Micro Focus
VisiBroker 8.5.5

VisiBroker for Java
Developer’s Guide

Micro Focus

The Lawn

22-30 Old Bath Road

Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2009-2018. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries. All
other marks are the property of their respective owners.

2018-06-28

Contents

INtroduction tO VISIBIrOKer ... e 1
Accessing VisiBroker online help topics in the standalone Help Viewer 1
Accessing VisiBroker online help topics from within a VisiBroker GUI tool.................. 1
Documentation CONVENTIONS.t ettt ettt ettt et et e e e ee e rane s 2

Platform CONVENTIONSt ettt ettt et e neenens 2
(@] g = Tox [o 1Y/ 1o o N 0T P 2
Further Information and Product SUPPOIT.........ciieiiiiii i eee e 2
INFOrmMation We NEEd ...ttt aaas 3
CoNntact INTOrMATION ... ettt aanees 3

Understanding the CORBA model.........cooiiiii i 5
WAt 1S CORB A ? ..o e e et 5
WHhat IS ViSIBrOKEI 2 ... e e e 6
ViSIBrOKEr FEAtUIES ...t et eae 6

VisiBroker's Smart Agent (osagent) Architecturec.oooeiiiiiiiiiiiiiiiiiiieenns 6
Enhanced Object Discovery Using the Location Serviceccoviiiiiiiiiiiinnnnn. 7
Implementation and Object Activation SUPPOItccoiiiiiiiiiii i ecieeeeaas 7
Robust thread and connection managementoooiiiiiiiiiiii i eaeeanas 7

1 I o T 0 0 o 11 1= o 7
Dynamic invocation with DIF and DS ... e 8
Interface and implementation repPOSItOrieS.oe i i eee 8
Server-side Portabilityo e 8
Customizing the VisiBroker ORB with interceptors and object wrappers............ 8

BV Nt QUL ..t e 9
Backing stores in the Naming ServiCeccoii i 9
Defining interfaces Without IDL ... e 9

LT =] (=TT o 1 9
VisiBroker CORBA COMPIIANCEttt ettt et e ettt et e e e e eaneeaaanes 9
VisiBroker Development ENVIFONMENT ... e e eaees 9
Programmer's t00IS.o e 10

CORBA ServiCces tOO0IS ... e 10
AdMINISTration TOOIS. ... e 10

Java Development ENVIFONMENT ... e et eenens 10
Java 2 Standard EditiOn ... 10

Java RUN-time ENVIFONMENT ...t aeeens 11
What's Required for GateKeeper . ..o 11
Java-enabled Web DrOoWSEr e 11
Interoperability With VISIBrOKEro e 11
Interoperability with other ORB produCtS..........ooiiiiiiiii e 11
DI o B o\ 7= W 0 g =T o o] o TR PP 12

Developing an example application with VisiBroker 13
[TV =T (0] o] o g L= gL Al o oo =1 13
Step 1: Defining 0bJeCt INtEITACES ...ovii i e aeeeas 14

Writing the account interface in IDLoiiiiiiii i 14

Step 2: Generating client stubs and server Servantscccoviiiiiiiiii i 15
Files produced by the idl cOmpiler ... e 15

Step 3: Implementing the CHeNt.o 16
(O] TT=T o 1 S = Y= P 16
Binding to the AccountManager ObjJeCt..........cciieiiiiiiiiiii e 17

Obtaining an Account ObJeCt ... 17

Obtaining the balance 17
AccountManagerHelper.java.o 17
Other MethOdso e 17

Step 4: IMplementing the SEIVEN ... e e e aeeeas 18

VisiBroker for Java Developer’'s Guide

T2 aYL=] gl o] o =1 010 1P 18

Step 5: Building the eXamPle ... e e e 19
Compiling the eXamIPIe ... e 19

Step 6: Starting the server and running the example ... 19
Starting the SmMart AQENT ... i et 19
StArtiNg the SEeIVer .. e 19
RUNNING the ClIeNto e e aaee e 20
Deploying applications With ViSiBroKer......... ..o e 20
VisiBroker AppliCations. 21
Deploying applicationso e 21
Environment variables 21

Support service availability ..o 21

L £ Vo Vo 22

Running the applicationc.ccoiiiiiiii e 22

Executing client applicationscoiiiiiii e 22

Executing server applications iN JAVaccooieeiiiiiiiiii i eeens 23
Programmer toolS TOr Javacooiiiiiiii i 25
[0] X T 0 25
LCT=T oToT r= | 0T 0 1 [0 o 1T P 25

10 1 21 26
1722 T | 27
(101 22 - Y7 27
JAVA I . e 29
T2V 7241 o o 1 30
17/ 33
17/ o 34
Specifying the Classpath ..o e e 35
SPECITYING The JVIM L. ettt et et e e raaneeanas 35
([0 D2 PP 35
(] I o I F= AV 7= T 0 0 =1 o' 11 o 1S 37
I =0 T 37
R CE2ST=T V7T o [o =T 0 1 37
R CEEST=T V=T 0 IR Y0 T g o L 38
1170 T L] =P 38
2=] ol 1Y/ 0 1= 38
IDL ty P EXEENSIONS . <. ettt et ettt et eaaas 39
HOIAEE ClaSSES ... e 39

= 1 7= T 0 61 42

[T T == o 43

[- 43

L o L 43

5] 11 o 43

R4 11 T 43

LN C=To =T gl 1Y/ 6 1= 43
FIOAting POINt By PES ...ttt ettt et e 43

[L= [T ol F= T P 44
(0] 0 57 1= 1 | 1 45
Constants within an interface. e 45
Constants NOT within an interfaceo 45

(070] o E=3 1 U Ty (=0 [177 0 1< 46
1 o 46

] 1 o 47

L T o 48
RS0 [513 Lo = S 50

N 7= Y/ 51

iv VisiBroker for Java Developer's Guide

0 1= = (oL S 52

ADSTract INTErfaCESo e 53

(o Tot= | I o] (=] o =Tl == PP 54

o T T aTo [0T = T 1= (=] = 54
Server implementation with iINheritanCeccviiiiiiiiii i 55
Server implementation with delegationo 56

g (=T = T SR oo o 1= 57

[V E=Yo] 11 Te I (o] gl =3 Col=T o £ o] o 1S3 S 57
User-defined eXCePiONSo 57
SYSTEM EXCEPTIONSttt e et e 58
Mapping for the ANy By P ... e 58
Mapping for certain Nested tYPEeS ..o 58
MappPing for Ty pedef ... e 59
Y10 0] o] (ST 1 5 I Y o 1= P 59

(0f0] a1 Lo q 1T 1Y/ o 1= PP 59
ViSIBrOKer ProPertieS. . oottt eaeaanas 61
JAVA RMI OVEF TIOP PrOPEItIES . ettt ettt et e et r e e e e e enaas 61
Y 0 PN Yo (=T o) o o] 1= g 1= LS 62
Smart Agent communication PropPertiescooevieiiiiaieia e naeenns 63
ViSiBroker ORB PrOPEITIES ...ttt et e ettt e e e e e e e neenens 64
oL@ N o T 0] o 1] g 1= 72
Server Manager PrOPeITIES i e e 73
Properties showing run-time status of Server ... 73
Properties related to Server-side resource Usagec.ocovieiieenieanaaann. 73

Properties related to Client-side resource usage........ccoevveivereinenrannennn. 73

Properties related to the Smart Agent (0sagent)cceeviiiiviiienninnnnn. 73

[oTor=NuTo] g ISY=T AV Tod T o] g 0] o 1= o i 74
VY o | ST =T VoSN o] o] o 1= o 1= 74
Naming Service (ViSiINaming) Propertiesooiiiiiiii i aaae e 74
Properties relating to object clustering........ccoeviiiiiiiiiiiiiiiiiiieeieenns 75

VisiNaming service cluster related properties...........covviviiiiiiiiniennnn. 76

Pluggable Backing Store Properti€scoouiiiiiiiiiiii i e e e 77
Default properties common to all adapters.........ooooiiiiiiiiiiiiiiiiiiieenn. 77

JDBC Adapter PropPertieS. ... et e 78
DataExpress Adapter properties.ooo i 79

JINDI adapter Propertieso 80
VisiNaming Service Security-related propertiescccvvviiiiiiiiieniiinnnnnns 80

(@ B 2 o 0] 1= i =1 80
INterface RePOSITONY PrOPEITIES ..ottt ettt e e e e e e aeeeeannes 81
Client-side I1OP cONNECLION PrOPEeIrtiES ...ciuuuiii ittt raneeas 81
0] I N F= T g o VT T o] e o 1= ot A= 82
(@ oIS T =] PN (=T B e 0] o 1] g = 83
Server-side server engine ProPerti€seiieiiiei e 83
Server-side thread session I1OP_TS/IIOP_TS connection propertiesc......... 83
Server-side thread session BOA_TS/BOA_TS connection properties..........c.cccvvuenne.. 84
Server-side thread pool I1OP_TP/I1OP_TP connection properties.........ccoeeevieevinennn.. 84
Server-side thread pool BOA_TP/BOA_TP connection propertiesc.cccooeevien.... 86
Properties that support bi-directional communicationccooiiiiiiiiiiiiiiiiiinn. 86
Debug Logging Properties et 87
Enabling and filtering ..o e 88

Y2V e] oI=Tale [1aTe =1 T I (oo To 110 e [N 89

[TCT o] =Y or= 1 (<o [o] o] o 1T o =S 90
Setting properties in an apPpPlet. ... e 90
Web Services run-time PropPerties ... oot eeaaas 90
Web services HTTP LiStener ProPerti€suoiiiii it e e eaaaas 90
Web services Connection Manager Properti€s........ocviiiiiiii i eaaens 91

VisiBroker for Java Developer’s Guide V

SOAP Request DispatCher PrOPErtiES ...ttt it e e e e eaaaeeaaaas 91

Getting the ORB version programmaticallycooiiiiiiiiiiii e 91
Handling €XCePLIONS ...t eaaaaas 93
Exceptions in the CORBA MOEL...... .o e eae e 93
SYSTEIM EXCEPTIONS ...ttt ettt ettt et ettt ettt ettt e ettt e e e e e e e e e ne 93
SYSTEMEXCEPTION ClASS ...ttt e et enes 94
Obtaining comMpPIetion STAtUSiiii e 94
Catching SYStemM eXCePtIONSttt e 94
Downcasting exceptions to a system eXCeplioN........ccoviiieiiiiiiiiiiiiiiiieiaiaeenns 95
Catching specific types of system exceptionsccoiiiiiiiiiiiiiiiiiiii .. 95
L8 ST = o7 =T o) o) o 1= 96
Defining USer eXCePLIONS e e 96
Modifying the object to raise the exceptionccvoiiiiiiiiiiiiiiiiiiiieeans 97
Catching USEr eXCEPTIONS ...ttt et e e e aaeeeaans 97
Adding fields to USer eXCEPLiONScviiii it 98
SV D ASICS it 99
(@ =T Y1 PP 99
Initializing the ViSiBroKer ORBoiiii it e eaaeeans 99
CrEating the PO A e ettt ettt et e ettt et 99
Obtaining a reference to the root POA ...t 100
Creating the child POA ... e e aeeas 100
Implementing servant Methods..........coiiii i e 101
Creating and Activating the Servant...... 102
Activating the POA ..o 102
ACHIVAING OB OIS ... 102
Waiting fOr ClIENT FEQUESTES ...ttt e e eaneeaaaas 103
(@] 0 g1 0] [T T €=] 0] = 103
USING PO AS e 105
What is a Portable Object Adapler?c.eooiiiiiii it e e eaanes 105
(0 7N (= 0 011] [0 o Y 106
Steps for creating and USING POAS ...ttt e 106
o0 7 o T | 1T 1 106
(O =TT N T o 109
POA Naming CONVENTION ...t e et eaes 109
ODbtaiNiNg the FOOTPOAo e e aneas 109
Setting the POA POIICIES ... 110
Creating and activating the POA i 110
ACHIVAING OB OISo 110
Activating 0bjects eXPliCIlYo e e 111
Activating objects on demandcoeiiiiiiii i e 111
Activating objects ImPpliCitly ... e 112
Activating with the default servant........ ..o e 112
Deactivating ODJECES ... 113
Using servants and Servant ManagersSeuieeei e e e e et aae e e aaaeeaaanas 114
SEIVANTACTIVATOISttt ettt et ettt et ae e aaeeas 115
ST =T Y 7= 1 g o I o= 101 = 118
Managing POAS With the POA MaNAGEYt eanens 120
Getting the CUMeNt STATeo e e eee e 120
[(0] [0 [T T =Y 7= 120
ACTIVE SEAE .. 121
DiSCArdiNg STAtet 121
= T VSIS = L 121
Listening and Dispatching: Server Engines, Server Connection Managers, and their
010 0 T= T 1= 122

Vi VisiBroker for Java Developer’'s Guide

Server ENgiNe and POAS ...t ettt 122

Associating a POA with a Server ENginec.coviiiiiiiiiiiiiiiiiieicaeenn, 123

Defining Hosts for Endpoints for the Server Engine............ccoooeevvinne... 124

Server CoONNECLION MaNAQEIS ...ttt et e et raaaee e aaneeenn 124
= T =T [o P P 125

] 1= T 125

DISPATCNEY .. e 126

When to USe theSe PrOoPerties ...t e aees 126
Y0 F= T o] (Y = 1o V7= 1 0 = 128
PrOCESSING FEOUESTS ..ttt ettt ettt ettt et et et e e eean e e ee e eeeaanneeaanneenn 128
Managing threads and cCONNECLIONSccoviiiiiiiiiiiiiiiiieeeaaaas 131
L3 o o T 1 0 /== T 131
Listener thread, dispatcher thread, and worker threads.............ccoviiiiiiiiiiininn. .. 132
B I 1 == T I o T LT == 132
Thread POOI POIICY ..ttt e ettt e e e et e e e e e eaneeaanns 132
Thread-per-seSSiON POIICY ... et aaas 135
(@] o] T=Tox uTo] o o g F= T T= o =T 0.0 =7 o | S 136
PeerConnectionCurrent INTerface.ooe ot 137
ST V=T g =1 o 1 1= 138
SErverENgiNe PrOPEITIESttt aaeeas 138
Setting dispatch policies and Propertiescoo i 139
Thread pool dispatCh POIICYo..eeiii e 139
Thread-per-session dispatch POlICYo 141

(@Yo [TaTe I oT0] g 1] o [=T = 1 (o] o - 141
Setting connection Management ProPertieS .. .uui ettt e eeaeeeaaeeaaanes 141
Valid values for applicable propertiesc.covvieiiiiiiiiiii e 142
Effects of property Changes......coooiiiiiii i e e 143
Dynamically alterable properties 143
Determining whether property value changes take effect.......................o... 143
Impact of changing property valuesc.ooiiiiiiiiii e 143

High scalability configuration for VisiBroker for Java (using Java NIO) 144
Garbage COIECHION ... o e 144
How ORB garbage collection WOIKS........ouiiiiiii i 144
Properties related to ORB garbage collection ..., 145

Using the tie mechanism ... 147
How does the tie mechanism WOrK? ... e aae 147
S0z T a 0] o] L= o e T =T o o TP 147
Location of an example program using the tie mechanism.......................... 147
Changes 10 the SEIVEr Classiiiiiiii i et aeeens 148
Changes to the ACCOUNTMANAGETiiiiii it eaeeaans 149
Changes to the ACCOUNT ClaSSciiiiiiiii e e aaeeens 150
Building the tie eXample ... e 150

I ENT DASICS i 151
Initializing the VIiSiBroKer ORB ...t e eaaas 151
BiNAIiNG 10 OB J@CTS ...t e 151
Action performed during the bind ProCessccoiiiiiiiiiiiiiiiii i eeens 151
INvoKing operations 0N an ODJECT ... e e 152
Manipulating ObJect referenCeS ... e 152
Converting a reference to a Stringooii i 153
Obtaining object and interface NamMeso 153
Determining the type of an object reference...............ooiiiiiiiiiiiii, 153
Determining the location and state of bound objects..........c.ccocvviiiiiiiiinnn. 154
Narrowing ObJeCt FefErENCES ... uiii e et aaaeeanas 154
Widening ObjJect referenCeSo e 154

VisiBroker for Java Developer’s Guide Vii

Using Quality Of SErviCe (QOS) ..uuiiiii ittt ettt et e et eaaneeanas 155

Understanding Quality of Service (QOS)uiiiiiiiiiii i 155
Policy overrides and effective poliCies.......coooiiiiiiiiiii i 155

(@ L0 1S T) (=Y = Lo = 155
Org.0mMQg.CORBA.ODJECT. ...ttt eae e 155
com.inprise.vbroker.CORBA.ODJECTcciiiiiii e 156
0rg.omg.CORBA.POICYMANAJENceneeieiiae i eaens 156
0rg.omg.CORBA.POHCYCUITENT ...t eens 156
com.inprise.vbroker.QoSExt.DeferBindPOlicyocoiiiiiiiiiiiiiaia... 157
com.inprise.vbroker.QOSEXxt.

ExclusiveConnectionPOlICY ..o 157
com.inprise.vbroker.QoSExt.RelativeConnectionTimeoutPolicy 158
org.omg.Messaging.RebindPoliCyccoviiiiiiiiii e 158
org.omg.CORBA.Messaging.RelativeRequestTimeout

0 1T Y 160
org.omg.CORBA.Messaging.RelativeRoundTripTimeout

0 1T Y 161
org.omg.CORBA.Messaging.SyncScopePoliCycocvviiiiiiiiiiiieennnnn. 161

(o =T o 1] o 162

(00T [T = W1 o o [] o P 162
TYPES Of COUB SOtS ...t 162
NatiVe COOE SeT. ... e e 163

Conversion Code Set (CCS) «uuiiuuiii it 163
Transmission Code Set (TCS) ..ttt 163

(070 [=IRST=) M\ [=To o] 1 = U1 o] o [P S 163

S10] o] oJo] 5 (=T I 00 To [T ST Y = PN 163
Deploying client-only applications using Client Run-timecooooiiiiiiiiiiennnn.. 163
LU L= T= T TP 164

[1 T 15 P 165
Y uoTo [Tod o] o T o T 0T I PPN 165
How the IDL compiler generates COUEo.eiiiiieiii i e 165
Example IDL SpecCifiCation.o e 165
Looking at the generated COUEo e e eee e 165
_<interface_Name=Stub.jaVvao 166
<interface_Name= . JAVAcooiiiii et 166
<interface_name=Helper.java........ ... 166
<interface_Name=HOIder. Java..........coiiiii i i eeanes 168
<interface_Name=0peratioNS.JAVauuiiieiiieieiieeai i eaeeeeaneeeeanees 168
<interface_Name=POA . JaVa.....ccuiiiiii it er e aaes 169
<interface_Name=POATIE. JaVaAuuiiii i e aaes 169
Defining interface attributes in IDLooiiiiii e 170
Specifying one-way methods with no return value..........c.ooooiiiiiiiiiiiiiiiiiie e, 170
Specifying an interface in IDL that inherits from another interface........................ 171
Using the Smart AQeNT......ooiiii et e eeanas 173
What iS the Smart AQeNt? ettt e e 173
Best practices for Smart Agent configuration and synchronization................ 173
General gUIdElNES ... e 174

Load balancing/ fault tolerance guidelines, 174

Location service guidelines ..o oo 175

When not to use a Smart AgeNt ...t 175

[WoTor=Nu1 e ST 0 F= T fl AN =T o | £ 175
Locating objects through Smart Agent cooperationcccveeviiiiiiiiiinnnnnn.. 175
Cooperating with the OAD to connect with objects ..o, 176
Starting a Smart Agent (0SA0ENT) .. .uuii i e 176

RV =] g 0 To =0 1 U 1 o 111 S 177

viii

VisiBroker for Java Developer’s Guide

Disabling the agent.......cooiiiii i e e 177

Ensuring Smart Agent availability.........ccoooiiiiiiii 178
Checking client eXiSteNCE ..ot e 178

Working within VisiBroker ORB dOMaiNScoiiiiiiiiiiii it e aaeeens 178
Connecting Smart Agents on different local Networks.........coooiiiiiiiiiiiiiiiiiiiinanes 179
How Smart Agents detect each other....... ..o 180
Working with multihomed hOStS ... e 181
Specifying interface usage for Smart AgeNntS.......cccoviiiiiiiiiiiiiiiiiiiieieeen, 182
Using point-to-point cOmMmMUNICAtIONS ... 183
Specifying a host as a runtime parameter, 183
Specifying an IP address with an environment variable 183
Specifying hosts with the agentaddr file ... 183
Ensuring object availabilitycooiiiii e 184
Invoking methods on stateless ObJeCtS......cvviiiiiiiii e 184
Achieving fault-tolerance for objects that maintain state 184
Replicating objects registered with the OAD..........ociiiiiiiiiii et 184
Migrating objects between hOSES ..o e eeeas 185
Migrating objects that maintain state............c.ooiiiiiiiiiiiiiii e 185
Migrating instantiated ODJeCtS.... ..o e 185
Migrating objects registered with the OAD ..ot 185
Reporting all objects and SErVICES ... e 186
BiNdiNg 10 O @CtS. .. et 186
Using the Location SerViCeoooiiiiiiiiii e 189
What is the LOCAtiON SerVICE? ... e e 189
[WoTor=YuTo] g IST=T oV ToT= I oXe] o8] o o] g 1] o | £SO 190
What is the Location ServiCe agent?coviiiiiii it ee i eeaaeeeeaaas 190
Obtaining addresses of all hosts running Smart Agents...................... 191

Finding all accessible interfacesooviiiiiiiiiii e 191

Obtaining references to instances of an interfaceccoooovenel. 192

Obtaining references to like-named instances of an interface.............. 192

ATAT b= L ESR= B o T o 1= 192
Looking at trigger Methodscoiiiii e 193

(O £=T= 1| [o [o =] = 193

Looking at only the first instance found by a trigger 194

QUETNYING AN A0BNT ..ttt e aaan 194
Finding all instances of an interface......... ..o, 194
Finding interfaces and instances known to Smart Agents..........ccccoeevviiiennn. 195
Writing and registering a trigger handlerc.ooiiiiiiiii e 198
Using the VisiNaming ServiCe ..ot 201
L@ 1 201
Understanding the NameSPace ...t et aaaeeeaanees 202
I F= T T g e T o0 01 (= P 202
Naming CoNteXt fAaCLOMIES ..o e e e aee s 203
Names and NameCOMPONENT ..ot aaaaeeanas 203
NAME FESOIULION L. ettt et et eeaaas 204
SEriNGIfied NAMES ... e 204

Simple and COMPIEX NAMES ... 204

Running the ViSiNaming ServiCeo 205
Installing the VisiNaming ServiCeo 205
Configuring the VisINaming ServiCe ..o 205
Starting the VisiNamMIiNg SerViCeot e aaen 205
Starting the VisiNaming Service with the vbj command...................... 206

Invoking the VisiNaming Service from the command line...........ccoooiiiiiiiiiiiinn.. 206
(@] o 1 1Te 18T T To N 1S 1 | P 206
RUNNING NSULIL . ..ttt e e e aaes 207

VisiBroker for Java Developer’'s Guide

[

Shutting down the VisiNaming Service using nsutil ..o, 207

Bootstrapping the VisiNamMing SEerviCeooiiiiiiii i e eeaas 208
Calling resolve_initial_referenCes.coviiiii i e 208
USING -DSVCNAMEIOOT ...ttt et e e e aae e eanees 208
USING -DORBINITRET ... e 208

UsiNg @ COrbaloC URL ...t e e e e eaee e 208
Using a corbaname URL ..o e e eeeas 209
-DORBDEefaUltINItRET ... e 209
Using -DORBDefaultInitRef with a corbaloc URL...............ccooiiiiiaii. 209
Using -DORBDefaultInitRef with corbaname........................... 209

= T 011 o T 0] 1 = q X 210

[N F= T T gL [0 g 1= g 210

Default NamMING CONEXES. .. .ttt ettt ettt e e et e e e e raaneeeaanneeann 211
Obtaining the default naming CoONteXtccciiiiiiiii i as 211
Obtaining naming conteXt faCtories.c.ccuviiiiiii e 211

AVAESTINE= Taa o le IST=T Vi [ol= TN o] o] o =] £ 1= 211
[IoTo To 1 aTe I o] o] o =T g £ T= 1= 214

Pluggable Backing STOIe ..o e et eeens 214
Types Of DaCKING STOFES. et eeens 214

LT aT=T g aTo] Y=o F= o (=T P 215
JDBC AdaPler . 215
DataEXPress adapter e 215
N1 = Vo = T o) (= o 215
(@] g1 To [T =X u o] o 1= T Uo B = - 215
Properties file ... s 216
NI B 2 0N o F=T o 1Yl o] fo] o1=T g £ == 216
DataExpress Adapter ProPertiesoui i it aaas 218
N\ B =T F=T o) (=] gl o] fo] o 1=T o W 1= 1S3 218
Configuration for OPENLDAP ...t eaaas 219
LOF= Tod o 11 0T i =171 L1 Y/ PP 219
Important Notes for users of Caching Facilityccioiiiiiiinnnnn. 220

L@ o] =T ot SO 11 1] 1 =T 220

(@] o] T=Tox @4 18 L) o] 1 To o) (=] o - 221
Cluster and ClusterManager interfaceso, 221

IDL Specification for the Cluster interface..........c.oooiiiiiiiiiiiiiiiiiii.. 222
IDL Specification for the ClusterManager interface.............cccoeevvevn... 222
IDL Specification for the NamingContextExtExtended interface............ 223
Creating an 0bJeCt CIUSTENiiii i et eaanes 223
Explicit and implicit object CIUSTErsoooiiiiiii e 224
Load DalanCing ... 225
L0 o] =T o3 7= 1] (o)Y/ 225
Pruning stale object references in VisiNaming object clusters 225

VisiNaming Service Clusters for Failover and Load Balancingc..ccoceviieinatn. 226
Configuring the VisiNaming Service CIUSTer.........ccviiiiiiiii i eaeenas 227
Configuring the VisiNaming Service in Master/Slave modecooo... 228
Starting up with a large number of connecting clients 228
VisiNaming service federation 229

ViSINaAMING SErVICE SECUIITYttt 230
Naming client authentiCationooiiiiiiii i e 231
Configuring VisiNaming t0 USE SSL ...uiuiiiiiiiiiii i e eeaaes 231
Method Level AUthOriZation....... ..o 232

L gToTo] o =Y = N =T 0 1= | 233

Y= T g o] (=3 o1 Yo = g 1= 234
Binding @ Name eXampPle ... 234

Configuring VisiNaming with JDataStore HA ... aeeaes 236
Create a DB for the Primary Mirrorooeoi i 236
Invoke JdsServer for each listening coNNECtioN...........ccoiiiiiiiiiiiiiiiiieaaen. 237

X VisiBroker for Java Developer’s Guide

Configure JDataStore HA ..ottt et 237

Run the VisiNaming Explicit Clustering exampleccoiiiiiiiiiiiiiiiiiens 238

Run the VisiNaming Naming Failover example..........c.ooooiiiiiiiiiiiiiiiiens 239
UsiNg the EVENT SErVICE e 243
L@ =T Y1 PP 243
Proxy consumers and SUPPIEIS ..o e eaaas 244

OMG Common Object Services sSpecificationccviiviiieiiiiiiiiiieaaens 244
ComMmMUNICAtION MOAEIS. et ettt e aaeas 245
PUSH MO ettt 245

PUIl MOdel ... e 246
UsiNg event Channels. e 247
Creating event channels.o e 248
Examples of push supplier and CONSUMIETuiiiiiiiiiiii e eaaaeeas 249
Push supplier and consumer eXamplecccooiiiie i aaeeaaas 249
Running the Push model example ..o e 249
Running the PullModel eXxamplecoiiiiiiiiiii e 249

Running the PullView example.......cooiiiiiiiii e 250

P UL SUP DI e e 250

Executing PUIISUPPIYo e 250
Implementation of the pull and try_pull methodsccooooinat. 250

Main method of PUHSUPPIY - .o e 251

PUI CONSUMIE . . e e 252

Executing PUllCONSUME e 252

Starting the EVENt SerViCe. 254
Setting the queue 1eNgth ... e 255
IN-ProCess EVENt ChaNNElo e et e e eaneeaan 255
Using the in-process Event Channel..........oooiiiiiiiiiiii e 256

Java EventLibrary Classcceooiiiiiiiii i 256

JAVA BXAIMIPIE .. e 256

L aToTo) o A=Y = =T 0 g 1= | T S 257
Using the VisiBroker Server Managerccoooeviiiiiiiiiieeiaiaeanns 259
Getting Started with the Server Managerc.coiiiiiiiii i eieeeee e 259
Enabling the Server Manager ON @ SEIVEIciiuiii i eaens 259
Obtaining a Server Manager referencCeooieiiiiiiiii i 259
Working With CONtaINersS ... 260

The Storage INterface. ... e 260

The Container INterface e 261
(070] o) = 1] g T=T g od F= 1= 261
Container Methods fOr JAVacoiiiiiii e 261
Methods related to property manipulation and queries....................... 261

Methods related tO OPerationsc.eeiiiiiiii i eaaeeas 262

Methods related to children containerscooieeiiiiiiiiiiiiiiiieeenns 262

Methods related tO STOragecceviiiiiiiiii e aaees 263

The Storage INter aCe .. .o e r e eaaas 263
Storage Interface Class and MethodsS.......c.ooiiiiiiii i e 264

S o] =T [T O = T 264

Storage Interface Methods.......coooiiiiii i e 264

Limiting access to the Server Managero 265
Server Manager IDL ... 265
Server Manager eXamPleso 267
Obtaining the reference to the top-level container............ccoviiiiiiiiiiiiinnn.. 267
Getting all the containers and their propertiescocooiiiiiiiiiiiiiiiiiiiiieen. 268
Getting and setting properties and saving them into the file 268
Invoking an operation in @ CONtAINEerc.oiiiiiiiii e aeeens 269
OIU Ly o] 0 g [N OTo] o] ¥= 1] o T=T = S PP 270

VisiBroker for Java Developer’'s Guide Xi

Using VisiBroker Native MessagiNguuueuiiiiiiiiiiiiiiiiaaaaann. 271

1 o) 1 e To [T4 1 o] o S 271
Two-phase INVOCAtioN (2P1) ... e aeeeaas 271
Polling-Pulling and Callback models ..o 271
Non-native messaging and IDL mangling........coooviiiiiiiiiiiiiiii i eeaes 271
Native Messaging SOIULION ... e aaees 272
REQUEST AQENT ... e 273
Native Messaging CUITENT. ... e enes 273
LO7o] £ 0 01T = £ [0 0 1= PP 274

StockManager eXampPleo et 274
Polling-pulling model ... 275
Callback MoOdel et 277

0 A V7= T 1o =T N e o (2= 279
LT 0 10T I o T 1 11 T [279
Cookie and reply de-multiplexing in reply recipients........cccoviiiiiiiiiiiiiennn, 281
Evolving invocations into tWo-phasescviiiiiiiiii e 282
(R L=T 0] Y20 [0 0] o 11 o [284
Manual trash COHECTIONcoii e e 284
Unsuppressed premature return MOAeeiiiiiiiiiii i eaaaas 285
Suppress poller generation in callback modelo 286

Native Messaging APl SPeCIfiCatioNc..ciieiiii e ees 286
Interface ReqQUESTAGENTEX ... oo i 287

create_requUEST PrOXY () «euaceue et e 287
(o [Ty 1 o) Y =Te (B T=2S] o S 288
INtErTace REQUESTPIOXY ...ttt ettt ettt e e e taan e eeanae e eaneeaanns 288
LTSI =10 =Y LY=o 288
701 289
[0 =2} 1 0)Y/ P 289
Local iNterface CUITENT. et ettt aneeans 289
10T o o] =113 0 10T [() 289
(A2 U A T 0 1T o T) 290
ThE _COOKIE .. e 290
[0S0 [U TSy S = o 290
The POl .. 290
reply_not_available 291
Interface ReplyRECIDIENT. e 292
reply_available() ..o s 292
Semantics Of COre OPEratioNSuiiiii i eaeeeaanes 292

Native Messaging Interoperability Specification...........ccovviiiiiiiiiiiiiiiiiiiie i 293
Native Messaging uses Native GIOP ... e 293
Native Messaging ServiCe CONTEXL ...u.uueiiiii i e eaaes 293
NativeMessaging tagged COMPONENTcoiiiiiiii i eaaes 295

USING NatiVE MESSAGING .« . ettt et ettt ettt et e e e e e e rneeanenanneane 295
Using request agent and client model..... ..o e 295

Start the ReqUEST AQENT. 295
ReqUEST AGENT URL ...ttt e e aeeeees 295
Using the Native Messaging client model, 295
Request Agent VbroKer properties.o 296
vbroker.requestagent.maxThreads. ..o 296
vbroker.requestagent.maxOutstandingRequestscccevviieviiinnnnnns 296
vbroker.requestagent.blockingTimeout..........coeeviiiiiiiiiii s 296
Vbhroker.requestagent.rOULENIOrNuuii it eaeeeaas 296
vbroker.requestagent.liSteNer.POrtooviiiiiiii i 296
vbroker.requestagent.requestTimeOUL.......cvviiiiiiiiiiiiii i eiieeeeaaas 296
Interoperability with CORBA MeSSagiNg ...vuuuiiiiiiiiiiii i veieeeaeeeaas 296

Xii VisiBroker for Java Developer’s Guide

Using the Object Activation Daemon (OAD)......cooiiiiiiiiiiiiiinnnnn. 297

Automatic activation of Objects and SEerversc.ciiiiiiiiii e 297
Locating the Implementation Repository dataooevviiiiiiiiiiiiiiiiiieennns 297

X od A= T T =T V= 297

L L= T < AN 5 298
StArting the OAD ... ettt 298
USIiNG the OAD UTIHITIESeo e ettt et nernens 299
Converting interface names to repository IDSccoiiiiiiiiiiiciii e 299
Listing objects with oadutil liSt...... ..o e 300
Registering objects with cadutill 301
Example: Registering a POA ... 302

Example: Specifying repository ID ..o 303

Example: Specifying IDL interface name........c.coooiiiiiiiiiiiiiiiiiieieaaen 303

Remote registration t0 an OADeiiiiiiiii i 303

Using the OAD without using the Smart Agent..........ccoviiiiiiiiinnenn... 304

Using the OAD with the Naming Servicecccoviiiiiiiiiiiiiiiiiiiieieeeen 304
Distinguishing between multiple instances of an object ...l 305
Setting activation properties using the CreationlmplDef class...................... 305
Dynamically changing an ORB implementation..............c.cooviiiiiiiiiiiiiinnnn. 305

OAD Registration using OAD::reg_implementationc.ccocviiiiiiiiieiinn. 306
Example of object creation and registrationcooooiiiiiiiiiiiiii et 307
Arguments passed by the OAD ... e 308
UN-registering 0D JCtS ... e e 308
Un-registering objects using the oadutil tool ..., 308
Unregistration exXampleooiiiii i 309
Unregistering with the OAD OpPerationscccvviiieiiiieiiiii i i eeaiaeaanas 309
Displaying the contents of the Implementation Repository...........cceevvveeannn. 310

IDL iNterface t0 the OAD ...t e et ae e 310
Using Interface REPOSITONIESoviiiiiiiiiiiii e 313
What is an Interface RepPOSITONY 2 ... it aaaeeas 313
What does an Interface Repository contain?coovieiiiiiiiiiiiiiiiiiiiie e 313

How many Interface Repositories can you have? ..., 314
Creating and viewing an Interface Repository With irepcooiiiiiiiiiiiiniennnn. 314
Creating an Interface Repository With irep........ccooiiiiiiiiii e 315
Viewing the contents of the Interface Repositoryo, 315
Updating an Interface Repository with idI2ir...., 316
Understanding the structure of the Interface Repositorycooooiiiiiiiiiiiiiiiin. 316
Identifying objects in the Interface ReEpOSItOryc.cvvviiiiiiiiiiiiiiiciiiiieen 317
Types of objects that can be stored in the Interface Repository 317
INherited INterfaces.o e 318
Accessing an Interface RePOSITOIY ...t e aeees 319
Interface Repository example Program.o e raaaeeanas 319
Using the Dynamic Invocation Interface ...l 321
What is the dynamic invocation interface?c.oviiiiiiiiii i e 321
Introducing the main DI CONCEPLSuiiiiiiiii e aaeee s 322
USING requUEST ODJECTS. ...t e ae 322
Encapsulating arguments with the Any typecoooviiiiiiiiiiiiiiiieeens 323

Options for SendiNg FreQUESTSo e 323

Options for receiving replies.o 324

Steps for invoking object operations dynamically ...l 324
Example programs for using the DIo e 324
Using the idl2java COmMPIlErco i e e eaas 324
Obtaining a generic object referenCe.... ..o e 324
Creating and initializing @ reqUEST ...t e eaaees 325
REQUEST INTEITaCE ...ttt aas 325

VisiBroker for Java Developer’s Guide

Xii

Ways to create and initialize a DIl reqUeSt........oiiiiiiiiiii e 326

Using the create_request Methodc.ooiiiiiiiii i e 326
Using the _request Methodo e aes 326
Example of creating a Request ObjJecCt.......cccoviiiiiiiiiiii i 327
Setting arguments for the reqUEeSTot e 328
Implementing a list of arguments with the NVList..................ciieint. 328

Setting input and output arguments with the NamedValue Class.......... 328

Passing type safely with the ANy Class........ccooeoiiiiiiii e 329
Representing argument or attribute types with the TypeCode class............... 329
Sending DIl requests and receiving resultso 331
INVOKING @ FEQUEST ..o e 331
Sending a deferred DIl request with the send_deferred method 331
Sending an asynchronous DIl request with the send_oneway method 332
Sending MUILIPIE FEQUESTESuii ettt v e e aeeeaaas 332
Receiving MUILIPIE FEQUESTS ...t e aees 332
Using the interface repository with the DIl ..o e 333
Using the Dynamic Skeleton Interface.............coooooiiiiiiiiiiiinnnns 335
What is the Dynamic Skeleton Interface?......coooviiiiiiii i e 335
Using the idl2java COmMPIler.o e 335
Steps for creating object implementations dynamically ...t 336
Example program for using the DS ... e 336
Extending the Dynamiclmplementation ClassS..........coiiiiiiii i 336
Example of designing objects for dynamic requests..........c.oooiiiiiiiiiiiiian.. 336
Specifying repoSitory IdSo e 338
Looking at the ServerReqUEST ClasS.......iciiiiiiiiiii e e eaeeeas 339
Implementing the ACCOUNT ODJECT ..o e aneeas 339
Implementing the AccountManager ObJectccoviiiiiiiiii i 340
Processing INPUL ParamEterS ... ittt aee e eaneas 340
Setting the returN ValUeo e aaes 341
Server IMPlemMENTatiONo ettt et aeeans 341
Using Portable INterCePtOrS. ..o eeeeee e 343
Portable INtercepltors OVEIVIEWottt eaaen 343
TYPES Of INTEICEPTONS ...ttt et e et e e e e eanen 343
Types of Portable INterCeptors.coiiii e e eaee e 344
Portable Interceptor and Information interfaces....... ..o, 344
[) =] oT=T 0] o] gl od F= 1= S 344

YT 0[BTy 1 1 T o7 =7) (o] S 344
ClieNtReqUESTINTEICEPION ...ttt aaaes 345

Clent-Side FUIES. ... e 346
ServerRequUESTINTErCEPTOL 346
SErVEr-Side FUIESt 347

1@ § 0] €] o1 0] 0] 348
Portable Interceptor (P1) CUMTENt.t eaaes 348

L0 T L= o PP 349

LOTa T = Tod = Tox 1 0 VPPt 349
Creating a Portable INterCeplor e eaee e 349
Example: Creating a Portablelnterceptor...........cooeiiiiiiiiiiiiiiciiineenns 350

Registering Portable INterceplors. e 350
Registering an ORBINItIaliZer.o e 351
Example: Registering ORBInitializer......ot 352

VisiBroker extensions to Portable INterceptors.......cccvviiiiiiiiiiiiiiiiiiiiieannnn. 352

POA scoped Server Request INterceptors......cvvvieiiiiieiiiiiiiiiieeiieeanns 352

Inserting and extracting system exceptionsccceeviiieiiiiieieiinennnnnn. 353

Limitations of VisiBroker Portable Interceptors implementation.................... 353
ClientRequestIinfo lIMitationscoiiiiiiiiiii e 353

Xiv VisiBroker for Java Developer’s Guide

ServerRequestinfo limitations........cooviiiiiiiii e 353

Portable INnterceptors eXampPles.o it 354
[T] o] L= ol 1T=T oY A=Y V= 354
ODbjectiVe Of eXamMPIe. ...t 354
IMPOrting requIired PaCKaAgESuu ettt et eaneeens 354
Client-side request interceptor initialization and registration to the ORB 355
Implementing the ORBInitializer for a server-side Interceptor 356
Implementing the Requestinterceptor for client- or server-side Interceptor... 357
Implementing the ClientRequestinterceptor for Client ...l 357
The void send_request(ClientRequestinfo ri) method......................... 357
The void send_poll(ClientRequestinfo ri) method 358
The void receive_reply(ClientRequestinfo ri) method......................... 358
The void receive_exception(ClientRequestinfo ri) method................... 358
The void receive_other(ClientRequestinfo ri) method......................... 358
Implementing the ServerRequestinterceptor for Server..........ccovviieiiiiiennn. 360
The void receive_request_service_contexts (ServerRequestinfo ri) method

361
The void receive_request (ServerRequestinfo ri) method 361
The void send_reply (ServerRequestinfo ri) method 361
The void send_exception (ServerRequestinfo ri) method.................... 361
The void send_other (ServerRequestinfo ri) method.......................... 361
Developing the Client and Server Applicationc.ooooiiiiiiiiiiiiiiiiiiians 364
Implementing the client application......... ... 364
Implementing the server application ... 366
Compilation ProCEAUNE. 367
Execution or deployment of Client and Server Applications 367
Using VisiBroker INterCeptorsooiiiiiiiiiiii i eeeaans 369
Ll CeTgot=T o) (o] EST 0)V ST T 369
Interceptor interfaces and MaNAgErS ..ot aaaeeanas 370
(O 1T=T ol 1 g (=] o= 0] (0] =T P 370
=TT o] 11 (=] o =T o X PP 370
ClientRequUESTINTErCEPTON e eaes 370
Y= V7Tl T g Y €T o =T o {0 = 371
POALIfeCYCleINterCepPtOr 371
ActiveObjectLifeCyclelnterceptor 372
ServerRequeStINtErCePLON 372
[{OIR 01 g=T-NuTe] o] o) (=] o =7 o] o o 373
Service ResOIVEr INterCEPIOr ... e aaeeas 373
Default INterceptor ClasSesS. ... e e eaaas 373
Registering Interceptors with the VisiBroker ORBcooiiiiiiiiiiiiiiiiiiinns 373
Creating INterceptor ODJECTS ... it e 374
[IoT=To [T o T 1 g} =] fod =Y o o] = 374
EXamPle INTEIrCEPTOIS ...ttt ettt et et aneeaneens 375
EXAMPIE COO. ...t 375
Client-server Interceptors examplecooiiiiiiiiiiiiii i 375
ServiceResolverInterceptor example.........cooiiiiiii i 376
(@70 Yo =N 1153 [o 1= 378
SaMPIESErVErLOAAErt 378
SamplePOALifeCyclelNterceptoro 379
SampleServerlinterCePlOr. ... 380
SampleChentINterCePtOr ...t 381
Y= T g} o] [T 1= 01 e Y= T [382
SampPleBIiNAINTErCEPtOr. .. 383
Passing information between your INterceptorscoviiiiiiiii i eeiaeen, 384
Using both Portable Interceptors and VisiBroker Interceptors simultaneously 384
Order of invocation of interception POINTSccviieiii i 384

VisiBroker for Java Developer’'s Guide XV

(O 1T=T o) aES T LI 1 g =T o =] o] (o] =P 384

YT VT T o L 1o} (=] o= o) 0] = 385
Order of ORB events during POA Creationocveiiiiiiiiiii i eeeeeeas 385
Order of ORB events during object reference creationccovvviiiiiiiennnne. 385
W1ST] aTe el o =03 MRVAV/ =¥ o o =] = 387
(@ oY 1Tod AV = Vo] o =T =N o)V /=] V1= 387
Typed and un-typed ObJECt WIAPPEIS ...ttt e aneeanens 387
Special idl2java reqUIr€MENTScoiiiii e eeeaas 388
Object wrapper example appliCatioNScovieeiiiii i aae e 388

6] oYY 01T [o o] [=To MY Y/ =Y o o= = 388
Using multiple, untyped object Wrapperscoooiiiiiii i 389
Order of pre_method INVoCationo 389
Order of post_method iINVOCAtION.......ciiiiii i e as 389
USIiNg UNTYPEd ODJECT WA PPEIS . uuiiieteiii ettt ettt et e e e e e e e e eaae e eaanneann 389
Implementing an untyped object wrapper factoryc.cooeiiiiiiiiiiiiiiiinnnns 390
Implementing an untyped ObJeCt WIapPPer......coviiiiiii i eeeeeeaas 391
pre_method and post_method parameterscoovviiiiiiiiiiiiiinnans 391

Creating and registering untyped object wrapper factories...........cccceviieeennn. 392
Removing untyped Object Wrappersoceoieiii i 394

Y/ ST I] o] T=Tod MY/ =T o 011 = PP 394
Using multiple, typed ObjeCt WIrapPersS.cvieii i 395
Order Of INVOCAtION e 396
Typed object wrappers with co-located client and serversccccvvieean.. 396

WS TaTo T 1Y/ oT=Te le] o] T=Tox A1V =T o] o= o= 396
Implementing typed ObJeCt WrapPersSovviiiii i eeeeeaas 397
Registering typed object wrappers for aclientccoooiiiiiiiiiiiiiiii e, 397
Registering typed object wrappers for a Server........covviiiiiiiiiiiiii i, 398
Removing typed ObjJeCt WIaPPerS . ..ou it 400
Combined use of untyped and typed Object Wrappersc.ccoviiiiiiiiieiiiiiiiiiieeeaaeenns 400
Command-line arguments for typed Wrapperscooveiiiiiiiiiiii i eaans 400
Initializer fOor typed WIaPPEI'Sttt ettt e e e ene s 401
Command-line arguments for untyped Wrappers.c.oocveieriiiienaeiienanenns 402
Initializers for uNtyped WIaPPErScueoi it e 402
Executing the sample applications i 403
Turning on timing and tracing object wrappersccoooiiiiiiiiiaaia... 404

Turning on caching and security object wrappers..........cccoooviiiiiiaaa... 404

Turning on typed and untyped WIapPPerS. ...ueuiiii et e eaineeeaaneeeaanes 404

Executing a Co-located client and SErverccoviiiiiiiiiiiiiiiieiieaanns 405

EVENT QUEUE ...ttt e aee e iaeaeeaaaaas 407
Y 7= o I 1Y/ 12 407
(Ofe] gl T=Toi uTe] =AY =T o | K PP 407
=T o) W 1151 (= 1T = P 407
L1 e 1= 7 011 1 o T PP 407
CoNNINTO STIUCTUNEt 408
EventListener iNterface ... e 408
ConnEventListeners INterface........oov oo 408
EventQueueManager iNterfaceccooviiiiiii i 408

How to return the EventQueueManagercuii ot eaeeaas 409
Event Queue COde SamMPIeS e 409
Registering EVentLiSteNerso 409
Implementing EVENTLIStENErS.ot aaes 410

UsiNg RMI over LHIOP ... e 411
OVErVIEW OF RMI OVEE HIOP .. ettt eeeeeaaeees 411
Setting up Java applets with RMI-TIOP ... 411

Xvi VisiBroker for Java Developer’s Guide

javaziiop and javaidl t0O0ISeiiii i e 411

LU L= T = Y= V2 1[0 1 411
Y8 o] o] =To BT | (=g = U= L= 411
RUNNING JAVA 210D 1.ttt ettt ettt ettt e e e e e e e aanes 412

Reverse mapping of Java classes to IDL.......ccooviiiiiiiiiiiiiiiiiiieeaee 412
Completing the development ProCeSScviiiiiiii i aaens 413

RMI-TIOP Bank @Xamiplet e et et ettt rneas 413

AS10] o] o] g =To e = = B 14 011 PPN 415
Mapping primitive data tyPeS. ... oo e 415
Mapping complex data tYPeS 415

g (=] = Tt 415
N 7= 74T 416
Using the dynamically managed types........cciiiiiiiiiiinnnnn 417

DYNANY INTEIrTACE OVEINVIEWttt ettt e et e e eannes 417
DY NANY EXAMIPIES ...ttt ettt ettt 417

LD N)Y 14 0 T 417
DYNANY USAQE FeSTIICHIONS. ..ttt eeaeeeaaas 418
CrEatiNg @ DY N ANY ittt ettt e 418
Initializing and accessing the value in a DYNANY ... 418

(000] =1 1 gU o1 (=To o F=X =T Y/ o 1T PN 418
Traversing the components in a constructed data typeccccviieviivinennn. 419
0] =1 T P 419
[0 0 15 1 U o A P 419
[0 1181 T o 419
DynNSequenCe and DY NAITAYeeeie ittt e et e et e raanaeeaaneeaann 419

DYNANY €XamMPIE ID L ... ittt et ettt 420

DynAny example client appliCationooiiiii i 420

DynAny example server appliCationo.coiiiiiiiii i e 422

USING ValUB LY DS ..ttt ettt e e eaaans 427

UNderstanding ValUETYPESueiiii ettt et ettt e et e e e e annes 427
Valuetype IDL cOde SamIPIe ... e 427
(0o gTod g=] I =Y 1B =1 Y/ o 1= 427

Valuetype derivVationocoieiii i 427
Sharing SEMANTICScni e e 427
NUIL SEMANTICS ... 428
= 1o (0] [428
ADSTract ValUetyPesS. . ..o e 428

IMPleMENtING ValUB Y PES ...t ettt e et aae e e aneeeanns 428
DefiNing YOUr VAlUBTYPES ..ottt et r e eaneeanas 428
Compiling YOUr IDL file ... e aaaaeas 429
Inheriting the valuetype base Class ... 429
Implementing the Factory Classooiiiiiiiii e 429
Registering your Factory with the VisiBroker ORBcoiiiiiiiiiiiiiiiiiieaans 430

IMpPlemMENtiNg faCtOrIES e e aaeeanas 430
Factories and ValUetyPes. ..ot e reeas 431
Registering ValUBLYPES ...t et eeeas 431

BOXEA VAIUBTYPES . ..t et eas 431

ADSTract INTEr aCES ... o e 431

O 1) o] 0 g IRV 2= 111 1< 1Y o 1= L= 432

Truncatable ValuetyPeso e 433

USING URL NAMING .t eeeeeeeneanaaaas 435

URL NAMING SEIVICE ...ttt ettt ettt aaeeas 435
URL Naming Service eXampPles.o i aeeas 435

RegIStering O JECTS. e 436

VisiBroker for Java Developer’s Guide Xvii

Locating an 0ObJECt DY URLoiiiii ittt ettt e e e eaneaanas 437

Bidirectional Communicationcooiiiiiiiiiiii i 439
L8171 T [] 1o 1 =Y ox 1 o o F= LI 1 1 439
Bidirectional VisiBroker ORB Properties.ouiiiiie it aaeeeaas 439
About the BiDirectional eXxamplesooiiiiiiiii e 440
Enabling bidirectional 110OP for existing applicationscccvviiiiiiiiiiiiiiiiiiieas 441
Explicitly enabling bidirectional THOP...... ... e 441

Unidirectional or bidirectional connNectionsccoiiiiiiiiiiiiiiiii e 442
Enabling bidirectional TIOP fOr POAS. ..o e 442
Security CONSIAEIratiONS et et 443

Using the BOA with VisiBroker..... ..o 445
Compiling your BOA code With ViSIBrOKer.iiiiii i 445
SUppPOrting BOA OPLIONS ...t e e 445
Limitations in USING The BOA ...ttt ettt e et e e e e e e eaaneeans 445
WL [aTe o] o] =Tt =Tt V7= 1 o] 1 P 445
Naming objects under the BOA e aes 446

(O o] =T ot M 0 F=1 0 01T P 446

UsiNg ObJect actiVatorsSooviiiiiii e ee e 447
Deferring objJect actiVation..........oiiii i e 447
ACTIVATOT INTEITACE e et ettt e e e e 447
Using the service activation approach............ooiiii i e 448

Deferring object activation using service activatorscceiieviieeiineneenn.. 448
Example of deferred object activation for a Serviceccooeeviiiiiiininennns 449
Odb.idl INterface. ... 449
Implementing a service activator 450
Instantiating the service activatoro 451
Using a service activator to activate an object..............cccoiiiiiiiini. 451

(O{@] 24 =7 AN =D Cod =T 0 1 1 [0] o 1= T 453
(6{@] 24 2YAN=(el=T o] £ To] o e [=1Tox] o] A o o 0 453
Heuristic OMG-specified @XCePLIONS .. .cuiiiii it raeeeaaas 458
Other OMG-specCified EXCEPLIONS ... ittt eaeeens 459

WeD Services OVEINVIEW ... 461

Web Services ArChiteCtUre oo i e 461

VisiBroker Web Services ArchiteCtureo e 462

WeED Services Artifacts ... e 463

WeD Services RUNTIME ... e aee e 463

Exposing a CORBA object as Web ServiCec.cooiiiiiiiiii e 465
DEVEIOPIMENT e 466

[L= o] ()Y 2 01T o 1 467
SOAP/WSDL compatibilityo e 468
a0 = TSP 469

xviii VisiBroker for Java Developer’'s Guide

Introduction to VisiBroker

VisiBroker is a set of services and tools that enable you to build, deploy, and
manage distributed enterprise applications in your corporate environment.

