCycleInterceptor :
PortableServerExt::POALifeCycleInterceptor {

public:
void create(PortableServer::POA_ptr poa,

CORBA_PolicyList& policies,
IOP::IORValue_ptr& iorTemplate,
interceptor::InterceptorManagerControl_ptr control) {
if(strcmp(poa->the_name(),"bank_agent_poa") == 0) {
// Add the Request-level interceptor

SampleServerInterceptor* interceptor =
new SampleServerInterceptor("MyServerInterceptor");

// Get the ServerRequest interceptor manager
interceptor::InterceptorManager_var generic_manager =

control->get_manager("ServerRequest");
interceptor::ServerRequestInterceptorManager_var manager =

interceptor::ServerRequestInterceptorManager::_narrow(
generic_manager);

// Add the interceptor manager->add(
(interceptor::ServerRequestInterceptor*)interceptor);

cout <<"============>In POA " << poa->the_name()
<< ", 1 ServerRequest interceptor installed"<< endl;

} else
cout << "============>In POA " << poa->the_name() <<
". Nothing to do." << endl;

}
void destroy(PortableServer::POA_ptr poa) {

// To be a trace!
cout << "============> SamplePOALifeCycleInterceptor

destroy" <<
poa->the_name() << endl;

}
};

The SampleServerInterceptor object is invoked every time a request is
received at or a reply is made by the server.

Code example 126 SampleServerInterceptor.h
#include <iostream.h>
#include "vclosure.h"
#include "interceptor_c.hh"
#include "IOP_c.hh"

class SampleServerInterceptor :
interceptor::ServerRequestInterceptor {

private:
char * _id;

public:
SampleServerInterceptor(const char* id) {

_id = new char[strlen(id)];
strcpy(_id,id);

290 VisiBroker-RT for C++ Developer ’s Guide

}
~SampleServerInterceptor() { _id = NULL;}
void preinvoke(CORBA_Object* target,

const char* operation,
const IOP::ServiceContextList& service_contexts,

CORBA_MarshalInBuffer& payload,
VISClosure& closure) {

closure.data = new char[strlen(_id)];
strcpy((char*)(closure.data), _id);
cout << "============> SampleServerInterceptor id " <<

(char*)(closure.data) <<
" preinvoke => " << operation << endl;

}
void postinvoke_premarshal(CORBA_Object* target,

IOP::ServiceContextList& service_contexts,
CORBA::Environment_ptr env,
VISClosure& closure) {

cout << "============> SampleServerInterceptor id " <<
(char*)(closure.data) <<
" postinvoke_premarshal " << endl;

}
void postinvoke_postmarshal(CORBA_Object* target,

CORBA_MarshalOutBuffer& payload,
VISClosure& closure) {

cout << "============> SampleServerInterceptor id " <<
(char*)(closure.data) <<

" postinvoke_postmarshal " << endl;
}
void exception_occurred(CORBA_Object* target,

CORBA::Environment_ptr env,
VISClosure& closure) {

cout << "============> SampleServerInterceptor id " <<
(char*)(closure.data) <<

" exception_occurred" << endl;
}

};

The SampleClientInterceptor is invoked every time a request is made by
or a reply is received at the client.

Code example 127 SampleClientInterceptor.h
#include <iostream.h>
#include "interceptor_c.hh"
#include "IOP_c.hh"
#include "vclosure.h"

class SampleClientInterceptor : public
interceptor::ClientRequestInterceptor {

private:
char * _id;

public:
SampleClientInterceptor(char * id) {
_id = new char[strlen(id)+1];
strcpy(_id,id);

}
void preinvoke_premarshal(CORBA::Object_ptr target,

const char* operation,
IOP::ServiceContextList& servicecontexts,
VISClosure& closure) {

closure.data = new char[strlen(_id)];
strcpy((char*)(closure.data), _id);
cout << "SampleClientInterceptor id " << closure.data

<< "=================> preinvoke_premarshal "
< < operation << endl;
}
void preinvoke_postmarshal(CORBA::Object_ptr target,

CORBA_MarshalInBuffer& payload,
VISClosure& closure) {

cout << "SampleClientInterceptor id " << closure.data
<< "=================> preinvoke_postmarshal "
<< endl;

VisiBroker-RT for C++ Developer ’s Guide 291

}
void postinvoke(CORBA::Object_ptr target,

const IOP::ServiceContextList& service_contexts,
CORBA_MarshalInBuffer& payload,
CORBA::Environment_ptr env,
VISClosure& closure) {

cout << "SampleClientInterceptor id " << closure.data
<< "=================> postinvoke "
<< endl;

}
void exception_occurred(CORBA::Object_ptr target,

CORBA::Environment_ptr env,
VISClosure& closure) {

cout << "SampleClientInterceptor id " << closure.data
<< "=================> exception_occurred "
<< endl;

}
};

The SampleClientInterceptorLoader.h file contains the class
BindInterceptorLoader. This class implements an ORB_init() method
which is responsible for loading the SampleBindInterceptor objects. The
BindInterceptorLoader inherits from the VISInit class, and therefore must
implement an ORB_init() method which will be called by the ORB during
the ORB’s execution of ORB_init(). Its sole purpose is to install a
BindInterceptor object by creating it and registering it with the
InterceptorManager.

The SampleBindInterceptor class contains the bind(), bind_succeeded()
and bind_failed() methods. These methods are called by the ORB during
object binding. When the bind succeeds, bind_succeeded() will be called
by the ORB and a BindInterceptor object is installed by creating it and
registering it with the InterceptorManager.

Code example 128 SampleClientInterceptorLoader.h
#include <iostream.h>
#include "vinit.h"
#include "SampleBindInterceptor.h"

class BindInterceptorLoader : VISInit {
private:

short int _bind_interceptors_installed;
public:

BindInterceptorLoader() {
_bind_interceptors_installed = 0;

}
void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr

orb) {
if(_bind_interceptors_installed) return;
cout << "Installing Bind interceptors" << endl;
SampleBindInterceptor *interceptor =

new SampleBindInterceptor;
// Get the interceptor manager control
CORBA::Object *object = orb->

resolve_initial_references("VisiBrokerInterceptorControl");
interceptor::InterceptorManagerControl_var control =
interceptor::InterceptorManagerControl::_narrow(object);

// Get the Bind manager
interceptor::InterceptorManager_var manager =
control->get_manager("Bind");
interceptor::BindInterceptorManager_var bind_mgr =
interceptor::BindInterceptorManager::_narrow(manager);
// Add Bind interceptor to the list

bind_mgr->add((interceptor::BindInterceptor*)interceptor);
cout << "Bind interceptors installed" << endl;
_bind_interceptors_installed = 1;

}
};

292 VisiBroker-RT for C++ Developer ’s Guide

The SampleBindInterceptor is invoked when the client attempts to bind to
an object. The first step on the client side after ORB initialization is to bind
to an AccountManager object. This bind invokes the
SampleBindInterceptor and a SampleClientInterceptor is installed
when the bind succeeds.

Code example 129 SampleBindInterceptor.h
#include <iostream.h>
#include "interceptor_c.hh"
#include "IOP_c.hh"
#include "vclosure.h"
#include "SampleClientInterceptor.h"

class SampleBindInterceptor : public interceptor::BindInterceptor
{

public:
IOP::IORValue_ptr bind(IOP::IORValue_ptr ior,

CORBA_Object_ptr obj,
CORBA::Boolean rebind,
VISClosure& closure) {

cout << "SampleBindInterceptor-------------------> bind" <<
endl;

return NULL;
}

IOP::IORValue_ptr bind_failed(IOP::IORValue_ptr ior,
CORBA_Object_ptr object,
VISClosure& closure) {

cout << "SampleBindInterceptor------------------->
bind_failed" << endl;

return NULL;
}
void bind_succeeded(IOP::IORValue_ptr ior,

CORBA_Object_ptr object,
CORBA::Long profile_index,
interceptor::InterceptorManagerControl_ptr control,
VISClosure& closure) {

cout << "SampleBindInterceptor------------------->
bind_succeeded"

<< endl;
// Add the Request-level interceptor
SampleClientInterceptor* interceptor =

new SampleClientInterceptor((char*)"MyClientInterceptor");
// Get the ClientRequest interceptor manager
interceptor::InterceptorManager_var generic_manager =

control->get_manager("ClientRequest");
interceptor::ClientRequestInterceptorManager_var manager =

interceptor::ClientRequestInterceptorManager::_narrow(
generic_manager);

// Add the interceptor manager->add(
(interceptor::ClientRequestInterceptor*)interceptor);

cout <<"============>In bind_succeeded, 1 "
<<"ClientRequest interceptor installed"<< endl;

}

void exception_occurred(IOP::IORValue_ptr ior,
CORBA_Object_ptr object,
CORBA_Environment_ptr env,
VISClosure& closure) {

cout << "SampleBindInterceptor------------------->
exception_occured"

<< endl;
}

};

VisiBroker-RT for C++ Developer ’s Guide 293

Passing information between your interceptors
VISClosure objects are created by the ORB at the beginning of certain
sequences of interceptor calls. The same VISClosure object is used for all
calls in that particular sequence. The VISClosure object contains a single
public data field, object, of type void which may be set by the interceptor
to keep state information. The sequences for which Closure objects are
created vary depending on the interceptor type. In the
ClientRequestInterceptor, a new VISClosure is created before calling
preinvoke_premarshal and the same VISClosure is used for that request
until the request completes, successfully or not. Likewise in the
ServerInterceptor, a new VISClosure is created before calling
preinvoke, and that VISClosure is used for all interceptor calls related to
processing that particular request.

For an example of how VISClosure is used, see the interceptors/
client_server directory in the examples directory in your installation.

Using both Portable Interceptors and Interceptors
simultaneously

Both Portable Interceptors and interceptors can be installed simultaneously
with the VisiBroker-RT for C++. However, as they have different
implementations, there are several rules of flow and constrains that
developers need to understand when using both interceptors, as described
below.

Order of invocation of interception points
The order of invocation of interception points follows the interception point
ordering rules of individual versions of interceptors, regardless of whether
the developer actually chooses to install one of more than one version.

Client side interceptors
When both Portable and VisiBroker client side interceptors are installed, the
order of events, (assuming no interceptor throws an exception) is:

1 send_request (Portable Interceptor), followed by preinvoke_premarshal
(interceptors)

2 construct request message

3 preinvoke_postmarshal (interceptor)

4 send request message and wait for reply

5 postinvoke (interceptor), followed by received_reply/receive_exception/
receive_other (Portable Interceptor) depending on the type of reply.

Server side Interceptors
When both Portable and VisiBroker server side interceptors are installed,
the order of events is received (locate requests do not fire interceptors,
which is the same as VisiBroker behavior), assuming no interceptor throws
an exception, is:

1 received_request_service_contexts (Portable Interceptor), followed by
preinvoke (interceptor)

294 VisiBroker-RT for C++ Developer ’s Guide

2 servantLocator.preinvoke (if using servant locator)

3 receive_request (Portable Interceptor)

4 invoke operation on servant

5 postinvoke_premarshal (interceptor)

6 servantLocator.postinvoke (if using servant locator)

7 send_reply/send_exception/send_other, depending on the outcome of
the request

8 postinvoke_postmarshal (interceptor)

Order of ORB events during POA creation
The order of ORB events during creation of a POA is listed as follows:

1 An IOR template is created based on profiles of server engines servicing
the POA.

2 A interceptors' POA life cycle interceptors' create() method is invoked.
This method can potentially add new policies or modify the IOR template
created in the previous step.

3 A Portable Interceptor's IORInfo object is created and the
IORInterceptors' establish_components() method is invoked. This
interception point allows the interceptor to query the policies passed to
create_POA() and those added in the previous step, and also add
components to the IOR template based on those policies.

4 An object reference factory and object reference template for the POA are
created, and the Portable Interceptor's IORInterceptors'
components_established() method is invoked. This interception point
allows the interceptor to change the POA's object reference factory,
which will be used to manufacture object references.

Order of ORB events during object reference
creation
The following events occur during calls to POA that create object reference,
e.g. create_reference(), create_reference_with_id().

1 Call the object reference factory's make_object() method to create the
object reference (this does not call the VisiBroker IOR creation
interceptors, and the factory may be user-supplied). If there are no
VisiBroker IOR creation interceptors installed, this should be the object
reference returned to the application; otherwise, proceed to step 2.

2 Extract the IOR from the delegate of the returned object reference, and
call the VisiBroker IOR creation interceptors' create() method.

3 IOR from step 2 is returned as the object reference to the caller of
create_reference(), create_reference_with_id().

VisiBroker-RT for C++ Developer ’s Guide 295

Using Object Wrappers
This chapter describes the object wrapper feature of VisiBroker-RT for C++,
which allows your applications to be notified or to trap an operation request
for an object.

NOTE

The library libobjwrap.o is required on the VxWorks embedded node to
support use of the VisiBroker Object Wrappers. For a description of all the
libraries provided by the VisiBroker-RT for C++ product see “Step 6:
Integrating VisiBroker-RT with Tornado/VxWorks”.

Overview
VisiBroker-RT for C++’s object wrapper feature allows you to define
methods that are called when a client application invokes a method on a
bound object or when a server application receives an operation request.
Unlike the interceptor feature described in“Using Portable Interceptors” which is
invoked at the ORB level, object wrappers are invoked before an operation
request has been marshalled. In fact, you can design object wrappers to
return results without the operation request having ever been marshalled,
sent across the network, or actually presented to the object
implementation.

Object wrappers may be installed on just the client-side, just the server-
side, or they may be installed in both the client and server portions of a
single application.

Here are a few examples of how you might use object wrappers in your
application:

• Log information about the operation requests issued by a client or
received by a server.

• Measure the time required for operation requests to complete.

• Cache the results of frequently issued operation requests so results can be
immediately returned, without actually contacting the object
implementation each time.

Note
Externalizing a reference to an object for which object wrappers have been
installed, using the ORB Object’s object_to_string method, will not
propagate those wrappers to the recipient of the stringified reference if the
recipient is a different process.

Typed and un-typed object wrappers
VisiBroker-RT for C++ offers two kinds of object wrappers; typed and un-
typed. You can mix the use of both of these types of wrappers within a
single application. For information on typed wrappers, see “Typed object
wrappers”. Table 25 summarizes the important distinctions between these
two types of object wrappers.

296 VisiBroker-RT for C++ Developer ’s Guide

Table 25 Comparison of features for typed and un-typed object wrappers

Special idl2cpp requirements
Whenever you plan to use typed or un-typed object wrappers, you must
ensure that you use the -obj_wrapper option with the idl2cpp compiler
when you generate the code for your applications. This will result in the
generation of Object wrapper base class for each of your interfaces

Example applications
The <install_location>/VisiBrokerRT60/examples/interceptors/
objectWrappers directory contains three sample client and server
applications that will be used to illustrate both the typed and untyped object
wrapper concepts in this chapter.

Un-typed object wrappers
Un-typed object wrappers allow you to define methods that are to be
invoked before an operation request is processed, after an operation
request is processed, or both. Un-typed wrappers can be installed for client
or server applications and you can also install multiple versions.

You may also mix the use of both typed and un-typed object wrappers
within the same client or server application.

By default, un-typed object wrappers have a global scope and will be
invoked for any operation request. You can design un-typed wrappers so
that they have no effect for operation requests on object types in which you
are not interested.

Note
Unlike typed object wrappers, un-typed wrapper methods do not receive
the arguments that the stub or object implementation would receive nor
can they prevent the invocation of the stub or object implementation.

Figure 38 shows how an un-typed object wrapper’s pre_method is invoked
before the client stub method and how the post_method is invoked
afterward. It also shows the calling sequence on the server-side with
respect to the object implementation.

Features Typed Un-typed
Receives all arguments that are to be passed to the stub Yes No
Can return control to the caller without actually invoking
the next wrapper, the stub, or the object
implementation.

Yes No

Will be invoked for all operation requests for all objects. No Yes

VisiBroker-RT for C++ Developer ’s Guide 297

Figure 38 Single un-typed object wrapper

Using multiple, un-typed object wrappers

Figure 39 Multiple un-typed object wrappers

Order of pre_method invocation
When a client invokes a method on a bound object, each un-typed object
wrapper pre_method will receive control before the client’s stub routine is
invoked. When a server receives an operation request, each un-typed
object wrapper pre_method will be invoked before the object
implementation receives control. In both cases, the first pre_method to
receive control will be the one belonging to the object wrapper that was
registered first.

298 VisiBroker-RT for C++ Developer ’s Guide

Order of post_method invocation
When a server’s object implementation completes its processing, each
post_method will be invoked before the reply is sent to the client. When a
client receives a reply to an operation request, each post_method will be
invoked before control is returned to the client. In both cases, the first
post_method to receive control will be the one belonging to the object
wrapper that was registered last.

Note
If you choose to use both typed and un-typed object wrappers, see
“Command-line arguments for typed wrappers” for information on the
invocation order.

Using un-typed object wrappers
You must use the following steps when using un-typed object wrappers.
Each step is discussed, in turn.

1 Identify the interface, or interfaces, for which you want to create a un-
typed object wrapper.

2 Generate the code from your IDL specification using the idl2cpp compiler
using the -obj_wrapper option.

3 Create an implementation for your un-typed object wrapper factory,
derived from the VISObjectWrapper::UntypedObjectWrapperFactory
class.

4 Create an implementation for your un-typed object wrapper, derived
from the VISObjectWrapper::UntypedObjectWrapper class.

5 Modify your application to create your un-typed object wrapper factory.

Implementing an un-typed object wrapper
factory
The timeWrap.h file, part of the ObjectWrappers sample applications,
illustrates how to define an un-typed object wrapper factory that is derived
from the VISObjectWrapper::UntypedObjectWrapperFactory. Your
factory’s create method will be invoked to create an un-typed object
wrapper whenever a client binds to an object or a server invokes a method
on an object implementation. The create method receives the target
object, which allows you to design your factory to not create an un-typed
object wrapper for those object types you wish to ignore. It also receives an
enum specifying whether the object wrapper created is for the server-side
object implementation or the client-side object.

The following code sample shows the TimingObjectWrapperFactory, which
is used to create an un-typed object wrapper that displays timing
information for method calls. Notice the addition of the key parameter to
the TimingObjectWrapperFactory constructor. This parameter is also used
by the service initializer to identify the wrapper.

Code example 130 TimingObjectWrapperFactory implementation from the
TimeWrap.h file

class TimingObjectWrapperFactory

: public VISObjectWrapper::UntypedObjectWrapperFactory
{

public:
TimingObjectWrapperFactory(VISObjectWrapper::Location loc,

VisiBroker-RT for C++ Developer ’s Guide 299

const char* key)
: VISObjectWrapper::UntypedObjectWrapperFactory(loc),
_key(key) {}

// ObjectWrapperFactory operations
VISObjectWrapper::UntypedObjectWrapper_ptr create(

CORBA::Object_ptr target,
VISObjectWrapper::Location loc) {

if (_owrap == NULL) {
_ owrap = new TimingObjectWrapper(_key);
}
return
VISObjectWrapper::UntypedObjectWrapper::_duplicate(_owrap);
}

private:
CORBA::String_var _key;
VISObjectWrapper::UntypedObjectWrapper_var _owrap;

};

Implementing an un-typed object wrapper
The following code sample shows the implementation of the
TimingObjectWrapper, also defined in the timeWrap.h file. Your un-typed
wrapper must be derived from the
VISObjectWrapper::UntypedObjectWrapper class, and you may provide
an implementation for both the pre_method or post_method methods in
your un-typed object wrapper.

Once your factory has been installed, either automatically by the factory’s
constructor or manually by invoking the
VISObjectWrapper::ChainUntypedObjectWrapper::add method, an un-
typed object wrapper object will be created automatically whenever your
client binds to an object or when your server invokes a method on an object
implementation.

The pre_method shown in the following code sample, invokes the
TimerBegin method, defined in timeWrap.C, which uses the Closure object
to save the current time.

Similarly, the post_method invokes the TimerDelta method to determine
how much time has elapsed since the pre_method was called and print the
elapsed time.

Code example 131 TimingObjectWrapper implementation
class TimingObjectWrapper : public
VISObjectWrapper::UntypedObjectWrapper {

public:
TimingObjectWrapper(const char* key=NULL) : _key(key) {}

void pre_method(const char* operation,
CORBA::Object_ptr target,
VISClosure& closure) {

cout << "*Timing: [" << flush;
if ((char *)_key)

cout << _key << flush;
else

cout << "<no key>" << flush;
cout << "] pre_method\t" << operation << “\t->” << endl;

TimerBegin(closure, operation);
}

void post_method(const char* operation,
CORBA::Object_ptr target,
CORBA::Environment& env,
VISClosure& closure) {

cout << "*Timing: [" << flush;
if ((char *)_key)

300 VisiBroker-RT for C++ Developer ’s Guide

cout << _key << flush;
else

cout << "<no key>" << flush; cout << "] post_method\t" ;
TimerDelta(closure, operation);

}
private:

CORBA::String_var _key;
};

pre_method and post_method parameters
Both the pre_method and post_method receive these parameters:

Table 26 Common arguments for the pre_method and post_method methods

The post_method also receives an Environment parameter, which can be
used to inform the user of any exceptions that might have occurred during
the previous steps of the method invocation.

Creating and registering un-typed object
wrapper factories
An un-typed object wrapper factory is automatically added to the chain of
un-typed wrappers whenever it is created with the base class constructor
that accepts a location.

On the client side, objects will be wrapped only if untyped object wrapper
factories are created and registered before the objects are bound. On the
server side, untyped object wrappers factories which are created and
registered before an object implementation is called.

The following code sample shows a portion of the sample file
untypedClient.C, which shows the creation, with automatic registration, of
two un-typed object wrapper factories for a client.

The factories are created after the ORB has been initialized, but before the
client binds to any objects.

Code example 132 Creating and registering two client-side, un-typed object wrapper
factories

void untyped_bank_client()
{

VISTRY
{
// Install Untyped Object Wrappers for Account.
TimingObjectWrapperFactory timingfact(VISObjectWrapper::Client,

"timeclient");
TraceObjectWrapperFactory tracingfact(VISObjectWrapper::Client,

"traceclient");
...

The following code sample shows the sample file untypedServer.C, which
shows the creation and registration of un-typed object wrapper factories for
a server. The factories are created after the ORB is initialized, but before
any object implementations are created.

Parameter Description
operation Name of the operation that was requested on the target

object.
target Target object.
closure Area where data can be saved across method invocations

for this wrapper.

VisiBroker-RT for C++ Developer ’s Guide 301

Code example 133 Registering a server-side, un-typed object wrapper factory
// UntypedServer.C
#include <vxWorks.h>
#include "corba.h"
#include "timeWrap.h"
#include "traceWrap.h"
#include "bankImpl.h"
#include "bank_s.hh"

...

void untyped_bank_server()
{

PortableServer::POA_var rootPOA;

VISTRY
{

// get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");
VISIFNOT_EXCEP

rootPOA = PortableServer::POA::_narrow(obj);
VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(1);
VISIFNOT_EXCEP
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

// get the POA Manager
PortableServer::POAManager_var poa_manager;

VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
myPOA = rootPOA->create_POA("bank_ow_poa", poa_manager,

policies);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Install Untyped Object Wrappers for Account Manager.
TimingObjectWrapperFactory* timingfact =
new TimingObjectWrapperFactory(VISObjectWrapper::Server,

"timingserver");
TraceObjectWrapperFactory* tracingfact =
new TraceObjectWrapperFactory(VISObjectWrapper::Server,

"traceserver");

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the object ID PortableServer::ObjectId_var
managerId;

VISIFNOT_EXCEP
managerId =

PortableServer::string_to_ObjectId("BankManager");
VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(managerId, managerServant);
VISEND_IFNOT_EXCEP

302 VisiBroker-RT for C++ Developer ’s Guide

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

CORBA::Object_var reference;
VISIFNOT_EXCEP

reference = myPOA->servant_to_reference(managerServant);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << reference << " is ready" << endl;

VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH

return;
}

Removing un-typed object wrappers
The VISObjectWrapper::ChainUntypedObjectWrapperFactory class’
remove method can be used to remove an un-typed object wrapper factory
from a client or server application. You must specify a location when
removing a factory. This means that if you have added a factory with a
location of VISObjectWrapper::Both, you can selectively remove it from
the Client location, the Server location, or Both.

Note
Removing one or more object wrapper factories from a client will not affect
objects of that class that are already bound by the client. Only subsequently
bound objects will be affected. Removing object wrapper factories from a
server will not affect object implementations that have already been
created. Only subsequently created object implementations will be affected.

Typed object wrappers
When you implement a typed object wrapper for a particular class, you
define the processing that is to take place when a method is invoked on a
bound object. Figure 40 shows how an object wrapper method on the client is
invoked before the client stub class method and how an object wrapper on
the server-side is invoked before the server’s implementation method.

Note
Your typed object wrapper implementation is not required to implement all
methods offered by the object it is wrapping.

You may also mix the use of both typed and un-typed object wrappers
within the same client or server application. For more information, see
“Combined use of un-typed and typed object wrappers”.

VisiBroker-RT for C++ Developer ’s Guide 303

Figure 40 Single typed object wrapper registered

Using multiple, typed object wrappers
You may implement and register more than one typed object wrapper for a
particular class of object, as shown in Figure 41. On the client side, the first
object wrapper registered is client_wrapper_1, so its methods will be the
first to receive control. After performing its processing, the
client_wrapper_1 method may pass control to the next object’s method in
the chain or it may return control to the client. On the server side, the first
object wrapper registered is server_wrapper_1, so its methods will be the
first to receive control. After performing its processing, the
server_wrapper_1 method may pass control to the next object’s method in
the chain or it may return control to the servant.

Figure 41 Multiple, typed object wrappers registered

304 VisiBroker-RT for C++ Developer ’s Guide

Order of invocation
The methods for a typed object wrapper that are register for a particular
class will receive all of the arguments that are normally passed to the stub
method on the client side or to skeleton on the server side. Each object
wrapper method can pass control to the next wrapper method in the chain
by invoking the parent class’ method,

<interface_name>ObjectWrapper::<method_name>. If an object wrapper
wishes to return control without calling the next wrapper method in the
chain, it can return with the appropriate return value.

A typed object wrapper method’s ability to return control to the previous
method in the chain allows you to create a wrapper method that never
invokes a client stub or object implementation. For example, you can create
an object wrapper method that caches the results of a frequently requested
operation. In this scenario, the first invocation of a method on the bound
object results in an operation request being sent to the object
implementation. As control flows back through the object wrapper method,
the result is stored. On subsequent invocations of the same method, the
object wrapper method can simply return the cached result without actually
issuing the operation request to the object implementation.

If you choose to use both typed and un-typed object wrappers, see
“Combined use of un-typed and typed object wrappers” for information on the
invocation order.

Typed object wrappers with co-located client
and servers
When the client and server are both packaged in the same address space,
the first object wrapper method to receive control will belong to the first
client-side object wrapper that was installed. Figure 42 illustrates the
invocation order.

Figure 42 Typed object wrapper invocation order

Using typed object wrappers
You must use the following steps when using typed object wrappers. Each
step is discussed in turn.

