
 Using Xcentrisity to Serve WOW Applications 1

HOWTO: Using Xcentrisity™ to Serve WOW Applications

The Xcentrisity Business Information Server (BIS) with WOW support—known as BISplus, allows
WOW applications to run as BIS service programs, thus enabling the launching of the WOW
application from a Microsoft Internet Explorer (IE) web browser running anywhere in the world.
While the thin client configuration of WOW has always allowed the Internet to be used as a transport
medium, it does so by using a proprietary protocol and special TCP/IP port numbers. BISplus allows
this and more, while doing so using the standards and protocols of the World Wide Web.

To deploy and use a BISplus WOW application, no special network configuration is required on the
client or server system. In addition, by using IE, BISplus supports—at the time of launch in the
browser—the automatic downloading of the entire client software package and all other client
resources needed to run the WOW application. Combined with these and other features, the
advantages of BISplus include:

• Allowing WOW applications to be deployed in a web environment without code changes,

• Using standard web browsers to dynamically deploy and run all client software components,

• Permitting the use of the HTTPS protocol, web authentication, and X.509 client certificates
for high levels of security without programming, and

• Allowing the mixing of BISplus WOW applications and normal BIS web applications in a
single web server environment.

Simple “Hello World” Example

This section demonstrates how to move a WOW thin client application to BISplus. The “Hello World”
sample (installed in the BIS Samples directory) is used as an example.

The easiest way to use BISplus is by means of the Microsoft Internet Component Download (MSICD)
capability that is built into the IE browser. This service provides a method for downloading all of the
necessary components of the application to the client machine. It also provides the means to update
those components automatically when new versions become available. For more information on
MSICD, visit this site:

http://msdn.microsoft.com/library/default.asp?url=/workshop/delivery/download/overview/overview.asp

The following steps will create “cabinets” that contain the necessary client parts. (A cabinet is a single
file, usually with a .cab extension, which stores compressed files in a file library.) An information file
(.inf) provides installation instructions that the MSICD service uses to install and register software
components downloaded from the Internet, as well as descriptions of the individual files, where they
are located, version numbers, and other installation-specific information. In this example, the server
response file, default.srf, which is served by BIS, contains an HTML <object> tag that instructs the
browser where to find the first-referenced cabinet, and initiates the download and execution of the
BISplus WOW ActiveX client (wowclient.ocx) component. The first-referenced cabinet normally
takes the name of the application and in this example is called helloworld.cab.

http://msdn.microsoft.com/library/default.asp?url=/workshop/delivery/download/overview/overview.asp

2 Liant Software Corporation © Copyright 2006. All rights reserved.

Note The following instructions assume a Windows BIS server. The BISplus WOW application can
be served from UNIX versions of BIS, but the cabinets must be constructed on Windows and then
transferred to the corresponding directory on the UNIX server system. See “Using UNIX as a Server”
on page 6.

To move a WOW thin client application to BISplus:

1. Install BISplus on the server system (see the BIS User’s Guide for information on how to
perform this installation).

2. Create a virtual directory on the server machine by using the bismkdir utility installed with
BIS. In these instructions, the virtual directory is assumed to have a path of
\inetpub\wwwroot\mywowapp.

3. To achieve a more structured organization, Liant recommends that you create the following two
sub-directories so that source files are not included in the same directory as binary files:

src
bin

4. Copy the following files, obtained from the \inetpub\wwwroot\xbis10\samples\wowhelloworld
directory, into the \inetpub\wwwroot\mywowapp directory:

default.srf required file
helloworld.srf required file
error.srf required file if referenced in default.srf
layout.css required file if referenced in default.srf

Note In your own program, you would substitute the name of your application for any files
named “helloworld.”