Accessing VisiBroker online help topics in the
standalone Help Viewer

To access the online help through the standalone Help Viewer on a machine
where the product is installed, use one of the following methods:

Windows
» Choose Start|Programs|VisiBroker|Help Topics

» or, open the Command Prompt and go to the product installation \bin
directory, then type the following command:

help

UNIX

Open a command shell and go to the product installation /bin directory,
then enter the command:

help
Tip

During installation on UNIX systems, the default is to not include an entry
for bin in your PATH. If you did not choose the custom install option and
modify the default for PATH entry, and you do not have an entry for
current directory in your PATH, use ./help to start the help viewer.

Accessing VisiBroker online help topics from within
a VisiBroker GUI tool
To access the online help from within a VisiBroker GUI tool, choose Help >
Help Topics.

The Help menu also contains shortcuts to specific documents within the
online help. When you select one of these shortcuts, the Help Topics viewer
is launched and the item selected from the Help menu is displayed.

VisiBroker for Java Developer’'s Guide 1

Documentation conventions

Documentation conventions

The documentation for VisiBroker uses the typefaces and symbols described
below to indicate special text:

Convention Used for

italics Used for new terms and book titles.

computer Information that the user or application provides, sample
command lines and code.

bold computer In text, bold indicates information the user types in. In code
samples, bold highlights important statements.

[1 Optional items.
Previous argument that can be repeated.

> Two mutually exclusive choices.

Platform conventions

The VisiBroker documentation uses the following symbols to indicate
platform-specific information:

Windows: All supported Windows platforms.
UNIX: UNIX platforms
Solaris: Solaris only

Linux: Linux only

Contacting Micro Focus

Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support

Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

« The Product Updates section of the Micro Focus SupportLine Web site,
where you can download fixes and documentation updates.

* The Examples and Utilities section of the Micro Focus SupportLine Web
site, including demos and additional product documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Also, visit:

2 VisiBroker for Java Developer’'s Guide

http://www.microfocus.com

Contacting Micro Focus

« The Micro Focus Community Web site, where you can browse the
Knowledge Base, read articles and blogs, find demonstration programs
and examples, and discuss this product with other users and Micro Focus
specialists.

» The Micro Focus YouTube channel for videos related to your product.

Information We Need

However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

« The name and version number of all products that you think might be
causing a problem.

e Your computer make and model.

* Your operating system version number and details of any networking
software you are using.

¢ The amount of memory in your computer.
+ The relevant page reference or section in the documentation.

« Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact numbers and addresses.
Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the Product Updates section of the Micro Focus SupportLine Web
site, where you can download fixes and documentation updates. To
connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

» https://www.microfocus.com/products/corba/visibroker/ (VisiBroker trial
software)

» https://supportline.microfocus.com/login.aspx (Micro Focus support
login)
= https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
https://software.microfocus.com/en-us/select/email-subscription

VisiBroker for Java Developer’'s Guide 3

https://www.microfocus.com/products/corba/visibroker/
https://supportline.microfocus.com/login.aspx
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
https://software.microfocus.com/en-us/select/email-subscription
http://www.microfocus.com

Contacting Micro Focus

4 VisiBroker for Java Developer’s Guide

Understanding the CORBA
model

This section introduces VisiBroker, which comprises both the VisiBroker for
C++ and the VisiBroker for Java ORBs. Both are implementations of the
CORBA 3.0 specification. This section describes VisiBroker features and
components.

What is CORBA?

The Common Object Request Broker Architecture (CORBA) allows
distributed applications to interoperate (application-to-application
communication), regardless of what language they are written in or where
these applications reside.

The CORBA specification was adopted by the Object Management Group to
address the complexity and high cost of developing distributed object
applications. CORBA uses an object-oriented approach for creating software
components that can be reused and shared between applications. Each
object encapsulates the details of its inner workings by presenting a well-
defined interface. Use of these interfaces, themselves written in the
standardized Interface Definition Language (IDL) reduces application
complexity. The cost of developing applications is reduced, because once an
object is implemented and tested, it can be used over and over again.

The role of the Object Request Broker (ORB) is to track and maintain these
interfaces, facilitate communication between them, and provide services to
applications making use of them. The ORB itself is not a separate process. It
is a collection of libraries and network resources that integrates within end-
user applications, and allows your client applications to locate and use
disparate objects.

The Object Request Broker in the following figure connects a client
application with the objects it wants to use. The client program does not
need to know whether the object it seeks resides on the same computer or
is located on a remote computer somewhere on the network. The client
program only needs to know the object's name and understand how to use
the object's interface. The ORB takes care of the details of locating the
object, routing the request, and returning the result.

Figure1 Client program acting on an object

Chject a
Client P ogam pqusstsa ORE o Bs Chject A
e race oobects and bndsclienttoit
| Object Feque Broker I

VisiBroker for Java Developer’'s Guide 5

What is VisiBroker?

What is VisiBroker?

VisiBroker provides a complete CORBA 3.0 ORB run-time and supporting
development environment for building, deploying, and managing distributed
applications for both C++ and Java that are open, flexible, and
interoperable. Objects built with VisiBroker are easily accessed by Web-
based applications that communicate using the Internet Inter-ORB Protocol
(110P) standard for communication between distributed objects through the
Internet or through local intranets. VisiBroker has a built-in implementation
of 110OP that ensures high-performance and interoperability.

Figure 2 VisiBroker Architecture

= Ca+ Olnject
- Maming Service
Wisifirok P
IsiEroker W Applet
for fava
i
Web Server U"IMe N
Internet - GateKeeper VisiBroker
F Il
Client reva for Java
Runtime
Java Intranet/
Applet Enterprise [ls] 3

VisiBroker VisiBroker visiBroker
Runtime forlava for C++
Runtime Runtime

Enterprise

= Java Object

- Event Servioe

- SmartAgent
VisiBroker
for T4+
Runtime

VisiBroker Features

VisiBroker has several key features as described in the following sections.

VisiBroker's Smart Agent (osagent)
Architecture

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory
service that provides naming facilities for both client applications and object
implementations. Multiple Smart Agents on a network cooperate to provide
load-balancing and high availability for client access to server objects. The
Smart Agent keeps track of objects that are available on a network, and
locates objects for client applications at object-invocation time. VisiBroker
can determine if the connection between your client application and a
server object has been lost (due to an error such as a server crash or a
network failure). When a failure is detected, an attempt is automatically
made to connect your client to another server on a different host, if it is so
configured. For details on the Smart Agent see “Using the Smart Agent” and
“Using Quality of Service (QoS)”.

6 VisiBroker for Java Developer’'s Guide

VisiBroker Features

Enhanced Object Discovery Using the
Location Service

VisiBroker provides a powerful Location Service—an extension to the
CORBA specification—that enables you to access the information from
multiple Smart Agents. Working with the Smart Agents on a network, the
Location Service can see all the available instances of an object to which a
client can bind. Using triggers, a callback mechanism, client applications
can be instantly notified of changes to an object's availability. Used in
combination with interceptors, the Location Service is useful for developing
enhanced load balancing of client requests to server objects. See “Using the
Location Service”.

Implementation and Object Activation Support

The Object Activation Daemon (OAD) is the VisiBroker implementation of
the Implementation Repository. The OAD can be used to automatically start
object implementations when clients need to use them. Additionally,
VisiBroker provides functionality that enables you to defer object activation
until a client request is received. You can defer activation for a particular
object or an entire class of objects on a server.

Robust thread and connection management

VisiBroker provides native support for single- and multi-threaded thread
management. With VisiBroker's thread-per-session model, threads are
automatically allocated on the server (per client connection) to service
multiple requests, and then are terminated when each connection ends.
With the thread pooling model, threads are allocated based on the amount
of request traffic to and from server objects. This means that a highly active
client will be serviced by multiple threads—ensuring that the requests are
quickly executed—while less active clients can share a single thread and still
have their requests immediately serviced.

VisiBroker's connection management minimizes the number of client
connections to the server. All client requests for objects residing on the
same server are multiplexed over the same connection, even if they
originate from different threads. Additionally, released client connections
are recycled for subsequent reconnects to the same server, eliminating the
need for clients to incur the overhead of new connections to the same
server.

All thread and connection behavior is fully configurable. See “Managing
threads and connections” for details on how VisiBroker manages threads and
connections.

IDL compilers

VisiBroker comes with three IDL compilers that make object development
easier:

- idl2java: The idl2java compiler takes IDL files as input and produces
the necessary client stubs and server skeletons in Java.

» idl2cpp: The idl2cpp compiler takes IDL files as input and produces the
necessary client stubs and server skeletons in C++.

VisiBroker for Java Developer’'s Guide 7

VisiBroker Features

« idl12ir: The idl2ir compiler takes an IDL file and populates an
interface repository with its contents. Unlike the previous two compilers,
idl2ir functions with both the C++ and Java ORBs.

See “Using IDL” and “Using Interface Repositories” for details on these
compilers.

Dynamic invocation with D11 and DSI

VisiBroker provides implementations of both the Dynamic Invocation
Interface (DII) and the Dynamic Skeleton Interface (DSI) for dynamic
invocation. The DIl allows client applications to dynamically create requests
for objects that were not defined at compile time. The DSI allows servers to
dispatch client operation requests to objects that were not defined at
compile time. See “Using the Dynamic Invocation Interface” and “Using the
Dynamic Skeleton Interface” for more information.

Interface and implementation repositories

The Interface Repository (IR) is an online database of meta information
about the VisiBroker ORB objects. Meta information stored for objects
includes information about modules, interfaces, operations, attributes, and
exceptions. “Using Interface Repositories” covers how to start an instance of
the Interface Repository, add information to an interface repository from an
IDL file, and extract information from an interface repository.

The Object Activation Daemon is a VisiBroker interface to the
Implementation Repository that is used to automatically activate the
implementation when a client references the object. See “Using the Object
Activation Daemon (OAD)” for more information.

Server-side portability

VisiBroker supports the CORBA Portable Object Adapter (POA), which is a
replacement for the Basic Object Adapter (BOA). The POA shares some of
the functionality of the BOA, such as activating objects, support for
transient or persistent objects, and so forth. The POA also has additional
functionality, such as POA Manager and Servant Manager, which create and
manage instances of your objects. See “Using POAs” for more information.

Customizing the VisiBroker ORB with
interceptors and object wrappers

VisiBroker's Interceptors enable developers to view under-the-cover
communications between clients and servers. The VisiBroker Interceptors
are Micro Focus's proprietary interceptors. Interceptors can be used to
extend the VisiBroker ORB with customized client and server code that
enables load balancing, monitoring, or security to meet the specialized
needs of distributed applications. See “Using Portable Interceptors” for
information.

VisiBroker also includes the Portable Interceptors, based on the OMG
standardized feature, that allow you to write portable code for interceptors
and use it with different vendor ORBs. For more information, refer to the
CORBA 3.0 specification.

VisiBroker's object wrappers allow you to define methods that are called
when a client application invokes a method on a bound object or when a

8 VisiBroker for Java Developer’s Guide

VisiBroker CORBA compliance

server application receives an operation request. See “Using object wrappers”
for information.

Event Queue

The event queue is designed as a server-side only feature. A server can
register the listeners to the event queue based on the event types that the
server is interested in, and the server processes those events when the
need arises. See “Event Queue” for more information.

Backing stores in the Naming Service

The new interoperable Naming Service integrates with pluggable backing
stores to make its state persistent. This ensures easy fault tolerance and
failover functionality in the Naming Service. See “Using the VisiNaming Service”
for more information.

Defining interfaces without I1DL

VisiBroker's java2iiop compiler lets you use the Java language to define

interfaces instead of using the Interface Definition Language (IDL). You can
use the java2iiop compiler if you have existing Java code that you wish to
adapt to interoperate with CORBA distributed objects or if you do not wish

to learn IDL.

GateKeeper

The GateKeeper allows client programs to issue operation requests to
objects that reside on a web server and to receive callbacks from those
objects, all the while conforming to the security restrictions imposed by web
browsers. The Gatekeeper also handles communication through firewalls
and can be used as an HTTP daemon. It is fully compliant with the OMG
CORBA Firewall Specification. For more information see the VisiBroker
GateKeeper Guide.

VisiBroker CORBA compliance

VisiBroker 8.5 is compliant with version 3.0 of the CORBA specification from
the OMG. All changes between the earlier version 2.6 and version 3.0 are
implemented. Note that VisiBroker:

« Supports General Inter-ORB Protocol (GIOP) to standard 1.2; GIOP 1.3-
related features are not implemented.

« Does not support the CORBA Component Model (CCM) or Fixed types.

For more details, refer to the CORBA specification located at http://
www.omg.org/.

VisiBroker Development Environment

VisiBroker can be used in both the development and deployment phases.
The development environment includes the following components:

« Administration and programming tools
» VisiBroker ORB

VisiBroker for Java Developer’'s Guide 9

http://www.omg.org/
http://www.omg.org/

Java Development Environment

Programmer's tools

The following tools are used during the development phase:

Tool Purpose

idl2ir Enables you to populate an interface repository with interfaces
defined in an IDL file for both the VisiBroker for Java and VisiBroker
for C++.

idl2cpp Generates C++ stubs and skeletons from an IDL file.

idlI2java Generates Java stubs and skeletons from an IDL file

jJavaiiop Generates Java stubs and skeletons from a Java file. This allows you
to define your interfaces in Java, rather than in IDL.

Javazidl Generates an IDL file from a file containing Java bytecode.

CORBA services tools

The following tools are used to administer CORBA services during
development:

Tool Purpose

irep Used to manage the Interface Repository. See “Using Interface
Repositories”.

oad Used to manage the Object Activation Daemon (OAD). See “Using the

Object Activation Daemon (OAD)".

nameserv Used to start an instance of the Naming Service. See “Using the
VisiNaming Service”.

Administration Tools

The following tools are used to administer the VisiBroker ORB during
development:

Tool Purpose

oadutil list Lists VisiBroker ORB object implementations registered with
the OAD.

oadutil reg Registers a VisiBroker ORB object implementation with the
OAD.

oadutil unreg Unregisters a VisiBroker ORB object implementation with the
OAD.

osagent Manages the Smart Agent. See “Using the Smart Agent”.

osfind Reports on objects running on a given network.

Java Development Environment

VisiBroker uses the following components in the Java run-time
environment:

« Java 2 Standard Edition

« Java run-time environment

Java 2 Standard Edition

A Java development environment, such as JBuilder, is required for
developing applets or applications that use the VisiBroker ORB. Oracle’s
Java Developer's Kit (JDK) also includes a Java runtime environment.

10 VisiBroker for Java Developer’'s Guide

Interoperability with VisiBroker

The JDK—including its Java runtime environment—is available for Solaris
and Windows platforms. You can download the JDK from Oracle’s web site:

http://www.oracle.com/technetwork/indexes/downloads/index.html

The JDK has also been ported to IBM AlIX, 0S/2, SGI IRIX, and HP-UX.
These other versions can be downloaded from the respective hardware
vendor's web site. To see what is available for various platforms, see:

http://www.oracle.com/us/products/index.html

Java Run-time Environment

A Java run-time environment is required for any end user who wishes to
execute VisiBroker services and tools. A Java runtime environment is an
engine that interprets and executes a Java application. Typically, Java
runtime environments are bundled with Java development environments.
See “Java 2 Standard Edition” for details.

What's Required for GateKeeper

In order to use the VisiBroker Gatekeeper, you will need to use the Servlet
2.1 API that is included in JavaServer Web Development Kit 1.0.1.

Java-enabled Web browser

Applets can be run in any Java-enabled web browser. You may require a
Java plug-in for the browser; see the browser manufacturer’s website for
details.

Interoperability with VisiBroker

Applications created with VisiBroker for Java can communicate with object
implementations developed with VisiBroker for C++. Likewise, for
applications created with VisiBroker for C++, these applications can also
communicate with objects implementations developed with VisiBroker for
Java. For example, if you want to use Java application on VisiBroker for
C++, simply use the same IDL you used to develop your Java application as
input to the VisiBroker IDL compiler, supplied with VisiBroker for C++. You
may then use the resulting C++ skeletons to develop the object
implementation. To use the C++ application on VisiBroker for Java, repeat
the process. However, you will use the VisiBroker IDL complier with
VisiBroker for Java instead.

Also, object implementations written with VisiBroker for Java will work with
clients written in VisiBroker for C++. In fact, a server written with
VisiBroker for Java will work with any CORBA-compliant client; a client
written with VisiBroker for Java will work with any CORBA-compliant server.
This also applies to any VisiBroker for C++ object implementations.

Interoperability with other ORB products

CORBA-compliant software objects communicate using the Internet Inter-
ORB Protocol (I10P) and are fully interoperable, even when they are
developed by different vendors who have no knowledge of each other's
implementations. VisiBroker's use of I10OP allows client and server
applications you develop with VisiBroker to interoperate with a variety of
ORB products from other vendors.

VisiBroker for Java Developer’'s Guide 11

http://www.oracle.com/technetwork/indexes/downloads/index.html
http://www.oracle.com/us/products/index.html

IDL to Java mapping

IDL to Java mapping

VisiBroker conforms with the OMG IDL/Java Language Mapping
Specification. See the VisiBroker Programmer's Reference for a summary of
VisiBroker's current IDL to Java language mapping, as implemented by the
idl2java compiler. For each IDL construct there is a section that describes
the corresponding Java construct, along with code samples.

For more information about the mapping specification, refer to the OMG
IDL/Java Language Mapping Specification.

12 VvisiBroker for Java Developer’'s Guide

Developing an example
application with VisiBroker

This section uses an example application to describe the development
process for creating distributed, object-based applications for Java.

The code for the example application is provided in the
bank_agent_java.html file. You can find this file in:

<install_dir>/examples/vbroker/basic/bank_agent/

Development process

When you develop distributed applications with VisiBroker, you must first
identify the objects required by the application. The following figure
illustrates the steps to develop a sample bank application. Here is a
summary of the steps taken to develop the bank sample:

1

Write a specification for each object using the Interface Definition
Language (IDL).

IDL is the language that an implementer uses to specify the operations
that an object will provide and how they should be invoked. In this
example, we define, in IDL, the Account interface with a balance()
method and the AccountManager interface with an open() method.

Use the IDL compilers to generate the client stub code and server POA
servant code.

With the interface specification described in step 1, use the idl2java or
idl2cpp compilers to generate the client-side stubs and the server-side
classes for the implementation of the remote objects.

Write the client program code.

To complete the implementation of the client program, initialize the
VisiBroker ORB, bind to the Account and the AccountManager objects,
invoke the methods on these objects, and print out the balance.

Write the server object code.

To complete the implementation of the server object code, we must
derive from the AccountPOA and AccountManagerPOA classes, provide
implementations of the interfaces' methods, and implement the server's
main routine.

Compile the client and server code using the appropriate stubs and
skeletons.

Start the server.

Run the client program.

VisiBroker for Java Developer’'s Guide 13

Step 1: Defining object interfaces

Figure 3 Developing the sample bank application

Objest spesifiations in IDL

E idlzepp
idl2java

2dd client] Add object
E program Code implementation

. Gl dava - C++lava
compilerlinker - compikerflinker*

& .
Client ——— Client program Berer L = eoner objet
ﬂ vlasses running E chissss running K

Client ‘ Server

‘ VisiEroker Exftion Object Request

* G4+ I you are oreating the application in C++, you will need to compile and
link the: server obect code.

Step 1: Defining object interfaces

The first step to creating an application with VisiBroker is to specify all of
your objects and their interfaces using the OMG's Interface Definition
Language (IDL). The IDL can be mapped to a variety of programming
languages.

You then use the idl2java compiler to generate stub routines and servant
code compliant with the IDL specification. The stub routines are used by
your client program to invoke operations on an object. You use the servant
code, along with code you write, to create a server that implements the
object.

Writing the account interface in 1DL

IDL has a syntax similar to Java and can be used to define modules,
interfaces, data structures, and more.

The sample below shows the contents of the Bank. idl file for the
bank_agent example. The Account interface provides a single method for

14 VvisiBroker for Java Developer’'s Guide

Step 2: Generating client stubs and server servants

obtaining the current balance. The AccountManager interface creates an
account for the user if one does not already exist.

module Bank{
interface Account {
float balance();
};
interface AccountManager {
Account open(in string name);

3
3

Step 2: Generating client stubs and server servants

The interface specification you create in IDL is used by VisiBroker's
idl2java compiler to generate Java classes for the client program, and
skeleton code for the object implementation.

The client program uses the Java class for all method invocations.

You use the skeleton code, along with code you write, to create the server
that implements the objects.

The code for the client program and server object, once completed, is used
as input to your Java compiler to produce the client and server executables
classes.

Because the Bank. idl file requires no special handling, you can compile
the file with the following command.

prompt> idl2java Bank.idl

For more information on the command-line options for the idl2java
compiler, see “Using IDL".

Files produced by the idl compiler

Because Java allows only one public interface or class per file, compiling the
IDL file will generate several . java files. These files are stored in a
generated sub-directory called Bank, which is the module name specified in
the IDL and is the package to which the generated files belong. The
following is a list of . Java files generated:

« _AccountManagerStub. java: Stub code for the AccountManager object
on the client side.

« _AccountStub. java: Stub code for the Account object on the client
side.

« Account. java: The Account interface declaration.

« AccountHelper. java: Declares the AccountHelper class, which defines
helpful utility methods.

« AccountHolder . java: Declares the AccountHolder class, which
provides a holder for passing Account objects.

« AccountManager. java: The AccountManager interface declaration.

» AccountManagerHelper. java: Declares the AccountManagerHelper
class, which defines helpful utility methods.

« AccountManagerHolder. java: Declares the AccountManagerHolder
class, which provides a holder for passing AccountManager objects.

VisiBroker for Java Developer’'s Guide 15

Step 3: Implementing the client

- AccountManagerOperation.java: This interface provides the method
signatures defined in the AccountManager interface in Bank. idl.

» AccountManagerPOA. java: POA servant code (implementation base
code) for the AccountManager object implementation on the server side.

« AccountManagerPOATie. java: Class used to implement the
AccountManager object on the server side using the tie mechanism,
described in “Using the tie mechanism”.

« AccountOperations. java: This interface provides the method
signatures defined in the Account interface in the Bank. idl file

« AccountPOA. java: POA servant code (implementation base code) for the
Account object implementation on the server side.

» AccountPOATie. java: Class used to implement the Account object on
the server side using the tie mechanism, described in “Using the tie
mechanism”.

Step 3: Implementing the client

Client.java

Many of the classes used in implementing the bank client are contained in
the Bank package generated by the idl2java compiler as shown in the
previous example.

The Client. java file illustrates this example and is included in the
bank_agent directory. Normally, you would create this file.

The Client class implements the client application which obtains the
current balance of a bank account. The bank client program performs these
steps:

1 Initializes the VisiBroker ORB.
2 Binds to an AccountManager object.

3 Obtains an Account object by invoking open on the AccountManager
object.

4 Obtains the balance by invoking balance on the Account object.

public class Client {

public static void main(String[] args) {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Get the manager Id
byte[] managerld = ""BankManager'.getBytes();
// Locate an account manager. Give the full POA name and servant ID.
Bank .AccountManager manager =

Bank.AccountManagerHelper.bind(orb, "'/bank_agent poa'", managerlid);
// use args[0] as the account name, or a default.
String name = args.length > 0 ? args[0] : "Jack B. Quick";
// Request the account manager to open a named account.
Bank.Account account = manager.open(name);
// Get the balance of the account.
float balance = account._balance();
// Print out the balance.
System.out.printIn("*The balance in " + name + ""s account is $" +
balance);

16 VisiBroker for Java Developer’'s Guide

package Bank;

Step 3: Implementing the client

Binding to the AccountManager object

Before your client program can invoke the open(String name) method,
the client must use the bind() method to establish a connection to the
server that implements the AccountManager object.

The implementation of the bind(Q)method is generated automatically by the
idl2java compiler. The bind() method requests the VisiBroker ORB to
locate and establish a connection to the server.

If the server is successfully located and a connection is established, a proxy
object is created to represent the server's AccountManagerPOA object. An
object reference to the AccountManager object is returned to your client
program.

Obtaining an Account object

Next, your client class needs to call the open() method on the AccountManager
object to get an object reference to the Account object for the specified customer
name.

Obtaining the balance

Once your client program has established a connection with an Account object, the

balance () method can be used to obtain the balance. The balance() method on
the client side is actually a stub generated by the id12java compiler that gathers all
the data required for the request and sends it to the server object.

AccountManagerHelper.java

This file is located in the Bank package. It contains an
AccountManagerHelper object and defines several methods for binding to
the server that implements this object. The bind() class method contacts
the specified POA manager to resolve the object. Our example application
uses the version of the bind method that accepts an object name, but the
client may optionally specify a particular host and special bind options. For
more information about Helper classes, see “Helper classes”.

public final class AccountManagerHelper {

bﬁﬁlic static Bank.AccountManager bind(org.omg.CORBA.ORB orb) {
return bind(orb, null, null, null);

Other methods

Several other methods are provided that allow your client program to
manipulate an AccountManager object reference.

Many of these methods and member functions are not used in the example
client application, but they are described in detail elsewhere in this Guide.

VisiBroker for Java Developer’'s Guide 17

Step 4: Implementing the server

Step 4: Implementing the server

Just as with the client, many of the classes used in implementing the bank
server are contained in the Bank package generated by the idl2java
compiler. The Server . java file is a server implementation included for the
purposes of illustrating this example. Normally you, the programmer, would
create this file.

Server programs

This file implements the Server class for the server side of our banking
example. The code sample below is an example of server side programming
for Java. The server program does the following:

« Initializes the Object Request Broker.

« Creates a Portable Object Adapter with the required policies.
« Creates the account manager servant object.

« Activates the servant object.

« Activates the POA manager (and the POA).

« Waits for incoming requests

public class Server {
public static void main(String[] args) {

try {

}

}

// Initialize the ORB.

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

// get a reference to the root POA

POA rootPoa =
POAHelper.narrow(orb.resolve_initial_references("'RootPOA™));

// Create policies for our persistent POA

org.omg.CORBA_Policy[] policies = {
rootPoa.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)

}s

// Create myPOA with the right policies

POA myPOA = rootPoa.create_POA("bank_agent poa'",
rootPoa.the_POAManager(),
policies);

// Create the servant

AccountManagerImpl managerServant = new AccountManagerimpl();

// Decide on the ID for the servant

byte[] managerld = "BankManager".getBytes();

// Activate the servant with the ID on myPOA

myPOA.activate_object with_id(managerld, managerServant);

// Activate the POA manager

rootPoa.the_ POAManager() .activate();

System.out.printIn(myPOA.servant_to_reference(managerServant) +

" is ready.");
// Wait for incoming requests
orb.runQ);

} catch (Exception e) {

}

e.printStackTrace();

18 VisiBroker for Java Developer’'s Guide

Step 5: Building the example

Step 5: Building the example

The examples directory of your VisiBroker release contains a vbmake .bat
for this example and other VisiBroker examples.

Compiling the example

Windows

Assuming VisiBroker is installed in C:\vbroker, type the following to
compile the example:

prompt> vbmake

The command vbmake is a batch file which runs the idl2java compiler and
then compiles each file.

If you encounter problems while running vbmake, check that your path
environment variable points to the bin directory where you installed the
VisiBroker software.

UNIX

Assuming VisiBroker is installed in Zusr/local, type the following to
compile the example:

prompt> make java

In this example, make is the standard UNIX facility. If you do not have it in
your PATH, see your system administrator.

Step 6: Starting the server and running the example

Now that you have compiled your client program and server
implementation, you are ready to run your first VisiBroker application.

Starting the Smart Agent

Before you attempt to run VisiBroker client programs or server
implementations, you must start the Smart Agent on at least one host in
your local network.

The basic command for starting the Smart Agent is:
prompt> osagent

”

The Smart Agent is described in detail in “Using the Smart Agent”.

Starting the server

Windows
Open a DOS prompt window and start your server by typing:
prompt> start vbj Server

UNIX
Start your Account server by typing:
prompt> vbj Server&

VisiBroker for Java Developer’'s Guide 19

Deploying applications with VisiBroker

Running the client

Windows
Open a separate DOS prompt window and start your client by typing:
prompt> vbj Client

UNIX
To start your client program, type:
prompt> vbj Client

You should see output similar to that shown below (the account balance is
computed randomly).

The balance in the account in $168.38.

Deploying applications with VisiBroker

VisiBroker is also used in the deployment phase. This phase occurs when a
developer has created client programs or server applications that have been
tested and are ready for production. At this point a system administrator is
ready to deploy the client programs on end-users’ desktops or server
applications on server-class machines.

For deployment, the VisiBroker ORB supports client programs on the front
end. You must install the VisiBroker ORB on each machine that runs the
client program. Clients (that make use of the VisiBroker ORB) on the same
host share the VisiBroker ORB. The VisiBroker ORB also supports server
applications on the middle tier. You must install the full VisiBroker ORB on
each machine that runs the server application. Server applications or
objects (that make use of the VisiBroker ORB) on the same server machine
share the VisiBroker ORB. Clients may be GUI front ends, applets, or client
programs. Server implementations contain the business logic on the middle
tier.

Figure 4 Client and server programs deployed with VisiBroker ORBs

GUI frent | Client glfg“:am Client dava Appet | Client
end o VisiBrokar
VisiBroker [WisiBroker ORB

ORB

ORB

| I nternatil ntransat

Object &
Object B
Objact ©

WisiBroker
J o

20 VisiBroker for Java Developer’'s Guide

Deploying applications with VisiBroker

VisiBroker Applications

Deploying applications

In order to deploy applications developed with VisiBroker, you must first set up a
runtime environment on the host where the application is to be executed and ensure
that the necessary support services are available on the local network.

The run-time environment required for applications developed with the Java
includes these components:

« Java Runtime Environment.

 VisiBroker Java packages archived in the vbjorb. jar file, located in the
1ib subdirectory where you installed VisiBroker.

« Availability of the support services required by the application.

A Java Runtime Environment must be installed on the host where the
deployed application is to execute, and the VisiBroker packages must be
installed on the host where the deployed application is to execute.

Environment variables

When you use the vbj executable, the environmental variables are automatically set
up for you.

If the deployed application is to use a Smart Agent (osagent) on a
particular host, you must set the OSAGENT_ADDR environment variable
before running the application. You can use the vbroker.agent._addr
property as a command-line argument to specify a hostname or IP address.
The table below lists the necessary command-line arguments.

If the deployed application is to use a particular UDP port when
communicating with a Smart Agent, you must set the OSAGENT_PORT
environment variable before running the application.

You can use vbroker._.agent.port (Java) command-line argument to
specify the UDP port number.

For more information about environment variables, see the VisiBroker
Installation Guide.

Support service availability

A Smart Agent must be executing somewhere on the network where the deployed
application is to be executed. Depending on the requirements of the application being
deployed, you may need to ensure that other VisiBroker runtime support services are
available, as well. These services include:

Support services Needed when:

Object Activation Daemon A deployed application is a server that implements
(oad) an object which needs to be started on demand.

Interface Repository (irep) A deployed application uses either the dynamic
skeleton interface or dynamic implementation
interface. See “Using Interface Repositories” for a
description of these interfaces.

GateKeeper A deployed application needs to execute in an
environment that uses firewalls for network security.

VisiBroker for Java Developer’'s Guide 21

Deploying applications with VisiBroker

Options

Using vbj

You can use the vbj command to start your application and enter
command-line arguments that control the behavior of your application.

vbj -Dvbroker.agent.port=10000 <class>

Running the application

Before you attempt to run VisiBroker client programs or server implementations, you
must start the Smart Agent on at least one host in your local network. The Smart Agent
is described in detail in “Starting the Smart Agent”.

Executing client applications
A client application is one that uses VisiBroker ORB objects, but does not offer any
VisiBroker ORB objects of its own to other client applications.

A client may be started with the vbj command, or from within a Java-
enabled web browser.

The following table summarizes the command-line arguments that may be
specified for a Java client application.

Description

-DORBagentAddr=<hostname| Specifies the hostname or IP address of the host running the

ip_address>

Smart Agent this client should use. If a Smart Agent is not
found at the specified address or if this option is not specified,
broadcast messages will be used to locate a Smart Agent.

-DORBagentPort=<port_number> Specifies the port number of the Smart Agent. This option is

useful if multiple ORB domains are required. If the port
number is not specified, the default value is set to 14000.

-DORBmbufSize=<buffer_size> Specifies the size of the intermediate buffer used by VisiBroker

for operation request processing. To improve performance,
the VisiBroker ORB does more complex buffer management
than in previous versions of VisiBroker. The default size of
send and receive buffers is 4—4kb. If data sent or received is
larger than the default, new buffers will be allocated for each
request/reply. If your application frequently sends data larger
than 4kb and you wish to take advantage of buffer
management, you may use this system property to a specify a
larger number of bytes for a default buffer size.

-DORBtcpNoDelay=<false| true> When set to true, all network connections will send data

immediately. The default is false, which allows a network
connection to send data in batches, as the buffer fills.

-DORBconnectionMax=<integer> Specifies the maximum number of connections allowed for an

object implementation when OAid TSession is selected. If you
do not specify a value, the default is unlimited.

-DORBconnectionMaxldle=<integer> Specifies the number of milliseconds which a network

connection can be idle before being shutdown by VisiBroker.
By default, this is set to 360 which means that connections will
never time-out. This option should be set for Internet
applications.

22 VisiBroker for Java Developer’'s Guide

Deploying applications with VisiBroker

Executing server applications in Java

A server application is one that offers one or more VisiBroker ORB objects to client
applications. A server application may be started with the vbj command or it may be
activated by the Object Activation Daemon (oad).

The following table summarizes the command-line arguments that may be
specified for a Java server application.

Options
-DOAipAddr <hostname|ip_address>

-DOAport <port_number>

-DOAiId <TPool|TSession>

-DOAthreadMax <integer>

-DOAthreadMin <integer>

-DOAthreadMaxldle <integer>

-DOAconnectionMax <integer>>

-DOAconnectionMaxldle <integer>

Description

Specifies the hostname or IP address to be used for the Object
Adapter. Use this option if your host has multiple network
interfaces and the BOA is associated with only one of those
interfaces. If no option is specified, the host's default address
is used.

Specifies the port number to be used by the object adapter
when listening for a new connection.

Specifies the thread policy to be used by the BOA. The default
is TPool unless you are in backward compatibility mode; in
which case, the default is TSession.

Specifies the maximum number of threads allowed when OAid
TPool is selected. If you do not specify or you specify 0, this
selects unlimited number of threads or, to be more precise, a
number of threads limited only by your system resources.

Specifies the minimum number of threads available in the
thread pool. If you do not specify, the default is 0. You can
specify this only when OAid TPool is selected.

Specifies the time in seconds during which a thread can exist
without servicing any requests. Threads that idle beyond the
time specified can be returned to the system. By default, this
is set to 300.

Specifies the maximum number of connections allowed when
OAid TSession is selected. If you do not specify, the default is
unlimited.

Specifies the time which a connection can idle without any
traffic. Connections that idle beyond this time can be
shutdown by VisiBroker. By default, this is set to 0, meaning
that connections will never automatically time-out. This option
should be set for Internet applications.

VisiBroker for Java Developer’'s Guide 23

24 VisiBroker for Java Developer’'s Guide

Options

Option
-VBJdebug

-J<java_option>

Programmer tools for Java

This chapter describes the programmer tools offered by VisiBroker for Java.
In this section, command syntax consists of the commands, the arguments
necessary to execute them, and command-line options. Some commands
take no arguments, but their options are provided.

The VisiBroker for Java tools provide features which give you greater
flexibility in configuring your applications, such as setting classpath and
ORB properties. VisiBroker provides a configuration file-based system that
lets the user specify the configuration. In addition, in VisiBroker version 6.5
and later, all of these tools are invoked using launchers that are natively
built. Previously, UNIX-based launchers were script-based and provided
very limited functionality for configuration.

All VisiBroker for Java programmer's tools have both general and specific
options. The specific options for each tool are listed in the section for the
tool. All the options in the list are enabled by default and they are preceded
by a hyphen (-). To turn off the default value, you can either prepend -no__
or remove the hyphen. For example, to display a “warning” if a #pragma is
not recognized, the default value is:

warn_unrecognized_pragmas
To turn off the default, use the following option:
-no_warn_unrecognized_pragmas

The general options available to all programmer tools are provided in the
following section.

General options

The following options are common to all programmer tools:

Description

Outputs VisiBroker for Java debugging information.
Passes the java_option directly to the Java Virtual Machine.

-VBJversion Outputs the VisiBroker for Java version in use.

-VBJprop <property>=<value> Passes the specified property to VBJ executable.

-VBJjavavm <vm-name> Specifies the path, flags to the Java VM. If not specified, the
default value java is used.

-VBJclasspath <classpath> Specifies the classpath. The value entered here precedes the
CLASSPATH ENV variable.

-VBJaddJar <jarfile> Adds <jarfile> to the CLASSPATH before executing the VM. If no
absolute path is specified, the jarfile is assumed to be relative to
<launcher-location>/../lib.

-VBJconfig <config-file-name> The path to the configuration file to be used by the launcher. If

-help|-h]-?]-usage

not specified, the default location is <install-dir>/bin/
vbj.config (or vbjc.config for launcher vbjc).

Prints usage information.

VisiBroker for Java Developer’'s Guide 25

idl2ir

idi2ir

This tool allows you to populate an interface repository (IR) with objects
defined in an Interface Definition Language (IDL) source file. It is executed
using the 1dl12ir command.

Syntax

idl2ir [options] {filename}

Example

idl2ir -irep my_repository -replace java_examples/bank/

Bank. idl

Description

The idI2ir command takes an IDL file as input, binds itself to an interface
repository server and populates the repository with the IDL constructs
contained in filename. If the repository already contains an item with the
same name as an item in the IDL file, the old item will be modified.

Keywords

The keyword contains both the options listed below and the IDL input files

to be processed.

Options

The following options are available for idl2ir.

Option
-D, -define foo[=bar]

-1, -include <dir>

-P, -no_line_directives
-H, -list_includes
-U, -undefine <foo>

-C, -retain_comments
-[no_]idl_strict

-[no_Jbuiltin (TypeCode]Principal)
-[no_Jwarn_unrecognized_pragmas
-[no_7]back_compat_mapping

-[no_1lpreprocess
-[no_]preprocess_only

-[no_Jwarn_all
-irep <irep name>
-deep

-replace

filel [file2]...
-h, -help, -usage, -?

Description
Defines a preprocessor macro foo, optionally with a value bar.
Specifies an additional directory for #include searching.

Suppresses the generation of line number information. The
default is offF.

Prints the full paths of included files on the standard error
output. The default is off.

Undefines a preprocessor macro foo.
Retains comments in preprocessed output. The default is off.

Specifies a strict OMG standard interpretation of IDL source.
The default is off.

Creates built-in Type : :TypeCode or : :Principal. The default
is on.

Displays a warning that appears if a #pragma is not
recognized. The default is on.

Specifies the use of mapping that is compatible with
VisiBroker 3.x.

Preprocess the input file before parsing. The default is on.

Stops parsing the input file after preprocessing. The default is
off.

Turns all warnings on/off simultaneously. The default is on.
Specifies the name of the interface repository.
Applies a deep (versus shallow) merge. The default is off.

Replaces entire repository instead of merging. The default is
off.

One or more files to process, or “—” for stdin.
Prints help information.

26 VisiBroker for Java Developer’'s Guide

ir2idl

Option

-irep <irep name>
-o <file>
-strict

-version

-h, -help, -usage,

ir2idl

This tool allows you to create an Interface Definition Language (IDL) source
file with objects from an interface repository. It is executed with the ir2idl
command.

Syntax

ir2idl [options] filename

Example

ir2idl -irep my_repository -o my_ file

Description

The ir2idl command binds to the IR and prints the contents in IDL format.

Keywords

The keyword contains both the options listed below.

Options
The following options are available for ir2idl.

Description
Specifies the name of the interface repository.
Specifies the name of the output file, or “—” for stdout.

Specifies strict adherence to OMG-standard code generation. The default
is on. The compiler will complain upon occurrences of Micro Focus-
proprietary syntax extensions in input IDL.

Displays or prints out the version of VisiBroker that you are currently
running.

-? Prints help information.

idl2java

This tool generates Java source code from an IDL source file. It is executed
using the 1dl2java command.
Syntax

idl2java [options] {filename}

Example

idl2java -no_tie Bank.idl

Description

The 1dl2java command, a Java-based preprocessor, compiles an IDL
source file and creates a directory structure containing the Java mappings
for the IDL declarations. Typically, one IDL file will be mapped to many Java
files because Java allows only one public interface or class per file. IDL file
names must end with the . idl extension.

Keywords

The keyword contains both the options listed below and the IDL source
file(s) to be processed.