1 Identify the interface, or interfaces, for which you want to create a typed
object wrapper.

2 Generate the code from your IDL specification using the idl2cpp compiler
using the -obj_wrapper option.

3 Derive your typed object wrapper class from the
<interface_name>ObjectWrapper class generated by the idl2cpp

VisiBroker-RT for C++ Developer ’s Guide 305

compiler and provide an implementation of those methods you wish to
wrap.

4 Modify your application to register the typed object wrapper.

Implementing typed object wrappers
You derive typed object wrappers from the
<interface_name>ObjectWrapper class that is generated by the idl2cpp
compiler. The following code shows the implementation of a typed object
wrapper for the Account interface from the file bankWrap.h. Notice that
this class is derived from the AccountObjectWrapper interface and
provides a simple caching implementation of the balance method, which
provides these processing steps:

1 Check the _inited flag to see if this method has been invoked before.

2 If this is the first invocation, the balance method on the next object in
the chain is invoked and the result is saved to _balance, _inited is set to
true, and the value is returned.

3 If this method has been invoked before, simply return the cached value.

Code example 134 Portion of the CachingAccountObjectWrapper implementation
class CachingAccountObjectWrapper : public
Bank::AccountObjectWrapper {

public:
CachingAccountObjectWrapper(): _inited((CORBA::Boolean)0) {}
CORBA::Float balance() {

cout << "+ CachingAccountObjectWrapper: Before Calling
Balance" << endl;

if (! _inited) {
_balance = Bank::AccountObjectWrapper::balance();
_inited = 1;

} else {
cout << "+ CachingAccountObjectWrapper: Returning Cached
Value" << endl;

}
cout << "+ CachingAccountObjectWrapper: After Calling

Balance" << endl;
return _balance;

}
...

};

Registering typed object wrappers for a client
A typed object wrapper is registered on the client-side by invoking the
<interface_name>::add method that is generated for the class by the
idl2cpp compiler. Client-side object wrappers must be registered after the
ORB_init method has been called, but before any objects are bound. The
following code shows a portion of the typedClient.C file that creates and
registers a typed object wrapper.

Code example 135 Creating and registering a client-side, typed object wrapper
...
void typed_client(void)
{

VISTRY{
// Install Typed Object Wrappers for Account.

Bank::AccountObjectWrapper::add(orb,
CachingAccountObjectWrapper::factory,
VISObjectWrapper::Client);

// Get the Manager ID.

306 VisiBroker-RT for C++ Developer ’s Guide

PortableServer::ObjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");

// Locate an Account Manager.
Bank::AccountManager_var manager =

Bank::AccountManager::_bind("/bank_ow_poa", managerId);
...

The ORB keeps track of any object wrappers that have been registered for it
on the client-side. When a client invokes the _bind method to bind to an
object of that type, the necessary object wrappers will be created. If a client
binds to more than one instance of a particular class of object, each instance
will have its own set of wrappers.

Registering typed object wrappers for a server
As with a client application, a typed object wrapper is registered on the
server-side by invoking the <interface_name>::add method. Server-side,
typed object wrappers must be registered after the ORB_init method has
been called, but before an object implementation services a request. The
following code shows a portion of the typedServer.C file that installs a
typed object wrapper.

Code example 136 Registering a server-side, typed object wrapper
// TypedServer.C
#include <vxWorks.h>
#include "corba.h"
#include "bank_s.hh"
#include "bankImpl.h"
#include "bankWrap.h"

...

void typed_bank_server()
{

PortableServer::POA_var rootPOA;

VISTRY
{

// get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(1);
VISIFNOT_EXCEP
policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

// get the POA Manager
PortableServer::POAManager_var poa_manager;

VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
myPOA = rootPOA->create_POA("bank_ow_poa", poa_manager,

policies);
VISEND_IFNOT_EXCEP

VisiBroker-RT for C++ Developer ’s Guide 307

VISIFNOT_EXCEP
// Install Typed Object Wrappers for Account Manager.
Bank::AccountManagerObjectWrapper::add(orb,

SecureAccountManagerObjectWrapper::factory,
VISObjectWrapper::Server);

Bank::AccountManagerObjectWrapper::add(orb,
CachingAccountManagerObjectWrapper::factory,

VISObjectWrapper::Server);

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;
// Create the object ID
PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
managerId = PortableServer::string_to_ObjectId("BankManager");
VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(managerId, managerServant);
VISEND_IFNOT_EXCEP

// Activate the POA Manager VISIFNOT_EXCEP
poa_manager->activate();

VISEND_IFNOT_EXCEP

CORBA::Object_var reference;
VISIFNOT_EXCEP

reference = myPOA->servant_to_reference(managerServant);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << reference << " is ready" << endl;

VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

If a server creates more than one instance of a particular class of object, a
set of wrappers will be created for each instance.

Removing typed object wrappers
The <interface_name>ObjectWrapper::remove method that is generated
for a class by the idl2cpp compiler allows you to remove a typed object
wrapper from a client or server application. You must specify a location
when removing a factory. This means that if you have added a factory with
a location of VISObjectWrapper::Both, you can selectively remove it from
the Client location, the Server location, or Both.

Note
Removing one or more object wrappers from a client will not affect objects
of that class that are already bound by the client. Only subsequently bound
objects will be affected. Removing object wrappers from a server will not
affect object implementations that have already serviced requests. Only
subsequently created object implementations will be affected.

308 VisiBroker-RT for C++ Developer ’s Guide

Combined use of un-typed and typed object
wrappers

If you choose to use both typed and un-typed object wrappers in your
application, all pre_method methods defined for the un-typed wrappers will
be invoked prior to any typed object wrapper methods defined for an
object. Upon return, all typed object wrapper methods defined for the
object will be invoked prior to any post_method methods defined for the
un-typed wrappers.

The sample applications Client.C and Server.C make use of a
sophisticated design that allows you to use command-line properties to
specify which, if any, typed and un-typed object wrappers are to be used.

Command-line arguments for typed wrappers
The table below shows the command-line arguments you can use to enable
the use of typed object wrappers for the sample bank applications
implemented in typedClient.C and typedServer.C

Table 27 Command-line arguments for the controlling typed object wrappers

Initializer for typed wrappers
The typed wrappers are created in the BankInit::update initializer, defined
in <install_location>/VisiBrokerRT60/examples/interceptors/
objectWrappers/bankWrap.C. This initializer will be invoked when the
ORB_init() method is invoked and will handle the installation of various
typed object wrappers, based on the command-line properties you specify.

The code sample below shows how the initializer uses a set of PropStruct
objects to track the command-line options that have been specified and
then add or remove AccountObjectWrapper objects for the appropriate
locations.

Code example 137 Initializer for a typed object wrapper
...
static const CORBA::ULong kNumTypedAccountProps = 2;
static PropStruct TypedAccountProps[kNumTypedAccountProps] =

Bank wrappers
properties Description
-BANKaccountCacheClnt
<0|1>

Enables or disables a typed object wrapper that
caches the results of the balance method for a client
application.

-BANKaccountCacheSrvr
<0|1>

Enables or disables a typed object wrapper that
caches the results of the balance method for a server
application.

-BANKmanagerCacheClnt
<0|1>

Enables or disables a typed object wrapper that
caches the results of the open method for a client
application.

-BANKmanagerCacheSrvr
<0|1>

Enables or disables a typed object wrapper that
caches the results of the open method for a server
application.

-BANKmanagerSecurityClnt
<0|1>

Enables or disables a typed object wrapper that
detects unauthorized users passed on the open
method for a client application.

-BANKmanagerSecuritySrvr
<0|1>

Enables or disables a typed object wrapper that
detects unauthorized users passed on the open
method for a server application.

VisiBroker-RT for C++ Developer ’s Guide 309

{ { "BANKaccountCacheClnt", CachingAccountObjectWrapper::factory,
VISObjectWrapper::Client },

{ "BANKaccountCacheSrvr", CachingAccountObjectWrapper::factory,
VISObjectWrapper::Server }

};
static const CORBA::ULong kNumTypedAccountManagerProps = 4;
static PropStruct
TypedAccountManagerProps[kNumTypedAccountManagerProps] =
{ { "BANKmanagerCacheClnt",
CachingAccountManagerObjectWrapper::factory,

VISObjectWrapper::Client },
{ "BANKmanagerSecurityClnt",
SecureAccountManagerObjectWrapper::factory,

VISObjectWrapper::Client },
{ "BANKmanagerCacheSrvr",
CachingAccountManagerObjectWrapper::factory,

VISObjectWrapper::Server },
{ "BANKmanagerSecuritySrvr",
SecureAccountManagerObjectWrapper::factory,

VISObjectWrapper::Server },
};

void BankInit::update(int& argc, char* const* argv) {
if (argc > 0) {

init(argc, argv, "-BANK");
CORBA::ULong i;
for (i=0; i < kNumTypedAccountProps; i++) {

CORBA::String_var
arg(getArgValue(TypedAccountProps[i].propname));

if (arg && strlen(arg) > 0) {
if (atoi((char*) arg)) {

Bank::AccountObjectWrapper::add(_orb,
TypedAccountProps[i].fact,
TypedAccountProps[i].loc);

} else {
Bank::AccountObjectWrapper::remove(_orb,

TypedAccountProps[i].fact,
TypedAccountProps[i].loc);

}
}

}
for (i=0; i < kNumTypedAccountManagerProps; i++) {

CORBA::String_var arg(
getArgValue(TypedAccountManagerProps[i].propname));

if (arg && strlen(arg) > 0) {
if (atoi((char*) arg)) {

Bank::AccountManagerObjectWrapper::add(_orb,
TypedAccountManagerProps[i].fact,
TypedAccountManagerProps[i].loc);

} else {
Bank::AccountManagerObjectWrapper::remove(_orb,

TypedAccountManagerProps[i].fact,
TypedAccountManagerProps[i].loc);

}
}

}
}

}

Command-line arguments for un-typed
wrappers
Table 28 shows the command-line arguments you can use to enable the use
of un-typed object wrappers for the sample bank applications implemented
in untypedClient.C and untypedServer.C.

310 VisiBroker-RT for C++ Developer ’s Guide

Table 28 Command-line arguments for controlling un-typed object wrappers

Initializers for un-typed wrappers
The un-typed wrappers are created and registered in the
TraceWrapInit::update and TimingWrapInit::update methods, defined
in traceWrap.C and timeWrap.C. These initializers will be invoked when the
ORB_init method is invoked and will handle the installation of various un-
typed object wrappers.

The code sample below shows a portion of the traceWrap.C file, which will
install the appropriate un-typed object wrapper factories, based on the
command-line properties you specify.

Code example 138 nitializer for an un-typed object wrapper
TraceWrapInit::update(int& argc, char* const* argv) {

if (argc > 0) {
init(argc, argv, "-TRACEWRAP");

VISObjectWrapper::Location loc;
const char* propname;
LIST(VISObjectWrapper::UntypedObjectWrapperFactory_ptr)

*list;

for (CORBA::ULong i=0; i < 3; i++) {
switch (i) {

case 0:
loc = VISObjectWrapper::Client;
propname = "TRACEWRAPclient";
list = &_clientfacts;
break;

case 1:
loc = VISObjectWrapper::Server;
propname = "TRACEWRAPserver";
list = &_serverfacts;
break;

case 2:
loc = VISObjectWrapper::Both;
propname = "TRACEWRAPboth";
list = &_bothfacts;
break;

}
CORBA::String_var getArgValue(property_value(propname));
if (arg && strlen(arg) > 0) {

int numNew = atoi((char*) arg);
char key_buf[256];
for (CORBA::ULong j=0; j < numNew; j++) {
sprintf(key_buf, "%s-%d", propname, list->size());

Bank wrappers
properties Description
-TRACEWRAPclient
<numwraps>

Instantiates the specified number of un-typed object
wrapper factories for tracing wrappers for a client
application.

-TRACEWRAPserver
<numwraps>

Instantiate the specified number of un-typed object
wrapper factories for tracing on a server application.

-TRACEWRAPboth
<numwraps>

Instantiate the specified number of un-typed object
wrapper factories for tracing for both a client and
server application.

-TIMINGWRAPclient
<numwraps>

Instantiate the specified number of un-typed object
wrapper factories for timing on a client application.

-TIMINGWRAPserver
<numwraps>

Instantiate the specified number of un-typed object
wrapper factories for timing on a server application.

-TIMINGWRAPboth
<numwraps>

Instantiate the specified number of un-typed object
wrapper factories for timing on both a client and a
server application.

VisiBroker-RT for C++ Developer ’s Guide 311

list->add(new TraceObjectWrapperFactory(loc,
(const char*) key_buf));
}

}
}

}
}

Executing the sample applications
Before executing the sample applications, make sure that an osagent is
running on your network. You can then execute the server application
without any tracing or timing object wrappers from the Tornado WindShell
by:

Example
--> ld < corba_init
-->start_corba
--> ld < server
--> ld < client
-->start_objwrap_server

The Client can then be started from the same Tornado WindShell

Example
-->start_objwrap_client(“John”)

You can also execute this command if you want a default name to be used.

Example
-->start_objwrap_client()

Turning on timing and tracing object wrappers
To execute the client with un-typed timing and tracing object wrappers
enabled, use this command:

Example
-->start_objwrap_client(“-TRACEWRAPclient 1 -TIMINGWRAPclient 1”)

To execute the server with un-typed wrappers for timing and tracing
enabled, use this command:

Example
-->start_objwrap_server(“-TRACEWRAPserver 1 -TIMINGWRAPserver 1”)

Turning on caching and security object wrappers
To execute the client with the typed wrappers for caching and security
enabled, use this command:

Example
-->start_objwrap_client(“ -BANKaccountCacheClnt 1
_BANKmanagerCacheClnt 1 \

-BANKmanagerSecurityClnt 1”

To execute the server with typed wrappers for caching and security
enabled, use this command:

312 VisiBroker-RT for C++ Developer ’s Guide

Example
-->start_objwrap_server(“ -BANKaccountCacheSrvr 1

-BANKmanagerCacheSrvr 1 \
-BANKmanagerSecuritySrvr 1”)

Turning on typed and un-typed wrappers
To execute the client with all typed and un-typed wrappers enabled, use
this command:

Example
-->start_objwrap_client(“-BANKaccountCacheClnt 1
-BANKmanagerCacheClnt 1 \

-BANKmanagerSecurityClnt 1-TRACEWRAPclient 1
-TIMINGWRAPclient 1”)

To execute the server with all typed and un-typed wrappers enabled, use
this command:

Example
-->start_objwrap_server(“ BANKaccountCacheSrvr 1
BANKmanagerCacheSrvr 1 \

-BANKmanagerSecuritySrvr 1 \ -TRACEWRAPserver 1
-TIMINGWRAPserver 1”)

Executing a co-located client and server
The following command will execute a co-located server and client with all
typed wrappers enabled, the un-typed wrapper enables for just the client,
and the un-typed tracing wrapper for just the server, use this command:

Example
-->start_objwrap_server(“-BANKaccountCacheClnt 1
-BANKaccountCacheSrvr 1 \

-BANKmanagerCacheClnt 1
-BANKmanagerCacheSrvr 1 \
-BANKmanagerSecurityClnt 1 \
-BANKmanagerSecuritySrvr 1 \
-TRACEWRAPboth 1 \
-TIMINGWRAPboth 1”)

VisiBroker-RT for C++ Developer ’s Guide 313

Using Valuetypes
This chapter explains how to use the valuetype IDL type in VisiBroker-RT for
C++.

Understanding valuetypes
The IDL type valuetype is used to pass state data over the wire. A
valuetype is best thought of as a struct with inheritance and methods.
Valuetypes differ from normal interfaces in that they contain properties to
describe the valuetype’s state, and contain implementation details beyond
that of an interface. The following IDL code declares a simple valuetype:

IDL sample 20 Simple valuetype IDL
module Map {

valuetype Point {
public long x;
public long y;
private string label;
factory create (in long x, in long y, in string z);
void print();

};
};

Valuetypes are always local. They are not registered with the ORB, and
require no identity, as their value is their identity. They can not be called
remotely.

Concrete valuetypes
Concrete valuetypes contain state data. They extend the expressive power
of IDL structs by allowing:

• Single concrete valuetype derivation and multiple abstract valuetype
derivation

• Multiple interface support (one concrete and multiple abstract)

• Arbitrary recursive valuetype definitions

• Null value semantics

• Sharing semantics

Valuetype derivation
You can derive a concrete valuetype from a single concrete valuetype.
However, valuetypes can be derived from multiple other abstract
valuetypes.

Sharing semantics
Valuetype instances can be shared by other valuetypes across or within
other instances. Other IDL data types such as structs, unions, or sequences
can not be shared. Valuetypes that are shared are isomorphic between the
sending context and the receiving context.

In addition, when the same valuetype is passed into an operation for two or
more arguments, the receiving context receives the same valuetype
reference for both arguments.

314 VisiBroker-RT for C++ Developer ’s Guide

Null semantics

Null valuetypes can be passed over the wire, unlike IDL data types such as
structs, unions, and sequences. For instance by boxing a struct as a boxed
valuetype, you can pass a null value struct. For more information, see
“Boxed valuetypes”.

Factories
Factories are methods that can be declared in valuetypes to create
valuetypes in a portable way. For more information on Factories, see
“Implementing factories”.

Abstract valuetypes
Abstract valuetypes contain only methods and do not have state. They may
not be instantiated. Abstract valuetypes are a bundle of operation
signatures with a purely local implementation.

For instance, the following IDL defines an abstract valuetype Account that
contains no state, but one method, get_name():

abstract valuetype Account{
string get_name();

}

Now, two valuetypes are defined that inherit the get_name() method from
the abstract valuetype:

valuetype savingsAccount:Account{
private long balance;

}
valuetype checkingAccount:Account{

private long balance;
}

These two valuetypes contain a variable balance, and they inherit the
get_name() method from the abstract valuetype Account.

Implementing valuetypes
To implement valuetypes in an application, do the following:

1 Define the valuetypes in an IDL file.

2 Compile the IDL file using idl2cpp.

3 Implement your valuetypes by inheriting the valuetype base class.

4 Implement the Factory class to implement any factory methods defined
in IDL

5 Implement the create_for_unmarshal method.

6 Register your Factory with the ORB.

7 Either implement the _add_ref, _remove_ref, and _ref_countvalue
methods or derive from CORBA::DefaultValueRefCountBase.

Defining your valuetypes
In IDL sample 20 , you define a valuetype named Point that defines a point
on a graph. It contains two public variables, the x and y coordinates, one
private variable that is the label of the point, the valuetype’s factory, and a
print method to print the point.

VisiBroker-RT for C++ Developer ’s Guide 315

Compiling your IDL file
Now that you’ve defined your IDL, compile it using idl2cpp. This will create
the C++ source files that you will use to implement your valuetypes.

If you compile the above IDL, your output will consist of the following files:
• map_c.cc
• map_c.hh
• map_s.cc
• map_s.hh

Inheriting the valuetype base class
After compiling your IDL, create your implementation of the valuetype. The
implementation class will inherit the base class. This class contains the
constructor that is called in your ValueFactory, and contains all the
variables and methods declared in your IDL.

For example, in <install_location>/VisiBrokerRT60/examples/obv/
point/ pntImpl.h, the PointImpl class extends the Point class which was
generated from the IDL:

class PointImpl : public Map::OBV_Point, public
CORBA::DefaultValueRefCountBase {

public:
PointImpl(){}
virtual ~PointImpl(){}

CORBA_ValueBase* _copy_value() {
return new PointImpl(x(), y(), new

Map::Label(CORBA::string_dup(label())));
}

PointImpl(CORBA::Long x, CORBA::Long y, Map::Label_ptr label
)

: OBV_Point(x,y,label->_boxed_in())
{}

virtual void print() {
cout << "Point is [" << label() << ": ("

<< x() << ", " << y() << ")]" << endl << endl;
}

};

Implementing the Factory class
Now that you have created an implementation class, implement the Factory
for your valuetype.

In our example, the generated Point_init class contains the create
method declared in your IDL. This class extends
CORBA::ValueFactoryBase. The PointDefaultFactory class implements
PointValueFactory:

class PointFactory: public CORBA::ValueFactoryBase {
public:

PointFactory(){}
virtual ~PointFactory(){}
CORBA::ValueBase* create_for_unmarshal() {

return new PointImpl();
}

};

Point_init contains a public method, create_for_unmarshal, that is
output as a pure virtual method in Map_c.hh. You must derive a class from
Point_init and implement the create_for_unmarshal method to produce

316 VisiBroker-RT for C++ Developer ’s Guide

the Factory class. When you compile your IDL file, it won’t create a skeleton
class for this.

Registering your Factory with the ORB
Call ORB::register_value_factory to register your Factory with the ORB.
See “Registering valuetypes” for more information on registering Factories.

Implementing factories
When the ORB receives a valuetype, it must first be unmarshalled, and then
the appropriate factory for that type must be found in order to create a new
instance of that type. Once the instance has been created, the value data is
unmarshalled into the instance. The type is identified by the RepositoryID
that is passed as part of the invocation. The mapping between the type and
the factory is language specific.

The following code contains a sample implementation of the factory of the
Point valuetype:

Code example 139 Factory for Point valuetype
class PointFactory: public CORBA::ValueFactoryBase
{
public:

PointFactory(){}
virtual ~PointFactory(){}
CORBA::ValueBase*create_for_unmarshal() {

return new PointImpl();
}

};

Factories and valuetypes
When the ORB receives a valuetype, it will look for that type’s factory. It will
look for a factory named valuetypeDefaultFactory. For instance, the Point
valuetype’s factory is called PointDefaultFactory. If the correct factory
doesn’t conform to this naming schema (valuetypeDefaultFactory), you
must register the correct factory so the ORB can create an instance of the
valuetype.

If the ORB cannot find the correct factory for a given valuetype, a MARSHAL
exception is raised.

Registering valuetypes
Each language mapping specifies how and when registration occurs. If you
created a factory with the valuetypeDefaultFactory naming convention,
this is considered implicitly registering that factory, and you do not need to
explicitly register your factory with the ORB.

To register a factory that doesn’t conform to the valuetypeDefaultFactory
naming convention, call register_value_factory. To unregister a factory,
call unregister_value_factory on the ORB. You can also lookup a
registered valuetype factory by calling lookup_value_factory on the ORB.

VisiBroker-RT for C++ Developer ’s Guide 317

Boxed valuetypes
Boxed valuetypes allow you to wrap non-value IDL data types as
valuetypes. For example, the following IDL boxed valuetype declaration,

valuetype Label string;

is equivalent to this IDL valuetype declaration:
valuetype Label{

public string name;
}

By boxing other data types as valuetypes, it allows you to use valuetype’s
null semantics and sharing semantics.

Valueboxes are implemented purely with generated code. No user code is
required.

Abstract interfaces
Abstract interfaces allow you to choose at runtime whether the object will
be passed by value or by reference.

They differ from IDL interfaces in the following ways:

• The actual parameter type determines whether the object is passed by
reference or a valuetype is passed. The parameter type is determined
based on two rules:

• It is treated as an object reference if it is a regular interface type or
sub-type, the interface type is a sub-type of the signature abstract
interface type, and the object is already registered with the ORB.

• It is treated as a value if it can not be passed as an object reference,
but can be passed as a value. If it fails to pass as a value, a BAD_PARAM
exception is raised.

• Abstract interfaces do not implicitly derive from CORBA::Object because
they can represent either object references or valuetypes. Valuetypes do
not necessarily support common object reference operations. If the
abstract interface can be successfully narrowed to an object reference
type, you can invoke the operations of CORBA::Object.

• Abstract interfaces may only inherit from other abstract interfaces.

• valuetypes can support one or more abstract interfaces. For example,
examine the following abstract interface.

IDL sample 21 Abstract interface IDL
abstract interface ai{
};
interface itp : ai{
};
valuetype vtp supports ai{
};
interface x {

void m(ai aitp);
};
valuetype y {

void op(ai aitp);
};

For the argument to method m:

• itp is always passed as an object reference.

• vtp is passed as a value.

318 VisiBroker-RT for C++ Developer ’s Guide

Custom valuetypes
By declaring a custom valuetype in IDL, you bypass the default marshalling
and unmarshalling model and are responsible for encoding and decoding.

IDL sample 22 Custom valuetype IDL
custom valuetype customPoint{

public long x;
public long y;
private string label;
factory create(in long x, in long y, in string z);

};

You must implement the marshal and unmarshal methods from the
CustomMarshal interface.

When you declare a custom valuetype, the valuetype extends
CORBA::CustomValue, as opposed to CORBA::StreamableValue, as in a
regular valuetype. The compiler doesn’t generate read or write methods for
your valuetype.

You must implement your own read and write methods by using
CORBA::DataInputStream and CORBA::DataOutputStream to read and write
the values, respectively. For more information on these classes, see the
VisiBroker-RT for C++ Reference Guide.

Truncatable valuetypes
Truncatable valuetypes allow you to treat an inherited valuetype as its
parent.

The following IDL defines a valuetype checkingAccount that is inherited
from the base type Account and can be truncated an the receiving object.

valuetype checkingAccount: truncatable Account{
private long balance;

}

This is useful if the receiving context doesn’t need the new data members or
methods in the derived valuetype, and if the receiving context isn’t aware of
the derived valuetype. However, any state data from the derived valuetype
that isn’t in the parent data type will be lost when the valuetype is passed to
the receiving context.

Note
You cannot make a custom valuetype truncatable.

VisiBroker-RT for C++ Developer ’s Guide 319

VisiBroker Logging
VisiBroker-RT for C++ provides a logging mechanism which allows
applications to log messages and have them directed, via configurable logging
forwarders, to an appropriate destination or destinations. The ORB itself uses
this mechanism for the output of any error, warning or informational
messages.

The application can choose to log its and the ORB’s messages to the same
destination, producing a single message log for the entire system, or to log
messages from different sources to independent destinations.

Logging Overview
VisiBroker Logging employs one or more Logger objects, that applications
(including the ORB) may log messages to. When a message is logged to a
Logger, it is queued rather than being output by the calling thread.

Each Logger has one or more Forwarders associated with it: application-
definable pieces of code that read the queued messages and forward them
to desired destinations such as standard error, a file or over a network. All
the Forwarders associated with a given Logger run on a single Forwarder
Thread. The priority of the Forwarder Thread is configurable.

However, forwarding is not enabled when a Logger is created. Messages
logged before forwarding is enabled are queued until it is enabled. This
allows messages to be logged before the Logger or all of the output
destinations have been fully configured (for example during static
initialization of C++ constructors.)

The ORB uses a special Logger instance (the ‘Default Logger’), which is
created automatically the first time the ORB logs a message to it.
Applications can log messages to the Default Logger as well, to integrate
their logging output with that of the ORB, or they can create one or more
other Loggers, to log messages independently. The ‘standard error’
iostream is the default destination for messages logged to the Default
Logger.

The Logger Manager
The Logger Manager is used to manage the lifecycle of Loggers and to
configure them. The Logger Manager is a singleton object belonging to the
ORB. A reference to it is obtained by calling its static instance method. No
reference counting is performed upon the Logger Manager.