5. Copy the following files, obtained from the \inetpub\wwwroot\xbis10\samples\wowhelloworld\src
directory, into the \inetpub\wwwroot\mywowapp\src directory:

makeinf.exe utility program to make the information (.inf) file
helloworld.cob main COBOL program
helloworld.org required file
helloworld.lst list of files in helloworld.cab
liant.lst required file (list of files in liant.cab)
allegris.dll required file
codebrdg.dll required file
pockethttp.dll required file
rmprop.dll required file
rmhttp.dll required file
rmguife.dll required file
rmremprt.dll required file
wowclient.ocx required file
wowmfcrt.dll required file
wowrt.dll required file

6. Obtain a copy of the cabinet file manipulation utility, cabarc.exe, from the Microsoft site,
http://support.microsoft.com/?id=310618, and place it in the \inetpub\wwwroot\mywowapp\src
directory.

http://support.microsoft.com/?id=310618

 Using Xcentrisity to Serve WOW Applications 3

7. Build a file named build.bat that contains the following command lines and place it in the
\inetpub\wwwroot\mywowapp\src directory:

REM Copy the Cobol programs
if exist ..\bin\helloworld.cob attrib –r ..\bin*.cob
copy *.cob ..\bin

REM Build the .inf file

set bis_program_dir=%ProgramFiles%\Liant\BIS10\
set path="%bis_program_dir%";%PATH%

makeinf helloworld.org helloworld.inf

REM Build the cabinets
cabarc n ..\helloworld.cab @helloworld.lst
cabarc n ..\liant.cab @liant.lst

8. Execute the build.bat batch file. This will copy the RM/COBOL® program(s) to the
\inetpub\wwwroot\mywowapp\bin directory and build the cabinets in the
\inetpub\wwwroot\mywowapp directory.

Note The makeinf program is a utility that simplifies the insertion of “FileVersion=”
lines into the .inf file. It replaces “#GetVersion=<filename>” lines in the .org file with
“FileVersion=…” lines and writes the new lines to the .inf file along with all other lines in the
.org file.

9. You now have everything that is needed to access this test application from a client browser.
From your client machine, bring up IE and enter the following address (substituting your
server’s name for “MYSERVER”):

http://MYSERVER/mywowapp

This last step will download the appropriate files to your client machine. The files will be
placed in the IE cache directory, which is normally \windows\downloaded program files. If
you use IE to navigate to that directory, you will see an entry called “BIS WOW Extensions
Thin Client”. If you need to remove those downloaded files (for example, during testing when
you want to start over from scratch), right-click on that entry and select “Remove”.

To more fully understand the Internet Component Download process, use the editor of your choice and
examine the following files:

default.srf
helloworld.srf
helloworld.inf

The default.srf file is the file that IE will access when the following URL is referenced:

http://MYSERVER/mywowapp

Take a look at the “<object … >” tag in that file. Notice that it references the helloworld.cab and
helloworld.srf files. The reference to helloworld.cab initiates the download process, and the
reference to helloworld.srf serves the first HTTP page to start the BISplus WOW process.

You will probably want to modify default.srf and layout.css, as desired, to create a starting Web page
(the “look-and-feel”) that is appropriate for your company and application.

http://myserver/mywowapp

4 Liant Software Corporation © Copyright 2006. All rights reserved.

A More “Real World” Example

Frequently, an application may require separate data sets for different yet similar components within a
company, for example, yet use a common set of programs. The following directory structure is an
example of one way to accomplish this:

\inetpub\wwwroot\mywowapp
 common
 cabinets
 clientparts.cab
 myapplication.cab
 liant.cab
 common.srf
 error.srf
 layout.css
 programs
 mainpgm.cob (and other RM/COBOL programs)
 division1
 data
 Data files for Division1
 default.srf
 myapplication.srf
 division2
 data
 Data files for Division2
 default.srf
 myapplication.srf
 division<n>
 data
 Data files for Division<N>
 default.srf
 myapplication.srf
 src

 …

When “Division1” wants to run the application, it references the URL:

http://MYSERVER/myapplication/division1

When “Division2” wants to run the application it would reference

http://MYSERVER/myapplication/division2

and so on.