VisiBroker for Java Developer’'s Guide 27

idl2java

Options

The following options are available for idl2java:

Option
-D, -define foo[=bar]
-1, -include <dir>

-P, -no_line_directives
-H, -list_includes
-compilerflags
"\-flag,arg[,-1"
-compiler <full name>

-U, -undefine foo
—[no_Jbuiltin (TypeCode]Principal)

-[no_]preprocess
-[no_TJpreprocess_only

-[no_Jwarn_all
filel [file2]...
-[no_7J]copy_local_values

-sealed <pkg> <dest_pkg>

-no_classloader_aware
-backcompat_compile

-[no_]idl_strict
-[no_Jwarn_unrecognized_pragmas
-[no_7]back_compat_mapping

-[no_]boa
-[no_J]comments

-[no_Jexamples

-gen_included_files
-list_files
-[no_]obj_wrapper
-root_dir <path>
-[no_Jservant

-tie
-[no_Jwarn_missing_define

-[no_]bind
-[no_Jcompile
-dynamic_marshal

-idI2package <IDL_name> <pkg>
-[no_]invoke_handler

28 VisiBroker for Java Developer’'s Guide

Description
Defines a preprocessor macro foo, optionally with a value bar.

Specifies the full or relative path to the directory for #include
files. Used in searching for include files.

Suppresses the generation of line number information in the
generated code. The default is off.

Prints the full paths of included files on the standard error
output.

Specifies a comma-separated list of the Java compiler flags:
"\-flag,arg[, -]". The first “—” character is escaped.

Specifies full name of Java Compiler class name.
Undefines a preprocessor macro foo.

Creates built-in Type : :TypeCode or : :Principal. The default
is on.

Preprocesses the input file before parsing. The default is on.

Stops parsing the input file after preprocessing. The default is
off.

Turns all warnings on/off simultaneously. The default is off.
One or more files to process, or “—” for stdin.

Copies values when making colocated calls on CORBA
methods. The default is off.

Marks this package as sealed. Code will be generated in
dest_pkg or default location.

Generates classloader aware Java code. The default is on.

Uses the deprecated compile option of jdk1.4.1. The default is
off.

Specifies strict adherence to OMG standard interpretation of
idl source. The default is off.

Displays a warning that appears if a #pragma is not
recognized. The default is on.

Specifies the use of IDL mapping that is compatible with
VisiBroker 3.x caffeine compiles.

Specifies BOA-compatible code generation. The default is off.

Suppresses the generation of comments in the code. The
default is on.

Suppresses the generation of the _example classes. The
default is offF.

Generates code for #included files. The default is off.

Lists files written during code generation. The default is off.
Generates support for object wrappers. The default is off.
Specifies the directory in which the generated files reside.
Generates servant (server-side) code. The default is on.
Generates _tie classes. The default is on.

Warns if any forward declared interfaces were not defined.
The default is on.

Suppresses the generation ofbind() methods in the
generated Helper class. The default is off.

When set to on, automatically compiles the Java files. The
default is off.

Specifies that marshaling use DSI/DII model. The default is
off.

Overrides default package for a given IDL container type.
Generates invocation handler class for EJB. Default is off.

javazidl

Option Description

-[no_T]narrow_compliance Generated code for narrow is compliant (versus 3.x
compatible). The default is on.

-[no_7]Object_methods Generate all methods on Objects. The default is on.

-package <pkg>
-stream_marshal

Specifies the root package for generated code.

Specifies that marshaling use the stream model. The default is
on.

-strict Specifies strict adherence to OMG standard for code
generation. The default is off.
-version Displays the software version number of VisiBroker.
-map_keyword <kwd> <replacement> Specifies the keyword to avoid and designates its
replacement.
-h, -help, -usage, -7 Prints help information.
javazidl

This command generates an IDL from a Java class file (in Java byte code).
You can enter one or more Java classes (in byte codes). If you enter more
than one class name, make sure you include spaces in between the class
names.

If you use a class that extends org.omg.CORBA. IDLEntity in some Java
remote interface definition, it must have the following:

« an IDL file that contains the IDL definition for that type because the
org.omg.CORBA. IDLEntity interface is a signature interface that marks
all IDL data types mapped to Java.

+ all related (supporting) classes according to the CORBA 3.0 IDL2Java
Specification from the Object Management Group (OMG).

If you use a class that extends org.omg.CORBA. IDLEntity in some Java
remote interface definition, use the —import <IDL files> directive in the
javazidl tool's command line.

For more information, refer to the CORBA 3.0 IDL2Java Specification
located at
http://www_omg.org/.
Note
To use this command, you must have a virtual machine supporting JDK 1.3
or later.
Syntax
jJava2idl [options] {Filename}

Example

java2idl -o final.idl Account Client Server

Description

Use this command when you want to generate an IDL from your Java byte
code. You might want to use this when you have existing Java byte code
and want to create an IDL file from it so it can be used with some other
programming language like C++, COBOL, or Smalltalk.

Using the option “—0” as shown in the above example, the three Java byte
code files (Account, Client, Server) are output to a file, final.idl. By
default, the output is displayed on the screen.

VisiBroker for Java Developer’'s Guide 29

javaziiop

Keywords

The keyword contains both the options listed below and the Java byte code
file(s) to be processed.

Options

The following options are available for java2idl.

Option
-D, -define foo[=bar]
-1, -include <dir>

-P, -no_line_directives

-H, -list_includes
-U, -undefine foo
-[no_]idl_strict

-[no_Jwarn_unrecognized_pragmas
-[no_7]back_compat_mapping

-exported <pkg>
-[no_TJexport_all

—-import <IDL file name>
-imported <pkg> <IDL file name>

-o <file>
-strict

classl [class2]...
-version
-h, -help, -usage, -?

Description

Defines a preprocessor macro foo, optionally with a value bar.

Specifies the full or relative path to the directory for #include
files. Used in searching for include files.

Suppresses the generation of line number information in the
generated code. The default is off.

Prints the full paths of included files on the standard error output.
Undefines a preprocessor macro foo.

Specifies strict adherence to OMG standard interpretation of idl
source. The default is off.

Displays a warning that appears if a #pragma is not recognized.
The default is on.

Specifies the use of mapping that is compatible with VisiBroker
3.x caffeine compile.

The type definitions in the specified package will be exported.
Exports the type definitions in all packages. The default is off.
Loads extra IDL definitions.

The type definitions in the specified package should be considered
imported from the specified IDL file and should not be code
generated

Specifies the name of an output file, or “—” for stdout.

Specifies strict adherence to OMG standard for code generation.
The default is off.

One or more Java Classes to process.
Displays the software version number of VisiBroker.
Prints help information.

javaziiop

This command allows you to use the Java language to define IDL interfaces
instead of using IDL. You can enter one or more Java class names (in Java
byte code). If you enter more than one class hame, make sure you include
spaces in between the class names. Use fully scoped class names.

Note

To use this command, you must have a Java Virtual Machine supporting JDK
1.3 or later.

If you use a class that extends org.omg.CORBA. IDLEntity in some Java
remote interface definition, it must have the following:

« an IDL file that contains the IDL definition for that type because the
org.omg.CORBA. IDLEntity interface is a signature interface that marks
all IDL data types mapped to Java.

« all related (supporting) classes according to the CORBA 3.0 IDL2Java
Specification from the Object Management Group (OMG).

30 VisiBroker for Java Developer’s Guide

javaziiop

If you use a class that extends org.omg.CORBA. IDLEntity in some Java
remote interface definition, use the —import <IDL files> directive in the
javaziiop tool's command line.

For more information, refer to the CORBA 3.0 IDL2Java Specification

located at

http://www_omg.org/.

Syntax

jJavaz2iiop [options] {class name}

Example

jJava2iiop -no_tie Account Client Server

Description

Use java2iiop if you have existing Java byte code that you wish to adapt
to use distributed objects or if you do not want to write IDL. By using
Javaz2iiop, you can generate the necessary container classes, client stubs,
and server skeletons from Java byte code.

Note

The java2iiop compiler does not support overloaded methods on CORBA

interfaces.

Keywords

The keyword contains both the options listed below and the Java byte code
file(s) to be processed.

Options

The following options are available for java2iiop.

Option
-D, define foo[=bar]
-1, -include <dir>

-P, -no_line_directives

-H, -list_includes
-U, -undefine foo
-[no_]idl_strict

-[no_Jwarn_unrecognized_pragmas
-[no_7]back_compat_mapping

-exported <pkg>
-[no_Jexport_all

-import <IDL file name>
—-imported <pkg> <idl_file_name>
-[no_]boa

-[no_Jcomments

-[no_Jexamples

Description

Defines a preprocessor macro foo, optionally with a value bar.

Specifies the full or relative path to the directory for #include
files. Used in searching for include files.

Suppresses the generation of line number information in the
generated code. The default is off.

Prints the full paths of included files on the standard error output.
Undefines a preprocessor macro foo.

Specifies strict adherence to OMG standard interpretation of idl
source. The default is off.

Displays a warning that appears if a #pragma is not recognized.
The default is on.

Specifies the use of mapping that is compatible with VisiBroker
3.X. The default is off.

Specifies the name of an exported package.

Exports all packages. The default is off.

Loads extra IDL definitions.

Specifies the name of an imported package.

Specifies BOA-compatible code generation. The default is off.

Suppresses the generation of comments in the code. The default
is on.

Suppresses the generation of the _example classes. The default is
off.

VisiBroker for Java Developer’'s Guide 31

javaziiop

Option
-gen_included_files
-list_files
-[no_Jobj_wrapper
-root_dir <path>
-[no_Jservant

-tie
-[no_Jwarn_missing_define

-[no_]bind

-[no_Jcompile

-compiler

-compilerflags "\-flag,arg[, -]
-C, -retain_comments

—[no_Jbuiltin (TypeCode]
Principal)

-[no_]preprocess
-[no_]preprocess_only

-[no_Jwarn_all
-[no_TJ]copy_local_values

-no_classloader_aware
-backcompat_compile

-[no_Jidlentity_array_mapping

classl [class2]...
-dynamic_marshal

-idI2package <IDL name> <pkg>
-[no_Jinvoke_handler
-[no_]narrow_compliance

-[no_7]Object_methods

-package <pkg>

-sealed <pkg> <destination_pkg>
-stream_marshal

-strict

-version

-map_keyword <kwd>
<replacement>

-h, -help, -usage, -?

Description

Generates code for #included files. The default is off.

Lists files written during code generation. The default is off.
Generates support for object wrappers. The default is off.
Specifies the directory in which the generated files reside.
Generates servant (server-side) code. The default is on.
Generates _tie classes. The default is on.

Warns if any forward declared file names were never defined. The
default is on.

Suppresses the generation of bind() methods in the generated
Helper class. The default is on.

Automatically generates Java files. When set to on, also
automatically compiles the Java files. The default is off.

Specifies the Java compiler to be used. This option is ignored if
the -compi le option is not set.

Specifies a comma-separated list of the Java compiler flags to be
passed to the Java compiler. The first “~” character is escaped.

Retains comments in preprocessed output. The default is off.

Creates built-in Type ::TypeCode or ::Principal. The default is
on.

Preprocesses the input file before parsing. The default is on.

Stops parsing the input file after preprocessing. The default is
off.

Turns all warnings on/off simultaneously. The default is off.

Copies values when making colocated calls on CORBA methods.
The default is off.

Generates classloader aware Java code. The default is on.

Uses the deprecated compile option of jdk1.4.1. The default is
off.

Maps array of IDLEntity to boxedIDL in boxedRMI. The default is
off.

One or more Java classes to process.

Specifies that marshaling use DSI/DII model. The default is off.
Overrides default package for a given IDL container type.
Generates invocation handler class for EJB. Default is on.

Generated code is compliant (versus 3.x compatible). the default
is on.

Generates all methods defined in java. lang.Object methods,
such as string and equals. The default is on.

Specifies the root package for generated code.

Generates stubs and skeletons for remote interfaces in the
specified package to the org.omg.stub and the destination
package respectively.

Specifies that marshaling use the stream model. The default is
on.

Specifies strict adherence to OMG standard for code generation.
The default is off.

Displays the software version number of VisiBroker.
Specifies the keyword to avoid and designates its replacement.

Prints help information.

32 VisiBroker for Java Developer’s Guide

vbj

vbj

This command starts the local Java interpreter.

Syntax

vbj [options] [arguments normally sent to java VM] {class}
[argl arg2 ...]

Where:

Argument Description

{class} Specifies the name of the class to be executed.
[argl arg2 ...] Specific arguments to be passed to the class.
Example

vbj Server

Description

Java applications have certain limitations not faced by applications written
in other languages. The vbj command provides options to work around
some of these limitations, and it is the preferred method to launch
VisiBroker applications. The vbj command performs the following actions:

« Passes CLASSPATH and arguments to the Java VM according to command

line options and configuration file definition.

» Customizes launching behavior for each application using customized
configuration files.

« Embeds a JVM within the same process as the launcher.

* Runs application as daemon in Windows platforms only.

The following options are available for vbj.

Argument

-debug, -VBJdebug

-h, -help, -usage, -7
-version

-install <server-name>
-remove <server-name>
-javahome <jvm-directory>

-classicvm
-hotspotvm / -clientvm
-servervm

-classpath
-classpath/a
-classpath/p
-classpath/r
-VBJclasspath
-VBJaddJdar

-verbose
-VBJconfig <config-file-name>

Description

Turns on launcher debug output.
Prints launcher command help.

Displays or prints out the version of VisiBroker for Java that you
are currently running.

Installs a Windows NT/2000 service.
Removes a Windows NT/2000 service.
The installation directory of the Java VM.
Selects the VM type to be run. Note that you can also use the -J
flag to pass VM type. For example:
vbj -J-server Server

Modifies the classpath. The value of this argument is either
appended to (/a), prepended to (/p), or completely replaces (/r)
any existing classpath setting in the environment. Only the last
occurrence of the classpath family argument is honored. Note
that -VBJclasspath is equivalent to -classpath/p and
-VBJaddJar ir equivalent to -classpath/a.

Turns on verbose output from the Java VM.

Uses an alternate configuration file and replaces the default
configuration file.

VisiBroker for Java Developer’'s Guide 33

vbjc

Argument

-jpda[: [{paused]
running}][,address=[<host>:]<po
rt#>]]

-javacmd

-VBJprop <name>=<value>

Description

Turns on JPDA debug. For example:

—-jpda:running,address=23456
Starts the JVM with JPDA turned on. A JPDA debugger can then
attach to this application on port 23456 to debug the application.
Also ensure that in the launcher’s configuration file (for example
<install-dir>/bin/vbj.config) the following line is present:

Jjpda running,address=23456

Prints an equivalent Java command. This is useful when vbj
launcher is not required and the application is executed through
java launcher.

Passes the property name and value pair into the Java Virtual
Machine as a System Property by adding it as a
-D<name>[=<value>] parameter to the executed “java.”.

vbjc

This command is used to compile Java source code that can import
VisiBroker classes. When called, it:

+ Sets CLASSPATH, arguments to be passed to Java VM according to
command line options and configuration file definition.

« Adds the VisiBroker-standard JAR files into the CLASSPATH.

» Launches javac main class: com.sun.tools. javac.Main.

Syntax

vbjc [arguments normally passed to javac]

Example

vbjc Server.java

The vbjc command supports the command line options described in the

following table.

Argument
-VBJdebug

-VBJversion
-VBJjavavm <vmname>
-VBJclasspath <classpath>

-VBJaddJar <jarfile>

-VBJconfig <config-file-name>

-help|-h]-?]-usage
-VBJcompiler <class-name>

Description
Displays or prints out the VisiBroker for Java debugging
information.

Displays or prints out the version of VisiBroker for Java that you
are currently running.

Specifies the path to the Java Virtual Machine to be used. Default
is java.

Specifies the classpath. Precedes CLASSPATH environment
variable.

Appends <install-dir>/lib/<jarfile> to the CLASSPATH before
executing the VM. If no absolute path is specified, the jarfile is
assumed to be relative to <launcher-location>/._/1ib.

Specifies the path to the configuration file to be used by the
launcher. If not specified, the default location is <install-dir>/
bin/vbj .config]vbjc.config.

Prints usage information.
Overwrites the default javac main class.

34 VisiBroker for Java Developer’s Guide

Specifying

Specifying

idI2ws;j

Option
-encoding_wsi_only
-encoding_soap_only
-wsdl_file_name
-wsdl_namespace

-gen_java_bridge
-root_dir

Specifying the classpath

the classpath

The following sources are merged in the following order:

1 JAR and ZIP files in the patches directory ($VBROKERDIR/ 1 ib/patches/)
(Note that the patches directory is not automatically created under the
$VBROKERD IR/ 1ib/ directory. It has to be created by the user explicitly.)

2 The classpath specified in -VBJclasspath, -classpath/p, or -
classpath/r

3 The $CLASSPATH exported in the environment (if -classpath/r is not
specified)

4 The classpath specified in -classpath/a

5 The default JAR files required by the launcher

6 JAR files added using VBJaddJar and assumed to be located in the
<launcher location>/../lib directory if no absolute path is specified

7 Classpath added using addpath directive in the configuration file
8 JAR files added using addjars directive in the configuration file
9 The current directory

The merged classpath is passed to the Java Virtual Machine using -
Djava.class.path.

the JVM

By default the JVM is located as follows:
1 Searching the directories specified in the PATH.

2 Using the information specified through javahome directive in the
configuration file (the default configuration file for vbj is vbj.config).

The above procedure can be overridden using the -VBJjavavm or -
Javahome (only supported in vbj) option. With -VBJjavavm either the
name of the VM or the full path to the VM can be specified. The option -
Javahome has the same semantics as the javahome configuration file
directive. Note that if no VM is found using the -VBJjavavm or -javahome
options, no further search is carried out to locate the default JVM, and the
program terminates with an error.

Description

Generate specific WS—I encodings only. Defaults to OFF

Generate specific SOAP encodings only. Defaults to OFF

Name of the generated WSDL file. Defaults to the name of IDL
Namespace of the generated WSDL. Defaults to the name of the IDL
file

Generate VisiBroker for Java bridge code. Defaults to OFF.

Directory in which generated files should reside

VisiBroker for Java Developer’'s Guide 35

36 VisiBroker for Java Developer’s Guide

Names

IDL to Java mapping

This section describes the basics of the VisiBroker for Java current IDL-to-
Java language mapping, as implemented by the idl2java compiler.
VisiBroker for Java conforms with the OMG IDL/Java Language Mapping
Specification.

See the latest version of the OMG IDL/Java Language Mapping Specification
for complete information about the following:

« Mapping pseudo-objects to Java
» Server-side mapping

« Java ORB portability interfaces

In general, IDL names and identifiers are mapped to Java names and
identifiers with no change.

If a naming conflict is generated in the mapped Java code, the conflict is
resolved by prepending an underscore (_) to the mapped name.

In addition, because of the nature of the Java language, a single IDL
construct may be mapped to several (differently named) Java constructs.
The “additional” names are constructed by appending a descriptive suffix.
For example, the IDL interface AccountManager is mapped to the Java
interface AccountManager and additional Java classes
AccountManagerOperations, AccountManagerHelper, and
AccountManagerHolder.

In the exceptional cases that the “additional” names may conflict with other
mapped IDL names, the resolution rule described above is applied to the
other mapped IDL names. In other words, the naming and use of required
“additional” names takes precedence.

For example, an interface whose name is fooHelper or fooHolder is
mapped to _FooHelper or _fooHolder respectively, regardless of whether
an interface named foo exists. The helper and holder classes for interface
fooHelper are named _fooHelperHelper and _fooHelperHolder.

IDL names that would normally be mapped unchanged to Java identifiers
that conflict with Java reserved words will have the collision rule applied.

Reserved names

The mapping reserves the use of several names for its own purposes. The
use of any of these names for a user-defined IDL type or interface
(assuming it is also a legal IDL name) will result in the mapped name
having an underscore (_) prepended. Reserved names are as follows:

» The Java class <type>Helper, where <type> is the name of an IDL user-
defined type.

» The Java class <type>Holder, where <type> is the name of an IDL user-
defined type (with certain exceptions such as typedef aliases).

» The Java classes <basicJavaType>Holder, where <basicJavaType> is
one of the Java primitive data types that is used by one of the IDL basic
data types.

VisiBroker for Java Developer’'s Guide 37

Reserved words

« The nested scope Java package name <interface>Package, where
<interface> is the name of an IDL interface.

+ The Java classes <interface> Operations, <interfaces> POA, and
<interface>POATie, when <interface> is the name of an IDL interface

type.

Reserved words

Modules

The mapping reserves the use of several words for its own purposes. The
use of any of these words for a user-defined IDL type or interface
(assuming it is also a legal IDL name) will result in the mapped words
having an underscore () prepended. The reserved keywords in the Java
language are as follows:

abstract abstractBase boolean break
byte case catch char
class const continue default
do double else extends
false final finally float

for goto if implements
import instanceof int interface
local long native new

null package private protected
public return short static
super switch synchronized this
throw throws transient true

try void volatile while

An IDL module is mapped to a Java package with the same name. All IDL
type declarations within the module are mapped to corresponding Java
class or interface declarations within the generated package.

IDL declarations not enclosed in any modules are mapped into the
(unnamed) Java global scope.

The following code sample shows the Java code generated for a type
declared within an IDL module.

/* From Example.idl: */
module Example { };
// Generated java
package Example;

Basic types

The following table shows how the defined IDL types map to basic Java
types.

IDL type Java type
boolean boolean

char char

wchar char

octet byte

string jJava.lang.String
wstring java.lang.String

38 VisiBroker for Java Developer’s Guide

Basic types

IDL type Java type
short short
unsigned short short
long int
unsigned long int
longlong long
unsigned longlong long
float float
double double

When there is a potential mismatch between an IDL type and its mapped
Java type, a standard CORBA exception can be raised. For the most part,
exceptions are in two categories,

* Range of the Java type is larger than the IDL type. For example, Java
chars are a superset of IDL chars.

+ Because there is no support in Java for unsigned types, the developer is
responsible for ensuring that large unsigned IDL type values are handled
correctly as negative integers in Java.

Additional details are described in the following sections.

IDL type extensions

This section summarizes the VisiBroker for Java support for IDL type
extensions. The first table provides a summary for quick look-ups. This is
followed by the IDL extensions for new types table summarizing support for
new types.

Type Supported in VisiBroker
longlong yes
unsigned longlong yes
long double nol
wchar yes?2
wstring yes?
fixed not

LvisiBroker for Java will support any future release of OMG standard implementation.
2UNICODE is used “on the wire.”

New types Description

longlong 64-bit signed 2's complements integers

unsigned longlong 64-bit unsigned 2's complements integers

long double IEEE Standard 754-1985 double extended floating point
wchar Wide characters

wstring Wide strings

Fixed Fixed-point decimal arithmetic (31 significant digits)

Holder classes

Holder classes support OUT and INOUT parameter passing modes and are
available for all the basic IDL data types in the org.omg.CORBA package.
Holder classes are generated for all named user-defined types except those
defined by typedefs. For more information, see the Java APl Reference,
VisiBroker APIs, org.omg.CORBA package section.

VisiBroker for Java Developer’'s Guide 39

Basic types

For user-defined IDL types, the holder class name is constructed by
appending Holder to the mapped Java name of the type.

For the basic IDL data types, the holder class name is the Java type name
(with its initial letter capitalized) to which the data type is mapped with an
appended Holder, for example, IntHolder.

Each holder class has a constructor from an instance, a default constructor,
and has a public instance member, value, which is the typed value. The
default constructor sets the value field to the default value for the type as
defined by the Java language:

- Talse for boolean

« null for values

» 0 for numeric and char types
« null for strings

« null for object references

To support portable stubs and skeletons, Holder classes for user-defined
types also implement the org.omg.CORBA.portable.Streamable
interface.

The holder classes for the basic types are defined in the following code
sample. They are in the org.omg.CORBA package.

// Java
package org.omg.CORBA;
final public class ShortHolder implements Streamable {
public short value;
public ShortHolder() {}
public ShortHolder(short initial) {
value = initial;
¥

...//implementation of the streamable interface

final public class IntHolder implements Streamable {
public int value;
public IntHolder() {}
public IntHolder(int initial) {
value = initial;

...//implementation of the streamable interface
by
final public class LongHolder implements Streamable {
public long value;
public LongHolder(Q) {%
public LongHolder(long initial) {
value = initial;

...//implementation of the streamable interface

by

final public class ByteHolder implements Streamable {
public byte value;
public ByteHolder(Q) {}
public ByteHolder(byte initial) {
value = initial;

...//implementation of the streamable interface

by
final public class FloatHolder implements Streamable {

40 VisiBroker for Java Developer’s Guide

Basic types

public float value;

public FloatHolder() {}

public FloatHolder(float initial) {
value = initial;

...//implementation of the streamable interface
by
final public class DoubleHolder implements Streamable {
public double value;
public DoubleHolder() {}
public DoubleHolder(double initial) {
value = initial;

...//implementation of the streamable interface
by
final public class CharHolder implements Streamable {
public char value;
public CharHolder(Q {}
public CharHolder(char initial) {
value = initial;

...//implementation of the streamable interface

final public class BooleanHolder implements Streamable {
public boolean value;
public BooleanHolder() {}
public BooleanHolder(boolean initial) {
value = initial;

...//implementation of the streamable interface

final public class StringHolder implements Streamable {
public java.lang.String value;
public StringHolder() {}
public StringHolder(jJava.lang.String initial) {
value = initial;

...//implementation of the streamable interface

}

final public class ObjectHolder implements Streamable {
public org.omg.CORBA.Object value;
public ObjectHolder() {}
public ObjectHolder(org.omg.CORBA.Object initial) {
value = initial;

...//implementation of the streamable interface

final public class ValueBaseHolder implements Streamable {
public java.io.Serializable value;
public ValueBaseHolder() {}
public ValueBaseHolder(java.io.Serializable initial) {
value = initial;

...//implementation of the streamable interface
final public class AnyHolder implements Streamable {
public Any value;

public AnyHolder() {}
public AnyHolder(Any initial) {

VisiBroker for Java Developer’'s Guide 41

Basic types

value = iInitial;

...//implementation of the streamable interface
by
final public class TypeCodeHolder implements Streamable {
public TypeCode value;
public typeCodeHolder() {}
public TypeCodeHolder(TypeCode initial) {
value = initial;

...//implementation of the streamable interface

final public class PrincipalHolder implements Streamable {
public Principal value;
public PrincipalHolder() {}
public PrincipalHolder(Principal initial) {
value = initial;

...//implementation of the streamable interface
}

The follwing code sample shows the Holder class for a user-defined type
<foo>.

// Java
final public class <foo>Holder
implements org.omg.CORBA._portable.Streamable {
public <foo> value;
public <foo>Holder() {}
public <foo>Holder(<foo> initial) {}
public void _read(org.omg.CORBA.portable. InputStream i)
{---3
public void _write
(org.omg.CORBA.portable.OutputStream o)

{---}
public org.omg.CORBA.TypeCode type() {--.}
}
Java null

The Java nul I may only be used to represent null CORBA object references and
valuetypes (including recursive valuetypes). For example, a zero length string, rather
than nul I must be used to represent the empty string. This is also true for arrays and
any constructed type, except for valuetypes. If you attempt to pass a nul I for a
structure, it will raise a Nul IPointerException.

42 VisiBroker for Java Developer’s Guide

Basic types

Boolean

The IDL type boolean is mapped to the Java type boolean. The IDL
constants TRUE and FALSE are mapped to the Java constants true and
false.

Char

IDL characters are 8-bit quantities representing elements of a character set
while Java characters are 16-bit unsigned quantities representing Unicode
characters. To enforce type-safety, the Java CORBA run-time asserts range
validity of all Java chars mapped from IDL chars when parameters are
marshaled during method invocation. If the char falls outside the range
defined by the character set, a CORBA: :DATA_CONVERSION exception is
thrown.

The IDL wchar maps to the Java char type.

Octet

The IDL type octet, an 8-bit quantity, is mapped to the Java type byte.

String
The IDL type string, both bounded and unbounded variants, is mapped to

the Java typejava. lang.String. Range checking for characters in the
string as well as bounds checking of the string are done at marshal time.

WString

The IDL type wstring, used to represent Unicode strings, is mapped to the
Java typejava.lang.String. Bounds checking of the string is done at
marshal time.

Integer types

IDL short and unsigned short map to Java type short. IDL long and
unsigned long map to Java type int.

Note

Because there is no support in Java for unsigned types, the developer is
responsible for ensuring that negative integers in Java are handled correctly
as large unsigned values.

Floating point types

The IDL floating point types float and double map to a Java class
containing the corresponding data type.

VisiBroker for Java Developer’'s Guide 43

Helper classes

Helper classes

All user-defined IDL types have an additional “helper” Java class with the
suffix Helper appended to the type name generated. Several static
methods needed to manipulate the type are supplied:

« Any insert and extract operations for the type

« Getting the repository id

« Getting the typecode

« Reading and writing the type from and to a stream

For any user-defined IDL type <typename>, the following code sample is
the Java code generated for the type. The helper class for a mapped IDL
interface has a narrow operation defined for it.

// generated Java helper
public class <typename>Helper {
public static void insert(org.omg.CORBA.Any a, <typename> t);
public static <typename> extract(org.omg.CORBA.Any a);
public static org.omg.CORBA.TypeCode type();
public static String id(Q);
public static <typename> read(org.omg.CORBA.portable.InputStream
istream);
{.

public static void write(
org.omg.CORBA.portable.OutputStream ostream, <typename> value)

// only-%ér interface helpers
public static <typename> narrow(org.omg.CORBA.Object obj);

The following code sample shows the mapping of a named type to Java
helper class.

// 1DL - named type
struct st {long fl, String 2};
// generated Java
public class stHelper {
public static void insert(org.omg.CORBA.Any any, st s) {...}
public static st extract(org.omg.CORBA_Any a) {...}
public static org.omg.CORBA.TypeCode type() {.---}
public static String id(Q) {...}
public static st read(org.omg.CORBA. InputStream is) {...}
public static void write(org.omg.CORBA.OutputStream os, st s) {...}

The following code sample shows mapping of a typedef sequence to Java
helper class.

// 1DL - typedef sequence
typedef sequence <long> IntSeq;
// generated Java helper
public class IntSeqHelper {
public static void insert(org.omg.CORBA.Any any, int[] seq);
public static int[] extract(org.omg.CORBA_Any a){...}
public static org.omg.CORBA.TypeCode type(Q{---}
public static String idQ{---}
public static int[] read(org.omg.CORBA.portable.lnputStream is)
{---}
public static void write(
org.omg.CORBA.portable.OutputStream os, int[] seq)
{---}

44 VisiBroker for Java Developer’s Guide

Constants

Constants

Constants are mapped depending upon the scope in which they appear.

Constants within an interface

Constants declared within an IDL interface are mapped to public static
final fields in the Java interface Operations class corresponding to the
IDL interface.

The following code sample shows the mapping of an IDL constant within a
module to a Java class.

/* From Example.idl: */
module Example {
interface Foo {
const long aLongerOne = -321;

};

// Foo.java

package Example;

public interface Foo extends

com. inprise.vbroker.CORBA.Object,
Example.FooOperations,
org.omg.CORBA.portable.IDLEntity {

// FooOperations. java
package Example;
public interface FooOperations {
public final static int aLongerOne = (int)-321;
}

Constants NOT within an interface

Constants declared within an IDL module are mapped to a public interface
with the same name as the constant and containing a public static
final field named value. This field holds the constant's value.

Note

The Java compiler normally inlines the value when the class is used in other
Java code.

The following code sample shows the mapping of an IDL constant within a
module to a Java class.

/* From Example.idl: */
module Example {
const long aLongOne = -123;
};
// Generated java
package Example;
public interface alLongOne {
public final static int value = (int) -123;
}

VisiBroker for Java Developer’'s Guide 45

Constructed types

Constructed types

IDL constructed types include enum, struct, union, sequence, and array.
The types sequence and array are both mapped to the Java array type.
The IDL constructed types enum, struct, and union are mapped to a Java
class that implements the semantics of the IDL type. The Java class
generated will have the same name as the original IDL type.

Enum

An IDL enum is mapped to a Java Final class with the same name as the
enum type which declares a value method, two static data members per
label, an integer conversion method, and a private constructor. The
following code sample is an example of an IDL enum mapped to a Java final
class:

// Generated java
public final class <enum_name> {
//one pair for each label in the enum
public static final int _<label> = <value>;
public static final <enum_name> <label> =
new <enum_name>(_<label>);

public int value() {.--}

//get enum with specified value

public static <enum_name> from_int(int value);
//constructor

protected <enum name>(int) {...}

}

One of the members is a public static final , which has the same
name as the IDL enum label. The other has an underscore (_) prepended
and is used in switch statements.

The value method returns the integer value. Values are assigned
sequentially starting with 0. If the enum has a label named value, there is
no conflict with the value() method in Java.

There will be only one instance of an enum. Since there is only one instance,
pointer equality tests will work correctly; that is, the default
jJava.lang.Object implementation of equals() and hash() will
automatically work correctly for an enumeration's singleton object.

The Java class for the enum has an additional method, from_int(), which
returns the enum with the specified value.

The holder class for the enum is also generated. Its name is the
enumeration's mapped Java classname with Holder appended to it as
follows:

public class <enum_name>Holder implements
org.omg.CORBA.portable.Streamable {
public <enum_name> value;
public <enum_name>Holder() {}
public <enum_name>Holder(<enum_name> initial) {...}
public void _read(org.omg.CORBA.portable. InputStream i)

{..-3 _
public void _write(
org.omg.CORBA_portable.OutputStream o)
{.--}

public org.omg.CORBA.TypeCode _type() {.-.}

46 VisiBroker for Java Developer’s Guide

// 1DL

Constructed types

The following code sample shows the IDL mapped to Java for enum.

module Example {
enum EnumType { first, second, third };

¥

// generated Java
public final class EnumType

implements org.omg.CORBA.portable.IDLEntity {
public static final int _first = 0;
public static final int _second = 1;
public static final int _third = 2;
public static final EnumType first = new EnumType(_First);
public static final EnumType second = new EnumType(_second);
public static final EnumType third = new EnumType(third);
protected EnumType (Ffinal int vis value) { ... }
public int value QO { .-- }
public static EnumType from_int (final int _vis value) { ... }
public java.lang.String toStringQ) { --. }

public final class EnumTypeHolder
implements org.omg.CORBA.portable.Streamable {
OtherExample.EnumType value;

public
public
public
public

public

-- Y
public
public

EnumTypeHolder ()
EnumTypeHolder (fi
void _read (final

void _write (Final

{.--}
nal OtherExample.EnumType _vis_value) { ... }
org.omg.CORBA.portable. InputStream input) { ...

org.omg.CORBA.portable.OutputStream output) {

org.omg.CORBA.TypeCode _type O { --- }
boolean equals (Java.lang.Object o) {...}

Struct

An IDL struct is mapped to a final Java class with the same name that
provides instance variables for the fields in IDL member ordering and a

constructor for
the structure's

all values. A null constructor is also provided which allows
fields to be initialized later. The Holder class for the struct

is also generated. Its name is the struct's mapped Java classname with
Holder appended to it as follows:

final publ
org.
public
public
public
public

publié-

{...
public

ic class <class>Holder implements
omg.CORBA.portable_Streamable {

<class> value;

<class>Holder() {}

<class>Holder(<class> initial) {...}

void _read(org.omg.CORBA.portable. InputStream i)

void _write
(org.omg.CORBA.portable.OutputStream o)
}

org.omg.CORBA.TypeCode _type() {.--}

VisiBroker for Java Developer’'s Guide 47

Constructed types

The following code sample shows the mapping of an IDL struct to Java.

/* From Example.idl: */
module Example {
struct StructType {
long fieldl;
string field2;
};
};
// generated Java
public final class StructType
implements org.omg.CORBA.portable._IDLEntity {
public int fieldl;
public java.lang.String field2;
public StructType QO { --- }
public StructType (final int fieldl,
final java.lang.String field2) { ... }
public java.lang.String toStringQ) { --. }
public boolean equals (Java.lang.Object o) {...}
public final class StructTypeHolder implements
org.omg.CORBA.portable.Streamable {
public Example.StructType value;
public StructTypeHolder QO { --. }
public StructTypeHolder (final Example.StructType _vis_value)

--- }
public void _read (final org.omg.CORBA.portable. InputStream input)

{--- 12
public void _write (final org.omg.CORBA.portable.OutputStream output)

{---1}
public org.omg.CORBA.TypeCode type O { --- }

Union

An IDL union is given the same name as the final Java class, and mapped
to it. It provides the following:

» Default constructor

» Accessor method for the union's discriminator, named discriminator()
» Accessor method for each branch

« Modifier method for each branch

« Modifier method for each branch having more than one case label

« Default modifier method, if needed

If there is a name clash with the mapped union type name or any of the
field names, the normal name conflict resolution rule is used: prepend an
underscore for the discriminator.

The branch accessor and modifier methods are overloaded and named after
the branch. Accessor methods shall raise the CORBA: :BAD_OPERATION
system exception if the expected branch has not been set.

If there is more than one case label corresponding to a branch, the simple
modifier method for that branch sets the discriminant to the value of the
first case label. In addition, an extra modifier method which takes an
explicit discriminator parameter is generated.

48 VisiBroker for Java Developer’s Guide

Constructed types

If the branch corresponds to the default case label, then the modifier
method sets the discriminant to a value that does not match any other case
labels.

It is illegal to specify a union with a default case label if the set of case
labels completely covers the possible values for the discriminant. It is the
responsibility of the Java code generator (for example, the IDL compiler, or
other tool) to detect this situation and refuse to generate illegal code.

A default method _default() is created if there is no explicit default case
label, and the set of case labels does not completely cover the possible
values of the discriminant. It will set the value of the union to be an out-of-
range value.

The holder class for the union is also generated. Its name is the union's
mapped Java classname with Holder appended to it as follows:

This code sample shows the Holder class for a union.

final public class <union_class>Holder
implements org.omg.CORBA_portable.Streamable {
public <union_class> value;
public <union_class>Holder() {}
public <union_class>Holder(<union_class> initial) {...}
public void _read(org.omg.CORBA.portable. InputStream i)

publié-void _write(
org.omg.CORBA._portable.OutputStream o)
{---}

public org.omg.CORBA.TypeCode _type() {--.}
}

The following code sample shows the mapping of an IDL union to Java.

/* From Example.idl: */
module Example {
enum EnumType { first, second, third, fourth, fifth,
sixth };
union UnionType switch (EnumType) {
case first: long win;
case second: short place;
case third:
case fourth: octet show;
default: boolean other;
}:
};
// Generated java
final public class UnionType {
//constructor
public UnionType() {---}
//discriminator accessor

public int discriminator() { --. }
//win

public int winQO { --. }

public void win(int value) { ... }
//place

public short place(Q { --- }

public void place(short value) { ... }
//show

public byte show()) { ... }

public void show(byte value) { ... }
public void show(int discriminator, byte value) { ... }
//other

VisiBroker for Java Developer’'s Guide 49

Constructed types

¥
fi

public boolean other() {---}

public void other(boolean value) { ... }
public java.lang.String to String O { ---}
public boolean equals (jJava.lang.Object o) { ...}

al public class UnionTypeHolder {
implements org.omg.CORBA._portable.Streamable {
public UnionType value;
public UnionTypeHolder() {}
public UnionTypeHolder(UnionType initial) {...}
public void _read(org.omg.CORBA.portable. InputStream i)

publié-void _write(
org.omg.CORBA.portable.OutputStream 0)

{---}
public org.omg.CORBA.TypeCode_type() {.---}
}
Sequence

An IDL sequence is mapped to a Java array with the same name. In the
mapping, anywhere the sequence type is needed, an array of the mapped
type of the sequence element is used.

The holder class for the sequence is also generated. Its name is the
sequence's mapped Java classname with Holder appended to it as follows:

final public class <sequence_class>Holder {

}

public <sequence_element_type>[] value;

public <sequence_class>Holder() {};

public <sequence_class>Holder(
<sequence_element_type>[] initial)

--};

bublic void _read(org.omg.CORBA_portable. InputStream i)

public void write
(org.omg.CORBA.portable.OutputStream o)
{.

--}
public org.omg.CORBA.TypeCode _type() {---}

The following code sample shows the mapping of an IDL sequence to Java.

//

IDL

typedef sequence<long>UnboundedData;
typedef sequence<long, 42>BoundedData;
// generated Java

final public class UnboundedDataHolder

}
Ti

implements org.omg.CORBA.portable.Streamable {
public int[] value;
public UnboundedDataHolder() {};
public UnboundedDataHolder(final int[] initial) { ...

public void _read(org.omg.CORBA.portable.InputStream i)
{---1}

public Qoid _write
(org.omg.CORBA.portable.OutputStream o)
{ -.

public 6rg.omg.CORBA.TypeCode _typeO { --- }

nal public class BoundedDataHolder

50 VisiBroker for Java Developer’s Guide

impl
public
public
public
public

public

{ ..
public
}

Array

Constructed types

ements org.omg.CORBA.portable.Streamable {

int[] value;

BoundedDataHolder() {}:

BoundedDataHolder(final int[] initial) { ... };
void _read(org.omg.CORBA.portable. InputStream i)

Qoid _write
(org.omg.CORBA.portable.OutputStream o)

6rg.omg.CORBA.TypeCode _typeO { --- }

An IDL array is mapped the same way as an IDL bounded sequence. In the
mapping, anywhere the array type is needed, an array of the mapped type
of array element is used. In Java, the natural Java subscripting operator is
applied to the mapped array. The length of the array can be made available
in Java, by bounding the array with an IDL constant, which will be mapped
as per the rules for constants.

The holder class for the array is also generated. Its name is the array's
mapped Java classname with Holder appended to it as follows:

final publ
impl
public
public
public

public
publié-

{--..
public
}

ic class <array_class>Holder
ements org.omg.CORBA.portable.Streamable {
<array_element_type>[] value;
<array_class>Holder() {
<array_class>Holder(

<array_element_type>[] initial) {...}
void _read(org.omg.CORBA.portable. InputStream i)

void _write
(org.omg.CORBA.portable.OutputStream o)

}

org.omg.CORBA.TypeCode _type() {.--}

The following code sample shows the mapping for an array.

// 1DL

const long ArrayBound = 42;
typedef long larray[ArrayBound];
// generated Java

final public class larrayHolder

public
public
public
public

implements org.omg.CORBA_portable.Streamable {
int[] value;
larrayHolder() {}
larrayHolder(int[] initial) {...}
void _read(org.omg.CORBA.portable. InputStream i)

{.--}

publi

void _write
(org.omg.CORBA.portable.OutputStream o)
}

{...
public org.omg.CORBA.TypeCode type() {.--}

VisiBroker for Java Developer’'s Guide 51

Interfaces

Interfaces

IDL interfaces are mapped to the two following public Java interfaces:

« Operations interface, which contains only the operations and constants
declared in the IDL interfaces.

« CORBA Object declaration that extends all base interface operations, this
interface operation, and org.omg.CORBA.object.

An additional “helper” Java class with the suffix Helper is appended to the
interface name. The Java interface extends the mapped, base
org.omg.CORBA_Object interface.

The Java interface contains the mapped operation signatures. Methods can
be invoked on an object reference to this interface.

The helper class declares a static narrow method that allows an instance of
org.omg.CORBA.Object to be narrowed to the object reference of a more
specific type. The IDL exception CORBA: :BAD PARAM is thrown if the narrow
fails because the object reference doesn't support the request type. A
different system exception is raised to indicate other kinds of errors. Trying
to narrow a null will always succeed with a return value of null.

There are no special “nil” object references. Java null can be passed freely
wherever an object reference is expected.

Attributes are mapped to a pair of Java accessor and modifier methods.
These methods have the same name as the IDL attribute and are
overloaded. There is no modifier method for IDL “readonly” attributes.

The holder class for the interface is also generated. Its name is the
interface's mapped Java classname with Holder appended to it as follows:

final public class <interface_class>Holder
implements org.omg.CORBA_portable.Streamable {
public <interface class> value;
public <interface_class>Holder() {}
public <interface class>Holder(
<interface_class> initial) {
value = initial;

public void _read(org.omg.CORBA.portable. InputStream i)

public void write
(org.omg.CORBA.portable.OutputStream o)
{.

--}
public org.omg.CORBA.TypeCode _type() {---}
¥

The following code sample shows the mapping of an IDL interface to Java.
/* From Example.idl: */

module Example {
interface Foo {
long method(in long arg) raises(AnException);
attribute long assignable;
readonly attribute long nonassignable;
};
};
// Generated java
package Example;
public interface Foo extends com.inprise.vbroker.CORBA.Object,
Example.FooOperations, org.omg.CORBA.portable.IDLEntity {

52 VisiBroker for Java Developer’s Guide

Interfaces

public interface FooOperations {
public int method (int arg) throws Example.AnException;
public int assignable (;
public void assignable (int assignable);
public int nonassignable (;

public final class FooHelper {

// ... other standard helper methods
public static Foo narrow(org.omg.CORBA.Object obj)
{---1}

public étatic Example.Foo bind (org.omg.CORBA.ORB orb,
java.lang.String name,
java.lang.String host,

com. inprise.vbroker.CORBA.BindOptions _options) { ... }
public static Example.Foo bind (org.omg.CORBA.ORB orb,
java.lang.String fullPoaName, byte[] oid) { ... }

public static Example.Foo bind (org.omg.CORBA.ORB orb,
java.lang.String fullPoaName, byte[] oid,
java.lang.String host,

com.inprise.vbroker.CORBA.BindOptions _options) { ... }
public Foo read (org.omg.CORBA.portable.InputStream in) { ... }
public void write (org.omg.CORBA.portable.OutputStream out, Foo foo) {
--- }
public Foo extract (org.omg.CORBA.Any any) { ... }
public void insert (org.omg.CORBA.Any any, Foo foo) { ... }

public final class FooHolder
implements org.omg.CORBA.portable.Streamable {
public Foo value;
public FooHolder() {}
public FooHolder(final Foo initial) { ... }
public void _read(org.omg.CORBA.portable.InputStream i)

publié-Qoid _write(org.omg.CORBA.portable.OutputStream o)

{---}
public org.omg.CORBA.TypeCode _type() { --- }

Abstract interfaces

An IDL abstract interface is mapped into a single public Java interface with
the same name as the IDL interface. The mapping rules are similar to the
rules for generating the Java operations interface for a non-abstract IDL
interface. However, this interface also serves as the signature interface, and
hence extends org.omg.CORBA.protable. IDLEntity. The mapped Java
interface has the same name as the IDL interface and is also used as the
signature type in method declarations when interfaces of the specified types
are used in other interfaces. It contains the methods which are the mapped
operations signatures.

A holder class is generated as for non-abstract interfaces. See “Holder
classes” for more information.

A helper class is also generated according to the normal rules. See “Helper
classes” for more information.

VisiBroker for Java Developer’'s Guide 53

Interfaces

Local interfaces

An IDL local interface is mapped similarly to that of a non-local interface
except that a local interface is marked by

org.omg.CORBA.Local Interface. A local interface may not be marshaled
and its implementation must extend a special base
org.omg.CORBA.LocalObject and implement the generated signature
interface. In Java mapping, the LocalObject class is used as a base class
of implementations of a local interface. Creating an instance of local
interface implementation is the same as creating normal Java object; that is
using the new Java operator.

A holder class is generated as for non-local interfaces. See “Holder classes”
for more information.

A helper class is also generated according to the normal rules. See “Helper
classes” for more information.

The VisiBroker ORB implementation will detect any attempt to marshal local
objects and throw a CORBA: :MARSHAL exception.

Passing parameters

IDL in parameters are mapped to normal Java actual parameters. The
results of IDL operations are returned as the result of the corresponding
Java method.

IDL out and inout parameters cannot be mapped directly into the Java
parameter passing mechanism. This mapping defines additional holder
classes for all the IDL basic and user-defined types which are used to
implement these parameter modes in Java. The client supplies an instance
of the appropriate holder Java class that is passed (by value) for each IDL
out or inout parameter. The contents of the holder instance (but not the
instance itself) are modified by the invocation, and the client uses the
(possibly) changed contents after the invocation returns.