Code example 140 Using the static instance method to access the singleton Logger
Manager object

// Use its static instance method to obtain a reference to the
Logger Manager
VISLoggerManager_ptr logger_manager =

VISLoggerManager::instance();

...

// Alternatively, the Logger Manager reference may be obtained
each time it is used
// Here, for example, when calling its get_logger method
VISLogger_ptr logger =

VISLoggerManager::instance()->get_logger(“LoggerName”);

320 VisiBroker-RT for C++ Developer ’s Guide

The methods of the Logger Manager are introduced along with the
description of their use, in the sections that follow.

Configuring ORB Logging
Even if an application does not log messages of its own, it may wish to
configure the logging of messages by the ORB. The following aspects of ORB
logging can be controlled:

• The level of ORB logging (‘verbosity’)

• The destination of logged messages - by installing different Forwarders

• The priority of the Forwarder Thread that runs the installed Forwarders

The following sections describe the ORB’s logging output and how to control
it.

ORB Log Levels
Messages logged by the ORB have one of four Log Levels:

• Level 1: ERROR

Messages at this level indicate a fatal error during the operation of the
ORB, that has caused one of the threads running ORB code to abort. Note
that the cause of the error may be external to the ORB - for example a
network interface configuration that cannot be supported.

• Level 2: WARNING

Messages at this level indicate a non-fatal error during the operation of
the ORB. A problem was encountered that may cause subsequent failures
or unexpected behavior, but the ORB will carry on trying to work as
normal for now. Again, the cause of the problem may be external to the
ORB.

• Level 3: INFORMATION

Messages at this level provide ‘verbose’ information about the normal
operation of the ORB. For example, information about the successful
configuration of a Server Engine at the time of its creation.

• Level 4: DEBUG

Messages at this level provide detailed information about certain aspects
of the ORB’s operation. They do not normally need to be viewed, but may
be useful in certain debugging scenarios.

By default only messages at Log Levels 1 and 2 (ERROR and WARNING) will
be logged by the ORB. The number of levels that are logged can be
increased or decreased on a per-ORB component basis. ORB components
are described in the next section.

ORB Logging Components
For the purpose of logging, VisiBroker is divided into a number of
components:

• ORB

The majority of VisiBroker, including the Object Request Broker itself.

VisiBroker-RT for C++ Developer ’s Guide 321

• POA

Portable Object Adapters. Note that individual POAs are not distinguished
as separate logging components, so the same level of logging output will
be used for all POAs. However, POA component messages usually identify
the POA concerned as part of the logged message.

• OSAgent

The code of the OSAgent itself, and also the agent client code (‘DSUser’
code) that is used by an ORB when it interacts with the OSAgent.

• LocSvc

The ‘Location Service’ programmatic API to the OSAgent.

• CosName

The code of the COS Naming Service, that is provided with VisiBroker.

• CosEvent

The code of the COS Event Service, that is provided with VisiBroker.

The level of logging may be configured on a per-component basis. The way
to configure the level of output is described in the next section.

By default, only messages at Log Levels 1 and 2 (ERROR and WARNING)
are output, for all ORB components.

Controlling the Level of ORB Logging
The level of ORB logging is controlled on a per-component basis, by
specifying the highest message Log Level that should be logged for each
ORB component.

The Logger Manager provides methods that allow the setting and reading of
the maximum Log Level for each ORB component:

Code example 141 The methods of VISLoggerManager that allow the setting and
reading of the maximum Log Level on a per ORB component basis

class VISLoggerManager {
public:

...
void ORB_log_level(VISLogLevel level);
VISLogLevel ORB_log_level();

void POA_log_level(VISLogLevel level);
VISLogLevel POA_log_level();

void OSAgent_log_level(VISLogLevel level);
VISLogLevel OSAgent_log_level();

void LocSvc_log_level(VISLogLevel level);
VISLogLevel LocSvc_log_level();

void CosName_log_level(VISLogLevel level);
VISLogLevel CosName_log_level();

void CosEvent_log_level(VISLogLevel level);
VISLogLevel CosEvent_log_level();

...

};

For example, the following code sets the maximum Log Level to 3
(INFORMATION) for the ORB and POA components. This has the effect of
producing ‘verbose’ output about the operation of the majority of the ORB.

322 VisiBroker-RT for C++ Developer ’s Guide

Code example 142 Setting the maximum Log Level for the ORB and POA
components to Log Level 3 (INFORMATION) - ‘verbose’ output
about most ORB operations

VISLoggerManager::instance()->ORB_log_level(3);
VISLoggerManager::instance()->POA_log_level(3);

Library liblog_message_catalog.o and
Formatted ORB Log Messages
The VisiBrokerRT60 log message structure contains a message key and
arguments. By default the message key and arguments are output by the
Default Forwarder. Building a VisiBrokerRT60 application with the
liblog_message_catalog.o VisiBroker library will cause formatted text
messages corresponding to the message_key and containing the arguments
to be output. For more information on selecting VisiBrokerRT60 libraries for
your application please refer to “Step 6: Integrating VisiBroker-RT with Tornado/
VxWorks”.

Controlling the Priority of ORB Logging
The ORB logs its messages to a special Logger called the Default Logger. As
with all Loggers, when a message is logged to the Default Logger, the
message is written to a queue without being output to its final destination.

Each Logger has a Forwarder Thread associated with it, that reads the
queued messages and executes the Forwarder code that outputs them to
their final destination. The priority that the Forwarder Thread executes at
can be controlled for each Logger, via a method on the VISLogger class.

The following code example demonstrates how to set the priority of the
Default Logger’s Forwarder Thread.

Code example 143 Setting the priority of the Default Logger’s Forwarder Thread
// Obtain handle to the Default Logger
VISLogger_ptr logger =

VISLoggerManager::instance()->get_logger(“DefaultLogger”);

// Set the Real-Time CORBA Priority of the Default Logger’s
Forwarder
// Note that this will only be effective before forwarding has
been enabled (no later than ORB_init)
logger->forwarder_priority(27);

The priority is specified as a Real-Time CORBA priority value, and hence
must be a valid value in the currently installed Real-Time CORBA Priority
Mapping.

Note that the priority of the Forwarder Thread may only be changed before
forwarding is enabled. For the Default Forwarder, forwarding is enabled
automatically when CORBA::ORB_init is called, if it hasn’t already been
explicitly enabled before that time.

If a priority is not specified by the application, the Default Logger’s
Forwarder Thread priority defaults to the maximum priority in the Real-
Time CORBA Priority Mapping installed at the time forwarding is enabled.
This is the same behavior as for any other Loggers created by the
application.

The enabling of forwarding is discussed further in the next section.

VisiBroker-RT for C++ Developer ’s Guide 323

Enabling Forwarding of ORB Logging
Like all Loggers, the Default Logger, used by the ORB, does not have the
forwarding of logged messages enabled when it is created. Messages logged
before forwarding is enabled are queued until it is enabled. This allows
messages to be logged before the Logger or all of the output destinations
have been fully configured - for example, before the priority of the
Forwarder Thread has been configured, or during static initialization of C++
constructors, when the initialization of the C++ iostreams package may not
yet have occurred.

However, the Default Logger differs from other Loggers in that for the
Default Logger, forwarding is automatically enabled when either
CORBA::ORB_init or startOsagent is called. Hence, at the time of calling
CORBA::ORB_init or startOsagent, any messages previously logged by the
ORB will be forwarded to the specified destinations.

Forwarding can still be explicitly enabled for the Default Logger, prior to
calling CORBA::ORB_init or startOsagent. This might be done, for example,
to investigate any messages logged by the ORB if a problem is encountered
prior to calling CORBA::ORB_init or startOsagent. This should not normally
be necessary. See the section “Enabling Message Forwarding” below for details
of how to enable forwarding explicitly. The string identifier for the Default
Logger is ‘DefaultLogger’.

Controlling the Destination of ORB Logging
Messages logged to a Logger may be output to any number of destinations
simultaneously, and the destinations that messages are logged to may be
configured on a per-Logger basis, and at any time in the lifetime of the
Logger.

Because the Default Logger, used by the ORB, is just a special Logger
instance, the procedure for adding, removing and replacing logging
destinations is the same as for Loggers created by applications. See the
section “Adding and Removing Logger Forwarders”, below. The string identifier
for the Default Logger is ‘DefaultLogger’.

Application Logging
Applications that wish to log messages via the VisiBroker logging
mechanism may log messages to the same Default Logger that the ORB
logs messages to, and may also create additional Loggers to log messages
independently of the ORB’s logging.

The following sections described how an application can create and
configure additional Loggers, and log messages to them or the Default
Logger.

Creating or Obtaining a Reference to a Logger
A Logger object can be created using the get_logger method of the
VISLoggerManager object.

Code example 144 The get_logger method is used both to create new Loggers and to
obtain a reference to existing Loggers.

typedef VISLogger * VISLogger_ptr;
class VISLoggerManager {

...
VISLogger_ptr get_logger(const char * logger_name,

324 VisiBroker-RT for C++ Developer ’s Guide

CORBA::Boolean create_flag = 1);
...

};

get_logger takes two parameters: a name for the Logger and a flag
indicating whether a Logger should be created if one of that name does not
already exist. With the second parameter set to true (non-zero), a new
Logger will be created if one of that name does not already exist. If a
Logger of that name already exists, a reference to it will be returned. This is
the default behavior.

However, if the second parameter of get_logger is set to false (zero), the
get_logger method will fail if a Logger of the specified name does not
already exist. In that case a CORBA::OBJECT_NOT_EXISTS system
exception is thrown.

Thus get_logger can be used both to create a new Logger and to obtain a
reference to an existing Logger without attempting to create it. The
following code example illustrates both these uses:

Code example 145 Using get_logger to create a new Logger and to obtain a reference
to an already existing Logger without attempting to create it.

// Obtain reference to a Logger called ‘myAppLogger’ - create it
if it doesn’t already exist
VISLogger_ptr my_app_logger;
VISTRY
{

// Using one parameter version of get_logger indicates we want
to create this Logger
// if it doesn’t already exist
my_app_logger =

VISLoggerManager::instance()->get_logger(“myAppLogger”);
}
VISCATCH(CORBA::Exception, e)
{

// Handle exceptions here
}

...
// Obtain reference to a Logger - throw an exception if it
doesn’t already exist
VISLogger_ptr logger;
VISTRY
{

// second argument to get_logger indicates we do not want to
create this Logger
// if it doesn’t already exist
logger =

VISLoggerManager::instance()->get_logger(“myAppLogger”,0);
}
VISCATCH(CORBA::Exception, e)
{

// Handle exceptions here
}

No reference counting is performed on Logger references (VISLogger * or
VISLogger_ptr.)

Setting the Forwarder Thread Priority of a
Logger
When a message is logged to a Logger, the message is written to a queue
without being output to its final destination. Each Logger has a Forwarder
Thread associated with it, that executes any installed Forwarders - code that
reads the queued messages and outputs them to their final destination. The

VisiBroker-RT for C++ Developer ’s Guide 325

priority that the Forwarder Thread executes at can be controlled for each
Logger, via a method on the VISLogger class.

The following code example demonstrates how to set the priority of a
Logger’s Forwarder Thread:

Code example 146 Setting the priority of a Logger’s Forwarder Thread
// Obtain handle to my Logger
VISLogger_ptr logger =
VISLoggerManager::instance()->get_logger(“myAppLogger”);

// Set the Real-Time CORBA Priority of the Logger’s Forwarder
Thread
// Note that this will only be effective before forwarding has
been enabled
logger->forwarder_priority(27);

The priority is specified as a Real-Time CORBA priority value, and hence
must be a valid value in the currently installed Real-Time CORBA Priority
Mapping.

If a priority is not specified by the application, by default a Logger’s
Forwarder Thread will run at the maximum priority in the Real-Time CORBA
Priority Mapping installed at the time forwarding is enabled. However, this
default can be changed to any other priority in the installed Real-Time
CORBA priority mapping, by calling the default_forwarder_thread_priority
of the Logger Manager:

Code example 147 The default_forwarder_thread_priority method may be used to
change the default Real-Time CORBA Priority that Forwarder
threads will run at

// Set the default Real-Time CORBA Priority value that Forwarder
Threads will run at, if
// a priority is not specified before forwarding is enabled
VISLoggerManager::instance()->

default_forwarder_thread_priority(17)
;

Note that the priority of the Forwarder Thread is determined at the time
when forwarding is enabled. Hence it may only be changed before
forwarding is enabled. Enabling of forwarding is discussed in the next
section.

Enabling Message Forwarding
A Logger does not have the forwarding of logged messages enabled when it
is created. Messages logged before forwarding is enabled are queued until it
is enabled. This allows messages to be logged before the Logger or all of the
output destinations have been fully configured - for example, before the
priority of the Forwarder thread has been configured, or during static
initialization of C++ constructors, when the initialization of the C++
iostreams package may not yet have occurred.

For all Loggers apart from the Default Logger (which is used by the ORB),
logging must be explicitly enabled by calling the enable_forwarding method
on that Logger.

Code example 148 Forwarding of logged messages must be explicitly enabled for all
Loggers apart from the Default Logger

// Enable forwarding once Logger and logging destinations are
ready
VISLogger_ptr my_app_logger =

VISLoggerManager::instance()->get_logger(“myAppLogger”);

my_app_logger->enable_forwarding();

326 VisiBroker-RT for C++ Developer ’s Guide

The Default Logger differs from other Loggers in that for the Default Logger,
forwarding is automatically enabled when either CORBA::ORB_init or
startOsagent is called. See “Enabling Forwarding of ORB Logging” for details

Logging a Message to a Logger
Applications log a message to a Logger by calling its log method:

class VISLogger {
...
void log(const char * source_name,

VISLogLevel level,
const char * message_key,
VISLogArgs * message_args,
const char * source_thread_identifier,
const char * location_code,
VISLogApplicationFields *application_fields);

...
};

The purpose of each of the parameters is as follows:

• source_name

Identifies the application or application component (in a complex system,
with multiple logging sources) that is logging the message. The source
name may be used by Forwarders, to determine how to handle the
message. Certain source names are reserved by VisiBroker, and are used
to determine which message catalog is used to produce the message text.

Specifically, the names ‘vbroker_en’, ‘nm_vbroker_en’, and
‘ev_vbroker_en’ are reserved.

• level

Indicates the Log Level of the message. Messages logged by the ORB use
this field to indicate one of four levels, as described in the section “ORB
Log Levels”. VISLogLevel is actually of type short, so the application is not
restricted to just four levels. This parameter can be used just for
informational purposes, or a Forwarder could make use of it to decide how
to handle messages. (Note that the filtering of ORB messages based
upon Log Level takes place in ORB code, before calling the log method. To
filter messages based upon Log Level in a convenient fashion, an
application could write a logging wrapper class, that the application calls
instead of VISLogger::log, which only logs messages with currently
selected Log Levels.)

• message_key

A string identifier that indicates what kind of message this is. The ORB
uses a fixed set of message keys, so that there is a well known set of
message types. These are then used as the keys in a ‘message catalog’,
with the values being message ‘format strings’, that are used in
combination with the message_args parameter to produce the full text of
the message. This separation of message text and arguments simplifies
the support of internationalization in log message output. Applications
may do the same. However, for a simpler form of logging, the application
may just give the full text of its message in the message_key parameter
and leave the message_args field null.

• message_args

These are copied by reference rather than by value. See the description
of message_key, above.

VisiBroker-RT for C++ Developer ’s Guide 327

• source_thread_identifier

Identifies the thread that logged this message. If this field is left null, the
ORB will provide a default value.

• location_code

Identified the location in application code that is logging this message on
this occasion. For ORB log messages, this is the source code file name
and line number of the calling line of ORB code (produced using the ANSI
C FILE and LINE macros.) Applications may do the same, identify
the location in some other way, or even leave this field blank.

• application_fields

Any additional data that the application wishes to associate with this
logged message. Copied by reference rather than by value. It is the
application’s responsibility to make sure that a Forwarder is installed that
can interpret this data.

Note that the memory ownership semantics for the message_args and
application_fields parameters are different to those of the other
parameters. message_args and application_fields are passed by reference
rather than by value. The Logger takes ownership of them and they are
automatically deallocated after the last installed Forwarder has made use of
them.

All other parameters are passed by value. That is, the Logger takes a copy
of them when the log method is called. Thus it is the application’s
responsibility to deallocate any memory that it allocated for the
source_name, message_key, source_thread_identifier or location_code
parameters. The memory may be deallocated as soon as the call to the log
method returns.

Adding and Removing Logger Forwarders
Any number of Forwarders may be associated with a given Logger at the
same time. Forwarders are added and removed through a set of methods
on the VISLogger class:

Code example 149 Methods used to add and remove logger forwarders
class VISLogger {

...
// Add/Remove a Forwarder
void add_forwarder(VISLoggerForwarder_ptr forwarder);
void remove_forwarder(VISLoggerForwarder_ptr forwarder);

// Remove the Default Forwarder
void remove_default_forwarder();
...

};

add_forwarder and remove_forwarder allow a particular Forwarder to be
added to or removed from the list of Forwarders associated with a Logger.
They both take a handle to a Logger Forwarder object as a parameter.

remove_default_forwarder is provided to allow the removal of the Default
Forwarder - the Forwarder that is associated with each Logger by default.
This separate method is used as the application does not have a handle to
the Default Forwarder, to provide as the parameter to remove_forwarder.

The next section describes how an application can create a Forwarder of its
own.

328 VisiBroker-RT for C++ Developer ’s Guide

Implementing a Logger Forwarder
A new Logger Forwarder is implemented by defining a C++ class that
inherits from the class VISLoggerForwarder:

Code example 150 The VISLoggerForwarder class, from which Logger Forwarder
implementations inherit

class VISLoggerForwarder {
public:

VISLoggerForwarder();
virtual ~VISLoggerForwarder();

virtual void forward_message(VISLogMessage * message);
virtual void handle_memory_failure(

CORBA::ULongLongmessage_identifier,
CORBA::ULongLongmessage_creation_time, VISLogLevellevel,
const char *source_host,
const char *source_name,
const char *location_code,
CORBA::ULongsource_process_identifier,
const char *source_thread_identifier,
VISLogApplicationFields *application_fields,
const char *message_key,
VISLogArgs *message_args);

};

A derived Forwarder class implements the forwarding behavior it desires by
implementing the forward_message and handle_memory_failure methods.
However, VISLoggerForwarder provides a default implementation for each
of these methods, so that the application is not obliged to implement both
of them. For details of the default implementation of these two methods see
“The Default Logger Forwarder”, below.

forward_message is the method that is called under normal circumstances.
It is called once for each message that is logged to any Logger that the
Forwarder is associated with. The VISLogMessage data type that it is passed
as a parameter has the following structure:

Code example 151 The VISLogMessage data structure, that is passed as the
parameter to VISLoggerForwarder::forward_message

struct VISLogMessage {
CORBA::ULongLong message_identifier;
CORBA::ULongLong message_creation_time;
VISLogLevel level;
const char * source_host;
const char * source_name;
const char * location_code;
CORBA::ULong source_process_identifier;
const char * source_thread_identifier;
VISLogApplicationFields *application_fields;
const char * message_key;
VISLogArgs * message_args;

VISLogMessage() {}
~VISLogMessage();

};

The fields in the VISLogMessage structure correspond to the parameters to
the VISLogger::log method (described in the section “Logging a Message to a
Logger” above), plus the following additional fields:

• message_identifier

A message sequence number, starting at one and incrementing for each
message logged to that Logger.

VisiBroker-RT for C++ Developer ’s Guide 329

• message_creation_time

A timestamp, taken from the system clock at the time the message was
logged (rather than forwarded.) Held in the TimeBase::TimeT format:
one unit is 100 nanoseconds or one tenth of a microsecond.

The Logger retains ownership of the VISLogMessage parameter. If the
Forwarder wishes to keep a copy of any of the data it must copy it before
forward_message returns. The memory associated with the VISLogMessage
structure is deallocated by the Logger after the last installed Forwarder
returns.

handle_memory_failure is called instead of forward_message in the event
that the Logger experiences a memory allocation failure at any point during
the logging of a message, up to and including the creation of the
VISLogMessage parameter. As with forward_message, the Logger retains
ownership of the parameters. Note that one or more of the parameters may
be null, depending on when the memory allocation failure occurred.

The below code illustrates the installation of an application-defined
Forwarder. The Forwarder is shown being installed on the Default Logger
(which is used by the ORB), but any other Logger could be specified.

Code example 152 Installation of an application-defined Forwarder, and removal of
the Default Forwarder.

#include “vlogger.h”

class ExampleForwarder : public VISLoggerForwarder {

public:
void forward_message(struct VISLogMessage * message);
// Implementation not shown here - see below

void handle_memory_failure(
CORBA::ULongLong message_identifier,
CORBA::ULongLong message_creation_time,
VISLogLevel level,
const char * source_host,
const char * source_name,
const char * location_code,
CORBA::ULong source_process_identifier,
const char * source_thread_identifier,
VISLogApplicationFields * application_fields,
const char * message_key,
VISLogArgs * message_args);

// Implementation not shown here - see below

};
ExampleForwarder * example_forwarder; void install_forwarder()
{

// Obtain handle to Logger want to install Forwarder on
VISLogger_ptr logger =

VISLoggerManager::instance()->get_logger(“DefaultLogger”);

// Create instance of Forwarder and add to the list of
Forwarders installed for that Logger

example_forwarder = new ExampleForwarder;
logger->add_forwarder(example_forwarder);

// (Optionally) remove the Default Forwarder from this
Logger

logger->remove_default_forwarder();

}

The above example does not show the implementation of the
forward_message and handle_memory_failure methods. For a sample
implementation for these methods see the next section, “The Default Logger
Forwarder”.

330 VisiBroker-RT for C++ Developer ’s Guide

The Default Logger Forwarder
The Default Forwarder implements both the forward_message and
handle_memory_failure methods of the VISLoggerForwarder base class.

The implementation of forward_message uses the VISLogMessageCatalog
class to retrieve a message format string from an appropriate Message
Catalog, if one is installed that is associated with the source name indicated
in the message. If there is a message format that corresponds to the
message key, it then uses the VISLogMessageFormat helper class to
produce the full text of the message, by combining the message format
string with any message arguments that were specified as part of the
message. The message text is output to standard error (iostream ‘cerr’),
along with the rest of the message fields.

handle_memory_failure just outputs the fields of the message that can be
output without allocating memory to format them.

This is the code for forward_message and handle_memory_failure:

Code example 153 Code for the Default Forwarder
#include "vlogger.h"
#include "vlogmfmt.h"
#include "vport.h"

void VISLoggerForwarder::forward_message(struct VISLogMessage *
message)
{

// Obtain the message catalog that corresponds to the message
source
// (If there is one - else null)
VISLogMessageCatalog_ptr catalog =

VISLogMessageCatalog::instance(message->source_name);

// If there is a message key (and a catalog), look the key up
// in the message catalog, to get corresponding format
const char * message_format = 0;
if (message->message_key && catalog)
{

message_format = catalog->search(message->message_key);
}

// If there was a format string for that key, use it to format
the text
const char * message_text = 0;
CORBA::Boolean format_error = 0;
if (message_format)
{

VISTRY
{

message_text = VISLogMessageFormat::format(
message_format, message->message_args);

}
VISCATCH(CORBA::Exception, e) {

format_error = 1;
}
VISEND_CATCH

}

// Convert message identifier (ulonglong) to string
char * msg_id_str =

VISPortable::ulonglong_to_str(message->message_identifier);

// Convert message creation time (TimeBase::TimeT) to seconds
CORBA::ULongLong secs = message->message_creation_time /

10000000;
CORBA::ULong nsec = (message->message_creation_time %

10000000) * 100;
char * secs_str = VISPortable::ulonglong_to_str(secs);
char time_str[32];

VisiBroker-RT for C++ Developer ’s Guide 331

sprintf(time_str, "%s.%09lu", secs_str, nsec);

// Output the message to standard error
cerr << endl << "Logging: message " << msg_id_str

<< " time " << time_str << " level " << message->level <<
endl;

delete [] msg_id_str;
delete [] secs_str;

if (message_text)
{

cerr << "Message: " << message_text << endl;
} else

{
// If didn't end up with formatted message text, explain why
if (!catalog)
{

cerr << "Msg key : " << message->message_key
<< " (Message catalog '" << message->source_name
<< "' not installed)" << endl;

} else if (!message->message_key)
{
cerr << "Msg key : (null)" << endl;
}

else if (format_error)
{

cerr << "Msg Key : " << message->message_key
<< " (Error formatting message text)" << endl;

} else
{

cerr << "Msg key: " << message->message_key
<< " (No entry in message catalog)" << endl;

}

// Output message arguments if there are any
if (!message->message_args ||
(message->message_args ->num_args() == 0))
{

cerr << "Arguments: (none)" << endl;
}
else
{

cerr << "Arguments:";
for (int i=0; i < message->message_args->num_args(); i++)
{

VISLogArgsType* arg = (*(message->message_args))[i];
switch(arg->data_type())
{

case VISLogArgsType::INTEGER:
{

cerr << " Integer("
<< ((VISLogInteger*)arg)->integer_value() << ")";

break;
}

case VISLogArgsType::STRING:
{

cerr << " String("
<< ((VISLogString*)arg)->string_value() << ")";

break;
}
case VISLogArgsType::BOOLEAN:
{

cerr << " Boolean(";
if (((VISLogBoolean*)arg)->boolean_value())
{

cerr << "true)";
} else
{

cerr << "false)";
}
break;

}

332 VisiBroker-RT for C++ Developer ’s Guide

}
}

cerr << endl;
}

}

cerr << "Source: " << (message->source_host ?
message->source_host : "(null)")

<< " " << (message->source_name ? message->source_name :
"(null)")

<< endl;
cerr << "Location : "

<< (message->location_code ? message->location_code :
"(null)")

<< endl;
cerr << "PID : " << message->source_process_identifier << "

TID : "
<< (message->source_thread_identifier ?

message->source_thread_identifier : "(null)")
<< endl;

// application fields are not being output

// Delete the formatted text
delete [] message_text;

}

void VISLoggerForwarder::handle_memory_failure(
CORBA::ULongLong message_identifier,
CORBA::ULongLong message_creation_time,
VISLogLevel level,
const char * source_host,
const char * source_name,
const char * location_code,
CORBA::ULong source_process_identifier,
const char * source_thread_identifier,
VISLogApplicationFields * application_fields,
const char * message_key,
VISLogArgs * message_args)

{
// Output subset of data that is output by forward_message
// Don't convert long long values, as this requires memory

allocation

cerr << endl << "** Logging Memory Failure ** for message
with id"

<< (unsigned long)message_identifier << endl
<< " (id truncated to 32 bits)" << " level " << level
<< endl;

// Don't format message text, as this requires memory
allocation

cerr << "Msg key: " << (message_key ? message_key :
"(null)")

<< endl;
cerr << "Source: " << (source_host ? source_host : "(null)")

<< " " << (source_name ? source_name : "(null)") << endl;
cerr << "Location : " << (location_code ? location_code :
"(null)") << endl;

cerr << "PID: " << source_process_identifier << "TID : "
<< (source_thread_identifier ? source_thread_identifier

: "(null)")
<< endl;

}

Part 7
Dynamic CORBA

Concepts
In this part
This part contains the following chapters:

NOTE

The library liborb_dyn.o is required when building a
VisiBrokerRT60 application to support use of the Dynamic
CORBA concepts. For a description of all the libraries
provided by the VisiBroker-RT for C++ product, see “Step 6:
Integrating VisiBroker-RT with Tornado/VxWorks”.