The default.srf file in all divisions contains the following:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
{{ handler * }}
{{ include ../common/cabinets/common.srf }}

 Using Xcentrisity to Serve WOW Applications 5

The common.srf file, referenced in default.srf, contains the following:
{{ handler * }}
<html>
<head>
 <title>Customer Application</title>
 <style type="text/css" media="all">
 @import "../common/cabinets/layout.css";
 </style>
</head>
<body onBeforeUnload="CustApp.Stop()">
<h1 id="Header">Customer Application on the WEB</h1>
<div class="Content">
<p>
Please wait while Customer Application for the WEB downloads...
</p>
<p>
If you see a warning from Internet Explorer that the download sample does not have
a valid certificate, you should click on "Install" to allow this sample to run.
</p>
<object
 id="CustApp"
 codebase="../common/cabinets/myapplication.cab#version=-1,-1,-1,-1"
 CLASSID="clsid:6DED256A-08A2-4CA8-839E-8422BF920B5E"
 Height=0 Width=0 Border=0>
 <PARAM NAME="URL"

 VALUE="{{Value(‘myapplication.srf?trace=file’,MAKEABS)}}”>
 <PARAM NAME="Cookies"

 VALUE="{{Value(HTTP_COOKIE,URLENCODE)}}">
 <PARAM NAME="CommandLine"
 VALUE="">
 <PARAM NAME="Trace"
 VALUE=0>
 Error loading Customer Application!
</object>
</div>
</body>
</html>

6 Liant Software Corporation © Copyright 2006. All rights reserved.

The myapplication.srf file contains the following:
{{//There must be no whitespace rendered before the exchange tag, hence the
newline-eating comment tags }}{{//}}
{{ Handler * }}{{//}}
{{//}}
{{ Trace(start,queryparam=trace,ip=127.0.0.1) }}{{//}}
{{ SessionParms(ServiceTimeout=30,InactivityTimeout=600) }}{{//}}
{{//}}
{{ If Value(_logMask,QP,MATCH="^[1]$") }}{{//}}
{{ SetEnv(RM_WOWWEB_LOG_MASK=1) }}{{//}}
{{ EndIf }}{{//}}
{{ If Value(_logMask,QP,MATCH="^[23]$") }}{{//}}
{{ SetEnv(RM_WOWWEB_LOG_MASK=3) }}{{//}}
{{ EndIf }}{{//}}
{{ If Value(_logMask,QP,MATCH="^[45]$") }}{{//}}
{{ SetEnv(RM_WOWWEB_LOG_MASK=5) }}{{//}}
{{ EndIf }}{{//}}
{{ If Value(_logMask,QP,MATCH="^[67]$") }}{{//}}
{{ SetEnv(RM_WOWWEB_LOG_MASK=7) }}{{//}}
{{ EndIf }}{{//}}
{{//}}
{{ RunPath(../common/programs,./data) }}{{//}}
{{//}}
{{ StartService(mainpgm -V,bispluswow) }}{{//}}
{{//}}
{{ XMLExchange(OnExit=../common/cabinets/error.srf) }}{{//}}

Notice the use of relative pathnames in the .srf file. Those references are relative to the Division<n>
directory.

To avoid excessive network traffic every time the application is started, make certain that the
first-referenced cabinet (in this case, myapplication.cab) contains only the custapp.inf file. Doing so
allows this one short file to be downloaded quickly. IE will check version numbers of the files listed in
the information file (.inf) and determine whether any other cabinets need to be downloaded.

This example should serve as a starting point for your application. Simply substitute your own
programs and files as necessary.

Using UNIX as a Server

It is recommended that you first get your application running with a BIS Windows (IIS) server.
Subsequently, you can zip up your server directory and transfer it to a UNIX server. You can then
configure Apache, as documented in the BIS User’s Guide, to enable your BISplus WOW application
directory to be “served” from this machine.

	Simple “Hello World” Example
	A More “Real World” Example
	Using UNIX as a Server