This code sample shows the IN parameter mapping to Java actual
parameters.

/* From Example.idl: */
module Example {
interface Modes {
long operation(in long inArg, out long outArg, inout
long inoutArQ);
};
};
// Generated Java:
package Example;
public interface Modes extends
com. inprise.vbroker_CORBA.Object,
Example.ModesOperations,
org.omg.CORBA.portable.IDLEntity {

public interface ModesOperations {
public int operation (int inArg,
org.omg.CORBA. IntHolder outArg,
org.omg.CORBA. IntHolder inoutArg);

}

In the above, the result comes back as an ordinary result and the actual in
parameters only an ordinary value. But for the out and inout parameters,

54 VisiBroker for Java Developer’s Guide

Interfaces

an appropriate holder must be constructed. A typical use case might look as
follows:

// user Java code

// select a target object
Example.Modes target = ...;
// get the in actual value
int inArg = 57;

// prepare to receive out

IntHolder outHolder = new IntHolder();
// set up the in side of the inout

IntHolder inoutHolder = new IntHolder(131);

// make the invocation

int result =target.operation(inArg, outHolder,
inoutHolder);

// use the value of the outHolder

... outHolder.value .

// use the value of the inoutHolder

... inoutHolder.value

Before the invocation, the input value of the inout parameter must be set in
the holder instance that will be the actual parameter. The inout holder can
be filled in either by constructing a new holder from a value, or by assigning
it to the value of an existing holder of the appropriate type. After the
invocation, the client uses the outHolder .value to access the value of the
out parameter, and the 1noutHolder.value to access the output value of
the inout parameter. The return result of the IDL operation is available as
the result of the invocation.

Server implementation with inheritance

Using inheritance is the simplest way to implement a server because server
objects and object references look the same, behave the same, and can be
used in exactly the same contexts. If a server object happens to be in the
same process as its client, method invocations are an ordinary Java function
call with no transport, indirection, or delegation of any kind.

Each IDL interface is mapped to a Java POA abstract class that implements
the Java version of the IDL interface.

Note

The POA class does not “truly” extend the IDL interface, meaning that POA
is not a CORBA object. It is a CORBA servant and it can be used to create a
“true” CORBA object. For more information on the POA class, go to the Java
API Reference, VisiBroker APls, org.omg.PortableServer package section.
For more information about POAs, see “Using POAs".

User-defined server classes are then linked to the VisiBroker ORB by
extending the <interface>POA class, as shown in the following code
sample.

Note

The POA class itself is abstract and cannot be instantiated. To instantiate it,
your implementation must implement its declared IDL interface operations.

The following code sample shows the Server implementation in Java using
inheritance.

VisiBroker for Java Developer’'s Guide 55

Interfaces

/* From Bank.idl: */
module Bank {
interface Account {
};
};
// Generated java
package Bank;
public abstract class AccountPOA extends
org.omg.PortableServer.Servant implements
org.omg.CORBA.portable. InvokeHandler,

Bank.AccountOperations { ... }
// Linking an implementation to the ORB :
public class Accountlmpl extends Bank.AccountPOA { ... }

Server implementation with delegation

The use of inheritance to implement a server has one drawback: since the
server class extends the POA skeleton class, it cannot use implementation
inheritance for other purposes because Java only supports single
inheritance. If the server class needs to use the sole inheritance link
available for another purpose, the delegation approach must be used.

When server classes are implemented using delegation some extra code is
generated.

« Each interface is mapped to a Tie class that extends the POA skeleton
and provides the delegation code.

« Each interface is also mapped to an Operations interface that is used to
defined the type of object the Tie class is delegating.

The delegated implementation must implement the Operation interface
and has to be stored in a Tie class instance. Storing the instance of the
Operation interface in the Tie object is done through a constructor
provided by the Tie class. The code sample below shows an example of
how delegation is used.

/* From Bank.idl: */
module Bank {
interface AccountManager {
Account open(in string name);

¥
¥

// Generated java
package Bank;
public interface AccountManagerOperations {
public Example_.Account open(java.lang.String name);
by

// Generated java

package Bank;

public class AccountManagerPOATie extends AccountManagerPOA {
public AccountManagerPOATie (Ffinal Bank.AccountManagerOperations

_delegate)

{--- %
public AccountManagerPOATie (Ffinal Bank.AccountManagerOperations
_delegate,
final org.omg.PortableServer.POA poa) { ... }
public Bank.AccountManagerOperations _delegate QO { --- }

public void _delegate (Ffinal Bank.AccountManagerOperations delegate) {

-public org.omg.PortableServer.POA default POA O { ... }

56 VisiBroker for Java Developer’s Guide

Mapping for exceptions

public float open QO { --- }

// Linking an implementation to the ORB :
classAccountimpl implements AccountManager Operations
public class Server {
public static main(String args) {
// ..
AccountManagerPOAtie managerServant = new AccountManagerPOATie(new
AccountManagerimpl ());
// ...

}

Interface scope

OMG IDL to Java mapping specification does not allow declarations to be
nested within an interface scope, nor does it allow packages and interfaces
to have the same name. Accordingly, interface scope is mapped to a
package with the same name with a “Package” suffix.

Mapping for exceptions

IDL exceptions are mapped very similarly to structs. They are mapped to a
Java class that provides instance variables for the fields of the exception
and constructors.

CORBA system exceptions are unchecked exceptions. They inherit
(indirectly) from java.lang.RuntimeException

User defined exceptions are checked exceptions. They inherit (indirectly)
from java. lang.Exception.

User-defined exceptions

User-defined exceptions are mapped to final Java classes that extend
org.omg.CORBA.UserException and are otherwise mapped just like the
IDL struct type, including the generation of Helper and Holder classes.

If the exception is defined within a nested IDL scope (essentially within an
interface) then its Java class name is defined within a special scope.
Otherwise its Java class name is defined within the scope of the Java
package that corresponds to the exception's enclosing IDL module.

The following code sample shows the mapping of user-defined exceptions.

// 1DL
module Example {
exception AnException {
string reason;
};
}:
// Generated Java
package Example;
public final class AnException extends
org.omg.CORBA.UserException {
public java.lang.String extra;

public AnException O { -.. }

public AnException (Java.lang.String extra) { ... }

public AnException (Java.lang.String _reason,
java.lang.String extra) { ... }

VisiBroker for Java Developer’'s Guide 57

System exceptions

public java.lang.String to String QO { --- }
public boolean equals (Java.lang.Object 0) { ... }

public final class AnExceptionHolder implements
org.omg.CORBA.portable.Streamable {
public Example.AnException value;
public AnExceptionHolder (O { }
public AnExceptionHolder (final Example.AnException

_vis_value) { ... }
public void _read (final

org.omg.CORBA.portable. InputStream input) { ... }
public void _write (final

org.omg.CORBA.portable.OutputStream output) { ... }
public org.omg.CORBA.TypeCode _type O { --- }

}

System exceptions

The standard IDL system exceptions are mapped to final Java classes that
extend org.omg.CORBA.SystemException and provide access to the IDL
major and minor exception code, as well as a string describing the reason
for the exception. There are no public constructors for
org.omg.CORBA.SystemException; only classes that extend it can be
instantiated.

The Java class name for each standard IDL exception is the same as its IDL
name and is declared to be in the org.omg.CORBA package. The default
constructor supplies O for the minor code, COMPLETED_NO for the
completion code, and the empty string (““) for the reason string. There is
also a constructor which takes the reason and uses defaults for the other
fields, as well as one which requires all three parameters to be specified.

Mapping for the Any type

The IDL type Any maps to the Java class org.omg.CORBA.Any. This class
has all the necessary methods to insert and extract instances of predefined
types. If the extraction operations have a mismatched type, the

CORBA: :BAD_OPERATION exception is thrown.

In addition, insert and extract methods which take a holder class are
defined to provide a high speed interface for use by portable stubs and
skeletons. There is an insert and extract method defined for each primitive
IDL type as well as a pair for a generic streamable to handle the case of
non-primitive IDL types.

The insert operations set the specified value and reset the Any's type if
necessary.

Setting the typecode via the type() accessor wipes out the value. An
attempt to extract before the value is set will result in a

CORBA: :BAD_OPERATION exception being raised. This operation is provided
primarily so that the type may be set properly for IDL out parameters.

Mapping for certain nested types

IDL allows type declarations nested within interfaces. Java does not allow
classes to be nested within interfaces. Hence those IDL types that map to

58 VisiBroker for Java Developer’s Guide

Mapping for Typedef

Java classes and that are declared within the scope of an interface must
appear in a special “scope” package when mapped to Java.

IDL interfaces that contain these type declarations generate a scope
package to contain the mapped Java class declarations. The scope package
name is constructed by appending Package to the IDL type name.

This code sample shows the mapping for certain nested types.

// 1DL
module Example {
interface Foo {
exception el {};

};
by
// generated Java
package Example.FooPackage;
final public class el extends org.omg.CORBA.UserException

{---}

Mapping for Typedef

Java does not have a typedef construct.

Simple IDL types

IDL types that are mapped to simple Java types may not be subclassed in
Java. Therefore, any typedefs that are type declarations for simple types
are mapped to the original (mapped type) any where the typedef type
appears. For simple types, Helper classes are generated for all typedefs.

Complex IDL types

Typedefs for non arrays and sequences are “unwound” to their original type
until a simple IDL type or user-defined IDL type (of the non typedef variety)
is encountered.

Holder classes are generated for sequence and array typedefs.
The following code sample shows the mapping of a complex idl typedef.

// 1DL
struct EmpName {
string firstName;
string lastName;
3
typedef EmpName EmpRec;
// generated Java
// regular struct mapping for EmpName
// regular helper class mapping for EmpRec
final public class EmpName {

public class EmpRecHelper {

}

VisiBroker for Java Developer’'s Guide 59

60 VisiBroker for Java Developer’'s Guide

VisiBroker properties

This section describes the VisiBroker properties.

JAVA RMI over II1OP properties

Property Default Description

vbroker .rmi . supportRTSC false This property enables or disables the exchange of
SendingContextRuntime service contexts between
clients and servers when the two are using
different (evolved) versions of a class. If the client
and server are on different versions of a JDK, the
application should make sure that this property is
set to true. This value should also be used for
cases where VBJ is talking to a foreign ORB. This
ensures that the codebase data is exchanged and
marshaling/demarshaling of evolved classes can
succeed without exceptions.

Javax.rmi_.CORBA.StubClass com.inprise.vbroker Specifies the name of the implementation of the
-rmi .CORBA.StubImpl Stub base class from which all RMI-110P stubs
must inherit.

Javax.rmi .CORBA._UtilClass com.inprise.vbroker Specifies the name of the implementation of the
-rmi_CORBA.UtilImpl ytility class that provides methods that can be
used by stubs and ties to perform common
operations.
jJavax.rmi .CORBA. com.inprise.vbroker Specifies that the RMI-110P server implementation
PortableRemoteObjectClass .rmi.CORBA.Portable gbjects may inherit from
RemoteObjectimpl jJavax.rmi .PortableRemoteObject or simply
implement an RMI-I11OP remote interface and then
use the exportObject method to register
themselves as a server object.

java.rmi.server.codebase <not set> Specifies where a server can locate unknown
classes. Acceptable value is semicolon (;)-
separated URLs.

jJava.rmi.server. false Specifies if a server is allowed to locate unknown

useCodebaseOnly classes. If set to true, does not allow the server to
locate remote classes even if the client sends the
location of the remote classes to the server.

VisiBroker for Java Developer’'s Guide 61

Smart Agent properties

Smart Agent properties

The properties in this table are used by the Smart Agent.

Property

vbroker.agent.
addrFile

vbroker.agent.
localFile

vbroker.agent.
clientHandlerPort

vbroker.agent.
keepAliveTimer

vbroker.agent.
keepAliveThreshold

vbroker.agent.
verifyMaxClients

vbroker.agent.port

vbroker .agent.
maxRetries

vbroker.agent.
timer

vbroker.agent.thre
shold

Default

null

null

null

120
seconds

Old property
ORBagentAddrFile

N/A

N/A

N/A

40 seconds N/A

50

14000

4 times

300
seconds

N/A

ORBagentPort

N/A

N/A

40 seconds N/A

Description

Specifies a file that stores the IP address or host
name of a host running a Smart Agent.

Specifies which network interface to use on
multi-home machines. This used to be the
OSAGENT_LOCAL_FILE environment variable.

Specifies the port that the Smart Agent uses to
verify the existence of a client — in this case, a
VisiBroker application. When you use the default
value, null, the Smart Agent connects using a
random port number.

Smart agent will wake up after this timeout and
based on the
vbroker.agent.keepAliveThreshold value, will
compute whether to do client verification. The
logic is if the last received heart beat value is
less than current time - (keepAliveTimer +
keepAliveThreshold), then do client verification.
The value of this property should be greater than
1 second and less than 120 seconds. The number
of times the client verification is tried can be
controlled by vbroker.agent.maxRetries
property.

Refer to documentation on
vbroker.agent.keepAliveTimer. This value should
be greater than 0.

Specifies the maximum number of clients that
the Smart Agent will try to verify on each
occasion that it is woken up by keepAliveTimer.
For example,

osagent -Dvbroker.agent.verifyMaxClients 23

The default is the same value that was hard-
coded in previous versions.

Specifies the port number that defines a domain
within your network. VisiBroker applications and
the Smart Agent work together when they have
the same port number. This is the same property
as the OSAGENT_PORT environment variable.

The number of times the agent will do client
verification on not receiving a heart beat from
the client. Values can be 1 to 10.

Smart agent will wake up after this and based
on the vbroker.agent.threshold value, will
compute whether to do other osagents
verification. The logic is if the last received heart
beat value is less than current time - (timer +
threshold), then do osagents verification. The
value of this property should be greater than 1
second and less than 300 seconds.

For example,

$ osagent -Dvbroker.agent.timer 60
-Dvbroker.agent.threshold 5

See vbroker.agent. timer. This value should
be greater than O.

62 VisiBroker for Java Developer’'s Guide

Property

vbroker .agent.
keepAliveTimer

vbroker.agent.
retryDelay

vbroker.agent.addr

vbroker.agent.
addrFile

vbroker.agent.
debug

vbroker.agent.
enableCache

vbroker.agent.
enablelLocator

vbroker.agent.port

vbroker .agent.
failOver

vbroker.agent.
clientPort

vbroker .agent.

clientPortRange

vbroker.agent.
backcompatBind

Smart Agent properties

Smart Agent communication properties

The properties described in the table below are used by the ORB for Smart
Agent communication.

Default
120

0 (zero)

null

null

false

true

true

14000

true

0 (zero)

0 (zero)

false

Old property
N/A

NZA

ORBagentAddr

ORBagentAddrFile

ORBdebug

ORBagentCache

ORBdisablelLocator

ORBagentPort

ORBagentNoFail
Over

NZA

NZA

N/A

Description

The duration in seconds during which the ORB
will send keep-alive messages to the Smart
Agent (applicable to both clients and servers).
Valid values are integers between 1 and 120,
inclusive.

The duration in seconds that the process will
pause before trying to reconnect to the Smart
Agent in the event of disconnection from the
Smart Agent. If the value is -1, the process will
exit upon disconnection from the Smart Agent.
The default value of 0 (zero) means that
reconnection will be made without any pause.

Specifies the IP address or host name of a host
running a Smart Agent. The default value, null,
instructs VisiBroker applications to use the
value from the OSAGENT_ADDR environment
variable. If this OSAGENT_ADDR variable is not
set, then it is assumed that the Smart Agent is
running on a local host.

Specifies a file that stores the IP address or host
name of a host running a Smart Agent.

When set to true, specifies that the system will
display debugging information about
communication of VisiBroker applications with
the Smart Agent.

When set to true, allows VisiBroker applications
to cache IOR.

When set to false, does not allow VisiBroker
applications to communicate with the Smart
Agent.

Specifies the port number that defines a domain
within your network. VisiBroker applications and
the Smart Agent work together when they have
the same port number. This is the same
property as the OSAGENT_PORT environment
variable.

When set to true, allows a VisiBroker
application to fail over to another Smart Agent.

Lower bound of the range of ports for the ORB
to communicate with the OSAgent. Valid values
are between 0 to 65535. Default value of O
(zero) means that a random port will be
selected.

Range of ports within interval [clientPort,
clientPort+clientPortRange] for the ORB to
communicate with the OSAgent. This property is
effective only when clientPort is greater than
0 (zero). Valid values are between 0 and 65535.

When set to false, the client ORB will use the
hostname parameter passed in from the
bind() method when binding to the server.

When set to true, it will use the corresponding
hostname's IP address when binding to the
server.

Set to true in order to experience pre-VBJ 8.0
binding behavior.

VisiBroker for Java Developer’'s Guide 63

VisiBroker ORB properties

VisiBroker ORB properties

The following table describes the VisiBroker ORB properties.

Property Default Description

vbroker.orb.propOrdering CMD_PROPS:SYS_PROPS:FIL This property allows the user to override
E_PROPS:0ORB_PROPS:DEF_P the default precedence of properties set by
ROPS the ORB's Property Manager. The default
precedence from highest to lowest is:

1 CMD_PROPS: command-line arguments
(specified through the first argument of
orb.init() call

2 SYS_PROPS: system or JVM properties,
including properties specified through
-VBJprop, -J, and so forth.

3 FILE_PROPS: properties in the file specified
by ORBpropStorage property.

4 ORB_PROPS: properties set through the
second argument of the orb.init() call.

5 DEF_PROPS: default ORB properties.

vbroker.orb. 0 (zero) This value determines the number of times

rebindForward a client will try to connect to a forwarded
target. You can use this property when the
client cannot communicate with the
forwarded target (because of network
failure, for example). The default value of
0 (zero) means that the client will keep
trying to connect.

It determines if the ORB should rebind in
the case of a failure to connect during a
LOCATION_FORWARD. When the client is
forwarded to a new object, an attempt is
made to connect to the new (destination)
object. If this attempt ends in failure, the
ORB transparently connects back to the
original object (the source of the forward).
This rebind to the source object occurs
only if two conditions are fulfilled. The first
is that the total number of forwards at this
point (without a normal response
punctuating them) should not have
exceeded the count specified in this
property.

The second condition is that this failure
should not be the second consecutive
attempt to connect to the same destination
object ending in failure. This prevents the
ORB from getting trapped in a loop when a
load balancer object repeatedly forwards to
the same non-existent object.

vbroker.orb. null Allows the launched server to easily

activationlOR establish contact with the OAD that
launched it.

vbroker.orb.admDir null Specifies the administration directory at

which various system files are located. This
property can be set using the VBROKER_ADM
environment variable.

vbroker.orb.enableKeyld false When set to true, this property enables
the use of key IDs in client requests.

64 VisiBroker for Java Developer’'s Guide

Property

vbroker.orb.
enableServerManager

vbroker.orb.
keyldCacheMax

vbroker.orb.
keyldCacheMin

vbroker.orb.initRef

vbroker.orb.
defaultlnitRef

vbroker.orb.alwaysProxy
vbroker.orb.gatekeeper.
ior

vbroker. locator.ior

vbroker.orb.
exportFirewal IPath

vbroker.orb.
proxyPassthru

vbroker.orb.bids.
critical

vbroker.orb.alwaysSecure

vbroker.orb.alwaysTunnel

vbroker.orb.
autoLocateStubs

Default
FALSE

16384
64

null
null

false

null

null

false

false

inprocess

false

false

false

VisiBroker ORB properties

Description

When set to TRUE, this property enables
Server Manager when the server is started,
so that clients can access it.

Specifies maximum size of the object key
ID cache in a server.

Specifies minimum size of the object key
ID cache in a server.

Specifies the initial reference.
Specifies the default initial reference.

When set to true, specifies that clients
must always connect to the server using
the GateKeeper.

Forces the client application to connect to
the server through the GateKeeper whose
IOR is provided.

Specifies the IOR of the GateKeeper that
will be used as proxy to the Smart Agent.
If this property is not set, the GateKeeper
specified by the
vbroker.orb.gatekeeper.ior property is
used for this purpose. For more
information, see the VisiBroker
GateKeeper Guide.

Forces the server application to include
firewall information as part of any
servant's IOR which this server exposes
(use Firewall::FirewallPolicy in your
code to force it selectively per POA).

If set to true, forces PASSTHROUGH firewall
mode globally in the application scope (use
QoSExt: :ProxyModePolicy in your code to
force it selectively per object or per ORB).

The critical bid has highest precedence no
matter where it is specified in the bid
order. If there are multiple values for
critical bids, then their relative importance
is decided by the bidOrder property.

When set to true, specifies that clients
must always make secure connections to
the server.

When set to true, specifies that clients
always make http tunnel (I1OP wrapper)
connections to the server.

Turns on the ability to locate stubs when
reading object references. This is done
using read_Object, based on the object's
repository id instead of either the generic
object or the stubs for passed formal class
argument.

VisiBroker for Java Developer’'s Guide 65

VisiBroker ORB properties

Property Default

vbroker.orb.bidOrder inprocess:liop:ssl:
iiop:proxy:hiop:locator

vbroker.orb.bids.bar n/a

vbroker.orb.defAddrMode 0 (Key)

vbroker.orb. 60
bufferCacheTimeout
vbroker.orb.bufferDebug false
vbroker.orb.corbaloc. false
resolveHosts

vbroker.orb.debug false

vbroker.orb.dynamicLibs null

vbroker.orb.embedCodeset true

66 VisiBroker for Java Developer’'s Guide

Description

You can specify the relative order of
importance for the various transports.
Transports are given precedence as
follows:

1 inprocess

liop

ssl

iiop

proxy

hiop

7 locator

The transports that appear first have
higher precedence. For example, if an IOR
contains both LIOP and I1OP profiles, the
first chance goes to LIOP. Only if the LIOP
fails is 110P used.

o O~ WN

(The critical bid, specified by the
vbroker.orb.bids.critical property,
has highest precedence no matter where it
is specified in the bid order.)

This property is used to prevent specified
bidders from placing bids. For example,
setting it to inprocess will disable
inprocess bidding. This can be useful in
cases when optimized co-located
invocations are not required. Only
inprocess bidders can be barred.

The default addressing mode that client
VisiBroker ORB uses. If it is set to O, the
addressing mode is Key, if set to 1, the
addressing mode is Profile, if set to 2,
the addressing mode is 10R.

Specifies the time, in seconds, for which a
message chunk is cached before it is
discarded.

When set to true, this property allows the
internal buffer manager to display
debugging information.

When this property is set to true the ORB
will try to resolve the hostnames specified
in the corbaloc URL. When false no
address resolution will take place.

When set to true, allows the ORB to
display debugging information.

Specifies a list of available services used by
the VisiBroker ORB. Each service is
separated by a comma.

When an IOR is created, the VisiBroker
ORB embeds the codeset components into
the IOR. This may produce problems with
some non-compliant ORBs. By turning off
the embedCodeset property, you instruct
the VisiBroker ORB not to embed codesets
in IORs. When set to false, specifies that
character and wide character conversions
between the client and the server are not
to be negotiated.

Property

vbroker.orb.
enableVB4backcompat

vbroker.orb.
backCompatAlign

vbroker.orb.enableBiDir

vbroker.orb.
enableNullString

vbroker.orb.fragmentSize

vbroker.orb.
streamChunkSize

vbroker.orb.gcTimeout

vbroker.orb.logger.
appName

vbroker.orb.logger.
catalog

vbroker.orb.logger.
output

Default
false

false

none

false

0 (zero)

4096

30

VBJ-Application

com. inprise.vbroker.Log
ging.ORBMsgs

stdout

VisiBroker ORB properties

Description

This property enables work-arounds to
deal with behavior that is not GIOP 1.2-
compliant in VisiBroker 4.0 and 4.1. Any
VisiBroker client running on VisiBroker
4.1.1 or a release previous to 4.1.1 is
affected, especially if GateKeeper is
involved. To work with a Visibroker 4.0 or
4.1 client, this flag needs to be set to true.
This is a server-side only flag. There is no
corresponding flag on the client side.

Use this property when the IDL contains a
longlong as a parameter or as a return
value. To be backward-compatible with
VisiBroker 4.1.1 or earlier versions, set this
property to true.

You can selectively make bidirectional
connections. If the client defines
vbroker.orb.enableBiDir=client and
the server defines
vbroker.orb.enableBiDir=server the
value of vbroker.orb.enableBiDir at the
GateKeeper determines the state of the
connection. Values of this property are:
server, client, both or none. For more
information, see “Properties that support bi-
directional communication” and also Callback
with GateKeeper's bidirectional support in
the VisiBroker GateKeeper Guide.

If set to TRUE, enables marshaling of null
strings.

Specifies the GIOP message fragment size.
It must be a multiple of GIOP message
chunk size (vbroker.orb. streamChunkSize).
Assigning a 0 (zero) to this property will
eventually turn off fragmentation.
Specifies the GIOP message chunk size. It
must be a power of 2.

Specifies the time in seconds that must
pass before important resources that are
not used are cleared.

Specifies the application name that
appears in the log.

Specifies the message catalog of messages
used by the ORB when logging is enabled.

Specifies the output of the logger. It can
be the standard output or a file name.

VisiBroker for Java Developer’'s Guide 67

VisiBroker ORB properties

Property Default
vbroker.orb.logLevel emerg
vbroker.orb.sendLocate false
vbroker.orb. 0 (zero)
shutdownTimeout

68 VisiBroker for Java Developer’'s Guide

Description

Note: This property is deprecated. See
“Debug Logging Properties” for recommended
properties to use in its place.

Specifies the logging level of message that
will be logged. The default value, emerg,
means that the system logs messages
when the system is unusable, or in a panic
condition. Acceptable values are:

* emerg (0): indicates some panic
condition.

e alert (1): a condition that requires user
attention—for example, if security has
been disabled.

» crit (2): critical conditions, such as a
device error.

e err (3): error conditions.

e warning (4): warning conditions—these
may accompany some troubleshooting
advice.

¢ notice (5): conditions that are not errors
but may require some attention, such as
upon the opening of a connection.

¢ info (6): informational, such as binding
in progress.

¢ debug (7): debug conditions understood
by developers.

This property takes one of the following
values: true, false, onbind, or always.
When set to true, it forces the system to
send a locate request before making
invocations on an IIOP 1.2 target. When
set to onbind, causes a locate request
message to be sent when a connection is
opened for the purpose of gauging if the
peer is GIOP aware. The value always
instructs the ORB to perform both tasks-
sending the locate request before
invocations and upon opening the
connection.

Allows an application to set a timeout for
the ORB.shudown operation in seconds.
This property is useful in cases when
ORB.shutdown does not finish for a long
time. The process will get terminated if the
shutdown does not finish and the timeout
expires. The default value of O (zero)
means that process will never get
terminated.

Property

vbroker.orb.systemLibs.
applet

vbroker.orb.systemLibs.
application

vbroker.orb.
tclndirection

VisiBroker ORB properties

Default Description

com. inprise.vbroker. Provides a list of system libraries
1IOP.Init, applet.

com. inprise.vbroker.
LIOP.Init,

com. inprise.vbroker.qos
-Init,

com. inprise.vbroker.
URLNaming.Init,

com. inprise.vbroker.
HIOP.Init,

com. inprise.vbroker.
Ffirewall . Init,

com. inprise.vbroker.
dynamic.Init,

com. inprise.vbroker.
naming.Init,

com. inprise.vbroker. 0P
-Init,

com. inprise.vbroker.
CONV_FRAME. Init,

com. inprise.vbroker.
rmi .CORBA.Init,

com. inprise.vbroker.
Portablelnterceptor.

Init,

com.borland.vbroker.
notify.Init,

com.borland.vbroker.
CosTime.Init

com. inprise.vbroker. Provides a list of system libraries
1IOP.Init, application.

com. inprise.vbroker.
LIOP.Init,

com. inprise.vbroker.qos
Init,

com. inprise.vbroker.ds.
Init,

com. inprise.vbroker.
URLNaming. Init,

com. inprise.vbroker.
dynamic.Init,

com. inprise.vbroker.ir.
Init,

com. inprise.vbroker.
naming.Init,

com. inprise.vbroker.
ServerManager.Init,

com. inprise.vbroker. 10P
-Init,

com. inprise.vbroker.
CONV_FRAME. Init,

com. inprise.vbroker.rmi
-CORBA.Init,

com. inprise.vbroker.
Portablelnterceptor.
Init,

com.borland.vbroker.
notify.Init,

com.borland.vbroker.
CosTime.Init

loaded in

loaded in

true

Specifies that indirection be turned off
when writing the typecodes. May be
necessary when interoperating with ORBs
from other vendors. When set to false, it
is not possible to marshal recursive
typecodes.

VisiBroker for Java Developer’'s Guide

69

VisiBroker ORB properties

Property Default
vbroker.orb.warn 0
vbroker.orb.procld 0
vbroker.orb.usingPoll true
vbroker.orb.ncsc none
vbroker.orb. 0
serverSendTimeout

vbroker.orb. true

invalidLicenseExit

vbroker.orb.tcpTimeout 0

70 VisiBroker for Java Developer’'s Guide

Description

Specifies a value of 0, 1, or 2 which
indicates the level of warning messages to
be printed.

Specifies the process ID of the server.

On UNIX platforms, the ORB uses the
system calls select() or poll() for I/0
multiplexing based on the value of this
property. If the value is true, poll() is used.
Otherwise, select() is used. True is the
default value.

If set to UTF8, the ORB will use UTF-8 as
the native code set for the IDL char type,
instead of ISO-LATIN-1. If the property is
omitted then ISO-LATIN-1 will be used as
the native code set.

Timeout in seconds for the Server side ORB
to send a message to a Client.

Default value 0 means no timeout.

If the write operation is blocked for more
then the serverSendTimeout limit, it
will timeout and close the connection.

By default, when a license check fails in an
application, the application will be aborted.

If set to False, a
CORBA:NO_PERMISSION exception is just
thrown and application will not be aborted.

This property is useful when using the ORB
inside a WebLogic Server process. When
the license check fails, the WebLogic
process will not be aborted.

Note: This property is deprecated due to
the limitation of the design that set the
value at the socket read level. It is not
compliant to OMG CORBA Messaging
specification. For more information, refer
to the QoS relative roundtrip and request
properties or policies which are well
implemented and more accurate.

The default zero means no timeout is
enabled. This property will associate a
timeout with all socket-read at the client-
side ORB. The specified timeout value is in
milliseconds that is passed to set
SoTimeout() in java.net.Socket.

Note: The setting of this property will
disable the QoS relative roundtrip and
request timeout policies.

This property is an ORB level property, so
there is no way to obtain object level or
thread level granularity unlike the QoS
policies. If more than one CORBA request
is sent to the same connection by multiple
threads concurrently, the actual time spent
in reading data from socket may be greater
than the timeout value set per invocation.

Property
vbroker.orb._mtmPerCall

vbroker.orb.
serverDelayClose

vbroker.orb.
serverDelayCloseTimeout

vbroker.orb.
serverRecvTimeout

vbroker.orb.
tagAlternatel IOPAddress

Default

true

false

30

null

VisiBroker ORB properties

Description

If true, any thread calling

ORB: :perform_work() can performs
the request. If false, the thread that calls
ORB: :perform_work() the first time
becomes the "main thread" throughout the
lifetime of the ORB. The call to

ORB: :perform_work() from a thread
other than the "main thread" does nothing.

By default, the Server ORB closes the
socket immediately after sending the
CloseConnection message to the client.
When this property is set to true, the
Server will continue to read data from the
socket after sending the CloseConnection
message until the Client closes its socket.
Only then will the Server close its socket.
Note that all requests received after the
CloseConnection message is sent will be
discarded.

If vbroker.orb.serverDelayClose
=true is set and the Client does not
respond to the CloseConnection message,
the Server can set this property to limit the
time the Server waits for the Client to close
its socket. This can prevent the Server
from hogging socket resources due to
unresponsive clients. The value is in
seconds and the default value is 30.

Timeout in seconds for the server-side ORB
to receive a message from a client. Default
value of 0 means no timeout. This property
is only applicable if NIO Socket is
configured at the server-side.

Sets TAG_ALTERNATE_II1OP_ADDRESS
components into 11OP Profiles. These
components hold alternative host and port
values which are interpreted by some
ORBs as fall-back addresses in the event of
a client's failure to connect. VisiBroker
clients do not currently interpret these
properties this way. JacORB is an example
of an ORB that does so. The alternate 110P
addresses must be specified as per the
corbaloc IOR/URI host and port rules. The
property takes a string value; comma-
separated multiple values are allowed. An
example of this property use might be:

vbroker.orb.tagAlternatel IOPAddress=my

host.domain.com:54321, [fe80: :20c:29ff:
fe58:ce28]:23232,127.0.0.1:65000

VisiBroker for Java Developer’'s Guide 71

POA properties

Property Default Description

vbroker.orb.) 0 Specifies the maximum allowed CDR input

cdrMaxInputBufferSize buffer size. A value greater than zero
defines the upper size of the CDR input
buffer on the server. If the CDR input
buffer size is greater than the specified
property value, the server will throw a
CORBA.MARSHAL exception and discard
the CDR message.
If an invalid value is specified (less than
zero), the server will throw a
CORBA.BAD_PARAM and exit.
If no value is specified, or if you specify a
value of zero for the property, the previous
behavior is preserved.
Be cautious when choosing a value for this
property. Setting it too small can result in
the ORB rejecting important messages
because of Out of Memory exceptions
during CDR unmarshaling of arguments.

POA properties

Property Default Description

vbroker .poa.manager. 0 Controls the minimum number of threads in the auxiliary

threadMin thread pool used in POA (for instance, for etherealization of

objects).

vbroker .poa.manager . 0 Controls the maximum number of threads in the auxiliary

threadMax thread pool used in POA.

vbroker .poa.manager . 300 Controls the idle timeout for threads in the auxiliary thread

threadMaxldle pool used in POA.

vbroker .poa. logLevel emerg Note: This property is deprecated. See “Debug Logging

Properties” for recommended properties to use in its place.

Specifies the logging level of messages to be logged. The
default value, emerg, means that messages are logged
when the system is unusable or during a panic condition.

Acceptable values are:
« emerg (0): indicates some panic condition.

e alert (1): a condition that requires user attention—for
example, if security has been disabled.

e crit (2): critical conditions, such as a device error.
e err (3): error conditions.

e warning (4): warning conditions—these may accompany
some troubleshooting advice.

¢ notice (5): conditions that are not errors but may
require some attention, such as upon the opening of a
connection.

¢ info (6): informational, such as binding in progress.

¢ debug (7): debug conditions understood by developers.

72 VisiBroker for Java Developer’'s Guide

Server Manager properties

Server Manager properties

This table lists the Server Manager properties.

Property Default Description
vbroker.serverManager.name null Specifies the name of the Server Manager.
vbroker.serverManager. true When set to true, enables operations, exposed by the
enableOperations Server Manager, to be invoked.
vbroker.serverManager. true When set to true, enables properties, exposed by
enableSetProperty the Server Manager, to be changed.
Properties showing run-time status of Server
The following properties show the run-time state of the Server which can be
queried through the Server Manager's container. These are all read-only.
Properties related to Server-side resource usage
Property Description

vbroker.se.

<SE_name>.scm.<SCM_name>.

manager . inUseConnections

vbroker.se.

<SE_name>_.scm.<SCM_name>.

manager . idleConnections

vbroker.se.

<SE_name>.scm.<SCM_name>.

manager . idledTimeoutConnections

vbroker.se.

<SE_name>.scm.<SCM_name>.

The number of incoming connections for which
there are requests executing in the ORB.

The number of incoming connections for which
there are no requests currently being executed in
the ORB.

The number of connections which have been idle
past their idle timeout setting but have yet to be
closed (due to garbage collection restrictions, for
example).

The number of threads currently executing

dispatcher. inUseThreads requests within the dispatcher.
vbroker.se.<SE_name>.scm.<SCM_name>. The number of threads which are currently idle
dispatcher.idleThreads waiting for work to be assigned.

Properties related to Client-side resource usage
Property Description

vbroker.ce.

vbroker.ce.

vbroker.ce.

vbroker.ce.

vbroker.ce.

<CE_name>.ccm.activeConnections The number of connections in the active pool; that

is, object references are using these connections.

<CE_name>.ccm.cachedConnections The number of connections in the cache pool; no

<CE_name>.ccm. inUseConnections

<CE_name>.ccm. idleConnections

<CE_name>.ccm.

idledTimeoutConnections

object references are using these connections.

The number of outgoing connections with pending
requests.

The number of outgoing connections with no
pending requests.

The number of idle connections which have idled
past their timeout setting, but have not been
closed.

Property

Properties related to the Smart Agent (osagent)

vbroker.agent.currentAgentlIP

vbroker.agent.currentAgentClientPort

Description

The IP address of the current ORB's Smart Agent
(Smart Agent).

The port of the Smart Agent to which the ORB is
sending requests.

VisiBroker for Java Developer’'s Guide 73

Location Service properties

Location Service properties

The following table lists the Location Service properties.

Property Default

vbroker.locationservice false

.debug

vbroker.locationservice false

-verify

vbroker.locationservice 1
.timeout

Description

When set to true, allows the Location Service to display
debugging information.

When set to true, allows the Location Service to check for the
existence of an object referred by an object reference sent
from the Smart Agent. Only objects registered BY_INSTANCE
are verified for existence. Objects that are either registered
with OAD, or those registered BY_POA policy are not verified
for existence.

Specifies the connect/receive/send timeout, in seconds, when
trying to interact with the Location Service.

Event Service properties

The following table lists the Event Service properties.

Property
vbroker.events.
maxQueuelLength
vbroker.events.factory

vbroker.events.debug

vbroker.events. interactive

Default
100

false

false

false

Description

Specifies the number of messages to be queued for slow
consumers.

When set to true, allows the event channel factory to be
instantiated, instead of an event channel.

When set to true, allows output of debugging
information.

When set to true, allows the event channel to be
executed in a console-driven, interactive mode.

Naming Service (VisiNaming) properties

The following tables list the VisiNaming Service properties.

Property

vbroker .naming.adminPwd

vbroker _naming.enableSlave

vbroker _naming.
factorylorFile

vbroker.naming.iorFile

Default Description

inprise

0

NZA

ns.ior

74 VisiBroker for Java Developer’'s Guide

Password required by administrative VisiBroker naming
service operations.

If 1, enables master/slave naming services configuration.
See the “VisiNaming Service Clusters for Failover and

Load Balancing” section for information about configuring
master/slave naming services.

When this property is specified with a value specifying a
file name, the Naming Service will store the IOR of
context factory in that file. The IOR file can then be used
by the nsutil utility to shutdown the Naming Service
remotely.

This property specifies the full path name for storing the
naming service IOR. If you do not set this property, the
naming service will try to output its IOR into a file named
ns.ior in the current directory. The naming service
silently ignores file access permission exceptions when it
tries to output its IOR.

Naming Service (VisiNaming) properties

Property Default Description

vbroker.naming. logUpdate false This property allows special logging for all of the update
operations on the CosNaming: :NamingContext,
CosNamingExt: :Cluster, and
CosNamingExt: :ClusterManager interfaces.

The CosNaming: :NamingContext interface operations for
which this property is effective are:

bind, bind_context, bind_new_context, destroy,
rebind, rebind_context, unbind
The CosNamingExt: :Cluster interface operations for
which this property is effective are:

bind, rebind, unbind, destroy

The CosNamingExt: :ClusterManager interface operation
for which this property is effective is:

create_cluster

When this property value is set to true and any of the
above methods is invoked, the following log message is
printed (the output shows a bind operation being
executed):

00000007,5/26/04 10:11 AM,127.0.0.1,00000000,
VBJ-Application,VBJ ThreadPool Worker, INFO,

OPERATION NAME : bind

CLIENT END POINT : Connection[socket=Socket
[addr=/127.0.0.1, port=2026, localport=1993]]
PARAMETER O : [(Tom.LoanAccount)]

PARAMETER 1 : Stub[repository_id=I1DL:Bank/
LoanAccount:1.0, key=Transientld[poaName=/,
id={4 bytes:
(0)(0)(0)(0)},sec=505,usec=990917734,
key_string=%00VB%01%00%00%00%02/
%00%20%20%00%00%00%
04%00%00%00%00%00%00%01%F9;%104F] , codebase=null]

vbroker.se.iiop_tp.scm. false Causes the Naming Service to discard incoming requests
iiop_tp.listener.deferAccept while starting up. Though the property form is generic, it
vbroker.se.iiop_tp.scm.ssl. should only be used with Naming Service. Use with any

listener.deferAccept other service or application can cause unknown behavior.

This property only works when:

1 Listener port is set.
2 Listener port range is not specified.

Properties relating to object clustering

For more information see the Object Clusters section.

Property Default Description
vbroker.naming. true When set to true, it specifies that an interceptor be
enableClusterfailover installed to handle fail-over for objects that were

retrieved from the VisiNaming Service. In case of an
object failure, an attempt is made to transparently
reconnect to another object from the same cluster as the
original.

VisiBroker for Java Developer’'s Guide 75

Naming Service (VisiNaming) properties

Property Default
vbroker .naming.propBindOn 0
vbroker.naming.smrr. 1
pruneStaleRef

Description
If 1, the implicit clustering feature is turned on.

This property is relevant when the name service cluster
uses the Smart Round Robin criterion. When this
property is set to 1, a stale object reference that was
previously bound to a cluster with the Smart Round Robin
criterion will be removed from the bindings when the
name service discovers it. If this property is set to O,
stale object reference bindings under the cluster are not
eliminated. However, a cluster with Smart Round Robin
criterion will always return an active object reference
upon a resolve() or select() call if such an object
binding exists, regardless of the value of the
vbroker._.naming.smrr._pruneStaleRef property. By
default, the implicit clustering in the name service uses
the Smart Round Robin criterion with the property value
set to 1. If set to 2, this property disables the clearing of
stale references completely, and the responsibility of
cleaning up the bindings belongs to the application,
rather than to VisiNaming.

VisiNaming service cluster related properties

For more information see “VisiNaming Service Clusters for Failover and

Load Balancing”.

Property Default
vbroker.naming.enableSlave 0
vbroker.naming.slaveMode No default.

Can be set to:

cluster
or
slave.

vbroker.naming. null
serverClusterName

vbroker.naming.serverNames null

76 VisiBroker for Java Developer’'s Guide

Description

See “VisiNaming Service properties”.

This property is used to configure VisiNaming Service
instances in the cluster mode or in the master/slave

mode. The vbroker.naming.enableSlave property
must be set to 1 for this property to take effect.

Set this property to cluster to configure VisiNaming
Service instances in the cluster mode. VisiNaming
Service clients will then be load balanced among the
VisiNaming Service instances that comprise the cluster.
Client failover across these instances are enabled.

Set this property to slave to configure VisiNaming
Service instances in the master/slave mode.
VisiNaming Service clients will always be bound to the
master server if the master is running but failover to
the slave server when the master server is down.

This property specifies the name of a VisiNaming
Service cluster. Multiple VisiNaming Service instances
belong to a particular cluster (for example,
clusterXYZ) when they are configured with the cluster
name using this property.

This property specifies the factory names of the
VisiNaming Service instances that belong to a cluster.
Each VisiNaming Service instance within the cluster
should be configured using this property to be aware of
all the instances that constitute the cluster. Each name
in the list must be unique. This property supports the
format:

vbroker .naming.serverNames=
Serverl:Server2:Server3

See the related property,
vbroker.naming.serverAddresses.

Property Default
vbroker.naming. null
serverAddresses

vbroker.naming. false
anyServiceOrder

(To be set on VisiNaming
Service clients)

Naming Service (VisiNaming) properties

Description

This property specifies the host and listening port for
the VisiNaming Service instances that comprise a
VisiNaming Service cluster. The order of VisiNaming

Service instances in this list must be identical to that of

the related property vbroker.naming.serverNames,
which specifies the names of the VisiNaming Service

instances that comprise a VisiNaming Service Cluster.

This property supports the format:

vbroker .naming.serverAddresses=hostl:
portl;host2:port2;host3:port3

This property must be set to true on the VisiNaming

Service client to utilize the load balancing and failover

features available when VisiNaming Service instances

are configured in the VisiNaming Service cluster mode.
The following is an example of how to use this property:

vbj -Dvbroker.naming.anyServiceOrder=true
Client

Pluggable Backing Store Properties

The following tables show property information for the VisiNaming service

pluggable backing store types.

Default properties common to all adapters

Property Default
vbroker .naming. InMemory
backingStoreType

vbroker .naming.cacheOn 0
vbroker.naming.cache. N/A
connectString

vbroker _naming.cache.size 2000

vbroker.naming.cache. 0 (no limit)
timeout

Description

Specifies the naming service adapter type to use. This
property specifies which type of backing store you want
the VisiNaming Service to use. The valid options are:
InMemory, JDBC, Dx, JNDI. The default is InMemory.

Specifies whether to use the Naming Service cache. A
value of 1 (one) enables caching.

This property is required when the Naming Service cache
is enabled (vbroker .naming.cacheOn=1) and the
Naming Service instances are configured in Cluster or
Master/Slave mode. It helps locate an Event Service
instance in the format <hostname>:<port>. For example:

vbroker .naming.cache.connectString=
127.0.0.1:14500

See “Caching facility” for details about enabling the
caching facility and setting the appropriate
properties.

This property specifies the size of the Naming Service
cache. Higher values will mean caching of more data at
the cost of increased memory consumption.

This property specifies the time, in seconds, since the last
time a piece of data was accessed, after which the data in
the cache will be purged in order to free memory. The
cached entries are deleted in LRU (Least Recently Used)
order.

VisiBroker for Java Developer’'s Guide

e

Naming Service (VisiNaming) properties

JDBC Adapter properties

Property Default
vbroker _naming. com._borland.
jdbcDriver datastore. jdbc.

DataStoreDriver
vbroker.naming. True
resolveAutoCommit

vbroker.naming.loginName VisiNaming
vbroker.naming.loginPwd VisiNaming
vbroker _.naming.poolSize 5

78 VisiBroker for Java Developer’'s Guide

Description

This property specifies the JDBC driver that is needed
to access the database used as your backing store.
The VisiNaming Service loads the appropriate JDBC
driver specified. Valid values are:

¢ com.borland.datastore. jdbc.DataStoreDriver—IJ
DataStore driver

e com.sybase. jdbc.SybDriver—Sybase driver

e oracle.jdbc.driver.OracleDriver—Oracle
driver

e interbase.interclient.Driver—Interbase driver

 weblogic.jdbc.mssqlserver4._Driver—WeblLogic
MS SQLServer Driver

e COM.ibm.db2.jdbc.app.DB2Driver—IBM DB2
Driver

Sets Auto Commit on the JDBC connection when
doing a "resolve" operation.

When this property is set to false, the resolve
operation will use the same transaction pattern as
used in other similar methods such as bind, rebind
and so on. If it is set to true, there will be better
performance for the "resolve" operation.

For VisiNaming using JDS HA failover configuration,
set this property to Talse.

The login name associated with the database.

The login password associated with the database.

This property specifies the number of database
connections in your connection pool when using the
JDBC Adapter as your backing store.