In the original, this and several other paragraphs
refer to "Step 5: Selecting VisiBroker libraries"; but
no such step exists. I think this is the right one!

Using Interface Repositories page 335

Using the Dynamic Invocation Interface page 347

Using the Dynamic Skeleton Interface page 365

Using the Dynamically Managed Types page 375

VisiBroker-RT for C++ Developer ’s Guide 335

Using Interface Repositories
An interface repository (IR) contains descriptions of CORBA object interfaces.
The data in an IR is the same as in IDL files—descriptions of modules,
interfaces, operations, and parameters—but it is organized for runtime access
by clients. A client can browse an interface repository (perhaps serving as an
online reference tool for developers) or can look up the interface of any object
for which it has a reference (perhaps in preparation for invoking the object
with the Dynamic Invocation Interface).

Reading this chapter will enable you to create an interface repository and
access it with VisiBroker-RT for C++ utilities or with your own code.

NOTE

The library liborb_dyn.o is required when building a VisiBrokerRT60
application to support use of the Dynamic CORBA concepts. For a
description of all the libraries provided by the VisiBroker-RT for C++
product, see <~XRef>“Step 6: Integrating VisiBroker-RT with Tornado/
VxWorks”.

The Interface Repository (IR) is available ONLY on the development host.
VisiBroker-RT for C++ does NOT provide an Interface Repository as a
runtime library.

Additionally the IR provides functionality which address the more Dynamic
aspects of CORBA, and therefore the IR is excluded as per the "minimum
CORBA" OMG specification. The "minimum CORBA" OMG specification
identifies dynamic functionality which should be excluded from an ORB, in
an effort to reduce the ORB footprint.

For details, see the minimum CORBA specification document, OMG
document number orbos/ 98-08-04. This document is available for
download using the URL ftp://ftp.omg.org/pub/docs/orbos/98-08-04.pdf.

What is an interface repository?
An interface repository (IR) is like a database of CORBA object interface
information that enables clients to learn about or update interface
descriptions at runtime. In contrast to the VisiBroker-RT for C++ Location
Service, described in the chapter “Using the Location Service” which holds data
describing object instances, an IR’s data describes interfaces (types). There
may or may not be available instances that satisfy the interfaces stored in an
IR. The information in an IR is equivalent to the information in an IDL file
(or files), but it is represented in a way that is easier for clients to use at
runtime.

Clients that use interface repositories may also use the Dynamic Invocation
Interface (DII) described in “Using the Dynamic Invocation Interface”. Such
clients use an interface repository to learn about an unknown object’s
interface, and they use the DII to invoke methods on the object. However,
there is no necessary connection between an IR and the DII. For example,
someone could use the IR to write an “IDL browser” tool for developers—in
such a tool, dragging a method description from the browser to an editor
would insert a template method invocation into the developer’s source
code. In this example, the IR is used without the DII.

You create an interface repository with the VisiBroker-RT for C++ irep
program, which is the IR server (implementation). The irep program is a
development host ONLY program. You can update or populate an interface

336 VisiBroker-RT for C++ Developer ’s Guide

repository with the VisiBroker-RT for C++ idl2ir program (also a
development host ONLY program), or you can write your own IR client that
inspects an interface repository, updates it, or does both.

What does an interface repository contain?
An interface repository contains hierarchies of objects whose methods
divulge information about interfaces. Although interfaces are usually
thought of as describing objects, using a collection of objects to describe
interfaces makes sense in a CORBA environment because it requires no new
mechanism such as a database.

As an example of the kinds of objects an IR can contain, consider that IDL
files can contain IDL module definitions, and modules can contain interface
definitions, and interfaces can contain operation (method) definitions.
Correspondingly, an interface repository can contain ModuleDef objects
which can contain InterfaceDef objects, which can contain OperationDef
objects. Thus, from an IR ModuleDef, you can learn what InterfaceDefs it
contains. The reverse is also true—given an InterfaceDef you can learn
what ModuleDef it is contained in. All other IDL constructs—including
exceptions, attributes, and valuetypes—can be represented in an interface
repository.

An interface repository also contains typecodes. Typecodes are not explicitly
listed in IDL files, but are automatically derived from the types (long,
string, struct, and so on) that are defined or mentioned in IDL files.
Typecodes are used to encode and decode instances of the CORBA any
type—a generic type that stands for any type and is used with the dynamic
invocation interface.

How many interface repositories can you have?
Interface repositories are like other objects—you can create as many as you
like. There is no VisiBroker-RT for C++-mandated policy governing the
creation or use of IRs. You determine how interface repositories are
deployed and named at your site. You may, for example, adopt the
convention that a central interface repository contains the interfaces of all
“production” objects, and developers create their own IRs for testing.

Note
Interface repositories are writable and are not protected by access controls.
An erroneous or malicious client can corrupt an IR or obtain sensitive
information from it.

If you want to use the _get_interface_def() method defined for all
objects, you must have at least one interface repository server running so
the ORB can look up the interface in the IR. If no interface repository is
available, or if the IR that the ORB binds to has not been loaded with an
interface definition for the object, _get_interface_def() raises a
NO_IMPLEMENT exception.

Creating and viewing an interface repository with
irep

The VisiBroker-RT for C++ interface repository server is called irep, and is
located in the <install_location>/VisiBrokerRT60/ bin directory. The
irep program runs as a daemon.

VisiBroker-RT for C++ Developer ’s Guide 337

Creating an interface repository with irep
Use the irep program to create an interface repository and view its
contents. The usage syntax for the irep program is as follows:

irep <driverOptions> <otherOptions> IRepName [file.idl]

The syntax for creating an interface repository in the irep is described in
the following table:

The irep arguments are defined in the following table.

The following example shows how an interface repository named TestIR
can be created from a file called bank.idl:

irep myIrep bank.idl

Syntax Description
IRepName Specifies the instance name of the interface repository.

Clients can bind to this interface repository instance by
specifying this name.

file.idl Specifies the IDL file whose contents irep will load into
the interface repository it creates and will store the IR
contents into when it exits. If no file is specified, irep
creates an empty interface repository.

Argument Description

Driver options
-J<java option> Pass the option to JVM directly.
-VBJversion Print VBJ version
-VBJdebug Print VBJ debug information.
-VBJclasspath Specify classpath, precedes CLASSPATH env variable.
- VBJprop
<name>[=<value>

Pass name/value pair to JVM.

-VBJjavavm <jvmpath> Specify JVM path.
-VBJaddJar <jarfile> Append jarfile to the CLASSPATH before execing the JVM.

Other options
-D, -define foo[=bar] Define a preprocessor macro, optionally with value.
-I, -include <dir> Specify additional directory for #include searching.
-P,
-no_line_directives

Do not emit #line directives from preprocessor. The
default is off.

-H, -list_includes Display #included file names as they are encountered.
The default is off.

-C, -retain_comments Retain comments in preprocessed output. The default is
off.

-U, -undefine foo Undefine a preprocessor macro.
-[no_]idl_strict Strict OMG-standard interpretation of IDL source. The

default is off.
-[no_] warn_
unrecognized_pragmas

Warn if a #pragma is not recognized. The default is on.

-[no_]
back_compat_mapp ing

Use mapping that is compatible with VisiBroker 3.x.

-h, -help, -usage, -? Print this usage information.
-version Display software version numbers.
-install <service
name>

Install as a NT service.

-remove <service
name>

Deinstall this NT service.

338 VisiBroker-RT for C++ Developer ’s Guide

Viewing the contents of the interface
repository
You can view the contents of the interface repository with either the
VisiBroker-RT for C++ ir2idl utility, or the VisiBroker-RT for C++ Console
application. The syntax for the ir2idl utility is:

ir2idl [-irep IRname]

The syntax for viewing the contents of an interface repository in the irep is
described in the following table:

For more details on the ir2idl utility arguments see the section on “idl2ir”
in the chapter “Programmer tools” of the VisiBroker-RT for C++ Reference
Guide.

Updating an interface repository with idl2ir
You can update an interface repository with the VisiBroker-RT for C++
idl2ir utility, which is an IR client. The syntax for the idl2ir utility is:

idl2ir [arguments] idl_file_list

For more details on the idl2ir utility arguments see the section on “idl2ir”
in the VisiBroker-RT for C++ Reference Guide.

The following example shows how the TestIR interface repository would be
updated with definitions from the bank.idl file.

idl2ir -irep myIrep -replace bank.idl

Entries in an interface repository cannot be removed using the idl2ir or
irep utilities. To remove an item,

1 Exit or quit the irep program.

2 Edit the IDL file named in the irep command line.

3 Start irep again with the updated file.

Interface repositories have a simple transaction service. If the specified IDL
file fails to load, the interface repository rolls back its content to its previous
state. After loading the IDL, the interface repository commits its state to be
used in subsequent transactions. For any repository, there is a file
IRname.rollback in the home directory that contains the state of the last
uncommitted transaction.

Understanding the structure of the interface
repository

An interface repository organizes the objects it contains into a hierarchy
that corresponds to the way interfaces are defined in an IDL specification.
Some objects in the interface repository contain other objects, just as an
IDL module definition might contain several interface definitions. Consider
how the following example IDL file would translate to a hierarchy of objects
in an interface repository.

Syntax Description
-irep IRname Directs the program to bind to the interface repository

instance named IRname. If the option is not specified, it
binds to any interface repository returned by the Smart
Agent.

VisiBroker-RT for C++ Developer ’s Guide 339

IDL sample 23 bank.idl file
// bank.idl
module Bank {

interface Account {
float balance();

};
interface AccountManager {

Account open(in string name);
};

};

Figure 43 Interface repository object hierarchy for Bank.idl

OperationDef object contains references to additional data structures (not
interfaces) that hold the parameters and return type.

Identifying objects in the interface repository
The following table shows the objects that are provided to identify and
classify interface repository objects.

Table 29 Objects used to identify and classify interface repository objects

Types of objects that can be stored in the
interface repository
Table 30 summarizes the objects that can be contained in an interface
repository. Most of these objects correspond to IDL syntax elements. A

Item Description
name A character string that corresponds to the identifier

assigned in an IDL specification to a module, interface,
operation, and so forth. An identifier is not necessarily
unique.

id A character string that uniquely identifies an IRObject. A
RepositoryID contains three components, separated by
colon (:) delimiters. The first component is “IDL:” and the
last is a version number such as “:1.0”. The second
component is a sequence of identifiers separated by slash
(/) characters. The first identifier is typically a unique
prefix.

def_kind An enumeration that defines values which represent all
the possible types of interface repository objects.

340 VisiBroker-RT for C++ Developer ’s Guide

StructDef, for example, contains the same information as an IDL struct
declaration, an InterfaceDef contains the same information as an IDL
interface declaration, all the way down to a PrimitiveDef which contains
the same information as an IDL primitive (boolean, long, and so forth)
declaration.

Table 30 Objects that can be stored in the interface repository

Inherited interfaces
Three non-instantiatable (that is, abstract) IDL interfaces define common
methods that are inherited by many of the objects contained in an IR (see
Table 30). Table 31 summarizes these widely inherited interfaces.

Object type Description
Repository Represents the top-level module that contains all other

objects.
ModuleDef Represents an IDL module declaration that can contain

ModuleDefs, InterfaceDefs, ConstantDefs, AliasDefs,
ExceptionDefs, and the IR equivalents of other IDL
constructs that can be defined in IDL modules.

InterfaceDef Represents an IDL interface declaration and contain
OperationDefs, ExceptionDefs, AliasDefs,
ConstantDefs, and AttributeDefs.

AttributeDef Represents an IDL attribute declaration.
OperationDef Represents an IDL operation (method) declaration.

Defines an operation on an interface.

It includes a list of parameters required for this
operation, the return value, a list of exceptions that may
be raised by this operation, and a list of contexts.

ConstantDef Represents an IDL constant declaration.
ExceptionDef Represents an IDL exception declaration.
ValueDef Represents a valuetype definition containing lists of

constants, types, valuemembers, exceptions, operations,
and attributes.

ValueBoxDef Represents a simple boxed valuetype of another IDL
type.

ValueMemberDef Represents a member of the valuetype.
NativeDef Represents a native definition. Users can not define their

own natives.
StructDef Represents an IDL structure declaration.
UnionDef Represents an IDL union declaration.
EnumDef Represents an IDL enumeration declaration.
AliasDef Represents an IDL typedef declaration. Note that the IR

TypedefDef interface is a base interface that defines
common operations for StructDefs, UnionDefs, and
others.

StringDef Represents an IDL bounded string declaration.
SequenceDef Represents an IDL sequence declaration.
ArrayDef Represents an IDL array declaration.
PrimitiveDef Represents an IDL primitive declaration: null, void,

long, ushort, ulong, float, double, boolean, char,
octet, any, TypeCode, Principal, string, objref,
longlong, ulonglong, longdouble, wchar, wstring.

VisiBroker-RT for C++ Developer ’s Guide 341

Table 31 nterfaces inherited by many IR objects

Accessing an interface repository
Your client program can use an interface repository’s IDL interface to obtain
information about the objects it contains. Your client program can bind to
the Repository and then invoke the methods shown in Code sample 27.1 .
A complete description of this interface can be found in the VisiBroker-RT
for C++ Reference Guide.

Code example 154 Repository class
class CORBA {

class Repository : public Container {
...
CORBA::Contained_ptr lookup_id(const char * search_id);
CORBA::PrimitiveDef_ptr get_primitive(CORBA::PrimitiveKind

kind);
CORBA::StringDef_ptr create_string(CORBA::ULong bound);
CORBA::SequenceDef_ptr create_sequence(CORBA::ULong bound,

CORBA::IDLType_ptr element_type);
CORBA::ArrayDef_ptr create_array(CORBA::ULong length,

CORBA::IDLType_ptr element_type);
...
};
...

};

Note
A program that uses an interface repository must be compiled with the
-D_VIS_INCLUDE_IR flag.

Example programs
The Interface Repository example (<install_location>/VisiBrokerRT60/
examples/ir) has a simple AccountManager interface to create an account
and open/reopen an account. At the initialization time the AccountManager
implementation bootstraps the Interface Repository definition for the
managed Account interface with purpose to expose to the clients the
additional operation that has been already implemented by this particular
Account implementation. The clients now can access all known (described in
IDL) operations as they do this usually and, additionally, the can verify with
the Interface Repository the support for other operations and invoke them.
This example illustrates how we can manage the Interface Repository

Interface Inherited by Principal query methods
IRObject All IR objects including Repository def_kind()—Returns an IR object’s

definition kind, for example, module or
interface

Container IR objects that can contain other IR
objects, for example, module or
interface

lookup()—Looks up a contained object
by name
contents()—Lists the objects in a
Container

describe_contents()—Describes the
objects in a Container

Contained IR objects that can be contained in
other objects, that is, Containers

name()—Name of this object
defined_in()—Container that
contains an object
describe()—Describe an object
move () —Moves an object into another
container.

342 VisiBroker-RT for C++ Developer ’s Guide

definition objects and how we can do the remote object's introspection
using the Interface Repository.

Before this program can be tested, the following conditions should exist:

• OSAgent should be up and running.

• Interface repository should be started on the development host using
irep.

• Interface Repository should be loaded with an IDL file either by the
command line when you start the Interface Repository, or by using
idl2ir.

Code example 155 Looking up an interface’s operations and attributes in an IR
#ifndef _VIS_INCLUDE_IR
#define _VIS_INCLUDE_IR
#endif

#include <vxWorks.h>
#include "corba.h"
#include <math.h>
#include "bank_c.hh"

extern CORBA::ORB_var orb;

char* getDescription(CORBA::ORB_ptr orb, Bank::Account_ptr
account)
{

CORBA::Any_ptr resultAny;
CORBA::NamedValue_var result;
CORBA::NVList_var operation_list;
CORBA::Request_var request;
CORBA::OperationDef_var odef;

// Obtain operation description for the "describe" method of
the account
VISTRY {

// Obtain a reference to the Interface Repository
CORBA_Repository_var ir = CORBA_Repository::_narrow(

orb->resolve_initial_references("InterfaceRepository"));

// Obtain a reference to the Bank::Account interfaceDef
CORBA::InterfaceDef_var intf;
VISIFNOT_EXCEP

{
intf =

CORBA_InterfaceDef::_narrow(ir->lookup("::Bank::Account"));
if (intf == CORBA::InterfaceDef::_nil()) {

cout << "Account returned a nil interface definition. " <<
endl;

cout << "Be sure an Interface Repository is running and"
<< endl;

cout << "properly loaded." << endl;
return (char *)NULL;

}
}
VISEND_IFNOT_EXCEP
}

CORBA::Contained_var container;
VISIFNOT_EXCEP

container = intf->lookup("describe");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
{

odef = CORBA::OperationDef::_narrow(container);
if (odef == CORBA::OperationDef::_nil()) {

cout << "Can not find \"describe\" method in irep." <<

VisiBroker-RT for C++ Developer ’s Guide 343

endl;
cout << "Please check if Server application is started" <<

endl;
return (char *)NULL;

}
}
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
orb->create_operation_list(odef, operation_list.out());

VISEND_IFNOT_EXCEP
}

VISCATCH (CORBA::Exception, e) {
cout << "Error while obtaining operation list: " << e <<

endl;
return (char *)NULL;

}
VISEND_CATCH

// Create request that will be sent to the account object
VISTRY {

// Create placeholder for result
orb->create_named_value(result.out());
VISIFNOT_EXCEP

resultAny = result->value();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
resultAny->replace(odef->result(), NULL);

VISEND_IFNOT_EXCEP

// Create the request
VISIFNOT_EXCEP

account->_create_request(
CORBA::Context::_nil(), "describe", operation_list,

result,
request.out(), 0);

VISEND_IFNOT_EXCEP
}

VISCATCH (CORBA::Exception, e) {
cout << "Error while creating request: " << e << endl;
return (char *)NULL;

}
VISEND_CATCH

// Execute the request
VISTRY {

request->invoke();
CORBA::Environment_ptr env = request->env();
if (env->exception()) {

cout << "Exception occured: " << *(env->exception()) <<
endl;

return (char *)NULL;
}
else {

char *desc;
*resultAny >>= desc;
return CORBA::string_dup(desc);

}
}

VISCATCH (CORBA::Exception, e) {
cout << "Error while invoking request: " << e << endl;
return (char *)NULL;

}
VISEND_CATCH

return (char *)NULL;
}

344 VisiBroker-RT for C++ Developer ’s Guide

static void bank_client(char * in_name, char * new_balance);

void start_bank_client(char * in_name, char * new_balance)
{

char * taskName = "BANK_CLNT";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_client,
(int)in_name,(int)new_balance,0,0,0,0,0,0,0,0);

}

void bank_client(char * in_name, char *new_balance)
{

VISTRY {

// Get the manager Id PortableServer::ObjectId_var managerId
= PortableServer::string_to_ObjectId("BankManager");

// Locate an account manager Bank::AccountManager_var
manager;

VISIFNOT_EXCEP
manager = Bank::AccountManager::_bind("/bank_ir_poa",

managerId);
VISEND_IFNOT_EXCEP

// Request the account manager to open a named account
if (!in_name)
{

in_name="Jack B. Quick";
}
CORBA::String_var name = CORBA::string_dup(in_name);

Bank::Account_var account;
VISIFNOT_EXCEP

account = manager->open(name);
VISEND_IFNOT_EXCEP

// Get the balance of the account
CORBA::Float balance;
VISIFNOT_EXCEP

balance = account->balance();
VISEND_IFNOT_EXCEP

// Print out the balance
VISIFNOT_EXCEP

cout << "The old balance in " << name <<
"'s account is $" << balance << endl;

VISEND_IFNOT_EXCEP

// Calculate and set a new balance
VISIFNOT_EXCEP
{

balance = new_balance ? atof(new_balance) :
abs(rand()) % 111111 / 50.0;

account->balance(balance);
}
VISEND_IFNOT_EXCEP

// Get the balance description if it is possible and print
VISIFNOT_EXCEP
{

CORBA::String_var desc = getDescription(orb, account);
cout << "New account description:" << endl << desc <<

endl;
}
VISEND_IFNOT_EXCEP

VisiBroker-RT for C++ Developer ’s Guide 345

}
VISCATCH(CORBA::Exception, e) {

cout << "Exception occured: " << e << endl;
}
VISEND_CATCH

return;
}

...

346 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 347

Using the Dynamic
Invocation Interface
The developers of most client programs know the types of the CORBA objects
their code will invoke, and they include the compiler-generated stubs for these
types in their code. By contrast, developers of generic clients cannot know
what kinds of objects their users will want to invoke. Such developers use
the Dynamic Invocation Interface (DII) to write clients that can invoke any
method on any CORBA object from knowledge obtained at runtime.

NOTE

The library liborb_dyn.o is required when building a VisiBrokerRT52
application to support the use of Dynamic Invocation Interface.. For a
description of all the libraries provided by the VisiBroker-RT for C++
product, see <~XRef>“Step 6: Integrating VisiBroker-RT with Tornado/
VxWorks”.

The Dynamic Invocation Interface (DII) is not supported as part of the
“minimum CORBA” version of VisiBroker-RT for C++ (i.e. liborb_min.o).

The "minimum CORBA" OMG specification identifies dynamic functionality
which should be excluded from an ORB, in an effort to reduce the ORB
footprint.

For details, see the minimum CORBA specification document, OMG
document number orbos/ 98-08-04. This document is available for
download using the URL ftp://ftp.omg.org/pub/docs/orbos/98-08-04.pdf.

What is the Dynamic Invocation Interface?
The Dynamic Invocation Interface (DII) enables a client program to invoke
a method on a CORBA object whose type was unknown at the time the
client was written. The DII contrasts with the default static invocation,
which requires that the client source code include a compiler-generated
stub for each type of CORBA object that the client intends to invoke. In
other words, a client that uses static invocation declares in advance the
types of objects it will invoke. A client that uses the DII makes no such
declaration because its programmer doesn’t know what kinds of objects will
be invoked.

The advantage of the DII is flexibility—it can be used to write generic clients
that can invoke any object, including objects whose interfaces did not exist
when the client was compiled.

The DII has two disadvantages:

• It is more difficult to program (in essence, your code must do the work of
a stub).

• Invocations take longer because more work is done at runtime.

The DII is purely a client interface—static and dynamic invocations are
identical from an object implementation’s point of view.

You can use the DII to build clients like these:

• Bridges or adapters between script environments and CORBA objects. For
example, a script calls your bridge, passing object and method identifiers
and parameter values. Your bridge constructs and issues a dynamic

348 VisiBroker-RT for C++ Developer ’s Guide

request, receives the result, and returns it to the scripting environment.
Such a bridge could not use static invocation because its developer could
not know in advance what kinds of objects the script environment would
want to invoke.

• Generic object testers. For example, a client takes an arbitrary object
identifier, looks up its interface in the interface repository (see “Using
Interface Repositories”), and then invokes each of its methods with artificial
argument values. Again, this style of generic tester could not be built
with static invocation.

Note

 Clients must pass valid arguments in DII requests. Failure to do so can
produce unpredictable results, including server crashes. Although it is
possible to dynamically type-check parameter values with the interface
repository, it is expensive. For best performance, ensure that the code (for
example, script) that invokes a DII-using client can be trusted to pass valid
arguments.

Introducing the main DII concepts
The dynamic invocation interface is actually distributed among a handful of
CORBA interfaces. Furthermore, the DII frequently offers more than one
way to accomplish a task — the trade-off being programming simplicity
versus performance in special situations. As a result, DII is one of the more
difficult CORBA facilities to grasp. This section is a starting point, a high-
level description of the main ideas. Details, including code examples, are
provided later in the chapter.

To use the DII you need to understand these concepts, starting from the
most general:

• Request objects
• Any and Typecode objects
• Request sending options
• Reply receiving options

Using request objects
A Request object represents one invocation of one method on one CORBA
object. If you want to invoke two methods on the same CORBA object, or the
same method on two different objects, you need two Request objects. To
invoke a method you first need an object reference representing the CORBA
object—the target reference. Using the target reference, you create a
Request, populate it with arguments, send the Request, wait for the reply,
and obtain the result from the Request.

There are two ways to create a Request.

1 The simpler way is to invoke the target object’s _request() method,
which all CORBA objects inherit. This does not, in fact, invoke the target
object. You pass _request() the IDL name of the method you intend to
invoke in the Request, for example, “get_balance”. To add argument
values to a Request created with _request(), you invoke the Request’s
add_value() method for each argument required by the method you
intend to invoke. To pass one or more Context objects to the target, you
must add them to the Request with its ctx() method.

Although not intuitively obvious, you must also specify the type of the
Request’s result with its result() method. For performance reasons,
the messages exchanged between ORBs do not contain type information.

VisiBroker-RT for C++ Developer ’s Guide 349

By specifying a place holder result type in the Request, you give the ORB
the information it needs to properly extract the result from the reply
message sent by the target object. Similarly, if the method you are
invoking can raise user exceptions, you must add place holder exceptions
to the Request before sending it.

2 The more complicated way to create a Request object is to invoke the
target object’s _create_request() method, which, again, all CORBA
objects inherit. This method takes several arguments which populate the
new Request with arguments and specify the types of the result and user
exceptions, if any, that it may return. To use the _create_request()
method you must have already built the components that it takes as
arguments. The potential advantage of the _create_request() method
is performance. You can reuse the argument components in multiple
_create_request() calls if you invoke the same method on multiple
target objects.

Note
There are two overloaded forms of the _create_request() method—one
that includes ContextList and ExceptionList parameters, and one that
does not. If you want to pass one or more Context objects in your
invocation, and/or the method you intend to invoke can raise one or more
user exceptions, you must use the _create_request() method that has
the extra parameters.

Encapsulating arguments with the Any type
The target method’s arguments, result, and exceptions are each specified in
special objects called Anys. An Any is a generic object that encapsulates an
argument of any type. An Any can hold any type that can be described in
IDL. Specifying an argument to a Request as an Any allows a Request to
hold arbitrary argument types and values without making the compiler
complain of type mismatches. (The same is true of results and exceptions.)

An Any consists of a TypeCode and a value. A value is just a value, and a
TypeCode is an object that describes how to interpret the bits in the value
(that is, the value’s type). Simple TypeCode constants for simple IDL types,
such as long and Object, are built into the header files produced by the
idl2cpp compiler. TypeCodes for IDL constructed types, such as structs,
unions, and typedefs, have to be constructed. Such TypeCodes can be
recursive because the types they describe can be recursive. Consider a
struct consisting of a long and a string. The TypeCode for the struct
contains a TypeCode for the long and a TypeCode for the string. The
idl2cpp compiler will generate TypeCodes for the constructed types in an
IDL file if the compiler is invoked with the -type_code_info option.
However, if you are using the DII, you need to obtain TypeCodes at runtime.
You can get a TypeCode at runtime from an interface repository (see “Using
Interface Repositories”) or by asking the ORB to create one by invoking
ORB::create_struct_tc() or ORB::create_exception_tc().

If you use the _create_request() method, you need to put the Any-
encapsulated target method arguments in another special object called an
NVList. No matter how you create a Request, its result is encoded as an
NVList. Everything said about arguments in this paragraph applies to
results as well. NV stands for named value, and an NVList consists of a
count and number of items, each of which has a name, a value, and a flag.
The name is the argument name, the value is the Any encapsulating the
argument, and the flag denotes the argument’s IDL mode (for example, in
or out). The result of the Request is represented as a single named value.

350 VisiBroker-RT for C++ Developer ’s Guide

Options for sending requests
Once you’ve created and populated a Request with arguments, a result
type, and exception types, you send it to the target object. There are
several ways to send a Request:

• The simplest is to call the Request’s invoke() method, which blocks until
the reply message is received.

• More complex, but not blocking, is the Request’s send_deferred()
method. This is an alternative to using threads for parallelism. For many
operating systems the send_deferred() method is more economical
than spawning a thread.

• If your motivation for using the send_deferred() method is to invoke
multiple target objects in parallel, you can use the ORB object’s
send_multiple_requests_deferred() method instead. It takes a
sequence of Request objects.

• Use the Request’s send_oneway() method if, and only if, the target
method has been defined in IDL as oneway.

• You can invoke multiple oneway methods in parallel with the ORB’s
send_multiple_requests_oneway() method.

Options for receiving replies
If you send a Request by calling its invoke() method, there is only one way
to get the result—use the Request object’s env() method to test for an
exception, and if none, extract the NamedValue from the Request with its
result() method. If you used the send_oneway() method then there is no
result. If you used the send_deferred() method, you can periodically
check for completion by calling the Request’s poll_response() method
which returns a code indicating whether the reply has been received. If,
after polling for a while, you want to block waiting for completion of a
deferred send, use the Request’s get_response() method.

If you have sent Requests with the send_multiple_requests_deferred()
method, you can find out if a particular Request is complete by invoking
that Request’s get_response() method. To learn when any outstanding
Request is complete, use the ORB’s get_next_response() method. To do
the same thing without risking blocking, use the ORB’s
poll_next_response() method.

Steps for invoking object operations
dynamically
To summarize, here are the steps that a client follows when using the DII,

1 Make sure the -type_code_info option is passed to the idl compiler so
that type codes are generated for IDL interfaces and types. See the
VisiBroker-RT for C++ Reference Guide for a complete description of the
idl2cpp tool.

2 Obtain a generic reference to the target object you wish to use.

3 Create a Request object for the target object.

4 Initialize the request parameters and the result to be returned.

5 Invoke the request and wait for the results.

6 Retrieve the results.

VisiBroker-RT for C++ Developer ’s Guide 351

Location of example programs for using the DII
An example programs that illustrate the use of the DII is included in the
<install_location>/VisiBrokerRT52/examples/bank_dynamic directory of
the VisiBroker-RT for C++ distribution. This example program will be used
to illustrate DII concepts in this chapter.

Obtaining a generic object reference
When using the DII, a client program does not have to use the traditional
bind mechanism to obtain a reference to the target object, because the
class definition for the target object may not have been known to the client
at compile time. Code example 156 shows how your client program can use
the bind() method offered by the ORB object to bind to any object by
specifying its name. This method returns a generic CORBA::Object.

Code example 156 Obtaining a generic object reference
...
void bank_client(void)
{

VISTRY
{
// Get the manager Id
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Locate an account manager
CORBA::Object_var manager;

VISIFNOT_EXCEP
manager = orb->bind("IDL:Bank/AccountManager:1.0",

"/bank_agent_poa", managerId);
VISEND_IFNOT_EXCEP

...

Creating and initializing a request
When your client program invokes a method on an object, a Request object
is created to represent the method invocation. The Request object is
written, or marshalled, to a buffer and sent to the object implementation.
When your client program uses client stubs, this processing occurs
transparently. Client programs that wish to use the DII must create and send
the Request object themselves.

Note
There is no constructor for this class. The Object’s _request() method or
Object’s _create_request() method are used to create a Request object.

Request class
The following code sample shows the Request class. The target of the
request is set implicitly from the object reference used to create the
Request. The name of the operation must be specified when the Request is
created.

Code example 157 Request class
class Request {

public:
CORBA::Object_ptr target() const;
const char* operation() const;

352 VisiBroker-RT for C++ Developer ’s Guide

CORBA::NVList_ptr arguments();
CORBA::NamedValue_ptr result();
CORBA::Environment_ptr env();
void ctx(CORBA::Context_ptr ctx);
CORBA::Context_ptr ctx() const;
CORBA::Status invoke();
CORBA::Status send_oneway();
CORBA::Status send_deferred();
CORBA::Status get_response();
CORBA::Status poll_response();
...
};

};

Ways to create and initialize a DII request
Once you have issued a bind to an object and obtained an object reference,
you can use one of two methods for creating a Request object. The following
code sample shows the methods offered by the CORBA::Object class.

The paragraph above says two methods; the code example caption
says three. Which is correct?

Code example 158 Three methods for creating a Request object
class Object {

...
CORBA::Request_ptr _request(Identifier operation);
CORBA::Status _create_request(
CORBA::Context_ptr ctx, const char *operation,
CORBA::NVList_ptr arg_list,
CORBA::NamedValue_ptr result,
CORBA::Request_ptr request,
CORBA::Flags req_flags);

CORBA::Status _create_request(
CORBA::Context_ptr ctx, const char *operation,
CORBA::NVList_ptr arg_list,
CORBA::NamedValue_ptr result,
CORBA::ExceptionList_ptr eList,
CORBA::ContextList_ptr ctxList,
CORBA::Request_out request,
CORBA::Flags req_flags);
...

};

Using the create_request method
You can use the _create_request() method to create a Request object,
initialize the Context, the operation name, the argument list to be passed,
and the result. Optionally, you can set the ContextList for the request,
which corresponds to the attributes defined in the request’s IDL. The
request parameter points to the Request object that was created for this
operation.

Using the _request method
Code sample 28.4 shows the use of the _request() method to create a
Request object, specifying only the operation name. After creating a float
request, calls to its add_in_arg method add an input parameter Account
name and its result type is initialized to be of Object reference type via a
call to self_return_type method. After a call has been made, the return
value is extracted with the result’s call to the method result(). The same

VisiBroker-RT for C++ Developer ’s Guide 353

steps are repeated to invoke another method on an Account Manager
instance with the only difference being in-parameters and return types.

The req, an Any object is initialized with the desired account name and
added to the request’s argument list as an input argument. The last step in
initializing the request is to set the result value to receive a float.

Example of creating a Request object
A Request object maintains ownership of all memory associated with the
operation, the arguments, and the result so you should never attempt to
free these items.

Code example 159 Creating a request object
...
CORBA::NamedValue_ptr result;
CORBA::Any_ptr resultAny;
CORBA::Request_var req;
CORBA::Any customer;
...
VISTRY {

// Create request that will be sent to the manager object
CORBA::Request_var request;

VISIFNOT_EXCEP
request = manager->_request("open");

VISEND_IFNOT_EXCEP

// Create argument to request
CORBA::Any customer;
customer <<= (const char *) name;
CORBA::NVList_ptr arguments = request->arguments();
arguments->add_value("name", customer, CORBA::ARG_IN);

// Set result type
VISIFNOT_EXCEP

request->set_return_type(CORBA::_tc_Object);
VISEND_IFNOT_EXCEP

}
VISCATCH (CORBA::Exception, excep) {
...

Setting the context for the request
Though it is not used in the example program, the Context object can be
used to contain a list of properties, stored as NamedValue objects, that will
be passed to the object implementation as part of the Request. These
properties represent information that is automatically communicated to the
object implementation.

Code example 160 Context class
class Context {

public:
const char *context_name() const;
CORBA::Context_ptr parent();
CORBA::Status create_child(const char *name,

CORBA::Context_ptr&);
CORBA::Status set_one_value(const char *name, const

CORBA::Any&);
CORBA::Status set_values(CORBA::NVList_ptr);
CORBA::Status delete_values(const char *name);
CORBA::Status get_values(

const char *start_scope,
CORBA::Flags,
const char *name,
CORBA::NVList_ptr&) const;

354 VisiBroker-RT for C++ Developer ’s Guide

};

Setting arguments for the request
The arguments for a Request are represented with a NVList object, which
stores name-value pairs as NamedValue objects. You can use the
arguments() method to obtain a pointer to this list. This pointer can then
be used to set the names and values of each of the arguments.

Note

 Always initialize the arguments before sending a Request. Failure to do so
will result in marshalling errors and may even cause the server to abort.

Implementing a list of arguments with the NVList
This class implements a list of NamedValue objects that represent the
arguments for a method invocation. Methods are provided for adding,
removing, and querying the objects in the list.

Code example 161 NVList class
class NVList {

public:
...
CORBA::Long count() const;
CORBA::NamedValue_ptr add(Flags);
CORBA::NamedValue_ptr add_item(const char *name,

CORBA::Flags flags);
CORBA::NamedValue_ptr add_value(

const char *name,
const CORBA::Any *any,
CORBA::Flags flags);

CORBA::NamedValue_ptr add_item_consume(char *name,
CORBA::Flags flags);

CORBA::NamedValue_ptr add_value_consume(
char *name,
CORBA::Any *any,
CORBA::Flags flags);

CORBA::NamedValue_ptr item(CORBA::Long index);
CORBA::Status remove(CORBA::Long index);

...
};

Setting input and output arguments with the
NamedValue Class
This class implements a name-value pair that represents both input and
output arguments for a method invocation request. The NamedValue class is
also used to represent the result of a request that is returned to the client
program. The name property is simply a character string and the value
property is represented by an Any class.

Code example 162 NamedValue class
class NamedValue {

public:
const char *name() const;
CORBA::Any *value() const;
CORBA::Flags flags() const;

};

The following table describes the methods in the NamedValue class.

VisiBroker-RT for C++ Developer ’s Guide 355

Table 32 NamedValue methods

Passing type safely with the Any class
This class is used to hold an IDL-specified type so that it may be passed in a
type-safe manner. Objects of this class have a pointer to a TypeCode that
defines the contained object’s type and a pointer to the contained object.
Methods are provided to construct, copy, and release an object as well as
initialize and query the object’s value and type. In addition, streaming
operators are provided to read and write the object from and to a stream.

Code example 163 Any class
class Any {

public:
...
CORBA_TypeCode_ptr type();
void type(CORBA_TypeCode_ptr tc);
const void *value() const;
static CORBA::Any_ptr _nil();
static CORBA::Any_ptr _duplicate(CORBA::Any *ptr);
static void _release(CORBA::Any *ptr);
...

}

Representing argument or attribute types with
the TypeCode class
This class is used by the Interface Repository and the IDL compiler to
represent the type of arguments or attributes. TypeCode objects are also
used in a Request object to specify an argument’s type, in conjunction with
the Any class. TypeCode objects have a kind and parameter list property.

The following table shows the kinds and parameters for the TypeCode
objects.

Table 33 TypeCode kinds and parameters

Method Description
name() Returns a pointer to the name of the item that you can

then use to initialize the name.
value() Returns a pointer to an Any object representing the

item’s value that you can then use to initialize the value.
For more information, see “Passing type safely with the Any
class”.

flags() Indicates if this item is an input argument, an output
argument, or both an input and output argument. If the
item is both an input and output argument, you can
specify a flag indicating that the ORB should make a copy
of the argument and leave the caller’s memory intact.
Flags are:

ARG_IN
ARG_OUT
ARG_INOUT

Kind Parameter list
tk_abstract_interface interface_id, interface_name

tk_alias interface_id, alias_name, TypeCode

tk_any None
tk_array length, TypeCode
tk_boolean None
tk_char None

356 VisiBroker-RT for C++ Developer ’s Guide

Code example 164 TypeCode class
class _VISEXPORT CORBA_TypeCode {

public:
...
// For all CORBA_TypeCode kinds
CORBA::Boolean equal(CORBA_TypeCode_ptr tc) const;
CORBA::Boolean equivalent(CORBA_TypeCode_ptr tc) const;
CORBA_TypeCode_ptr get_compact_typecode() const;
CORBA::TCKind kind() const //...
// For tk_objref, tk_struct, tk_union, tk_enum, tk_alias and

tk_except
virtual const char* id() const; // raises(BadKind);
virtual const char *name() const; // raises(BadKind);
// For tk_struct, tk_union, tk_enum and tk_except
virtual CORBA::ULong member_count() const;

//raises((BadKind));
virtual const char *member_name(CORBA::ULong index) const;

// raises((BadKind, Bounds));
// For tk_struct, tk_union and tk_except
virtual CORBA_TypeCode_ptr member_type(CORBA::ULong index)
const;

// raises((BadKind, Bounds));
// For tk_union
virtual CORBA::Any_ptr member_label(CORBA::ULong index)
const;

// raises((BadKind, Bounds));
virtual CORBA_TypeCode_ptr discriminator_type() const;

tk_double None
tk_enum enum-name, enum-id1, enum-id2,... enum-idn

tk_except interface_id, exception_name, StructMembers

tk_fixed digits, scale

tk_float None
tk_long None
tk_longdouble None
tk_longlong None
tk_native id, name

tk_null None
tk_objref interface_id

tk_octet None
tk_Principal None
tk_sequence TypeCode, maxlen

tk_short None
tk_string maxlen-integer

tk_struct struct-name, {member1, TypeCode1},... {membern,
TypeCoden}

tk_TypeCode None
tk_ulong None
tk_ulonglong None
tk_union union-name, switch TypeCode,{label-value1, member-

name1, TypeCode1},... {labell-valuen, member-namen,
TypeCoden}

tk_ushort None
tk_value id, name, boxType

tk_value_box id, name, typeModifier, concreteBase, members

tk_void None
tk_wchar None
tk_wstring None

Kind Parameter list

VisiBroker-RT for C++ Developer ’s Guide 357

// raises((BadKind));
virtual CORBA::Long default_index() const;

// raises((BadKind));
// For tk_string, tk_sequence and tk_array
virtual CORBA::ULong length() const; // raises((BadKind));
// For tk_sequence, tk_array and tk_alias
virtual CORBA_TypeCode_ptr content_type() const;

// raises((BadKind));
// For tk_fixed
virtual CORBA::UShort fixed_digits() const;

// raises (BadKind)
virtual CORBA::Short fixed_scale() const;// raises (BadKind)
// for tk_value
virtual CORBA::Visibility member_visibility(CORBA::ULong
index) const;

// raises(BadKind, Bounds);
virtual CORBA::ValueModifier type_modifier() const;

// raises(BadKind);
virtual CORBA::TypeCode_ptr concrete_base_type() const;

// raises(BadKind);
};

Sending DII requests and receiving results
The Request class, shown in Code example 157, provides several methods for
sending a request, once it has been properly initialized.

Invoking a request
The simplest way to send a request is to call its invoke() method, which
sends the request and waits for a response before returning to your client
program. The return_value() method returns a pointer to an Any object
that represents the return value.

Code example 165 Sending a request with invoke()
...
VISTRY {

...
// Create request that will be sent to the account object
request = account->_request("balance");

VISIFNOT_EXCEP
// Set the result type
request->set_return_type(CORBA::_tc_float);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Execute the request to the account object
request->invoke();

VISEND_IFNOT_EXCEP

// Get the return balance
CORBA::Float balance;
VISIFNOT_EXCEP

CORBA::Any& balance_result = request->return_value();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
balance_result >>= balance;

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Print out the balance
cout << "The balance in " << name << "'s account is $"

<< balance << endl;
VISEND_IFNOT_EXCEP

358 VisiBroker-RT for C++ Developer ’s Guide

}VISCATCH (const CORBA::Exception, e)
{
cerr << e << endl;
return 1;
}
VISEND_CATCH

}
return 0;
...

Sending a deferred DII request with the
send_deferred() method
A non-blocking method, send_deferred(), is also provided for sending
operation requests. It allows your client to send the request and then use
the poll_response() method to determine when the response is available.
The get_response() method blocks until a response is received. The
following code shows how these methods are used.

Code example 166 Using the send_deferred() and poll_response() methods to send a
deferred DII request

...
VISTRY {

// Create request that will be sent to the manager object
CORBA::Request_var request = manager->_request("open");

// Create argument to request
CORBA::Any customer;
VISIFNOT_EXCEP

customer <<= (const char *) name;
VISEND_IFNOT_EXCEP

CORBA::NVList_ptr arguments;
VISIFNOT_EXCEP

arguments = request->arguments();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
arguments->add_value("name", customer, CORBA::ARG_IN);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Set result type
request->set_return_type(CORBA::_tc_Object);

VISEND_IFNOT_EXCEP

// Creation of a new account can take some time
// Execute the deffered request to the manager object
VISIFNOT_EXCEP

request->send_deferred();
VISEND_IFNOT_EXCEP VISIFNOT_EXCEP

VISPortable::vsleep(1);
while (!request->poll_response()) {
cout << "Waiting for response..." << endl;
VISPortable::vsleep(1); // Wait one second between polls
}

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
request->get_response();

VISEND_IFNOT_EXCEP

// Get the return value
CORBA::Object_var account;
CORBA::Any& open_result;
VISIFNOT_EXCEP

open_result = request->return_value();

VisiBroker-RT for C++ Developer ’s Guide 359

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
open_result >>= CORBA::Any::to_object(account.out());

VISEND_IFNOT_EXCEP
...
}

Sending an asynchronous DII request with the
send_oneway method
The send_oneway() method can be used to send an asynchronous request.
Oneway requests do not involve a response being returned to the client from
the object implementation.

Sending multiple requests
A sequence of DII Request objects can be created using array of Request
objects. A sequence of requests can be sent using the ORB methods
send_multiple_requests_oneway() or
send_multiple_requests_deferred(). If the sequence of requests is sent
as oneway requests, no response is expected from the server to any of the
requests.

Code example 167 shows how two requests are created and then used to
create a sequence of requests. The sequence is then sent using the
send_multiple_requests_deferred() method.

Code example 167 Sending multiple deferred requests with the
send_multiple_requests_deferred() method

...
// Create request to balance
VISTRY {

req1 = account->_request("balance");

CORBA::NVList_ptr arguments;
VISIFNOT_EXCEP

// Create argument to request
customer1 <<= (const char *) "Happy";
arguments= req1->arguments();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
arguments->add_value("customer", customer1, CORBA::ARG_IN);

VISEND_IFNOT_EXCEP

// Set result
...

} VISCATCH(const CORBA::Exception,excep)
{

cout << "Error while creating request" << endl;
cout << excep << endl;

}
VISEND_CATCH
// Create request2 to slowBalance

VISTRY{
req2 = account->_request("slowBalance");

CORBA::NVList_ptr arguments;
VISIFNOT_EXCEP

// Create argument to request
customer2 <<= (const char *) "Sleepy";
CORBA::NVList_ptr arguments = req2->arguments();

VISEND_IFNOT_EXCEP

360 VisiBroker-RT for C++ Developer ’s Guide

VISIFNOT_EXCEP
arguments->add_value("customer", customer2, CORBA::ARG_IN);

// Set result
VISEND_IFNOT_EXCEP

...

} VISCATCH(const CORBA::Exception,excep)
{

cout << "Error while creating request" << endl;
cout << excep << endl;

}
VISEND_CATCH

// Create request sequence
CORBA::Request_ptr reqs[2];
reqs[0] = (CORBA::Request*) req1;
reqs[1] = (CORBA::Request*) req2;
CORBA::RequestSeq reqseq((CORBA::ULong)2, 2,

(CORBA::Request_ptr *) reqs);

// Send the request
VISTRY {

orb->send_multiple_requests_deferred(reqseq);

cout << "Send multiple deferred calls are made..." << endl;
}VISCATCH(const CORBA::Exception,excep)
{
...

Receiving multiple requests
When a sequence of requests is sent using
send_multiple_requests_deferred(), the poll_next_response() and
get_next_response() methods are used to receive the response the
server sends for each request.

The ORB method poll_next_response() can be used to determine if a
response has been received from the server. This method returns true if
there is at least one response available. This method returns false if there
are no responses available.

The ORB method get_next_response() can be used to receive a response.
If no response is available, this method will block until a response is
received. If you do not wish your client program to block, use the
poll_next_response() method to first determine when a response is
available and then use the get_next_response() method to receive the
result.

Code example 168 ORB methods for sending multiple requests and receiving the
results

class CORBA {
class ORB {

...
typedef sequence <Request_ptr> RequestSeq;
void send_multiple_requests_oneway(const RequestSeq &);
void send_multiple_requests_deferred(const RequestSeq &);
Boolean poll_next_response();
Status get_next_response();

...
};

};

VisiBroker-RT for C++ Developer ’s Guide 361

Using the interface repository with the DII
The following example has built-in knowledge of a remote object’s type
(Account) and the name of one of its methods (balance()). An actual DII
application would get that information from an outside source—for example,
a user and then use the interface repository (IR) (see “Using Interface
Repositories”) to obtain the parameters of an operation.

The example:

• Binds to the Bank_Manager AccountManager object.

• Builds an operation list.

• Creates argument and result components. Note that the balance()
method does not return an exception.

• Invokes the Request, extracts and prints the result.

Code example 169 Using DII
#include <vxWorks.h>
#include "corba.h"
#include "vport.h"

extern CORBA::ORB_var orb;

static void bank_client(void);

void start_bank_client(void)
{

char * taskName = "CLIENT";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_client,
0,0,0,0,0,0,0,0,0,0);

}

void bank_client(void)
{

VISTRY
{

// Get the manager Id
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Locate an account manager
CORBA::Object_var manager;

VISIFNOT_EXCEP
manager = orb->bind("IDL:Bank/AccountManager:1.0",

"/ bank_agent_poa", managerId);
VISEND_IFNOT_EXCEP

// Set the account name
const char* name = "Jack B. Quick";

// Create request that will be sent to the manager object
CORBA::Request_var request;

VISIFNOT_EXCEP
request = manager->_request("open");

VISEND_IFNOT_EXCEP

// Create argument to request
CORBA::Any customer;

362 VisiBroker-RT for C++ Developer ’s Guide

customer <<= (const char *) name;
CORBA::NVList_ptr arguments = request->arguments();
arguments->add_value("name", customer, CORBA::ARG_IN);

// Set result type VISIFNOT_EXCEP
request->set_return_type(CORBA::_tc_Object);

VISEND_IFNOT_EXCEP

// Creation of a new account can take some time
// Execute the deffered request to the manager object
VISIFNOT_EXCEP

{
request->send_deferred();

VISPortable::vsleep(1);
}
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
{

while (!request->poll_response())
{

cout << "Waiting for response..." << endl;
VISPortable::vsleep(1); // Wait one second between polls

}
}
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
request->get_response();

VISEND_IFNOT_EXCEP

// Get the return value CORBA::Object_var account;

VISIFNOT_EXCEP
{

CORBA::Any& open_result = request->return_value();

open_result >>= CORBA::Any::to_object(account.out());
}
VISEND_IFNOT_EXCEP

// Create request that will be sent to the account object
VISIFNOT_EXCEP

request = account->_request("balance");
VISEND_IFNOT_EXCEP

// Set the result type
VISIFNOT_EXCEP

request->set_return_type(CORBA::_tc_float);
VISEND_IFNOT_EXCEP

// Execute the request to the account object
VISIFNOT_EXCEP

request->invoke();
VISEND_IFNOT_EXCEP

// Get the return balance
CORBA::Float balance;

VISIFNOT_EXCEP
CORBA::Any& balance_result = request->return_value();

// Print out the balance VISIFNOT_EXCEP
{

balance_result >>= balance;
cout << "The balance in " << name << "'s account is $"

<< balance << endl;
}
VISEND_IFNOT_EXCEP

VISEND_IFNOT_EXCEP

}

VisiBroker-RT for C++ Developer ’s Guide 363

VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
}
VISEND_CATCH

return;
}

364 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 365

Using the Dynamic Skeleton
Interface
This chapter describes how object servers can dynamically create object
implementations at run time to service client requests.

NOTE

The library liborb_dyn.o is required when building a VisiBrokerRT60
application to support the use of Dynamic Invocation Interface.. For a
description of all the libraries provided by the VisiBroker-RT for C++
product, see “Step 6: Integrating VisiBroker-RT with Tornado/VxWorks”.

The Dynamic Skeleton Interface (DSI) is not supported as part of the
“minimum CORBA” version of VisiBroker-RT for C++ (i.e. liborb_min.o).

The "minimum CORBA" OMG specification identifies dynamic functionality
which should be excluded from an ORB, in an effort to reduce the ORB
footprint.

For details, see the minimum CORBA specification document, OMG
document number orbos/ 98-08-04. This document is available for
download using the URL ftp://ftp.omg.org/pub/docs/orbos/98-08-04.pdf.

What is the Dynamic Skeleton Interface?
The Dynamic Skeleton Interface (DSI) provides a mechanism for creating
an object implementation that does not inherit from a generated skeleton
interface. Normally, an object implementation is derived from a skeleton
class generated by the idl2cpp compiler. The DSI allows an object to
register itself with the ORB, receive operation requests from a client,
process the requests, and return the results to the client without inheriting
from a skeleton class generated by the idl2cpp compiler.

Note
From the perspective of a client program, an object implemented with the
DSI behaves just like any other ORB object. Clients do not need to provide
any special handling to communicate with an object implementation that
uses the DSI.

The ORB presents client operation requests to a DSI object implementation
by calling the object’s invoke() method and passing it a ServerRequest
object. The object implementation is responsible for determining the
operation being requested, interpreting the arguments associated with the
request, invoking the appropriate internal method or methods to fulfill the
request, and returning the appropriate values.

Implementing objects with the DSI requires more manual programming
activity than using the normal language mapping provided by object
skeletons. Nevertheless, an object implemented with the DSI can be very
useful in providing inter-protocol bridging.

366 VisiBroker-RT for C++ Developer ’s Guide

Steps for creating object implementations
dynamically

To create object implementations dynamically using the DSI, follow these
steps:

1 Use the -type_code_info flag when compiling your IDL.

2 Define the macro _VIS_INCLUDE_DSI in your DSI server
implementation. Note this in the file <install_location>/VisiBrokerRT60/
examples/bank_dynamic/server.cpp.

3 Design your object implementation so that it is derived from the
PortableServer::DynamicImplementation abstract class instead of
deriving your object implementation from a skeleton class.

4 Declare and implement the invoke() method, which the ORB will use to
dispatch client requests to your object.

5 Register your object implementation (POA servant) with the POA
manager as the default servant.

Location of an example program for using the
DSI
An example program that illustrates the use of the DSI is included in the
<install_location>/VisiBrokerRT60/examples/basic/bank_dynamic
directory of the VisiBroker-RT for C++ distribution. This example is used to
illustrate DSI concepts in this chapter. The Bank.idl file, shown in IDL
sample 24, illustrates the interfaces implemented in this example.