Property Default

vbroker.naming.url jdbc:borland:
dslocal :rootDB.
jds

vbroker.naming. 30

minReconlInterval

Naming Service (VisiNaming) properties

Description

This property specifies the location of the database
which you want the Naming Service to access. The
setting is dependent upon the database in use.
Acceptable values are:

e jdbc:borland:dslocal :<db-name>—JDataStore
uTL

e jdbc:sybase:Tds:<host-name>:<port-number>/
<db-name>—Sybase URL

e jdbc:oracle:thin@<host-name>:<port-
number>:<sid>—Oracle URL

e jdbc:interbase://<server-name>/<full-db-
path>—Interbase URL

e jdbc:weblogic:mssqlserver4:<db-name>@<host-
name>:<port-number>—WebLogic MS SQLSever
URL

¢ jdbc:db2:<db-name>—IBM DB2 URL

¢ <full-path-JDataStore-db>—DataExpress URL
for the native driver

This property sets the Naming Service's database
reconnection interval time, in seconds. The default
value is 30. The Naming Service will ignore the
reconnection request and throw a CannotProceed
exception if the time interval between this request
and the last reconnection time is less than the vset
value. Valid values for this property are non-negative
integers. If set to 0, the Naming Service will try to
reconnect to the database for every request.

DataExpress Adapter properties
The following table describes the DataExpress Adapter properties:

Property Description

vbroker.naming.backingStoreType This property should be set to Dx.

vbroker.naming. loginName This property is the login name associated with the database. The
default is VisiNaming.

vbroker.naming. loginPwd This property is the login password associated with the database.
The default value is VisiNaming.

vbroker.naming.url This property specifies the location of the database.

VisiBroker for Java Developer’'s Guide 79

OAD properties

JNDI adapter

properties

The following is an example of settings that can appear in the configuration file for a

JNDI adapter:

Setting

vbroker.naming.backingStoreType=JNDI

vbroker.
vbroker.

naming. loginName=<user_name>
naming. loginPwd=<password>

vbroker.
un.jndi.
vbroker.

ldap.LdapCtxFactory

naming. jndilnitialFactory=com.s

naming. jndiProviderURL=ldap://

Description

This setting specifies the backing store type which is
JNDI for the JNDI adapter.

The user login name on the JNDI backing server.
The password for the JNDI backing server user.

<hostname>:389/<initial root context>

vbroker.naming. jndiAuthentication=
simple

This setting specifies the JNDI initial factory.

This setting specifies the JNDI provider URL.

This setting specifies the JNDI authentication type
supported by the JNDI backing server.

VisiNaming Service Security-related properties

Property Value Default
vbroker.naming.security.disable boolean true
vbroker.naming.security. string
authDomain

vbroker.naming.security. int 3
transport

vbroker._.naming.security. boolean false
requireAuthentication

vbroker.naming.security. boolean false
enableAuthorization

vbroker._.naming.security. string null

requiredRolesFile

Description

This property indicates whether the
security service is disabled.

This property indicates the authorization
domain name to be used for the naming
service method access authorization.

This property indicates what transport the
Naming Service will use. The available
values are:

ServerQoPPolicy.SECURE_ONLY=1
ServerQoPPolicy.CLEAR_ONLY=0
ServerQoPPolicy.ALL=3

This property indicates whether naming
client authentication is required. However,
when the
vbroker.naming.security.disable
property is set to true, no client
authentication will be performed
regardless of the value of this
requireAuthentication property.

This property indicates whether method
access authorization is enabled.

This property points to the file containing
the required roles that are necessary for
invocation of each method in the
protected object types. For more
information see “Method Level Authorization”.

OAD properties

This following table lists the configurable Object Activation Daemon (OAD)
properties. See “Using the Object Activation Daemon (OAD)” for details about

using the OAD.

Property Default
vbroker.oad. 20
spawnTimeOut

vbroker.oad.verbose false

80 VisiBroker for Java Developer’s Guide

Description

After the OAD spawns an executable, specifies how long, in
seconds, the system will wait to receive a callback from the
desired object before throwing a NO_RESPONSE exception.

Allows the OAD to print detailed information about its

operations.

Property
vbroker.oad.readOnly

vbroker.oad.iorFile
vbroker.oad.quoteSpaces

vbroker.oad.
killOnUnregister

vbroker.oad.
verifyRegistration

vbroker .oad. locateAlways

Default
false

Oadj .ior
false
false

false

false

Interface Repository properties

Description

When set to true, does not allow you to register, unregister, or
change the OAD implementation.

Specifies the filename for the OAD's stringified I0OR.

Specifies whether to quote a command.

Specifies whether to kill spawned server processes, once they
are unregistered.

Specifies whether to verify the object registration.

This property is used as an environment setting when
registering a Visibroker Java server with the oadutil
command. Set this property to true, so that the client can
locate the VisiBroker server that is started by OAD. See
“Registering objects with oadutil” for details.

This table list the OAD properties that cannot be overridden in a property
file. They can however be overridden with environment variables or from
the command line.

Property

vbroker.oad. impIName
vbroker.oad. implPath

vbroker.oad.path
vbroker.oad.systemRoot
vbroker.oad.windir
vbroker.oad.vbj

Default
impl_rep
null

null
null
null
vbj

Description

Specifies the filename for the implementation repository.

Specifies the directory where the implementation repository is
stored.

Specifies the directory for the OAD.
Specifies the root directory.

Specifies the Windows directory.

Specifies the VisiBroker for Java directory.

Interface Repository properties

The following table lists the Interface Repository (IR) properties.

Property Default
vbroker.ir.debug false
vbroker.ir.ior null
vbroker.ir.name null

Description
When set to true, allows the IR resolver to display debugging
information.

When the vbroker.ir.name property is set to the default value,
null, the VisiBroker ORB will try to use this property to locate
the IR.

Specifies the name that is used by the VisiBroker ORB to locate
the IR.

Client-side 110OP connection properties

The table below lists the VisiBroker for Java Client-side IIOP Connection
properties.

Property

vbroker.ce.iiop.ccm.
connectionMax

vbroker.ce.iiop.ccm.
connectionMaxldle

Default Description

0

Specifies the maximum number of total connections
for a client. This is equal to the number of active
connections plus cached connections. The default
value of zero specifies that the client will not try to
close any of the old active or cached connections.

Specifies the time, in seconds, that the client uses to
determine if a cached connection should be closed.
If a cached connection has been idle longer than this
time, then the client closes the connection.

VisiBroker for Java Developer’'s Guide 81

URL Naming properties

Property Default Description

vbroker.ce.iiop.ccm.type Pool Specifies the type of client connection management
used by a client. The value Pool means connection
pool. This is currently the only valid value for this

property.
vbroker.ce.iiop.ccm. false This property can be set to true to specify that the
waitForCompletion application wants to wait for all replies to be

received and only after then should the ORB should
close the connection. The default value of false
indicates that ORB will not wait for any replies.

vbroker.ce.iiop.connection. FALSE When set to TRUE, the server's sockets are
tcpNoDelay configured to send any data written to them
immediately instead of batching the data as the
buffer fills.
vbroker.ce.iiop.clientPort 0 (random Specifies the client port to be used when a
port) connection is opened by the ORB. Allowed values

range from O to 65535. A range should be specified
using the vbroker.ce.iiop.clientPortRange
property when this property is used.

vbroker.ce.iiop. 0 Specifies the range of client ports to be used when a

clientPortRange connection is opened by the ORB, starting with the
port specified by the vbroker.ce.iiop.clientPort
property. Allowed values range from O to 65535.

vbroker.ce.iiop.host none Binds the client side sockets to a specified local
address (or addresses), which can be useful when
interacting with firewalls or routing tables.

You can use this property to specify an address in
IPv4 or IPv6 format, or to specify two addresses,
one in each format, separated by a comma. For
example:

vbroker.ce.iiop-host=192.168.0.1,fdb0::1234:1

If you specify more than one address in the same
format, the first valid address is used and an error
message is generated.

If you only specify one address it is used for both
address types, enabling an IPv4-mapped IPv6
address to be used for both types.

If no address is specified the value is left for the
underlying system to determine.

URL Naming properties

This table lists the URL Naming properties.

Property Default Description

vbroker.URLNaming. true When set to true, allows the URL Naming Service to

allowUserlInteraction initiate the graphical user interface (GUI) for user
interaction.

vbroker.URLNaming.debug false When set to true, specifies that the URLNaming Service

display debugging information.

82 VisiBroker for Java Developer’s Guide

QoS-related Properties

Property

vbroker.orb.qos.relativeRTT

vbroker.qos.cache

vbroker.orb.qos.
connectionTimeout

vbroker .qos.backcompat

vbroker.orb.

socketTimeoutMonitorPeriod

Default
0

True

0 (no
limit)

False

Description

This property can be used to set the
RelativeRoundtripTimeoutPolicy in milliseconds. It
takes effect at the ORB level and can be overridden
programatically at other levels. The default value of O
means no timeout.

Specifies if QoS policies should be cached per delegate,
instead of being checked prior to every request made by
the client.

This property allows the convenience of setting the
RelativeConnectionTimeoutPolicy QoS policy at the
ORB level, without requiring explicit code to be written.
The connection timeout value should be specified in
milliseconds.

The default value of False exhibits the current
VB_NOTIFY_REBIND behavior described in “Using Quality
of Service (QoS)”. A value of true reverts to the behavior
of VB_NOTIFY_REBIND in VisiBroker version 6.5.

Set this property to start a thread which periodically
monitors the socket write and connect timeout. The
property value (in milliseconds) controls the period. The
default value of 0 means that the monitoring thread is
not started. Note that this feature is effective only when
vbroker.orb.tcpTimeout is set. This timeout mechanism
does not need a thread per connection to enforce
invocation timeout, but the actual timeout may occur
after tcpTimeout + SocketTimeoutMonitorPeriod.

Server-side server engine properties

Property

vbroker.se.default

This table lists the server-side server engine properties.

Default
iiop_tp

Description

Specifies the default server engine.

Server-side thread session 1 IOP_TS/IIOP_TS
connection properties

Property

vbroker.se._iiop_ts.

vbroker.se.iiop_ts.

vbroker.se._iiop_ts.

vbroker.se.iiop_ts.

manager - type

The following table lists the server-side thread session IIOP_TS/IIOP_TS
connection properties.

host

proxyHost

scms

scm.iiop_ts.

Default Description

null

null

Specifies the host name used by this server
engine. The default value, null, means use the
host name from the system.

Specifies the proxy host name used by this server
engine. The default value, null, means use the
host name from the system.

iiop_ts Specifies the list of Server Connection Manager

Socket

name(s).

One possible value for security would be ssl. See
the VisiBroker Security Guide for details.

Specifies the type of Server Connection Manager.

VisiBroker for Java Developer’'s Guide 83

Property

vbroker.se.iiop_ts.scm.iiop_ts.

manager . connectionMax

vbroker.se._iiop_ts.scm.iiop_ts.

manager .connectionMaxldle

vbroker.se.iiop_ts.scm.iiop_ts.

listener.type

vbroker.se._iiop_ts.scm.iiop_ts.

listener.port

vbroker.se._iiop_ts.scm.iiop_ts.

listener.proxyPort

vbroker.se._iiop_ts.scm.iiop_ts.

listener.giopVersion

vbroker.se._iiop_ts.scm.iiop_ts.

dispatcher.type

vbroker._se._iiop_ts.scm.iiop_ts.

connection.keepAlive

Default
0

110P

1.2

"Thread
Session"

false

Description

Specifies the maximum number of connections the
server will accept. The default value, 0 (zero),
implies no restriction.

Specifies the time in seconds the server uses to
determine if an inactive connection should be
closed.

Specifies the type of protocol the listener is using.

Specifies the port number that is used with the
host name property. The default value, 0 (zero),
specifies that the system will pick a random port
number.

Specifies the proxy port number used with the
proxy host name property. The default value, 0
(zero), specifies that the system will pick a random
port number.

This property can be used to resolve
interoperability problems with older VisiBroker
ORBs that cannot handle unknown minor GIOP
versions correctly. Legal values for this property
are 1.0, 1.1 and 1.2. For example, to make the
nameservice produce a GIOP 1.1 IOR, start it like
this:

nameserv -VBJprop
vbroker.se.iiop_tp.scm.
iiop_tp.listener.giopVersion=1.1
Specifies the type of thread dispatcher used in the
Server Connection Manager.

Set this property to true to enable TCP KeepAlive
option.

Server-side thread session BOA TS/BOA TS
connection properties

This protocol has the same set of properties as the “Server-side thread session
IIOP_TS/IIOP_TS connection properties”, by replacing allitop_ts with boa_ts
in all the properties. For example, the
vbroker.se.iiop_ts.scm.iiop_ts.manager.connectionMax will
become vbroker.se.boa_ts.scm.boa_ts.manager.connectionMax.
Also, the default value for vbroker.se.boa_ts.scms is boa_ts.

Server-side thread pool II1OP_TP/ZI110OP_TP
connection properties

The following table lists the server-side thread pool 11OP_TP/IIOP_TP
connection properties.

Property
vbroker.se.iiop_tp.host

vbroker.se.iiop_tp.proxyHost

Default

null

null

84 VisiBroker for Java Developer’s Guide

Description

Specifies the host name that can be used by this
server engine. The default value, null, means use
the host name from the system. Host names or IP
addresses are acceptable values.

Specifies the proxy host name that can be used by
this server engine. The default value, null, means
use the host name from the system. Host names or
IP addresses are acceptable values.

Property
vbroker.se.iiop_tp.s

vbroker.se.iiop_tp.s
iiop_tp.manager.type

cms

cm.

vbroker._se._iiop_tp.scm.
iiop_tp.manager .connectionMax

vbroker.se.iiop_tp.scm.

iiop_tp.manager.
connectionMaxldle

vbroker._se.iiop_tp.scm.
iiop_tp.listener.type

vbroker.se.iiop_tp.scm.
iiop_tp.listener.port

vbroker._se._iliop_tp.scm.
iiop_tp.listener.portRange

vbroker._se._iiop_tp.scm.
iiop_tp.listener.proxyPort

vbroker.se.iiop_tp
iiop_tp.dispatcher.
vbroker.se.iiop_tp
iiop_tp.dispatcher.
vbroker.se.iiop_tp
iiop_tp.dispatcher.

vbroker.se.iiop_tp
iiop_tp.dispatcher.
threadMaxldle
vbroker.se.iiop_tp
iiop_tp.connection.
tcpNoDelay

-Scm.

type

-Scm.

threadMin

-Scm.

threadMax

-SCm.

-Scm.

vbroker._se.iiop_tp.scm.
iiop_tp.connection.keepAlive

Default
iiop_tp

Socket

0

110P

0 (zero)

ThreadPool

300

true

false

Description

Specifies the list of Server Connection Manager
name(s).

One possible value for security would be ssl. See
the VisiBroker Security Guide for details.

Specifies the type of Server Connection Manager.

Specifies the maximum number of cache
connections on the server. The default value, 0
(zero), implies no restriction.

Specifies the time, in seconds, that the server uses
to determine if an inactive connection should be
closed.

Specifies the type of protocol the listener is using.

Specifies the port number used with the host name
property. The default value, 0 (zero), means that
the system will pick a random port number.

This property is effective only when listener._port
is greater than O (zero). If the listener cannot bind
to that port because the port may be in use then the
listener will try to bind to the ports in the range
[port, port+portRange]. If no ports in the range are
available then a COMM_FAILURE exception will be
thrown.

Specifies the proxy port number used with the proxy
host name property. The default value, 0 (zero),
means that the system will pick a random port
number.

Specifies the type of thread dispatcher used in the
Server Connection Manager.

Specifies the minimum number of threads that the
Server Connection Manager can create.

Specifies the maximum number of threads that the
Server Connection Manager can create. The default
value, 0 (zero) implies the ORB will control the
thread generation using an internal algorithm based
on heuristics.

Specifies the time in seconds before an idle thread
will be destroyed.

When this property is set to false, this turns on

buffering for the socket. The default value, true,
turns off buffering, so that all packets are sent as
soon as they are ready.

Set this property to true to enable TCP KeepAlive
option.

VisiBroker for Java Developer’'s Guide 85

Property Default Description

vbroker.se.iiop_tp.scm. false This property modifies the behavior of Java servers
iiop_tp.listener. configured with the property vbroker.se.
useSelectorPool

iiop_tp.scm.iiop_tp.manager.type=Socket_nio.
(See “High scalability configuration for VisiBroker
for Java (using Java NIO)” for details of that property.)

If this property is set to true, each IIOP (non-SSL)
NIO Listener in the server will be constrained to
consume a maximum of vbroker.se.iiop_tp
.scm.iiop_tp.listener.selectorMax instances of
jJava.nio.channels.Selector at any given time.
Note that setting this new property may cause
threads to wait for a pooled Selector, so potential
impact on performance should be carefully
considered and profiled before setting the property.

If this new property is not set, or is set to false, the
number of Selectors in use continues to be as
described in “High scalability configuration for VisiBroker
for Java (using Java NIO)".

vbroker.se.iiop_tp.scm. 20 Maximum number of NIO Selectors that can be

iiop_tp.listener.selectorMax created in the NIO Selector Pool. Increasing this
value may improve the throughput in cases of very
high concurrent invocations.

This property is only applicable if vbroker.se.
iiop_tp.scm.iiop_tp.listener.useSelectorPool is
set to true.

Server-side thread pool BOA TP/BOA TP
connection properties

This protocol has the same set of properties as the “Server-side thread pool
IIOP_TP/IIOP_TP connection properties”, by replacing all i iop_tp with boa_tp
in all the properties. For example, the
vbroker.se.iiop_tp.scm.iiop_tp.-manager.connectionMax will
become vbroker.se.boa_ tp.scm.boa_ tp.manager.connectionMax.
Also, the default value for vbroker.se.boa_ tp.scms is boa_tp.

Properties that support bi-directional
communication

The following table lists the properties that support bi-directional
communication. These properties are evaluated only once—when the SCMs
are created. In all cases, the exportBiDir and importBiDir properties on the
SCMs are given priority over the enableBiDir property. In other words, if
both properties are set to conflicting values, the SCM-specific properties will

86 VisiBroker for Java Developer’s Guide

take effect. This allows you to set the enableBiDir property globally and
specifically turn off bi-directional communication in individual SCMs.

Property Default
vbroker.orb.enableBiDir none
vbroker.se.<se>.scm.<scm>.

manager .

vbroker.
manager .

exportBiDir

se.<se>.scm.<scm>.
importBiDir

Description

You can selectively make bi-directional
connections. If the client defines
vbroker.orb.enableBiDir=client andthe
server defines
vbroker.orb.enableBiDir=server the
value of vbroker.orb.enableBiDir at the
GateKeeper determines the state of the
connection. Values of this property are: server,
client, both or none.

By default, this property is not set by the ORB.
This is a client-side property. Setting it to true
enables creation of a bi-directional callback POA on
the specified server engine. Setting it to false
disables creation of a bidirectional POA on the
specified server engine.

By default, this property is not set by the ORB.
This is a server-side property. Setting it to true
allows the server-side to reuse the connection
already established by the client for sending
requests to the client. Setting it to false
prevents reuse of connections in this fashion.

Debug Logging Properties

This section details the properties that can be used to control and configure
the output of debug log statements.

VisiBroker for Java internally uses Log4J infrastructure for logging.

The debug log statements are categorized according to the areas of the ORB
from where they are logged. These categories are called source names.
Currently the following source names are logged:

« connection: logs from the connection-related source areas such as client
side connection, server side connection, connection pool etc

+ client: logs from the clie
« agent: logs for Osagent
« cdr: logs for GIOP areas
« se: logs from the server
« server: logs from the se
« orb: logs from the ORB

+ naming: logs from Nami

nt side invocation path

communication

engine, such as dispatcher, listener etc

rver side invocation path

ng Service

« gatekeeper: logs from Gatekeeper

+ time: logs from Time Se

rvice

VisiBroker for Java Developer’'s Guide

87

Enabling and filtering

The following table describes the properties used to enable logging and

filtering.
Property Default
vbroker.log.enable false
vbroker.log.async false
vbroker.log.logLevel debug
vbroker.log.default.filter. null
register

88 VisiBroker for Java Developer’s Guide

Description

When set to true, all logging statements will be
produced unless the log is being filtered.

Values are true or false.

When set to true, the logger switches to
asynchronous mode. This feature is mainly
designed to improve logging performance of
FileAppender.

After the logger retrieves an event from the pool,
it will construct a message with logging
information created with predefined layout,
pushed to message queues, and return
immediately to avoid 10 blocking which will
increase the performance of main thread.

Another pool of threads consistently listens to
these queues and writes to a configured file
destination.

Specifies the logging level of the log message.
Logs with log levels equal to the specified level or
above are forwarded. This property is applied at
the global level.

Values are emerg, alert, crit, err, warning, notice,
info and debug ranking from the highest to the
lowest.

The meaning of the log levels are:
e emerg - indicates a panic condition.

e alert - a condition that requires user attention,
for example if security has been disabled.

e crit - critical conditions, such as a device error.
e err - error conditions.

e warning - warning conditions. These may
accompany some troubleshooting advice.

¢ notice - conditions that are not errors but may
require some attention.

* info - informational, such as binding in
progress.

¢ debug - debug conditions used by developers.

Register source name for controlling (filtering) the
logs from that source.

Values are client, server, connection, cdr, se,
agent and orb. Multiple values can be provided as
a comma-separated string.

Note: The source names must be registered using
this property before they can be explicitly
controlled using vbroker.log.default.filter.<source-
name=>.enable and
vbroker.log.default.filter.<source-name=>.logLevel
properties.

Property Default Description

vbroker.log.default.filter. true Once a source name is registered, log output from
<source-name>.enable the source can be explicitly controlled using this
property.
Values are true or false.
vbroker.log.default.filter. debug This property provides finer-grained control over
<source-name>. logLevel the global log level property. The log level

specified using this property explicitly applies to
the given source name.

The possible values are similar to the global
logLevel values.

vbroker.log.default.filter.all. true This is a special case of the previous property

enable where an inbuilt source name "all" is being used.
"all" here denotes all the source names that have
not been registered.

Appending and logging

The output of the logs can be appended to specific destinations and
formatted using specific layouts. VisiBroker for Java uses the appenders and
layouts provided by Log4J for these purposes. Two inbuilt appenders
“stdout” and “rolling” implement console and rolling file implementation.
Apart from the various layouts available with Log4J, two inbuilt layouts
“simple” and “xml” provide good layout capabilities.

stdout — Name of the Console appender type.

rolling — Name of the rolling file appender type.

simple — Name of a simple predefined output layout type.
xml — Name of Log4J XML event layout type.

The following table describes the properties used to configure the
destination of the log output and its format.

Property Default Description

vbroker.log.default.appenders stdout List of comma-separated appenders for specifying
log output destination.Values are stdout, rolling
and/or any user-specified appender name. User can
further specify the appenders using:
log4j .appender.<name>=<full class name

in log4j>
vbroker. log.default.appender. PatternLayo Type of layout (format) to be associated with the
appender-inst-name>. layoutType ut registered appender destination.

Values are PatternLayout, simple, xml and/or
the full class name of all the Log4J supported
layouts.

For the built-in rolling appender type, you can create the following
configurations.

Property Default Description
vbroker.log.default.appender. <current_direct Directory for the rolling log file to reside in.
rolling.logDir ory>

vbroker.log.default.appender. vbrolling.log Name of rolling log file.

rolling.fileName

vbroker.log.default.appender. 10 Size in MB for each backup before rolling
rolling.maxFileSize over. Values >= 1.

vbroker. log.default.appender. 1 Number of backups needed. When set to O
rolling.maxBackupIndex (zero), no backup is created and logging will

keep on appending to the file. Values >= 0.

VisiBroker for Java Developer’'s Guide 89

Deprecated properties

The following properties are deprecated at version 8.5.

Deprecated Property Recommended Property
vbroker.orb.debug vbroker.log.enable

vbroker.orb.logLevel vbroker.log.logLevel

vbroker.agent.debug vbroker.log.default.filter.agent.enable
vbroker.locationservice.debug vbroker.log.default.filter.agent.enable
vbroker.poa.logLevel vbroker.log.default.filter.server.logLevel
vbroker.gatekeeper.passthru.logLevel vbroker.log.default.filter.gatekeeper.logLevel
vbroker.orb.logger.output vbroker.log.default.appenders

Setting properties in an applet

Setting properties for applets can only be done in the applet parameters.
For example:
<APPLET archive="vbjorb.jar, vbsec.jar"™ CODE="ClientApplet.class'>
<PARAM NAME="'org.omg.CORBA.ORBClass" VALUE="'com. inprise.vbroker.orb.ORB">
<PARAM NAME="‘vbroker.orb.alwaysTunnel' VALUE="true'>
</APPLET>

Note:

VisiBroker 3.x-style command-line options cannot be used as applet
parameters.

Web services run-time properties

Using the properties listed, you can enable the run time.

Property Default Description

vbroker.ws.enable false Takes in a Boolean true or
false parameter. Setting this
value to true will enable the
VisiBroker Web Services
Runtime.

Web services HTTP Listener properties

To configure the HTTP Listener, use the properties listed in the following

table.
Property Default Description
vbroker.se.ws.Host null Specifies the host name to be
used by the listener.
vbroker.se.ws.proxyHost null Specifies the proxy host name

used by the web services
engine. Default value null
means use the host name from
the system.

90 VisiBroker for Java Developer’s Guide

Property Default Description

vbroker.se.ws.scm.ws_ts. listener.port 80 Specifies the port number to
be used by the listener socket.
vbroker.se.ws.scm.ws_ts. listener.type WS Specifies the protocol the

listener is using. A value of
WS-HIOPS will start a secure
(https-based) listener.

Web services Connection Manager properties

Using the properties listed below, you can configure the Web services
Connection Manager.

Property Default Description
vbroker.se.ws.scm.ws_ts. 0 If keepAliveConnection is true,
manager . connectionMax this property specifies the

maximum number of
connections the server will
accept. Default O indicates no

restriction.
vbroker.se.ws.scm.ws_ts. 0 This property determines the
manager .connectionMaxldle maximum time an unused

connection will remain alive
vbroker.se.ws.scm.ws_ts. Socket Specifies the type of Server
manager . type Connection Manager
vbroker.se.ws.scm.ws_ts. false Set this property to true to
connection.keepAlive enable TCP KeepAlive option.

SOAP Request Dispatcher properties

This table lists the SOAP Request Dispatcher properties.

Property Default Description
vbroker.se.ws.scm.ws_ts. 0 Maximum number of threads
dispatcher.threadMax to be present in the thread

pool dispatcher. Default value
0 indicates unlimited number

of threads.
vbroker.se.ws.scm.ws_ts. 0 Minimum number of threads to
dispatcher.threadMin be present in the thread pool

dispatcher.
vbroker.se.ws.scm.ws_ts. 300 Time in seconds before an idle
dispatcher.threadMaxldle thread in the thread pool is

destroyed.
vbroker.se.ws.scm.ws_ts. Thread Specifies the type of thread
dispatcher.type Session dispatcher used in the Server

Connection Manager.

Getting the ORB version programmatically

When using VisiBroker for Java, you can obtain the ORB version string by
calling the getVersion method on the com. inprise.vbroker.orb_ORB
class, as shown in the following example:

String orbVersion =
com. inprise.vbroker.orb.ORB.getVersion();

VisiBroker for Java Developer’'s Guide 91

The version string appears in the format shown the following example:

-..-VisiBroker for Java [08.05.xx.xx]

Note:

This method is static, so calling it does not require initializing the ORB.

92 VisiBroker for Java Developer’s Guide

Handling exceptions

Exceptions in the CORBA model

The exceptions in the CORBA model include both system and user

exceptions. The CORBA specification defines a set of system exceptions that
can be raised when errors occur in the processing of a client request. Also,
system exceptions are raised in the case of communication failures. System
exceptions can be raised at any time and they do not need to be declared in

the interface.

You can define user exceptions in IDL for objects you create and specify the

circumstances under which those exceptions are to be raised. They are
included in the method signature. If an object raises an exception while
handling a client request, the VisiBroker ORB is responsible for reflecting

this information back to the client.

System exceptions

Exception name
BAD_CONTEXT
BAD_INV_ORDER
BAD_OPERATION
BAD_PARAM
BAD_QOS
BAD_TYPECODE
COMM_FAILURE
DATA_CONVERSION
FREE_MEM
IMP_LIMIT
INITIALIZE
INTERNAL
INTF_REPOS
INV_FLAG
INV_INDENT
INV_OBJREF

INVALID_TRANSACTION

MARSHAL
NO_IMPLEMENT
NO_MEMORY
NO_PERMISSION
NO_RESOURCES
NO_RESPONSE

System exceptions are usually raised by the VisiBroker ORB, though it is
possible for object implementations to raise them through interceptors

discussed in “Using VisiBroker Interceptors”. When the VisiBroker ORB raises a
SystemException, one of the CORBA-defined error conditions is displayed

as shown below.

For a listing of explanations and possible causes of these exceptions, see

“CORBA exceptions”.

Description

Error processing context object.
Routine invocations out of order.
Invalid operation.

An invalid parameter was passed.
Quality of service cannot be supported.
Invalid typecode.

Communication failure.

Data conversion error.

Unable to free memory.
Implementation limit violated.
VisiBroker ORB initialization failure.
VisiBroker ORB internal error.

Error accessing interface repository.
Invalid flag was specified.

Invalid identifier syntax.

Invalid object reference specified.

Specified transaction was invalid (used in conjunction with
VisiTransact).

Error marshalling parameter or result.
Operation implementation not available.
Dynamic memory allocation failure.

No permission for attempted operation.
Insufficient resources to process request.
Response to request not yet available.

VisiBroker for Java Developer’'s Guide

93

System exceptions

Exception name
OBJ_ADAPTOR
OBJECT_NOT_EXIST
PERSIST_STORE
TRANSIENT
TRANSACTION_MODE

Description

Failure detected by object adaptor.
Object is not available.

Persistent storage failure.
Transient failure.

Mismatch detected between the TransactionPolicy in the
IOR and the current transaction mode (used in conjunction
with VisiTransact).

TRANSACTION_REQUIRED Transaction is required (used in conjunction with

VisiTransact).

TRANSACTION_ROLLEDBACK Transaction was rolled back (used in conjunction with

VisiTransact).

TRANSACT ION_UNAVAILABLE Connection to the VisiTransact Transaction Service has been

TIMEOUT
UNKNOWN

abnormally terminated.
Request timeout.
Unknown exception.

SystemException class

public abstract class org.omg.CORBA.SystemException
extends java.lang.RuntimeException {
protected SystemException(java.lang.String reason,
int minor, CompletionStatus completed) { ... }
public String toString() { -.. }
public CompletionStatus completed;
public int minor;

}

Obtaining completion status

System exceptions have a completion status that tells you whether or not
the operation that raised the exception was completed. The sample below
illustrates the CompletionStatus enumerated values for the
CompletionStatus. COMPLETED_MAYBE is returned when the status of the
operation cannot be determined.

enum CompletionStatus {
COMPLETED_YES = 0;
COMPLETED_NO = 1;
COMPLETED_MAYBE = 2;

};
Catching system exceptions

Your applications should enclose the VisiBroker ORB and remote calls in a
try catch block. The code samples below illustrate how the account client
program, discussed in “Developing an example application with VisiBroker”, prints
an exception.

public class Client {
public static void main(String[] args) {

try {

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
byte[] managerld = "BankManager'.getBytes();
Bank.AccountManager manager =
Bank.AccountManagerHelper.bind(orb, "/bank_agent poa', managerlid);
String name = args.length > 0 ? args[0] : "Jack B. Quick";

94 VisiBroker for Java Developer’s Guide

}

}

System exceptions

Bank.Account account = manager.open(name);

float balance = account._balance();

System.out.printIn(*"The balance in
balance);

+ name + s account is $" +

} catch (Exception e) {

System.err.printin(e);

If you were to execute the client program with these modifications and
without a server present, the following output would indicate that the
operation did not complete and the reason for the exception.

prompt>vbj Client
org.omg.CORBA.OBJECT_NOT_EXIST:
Could not locate the following POA:
poa name : /bank_agent poa

minor code: O completed: No

Downcasting exceptions to a system exception

You can modify the account client program to attempt to downcast any
exception that is caught to a SystemException. The following code sample
shows you how to modify the client program.

public class Client {
public static void main(String[] args) {

try {

// Initialize the ORB

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

// Bind to an account

Account account = AccountHelper._bind(orb, ''/bank_poa",

""BankAccount' .getBytes());

// Get the balance of the account

float balance = account.balance();

// Print the account balance

System.out.printIn(*'The account balance is $" + balance);

catch(Exception e) {

iT (e instanceof org.omg.CORBA.SystemException) {
System.err.printIn("System Exception occurred:");

} else {
System.err.printIn("’'Not a system exception™);

}

System.err._printin(e);

The following code sample displays the resulting output if a system
exception occurs.

System Exception occurred:
in thread "main"™ org.omg.CORBA.OBJECT_NOT_EXIST minor
code: 0 completed: No

Catching specific types of system exceptions

Rather than catching all types of exceptions, you may choose to specifically
catch each type of exception that you expect. The following code sample
show this technique.

VisiBroker for Java Developer’'s Guide 95

User exceptions

public class Client {
public static void main(String[] args) {

try {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
byte[] managerld = ""BankManager'.getBytes();
Bank.AccountManager manager =

Bank.AccountManagerHelper.bind(orb, "'/bank_agent _poa', managerid);
String name = args.length > 0 ? args[0] : "Jack B. Quick";
Bank.Account account = manager.open(name);
float balance = account.balance();
System.out.printIn(*"'The balance in
$" + balance);

} catch(org.omg.CORBA.SystemException e) {
System_err_printIn(*'System Exception occurred:'");
System.err.printin(e);

+ name + s account is

}
}
}

User exceptions

When you define your object's interface in IDL, you can specify the user
exceptions that the object may raise. The following code sample shows the
UserException code from which the idl2java compiler will derive the
user exceptions you specify for your object.

public abstract class UserException extends
jJava.lang.Exception {

protected UserException();

protected UserException(String reason);

}

Defining user exceptions

Suppose that you want to enhance the account application, introduced in
“Developing an example application with VisiBroker”, so that the account object
will raise an exception. If the account object has insufficient funds, you
want a user exception named AccountFrozen to be raised. The additions
required to add the user exception to the IDL specification for the Account
interface are shown in bold.

// Bank.idl
module Bank {
interface Account {
exception AccountFrozen {

float balance() raises(AccountFrozen);
};
}:
The 1dl2java compiler will generate the following code for an
AccountFrozen exception class.

package Bank;

public interface Account extends

com. inprise.vbroker_CORBA.Object,
Bank.AccountOperations,

org.omg.CORBA.portable.IDLEntity {

}
package Bank;

96 VisiBroker for Java Developer’s Guide

User exceptions

public interface AccountOperations {
public float balance () throws

Bank.AccountPackage.AccountFrozen;

}

package Bank.AccountPackage;

public final class AccountFrozen extends

org.omg.CORBA.UserException {

public AccountFrozen) { --- }
public AccountFrozen (java.lang.-String _reason) { ... }
public synchronized java.lang.String toString() { --. }

}

Modifying the object to raise the exception

The AccountlImpl object must be modified to use the exception by raising
the exception under the appropriate error conditions.

public class Accountimpl extends Bank.AccountPOA {
public Accountlmpl(float balance) {
_balance = balance;

public float balance() throws AccountFrozen {
if (_balance < 50) {
throws AccountFrozen();
} else {
return _balance;

}

private float _balance;

}

Catching user exceptions

When an object implementation raises an exception, the VisiBroker ORB is
responsible for reflecting the exception to your client program. Checking for
a UserException is similar to checking for a SystemException. To modify
the account client program to catch the AccountFrozen exception, make
modifications to the code as shown below.

public class Client {
public static void main(String[] args) {
try {

// Initialize the ORB

org.omg.CORBA.ORB orb =
org.omg.CORBA.ORB.init(args, null);

// Bind to an account

Account account = AccountHelper.bind(orb, '/
bank_poa",

"BankAccount' .getBytes());

// Get the balance of the account

float balance = account.balance();

// Print the account balance

System.out._printIn(*'The account balance is $" +
balance);

// Check for AccountFrozen exception

catch(Account.AccountFrozen e) {
System.err.printIn(*'AccountFrozen returned:');
System.err._printin(e);

// Check for system errors
catch(org.omg.CORBA.SystemException sys_excep) {

VisiBroker for Java Developer’'s Guide 97

User exceptions

Adding fields to user exceptions

You can associate values with user exceptions. The code sample below shows how to
modify the IDL interface specification to add a reason code to the AccountFrozen
user exception. The object implementation that raises the exception is responsible for

setting the reason code. The reason code is printed automatically when the exception
is put on the output stream.

// Bank.idl
module Bank {
interface Account {
exception AccountFrozen {
int reason;

float balance() raises(AccountFrozen);

98 VisiBroker for Java Developer’s Guide

Overview

Server basics

This section outlines the tasks that are necessary to set up a server to
receive client requests.

The basic steps that you'll perform in setting up your server are:
« Initialize the VisiBroker ORB

« Create and setup the POA

« Activate the POA Manager

« Activate objects

« Wait for client requests

This section describes each task in a global manner to give you an idea of
what you must consider. The specifics of each step are dependent on your
individual requirements.

Initializing the VisiBroker ORB

As stated in the previous section, the VisiBroker ORB provides a
communication link between client requests and object implementations.
Each application must initialize the VisiBroker ORB before communicating
with it as follows:

// Initialize the VisiBroker ORB.
org.omg.CORBA.ORB orb=org.omg.CORBA.ORB.init(args,null);

Creating the POA

Early versions of the CORBA object adapter (the Basic Object Adapter, or
BOA) did not permit portable object server code. A new specification was
developed by the OMG to address these issues and the Portable Object
Adapter (POA) was created.

A discussion of the POA can be quite extensive. This section introduces you
to some of the basic features of the POA. For detailed information, see
“Using POAs” and the OMG specification.

In basic terms, the POA (and its components) determine which servant
should be invoked when a client request is received, and then invokes that
servant. A servant is a programming object that provides the
implementation of an abstract object. A servant is not a CORBA object.

One POA (called the rootPOA) is supplied by each VisiBroker ORB. You can
create additional POAs and configure them with different behaviors. You can
also define the characteristics of the objects the POA controls.

The steps to setting up a POA with a servant include:
« Obtaining a reference to the root POA

» Defining the POA policies

« Creating a POA as a child of the root POA

« Creating a servant and activating it

VisiBroker for Java Developer’'s Guide 99

Creating the POA

« Activating the POA through its manager

Some of these steps may be different for your application.

Obtaining a reference to the root POA

All server applications must obtain a reference to the root POA to manage
objects or to create new POAs.

//2. Get a reference to the root POA
org.omg.CORBA.Object obj =
orb.resolve_initial_reference(''RootPOA™);

// Narrow the object reference to a POA reference
POA rootPoa =
org.omg.PortableServer.POAHelper._narrow(obj);

You can obtain a reference to the root POA by using
resolve_initial_references which returns a value of type

CORBA: :Object. You are responsible for narrowing the returned object
reference to the desired type, which is PortableServer: :POA in the above
example.

You can then use this reference to create other POAs, if needed.

Creating the child POA

The root POA has a predefined set of policies that cannot be changed. A
policy is an object that controls the behavior of a POA and the objects the
POA manages. If you need a different behavior, such as different lifespan
policy, you will need to create a new POA.

POAs are created as children of existing POAs using create_POA. You can
create as many POAs as you think are required.

Note
Child POAs do not inherit the policies of their parent POAs.

In the following example, a child POA is created from the root POA and has
a persistent lifespan policy. The POA Manager for the root POA is used to
control the state of this child POA.

// Create policies for our persistent POA

org.omg.CORBA.Policy[] policies =
{rootPoa.create_lifespan_policy(
LifespanPolicyValue_PERSISTENT)

};

// Create myPOA with the right policies

POA myPOA = rootPoa.create POA("bank_agent poa",

rootPoa.the POAManager(),

policies);

100 VvisiBroker for Java Developer’'s Guide

Creating the POA

Implementing servant methods

IDL has a syntax similar to Java and can be used to define modules,
interfaces, data structures, and more. When you compile IDL that contains
an interface, a class is generated which serves as the base class for your
servant. For example, in the Bank. IDL file, there is an AccountManager
interface:

module Bank{
interface Account {
float balance();
}:

interface AccountManager {
Account open (in string name);
}:

};
The following shows the AccountManager implementation on the
server side.

AccountManagerPOA. java is created and serves as the skeleton code
(implementation base code) for the AccountManager object
implementation on the server side, as follows:

import org.omg.PortableServer.*;
import java.util_*;
public class AccountManageriImpl extends
Bank.AccountManagerPOA {
public synchronized Bank.Account open(String name) {
// Lookup the account in the account dictionary.
Bank.Account account = (Bank.Account)
_accounts.get(name);
// 1T there was no account in the dictionary, create
one.
if(account == null) {
// Make up the account"s balance, between 0 and
1000 dollars.
float balance = Math.abs(_random.nextint()) %
100000 / 100f;
// Create the account implementation, given the
balance.
Accountlmpl accountServant = new
Accountimpl (balance);
try {
// Activate it on the default POA which is
root POA for this
servant
account =
Bank.AccountHelper.narrow(_default_POA() .
servant_to_reference(accountServant));
} catch (Exception e) {
e.printStackTrace();

// Print out the new account.

System.out._printIn('Created " + name +
account: " + account);

// Save the account in the account dictionary.

_accounts._put(name, account);

S

// Return the account.
return account;

private Dictionary _accounts = new Hashtable();
private Random _random = new Random();

}

VisiBroker for Java Developer’'s Guide 101

Creating and Activating the Servant

Creating and Activating the Servant

The AccountManager implementation must be created and activated in the
server code. In this example, AccountManager is activated with
activate_object_with_id, which passes the object ID to the Active
Object Map where it is recorded. The Active Object Map is simply a table
that maps IDs to servants. This approach ensures that this object is always
available when the POA is active and is called explicit object activation.

// Create the servant

AccountManagerImpl managerServant = new
AccountManagerImpl ();

// Decide on the ID for the servant

byte[] managerld = '"BankManager' .getBytes();

// Activate the servant with the ID on myPOA
myPOA.activate _object with_id(managerld, managerServant);

Activating the POA

The last step is to activate the POA Manager associated with your POA. By
default, POA Managers are created in a holding state. In this state, all
requests are routed to a holding queue and are not processed. To allow
requests to be dispatched, the POA Manager associated with the POA must
be changed from the holding state to an active state. A POA Manager is
simply an object that controls the state of the POA (whether requests are
queued, processed, or discarded.) A POA Manager is associated with a POA
during POA creation. You can specify a POA Manager to use, or let the
system create a new one for you by passing a null value as the POA
Manager name in create_POA()).

// Activate the POA Manager
rootPOA.the POAManager().activate();

Activating objects

In the preceding section, there was a brief mention of explicit object
activation. There are several ways in which objects can be activated:

« Explicit: All objects are activated upon server start-up via calls to the
POA

« On-demand: The servant manager activates an object when it receives a
request for a servant not yet associated with an object ID

« Implicit: Objects are implicitly activated by the server in response to an
operation by the POA, not by any client request

« Default servant: The POA uses the default servant to process the client
request

A complete discussion of object activation is in “Using POAs”. For now, just
be aware that there are several means of activating objects.

102 VvisiBroker for Java Developer's Guide

Waiting for client requests

Waiting for client requests

Once your POA is set up, you can wait for client requests by using
orb.run(). This process will run until the server is terminated.

// Wait for incoming requests.
orb_.runQ);

Complete example

The sample below shows the complete example code.

// Server._java
import org.omg.PortableServer.*;
public class Server {
public static void main(String[] args) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb =
org.omg.CORBA.ORB.init(args,null);
// get a reference to the root POA
POA rootPOA =
POAHelper.narrow(orb.resolve_initial_references("'RootPOA™)
)
// Create policies for our persistent POA
org.omg.CORBA_Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSIST
ENT)
}:

// Create myPOA with the right policies

POA myPOA = rootPOA.create_POA("bank_agent_poa",
rootPOA. the_POAManager(),

policies);

// Create the servant

AccountManagerImpl managerServant = new
AccountManagerImpl ();

// Decide on the ID for the servant

byte[] managerld = "BankManager' .getBytes();

// Activate the servant with the 1D on myPOA

myPOA.activate object with_id(managerlid,
managerServant) ;

// Activate the POA manager

rootPOA.the_POAManager () .activate();

System.out.printIn(myPOA.servant_to_reference(managerServa
nt) + " is ready.");
// Wait for incoming requests
orb.run(Q);
} catch (Exception e) {
e.printStackTrace();
}

}

VisiBroker for Java Developer’'s Guide 103

104 VvisiBroker for Java Developer's Guide

Using POASs

What is a Portable Object Adapter?

Portable Object Adapters replace Basic Object Adapters; they provide
portability on the server side.

A POA is the intermediary between the implementation of an object and the
VisiBroker ORB. In its role as an intermediary, a POA routes requests to
servants and, as a result may cause servants to run and create child POAs if
necessary.

Servers can support multiple POAs. At least one POA must be present,
which is called the rootPoa. The rootPoa is created automatically for you.
The set of POAs is hierarchical; all POAs have the rootPoa as their ancestor.

Servant managers locate and assign servants to objects for the POA. When
an abstract object is assigned to a servant, it is called an active object and
the servant is said to incarnate the active object. Every POA has one Active
Object Map which keeps track of the object IDs of active objects and their

associated active servants.

Note

Users familiar with versions of VisiBroker prior to 6.0 should note the
change in inheritance hierarchy to support CORBA Specification 3.0, which
requires local interfaces. For example, a ServantLocator implementation
would now extend from
org.omg.PortableServer._ServantLocatorLocalBase instead of
org.omg.PortableServer.ServantLocatorPOA.

Figure5 Overview of the POA

Server =

=

toatPOA

Zervant Manager
Client request o
Active Object May
poap I_,.d
ObjotiD 7
ObgetlD —1 |

VisiBroker for Java Developer’'s Guide 105

POA policies

POA terminology

Following are definitions of some terms with which you will become more
familiar as you read through this section.

Term

Active Object
Map

Description

Table that maps active VisiBroker CORBA objects (through their
object IDs) to servants. There is one Active Object Map per POA.

adapter Object that can create a POA on demand when a request is

activator received for a child POA that does not exist.

etherealize Remove the association between a servant and an abstract
CORBA object.

incarnate Associate a servant with an abstract CORBA object.

ObjectID Way to identify a CORBA object within the object adapter. An
ObjectID can be assigned by the object adapter or the
application and is unique only within the object adapter in which
it was created. Servants are associated with abstract objects
through ObjectIDs.

persistent CORBA objects that live beyond the server process that created

object them.

POA manager

Object that controls the state of the POA; for example, whether
the POA is receiving or discarding incoming requests.

Policy Object that controls the behavior of the associated POA and the
objects the POA manages.

rootPoa Each VisiBroker ORB is created with one POA called the rootPoa.
You can create additional POAs (if necessary) from the rootPoa.

servant Any code that implements the methods of a CORBA object, but
is not the CORBA object itself.

servant An object responsible for managing the association of objects

manager with servants, and for determining whether an object exists.

transient object

More than one servant manager can exist.
A CORBA object that lives only within the process that created it.

Steps for creating and using POAs

Although the exact process can vary, the basic steps that occur during the
POA lifecycle are:

1 Define the POA's policies.

o g b~ WN

Create the POA.

Activate the POA through its POA manager.
Create and activate servants.

Create and use servant managers.

Use adapter activators.

Depending on your needs, some of these steps may be optional. For
example, you only have to activate the POA if you want it to process

requests.

POA policies

Each POA has a set of policies that define its characteristics. When creating
a new POA, you can use the default set of policies or use different values to
suit your requirements. You can only set the policies when creating a POA;
you can not change the policies of an existing POA. POAs do not inherit the
policies from their parent POA.