IDL sample 24 Bank.idl file used in the DSI example
// Bank.idl module Bank {

interface Account {
float balance();

};
interface AccountManager {

Account open(in string name);
};

};

Extending the DynamicImplementation class
To use the DSI, object implementations should be derived from the
DynamicImplementation base class shown below. This class offers several
constructors and the invoke() method, which you must implement.

Code example 170 DynamicImplementation base class
class PortableServer::DynamicImplementation : public virtual
PortableServer::ServantBase {

public:
virtual void invoke(PortableServer::ServerRequest_ptr

request) = 0;
...
};

VisiBroker-RT for C++ Developer ’s Guide 367

Example of designing objects for dynamic
requests
Code example 171 shows the declaration of the AccountImpl class that is to
be implemented with the DSI. It is derived from the
DynamicImplementation class, which declares the invoke() method. The
ORB will call the invoke() method to pass client operation requests to the
implementation in the form of ServerRequest objects.

Also note the Account class constructor and _primary_interface()
function are shown in Code example 171.

Code example 171 AccountImpl class from the dynamic example
// Implementation of Account default servant
class AccountImpl : public PortableServer::DynamicImplementation
{

public:
AccountImpl(PortableServer::Current_ptr current,

PortableServer::POA_ptr poa) :
_poa_current(PortableServer::Current::_duplicate(current)),
_poa(poa)

{}

CORBA::Object_ptr get(const char *name)
{

CORBA::Float balance;

// Check if account exists
if (!_registry.get(name, balance))
{

// simulate delay while creating new account
VISPortable::vsleep(3);

// Make up the account's balance, between 0 and $1000
balance = abs(rand()) % 100000 / 100.0;
// Print out the new account
cout << "Created " << name << "'s account: " << balance <<
endl

_registry.put(name, balance);
}

// Return object reference
PortableServer::ObjectId_var accountId =

PortableServer::string_to_ObjectId(name);

return _poa->create_reference_with_id(accountId, "IDL:Bank/
Account:1.0");

}

private:
AccountRegistry _registry;
PortableServer::POA_ptr _poa;
PortableServer::Current_var _poa_current;

CORBA::RepositoryId _primary_interface(
const PortableServer::ObjectId& oid,

PortableServer::POA_ptr poa)
{
return CORBA::string_dup((const char *)"IDL:Bank/

Account:1.0");
};

void invoke(CORBA::ServerRequest_ptr request)
{

// Get the account name from the object id
PortableServer::ObjectId_var oid =

_poa_current->get_object_id();

368 VisiBroker-RT for C++ Developer ’s Guide

CORBA::String_var name;
VISTRY
{

name = PortableServer::ObjectId_to_string(oid);
}
VISCATCH (CORBA::Exception, e)
{

VISTHROW(CORBA::OBJECT_NOT_EXIST());
}
VISEND_CATCH

// Ensure that the operation name is correct
if (strcmp(request->operation(), "balance") != 0)
{

VISTHROW(CORBA::BAD_OPERATION());
}

// Find out balance and fill out the result
CORBA::NVList_ptr params = new CORBA::NVList(0);

request->arguments(params);

CORBA::Float balance;
if (!_registry.get(name, balance))

VISTHROW(CORBA::OBJECT_NOT_EXIST());

CORBA::Any result; result <<= balance;
request->set_result(result);

cout << "Checked " << name << "'s balance: " << balance <<
endl;
}

};

The code below shows the implementation of the AccountManagerImpl
class that needs to be implemented with the DSI. It is also derived from the
DynamicImplementation class, which declares the invoke() method. The
ORB will call the invoke() method to pass client operation requests to the
implementation in the form of ServerRequest objects.

Code example 172 AccountManagerImpl class from the dynamic example
// Implementation of manager default servant
class AccountManagerImpl : public
PortableServer::DynamicImplementation
{
public:

AccountManagerImpl(AccountImpl* accounts) { _accounts =
accounts; }

CORBA::Object_ptr open(const char* name)
{

return _accounts->get(name);
}

private:
AccountImpl* _accounts;

CORBA::RepositoryId _primary_interface(const
PortableServer::ObjectId& oid, PortableServer::POA_ptr poa)

{
return CORBA::string_dup((const char *)"IDL:Bank/

AccountManager:1.0");
};

void invoke(CORBA::ServerRequest_ptr request)
{

// Ensure that the operation name is correct
if (strcmp(request->operation(), "open") != 0)

VISTHROW(CORBA::BAD_OPERATION());

// Fetch the input parameter
char *name = NULL;

VisiBroker-RT for C++ Developer ’s Guide 369

VISTRY
{

CORBA::NVList_ptr params = new CORBA::NVList(1);
CORBA::Any any;
any <<= (const char*) "";
params->add_value("name", any, CORBA::ARG_IN);
request->arguments(params);
*(params->item(0)->value()) >>= name;

}
VISCATCH (CORBA::Exception, e)
{

VISTHROW(CORBA::BAD_PARAM());
}
VISEND_CATCH

// Invoke the actual implementation and fill out the result
CORBA::Object_var account = open(name);
CORBA::Any result;
result <<= account;
request->set_result(result);

}
};

Specifying repository ids
1 The _primary_interface() method should be implemented to return

supported repository identifiers. To determine the correct repository
identifier to specify, start with the IDL interface name of an object and
use the following steps:

2 Replace all non-leading instances of the delimiter scope resolution
operator (::) with a slash (/).

3 Add “IDL:” to the beginning of the string.

4 Add “:1.0” to the end of the string.

For example, Code example 173 shows an IDL interface name and Code
example 174 shows the resulting repository identifier string.

Code example 173 IDL interface name
Bank::AccountManager

Code example 174 Resulting repository identifier
IDL:Bank/AccountManager:1.0

Looking at the ServerRequest class
A ServerRequest object is passed as a parameter to an object
implementation’s invoke() method. The ServerRequest object represents
the operation request and provides methods for obtaining the name of the
requested operation, the parameter list, and the context. It also provides
methods for setting the result to be returned to the caller and for reflecting
exceptions.

Code example 175 ServerRequest base class
class CORBA::ServerRequest {

public:
const char* op_name() const { return _operation; }
void params(CORBA::NVList_ptr);
void result(CORBA::Any_ptr);
void exception(CORBA::Any_ptr exception);
...
CORBA::Context_ptr ctx() {

...
}

370 VisiBroker-RT for C++ Developer ’s Guide

// POA spec methods
const char *operation() const { return _operation; }
void arguments(CORBA::NVList_ptr param) { params(param); }
void set_result(const CORBA::Any& a) { result(new

CORBA::Any(a));
}
void set_exception(const CORBA::Any& a) {

exception(new CORBA::Any(a));
}

};

All arguments passed into the arguments(), set_result(), or
set_exception() methods are thereafter owned by the ORB. The memory
for these arguments will be released by the ORB—you should not release
them.

Note
The following methods have been deprecated:
• op_name
• params
• result
• exception

Implementing the Account object
The Account interface in declares only one method, so the processing done
by the AccountImpl class’ invoke() method is fairly straightforward.

The invoke() method first checks to see if the requested operation has the
name “balance.” If the name does not match, a BAD_OPERATION exception is
raised. If the Account object were to offer more than one method, the
invoke() method would need to check for all possible operation names and
use the appropriate internal methods to process the operation request.

Since the balance() method does not accept any parameters, there is no
parameter list associated with its operation request. The balance()
method is simply invoked and the result is packaged in an Any object that is
returned to the caller, using the ServerRequest object’s set_result()
method.

Implementing the AccountManager object
Like the Account object, the AccountManager interface also declares one
method. However, the AccountManagerImpl object’s open() method does
accept an account name parameter. This makes the processing done by the
invoke() method a little more complicated. Code example 172 shows the
implementation of the AccountManagerImpl object’s invoke() method.

The method first checks to see that the requested operation has the name
“open.” If the name does not match, a BAD_OPERATION exception is raised.
If the AccountManager object were to offer more than one method, its
invoke() method would need to check for all possible operation names and
use the appropriate internal methods to process the operation request.

Processing input parameters
Here are the steps the AccountManagerImpl object’s invoke() method uses
to process the operation request’s input parameters.

1 Create an NVList to hold the parameter list for the operation.

VisiBroker-RT for C++ Developer ’s Guide 371

2 Create Any objects for each expected parameter and add them to the
NVList, setting their TypeCode and parameter type (ARG_IN, ARG_OUT, or
ARG_INOUT).

3 Invoke the ServerRequest object’s arguments() method, passing the
NVList, to update the values for all the parameters in the list.

The open() method expects an account name parameter; therefore, an NVList
object is created to hold the parameters contained in the ServerRequest. The
NVList class implements a parameter list containing one or more NamedValue
objects. The NVList and NamedValue classes are described in “Using the Dynamic
Invocation Interface”.

An Any object is created to hold the account name. This Any is then added to
NVList with the argument’s name set to “name” and the parameter type set
to ARG_IN.

Once the NVList has been initialized, the ServerRequest object’s
arguments()method is invoked to obtain the values of all of the parameters
in the list.

Note
After invoking the arguments() method, the NVList will be owned by the
ORB. This means that if an object implementation modifies an ARG_INOUT
parameter in the NVList, the change will automatically be apparent to the
ORB. This NVList should not be released by the caller.

An alternative to constructing the NVList for the input arguments is to use
the ORB object’s create_operation_list() method. This method accepts
an OperationDef and returns an NVList object, completely initialized with
all the necessary Any objects. The appropriate OperationDef object may be
obtained from the interface repository, described in “Using Interface
Repositories”.

Setting the return value
After invoking the ServerRequest object’s arguments() method, the value
of the name parameter can be extracted and used to create a new Account
object. An Any object is created to hold the newly created Account object,
which is returned to the caller by invoking the ServerRequest object’s
set_result() method.

Server implementation
The implementation of the main routine, shown below, is almost identical to
the original example introduced in “Developing an Example Application with
VisiBroker-RT for C++”.

Code example 176 Server implementation
void bank_server()
{

PortableServer::POA_var rootPOA;

VISTRY
{

//get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

// Get the POA Manager

372 VisiBroker-RT for C++ Developer ’s Guide

VISIFNOT_EXCEP
PortableServer::POAManager_var poaManager =

rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

// Create the account POA with the right policies
CORBA::PolicyList accountPolicies;

accountPolicies.length(3);

VISIFNOT_EXCEP
accountPolicies[(CORBA::ULong)0] = rootPOA->

create_servant_retention_policy(PortableServer::NON_RETAIN
);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
accountPolicies[(CORBA::ULong)1] =

rootPOA->create_request_processing_policy(

PortableServer::USE_DEFAULT_SERVANT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
accountPolicies[(CORBA::ULong)2] =

rootPOA->create_id_uniqueness_policy(
PortableServer::MULTIPLE_ID); VISEND_IFNOT_EXCEP

PortableServer::POA_var accountPOA;

VISIFNOT_EXCEP
accountPOA = rootPOA->create_POA("bank_account_poa",

poaManager, accountPolicies);
VISEND_IFNOT_EXCEP

// Create the account default servant
PortableServer::Current_var current;

VISIFNOT_EXCEP
current = PortableServer::Current::_instance();

VISEND_IFNOT_EXCEP

AccountImpl *accountServant = new AccountImpl(current,
accountPOA);

VISIFNOT_EXCEP
accountPOA->set_servant(accountServant);

VISEND_IFNOT_EXCEP

PortableServer::POA_var managerPOA;

VISIFNOT_EXCEP
{

// Create the manager POA with the right policies
CORBA::PolicyList managerPolicies;
managerPolicies.length(3);

VISIFNOT_EXCEP
managerPolicies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
managerPolicies[(CORBA::ULong)1] =

rootPOA->create_request_processing_policy
(PortableServer::USE_DEFAULT_SERVANT);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
managerPolicies[(CORBA::ULong)2] = rootPOA->

create_id_uniqueness_policy(PortableServer::MULTIPLE_ID);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP

VisiBroker-RT for C++ Developer ’s Guide 373

managerPOA = rootPOA->create_POA("bank_agent_poa",
poaManager, managerPolicies);

VISEND_IFNOT_EXCEP
}
VISEND_IFNOT_EXCEP

// Create the manager default servant
AccountManagerImpl *managerServant = new

AccountManagerImpl(accountServant);

VISIFNOT_EXCEP
managerPOA->set_servant(managerServant);

VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poaManager->activate();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << "AccountManager is ready" << endl;

VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
return 0;

}
VISEND_CATCH

return;
}

The DSI implementation is instantiated as a default servant and the POA
should be created with the support of corresponding policies. For more
information see “Using POAs”.

374 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 375

Using the Dynamically
Managed Types
This chapter describes the DynAny feature of VisiBroker-RT for C++, which
allows you to construct and interpret data types at runtime.

NOTE

The library liborb_dyn.o is required when building a VisiBrokerRT60
application to support the use of Dynamic Invocation Interface.. For a
description of all the libraries provided by the VisiBroker-RT for C++
product, see <~XRef>“Step 6: Integrating VisiBroker-RT with Tornado/
VxWorks”.

The DynAny interface is not supported as part of the “minimum CORBA”
version of VisiBroker-RT for C++ (i.e. liborb_min.o).

The "minimum CORBA" OMG specification identifies dynamic functionality
which should be excluded from an ORB, in an effort to reduce the ORB
footprint.

For details, see the minimum CORBA specification document, OMG
document number orbos/ 98-08-04. This document is available for
download using the URL ftp://ftp.omg.org/pub/docs/orbos/98-08-04.pdf.

Overview
The DynAny interface provides a way to dynamically create basic and
constructed data types at runtime. It also allows information to be
interpreted and extracted from an Any object, even if the type it contains
was not known to the server at compile-time. The use of the DynAny
interface enables you to build powerful client and server applications that
create and interpret data types at runtime.

Example client and server applications that illustrate the use of DynAny are
included as part of the VisiBroker distribution. The examples are found in
<install_location>/VisiBrokerRT60/examples/dynany directory. These
example programs will be used to illustrate DynAny concepts in this chapter.

DynAny types
A DynAny object has an associated value that may either be a basic data
type (such as boolean, int, or float) or a constructed data type. The
DynAny interface, described in detail in the VisiBroker-RT for C++ Reference
Guide, provides methods for determining the type of the contained data as
well as for setting and extracting the value of primitive data types.

Constructed data types are represented by the following interfaces, which
are all derived from DynAny. Each of these interfaces provides its own set of
methods that are appropriate for setting and extracting the values it
contains.

376 VisiBroker-RT for C++ Developer ’s Guide

Table 34 Interfaces derived from DynAny that represent constructed data types

Usage restrictions
A DynAny object may only be used locally by the ORB instance which
created it. Any attempt to use a DynAny object as a parameter on an
operation request for a bound object or to externalize it using the
ORB::object_to_string method will cause a MARSHAL exception to be
raised.

Furthermore, any attempt to use a DynAny object as a parameter on DII
request will cause a NO_IMPLEMENT exception to be raised.

This version does not support the long double and fixed types as specified in
CORBA 2.3.

Creating a DynAny
A DynAny object is created by invoking an operation on a DynAnyFactory
object. First obtain a reference to the DynAnyFactory object, and then use
that object to create the new DynAny object.

CORBA::Object_var obj =
orb->resolve_initial_references("DynAnyFactory");
DynamicAny::DynAnyFactory_var factory =
DynamicAny::DynAnyFactory::_narrow(obj);

// Create Dynamic struct

DynamicAny::DynAny_var dynany =
factory->create_dyn_any_from_type_code(

Printer::_tc_StructType);

DynamicAny::DynStruct_var info =
DynamicAny::DynStruct::_narrow(dynany);

info->set_members(seq);

CORBA::Any_var any = info->to_any();

Initializing and accessing the value in a
DynAny
The DynAny::insert_<type> methods allow you to initialize a DynAny object
with a variety of basic data types, where <type> is boolean, octet, char,
and so on. Any attempt to insert a type that does not match the TypeCode
defined for the DynAny will cause an TypeMismatch exception to be raised.

Interface TypeCode Description
DynArray _tk_array An array of values with the same data

type that has a fixed number of
elements.

DynEnum _tk_enum A single enumeration value.
DynFixed _tk_fixed Not supported.
DynSequence _tk_sequence A sequence of values with the same data

type. The number of elements may be
increased or decreased.

DynStruct _tk_struct A structure.
DynUnion _tk_union A union.
DynValue _tk_value Not supported.

VisiBroker-RT for C++ Developer ’s Guide 377

The DynAny::get_<type> methods allow you to access the value contained
in a DynAny object, where <type> is boolean, octet, char, and so on. Any
attempt to access a value from a DynAny component which does not match
the TypeCode defined for the DynAny will cause a TypeMismatch exception to
be raised.

The DynAny interface also provide methods for copying, assigning, and
converting to or from an Any object. The sample programs, described later
in this chapter, provide examples of how to use some of these methods. The
VisiBroker-RT for C++ Reference Guide provides a complete description of
these methods.

Constructed data types
The following types are derived from the DynAny interface and are used to
represent constructed data types. These interfaces, and the methods they
offer, all described in the VisiBroker-RT for C++ Reference Guide.

Traversing the components in a constructed data type
Several of the interfaces that are derived from DynAny actually contain
multiple components. The DynAny interface provides methods that allow you
to iterate through these components. The DynAny-derived objects that
contain multiple components maintain a pointer to the current component.

DynEnum
This interface represents a single enumeration constant. Methods are
provided for setting and obtaining the value as a string or as an integral
value.

DynStruct
This interface represents a dynamically constructed struct type. The
members of the structure can be retrieved or set using a sequence of
NameValuePair objects. Each NameValuePair object contains the member’s
name and an Any containing the member’s Type and value.

You may use the rewind, next, current_component, and seek methods to
traverse the members in the structure. Methods are provided for setting
and obtaining the structure’s members.

DynAny method Description
rewind Resents the current component pointer to the first

component. Has no effect if the object contains only one
component.

next Advances the pointer to the next component. If there are
no more components or if the object contains only one
component, false is returned.

current_component Returns a DynAny object, which may be narrowed to the
appropriate type, based on the component’s TypeCode.

seek Sets the current component pointer to the component
with the specified, zero-based index. Returns false if
there is no component at the specified index. Sets the
current component pointer to –1 (no component) if
specified with a negative index.

378 VisiBroker-RT for C++ Developer ’s Guide

DynUnion
This interface represents a union and contains two components. The first
component represents the discriminator and the second represents the
member value.

You may use the rewind, next, current_component, and seek methods to
traverse the components. Methods are provided for setting and obtaining
the union’s discriminator and member value.

DynSequence and DynArray
A DynSequence or DynArray represents a sequence of basic or constructed
data types without the need of generating a separate DynAny object for each
component in the sequence or array. The number of components in a
DynSequence may be changed, while the number of components in a
DynArray is fixed.

You may use the rewind, next, current_component, and seek methods to
traverse the members in a DynArray or DynSequence.

Example IDL
The following code sample shows the IDL used in the example client and
server applications. The StructType structure contains two basic data
types and an enumeration value. The PrinterManager interface is used to
display the contents of an Any without any static information about the data
type it contains.

Code example 177 IDL for the DynAny example clients
// Printer.idl

module Printer {
enum EnumType {first, second, third, fourth};
struct StructType {

string str;
EnumType e;
float fl;

};
interface PrinterManager {

void printAny(in any info);
oneway void shutdown();
};

};

Example client application
Code example 178 shows a client application that can be found in the dynany
directory of the examples directory in the VisiBroker-RT for C++
distribution. The path is <install_location>/VisiBrokerRT60/examples/
dynany. The client application uses the DynStruct interface to dynamically
create a StructType structure.

The DynStruct interface uses a sequence of NameValuePair objects to
represent the structure members and their corresponding values. Each
name-value pair consists of a string containing the structure member’s
name and an Any object containing the structure member’s value.

After initializing the ORB in the usual manner and binding to an
PrintManager object, the client performs these steps:

VisiBroker-RT for C++ Developer ’s Guide 379

1 Create an empty DynStruct with the appropriate type.

2 Create a sequence of NameValuePair objects that will contain the
structure members.

3 Create and initialize Any objects for each of the structure member’s
values.

4 Initialize each NameValuePair with the appropriate member name and
value.

5 Initialize the DynStruct object with the NameValuePair sequence.

6 Invoke the PrinterManager::printAny method, passing the DynStruct
converted to a regular Any.

Note
You must use the DynAny::to_any method to convert a DynAny object, or
one of its derived types, to an Any before passing it as a parameter on an
operation request.

Code example 178 Example client application that uses DynStruct
void client(void)
{

VISTRY
{

CORBA::Object_var obj =
orb->resolve_initial_references("DynAnyFactory");

DynamicAny::DynAnyFactory_var factory;

VISIFNOT_EXCEP
factory = DynamicAny::DynAnyFactory::_narrow(obj);

VISEND_IFNOT_EXCEP

DynamicAny::NameValuePairSeq seq(3);
seq.length(3);

CORBA::Any strAny, enumAny, floatAny;

strAny <<= CORBA::Any::from_string((const char*)"String", 0,
0UL);

enumAny <<= Printer::second;
floatAny <<= (CORBA::Float)864.50;

CORBA::NameValuePair nvpairs[3];

nvpairs[0].id = CORBA::string_dup("str");
nvpairs[0].value = strAny;

nvpairs[1].id = CORBA::string_dup("e");
nvpairs[1].value = enumAny;

nvpairs[2].id = CORBA::string_dup("fl");
nvpairs[2].value = floatAny;

seq[0] = nvpairs[0];
seq[1] = nvpairs[1];
seq[2] = nvpairs[2];

// Create Dynamic struct
DynamicAny::DynAny_var dynany;

VISIFNOT_EXCEP
dynany = factory->

create_dyn_any_from_type_code(Printer::_tc_StructType);
VISEND_IFNOT_EXCEP

DynamicAny::DynStruct_var info;

VISIFNOT_EXCEP

380 VisiBroker-RT for C++ Developer ’s Guide

info = DynamicAny::DynStruct::_narrow(dynany);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
info->set_members(seq);

VISEND_IFNOT_EXCEP

CORBA::Any_var any;

VISIFNOT_EXCEP
any = info->to_any();

VISEND_IFNOT_EXCEP

// now bind to the server and pass the constructed CORBA::Any

// Get the manager Id
PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
managerId =

PortableServer::string_to_ObjectId("PrinterManager");
VISEND_IFNOT_EXCEP

// Locate an account manager. Give the full POA name and the
servant ID.

Printer::PrinterManager_var manager;

VISIFNOT_EXCEP
manager = Printer::PrinterManager::_bind("/serverPoa",

managerId);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
manager->printAny(*any);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
manager->shutdown();

VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{

cerr << "Caught Exception" << e << endl;
}
VISEND_CATCH

return;
}}

Example server application
The following code sample shows a server application that can be found in
the dynany directory of the examples directory in the VisiBroker-RT for C++
distribution. The server application performs these steps.

1 Initialize the ORB.

2 Create the policies for the POA.

3 Create a PrintManager object.

4 Export the PrintManager object.

5 Print a message and wait for incoming operation requests.

Code example 179 Example server application
...
void server()
{

VisiBroker-RT for C++ Developer ’s Guide 381

PortableServer::POA_var rootPOA;

VISTRY
{

// get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::Boolean Verbose = 0UL;

CORBA::PolicyList policies;
policies.length(1);
VISIFNOT_EXCEP

policies[(CORBA::ULong)0] = rootPOA->
create_lifespan_policy(PortableServer::PERSISTENT);

VISEND_IFNOT_EXCEP

PortableServer::POAManager_var poa_manager;

VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

// Create serverPOA with the right policies
PortableServer::POA_var serverPOA;

VISIFNOT_EXCEP
serverPOA = rootPOA->create_POA("serverPoa", poa_manager,

policies);
VISEND_IFNOT_EXCEP

// Resolve Dynamic Any Factory CORBA::Object_var fact_obj;

VISIFNOT_EXCEP
fact_obj =

orb->resolve_initial_references("DynAnyFactory");
VISEND_IFNOT_EXCEP

DynamicAny::DynAnyFactory_var factory;

VISIFNOT_EXCEP
factory = DynamicAny::DynAnyFactory::_narrow(fact_obj);

VISEND_IFNOT_EXCEP

PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
managerId =

PortableServer::string_to_ObjectId("PrinterManager");
VISEND_IFNOT_EXCEP

// Create the printer manager object.
PrinterManagerImpl *manager;

VISIFNOT_EXCEP
manager = new PrinterManagerImpl(orb, factory, serverPOA,

managerId);
VISEND_IFNOT_EXCEP

// Export the newly create object.
VISIFNOT_EXCEP

serverPOA->activate_object_with_id(managerId,manager);
VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

382 VisiBroker-RT for C++ Developer ’s Guide

CORBA::Object_var reference;
VISIFNOT_EXCEP

reference = serverPOA->servant_to_reference(manager);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << reference << " is ready" << endl;

VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH

return;
}

The following code sample shows how the PrinterManager implementation
follows these steps in using a DynAny to process the Any object, without
any compile-time knowledge of the type the Any contains.

1 Create a DynAny object, initializing it with the received Any.

2 Perform a switch on the DynAny object’s type.

3 If the DynAny contains a basic data type, simply print out the value.

4 If the DynAny contains an Any type, create a DynAny for it, determine it’s
contents, and then print out the value.

5 If the DynAny contains an enum, create a DynEnum for it and then print out
the string value.

6 If the DynAny contains a union, create a DynUnion for it and then print out
the union’s discriminator and the member.

7 If the DynAny contains a struct, array, or sequence, traverse through the
contained components and print out each value.

Code example 180 The PrinterManager Implementation
#define _VIS_VXWORKS_LONG_LONG_IOSTREAMS

// PrinterManager Implementation
class PrinterManagerImpl : public POA_Printer::PrinterManager
{

public:
PrinterManagerImpl(CORBA::ORB_ptr orb,

DynamicAny::DynAnyFactory_ptr dynfactory,
PortableServer::POA_ptr poa,
PortableServer::ObjectId_ptr oid)

: _orb(orb)
{

_factory =
DynamicAny::DynAnyFactory::_duplicate(dynfactory);

_poa = PortableServer::POA::_duplicate(poa);
_oid = PortableServer::ObjectId::_duplicate(oid);

}

void printAny(const CORBA::Any& info)
{

VISTRY
{

// Create a DynAny object
DynamicAny::DynAny_var dynAny =

_factory->create_dyn_any(info);
display(dynAny);

}
VISCATCH (CORBA::Exception, e)
{

VisiBroker-RT for C++ Developer ’s Guide 383

cout << "Unable to create Dynamic Any from factory" <<
endl;

}
VISEND_CATCH

}

void shutdown()
{

VISTRY
{

_poa->deactivate_object(_oid);

cout << "Server shutting down..." << endl;
}
VISCATCH (CORBA::Exception, e)
{

cerr << e << endl;
return 0;
}

VISEND_CATCH
}

void display(DynamicAny::DynAny_ptr value)
{

CORBA::TypeCode_var type = value->type();
while (type->kind() == CORBA::tk_alias)

type = type->content_type();

switch(type->kind())
{

case CORBA::tk_null:
case CORBA::tk_void:

break;
case CORBA::tk_short:

{
cout << value->get_short() << endl;
break;

}
case CORBA::tk_ushort:

{
cout << value->get_ushort() << endl;
break;

}
case CORBA::tk_long:

{
cout << value->get_long() << endl;
break;

}
case CORBA::tk_ulong:

{
cout << value->get_ulong() << endl;
break;

}
case CORBA::tk_float:

{
cout << value->get_float() << endl;
break;

}
case CORBA::tk_double:

{
cout << value->get_double() << endl;
break;

}
case CORBA::tk_boolean:

{
cout << value->get_boolean() << endl;
break;

}
case CORBA::tk_char:

{
cout << value->get_char() << endl;
break;

}

384 VisiBroker-RT for C++ Developer ’s Guide

case CORBA::tk_octet:
{

cout << value->get_octet() << endl;
break;

}
case CORBA::tk_string:

{
CORBA::String_var str = value->get_string();
cout << str << endl;
break;

}
case CORBA::tk_any:

{
CORBA::Any_var any = value->get_any();
DynamicAny::DynAny_var dynAny =

_factory->create_dyn_any(*any);
display(dynAny); break;

}
case CORBA::tk_TypeCode:

{
CORBA::TypeCode_var tc = value->get_typecode();
cout << tc << endl;
break;

}
case CORBA::tk_objref:

{
CORBA::Object_var obj = value->get_reference();
cout << obj << endl;
break;

}
case CORBA::tk_enum:

{
DynamicAny::DynEnum_var dynEnum =

DynamicAny::DynEnum::_narrow(value);
CORBA::String_var str = dynEnum->get_as_string();
cout << str << endl;
break;

}
case CORBA::tk_union:

{
DynamicAny::DynUnion_var dynUnion =

DynamicAny::DynUnion::_narrow(value);
DynamicAny::DynAny_var temp =

dynUnion->get_discriminator();
display(temp);

temp = dynUnion->member(); display(temp);
break;

}
case CORBA::tk_struct:
case CORBA::tk_array:
case CORBA::tk_sequence:

{
value->rewind();
CORBA::Boolean next = 1UL;
while (next)

{
DynamicAny::DynAny_var d =

value->current_component();
display(d);
next = value->next();

}
break;

}
case CORBA::tk_longlong:
{

#ifndef _VIS_VXWORKS_LONG_LONG_IOSTREAMS
cout << value->get_longlong() << endl;

#else
cout << "received long long";
cout << "long long IOStreams currently not supported"

<< endl;
#endif

VisiBroker-RT for C++ Developer ’s Guide 385

break;
}

case CORBA::tk_ulonglong:
{

#ifndef _VIS_VXWORKS_LONG_LONG_IOSTREAMS
cout << value->get_ulonglong() << endl;

#else
cout << "received unsugned long long";

c out << "unsigned long long IOStreams currently not
supported" << endl;
#endif

break;
}
default:

cout << "Invalid Type" << endl;
}

}

private:
CORBA::ORB_var _orb;
DynamicAny::DynAnyFactory_var _factory;
PortableServer::POA_var _poa;
PortableServer::ObjectId_var _oid;

};

386 VisiBroker-RT for C++ Developer ’s Guide

Part 8
Backward Compatibility

In this part
This part contains the following chapters:

Using the BOA in VisiBroker-RT for C++ 6.0 page 389

Migrating VisiBroker Code page 391

VisiBroker-RT for C++ Developer ’s Guide 389

Using the BOA in VisiBroker-
RT for C++ 6.0
This chapter describes how to use the BOA with VisiBroker-RT for C++ 6.0.

NOTE

The library libboa.o is required when building a VisiBrokerRT60 application
to support the use of Basic Object Adapter (BOA). For a description of all
the libraries provided by the VisiBroker-RT for C++ product, see “Step 6:
Integrating VisiBroker-RT with Tornado/VxWorks”.

Compiling your BOA code with VisiBroker-RT for C++
6.0

If you have existing BOA code that you developed with a previous version of
VisiBroker-RT for C++, you can continue to use them with the current
version as long as you keep the following points in mind.

• To generate the necessary BOA base code, you must use the “-boa”
option with the idl2cpp tool. For more information on using idl2cpp to
generate the code, see the chapter “Programmer tools” in the VisiBroker-
RT for C++ Reference Guide.

Supporting BOA options
All OA command line options supported by VisiBroker-RT for C++ 3.x are
still supported.

Using object activators
BOA object activators are no longer supported with VisiBroker-RT for C++
6.0.

In this release of VisiBroker, the Portable Object Adaptor (POA) supports
the features that were provided by the BOA in VisiBroker 3.x releases The
POA uses servant activators and servant locators in place of object
activators. Please refer to “Using servants and servant managers” for details on
using POA servant managers.

Naming Objects under the BOA
Though the BOA is deprecated in VisiBroker 6.0, you may still use it in
conjunction with the Smart Agent to specify a name for your server objects
which may be bound to in your client programs.

Object names
When creating an object, a server must specify an object name if the object
is to be made available to client applications through the osagent. When the
server calls the BOA obj_is_ready method, the object's interface name will

390 VisiBroker-RT for C++ Developer ’s Guide

only be registered with the VisiBroker osagent if the object is named.
Objects that are given an object name when they are created return
persistent object references, while objects which are not given object names
are created as transient.

NOTE

If you pass an empty string for the object name to the object constructor in
VisiBroker for C++, a persistent object is created, (that is, an object which
is registered with the Smart Agent). If you pass a null reference to the
constructor, a transient object is created.

The use of an object name by your client application is required if it plans to
bind to more than one instance of an object at a time. The object name
distinguishes between multiple instances of an interface. If an object name
is not specified when the bind method is called, the osagent will return any
suitable object with the specified interface.

NOTE

In VisiBroker 3.x, it was possible to have a multiple CORBA objects that
provided different interfaces, all of which had the same object name, but in
VisiBroker 6.0, different interfaces may not have string-equivalent names.

VisiBroker-RT for C++ Developer ’s Guide 391

Migrating VisiBroker Code
This chapter describes how to migrate your VisiBroker code from previous
versions to VisiBroker-RT for C++ 6.0. In particular, it provides information
on the following:

• Instructions on using BOA with VisiBroker-RT for C++ 6.0, changing your
BOA code to POA, and using servant activators.

• List of changes to class names, and API calls in VisiBroker 6.0.

Migrating BOA to POA
Class names have changed from previous versions of VisiBroker-RT for
C++. Be sure to update your source files to point to the most recent class
names. The following tables illustrates these name changes using an
example class name.

Table 35 Class name changes

Looking at an example
The <install_location>/VisiBrokerRT60/examples/boa/boa2poa

directory contains an example of updating your BOA to the equivalent POA
code.

In this example, the BOA code in server.C was updated to POA by:

• Obtaining a reference to the root POA instead of initializing the BOA

• Setting the appropriate POA policies to mimic the BOA characteristics

• Defining the servant (the POA has a different definition of a servant than
the BOA)

• Activating the POA manager (no equivalent step for the BOA)

Obtaining a reference to the root POA
When using the BOA, a reference to the BOA was obtained through orb-
>BOA_init().

With the POA, however, you obtain a reference to the root POA. You do this
by using orb->resolve_initial_references(“RootPOA”).
resolve_initial_references returns a value of type CORBA::object
which you then narrow to the desired type.

Code example 181 Obtaining a reference to the rootPOA
CORBA::object_var obj = resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA =
PortableServer::POA::_narrow(obj);

Old class name New class name
_sk_Account POA_Account
_sk_AccountManager POA_AccountManager
_tie_Account POA_Account_tie
_tie_AccountManager POA_AccountManager_tie

392 VisiBroker-RT for C++ Developer ’s Guide

Setting the POA policies
The characteristics of a POA are defined by the policies set for that POA.
Each POA has its own set of policies; POAs can not inherit policies from
other POAs.

In this example, persistent objects are used. With the BOA, persistent
objects are those which have a specific instance name and are registered
with the Smart Agent. A single BOA can support both persistent and
transient objects. Under the POA, a persistent object is one that lives past
the ORB instance that creates them. A single POA can support either
persistent object or transient objects, not both. The supported object type is
set by the POA policy. Since the root POA supports transient objects (by
default), a new POA must be created to support persistent objects.

Note
You cannot change the policies of a POA once it is created.

To support persistent objects, set the Lifespan policy to PERSISTENT. Once
the appropriate policies have been set, a new POA can be created with

create_POA().

Code example 182 Setting the POA policies
CORBA::PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);

// Create myPOA with the right policies
PortableServer::POAManager_var mgr =

rootPOA->the_POAManager();
PortableServer::POA_var myPOA = rootPOA->create_POA(

"bank_agent_poa", mgr, policies);

Defining the servant
With the BOA, a servant is a CORBA object. In this example, the account
manager object is created and then exported with obj_is_ready().

With the POA, a servant is a programming object that provides the
implementation of an abstract object. A servant is not a CORBA object.
Under the POA scenario, the servant is created and then activated with a
specific ID. You can use this ID to obtain the object reference.

Code example 183 Defining and activating a servant
// Create the servant

AccountManagerImpl *managerServant = new AccountManagerImp;
// Decide on the ID for the servant

PortableServer::ObjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");

// Activate the servant with the ID on myPOA
myPOA->activate_object_with_id(managerId,managerServant);

Activating the POA manager
A POA Manager is an object that controls how a POA processes requests. By
default, POA Managers are created in a holding state. In this state, all
requests are routed to a holding queue and are not processed. To allow
requests to be dispatched, the POA Manager associated with the POA must
be changed from the holding state to an active state.

VisiBroker-RT for C++ Developer ’s Guide 393

This is a new step required for the POA. There is no equivalent step for the
BOA.

Code example 184 Activating the POA manager
rootPOA->the_POAManager()->activate();

Looking at the other classes
The AccountImpl and AccountManagerImpl class changes are much
simpler. Most of the changes simply involve pointing to the new classes.

Mapping BOA types to POA policies
The following table shows how to set your POA policies to mimic BOA
behavior

Table 36 Mapping BOA types to POA policies

Migrating interceptors
The preferred method for migrating interceptors to VisiBroker-RT for C++
6.0 is to use the new Portable Interceptors or the VisiBroker 6.0
interceptors.

NOTE

Although VisiBroker 6.0 does provide wrappers that allow you to migrate
your old interceptor code virtually unchanged (described below), the
VisiBroker 6.0 wrappers for 3.x code do not provide functionality
comparable to that of VisiBroker 6.0 interceptors.

NOTE

The library libmigrate.o is required when building a VisiBrokerRT60
application to support the migration of Interceptors from VisiBroker 3.x to
VisiBroker 6.x. For a description of all the libraries provided by the
VisiBroker-RT for C++ product, see <~XRef>“Step 6: Integrating
VisiBroker-RT with Tornado/VxWorks”.

Transient BOA Persistent BOA
TPOOL Server Engine policy with

TPOOL dispatcher LifeCycle
property set to TRANSIENT

Server Engine policy with
TPOOL dispatcher LifeCycle
property set to
PERSISTENTIDAssignment
policy set to USER_ID
BindSupport policy set to
BY_INSTANCE

TSESSION Server Engine policy with
TSESSION dispatcher LifeCycle
property set to TRANSIENT

Server Engine policy with
TSESSION dispatcher LifeCycle
property set to PERSISTENT
IDAssignment policy set to
USER_ID BindSupport policy
set to BY_INSTANCE

Service-activated objects LifeCycle property set to
TRANSIENT Request
Processing policy to
USE_SERVANT_MANAGER
Implicit Activation policy set to
IMPLICIT_ACTIVATION

LifeCycle property set to
PERSISTENT Request
Processing policy to
USE_SERVANT_MANAGER
Implicit Activation policy set to
IMPLICIT_ACTIVATION

394 VisiBroker-RT for C++ Developer ’s Guide

Using VisiBroker 3.x interceptors
VisiBroker 6.0 ensures that method signatures of VisiBroker 3.x interceptors
need not change, however installation and initialization procedures for old-
style interceptors are changed.

Installing VisiBroker 3.x interceptors

In order to use old-style interceptors with VisiBroker 6.0:

1 Add the include directive #include “migration_c.hh” to the files where
you are going to use VisiBroker 3.x interceptors. The migration_c.hh
header file contains the wrappers for the old interceptors.

2 Re-name the following interceptors as shown in the table:

Table 37 Renaming interceptors

Migrating BindInterceptors

The VisiBroker-RT for C++ 6.0 wrappers simulate the real BindInterceptor.
In previous versions, to add a BindInterceptor, you would:

1 Get the reference to the ChainBindInterceptor by calling
ORB::resolve_initial_references(“ChainBindInterceptor”)

2 Add the new interceptor to the chain.

To use your VisiBroker 3.x bind interceptor code in VisiBroker 6.0, you
should instead:

1 Get the reference to
interceptor_migration::BindInterceptorManager by calling
ORB::resolve_initial_references("ChainBindInterceptor");

2 Then, create and add your
interceptor_migration::BindInterceptorDelegate (rather than the
interceptor::BindInterceptor that you used in VisiBroker 3.x) to the
chain.

Migrating client-side and server-side interceptors

In previous versions, to add a ClientInterceptor or a
ServerInterceptor, you would:

First, implement the interface Interceptor::ClientInterceptorFactory
or Interceptor::ServerInterceptorFactory. This interface provides
methods for creating user-implemented ClientInterceptors and
ServerInterceptors. You could then obtain a reference to the
ChainClientInterceptorFactory or the
ChainServerInterceptorFactory and, using these, you can add your own
interceptors to the chain.

Under VisiBroker-RT for C++ 6.0, you should instead:

1 Implement Interceptor_migration::ClientInterceptorDelegate or
Interceptor_migration::ServerInterceptorDelegate.

Old style name New style name
interceptor::BindInterceptor interceptor_migration::BindInterceptorDelegate
interceptor::ChainBindInterceptor interceptor_migration::BindInterceptorManager
interceptor::ChainClientInterceptor interceptor_migration::ClientInterceptorDelegate
interceptor::ChainServerInterceptor interceptor_migration::ServerInterceptorDelegate
interceptor::ClientInterceptorFactory interceptor_migration::ClientInterceptorFactory
interceptor::ServerInterceptorFactory interceptor_migration::ServerInterceptorFactory

VisiBroker-RT for C++ Developer ’s Guide 395

2 Then, obtain a reference to the
Inteceptor_migration::ClientInterceptorFactory or the
Inteceptor_migration::ServerInterceptorFactory. These methods
return the instance of the appropriate InterceptorDelegate.

After you have access to the client factory, server factory or both, you can
install your client- or server-side interceptors into the appropriate factory
chain. To do so, call
ORB::resolve_initial_references(“ChainClientInterceptorFactory ”)
or ORB::resolve_initial_references(“ChainServerInterceptorFactory”)
Once you have the references, you can use the Add() method to add to the
chain. (This procedure is unchanged from VisiBroker 3.x.)

VisiBroker-RT for C++ 6.0 provides a sample application in
<install_location>/VisiBrokerRT60/examples/interceptors/ migration
which shows how to migrate an application that used older 3.x style
interceptors to 6.0.

396 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 397

CORBA exceptions
This appendix provides information about CORBA exceptions that can be
thrown by the VisiBroker-RT for C++ ORB, and explains possible causes for
VisiBroker-RT for C++ throwing them.

The following table lists CORBA exceptions, and explains reasons why the
VisiBroker-RT for C++ ORB might throw them.

Table 38 CORBA exceptions and possible causes

Exception Explanation Possible causes
CORBA::BAD_CONTEXT An invalid context has been

passed to the server.
An operation may raise this exception if a
client invokes the operation but the passed
context does not contain the context
values required by the operation.

CORBA::BAD_INV_ORDER The necessary prerequisite
operations have not been
called prior to the offending
operation request.

An attempt to call the
CORBA::Request::get_response() or
CORBA::Request::poll_response()
methods may have occurred prior to
actually sending the request.

An attempt to call the
exception::get_client_info() method
may have occurred outside of the
implementation of a remote method
invocation. This function is only valid
within the implementation of a remote
invocation.

An operation was called on an ORB that
was already shut down.

CORBA::BAD_OPERATION An invalid operation has been
performed.

A server throws this exception if a request
is received for an operation that is not
defined on that implementation’s interface.
Ensure that the client and server were
compiled from the same IDL.

The CORBA::Request::return_value()
method throws this exception if the
request was not set to have a return value.
If a return value is expected when making
a DII call, be sure to set the return value
type by calling the
CORBA::Request::set_return_type()
method.

398 VisiBroker-RT for C++ Developer ’s Guide

CORBA::BAD_PARAM A parameter passed to the
ORB is invalid.

Sequences throw CORBA::BAD_PARAM if an
access is attempted to an invalid index.
Make sure you use the length() method to
set the length of the sequence before
storing or retrieving elements of the
sequence.

ORB throws this exception if an invalid
Object_ptr is passed as an in argument
(for example, if a nil reference is passed).

An attempt may have been made to send a
NULL pointer where the IDL to C++
language mapping requires an initialized
C++ object to be sent. For example,
attempting to return NULL as a return value
or out parameter from a method that
should be returning a sequence will throw
this exception. In this case a new
sequence (probably of length 0) should be
returned instead. The types which cannot
be sent with the C++ NULL value include
Any, Context, struct, or sequence.

An attempt was made to send a value that
is out of range for an enumerated data
type.

An attempt may have been made to
construct a TypeCode with an invalid kind
value.

An attempt may have been made to insert
a nil object reference into an Any.

Using the DII and one way method
invocations, an OUT argument may have
been specified. An interface repository
thrown this exception if an argument
passed into an IR object’s operation
conflicts with its existing settings. See the
compiler errors for more information.

CORBA::BAD_TYPECODE The ORB has encountered a
malformed type code.

CORBA::CODESET_
INCOMPATIBLE

Communication between client
and server native code sets
fails because the code sets are
incompatible.

The code sets used by the client and server
cannot work together. For instance, the
client uses ISO 8859-1 and the server uses
the Japanese code set.

CORBA::COMM_FAILURE Communication is lost while an
operation is in progress, after
the request was sent by the
client but before the reply has
been returned.

An existing connection may have closed
due to failure at the other end of the
connection.

A new connection request may have failed
due to resource limits on the client or
server machine (the maximum number of
connections has been reached).

When COMM_FAILURES occur due to system
exceptions, the system error number is set
in the minor code of the COMM_FAILURE.
Check the minor code against the system-
specific error numbers (for example in the
include/sys/errno.h or msdev\include\
winerror.h files).

CORBA::DATA_
CONVERSION

The ORB cannot convert the
representation of marshaled
data into its native
representation or vice-versa.

An attempt to marshal Unicode characters
with Output.write_char() or
Output.write_string fails.

Exception Explanation Possible causes

VisiBroker-RT for C++ Developer ’s Guide 399

CORBA::FREE_MEM The ORB failed to free dynamic
memory.

The memory segments that the ORB is
trying to free may be locked.

The heap could be corrupt.
CORBA::IMP_LIMIT An implementation limit was

exceeded in the ORB run time.
The ORB may have reached the maximum
number of references it can hold
simultaneously in an address space.

The size of the parameter may have
exceeded the allowed maximum.

The maximum number of running clients
and servers has been exceeded.

CORBA::INITIALIZE A necessary initialization has
not been performed.

The ORB_init() method may not have
been called. All clients must call the
ORB_init() method prior to performing any
ORB-related operations. This call is
typically made immediately upon program
startup at the top of the main routine.

CORBA::INTERNAL An internal ORB error has
occurred.

An internal ORB error may have occurred.
For instance, the internal data structures
of the ORB may have been corrupted.

CORBA::INTF_REPOS An instance of the Interface
Repository could not be
located.

If an object implementation cannot locate
an interface repository during an
invocation of the get_interface()
method, this exception will be thrown to
the client. Ensure that an Interface
Repository is running, and that the
requested object’s interface definition has
been loaded into the Interface Repository.

CORBA::INV_FLAG An invalid flag was passed to
an operation.

A Dynamic Invocation Interface request
was created with an invalid flag.

CORBA::INV_IDENT An IDL identifier is syntatically
invalid.

An identifier passed to the interface
repository is not well formed.

An illegal operation name is used with the
Dynamic Invocation Interface.

CORBA::INV_OBJREF An invalid object reference has
been encountered.

The ORB will throw this exception if an
object reference is obtained that contains
no usable profiles.

The ORB::string_to_object() method
will throw this exception if the stringified
object reference does not begin with the
characters “IOR:”.

CORBA::INV_POLICY An invalid policy override has
been encountered.

This exception can be thrown from any
invocation. It can be raised when an
invocation cannot be made due to an
incompatibility between policy overrides
that apply to the particular invocation.

CORBA::INVALID_TRANSA
CTION

A request carried an invalid
transaction context.

See your transaction service
documentation for more information on
this exception.

Exception Explanation Possible causes

400 VisiBroker-RT for C++ Developer ’s Guide

CORBA::MARSHAL Error marshalling parameter or
result.

A request or reply from the network is
structurally invalid. This error typically
indicates a bug in either the client-side or
server-side run time. For example, if a
reply from the server indicates that the
message contains 1000 bytes, but the
actual message is shorter or longer than
1000 bytes, the ORB raises this exception.
A MARSHAL exception can also be caused
by using the DII or DSI incorrectly. For
example, if the type of the actual
parameters sent does not agree with IDL
signature of an operation.

CORBA::NO_IMPLEMENT The requested object could not
be located.

A bind() call or some other remote
operation fails because the target could
not be found. To dynamically locate
implementations through the VisiBroker-
RT for C++ bind() call, a Smart Agent
must be running in your ORB domain. In
addition, an implementation of the
requested interface must be available on
the same ORB domain. To verify the
presence of a Smart Agent, run the osfind
utility. This utility prints the locations of all
Smart Agents on your current domain
(that is, all Smart Agents listening on your
environment’s OSAGENT_PORT).

The osfind utility will also print the
interface name and instance name of all
available implementations. In summary,
prior to running the client program:

1 Verify that a Smart Agent is running and
accessible on the network.

2 Verify that the desired implementation is
available on the network.

If the rebind() method is enabled and an
object implementation becomes
unavailable, NO_IMPLEMENT will be thrown if
another provider cannot be located.

CORBA::NO_MEMORY The ORB runtime has run out
of memory.

CORBA::NO_PERMISSION The caller has insufficient
privileges to complete an
invocation.

CORBA::NO_RESOURCES A necessary resource could not
be acquired.

If a new thread cannot be created, this
exception will be thrown.

A server will throw this exception when a
remote client attempts to establish a
connection if the server cannot create a
socket—for example, if the server runs out
of file descriptors. The minor code contains
the system error number obtained after
the server’s failed ::socket() or
::accept() call.

A client will similarly throw this exception if
a ::connect() call fails due to running out
of file descriptors. Running out of memory
may also throw this exception.

Exception Explanation Possible causes

VisiBroker-RT for C++ Developer ’s Guide 401

CORBA::NO_RESPONSE A client attempts to retrieve
the result of a deferred
synchronous call, but the
response for the request is not
yet available.

CORBA::OBJ_ADAPTER An administrative mismatch
has occurred.

A server has attempted to register itself
with an implementation repository under a
name that already is in use, or is unknown
to the repository.

The POA has raised an OBJ_ADAPTER error
due to problems with the application’s
servant managers.

CORBA::OBJECT_NOT_
EXIST

The requested object does not
exist.

A server throws this exception if an
attempt is made to perform an operation
on an implementation that does not exist
within that server. This will be seen by the
client when attempting to invoke
operations on deactivated
implementations.

CORBA::PERSIST_STORE A persistent storage failure has
occurred.

Attempts to establish a connection to a
database has failed, or the database is
corrupt.

CORBA::REBIND The client has recieved an IOR
which conflicts with QOS
policies.

Thrown anytime the client gets an IOR
which will conflict with the QOS policies
that have been set. If the RebindPolicy has
a value of NO_REBIND, NO_CONNECT, or
VB_NOTIFY_REBIND and an invocation on a
bound object reference results in an object
forward or a location forward message.

CORBA::TRANSACTION_
REQUIRED

The request carried a null
transaction context, but an
active transaction is required.

See your transaction service
documentation for more information on
this exception.

CORBA::TRANSACTION_
ROLLEDBACK

The transaction associated
with a request has already
been rolled back, or marked
for roll back.

See your transaction service
documentation for more information on
this exception.

CORBA::TRANSIENT An error has occurred, but the
ORB believes it is possible to
retry the operation.

A communications failure may have
occurred and the ORB is signalling that an
attempt should be made to rebind to the
server with which communications have
failed. This exception will not occur if the
BindOptions are set to false with the
enable_rebind() method, or the
RebindPolicy is properly set.

Exception Explanation Possible causes

402 VisiBroker-RT for C++ Developer ’s Guide

CORBA::UNKNOWN The ORB could not determine
the thrown exception.

The server throws something other than a
correct exception, such as a Java runtime
exception.

There is an IDL mismatch between the
server and the client, and the exception is
not defined in the client program.

In DII, if the server throws an exception
not known to the client at the time of
compilation and the client did not specify
an exception list for the CORBA::Request.
Set the property vbroker.orb.warn=2 on
the server to see which runtime exception
caused the problem.

CORBA::UnknownUser
Exception

A user exception has been
received, but the client has no
compile-time knowledge of
that exception.

When a client reads in a user exception
from a server, it will generate this
exception if it has no compile-time
knowledge of the exception type. The
client can see the type of the exception,
and is given the marshalled buffer
containing the contents of the exception.
The ORB has no way to unmarshal the
exception on its own.

Exception Explanation Possible causes

VisiBroker-RT for C++ Developer ’s Guide 403

Table 39 CORBA exception minor codes

System
exception

Minor
code Explanation

BAD_PARAM 1 Failure to register, unregister, or lookup the value
factory

2 RID already defined in the interface repository
3 Name already used in the context in the interface

repository
4 Target is not a valid container
5 Name clash in inherited context
6 Incorrect type for abstract interface

MARSHAL 1 Unable to locate value factory
NO_IMPLEMENT 1 Missing local value implementation

2 Incompatible value implementation version
BAD_INV_ORDER 1 Dependency exists in the interface repository

preventing the destruction of the object
2 Attempt to destroy indestructible objects in the

interface repository
3 Operation would deadlock
4 ORB has shut down

OBJECT_NOT_
EXIST

1 Attempt to pass an unactivated (unregistered) value
as an object reference

404 VisiBroker-RT for C++ Developer ’s Guide

VisiBroker-RT for C++ Developer ’s Guide 405

Glossary
This is a glossary of terms used in VisiBroker-RT.

activation

Process of preparing an object to receive requests.