106 VisiBroker for Java Developer's Guide

POA policies

The following lists the POA policies, their values, and the default value (used
by the rootPoa).

« Thread policy The thread policy specifies the threading model to be used
by the POA.

The thread policy can have the following values:

« ORB_CTRL_MODEL: (Default) The POA is responsible for assigning
requests to threads. In a multi-threaded environment, concurrent
requests may be delivered using multiple threads. Note that VisiBroker
uses multi-threading model.

 SINGLE_THREAD_MODEL: The POA processes requests sequentially.
In a multi-threaded environment, all calls made by the POA to servants
and servant managers are thread-safe.

« MAIN_THREAD_MODEL: Calls are processed on a distinguished
“main” thread. Requests for all main-thread POAs are processed
sequentially. In a multi-threaded environment, all calls processed by
all POAs with this policy are thread-safe. The application programmer
designates the main thread by calling ORB::run() or
ORB::perform_work(). For more information about these methods, see
“Activating objects”.

« Lifespan policy The lifespan policy specifies the lifespan of the objects
implemented in the POA.

The lifespan policy can have the following values:

« TRANSIENT: (Default) A transient object activated by a POA cannot
outlive the POA that created it. Once the POA is deactivated, an
OBJECT_NOT_EXIST exception occurs if an attempt is made to use any
object references generated by the POA.

« PERSISTENT: A persistent object activated by a POA can outlive the
process in which it was first created. Requests invoked on a persistent
object may result in the implicit activation of a process, a POA and the
servant that implements the object.

+ Object ID Uniqueness policy The Object ID Uniqueness policy allows a
single servant to be shared by many abstract objects.

The Object ID Uniqueness policy can have the following values:
« UNIQUE_ID: (Default) Activated servants support only one Object ID.

« MULTIPLE_ID: Activated servants can have one or more Object IDs.
The Object ID must be determined within the method being invoked at
run time.

« ID Assignment policy The ID assignment policy specifies whether
object IDs are generated by server applications or by the POA.

The ID Assignment policy can have the following values:
« USER_ID: Objects are assigned object IDs by the application.

« SYSTEM_ID: (Default) Objects are assigned object IDs by the POA. If
the PERSISTENT policy is also set, object IDs must be unique across all
instantiations of the same POA.

Typically, USER_ID is for persistent objects, and SYSTEM_ID is for
transient objects. If you want to use SYSTEM_ID for persistent objects,
you can extract them from the servant or object reference.

« Servant Retention policy The Servant Retention policy specifies
whether the POA retains active servants in the Active Object Map.

The Servant Retention policy can have the following values:

VisiBroker for Java Developer’'s Guide 107

POA policies

« RETAIN: (Default) The POA tracks object activations in the Active
Object Map. RETAIN is usually used with ServantActivators or explicit
activation methods on POA.

« NON_RETAIN: The POA does not retain active servants in the Active
Object Map. NON_RETAIN must be used with ServantLocators.

ServantActivators and ServantLocators are types of servant managers.
For more information on servant managers, see “Using servants and
servant managers”.

* Request Processing policy The Request Processing policy specifies how
requests are processed by the POA.

« USE_ACTIVE_OBJECT_MAP_ONLY: (Default) If the Object ID is not
listed in the Active Object Map, an OBJECT_NOT _EXIST exception is
returned. The POA must also use the RETAIN policy with this value.

« USE_DEFAULT_SERVANT: If the Object ID is not listed in the Active
Object Map or the NON_RETAIN policy is set, the request is dispatched
to the default servant. If no default servant has been registered, an
OBJ_ADAPTER exception is returned. The POA must also use the
MULTIPLE_ID policy with this value.

« USE_SERVANT_MANAGER: If the Object ID is not listed in the Active
Object Map or the NON_RETAIN policy is set, the servant manager is
used to obtain a servant.

« Implicit Activation policy The Implicit Activation policy specifies
whether the POA supports implicit activation of servants.

The Implicit Activation policy can have the following values:

« IMPLICIT_ACTIVATION: The POA supports implicit activation of
servants. There are two ways to activate the servants as follows:

« Converting them to an object reference with
org.omg.PortableServer.POA.servant_to_reference() .

» Invoking _this() on the servant.

The POA must also use the SYSTEM_ID and RETAIN policies with this
value.

« NO_IMPLICIT_ACTIVATION: (Default) The POA does not support
implicit activation of servants.

« Bind Support policy The Bind Support policy (a VisiBroker-specific
policy) controls the registration of POAs and active objects with the
VisiBroker osagent. If you have several thousand objects, it is not
feasible to register all of them with the osagent. Instead, you can register
the POA with the osagent. When a client request is made, the POA name
and the object ID is included in the bind request so that the osagent can
correctly forward the request.

The BindSupport policy can have the following values:

« BY_INSTANCE: All active objects are registered with the osagent. The
POA must also use the PERSISTENT and RETAIN policy with this value.

+ BY_POA: (Default) Only POAs are registered with the osagent. The
POA must also use the PERSISTENT policy with this value.

« NONE: Neither POAs nor active objects are registered with the smart
agent.

Note

The rootPoa is created with NONE activation policy.

108 VisiBroker for Java Developer's Guide

Creating POAs

Creating POAs

To implement objects using the POA, at least one POA object must exist on
the server. To ensure that a POA exists, a rootPoa is provided during the
VisiBroker ORB initialization. This POA uses the default POA policies
described earlier in this section.

Once the rootPoa is obtained, you can create child POAs that implement a
specific server-side policy set.

POA naming convention

Each POA keeps track of its name and its full POA name (the full hierarchical
path name.) The hierarchy is indicated by a slash (/). For example, /A/B/C
means that POA C is a child of POA B, which in turn is a child of POA A. The
first slash (see the previous example) indicates the rootPoa. If the
BindSupport:BY_POA policy is set on POA C, then /A/B/C is registered with
the osagent and the client binds with /A/B/C.

If your POA name contains escape characters or other delimiters, VisiBroker
precedes these characters with a double back slash (\\) when recording the
names internally. For example, if you have coded two POAs in the following
hierarchy,

org.omg.PortableServer.POA myPOAl1 = rootPoa.create POA
("'A/B",
poaManager,
policies);
org.omg.PortableServer.POA myPOA2
¢\,
poaManager,
policies);

myPOAl.create_POA

then the client would bind using:

org.omg.CORBA.Object manager =
((com.inprise.vbroker.orb.ORB) orb).
bind(""/A\\/B/\t",
managerlid,
null,
null);

Obtaining the rootPoa

The following code sample illustrates how a server application can obtain its
rootPoa.

// Initialize the ORB.

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,
null);

// get a reference to the rootPoa
org.omg.PortableServer.POA rootPoa =

POAHelper_narrow(orb.resolve_initial_references("'RootPOA™)

);
Note

The resolve_initial_references method returns a value of type
org.omg.CORBA._Object . You are responsible for narrowing the returned

VisiBroker for Java Developer’'s Guide 109

Activating objects

object reference to the desired type, which is
org.omg.PortableServer.POA in the previous example.

Setting the POA policies

Policies are not inherited from the parent POA. If you want a POA to have a
specific characteristic, you must identify all the policies that are different
from the default value. For more information about POA policies, see “POA
policies”.

org.omg.CORBA.Policy[] policies = {

rootPoa.create_lifespan_policy(LifespanPolicyValue.PERSIST
ENT)

}:
Creating and activating the POA

A POA is created using create_POA on its parent POA. You can name the
POA anything you like; however, the name must be unique with respect to
all other POAs with the same parent. If you attempt to give two POAs the
same name, a CORBA exception (AdapterAlreadyExists) is raised.

To create a new POA, use create_POA as follows:
POA create_ POA(POA_Name, POAManager, PolicyList);

The POA manager controls the state of the POA (for example, whether it is
processing requests). If null is passed to create_POA as the POA manager
name, a new POA manager object is created and associated with the POA.
Typically, you will want to have the same POA manager for all POAs. For
more information about the POA manager, see “Managing POAs with the POA
manager”.

POA managers (and POAs) are not automatically activated once created.
Use activate() to activate the POA manager associated with your POA.
The following code sample is an example of creating a POA.

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {

rootPoa.create_lifespan_policy(LifespanPolicyValue_ PERSIST
ENT)};
// Create myPOA with the right policies
org.omg.PortableServer.POA myPOA =

rootPoa.create POA("bank_agent poa",
rootPoa.the POAManager(), policies);

Activating objects

When CORBA objects are associated with an active servant, if the POA's
Servant Retention Policy is RETAIN, the associated object ID is recorded in

110 VvisiBroker for Java Developer’'s Guide

Activating objects

the Active Object Map and the object is activated. Activation can occur in
one of several ways:

Activating objects The server application itself explicitly activates objects
explicitly by calling activate_object or
activate_object_with_id.

Activating objects on The server application instructs the POA to activate

demand objects through a user-supplied servant manager. The
servant manager must first be registered with the POA
through set_servant_manager.

Activating objects The server activates objects solely by in response to

implicitly certain operations. If a servant is not active, there is
nothing a client can do to make it active (for example,
requesting for an inactive object does not make it

active.)
Activating with the The POA uses a single servant to implement all of its
default servant objects.

Activating objects explicitly

By setting IdAssignmentPolicy::SYSTEM_ID on a POA, objects can be
explicitly activated without having to specify an object ID. The server
invokes activate_object on the POA which activates, assigns and returns
an object ID for the object. This type of activation is most common for
transient objects. No servant manager is required since neither the object
nor the servant is needed for very long.

Objects can also be explicitly activated using object IDs. A common
scenario is during server initialization where the user invokes
activate_object_with_id to activate all the objects managed by the
server. No servant manager is required since all the objects are already
activated. If a request for a non-existent object is received, an
OBJECT_NOT_EXIST exception is raised. This has obvious negative effects if
your server manages large numbers of objects.

This code sample is an example of explicit activation using
activate_object_with_id.

// Create the account manager servant.

Servant managerServant = new AccountManagerImpl(rootPoa);
// Activate the newly created servant.
testPoa.activate object with_id("'BankManager' .getBytes(),
managerServant) ;

// Activate the POAs

testPoa.the POAManager().activate();

Activating objects on demand

On-demand activation occurs when a client requests an object that does not
have an associated servant. After receiving the request, the POA searches
the Active Object Map for an active servant associated with the object ID. If
none is found, the POA invokes incarnate on the servant manager which
passes the object ID value to the servant manager. The servant manager
can do one of three things:

« Find an appropriate servant which then performs the appropriate
operation for the request.

+ Raise an OBJECT_NOT_EXIST exception that is returned to the client.

« Forward the request to another object.

VisiBroker for Java Developer’'s Guide 111

Activating objects

The POA policies determine any additional steps that may occur. For
example, if RequestProcessingPolicy.USE_SERVANT_ MANAGER and
ServantRetentionPolicy.RETAIN are enabled, the Active Object Map is
updated with the servant and object ID association.

An example of on-demand activation is shown below.

Activating objects implicitly

A servant can be implicitly activated by certain operations if the POA has
been created with ImplicitActivationPolicy. IMPLICIT_ACTIVATION,
IdAssignmentPolicy.SYSTEM_ID, and
ServantRetentionPolicy.RETAIN. Implicit activation can occur with:

+ POA.servant_to_reference method
+ POA.servant_to_id method
+ _this() servant method

If the POA has IdUniquenessPolicy.UNIQUE_ID set, implicit activation
can occur when any of the above operations are performed on an inactive
servant.

If the POA has IdUniquenessPolicy.MULTIPLE_ID set,
servant_to_reference and servant_to_id operations always perform
implicit activation, even if the servant is already active.

Activating with the default servant

Use the RequestProcessing.USE_DEFAULT_SERVANT policy to have the
POA invoke the same servant no matter what the object ID is. This is useful
when little data is associated with each object.

This is an example of activating all objects with the same servants

import org.omg.PortableServer.*;
public class Server {
public static void main(String[] args) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// get a reference to the rootPoa
POA rootPoa =
POAHelper._narrow(orb.resolve_initial_references("'RootPOA™));
// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
rootPoa.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
rootPoa.create_request_processing policy(
RequestProcessingPolicyValue .USE_DEFAULT_SERVANT
)

rootPoa.create_id_uniqueness_policy(ldUniquenessPolicyValue MULTIPLE_ID)
}:
// Create myPOA with the right policies
POA myPOA = rootPoa.create_POA("bank_default_servant_poa",
rootPoa.the_POAManager(),
policies);
// Create the servant
AccountManagerImpl managerServant = new AccountManagerlimpl();
// Set the default servant on our POA
myPOA.set_servant(managerServant);
org.omg.CORBA.Object ref;

112 VvisiBroker for Java Developer's Guide

Activating objects

// Activate the POA manager

rootPoa.the_POAManager() .activate();

// Generate the reference and write it out. One for each Checking
//and Savings account types. Note that we are not creating any
// servants here and just manufacturing a reference which is not
// yet backed by a servant.

try {
ref =

myPOA.create_reference_with_id("CheckingAccountManager' .getBytes(),

"IDL:Bank/AccountManager:1.0");

// Write out checking object ID
Jjava_.io.PrintWriter pw = new java.io.PrintWriter(
new java.io.FileWriter('cref.dat'));
pw.println(orb.object_to_string(ref));

pw.close();
ref =

myPOA.create_reference with_id("'SavingsAccountManager' .getBytes(),

}

"IDL:Bank/AccountManager:1.0");
// Write out savings object ID
pw = new java.io.PrintWriter(new java.io.FileWriter(“sref.dat")

pw.printin(orb.object_to_string(ref));
pw.close();

} catch (java.io.lOException e) {
System.out_printIn(""Error writing the IOR to file ");
return;

}

System.out.printIn(''Bank Manager is ready.");
// Wait for incoming requests
orb.run();
} catch (Exception e) {
e.printStackTrace();
}

Deactivating objects

A POA can remove a servant from its Active Object Map. This may occur, for
example, as a form of garbage-collection scheme. When the servant is
removed from the map, it is deactivated. You can deactivate an object using
deactivate_object(). When an object is deactivated, it doesn't mean
this object is lost forever. It can always be reactivated at a later time.

This is an example of deactivating an object:

import org.omg.PortableServer.*;
public class AccountManagerActivator extends _ServantActivatorLocalBase {

{

public Servant incarnate (byte[] oid, POA adapter) throws ForwardRequest

Servant servant;
String accountType = new String(oid);
System.out.printIn(""\nAccountManagerActivator.incarnate called
with ID = "
+ accountType + "\n'");
// Create Savings or Checking Servant based on AccountType
if (accountType.equalslgnoreCase("'SavingsAccountManager'))
servant = (Servant)new SavingsAccountManagerimpl();
else
servant =(Servant)new CheckingAccountManagerimpl();

VisiBroker for Java Developer’'s Guide 113

Using servants and servant managers

new DeactivateThread(oid, adapter).start();
return servant;

public void etherealize (byte[] oid,
POA adapter,
Servant serv,
boolean cleanup_in_progress,
boolean remaining_activations) {

System.out.printIn('"\nAccountManagerActivator.etherealize called
with ID =" + new String(oid) + "\n");

}
class DeactivateThread extends Thread {
byte[] _oid;

POA _adapter;

public DeactivateThread(byte[] oid, POA adapter) {
_oid = oid;
_adapter = adapter;

}
public void run(Q) {
try {
Thread.currentThread() .sleep(15000);
System.out.printIn(‘"\nDeactivating the object with ID = " +
new String(_oid) + "\n");
_adapter .deactivate_object(_oid);
} catch (Exception e) {
e.printStackTrace();
}
}
}

Using servants and servant managers

Servant managers perform two types of operations: find and return a
servant, and deactivate a servant. They allow the POA to activate objects
when a request for an inactive object is received. Servant managers are
optional. For example, servant managers are not needed when your server
loads all objects at startup. Servant managers may also inform clients to
forward requests to another object using the ForwardRequest exception.

A servant is an active instance of an implementation. The POA maintains a
map of the active servants and the object IDs of the servants. When a client
request is received, the POA first checks this map to see if the object ID
(embedded in the client request) has been recorded. If it exists, then the
POA forwards the request to the servant. If the object ID is not found in the
map, the servant manager is asked to locate and activate the appropriate
servant. This is only an example scenario; the exact scenario depends on
what POA policies you have in place.

114 visiBroker for Java Developer's Guide

Using servants and servant managers

Figure 6 Example servant manager function

Server
2. POA ashs the servant manager to
1. Client makes a tind an appropriate objget.
request, but the - ™,
required object i not
prieget, - PO ﬂﬂse;r::g;r
Active Cbject Map

ObjectD
ObgetlD
ObectlD e—]

3. Zervant Manager constructs the
appropriate ssrvant and returns 1o the
FOA, which completes the request.

There are two types of servant managers: ServantActivator and
ServantLocator. The type of policy already in place determines which type
of servant manager is used. For more information on POA policy, see “POA
policies”. Typically, a Servant Activator activates persistent objects and a
Servant Locator activates transient objects.

To use servant managers,

RequestProcessingPolicy.USE_SERVANT_ MANAGER must be set as well
as the policy which defines the type of servant manager
(ServantRetentionPolicy_RETAIN for Servant Activator
orServantRetentionPolicy.NON_RETAIN for Servant Locator.)

ServantActivators
ServantActivators are used when ServantRetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT_ MANAGER are set.

Servants activated by this type of servant manager are tracked in the Active
Object Map.

The following events occur while processing requests using
ServantActivators:

1 Aclient request is received (client request contains POA name, the object
ID, and a few others.)

2 The POA first checks the active object map. If the object ID is found
there, the operation is passed to the servant, and the response is
returned to the client.

3 If the object ID is not found in the active object map, the POA invokes
incarnate on a servant manager. incarnate passes the object ID and
the POA in which the object is being activated.

4 The servant manager locates the appropriate servant.

5 The servant ID is entered into the active object map, and the response is
returned to the client.

Note

The etherealize and incarnate method implementations are user-
supplied code.

VisiBroker for Java Developer’'s Guide 115

Using servants and servant managers

At a later date, the servant can be deactivated. This may occur from several
sources, including the deactivate_object operation, deactivation of the

POA manager associated with that POA, and so forth. More information on

deactivating objects is described in “Deactivating objects”.

This code sample is an example of servant activator-type servant manager:

import org.omg.PortableServer.*;
public class Server {
public static void main(String[] args) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.FORB.init(args,null);
// get a reference to the rootPoa
POA rootPoa =
POAHelper._narrow(orb.resolve_initial_references("'RootPOA™));
// Create policies for our POA. We need persistence life span and
// use servant manager request processing policies
org.omg.CORBA.Policy[] policies = {
rootPoa.create_lifespan_policy(LifespanPolicyValue_ PERSISTENT),
rootPoa.create_request_processing_policy(RequestProcessingPolicyValue.
USE_SERVANT_MANAGER)
}:

// Create myPOA with the right policies
POA myPOA = rootPoa.create_POA("bank_servant_activator_poa",
rootPoa.the_POAManager(),
policies);
// Create the servant activator servant and get its reference
ServantActivator sa = new AccountManagerActivator();
// Set the servant activator on our POA
myPOA.set_servant_manager(sa);
org.omg.CORBA.Object ref;
// Activate the POA manager
rootPoa.the POAManager() .activate();
// Generate the reference and write it out. One for each Checking
and Savings
// account types. Note that we are not creating any
// servants here and just manufacturing a reference which is not
// yet backed by a servant.
try {
ref =
myPOA.create_reference_with_id(""CheckingAccountManager' .getBytes(),
"IDL:Bank/AccountManager:1.0");
// Write out checking object ID
java_.io.PrintWriter pw =
new java.io.PrintWriter(new java.io.FileWriter
(“"cref.dat™));
pw.printlin(orb.object to string(ref));
pw.close();
ref =
myPOA.create_reference_with_id("'SavingsAccountManager'.getBytes(),
"IDL:Bank/AccountManager:1.0");
// Write out savings object ID
pw = new java.io.PrintWriter(new java.io.FileWriter
('sref.dat™));
pw.println(orb.object_to_string(ref));
pw.close();
} catch (java.io.lOException e) {
System.out.printIn("Error writing the IOR to file ");
return;

}

116 VisiBroker for Java Developer's Guide

Using servants and servant managers

System.out._printIn(*'Bank Manager is ready.');
// Wait for incoming requests
orb.run();
} catch (Exception e) {
e.printStackTrace();
}

}
}

The servant manager for the servant activator example follows:

import org.omg.PortableServer.*;
public class AccountManagerActivator extends _ ServantActivatorLocalBase {
public Servant incarnate (byte[] oid, POA adapter) throws ForwardRequest
{
Servant servant;
String accountType = new String(oid);
System.out.printIn('"\nAccountManagerActivator.incarnate called with ID
" + accountType + "\n"");
// Create Savings or Checking Servant based on AccountType
if (accountType.equalslgnoreCase(''SavingsAccountManager™))
servant = (Servant)new SavingsAccountManagerimpl();
else

servant =(Servant)new CheckingAccountManagerimpl();
new DeactivateThread(oid, adapter).start();
return servant;

}

public void etherealize (byte[] oid,
POA adapter,
Servant serv,
boolean cleanup_in_progress,
boolean remaining_activations) {
System.out.printIn('"\nAccountManagerActivator.etherealize called

with ID = " + new String(oid) + "\n");
}
class DeactivateThread extends Thread {
byte[] _oid;

POA _adapter;

public DeactivateThread(byte[] oid, POA adapter) {
_oid = oid;
_adapter = adapter;

¥
public void run(Q) {

try {

Thread.currentThread() -sleep(15000);
System.out.printIn(""\nDeactivating the object with ID =
" + new String(oid) + "\n'");
_adapter.deactivate _object(oid);
} catch (Exception e) {

e.printStackTrace();

VisiBroker for Java Developer’'s Guide 117

Using servants and servant managers

ServantLocators

In many situations, the POA's Active Object Map could become quite large
and consume memory. To reduce memory consumption, a POA can be
created with RequestProcessingPolicy.USE_SERVANT_MANAGER and
ServantRetentionPolicy.NON_RETAIN, meaning that the servant-to-
object association is not stored in the active object map. Since no
association is stored, ServantLocator servant managers are invoked for
each request.

The following events occur while processing requests using
ServantLocators:

1 A client request, which contains the POA name and the object id, is
received.

2 Since ServantRetentionPolicy.NON_RETAIN is used, the POA does
not search the active object map for the object ID.

3 The POA invokes preinvoke on a servant manager. preinvoke passes
the object ID, the POA in which the object is being activated, and a few
other parameters.

4 The servant locator locates the appropriate servant.

5 The operation is performed on the servant and the response is returned
to the client.

6 The POA invokes postinvoke on the servant manager.

Note
The preinvoke and postinvoke methods are user-supplied code.
This example server code shows servant locator-type servant managers:

import org.omg.PortableServer.*;
public class Server {
public static void main(String[] args) {
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// get a reference to the rootPoa
POA rootPoa =

POAHelper.narrow(orb.resolve_initial_references("'RootPOA™));
// Create policies for our POA. We need persistence life span,
// use servant manager request processing policies and non retain
// retention policy. This non retain policy will let us use the
// servant locator instead of servant activator
org.omg.CORBA.Policy[] policies = {
rootPoa.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
rootPoa.create_servant_retention_policy(ServantRetentionPolicyValue.
NON_RETAIN),
rootPoa.create_request_processing_policy(RequestProcessingPolicyValue.
USE_SERVANT_MANAGER)
}:

// Create myPOA with the right policies
POA myPOA = rootPoa.create POA("bank_servant_locator_poa",
rootPoa.the_POAManager(),
policies);
// Create the servant locator servant and get its reference
ServantLocator sl = new AccountManagerLocator();
// Set the servant locator on our POA

118 VisiBroker for Java Developer's Guide

Using servants and servant managers

myPOA.set_servant_manager(sl);
org.omg.CORBA.Object ref ;
// Activate the POA manager
rootPoa.the_POAManager().activate();
// Generate the reference and write it out. One for each Checking
and Savings
// account types _Note that we are not creating any
// servants here and just manufacturing a reference which is not
// yet backed by a servant.
try {
ref =
myPOA.create_reference_with_id("'"CheckingAccountManager' .getBytes(),
"IDL:Bank/AccountManager:1.0");
// Write out checking object ID
Java.io.PrintWriter pw =
new java.io.PrintWriter(new java.io.FileWriter('cref.dat™));
pw.printin(orb.object to string(ref));
pw.close();
ref =
myPOA_create_reference_with_id(*'SavingsAccountManager' .getBytes(),
"IDL:Bank/AccountManager:1.0");
// Write out savings object ID
pw = new java.io.PrintWriter(new java.io.FileWriter(“sref.dat"));
pw.printIn(orb.object_to_string(ref));
pw.close();
} catch (java.io.lOException e) {
System.out.printIn("Error writing the I0R to file ");
return;
}
System.out.printIn(‘'BankManager is ready.");
// Wait for incoming requests
orb.runQ);
} catch (Exception e) {
e.printStackTrace();
}

}
}

The servant manager for this example follows:

import org.omg.PortableServer.*;
import org.omg.PortableServer.ServantlLocatorPackage.CookieHolder;
public class AccountManagerLocator extends _ServantLocatorLocalBase {
public Servant preinvoke (byte[] oid,POA adapter,
java.lang.String operation,
CookieHolder the_cookie) throws ForwardRequest {
String accountType = new String(oid);
System.out.printIn('"\nAccountManagerLocator.preinvoke called
with ID = " +
accountType + "\n");
it (
accountType.equalslgnoreCase(''SavingsAccountManager™))
return new SavingsAccountManagerimpl();
return new CheckingAccountManagerimpl();

public void postinvoke (byte[] oid,
POA adapter,
jJava.lang.String operation,
jJava.lang.Object the_cookie,
Servant the_servant) {
System.out.printin(’"\

VisiBroker for Java Developer’'s Guide 119

Managing POAs with the POA manager

nAccountManagerLocator.postinvoke called with ID = " +
new String(oid) + "\n"");
}

}

Managing POAs with the POA manager

A POA manager controls the state of the POA (whether requests are queued
or discarded), and can deactivate the POA. Each POA is associated with a
POA manager object. A POA manager can control one or several POAs.

A POA manager is associated with a POA when the POA is created. You can
specify the POA manager to use, or specify null to have a new POA
Manager created.

The following is an example of nhaming the POA and its POA Manager:

POA myPOA = rootPoa.create_ POA("bank_agent poa",
rootPoa.the POAManager(),
policies);

POA myPOA = rootPoa.create_POA('bank_agent poa’",
null,
policies);

A POA manager is “destroyed” when all its associated POAs are destroyed.
A POA manager can have the following four states:

« Holding

« Active

« Discarding

« Inactive

These states in turn determine the state of the POA. They are each
described in detail in the following sections.

Getting the current state

To get the current state of the POA manager, use

enum State{HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

Holding state

By default, when a POA manager is created, it is in the holding state. When
the POA manager is in the holding state, the POA queues all incoming
requests.

Requests that require an adapter activator are also queued when the POA
manager is in the holding state.

To change the state of a POA manager to holding, use

void hold_requests (in boolean wait_for_completion)
raises (Adapterlnactive);

wait_for_completion is Boolean. If FALSE, this operation returns
immediately after changing the state to holding. If TRUE, this operation
returns only when all requests started prior to the state change have
completed or when the POA manager is changed to a state other than

120 VisiBroker for Java Developer's Guide

Managing POAs with the POA manager

holding. AdapterInactive is the exception raised if the POA manager was
in the inactive state prior to calling this operation.

Note

POA managers in the inactive state cannot change to the holding state.

Any requests that have been queued but not yet started will continue to be
queued during the holding state.

Active state

When the POA manager is in the active state, its associated POAs process
requests.

To change the POA manager to the active state, use

void activate()
raises (Adapterlnactive);

Adapterlnactive is the exception raised if the POA manager was in the
inactive state prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the active
state.

Discarding state

When the POA manager is in the discarding state, its associated POAs
discard all requests that have not yet started. In addition, the adapter
activators registered with the associated POAs are not called. This state is
useful when the POA is receiving too many requests. You need to notify the
client that their request has been discarded and to resend their request.
There is no inherent behavior for determining if and when the POA is
receiving too many requests. It is up to you to set up thread monitoring if
so desired.

To change the POA manager to the discarding state, use

void discard_requests(in boolean wait_for_completion)
raises (Adapterlnactive);

The wait_for_completion option is Boolean. If FALSE, this operation
returns immediately after changing the state to holding. If TRUE, this
operation returns only when all requests started prior to the state change
have completed or when the POA manager is changed to a state other than
discarding. Adapterlnactive is the exception raised if the POA manager
was in the inactive state prior to calling this operation.

Note

POA managers currently in the inactive state can not change to the
discarding state.

Inactive state

When the POA manager is in the inactive state, its associated POAs reject
incoming requests. This state is used when the associated POAs are to be
shut down.

VisiBroker for Java Developer’'s Guide 121

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Note

POA managers in the inactive state cannot change to any other state.

To change the POA manager to the inactive state, use

void deactivate (in boolean etherealize_objects, in
boolean wait_for_completion)
raises (Adapterlnactive);

After the state changes, if etherealize_objects is TRUE, then all
associated POAs that have Servant RetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT_MANAGER set call
etherealize on the servant manager for all active objects. If

etherealize objects is FALSE, then etherealize is not called. The
wait_for_completion option is Boolean. If FALSE, this operation returns
immediately after changing the state to inactive. If TRUE, this operation
returns only when all requests started prior to the state change have
completed or etherealize has been called on all associated POAs (that
have ServantRetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT_ MANAGER). Adapterlnactive
is the exception raised if the POA manager was in the inactive state prior to
calling this operation.

Listening and Dispatching: Server Engines, Server
Connection Managers, and their properties

Note

Policies that cover listener and dispatcher features previously supported by
the BOA are not supported by POAs. In order to provide these features, a
VisiBroker-specific policy (ServerEnginePolicy) can be used.

VisiBroker provides a very flexible mechanism to define and tune endpoints
for VisiBroker servers. An endpoint in this context is a destination for a
communication channel for clients to communicate with servers. A Server
Engine is a virtual abstraction for connection endpoint provided as a
configurable set of properties.

A ServerEngine abstraction can provide control in terms of:
« types of connection resources
« connection management

« threading model and request dispatching

Server Engine and POAs

A POA on Visibroker can have many-to-many relationship with a
ServerEngine. A POA can be associated with many ServerEngines and vice-
versa. The manifestation of this fact is that a POA, and hence the CORBA
objects on the POA, can support multiple communication channels.

122 VisiBroker for Java Developer’'s Guide

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Figure 7 Server engine overview

The simplest case is where POAs have their own unique single server
engine. Here, requests for different POAs arrive on different ports. A POA
can also have multiple server engines. In this scenario, a single POA
supports requests coming from multiple input ports.

Notice that POAs can share server engines. When server engines are
shared, the POAs listen to the same port. Even though the requests for
(multiple) POAs arrive at the same port, they are dispatched correctly
because of the POA name embedded in the request. This scenario occurs,
for example, when you use a default server engine and create multiple
POAs (without specifying a new server engine during the POA creation).

A Server Engine is identified by a name and is defined the first time its
name is introduced. By default Visibroker defines three Server Engine
names. They are:

« iiop_tp: TCP transport with thread pool dispatcher
« jiop_ts: TCP transport with thread per session dispatcher
« iiop_tm: TCP transport with main thread dispatcher

Two more Server Engines, boa_tp and boa_ts, are available for BOA
backward compatibility.

Associating a POA with a Server Engine

The default Server Engine associated with POA can be changed by using the property
vbroker.se.default. For example, setting

vbroker.se.defaul t=MySE

defines a new server engine with the name MySE. Root POA and all child
POAs created will be associated with this Server Engine by default.

A POA can also be associated with a particular ServerEngine explicitly by
using the SERVER_ENGINE_POLICY_TYPE POA policy. For example:

// create ServerEngine policy value

org.omg.CORBA.Any seAny = orb.create_any();

org.omg.CORBA.StringSequenceHelper.insert(seAny, new String[]{"MySE"});

org.omg.CORBA.Policy sePolicy =

orb._create_policy(com.inprise.vbroker._PortableServerExt.
SERVER_ENGINE_POLICY_TYPE.value,seAny);

// create POA policies

org.omg.CORBA.Policy[] policies = {
rootPoa.create_lifespan_policy(LifeSpanPolicyValue.PERSISTENT),
sePolicy

VisiBroker for Java Developer’'s Guide 123

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

// create POA with policies
POA myPOA = rootPoa.create_ POA("'bank_se policy poa",
rootPoa.the POAManager(), policies);

The POA has an IOR template, profiles for which, are obtained from the
Server Engines associated with it.

If you don't specify a server engine policy, the POA assumes a server
engine name of 1iop_tp and uses the following default values:

vbroker.se.iiop_tp.host=null
vbroker.se.iiop_tp.proxyHost=null
vbroker.se.iiop_tp.scms=iiop_tp

To change the default server engine policy, enter its name using the
vbroker.se.default property and define the values for all the
components of the new server engine. For example:

vbroker.se.default=abc,def
vbroker.se.abc.host=cob
vbroker._.se.abc.proxyHost=null
vbroker.se.abc.scms=cobscml, cobscm2
vbroker.se.def.host=gob
vbroker.se.def.proxyHost=null
vbroker.se.def.scms=gobscml

Defining Hosts for Endpoints for the Server Engine

Since Server Engines help define a connection's endpoints, the following properties
are provided to specify their hosts:

« vbroker.se.<se-name>.host=<host-URL>:
vbroker.se.mySE.host=host.microfocus.com, for example.

» Vbroker.se.<se-name>.proxyHost=<proxy-host-URL-or-1P-
address>: vbroker .se.mySE . proxyHost=proxy.microfocus.com, for
example.

The proxyHost property can also take an IP address as its value. Doing so
replaces the default hostname in the IOR with this IP address.

The endpoint abstraction of ServerEngine is further fine-grained in terms of
configurable set of entities referred to as Server Connection Managers
(SCM). A ServerEngine can have multiple SCMs. SCMs are not shareable
between ServerEngines. SCMs are also identified using a name and are
defined for a ServerEngine using:

vbroker .se.<se-name>._scms=<SCM-name>[,<SCM-name>, . . .]

Note

The 1iop_tp Server Engine has a SCM named 1iop_tp created for it.

Server Connection Managers

The Server Connection Manager defines the configurable components of an
endpoint. Its responsibilities are connection resource management,
listening for requests, and dispatching requests to its associated POA. Three
logical entities, defined through property groups, are provided by the SCM
to fulfill these responsibilities:

« Manager
+ Listener

« Dispatcher

124 VvisiBroker for Java Developer’'s Guide

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

Each SCM has one Manager, Listener, and Dispatcher. All three, when
defined, form a single endpoint definition allowing clients to contact servers.

Manager

Manager is a set of properties defining the configurable portions of a
connection resource. VisiBroker provides a manager of type Socket.

VisiBroker for Java only supports the Socket type, and a variation of the
Socket type, Socket_nio, that uses the Java NIO package. See section “High
scalability configuration for VisiBroker for Java (using Java NIO)” for further details.

You can specify the maximum number of concurrent connections acceptable
to the server endpoint using the connectionMax property:

vbroker.se.<se-name>.scm.<scm-
name>.manager . connectionMax=<integer>

Setting connectionMax to O (zero) indicates that there is no restriction on
the number of connections, which is the default setting.

You specify the maximum number of idle seconds using the
connectionMaxldle property:

vbroker.se.<se-name>.scm.<scm-
name>_manager .connectionMaxldle=<seconds>

Setting connectionMaxldle to O (zero) indicates that there is no timeout,
which is the default setting.

Garbage collection time is specified through the following property:
vbroker._.orb._gcTimeout=<seconds>

A value of O (zero) means that the connection will never be garbage
collected.

Listener

The Listener is the SCM component that determines how and where the
SCM listens for messages. Like the Manager, the Listener is also a set of
properties. VisiBroker defines a I1OP listener for the TCP connections.

Since listeners are close to the actual underlying transport mechanism,
their properties are not portable across listener types. Each listener type
has its own set of properties, defined below.

I11OP listener properties

I1OP listners need to define a port and (if desired) a proxy port in
conjunction with their hosts. These are set using the port and proxyPort
properties, as follows:

vbroker.se.<se-name>._scm.<scm-name>.listener.port=<port>
vbroker.se.<se-name>.scm.<scm-
name>._ listener.proxyPort=<proxy-port>

Note

If you do not set the port property (or set it to O [zero]), a random port will
be selected. A 0 value for the proxyPort property means that the IOR will
contain the actual port (defined by the listener.port property or selected
by the system randomly). If it is not required to advertise the actual port,
set the proxy port to a non-zero (positive) value.

VisiBroker for Java Developer’'s Guide 125

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

VisiBroker additionally supports a property allowing you to specify your
GIOP version:

vbroker.se.<se-name>.scm.<scm-name>. listener.giopVersion=<version>

Dispatcher

The Dispatcher defines a set of properties that determine how the SCM
dispatches requests to threads. Three types of dispatchers are provided:
ThreadPool, ThreadSession, and MainThread. You set the dispatcher
type with the type property:

vbroker.se.<se-name>._scm.<scm-name>.dispatcher.type=ThreadPool |
ThreadSession|MainThread

Further control is provided through the SCM for the ThreadPool dispatcher
type. The ThreadPool defines the minimum and maximum number of
threads that can be created in the thread pool, as well as the maximum
time in seconds after which an idled thread is destroyed. These values are
controlled with the following properties:

vbroker.se.<se-name>.scm.<scm-name>.dispatcher.threadMin=<integer>
vbroker.se.<se-name>.scm.<scm-name>._dispatcher.threadMax=<integer>
vbroker.se.<se-name>.scm.<scm-name>.dispatcher.threadMaxldle=<seconds>

// Server.java

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is said
to be “hot” when the GIOP connection being served is potentially readable,
either upon creation of the connection or upon the arrival of a request. After
the cooling time (in seconds), the thread can be returned to the thread
pool.

VisiBroker for Java supports the cooling time property when configured to
use the Java NIO package. See the section “High scalability configuration for
VisiBroker for Java (using Java NIO)” for more information.

The following property is used to set the cooling time:

vbroker.se.<se-name>.scm.<scm-
name>_dispatcher.coolingTime=<seconds>

When to use these properties

There are many times where you need to change some of the server engine
properties. The method for changing these properties depends on what you
need. For example, suppose you want to change the port number. You
could accomplish this by:

» Changing the default listener.port property
« Creating a new server engine

Changing the default listener.port property is the simplest method, but
this affects all POAs that use the default server engine. This may or may not
be what you want.

If you want to change the port number on a specific POA, then you'll have
to create a new server engine, define the properties for this new server
engine, and then reference the new server engine when creating the POA.
The previous sections show how to update the server engine properties. The
following code snippet shows how to define properties of a server engine
and create a POA with a user-defined server engine policy:

import org.omg.PortableServer.*;
public class Server {
public static void main(String[] args) {

126 VisiBroker for Java Developer’'s Guide

Listening and Dispatching: Server Engines, Server Connection Managers, and their properties

try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Get property manager
com. inprise.vbroker.properties.PropertyManager pm =
((com.inprise.vbroker.orb.ORB)orb) .getPropertyManager();
pm.addProperty(‘'vbroker.se._.mySe_host", "");
pm.addProperty(‘'vbroker.se._mySe._proxyHost”, "'');
pm.addProperty(‘'vbroker.se.mySe.scms", "'scmlist'™);
pm.addProperty(*'vbroker.se.mySe.scm.scmlist.manager.type', "Socket'™);
pm.addProperty(‘'vbroker.se.mySe.scm.scmlist.manager.connectionMax',
100);
pm.addProperty(‘'vbroker.se_mySe.scm.scmlist.manager.connectionMaxlidle™
» 300);
pm.addProperty("'vbroker.se.mySe.scm.scmlist. listener.type™, "110P");
pm.addProperty(*'vbroker.se.mySe.scm.scmlist. listener.port'”, 55000);
pm.addProperty(‘'vbroker.se.mySe.scm.scmlist. listener.proxyPort", 0);
pm.addProperty(‘'vbroker.se.mySe.scm.scmlist.dispatcher.type",
"ThreadPool™);
pm.addProperty("'vbroker.se.mySe.scm.scmlist.listener.giopVersion",
"1.2");
pm.addProperty(‘'vbroker.se.mySe.scm.scmlist.dispatcher.threadMax",
100);
pm.addProperty(‘'vbroker.se.mySe.scm.scmlist.dispatcher.threadMin'™, 5);
pm.addProperty(‘'vbroker._se._mySe.scm.scmlist.dispatcher.threadMaxldle",
300);
// get a reference to the root POA
POA rootPoa =
POAHelper._narrow(orb.resolve_initial_references("'RootPOA™));
// Create our server engine policy
org.omg.CORBA_Any seAny = orb.create_any();
org.omg.CORBA.StringSequenceHelper.insert(seAny, new String[]
{"mySe”});
org.omg.CORBA.Policy sePolicy = orb.create_policy(
com. inprise.vbroker_PortableServerExt.SERVER_ENGINE_POLICY_TYPE.
value, seAny);
// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {rootPoa.create_lifespan_policy
(LifespanPolicyValue.PERSISTENT),sePolicy
}:
// Create myPOA with the right policies
POA myPOA = rootPoa.create POA(''bank_se policy poa",
rootPoa.the_POAManager(),
policies);
// Create the servant
AccountManagerImpl managerServant = new AccountManagerimpl();
// Activate the servant
myPOA_activate object with_id(''BankManager' .getBytes(),
managerServant) ;
// Obtaining the reference
org.omg.CORBA.Object ref = myPOA.servant_to_reference(managerServant);

// Now write out the IOR
try {
jJava.io.PrintWriter pw =
new java.io.PrintWriter(new java.io.FileWriter('ior.dat™));
pw.printin(orb.object_to_string(ref));
pw.close();
} catch (java.io.l0OException e) {

VisiBroker for Java Developer’'s Guide 127

System.out.printlIn(<Default Para Font>"Error writing the IOR to
file ior.dat™);
return;
3
// Activate the POA manager
rootPoa.the_ POAManager().activate();
System.out.printIn(ref + " is ready.");
// Wait for incoming requests
orb.run();
} catch (Exception e) {
e.printStackTrace();
}

}
}

Adapter activators

Adapter activators are associated with POAs and provide the ability to
create child POAs on-demand. This can be done during the find_POA
operation, or when a request is received that names a specific child POA.

An adapter activator supplies a POA with the ability to create child POAs on
demand, as a side-effect of receiving a request that names the child POA
(or one of its children), or when Find_POA is called with an activate
parameter value of TRUE. An application server that creates all its needed
POAs at the beginning of execution does not need to use or provide an
adapter activator; it is necessary only for the case in which POAs need to be
created during request processing.

While a request from the POA to an adapter activator is in progress, all
requests to objects managed by the new POA (or any descendant POAs) will
be queued. This serialization allows the adapter activator to complete any
initialization of the new POA before requests are delivered to that POA.

For an example on using adapter activators, see the POA
adaptor_activator example included with the product.

Processing requests

Requests contain the Object ID of the target object and the POA that
created the target object reference. When a client sends a request, the
VisiBroker ORB first locates the appropriate server, or starts the server if
needed. It then locates the appropriate POA within that server.

Once the VisiBroker ORB has located the appropriate POA, it delivers the
request to that POA. How the request is processed at that point depends on
the policies of the POA and the object's activation state. For information
about object activation states, see “Activating objects”.

 If the POA has ServantRetentionPolicy.RETAIN , the POA looks at the
Active Object Map to locate a servant associated with the Object ID from
the request. If a servant exists, the POA invokes the appropriate method
on the servant.

» If the POA has ServantRetentionPolicy.NON_RETAIN or has
ServantRetentionPolicy.RETAIN but did not find the appropriate
servant, the following may take place:

« If the POA has RequestProcessingPolicy.USE_DEFAULT_SERVANT ,
the POA invokes the appropriate method on the default servant.

128 VisiBroker for Java Developer's Guide

« If the POA has RequestProcessingPolicy.USE_SERVANT_MANAGER ,
the POA invokes incarnate or preinvoke on the servant manager.

» If the POA has RequestProcessingPolicy.USE_OBJECT MAP_ONLY ,
an exception is raised.

If a servant manager has been invoked but cannot incarnate the object, the
servant manager can raise a ForwardRequest exception.

VisiBroker for Java Developer's Guide 129

130 VisiBroker for Java Developer's Guide

Managing threads and
connections

This section discusses the use of multiple threads in client programs and
object implementations, and will help you understand the VisiBroker thread
and connection model.

Using threads

A thread, or a single sequential flow of control within a process, is also
called a lightweight process that reduces overhead by sharing fundamental
parts with other threads. Threads are lightweight so that there can be many
of them present within a process.

Using multiple threads provides concurrency within an application and
improves performance. Applications can be structured efficiently with
threads servicing several independent computations simultaneously. For
example, a database system may have many user interactions in progress
while at the same time performing several file and network operations.

Although it is possible to write the software as one thread of control moving
asynchronously from request to request, the code may be simplified by
writing each request as a separate sequence, and letting the underlying
system handle the synchronous interleaving of the different operations.

Multiple threads are useful when:

« There are groups of lengthy operations that do not necessarily depend on
other processing (like painting a window, printing a document,
responding to a mouse-click, calculating a spreadsheet column, signal
handling).

« There will be few locks on data (the amount of shared data is identifiable
and small).

« The task can be broken into various responsibilities. For example, one
thread can handle the signals and another thread can handle the user
interface.

Thread and connection management occurs within the scope of an entity
known as a server engine. Several default server engines are created
automatically by VisiBroker, which include thread pool engines for 110P, for
LIOP, and so forth. Additional server engines can be used and created in a
VisiBroker server by applications. See the example in <install_dir>/
examples/vbroker/poa/server_engine_policy/Server.java.

Server engines are created, configured, and used independently. The
creation and configuration of one server engine does not affect other server
engines in the same server. Usually, each server engine has one transport
end point, called the listen point/socket.

The relationship between server engines and POAs is many-to-many. Each
server engine can be used by multiple POAs, and each POA may also use
multiple server engines.

Server engines can consist of multiple Server Connection Managers (SCMs).
An SCM is composed of managers, listeners, and dispatchers. The
properties of managers, listeners and dispatchers can be configured to
determine how the SCM functions. These properties are discussed in “Setting
connection management properties”.

VisiBroker for Java Developer's Guide 131

Listener thread, dispatcher thread, and worker threads

Listener thread, dispatcher thread, and worker
threads

Each server engine has a listener and a dispatcher thread. The listener
thread is responsible for:

« Accepting new connections. Therefore, it listens on the listen end-point.
« Monitoring readability on idle GIOP connections.

« Updating the monitoring list.

« ldle connection garbage collection based on property settings.

The dispatcher determines which threads to send requests.

Each server engine uses a certain number of worker threads to receive and
process requests. Different requests may handled by different worker
threads. For a given request, the request reading, processing (include
server side interceptor intercepting), and replying are all handled by the
same thread. The number of worker threads used by a server engine
depends on:

« The thread model.
« The number of concurrent requests or connections.
« The property settings.

Thread policies

The two major thread models supported by VisiBroker are the thread pool
(also known as thread-per-request, or TPool) and thread-per-session (also
known as thread-per-connection, or TSession). Single-thread and main-
thread models are not discussed in this document. The thread pool and
thread-per-session models differ in these fundamental ways:

« Situation in which they are created
« How simultaneous requests from the same client are handled
 When and how threads are released

The default thread policy is the thread pool. For information about setting
thread-per-session or changing properties for the thread pool model, see
“Setting dispatch policies and properties”.

Thread pool policy

When your server uses the thread pool policy, it defines the maximum
number of threads that can be allocated to handle client requests. A worker
thread is assigned for each client request, but only for the duration of that
particular request. When a request is completed, the worker thread that
was assigned to that request is placed into a pool of available threads so
that it may be reassigned to process future requests from any of the clients.

Using this model, threads are allocated based on the amount of request
traffic to the server object. This means that a highly active client that
makes many requests to the server at the same time will be serviced by
multiple threads, ensuring that the requests are quickly executed, while less
active clients can share a single thread, and still have their requests
immediately serviced. Additionally, the overhead associated with the
creation and destruction of worker threads is reduced, because threads are

132 VisiBroker for Java Developer’'s Guide

Thread pool policy

reused rather than destroyed, and can be assigned to multiple new
connections.

VisiBroker conserves system resources by dynamically allocating the
number of threads in the thread pool based on the number of concurrent
client requests by default. If the client becomes very active, new threads
are allocated to meet its needs. If threads remain inactive, VisiBroker
releases them, only keeping enough threads to meet current client demand.
This enables the optimal number of threads to be active in the server at all
times.

The size of the thread pool grows based upon server activity and is fully
configurable, either before or during execution, to meet the needs of
specific distributed systems. With the thread pool model, you can configure
the following:

« Maximum and minimum number of threads
« Maximum idle time

Each time a client request is received, an attempt is made to assign a
thread from the thread pool to process the request. If this is the first client
request and the pool is empty, a thread will be created. Likewise, if all
threads are busy, a new thread will be created to service the request.

A server can define a maximum number of threads that can be allocated to
handle client requests. If there are no threads available in the pool and the
maximum number of threads have already been created, the request will
block until a thread currently in use has been released back into the pool.

Thread pool is the default thread policy. You do not have to set up anything
to define this environment. If you want to set properties for the thread pool,
see “Setting dispatch policies and properties”.

Figure 8 Pool of threads is available

(/' Ci:-p: PREIIER

The figure above shows the object implementation using the thread pool
policy. As the name implies, there is an available pool of worker threads in
this policy.

VisiBroker for Java Developer’'s Guide 133

Thread pool policy

Figure 9 Client application #1 sends a request

Worg
thread 3§ :

In the above figure, Client application #1 establishes a connection to the
Object Implementation and a thread is created to handle requests. In the
thread pool, there is one connection per client and one thread per
connection. When a request comes in, a worker thread receives the
request; that worker thread is no longer in the pool.

A worker thread is removed from the thread pool and is always listening for
requests. When a request comes in, that worker thread reads in the request
and dispatches the request to the appropriate object implementation. Prior
to dispatching the request, the worker thread wakes up one other worker
thread which then listens for the next request.

Figure 10 Client application #2 sends a request

5

Worker thmad 2
listening for the
et mEquest

from
Application 1%
Clisrt
application #1% mequests

= Worker
thread 14

Worker
— @ thad 26

Worker tead 4
listaning for the
mext mEquest

Chiject
Imnplernertationg

Clisrt
application #2%

fronm
Application 25

Thead pook

134 VvisiBroker for Java Developer’'s Guide

Thread-per-session policy

As the above figure shows, when Client application #2 establishes its own
connection and sends a request, a second worker thread is created. Worker
thread #3 is now listening for incoming requests.

Figure 11 Client application #1 sends a second request

Chiject
Imnplernertationg

Clisrt
application #1%

ltenbgs @

EquEsty

Clisrt
application #2%

Thead pook;

The above figure shows that when a second request comes in from Client
application #1, it uses worker thread #4. Worker thread #5 is spawned to
listen for new requests. If more requests came in from Client application
#1, more threads would be assigned to handle them, each spawned after
the listening thread receives a request. As worker threads complete their
tasks, they are returned to the pool and become available to handle
requests from any client.

Thread-per-session policy

With the thread-per-session (TSession) policy, threading is driven by
connections between the client and server processes. When your server
selects the thread-per-session policy, a new thread is allocated each time a
new client connects to a server. A thread is assigned to handle all the
requests received from a particular client. Because of this, thread-per-
session is also referred to as thread-per-connection. When the client
disconnects from the server, the thread is destroyed. You may limit the
maximum number of threads that can be allocated for client connections by
setting the
vbroker.se.iiop_ts.scm.iiop_ts.manager.connectionMax property.

VisiBroker for Java Developer’'s Guide 135

Connection management

Figure 12 Object implementation using the thread-per-session policy

Chiect
Implernertations

Cliarit
applicatio #%

Cliant
application #2£

The above figure shows the use of the thread-per-session policy. The Client
application #1 establishes a connection with the object implementation. A
separate connection exists between Client application #2 and the object
implementation. When a request comes in to the object implementation
from Client application #1, a worker thread handles the request. When a
request from Client application #2 comes in, a different worker thread is
assigned to handle this request.

Figure 13 Second request comes in from the same client

Object
Irplerenatiq

onnecion - —

—
— = 7 mquest1

Himt
applic3ion #1
pqusEt 2

connedion _ - —
e

Glisnt
applcation #2

In the above figure, a second request has come in to the object
implementation from Client application #1. The same thread that handles
request 1 will handle request 2. The thread blocks request 2 until it
completes request 1. (With thread-per-session, requests from the same
Client are not handled in parallel.) When request 1 has completed, the
thread can handle request 2 from Client application #1. Multiple requests
may come in from Client application #1. They are handled in the order that
they come in; no additional threads are assigned to Client application #1.

Connection management

Overall, VisiBroker's connection management minimizes the number of
client connections to the server. In other words there is only one connection
per server process which is shared. All requests from a single client
application are multiplexed over the same connection, even if they originate
from different threads. Additionally, released client connections are recycled
for subsequent reconnects to the same server, eliminating the need for
clients to incur the overhead of new connections to the server.

136 VisiBroker for Java Developer’'s Guide

PeerConnectionCurrent Interface

In the following scenario, a client application is bound to two objects in the
server process. Each bind() shares a common connection to the server
process, even though the bind() is for a different object in the server
process.

Figure 14 Binding to two objects in the same server process

Bnd o Ohsct & m
0oy [etiscta
Hndf o OHect B —
Cient application — re [oot
Boh request are s viced
throuch a shgle connec fon Sorvel pocess

The following figure shows the connections for a client using multiple
threads that has several threads bound to an object on the server.

Figure 15 Binding to an object in a server process

A

Y bindf) 10 0bjecta iDOth:t.ﬁ.
VA bindijtoObiesth ——
V- bindijoobiecta]

Semerprocess

Fequests from all hes thieads an
Clentapplication senicsd thiough a shals connection

As the above figure shows, all invocations from all threads are serviced by
the same connection. For that scenario, the most efficient multi threading
model to use is the thread pool model. If the thread-per-session model is
used in this scenario, only one thread on the server will be allocated to
service all requests from all threads in the client application, which could
easily result in poor performance.

The maximum number of connections to a server, or from a client, can be
configured. Inactive connections will be recycled when the maximum is
reached, ensuring resource conservation.

PeerConnectionCurrent Interface

On the server side, a client's host and the port details are obtainable by the
use of a PeerConnectionCurrent interface. The
PeerConnectionCurrent interface is defined as follows:

public interface PeerConnectionCurrent {

public abstract java.lang.String getPeerHost();

public abstract int getPeerPort();

}:
The reference to PeerConnectionCurrent interface is obtained by a call to
org.omg.CORBA.ORB.resolve_initial_references("'PeerConnection
Current'). If the client and server are colocated, a call to getPeerHost
will return the localhost address and getPeerPort will return "0" (zero).

The host address is returned as a dotted IP address string. The precondition
for the use of PeerConnectionCurrent is that it can only be used from
inside a request's invocation context. Outside the invocation context, a call
to getPeerHost and getPeerPort raises a BAD_INV_ORDER exception.

PeerConnectionCurrent can be called from inside in the following ways:
1 Method implementations

2 All ServerRequestinterceptor intercept points except for
postinvoke postmarshal

VisiBroker for Java Developer’'s Guide 137

ServerEngines

However, if the ServantLocator is being used, then the
PeerConnectionCurrent cannot be called from within the
ServerRequestinterceptor preinvoke or the
ServerRequestinterceptor receive_request_service contexts and
the ServantLocator preinvoke methods. Otherwise, this will result with a
BAD_INV_ORDER exception.

The following code illustrates the use of the PeerConnectionCurrent:

import com.inprise.vbroker._orb._PeerConnectionCurrent;
public class SomeServantlmpl extends SomeServantPOA {
public int method(String name) {

// assuming "orb"™ is already initialized

try {

PeerConnectionCurrent conninfo=

(PeerConnectionCurrent)
orb.resolve_initial_references("'PeerConnectionCurrent™);
System.out.printIn("Client"s
host="+conninfo.getPeerHost());
System.out.printin('Client"s
port="+conninfo.getPeerPort());

catch (Exception e) {
e.printStackTrace();

ServerEngines

Thread and connection management on the server side is performed by
ServerEngines, which can consist of one or more Server Connection
Managers (SCMs). An SCM is a collection of properties of the manager,
listener, and dispatcher.

Defining a ServerEngine consists of specifying a set of properties in a
properties file. For example, if on UNIX the property file called
myprops.properties is in home directory, the command line is

prompt> vbj -DORBpropStorage=~/myprops.properties myServer

ServerEngine properties

vbroker._.se.<srvr_eng_hame>.scms=<srvr_connection_mngr_name
1>,<srvr_connection_mngr_name2>

The set of Server Connection Managers associated with a ServerEngine is
defined by this property. The name specified in the above property as the
<svr_eng_name> is the name of the ServerEngine. The SCMs listed here
will be the list of SCMs for the associated server engine. SCMs cannot be
shared between ServerEngines. However, ServerEngines can be shared by
multiple POAs.

The other properties are
vbroker.se.<srvr_eng hame>.host

The host property is the IP address for the server engine to listen for
messages.

138 VisiBroker for Java Developer’'s Guide

Setting dispatch policies and properties

vbroker.se.<srvr_eng_name>.proxyHost

The proxyHost property specifies the proxy IP address to send to the client
in the case where the server does not want to publish its real hostname.

Setting dispatch policies and properties

Each POA in a multi-threaded object server can choose between two
dispatch models: thread-per-session or thread pool. You choose a dispatch
policy by setting the dispatcher.type property of the ServerEngine.

vbroker.se.<srvr_eng_ hame>.scm.<sSrvr_connection_mngr_hame>
-dispatcher .type=

ThreadPool
vbroker.se.<srvr_eng_hame>.scm.<srvr_connection_mngr_name>
-dispatcher ._type=

ThreadSession

For more information about these properties see , “Using POAs” and the
VisiBroker Programmer's Reference.

Thread pool dispatch policy

ThreadPool (thread pooling) is the default dispatch policy when you create
a POA without specifying the ServerEnginePolicy.

For ThreadPool, you can set the following properties:
» Vvbroker.se.default.dispatcher.tp.threadMax

This property sets a TPool server engine's maximum number of worker
threads in the thread pool. The property can be set statically on server
startup or dynamically reconfigured using the property API. For instance,
the start up property

vbroker.se.default.dispatcher.tp.threadMax=32
or
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMax=32

sets the initial maximum worker thread limitation to 32 for the default
TPool server engine. The default value of this property is unlimited (0).
If there are no threads available in the pool and the maximum number of
threads have already been created, the request is blocked until a thread
currently in use has been released back into the pool.

VisiBroker for Java Developer’'s Guide 139

Setting dispatch policies and properties

» Vvbroker.se.default.dispatcher.tp.threadMin

This property sets a TPool server engine's minimum number of worker
threads in the thread pool. The property can be set statically on server
startup or dynamically reconfigured using the property API. For instance,
the start up property

vbroker._se.default.dispatcher.tp.threadMin=8
or
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMin=8

sets the initial worker thread minimum number to 8 for the default TPool
server engine. The default value of this property is O (no worker threads).

« vbroker.se.default._dispatcher.tp.threadMaxlidle

This property sets a TPool server engine's idle thread check interval. The
property can be set statically on server startup or dynamically
reconfigured using the property API. For instance, the start up property

vbroker.se.default.dispatcher.tp.threadMaxldle=120
or

vbroker.se.ilop_tp.scm.iiop_tp.dispatcher.threadMaxldle=
120

sets the initial idle worker thread check interval to 120 seconds for the
default TPool server engine. The default value of this property is 300
seconds. With this setting, the server engine will check the idle state of
each worker thread every 120 seconds. If a worker thread has been idle
across two consecutive checks, it will be recycled (terminated) at the
second check. Therefore, the actual idle thread garbage collection time is
between 120 to 240 seconds under the above setting, instead of exactly
120 seconds.

» Vvbroker.se.default.dispatcher._tp.coolingTime

The ThreadPool dispatcher allows a “cooling time” to be set. A thread is
said to be “hot” when the GIOP connection being served is potentially
readable, either upon creation of the connection or upon the arrival of a
request. After the cooling time (in seconds), the thread can be returned
to the thread pool. The property can be set statically on server startup or
dynamically reconfigured using the property API. For instance, the
startup property

vbroker.se.default.dispatcher._tp.coolingTime=6
or
vbroker.se.ilop_tp.scm.ilop_tp.dispatcher._coolingTime=6

sets the initial cooling time to 6 seconds for the default engine (or the
11OP TPool server engine).

This property is applicable to VisiBroker for Java under certain conditions.
See “High scalability configuration for VisiBroker for Java (using Java NIO)” for
details. The default value of this property in VisiBroker for Java is O
(zero), which implies that a GIOP connection being serviced ceases to be
“hot” unless a new request is immediately available for servicing. It is
important that the value of coolingTime is not altered unless tests have
indicated that a non-default value is beneficial to the performance of the
application.

140 VisiBroker for Java Developer’'s Guide

Setting connection management properties

Note

We recommend that you use the vbroker.se.default.xxx.tp.xxx
property when vbroker.se.default is set to i10op_tp. When using with
ThreadSession, we recommend that you use the
vbroker.se.iiop_ts.scm.iiop_ts.XxXX property.

Thread-per-session dispatch policy

When using the ThreadSession as the dispatcher type, you must set the
se.default property to iiop_ts.

vbroker.se.default=iiop_ts

Note

In thread-per-session, there are no threadMin, threadMax,
threadMaxldle, and coolingTime dispatcher properties. Only the
Connection and Manager properties are valid properties for ThreadSession.

Coding considerations

All code within a server that implements the VisiBroker ORB object must be
thread-safe. You must take special care when accessing a system-wide
resource within an object implementation. For example, many database
access methods are not thread-safe. Before your object implementation
attempts to access such a resource, it must first lock access to the resource
using a synchronized block.

If serialized access to an object is required, you need to create the POA on
which this object is activated with the SINGLE_THREAD_MODEL value for the
ThreadPolicy.

Setting connection management properties

The following properties are used to configure connection management.
Properties whose names start with vbroker.se are server-side properties.
The client side properties have their names starting with vbroker . ce.

Note

The command line options for VisiBroker 3.x backward-compatibility are
less obvious in terms of whether they are client-side or server-side.
However, the connection and thread management options that start with
the -ORB prefix set the client-side options whereas the options with the -OA
prefix are used for the server-side options. There are no common properties
which are used for both client-side and server-side thread and connection
management.

The distinction between client and server vanishes if callback or
bidirectional GIOP is used.

« vbroker.se.default.socket.manager.connectionMax

This property sets the maximum allowable client connections to a server
engine. The property can be set statically on server startup or
dynamically reconfigured using the property API. For instance, the start

up property
-Dvbroker.se.default.socket.manager.connectionMax=128

VisiBroker for Java Developer’'s Guide 141

Setting connection management properties

or

-Dvbroker.se.iiop_tp.scm.iiop_tp.-manager.connectionMax
=128

sets the initial maximum connection limitation on this server engine to
128. The default value of this property is unlimited (O [zero]). When the
server engine reaches this limitation, before accepting a new client
connection, the server engine needs to reuse an idle connection. This is
called connection swapping. When a new connection arrives at the
server, it will try to detach the oldest unused connection. If all the
connections are busy, the new connection will be dropped. The client may
retry again until some timeout expires.

« vbroker.se.default.socket.manager.connectionMaxldle

This property sets the maximum length of time an idle connection will
remain open on a server engine. The property can be set statically on
server startup or dynamically reconfigured using property API. For
instance, the start up property

-Dvbroker.se.default.socket.manager.connectionMaxldle
=300

or

-Dvbroker.se._iiop_tp.scm.iiop_tp.manager .
connectionMaxldle=300

sets the initial idle connection maximum lifetime to 300 seconds. The
default value of this property is O (unlimited). When a client connection
has been idle longer than this value, it becomes a candidate for garbage
collection.

« vbroker.ce.iliop.ccm.connectionMax

Specifies the maximum number of the total connections within a client.
The default value of zero means that the client does not try to close any
of the old active or cached connections. If a new client connection will
result in exceeding the limit set by this property, VisiBroker for Java will
try to release one of the cached connections. If there are no cached
connections, it will try to close the oldest idle connection. If both of them
fail, the CORBA: :NO_RESOURCE exception will result.

Valid values for applicable properties

The following properties have a fixed set or range of valid values:

vbroker.ce.iiop.ccm.type=Pool
Currently, Pool is the only supported type.

In the following properties, Xxx is the server engine name and yyy is the
server connection manager name:

vbroker.se.xxx.scm.yyy.manager .type=Socket
Socket_nio is the only other permissable value for this property.
vbroker.se._xxx.scm.yyy. listener.type=110P

You can also use the value SSL for security.
vbroker.se.xxx.scm.yyy.disptacher.type=ThreadPool

The other possible values are ThreadSession and MainThread.
vbroker.se._xxx.scm.iiop_yyy.dispatcher.coolingTime

142 VisiBroker for Java Developer's Guide

Setting connection management properties

The default value is 0 (zero) , and the maximum value is 10, so a value
greater than 10 will be clamped to 10. In VisiBroker for Java, this
property is applicable only if the Server Connection Manager has a
manager type of Socket_nio. See “High scalability configuration for VisiBroker
for Java (using Java NIO)” for details.

Effects of property changes

The effect of a change in a property value depends on the actions
associated with the properties. Most of the actions are directly or indirectly
related to the utilization of system resources. The availability and
restrictions of the system resources to the CORBA application vary
depending on the system and the nature of the application.

For instance, decreasing the garbage collector timer may increase the
system activities, as the garbage collector will run more frequently. On the
other hand, increasing its value means the idle threads will remain in
system unclaimed for longer periods of time.

Dynamically alterable properties

The following properties can be changed dynamically and the effect will be
immediate unless stated otherwise:

vbroker.ce.iiop.ccm.connectionMax=0
vbroker.ce.iiop.ccm.connectionMaxldle=360
vbroker.ce.iiop.connection.tcpNoDelay=false
vbroker.se.ilop_tp.scm.iiop_tp.-manager .connectionMax=0
vbroker.se.ilop_tp.scm.iiop_tp.manager.connectionMaxldle=0
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMin=0
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMax=100

The new dispatcher threadMax properties will be reflected after the next
garbage collector run.

vbroker._se_iiop_tp.scm.iiop_tp.dispatcher.threadMaxldle=300
vbroker._se._iiop_tp.scm.iiop_tp.dispatcher.coolingTime=3

Determining whether property value
changes take effect

For this purpose, the server manager needs to be enabled, using the
property vbroker.orb.enableServerManager=true, and the properties
can be obtained through the server manager query either through the
Console or through a command-line utility.

Impact of changing property values

It is very difficult to determine the impact of changing the value of a
property to something other than the default. For thread and connection
limits, the available system resources vary depending on the machine
configuration and the number of other processes running. The setting of
properties allows performance tuning for a given system.

VisiBroker for Java Developer’'s Guide 143

High scalability configuration for VisiBroker for Java (using Java NIO)

High scalability configuration for VisiBroker
for Java (using Java NIO)

The Java NIO package, available in J2SE 1.4, allows servers to handle
multiple connections efficiently, without having to dedicate a thread per
connection. This allows servers to service a large number of client
connections with fewer threads, translating to higher scalability. VisiBroker
for Java servers can be configured to harness Java NIO technology. Servers
using the ThreadPool policy can use Java NIO by setting the manager type
to Socket_nio instead of Socket. For example,

vbroker.se.iiop_tp.scm.iiop_tp.manager.type=Socket nio

This feature should be used in combination with the threadMax property,
which is used to limit the number of threads in the thread pool that are
available for dispatching requests (i.e., processing invocations). When the
manager type is Socket_nio, the number of threads in the thread pool will
not increase (beyond the number specified as threadMax) proportionate to
the number of connections being serviced. This is possible because here the
necessity to have a thread per connection does not exist.

Please note that the thread per connection model (which is the default for
the VisiBroker for Java thread pool) is expected to outperform the NIO
based model for servers where the number of connections is relatively small
(i.e., not of the order of hundreds of connections). It is advisable to run
tests to decide on the appropriate model given the typical load conditions
for an application.

Servers using J2SE 1.4 or above will be able to use this feature. Currently,
clients based on VisiBroker for Java do not benefit from the ORB's usage of
Java NIO.

The coolingTime property is effective in VisiBroker for Java when NIO based
dispatch is enabled. See “Thread pool dispatch policy” for details.

Note that if the property
vbroker.se.iiop_tp.scm.iiop_tp.listener.useSelectorPool is set
to true, then each IIOP NIO Listener in the server will be constrained to
consume a maximum of
vbroker.se.ilop_tp.scm.iiop_tp.listener.selectorMax instances
of java.nio.channels._Selector at any given time. If that property is not
set, or is set to False, the number of Selectors in use will continue to be
unbounded and to be some function of the number of concurrent
connections for non-SSL NIO connections.

Garbage collection

The VisiBroker for Java ORB performs automatic garbage collection of
various resources other than the memory. The garbage collection of the
memory is performed by the Java Virtual machine. Various properties are
provided to control the garbage collection period. In addition, resources like
threads and connections define timeout properties that control the
collection of these resources.

How ORB garbage collection works

The ORB garbage collector thread is a normal priority thread. After the
expiration of timeout period (specified by the property
vbroker._.orb._gcTimeout), it wakes up and collects all the resources that
are idle and no longer in use. Classes interested in getting collected register

144 visiBroker for Java Developer's Guide

themselves with the garbage collector. Such classes are called collectables.
Prominent examples of collectables are threads and connections. Other
examples include timeout on various caches like GateKeeper's cache, for
example. Most of the collectables null out or properly release the resources
(such as closing the connection or terminating a thread's run method) held
by them when they are collected. These resources are later reclaimed by
the Java garbage collector.

Note

The ORB garbage collector is an internal service and is not exposed to the
user.

Properties related to ORB garbage collection

The main property that controls the garbage collection period is
vbroker.orb.gcTimeout. The timeout value is in seconds and the default value is
30 seconds.

Threads and connections define properties for idle timeout. For example,
the thread pool dispatcher defines the following property:

vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxldle

The value is in seconds and default value is 300 seconds after which the
thread is removed from the thread pool. Similarly, the default Server
Connection Manager (iiop_tp) defines the following idle timeout property
for connections.

vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxldle

The value is in seconds and default value is O(zero) which means a
connection never gets closed no matter how long it remains idle. However,
if the connection gets dropped, the ORB removes all the references to it and
its resources are later collected by Java garbage collector. The ORB garbage
collector will only collect connections whose connectionMaxldle property
is set to a non-zero value.

The various timeout properties and the vbroker.orb.gcTimeout property
have a subtle relationship. For example, suppose following properties are
specified:

vbroker.orb.gcTimeout=10
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxldle=5
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMaxldle=5

Here the garbage collection timeout period is set to 10 seconds whereas
thread and connection timeouts are 5 seconds. The figure below illustrates
how these properties interact. Here we have shown a thread, T1, and a
connection, C1, that have gone idle and are then collected.

Note

Although the ORB garbage collector is shown here as running exactly after
ten seconds, in practice this may not be true depending on when the JVM
schedules the garbage collector (GC) thread.

Figure 16 Collection of resources by ORB GC

Last gathage T1iC 1 idle time TLC] timedaat Garhage collector
collection starts and eligible fior nms T1AC] ccllected
\ l callection
| | | | | | | | | | |
| | 1 1 1 1 1 1 1 1 |
a 1 2 3 4 3 & 7 g 9 10 secs

VisiBroker for Java Developer's Guide 145

Even though T1 and C1 are eligible for collection, they are collected only
when the ORB garbage collector runs. Until then they remain in the timed-
out state.

146 VisiBroker for Java Developer's Guide

Using the tie mechanism

This section describes how the tie mechanism may be used to integrate
existing Java code into a distributed object system. This section will enable
you to create a delegation implementation or to provide implementation
inheritance.

How does the tie mechanism work?

Object implementation classes normally inherit from a servant class
generated by the idl2java compiler. The servant class, in turn, inherits
from org.omg.PortableServer._Servant. When it is not convenient or
possible to alter existing classes to inherit from the VisiBroker servant class,
the tie mechanism offers an attractive alternative.

The tie mechanism provides object servers with a delegator implementation
class that inherits from org.omg.PortableServer.Servant . The
delegator implementation does not provide any semantics of its own. The
delegator implementation simply delegates every request it receives to the
real implementation class, which can be implemented separately. The real
implementation class is not required to inherit from
org.omg.PortableServer::._Servant .

With using the tie mechanism, two additional files are generated from the
IDL compiler:

« <interface_name>POATIie defers implementation of all IDL defined
methods to a delegate. The delegate implements the interface
<interface_name>0Operations. Legacy implementations can be trivially
extended to implement the operations interface and in turn delegate to
the real implementation.

- <interface_name>Operations defines all of the methods that must be
implemented by the object implementation. This interface acts as the
delegate object for the associated <interface_name>POATie class when
the tie mechanism is used.

Example program

Location of an example program using the
tie mechanism

A version of the Bank example using the tie mechanism can be found in:
<install_dir>\vbroker\examples\basic\bank_tie

VisiBroker for Java Developer’'s Guide 147

Example program

Changes to the server class

The following code sample shows the modifications to the Server class.
Note the extra step of creating an instance of
AccountManagerManagerPOATie.

import org.omg.PortableServer.*;

public class Server {
public static void main(String[] args) {

try {
// Initialize the ORB.

org.omg.CORBA.ORB orb =

org.omg.CORBA.ORB. init(args,null);

// get a reference to the root POA

POA rootPoa = POAHelper .narrow(
orb.resolve_initial_references("'RootPOA™));

// Create policies for our persistent POA

org.omg.CORBA.Policy[] policies = {

rootPoa.create_lifespan_policy(LifespanPolicyValue.PERSIST

ENT)

}:

// Create myPOA with the right policies

POA myPOA = rootPoa.create POA(''bank_agent poa",
rootPoa.the POAManager(), policies);

// Create the tie which delegates to an instance of

AccountManagerImpl

Bank.AccountManagerPOATiIe tie =
new Bank.AccountManagerPOATie(new

AccountManagerImpl(rootPoa));

// Decide on the ID for the servant

byte[] managerld = "BankManager' .getBytes();
// Activate the servant with the ID on myPOA
myPOA_activate object with_id(managerld, tie);
// Activate the POA manager

rootPoa.the POAManager() .activate();
System.out.printIn(Server is ready."');

// Wait for incoming requests

orb.run(Q);

catch (Exception e) {

e.printStackTrace();

148 VisiBroker for Java Developer's Guide

Example program

Changes to the AccountManager

The changes made to the AccountManager class (in comparison with the
Bank_agent example) include:

« AccountManagerImpl no longer extends Bank.AccountManagerPOA .

« When a new Account is to be created, an AccountPOATie is also created
and initialized.

import org.omg.PortableServer.*;
import java.util_*;

public class AccountManagerlImpl implements
Bank.AccountManagerOperations {
public AccountManagerImpl (POA poa) {
_accountPOA = poa;
}
public synchronized Bank.Account open(String name) {
// Lookup the account in the account dictionary.
Bank.Account account = (Bank.Account) _accounts.get(name);
// 1T there was no account in the dictionary, create one.
if (account == null) {
// Make up the account"s balance, between 0 and 1000 dollars.
float balance = Math.abs(_random.nextint()) % 100000 / 100f;
// Create an account tie which delegate to an instance of Accountimpl
Bank.AccountPOATie tie =
new Bank.AccountPOATie(new Accountlimpl(balance));
try {
// Activate it on the default POA which is root POA for
// this servant
account =
Bank.AccountHelper.narrow(_accountPOA.servant_to_reference(tie));

catch (Exception e) {
e.printStackTrace();

// Print out the new account.
System.out.printIn("Created ™ + name +
""s account: " + account);

// Save the account in the account dictionary.
_accounts.put(name, account);

by

// Return the account.

return account;

}

private Dictionary _accounts = new Hashtable();

private Random _random = new Random();
private POA _accountPOA = null;

VisiBroker for Java Developer’'s Guide 149

Example program

Changes to the Account class

The changes made to the Account class (in comparison with the Bank
example) are that it no longer extends Bank.AccountPOA.

// Server._java
public class Accountlmpl implements Bank.AccountOperations

{
public Accountimpl(float balance) {

_balance = balance;

}

public float balance() {
return _balance;

¥

private float _balance;

}

Building the tie example

”

The instructions described in “Developing an example application with VisiBroker
are also valid for building the tie example.

150 VisiBroker for Java Developer's Guide

Client basics

This section describes how client programs access and use distributed
objects.

Initializing the VisiBroker ORB

Binding to

The Object Request Broker (ORB) provides a communication link between
the client and the server. When a client makes a request, the VisiBroker
ORB locates the object implementation, activates the object if necessary,
delivers the request to the object, and returns the response to the client.
The client is unaware whether the object is on the same machine or across
a network.

You are advised to create only one single instance of the VisiBroker ORB per
process as the ORB can use a significant amount of system resources.

Though much of the work done by the VisiBroker ORB is transparent to you,
your client program must explicitly initialize the VisiBroker ORB. VisiBroker
ORB options, described in “Programmer tools for Java”, can be specified as
command-line arguments. To ensure these options take effect you will need
to pass the supplied args argument to ORB. init. The code samples below
illustrate the VisiBroker ORB initialization.

public class Client {
public static void main (String[] args) {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,
null);

}

objects

A client program uses a remote object by obtaining a reference to the
object. Object references are usually obtained using the
<interface>Helper's bind() method. The VisiBroker ORB hides most of
the details involved with obtaining the object reference, such as locating the
server that implements the object and establishing a connection to that
server.

Action performed during the bind process

When the server process starts, it performs ORB. init() and announces
itself to Smart Agents on the network.

When your client program invokes the bind() method, the VisiBroker ORB
performs several functions on behalf of your program.

« The VisiBroker ORB contacts the Smart Agent to locate an object
implementation that offers the requested interface. If an object name is
specified when bind() is invoked, that name is used to further qualify
the directory service search. The Object Activation Daemon (OAD),
described in “Using the Object Activation Daemon (OAD)”, may be involved in
this process if the server object has been registered with the OAD.

* When an object implementation is located, the VisiBroker ORB attempts
to establish a connection between the object implementation that was
located and your client program.

VisiBroker for Java Developer's Guide 151

Invoking operations on an object

« Once the connection is successfully established, the VisiBroker ORB will
create a proxy object and return a reference to that object. The client will
invoke methods on the proxy object which will, in turn, interact with the
server object.

Figure 17 Client interaction with the Smart Agent

Clent 2. Onoe tie chisct refarsnce is Sonor
i poavwd | heclientcan issue

pquests © e appropiate
sorer chjpct.

1. Clienticaes Smarthgent.
‘When found, he cientobains

an object reference by cdling
bind(]

Note

Your client program will never invoke a constructor for the server class.
Instead, an object reference is obtained by invoking the static bind()
method.

Bank.AccountManager manager =
Bank.AccountManagerHelper.bind(orb,
""/bank_agent poa",

"BankManager' .getBytes());

Invoking operations on an object

Your client program uses an object reference to invoke an operation on an
object or to reference data contained by the object. “Manipulating object
references” describes the variety of ways that object references can be
manipulated.

The following example shows how to invoke an operation using an object
reference:

// Invoke the balance operation.
System.out.printIn(*The balance in Accountl: $" +
accountl._balance());

Manipulating object references

The bind() method returns a reference to a CORBA object to your client
program. Your client program can use the object reference to invoke
operations on the object that have been defined in the object's IDL interface
specification. In addition, there are methods that all VisiBroker ORB objects
inherit from the class org.omg.CORBA.Object that you can use to
manipulate the object.

152 VisiBroker for Java Developer’'s Guide

Manipulating object references

Converting a reference to a string

VisiBroker provides a VisiBroker ORB class with methods that allow you to
convert an object reference to a string or convert a string back into an
object reference. The CORBA specification refers to this process as
stringification.

Method Description
object _to_string Converts an object reference to a string.
string_to_object Converts a string to an object reference.

A client program can use the object to_string method to convert an
object reference to a string and pass it to another client program. The
second client may then de-stringify the object reference, using the
string_to_object method, and use the object reference without having
to explicitly bind to the object.

Note

Locally-scoped object references like the VisiBroker ORB or the POA cannot
be stringified. If an attempt is made to do so, a MARSHAL exception is raised
with the minor code 4.

Obtaining object and interface names

The table below shows the methods provided by the Object class that you
can use to obtain the interface and object names as well as the repository id
associated with an object reference. The interface repository is discussed in
“Using Interface Repositories”.

Note

When you invoke bind() without specifying an object name, invoking the
_object_name() method with the resulting object reference returns null .

Method Description
_object_name Returns this object's name.
_repository_id Returns the repository's type identifier.

Determining the type of an object reference

You can check whether an object reference is of a particular type by using
the _is_a() method. You must first obtain the repository id of the type you
wish to check using the _repository_id() method. This method returns
true if the object is either an instance of the type represented by
_repository_id() or if it is a sub-type. The member function returns
false if the object is not of the type specified. Note that this may require
remote invocation to determine the type.

You cannot use the instanceof keyword to determine the runtime type.

You can use _is_equivalent() to check if two object references refer to
the same object implementation. This method returns true if the object
references are equivalent. It returns false if the object references are
distinct, but it does not necessarily indicate that the object references are

VisiBroker for Java Developer’'s Guide 153

Manipulating object references

two distinct objects. This is a lightweight method and does not involve
actual communication with the server object.

Method Description
_is a Determines if an object implements a specified interface.
_is_equivalent Returns true if two objects refer to the same interface

implementation.

Determining the location and state of bound
objects

Given a valid object reference, your client program can use _is_bound() to
determine if the object bound. The method returns true if the object is
bound and returns false if the object is not bound.

The _is_local () method returns true if the client program and the object
implementation reside within the same process or address space where the
method is invoked.

The _is_remote() method returns true if the client program and the
object implementation reside in different processes, which may or may not
be located on the same host.

Method Description

_is_bound Determines if a connection is currently active for this object.

_is_local Determines if this object is implemented in the local address
space.

_is_remote Determines if this object's implementation does not reside in

the local address space.

Narrowing object references

The process of converting an object reference’s type from a general super-
type to a more specific sub-type is called narrowing.

You cannot use the Java casting facilities for narrowing.

VisiBroker maintains a type graph for each object interface so that
narrowing can be accomplished by using the object's narrow() method.

The IDL exception CORBA: :BAD_PARAM is thrown if the narrow fails,
because the object reference does not support the requested type.

public abstract class AccountManagerHelper {
bﬁblic static Bank.AccountManager
narrow(org.omg.CORBA.Object object) {

}

}

Widening object references

Converting an object reference's type to a super-type is called widening.
The code sample below shows an example of widening an Account pointer
to an Object pointer. The pointer acct can be cast as an Object pointer
because the Account class inherits from the Object class.

Account account;

154 VvisiBroker for Java Developer’'s Guide

Using Quality of Service (QoS)

org.omg.CORBA.Object obj;
account = AccountHelper._bind(Q);
obj = (org.omg.CORBA.Object) account;

Using Quality of Service (QoS)

Quality of Service (Qo0S) uses policies to define and manage the connection
between your client applications and the servers to which they connect.

Understanding Quality of Service (QoS)

QoS policy management is performed through operations accessible in the
following contexts:

« The VisiBroker ORB level policies are handled by a locality constrained
Pol icyManager, through which you can set Policies and view the current
Policy overrides. Policies set at the VisiBroker ORB level override
system defaults.

« Thread level policies are set through PolicyCurrent, which contains
operations for viewing and setting Policy overrides at the thread level.
Policies set at the thread level override system defaults and values set at
the VisiBroker ORB level.

« Object level policies can be applied by accessing the base Object
interface's quality of service operations. Policies applied at the Object
level override system defaults and values set in at the VisiBroker ORB or
thread level.

Note

The QoS policies installed at the ORB level will only affect those objects on
which no method is called before installing the policies, for example a
non_existent call internally makes a call on a server object. If ORB level
QoS policies are installed after the non_existent call, then the policies do
not apply.

Policy overrides and effective policies

The effective policy is the policy that would be applied to a request after all
applicable policy overrides have been applied. The effective policy is
determined by comparing the Policy as specified by the IOR with the
effective override. The effective Policy is the intersection of the values
allowed by the effective override and the IOR-specified Policy. If the
intersection is empty a org.omg.CORBA. INV_POLICY exception is raised.

QoS interfaces

The following interfaces are used to get and set QoS policies.

org.omg.CORBA.Object

Contains the following methods used to get the effective policy and get or
set the policy override.

« _get_policy returns the effective policy for an object reference.

- _set _policy_override returns a new object reference with the
requested list of Policy overrides at the object level.

VisiBroker for Java Developer’'s Guide 155

Using Quality of Service (Qo0S)

com.inprise.vbroker.CORBA.Object

In order to use this interface, you must cast org.omg.CORBA_Object to
com. inprise.vbroker.CORBA.Object. Because this interface is derived
from org.omg.CORBA.Object, the following methods are available in
addition to the ones defined in org.omg.CORBA.Object.

« get _client_policy returns the effective Policy for the object
reference without doing the intersection with the server-side policies. The
effective override is obtained by checking the specified overrides in first
the object level, then at the thread level, and finally at the VisiBroker
ORB level. If no overrides are specified for the requested PolicyType
the system default value for PolicyType is used.

« get policy overrides returns a list of Policy overrides of the
specified policy types set at the object level. If the specified sequence is
empty, all overrides at the object level will be returned. If no
PolicyTypes are overridden at the object level, an empty sequence is
returned.

- _validate_connection returns a boolean value based on whether the
current effective policies for the object will allow an invocation to be
made. If the object reference is not bound, a binding will occur. If the
object reference is already bound, but current policy overrides have
changed, or the binding is no longer valid, a rebind will be attempted,
regardless of the setting of the RebindPolicy overrides. A false return
value occurs if the current effective policies would raise an INV_POLICY
exception. If the current effective policies are incompatible, a sequence
of type PolicyList is returned listing the incompatible policies.

org.omg.CORBA.PolicyManager

The PolicyManager is an interface that provides methods for getting and
setting Policy overrides for the VisiBroker ORB level.

« get _policy_overrides returns a PolicyList sequence of all the
overridden policies for the requested PolicyTypes. If the specified
sequence is empty, all Policy overrides at the current context level will
be returned. If none of the requested Pol icyTypes are overridden at the
target Pol icyManager, an empty sequence is returned.

- set_policy_overrides modifies the current set of overrides with the
requested list of Policy overrides. The first input parameter, policies,
is a sequence of references to Policy objects. The second parameter,
set_add, of type org.omg.CORBA.SetOverrideType indicates whether
these policies should be added onto any other overrides that already
exist in the PolicyManager using ADD_OVERRIDE, or they should be
added to a PolicyManager that doesn't contain any overrides using
SET_OVERRIDES. Calling set_policy_overrides with an empty
sequence of policies and a SET_OVERRIDES mode removes all overrides
from a PolicyManager. Should you attempt to override policies that do
not apply to your client, org.omg.CORBA_NO_PERMISSION will be raised.
If the request would cause the specified Pol icyManager to be in an
inconsistent state, no policies are changed or added, and an
InvalidPolicies exception is raised.

org.omg.CORBA.PolicyCurrent

The PolicyCurrent interface derives from Pol icyManager without adding
new methods. It provides access to the policies overridden at the thread
level. A reference to a thread's PolicyCurrent is obtained by invoking
org.omg.CORBA.ORB.resolve_initial_references and specifying an
identifier of PolicyCurrent.

156 VisiBroker for Java Developer’'s Guide

Using Quality of Service (QoS)

com.inprise.vbroker.QoSExt.DeferBindPolicy

The DeferBindPolicy determines if the VisiBroker ORB will attempt to
contact the remote object when it is first created, or to delay this contact
until the first invocation is made. The values of DeferBindPolicy are true
and false. If DeferBindPolicy is set to true all binds will be deferred
until the first invocation of a binding instance. The default value is False.

If you create a client object, and DeferBindPolicy is set to true, you may
delay the server startup until the first invocation. This option existed before
as an option to the Bind method on the generated helper classes.

The code sample below illustrates an example for creating a DeferBindPolicy
and setting the policy on the VisiBroker ORB.

// Initialize the flag and the references
boolean deferMode = true;

Any policyValue= orb.create_any();
policyValue.insert_boolean(deferMode);

Policy policies =
orb.create_policy(DEFER_BIND_POLICY_TYPE.value,
policyVvalue);

// Get a reference to the thread manager

PolicyManager orbManager =
PolicyManagerHelper.narrow(
orb.resolve_initial_references("'ORBPolicyManager™));

// Set the policy on the ORB level
orbManager.set_policy_overrides(new Policy[] {policies},
SetOverrideType.SET_OVERRIDE);

// Get the binding method

byte[] managerld = '"BankManager' .getBytes();

Bank.AccountManager manager =
Bank.AccountManagerHelper.bind(orb, ''/qos_poa",

managerld) ;

com.inprise.vbroker.QoSEXxt.
ExclusiveConnectionPolicy

The ExclusiveConnectionPolicy is a VisiBroker-specific policy that gives
you the ability to establish an exclusive (non-shared) connection to the
specified server object. You assign this policy a boolean value of true or
false. If the policy is true, connections to the server object are exclusive.
If the policy is false, existing connections are reused if possible and a new
connection is opened only if reuse is not possible. The default value is
false.

This policy provides the same capabilities as were provided by
Object. clone() in VisiBroker 3.x.

An example of how to establish exclusive and non-exclusive connections is
provided in the CloneClient. java example which can be found in:

<install_dir>\examples\vbroker\QoS_policies\qos\

VisiBroker for Java Developer’'s Guide 157

Using Quality of Service (Qo0S)

com.inprise.vbroker.QoSExt.RelativeConnectionTimeo
utPolicy

The RelativeConnectionTimeoutPolicy indicates a timeout after which
attempts to connect to an object using one of the available endpoints is
aborted. The timeout situation could happen in various circumstances, for
example with objects protected by firewalls, where HTTP tunneling is the
only way to connect to the object.

The following code examples illustrates how to create
RelativeConnectionTimeoutPolicy:

Any connTimeoutPolicyValue = orb.create_any();

// Input is in 100s of Nanoseconds.

// To specify a value of 20 seconds, use 20 * 1077
nanoseconds as input

int connTimeout = 20;

connTimeoutPolicyValue.insert_ulonglong(connTimeout *
10000000) ;
org.omg.CORBA.Policy ctoPolicy =

orb.create_policyRELATIVE CONN_TIMEOUT POLICY_TYPE.value,
connTimeoutPolicyValue);
PolicyManager orbManager = PolicyManagerHelper.narrow (
orb._resolve_initial_references("'ORBPolicyManager'™));

orbManager.set_policy_overrides(new Policy[] \{ctoPolicy\

}!
SetOverrideType.SET_OVERRIDE);

org.omg.Messaging.RebindPolicy

RebindPolicy is used to indicate whether the ORB may transparently
rebind once successfully bound to a target. An object reference is
considered bound once it is in a state where a LocateRequest message
would result in a LocateReply message with status OBJECT HERE.
RebindPolicy accepts values of type org.omg.Messaging.RebindMode
and are set only on the client side. It can have one of six values that
determine the behavior in the case of a disconnection, an object forwarding
request, or an object failure after an object reference is bound. The
supported values are:

» org.omg.Messaging.TRANSPARENT allows the VisiBroker ORB to silently
handle object-forwarding and necessary reconnections during the course
of making a remote request. The code sample below illustrates an
example to create a RebindPolicy of type TRANSPARENT and sets the
policy on the VisiBroker ORB, thread, and object levels.

» org.omg.Messaging.NO_REBIND allows the VisiBroker ORB to silently
handle reopening of closed connections while making a remote request,
but prevents any transparent object-forwarding that would cause a
change in client-visible effective QoS policies. When RebindMode is set to
NO_REBIND, only explicit rebind is allowed.

« org.omg.Messaging.NO_RECONNECT prevents the VisiBroker ORB from
silently handling object-forwards or the reopening of closed connections.
You must explicitly rebind and reconnect when RebindMode is set to
NO_RECONNECT.

« com.inprise.vbroker._QoSExt.VB_TRANSPARENT is the default policy.
It extends the functionality of TRANSPARENT by allowing transparent

158 VisiBroker for Java Developer’'s Guide

RebindMode type
NO_RECONNECT

NO_REBIND

TRANSPARENT
VB_NO_REBIND

VB_NOTIFY_REBIND

VB_TRANSPARENT

Using Quality of Service (QoS)

rebinding with both implicit and explicit binding. VB_TRANSPARENT is
designed to be compatible with the object failover implementation in
VisiBroker 3.x.

- com.inprise.vbroker.QoSExt.VB_NOTIFY_REBIND throws an
exception if a rebind is necessary. The client catches this exception, and
binds on the second invocation. If a client has received a
CloseConnection message before, it will also reestablish the closed
connection.

- com.inprise.vbroker.QoSExt.VB_NO_REBIND does not enable
failover. It only allows the client VisiBroker ORB to reopen a closed
connection to the same server; it does not allow object forwarding of any
kind.

Note

Be aware that if the effective policy for your client is VB_TRANSPARENT and
your client is working with servers that hold state data, VB_ TRANSPARENT
could connect the client to a new server without the client being aware of
the change of server, and in that case any state data held by the original
server will be lost.

Note

If the Client has set RebindPolicy and the RebindMode is anything other
that the default(VB_TRANSPARENT), then the RebindPolicy is propagated
in a special ServiceContext as per the CORBA specification. The
propagation of the ServiceContext occurs only when the client invokes
the server through a GateKeeper or a RequestAgent. This propagation
does not occur in a normal Client/Server scenario.

The following table describes the behavior of the different RebindMode
types.

Reestablish closed

connection to the Allow object
same object? forwarding? Object failover?
No, throws REBIND No, throws REBIND No
exception. exception.
Yes Yes, if policies match. No
No, throws REBIND
exception.
Yes Yes No
Yes No, throws REBIND No
exception.
No, throws Yes Yes.
exception. VB_NOTIFY_REBIND
throws an exception
after failure
detection, and then
tries a failover on
subsequent
requests.
Yes Yes Yes, transparently.

The appropriate CORBA exception will be thrown in the case of a
communication problem or an object failure.

VisiBroker for Java Developer’'s Guide 159

Using Quality of Service (Qo0S)

The following example creates a RebindPolicy of type TRANSPARENT and
sets the policy on the VisiBroker ORB, thread, and object levels.