API (application program interface)

A set of operations which allows a (client) program to access functionality
contained in a library or another program, possibly a server.

attribute

An attribute is a property of an object. For example, a Point object might
have two coordinate attributes, X and Y.

application

A computer program designed to help people perform a certain type of
work. Depending on the work for which it was designed, an application can
manipulate text, numbers, graphics, or a combination of these elements.

bind (NamingService)

The process of associating a Name with a remote object in a server
application, so that a client application can resolve the Name and obtain a
reference to the remote object.

bind (VisiBroker)

The process of establishing a connection to a server hosting an object we
are interested in.

class

A class is a data type which declares what attributes and operations an
instantiated object will have.

client/server

A programming strategy in which two programs cooperate with one another
using some common and conventional protocol. For example, on the
worldwide web, the browser is the client software, the web server is the
server software, and HTTP is the protocol. Clients send requests to servers,
and servers send replies to clients.

component

A chunk or object of a distributed application.

CORBA (common object request broker architecture)

An open, object-oriented, standard architecture developed by the OMG for
the interoperability of distributed objects on different platforms, under
different operating systems and implemented in different programming
languages.

406 VisiBroker-RT for C++ Developer ’s Guide

distributed application

An application whose components are distributed across multiple computers
on a network but which seem to be running on the user’s computer.

distributed objects

Software modules that are designed to work together but reside in multiple
computer systems throughout the organization. A program in one machine
sends a message to an object in a remote machine to perform some
processing. The results are sent back to the calling machine.

Dynamic Invocation Interface (DII)

An API that allows a client to make dynamic invocations on remote CORBA
objects. It is used if at compile time a client does not have knowledge about
an object it wants to invoke. Once an object is discovered, the client
program can obtain a definition of it, issue a parameterized call to it, and
receive a reply from it, all without having a type-specific client stub for the
remote object.

Dynamic Skeleton Interface (DSI)

An API that provides a way to deliver requests from an ORB to an object
implementation when the type of the object implementation is not known at
compile time. DSI, which is the server side analog to the client side DII,
makes it possible for the application programmer to inspect the parameters
of an incoming request to determine a target object and method.

failover

Having more than one system which may be used as backup in case one of
the systems fail.

HTML (hypertext markup language)

An SGML application used to specify the structure of a hypertext (web)
document.

HTTP (hypertext transport protocol)

A protocol used by worldwide web client/server applications to connect and
transfer HTML documents.

IDL (interface definition language)

A high-level, programming language independent, declarative language for
defining the interface of a distributed object.

IDL compiler

A compiler which translates an IDL specification into programming language
specific stub and skeleton files which are used to implement distributed
objects.

IDL file

A plain text file which declares modules and interfaces in IDL.

VisiBroker-RT for C++ Developer ’s Guide 407

IIOP (Internet Inter-ORB protocol)

A TCP/IP-based protocol developed by the OMG. The IIOP enables two or
more ORBs to work in conjunction to provide requests to objects.

interface

The set of public attributes and operations (or signature) which a (server)
object exposes to a (client) object.

interface repository

A service that contains all the registered component interfaces, the
methods they support, and the parameters they require. The IFR stores,
updates, and manages object interface definitions. Programs may use the
IFR APIs to access and update this information.

master/slave

The Interoperable Naming service runs master and slave naming service for
a failover purposes. The master is the primary service and the slave is the
fallback service in general.

method

An operation of an object (the server) which when called by another object
(the client) performs some declared behavior.

multithreading

A programming technique whereby an application can be divided into more
than one asynchronous time-slice (or thread of execution).

Name

A name is a predefined name, an alias, or a convenient handle which is
associated with a server object. To bind a name to an object, you use the
bind method. To resolve a name (i.e., to retrieve a pointer) use the resolve
method.

namespace

A collection of names, no two of which are identical.

naming service

A CORBA service that allows CORBA objects to be named by means of
binding a name to an object reference. The name binding may be stored in
the naming service, and a client may supply the name to obtain the desired
object reference.

n-tier

A programming strategy in which n programs cooperate with one another
using some common and conventional protocol. For example, a client/
server application can also be described as a two-tier application.

object

A programming entity which is defined by its properties (attributes) and
behaviors (operations). Objects have unique identities and can be

408 VisiBroker-RT for C++ Developer ’s Guide

distinguished from one another. An object is an instance of a particular
class.

object adapter

The ORB component which provides object reference, activation, and state
related services to an object implementation.

object implementation

A server process that offers one or more objects which client applications
may use.

object reference

A handle to an object, used by a client application to invoke methods on the
object.

OMG (Object Management Group)
A consortium of software companies which is charged with the develop-
ment of the CORBA specification: (see http://www.omg.org/).

operation

The function of an object (the server) which when called by another object
(the client) performs some declared behavior.

ORB (object request broker)

The ORB allows clients to make and receive requests and responses.

package

A logical collection of Java classes that provide similar or related features.

protocol

A language which defines the requests and replies of client/server objects or
applications.

RMI (remote method invocation)

A Java API which allows objects to be instantiated and used in a distributed
application.

RPC (remote procedure call)

A strategy which allows procedures to be called from outside the currently
running program’s memory. RPC allows two or more different programs to
interoperate with one another.

scalability

The degree to which a system or application can handle increasing or
decreasing demand on system resources without significant performance
degradation.

servant

An instance of an object implementation for an IDL interface. The servant
object is registered with the ORB so that the ORB knows where to send

VisiBroker-RT for C++ Developer ’s Guide 409

invocations. It is the servant that performs the services requested when a
CORBA object's method is invoked.

server

An object or application which performs a service for other objects or
applications (the clients). A server replies to a client’s request using a
protocol.

service

The functionality of a given server.

SGML (standard generalized markup language)

Abbreviation of Standard Generalized Markup Language, a system for
organizing and tagging elements of a document. SGML was developed and
standardized by the International Organization for Standards (ISO). SGML
itself does not specify any particular formatting; rather, it specifies the rules
for tagging elements. These tags can then be interpreted to format
elements in different ways.

signature

The set of parameters and their names of a given operation which uniquely
identify the operation.

skeleton (file)

An older construct (used prior to VisiBroker 4.0): a serverside file generated
from IDL which is to be implemented by the object implementor.

stringification

Converting an object reference to a character string format. Used when an
object reference needs to be made persistent to a text file or stored in a
database or sent to a client program.

stub (file)

The portion of a client or server program that executes the data marshalling
and network transportation routines.

TCP/IP (transport control protocol / internet protocol)

TCP is one of the main protocols in TCP/IP networks. Whereas the IP
protocol deals only with packets, TCP enables two hosts to establish a
connection and exchange streams of data. TCP guarantees delivery of data
and also guarantees that packets will be delivered in the same order in which
they were sent.

thread

A thread is a stream of execution within a process. In a multithreaded
environment, multiple tasks can execute concurrently within the same
application.

transaction server

A server which supports transactional semantics, (e.g., commit or rollback).

410 VisiBroker-RT for C++ Developer ’s Guide

XML (extensible markup language)

Extensible Markup Language. A specification developed by the World Wide
Web Consortium (W3C). XML is a subset of the SGML document language,
designed especially for Web documents.

	Contents
	Preface
	What’s new
	What’s in this guide?
	Manual conventions
	Typographic conventions
	Platform conventions
	VisiBroker Library conventions
	Where to find additional information

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Basic Concepts
	Introducing VisiBroker-RT for C++
	What is CORBA?
	What is VisiBroker-RT for C++?
	VisiBroker-RT for C++ Features
	VisiBroker-RT for C++ Smart Agent architecture
	Enhanced object discovery with the Location Service
	Implementation and object activation support
	Robust thread and connection management
	IDL compilers
	Dynamic invocation with DII and DSI
	Interface repositories
	Server-side portability
	Customizing the ORB with interceptors and object wrappers

	VisiBroker-RT for C++ CORBA compliance
	VisiBroker-RT for C++ Development Environment
	Administration tools
	Developer’s tools
	VisiBroker-RT for C++ header files
	VisiBroker ORB Libraries
	VisiBroker Sample Applications
	Interoperability with VisiBroker for Java

	Interoperability with other ORB products

	Setting up the Development Environment
	Setting the VBROKERDIR Environment Variable
	Setting VBROKERDIR on a Windows platform
	Setting VBROKERDIR on a UNIX platform

	Setting the Path environment variable
	Updating the PATH on Windows
	Setting the Path on a UNIX platform

	Setting VBROKER_ADM Environment Variable
	Setting VBROKER_ADM on a Windows platform
	Setting VBROKER_ADM on a UNIX platform

	Setting OSAGENT_PORT environment variable
	Setting OSAGENT_PORT on a Windows platform
	Setting OSAGENT_PORT on a UNIX platform

	Logging Output on the Host System

	Developing an Example Application with VisiBroker- RT for C++
	Development Process
	Step 1: Defining object interfaces
	Writing the account interface in IDL

	Step 2: Generating client stubs and server servants
	Files produced by the idl compiler

	Step 3: Implementing the client
	corba_init.C
	client.C
	Binding to the AccountManager object
	Obtaining an Account object
	Obtaining the balance
	Other member functions

	Step 4: Implementing the server
	server.C
	Understanding the Account class hierarchy

	Step 5: Building the example
	Step 6: Integrating VisiBroker-RT with Tornado/ VxWorks
	The VisiBroker-RT Runtime
	VisiBroker-RT runtime libraries
	VisiBroker-RT’s use of VxWorks TCB extensions

	Integrating VisiBroker Libraries with Tornado 2.x
	Integrating with a VxWorks BSP Makefile

	Integrating VisiBroker Libraries with Tornado 2.2
	Integrating using the Tornado 2.2 Project facility

	Using VisiBroker with VxSim
	Using VisiBroker with VxSim for Solaris
	VxSim Host Table configuration (only applicable for Tornado 2.x Solaris Simulator)
	Using VisiBroker with VxSim for Windows NT/2000/ XP

	Step 7: Starting the Smart Agent (osagent) Service
	Configuring the Osagent to work with VxSim
	Configuring the VisiBroker ORB running on VxSim to support osagent communications
	Configuring the Smart Agent running on vxsim targets
	Starting the Osagent on a Windows Development Host
	Starting the Osagent on a Solaris Development Host
	Starting the Osagent on a VxWorks Node
	Step 8: Starting the server and running the example
	Starting the server

	Running the client

	Handling Exceptions
	Exceptions in the CORBA model
	System exceptions
	Obtaining completion status
	Getting and setting the minor code
	Determining the type of a SystemException
	Catching system exceptions
	Downcasting exceptions to a system exception
	Catching specific types of system exceptions

	User exceptions
	Defining user exceptions
	Modifying the object to raise the exception
	Catching user exceptions
	Adding fields to user exceptions

	The VisiBroker C++ Exception Support
	The Exception Macros

	Server Concepts
	Server basics
	Overview
	Initializing the ORB
	Creating the POA
	Obtaining a reference to the root POA
	Creating the child POA
	Implementing servant methods
	Activating the POA

	Activating objects
	Complete example

	Using POAs
	What is a Portable Object Adapter?
	POA terminology
	Steps for creating and using POAs

	POA policies
	Minimum CORBA and POA Policies
	Thread policy
	Lifespan policy
	Object ID Uniqueness policy
	ID Assignment policy
	Servant Retention policy
	Request Processing policy
	Implicit Activation policy
	Bind Support policy
	Server Engine policy

	Creating POAs
	POA naming convention
	Obtaining the rootPOA
	Setting the POA properties
	Creating and activating the POA

	Activating objects
	Activating objects explicitly
	Activating objects on demand
	Activating objects implicitly
	Activating with the default servant
	Deactivating objects

	Using servants and servant managers
	ServantActivators
	ServantLocators

	Managing POAs with the POA manager
	Getting the current state
	Holding state
	Active state
	Discarding state
	Inactive state

	Adapter activators
	Processing requests

	Using the Tie Mechanism
	How does the tie mechanism work?
	Example program
	Location of an example program using the tie mechanism

	Looking at the tie template
	Changing the server to use the _tie_account class
	Building the tie example

	Client Concepts
	Client basics
	Initializing the ORB
	Binding to objects
	Action performed during the bind process

	Invoking operations on an object
	Manipulating object references
	Checking for nil references
	Obtaining a nil reference
	Duplicating an object reference
	Releasing an object reference
	Obtaining the reference count
	Converting a reference to a string
	Obtaining object and interface names
	Determining the type of an object reference
	Determining the location and state of bound objects
	Checking for non-existent objects
	Narrowing object references
	Widening object references

	Using Quality of Service
	Understanding Quality of Service
	Policy overrides and effective policies

	QoS interfaces
	CORBA::Object
	CORBA::PolicyManager
	CORBA::PolicyCurrent
	Messaging::RebindPolicy
	Messaging::RelativeRequestTimeoutPolicy
	Messaging::RelativeRoundtripTimeoutPolicy
	QoSExt::RelativeConnectionTimeoutPolicy
	QoSExt::DeferBindPolicy
	QoSExt::SmartBindPolicy
	QoS exceptions

	Configuration and Management
	Using the VisiBroker-RT for C++ Console
	What is the VisiBroker Console?
	Navigating the VisiBroker Console
	Menu bar
	Toolbar
	Status bar
	Pull down or context menus
	Navigation pane
	Content pane

	Supported ORB Services
	Location Service
	Naming Services
	Interface Repositories
	Implementation Repositories
	Server Manager
	GateKeeper
	Integrated Transaction Services

	Starting the VisiBroker Console
	VisiBroker Console main menu
	Console menu
	View menu
	Help menu

	Setting the VisiBroker Console preferences
	General tab
	Security tab
	State tab
	Tools tab

	Setting Properties
	Overview
	Setting Properties Through the Property Manager Interface
	Environment variables
	Setting Properties Through the Command-Line
	Setting Properties Through a Property Table
	ORB Default Properties

	Tools and Services
	Using the IDL compiler
	Introduction to IDL
	How the IDL compiler generates code
	Example IDL specification
	Looking at code generated for clients
	Methods (stubs) generated by the IDL compiler
	Pointer type <interface name>_ptr definition
	Automatic memory management <interface name>_var class

	Looking at code generated for CORBA server implementations
	The PortableServer_RefCountServantBase class
	The PortableServer_ServantBase class
	Methods (skeletons) generated by the IDL compiler
	Class template generated by the IDL compiler

	Defining interface attributes in the IDL
	Specifying oneway methods with no return value
	Specifying an interface in IDL that inherits from another interface

	Using the Smart Agent
	What is the Smart Agent?
	Locating Smart Agents
	Locating objects through Agent cooperation
	Starting a Smart Agent (osagent)
	Starting the Smart Agent on the Development Host
	Starting the Smart Agent on the Target System
	Starting the Smart Agent Programmatically from a VisiBroker-RT Development Host
	Verbose output
	Disabling the agent

	Ensuring Agent availability
	Checking client existence

	Working within ORB domains
	Connecting Smart Agents on different local networks
	Use of the OSAGENT_ADDR_FILE Environment Variable (applicable on Development Host systems only))
	Use of the OSAGENT_ADDR_TABLE By Smart Agents (applicable on VxWorks Target systems only)
	How Smart Agents detect each other

	Working with multihomed hosts
	Specifying interface usage for Smart Agents
	Use of the LOCAL_ADDR_FILE For Multi-Homed hosts
	Use of the LOCAL_ADDR_FILE For Multi-Homed VxWorks Targets

	Using point-to-point communications
	Specifying a host as a runtime parameter
	Specifying an IP address with an environment variable
	Specifying hosts with the agentaddr table

	Ensuring object availability
	Invoking methods on stateless objects
	Achieving fault-tolerance for objects that maintain state

	Migrating objects between VisiBrokerRT60 Systems
	Migrating objects that maintain state
	Migrating instantiated objects

	Reporting all objects and services

	Using the Location Service
	What is the Location Service?
	Location Service components
	What is the Location Service agent?
	Obtaining names of all hosts running Smart Agents
	Finding all accessible interfaces
	Obtaining references to instances of an interface
	Obtaining references to like-named instances of an interface

	What is a trigger?
	Looking at trigger methods
	Creating triggers
	Looking at only the first instance found by a trigger

	Querying an agent
	Finding all instances of an interface
	Finding everything known to Smart Agents

	Writing and registering a trigger handler
	Implementing and registering a trigger handler

	Using the Naming Service
	Overview
	Understanding the namespace
	Naming contexts
	Names and NameComponent
	Name resolution
	Stringified names
	Simple and complex names

	Running the Naming Service
	Integrating the Naming Service into your application
	VisiBrokerRT60 Naming Service libraries

	Compiling and linking programs
	Sample programs
	Starting the Naming Service

	Bootstrapping a Naming Service
	Calling resolve_initial_references
	Using -ORBInitRef
	Using a corbaloc URL
	Using a corbaname URL

	-ORBDefaultInitRef
	Using -ORBDefaultInitRef with an corbaloc URL
	Using -ORBDefaultInitRef with corbaname

	NamingContext
	NamingContextExt
	Default naming contexts
	Obtaining the default context
	Binding a name in C++
	Resolving a name in C++

	Using the Event Service
	Overview
	Proxy consumers and suppliers
	OMG common object services specification

	Communication models
	Push model
	Pull model

	Using event channels
	Example push supplier and consumer
	Deriving a PushSupplier class
	Implementing the PushSupplier

	Deriving a PushConsumer class
	Implementing the PushConsumer

	Starting the Event Service
	Installing the Event Service
	Integrating the Naming Service into your application
	VisiBroker Event Service libraries
	VisiBroker Event Service “munched” libraries

	Setting the queue length

	Compiling and linking programs
	Interface reference
	EventChannel
	ConsumerAdmin
	SupplierAdmin
	ProxyPullConsumer
	ProxyPushConsumer
	ProxyPullSupplier
	ProxyPushSupplier
	PullConsumer
	PushConsumer
	PullSupplier
	PullSupplier methods
	PushSupplier

	Advanced Concepts
	Real-Time CORBA Extensions
	Overview
	Using the Real-Time CORBA Extensions
	Real-Time CORBA ORB
	Real-Time Object Adapters
	Real-Time CORBA Priority
	Priority Mappings
	Priority Mapping Types
	Rules for Priority Mappings
	Default Priority Mapping
	Replacing the Default Priority Mapping
	Using Native Priorities in VisiBroker Application Code

	Threadpools
	Threadpool API
	Threadpool Creation and Configuration
	Association of an Object Adapter with a Threadpool
	The General Threadpool
	Threadpool Destruction

	Real-Time CORBA Current
	Real-Time CORBA Priority Models
	Client Model Backwards Compatability with VisiBroker 3.2.2

	Setting Priority at the Object Level
	Real-Time CORBA Mutex API
	Control of Internal ORB Thread Priorities
	Limiting the Internal ORB Thread Priority Range
	Configuring Individual Internal ORB Thread Priorities

	Protocol Configuration Policies
	ServerProtocolPolicy
	Scope of ServerProtocolPolicy

	ClientProtocolPolicy

	Listening and Dispatch Configuration
	Overview
	When to Configure Listening and Dispatching
	Listening and Dispatch Architecture
	Interaction of an SCM and Threadpool during Dispatch

	Server Engines and SCM Configuration
	Required Server Engine and SCM Properties
	Optional Server Engine Properties
	Optional SCM Properties

	Server Engine and SCM Creation
	Associating a POA with Server Engines
	Default Server Engines
	Restriction on POA/Server Engine Relationship
	Code Example

	Connection Management
	VisiBroker Default Connection Behavior of VisiBrokerRT60
	Overriding the Default Behavior with _clone()
	Limiting the Number of Connections
	Limiting Connections on the Server-Side
	Limiting Connections on the Client-Side

	Bidirectional Communication
	Using bidirectional IIOP
	Bidirectional ORB properties
	About the examples
	Enabling bidirectional IIOP for existing applications
	Security considerations

	VisiBroker Pluggable Transport Interface
	Pluggable Transport Interface Files
	Transport Layer Requirements
	User-Provided Code Required for a Protocol Plugin
	Unique Profile ID Tag

	Example Code
	Implementing a New Transport
	Connection Class
	Base Class
	Abstract Methods to be Implemented by Subclass
	Other Neccessary Methods
	Class Description
	Method Descriptions

	Connection Factory Class
	Base Class
	Abstract Methods to be Implemented by Subclass
	Other Neccessary Methods
	Class Description
	Method Description

	Listener Class
	Base Class
	Abstract Methods to be Implemented by Subclass
	Other Neccessary Methods
	Class Description
	Method Description

	Listener Factory Class
	Base Class
	Abstract Methods to be Implemented by Subclass
	Other Neccessary Methods
	Class Description
	Method Description

	Profile Class
	Base Class
	Abstract Methods to be Implemented by Subclass
	Other Neccessary Methods
	Recommended methods
	Class Description
	Method Description

	Profile Factory Class
	Base class
	Abstract Methods to be Implemented by Subclass
	Other Neccessary Methods
	Recommended Methods
	Class description:
	Method description:

	Classes Provided by the Interface
	Transport Bridge Class
	Class name
	Provided Methods
	Class Description
	Method Description

	Transport Registrar Class
	Class Name
	Provided Methods
	Class Description
	Method Description

	Creating a Loadable Library

	Using Portable Interceptors
	Overview
	Portable Interceptor and Information interfaces
	Request Interceptor
	ClientRequestInterceptor
	ServerRequestInterceptor

	IOR Interceptor
	IORInterceptor

	Portable Interceptor Current

	Codec
	CodecFactory
	Creating a Portable Interceptor
	Registering Portable Interceptors
	Registering an ORBInitializer
	VisiBroker Edition Extensions to Portable Interceptors
	POA scoped Server Request Interceptors

	Limitations of VisiBroker Edition Portable Interceptors Implementation

	Examples
	Example Code
	Example: client_server
	Objective of example
	Code explanation

	Using VisiBroker Interceptors
	Overview
	Interceptor interfaces and managers
	Client interceptors
	BindInterceptor
	ClientRequestInterceptor

	Server interceptors
	POALifeCycleInterceptor
	ActiveObjectLifeCycleInterceptor
	ServerRequestInterceptor
	IORCreationInterceptor

	Registering interceptors with the VisiBroker- RT for C++ ORB
	Creating interceptor objects
	Loading interceptors

	Example interceptors
	Example code
	Client-server interceptors example

	Code listings

	Passing information between your interceptors
	Using both Portable Interceptors and Interceptors simultaneously
	Order of invocation of interception points
	Client side interceptors
	Server side Interceptors
	Order of ORB events during POA creation
	Order of ORB events during object reference creation

	Using Object Wrappers
	Overview
	Typed and un-typed object wrappers
	Special idl2cpp requirements
	Example applications

	Un-typed object wrappers
	Using multiple, un-typed object wrappers
	Order of pre_method invocation
	Order of post_method invocation

	Using un-typed object wrappers
	Implementing an un-typed object wrapper factory
	Implementing an un-typed object wrapper
	pre_method and post_method parameters

	Creating and registering un-typed object wrapper factories
	Removing un-typed object wrappers

	Typed object wrappers
	Using multiple, typed object wrappers
	Order of invocation
	Typed object wrappers with co-located client and servers

	Using typed object wrappers
	Implementing typed object wrappers
	Registering typed object wrappers for a client
	Registering typed object wrappers for a server
	Removing typed object wrappers

	Combined use of un-typed and typed object wrappers
	Command-line arguments for typed wrappers
	Initializer for typed wrappers
	Command-line arguments for un-typed wrappers
	Initializers for un-typed wrappers
	Executing the sample applications
	Turning on timing and tracing object wrappers
	Turning on caching and security object wrappers
	Turning on typed and un-typed wrappers
	Executing a co-located client and server

	Using Valuetypes
	Understanding valuetypes
	Concrete valuetypes
	Valuetype derivation
	Sharing semantics
	Factories

	Abstract valuetypes

	Implementing valuetypes
	Defining your valuetypes
	Compiling your IDL file
	Inheriting the valuetype base class
	Implementing the Factory class
	Registering your Factory with the ORB

	Implementing factories
	Factories and valuetypes
	Registering valuetypes

	Boxed valuetypes
	Abstract interfaces
	Custom valuetypes
	Truncatable valuetypes

	VisiBroker Logging
	Logging Overview
	The Logger Manager
	Configuring ORB Logging
	ORB Log Levels
	ORB Logging Components
	Controlling the Level of ORB Logging
	Library liblog_message_catalog.o and Formatted ORB Log Messages
	Controlling the Priority of ORB Logging
	Enabling Forwarding of ORB Logging
	Controlling the Destination of ORB Logging

	Application Logging
	Creating or Obtaining a Reference to a Logger
	Setting the Forwarder Thread Priority of a Logger
	Enabling Message Forwarding
	Logging a Message to a Logger
	Adding and Removing Logger Forwarders
	Implementing a Logger Forwarder
	The Default Logger Forwarder

	Dynamic CORBA Concepts
	Using Interface Repositories
	What is an interface repository?
	What does an interface repository contain?
	How many interface repositories can you have?

	Creating and viewing an interface repository with irep
	Creating an interface repository with irep
	Viewing the contents of the interface repository

	Updating an interface repository with idl2ir
	Understanding the structure of the interface repository
	Identifying objects in the interface repository
	Types of objects that can be stored in the interface repository
	Inherited interfaces

	Accessing an interface repository
	Example programs

	Using the Dynamic Invocation Interface
	What is the Dynamic Invocation Interface?
	Introducing the main DII concepts
	Using request objects
	Encapsulating arguments with the Any type
	Options for sending requests
	Options for receiving replies

	Steps for invoking object operations dynamically
	Location of example programs for using the DII

	Obtaining a generic object reference
	Creating and initializing a request
	Request class
	Ways to create and initialize a DII request
	Using the create_request method
	Using the _request method
	Example of creating a Request object
	Setting the context for the request
	Setting arguments for the request
	Implementing a list of arguments with the NVList
	Setting input and output arguments with the NamedValue Class

	Passing type safely with the Any class
	Representing argument or attribute types with the TypeCode class

	Sending DII requests and receiving results
	Invoking a request
	Sending a deferred DII request with the send_deferred() method
	Sending an asynchronous DII request with the send_oneway method
	Sending multiple requests
	Receiving multiple requests

	Using the interface repository with the DII

	Using the Dynamic Skeleton Interface
	What is the Dynamic Skeleton Interface?
	Steps for creating object implementations dynamically
	Location of an example program for using the DSI

	Extending the DynamicImplementation class
	Example of designing objects for dynamic requests
	Specifying repository ids

	Looking at the ServerRequest class
	Implementing the Account object
	Implementing the AccountManager object
	Processing input parameters
	Setting the return value

	Server implementation

	Using the Dynamically Managed Types
	Overview
	DynAny types
	Usage restrictions
	Creating a DynAny
	Initializing and accessing the value in a DynAny

	Constructed data types
	Traversing the components in a constructed data type
	DynEnum
	DynStruct
	DynUnion
	DynSequence and DynArray

	Example IDL
	Example client application
	Example server application

	Backward Compatibility
	Using the BOA in VisiBroker- RT for C++ 6.0
	Compiling your BOA code with VisiBroker-RT for C++ 6.0
	Supporting BOA options
	Using object activators
	Naming Objects under the BOA
	Object names

	Migrating VisiBroker Code
	Migrating BOA to POA
	Looking at an example
	Obtaining a reference to the root POA
	Setting the POA policies
	Defining the servant
	Activating the POA manager
	Looking at the other classes

	Mapping BOA types to POA policies

	Migrating interceptors
	Using VisiBroker 3.x interceptors

	CORBA exceptions
	Glossary