Any policyValue= orb.create_any();
RebindModeHelper.insert(policyVvalue,
org.omg.Messaging.TRANSPARENT .value);
Policy myRebindPolicy =
orb.create_policy(REBIND_POLICY_TYPE.value,
policyValue);
//get a reference to the ORB policy manager
org.omg.CORBA.PolicyManager manager;
try {
manager =
PolicyManagerHelper.narrow(orb.resolve_initial_references(
""ORBPolicyManager'™));
}
catch(org.omg.CORBA.ORBPackage. InvalidName e) {}
//get a reference to the per-thread manager
org.omg.CORBA.PolicyManager current;

try {
current =

PolicyManagerHelper.narrow(orb.resolve_initial_references
(""PolicyCurrent'™));
}

catch(org.omg.CORBA.ORBPackage. InvalidName e) {}
//set the policy on the orb level
try{
manager .set_policy overrides(myRebindPolicy,
SetOverrideType.SET_OVERRIDE);

}
catch (InvalidPolicies e){}
// set the policy on the Thread level
try {
current._set_policy overrides(myRebindPolicy,
SetOverrideType.SET_OVERRIDE);
}

catch (InvalidPolicies e){}

//set the policy on the object level:

org.omg.CORBA.Object oldObjectReference=bind(...);

org.omg.CORBA.Object

newObjectReference=oldObjectReference. set policy override
(myRebindPolicy, SetOverrideType.SET_OVERRIDE);

For more information on QoS policies and types, see the Messaging section
of the CORBA specification.

org.omg.CORBA.Messaging.RelativeRequestTimeout
Policy

The RelativeRequestTimeoutPolicy indicates the relative amount of
time which a Request or its responding Reply may be delivered. After this
amount of time, the Request is canceled. This policy applies to both
synchronous and asynchronous invocations. Assuming the request
completes within the specified timeout, the Reply will never be discarded
due to timeout. The timeout value is specified in hundreds of nanoseconds.
This policy is only effective on established connections, and is not applicable
to establishing a connection.

160 VisiBroker for Java Developer's Guide

Using Quality of Service (QoS)

The following code illustrates how to create RelativeRequestTimeoutPolicy:

// Specify the request timeout in 100s of Nanosecs.

// To set a timeout of 20 secs, set 20 * 1077

int reqTimeout = 20;

Any policyValue = orb.create_any();

policyValue.insert_ulonglong(reqTimeout * 10000000);

// Create Policy

org.omg.-CORBA_Policy regPolicy = orb.create _policy(
RELATIVE_REQ_TIMEOUT_POLICY_TYPE.value,

policyValue);
PolicyManager orbManager = PolicyManagerHelper.narrow(

orb_resolve_initial_references("'ORBPolicyManager'™));
orbManager.set_policy_overrides(new Policy[]
{reqgPolicy},

SetOverrideType.SET_OVERRIDE);

org.omg.CORBA.Messaging.RelativeRoundTripTimeout
Policy

The RelativeRoundTripTimeoutPolicy specifies the relative amount of
time for which a Request or its corresponding Reply may be delivered. If a
response has not yet been delivered after this amount of time, the Request
is canceled. Also, if a Request had already been delivered and a Reply is
returned from the target, the Reply is discarded after this amount of time.
This policy applies to both synchronous and asynchronous invocations.
Assuming the request completes within the specified timeout, the Reply will
never be discarded due to timeout. The timeout value is specified in
hundreds of nanoseconds.

This policy is also effective in the initial establishment of a connection.

The following code illustrates how to create
RelativeRoundTripTimeoutPolicy:

// Specify the round-trip timeout in 100s of Nanoseconds
// To set a timeout of 50 secs, set 50 * 1017
int rttTimeout = 50;
Any policyValue = orb.create_any();
policyValue.insert_ulonglong(rttTimeout * 10000000);
//Create the RelativeRoundTripTimeoutPolicy and set it
at ORB level
org.omg.CORBA.Policy rttPolicy = orb.create policy(

RELATIVE_RT_TIMEOUT_POLICY_TYPE.value, policyVvalue);
PolicyManager orbManager = PolicyManagerHelper.narrow(

orb.resolve_initial_references("'ORBPolicyManager™));
orbManager.set_policy overrides(new Policy[]
{rttPolicy},

SetOverrideType.SET_OVERRIDE);

org.omg.CORBA.Messaging.SyncScopePolicy

The SyncScopePolicy defines the level of synchronization for a request
with respect to the target. Values of type SyncScope are used in
conjunction with a SyncScopePolicy to control the behavior of one-way
operations.

VisiBroker for Java Developer’'s Guide 161

Code Set support

The default SyncScopePolicy is SYNC_WITH_TRANSPORT. To perform one-
way operations via the OAD, you must use

SyncScopePol icy=SYNC_WITH_SERVER. Valid values for
SyncScopePolicy are defined by the OMG.

Note

Applications must explicitly set an VisiBroker ORB-level SyncScopePolicy
to ensure portability across VisiBroker ORB implementations. When
instances of SyncScopePolicy are created, a value of type

Messaging: : SyncScope is passed to CORBA: :ORB: :create_policy. This
policy is only applicable as a client-side override.

Exceptions

Exception Description

org.omg.CORBA.INV_POLICY Raised when there is an incompatibility between Policy overrides.

org.omg.CORBA.REBIND Raised when the RebindPolicy has a value of NO_REBIND,
NO_RECONNECT, or VB_NO_REBIND and an invocation on a bound object
references results in an object-forward or location-forward message.

org.omg.CORBA.PolicyError Raised when the requested Policy is not supported.

org.omg.CORBA.InvalidPolicies Raised when an operation is passed a PolicyList sequence. The
exception body contains the policies from the sequence that are not
valid, either because the policies are already overridden within the
current scope, or are not valid in conjunction with other requested
policies.

Code Set support

VisiBroker supports Code Set Negotiation that allows applications to agree
on a common Code Set when marshaling char or wchar IDL data types. A
Code Set is a collection of unambiguous rules that establishes a character
set and the one-to-one relationship between each character of the set and
its bit representation or numeric value.

Types of Code Sets

Code sets can differ in their classification. Some language environments
distinguish between byte-oriented and “wide characters”. The byte-oriented
characters are encoded in one or more 8-bit bytes. ASCII (as used for
western European languages like English) is an example of a typical single-
byte encoding. A typical multi-byte encoding which uses from one to three
8-bit bytes for each character is eucJP (Extended UNIX Code—Japan,
packed format), used for Japanese workstations. Although byte-oriented
Code Sets such as UTF-8 uses one to six 8-bit bytes for a character
representation, the CORBA specification mandates that for char data the
size limit is still one byte and that char[] should be used if a representation
uses more than one byte.

Wide characters are a fixed 16 or 32 bits long, and are used for languages
like Chinese and Japanese, where the number of combinations offered by 8
bits is insufficient and a fixed-width encoding is needed. A typical example
is Unicode (a “universal” character set defined by The Unicode Consortium).
An extended encoding scheme for Unicode characters is UTF-16 (UCS
Transformation Format, 16-bit representations).

162 VisiBroker for Java Developer’'s Guide

Deploying client-only applications using Client Run-time

Native Code Set

A native code set is the code set which a client or a server uses to
communicate with its ORB. There might be separate native code sets for
char and wchar data.

Conversion Code Set (CCS)

This is the set of target code sets for which an ORB can convert all
encodings between the native code set and that target code set. For each
code set in this CCS, the ORB maintains appropriate translation or
conversion procedures and advertises the ability to use that code set for
transmitted data in addition to the native code set.

Transmission Code Set (TCS)

A transmission code set is the commonly agreed upon encoding used for
character data transfer between a client's ORB and a server's ORB. There
are two transmission code sets established per session between a client and
its server, one for char data (TCS-C) and the other for wchar data (TCS-
W).

Code Set Negotiation

The client-side ORB determines a server's native and conversion code sets
from an IOR multi-component profile structure, simultaneously determining
a client's native and conversion code sets. From this information, the client-
side ORB chooses char and wchar transmission code sets (TCS-C and TCS-
W). For both requests and replies, the char TCS-C determines the encoding
of char and string data, and the wchar TCS-W determines the encoding
of wchar and wstring data.

Supported Code Sets

VisiBroker supports the following code sets:

» For IDL char data types the native Code Set is 1SO 8859-1 (Latin-1) and
the conversion Code supported is UTF-8.

« For IDL wchar data types the native Code Set is UTF-16 and there is no
Conversion Code Set.

Deploying client-only applications using Client Run-

time

In many application deployments you need only a client run-time rather
than a full-sized ORB implementation. If the application is a pure client and
has no server-side functionality, such as POA creation and object activation,
VisiBroker provides a client run-time library for such scenarios. The
VisiBroker Client Run-time has a smaller memory footprint compared to the
full VisiBroker implementation. The client run-time is provided as a Java
archive (vbjclientorb.jar) file which is installed under the /lib directory in the
VisiBroker installation.

Note
The Client Run-time does not support full ORB functionality.

VisiBroker for Java Developer’'s Guide 163

Deploying client-only applications using Client Run-time

The following features are supported by the VisiBroker client run-time
library:

« Client-side functionality such as invoking operations on remote servers
and services is provided. Applications using the client runtime can still
make use of services like Interface Repository, Naming Service,
RequestAgent (only Polling mode), etc. They can also make use of
GateKeeper for firewall traversal, and they can invoke operations on
servers that are registered with Object Activation Daemon (OAD). They
are also able to use OSAgent for locating servers.

« Client-side interceptors such as Bind Interceptor, and Request
Interceptors (both VisiBroker 4x and Portable Interceptors) can be used.

« VisiSecure client-side functionality is also available. However, additional
security JAR files are required to be included in the classpath (see
instruction in “Usage” below).

The following features are not supported by the VisiBroker client runtime
library:

« Any server-side functionality, such as POA creation or object activation.
Using resolve_initial_references("'RootPOA™) is not allowed.

« Notification, Event Service, and callback mode of Request Agent.
» Location Service.

« Any type of server-side interceptors, such as POALifeCyclelnterceptor,
Request Interceptor (both VisiBroker 4x and Portable Interceptor), and
IOR interceptors.

Usage

To make use of vbjclientorb.jar, modify <install_dir>/bin/vbj.config to
configure an addpath entry for vbjclientorb.jar. To make this change,
replace the following line in the vbj.config file:

addpath $var(defaultJarPath)/vbjorb.jar
with:
addpath $var(defaultJarPath)/vbjclientorb.jar

When using VisiSecure in client applications, vbsec.jar, sunjce_provider.jar,
local_policy.jar, US_export_policy.jar should also be present in the
classpath. If JDK 1.3.1 is used, the JAR files jsse.jar, jcert.jar, jnet.jar,
jaas.jar, and jcel 2 1.jar should also be present in the classpath, in
addition to the JARs mentioned previously.

Note

If a particular feature is not supported by the client runtime
(vbjclientorb.jar), at runtime the following standard error message is
printed out along with the ClassNotFound or NoClassDefFound exception:

*xxxxxClient runtime does not support full ORB functionality ******

164 VisiBroker for Java Developer’'s Guide

Using IDL

This section describes how to use the CORBA interface description language
(IDL).

Introduction to IDL

The Interface Definition Language (IDL) is a descriptive language (not a
programming language) to describe the interfaces being implemented by
the remote objects. Within IDL, you define the name of the interface, the
names of each of the attributes and methods, and so forth. Once you've
created the IDL file, you can use an IDL compiler to generate the client stub
file and the server skeleton file in the Java programming language.

For more information see “Using IDL".

The OMG has defined specifications for such language mapping. Information
about the language mapping is not covered in this manual since VisiBroker
adheres to the specification set forth by OMG. If you need more information
about language mapping, see the OMG web site at http://www.omg.org.

Note

The CORBA 3.0 formal specification can be found at
http://www.omg.org/technology/documents/
vault.htm#CORBA 110P.

Discussions on the IDL can be quite extensive. Because VisiBroker adheres
to the specification defined by OMG, you can visit the OMG site for more
information about IDL.

How the IDL compiler generates code

You use the Interface Definition Language (IDL) to define the object
interfaces that client programs may use. The idl2java compiler uses your
interface definition to generate code.

Example IDL specification

Your interface definition defines the name of the object as well as all of the
methods the object offers. Each method specifies the parameters that will
be passed to the method, their type, and whether they are for input or
output or both. The IDL sample below shows an IDL specification for an
object named example. The example object has only one method, opl.

// 1DL specification for the example object
interface example {
long opl(in char x, out short y);

Looking at the generated code

The IDL compiler generates several files from the above Example IDL
specification.

VisiBroker for Java Developer’'s Guide 165

Looking at the generated code

- _exampleStub. java is the stub code for the example object on the
client side.

« example.java is the example interface declaration.

- exampleHelper . java declares the exampleHelper class, which defines
helpful utility functions and support functions for the example interface.

- exampleHolder . java declares the exampleHolder class, which
provides a holder for passing out and inout parameters.

- exampleOperations. java defines the methods in the example interface
and is used both on the client and the server side. It also works together
with the tie classes to provide the tie mechanism.

- examplePOA. java contains the skeleton code (implementation base
code) for the example object on the server side.

- examplePOATie. java contains the class used to implement the example
object on the server side using the tie mechanism.

_<interface name>Stub.java

For each user-defined type, a stub class is created by the idl2java
compiler. This is the class which is instantiated on the client side which
implements the <interface_name> interface.

public class exampleStub extends
com. inprise.vbroker . CORBA.portable.Objectimpl
implements example {
final public static java.lang.Class _opsClass =
exampleOperations.class;
public java.lang.String[] ids O {

}
public int opl (char x, org.omg.CORBA.ShortHolder y) {
}

<interface name>.java

The <interface_name>. java file is the Java interface generated for each
IDL interface. This is the direct mapping of the IDL interface definition to
the appropriate Java interface. This interface is then implemented by both
the client and server skeleton.

public interface example extends

com. inprise.vbroker_CORBA.Object,
exampleOperations,
org.omg.CORBA.portable. IDLEntity {

}

<interface name>Helper.java

For each user-defined type, a helper class is created by idl2java. The
Helper class is an abstract class with various static methods for the
generated Java interface.

public final class exampleHelper {
public static example narrow (final org.omg.CORBA.Object

obj) {
y

166 VisiBroker for Java Developer’'s Guide

Looking at the generated code

public static example unchecked narrow
(org.omg.CORBA.Object obj) {

by
public static example bind (org.omg.CORBA.ORB orb) {

¥
public static example bind (org.omg.CORBA.ORB orb,
jJava.lang.String name) {

}
public static example bind (org.omg.CORBA.ORB orb,
java.lang.String name,
jJava.lang.String host,
com. inprise.vbroker.CORBA.BindOptions _options) {

}
public static example bind (org.omg.CORBA.ORB orb,
java.lang.String
ful IPoaName,

byte[] oid) {

}

public static example bind (org.omg.CORBA.ORB orb,
jJava.lang.String fullPoaName, byte[] oid,
jJava.lang.String host,
com. inprise.vbroker.CORBA.BindOptions _options) {

}
public java.lang.Object read Object (Final
org.omg.CORBA.portable.
InputStream istream) {

public void write Object (
final org.omg.CORBA.portable.OutputStream ostream,
final java.lang.Object obj) {

3

public java.lang.String get id O {

I

public org.omg.CORBA.TypeCode get _type (O {

public static example read (
final org.omg.CORBA.portable.InputStream _input) {

public static void write (
final org.omg.CORBA.portable.OutputStream _output,
final example value) {

public static void insert (
final org.omg.CORBA.Any any, final example value) {

}
public static example extract (final org.omg.CORBA.Any
any) {

}
public static org.omg.CORBA.TypeCode type () {
3 .

VisiBroker for Java Developer’'s Guide

Looking at the generated code

public static java.lang.String id Q) {

}
}

<interface name>Holder.java

For each user-defined type, a holder class is created by the idl2java
compiler. It provides a class for an object which wraps objects which
support the <interface_name> interface when passed as out and inout
parameters.
public final class exampleHolder
implements org.omg.CORBA.portable.Streamable {
public foo.example value;
public exampleHolder () {

public exampleHolder (final foo.example _vis value) {

public void _read (final
org.omg.CORBA.portable. InputStream input) {

public void _write (final
org.omg.CORBA.portable.OutputStream output) {

}
public org.omg.CORBA.TypeCode _type O {

}
}

<interface name>Operations.java
For each user-defined type, an operations class is created by the idI2java
compiler which contains all the methods defined in the IDL declaration.

public interface exampleOperations {
public int opl(char x, org.omg.CORBA.ShortHolder y);

}

168 VisiBroker for Java Developer’'s Guide

Looking at the generated code

<interface name>=>POA.java

The <interface_name>POA.java file is the server-side skeleton for the
interface. It unmarshals in parameters and passes them in an upcall to the
object implementation and marshals back the return value and any out
parameters.

public abstract class examplePOA
extends org.omg.PortableServer.Servant
implements org.omg.CORBA._portable.lnvokeHandler,
exampleOperations {
public example _this () {

}
public example _this (org.omg.CORBA.ORB orb) {

}

public java.lang.String[] _all_interfaces (
final org.omg.PortableServer.POA poa,

}
public org.omg.CORBA.portable.OutputStream _invoke

(Java.lang.String opName,
org.omg.CORBA.portable. InputStream _input,
org.omg.CORBA.portable.ResponseHandler handler) {

public static org.omg.CORBA.portable.OutputStream
_invoke (exampleOperations _self,
int _method_id, org.omg.CORBA.portable. InputStream
_input,
org.omg.CORBA.portable.ResponseHandler _handler) {

}
}

<interface _name>=>POATie.java

The <interface_name>POATie. java file is a delegator implementation for
the <interface_name> interface. Each instance of the tie class must be
initialized with an instance of an implementation class that implements the
<interface_name>0Operations class to which it delegates every
operation.

public class examplePOATie extends examplePOA {
public examplePOATie (Final exampleOperations _delegate)

public examplePOATie (final exampleOperations _delegate,
final org.omg.PortableServer_.POA _poa) {

public exampleOperations _delegate () {

public void _delegate (Final exampleOperations delegate)

{

}
public org.omg.PortableServer.POA _default POA O {

VisiBroker for Java Developer’'s Guide 169

Defining interface attributes in IDL

¥
public int opl (char x, org.omg.CORBA.ShortHolder y) {

}
}

Defining interface attributes in IDL

Specifying

In addition to operations, an interface specification can also define
attributes as part of the interface. By default, all attributes are read-write
and the IDL compiler will generate two methods, one to set the attribute's
value, and one to get the attribute's value. You can also specify read-only
attributes, for which only the reader method is generated.

The IDL sample below shows an IDL specification that defines two
attributes, one read-write and one read-only.

interface Test {
attribute long count;
readonly attribute string name;
};
The following code sample shows the operations class generated for the
interface declared in the IDL.

public interface TestOperations {
public int count ();
public void count (int count);
public java.lang.String name ();

}

one-way methods with no return value

IDL allows you to specify operations that have no return value, called one-
way methods. These operations may only have input parameters. When a
oneway method is invoked, a request is sent to the server, but there is no
confirmation from the object implementation that the request was actually
received.

VisiBroker uses TCP/IP for connecting clients to servers. This provides
reliable delivery of all packets so the client can be sure the request will be
delivered to the server, as long as the server remains available. Still, the
client has no way of knowing if the request was actually processed by the
object implementation itself.

Note

One-way operations cannot raise exceptions or return values.

interface oneway example {
oneway void set_value(in long val);

¥

170 VisiBroker for Java Developer's Guide

Specifying an interface in IDL that inherits from another interface

Specifying an interface in IDL that inherits
from another interface

IDL allows you to specify an interface that inherits from another interface.
The classes generated by the IDL compiler will reflect the inheritance
relationship. All methods, data type definitions, constants and enumerations
declared by the parent interface will be visible to the derived interface.

interface parent {
void operationl();
}:

interface child : parent {

long operation2(in short s);
};
The code sample below shows the code that is generated from the interface
specification shown above.

public interface parentOperations {
public void operationl ();
public interface childOperations extends parentOperations

public int operation2 (short s);

public interface parent
extends com.inprise.vbroker_CORBA.Object,
parentOperations,
org.omg.CORBA.portable.IDLEntity {

public interface child extends childOperations,

Baz.parent,
org.omg.CORBA.portable.IDLEntity {

VisiBroker for Java Developer’'s Guide 171

172 VisiBroker for Java Developer's Guide

Using the Smart Agent

This section describes the Smart Agent (osagent), which client programs
register with in order to find object implementations. It explains how to
configure your own VisiBroker ORB domain, connect Smart Agents on
different local networks, and migrate objects from one host to another.

What is the Smart Agent?

VisiBroker's Smart Agent (osagent) is a dynamic, distributed directory
service that provides facilities used by both client programs and object
implementations. A Smart Agent must be started on at least one host within
your local network. When your client program invokes bind() on an object,
the Smart Agent is automatically consulted. The Smart Agent locates the
specified implementation so that a connection can be established between
the client and the implementation. The communication with the Smart
Agent is completely transparent to the client program.

If the PERSISTENT policy is set on the POA, and

activate object_with_id is used, the Smart Agent registers the object
or implementation so that it can be used by client programs. When an
object or implementation is deactivated, the Smart Agent removes it from
the list of available objects. Like client programs, the communication with
the Smart Agent is completely transparent to the object implementation.
For more information about POAs, see “Using POAs".

Best practices for Smart Agent
configuration and synchronization

While the Smart Agent imposes no hard limits on the numbers and types of
objects that it can support, there are reasonable best practices that can be
followed when incorporating it into a larger architecture.

The Smart Agent is designed to be a lightweight directory service with a
flat, simple namespace, which can support a small number of well known
objects within a local network.

Since all objects' registered services are stored in memory, scalability
cannot be optimized and be fault tolerant at the same time. Applications
should use well known objects to bootstrap to other distributed services so
as not to rely on the Smart Agent for all directory needs. If a heavy services
lookup load is necessary, it is advisable to use the VisiBroker Naming
Service (VisiNaming). VisiNaming provides persistent storage capability and
cluster load balancing whereas the Smart Agent only provides a simple
round robin on a per osagent basis. Due to the in-memory design of the
Smart Agent, if it is terminated by a proper shutdown or an abnormal
termination, it does not failover to another Smart Agent in the same ORB
domain, that is to the same OSAGENT_PORT number, whereas the
VisiNaming Service provides such failover functionality. For more
information on the VisiBroker naming service, see “Using the VisiNaming
Service”.

VisiBroker for Java Developer's Guide 173

What is the Smart Agent?

General guidelines
The following are some general guidelines for best practice Smart Agent usage.

Server registrations should be limited to fewer than 100 object instances
or POAs per ORB domain.

The Smart Agent keeps track of all clients (not just CORBA servers), so
every client creates a small load on the Smart Agent. Within any 10
minute period, the client population should generally not exceed 100
clients.

Note

The GateKeeper counts as one client even though it is acting on behalf of
many real clients.

Applications should use the Smart Agent sparsely by binding to small sets
of well known objects at startup and then using those objects for further
discovery. The Smart Agent communications are based on UDP. Although
the message protocol built on top of UDP is reliable, UDP is often not
reliable or allowed in wide area networks. Since the Smart Agent is
designed for intranet use, it is not recommended over wide area
networks that involve firewall configurations.

The real default IP of the Smart Agent must be accessible to clients on a
subnet that is not directly connected to the Smart Agent host. The Smart
Agent cannot be configured for client access behind a Network Address
Translation (NAT) firewall.

The Smart Agent configures itself at startup using the network
information available at that time. It is not able to detect new network
interfaces that are added later, such as interfaces associated with a dial
up connection. Therefore, the Smart Agent is meant for use in static
network configurations.

Load balancing/ fault tolerance guidelines

The Smart Agent implements load balancing using a simple round-robin
algorithm on a per agent basis, not on an ORB domain basis. For load
balancing between server replicas, when you have more than one Smart
Agent in the ORB domain, make sure all servers are registered with the
same Smart Agent.

The ORB runtime caches access to the Smart Agent, so multiple binds to
the same server object from the same ORB process do not result in
round-robin behavior because all subsequent attempts to bind to the
object use the cache rather than sending a new request to the Smart
Agent. This behavior can be changed using ORB properties. For more
information see “Using the Smart Agent”.

When a Smart Agent is terminated, all servers that were registered with
that agent attempt to locate another agent with which to register. This
process is automatic, but may take up to two minutes for the server to
perform this function. During that two minute window, the server is not
registered in the ORB domain and therefore is not available to new
clients. However, this does not affect ongoing 11OP communications
between the server and clients that were previously bound.

174 VisiBroker for Java Developer's Guide

What is the Smart Agent?

Location service guidelines
The location service is built upon the Smart Agent technology. Therefore, the location
service is subject to the same guidelines described above.

« The location service triggers generate UDP traffic between the Smart
Agent and the trigger handlers registered by applications. Use of this
feature should be limited to less than 10 objects, monitored by less than
10 processes.

« The location service triggers fire when the Smart Agent determines that
an object is available or down. There may be a delay of up to four
minutes for a “down” trigger to fire. For this reason, you may not want to
use this feature for time critical applications.

For more information about the Location Service, see “Using the Location
Service”.

When not to use a Smart Agent

+« When the ORB domain spans a large number (greater than 5) of subnets.
Maintaining the agentaddr files for a large ORB domain spread over a
large number of subnets is difficult to manage.

« When the name space requires a large number (greater than 100) of well
known objects.

« When the number of applications (clients) that require the Smart Agent
consistently exceeds 100 in a 10 minute period.

Note

In the above situations an alternative directory, such as the Naming
Service, may be more appropriate. See “Using the VisiNaming Service” for
more information.

Locating Smart Agents

VisiBroker locates a Smart Agent for use by a client program or object
implementation using a broadcast message. The first Smart Agent to
respond is used. After a Smart Agent has been located, a point-to-point
UDP connection is used for sending registration and look-up requests to the
Smart Agent.

The UDP protocol is used because it consumes fewer network resources
than a TCP connection. All registration and locate requests are dynamic, so
there are no required configuration files or mappings to maintain.

Note

Broadcast messages are used only to locate a Smart Agent. All other
communication with the Smart Agent makes use of point-to-point
communication. For information on how to override the use of broadcast
messages, see “Using point-to-point communications”.

Locating objects through Smart Agent
cooperation

When a Smart Agent is started on more than one host in the local network,
each Smart Agent will recognize a subset of the objects available and

communicate with other Smart Agents to locate objects it cannot find. If
one of the Smart Agent processes should terminate unexpectedly, all

VisiBroker for Java Developer’'s Guide 175

What is the Smart Agent?

implementations registered with that Smart Agent discover this event and
they will automatically re register with another available Smart Agent.

Cooperating with the OAD to connect with
objects

Object implementations may be registered with the Object Activation
Daemon (OAD) so they can be started on demand. Such objects are
registered with the Smart Agent as if they are actually active and located
within the OAD. When a client requests one of these objects, it is directed to
the OAD. The OAD then forwards the client request to the actual server. The
Smart Agent does not know that the object implementation is not truly
active within the OAD. For more information about the OAD, see “Using the
Object Activation Daemon (OAD)".

Starting a Smart Agent (osagent)

At least one instance of the Smart Agent should be running on a host in
your local network. Local network refers to a subnetwork in which broadcast
messages can be sent.
Windows
To start the Smart Agent:
« Double-click the osagent executible osagent.exe located in:
<install_dir\bin\
or
« At the Command Prompt, enter: osagent [options]. For example:
prompt> osagent [options]

UNIX
To start the Smart Agent, enter: osagent &. For example:
prompt> osagent &

Note

Because of signal handling changes, Bourne and Korn shell users need to
use the ignoreSignal hup parameter when starting osagent in order to
prevent the hangup (hup) signal from terminating the process when the
user logs out. For example:

nohup $VBROKERDIR/bin/osagent ignoreSignal hup &

The osagent command accepts the following command line arguments:

Option Description

-p <UDP_port> Overrides the setting of OSAGENT_PORT and the registry
setting.

-V Turns verbose mode on, which provides information and
diagnostic messages during execution.

-help or -? Prints the help message.

-1 Turns off logging if OSAGENT_LOGGING_ON is set.

-Is <size> Specifies trimming log size of 1024KB block. Max value is 300,

therefore largest log size is 512MB

176 VisiBroker for Java Developer’'s Guide

What is the Smart Agent?

Option Description
+1 <options> Show/enable logging level. Options supported are:

* 0 - Turn logging on. This is equivalent to setting logging
level i and above (== +1 oi) where messages from “Fatal”
to “Informational” will be logged. Alternatively logging can
be enabled using the environment variable
OSAGENT_LOGGING_ON. Logs are auto-trim and are written
to OSAGENT_LOG_DIR or VBROKER_ADM directory if set.
Otherwise the default is to /tmp on UNIX and %TEMP% on
Windows.

« T - Fatal

e e - Error

e w - Warning

¢ 1 - Informational
* d - Debugging

e a-Al

* S - Suspend logging temporarily. Send the signal SIGUSR1
to toggle between suspend and resume. This option is
available on UNIX/Linux platforms only.

-n, -N Disables system tray icon on Windows.

Example

The following example of the osagent command specifies a particular UDP
port:

osagent -p 17000
Verbose output

UNIX
On UNIX, the verbose output is sent to stdout.

Windows

On Windows, the verbose output is written to a log file stored in either of
the following locations:

» C:\TEMP\vbroker\log\osagent.log.
« the directory specified by the VBROKER_ADM environment variable.

Note

To specify a different directory in which to write the log file, use
OSAGENT_LOG_DIR. To configure logging options you can right-click the
Smart Agent icon and select Log Options.

Disabling the agent

Communication with the Smart Agent can be disabled by passing the
VisiBroker ORB the following property at runtime:

prompt> vbj -Dvbroker.agent._enablelLocator=false

If using string-to-object references, a naming service, or passing in a URL
reference, the Smart Agent is not required and can be disabled. If you pass
an object name to the bind() method, you must use the Smart Agent.

VisiBroker for Java Developer’'s Guide 177

Working within VisiBroker ORB domains

Ensuring Smart Agent availability

Starting a Smart Agent on more than one host within the local network
allows clients to continually bind to objects, even if one Smart Agent
terminates unexpectedly. If a Smart Agent becomes unavailable, all object
implementations registered with that Smart Agent will be automatically re-
registered with another Smart Agent. If no Smart Agents are running on the
local network, object implementations will continue retrying until a new
Smart Agent is contacted.

If a Smart Agent terminates, any connections between a client and an
object implementation established before the Smart Agent terminated will
continue without interruption. However, any new bind() requests issued
by a client causes a new Smart Agent to be contacted.

No special coding techniques are required to take advantage of these fault-
tolerant features. You only need to be sure a Smart Agent is started on one
or more host on the local network.

Checking client existence

A Smart Agent sends an “are you alive” message (often called a heartbeat message) to
its clients every two minutes to verify the client is still connected. If the client does not
respond, the Smart Agent assumes the client has terminated the connection.

You can not change the interval for polling the client.

Note

The use of the term “client” does not necessarily describe the function of
the object or process. Any program that connects to the Smart Agent for
object references is a client.

Working within VisiBroker ORB domains

It is often useful to have two or more VisiBroker ORB domains running at
the same time. One domain might consist of production versions of client
programs and object implementations, while another domain might consist
of test versions of the same clients and objects that have not yet been
released for general use. If several developers are working on the same
local network, each may want to establish their own VisiBroker ORB domain
so that their tests do not conflict with one another.

178 VisiBroker for Java Developer’'s Guide

Connecting Smart Agents on different local networks

Figure 18 Running separate VisiBroker ORB domains simultaneously

ViziBrokero RE
Erart hgent

WisiBroker ORE
Srrart o gent

Chant o poicatin

Chent appicaion

TestDornain P roduction Dorrsin

Object Imp.

VisiBroker allows you to distinguish between multiple VisiBroker ORB
domains on the same network by using unique UDP port numbers for the
Smart Agents of each domain. By default, the OSAGENT_PORT variable is set
to 14000. If you wish to use a different port number, check with your
system administrator to determine what port numbers are available.

To override the default setting, the OSAGENT_PORT variable must be set
accordingly before running a Smart Agent, an OAD, object implementations,
or client programs assigned to that VisiBroker ORB domain. For example,

prompt> setenv OSAGENT_PORT 5678
prompt> osagent &
prompt> oad &

The Smart Agent uses an additional internal port number for both TCP and
UDP protocols, the port number is the same for both. This port number is
set by using the OSAGENT_CLIENT_HANDLER_PORT environment variable.

Connecting Smart Agents on different local
networks

If you start multiple Smart Agents on your local network, they will discover
each other by using UDP broadcast messages. Your network administrator
configures a local network by specifying the scope of broadcast messages
using the IP subnet mask. The following figure shows two local networks
connected by a network link.

VisiBroker for Java Developer’'s Guide 179

Connecting Smart Agents on different local networks

Figure 19 Two Smart Agents on separate local networks

iz Broker O RE
Srnar ngent
19910495

WisiBroker O RB
A s gent

101.10.2.6

Loca | bl shwork £1 Local Mook $2

To allow the Smart Agent on one network to contact a Smart Agent on
another local network, use the OSAGENT_ADDR_FILE environment variable,
as shown in the following example:

setenv OSAGENT_ADDR_FILE=<path to agent addr Ffile>

Alternatively, use the vbroker.agent.addrFile property, as shown in the
following example:

vbj -Dvbroker.agent.addrFile=<path to agent addr file>

The following example shows what the agentaddr file would contain to
allow a Smart Agent on Local Network #1 to connect to a Smart Agent on
another local network.

101.10.2.6

With the appropriate agentaddr file, a client program on Network #1
locates and uses object implementations on Network #2. For more
information on environment variables, see the VisiBroker Installation
Guide.

Note

If a remote network has multiple Smart Agents running, you should list all
the IP addresses of the Smart Agents on the remote network.

How Smart Agents detect each other

Suppose two agents, Agent 1 and Agent 2, are listening on the same UDP
port from two different machines on the same subnet. Agent 1 starts before
Agent 2. The following events occur:

* When Agent 2 starts, it UDP broadcasts its existence and sends a request
message to locate any other Smart Agents.

« Agent 1 note that Agent 2 is available on the network and responds to the
request message.

« Agent 2 notes that another agent, Agent 1, is available on the network.

If Agent 2 is terminated gracefully (such as killing with Ctrl+C), Agent 1 is
notified that Agent 2 is no longer available.

180 VisiBroker for Java Developer's Guide

Working with multihomed hosts

Working with multihomed hosts

When you start the Smart Agent on a host that has more than one IP
address (known as a multihomed host), it can provide a powerful
mechanism for bridging objects located on separate local networks. All local
networks to which the host is connected will be able to communicate with a
single Smart Agent, therefore bridging the local networks.

Figure 20 Smart Agent on a multihomed host
Multhomed host

Local
netwok £2

™y Obpcts

UNIX

On a multihomed UNIX host, the Smart Agent dynamically configures itself
to listen and broadcast on all of the host's interfaces which support point-
to-point connections or broadcast connections. You can explicitly specify
interface settings using the localaddr file as described in “Specifying
interface usage for Smart Agents”.

Windows

On a multihomed Windows host, the Smart Agent is not able to dynamically
determine the correct subnet mask and broadcast address values. To
overcome this limitation, you must explicitly specify the interface settings
you want the Smart Agent to use with the localaddr file.

When you start the Smart Agent with the -v (verbose) option, each
interface that the Smart Agent uses will be listed at the beginning of the
messages produced. The example below shows the sample output from a
Smart Agent started with the verbose option on a multihomed host.

Bound to the following interfaces:
Address: 199.10.9.5 Subnet: 255.255.255.0
Broadcast:199.10.9.255

Address: 101.10.2.6 Subnet: 255.255.255.0
Broadcast:101.10.2.255

The above output shows the address, subnet mask, and broadcast address
for each interface in the machine.
UNIX

The above output should match the results from the UNIX command
ifconfig -a.

If you want to override these settings, configure the interface information in
the localaddr file. See “Specifying interface usage for Smart Agents” for details.

VisiBroker for Java Developer’'s Guide 181

Working with multihomed hosts

Specifying interface usage for Smart Agents

Note
It is not necessary to specify interface information on a single-homed host.

You can specify interface information for each interface you wish the Smart
Agent to use on your multihomed host in the localaddr file. The
localaddr file should have a separate line for each interface that contains
the host's IP address, subnet mask, and broadcast address. By default,
VisiBroker searches for the localaddr file in the VBROKER_ADM directory.
You can override this location by setting the OSAGENT_LOCAL_FILE
environment variable to point to this file. Lines in this file that begin with a
“#” character, and are treated as comments and ignored.

The code sample below shows the contents of the localaddr file for the
multihomed host listed above:

#entries of format <address> <subnet _mask> <broadcast
address>

199.10.9.5 255.255.255.0 199.10.9.255

101.10.2.6 255.255.255.0 101.10.2.255

UNIX

Though the Smart Agent can automatically configure itself on a multihomed
host on UNIX, you can use the localaddr file to explicitly specify the
interfaces that your host contains. You can display all available interface
values for the UNIX host by using the following command:

prompt> ifconfig -a
Output from this command appears similar to the following:

100: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232
inet 127.0.0.1 netmask FFOO0000

1e0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
inet 199.10.9.5 netmask FFFFFFOO0 broadcast 199.10.9.255

lel: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
inet 101.10.2.6 netmask FfFFFFFOO0 broadcast 101.10.2.255

Windows

The use of the localaddr file with multihomed hosts is required for hosts
running Windows because the Smart Agent is not able to automatically
configure itself. You can obtain the appropriate values for this file by
accessing the TCP/IP protocol properties from the Network Control Panel. If
your host is running Windows, the ipconfig command will provide the
needed values. This command is as follows:

prompt> ipconfig
Output from this command appears similar to the following:
Ethernet adapter EI190x1:

IP Address. : 172.20.30.56

Subnet Mask : 255.255.255.0

Default Gateway - 172.20.0.2
Ethernet adapter EINnk32:

IP Address. - 101.10.2.6

Subnet Mask : 255.255.255.0

Default Gateway. : 101.10.2.1

182 VisiBroker for Java Developer's Guide

Using point-to-point communications

Using point-to-point communications

VisiBroker provides three different mechanisms for circumventing the use of
UDP broadcast messages for locating Smart Agent processes. When a
Smart Agent is located with any of these alternate approaches, that Smart
Agent will be used for all subsequent interactions. If a Smart Agent cannot
be located using any of these alternate approaches, VisiBroker will revert to
using the broadcast message scheme to locate a Smart Agent.

Specifying a host as a runtime parameter

The code sample below shows how to specify the IP address where a Smart
Agent is running as a runtime parameter for your client program or object

implementation. Since specifying an IP address will cause a point-to-point

connection to be established, you can even specify an IP address of a host
located outside your local network. This mechanism takes precedence over
any other host specification.

prompt> vbj -Dvbroker.agent.addr=<ip_address> Server

You can also specify the IP address through the properties file. Look for the
vbroker.agent.addr entry.

vbroker.agent.addr=<ip_address>
By default, vbroker_agent.addr in the properties file is set to NULL.

You can also list the host names where the agent might reside and then
point to that file with the vbroker.agent.addrFile option in the
properties file.

Specifying an IP address with an
environment variable
You can specify the IP address of a Smart Agent by setting the
OSAGENT_ADDR environment variable prior to starting your client program
or object implementation. This environment variable takes precedence if a
host is not specified as a runtime parameter.
UNIX

prompt> setenv OSAGENT_ADDR 199.10.9.5

prompt> client
Windows

To set the OSAGENT_ADDR environment variable on a Windows system, you
can use the System control panel and edit the environment variables:

1 Under System Variables, select any current variable.
2 Type OSAGENT_ADDR in the Variable edit box.
3 Type the IP address in the Value edit box. For example, 199.10.9.5.

Specifying hosts with the agentaddr file

Your client program or object implementation can use the agentaddr file to
circumvent the use of a UDP broadcast message to locate a Smart Agent.
Simply create a file containing the IP addresses or fully qualified hostnames
of each host where a Smart Agent is running and then set the

VisiBroker for Java Developer’'s Guide 183

Ensuring object availability

OSAGENT_ADDR_FILE environment variable to point to the path of the file.
When a client program or object implementation has this environment
variable set, VisiBroker will try each address in the file until a Smart Agent
is located. This mechanism has the lowest precedence of all the
mechanisms for specifying a host. If this file is not specified, the
VBROKER_ADM/agentaddr file is used.

Ensuring object availability

You can provide fault tolerance for objects by starting instances of those
objects on multiple hosts. If an implementation becomes unavailable, the
VisiBroker ORB will detect the loss of the connection between the client
program and the object implementation and will automatically contact the
Smart Agent to establish a connection with another instance of the object
implementation, depending on the effective rebind policy established by the
client. For more information on establishing client policies, go to the Client
basics, “Using Quality of Service (QoS)".

Note

The Smart Agent implements load balancing using a simple round-robin
algorithm on a per agent basis, not on an ORB domain basis. For load
balancing between server replicas, when you have more than one Smart
Agent in the ORB domain, make sure all servers are registered with the
same Smart Agent.

Important

The rebind option must be enabled if VisiBroker is to attempt reconnecting
the client with an instance object implementation. This is the default
behavior.

Invoking methods on stateless objects

Your client program can invoke a method on an object implementation
which does not maintain state without being concerned if a new instance of
the object is being used.

Achieving fault-tolerance for objects that
maintain state

Fault tolerance can also be achieved with object implementations that
maintain state, but it will not be transparent to the client program. In these
cases, your client program must either use the Quality of Service (QoS)
policy VB_NOTIFY_REBIND or register an interceptor for the VisiBroker ORB
object. For information on using QoS, see “Using Quality of Service (QoS)".

When the connection to an object implementation fails and VisiBroker
reconnects the client to a replica object implementation, the bind method
of the bind interceptor will be invoked by VisiBroker. The client must
provide an implementation of this bind method to bring the state of the
replica up to date. Client interceptors are described in “Client Interceptors”.

Replicating objects registered with the OAD

The OAD ensures greater object availability because if the object goes
down, the OAD will restart it. If you want fault tolerance for hosts that may

184 VisiBroker for Java Developer’'s Guide

Migrating objects between hosts

become unavailable, the OAD must be started on multiple hosts and the
objects must be registered with each OAD instance.

Note

The type of object replication provided by VisiBroker does not provide a
multicast or mirroring facility. At any given time there is always a one-to-
one correspondence between a client program and a particular object
implementation.

Migrating objects between hosts

Object migration is the process of terminating an object implementation on
one host, and then starting it on another host. Object migration can be used
to provide load balancing by moving objects from overloaded hosts to hosts
that have more resources or processing power (there is no load balancing
between servers registered with different Smart Agents.) Object migration
can also be used to keep objects available when a host is shutdown for
hardware or software maintenance.

Note

The migration of objects that do not maintain state is transparent to the
client program. If a client is connected to an object implementation that has
migrated, the Smart Agent will detect the loss of the connection and
transparently reconnect the client to the new object on the new host.

Migrating objects that maintain state

The migration of objects that maintain state is also possible, but it will not
be transparent to a client program that has connected before the migration
process begins. In these cases, the client program must register an
interceptor for the object.

When the connection to the original object is lost and VisiBroker reconnects
the client to the object, the interceptor's rebind_succeeded() member
function will be invoked by VisiBroker. The client can implement this
function to bring the state of the object up to date.

Refer to “Using Portable Interceptors” for more information about how to use
the interceptors.

Migrating instantiated objects

If the objects that you wish to migrate were created by a server process
instantiating the implementation’s class, you need only start it on a new
host and terminate the server process. When the original instance is
terminated, it will be unregistered with the Smart Agent. When the new
instance is started on the new host, it will register with the Smart Agent.
From that point on, client invocations are routed to the object
implementation on the new host.

Migrating objects registered with the OAD

If VisiBroker objects that you wish to migrate are registered with the OAD,
you must first unregister them with the OAD on the old host. Then,
reregister them with the OAD on the new host.

VisiBroker for Java Developer’'s Guide 185

Use the following procedure to migrate objects already registered with the
OAD:

1 Unregister the object implementation from the OAD on the old host.
2 Register the object implementation with the OAD on the new host.
3 Terminate the object implementation on the old host.

See “Using the Object Activation Daemon (OAD)” for detailed information on
registering and unregistering object implementations.

Reporting all objects and services

The Smart Finder (osfind) command reports on all VisiBroker related
objects and services which are currently available on a given network.

You can use osfind to determine the number of Smart Agent processes
running on the network and the exact host on which they are executing.
The osfind command also reports on all VisiBroker objects that are active
on the network if these objects are registered with the Smart Agent. You
can use osTind to monitor the status of the network and locate stray
objects during the debugging phase.

The osfind command has the following syntax:
osfind [options]

The following options are valid with osfind. If no options are specified,
osTind lists all of the agents, OADs, and implementations in your domain.

Option Description

-a Lists all Smart Agents in your domain.

-b Uses the VisiBroker 2.0 backward compatible osfind mechanism.

-d Prints hostnames as quad addresses.

-f Queries Smart Agents running on the hosts specified in the file. This

<agent_address_file_name> file contains one IP address or fully qualified host name per line. Note
that this file is not used when reporting all Smart Agents; it is only
used when reporting objects implementations and services.

-g Verifies object existence. This can cause considerable delay on loaded
systems. Only objects registered BY_INSTANCE are verified for
existence. Objects that are either registered with the OAD, or those
registered BY_POA policy are not verified for existence.

-h, -help, -usage, -? Prints help information for this option.
-0 Lists all OADs in your domain.
-p Lists all POA instances activated on the same host. Without this option

only unigue POA names are listed.

Windows

osfind is a console application. If you start osfind from the Start menu, it
runs until completion and exits before you can view the results.

Binding to Objects
Before your client application invokes a method on an interface it must
obtain an object reference using the bind() method.

When your client application invokes the bind() method, VisiBroker
performs several functions on behalf of your application. These are shown
below.

186 VisiBroker for Java Developer’'s Guide

« VisiBroker contacts the osagent to locate an object server that is offering
the requested interface. If an object name and a host name (or IP
address) are specified, they will be used to further qualify the directory
service search.

« When an object implementation is located, VisiBroker attempts to
establish a connection between the object implementation that was
located and your client application.

« If the connection is successfully established, VisiBroker will create a proxy
object if necessary, and return a reference to that object.

Note

VisiBroker is not a separate process. It is a collection of classes and other
resources that allow communication between clients and servers.

VisiBroker for Java Developer’'s Guide 187

188 VisiBroker for Java Developer’'s Guide

Using the Location Service

The VisiBroker Location Service provides enhanced object discovery that
enables you to find object instances based on particular attributes. Working
with VisiBroker Smart Agents, the Location Service notifies you of what
objects are presently accessible on the network, and where they reside. The
Location Service is a VisiBroker extension to the CORBA specification and is
only useful for finding objects implemented with VisiBroker. For more
information on the Smart Agent (osagent), see “Using the Smart Agent”.

What is the Location Service?

The Location Service is an extension to the CORBA specification that
provides general-purpose facilities for locating object instances. The
Location Service communicates directly with one Smart Agent which
maintains a catalog, which contains the list of the instances it knows about.
When queried by the Location Service, a Smart Agent forwards the query to
the other Smart Agents, and aggregates their replies in the result it returns
to the Location Service.

The Location Service knows about all object instances that are registered on
a POA with the BY_INSTANCE Policy and objects that are registered as
persistent on a BOA. The server containing these objects may be started
manually or automatically by the OAD. For more information, see “Using
POAs”, “Using the BOA with VisiBroker,”